Quantification of micro-CT images of textile reinforcements
NASA Astrophysics Data System (ADS)
Straumit, Ilya; Lomov, Stepan V.; Wevers, Martine
2017-10-01
VoxTex software (KU Leuven) employs 3D image processing, which use the local directionality information, retrieved using analysis of local structure tensor. The processing results in a voxel 3D array, with each voxel carrying information on (1) material type (matrix; yarn/ply, with identification of the yarn/ply in the reinforcement architecture; void) and (2) fibre direction for fibrous yarns/plies. The knowledge of the material phase volume and known characterisation of the textile structure allows assigning to the voxels (3) fibre volume fraction. This basic voxel model can be further used for different type of the material analysis: Internal geometry and characterisation of defects; permeability; micromechanics; mesoFE voxel models. Apart from the voxel based analysis, approaches to reconstruction of the yarn paths are presented.
A voxel visualization and analysis system based on AutoCAD
NASA Astrophysics Data System (ADS)
Marschallinger, Robert
1996-05-01
A collection of AutoLISP programs is presented which enable the visualization and analysis of voxel models by AutoCAD rel. 12/rel. 13. The programs serve as an interactive, graphical front end for manipulating the results of three-dimensional modeling software producing block estimation data. ASCII data files describing geometry and attributes per estimation block are imported and stored as a voxel array. Each voxel may contain multiple attributes, therefore different parameters may be incorporated in one voxel array. Voxel classification is implemented on a layer basis providing flexible treatment of voxel classes such as recoloring, peeling, or volumetry. A versatile clipping tool enables slicing voxel arrays according to combinations of three perpendicular clipping planes. The programs feature an up-to-date, graphical user interface for user-friendly operation by non AutoCAD specialists.
A Corner-Point-Grid-Based Voxelization Method for Complex Geological Structure Model with Folds
NASA Astrophysics Data System (ADS)
Chen, Qiyu; Mariethoz, Gregoire; Liu, Gang
2017-04-01
3D voxelization is the foundation of geological property modeling, and is also an effective approach to realize the 3D visualization of the heterogeneous attributes in geological structures. The corner-point grid is a representative data model among all voxel models, and is a structured grid type that is widely applied at present. When carrying out subdivision for complex geological structure model with folds, we should fully consider its structural morphology and bedding features to make the generated voxels keep its original morphology. And on the basis of which, they can depict the detailed bedding features and the spatial heterogeneity of the internal attributes. In order to solve the shortage of the existing technologies, this work puts forward a corner-point-grid-based voxelization method for complex geological structure model with folds. We have realized the fast conversion from the 3D geological structure model to the fine voxel model according to the rule of isocline in Ramsay's fold classification. In addition, the voxel model conforms to the spatial features of folds, pinch-out and other complex geological structures, and the voxels of the laminas inside a fold accords with the result of geological sedimentation and tectonic movement. This will provide a carrier and model foundation for the subsequent attribute assignment as well as the quantitative analysis and evaluation based on the spatial voxels. Ultimately, we use examples and the contrastive analysis between the examples and the Ramsay's description of isoclines to discuss the effectiveness and advantages of the method proposed in this work when dealing with the voxelization of 3D geologic structural model with folds based on corner-point grids.
Raut, Savita V; Yadav, Dinkar M
2018-03-28
This paper presents an fMRI signal analysis methodology using geometric mean curve decomposition (GMCD) and mutual information-based voxel selection framework. Previously, the fMRI signal analysis has been conducted using empirical mean curve decomposition (EMCD) model and voxel selection on raw fMRI signal. The erstwhile methodology loses frequency component, while the latter methodology suffers from signal redundancy. Both challenges are addressed by our methodology in which the frequency component is considered by decomposing the raw fMRI signal using geometric mean rather than arithmetic mean and the voxels are selected from EMCD signal using GMCD components, rather than raw fMRI signal. The proposed methodologies are adopted for predicting the neural response. Experimentations are conducted in the openly available fMRI data of six subjects, and comparisons are made with existing decomposition models and voxel selection frameworks. Subsequently, the effect of degree of selected voxels and the selection constraints are analyzed. The comparative results and the analysis demonstrate the superiority and the reliability of the proposed methodology.
Biological Parametric Mapping: A Statistical Toolbox for Multi-Modality Brain Image Analysis
Casanova, Ramon; Ryali, Srikanth; Baer, Aaron; Laurienti, Paul J.; Burdette, Jonathan H.; Hayasaka, Satoru; Flowers, Lynn; Wood, Frank; Maldjian, Joseph A.
2006-01-01
In recent years multiple brain MR imaging modalities have emerged; however, analysis methodologies have mainly remained modality specific. In addition, when comparing across imaging modalities, most researchers have been forced to rely on simple region-of-interest type analyses, which do not allow the voxel-by-voxel comparisons necessary to answer more sophisticated neuroscience questions. To overcome these limitations, we developed a toolbox for multimodal image analysis called biological parametric mapping (BPM), based on a voxel-wise use of the general linear model. The BPM toolbox incorporates information obtained from other modalities as regressors in a voxel-wise analysis, thereby permitting investigation of more sophisticated hypotheses. The BPM toolbox has been developed in MATLAB with a user friendly interface for performing analyses, including voxel-wise multimodal correlation, ANCOVA, and multiple regression. It has a high degree of integration with the SPM (statistical parametric mapping) software relying on it for visualization and statistical inference. Furthermore, statistical inference for a correlation field, rather than a widely-used T-field, has been implemented in the correlation analysis for more accurate results. An example with in-vivo data is presented demonstrating the potential of the BPM methodology as a tool for multimodal image analysis. PMID:17070709
Modeling Dynamic Contrast-Enhanced MRI Data with a Constrained Local AIF.
Duan, Chong; Kallehauge, Jesper F; Pérez-Torres, Carlos J; Bretthorst, G Larry; Beeman, Scott C; Tanderup, Kari; Ackerman, Joseph J H; Garbow, Joel R
2018-02-01
This study aims to develop a constrained local arterial input function (cL-AIF) to improve quantitative analysis of dynamic contrast-enhanced (DCE)-magnetic resonance imaging (MRI) data by accounting for the contrast-agent bolus amplitude error in the voxel-specific AIF. Bayesian probability theory-based parameter estimation and model selection were used to compare tracer kinetic modeling employing either the measured remote-AIF (R-AIF, i.e., the traditional approach) or an inferred cL-AIF against both in silico DCE-MRI data and clinical, cervical cancer DCE-MRI data. When the data model included the cL-AIF, tracer kinetic parameters were correctly estimated from in silico data under contrast-to-noise conditions typical of clinical DCE-MRI experiments. Considering the clinical cervical cancer data, Bayesian model selection was performed for all tumor voxels of the 16 patients (35,602 voxels in total). Among those voxels, a tracer kinetic model that employed the voxel-specific cL-AIF was preferred (i.e., had a higher posterior probability) in 80 % of the voxels compared to the direct use of a single R-AIF. Maps of spatial variation in voxel-specific AIF bolus amplitude and arrival time for heterogeneous tissues, such as cervical cancer, are accessible with the cL-AIF approach. The cL-AIF method, which estimates unique local-AIF amplitude and arrival time for each voxel within the tissue of interest, provides better modeling of DCE-MRI data than the use of a single, measured R-AIF. The Bayesian-based data analysis described herein affords estimates of uncertainties for each model parameter, via posterior probability density functions, and voxel-wise comparison across methods/models, via model selection in data modeling.
Goto, Masami; Abe, Osamu; Hata, Junichi; Fukunaga, Issei; Shimoji, Keigo; Kunimatsu, Akira; Gomi, Tsutomu
2017-02-01
Background Diffusion tensor imaging (DTI) is a magnetic resonance imaging (MRI) technique that reflects the Brownian motion of water molecules constrained within brain tissue. Fractional anisotropy (FA) is one of the most commonly measured DTI parameters, and can be applied to quantitative analysis of white matter as tract-based spatial statistics (TBSS) and voxel-wise analysis. Purpose To show an association between metallic implants and the results of statistical analysis (voxel-wise group comparison and TBSS) for fractional anisotropy (FA) mapping, in DTI of healthy adults. Material and Methods Sixteen healthy volunteers were scanned with 3-Tesla MRI. A magnetic keeper type of dental implant was used as the metallic implant. DTI was acquired three times in each participant: (i) without a magnetic keeper (FAnon1); (ii) with a magnetic keeper (FAimp); and (iii) without a magnetic keeper (FAnon2) as reproducibility of FAnon1. Group comparisons with paired t-test were performed as FAnon1 vs. FAnon2, and as FAnon1 vs. FAimp. Results Regions of significantly reduced and increased local FA values were revealed by voxel-wise group comparison analysis (a P value of less than 0.05, corrected with family-wise error), but not by TBSS. Conclusion Metallic implants existing outside the field of view produce artifacts that affect the statistical analysis (voxel-wise group comparisons) for FA mapping. When statistical analysis for FA mapping is conducted by researchers, it is important to pay attention to any dental implants present in the mouths of the participants.
Plaza-Leiva, Victoria; Gomez-Ruiz, Jose Antonio; Mandow, Anthony; García-Cerezo, Alfonso
2017-03-15
Improving the effectiveness of spatial shape features classification from 3D lidar data is very relevant because it is largely used as a fundamental step towards higher level scene understanding challenges of autonomous vehicles and terrestrial robots. In this sense, computing neighborhood for points in dense scans becomes a costly process for both training and classification. This paper proposes a new general framework for implementing and comparing different supervised learning classifiers with a simple voxel-based neighborhood computation where points in each non-overlapping voxel in a regular grid are assigned to the same class by considering features within a support region defined by the voxel itself. The contribution provides offline training and online classification procedures as well as five alternative feature vector definitions based on principal component analysis for scatter, tubular and planar shapes. Moreover, the feasibility of this approach is evaluated by implementing a neural network (NN) method previously proposed by the authors as well as three other supervised learning classifiers found in scene processing methods: support vector machines (SVM), Gaussian processes (GP), and Gaussian mixture models (GMM). A comparative performance analysis is presented using real point clouds from both natural and urban environments and two different 3D rangefinders (a tilting Hokuyo UTM-30LX and a Riegl). Classification performance metrics and processing time measurements confirm the benefits of the NN classifier and the feasibility of voxel-based neighborhood.
Kim, Jae-Hun; Ha, Tae Lin; Im, Geun Ho; Yang, Jehoon; Seo, Sang Won; Chung, Julius Juhyun; Chae, Sun Young; Lee, In Su; Lee, Jung Hee
2014-03-05
In this study, we have shown the potential of a voxel-based analysis for imaging amyloid plaques and its utility in monitoring therapeutic response in Alzheimer's disease (AD) mice using manganese oxide nanoparticles conjugated with an antibody of Aβ1-40 peptide (HMON-abAβ40). T1-weighted MR brain images of a drug-treated AD group (n=7), a nontreated AD group (n=7), and a wild-type group (n=7) were acquired using a 7.0 T MRI system before (D-1), 24-h (D+1) after, and 72-h (D+3) after injection with an HMON-abAβ40 contrast agent. For the treatment of AD mice, DAPT was injected intramuscularly into AD transgenic mice (50 mg/kg of body weight). For voxel-based analysis, the skull-stripped mouse brain images were spatially normalized, and these voxels' intensities were corrected to reduce voxel intensity differences across scans in different mice. Statistical analysis showed higher normalized MR signal intensity in the frontal cortex and hippocampus of AD mice over wild-type mice on D+1 and D+3 (P<0.01, uncorrected for multiple comparisons). After the treatment of AD mice, the normalized MR signal intensity in the frontal cortex and hippocampus decreased significantly in comparison with nontreated AD mice on D+1 and D+3 (P<0.01, uncorrected for multiple comparisons). These results were confirmed by histological analysis using a thioflavin staining. This unique strategy allows us to detect brain regions that are subjected to amyloid plaque deposition and has the potential for human applications in monitoring therapeutic response for drug development in AD.
Nguyen, Huyen T; Shah, Zarine K; Mortazavi, Amir; Pohar, Kamal S; Wei, Lai; Jia, Guang; Zynger, Debra L; Knopp, Michael V
2017-05-01
To quantify the heterogeneity of the tumour apparent diffusion coefficient (ADC) using voxel-based analysis to differentiate malignancy from benign wall thickening of the urinary bladder. Nineteen patients with histopathological findings of their cystectomy specimen were included. A data set of voxel-based ADC values was acquired for each patient's lesion. Histogram analysis was performed on each data set to calculate uniformity (U) and entropy (E). The k-means clustering of the voxel-wised ADC data set was implemented to measure mean intra-cluster distance (MICD) and largest inter-cluster distance (LICD). Subsequently, U, E, MICD, and LICD for malignant tumours were compared with those for benign lesions using a two-sample t-test. Eleven patients had pathological confirmation of malignancy and eight with benign wall thickening. Histogram analysis showed that malignant tumours had a significantly higher degree of ADC heterogeneity with lower U (P = 0.016) and higher E (P = 0.005) than benign lesions. In agreement with these findings, k-means clustering of voxel-wise ADC indicated that bladder malignancy presented with significantly higher MICD (P < 0.001) and higher LICD (P = 0.002) than benign wall thickening. The quantitative assessment of tumour diffusion heterogeneity using voxel-based ADC analysis has the potential to become a non-invasive tool to distinguish malignant from benign tissues of urinary bladder cancer. • Heterogeneity is an intrinsic characteristic of tumoral tissue. • Non-invasive quantification of tumour heterogeneity can provide adjunctive information to improve cancer diagnosis accuracy. • Histogram analysis and k-means clustering can quantify tumour diffusion heterogeneity. • The quantification helps differentiate malignant from benign urinary bladder tissue.
Raffelt, David A.; Smith, Robert E.; Ridgway, Gerard R.; Tournier, J-Donald; Vaughan, David N.; Rose, Stephen; Henderson, Robert; Connelly, Alan
2015-01-01
In brain regions containing crossing fibre bundles, voxel-average diffusion MRI measures such as fractional anisotropy (FA) are difficult to interpret, and lack within-voxel single fibre population specificity. Recent work has focused on the development of more interpretable quantitative measures that can be associated with a specific fibre population within a voxel containing crossing fibres (herein we use fixel to refer to a specific fibre population within a single voxel). Unfortunately, traditional 3D methods for smoothing and cluster-based statistical inference cannot be used for voxel-based analysis of these measures, since the local neighbourhood for smoothing and cluster formation can be ambiguous when adjacent voxels may have different numbers of fixels, or ill-defined when they belong to different tracts. Here we introduce a novel statistical method to perform whole-brain fixel-based analysis called connectivity-based fixel enhancement (CFE). CFE uses probabilistic tractography to identify structurally connected fixels that are likely to share underlying anatomy and pathology. Probabilistic connectivity information is then used for tract-specific smoothing (prior to the statistical analysis) and enhancement of the statistical map (using a threshold-free cluster enhancement-like approach). To investigate the characteristics of the CFE method, we assessed sensitivity and specificity using a large number of combinations of CFE enhancement parameters and smoothing extents, using simulated pathology generated with a range of test-statistic signal-to-noise ratios in five different white matter regions (chosen to cover a broad range of fibre bundle features). The results suggest that CFE input parameters are relatively insensitive to the characteristics of the simulated pathology. We therefore recommend a single set of CFE parameters that should give near optimal results in future studies where the group effect is unknown. We then demonstrate the proposed method by comparing apparent fibre density between motor neurone disease (MND) patients with control subjects. The MND results illustrate the benefit of fixel-specific statistical inference in white matter regions that contain crossing fibres. PMID:26004503
Data analysis in emission tomography using emission-count posteriors
NASA Astrophysics Data System (ADS)
Sitek, Arkadiusz
2012-11-01
A novel approach to the analysis of emission tomography data using the posterior probability of the number of emissions per voxel (emission count) conditioned on acquired tomographic data is explored. The posterior is derived from the prior and the Poisson likelihood of the emission-count data by marginalizing voxel activities. Based on emission-count posteriors, examples of Bayesian analysis including estimation and classification tasks in emission tomography are provided. The application of the method to computer simulations of 2D tomography is demonstrated. In particular, the minimum-mean-square-error point estimator of the emission count is demonstrated. The process of finding this estimator can be considered as a tomographic image reconstruction technique since the estimates of the number of emissions per voxel divided by voxel sensitivities and acquisition time are the estimates of the voxel activities. As an example of a classification task, a hypothesis stating that some region of interest (ROI) emitted at least or at most r-times the number of events in some other ROI is tested. The ROIs are specified by the user. The analysis described in this work provides new quantitative statistical measures that can be used in decision making in diagnostic imaging using emission tomography.
Voxel-Based LIDAR Analysis and Applications
NASA Astrophysics Data System (ADS)
Hagstrom, Shea T.
One of the greatest recent changes in the field of remote sensing is the addition of high-quality Light Detection and Ranging (LIDAR) instruments. In particular, the past few decades have been greatly beneficial to these systems because of increases in data collection speed and accuracy, as well as a reduction in the costs of components. These improvements allow modern airborne instruments to resolve sub-meter details, making them ideal for a wide variety of applications. Because LIDAR uses active illumination to capture 3D information, its output is fundamentally different from other modalities. Despite this difference, LIDAR datasets are often processed using methods appropriate for 2D images and that do not take advantage of its primary virtue of 3-dimensional data. It is this problem we explore by using volumetric voxel modeling. Voxel-based analysis has been used in many applications, especially medical imaging, but rarely in traditional remote sensing. In part this is because the memory requirements are substantial when handling large areas, but with modern computing and storage this is no longer a significant impediment. Our reason for using voxels to model scenes from LIDAR data is that there are several advantages over standard triangle-based models, including better handling of overlapping surfaces and complex shapes. We show how incorporating system position information from early in the LIDAR point cloud generation process allows radiometrically-correct transmission and other novel voxel properties to be recovered. This voxelization technique is validated on simulated data using the Digital Imaging and Remote Sensing Image Generation (DIRSIG) software, a first-principles based ray-tracer developed at the Rochester Institute of Technology. Voxel-based modeling of LIDAR can be useful on its own, but we believe its primary advantage is when applied to problems where simpler surface-based 3D models conflict with the requirement of realistic geometry. To show the voxel model's advantage, we apply it to several outstanding problems in remote sensing: LIDAR quality metrics, line-of-sight mapping, and multi-model fusion. Each of these applications is derived, validated, and examined in detail, and our results compared with other state-of-the-art methods. In most cases the voxel-based methods demonstrate superior results and are able to derive information not available to existing methods. Realizing these improvements requires only a shift away from traditional 3D model generation, and our results give a small indicator of what is possible. Many examples of possible areas for future improvement and expansion of algorithms beyond the scope of our work are also noted.
Yang, Linglin; Li, Hong; Zhu, Lujia; Yu, Xinfeng; Jin, Bo; Chen, Cong; Wang, Shan; Ding, Meiping; Zhang, Minming; Chen, Zhong; Wang, Shuang
2017-05-01
Mesial temporal lobe epilepsy (mTLE) is a common type of drug-resistant epilepsy and secondarily generalized tonic-clonic seizures (sGTCS) have devastating consequences for patients' safety and quality of life. To probe the mechanism underlying the genesis of sGTCS, we investigated the structural differences between patients with and without sGTCS in a cohort of mTLE with radiologically defined unilateral hippocampal sclerosis. We performed voxel-based morphometric analysis of cortex and vertex-wise shape analysis of subcortical structures (the basal ganglia and thalamus) on MRI of 39 patients (21 with and 18 without sGTCS). Comparisons were initially made between sGTCS and non-sGTCS groups, and subsequently made between uncontrolled-sGTCS and controlled-sGTCS subgroups. Regional atrophy of the ipsilateral ventral pallidum (cluster size=450 voxels, corrected p=0.047, Max voxel coordinate=107, 120, 65), medial thalamus (cluster size=1128 voxels, corrected p=0.049, Max voxel coordinate=107, 93, 67), middle frontal gyrus (cluster size=60 voxels, corrected p<0.05, Max voxel coordinate=-30, 49.5, 6), and contralateral posterior cingulate cortex (cluster size=130 voxels, corrected p<0.05, Max voxel coordinate=16.5, -57, 27) was found in the sGTCS group relative to the non-sGTCS group. Furthermore, the uncontrolled-sGTCS subgroup showed more pronounced atrophy of the ipsilateral medial thalamus (cluster size=1240 voxels, corrected p=0.014, Max voxel coordinate=107, 93, 67) than the controlled-sGTCS subgroup. These findings indicate a central role of thalamus and pallidum in the pathophysiology of sGTCS in mTLE. Copyright © 2017 Elsevier Inc. All rights reserved.
The impact of sample size on the reproducibility of voxel-based lesion-deficit mappings.
Lorca-Puls, Diego L; Gajardo-Vidal, Andrea; White, Jitrachote; Seghier, Mohamed L; Leff, Alexander P; Green, David W; Crinion, Jenny T; Ludersdorfer, Philipp; Hope, Thomas M H; Bowman, Howard; Price, Cathy J
2018-07-01
This study investigated how sample size affects the reproducibility of findings from univariate voxel-based lesion-deficit analyses (e.g., voxel-based lesion-symptom mapping and voxel-based morphometry). Our effect of interest was the strength of the mapping between brain damage and speech articulation difficulties, as measured in terms of the proportion of variance explained. First, we identified a region of interest by searching on a voxel-by-voxel basis for brain areas where greater lesion load was associated with poorer speech articulation using a large sample of 360 right-handed English-speaking stroke survivors. We then randomly drew thousands of bootstrap samples from this data set that included either 30, 60, 90, 120, 180, or 360 patients. For each resample, we recorded effect size estimates and p values after conducting exactly the same lesion-deficit analysis within the previously identified region of interest and holding all procedures constant. The results show (1) how often small effect sizes in a heterogeneous population fail to be detected; (2) how effect size and its statistical significance varies with sample size; (3) how low-powered studies (due to small sample sizes) can greatly over-estimate as well as under-estimate effect sizes; and (4) how large sample sizes (N ≥ 90) can yield highly significant p values even when effect sizes are so small that they become trivial in practical terms. The implications of these findings for interpreting the results from univariate voxel-based lesion-deficit analyses are discussed. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Mapping Informative Clusters in a Hierarchial Framework of fMRI Multivariate Analysis
Xu, Rui; Zhen, Zonglei; Liu, Jia
2010-01-01
Pattern recognition methods have become increasingly popular in fMRI data analysis, which are powerful in discriminating between multi-voxel patterns of brain activities associated with different mental states. However, when they are used in functional brain mapping, the location of discriminative voxels varies significantly, raising difficulties in interpreting the locus of the effect. Here we proposed a hierarchical framework of multivariate approach that maps informative clusters rather than voxels to achieve reliable functional brain mapping without compromising the discriminative power. In particular, we first searched for local homogeneous clusters that consisted of voxels with similar response profiles. Then, a multi-voxel classifier was built for each cluster to extract discriminative information from the multi-voxel patterns. Finally, through multivariate ranking, outputs from the classifiers were served as a multi-cluster pattern to identify informative clusters by examining interactions among clusters. Results from both simulated and real fMRI data demonstrated that this hierarchical approach showed better performance in the robustness of functional brain mapping than traditional voxel-based multivariate methods. In addition, the mapped clusters were highly overlapped for two perceptually equivalent object categories, further confirming the validity of our approach. In short, the hierarchical framework of multivariate approach is suitable for both pattern classification and brain mapping in fMRI studies. PMID:21152081
A voxel-based technique to estimate the volume of trees from terrestrial laser scanner data
NASA Astrophysics Data System (ADS)
Bienert, A.; Hess, C.; Maas, H.-G.; von Oheimb, G.
2014-06-01
The precise determination of the volume of standing trees is very important for ecological and economical considerations in forestry. If terrestrial laser scanner data are available, a simple approach for volume determination is given by allocating points into a voxel structure and subsequently counting the filled voxels. Generally, this method will overestimate the volume. The paper presents an improved algorithm to estimate the wood volume of trees using a voxel-based method which will correct for the overestimation. After voxel space transformation, each voxel which contains points is reduced to the volume of its surrounding bounding box. In a next step, occluded (inner stem) voxels are identified by a neighbourhood analysis sweeping in the X and Y direction of each filled voxel. Finally, the wood volume of the tree is composed by the sum of the bounding box volumes of the outer voxels and the volume of all occluded inner voxels. Scan data sets from several young Norway maple trees (Acer platanoides) were used to analyse the algorithm. Therefore, the scanned trees as well as their representing point clouds were separated in different components (stem, branches) to make a meaningful comparison. Two reference measurements were performed for validation: A direct wood volume measurement by placing the tree components into a water tank, and a frustum calculation of small trunk segments by measuring the radii along the trunk. Overall, the results show slightly underestimated volumes (-0.3% for a probe of 13 trees) with a RMSE of 11.6% for the individual tree volume calculated with the new approach.
Lahnakoski, Juha M; Salmi, Juha; Jääskeläinen, Iiro P; Lampinen, Jouko; Glerean, Enrico; Tikka, Pia; Sams, Mikko
2012-01-01
Understanding how the brain processes stimuli in a rich natural environment is a fundamental goal of neuroscience. Here, we showed a feature film to 10 healthy volunteers during functional magnetic resonance imaging (fMRI) of hemodynamic brain activity. We then annotated auditory and visual features of the motion picture to inform analysis of the hemodynamic data. The annotations were fitted to both voxel-wise data and brain network time courses extracted by independent component analysis (ICA). Auditory annotations correlated with two independent components (IC) disclosing two functional networks, one responding to variety of auditory stimulation and another responding preferentially to speech but parts of the network also responding to non-verbal communication. Visual feature annotations correlated with four ICs delineating visual areas according to their sensitivity to different visual stimulus features. In comparison, a separate voxel-wise general linear model based analysis disclosed brain areas preferentially responding to sound energy, speech, music, visual contrast edges, body motion and hand motion which largely overlapped the results revealed by ICA. Differences between the results of IC- and voxel-based analyses demonstrate that thorough analysis of voxel time courses is important for understanding the activity of specific sub-areas of the functional networks, while ICA is a valuable tool for revealing novel information about functional connectivity which need not be explained by the predefined model. Our results encourage the use of naturalistic stimuli and tasks in cognitive neuroimaging to study how the brain processes stimuli in rich natural environments.
Lahnakoski, Juha M.; Salmi, Juha; Jääskeläinen, Iiro P.; Lampinen, Jouko; Glerean, Enrico; Tikka, Pia; Sams, Mikko
2012-01-01
Understanding how the brain processes stimuli in a rich natural environment is a fundamental goal of neuroscience. Here, we showed a feature film to 10 healthy volunteers during functional magnetic resonance imaging (fMRI) of hemodynamic brain activity. We then annotated auditory and visual features of the motion picture to inform analysis of the hemodynamic data. The annotations were fitted to both voxel-wise data and brain network time courses extracted by independent component analysis (ICA). Auditory annotations correlated with two independent components (IC) disclosing two functional networks, one responding to variety of auditory stimulation and another responding preferentially to speech but parts of the network also responding to non-verbal communication. Visual feature annotations correlated with four ICs delineating visual areas according to their sensitivity to different visual stimulus features. In comparison, a separate voxel-wise general linear model based analysis disclosed brain areas preferentially responding to sound energy, speech, music, visual contrast edges, body motion and hand motion which largely overlapped the results revealed by ICA. Differences between the results of IC- and voxel-based analyses demonstrate that thorough analysis of voxel time courses is important for understanding the activity of specific sub-areas of the functional networks, while ICA is a valuable tool for revealing novel information about functional connectivity which need not be explained by the predefined model. Our results encourage the use of naturalistic stimuli and tasks in cognitive neuroimaging to study how the brain processes stimuli in rich natural environments. PMID:22496909
Li, Huanjie; Nickerson, Lisa D; Nichols, Thomas E; Gao, Jia-Hong
2017-03-01
Two powerful methods for statistical inference on MRI brain images have been proposed recently, a non-stationary voxelation-corrected cluster-size test (CST) based on random field theory and threshold-free cluster enhancement (TFCE) based on calculating the level of local support for a cluster, then using permutation testing for inference. Unlike other statistical approaches, these two methods do not rest on the assumptions of a uniform and high degree of spatial smoothness of the statistic image. Thus, they are strongly recommended for group-level fMRI analysis compared to other statistical methods. In this work, the non-stationary voxelation-corrected CST and TFCE methods for group-level analysis were evaluated for both stationary and non-stationary images under varying smoothness levels, degrees of freedom and signal to noise ratios. Our results suggest that, both methods provide adequate control for the number of voxel-wise statistical tests being performed during inference on fMRI data and they are both superior to current CSTs implemented in popular MRI data analysis software packages. However, TFCE is more sensitive and stable for group-level analysis of VBM data. Thus, the voxelation-corrected CST approach may confer some advantages by being computationally less demanding for fMRI data analysis than TFCE with permutation testing and by also being applicable for single-subject fMRI analyses, while the TFCE approach is advantageous for VBM data. Hum Brain Mapp 38:1269-1280, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Torheim, Turid; Groendahl, Aurora R; Andersen, Erlend K F; Lyng, Heidi; Malinen, Eirik; Kvaal, Knut; Futsaether, Cecilia M
2016-11-01
Solid tumors are known to be spatially heterogeneous. Detection of treatment-resistant tumor regions can improve clinical outcome, by enabling implementation of strategies targeting such regions. In this study, K-means clustering was used to group voxels in dynamic contrast enhanced magnetic resonance images (DCE-MRI) of cervical cancers. The aim was to identify clusters reflecting treatment resistance that could be used for targeted radiotherapy with a dose-painting approach. Eighty-one patients with locally advanced cervical cancer underwent DCE-MRI prior to chemoradiotherapy. The resulting image time series were fitted to two pharmacokinetic models, the Tofts model (yielding parameters K trans and ν e ) and the Brix model (A Brix , k ep and k el ). K-means clustering was used to group similar voxels based on either the pharmacokinetic parameter maps or the relative signal increase (RSI) time series. The associations between voxel clusters and treatment outcome (measured as locoregional control) were evaluated using the volume fraction or the spatial distribution of each cluster. One voxel cluster based on the RSI time series was significantly related to locoregional control (adjusted p-value 0.048). This cluster consisted of low-enhancing voxels. We found that tumors with poor prognosis had this RSI-based cluster gathered into few patches, making this cluster a potential candidate for targeted radiotherapy. None of the voxels clusters based on Tofts or Brix parameter maps were significantly related to treatment outcome. We identified one group of tumor voxels significantly associated with locoregional relapse that could potentially be used for dose painting. This tumor voxel cluster was identified using the raw MRI time series rather than the pharmacokinetic maps.
Plaza-Leiva, Victoria; Gomez-Ruiz, Jose Antonio; Mandow, Anthony; García-Cerezo, Alfonso
2017-01-01
Improving the effectiveness of spatial shape features classification from 3D lidar data is very relevant because it is largely used as a fundamental step towards higher level scene understanding challenges of autonomous vehicles and terrestrial robots. In this sense, computing neighborhood for points in dense scans becomes a costly process for both training and classification. This paper proposes a new general framework for implementing and comparing different supervised learning classifiers with a simple voxel-based neighborhood computation where points in each non-overlapping voxel in a regular grid are assigned to the same class by considering features within a support region defined by the voxel itself. The contribution provides offline training and online classification procedures as well as five alternative feature vector definitions based on principal component analysis for scatter, tubular and planar shapes. Moreover, the feasibility of this approach is evaluated by implementing a neural network (NN) method previously proposed by the authors as well as three other supervised learning classifiers found in scene processing methods: support vector machines (SVM), Gaussian processes (GP), and Gaussian mixture models (GMM). A comparative performance analysis is presented using real point clouds from both natural and urban environments and two different 3D rangefinders (a tilting Hokuyo UTM-30LX and a Riegl). Classification performance metrics and processing time measurements confirm the benefits of the NN classifier and the feasibility of voxel-based neighborhood. PMID:28294963
VoxelStats: A MATLAB Package for Multi-Modal Voxel-Wise Brain Image Analysis.
Mathotaarachchi, Sulantha; Wang, Seqian; Shin, Monica; Pascoal, Tharick A; Benedet, Andrea L; Kang, Min Su; Beaudry, Thomas; Fonov, Vladimir S; Gauthier, Serge; Labbe, Aurélie; Rosa-Neto, Pedro
2016-01-01
In healthy individuals, behavioral outcomes are highly associated with the variability on brain regional structure or neurochemical phenotypes. Similarly, in the context of neurodegenerative conditions, neuroimaging reveals that cognitive decline is linked to the magnitude of atrophy, neurochemical declines, or concentrations of abnormal protein aggregates across brain regions. However, modeling the effects of multiple regional abnormalities as determinants of cognitive decline at the voxel level remains largely unexplored by multimodal imaging research, given the high computational cost of estimating regression models for every single voxel from various imaging modalities. VoxelStats is a voxel-wise computational framework to overcome these computational limitations and to perform statistical operations on multiple scalar variables and imaging modalities at the voxel level. VoxelStats package has been developed in Matlab(®) and supports imaging formats such as Nifti-1, ANALYZE, and MINC v2. Prebuilt functions in VoxelStats enable the user to perform voxel-wise general and generalized linear models and mixed effect models with multiple volumetric covariates. Importantly, VoxelStats can recognize scalar values or image volumes as response variables and can accommodate volumetric statistical covariates as well as their interaction effects with other variables. Furthermore, this package includes built-in functionality to perform voxel-wise receiver operating characteristic analysis and paired and unpaired group contrast analysis. Validation of VoxelStats was conducted by comparing the linear regression functionality with existing toolboxes such as glim_image and RMINC. The validation results were identical to existing methods and the additional functionality was demonstrated by generating feature case assessments (t-statistics, odds ratio, and true positive rate maps). In summary, VoxelStats expands the current methods for multimodal imaging analysis by allowing the estimation of advanced regional association metrics at the voxel level.
Automated diagnosis of Alzheimer's disease with multi-atlas based whole brain segmentations
NASA Astrophysics Data System (ADS)
Luo, Yuan; Tang, Xiaoying
2017-03-01
Voxel-based analysis is widely used in quantitative analysis of structural brain magnetic resonance imaging (MRI) and automated disease detection, such as Alzheimer's disease (AD). However, noise at the voxel level may cause low sensitivity to AD-induced structural abnormalities. This can be addressed with the use of a whole brain structural segmentation approach which greatly reduces the dimension of features (the number of voxels). In this paper, we propose an automatic AD diagnosis system that combines such whole brain segmen- tations with advanced machine learning methods. We used a multi-atlas segmentation technique to parcellate T1-weighted images into 54 distinct brain regions and extract their structural volumes to serve as the features for principal-component-analysis-based dimension reduction and support-vector-machine-based classification. The relationship between the number of retained principal components (PCs) and the diagnosis accuracy was systematically evaluated, in a leave-one-out fashion, based on 28 AD subjects and 23 age-matched healthy subjects. Our approach yielded pretty good classification results with 96.08% overall accuracy being achieved using the three foremost PCs. In addition, our approach yielded 96.43% specificity, 100% sensitivity, and 0.9891 area under the receiver operating characteristic curve.
Effect of SOHAM meditation on human brain: a voxel-based morphometry study.
Kumar, Uttam; Guleria, Anupam; Kishan, Sadguru Sri Kunal; Khetrapal, C L
2014-01-01
The anatomical correlates of long-term meditators involved in practice of "SOHAM" meditation have been studied using voxel-based morphometry (VBM). The VBM analysis indicates significantly higher gray matter density in brain stem, ventral pallidum, and supplementary motor area in the meditators as compared with age-matched nonmeditators. The observed changes in brain structure are compared with other forms of meditation. Copyright © 2013 by the American Society of Neuroimaging.
Subsurface data visualization in Virtual Reality
NASA Astrophysics Data System (ADS)
Krijnen, Robbert; Smelik, Ruben; Appleton, Rick; van Maanen, Peter-Paul
2017-04-01
Due to their increasing complexity and size, visualization of geological data is becoming more and more important. It enables detailed examining and reviewing of large volumes of geological data and it is often used as a communication tool for reporting and education to demonstrate the importance of the geology to policy makers. In the Netherlands two types of nation-wide geological models are available: 1) Layer-based models in which the subsurface is represented by a series of tops and bases of geological or hydrogeological units, and 2) Voxel models in which the subsurface is subdivided in a regular grid of voxels that can contain different properties per voxel. The Geological Survey of the Netherlands (GSN) provides an interactive web portal that delivers maps and vertical cross-sections of such layer-based and voxel models. From this portal you can download a 3D subsurface viewer that can visualize the voxel model data of an area of 20 × 25 km with 100 × 100 × 5 meter voxel resolution on a desktop computer. Virtual Reality (VR) technology enables us to enhance the visualization of this volumetric data in a more natural way as compared to a standard desktop, keyboard mouse setup. The use of VR for data visualization is not new but recent developments has made expensive hardware and complex setups unnecessary. The availability of consumer of-the-shelf VR hardware enabled us to create an new intuitive and low visualization tool. A VR viewer has been implemented using the HTC Vive head set and allows visualization and analysis of the GSN voxel model data with geological or hydrogeological units. The user can navigate freely around the voxel data (20 × 25 km) which is presented in a virtual room at a scale of 2 × 2 or 3 × 3 meters. To enable analysis, e.g. hydraulic conductivity, the user can select filters to remove specific hydrogeological units. The user can also use slicing to cut-off specific sections of the voxel data to get a closer look. This slicing can be done in any direction using a 'virtual knife'. Future plans are to further improve performance from 30 up to 90 Hz update rate to reduce possible motion sickness, add more advanced filtering capabilities as well as a multi user setup, annotation capabilities and visualizing of historical data.
A Statistical Analysis of Brain Morphology Using Wild Bootstrapping
Ibrahim, Joseph G.; Tang, Niansheng; Rowe, Daniel B.; Hao, Xuejun; Bansal, Ravi; Peterson, Bradley S.
2008-01-01
Methods for the analysis of brain morphology, including voxel-based morphology and surface-based morphometries, have been used to detect associations between brain structure and covariates of interest, such as diagnosis, severity of disease, age, IQ, and genotype. The statistical analysis of morphometric measures usually involves two statistical procedures: 1) invoking a statistical model at each voxel (or point) on the surface of the brain or brain subregion, followed by mapping test statistics (e.g., t test) or their associated p values at each of those voxels; 2) correction for the multiple statistical tests conducted across all voxels on the surface of the brain region under investigation. We propose the use of new statistical methods for each of these procedures. We first use a heteroscedastic linear model to test the associations between the morphological measures at each voxel on the surface of the specified subregion (e.g., cortical or subcortical surfaces) and the covariates of interest. Moreover, we develop a robust test procedure that is based on a resampling method, called wild bootstrapping. This procedure assesses the statistical significance of the associations between a measure of given brain structure and the covariates of interest. The value of this robust test procedure lies in its computationally simplicity and in its applicability to a wide range of imaging data, including data from both anatomical and functional magnetic resonance imaging (fMRI). Simulation studies demonstrate that this robust test procedure can accurately control the family-wise error rate. We demonstrate the application of this robust test procedure to the detection of statistically significant differences in the morphology of the hippocampus over time across gender groups in a large sample of healthy subjects. PMID:17649909
Two efficient label-equivalence-based connected-component labeling algorithms for 3-D binary images.
He, Lifeng; Chao, Yuyan; Suzuki, Kenji
2011-08-01
Whenever one wants to distinguish, recognize, and/or measure objects (connected components) in binary images, labeling is required. This paper presents two efficient label-equivalence-based connected-component labeling algorithms for 3-D binary images. One is voxel based and the other is run based. For the voxel-based one, we present an efficient method of deciding the order for checking voxels in the mask. For the run-based one, instead of assigning each foreground voxel, we assign each run a provisional label. Moreover, we use run data to label foreground voxels without scanning any background voxel in the second scan. Experimental results have demonstrated that our voxel-based algorithm is efficient for 3-D binary images with complicated connected components, that our run-based one is efficient for those with simple connected components, and that both are much more efficient than conventional 3-D labeling algorithms.
Li, Lin; Cazzell, Mary; Babawale, Olajide; Liu, Hanli
2016-10-01
Atlas-guided diffuse optical tomography (atlas-DOT) is a computational means to image changes in cortical hemodynamic signals during human brain activities. Graph theory analysis (GTA) is a network analysis tool commonly used in functional neuroimaging to study brain networks. Atlas-DOT has not been analyzed with GTA to derive large-scale brain connectivity/networks based on near-infrared spectroscopy (NIRS) measurements. We introduced an automated voxel classification (AVC) method that facilitated the use of GTA with atlas-DOT images by grouping unequal-sized finite element voxels into anatomically meaningful regions of interest within the human brain. The overall approach included volume segmentation, AVC, and cross-correlation. To demonstrate the usefulness of AVC, we applied reproducibility analysis to resting-state functional connectivity measurements conducted from 15 young adults in a two-week period. We also quantified and compared changes in several brain network metrics between young and older adults, which were in agreement with those reported by a previous positron emission tomography study. Overall, this study demonstrated that AVC is a useful means for facilitating integration or combination of atlas-DOT with GTA and thus for quantifying NIRS-based, voxel-wise resting-state functional brain networks.
Distributed task coding throughout the multiple demand network of the human frontal-insular cortex.
Stiers, Peter; Mennes, Maarten; Sunaert, Stefan
2010-08-01
The large variety of tasks that humans can perform is governed by a small number of key frontal-insular regions that are commonly active during task performance. Little is known about how this network distinguishes different tasks. We report on fMRI data in twelve participants while they performed four cognitive tasks. Of 20 commonly active frontal-insular regions in each hemisphere, five showed a BOLD response increase with increased task demands, regardless of the task. Although active in all tasks, each task invoked a unique response pattern across the voxels in each area that proved reliable in split-half multi-voxel correlation analysis. Consequently, voxels differed in their preference for one or more of the tasks. Voxel-based functional connectivity analyses revealed that same preference voxels distributed across all areas of the network constituted functional sub-networks that characterized the task being executed. Copyright 2010 Elsevier Inc. All rights reserved.
Voxel-Based Morphometry ALE meta-analysis of Bipolar Disorder
NASA Astrophysics Data System (ADS)
Magana, Omar; Laird, Robert
2012-03-01
A meta-analysis was performed independently to view the changes in gray matter (GM) on patients with Bipolar disorder (BP). The meta-analysis was conducted on a Talairach Space using GingerALE to determine the voxels and their permutation. In order to achieve the data acquisition, published experiments and similar research studies were uploaded onto the online Voxel-Based Morphometry database (VBM). By doing so, coordinates of activation locations were extracted from Bipolar disorder related journals utilizing Sleuth. Once the coordinates of given experiments were selected and imported to GingerALE, a Gaussian was performed on all foci points to create the concentration points of GM on BP patients. The results included volume reductions and variations of GM between Normal Healthy controls and Patients with Bipolar disorder. A significant amount of GM clusters were obtained in Normal Healthy controls over BP patients on the right precentral gyrus, right anterior cingulate, and the left inferior frontal gyrus. In future research, more published journals could be uploaded onto the database and another VBM meta-analysis could be performed including more activation coordinates or a variation of age groups.
Rocchetti, Matteo; Radua, Joaquim; Paloyelis, Yannis; Xenaki, Lida-Alkisti; Frascarelli, Marianna; Caverzasi, Edgardo; Politi, Pierluigi; Fusar-Poli, Paolo
2014-10-01
Several studies have tried to understand the possible neurobiological basis of mothering. The putative involvement of oxytocin, in this regard, has been deeply investigated. Performing a voxel-based meta-analysis, we aimed at testing the hypothesis of overlapping brain activation in functional magnetic resonance imaging (fMRI) studies investigating the mother-infant interaction and the oxytocin modulation of emotional stimuli in humans. We performed two systematic literature searches: fMRI studies investigating the neurofunctional correlates of the 'maternal brain' by employing mother-infant paradigms; and fMRI studies employing oxytocin during emotional tasks. A unimodal voxel-based meta-analysis was performed on each database, whereas a multimodal voxel-based meta-analytical tool was adopted to assess the hypothesis that the neurofunctional effects of oxytocin are detected in brain areas implicated in the 'maternal brain.' We found greater activation in the bilateral insula extending to the inferior frontal gyrus, basal ganglia and thalamus during mother-infant interaction and greater left insular activation associated with oxytocin administration versus placebo. Left insula extending to basal ganglia and frontotemporal gyri as well as bilateral thalamus and amygdala showed consistent activation across the two paradigms. Right insula also showed activation across the two paradigms, and dorsomedial frontal cortex activation in mothers but deactivation with oxytocin. Significant activation in areas involved in empathy, emotion regulation, motivation, social cognition and theory of mind emerged from our multimodal meta-analysis, supporting the need for further studies directly investigating the neurobiology of oxytocin in the mother-infant relationship. © 2014 The Authors. Psychiatry and Clinical Neurosciences © 2014 Japanese Society of Psychiatry and Neurology.
Veronese, Mattia; Schmidt, Kathleen C; Smith, Carolyn Beebe; Bertoldo, Alessandra
2012-06-01
A spectral analysis approach was used to estimate kinetic parameters of the L-[1-(11)C]leucine positron emission tomography (PET) method and regional rates of cerebral protein synthesis (rCPS) on a voxel-by-voxel basis. Spectral analysis applies to both heterogeneous and homogeneous tissues; it does not require prior assumptions concerning number of tissue compartments. Parameters estimated with spectral analysis can be strongly affected by noise, but numerical filters improve estimation performance. Spectral analysis with iterative filter (SAIF) was originally developed to improve estimation of leucine kinetic parameters and rCPS in region-of-interest (ROI) data analyses. In the present study, we optimized SAIF for application at the voxel level. In measured L-[1-(11)C]leucine PET data, voxel-level SAIF parameter estimates averaged over all voxels within a ROI (mean voxel-SAIF) generally agreed well with corresponding estimates derived by applying the originally developed SAIF to ROI time-activity curves (ROI-SAIF). Region-of-interest-SAIF and mean voxel-SAIF estimates of rCPS were highly correlated. Simulations showed that mean voxel-SAIF rCPS estimates were less biased and less variable than ROI-SAIF estimates in the whole brain and cortex; biases were similar in white matter. We conclude that estimation of rCPS with SAIF is improved when the method is applied at voxel level than in ROI analysis.
Towards a voxel-based geographic automata for the simulation of geospatial processes
NASA Astrophysics Data System (ADS)
Jjumba, Anthony; Dragićević, Suzana
2016-07-01
Many geographic processes evolve in a three dimensional space and time continuum. However, when they are represented with the aid of geographic information systems (GIS) or geosimulation models they are modelled in a framework of two-dimensional space with an added temporal component. The objective of this study is to propose the design and implementation of voxel-based automata as a methodological approach for representing spatial processes evolving in the four-dimensional (4D) space-time domain. Similar to geographic automata models which are developed to capture and forecast geospatial processes that change in a two-dimensional spatial framework using cells (raster geospatial data), voxel automata rely on the automata theory and use three-dimensional volumetric units (voxels). Transition rules have been developed to represent various spatial processes which range from the movement of an object in 3D to the diffusion of airborne particles and landslide simulation. In addition, the proposed 4D models demonstrate that complex processes can be readily reproduced from simple transition functions without complex methodological approaches. The voxel-based automata approach provides a unique basis to model geospatial processes in 4D for the purpose of improving representation, analysis and understanding their spatiotemporal dynamics. This study contributes to the advancement of the concepts and framework of 4D GIS.
Linking brain-wide multivoxel activation patterns to behaviour: Examples from language and math.
Raizada, Rajeev D S; Tsao, Feng-Ming; Liu, Huei-Mei; Holloway, Ian D; Ansari, Daniel; Kuhl, Patricia K
2010-05-15
A key goal of cognitive neuroscience is to find simple and direct connections between brain and behaviour. However, fMRI analysis typically involves choices between many possible options, with each choice potentially biasing any brain-behaviour correlations that emerge. Standard methods of fMRI analysis assess each voxel individually, but then face the problem of selection bias when combining those voxels into a region-of-interest, or ROI. Multivariate pattern-based fMRI analysis methods use classifiers to analyse multiple voxels together, but can also introduce selection bias via data-reduction steps as feature selection of voxels, pre-selecting activated regions, or principal components analysis. We show here that strong brain-behaviour links can be revealed without any voxel selection or data reduction, using just plain linear regression as a classifier applied to the whole brain at once, i.e. treating each entire brain volume as a single multi-voxel pattern. The brain-behaviour correlations emerged despite the fact that the classifier was not provided with any information at all about subjects' behaviour, but instead was given only the neural data and its condition-labels. Surprisingly, more powerful classifiers such as a linear SVM and regularised logistic regression produce very similar results. We discuss some possible reasons why the very simple brain-wide linear regression model is able to find correlations with behaviour that are as strong as those obtained on the one hand from a specific ROI and on the other hand from more complex classifiers. In a manner which is unencumbered by arbitrary choices, our approach offers a method for investigating connections between brain and behaviour which is simple, rigorous and direct. Copyright (c) 2010 Elsevier Inc. All rights reserved.
Linking brain-wide multivoxel activation patterns to behaviour: Examples from language and math
Raizada, Rajeev D.S.; Tsao, Feng-Ming; Liu, Huei-Mei; Holloway, Ian D.; Ansari, Daniel; Kuhl, Patricia K.
2010-01-01
A key goal of cognitive neuroscience is to find simple and direct connections between brain and behaviour. However, fMRI analysis typically involves choices between many possible options, with each choice potentially biasing any brain–behaviour correlations that emerge. Standard methods of fMRI analysis assess each voxel individually, but then face the problem of selection bias when combining those voxels into a region-of-interest, or ROI. Multivariate pattern-based fMRI analysis methods use classifiers to analyse multiple voxels together, but can also introduce selection bias via data-reduction steps as feature selection of voxels, pre-selecting activated regions, or principal components analysis. We show here that strong brain–behaviour links can be revealed without any voxel selection or data reduction, using just plain linear regression as a classifier applied to the whole brain at once, i.e. treating each entire brain volume as a single multi-voxel pattern. The brain–behaviour correlations emerged despite the fact that the classifier was not provided with any information at all about subjects' behaviour, but instead was given only the neural data and its condition-labels. Surprisingly, more powerful classifiers such as a linear SVM and regularised logistic regression produce very similar results. We discuss some possible reasons why the very simple brain-wide linear regression model is able to find correlations with behaviour that are as strong as those obtained on the one hand from a specific ROI and on the other hand from more complex classifiers. In a manner which is unencumbered by arbitrary choices, our approach offers a method for investigating connections between brain and behaviour which is simple, rigorous and direct. PMID:20132896
SU-E-J-90: Lobar-Level Lung Ventilation Analysis Using 4DCT and Deformable Image Registration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, K; Bayouth, J; Patton, T
2015-06-15
Purpose: To assess regional changes in human lung ventilation and mechanics using four-dimensional computed tomography (4DCT) and deformable image registration. This work extends our prior analysis of the entire lung to a lobe-based analysis. Methods: 4DCT images acquired from 20 patients prior to radiation therapy (RT) were used for this analysis. Jacobian ventilation and motion maps were computed from the displacement field after deformable image registration between the end of expiration breathing phase and the end of inspiration breathing phase. The lobes were manually segmented on the reference phase by a medical physicist expert. The voxel-by-voxel ventilation and motion magnitudemore » for all subjects were grouped by lobes and plotted into cumulative voxel frequency curves respectively. In addition, to eliminate the effect of different breathing efforts across subjects, we applied the inter-subject equivalent lung volume (ELV) method on a subset of the cohort and reevaluated the lobar ventilation. Results: 95% of voxels in the lung are expanding during inspiration. However, some local regions of lung tissue show far more expansion than others. The greatest expansion with respiration occurs within the lower lobes; between exhale and inhale the median expansion in lower lobes is approximately 15%, while the median expansion in upper lobes is 10%. This appears to be driven by a subset of lung tissues within the lobe that have greater expansion; twice the number of voxels in the lower lobes (20%) expand by > 30% when compared to the upper lobes (10%). Conclusion: Lung ventilation and motion show significant difference on the lobar level. There are different lobar fractions of driving voxels that contribute to the major expansion of the lung. This work was supported by NIH grant CA166703.« less
Voxel-Based Approach for Estimating Urban Tree Volume from Terrestrial Laser Scanning Data
NASA Astrophysics Data System (ADS)
Vonderach, C.; Voegtle, T.; Adler, P.
2012-07-01
The importance of single trees and the determination of related parameters has been recognized in recent years, e.g. for forest inventories or management. For urban areas an increasing interest in the data acquisition of trees can be observed concerning aspects like urban climate, CO2 balance, and environmental protection. Urban trees differ significantly from natural systems with regard to the site conditions (e.g. technogenic soils, contaminants, lower groundwater level, regular disturbance), climate (increased temperature, reduced humidity) and species composition and arrangement (habitus and health status) and therefore allometric relations cannot be transferred from natural sites to urban areas. To overcome this problem an extended approach was developed for a fast and non-destructive extraction of branch volume, DBH (diameter at breast height) and height of single trees from point clouds of terrestrial laser scanning (TLS). For data acquisition, the trees were scanned with highest scan resolution from several (up to five) positions located around the tree. The resulting point clouds (20 to 60 million points) are analysed with an algorithm based on voxel (volume elements) structure, leading to an appropriate data reduction. In a first step, two kinds of noise reduction are carried out: the elimination of isolated voxels as well as voxels with marginal point density. To obtain correct volume estimates, the voxels inside the stem and branches (interior voxels) where voxels contain no laser points must be regarded. For this filling process, an easy and robust approach was developed based on a layer-wise (horizontal layers of the voxel structure) intersection of four orthogonal viewing directions. However, this procedure also generates several erroneous "phantom" voxels, which have to be eliminated. For this purpose the previous approach was extended by a special region growing algorithm. In a final step the volume is determined layer-wise based on the extracted branch areas Ai of this horizontal cross-section multiplied by the thickness of the voxel layer. A significant improvement of this method could be obtained by a reasonable determination of the threshold for excluding sparsely filled voxels for noise reduction which can be defined based on the function change of filled voxels. Field measurements were used to validate this method. For a quality assessment nine deciduous trees were selected for control and were scanned before felling and weighing. The results are in good accordance to the control trees within a range of only -5.1% to +14.3%. The determined DBH values show only minor deviations, while the heights of trees are systematically underestimated, mainly due to field measurements. Possible error sources including gaps in surface voxels, influence of thin twigs and others are discussed in detail and several improvements of this approach are suggested. The advantages of the algorithm are the robustness and simple structure as well as the quality of the results obtained. The drawbacks are the high effort both in data acquisition and analysis, even if a remarkable data reduction can be obtained by the voxel structure.
Chen, Guangxiang; Zhou, Baiwan; Zhu, Hongyan; Kuang, Weihong; Bi, Feng; Ai, Hua; Gu, Zhongwei; Huang, Xiaoqi; Lui, Su; Gong, Qiyong
2018-04-20
Structural neuroimaging studies of white matter (WM) volume in amyotrophic lateral sclerosis (ALS) using voxel-based morphometry (VBM) have yielded inconsistent findings. This study aimed to perform a quantitative voxel-based meta-analysis using effect-size signed differential mapping (ES-SDM) to establish a statistical consensus between published studies for WM volume alterations in ALS. The pooled meta-analysis revealed significant WM volume losses in the bilateral supplementary motor areas (SMAs), bilateral precentral gyri (PGs), left middle cerebellar peduncle and right cerebellum in patients with ALS, involving the corticospinal tract (CST), interhemispheric fibers, subcortical arcuate fibers, projection fibers to the striatum and cortico-ponto-cerebellar tract. The meta-regression showed that the ALS functional rating scale-revised (ALSFRS-R) was positively correlated with decreased WM volume in the bilateral SMAs, whereas illness duration was negatively correlated with WM volume reduction in the right SMA. This study provides a thorough profile of WM volume loss in ALS and robust evidence that ALS is a multisystem neurodegenerative disease that involves a variety of subcortical WM tracts extending beyond motor cortex involvement. Copyright © 2018 Elsevier Inc. All rights reserved.
Igata, Natsuki; Kakeda, Shingo; Watanabe, Keita; Ide, Satoru; Kishi, Taro; Abe, Osamu; Igata, Ryouhei; Katsuki, Asuka; Iwata, Nakao; Yoshimura, Reiji; Korogi, Yukunori
2017-06-21
Individuals with s/s genotype of serotonin transporter gene-linked promotor region (5-HTTLPR), which appear with a high frequency in Japanese, exhibit more diagnosable depression in relation to stressful life events than those with the s/l or l/l genotype. We prospectively investigated the brain volume changes in first-episode and medication naïve major depression disorder patients (MDD) with the s/s genotype in Japanese. We assessed the differences between 27 MDD with the s/s genotype and 44 healthy subjects (HS) with the same genotype using a whole-brain voxel-by-voxel statistical analysis of MRI. Gray matter volume in a brain region with significant clusters obtained via voxel-based morphometry analysis were measured and, as an exploratory analysis, evaluated for relationships to the subcategory scores (core, sleep, activity, psychic, somatic anxiety, delusion) of the Hamilton Depression Rating Scale (HAM-D) and the Social Readjustment Rating Scale (SRRS). The brain volume in the left insula lobe was significantly smaller in the MDD than in the HS. The left insula lobe volume correlated negatively with the "psychic" score of HAM-D and the SRRS. In a Japanese population with the s/s genotype, we found an atrophy of the insula in the MDD, which might be associated with "psychic" symptom and stress events.
Mallik, Shahrukh; Muhlert, Nils; Samson, Rebecca S; Sethi, Varun; Wheeler-Kingshott, Claudia A M; Miller, David H; Chard, Declan T
2015-04-01
In multiple sclerosis (MS), demyelination and neuro-axonal loss occur in the brain grey matter (GM). We used magnetic resonance imaging (MRI) measures of GM magnetisation transfer ratio (MTR) and volume to assess the regional localisation of reduced MTR (reflecting demyelination) and atrophy (reflecting neuro-axonal loss) in relapsing-remitting MS (RRMS), secondary progressive MS (SPMS) and primary progressive MS (PPMS). A total of 98 people with MS (51 RRMS, 28 SPMS, 19 PPMS) and 29 controls had T1-weighted volumetric and magnetisation transfer scans. SPM8 was used to undertake voxel-based analysis (VBA) of GM tissue volumes and MTR. MS subgroups were compared with controls, adjusting for age and gender. A voxel-by-voxel basis correlation analysis between MTR and volume within each subject group was performed, using biological parametric mapping. MTR reduction was more extensive than atrophy. RRMS and SPMS patients showed proportionately more atrophy in the deep GM. SPMS and PPMS patients showed proportionately greater cortical MTR reduction. RRMS patients demonstrated the most correlation of MTR reduction and atrophy in deep GM. In SPMS and PPMS patients, there was less extensive correlation. These results suggest that in the deep GM of RRMS patients, demyelination and neuro-axonal loss may be linked, while in SPMS and PPMS patients, neuro-axonal loss and demyelination may occur mostly independently. © The Author(s), 2014.
NASA Astrophysics Data System (ADS)
Xu, Y.; Sun, Z.; Boerner, R.; Koch, T.; Hoegner, L.; Stilla, U.
2018-04-01
In this work, we report a novel way of generating ground truth dataset for analyzing point cloud from different sensors and the validation of algorithms. Instead of directly labeling large amount of 3D points requiring time consuming manual work, a multi-resolution 3D voxel grid for the testing site is generated. Then, with the help of a set of basic labeled points from the reference dataset, we can generate a 3D labeled space of the entire testing site with different resolutions. Specifically, an octree-based voxel structure is applied to voxelize the annotated reference point cloud, by which all the points are organized by 3D grids of multi-resolutions. When automatically annotating the new testing point clouds, a voting based approach is adopted to the labeled points within multiple resolution voxels, in order to assign a semantic label to the 3D space represented by the voxel. Lastly, robust line- and plane-based fast registration methods are developed for aligning point clouds obtained via various sensors. Benefiting from the labeled 3D spatial information, we can easily create new annotated 3D point clouds of different sensors of the same scene directly by considering the corresponding labels of 3D space the points located, which would be convenient for the validation and evaluation of algorithms related to point cloud interpretation and semantic segmentation.
Sandhya, Mangalore; Saini, Jitender; Pasha, Shaik Afsar; Yadav, Ravi; Pal, Pramod Kumar
2014-01-01
Aims: In progressive supranuclear palsy (PSP) tissue damage occurs in specific cortical and subcortical regions. Voxel based analysis using T1-weighted images depict quantitative gray matter (GM) atrophy changes. Magnetization transfer (MT) imaging depicts qualitative changes in the brain parenchyma. The purpose of our study was to investigate whether MT imaging could indicate abnormalities in PSP. Settings and Design: A total of 10 patients with PSP (9 men and 1 woman) and 8 controls (5 men and 3 women) were studied with T1-weighted magnetic resonance imaging (MRI) and 3DMT imaging. Voxel based analysis of T1-weighted MRI was performed to investigate brain atrophy while MT was used to study qualitative abnormalities in the brain tissue. We used SPM8 to investigate group differences (with two sample t-test) using the GM and white matter (WM) segmented data. Results: T1-weighted imaging and MT are equally sensitive to detect changes in GM and WM in PSP. Magnetization transfer ratio images and magnetization-prepared rapid acquisition of gradient echo revealed extensive bilateral volume and qualitative changes in the orbitofrontal, prefrontal cortex and limbic lobe and sub cortical GM. The prefrontal structures involved were the rectal gyrus, medial, inferior frontal gyrus (IFG) and middle frontal gyrus (MFG). The anterior cingulate, cingulate gyrus and lingual gyrus of limbic lobe and subcortical structures such as caudate, thalamus, insula and claustrum were also involved. Cerebellar involvement mainly of anterior lobe was also noted. Conclusions: The findings suggest that voxel based MT imaging permits a whole brain unbiased investigation of central nervous system structural integrity in PSP. PMID:25024571
NASA Astrophysics Data System (ADS)
Lin, Zi-Jing; Li, Lin; Cazzell, Marry; Liu, Hanli
2013-03-01
Functional near-infrared spectroscopy (fNIRS) is a non-invasive imaging technique which measures the hemodynamic changes that reflect the brain activity. Diffuse optical tomography (DOT), a variant of fNIRS with multi-channel NIRS measurements, has demonstrated capability of three dimensional (3D) reconstructions of hemodynamic changes due to the brain activity. Conventional method of DOT image analysis to define the brain activation is based upon the paired t-test between two different states, such as resting-state versus task-state. However, it has limitation because the selection of activation and post-activation period is relatively subjective. General linear model (GLM) based analysis can overcome this limitation. In this study, we combine the 3D DOT image reconstruction with GLM-based analysis (i.e., voxel-wise GLM analysis) to investigate the brain activity that is associated with the risk-decision making process. Risk decision-making is an important cognitive process and thus is an essential topic in the field of neuroscience. The balloon analogue risk task (BART) is a valid experimental model and has been commonly used in behavioral measures to assess human risk taking action and tendency while facing risks. We have utilized the BART paradigm with a blocked design to investigate brain activations in the prefrontal and frontal cortical areas during decision-making. Voxel-wise GLM analysis was performed on 18human participants (10 males and 8females).In this work, we wish to demonstrate the feasibility of using voxel-wise GLM analysis to image and study cognitive functions in response to risk decision making by DOT. Results have shown significant changes in the dorsal lateral prefrontal cortex (DLPFC) during the active choice mode and a different hemodynamic pattern between genders, which are in good agreements with published literatures in functional magnetic resonance imaging (fMRI) and fNIRS studies.
Muhlert, Nils; Samson, Rebecca S; Sethi, Varun; Wheeler-Kingshott, Claudia AM; Miller, David H; Chard, Declan T
2015-01-01
Background: In multiple sclerosis (MS), demyelination and neuro-axonal loss occur in the brain grey matter (GM). We used magnetic resonance imaging (MRI) measures of GM magnetisation transfer ratio (MTR) and volume to assess the regional localisation of reduced MTR (reflecting demyelination) and atrophy (reflecting neuro-axonal loss) in relapsing–remitting MS (RRMS), secondary progressive MS (SPMS) and primary progressive MS (PPMS). Methods: A total of 98 people with MS (51 RRMS, 28 SPMS, 19 PPMS) and 29 controls had T1-weighted volumetric and magnetisation transfer scans. SPM8 was used to undertake voxel-based analysis (VBA) of GM tissue volumes and MTR. MS subgroups were compared with controls, adjusting for age and gender. A voxel-by-voxel basis correlation analysis between MTR and volume within each subject group was performed, using biological parametric mapping. Results: MTR reduction was more extensive than atrophy. RRMS and SPMS patients showed proportionately more atrophy in the deep GM. SPMS and PPMS patients showed proportionately greater cortical MTR reduction. RRMS patients demonstrated the most correlation of MTR reduction and atrophy in deep GM. In SPMS and PPMS patients, there was less extensive correlation. Conclusions: These results suggest that in the deep GM of RRMS patients, demyelination and neuro-axonal loss may be linked, while in SPMS and PPMS patients, neuro-axonal loss and demyelination may occur mostly independently. PMID:25145689
Effects of voxelization on dose volume histogram accuracy
NASA Astrophysics Data System (ADS)
Sunderland, Kyle; Pinter, Csaba; Lasso, Andras; Fichtinger, Gabor
2016-03-01
PURPOSE: In radiotherapy treatment planning systems, structures of interest such as targets and organs at risk are stored as 2D contours on evenly spaced planes. In order to be used in various algorithms, contours must be converted into binary labelmap volumes using voxelization. The voxelization process results in lost information, which has little effect on the volume of large structures, but has significant impact on small structures, which contain few voxels. Volume differences for segmented structures affects metrics such as dose volume histograms (DVH), which are used for treatment planning. Our goal is to evaluate the impact of voxelization on segmented structures, as well as how factors like voxel size affects metrics, such as DVH. METHODS: We create a series of implicit functions, which represent simulated structures. These structures are sampled at varying resolutions, and compared to labelmaps with high sub-millimeter resolutions. We generate DVH and evaluate voxelization error for the same structures at different resolutions by calculating the agreement acceptance percentage between the DVH. RESULTS: We implemented tools for analysis as modules in the SlicerRT toolkit based on the 3D Slicer platform. We found that there were large DVH variation from the baseline for small structures or for structures located in regions with a high dose gradient, potentially leading to the creation of suboptimal treatment plans. CONCLUSION: This work demonstrates that labelmap and dose volume voxel size is an important factor in DVH accuracy, which must be accounted for in order to ensure the development of accurate treatment plans.
Raffelt, David; Tournier, J-Donald; Rose, Stephen; Ridgway, Gerard R; Henderson, Robert; Crozier, Stuart; Salvado, Olivier; Connelly, Alan
2012-02-15
This article proposes a new measure called Apparent Fibre Density (AFD) for the analysis of high angular resolution diffusion-weighted images using higher-order information provided by fibre orientation distributions (FODs) computed using spherical deconvolution. AFD has the potential to provide specific information regarding differences between populations by identifying not only the location, but also the orientations along which differences exist. In this work, analytical and numerical Monte-Carlo simulations are used to support the use of the FOD amplitude as a quantitative measure (i.e. AFD) for population and longitudinal analysis. To perform robust voxel-based analysis of AFD, we present and evaluate a novel method to modulate the FOD to account for changes in fibre bundle cross-sectional area that occur during spatial normalisation. We then describe a novel approach for statistical analysis of AFD that uses cluster-based inference of differences extended throughout space and orientation. Finally, we demonstrate the capability of the proposed method by performing voxel-based AFD comparisons between a group of Motor Neurone Disease patients and healthy control subjects. A significant decrease in AFD was detected along voxels and orientations corresponding to both the corticospinal tract and corpus callosal fibres that connect the primary motor cortices. In addition to corroborating previous findings in MND, this study demonstrates the clear advantage of using this type of analysis by identifying differences along single fibre bundles in regions containing multiple fibre populations. Copyright © 2011 Elsevier Inc. All rights reserved.
Newlander, Shawn M; Chu, Alan; Sinha, Usha S; Lu, Po H; Bartzokis, George
2014-02-01
To identify regional differences in apparent diffusion coefficient (ADC) and fractional anisotropy (FA) using customized preprocessing before voxel-based analysis (VBA) in 14 normal subjects with the specific genes that decrease (apolipoprotein [APO] E ε2) and that increase (APOE ε4) the risk of Alzheimer's disease. Diffusion tensor images (DTI) acquired at 1.5 Tesla were denoised with a total variation tensor regularization algorithm before affine and nonlinear registration to generate a common reference frame for the image volumes of all subjects. Anisotropic and isotropic smoothing with varying kernel sizes was applied to the aligned data before VBA to determine regional differences between cohorts segregated by allele status. VBA on the denoised tensor data identified regions of reduced FA in APOE ε4 compared with the APOE ε2 healthy older carriers. The most consistent results were obtained using the denoised tensor and anisotropic smoothing before statistical testing. In contrast, isotropic smoothing identified regional differences for small filter sizes alone, emphasizing that this method introduces bias in FA values for higher kernel sizes. Voxel-based DTI analysis can be performed on low signal to noise ratio images to detect subtle regional differences in cohorts using the proposed preprocessing techniques. Copyright © 2013 Wiley Periodicals, Inc.
McNeill, M S; Robinson, G E
2015-06-01
Immediate early genes (IEGs) have served as useful markers of brain neuronal activity in mammals, and more recently in insects. The mammalian canonical IEG, c-jun, is part of regulatory pathways conserved in insects and has been shown to be responsive to alarm pheromone in honey bees. We tested whether c-jun was responsive in honey bees to another behaviourally relevant stimulus, sucrose, in order to further identify the brain regions involved in sucrose processing. To identify responsive regions, we developed a new method of voxel-based analysis of c-jun mRNA expression. We found that c-jun is expressed in somata throughout the brain. It was rapidly induced in response to sucrose stimuli, and it responded in somata near the antennal and mechanosensory motor centre, mushroom body calices and lateral protocerebrum, which are known to be involved in sucrose processing. c-jun also responded to sucrose in somata near the lateral suboesophageal ganglion, dorsal optic lobe, ventral optic lobe and dorsal posterior protocerebrum, which had not been previously identified by other methods. These results demonstrate the utility of voxel-based analysis of mRNA expression in the insect brain. © 2015 The Royal Entomological Society.
Shin, Yong Beom; Kim, Seong-Jang; Kim, In-Ju; Kim, Yong-Ki; Kim, Dong-Soo; Park, Jae Heung; Yeom, Seok-Ran
2006-06-01
Statistical parametric mapping (SPM) was applied to brain perfusion single photon emission computed tomography (SPECT) images in patients with traumatic brain injury (TBI) to investigate regional cerebral abnormalities compared to age-matched normal controls. Thirteen patients with TBI underwent brain perfusion SPECT were included in this study (10 males, three females, mean age 39.8 +/- 18.2, range 21 - 74). SPM2 software implemented in MATLAB 5.3 was used for spatial pre-processing and analysis and to determine the quantitative differences between TBI patients and age-matched normal controls. Three large voxel clusters of significantly decreased cerebral blood perfusion were found in patients with TBI. The largest clusters were area including medial frontal gyrus (voxel number 3642, peak Z-value = 4.31, 4.27, p = 0.000) in both hemispheres. The second largest clusters were areas including cingulated gyrus and anterior cingulate gyrus of left hemisphere (voxel number 381, peak Z-value = 3.67, 3.62, p = 0.000). Other clusters were parahippocampal gyrus (voxel number 173, peak Z-value = 3.40, p = 0.000) and hippocampus (voxel number 173, peak Z-value = 3.23, p = 0.001) in the left hemisphere. The false discovery rate (FDR) was less than 0.04. From this study, group and individual analyses of SPM2 could clearly identify the perfusion abnormalities of brain SPECT in patients with TBI. Group analysis of SPM2 showed hypoperfusion pattern in the areas including medial frontal gyrus of both hemispheres, cingulate gyrus, anterior cingulate gyrus, parahippocampal gyrus and hippocampus in the left hemisphere compared to age-matched normal controls. Also, left parahippocampal gyrus and left hippocampus were additional hypoperfusion areas. However, these findings deserve further investigation on a larger number of patients to be performed to allow a better validation of objective SPM analysis in patients with TBI.
a Voxel-Based Filtering Algorithm for Mobile LIDAR Data
NASA Astrophysics Data System (ADS)
Qin, H.; Guan, G.; Yu, Y.; Zhong, L.
2018-04-01
This paper presents a stepwise voxel-based filtering algorithm for mobile LiDAR data. In the first step, to improve computational efficiency, mobile LiDAR points, in xy-plane, are first partitioned into a set of two-dimensional (2-D) blocks with a given block size, in each of which all laser points are further organized into an octree partition structure with a set of three-dimensional (3-D) voxels. Then, a voxel-based upward growing processing is performed to roughly separate terrain from non-terrain points with global and local terrain thresholds. In the second step, the extracted terrain points are refined by computing voxel curvatures. This voxel-based filtering algorithm is comprehensively discussed in the analyses of parameter sensitivity and overall performance. An experimental study performed on multiple point cloud samples, collected by different commercial mobile LiDAR systems, showed that the proposed algorithm provides a promising solution to terrain point extraction from mobile point clouds.
Tuerk, Carola; Zhang, Haobo; Sachdev, Perminder; Lord, Stephen R; Brodaty, Henry; Wen, Wei; Delbaere, Kim
2016-01-01
Concern about falling is common in older people. Various related psychological constructs as well as poor balance and slow gait have been associated with decreased gray matter (GM) volume in old age. The current study investigates the association between concern about falling and voxel-wise GM volumes. A total of 281 community-dwelling older people aged 70-90 years underwent structural magnetic resonance imaging. Concern about falling was assessed using Falls Efficacy Scale-International (FES-I). For each participant, voxel-wise GM volumes were generated with voxel-based morphometry and regressed on raw FES-I scores (p < .05 family-wise error corrected on cluster level). FES-I scores were negatively correlated with total brain volume (r = -.212; p ≤ .001), GM volume (r = -.210; p ≤ .001), and white matter volume (r = -.155; p ≤ .001). Voxel-based morphometry analysis revealed significant negative associations between FES-I and GM volumes of (i) left cerebellum and bilateral inferior occipital gyrus (voxels-in-cluster = 2,981; p < .001) and (ii) bilateral superior frontal gyrus and left supplementary motor area (voxels-in-cluster = 1,900; p = .004). Additional adjustment for vision and physical fall risk did not alter these associations. After adjustment for anxiety, only left cerebellum and bilateral inferior occipital gyrus remained negatively associated with FES-I scores (voxels-in-cluster = 2,426; p < .001). Adjustment for neuroticism removed all associations between FES-I and GM volumes. Our study findings show that concern about falling is negatively associated with brain volumes in areas important for emotional control and for motor control, executive functions and visual processing in a large sample of older men and women. Regression analyses suggest that these relationships were primarily accounted for by psychological factors (generalized anxiety and neuroticism) and not by physical fall risk or vision. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Assessment of Intervertebral Disc Degeneration Based on Quantitative MRI Analysis: an in vivo study
Grunert, Peter; Hudson, Katherine D.; Macielak, Michael R.; Aronowitz, Eric; Borde, Brandon H.; Alimi, Marjan; Njoku, Innocent; Ballon, Douglas; Tsiouris, Apostolos John; Bonassar, Lawrence J.; Härtl, Roger
2015-01-01
Study design Animal experimental study Objective To evaluate a novel quantitative imaging technique for assessing disc degeneration. Summary of Background Data T2-relaxation time (T2-RT) measurements have been used to quantitatively assess disc degeneration. T2 values correlate with the water content of inter vertebral disc tissue and thereby allow for the indirect measurement of nucleus pulposus (NP) hydration. Methods We developed an algorithm to subtract out MRI voxels not representing NP tissue based on T2-RT values. Filtered NP voxels were used to measure nuclear size by their amount and nuclear hydration by their mean T2-RT. This technique was applied to 24 rat-tail intervertebral discs’ (IVDs), which had been punctured with an 18-gauge needle according to different techniques to induce varying degrees of degeneration. NP voxel count and average T2-RT were used as parameters to assess the degeneration process at 1 and 3 months post puncture. NP voxel counts were evaluated against X-ray disc height measurements and qualitative MRI studies based on the Pfirrmann grading system. Tails were collected for histology to correlate NP voxel counts to histological disc degeneration grades and to NP cross-sectional area measurements. Results NP voxel count measurements showed strong correlations to qualitative MRI analyses (R2=0.79, p<0.0001), histological degeneration grades (R2=0.902, p<0.0001) and histological NP cross-sectional area measurements (R2=0.887, p<0.0001). In contrast to NP voxel counts, the mean T2-RT for each punctured group remained constant between months 1 and 3. The mean T2-RTs for the punctured groups did not show a statistically significant difference from those of healthy IVDs (63.55ms ±5.88ms month 1 and 62.61ms ±5.02ms) at either time point. Conclusion The NP voxel count proved to be a valid parameter to quantitatively assess disc degeneration in a needle puncture model. The mean NP T2-RT does not change significantly in needle-puncture induced degenerated IVDs. IVDs can be segmented into different tissue components according to their innate T2-RT. PMID:24384655
Schwarz, Stefan T.; Abaei, Maryam; Gontu, Vamsi; Morgan, Paul S.; Bajaj, Nin; Auer, Dorothee P.
2013-01-01
There is increasing interest in developing a reliable, affordable and accessible disease biomarker of Parkinson's disease (PD) to facilitate disease modifying PD-trials. Imaging biomarkers using magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) can describe parameters such as fractional anisotropy (FA), mean diffusivity (MD) or apparent diffusion coefficient (ADC). These parameters, when measured in the substantia nigra (SN), have not only shown promising but also varying and controversial results. To clarify the potential diagnostic value of nigral DTI in PD and its dependency on selection of region-of-interest, we undertook a high resolution DTI study at 3 T. 59 subjects (32 PD patients, 27 age and sex matched healthy controls) were analysed using manual outlining of SN and substructures, and voxel-based analysis (VBA). We also performed a systematic literature review and meta-analysis to estimate the effect size (DES) of disease related nigral DTI changes. We found a regional increase in nigral mean diffusivity in PD (mean ± SD, PD 0.80 ± 0.10 vs. controls 0.73 ± 0.06 · 10− 3 mm2/s, p = 0.002), but no difference using a voxel based approach. No significant disease effect was seen using meta-analysis of nigral MD changes (10 studies, DES = + 0.26, p = 0.17, I2 = 30%). None of the nigral regional or voxel based analyses of this study showed altered fractional anisotropy. Meta-analysis of 11 studies on nigral FA changes revealed a significant PD induced FA decrease. There was, however, a very large variation in results (I2 = 86%) comparing all studies. After exclusion of five studies with unusual high values of nigral FA in the control group, an acceptable heterogeneity was reached, but there was non-significant disease effect (DES = − 0.5, p = 0.22, I2 = 28%). The small PD related nigral MD changes in conjunction with the negative findings on VBA and meta-analysis limit the usefulness of nigral MD measures as biomarker of Parkinson's disease. The negative results of nigral FA measurements at regional, sub-regional and voxel level in conjunction with the results of the meta-analysis of nigral FA changes question the stability and validity of this measure as a PD biomarker. PMID:24273730
Kumada, H; Saito, K; Nakamura, T; Sakae, T; Sakurai, H; Matsumura, A; Ono, K
2011-12-01
Treatment planning for boron neutron capture therapy generally utilizes Monte-Carlo methods for calculation of the dose distribution. The new treatment planning system JCDS-FX employs the multi-purpose Monte-Carlo code PHITS to calculate the dose distribution. JCDS-FX allows to build a precise voxel model consisting of pixel based voxel cells in the scale of 0.4×0.4×2.0 mm(3) voxel in order to perform high-accuracy dose estimation, e.g. for the purpose of calculating the dose distribution in a human body. However, the miniaturization of the voxel size increases calculation time considerably. The aim of this study is to investigate sophisticated modeling methods which can perform Monte-Carlo calculations for human geometry efficiently. Thus, we devised a new voxel modeling method "Multistep Lattice-Voxel method," which can configure a voxel model that combines different voxel sizes by utilizing the lattice function over and over. To verify the performance of the calculation with the modeling method, several calculations for human geometry were carried out. The results demonstrated that the Multistep Lattice-Voxel method enabled the precise voxel model to reduce calculation time substantially while keeping the high-accuracy of dose estimation. Copyright © 2011 Elsevier Ltd. All rights reserved.
Multiple imputation of missing fMRI data in whole brain analysis
Vaden, Kenneth I.; Gebregziabher, Mulugeta; Kuchinsky, Stefanie E.; Eckert, Mark A.
2012-01-01
Whole brain fMRI analyses rarely include the entire brain because of missing data that result from data acquisition limits and susceptibility artifact, in particular. This missing data problem is typically addressed by omitting voxels from analysis, which may exclude brain regions that are of theoretical interest and increase the potential for Type II error at cortical boundaries or Type I error when spatial thresholds are used to establish significance. Imputation could significantly expand statistical map coverage, increase power, and enhance interpretations of fMRI results. We examined multiple imputation for group level analyses of missing fMRI data using methods that leverage the spatial information in fMRI datasets for both real and simulated data. Available case analysis, neighbor replacement, and regression based imputation approaches were compared in a general linear model framework to determine the extent to which these methods quantitatively (effect size) and qualitatively (spatial coverage) increased the sensitivity of group analyses. In both real and simulated data analysis, multiple imputation provided 1) variance that was most similar to estimates for voxels with no missing data, 2) fewer false positive errors in comparison to mean replacement, and 3) fewer false negative errors in comparison to available case analysis. Compared to the standard analysis approach of omitting voxels with missing data, imputation methods increased brain coverage in this study by 35% (from 33,323 to 45,071 voxels). In addition, multiple imputation increased the size of significant clusters by 58% and number of significant clusters across statistical thresholds, compared to the standard voxel omission approach. While neighbor replacement produced similar results, we recommend multiple imputation because it uses an informed sampling distribution to deal with missing data across subjects that can include neighbor values and other predictors. Multiple imputation is anticipated to be particularly useful for 1) large fMRI data sets with inconsistent missing voxels across subjects and 2) addressing the problem of increased artifact at ultra-high field, which significantly limit the extent of whole brain coverage and interpretations of results. PMID:22500925
Davis, Tyler; LaRocque, Karen F.; Mumford, Jeanette; Norman, Kenneth A.; Wagner, Anthony D.; Poldrack, Russell A.
2014-01-01
Multi-voxel pattern analysis (MVPA) has led to major changes in how fMRI data are analyzed and interpreted. Many studies now report both MVPA results and results from standard univariate voxel-wise analysis, often with the goal of drawing different conclusions from each. Because MVPA results can be sensitive to latent multidimensional representations and processes whereas univariate voxel-wise analysis cannot, one conclusion that is often drawn when MVPA and univariate results differ is that the activation patterns underlying MVPA results contain a multidimensional code. In the current study, we conducted simulations to formally test this assumption. Our findings reveal that MVPA tests are sensitive to the magnitude of voxel-level variability in the effect of a condition within subjects, even when the same linear relationship is coded in all voxels. We also find that MVPA is insensitive to subject-level variability in mean activation across an ROI, which is the primary variance component of interest in many standard univariate tests. Together, these results illustrate that differences between MVPA and univariate tests do not afford conclusions about the nature or dimensionality of the neural code. Instead, targeted tests of the informational content and/or dimensionality of activation patterns are critical for drawing strong conclusions about the representational codes that are indicated by significant MVPA results. PMID:24768930
Sparse and Adaptive Diffusion Dictionary (SADD) for recovering intra-voxel white matter structure.
Aranda, Ramon; Ramirez-Manzanares, Alonso; Rivera, Mariano
2015-12-01
On the analysis of the Diffusion-Weighted Magnetic Resonance Images, multi-compartment models overcome the limitations of the well-known Diffusion Tensor model for fitting in vivo brain axonal orientations at voxels with fiber crossings, branching, kissing or bifurcations. Some successful multi-compartment methods are based on diffusion dictionaries. The diffusion dictionary-based methods assume that the observed Magnetic Resonance signal at each voxel is a linear combination of the fixed dictionary elements (dictionary atoms). The atoms are fixed along different orientations and diffusivity profiles. In this work, we present a sparse and adaptive diffusion dictionary method based on the Diffusion Basis Functions Model to estimate in vivo brain axonal fiber populations. Our proposal overcomes the following limitations of the diffusion dictionary-based methods: the limited angular resolution and the fixed shapes for the atom set. We propose to iteratively re-estimate the orientations and the diffusivity profile of the atoms independently at each voxel by using a simplified and easier-to-solve mathematical approach. As a result, we improve the fitting of the Diffusion-Weighted Magnetic Resonance signal. The advantages with respect to the former Diffusion Basis Functions method are demonstrated on the synthetic data-set used on the 2012 HARDI Reconstruction Challenge and in vivo human data. We demonstrate that improvements obtained in the intra-voxel fiber structure estimations benefit brain research allowing to obtain better tractography estimations. Hence, these improvements result in an accurate computation of the brain connectivity patterns. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, Price A.; Kron, Tomas; Beauregard, Jean-Mathieu
2013-11-15
Purpose: To create an accurate map of the distribution of radiation dose deposition in healthy and target tissues during radionuclide therapy.Methods: Serial quantitative SPECT/CT images were acquired at 4, 24, and 72 h for 28 {sup 177}Lu-octreotate peptide receptor radionuclide therapy (PRRT) administrations in 17 patients with advanced neuroendocrine tumors. Deformable image registration was combined with an in-house programming algorithm to interpolate pharmacokinetic uptake and clearance at a voxel level. The resultant cumulated activity image series are comprised of values representing the total number of decays within each voxel's volume. For PRRT, cumulated activity was translated to absorbed dose basedmore » on Monte Carlo-determined voxel S-values at a combination of long and short ranges. These dosimetric image sets were compared for mean radiation absorbed dose to at-risk organs using a conventional MIRD protocol (OLINDA 1.1).Results: Absorbed dose values to solid organs (liver, kidneys, and spleen) were within 10% using both techniques. Dose estimates to marrow were greater using the voxelized protocol, attributed to the software incorporating crossfire effect from nearby tumor volumes.Conclusions: The technique presented offers an efficient, automated tool for PRRT dosimetry based on serial post-therapy imaging. Following retrospective analysis, this method of high-resolution dosimetry may allow physicians to prescribe activity based on required dose to tumor volume or radiation limits to healthy tissue in individual patients.« less
Voxel-Based 3-D Tree Modeling from Lidar Images for Extracting Tree Structual Information
NASA Astrophysics Data System (ADS)
Hosoi, F.
2014-12-01
Recently, lidar (light detection and ranging) has been used to extracting tree structural information. Portable scanning lidar systems can capture the complex shape of individual trees as a 3-D point-cloud image. 3-D tree models reproduced from the lidar-derived 3-D image can be used to estimate tree structural parameters. We have proposed the voxel-based 3-D modeling for extracting tree structural parameters. One of the tree parameters derived from the voxel modeling is leaf area density (LAD). We refer to the method as the voxel-based canopy profiling (VCP) method. In this method, several measurement points surrounding the canopy and optimally inclined laser beams are adopted for full laser beam illumination of whole canopy up to the internal. From obtained lidar image, the 3-D information is reproduced as the voxel attributes in the 3-D voxel array. Based on the voxel attributes, contact frequency of laser beams on leaves is computed and LAD in each horizontal layer is obtained. This method offered accurate LAD estimation for individual trees and woody canopy trees. For more accurate LAD estimation, the voxel model was constructed by combining airborne and portable ground-based lidar data. The profiles obtained by the two types of lidar complemented each other, thus eliminating blind regions and yielding more accurate LAD profiles than could be obtained by using each type of lidar alone. Based on the estimation results, we proposed an index named laser beam coverage index, Ω, which relates to the lidar's laser beam settings and a laser beam attenuation factor. It was shown that this index can be used for adjusting measurement set-up of lidar systems and also used for explaining the LAD estimation error using different types of lidar systems. Moreover, we proposed a method to estimate woody material volume as another application of the voxel tree modeling. In this method, voxel solid model of a target tree was produced from the lidar image, which is composed of consecutive voxels that filled the outer surface and the interior of the stem and large branches. From the model, the woody material volume of any part of the target tree can be directly calculated easily by counting the number of corresponding voxels and multiplying the result by the per-voxel volume.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, F; Byrd, D; Bowen, S
2015-06-15
Purpose: Texture metrics extracted from oncologic PET have been investigated with respect to their usefulness as definitive indicants for prognosis in a variety of cancer. Metric calculation is often based on cubic voxels. Most commonly used PET scanners, however, produce rectangular voxels, which may change texture metrics. The objective of this study was to examine the variability of PET texture feature metrics resulting from voxel anisotropy. Methods: Sinograms of NEMA NU-2 phantom for 18F-FDG were simulated using the ASIM simulation tool. The obtained projection data was reconstructed (3D-OSEM) on grids of cubic and rectangular voxels, producing PET images of resolutionmore » of 2.73x2.73x3.27mm3 and 3.27x3.27x3.27mm3, respectively. An interpolated dataset obtained from resampling the rectangular voxel data for isotropic voxel dimension (3.27mm) was also considered. For each image dataset, 28 texture parameters based on grey-level co-occurrence matrices (GLCOM), intensity histograms (GLIH), neighborhood difference matrices (GLNDM), and zone size matrices (GLZSM) were evaluated within lesions of diameter of 33, 28, 22, and 17mm. Results: In reference to the isotopic image data, texture features appearing on the rectangular voxel data varied with a range of -34-10% for GLCOM based, -31-39% for GLIH based, -80 -161% for GLNDM based, and −6–45% for GLZSM based while varied with a range of -35-23% for GLCOM based, -27-35% for GLIH based, -65-86% for GLNDM based, and -22 -18% for GLZSM based for the interpolated image data. For the anisotropic data, GLNDM-cplx exhibited the largest extent of variation (161%) while GLZSM-zp showed the least (<1%). As to the interpolated data, GLNDM-busy varied the most (86%) while GLIH-engy varied the least (<1%). Conclusion: Variability of texture appearance on oncologic PET with respect to voxel representation is substantial and feature-dependent. It necessitates consideration of standardized voxel representation for inter-institution studies attempting to validate prognostic values of PET texture features in cancer treatment.« less
Park, Hyeong-Gyu; Shin, Yeong-Gil; Lee, Ho
2015-12-01
A ray-driven backprojector is based on ray-tracing, which computes the length of the intersection between the ray paths and each voxel to be reconstructed. To reduce the computational burden caused by these exhaustive intersection tests, we propose a fully graphics processing unit (GPU)-based ray-driven backprojector in conjunction with a ray-culling scheme that enables straightforward parallelization without compromising the high computing performance of a GPU. The purpose of the ray-culling scheme is to reduce the number of ray-voxel intersection tests by excluding rays irrelevant to a specific voxel computation. This rejection step is based on an axis-aligned bounding box (AABB) enclosing a region of voxel projection, where eight vertices of each voxel are projected onto the detector plane. The range of the rectangular-shaped AABB is determined by min/max operations on the coordinates in the region. Using the indices of pixels inside the AABB, the rays passing through the voxel can be identified and the voxel is weighted as the length of intersection between the voxel and the ray. This procedure makes it possible to reflect voxel-level parallelization, allowing an independent calculation at each voxel, which is feasible for a GPU implementation. To eliminate redundant calculations during ray-culling, a shared-memory optimization is applied to exploit the GPU memory hierarchy. In experimental results using real measurement data with phantoms, the proposed GPU-based ray-culling scheme reconstructed a volume of resolution 28032803176 in 77 seconds from 680 projections of resolution 10243768 , which is 26 times and 7.5 times faster than standard CPU-based and GPU-based ray-driven backprojectors, respectively. Qualitative and quantitative analyses showed that the ray-driven backprojector provides high-quality reconstruction images when compared with those generated by the Feldkamp-Davis-Kress algorithm using a pixel-driven backprojector, with an average of 2.5 times higher contrast-to-noise ratio, 1.04 times higher universal quality index, and 1.39 times higher normalized mutual information. © The Author(s) 2014.
Thivard, Lionel; Pradat, Pierre‐François; Lehéricy, Stéphane; Lacomblez, Lucette; Dormont, Didier; Chiras, Jacques; Benali, Habib; Meininger, Vincent
2007-01-01
The aim of this study was to investigate the extent of cortical and subcortical lesions in amyotrophic lateral sclerosis (ALS) using, in combination, voxel based diffusion tensor imaging (DTI) and voxel based morphometry (VBM). We included 15 patients with definite or probable ALS and 25 healthy volunteers. Patients were assessed using the revised ALS Functional Rating Scale (ALSFRS‐R). In patients, reduced fractional anisotropy was found in bilateral corticospinal tracts, the left insula/ventrolateral premotor cortex, the right parietal cortex and the thalamus, which correlated with the ALSFRS‐R. Increased mean diffusivity (MD) was found bilaterally in the motor cortex, the ventrolateral premotor cortex/insula, the hippocampal formations and the right superior temporal gyrus, which did not correlate with the ALSFRS‐R. VBM analysis showed no changes in white matter but widespread volume decreases in grey matter in several regions exhibiting MD abnormalities. In ALS patients, our results show that subcortical lesions extend beyond the corticospinal tract and are clinically relevant. PMID:17635981
Thivard, Lionel; Pradat, Pierre-François; Lehéricy, Stéphane; Lacomblez, Lucette; Dormont, Didier; Chiras, Jacques; Benali, Habib; Meininger, Vincent
2007-08-01
The aim of this study was to investigate the extent of cortical and subcortical lesions in amyotrophic lateral sclerosis (ALS) using, in combination, voxel based diffusion tensor imaging (DTI) and voxel based morphometry (VBM). We included 15 patients with definite or probable ALS and 25 healthy volunteers. Patients were assessed using the revised ALS Functional Rating Scale (ALSFRS-R). In patients, reduced fractional anisotropy was found in bilateral corticospinal tracts, the left insula/ventrolateral premotor cortex, the right parietal cortex and the thalamus, which correlated with the ALSFRS-R. Increased mean diffusivity (MD) was found bilaterally in the motor cortex, the ventrolateral premotor cortex/insula, the hippocampal formations and the right superior temporal gyrus, which did not correlate with the ALSFRS-R. VBM analysis showed no changes in white matter but widespread volume decreases in grey matter in several regions exhibiting MD abnormalities. In ALS patients, our results show that subcortical lesions extend beyond the corticospinal tract and are clinically relevant.
Voxel based morphometry in optical coherence tomography: validation and core findings
NASA Astrophysics Data System (ADS)
Antony, Bhavna J.; Chen, Min; Carass, Aaron; Jedynak, Bruno M.; Al-Louzi, Omar; Solomon, Sharon D.; Saidha, Shiv; Calabresi, Peter A.; Prince, Jerry L.
2016-03-01
Optical coherence tomography (OCT) of the human retina is now becoming established as an important modality for the detection and tracking of various ocular diseases. Voxel based morphometry (VBM) is a long standing neuroimaging analysis technique that allows for the exploration of the regional differences in the brain. There has been limited work done in developing registration based methods for OCT, which has hampered the advancement of VBM analyses in OCT based population studies. Following on from our recent development of an OCT registration method, we explore the potential benefits of VBM analysis in cohorts of healthy controls (HCs) and multiple sclerosis (MS) patients. Specifically, we validate the stability of VBM analysis in two pools of HCs showing no significant difference between the two populations. Additionally, we also present a retrospective study of age and sex matched HCs and relapsing remitting MS patients, demonstrating results consistent with the reported literature while providing insight into the retinal changes associated with this MS subtype.
Fatyga, Mirek; Dogan, Nesrin; Weiss, Elizabeth; Sleeman, William C; Zhang, Baoshe; Lehman, William J; Williamson, Jeffrey F; Wijesooriya, Krishni; Christensen, Gary E
2015-01-01
Commonly used methods of assessing the accuracy of deformable image registration (DIR) rely on image segmentation or landmark selection. These methods are very labor intensive and thus limited to relatively small number of image pairs. The direct voxel-by-voxel comparison can be automated to examine fluctuations in DIR quality on a long series of image pairs. A voxel-by-voxel comparison of three DIR algorithms applied to lung patients is presented. Registrations are compared by comparing volume histograms formed both with individual DIR maps and with a voxel-by-voxel subtraction of the two maps. When two DIR maps agree one concludes that both maps are interchangeable in treatment planning applications, though one cannot conclude that either one agrees with the ground truth. If two DIR maps significantly disagree one concludes that at least one of the maps deviates from the ground truth. We use the method to compare 3 DIR algorithms applied to peak inhale-peak exhale registrations of 4DFBCT data obtained from 13 patients. All three algorithms appear to be nearly equivalent when compared using DICE similarity coefficients. A comparison based on Jacobian volume histograms shows that all three algorithms measure changes in total volume of the lungs with reasonable accuracy, but show large differences in the variance of Jacobian distribution on contoured structures. Analysis of voxel-by-voxel subtraction of DIR maps shows differences between algorithms that exceed a centimeter for some registrations. Deformation maps produced by DIR algorithms must be treated as mathematical approximations of physical tissue deformation that are not self-consistent and may thus be useful only in applications for which they have been specifically validated. The three algorithms tested in this work perform fairly robustly for the task of contour propagation, but produce potentially unreliable results for the task of DVH accumulation or measurement of local volume change. Performance of DIR algorithms varies significantly from one image pair to the next hence validation efforts, which are exhaustive but performed on a small number of image pairs may not reflect the performance of the same algorithm in practical clinical situations. Such efforts should be supplemented by validation based on a longer series of images of clinical quality.
Minuzzi, Luciano; Syan, Sabrina K; Smith, Mara; Hall, Alexander; Hall, Geoffrey Bc; Frey, Benicio N
2017-12-01
Current evidence from neuroimaging data suggests possible dysfunction of the fronto-striatal-limbic circuits in individuals with bipolar disorder. Somatosensory cortical function has been implicated in emotional recognition, risk-taking and affective responses through sensory modalities. This study investigates anatomy and function of the somatosensory cortex in euthymic bipolar women. In total, 68 right-handed euthymic women (bipolar disorder = 32 and healthy controls = 36) between 16 and 45 years of age underwent high-resolution anatomical and functional magnetic resonance imaging during the mid-follicular menstrual phase. The somatosensory cortex was used as a seed region for resting-state functional connectivity analysis. Voxel-based morphometry was used to evaluate somatosensory cortical gray matter volume between groups. We found increased resting-state functional connectivity between the somatosensory cortex and insular cortex, inferior prefrontal gyrus and frontal orbital cortex in euthymic bipolar disorder subjects compared to healthy controls. Voxel-based morphometry analysis showed decreased gray matter in the left somatosensory cortex in the bipolar disorder group. Whole-brain voxel-based morphometry analysis controlled by age did not reveal any additional significant difference between groups. This study is the first to date to evaluate anatomy and function of the somatosensory cortex in a well-characterized sample of euthymic bipolar disorder females. Anatomical and functional changes in the somatosensory cortex in this population might contribute to the pathophysiology of bipolar disorder.
Material Identification and Quantification in Spectral X-ray Micro-CT
NASA Astrophysics Data System (ADS)
Holmes, Thomas Wesley
The identification and quantification of all the voxels within a reconstructed microCT image was possible through making comparisons of the attenuation profile from an unknown voxel with precalculated signatures of known materials. This was accomplished through simulations with the MCNP6 general-purpose radiation-transport package that modeled a CdTe detector array consisting of 200 elements which were able to differentiate between 100 separate energy bins over the entire range of the emitted 110 kVp tungsten x-ray spectra. The information from each of the separate energy bins was then used to create a single reconstructed image that was then grouped back together to produce a final image where each voxel had a corresponding attenuation pro le. A library of known attenuation profiles was created for each of the materials expected to be within an object with otherwise unknown parameters. A least squares analysis was performed, and comparisons were then made for each voxel's attenuation profile in the unknown object and combinations of each possible library combination of attenuation profiles. Based on predetermined thresholds that the results must meet, some of the combinations were then removed. Of the remaining combinations, a voting system based on statistical evaluations of the fits was designed to select the most appropriate material combination to the input unknown voxel. This was performed over all of the voxels in the reconstructed image and a final resulting material map was produced. These material locations were then quantified by creating an equation of the response from several different densities of the same material and recording the response of the base library. This entire process was called the All Combinations Library Least Squares (ACLLS)analysis and was used to test several Different models. These models investigated a range of densities for the x-ray contrast agents of gold and gadolinium that can be used in many medical applications, as well as a range of densities of bone to test the ACLLS ability to be used with bone density estimation. A final test used a model with five different materials present within the object and consisted of two separate features with mixtures of three materials as gold, iodine and water, and another feature with gadolinium, iodine and water. The remaining four features were all mixtures of water with bone, gold, gadolinium, and iodine. All of the various material mixtures were successfully identified and quantified using the ACLLS analysis package within an acceptable statistical range. The ACLLS method has proven itself as a viable analysis tool for determining both the physical locations and the amount of all the materials present within a given object. This tool could be implemented in the future so as to further assist a team of medical practitioners in diagnosing a subject through reducing ambiguities in an image and providing a quantifiable solution to all of the voxels.
Bludau, Sebastian; Bzdok, Danilo; Gruber, Oliver; Kohn, Nils; Riedl, Valentin; Sorg, Christian; Palomero-Gallagher, Nicola; Müller, Veronika I.; Hoffstaedter, Felix; Amunts, Katrin; Eickhoff, Simon B.
2017-01-01
Objective The heterogeneous human frontal pole has been identified as a node in the dysfunctional network of major depressive disorder. The contribution of the medial (socio-affective) versus lateral (cognitive) frontal pole to major depression pathogenesis is currently unclear. The present study performs morphometric comparison of the microstructurally informed subdivisions of human frontal pole between depressed patients and controls using both uni- and multivariate statistics. Methods Multi-site voxel- and region-based morphometric MRI analysis of 73 depressed patients and 73 matched controls without psychiatric history. Frontal pole volume was first compared between depressed patients and controls by subdivision-wise classical morphometric analysis. In a second approach, frontal pole volume was compared by subdivision-naive multivariate searchlight analysis based on support vector machines. Results Subdivision-wise morphometric analysis found a significantly smaller medial frontal pole in depressed patients with a negative correlation of disease severity and duration. Histologically uninformed multivariate voxel-wise statistics provided converging evidence for structural aberrations specific to the microstructurally defined medial area of the frontal pole in depressed patients. Conclusions Across disparate methods, we demonstrated subregion specificity in the left medial frontal pole volume in depressed patients. Indeed, the frontal pole was shown to structurally and functionally connect to other key regions in major depression pathology like the anterior cingulate cortex and the amygdala via the uncinate fasciculus. Present and previous findings consolidate the left medial portion of the frontal pole as particularly altered in major depression. PMID:26621569
A Voxel-Based Approach for Imaging Voids in Three-Dimensional Point Clouds
NASA Astrophysics Data System (ADS)
Salvaggio, Katie N.
Geographically accurate scene models have enormous potential beyond that of just simple visualizations in regard to automated scene generation. In recent years, thanks to ever increasing computational efficiencies, there has been significant growth in both the computer vision and photogrammetry communities pertaining to automatic scene reconstruction from multiple-view imagery. The result of these algorithms is a three-dimensional (3D) point cloud which can be used to derive a final model using surface reconstruction techniques. However, the fidelity of these point clouds has not been well studied, and voids often exist within the point cloud. Voids exist in texturally difficult areas, as well as areas where multiple views were not obtained during collection, constant occlusion existed due to collection angles or overlapping scene geometry, or in regions that failed to triangulate accurately. It may be possible to fill in small voids in the scene using surface reconstruction or hole-filling techniques, but this is not the case with larger more complex voids, and attempting to reconstruct them using only the knowledge of the incomplete point cloud is neither accurate nor aesthetically pleasing. A method is presented for identifying voids in point clouds by using a voxel-based approach to partition the 3D space. By using collection geometry and information derived from the point cloud, it is possible to detect unsampled voxels such that voids can be identified. This analysis takes into account the location of the camera and the 3D points themselves to capitalize on the idea of free space, such that voxels that lie on the ray between the camera and point are devoid of obstruction, as a clear line of sight is a necessary requirement for reconstruction. Using this approach, voxels are classified into three categories: occupied (contains points from the point cloud), free (rays from the camera to the point passed through the voxel), and unsampled (does not contain points and no rays passed through the area). Voids in the voxel space are manifested as unsampled voxels. A similar line-of-sight analysis can then be used to pinpoint locations at aircraft altitude at which the voids in the point clouds could theoretically be imaged. This work is based on the assumption that inclusion of more images of the void areas in the 3D reconstruction process will reduce the number of voids in the point cloud that were a result of lack of coverage. Voids resulting from texturally difficult areas will not benefit from more imagery in the reconstruction process, and thus are identified and removed prior to the determination of future potential imaging locations.
Detection of white matter lesions in cerebral small vessel disease
NASA Astrophysics Data System (ADS)
Riad, Medhat M.; Platel, Bram; de Leeuw, Frank-Erik; Karssemeijer, Nico
2013-02-01
White matter lesions (WML) are diffuse white matter abnormalities commonly found in older subjects and are important indicators of stroke, multiple sclerosis, dementia and other disorders. We present an automated WML detection method and evaluate it on a dataset of small vessel disease (SVD) patients. In early SVD, small WMLs are expected to be of importance for the prediction of disease progression. Commonly used WML segmentation methods tend to ignore small WMLs and are mostly validated on the basis of total lesion load or a Dice coefficient for all detected WMLs. Therefore, in this paper, we present a method that is designed to detect individual lesions, large or small, and we validate the detection performance of our system with FROC (free-response ROC) analysis. For the automated detection, we use supervised classification making use of multimodal voxel based features from different magnetic resonance imaging (MRI) sequences, including intensities, tissue probabilities, voxel locations and distances, neighborhood textures and others. After preprocessing, including co-registration, brain extraction, bias correction, intensity normalization, and nonlinear registration, ventricle segmentation is performed and features are calculated for each brain voxel. A gentle-boost classifier is trained using these features from 50 manually annotated subjects to give each voxel a probability of being a lesion voxel. We perform ROC analysis to illustrate the benefits of using additional features to the commonly used voxel intensities; significantly increasing the area under the curve (Az) from 0.81 to 0.96 (p<0.05). We perform the FROC analysis by testing our classifier on 50 previously unseen subjects and compare the results with manual annotations performed by two experts. Using the first annotator results as our reference, the second annotator performs at a sensitivity of 0.90 with an average of 41 false positives per subject while our automated method reached the same level of sensitivity at approximately 180 false positives per subject.
Collaborative voxel-based surgical virtual environments.
Acosta, Eric; Muniz, Gilbert; Armonda, Rocco; Bowyer, Mark; Liu, Alan
2008-01-01
Virtual Reality-based surgical simulators can utilize Collaborative Virtual Environments (C-VEs) to provide team-based training. To support real-time interactions, C-VEs are typically replicated on each user's local computer and a synchronization method helps keep all local copies consistent. This approach does not work well for voxel-based C-VEs since large and frequent volumetric updates make synchronization difficult. This paper describes a method that allows multiple users to interact within a voxel-based C-VE for a craniotomy simulator being developed. Our C-VE method requires smaller update sizes and provides faster synchronization update rates than volumetric-based methods. Additionally, we address network bandwidth/latency issues to simulate networked haptic and bone drilling tool interactions with a voxel-based skull C-VE.
Coello, Christopher; Willoch, Frode; Selnes, Per; Gjerstad, Leif; Fladby, Tormod; Skretting, Arne
2013-05-15
A voxel-based algorithm to correct for partial volume effect in PET brain volumes is presented. This method (named LoReAn) is based on MRI based segmentation of anatomical regions and accurate measurements of the effective point spread function of the PET imaging process. The objective is to correct for the spill-out of activity from high-uptake anatomical structures (e.g. grey matter) into low-uptake anatomical structures (e.g. white matter) in order to quantify physiological uptake in the white matter. The new algorithm is presented and validated against the state of the art region-based geometric transfer matrix (GTM) method with synthetic and clinical data. Using synthetic data, both bias and coefficient of variation were improved in the white matter region using LoReAn compared to GTM. An increased number of anatomical regions doesn't affect the bias (<5%) and misregistration affects equally LoReAn and GTM algorithms. The LoReAn algorithm appears to be a simple and promising voxel-based algorithm for studying metabolism in white matter regions. Copyright © 2013 Elsevier Inc. All rights reserved.
Identification of a common neurobiological substrate for mental illness.
Goodkind, Madeleine; Eickhoff, Simon B; Oathes, Desmond J; Jiang, Ying; Chang, Andrew; Jones-Hagata, Laura B; Ortega, Brissa N; Zaiko, Yevgeniya V; Roach, Erika L; Korgaonkar, Mayuresh S; Grieve, Stuart M; Galatzer-Levy, Isaac; Fox, Peter T; Etkin, Amit
2015-04-01
Psychiatric diagnoses are currently distinguished based on sets of specific symptoms. However, genetic and clinical analyses find similarities across a wide variety of diagnoses, suggesting that a common neurobiological substrate may exist across mental illness. To conduct a meta-analysis of structural neuroimaging studies across multiple psychiatric diagnoses, followed by parallel analyses of 3 large-scale healthy participant data sets to help interpret structural findings in the meta-analysis. PubMed was searched to identify voxel-based morphometry studies through July 2012 comparing psychiatric patients to healthy control individuals for the meta-analysis. The 3 parallel healthy participant data sets included resting-state functional magnetic resonance imaging, a database of activation foci across thousands of neuroimaging experiments, and a data set with structural imaging and cognitive task performance data. Studies were included in the meta-analysis if they reported voxel-based morphometry differences between patients with an Axis I diagnosis and control individuals in stereotactic coordinates across the whole brain, did not present predominantly in childhood, and had at least 10 studies contributing to that diagnosis (or across closely related diagnoses). The meta-analysis was conducted on peak voxel coordinates using an activation likelihood estimation approach. We tested for areas of common gray matter volume increase or decrease across Axis I diagnoses, as well as areas differing between diagnoses. Follow-up analyses on other healthy participant data sets tested connectivity related to regions arising from the meta-analysis and the relationship of gray matter volume to cognition. Based on the voxel-based morphometry meta-analysis of 193 studies comprising 15 892 individuals across 6 diverse diagnostic groups (schizophrenia, bipolar disorder, depression, addiction, obsessive-compulsive disorder, and anxiety), we found that gray matter loss converged across diagnoses in 3 regions: the dorsal anterior cingulate, right insula, and left insula. By contrast, there were few diagnosis-specific effects, distinguishing only schizophrenia and depression from other diagnoses. In the parallel follow-up analyses of the 3 independent healthy participant data sets, we found that the common gray matter loss regions formed a tightly interconnected network during tasks and at resting and that lower gray matter in this network was associated with poor executive functioning. We identified a concordance across psychiatric diagnoses in terms of integrity of an anterior insula/dorsal anterior cingulate-based network, which may relate to executive function deficits observed across diagnoses. This concordance provides an organizing model that emphasizes the importance of shared neural substrates across psychopathology, despite likely diverse etiologies, which is currently not an explicit component of psychiatric nosology.
NASA Astrophysics Data System (ADS)
Forkert, Nils Daniel; Siemonsen, Susanne; Dalski, Michael; Verleger, Tobias; Kemmling, Andre; Fiehler, Jens
2014-03-01
The acute ischemic stroke is a leading cause for death and disability in the industry nations. In case of a present acute ischemic stroke, the prediction of the future tissue outcome is of high interest for the clinicians as it can be used to support therapy decision making. Within this context, it has already been shown that the voxel-wise multi-parametric tissue outcome prediction leads to more promising results compared to single channel perfusion map thresholding. Most previously published multi-parametric predictions employ information from perfusion maps derived from perfusion-weighted MRI together with other image sequences such as diffusion-weighted MRI. However, it remains unclear if the typically calculated perfusion maps used for this purpose really include all valuable information from the PWI dataset for an optimal tissue outcome prediction. To investigate this problem in more detail, two different methods to predict tissue outcome using a k-nearest-neighbor approach were developed in this work and evaluated based on 18 datasets of acute stroke patients with known tissue outcome. The first method integrates apparent diffusion coefficient and perfusion parameter (Tmax, MTT, CBV, CBF) information for the voxel-wise prediction, while the second method employs also apparent diffusion coefficient information but the complete perfusion information in terms of the voxel-wise residue functions instead of the perfusion parameter maps for the voxel-wise prediction. Overall, the comparison of the results of the two prediction methods for the 18 patients using a leave-one-out cross validation revealed no considerable differences. Quantitatively, the parameter-based prediction of tissue outcome led to a mean Dice coefficient of 0.474, while the prediction using the residue functions led to a mean Dice coefficient of 0.461. Thus, it may be concluded from the results of this study that the perfusion parameter maps typically derived from PWI datasets include all valuable perfusion information required for a voxel-based tissue outcome prediction, while the complete analysis of the residue functions does not add further benefits for the voxel-wise tissue outcome prediction and is also computationally more expensive.
An Effective Algorithm Research of Scenario Voxelization Organization and Occlusion Culling
NASA Astrophysics Data System (ADS)
Lai, Guangling; Ding, Lu; Qin, Zhiyuan; Tong, Xiaochong
2016-11-01
Compared with the traditional triangulation approaches, the voxelized point cloud data can reduce the sensitivity of scenario and complexity of calculation. While on the base of the point cloud data, implementation scenario organization could be accomplishment by subtle voxel, but it will add more memory consumption. Therefore, an effective voxel representation method is very necessary. At present, the specific study of voxel visualization algorithm is less. This paper improved the ray tracing algorithm by the characteristics of voxel configuration. Firstly, according to the scope of point cloud data, determined the scope of the pixels on the screen. Then, calculated the light vector came from each pixel. Lastly, used the rules of voxel configuration to calculate all the voxel penetrated through by light. The voxels closest to viewpoint were named visible ones, the rest were all obscured ones. This experimental showed that the method could realize voxelization organization and voxel occlusion culling of implementation scenario efficiently, and increased the render efficiency.
Exploiting Complexity Information for Brain Activation Detection
Zhang, Yan; Liang, Jiali; Lin, Qiang; Hu, Zhenghui
2016-01-01
We present a complexity-based approach for the analysis of fMRI time series, in which sample entropy (SampEn) is introduced as a quantification of the voxel complexity. Under this hypothesis the voxel complexity could be modulated in pertinent cognitive tasks, and it changes through experimental paradigms. We calculate the complexity of sequential fMRI data for each voxel in two distinct experimental paradigms and use a nonparametric statistical strategy, the Wilcoxon signed rank test, to evaluate the difference in complexity between them. The results are compared with the well known general linear model based Statistical Parametric Mapping package (SPM12), where a decided difference has been observed. This is because SampEn method detects brain complexity changes in two experiments of different conditions and the data-driven method SampEn evaluates just the complexity of specific sequential fMRI data. Also, the larger and smaller SampEn values correspond to different meanings, and the neutral-blank design produces higher predictability than threat-neutral. Complexity information can be considered as a complementary method to the existing fMRI analysis strategies, and it may help improving the understanding of human brain functions from a different perspective. PMID:27045838
Depressive symptoms and white matter dysfunction in retired NFL players with concussion history.
Strain, Jeremy; Didehbani, Nyaz; Cullum, C Munro; Mansinghani, Sethesh; Conover, Heather; Kraut, Michael A; Hart, John; Womack, Kyle B
2013-07-02
To determine whether correlates of white matter integrity can provide general as well as specific insight into the chronic effects of head injury coupled with depression symptom expression in professional football players. We studied 26 retired National Football League (NFL) athletes who underwent diffusion tensor imaging (DTI) scanning. Depressive symptom severity was measured using the Beck Depression Inventory II (BDI-II) including affective, cognitive, and somatic subfactor scores (Buckley 3-factor model). Fractional anisotropy (FA) maps were processed using tract-based spatial statistics from FSL. Correlations between FA and BDI-II scores were assessed using both voxel-wise and region of interest (ROI) techniques, with ROIs that corresponded to white matter tracts. Tracts demonstrating significant correlations were further evaluated using a receiver operating characteristic curve that utilized the mean FA to distinguish depressed from nondepressed subjects. Voxel-wise analysis identified widely distributed voxels that negatively correlated with total BDI-II and cognitive and somatic subfactors, with voxels correlating with the affective component (p < 0.05 corrected) localized to frontal regions. Four tract ROIs negatively correlated (p < 0.01) with total BDI-II: forceps minor, right frontal aslant tract, right uncinate fasciculus, and left superior longitudinal fasciculus. FA of the forceps minor differentiated depressed from nondepressed athletes with 100% sensitivity and 95% specificity. Depressive symptoms in retired NFL athletes correlate negatively with FA using either an unbiased voxel-wise or an ROI-based, tract-wise approach. DTI is a promising biomarker for depression in this population.
Characteristics of voxel prediction power in full-brain Granger causality analysis of fMRI data
NASA Astrophysics Data System (ADS)
Garg, Rahul; Cecchi, Guillermo A.; Rao, A. Ravishankar
2011-03-01
Functional neuroimaging research is moving from the study of "activations" to the study of "interactions" among brain regions. Granger causality analysis provides a powerful technique to model spatio-temporal interactions among brain regions. We apply this technique to full-brain fMRI data without aggregating any voxel data into regions of interest (ROIs). We circumvent the problem of dimensionality using sparse regression from machine learning. On a simple finger-tapping experiment we found that (1) a small number of voxels in the brain have very high prediction power, explaining the future time course of other voxels in the brain; (2) these voxels occur in small sized clusters (of size 1-4 voxels) distributed throughout the brain; (3) albeit small, these clusters overlap with most of the clusters identified with the non-temporal General Linear Model (GLM); and (4) the method identifies clusters which, while not determined by the task and not detectable by GLM, still influence brain activity.
NASA Astrophysics Data System (ADS)
Stratis, A.; Zhang, G.; Jacobs, R.; Bogaerts, R.; Bosmans, H.
2016-12-01
In order to carry out Monte Carlo (MC) dosimetry studies, voxel phantoms, modeling human anatomy, and organ-based segmentation of CT image data sets are applied to simulation frameworks. The resulting voxel phantoms preserve patient CT acquisition geometry; in the case of head voxel models built upon head CT images, the head support with which CT scanners are equipped introduces an inclination to the head, and hence to the head voxel model. In dental cone beam CT (CBCT) imaging, patients are always positioned in such a way that the Frankfort line is horizontal, implying that there is no head inclination. The orientation of the head is important, as it influences the distance of critical radiosensitive organs like the thyroid and the esophagus from the x-ray tube. This work aims to propose a procedure to adjust head voxel phantom orientation, and to investigate the impact of head inclination on organ doses in dental CBCT MC dosimetry studies. The female adult ICRP, and three in-house-built paediatric voxel phantoms were in this study. An EGSnrc MC framework was employed to simulate two commonly used protocols; a Morita Accuitomo 170 dental CBCT scanner (FOVs: 60 × 60 mm2 and 80 × 80 mm2, standard resolution), and a 3D Teeth protocol (FOV: 100 × 90 mm2) in a Planmeca Promax 3D MAX scanner. Result analysis revealed large absorbed organ dose differences in radiosensitive organs between the original and the geometrically corrected voxel models of this study, ranging from -45.6% to 39.3%. Therefore, accurate dental CBCT MC dose calculations require geometrical adjustments to be applied to head voxel models.
Tompkins, Connie A.; Meigh, Kimberly M.; Prat, Chantel S.
2015-01-01
Purpose This study examined right hemisphere (RH) neuroanatomical correlates of lexical–semantic deficits that predict narrative comprehension in adults with RH brain damage. Coarse semantic coding and suppression deficits were related to lesions by voxel-based lesion symptom mapping. Method Participants were 20 adults with RH cerebrovascular accidents. Measures of coarse coding and suppression deficits were computed from lexical decision reaction times at short (175 ms) and long (1000 ms) prime-target intervals. Lesions were drawn on magnetic resonance imaging images and through normalization were registered on an age-matched brain template. Voxel-based lesion symptom mapping analysis was applied to build a general linear model at each voxel. Z score maps were generated for each deficit, and results were interpreted using automated anatomical labeling procedures. Results A deficit in coarse semantic activation was associated with lesions to the RH posterior middle temporal gyrus, dorsolateral prefrontal cortex, and lenticular nuclei. A maintenance deficit for coarsely coded representations involved the RH temporal pole and dorsolateral prefrontal cortex more medially. Ineffective suppression implicated lesions to the RH inferior frontal gyrus and subcortical regions, as hypothesized, along with the rostral temporal pole. Conclusion Beyond their scientific implications, these lesion–deficit correspondences may help inform the clinical diagnosis and enhance decisions about candidacy for deficit-focused treatment to improve narrative comprehension in individuals with RH damage. PMID:26425785
Yang, Ying; Tompkins, Connie A; Meigh, Kimberly M; Prat, Chantel S
2015-11-01
This study examined right hemisphere (RH) neuroanatomical correlates of lexical-semantic deficits that predict narrative comprehension in adults with RH brain damage. Coarse semantic coding and suppression deficits were related to lesions by voxel-based lesion symptom mapping. Participants were 20 adults with RH cerebrovascular accidents. Measures of coarse coding and suppression deficits were computed from lexical decision reaction times at short (175 ms) and long (1000 ms) prime-target intervals. Lesions were drawn on magnetic resonance imaging images and through normalization were registered on an age-matched brain template. Voxel-based lesion symptom mapping analysis was applied to build a general linear model at each voxel. Z score maps were generated for each deficit, and results were interpreted using automated anatomical labeling procedures. A deficit in coarse semantic activation was associated with lesions to the RH posterior middle temporal gyrus, dorsolateral prefrontal cortex, and lenticular nuclei. A maintenance deficit for coarsely coded representations involved the RH temporal pole and dorsolateral prefrontal cortex more medially. Ineffective suppression implicated lesions to the RH inferior frontal gyrus and subcortical regions, as hypothesized, along with the rostral temporal pole. Beyond their scientific implications, these lesion-deficit correspondences may help inform the clinical diagnosis and enhance decisions about candidacy for deficit-focused treatment to improve narrative comprehension in individuals with RH damage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, C; Badal, A
Purpose: Computational voxel phantom provides realistic anatomy but the voxel structure may result in dosimetric error compared to real anatomy composed of perfect surface. We analyzed the dosimetric error caused from the voxel structure in hybrid computational phantoms by comparing the voxel-based doses at different resolutions with triangle mesh-based doses. Methods: We incorporated the existing adult male UF/NCI hybrid phantom in mesh format into a Monte Carlo transport code, penMesh that supports triangle meshes. We calculated energy deposition to selected organs of interest for parallel photon beams with three mono energies (0.1, 1, and 10 MeV) in antero-posterior geometry. Wemore » also calculated organ energy deposition using three voxel phantoms with different voxel resolutions (1, 5, and 10 mm) using MCNPX2.7. Results: Comparison of organ energy deposition between the two methods showed that agreement overall improved for higher voxel resolution, but for many organs the differences were small. Difference in the energy deposition for 1 MeV, for example, decreased from 11.5% to 1.7% in muscle but only from 0.6% to 0.3% in liver as voxel resolution increased from 10 mm to 1 mm. The differences were smaller at higher energies. The number of photon histories processed per second in voxels were 6.4×10{sup 4}, 3.3×10{sup 4}, and 1.3×10{sup 4}, for 10, 5, and 1 mm resolutions at 10 MeV, respectively, while meshes ran at 4.0×10{sup 4} histories/sec. Conclusion: The combination of hybrid mesh phantom and penMesh was proved to be accurate and of similar speed compared to the voxel phantom and MCNPX. The lowest voxel resolution caused a maximum dosimetric error of 12.6% at 0.1 MeV and 6.8% at 10 MeV but the error was insignificant in some organs. We will apply the tool to calculate dose to very thin layer tissues (e.g., radiosensitive layer in gastro intestines) which cannot be modeled by voxel phantoms.« less
A voxel-based approach to gray matter asymmetries.
Luders, E; Gaser, C; Jancke, L; Schlaug, G
2004-06-01
Voxel-based morphometry (VBM) was used to analyze gray matter (GM) asymmetries in a large sample (n = 60) of male and female professional musicians with and without absolute pitch (AP). We chose to examine these particular groups because previous studies using traditional region-of-interest (ROI) analyses have shown differences in hemispheric asymmetry related to AP and gender. Voxel-based methods may have advantages over traditional ROI-based methods since the analysis can be performed across the whole brain with minimal user bias. After determining that the VBM method was sufficiently sensitive for the detection of differences in GM asymmetries between groups, we found that male AP musicians were more leftward lateralized in the anterior region of the planum temporale (PT) than male non-AP musicians. This confirmed the results of previous studies using ROI-based methods that showed an association between PT asymmetry and the AP phenotype. We further observed that male non-AP musicians revealed an increased leftward GM asymmetry in the postcentral gyrus compared to female non-AP musicians, again corroborating results of a previously published study using ROI-based methods. By analyzing hemispheric GM differences across our entire sample, we were able to partially confirm findings of previous studies using traditional morphometric techniques, as well as more recent, voxel-based analyses. In addition, we found some unusually pronounced GM asymmetries in our musician sample not previously detected in subjects unselected for musical training. Since we were able to validate gender- and AP-related brain asymmetries previously described using traditional ROI-based morphometric techniques, the results of our analyses support the use of VBM for examinations of GM asymmetries.
Relationship between aging and T1 relaxation time in deep gray matter: A voxel-based analysis.
Okubo, Gosuke; Okada, Tomohisa; Yamamoto, Akira; Fushimi, Yasutaka; Okada, Tsutomu; Murata, Katsutoshi; Togashi, Kaori
2017-09-01
To investigate age-related changes in T 1 relaxation time in deep gray matter structures in healthy volunteers using magnetization-prepared 2 rapid acquisition gradient echoes (MP2RAGE). In all, 70 healthy volunteers (aged 20-76, mean age 42.6 years) were scanned at 3T magnetic resonance imaging (MRI). A MP2RAGE sequence was employed to quantify T 1 relaxation times. After the spatial normalization of T 1 maps with the diffeomorphic anatomical registration using the exponentiated Lie algebra algorithm, voxel-based regression analysis was conducted. In addition, linear and quadratic regression analyses of regions of interest (ROIs) were also performed. With aging, voxel-based analysis (VBA) revealed significant T 1 value decreases in the ventral-inferior putamen, nucleus accumbens, and amygdala, whereas T 1 values significantly increased in the thalamus and white matter as well (P < 0.05 at cluster level, false discovery rate). ROI analysis revealed that T 1 values in the nucleus accumbens linearly decreased with aging (P = 0.0016), supporting the VBA result. T 1 values in the thalamus (P < 0.0001), substantia nigra (P = 0.0003), and globus pallidus (P < 0.0001) had a best fit to quadratic curves, with the minimum T 1 values observed between 30 and 50 years of age. Age-related changes in T 1 relaxation time vary by location in deep gray matter. 2 Technical Efficacy: Stage 2 J. MAGN. RESON. IMAGING 2017;46:724-731. © 2017 International Society for Magnetic Resonance in Medicine.
How distributed processing produces false negatives in voxel-based lesion-deficit analyses.
Gajardo-Vidal, Andrea; Lorca-Puls, Diego L; Crinion, Jennifer T; White, Jitrachote; Seghier, Mohamed L; Leff, Alex P; Hope, Thomas M H; Ludersdorfer, Philipp; Green, David W; Bowman, Howard; Price, Cathy J
2018-07-01
In this study, we hypothesized that if the same deficit can be caused by damage to one or another part of a distributed neural system, then voxel-based analyses might miss critical lesion sites because preservation of each site will not be consistently associated with preserved function. The first part of our investigation used voxel-based multiple regression analyses of data from 359 right-handed stroke survivors to identify brain regions where lesion load is associated with picture naming abilities after factoring out variance related to object recognition, semantics and speech articulation so as to focus on deficits arising at the word retrieval level. A highly significant lesion-deficit relationship was identified in left temporal and frontal/premotor regions. Post-hoc analyses showed that damage to either of these sites caused the deficit of interest in less than half the affected patients (76/162 = 47%). After excluding all patients with damage to one or both of the identified regions, our second analysis revealed a new region, in the anterior part of the left putamen, which had not been previously detected because many patients had the deficit of interest after temporal or frontal damage that preserved the left putamen. The results illustrate how (i) false negative results arise when the same deficit can be caused by different lesion sites; (ii) some of the missed effects can be unveiled by adopting an iterative approach that systematically excludes patients with lesions to the areas identified in previous analyses, (iii) statistically significant voxel-based lesion-deficit mappings can be driven by a subset of patients; (iv) focal lesions to the identified regions are needed to determine whether the deficit of interest is the consequence of focal damage or much more extensive damage that includes the identified region; and, finally, (v) univariate voxel-based lesion-deficit mappings cannot, in isolation, be used to predict outcome in other patients. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Voxel-by-voxel analysis of brain SPECT perfusion in Fibromyalgia
NASA Astrophysics Data System (ADS)
Guedj, Eric; Taïeb, David; Cammilleri, Serge; Lussato, David; de Laforte, Catherine; Niboyet, Jean; Mundler, Olivier
2007-02-01
We evaluated brain perfusion SPECT at rest, without noxious stiumuli, in a homogeneous group of hyperalgesic FM patients. We performed a voxel-based analysis in comparison to a control group, matched for age and gender. Under such conditions, we made the assumption that significant cerebral perfusion abnormalities could be demonstrated, evidencing altered cerebral processing associated with spontaneous pain in FM patients. The secondary objective was to study the reversibility and the prognostic value of such possible perfusion abnormalities under specific treatment. Eighteen hyperalgesic FM women (mean age 48 yr; range 25-63 yr; ACR criteria) and 10 healthy women matched for age were enrolled in the study. A voxel-by-voxel group analysis was performed using SPM2 ( p<0.05, corrected for multiple comparisons). All brain SPECT were performed before any change was made in therapy in the pain care unit. A second SPECT was performed a month later after specific treatment by Ketamine. Compared to control subjects, we observed individual brain SPECT abnormalities in FM patients, confirmed by SPM2 analysis with hyperperfusion of the somatosensory cortex and hypoperfusion of the frontal, cingulate, medial temporal and cerebellar cortices. We also found that a medial frontal and anterior cingulate hypoperfusions were highly predictive (PPV=83%; NPV=91%) of non-response on Ketamine, and that only responders showed significant modification of brain perfusion, after treatment. In the present study performed without noxious stimuli in hyperalgesic FM patients, we found significant hyperperfusion in regions of the brain known to be involved in sensory dimension of pain processing and significant hypoperfusion in areas assumed to be associated with the affective dimension. As current pharmacological and non-pharmacological therapies act differently on both components of pain, we hypothesize that SPECT could be a valuable and readily available tool to guide individual therapeutic strategy and provide objective follow-up of pain-processing recovery under treatment.
Real-time 3D human pose recognition from reconstructed volume via voxel classifiers
NASA Astrophysics Data System (ADS)
Yoo, ByungIn; Choi, Changkyu; Han, Jae-Joon; Lee, Changkyo; Kim, Wonjun; Suh, Sungjoo; Park, Dusik; Kim, Junmo
2014-03-01
This paper presents a human pose recognition method which simultaneously reconstructs a human volume based on ensemble of voxel classifiers from a single depth image in real-time. The human pose recognition is a difficult task since a single depth camera can capture only visible surfaces of a human body. In order to recognize invisible (self-occluded) surfaces of a human body, the proposed algorithm employs voxel classifiers trained with multi-layered synthetic voxels. Specifically, ray-casting onto a volumetric human model generates a synthetic voxel, where voxel consists of a 3D position and ID corresponding to the body part. The synthesized volumetric data which contain both visible and invisible body voxels are utilized to train the voxel classifiers. As a result, the voxel classifiers not only identify the visible voxels but also reconstruct the 3D positions and the IDs of the invisible voxels. The experimental results show improved performance on estimating the human poses due to the capability of inferring the invisible human body voxels. It is expected that the proposed algorithm can be applied to many fields such as telepresence, gaming, virtual fitting, wellness business, and real 3D contents control on real 3D displays.
Mete, Mutlu; Sakoglu, Unal; Spence, Jeffrey S; Devous, Michael D; Harris, Thomas S; Adinoff, Bryon
2016-10-06
Neuroimaging studies have yielded significant advances in the understanding of neural processes relevant to the development and persistence of addiction. However, these advances have not explored extensively for diagnostic accuracy in human subjects. The aim of this study was to develop a statistical approach, using a machine learning framework, to correctly classify brain images of cocaine-dependent participants and healthy controls. In this study, a framework suitable for educing potential brain regions that differed between the two groups was developed and implemented. Single Photon Emission Computerized Tomography (SPECT) images obtained during rest or a saline infusion in three cohorts of 2-4 week abstinent cocaine-dependent participants (n = 93) and healthy controls (n = 69) were used to develop a classification model. An information theoretic-based feature selection algorithm was first conducted to reduce the number of voxels. A density-based clustering algorithm was then used to form spatially connected voxel clouds in three-dimensional space. A statistical classifier, Support Vectors Machine (SVM), was then used for participant classification. Statistically insignificant voxels of spatially connected brain regions were removed iteratively and classification accuracy was reported through the iterations. The voxel-based analysis identified 1,500 spatially connected voxels in 30 distinct clusters after a grid search in SVM parameters. Participants were successfully classified with 0.88 and 0.89 F-measure accuracies in 10-fold cross validation (10xCV) and leave-one-out (LOO) approaches, respectively. Sensitivity and specificity were 0.90 and 0.89 for LOO; 0.83 and 0.83 for 10xCV. Many of the 30 selected clusters are highly relevant to the addictive process, including regions relevant to cognitive control, default mode network related self-referential thought, behavioral inhibition, and contextual memories. Relative hyperactivity and hypoactivity of regional cerebral blood flow in brain regions in cocaine-dependent participants are presented with corresponding level of significance. The SVM-based approach successfully classified cocaine-dependent and healthy control participants using voxels selected with information theoretic-based and statistical methods from participants' SPECT data. The regions found in this study align with brain regions reported in the literature. These findings support the future use of brain imaging and SVM-based classifier in the diagnosis of substance use disorders and furthering an understanding of their underlying pathology.
Multiclass fMRI data decoding and visualization using supervised self-organizing maps.
Hausfeld, Lars; Valente, Giancarlo; Formisano, Elia
2014-08-01
When multivariate pattern decoding is applied to fMRI studies entailing more than two experimental conditions, a most common approach is to transform the multiclass classification problem into a series of binary problems. Furthermore, for decoding analyses, classification accuracy is often the only outcome reported although the topology of activation patterns in the high-dimensional features space may provide additional insights into underlying brain representations. Here we propose to decode and visualize voxel patterns of fMRI datasets consisting of multiple conditions with a supervised variant of self-organizing maps (SSOMs). Using simulations and real fMRI data, we evaluated the performance of our SSOM-based approach. Specifically, the analysis of simulated fMRI data with varying signal-to-noise and contrast-to-noise ratio suggested that SSOMs perform better than a k-nearest-neighbor classifier for medium and large numbers of features (i.e. 250 to 1000 or more voxels) and similar to support vector machines (SVMs) for small and medium numbers of features (i.e. 100 to 600voxels). However, for a larger number of features (>800voxels), SSOMs performed worse than SVMs. When applied to a challenging 3-class fMRI classification problem with datasets collected to examine the neural representation of three human voices at individual speaker level, the SSOM-based algorithm was able to decode speaker identity from auditory cortical activation patterns. Classification performances were similar between SSOMs and other decoding algorithms; however, the ability to visualize decoding models and underlying data topology of SSOMs promotes a more comprehensive understanding of classification outcomes. We further illustrated this visualization ability of SSOMs with a re-analysis of a dataset examining the representation of visual categories in the ventral visual cortex (Haxby et al., 2001). This analysis showed that SSOMs could retrieve and visualize topography and neighborhood relations of the brain representation of eight visual categories. We conclude that SSOMs are particularly suited for decoding datasets consisting of more than two classes and are optimally combined with approaches that reduce the number of voxels used for classification (e.g. region-of-interest or searchlight approaches). Copyright © 2014. Published by Elsevier Inc.
Classification of pulmonary emphysema from chest CT scans using integral geometry descriptors
NASA Astrophysics Data System (ADS)
van Rikxoort, E. M.; Goldin, J. G.; Galperin-Aizenberg, M.; Brown, M. S.
2011-03-01
To gain insight into the underlying pathways of emphysema and monitor the effect of treatment, methods to quantify and phenotype the different types of emphysema from chest CT scans are of crucial importance. Current standard measures rely on density thresholds for individual voxels, which is influenced by inspiration level and does not take into account the spatial relationship between voxels. Measures based on texture analysis do take the interrelation between voxels into account and therefore might be useful for distinguishing different types of emphysema. In this study, we propose to use Minkowski functionals combined with rotation invariant Gaussian features to distinguish between healthy and emphysematous tissue and classify three different types of emphysema. Minkowski functionals characterize binary images in terms of geometry and topology. In 3D, four Minkowski functionals are defined. By varying the threshold and size of neighborhood around a voxel, a set of Minkowski functionals can be defined for each voxel. Ten chest CT scans with 1810 annotated regions were used to train the method. A set of 108 features was calculated for each training sample from which 10 features were selected to be most informative. A linear discriminant classifier was trained to classify each voxel in the lungs into a subtype of emphysema or normal lung. The method was applied to an independent test set of 30 chest CT scans with varying amounts and types of emphysema with 4347 annotated regions of interest. The method is shown to perform well, with an overall accuracy of 95%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engstroem, K; Casares-Magaz, O; Muren, L
Purpose: Multi-parametric MRI (mp-MRI) is being introduced in radiotherapy (RT) of prostate cancer, including for tumour delineation in focal boosting strategies. We recently developed an image-based tumour control probability model, based on cell density distributions derived from apparent diffusion coefficient (ADC) maps. Beyond tumour volume and cell densities, tumour hypoxia is also an important determinant of RT response. Since tissue perfusion from mp-MRI has been related to hypoxia we have explored the patterns of ADC and perfusion maps, and the relations between them, inside and outside prostate index lesions. Methods: ADC and perfusion maps from 20 prostate cancer patients weremore » used, with the prostate and index lesion delineated by a dedicated uro-radiologist. To reduce noise, the maps were averaged over a 3×3×3 voxel cube. Associations between different ADC and perfusion histogram parameters within the prostate, inside and outside the index lesion, were evaluated with the Pearson’s correlation coefficient. In the voxel-wise analysis, scatter plots of ADC vs perfusion were analysed for voxels in the prostate, inside and outside of the index lesion, again with the associations quantified with the Pearson’s correlation coefficient. Results: Overall ADC was lower inside the index lesion than in the normal prostate as opposed to ktrans that was higher inside the index lesion than outside. In the histogram analysis, the minimum ktrans was significantly correlated with the maximum ADC (Pearson=0.47; p=0.03). At the voxel level, 15 of the 20 cases had a statistically significant inverse correlation between ADC and perfusion inside the index lesion; ten of the cases had a Pearson < −0.4. Conclusion: The minimum value of ktrans across the tumour was correlated to the maximum ADC. However, on the voxel level, the ‘local’ ktrans in the index lesion is inversely (i.e. negatively) correlated to the ‘local’ ADC in most patients. Research agreement with Varian Medical Systems, not related to the work presented in this abstract.« less
Gopinath, Kaundinya; Krishnamurthy, Venkatagiri; Lacey, Simon; Sathian, K
2018-02-01
In a recent study Eklund et al. have shown that cluster-wise family-wise error (FWE) rate-corrected inferences made in parametric statistical method-based functional magnetic resonance imaging (fMRI) studies over the past couple of decades may have been invalid, particularly for cluster defining thresholds less stringent than p < 0.001; principally because the spatial autocorrelation functions (sACFs) of fMRI data had been modeled incorrectly to follow a Gaussian form, whereas empirical data suggest otherwise. Hence, the residuals from general linear model (GLM)-based fMRI activation estimates in these studies may not have possessed a homogenously Gaussian sACF. Here we propose a method based on the assumption that heterogeneity and non-Gaussianity of the sACF of the first-level GLM analysis residuals, as well as temporal autocorrelations in the first-level voxel residual time-series, are caused by unmodeled MRI signal from neuronal and physiological processes as well as motion and other artifacts, which can be approximated by appropriate decompositions of the first-level residuals with principal component analysis (PCA), and removed. We show that application of this method yields GLM residuals with significantly reduced spatial correlation, nearly Gaussian sACF and uniform spatial smoothness across the brain, thereby allowing valid cluster-based FWE-corrected inferences based on assumption of Gaussian spatial noise. We further show that application of this method renders the voxel time-series of first-level GLM residuals independent, and identically distributed across time (which is a necessary condition for appropriate voxel-level GLM inference), without having to fit ad hoc stochastic colored noise models. Furthermore, the detection power of individual subject brain activation analysis is enhanced. This method will be especially useful for case studies, which rely on first-level GLM analysis inferences.
Ogawa, Takeshi; Aihara, Takatsugu; Shimokawa, Takeaki; Yamashita, Okito
2018-04-24
Creative insight occurs with an "Aha!" experience when solving a difficult problem. Here, we investigated large-scale networks associated with insight problem solving. We recruited 232 healthy participants aged 21-69 years old. Participants completed a magnetic resonance imaging study (MRI; structural imaging and a 10 min resting-state functional MRI) and an insight test battery (ITB) consisting of written questionnaires (matchstick arithmetic task, remote associates test, and insight problem solving task). To identify the resting-state functional connectivity (RSFC) associated with individual creative insight, we conducted an exploratory voxel-based morphometry (VBM)-constrained RSFC analysis. We identified positive correlations between ITB score and grey matter volume (GMV) in the right insula and middle cingulate cortex/precuneus, and a negative correlation between ITB score and GMV in the left cerebellum crus 1 and right supplementary motor area. We applied seed-based RSFC analysis to whole brain voxels using the seeds obtained from the VBM and identified insight-positive/negative connections, i.e. a positive/negative correlation between the ITB score and individual RSFCs between two brain regions. Insight-specific connections included motor-related regions whereas creative-common connections included a default mode network. Our results indicate that creative insight requires a coupling of multiple networks, such as the default mode, semantic and cerebral-cerebellum networks.
High resolution, MRI-based, segmented, computerized head phantom
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zubal, I.G.; Harrell, C.R.; Smith, E.O.
1999-01-01
The authors have created a high-resolution software phantom of the human brain which is applicable to voxel-based radiation transport calculations yielding nuclear medicine simulated images and/or internal dose estimates. A software head phantom was created from 124 transverse MRI images of a healthy normal individual. The transverse T2 slices, recorded in a 256x256 matrix from a GE Signa 2 scanner, have isotropic voxel dimensions of 1.5 mm and were manually segmented by the clinical staff. Each voxel of the phantom contains one of 62 index numbers designating anatomical, neurological, and taxonomical structures. The result is stored as a 256x256x128 bytemore » array. Internal volumes compare favorably to those described in the ICRP Reference Man. The computerized array represents a high resolution model of a typical human brain and serves as a voxel-based anthropomorphic head phantom suitable for computer-based modeling and simulation calculations. It offers an improved realism over previous mathematically described software brain phantoms, and creates a reference standard for comparing results of newly emerging voxel-based computations. Such voxel-based computations lead the way to developing diagnostic and dosimetry calculations which can utilize patient-specific diagnostic images. However, such individualized approaches lack fast, automatic segmentation schemes for routine use; therefore, the high resolution, typical head geometry gives the most realistic patient model currently available.« less
Kim, Yusung; Tomé, Wolfgang A
2008-01-01
Voxel based iso-Tumor Control Probability (TCP) maps and iso-Complication maps are proposed as a plan-review tool especially for functional image-guided intensity-modulated radiotherapy (IMRT) strategies such as selective boosting (dose painting) and conformal avoidance IMRT. The maps employ voxel-based phenomenological biological dose-response models for target volumes and normal organs. Two IMRT strategies for prostate cancer, namely conventional uniform IMRT delivering an EUD = 84 Gy (equivalent uniform dose) to the entire PTV and selective boosting delivering an EUD = 82 Gy to the entire PTV, are investigated, to illustrate the advantages of this approach over iso-dose maps. Conventional uniform IMRT did yield a more uniform isodose map to the entire PTV while selective boosting did result in a nonuniform isodose map. However, when employing voxel based iso-TCP maps selective boosting exhibited a more uniform tumor control probability map compared to what could be achieved using conventional uniform IMRT, which showed TCP cold spots in high-risk tumor subvolumes despite delivering a higher EUD to the entire PTV. Voxel based iso-Complication maps are presented for rectum and bladder, and their utilization for selective avoidance IMRT strategies are discussed. We believe as the need for functional image guided treatment planning grows, voxel based iso-TCP and iso-Complication maps will become an important tool to assess the integrity of such treatment plans.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peeler, C; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX; Mirkovic, D
2016-06-15
Purpose: We identified patients treated for ependymoma with passive scattering proton therapy who subsequently developed treatment-related imaging changes on MRI. We sought to determine if there is any spatial correlation between imaged response, dose, and LET. Methods: A group of 14 patients treated for ependymoma were identified as having post-treatment MR imaging changes observable as T2-FLAIR hyperintensity with or without enhancement on T1 post-contrast sequences. MR images were registered with treatment planning CT images and regions of treatment-related change contoured by a practicing radiation oncologist. The contoured regions were identified as response with voxels represented as 1 while voxels withinmore » the brain outside of the response region were represented as 0. An in-house Monte Carlo system was used to recalculate treatment plans to obtain dose and LET information. Voxels were binned according to LET values in 0.3 keV µm{sup −1} bins. Dose and corresponding response value (0 or 1) for each voxel for a given LET bin were then plotted and fit with the Lyman-Kutcher-Burman dose response model to determine TD{sub 50} and m parameters for each LET value. Response parameters from all patients were then collated, and linear fits of the data were performed. Results: The response parameters TD50 and m both show trends with LET. Outliers were observed due to low numbers of response voxels in some cases. TD{sub 50} values decreased with LET while m increased with LET. The former result would indicate that for higher LET values, the dose is more effective, which is consistent with relative biological effectiveness (RBE) models for proton therapy. Conclusion: A novel method of voxel-level analysis of image biomarker-based adverse patient treatment response in proton therapy according to dose and LET has been presented. Fitted TD{sub 50} values show a decreasing trend with LET supporting the typical models of proton RBE. Funding provided by NIH Program Project Grant 2U19CA021239-35.« less
Szigeti, Krisztián; Szabó, Tibor; Korom, Csaba; Czibak, Ilona; Horváth, Ildikó; Veres, Dániel S; Gyöngyi, Zoltán; Karlinger, Kinga; Bergmann, Ralf; Pócsik, Márta; Budán, Ferenc; Máthé, Domokos
2016-02-11
Lung diseases (resulting from air pollution) require a widely accessible method for risk estimation and early diagnosis to ensure proper and responsive treatment. Radiomics-based fractal dimension analysis of X-ray computed tomography attenuation patterns in chest voxels of mice exposed to different air polluting agents was performed to model early stages of disease and establish differential diagnosis. To model different types of air pollution, BALBc/ByJ mouse groups were exposed to cigarette smoke combined with ozone, sulphur dioxide gas and a control group was established. Two weeks after exposure, the frequency distributions of image voxel attenuation data were evaluated. Specific cut-off ranges were defined to group voxels by attenuation. Cut-off ranges were binarized and their spatial pattern was associated with calculated fractal dimension, then abstracted by the fractal dimension -- cut-off range mathematical function. Nonparametric Kruskal-Wallis (KW) and Mann-Whitney post hoc (MWph) tests were used. Each cut-off range versus fractal dimension function plot was found to contain two distinctive Gaussian curves. The ratios of the Gaussian curve parameters are considerably significant and are statistically distinguishable within the three exposure groups. A new radiomics evaluation method was established based on analysis of the fractal dimension of chest X-ray computed tomography data segments. The specific attenuation patterns calculated utilizing our method may diagnose and monitor certain lung diseases, such as chronic obstructive pulmonary disease (COPD), asthma, tuberculosis or lung carcinomas.
Bodurka, J; Ye, F; Petridou, N; Murphy, K; Bandettini, P A
2007-01-15
This work addresses the choice of the imaging voxel volume in blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI). Noise of physiological origin that is present in the voxel time course is a prohibitive factor in the detection of small activation-induced BOLD signal changes. If the physiological noise contribution dominates over the temporal fluctuation contribution in the imaging voxel, further increases in the voxel signal-to-noise ratio (SNR) will have diminished corresponding increases in temporal signal-to-noise (TSNR), resulting in reduced corresponding increases in the ability to detect activation induced signal changes. On the other hand, if the thermal and system noise dominate (suggesting a relatively low SNR) further decreases in SNR can prohibit detection of activation-induced signal changes. Here we have proposed and called the "suggested" voxel volume for fMRI the volume where thermal plus system-related and physiological noise variances are equal. Based on this condition we have created maps of fMRI suggested voxel volume from our experimental data at 3T, since this value will spatially vary depending on the contribution of physiologic noise in each voxel. Based on our fast EPI segmentation technique we have found that for gray matter (GM), white matter (WM), and cerebral spinal fluid (CSF) brain compartments the mean suggested cubical voxel volume is: (1.8 mm)3, (2.1 mm)3 and (1.4 mm)3, respectively. Serendipitously, (1.8 mm)3 cubical voxel volume for GM approximately matches the cortical thickness, thus optimizing BOLD contrast by minimizing partial volume averaging. The introduced suggested fMRI voxel volume can be a useful parameter for choice of imaging volume for functional studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andreasen, Daniel, E-mail: dana@dtu.dk; Van Leemput, Koen; Hansen, Rasmus H.
Purpose: In radiotherapy (RT) based on magnetic resonance imaging (MRI) as the only modality, the information on electron density must be derived from the MRI scan by creating a so-called pseudo computed tomography (pCT). This is a nontrivial task, since the voxel-intensities in an MRI scan are not uniquely related to electron density. To solve the task, voxel-based or atlas-based models have typically been used. The voxel-based models require a specialized dual ultrashort echo time MRI sequence for bone visualization and the atlas-based models require deformable registrations of conventional MRI scans. In this study, we investigate the potential of amore » patch-based method for creating a pCT based on conventional T{sub 1}-weighted MRI scans without using deformable registrations. We compare this method against two state-of-the-art methods within the voxel-based and atlas-based categories. Methods: The data consisted of CT and MRI scans of five cranial RT patients. To compare the performance of the different methods, a nested cross validation was done to find optimal model parameters for all the methods. Voxel-wise and geometric evaluations of the pCTs were done. Furthermore, a radiologic evaluation based on water equivalent path lengths was carried out, comparing the upper hemisphere of the head in the pCT and the real CT. Finally, the dosimetric accuracy was tested and compared for a photon treatment plan. Results: The pCTs produced with the patch-based method had the best voxel-wise, geometric, and radiologic agreement with the real CT, closely followed by the atlas-based method. In terms of the dosimetric accuracy, the patch-based method had average deviations of less than 0.5% in measures related to target coverage. Conclusions: We showed that a patch-based method could generate an accurate pCT based on conventional T{sub 1}-weighted MRI sequences and without deformable registrations. In our evaluations, the method performed better than existing voxel-based and atlas-based methods and showed a promising potential for RT of the brain based only on MRI.« less
Lin, Zi-Jing; Li, Lin; Cazzell, Mary; Liu, Hanli
2014-08-01
Diffuse optical tomography (DOT) is a variant of functional near infrared spectroscopy and has the capability of mapping or reconstructing three dimensional (3D) hemodynamic changes due to brain activity. Common methods used in DOT image analysis to define brain activation have limitations because the selection of activation period is relatively subjective. General linear model (GLM)-based analysis can overcome this limitation. In this study, we combine the atlas-guided 3D DOT image reconstruction with GLM-based analysis (i.e., voxel-wise GLM analysis) to investigate the brain activity that is associated with risk decision-making processes. Risk decision-making is an important cognitive process and thus is an essential topic in the field of neuroscience. The Balloon Analog Risk Task (BART) is a valid experimental model and has been commonly used to assess human risk-taking actions and tendencies while facing risks. We have used the BART paradigm with a blocked design to investigate brain activations in the prefrontal and frontal cortical areas during decision-making from 37 human participants (22 males and 15 females). Voxel-wise GLM analysis was performed after a human brain atlas template and a depth compensation algorithm were combined to form atlas-guided DOT images. In this work, we wish to demonstrate the excellence of using voxel-wise GLM analysis with DOT to image and study cognitive functions in response to risk decision-making. Results have shown significant hemodynamic changes in the dorsal lateral prefrontal cortex (DLPFC) during the active-choice mode and a different activation pattern between genders; these findings correlate well with published literature in functional magnetic resonance imaging (fMRI) and fNIRS studies. Copyright © 2014 The Authors. Human Brain Mapping Published by Wiley Periodicals, Inc.
Banerjee, Pia; Leu, Kevin; Harris, Robert J; Cloughesy, Timothy F; Lai, Albert; Nghiemphu, Phioanh L; Pope, Whitney B; Bookheimer, Susan Y; Ellingson, Benjamin M
2015-01-01
Management of language difficulties is an important aspect of clinical care for glioma patients, and accurately identifying the possible language deficits in patients based on lesion location would be beneficial to clinicians. To that end, we examined the relationship between lesion presence and language performance on tests of receptive language and expressive language using a highly specific voxel-based lesion-symptom mapping (VLSM) approach in glioma patients. 98 adults with primary glioma, who were pre-surgical candidates, were administered seven neurocognitive tests within the domains of receptive language and expressive language. The association between language performance and lesion presence was examined using VLSM. Statistical parametric maps were created for each test, and composite maps for both receptive language and expressive language were created to display the significant voxels common to all tests within these language domains. We identified clusters of voxels with a significant relationship between lesion presence and language performance. All tasks were associated with several white matter pathways. The receptive language tasks were additionally all associated with regions primarily within the lateral temporal lobe and medial temporal lobe. In contrast, the expressive language tasks shared little overlap, despite each task being independently associated with large anatomic areas. Our findings identify the key anatomic structures involved in language functioning in adult glioma patients using an innovative lesion analysis technique and suggest that expressive language abilities may be more task-dependent and distributed than receptive language abilities.
[Utility of axial images in an early Alzheimer disease diagnosis support system (VSRAD)].
Goto, Masami; Aoki, Shigeki; Abe, Osamu; Masumoto, Tomohiko; Watanabe, Yasushi; Satake, Yoshiroh; Nishida, Katsuji; Ino, Kenji; Yano, Keiichi; Iida, Kyohhito; Mima, Kazuo; Ohtomo, Kuni
2006-09-20
In recent years, voxel-based morphometry (VBM) has become a popular tool for the early diagnosis of Alzheimer disease. The Voxel-Based Specific Regional Analysis System for Alzheimer's Disease (VSRAD), a VBM system that uses MRI, has been reported to be clinically useful. The able-bodied person database (DB) of VSRAD, which employs sagittal plane imaging, is not suitable for analysis by axial plane imaging. However, axial plane imaging is useful for avoiding motion artifacts from the eyeball. Therefore, we created an able-bodied person DB by axial plane imaging and examined its utility. We also analyzed groups of able-bodied persons and persons with dementia by axial plane imaging and reviewed the validity. After using the DB of axial plane imaging, the Z-score of the intrahippocampal region improved by 8 in 13 instances. In all brains, the Z-score improved by 13 in all instances.
Statistical intensity variation analysis for rapid volumetric imaging of capillary network flux
Lee, Jonghwan; Jiang, James Y.; Wu, Weicheng; Lesage, Frederic; Boas, David A.
2014-01-01
We present a novel optical coherence tomography (OCT)-based technique for rapid volumetric imaging of red blood cell (RBC) flux in capillary networks. Previously we reported that OCT can capture individual RBC passage within a capillary, where the OCT intensity signal at a voxel fluctuates when an RBC passes the voxel. Based on this finding, we defined a metric of statistical intensity variation (SIV) and validated that the mean SIV is proportional to the RBC flux [RBC/s] through simulations and measurements. From rapidly scanned volume data, we used Hessian matrix analysis to vectorize a segment path of each capillary and estimate its flux from the mean of the SIVs gathered along the path. Repeating this process led to a 3D flux map of the capillary network. The present technique enabled us to trace the RBC flux changes over hundreds of capillaries with a temporal resolution of ~1 s during functional activation. PMID:24761298
Moon, Chung-Man; Shin, Il-Seon; Jeong, Gwang-Woo
2017-02-01
Background Non-invasive imaging markers can be used to diagnose Alzheimer's disease (AD) in its early stages, but an optimized quantification analysis to measure the brain integrity has been less studied. Purpose To evaluate white matter volume change and its correlation with neuropsychological scales in patients with AD using a diffeomorphic anatomical registration through exponentiated lie algebra (DARTEL)-based voxel-based morphometry (VBM). Material and Methods The 21 participants comprised 11 patients with AD and 10 age-matched healthy controls. High-resolution magnetic resonance imaging (MRI) data were processed by VBM analysis based on DARTEL algorithm. Results The patients showed significant white matter volume reductions in the posterior limb of the internal capsule, cerebral peduncle of the midbrain, and parahippocampal gyrus compared to healthy controls. In correlation analysis, the parahippocampal volume was positively correlated with the Korean-mini mental state examination score in AD. Conclusion This study provides an evidence for localized white matter volume deficits in conjunction with cognitive dysfunction in AD. These findings would be helpful to understand the neuroanatomical mechanisms in AD and to robust the diagnostic accuracy for AD.
Yoon, Ra Gyoung; Kim, Ho Sung; Koh, Myeong Ju; Shim, Woo Hyun; Jung, Seung Chai; Kim, Sang Joon; Kim, Jeong Hoon
2017-10-01
Purpose To assess a volume-weighted voxel-based multiparametric (MP) clustering method as an imaging biomarker to differentiate recurrent glioblastoma from delayed radiation necrosis. Materials and Methods The institutional review board approved this retrospective study and waived the informed consent requirement. Seventy-five patients with pathologic analysis-confirmed recurrent glioblastoma (n = 42) or radiation necrosis (n = 33) who presented with enlarged contrast material-enhanced lesions at magnetic resonance (MR) imaging after they completed concurrent chemotherapy and radiation therapy were enrolled. The diagnostic performance of the total MP cluster score was determined by using the area under the receiver operating characteristic curve (AUC) with cross-validation and compared with those of single parameter measurements (10% histogram cutoffs of apparent diffusion coefficient [ADC10] or 90% histogram cutoffs of normalized cerebral blood volume and initial time-signal intensity AUC). Results Receiver operating characteristic curve analysis showed that an AUC for differentiating recurrent glioblastoma from delayed radiation necrosis was highest in the total MP cluster score and lowest for ADC10 for both readers. The total MP cluster score had significantly better diagnostic accuracy than any single parameter (corrected P = .001-.039 for reader 1; corrected P = .005-.041 for reader 2). The total MP cluster score was the best predictor of recurrent glioblastoma (cross-validated AUCs, 0.942-0.946 for both readers), with a sensitivity of 95.2% for reader 1 and 97.6% for reader 2. Conclusion Quantitative analysis with volume-weighted voxel-based MP clustering appears to be superior to the use of single imaging parameters to differentiate recurrent glioblastoma from delayed radiation necrosis. © RSNA, 2017 Online supplemental material is available for this article.
Hybrid computational phantoms of the male and female newborn patient: NURBS-based whole-body models
NASA Astrophysics Data System (ADS)
Lee, Choonsik; Lodwick, Daniel; Hasenauer, Deanna; Williams, Jonathan L.; Lee, Choonik; Bolch, Wesley E.
2007-07-01
Anthropomorphic computational phantoms are computer models of the human body for use in the evaluation of dose distributions resulting from either internal or external radiation sources. Currently, two classes of computational phantoms have been developed and widely utilized for organ dose assessment: (1) stylized phantoms and (2) voxel phantoms which describe the human anatomy via mathematical surface equations or 3D voxel matrices, respectively. Although stylized phantoms based on mathematical equations can be very flexible in regard to making changes in organ position and geometrical shape, they are limited in their ability to fully capture the anatomic complexities of human internal anatomy. In turn, voxel phantoms have been developed through image-based segmentation and correspondingly provide much better anatomical realism in comparison to simpler stylized phantoms. However, they themselves are limited in defining organs presented in low contrast within either magnetic resonance or computed tomography images—the two major sources in voxel phantom construction. By definition, voxel phantoms are typically constructed via segmentation of transaxial images, and thus while fine anatomic features are seen in this viewing plane, slice-to-slice discontinuities become apparent in viewing the anatomy of voxel phantoms in the sagittal or coronal planes. This study introduces the concept of a hybrid computational newborn phantom that takes full advantage of the best features of both its stylized and voxel counterparts: flexibility in phantom alterations and anatomic realism. Non-uniform rational B-spline (NURBS) surfaces, a mathematical modeling tool traditionally applied to graphical animation studies, was adopted to replace the limited mathematical surface equations of stylized phantoms. A previously developed whole-body voxel phantom of the newborn female was utilized as a realistic anatomical framework for hybrid phantom construction. The construction of a hybrid phantom is performed in three steps: polygonization of the voxel phantom, organ modeling via NURBS surfaces and phantom voxelization. Two 3D graphic tools, 3D-DOCTOR™ and Rhinoceros™, were utilized to polygonize the newborn voxel phantom and generate NURBS surfaces, while an in-house MATLAB™ code was used to voxelize the resulting NURBS model into a final computational phantom ready for use in Monte Carlo radiation transport calculations. A total of 126 anatomical organ and tissue models, including 38 skeletal sites and 31 cartilage sites, were described within the hybrid phantom using either NURBS or polygon surfaces. A male hybrid newborn phantom was constructed following the development of the female phantom through the replacement of female-specific organs with male-specific organs. The outer body contour and internal anatomy of the NURBS-based phantoms were adjusted to match anthropometric and reference newborn data reported by the International Commission on Radiological Protection in their Publication 89. The voxelization process was designed to accurately convert NURBS models to a voxel phantom with minimum volumetric change. A sensitivity study was additionally performed to better understand how the meshing tolerance and voxel resolution would affect volumetric changes between the hybrid-NURBS and hybrid-voxel phantoms. The male and female hybrid-NURBS phantoms were constructed in a manner so that all internal organs approached their ICRP reference masses to within 1%, with the exception of the skin (-6.5% relative error) and brain (-15.4% relative error). Both hybrid-voxel phantoms were constructed with an isotropic voxel resolution of 0.663 mm—equivalent to the ICRP 89 reference thickness of the newborn skin (dermis and epidermis). Hybrid-NURBS phantoms used to create their voxel counterpart retain the non-uniform scalability of stylized phantoms, while maintaining the anatomic realism of segmented voxel phantoms with respect to organ shape, depth and inter-organ positioning. This work was supported by the National Cancer Institute.
Lee, Min Sun; Kim, Joong Hyun; Paeng, Jin Chul; Kang, Keon Wook; Jeong, Jae Min; Lee, Dong Soo; Lee, Jae Sung
2017-12-14
Personalized dosimetry with high accuracy is becoming more important because of the growing interests in personalized medicine and targeted radionuclide therapy. Voxel-based dosimetry using dose point kernel or voxel S-value (VSV) convolution is available. However, these approaches do not consider medium heterogeneity. Here, we propose a new method for whole-body voxel-based personalized dosimetry for heterogeneous media with non-uniform activity distributions, which is referred to as the multiple VSV approach. Methods: The multiple numbers (N) of VSVs for media with different densities covering the whole-body density ranges were used instead of using only a single VSV for water. The VSVs were pre-calculated using GATE Monte Carlo simulation; those were convoluted with the time-integrated activity to generate density-specific dose maps. Computed tomography-based segmentation was conducted to generate binary maps for each density region. The final dose map was acquired by the summation of N segmented density-specific dose maps. We tested several sets of VSVs with different densities: N = 1 (single water VSV), 4, 6, 8, 10, and 20. To validate the proposed method, phantom and patient studies were conducted and compared with direct Monte Carlo, which was considered the ground truth. Finally, patient dosimetry (10 subjects) was conducted using the multiple VSV approach and compared with the single VSV and organ-based dosimetry approaches. Errors at the voxel- and organ-levels were reported for eight organs. Results: In the phantom and patient studies, the multiple VSV approach showed significant improvements regarding voxel-level errors, especially for the lung and bone regions. As N increased, voxel-level errors decreased, although some overestimations were observed at lung boundaries. In the case of multiple VSVs ( N = 8), we achieved voxel-level errors of 2.06%. In the dosimetry study, our proposed method showed much improved results compared to the single VSV and organ-based dosimetry. Errors at the organ-level were -6.71%, 2.17%, and 227.46% for the single VSV, multiple VSV, and organ-based dosimetry, respectively. Conclusion: The multiple VSV approach for heterogeneous media with non-uniform activity distributions offers fast personalized dosimetry at whole-body level, yielding results comparable to those of the direct Monte Carlo approach. Copyright © 2017 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Voxel classification based airway tree segmentation
NASA Astrophysics Data System (ADS)
Lo, Pechin; de Bruijne, Marleen
2008-03-01
This paper presents a voxel classification based method for segmenting the human airway tree in volumetric computed tomography (CT) images. In contrast to standard methods that use only voxel intensities, our method uses a more complex appearance model based on a set of local image appearance features and Kth nearest neighbor (KNN) classification. The optimal set of features for classification is selected automatically from a large set of features describing the local image structure at several scales. The use of multiple features enables the appearance model to differentiate between airway tree voxels and other voxels of similar intensities in the lung, thus making the segmentation robust to pathologies such as emphysema. The classifier is trained on imperfect segmentations that can easily be obtained using region growing with a manual threshold selection. Experiments show that the proposed method results in a more robust segmentation that can grow into the smaller airway branches without leaking into emphysematous areas, and is able to segment many branches that are not present in the training set.
Kim, Yusung; Tomé, Wolfgang A.
2010-01-01
Summary Voxel based iso-Tumor Control Probability (TCP) maps and iso-Complication maps are proposed as a plan-review tool especially for functional image-guided intensity-modulated radiotherapy (IMRT) strategies such as selective boosting (dose painting) and conformal avoidance IMRT. The maps employ voxel-based phenomenological biological dose-response models for target volumes and normal organs. Two IMRT strategies for prostate cancer, namely conventional uniform IMRT delivering an EUD = 84 Gy (equivalent uniform dose) to the entire PTV and selective boosting delivering an EUD = 82 Gy to the entire PTV, are investigated, to illustrate the advantages of this approach over iso-dose maps. Conventional uniform IMRT did yield a more uniform isodose map to the entire PTV while selective boosting did result in a nonuniform isodose map. However, when employing voxel based iso-TCP maps selective boosting exhibited a more uniform tumor control probability map compared to what could be achieved using conventional uniform IMRT, which showed TCP cold spots in high-risk tumor subvolumes despite delivering a higher EUD to the entire PTV. Voxel based iso-Complication maps are presented for rectum and bladder, and their utilization for selective avoidance IMRT strategies are discussed. We believe as the need for functional image guided treatment planning grows, voxel based iso-TCP and iso-Complication maps will become an important tool to assess the integrity of such treatment plans. PMID:21151734
Khalaf, Majid; Brey, Richard R; Meldrum, Jeff
2013-01-01
A new leg voxel model in two different positions (straight and bent) has been developed for in vivo measurement calibration purposes. This voxel phantom is a representation of a human leg that may provide a substantial enhancement to Monte Carlo modeling because it more accurately models different geometric leg positions and the non-uniform distribution of Am throughout the leg bones instead of assuming a one-position geometry and a uniform distribution of radionuclides. This was accomplished by performing a radiochemical analysis on small sections of the leg bones from the U.S. Transuranium and Uranium Registries (USTUR) case 0846. USTUR case 0846 represents an individual who was repeatedly contaminated by Am via chronic inhalation. To construct the voxel model, high resolution (2 mm) computed tomography (CT) images of the USTUR case 0846 leg were obtained in different positions. Thirty-six (36) objects (universes) were segmented manually from the CT images using 3D-Doctor software. Bones were divided into 30 small sections with an assigned weight exactly equal to the weight of bone sections obtained from radiochemical analysis of the USTUR case 0846 leg. The segmented images were then converted into a boundary file, and the Human Monitoring Laboratory (HML) voxelizer was used to convert the boundary file into the leg voxel phantom. Excluding the surrounding air regions, the straight leg phantom consists of 592,023 voxels, while the bent leg consists of 337,567 voxels. The resulting leg voxel model is now ready for use as an MCNPX input file to simulate in vivo measurement of bone-seeking radionuclides.
Kostov, Konstantin S.; Moffat, Keith
2011-01-01
The initial output of a time-resolved macromolecular crystallography experiment is a time-dependent series of difference electron density maps that displays the time-dependent changes in underlying structure as a reaction progresses. The goal is to interpret such data in terms of a small number of crystallographically refinable, time-independent structures, each associated with a reaction intermediate; to establish the pathways and rate coefficients by which these intermediates interconvert; and thereby to elucidate a chemical kinetic mechanism. One strategy toward achieving this goal is to use cluster analysis, a statistical method that groups objects based on their similarity. If the difference electron density at a particular voxel in the time-dependent difference electron density (TDED) maps is sensitive to the presence of one and only one intermediate, then its temporal evolution will exactly parallel the concentration profile of that intermediate with time. The rationale is therefore to cluster voxels with respect to the shapes of their TDEDs, so that each group or cluster of voxels corresponds to one structural intermediate. Clusters of voxels whose TDEDs reflect the presence of two or more specific intermediates can also be identified. From such groupings one can then infer the number of intermediates, obtain their time-independent difference density characteristics, and refine the structure of each intermediate. We review the principles of cluster analysis and clustering algorithms in a crystallographic context, and describe the application of the method to simulated and experimental time-resolved crystallographic data for the photocycle of photoactive yellow protein. PMID:21244840
Validation of voxel-based morphometry (VBM) based on MRI
NASA Astrophysics Data System (ADS)
Yang, Xueyu; Chen, Kewei; Guo, Xiaojuan; Yao, Li
2007-03-01
Voxel-based morphometry (VBM) is an automated and objective image analysis technique for detecting differences in regional concentration or volume of brain tissue composition based on structural magnetic resonance (MR) images. VBM has been used widely to evaluate brain morphometric differences between different populations, but there isn't an evaluation system for its validation until now. In this study, a quantitative and objective evaluation system was established in order to assess VBM performance. We recruited twenty normal volunteers (10 males and 10 females, age range 20-26 years, mean age 22.6 years). Firstly, several focal lesions (hippocampus, frontal lobe, anterior cingulate, back of hippocampus, back of anterior cingulate) were simulated in selected brain regions using real MRI data. Secondly, optimized VBM was performed to detect structural differences between groups. Thirdly, one-way ANOVA and post-hoc test were used to assess the accuracy and sensitivity of VBM analysis. The results revealed that VBM was a good detective tool in majority of brain regions, even in controversial brain region such as hippocampus in VBM study. Generally speaking, much more severity of focal lesion was, better VBM performance was. However size of focal lesion had little effects on VBM analysis.
Reckfort, Julia; Wiese, Hendrik; Pietrzyk, Uwe; Zilles, Karl; Amunts, Katrin; Axer, Markus
2015-01-01
Structural connectivity of the brain can be conceptionalized as a multiscale organization. The present study is built on 3D-Polarized Light Imaging (3D-PLI), a neuroimaging technique targeting the reconstruction of nerve fiber orientations and therefore contributing to the analysis of brain connectivity. Spatial orientations of the fibers are derived from birefringence measurements of unstained histological sections that are interpreted by means of a voxel-based analysis. This implies that a single fiber orientation vector is obtained for each voxel, which reflects the net effect of all comprised fibers. We have utilized two polarimetric setups providing an object space resolution of 1.3 μm/px (microscopic setup) and 64 μm/px (macroscopic setup) to carry out 3D-PLI and retrieve fiber orientations of the same tissue samples, but at complementary voxel sizes (i.e., scales). The present study identifies the main sources which cause a discrepancy of the measured fiber orientations observed when measuring the same sample with the two polarimetric systems. As such sources the differing optical resolutions and diverging retardances of the implemented waveplates were identified. A methodology was implemented that enables the compensation of measured different systems' responses to the same birefringent sample. This opens up new ways to conduct multiscale analysis in brains by means of 3D-PLI and to provide a reliable basis for the transition between different scales of the nerve fiber architecture. PMID:26388744
Carrion, Victor G.; Weems, Carl F.; Watson, Christa; Eliez, Stephan; Menon, Vinod; Reiss, Allan L.
2009-01-01
Objective Volumetric imaging research has shown abnormal brain morphology in posttraumatic stress disorder (PTSD) when compared to controls. We present results on a study of brain morphology in the prefrontal cortex (PFC) and midline structures, via indices of gray matter volume and density, in pediatric PTSD. We hypothesized that both methods would demonstrate aberrant morphology in the PFC. Further, we hypothesized aberrant brainstem anatomy and reduced corpus collosum volume in children with PTSD. Methods Twenty-four children (aged 7-14) with history of interpersonal trauma and 24 age, and gender matched controls underwent structural magnetic resonance imaging. Images of the PFC and midline brain structures were first analyzed using volumetric image analysis. The PFC data were then compared with whole-brain voxel-based techniques using statistical parametric mapping (SPM). Results The PTSD group showed significant increased gray matter volume in the right and left inferior and superior quadrants of the prefrontal cortex and smaller gray matter volume in pons, and posterior vermis areas by volumetric image analysis. The voxel-byvoxel group comparisons demonstrated increased gray matter density mostly localized to ventral PFC as compared to the control group. Conclusions Abnormal frontal lobe morphology, as revealed by separate-complementary image analysis methods, and reduced pons and posterior vermis areas are associated with pediatric PTSD. Voxel-based morphometry may help to corroborate and further localize data obtained by volume of interest methods in PTSD. PMID:19349151
Kaminsky, Jan; Rodt, Thomas; Gharabaghi, Alireza; Forster, Jan; Brand, Gerd; Samii, Madjid
2005-06-01
The FE-modeling of complex anatomical structures is not solved satisfyingly so far. Voxel-based as opposed to contour-based algorithms allow an automated mesh generation based on the image data. Nonetheless their geometric precision is limited. We developed an automated mesh-generator that combines the advantages of voxel-based generation with improved representation of the geometry by displacement of nodes on the object-surface. Models of an artificial 3D-pipe-section and a skullbase were generated with different mesh-densities using the newly developed geometric, unsmoothed and smoothed voxel generators. Compared to the analytic calculation of the 3D-pipe-section model the normalized RMS error of the surface stress was 0.173-0.647 for the unsmoothed voxel models, 0.111-0.616 for the smoothed voxel models with small volume error and 0.126-0.273 for the geometric models. The highest element-energy error as a criterion for the mesh quality was 2.61x10(-2) N mm, 2.46x10(-2) N mm and 1.81x10(-2) N mm for unsmoothed, smoothed and geometric voxel models, respectively. The geometric model of the 3D-skullbase resulted in the lowest element-energy error and volume error. This algorithm also allowed the best representation of anatomical details. The presented geometric mesh-generator is universally applicable and allows an automated and accurate modeling by combining the advantages of the voxel-technique and of improved surface-modeling.
The influence of voxel size on atom probe tomography data.
Torres, K L; Daniil, M; Willard, M A; Thompson, G B
2011-05-01
A methodology for determining the optimal voxel size for phase thresholding in nanostructured materials was developed using an atom simulator and a model system of a fixed two-phase composition and volume fraction. The voxel size range was banded by the atom count within each voxel. Some voxel edge lengths were found to be too large, resulting in an averaging of compositional fluctuations; others were too small with concomitant decreases in the signal-to-noise ratio for phase identification. The simulated methodology was then applied to the more complex experimentally determined data set collected from a (Co(0.95)Fe(0.05))(88)Zr(6)Hf(1)B(4)Cu(1) two-phase nanocomposite alloy to validate the approach. In this alloy, Zr and Hf segregated to an intergranular amorphous phase while Fe preferentially segregated to a crystalline phase during the isothermal annealing step that promoted primary crystallization. The atom probe data analysis of the volume fraction was compared to transmission electron microscopy (TEM) dark-field imaging analysis and a lever rule analysis of the volume fraction within the amorphous and crystalline phases of the ribbon. Copyright © 2011 Elsevier B.V. All rights reserved.
Koopman, Daniëlle; van Dalen, Jorn A; Arkies, Hester; Oostdijk, Ad H J; Francken, Anne Brecht; Bart, Jos; Slump, Cornelis H; Knollema, Siert; Jager, Pieter L
2018-01-16
We evaluated the diagnostic implications of a small-voxel reconstruction for lymph node characterization in breast cancer patients, using state-of-the-art FDG-PET/CT. We included 69 FDG-PET/CT scans from breast cancer patients. PET data were reconstructed using standard 4 × 4 × 4 mm 3 and small 2 × 2 × 2 mm 3 voxels. Two hundred thirty loco-regional lymph nodes were included, of which 209 nodes were visualised on PET/CT. All nodes were visually scored as benign or malignant, and SUV max and TB ratio (=SUV max /SUV background ) were measured. Final diagnosis was based on histological or imaging information. We determined the accuracy, sensitivity and specificity for both reconstruction methods and calculated optimal cut-off values to distinguish benign from malignant nodes. Sixty-one benign and 169 malignant lymph nodes were included. Visual evaluation accuracy was 73% (sensitivity 67%, specificity 89%) on standard-voxel images and 77% (sensitivity 78%, specificity 74%) on small-voxel images (p = 0.13). Across malignant nodes visualised on PET/CT, the small-voxel score was more often correct compared with the standard-voxel score (89 vs. 76%, p < 0.001). In benign nodes, the standard-voxel score was more often correct (89 vs. 74%, p = 0.04). Quantitative data were based on the 61 benign and 148 malignant lymph nodes visualised on PET/CT. SUVs and TB ratio were on average 3.0 and 1.6 times higher in malignant nodes compared to those in benign nodes (p < 0.001), on standard- and small-voxel PET images respectively. Small-voxel PET showed average increases in SUV max and TB ratio of typically 40% over standard-voxel PET. The optimal SUV max cut-off using standard-voxels was 1.8 (sensitivity 81%, specificity 95%, accuracy 85%) while for small-voxels, the optimal SUV max cut-off was 2.6 (sensitivity 78%, specificity 98%, accuracy 84%). Differences in accuracy were non-significant. Small-voxel PET/CT improves the sensitivity of visual lymph node characterization and provides a higher detection rate of malignant lymph nodes. However, small-voxel PET/CT also introduced more false-positive results in benign nodes. Across all nodes, differences in accuracy were non-significant. Quantitatively, small-voxel images require higher cut-off values. Readers have to adapt their reference standards.
Tensor Based Representation and Analysis of Diffusion-Weighted Magnetic Resonance Images
ERIC Educational Resources Information Center
Barmpoutis, Angelos
2009-01-01
Cartesian tensor bases have been widely used to model spherical functions. In medical imaging, tensors of various orders can approximate the diffusivity function at each voxel of a diffusion-weighted MRI data set. This approximation produces tensor-valued datasets that contain information about the underlying local structure of the scanned tissue.…
2015-06-01
10-2014 to 00-11-2014 4. TITLE AND SUBTITLE Postprocessing of Voxel-Based Topologies for Additive Manufacturing Using the Computational Geometry...ABSTRACT Postprocessing of 3-dimensional (3-D) topologies that are defined as a set of voxels using the Computational Geometry Algorithms Library (CGAL... computational geometry algorithms, several of which are suited to the task. The work flow described in this report involves first defining a set of
Absorbed fractions in a voxel-based phantom calculated with the MCNP-4B code.
Yoriyaz, H; dos Santos, A; Stabin, M G; Cabezas, R
2000-07-01
A new approach for calculating internal dose estimates was developed through the use of a more realistic computational model of the human body. The present technique shows the capability to build a patient-specific phantom with tomography data (a voxel-based phantom) for the simulation of radiation transport and energy deposition using Monte Carlo methods such as in the MCNP-4B code. MCNP-4B absorbed fractions for photons in the mathematical phantom of Snyder et al. agreed well with reference values. Results obtained through radiation transport simulation in the voxel-based phantom, in general, agreed well with reference values. Considerable discrepancies, however, were found in some cases due to two major causes: differences in the organ masses between the phantoms and the occurrence of organ overlap in the voxel-based phantom, which is not considered in the mathematical phantom.
NASA Astrophysics Data System (ADS)
Chiavassa, S.; Aubineau-Lanièce, I.; Bitar, A.; Lisbona, A.; Barbet, J.; Franck, D.; Jourdain, J. R.; Bardiès, M.
2006-02-01
Dosimetric studies are necessary for all patients treated with targeted radiotherapy. In order to attain the precision required, we have developed Oedipe, a dosimetric tool based on the MCNPX Monte Carlo code. The anatomy of each patient is considered in the form of a voxel-based geometry created using computed tomography (CT) images or magnetic resonance imaging (MRI). Oedipe enables dosimetry studies to be carried out at the voxel scale. Validation of the results obtained by comparison with existing methods is complex because there are multiple sources of variation: calculation methods (different Monte Carlo codes, point kernel), patient representations (model or specific) and geometry definitions (mathematical or voxel-based). In this paper, we validate Oedipe by taking each of these parameters into account independently. Monte Carlo methodology requires long calculation times, particularly in the case of voxel-based geometries, and this is one of the limits of personalized dosimetric methods. However, our results show that the use of voxel-based geometry as opposed to a mathematically defined geometry decreases the calculation time two-fold, due to an optimization of the MCNPX2.5e code. It is therefore possible to envisage the use of Oedipe for personalized dosimetry in the clinical context of targeted radiotherapy.
Tree species classification in subtropical forests using small-footprint full-waveform LiDAR data
NASA Astrophysics Data System (ADS)
Cao, Lin; Coops, Nicholas C.; Innes, John L.; Dai, Jinsong; Ruan, Honghua; She, Guanghui
2016-07-01
The accurate classification of tree species is critical for the management of forest ecosystems, particularly subtropical forests, which are highly diverse and complex ecosystems. While airborne Light Detection and Ranging (LiDAR) technology offers significant potential to estimate forest structural attributes, the capacity of this new tool to classify species is less well known. In this research, full-waveform metrics were extracted by a voxel-based composite waveform approach and examined with a Random Forests classifier to discriminate six subtropical tree species (i.e., Masson pine (Pinus massoniana Lamb.)), Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.), Slash pines (Pinus elliottii Engelm.), Sawtooth oak (Quercus acutissima Carruth.) and Chinese holly (Ilex chinensis Sims.) at three levels of discrimination. As part of the analysis, the optimal voxel size for modelling the composite waveforms was investigated, the most important predictor metrics for species classification assessed and the effect of scan angle on species discrimination examined. Results demonstrate that all tree species were classified with relatively high accuracy (68.6% for six classes, 75.8% for four main species and 86.2% for conifers and broadleaved trees). Full-waveform metrics (based on height of median energy, waveform distance and number of waveform peaks) demonstrated high classification importance and were stable among various voxel sizes. The results also suggest that the voxel based approach can alleviate some of the issues associated with large scan angles. In summary, the results indicate that full-waveform LIDAR data have significant potential for tree species classification in the subtropical forests.
Edge-Related Activity Is Not Necessary to Explain Orientation Decoding in Human Visual Cortex.
Wardle, Susan G; Ritchie, J Brendan; Seymour, Kiley; Carlson, Thomas A
2017-02-01
Multivariate pattern analysis is a powerful technique; however, a significant theoretical limitation in neuroscience is the ambiguity in interpreting the source of decodable information used by classifiers. This is exemplified by the continued controversy over the source of orientation decoding from fMRI responses in human V1. Recently Carlson (2014) identified a potential source of decodable information by modeling voxel responses based on the Hubel and Wiesel (1972) ice-cube model of visual cortex. The model revealed that activity associated with the edges of gratings covaries with orientation and could potentially be used to discriminate orientation. Here we empirically evaluate whether "edge-related activity" underlies orientation decoding from patterns of BOLD response in human V1. First, we systematically mapped classifier performance as a function of stimulus location using population receptive field modeling to isolate each voxel's overlap with a large annular grating stimulus. Orientation was decodable across the stimulus; however, peak decoding performance occurred for voxels with receptive fields closer to the fovea and overlapping with the inner edge. Critically, we did not observe the expected second peak in decoding performance at the outer stimulus edge as predicted by the edge account. Second, we evaluated whether voxels that contribute most to classifier performance have receptive fields that cluster in cortical regions corresponding to the retinotopic location of the stimulus edge. Instead, we find the distribution of highly weighted voxels to be approximately random, with a modest bias toward more foveal voxels. Our results demonstrate that edge-related activity is likely not necessary for orientation decoding. A significant theoretical limitation of multivariate pattern analysis in neuroscience is the ambiguity in interpreting the source of decodable information used by classifiers. For example, orientation can be decoded from BOLD activation patterns in human V1, even though orientation columns are at a finer spatial scale than 3T fMRI. Consequently, the source of decodable information remains controversial. Here we test the proposal that information related to the stimulus edges underlies orientation decoding. We map voxel population receptive fields in V1 and evaluate orientation decoding performance as a function of stimulus location in retinotopic cortex. We find orientation is decodable from voxels whose receptive fields do not overlap with the stimulus edges, suggesting edge-related activity does not substantially drive orientation decoding. Copyright © 2017 the authors 0270-6474/17/371187-10$15.00/0.
Voxel-based lesion mapping of meningioma: a comprehensive lesion location mapping of 260 lesions.
Hirayama, Ryuichi; Kinoshita, Manabu; Arita, Hideyuki; Kagawa, Naoki; Kishima, Haruhiko; Hashimoto, Naoya; Fujimoto, Yasunori; Yoshimine, Toshiki
2018-06-01
OBJECTIVE In the present study the authors aimed to determine preferred locations of meningiomas by avoiding descriptive analysis and instead using voxel-based lesion mapping and 3D image-rendering techniques. METHODS Magnetic resonance images obtained in 248 treatment-naïve meningioma patients with 260 lesions were retrospectively and consecutively collected. All images were registered to a 1-mm isotropic, high-resolution, T1-weighted brain atlas provided by the Montreal Neurological Institute (the MNI152), and a lesion frequency map was created, followed by 3D volume rendering to visualize the preferred locations of meningiomas in 3D. RESULTS The 3D lesion frequency map clearly showed that skull base structures such as parasellar, sphenoid wing, and petroclival regions were commonly affected by the tumor. The middle one-third of the superior sagittal sinus was most commonly affected in parasagittal tumors. Substantial lesion accumulation was observed around the leptomeninges covering the central sulcus and the sylvian fissure, with very few lesions observed at the frontal, parietal, and occipital convexities. CONCLUSIONS Using an objective visualization method, meningiomas were shown to be located around the middle third of the superior sagittal sinus, the perisylvian convexity, and the skull base. These observations, which are in line with previous descriptive analyses, justify further use of voxel-based lesion mapping techniques to help understand the biological nature of this disease.
Automated liver sampling using a gradient dual-echo Dixon-based technique.
Bashir, Mustafa R; Dale, Brian M; Merkle, Elmar M; Boll, Daniel T
2012-05-01
Magnetic resonance spectroscopy of the liver requires input from a physicist or physician at the time of acquisition to insure proper voxel selection, while in multiecho chemical shift imaging, numerous regions of interest must be manually selected in order to ensure analysis of a representative portion of the liver parenchyma. A fully automated technique could improve workflow by selecting representative portions of the liver prior to human analysis. Complete volumes from three-dimensional gradient dual-echo acquisitions with two-point Dixon reconstruction acquired at 1.5 and 3 T were analyzed in 100 subjects, using an automated liver sampling algorithm, based on ratio pairs calculated from signal intensity image data as fat-only/water-only and log(in-phase/opposed-phase) on a voxel-by-voxel basis. Using different gridding variations of the algorithm, the average correct liver volume samples ranged from 527 to 733 mL. The average percentage of sample located within the liver ranged from 95.4 to 97.1%, whereas the average incorrect volume selected was 16.5-35.4 mL (2.9-4.6%). Average run time was 19.7-79.0 s. The algorithm consistently selected large samples of the hepatic parenchyma with small amounts of erroneous extrahepatic sampling, and run times were feasible for execution on an MRI system console during exam acquisition. Copyright © 2011 Wiley Periodicals, Inc.
Yang, Pinchen; Wang, Pei-Ning; Chuang, Kai-Hsiang; Jong, Yuh-Jyh; Chao, Tzu-Cheng; Wu, Ming-Ting
2008-12-30
Brain abnormalities, as determined by structural magnetic resonance imaging (MRI), have been reported in patients with attention-deficit hyperactivity disorder (ADHD); however, female subjects have been underrepresented in previous reports. In this study, we used optimized voxel-based morphometry to compare the total and regional gray matter volumes between groups of 7- to 17-year-old ADHD and healthy children (total 114 subjects). Fifty-seven children with ADHD (n=57, 35 males and 22 females) and healthy children (n=57) received MRI scans. Segmented brain MRI images were normalized into standardized stereotactic space, modulated to allow volumetric analysis, smoothed and compared at the voxel level with statistical parametric mapping. Global volumetric comparisons between groups revealed that the total brain volumes of ADHD children were smaller than those of the control children. As for the regional brain analysis, the brain volumes of ADHD children were found to be bilaterally smaller in the following regions as compared with normal control values: the caudate nucleus and the cerebellum. There were two clusters of regional decrease in the female brain, left posterior cingulum and right precuneus, as compared with the male brain. Brain regions showing the interaction effect of diagnosis and gender were negligible. These results were consistent with the hypothesized dysfunctional systems in ADHD, and they also suggested that neuroanatomical abnormalities in ADHD were not influenced by gender.
Tateno, Amane; Sakayori, Takeshi; Kawashima, Yoshitaka; Higuchi, Makoto; Suhara, Tetsuya; Mizumura, Sunao; Mintun, Mark A; Skovronsky, Daniel M; Honjo, Kazuyoshi; Ishihara, Keiichi; Kumita, Shinichiro; Suzuki, Hidenori; Okubo, Yoshiro
2015-05-01
We compared amyloid positron emission tomography (PET) and magnetic resonance imaging (MRI) in subjects clinically diagnosed with Alzheimer's disease (AD), mild cognitive impairment (MCI), and older healthy controls (OHC) in order to test how these imaging biomarkers represent cognitive decline in AD. Fifteen OHC, 19 patients with MCI, and 19 patients with AD were examined by [(18)F]florbetapir PET to quantify the standard uptake value ratio (SUVR) as the degree of amyloid accumulation, by MRI and the voxel-based specific regional analysis system for AD to calculate z-score as the degree of entorhinal cortex atrophy, and by mini-mental state examination (MMSE) and Alzheimer's Disease Assessment Scale-cognitive component--Japanese version (ADAS-Jcog) for cognitive functions. Both cutoff values for measuring AD-like levels of amyloid (1.099 for SUVR) and entorhinal cortex atrophy (1.60 for z-score) were well differentially diagnosed and clinically defined AD from OHC (84.2% for SUVR and 86.7% for z-score). Subgroup analysis based on beta-amyloid positivity revealed that z-score significantly correlated with MMSE (r = -0.626, p < 0.01) and ADAS-Jcog (r = 0.691, p < 0.01) only among subjects with beta-amyloid. This is the first study to compare [(18)F]florbetapir PET and MRI voxel-based analysis of entorhinal cortex atrophy for AD. Both [(18)F]florbetapir PET and MRI detected changes in AD compared with OHC. Considering that entorhinal cortex atrophy correlated well with cognitive decline only among subjects with beta-amyloid, [18F]florbetapir PET makes it possible to detect AD pathology in the early stage, whereas MRI morphometry for subjects with beta-amyloid provides a good biomarker to assess the severity of AD in the later stage. Copyright © 2014 John Wiley & Sons, Ltd.
Wavelet-based fMRI analysis: 3-D denoising, signal separation, and validation metrics
Khullar, Siddharth; Michael, Andrew; Correa, Nicolle; Adali, Tulay; Baum, Stefi A.; Calhoun, Vince D.
2010-01-01
We present a novel integrated wavelet-domain based framework (w-ICA) for 3-D de-noising functional magnetic resonance imaging (fMRI) data followed by source separation analysis using independent component analysis (ICA) in the wavelet domain. We propose the idea of a 3-D wavelet-based multi-directional de-noising scheme where each volume in a 4-D fMRI data set is sub-sampled using the axial, sagittal and coronal geometries to obtain three different slice-by-slice representations of the same data. The filtered intensity value of an arbitrary voxel is computed as an expected value of the de-noised wavelet coefficients corresponding to the three viewing geometries for each sub-band. This results in a robust set of de-noised wavelet coefficients for each voxel. Given the decorrelated nature of these de-noised wavelet coefficients; it is possible to obtain more accurate source estimates using ICA in the wavelet domain. The contributions of this work can be realized as two modules. First, the analysis module where we combine a new 3-D wavelet denoising approach with better signal separation properties of ICA in the wavelet domain, to yield an activation component that corresponds closely to the true underlying signal and is maximally independent with respect to other components. Second, we propose and describe two novel shape metrics for post-ICA comparisons between activation regions obtained through different frameworks. We verified our method using simulated as well as real fMRI data and compared our results against the conventional scheme (Gaussian smoothing + spatial ICA: s-ICA). The results show significant improvements based on two important features: (1) preservation of shape of the activation region (shape metrics) and (2) receiver operating characteristic (ROC) curves. It was observed that the proposed framework was able to preserve the actual activation shape in a consistent manner even for very high noise levels in addition to significant reduction in false positives voxels. PMID:21034833
Director Field Analysis (DFA): Exploring Local White Matter Geometric Structure in Diffusion MRI.
Cheng, Jian; Basser, Peter J
2018-01-01
In Diffusion Tensor Imaging (DTI) or High Angular Resolution Diffusion Imaging (HARDI), a tensor field or a spherical function field (e.g., an orientation distribution function field), can be estimated from measured diffusion weighted images. In this paper, inspired by the microscopic theoretical treatment of phases in liquid crystals, we introduce a novel mathematical framework, called Director Field Analysis (DFA), to study local geometric structural information of white matter based on the reconstructed tensor field or spherical function field: (1) We propose a set of mathematical tools to process general director data, which consists of dyadic tensors that have orientations but no direction. (2) We propose Orientational Order (OO) and Orientational Dispersion (OD) indices to describe the degree of alignment and dispersion of a spherical function in a single voxel or in a region, respectively; (3) We also show how to construct a local orthogonal coordinate frame in each voxel exhibiting anisotropic diffusion; (4) Finally, we define three indices to describe three types of orientational distortion (splay, bend, and twist) in a local spatial neighborhood, and a total distortion index to describe distortions of all three types. To our knowledge, this is the first work to quantitatively describe orientational distortion (splay, bend, and twist) in general spherical function fields from DTI or HARDI data. The proposed DFA and its related mathematical tools can be used to process not only diffusion MRI data but also general director field data, and the proposed scalar indices are useful for detecting local geometric changes of white matter for voxel-based or tract-based analysis in both DTI and HARDI acquisitions. The related codes and a tutorial for DFA will be released in DMRITool. Copyright © 2017 Elsevier B.V. All rights reserved.
The dorsal stream contribution to phonological retrieval in object naming
Faseyitan, Olufunsho; Kim, Junghoon; Coslett, H. Branch
2012-01-01
Meaningful speech, as exemplified in object naming, calls on knowledge of the mappings between word meanings and phonological forms. Phonological errors in naming (e.g. GHOST named as ‘goath’) are commonly seen in persisting post-stroke aphasia and are thought to signal impairment in retrieval of phonological form information. We performed a voxel-based lesion-symptom mapping analysis of 1718 phonological naming errors collected from 106 individuals with diverse profiles of aphasia. Voxels in which lesion status correlated with phonological error rates localized to dorsal stream areas, in keeping with classical and contemporary brain-language models. Within the dorsal stream, the critical voxels were concentrated in premotor cortex, pre- and postcentral gyri and supramarginal gyrus with minimal extension into auditory-related posterior temporal and temporo-parietal cortices. This challenges the popular notion that error-free phonological retrieval requires guidance from sensory traces stored in posterior auditory regions and points instead to sensory-motor processes located further anterior in the dorsal stream. In a separate analysis, we compared the lesion maps for phonological and semantic errors and determined that there was no spatial overlap, demonstrating that the brain segregates phonological and semantic retrieval operations in word production. PMID:23171662
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pettersson, N; Karunamuni, R; Connor, M
Purpose: We investigated predictors of fractional anisotropy (FA) change in the corticospinal white matter tract (CST) following radiation therapy (RT). Methods: Diffusion tensor imaging (DTI) is a non-invasive modality which models water diffusion properties. FA quantifies the extent of directional bias—a decrease indicates disrupted white matter integrity. Fifteen patients with high-grade glioma underwent DTI scans before, and ten months after RT to 59.4–60 Gy. The CST was segmented using an automated atlas-based algorithm on all DTI images. Treatment planning CT and DTI images were aligned using non-linear registration allowing for baseline FA, follow-up FA, and absorbed dose to be determinedmore » in each voxel. Relative FA change was dichotomized into a binary outcome using 25% decrease as cutoff. Three metrics were assessed as predictors: voxel dose, distance from the voxel to the center of the CST (Rc), and the number of neighboring voxels (Nadj from 0 to 26) with ≥25% decrease in FA. Logistic regression and the area under the receiver-operating characteristics curve (AUC) analysis were performed for each patient. Results: Median age of the cohort was 59 years (range: 40–85). The average number of voxels in the CST amongst all patients was 1181 (±172, SD). In logistic regression, the probability of FA change was highly associated with Nadj in all 15 patients with corresponding AUCs between 0.81 and 0.97. With all three metrics included in the logistic regression models, Nadj was highly significant (p<0.001) in all patients, voxel dose significant (p<0.05) in 3/15 patients, and Rc significant in 12/15 patients (p<0.05). Conclusion: The number of neighboring voxels with change in FA was the dominant predictor of FA change at any given voxel. This suggests that the microenvironment of surrounding white matter disruption after radiation therapy may drive local effects along a white matter tract. Pettersson and Cervino are funded by a Varian Medical Systems grant.« less
Automatic Generation of Indoor Navigable Space Using a Point Cloud and its Scanner Trajectory
NASA Astrophysics Data System (ADS)
Staats, B. R.; Diakité, A. A.; Voûte, R. L.; Zlatanova, S.
2017-09-01
Automatic generation of indoor navigable models is mostly based on 2D floor plans. However, in many cases the floor plans are out of date. Buildings are not always built according to their blue prints, interiors might change after a few years because of modified walls and doors, and furniture may be repositioned to the user's preferences. Therefore, new approaches for the quick recording of indoor environments should be investigated. This paper concentrates on laser scanning with a Mobile Laser Scanner (MLS) device. The MLS device stores a point cloud and its trajectory. If the MLS device is operated by a human, the trajectory contains information which can be used to distinguish different surfaces. In this paper a method is presented for the identification of walkable surfaces based on the analysis of the point cloud and the trajectory of the MLS scanner. This method consists of several steps. First, the point cloud is voxelized. Second, the trajectory is analysing and projecting to acquire seed voxels. Third, these seed voxels are generated into floor regions by the use of a region growing process. By identifying dynamic objects, doors and furniture, these floor regions can be modified so that each region represents a specific navigable space inside a building as a free navigable voxel space. By combining the point cloud and its corresponding trajectory, the walkable space can be identified for any type of building even if the interior is scanned during business hours.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coolens, Catherine, E-mail: catherine.coolens@rmp.uhn.on.ca; Department of Radiation Oncology, University of Toronto, Toronto, Ontario; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario
2015-01-01
Objectives: Development of perfusion imaging as a biomarker requires more robust methodologies for quantification of tumor physiology that allow assessment of volumetric tumor heterogeneity over time. This study proposes a parametric method for automatically analyzing perfused tissue from volumetric dynamic contrast-enhanced (DCE) computed tomography (CT) scans and assesses whether this 4-dimensional (4D) DCE approach is more robust and accurate than conventional, region-of-interest (ROI)-based CT methods in quantifying tumor perfusion with preliminary evaluation in metastatic brain cancer. Methods and Materials: Functional parameter reproducibility and analysis of sensitivity to imaging resolution and arterial input function were evaluated in image sets acquired from amore » 320-slice CT with a controlled flow phantom and patients with brain metastases, whose treatments were planned for stereotactic radiation surgery and who consented to a research ethics board-approved prospective imaging biomarker study. A voxel-based temporal dynamic analysis (TDA) methodology was used at baseline, at day 7, and at day 20 after treatment. The ability to detect changes in kinetic parameter maps in clinical data sets was investigated for both 4D TDA and conventional 2D ROI-based analysis methods. Results: A total of 7 brain metastases in 3 patients were evaluated over the 3 time points. The 4D TDA method showed improved spatial efficacy and accuracy of perfusion parameters compared to ROI-based DCE analysis (P<.005), with a reproducibility error of less than 2% when tested with DCE phantom data. Clinically, changes in transfer constant from the blood plasma into the extracellular extravascular space (K{sub trans}) were seen when using TDA, with substantially smaller errors than the 2D method on both day 7 post radiation surgery (±13%; P<.05) and by day 20 (±12%; P<.04). Standard methods showed a decrease in K{sub trans} but with large uncertainty (111.6 ± 150.5) %. Conclusions: Parametric voxel-based analysis of 4D DCE CT data resulted in greater accuracy and reliability in measuring changes in perfusion CT-based kinetic metrics, which have the potential to be used as biomarkers in patients with metastatic brain cancer.« less
Lu, Yongtao; Engelke, Klaus; Glueer, Claus-C; Morlock, Michael M; Huber, Gerd
2014-11-01
Quantitative computed tomography-based finite element modeling technique is a promising clinical tool for the prediction of bone strength. However, quantitative computed tomography-based finite element models were created from image datasets with different image voxel sizes. The aim of this study was to investigate whether there is an influence of image voxel size on the finite element models. In all 12 thoracolumbar vertebrae were scanned prior to autopsy (in situ) using two different quantitative computed tomography scan protocols, which resulted in image datasets with two different voxel sizes (0.29 × 0.29 × 1.3 mm(3) vs 0.18 × 0.18 × 0.6 mm(3)). Eight of them were scanned after autopsy (in vitro) and the datasets were reconstructed with two voxel sizes (0.32 × 0.32 × 0.6 mm(3) vs. 0.18 × 0.18 × 0.3 mm(3)). Finite element models with cuboid volume of interest extracted from the vertebral cancellous part were created and inhomogeneous bilinear bone properties were defined. Axial compression was simulated. No effect of voxel size was detected on the apparent bone mineral density for both the in situ and in vitro cases. However, the apparent modulus and yield strength showed significant differences in the two voxel size group pairs (in situ and in vitro). In conclusion, the image voxel size may have to be considered when the finite element voxel modeling technique is used in clinical applications. © IMechE 2014.
A meta-analysis of sex differences in human brain structure☆
Ruigrok, Amber N.V.; Salimi-Khorshidi, Gholamreza; Lai, Meng-Chuan; Baron-Cohen, Simon; Lombardo, Michael V.; Tait, Roger J.; Suckling, John
2014-01-01
The prevalence, age of onset, and symptomatology of many neuropsychiatric conditions differ between males and females. To understand the causes and consequences of sex differences it is important to establish where they occur in the human brain. We report the first meta-analysis of typical sex differences on global brain volume, a descriptive account of the breakdown of studies of each compartmental volume by six age categories, and whole-brain voxel-wise meta-analyses on brain volume and density. Gaussian-process regression coordinate-based meta-analysis was used to examine sex differences in voxel-based regional volume and density. On average, males have larger total brain volumes than females. Examination of the breakdown of studies providing total volumes by age categories indicated a bias towards the 18–59 year-old category. Regional sex differences in volume and tissue density include the amygdala, hippocampus and insula, areas known to be implicated in sex-biased neuropsychiatric conditions. Together, these results suggest candidate regions for investigating the asymmetric effect that sex has on the developing brain, and for understanding sex-biased neurological and psychiatric conditions. PMID:24374381
WE-AB-202-09: Feasibility and Quantitative Analysis of 4DCT-Based High Precision Lung Elastography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasse, K; Neylon, J; Low, D
2016-06-15
Purpose: The purpose of this project is to derive high precision elastography measurements from 4DCT lung scans to facilitate the implementation of elastography in a radiotherapy context. Methods: 4DCT scans of the lungs were acquired, and breathing stages were subsequently registered to each other using an optical flow DIR algorithm. The displacement of each voxel gleaned from the registration was taken to be the ground-truth deformation. These vectors, along with the 4DCT source datasets, were used to generate a GPU-based biomechanical simulation that acted as a forward model to solve the inverse elasticity problem. The lung surface displacements were appliedmore » as boundary constraints for the model-guided lung tissue elastography, while the inner voxels were allowed to deform according to the linear elastic forces within the model. A biomechanically-based anisotropic convergence magnification technique was applied to the inner voxels in order to amplify the subtleties of the interior deformation. Solving the inverse elasticity problem was accomplished by modifying the tissue elasticity and iteratively deforming the biomechanical model. Convergence occurred when each voxel was within 0.5 mm of the ground-truth deformation and 1 kPa of the ground-truth elasticity distribution. To analyze the feasibility of the model-guided approach, we present the results for regions of low ventilation, specifically, the apex. Results: The maximum apical boundary expansion was observed to be between 2 and 6 mm. Simulating this expansion within an apical lung model, it was observed that 100% of voxels converged within 0.5 mm of ground-truth deformation, while 91.8% converged within 1 kPa of the ground-truth elasticity distribution. A mean elasticity error of 0.6 kPa illustrates the high precision of our technique. Conclusion: By utilizing 4DCT lung data coupled with a biomechanical model, high precision lung elastography can be accurately performed, even in low ventilation regions of the lungs. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1144087.« less
A new Hessian - based approach for segmentation of CT porous media images
NASA Astrophysics Data System (ADS)
Timofey, Sizonenko; Marina, Karsanina; Dina, Gilyazetdinova; Kirill, Gerke
2017-04-01
Hessian matrix based methods are widely used in image analysis for features detection, e.g., detection of blobs, corners and edges. Hessian matrix of the imageis the matrix of 2nd order derivate around selected voxel. Most significant features give highest values of Hessian transform and lowest values are located at smoother parts of the image. Majority of conventional segmentation techniques can segment out cracks, fractures and other inhomogeneities in soils and rocks only if the rest of the image is significantly "oversigmented". To avoid this disadvantage, we propose to enhance greyscale values of voxels belonging to such specific inhomogeneities on X-ray microtomography scans. We have developed and implemented in code a two-step approach to attack the aforementioned problem. During the first step we apply a filter that enhances the image and makes outstanding features more sharply defined. During the second step we apply Hessian filter based segmentation. The values of voxels on the image to be segmented are calculated in conjunction with the values of other voxels within prescribed region. Contribution from each voxel within such region is computed by weighting according to the local Hessian matrix value. We call this approach as Hessian windowed segmentation. Hessian windowed segmentation has been tested on different porous media X-ray microtomography images, including soil, sandstones, carbonates and shales. We also compared this new method against others widely used methods such as kriging, Markov random field, converging active contours and region grow. We show that our approach is more accurate in regions containing special features such as small cracks, fractures, elongated inhomogeneities and other features with low contrast related to the background solid phase. Moreover, Hessian windowed segmentation outperforms some of these methods in computational efficiency. We further test our segmentation technique by computing permeability of segmented images and comparing them against laboratory based measurements. This work was partially supported by RFBR grant 15-34-20989 (X-ray tomography and image fusion) and RSF grant 14-17-00658 (image segmentation and pore-scale modelling).
Visual Exploration of Genetic Association with Voxel-based Imaging Phenotypes in an MCI/AD Study
Kim, Sungeun; Shen, Li; Saykin, Andrew J.; West, John D.
2010-01-01
Neuroimaging genomics is a new transdisciplinary research field, which aims to examine genetic effects on brain via integrated analyses of high throughput neuroimaging and genomic data. We report our recent work on (1) developing an imaging genomic browsing system that allows for whole genome and entire brain analyses based on visual exploration and (2) applying the system to the imaging genomic analysis of an existing MCI/AD cohort. Voxel-based morphometry is used to define imaging phenotypes. ANCOVA is employed to evaluate the effect of the interaction of genotypes and diagnosis in relation to imaging phenotypes while controlling for relevant covariates. Encouraging experimental results suggest that the proposed system has substantial potential for enabling discovery of imaging genomic associations through visual evaluation and for localizing candidate imaging regions and genomic regions for refined statistical modeling. PMID:19963597
Impact of MR Acquisition Parameters on DTI Scalar Indexes: A Tractography Based Approach.
Barrio-Arranz, Gonzalo; de Luis-García, Rodrigo; Tristán-Vega, Antonio; Martín-Fernández, Marcos; Aja-Fernández, Santiago
2015-01-01
Acquisition parameters play a crucial role in Diffusion Tensor Imaging (DTI), as they have a major impact on the values of scalar measures such as Fractional Anisotropy (FA) or Mean Diffusivity (MD) that are usually the focus of clinical studies based on white matter analysis. This paper presents an analysis on the impact of the variation of several acquisition parameters on these scalar measures with a novel double focus. First, a tractography-based approach is employed, motivated by the significant number of clinical studies that are carried out using this technique. Second, the consequences of simultaneous changes in multiple parameters are analyzed: number of gradient directions, b-value and voxel resolution. Results indicate that the FA is most affected by changes in the number of gradients and voxel resolution, while MD is specially influenced by variations in the b-value. Even if the choice of a tractography algorithm has an effect on the numerical values of the final scalar measures, the evolution of these measures when acquisition parameters are modified is parallel.
Impact of MR Acquisition Parameters on DTI Scalar Indexes: A Tractography Based Approach
Barrio-Arranz, Gonzalo; de Luis-García, Rodrigo; Tristán-Vega, Antonio; Martín-Fernández, Marcos; Aja-Fernández, Santiago
2015-01-01
Acquisition parameters play a crucial role in Diffusion Tensor Imaging (DTI), as they have a major impact on the values of scalar measures such as Fractional Anisotropy (FA) or Mean Diffusivity (MD) that are usually the focus of clinical studies based on white matter analysis. This paper presents an analysis on the impact of the variation of several acquisition parameters on these scalar measures with a novel double focus. First, a tractography-based approach is employed, motivated by the significant number of clinical studies that are carried out using this technique. Second, the consequences of simultaneous changes in multiple parameters are analyzed: number of gradient directions, b-value and voxel resolution. Results indicate that the FA is most affected by changes in the number of gradients and voxel resolution, while MD is specially influenced by variations in the b-value. Even if the choice of a tractography algorithm has an effect on the numerical values of the final scalar measures, the evolution of these measures when acquisition parameters are modified is parallel. PMID:26457415
Minati, Ludovico; Zacà, Domenico; D'Incerti, Ludovico; Jovicich, Jorge
2014-09-01
An outstanding issue in graph-based analysis of resting-state functional MRI is choice of network nodes. Individual consideration of entire brain voxels may represent a less biased approach than parcellating the cortex according to pre-determined atlases, but entails establishing connectedness for 1(9)-1(11) links, with often prohibitive computational cost. Using a representative Human Connectome Project dataset, we show that, following appropriate time-series normalization, it may be possible to accelerate connectivity determination replacing Pearson correlation with l1-norm. Even though the adjacency matrices derived from correlation coefficients and l1-norms are not identical, their similarity is high. Further, we describe and provide in full an example vector hardware implementation of l1-norm on an array of 4096 zero instruction-set processors. Calculation times <1000 s are attainable, removing the major deterrent to voxel-based resting-sate network mapping and revealing fine-grained node degree heterogeneity. L1-norm should be given consideration as a substitute for correlation in very high-density resting-state functional connectivity analyses. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Castro, Marcelo A.; Pham, Dzung L.; Butman, John
2016-03-01
Minimum intensity projection is a technique commonly used to display magnetic resonance susceptibility weighted images, allowing the observer to better visualize hemorrhages and vasculature. The technique displays the minimum intensity in a given projection within a thick slab, allowing different connectivity patterns to be easily revealed. Unfortunately, the low signal intensity of the skull within the thick slab can mask superficial tissues near the skull base and other regions. Because superficial microhemorrhages are a common feature of traumatic brain injury, this effect limits the ability to proper diagnose and follow up patients. In order to overcome this limitation, we developed a method to allow minimum intensity projection to properly display superficial tissues adjacent to the skull. Our approach is based on two brain masks, the largest of which includes extracerebral voxels. The analysis of the rind within both masks containing the actual brain boundary allows reclassification of those voxels initially missed in the smaller mask. Morphological operations are applied to guarantee accuracy and topological correctness, and the mean intensity within the mask is assigned to all outer voxels. This prevents bone from dominating superficial regions in the projection, enabling superior visualization of cortical hemorrhages and vessels.
Lower Parietal Encoding Activation Is Associated with Sharper Information and Better Memory.
Lee, Hongmi; Chun, Marvin M; Kuhl, Brice A
2017-04-01
Mean fMRI activation in ventral posterior parietal cortex (vPPC) during memory encoding often negatively predicts successful remembering. A popular interpretation of this phenomenon is that vPPC reflects "off-task" processing. However, recent fMRI studies considering distributed patterns of activity suggest that vPPC actively represents encoded material. Here, we assessed the relationships between pattern-based content representations in vPPC, mean activation in vPPC, and subsequent remembering. We analyzed data from two fMRI experiments where subjects studied then recalled word-face or word-scene associations. For each encoding trial, we measured 1) mean univariate activation within vPPC and 2) the strength of face/scene information as indexed by pattern analysis. Mean activation in vPPC negatively predicted subsequent remembering, but the strength of pattern-based information in the same vPPC voxels positively predicted later memory. Indeed, univariate amplitude averaged across vPPC voxels negatively correlated with pattern-based information strength. This dissociation reflected a tendency for univariate reductions to maximally occur in voxels that were not strongly tuned for the category of encoded stimuli. These results indicate that vPPC activity patterns reflect the content and quality of memory encoding and constitute a striking example of lower univariate activity corresponding to stronger pattern-based information. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Imaging Effects of Neurotrophic Factor Genes on Brain Plasticity and Repair in Multiple Sclerosis
2010-07-01
cortical thickness and subcortical volume measures, lesion volumetry , and voxel-based morphometry and diffusion imaging. We are continuing to...th ickness and subcortical volume measures, lesion volumetry , and voxel-based morphometry and diffusion imaging. Regressio n and symbolic modeling
Dickstein, Daniel P; Milham, Michael P; Nugent, Allison C; Drevets, Wayne C; Charney, Dennis S; Pine, Daniel S; Leibenluft, Ellen
2005-07-01
While numerous magnetic resonance imaging (MRI) studies have evaluated adults with bipolar disorder (BPD), few have examined MRI changes in children with BPD. To determine volume alterations in children with BPD using voxel-based morphometry, an automated MRI analysis method with reduced susceptibility to various biases. A priori regions of interest included amygdala, accumbens, hippocampus, dorsolateral prefrontal cortex (DLPFC), and orbitofrontal cortex. Ongoing study of the pathophysiology of pediatric BPD. Intramural National Institute of Mental Health; approved by the institutional review board. Patients Pediatric subjects with BPD (n = 20) with at least 1 manic or hypomanic episode meeting strict DSM-IV criteria for duration and elevated, expansive mood. Controls (n = 20) and their first-degree relatives lacked psychiatric disorders. Groups were matched for age and sex and did not differ in IQ. With a 1.5-T MRI machine, we collected 1.2-mm axial sections (124 per subject) with an axial 3-dimensional spoiled gradient recalled echo in the steady state sequence. Image analysis was by optimized voxel-based morphometry. Subjects with BPD had reduced gray matter volume in the left DLPFC. With a less conservative statistical threshold, additional gray matter reductions were found in the left accumbens and left amygdala. No difference was found in the hippocampus or orbitofrontal cortex. Our results are consistent with data implicating the prefrontal cortex in emotion regulation, a process that is perturbed in BPD. Reductions in amygdala and accumbens volumes are consistent with neuropsychological data on pediatric BPD. Further study is required to determine the relationship between these findings in children and adults with BPD.
Long-term white matter tract reorganization following prolonged febrile seizures.
Pujar, Suresh S; Seunarine, Kiran K; Martinos, Marina M; Neville, Brian G R; Scott, Rod C; Chin, Richard F M; Clark, Chris A
2017-05-01
Diffusion magnetic resonance imaging (MRI) studies have demonstrated acute white matter changes following prolonged febrile seizures (PFS), but their longer-term evolution is unknown. We investigated a population-based cohort to determine white matter diffusion properties 8 years after PFS. We used diffusion tensor imaging (DTI) and applied Tract-Based Spatial Statistics for voxel-wise comparison of white matter microstructure between 26 children with PFS and 27 age-matched healthy controls. Age, gender, handedness, and hippocampal volumes were entered as covariates for voxel-wise analysis. Mean duration between the episode of PFS and follow-up was 8.2 years (range 6.7-9.6). All children were neurologically normal, and had normal conventional neuroimaging. On voxel-wise analysis, compared to controls, the PFS group had (1) increased fractional anisotropy in early maturing central white matter tracts, (2) increased mean and axial diffusivity in several peripheral white matter tracts and late-maturing central white matter tracts, and (3) increased radial diffusivity in peripheral white matter tracts. None of the tracts had reduced fractional anisotropy or diffusivity indices in the PFS group. In this homogeneous, population-based sample, we found increased fractional anisotropy in early maturing central white matter tracts and increased mean and axial diffusivity with/without increased radial diffusivity in several late-maturing peripheral white matter tracts 8 years post-PFS. We propose disruption in white matter maturation secondary to seizure-induced axonal injury, with subsequent neuroplasticity and microstructural reorganization as a plausible explanation. © 2017 The Authors. Epilepsia published by Wiley Periodicals, Inc. on behalf of International League Against Epilepsy.
NASA Astrophysics Data System (ADS)
Lee, Myeong-Jin; Jeon, Young-Ju; Son, Ga-Eun; Sung, Sihwa; Kim, Ju-Young; Han, Heung Nam; Cho, Soo Gyeong; Jung, Sang-Hyun; Lee, Sukbin
2018-07-01
We present a new comprehensive scheme for generating grain boundary conformed, volumetric mesh elements from a three-dimensional voxellated polycrystalline microstructure. From the voxellated image of a polycrystalline microstructure obtained from the Monte Carlo Potts model in the context of isotropic normal grain growth simulation, its grain boundary network is approximated as a curvature-maintained conformal triangular surface mesh using a set of in-house codes. In order to improve the surface mesh quality and to adjust mesh resolution, various re-meshing techniques in a commercial software are applied to the approximated grain boundary mesh. It is found that the aspect ratio, the minimum angle and the Jacobian value of the re-meshed surface triangular mesh are successfully improved. Using such an enhanced surface mesh, conformal volumetric tetrahedral elements of the polycrystalline microstructure are created using a commercial software, again. The resultant mesh seamlessly retains the short- and long-range curvature of grain boundaries and junctions as well as the realistic morphology of the grains inside the polycrystal. It is noted that the proposed scheme is the first to successfully generate three-dimensional mesh elements for polycrystals with high enough quality to be used for the microstructure-based finite element analysis, while the realistic characteristics of grain boundaries and grains are maintained from the corresponding voxellated microstructure image.
NASA Astrophysics Data System (ADS)
Lee, Myeong-Jin; Jeon, Young-Ju; Son, Ga-Eun; Sung, Sihwa; Kim, Ju-Young; Han, Heung Nam; Cho, Soo Gyeong; Jung, Sang-Hyun; Lee, Sukbin
2018-03-01
We present a new comprehensive scheme for generating grain boundary conformed, volumetric mesh elements from a three-dimensional voxellated polycrystalline microstructure. From the voxellated image of a polycrystalline microstructure obtained from the Monte Carlo Potts model in the context of isotropic normal grain growth simulation, its grain boundary network is approximated as a curvature-maintained conformal triangular surface mesh using a set of in-house codes. In order to improve the surface mesh quality and to adjust mesh resolution, various re-meshing techniques in a commercial software are applied to the approximated grain boundary mesh. It is found that the aspect ratio, the minimum angle and the Jacobian value of the re-meshed surface triangular mesh are successfully improved. Using such an enhanced surface mesh, conformal volumetric tetrahedral elements of the polycrystalline microstructure are created using a commercial software, again. The resultant mesh seamlessly retains the short- and long-range curvature of grain boundaries and junctions as well as the realistic morphology of the grains inside the polycrystal. It is noted that the proposed scheme is the first to successfully generate three-dimensional mesh elements for polycrystals with high enough quality to be used for the microstructure-based finite element analysis, while the realistic characteristics of grain boundaries and grains are maintained from the corresponding voxellated microstructure image.
Qajar, Jafar; Arns, Christoph H
2016-09-01
The application of X-ray micro-computed tomography (μ-CT) for quantitatively characterizing reactive-flow induced pore structure evolution including local particle detachment, displacement and deposition in carbonate rocks is investigated. In the studies conducted in this field of research, the experimental procedure has involved alternating steps of imaging and ex-situ core sample alteration. Practically, it is impossible to return the sample, with micron precision, to the same position and orientation. Furthermore, successive images of a sample in pre- and post-alteration states are usually taken at different conditions such as different scales, resolutions and signal-to-noise ratios. These conditions accompanying with subresolution features in the images make voxel-by-voxel comparisons of successive images problematic. In this paper, we first address the respective challenges in voxel-wise interpretation of successive images of carbonate rocks subject to reactive flow. Reactive coreflood in two carbonate cores with different rock types are considered. For the first rock, we used the experimental and imaging results published by Qajar et al. (2013) which showed a quasi-uniform dissolution regime. A similar reactive core flood was conducted in the second rock which resulted in wormhole-like dissolution regime. We particularly examine the major image processing operations such as transformation of images to the same grey-scale, noise filtering and segmentation thresholding and propose quantitative methods to evaluate the effectiveness of these operations in voxel-wise analysis of successive images of a sample. In the second part, we generalize the methodology based on the three-phase segmentation of normalized images, microporosity assignment and 2D histogram of image intensities to estimate grey-scale changes of individual image voxels for a general case where the greyscale images are segmented into arbitrary number of phases. The results show that local (voxel-based) porosity changes can be decomposed into local mineral dissolution and deposition. Moreover, it is found that the microporosity evolutions are differently distributed in the samples after the reactive coreflood experiments. In the last part of the paper, for the case of quasi-uniform dissolution, we combine the tomographic images with numerical calculations of permeability along the core to characterize the relationship between changes in permeability and the fractions of the mineral dissolved and deposited. A consistency is found between the calculated longitudinal permeability changes and the quantified distribution of mineral dissolved and deposited along the sample. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Qajar, Jafar; Arns, Christoph H.
2016-09-01
The application of X-ray micro-computed tomography (μ-CT) for quantitatively characterizing reactive-flow induced pore structure evolution including local particle detachment, displacement and deposition in carbonate rocks is investigated. In the studies conducted in this field of research, the experimental procedure has involved alternating steps of imaging and ex-situ core sample alteration. Practically, it is impossible to return the sample, with micron precision, to the same position and orientation. Furthermore, successive images of a sample in pre- and post-alteration states are usually taken at different conditions such as different scales, resolutions and signal-to-noise ratios. These conditions accompanying with subresolution features in the images make voxel-by-voxel comparisons of successive images problematic. In this paper, we first address the respective challenges in voxel-wise interpretation of successive images of carbonate rocks subject to reactive flow. Reactive coreflood in two carbonate cores with different rock types are considered. For the first rock, we used the experimental and imaging results published by Qajar et al. (2013) which showed a quasi-uniform dissolution regime. A similar reactive core flood was conducted in the second rock which resulted in wormhole-like dissolution regime. We particularly examine the major image processing operations such as transformation of images to the same grey-scale, noise filtering and segmentation thresholding and propose quantitative methods to evaluate the effectiveness of these operations in voxel-wise analysis of successive images of a sample. In the second part, we generalize the methodology based on the three-phase segmentation of normalized images, microporosity assignment and 2D histogram of image intensities to estimate grey-scale changes of individual image voxels for a general case where the greyscale images are segmented into arbitrary number of phases. The results show that local (voxel-based) porosity changes can be decomposed into local mineral dissolution and deposition. Moreover, it is found that the microporosity evolutions are differently distributed in the samples after the reactive coreflood experiments. In the last part of the paper, for the case of quasi-uniform dissolution, we combine the tomographic images with numerical calculations of permeability along the core to characterize the relationship between changes in permeability and the fractions of the mineral dissolved and deposited. A consistency is found between the calculated longitudinal permeability changes and the quantified distribution of mineral dissolved and deposited along the sample.
Lung vessel segmentation in CT images using graph-cuts
NASA Astrophysics Data System (ADS)
Zhai, Zhiwei; Staring, Marius; Stoel, Berend C.
2016-03-01
Accurate lung vessel segmentation is an important operation for lung CT analysis. Filters that are based on analyzing the eigenvalues of the Hessian matrix are popular for pulmonary vessel enhancement. However, due to their low response at vessel bifurcations and vessel boundaries, extracting lung vessels by thresholding the vesselness is not sufficiently accurate. Some methods turn to graph-cuts for more accurate segmentation, as it incorporates neighbourhood information. In this work, we propose a new graph-cuts cost function combining appearance and shape, where CT intensity represents appearance and vesselness from a Hessian-based filter represents shape. Due to the amount of voxels in high resolution CT scans, the memory requirement and time consumption for building a graph structure is very high. In order to make the graph representation computationally tractable, those voxels that are considered clearly background are removed from the graph nodes, using a threshold on the vesselness map. The graph structure is then established based on the remaining voxel nodes, source/sink nodes and the neighbourhood relationship of the remaining voxels. Vessels are segmented by minimizing the energy cost function with the graph-cuts optimization framework. We optimized the parameters used in the graph-cuts cost function and evaluated the proposed method with two manually labeled sub-volumes. For independent evaluation, we used 20 CT scans of the VESSEL12 challenge. The evaluation results of the sub-volume data show that the proposed method produced a more accurate vessel segmentation compared to the previous methods, with F1 score 0.76 and 0.69. In the VESSEL12 data-set, our method obtained a competitive performance with an area under the ROC curve of 0.975, especially among the binary submissions.
Statistical image quantification toward optimal scan fusion and change quantification
NASA Astrophysics Data System (ADS)
Potesil, Vaclav; Zhou, Xiang Sean
2007-03-01
Recent advance of imaging technology has brought new challenges and opportunities for automatic and quantitative analysis of medical images. With broader accessibility of more imaging modalities for more patients, fusion of modalities/scans from one time point and longitudinal analysis of changes across time points have become the two most critical differentiators to support more informed, more reliable and more reproducible diagnosis and therapy decisions. Unfortunately, scan fusion and longitudinal analysis are both inherently plagued with increased levels of statistical errors. A lack of comprehensive analysis by imaging scientists and a lack of full awareness by physicians pose potential risks in clinical practice. In this paper, we discuss several key error factors affecting imaging quantification, studying their interactions, and introducing a simulation strategy to establish general error bounds for change quantification across time. We quantitatively show that image resolution, voxel anisotropy, lesion size, eccentricity, and orientation are all contributing factors to quantification error; and there is an intricate relationship between voxel anisotropy and lesion shape in affecting quantification error. Specifically, when two or more scans are to be fused at feature level, optimal linear fusion analysis reveals that scans with voxel anisotropy aligned with lesion elongation should receive a higher weight than other scans. As a result of such optimal linear fusion, we will achieve a lower variance than naïve averaging. Simulated experiments are used to validate theoretical predictions. Future work based on the proposed simulation methods may lead to general guidelines and error lower bounds for quantitative image analysis and change detection.
Liang, Shengxiang; Wu, Shang; Huang, Qi; Duan, Shaofeng; Liu, Hua; Li, Yuxiao; Zhao, Shujun; Nie, Binbin; Shan, Baoci
2017-11-01
To automatically analyze diffusion tensor images of the rat brain via both voxel-based and ROI-based approaches, we constructed a new white matter atlas of the rat brain with fine tracts delineation in the Paxinos and Watson space. Unlike in previous studies, we constructed a digital atlas image from the latest edition of the Paxinos and Watson. This atlas contains 111 carefully delineated white matter fibers. A white matter network of rat brain based on anatomy was constructed by locating the intersection of all these tracts and recording the nuclei on the pathway of each white matter tract. Moreover, a compatible rat brain template from DTI images was created and standardized into the atlas space. To evaluate the automated application of the atlas in DTI data analysis, a group of rats with right-side middle cerebral artery occlusion (MCAO) and those without were enrolled in this study. The voxel-based analysis result shows that the brain region showing significant declines in signal in the MCAO rats was consistent with the occlusion position. We constructed a stereotaxic white matter atlas of the rat brain with fine tract delineation and a compatible template for the data analysis of DTI images of the rat brain. Copyright © 2017 Elsevier Inc. All rights reserved.
Strategies for Interactive Visualization of Large Scale Climate Simulations
NASA Astrophysics Data System (ADS)
Xie, J.; Chen, C.; Ma, K.; Parvis
2011-12-01
With the advances in computational methods and supercomputing technology, climate scientists are able to perform large-scale simulations at unprecedented resolutions. These simulations produce data that are time-varying, multivariate, and volumetric, and the data may contain thousands of time steps with each time step having billions of voxels and each voxel recording dozens of variables. Visualizing such time-varying 3D data to examine correlations between different variables thus becomes a daunting task. We have been developing strategies for interactive visualization and correlation analysis of multivariate data. The primary task is to find connection and correlation among data. Given the many complex interactions among the Earth's oceans, atmosphere, land, ice and biogeochemistry, and the sheer size of observational and climate model data sets, interactive exploration helps identify which processes matter most for a particular climate phenomenon. We may consider time-varying data as a set of samples (e.g., voxels or blocks), each of which is associated with a vector of representative or collective values over time. We refer to such a vector as a temporal curve. Correlation analysis thus operates on temporal curves of data samples. A temporal curve can be treated as a two-dimensional function where the two dimensions are time and data value. It can also be treated as a point in the high-dimensional space. In this case, to facilitate effective analysis, it is often necessary to transform temporal curve data from the original space to a space of lower dimensionality. Clustering and segmentation of temporal curve data in the original or transformed space provides us a way to categorize and visualize data of different patterns, which reveals connection or correlation of data among different variables or at different spatial locations. We have employed the power of GPU to enable interactive correlation visualization for studying the variability and correlations of a single or a pair of variables. It is desired to create a succinct volume classification that summarizes the connection among all correlation volumes with respect to various reference locations. Providing a reference location must correspond to a voxel position, the number of correlation volumes equals the total number of voxels. A brute-force solution takes all correlation volumes as the input and classifies their corresponding voxels according to their correlation volumes' distance. For large-scale time-varying multivariate data, calculating all these correlation volumes on-the-fly and analyzing the relationships among them is not feasible. We have developed a sampling-based approach for volume classification in order to reduce the computation cost of computing the correlation volumes. Users are able to employ their domain knowledge in selecting important samples. The result is a static view that captures the essence of correlation relationships; i.e., for all voxels in the same cluster, their corresponding correlation volumes are similar. This sampling-based approach enables us to obtain an approximation of correlation relations in a cost-effective manner, thus leading to a scalable solution to investigate large-scale data sets. These techniques empower climate scientists to study large data from their simulations.
Sagiyama, Koji; Watanabe, Yuji; Kamei, Ryotaro; Hong, Sungtak; Kawanami, Satoshi; Matsumoto, Yoshihiro; Honda, Hiroshi
2017-12-01
To investigate the usefulness of voxel-based analysis of standardized uptake values (SUVs) and apparent diffusion coefficients (ADCs) for evaluating soft-tissue tumour malignancy with a PET/MR system. Thirty-five subjects with either ten low/intermediate-grade tumours or 25 high-grade tumours were prospectively enrolled. Zoomed diffusion-weighted and fluorodeoxyglucose ( 18 FDG)-PET images were acquired along with fat-suppressed T2-weighted images (FST2WIs). Regions of interest (ROIs) were drawn on FST2WIs including the tumour in all slices. ROIs were pasted onto PET and ADC-maps to measure SUVs and ADCs within tumour ROIs. Tumour volume, SUVmax, ADCminimum, the heterogeneity and the correlation coefficients of SUV and ADC were recorded. The parameters of high- and low/intermediate-grade groups were compared, and receiver operating characteristic (ROC) analysis was also performed. The mean correlation coefficient for SUV and ADC in high-grade sarcomas was lower than that of low/intermediate-grade tumours (-0.41 ± 0.25 vs. -0.08 ± 0.34, P < 0.01). Other parameters did not differ significantly. ROC analysis demonstrated that correlation coefficient showed the best diagnostic performance for differentiating the two groups (AUC 0.79, sensitivity 96.0%, specificity 60%, accuracy 85.7%). SUV and ADC determined via PET/MR may be useful for differentiating between high-grade and low/intermediate-grade soft tissue tumours. • PET/MR allows voxel-based comparison of SUVs and ADCs in soft-tissue tumours. • A comprehensive assessment of internal heterogeneity was performed with scatter plots. • SUVmax or ADCminimum could not differentiate high-grade sarcoma from low/intermediate-grade tumours. • Only the correlation coefficient between SUV and ADC differentiated the two groups. • The correlation coefficient showed the best diagnostic performance by ROC analysis.
Duning, Thomas; Deppe, Michael; Brand, Eva; Stypmann, Jörg; Becht, Charlotte; Heidbreder, Anna; Young, Peter
2013-01-01
Background The exact underlying pathomechanism of central sleep apnea with Cheyne-Stokes respiration (CSA-CSR) is still unclear. Recent studies have demonstrated an association between cerebral white matter changes and CSA. A dysfunction of central respiratory control centers in the brainstem was suggested by some authors. Novel MR-imaging analysis tools now allow far more subtle assessment of microstructural cerebral changes. The aim of this study was to investigate whether and what severity of subtle structural cerebral changes could lead to CSA-CSR, and whether there is a specific pattern of neurodegenerative changes that cause CSR. Therefore, we examined patients with Fabry disease (FD), an inherited, lysosomal storage disease. White matter lesions are early and frequent findings in FD. Thus, FD can serve as a "model disease" of cerebral microangiopathy to study in more detail the impact of cerebral lesions on central sleep apnea. Patients and Methods Genetically proven FD patients (n = 23) and age-matched healthy controls (n = 44) underwent a cardio-respiratory polysomnography and brain MRI at 3.0 Tesla. We applied different MR-imaging techniques, ranging from semiquantitative measurement of white matter lesion (WML) volumes and automated calculation of brain tissue volumes to VBM of gray matter and voxel-based diffusion tensor imaging (DTI) analysis. Results In 5 of 23 Fabry patients (22%) CSA-CSR was detected. Voxel-based DTI analysis revealed widespread structural changes in FD patients when compared to the healthy controls. When calculated as a separate group, DTI changes of CSA-CSR patients were most prominent in the brainstem. Voxel-based regression analysis revealed a significant association between CSR severity and microstructural DTI changes within the brainstem. Conclusion Subtle microstructural changes in the brainstem might be a neuroanatomical correlate of CSA-CSR in patients at risk of WML. DTI is more sensitive and specific than conventional structural MRI and other advanced MR analyses tools in demonstrating these abnormalities. PMID:23637744
Sexual differentiation of the adolescent rat brain: A longitudinal voxel-based morphometry study.
Sumiyoshi, Akira; Nonaka, Hiroi; Kawashima, Ryuta
2017-03-06
The sexual differentiation of the rat brain during the adolescent period has been well documented in post-mortem histological studies. However, to further understand the morphological changes occurring in the entire brain, a noninvasive neuroimaging method allowing an unbiased, comprehensive, and longitudinal investigation of brain morphology should be used. In this study, we investigated the sexual differentiation of the rat brain during the adolescent period using longitudinal voxel-based morphometry (VBM) analysis. Male and female Wistar rats (n=12 of each) were scanned in a 7.0-T MRI scanner at five time points from 6 to 10 weeks of age. The T2-weighted MRI images were segmented using the rat brain tissue priors that have been published by our laboratory. At the global level, the results of the VBM analysis showed greater increases in total gray matter volume in the males during the adolescent period, although we did not find significant differences in total white matter volume. At the voxel level, we found significant increases in the regional gray matter volume of the occipital cortex, amygdala, hippocampal formation, and cerebellum. At the regional level, only the occipital cortex in the females exhibited decreases during the adolescent period. These results were, at least in part, consistent with those of previous longitudinal VBM studies in humans, thus providing translational evidence of the sexual differentiation of the developing brain between rodents and humans. Copyright © 2017 Elsevier B.V. All rights reserved.
Song, Sutao; Zhan, Zhichao; Long, Zhiying; Zhang, Jiacai; Yao, Li
2011-01-01
Background Support vector machine (SVM) has been widely used as accurate and reliable method to decipher brain patterns from functional MRI (fMRI) data. Previous studies have not found a clear benefit for non-linear (polynomial kernel) SVM versus linear one. Here, a more effective non-linear SVM using radial basis function (RBF) kernel is compared with linear SVM. Different from traditional studies which focused either merely on the evaluation of different types of SVM or the voxel selection methods, we aimed to investigate the overall performance of linear and RBF SVM for fMRI classification together with voxel selection schemes on classification accuracy and time-consuming. Methodology/Principal Findings Six different voxel selection methods were employed to decide which voxels of fMRI data would be included in SVM classifiers with linear and RBF kernels in classifying 4-category objects. Then the overall performances of voxel selection and classification methods were compared. Results showed that: (1) Voxel selection had an important impact on the classification accuracy of the classifiers: in a relative low dimensional feature space, RBF SVM outperformed linear SVM significantly; in a relative high dimensional space, linear SVM performed better than its counterpart; (2) Considering the classification accuracy and time-consuming holistically, linear SVM with relative more voxels as features and RBF SVM with small set of voxels (after PCA) could achieve the better accuracy and cost shorter time. Conclusions/Significance The present work provides the first empirical result of linear and RBF SVM in classification of fMRI data, combined with voxel selection methods. Based on the findings, if only classification accuracy was concerned, RBF SVM with appropriate small voxels and linear SVM with relative more voxels were two suggested solutions; if users concerned more about the computational time, RBF SVM with relative small set of voxels when part of the principal components were kept as features was a better choice. PMID:21359184
Song, Sutao; Zhan, Zhichao; Long, Zhiying; Zhang, Jiacai; Yao, Li
2011-02-16
Support vector machine (SVM) has been widely used as accurate and reliable method to decipher brain patterns from functional MRI (fMRI) data. Previous studies have not found a clear benefit for non-linear (polynomial kernel) SVM versus linear one. Here, a more effective non-linear SVM using radial basis function (RBF) kernel is compared with linear SVM. Different from traditional studies which focused either merely on the evaluation of different types of SVM or the voxel selection methods, we aimed to investigate the overall performance of linear and RBF SVM for fMRI classification together with voxel selection schemes on classification accuracy and time-consuming. Six different voxel selection methods were employed to decide which voxels of fMRI data would be included in SVM classifiers with linear and RBF kernels in classifying 4-category objects. Then the overall performances of voxel selection and classification methods were compared. Results showed that: (1) Voxel selection had an important impact on the classification accuracy of the classifiers: in a relative low dimensional feature space, RBF SVM outperformed linear SVM significantly; in a relative high dimensional space, linear SVM performed better than its counterpart; (2) Considering the classification accuracy and time-consuming holistically, linear SVM with relative more voxels as features and RBF SVM with small set of voxels (after PCA) could achieve the better accuracy and cost shorter time. The present work provides the first empirical result of linear and RBF SVM in classification of fMRI data, combined with voxel selection methods. Based on the findings, if only classification accuracy was concerned, RBF SVM with appropriate small voxels and linear SVM with relative more voxels were two suggested solutions; if users concerned more about the computational time, RBF SVM with relative small set of voxels when part of the principal components were kept as features was a better choice.
A genome-scale map of expression for a mouse brain section obtained using voxelation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chin, Mark H.; Geng, Alex B.; Khan, Arshad H.
Gene expression signatures in the mammalian brain hold the key to understanding neural development and neurological diseases. We have reconstructed 2- dimensional images of gene expression for 20,000 genes in a coronal slice of the mouse brain at the level of the striatum by using microarrays in combination with voxelation at a resolution of 1 mm3. Good reliability of the microarray results were confirmed using multiple replicates, subsequent quantitative RT-PCR voxelation, mass spectrometry voxelation and publicly available in situ hybridization data. Known and novel genes were identified with expression patterns localized to defined substructures within the brain. In addition, genesmore » with unexpected patterns were identified and cluster analysis identified a set of genes with a gradient of dorsal/ventral expression not restricted to known anatomical boundaries. The genome-scale maps of gene expression obtained using voxelation will be a valuable tool for the neuroscience community.« less
Female pelvic synthetic CT generation based on joint intensity and shape analysis
NASA Astrophysics Data System (ADS)
Liu, Lianli; Jolly, Shruti; Cao, Yue; Vineberg, Karen; Fessler, Jeffrey A.; Balter, James M.
2017-04-01
Using MRI for radiotherapy treatment planning and image guidance is appealing as it provides superior soft tissue information over CT scans and avoids possible systematic errors introduced by aligning MR to CT images. This study presents a method that generates Synthetic CT (MRCT) volumes by performing probabilistic tissue classification of voxels from MRI data using a single imaging sequence (T1 Dixon). The intensity overlap between different tissues on MR images, a major challenge for voxel-based MRCT generation methods, is addressed by adding bone shape information to an intensity-based classification scheme. A simple pelvic bone shape model, built from principal component analysis of pelvis shape from 30 CT image volumes, is fitted to the MR volumes. The shape model generates a rough bone mask that excludes air and covers bone along with some surrounding soft tissues. Air regions are identified and masked out from the tissue classification process by intensity thresholding outside the bone mask. A regularization term is added to the fuzzy c-means classification scheme that constrains voxels outside the bone mask from being assigned memberships in the bone class. MRCT image volumes are generated by multiplying the probability of each voxel being represented in each class with assigned attenuation values of the corresponding class and summing the result across all classes. The MRCT images presented intensity distributions similar to CT images with a mean absolute error of 13.7 HU for muscle, 15.9 HU for fat, 49.1 HU for intra-pelvic soft tissues, 129.1 HU for marrow and 274.4 HU for bony tissues across 9 patients. Volumetric modulated arc therapy (VMAT) plans were optimized using MRCT-derived electron densities, and doses were recalculated using corresponding CT-derived density grids. Dose differences to planning target volumes were small with mean/standard deviation of 0.21/0.42 Gy for D0.5cc and 0.29/0.33 Gy for D99%. The results demonstrate the accuracy of the method and its potential in supporting MRI only radiotherapy treatment planning.
Investigating structural brain changes of dehydration using voxel-based morphometry.
Streitbürger, Daniel-Paolo; Möller, Harald E; Tittgemeyer, Marc; Hund-Georgiadis, Margret; Schroeter, Matthias L; Mueller, Karsten
2012-01-01
Dehydration can affect the volume of brain structures, which might imply a confound in volumetric and morphometric studies of normal or diseased brain. Six young, healthy volunteers were repeatedly investigated using three-dimensional T(1)-weighted magnetic resonance imaging during states of normal hydration, hyperhydration, and dehydration to assess volume changes in gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF). The datasets were analyzed using voxel-based morphometry (VBM), a widely used voxel-wise statistical analysis tool, FreeSurfer, a fully automated volumetric segmentation measure, and SIENAr a longitudinal brain-change detection algorithm. A significant decrease of GM and WM volume associated with dehydration was found in various brain regions, most prominently, in temporal and sub-gyral parietal areas, in the left inferior orbito-frontal region, and in the extra-nuclear region. Moreover, we found consistent increases in CSF, that is, an expansion of the ventricular system affecting both lateral ventricles, the third, and the fourth ventricle. Similar degrees of shrinkage in WM volume and increase of the ventricular system have been reported in studies of mild cognitive impairment or Alzheimer's disease during disease progression. Based on these findings, a potential confound in GM and WM or ventricular volume studies due to the subjects' hydration state cannot be excluded and should be appropriately addressed in morphometric studies of the brain.
Investigating Structural Brain Changes of Dehydration Using Voxel-Based Morphometry
Streitbürger, Daniel-Paolo; Möller, Harald E.; Tittgemeyer, Marc; Hund-Georgiadis, Margret; Schroeter, Matthias L.; Mueller, Karsten
2012-01-01
Dehydration can affect the volume of brain structures, which might imply a confound in volumetric and morphometric studies of normal or diseased brain. Six young, healthy volunteers were repeatedly investigated using three-dimensional T 1-weighted magnetic resonance imaging during states of normal hydration, hyperhydration, and dehydration to assess volume changes in gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF). The datasets were analyzed using voxel-based morphometry (VBM), a widely used voxel-wise statistical analysis tool, FreeSurfer, a fully automated volumetric segmentation measure, and SIENAr a longitudinal brain-change detection algorithm. A significant decrease of GM and WM volume associated with dehydration was found in various brain regions, most prominently, in temporal and sub-gyral parietal areas, in the left inferior orbito-frontal region, and in the extra-nuclear region. Moreover, we found consistent increases in CSF, that is, an expansion of the ventricular system affecting both lateral ventricles, the third, and the fourth ventricle. Similar degrees of shrinkage in WM volume and increase of the ventricular system have been reported in studies of mild cognitive impairment or Alzheime s disease during disease progression. Based on these findings, a potential confound in GM and WM or ventricular volume studies due to the subjects’ hydration state cannot be excluded and should be appropriately addressed in morphometric studies of the brain. PMID:22952926
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niedzielski, J; Martel, M; Tucker, S
2014-06-15
Purpose: Radiation induces an inflammatory response in the esophagus, discernible on CT studies. This work objectively quantifies the voxel esophageal radiation-response for patients with acute esophagitis. This knowledge is an important first-step towards predicting the effect of complex dose distributions on patient esophagitis symptoms. Methods: A previously validated voxel-based methodology of quantifying radiation esophagitis severity was used to identify the voxel dose-response for 18 NSCLC patients with severe esophagitis (CTCAE grading criteria, grade2 or higher). The response is quantified as percent voxel volume change for a given dose. During treatment (6–8 weeks), patients had weekly 4DCT studies and esophagitis scoring.more » Planning CT esophageal contours were deformed to each weekly CT using a demons DIR algorithm. An algorithm using the Jacobian Map from the DIR of the planning CT to all weekly CTs was used to quantify voxel-volume change, along with corresponding delivered voxel dose, to the planning voxel. Dose for each voxel for each time-point was calculated on each previous weekly CT image, and accumulated using DIR. Thus, for each voxel, the volume-change and delivered dose was calculated for each time-point. The data was binned according to when the volume-change first increased by a threshold volume (10%–100%, in 10% increments), and the average delivered dose calculated for each bin. Results: The average dose resulting in a voxel volume increase of 10–100% was 21.6 to 45.9Gy, respectively. The mean population dose to give a 50% volume increase was 36.3±4.4Gy, (range:29.8 to 43.5Gy). The average week of 50% response was 4.1 (range:4.9 to 2.8 weeks). All 18 patients showed similar dose to first response curves, showing a common trend in the initial inflammatoryresponse. Conclusion: We extracted the dose-response curve of the esophagus on a voxel-to-voxel level. This may be useful for estimating the esophagus response (and patient symptoms) to complicated dose distributions.« less
Kim, Yong-Hwan; Kim, Junghoe; Lee, Jong-Hwan
2012-12-01
This study proposes an iterative dual-regression (DR) approach with sparse prior regularization to better estimate an individual's neuronal activation using the results of an independent component analysis (ICA) method applied to a temporally concatenated group of functional magnetic resonance imaging (fMRI) data (i.e., Tc-GICA method). An ordinary DR approach estimates the spatial patterns (SPs) of neuronal activation and corresponding time courses (TCs) specific to each individual's fMRI data with two steps involving least-squares (LS) solutions. Our proposed approach employs iterative LS solutions to refine both the individual SPs and TCs with an additional a priori assumption of sparseness in the SPs (i.e., minimally overlapping SPs) based on L(1)-norm minimization. To quantitatively evaluate the performance of this approach, semi-artificial fMRI data were created from resting-state fMRI data with the following considerations: (1) an artificially designed spatial layout of neuronal activation patterns with varying overlap sizes across subjects and (2) a BOLD time series (TS) with variable parameters such as onset time, duration, and maximum BOLD levels. To systematically control the spatial layout variability of neuronal activation patterns across the "subjects" (n=12), the degree of spatial overlap across all subjects was varied from a minimum of 1 voxel (i.e., 0.5-voxel cubic radius) to a maximum of 81 voxels (i.e., 2.5-voxel radius) across the task-related SPs with a size of 100 voxels for both the block-based and event-related task paradigms. In addition, several levels of maximum percentage BOLD intensity (i.e., 0.5, 1.0, 2.0, and 3.0%) were used for each degree of spatial overlap size. From the results, the estimated individual SPs of neuronal activation obtained from the proposed iterative DR approach with a sparse prior showed an enhanced true positive rate and reduced false positive rate compared to the ordinary DR approach. The estimated TCs of the task-related SPs from our proposed approach showed greater temporal correlation coefficients with a reference hemodynamic response function than those of the ordinary DR approach. Moreover, the efficacy of the proposed DR approach was also successfully demonstrated by the results of real fMRI data acquired from left-/right-hand clenching tasks in both block-based and event-related task paradigms. Copyright © 2012 Elsevier Inc. All rights reserved.
Multi-Scale Voxel Segmentation for Terrestrial Lidar Data within Marshes
NASA Astrophysics Data System (ADS)
Nguyen, C. T.; Starek, M. J.; Tissot, P.; Gibeaut, J. C.
2016-12-01
The resilience of marshes to a rising sea is dependent on their elevation response. Terrestrial laser scanning (TLS) is a detailed topographic approach for accurate, dense surface measurement with high potential for monitoring of marsh surface elevation response. The dense point cloud provides a 3D representation of the surface, which includes both terrain and non-terrain objects. Extraction of topographic information requires filtering of the data into like-groups or classes, therefore, methods must be incorporated to identify structure in the data prior to creation of an end product. A voxel representation of three-dimensional space provides quantitative visualization and analysis for pattern recognition. The objectives of this study are threefold: 1) apply a multi-scale voxel approach to effectively extract geometric features from the TLS point cloud data, 2) investigate the utility of K-means and Self Organizing Map (SOM) clustering algorithms for segmentation, and 3) utilize a variety of validity indices to measure the quality of the result. TLS data were collected at a marsh site along the central Texas Gulf Coast using a Riegl VZ 400 TLS. The site consists of both exposed and vegetated surface regions. To characterize structure of the point cloud, octree segmentation is applied to create a tree data structure of voxels containing the points. The flexibility of voxels in size and point density makes this algorithm a promising candidate to locally extract statistical and geometric features of the terrain including surface normal and curvature. The characteristics of the voxel itself such as the volume and point density are also computed and assigned to each point as are laser pulse characteristics. The features extracted from the voxelization are then used as input for clustering of the points using the K-means and SOM clustering algorithms. Optimal number of clusters are then determined based on evaluation of cluster separability criterions. Results for different combinations of the feature space vector and differences between K-means and SOM clustering will be presented. The developed method provides a novel approach for compressing TLS scene complexity in marshes, such as for vegetation biomass studies or erosion monitoring.
NASA Astrophysics Data System (ADS)
Jahani, Nariman; Cohen, Eric; Hsieh, Meng-Kang; Weinstein, Susan P.; Pantalone, Lauren; Davatzikos, Christos; Kontos, Despina
2018-02-01
We examined the ability of DCE-MRI longitudinal features to give early prediction of recurrence-free survival (RFS) in women undergoing neoadjuvant chemotherapy for breast cancer, in a retrospective analysis of 106 women from the ISPY 1 cohort. These features were based on the voxel-wise changes seen in registered images taken before treatment and after the first round of chemotherapy. We computed the transformation field using a robust deformable image registration technique to match breast images from these two visits. Using the deformation field, parametric response maps (PRM) — a voxel-based feature analysis of longitudinal changes in images between visits — was computed for maps of four kinetic features (signal enhancement ratio, peak enhancement, and wash-in/wash-out slopes). A two-level discrete wavelet transform was applied to these PRMs to extract heterogeneity information about tumor change between visits. To estimate survival, a Cox proportional hazard model was applied with the C statistic as the measure of success in predicting RFS. The best PRM feature (as determined by C statistic in univariable analysis) was determined for each of the four kinetic features. The baseline model, incorporating functional tumor volume, age, race, and hormone response status, had a C statistic of 0.70 in predicting RFS. The model augmented with the four PRM features had a C statistic of 0.76. Thus, our results suggest that adding information on the texture of voxel-level changes in tumor kinetic response between registered images of first and second visits could improve early RFS prediction in breast cancer after neoadjuvant chemotherapy.
Aghakhanyan, Gayane; Bonanni, Paolo; Randazzo, Giovanna; Nappi, Sara; Tessarotto, Federica; De Martin, Lara; Frijia, Francesca; De Marchi, Daniele; De Masi, Francesco; Kuppers, Beate; Lombardo, Francesco; Caramella, Davide; Montanaro, Domenico
2016-01-01
Angelman syndrome (AS) is a rare neurogenetic disorder due to loss of expression of maternal ubiquitin-protein ligase E3A (UBE3A) gene. It is characterized by severe developmental delay, speech impairment, movement or balance disorder and typical behavioral uniqueness. Affected individuals show normal magnetic resonance imaging (MRI) findings, although mild dysmyelination may be observed. In this study, we adopted a quantitative MRI analysis with voxel-based morphometry (FSL-VBM) method to investigate disease-related changes in the cortical/subcortical grey matter (GM) structures. Since 2006 to 2013 twenty-six AS patients were assessed by our multidisciplinary team. From those, sixteen AS children with confirmed maternal 15q11-q13 deletions (mean age 7.7 ± 3.6 years) and twenty-one age-matched controls were recruited. The developmental delay and motor dysfunction were assessed using Bayley III and Gross Motor Function Measure (GMFM). Principal component analysis (PCA) was applied to the clinical and neuropsychological datasets. High-resolution T1-weighted images were acquired and FSL-VBM approach was applied to investigate differences in the local GM volume and to correlate clinical and neuropsychological changes in the regional distribution of GM. We found bilateral GM volume loss in AS compared to control children in the striatum, limbic structures, insular and orbitofrontal cortices. Voxel-wise correlation analysis with the principal components of the PCA output revealed a strong relationship with GM volume in the superior parietal lobule and precuneus on the left hemisphere. The anatomical distribution of cortical/subcortical GM changes plausibly related to several clinical features of the disease and may provide an important morphological underpinning for clinical and neurobehavioral symptoms in children with AS. PMID:27626634
Wong, Oi Lei; Lo, Gladys G.; Chan, Helen H. L.; Wong, Ting Ting; Cheung, Polly S. Y.
2016-01-01
Background The purpose of this study is to statistically assess whether bi-exponential intravoxel incoherent motion (IVIM) model better characterizes diffusion weighted imaging (DWI) signal of malignant breast tumor than mono-exponential Gaussian diffusion model. Methods 3 T DWI data of 29 malignant breast tumors were retrospectively included. Linear least-square mono-exponential fitting and segmented least-square bi-exponential fitting were used for apparent diffusion coefficient (ADC) and IVIM parameter quantification, respectively. F-test and Akaike Information Criterion (AIC) were used to statistically assess the preference of mono-exponential and bi-exponential model using region-of-interests (ROI)-averaged and voxel-wise analysis. Results For ROI-averaged analysis, 15 tumors were significantly better fitted by bi-exponential function and 14 tumors exhibited mono-exponential behavior. The calculated ADC, D (true diffusion coefficient) and f (pseudo-diffusion fraction) showed no significant differences between mono-exponential and bi-exponential preferable tumors. Voxel-wise analysis revealed that 27 tumors contained more voxels exhibiting mono-exponential DWI decay while only 2 tumors presented more bi-exponential decay voxels. ADC was consistently and significantly larger than D for both ROI-averaged and voxel-wise analysis. Conclusions Although the presence of IVIM effect in malignant breast tumors could be suggested, statistical assessment shows that bi-exponential fitting does not necessarily better represent the DWI signal decay in breast cancer under clinically typical acquisition protocol and signal-to-noise ratio (SNR). Our study indicates the importance to statistically examine the breast cancer DWI signal characteristics in practice. PMID:27709078
Impact of voxel size variation on CBCT-based diagnostic outcome in dentistry: a systematic review.
Spin-Neto, Rubens; Gotfredsen, Erik; Wenzel, Ann
2013-08-01
The objective of this study was to make a systematic review on the impact of voxel size in cone beam computed tomography (CBCT)-based image acquisition, retrieving evidence regarding the diagnostic outcome of those images. The MEDLINE bibliographic database was searched from 1950 to June 2012 for reports comparing diverse CBCT voxel sizes. The search strategy was limited to English-language publications using the following combined terms in the search strategy: (voxel or FOV or field of view or resolution) and (CBCT or cone beam CT). The results from the review identified 20 publications that qualitatively or quantitatively assessed the influence of voxel size on CBCT-based diagnostic outcome, and in which the methodology/results comprised at least one of the expected parameters (image acquisition, reconstruction protocols, type of diagnostic task, and presence of a gold standard). The diagnostic task assessed in the studies was diverse, including the detection of root fractures, the detection of caries lesions, and accuracy of 3D surface reconstruction and of bony measurements, among others. From the studies assessed, it is clear that no general protocol can be yet defined for CBCT examination of specific diagnostic tasks in dentistry. Rationale in this direction is an important step to define the utility of CBCT imaging.
A meta-analysis of sex differences in human brain structure.
Ruigrok, Amber N V; Salimi-Khorshidi, Gholamreza; Lai, Meng-Chuan; Baron-Cohen, Simon; Lombardo, Michael V; Tait, Roger J; Suckling, John
2014-02-01
The prevalence, age of onset, and symptomatology of many neuropsychiatric conditions differ between males and females. To understand the causes and consequences of sex differences it is important to establish where they occur in the human brain. We report the first meta-analysis of typical sex differences on global brain volume, a descriptive account of the breakdown of studies of each compartmental volume by six age categories, and whole-brain voxel-wise meta-analyses on brain volume and density. Gaussian-process regression coordinate-based meta-analysis was used to examine sex differences in voxel-based regional volume and density. On average, males have larger total brain volumes than females. Examination of the breakdown of studies providing total volumes by age categories indicated a bias towards the 18-59 year-old category. Regional sex differences in volume and tissue density include the amygdala, hippocampus and insula, areas known to be implicated in sex-biased neuropsychiatric conditions. Together, these results suggest candidate regions for investigating the asymmetric effect that sex has on the developing brain, and for understanding sex-biased neurological and psychiatric conditions. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Chen, Guangxiang; Guo, Yi; Zhu, Hongyan; Kuang, Weihong; Bi, Feng; Ai, Hua; Gu, Zhongwei; Huang, Xiaoqi; Lui, Su; Gong, Qiyong
2017-06-02
Previous studies have demonstrated the influences of episodes and antidepressant drugs on white matter (WM) in patients with major depressive disorder (MDD). However, most diffusion tensor imaging (DTI) studies included highly heterogeneous individuals with different numbers of depressive episodes or medication status. To exclude the confounding effects of multiple episodes or medication, we conducted a quantitative voxel-based meta-analysis of fractional anisotropy (FA) in patients with first-episode, drug-naive MDD to identify the intrinsic WM alterations involved in the pathogenesis of MDD. The pooled meta-analysis revealed significant FA reductions in the body of the corpus callosum (CC), bilateral anterior limb of the internal capsule (ALIC), right inferior temporal gyrus (ITG) and right superior frontal gyrus (SFG) in MDD patients relative to healthy controls. Meta-regression analyses revealed that FA reduction in the right ALIC and right SFG was negatively correlated with symptom severity and duration of depression, respectively. Our findings provide robust evidence that the WM impairments in the interhemispheric connections and frontal-subcortical neuronal circuits may play an important role in MDD pathogenesis. Copyright © 2017. Published by Elsevier Inc.
Satoh, Daiki; Takahashi, Fumiaki; Endo, Akira; Ohmachi, Yasushi; Miyahara, Nobuyuki
2008-09-01
The radiation-transport code PHITS with an event generator mode has been applied to analyze energy depositions of electrons and charged heavy particles in two spherical phantoms and a voxel-based mouse phantom upon neutron irradiation. The calculations using the spherical phantoms quantitatively clarified the type and energy of charged particles which are released through interactions of neutrons with the phantom elements and contribute to the radiation dose. The relative contribution of electrons increased with an increase in the size of the phantom and with a decrease in the energy of the incident neutrons. Calculations with the voxel-based mouse phantom for 2.0-MeV neutron irradiation revealed that the doses to different locations inside the body are uniform, and that the energy is mainly deposited by recoil protons. The present study has demonstrated that analysis using PHITS can yield dose distributions that are accurate enough for RBE evaluation.
Robust membrane detection based on tensor voting for electron tomography.
Martinez-Sanchez, Antonio; Garcia, Inmaculada; Asano, Shoh; Lucic, Vladan; Fernandez, Jose-Jesus
2014-04-01
Electron tomography enables three-dimensional (3D) visualization and analysis of the subcellular architecture at a resolution of a few nanometers. Segmentation of structural components present in 3D images (tomograms) is often necessary for their interpretation. However, it is severely hampered by a number of factors that are inherent to electron tomography (e.g. noise, low contrast, distortion). Thus, there is a need for new and improved computational methods to facilitate this challenging task. In this work, we present a new method for membrane segmentation that is based on anisotropic propagation of the local structural information using the tensor voting algorithm. The local structure at each voxel is then refined according to the information received from other voxels. Because voxels belonging to the same membrane have coherent structural information, the underlying global structure is strengthened. In this way, local information is easily integrated at a global scale to yield segmented structures. This method performs well under low signal-to-noise ratio typically found in tomograms of vitrified samples under cryo-tomography conditions and can bridge gaps present on membranes. The performance of the method is demonstrated by applications to tomograms of different biological samples and by quantitative comparison with standard template matching procedure. Copyright © 2014 Elsevier Inc. All rights reserved.
Tong, Yunxia; Chen, Qiang; Nichols, Thomas E.; Rasetti, Roberta; Callicott, Joseph H.; Berman, Karen F.; Weinberger, Daniel R.; Mattay, Venkata S.
2016-01-01
A data-driven hypothesis-free genome-wide association (GWA) approach in imaging genetics studies allows screening the entire genome to discover novel genes that modulate brain structure, chemistry, and function. However, a whole brain voxel-wise analysis approach in such genome-wide based imaging genetic studies can be computationally intense and also likely has low statistical power since a stringent multiple comparisons correction is needed for searching over the entire genome and brain. In imaging genetics with functional magnetic resonance imaging (fMRI) phenotypes, since many experimental paradigms activate focal regions that can be pre-specified based on a priori knowledge, reducing the voxel-wise search to single-value summary measures within a priori ROIs could prove efficient and promising. The goal of this investigation is to evaluate the sensitivity and reliability of different single-value ROI summary measures and provide guidance in future work. Four different fMRI databases were tested and comparisons across different groups (patients with schizophrenia, their siblings, vs. normal control subjects; across genotype groups) were conducted. Our results show that four of these measures, particularly those that represent values from the top most-activated voxels within an ROI are more powerful at reliably detecting group differences and generating greater effect sizes than the others. PMID:26974435
Gao, Yurui; Choe, Ann S.; Stepniewska, Iwona; Li, Xia; Avison, Malcolm J.; Anderson, Adam W.
2013-01-01
Diffusion tensor imaging (DTI) tractography provides noninvasive measures of structural cortico-cortical connectivity of the brain. However, the agreement between DTI-tractography-based measures and histological ‘ground truth’ has not been quantified. In this study, we reconstructed the 3D density distribution maps (DDM) of fibers labeled with an anatomical tracer, biotinylated dextran amine (BDA), as well as DTI tractography-derived streamlines connecting the primary motor (M1) cortex to other cortical regions in the squirrel monkey brain. We evaluated the agreement in M1-cortical connectivity between the fibers labeled in the brain tissue and DTI streamlines on a regional and voxel-by-voxel basis. We found that DTI tractography is capable of providing inter-regional connectivity comparable to the neuroanatomical connectivity, but is less reliable measuring voxel-to-voxel variations within regions. PMID:24098365
AUTOMATED CELL SEGMENTATION WITH 3D FLUORESCENCE MICROSCOPY IMAGES.
Kong, Jun; Wang, Fusheng; Teodoro, George; Liang, Yanhui; Zhu, Yangyang; Tucker-Burden, Carol; Brat, Daniel J
2015-04-01
A large number of cell-oriented cancer investigations require an effective and reliable cell segmentation method on three dimensional (3D) fluorescence microscopic images for quantitative analysis of cell biological properties. In this paper, we present a fully automated cell segmentation method that can detect cells from 3D fluorescence microscopic images. Enlightened by fluorescence imaging techniques, we regulated the image gradient field by gradient vector flow (GVF) with interpolated and smoothed data volume, and grouped voxels based on gradient modes identified by tracking GVF field. Adaptive thresholding was then applied to voxels associated with the same gradient mode where voxel intensities were enhanced by a multiscale cell filter. We applied the method to a large volume of 3D fluorescence imaging data of human brain tumor cells with (1) small cell false detection and missing rates for individual cells; and (2) trivial over and under segmentation incidences for clustered cells. Additionally, the concordance of cell morphometry structure between automated and manual segmentation was encouraging. These results suggest a promising 3D cell segmentation method applicable to cancer studies.
Homeostatic and Circadian Abnormalities in Sleep and Arousal in Gulf War Syndrome
2016-10-01
prefrontal cortex have been reported in patients with clinical sleep disorders, including insomnia and cataplexy.7-9 A recent hdEEG analysis of...and parietal gray matter in chronic insomnia : a voxel-based morphometric study. Biol Psychiatry 2010;67:182-5. 8. Joo EY, Tae WS, Kim ST, Hong SB
The neural substrates of procrastination: A voxel-based morphometry study.
Hu, Yue; Liu, Peiwei; Guo, Yiqun; Feng, Tingyong
2018-03-01
Procrastination is a pervasive phenomenon across different cultures and brings about lots of serious consequences, including performance, subjective well-being, and even public policy. However, little is known about the neural substrates of procrastination. In order to shed light upon this question, we investigated the neuroanatomical substrates of procrastination across two independent samples using voxel-based morphometry (VBM) method. The whole-brain analysis showed procrastination was positively correlated with the graymatter (GM) volume of clusters in the parahippocampal gyrus (PHG) and the orbital frontal cortex (OFC), while negatively correlated with the GM volume of clusters in the inferior frontal gyrus (IFG) and the middle frontal gyrus (MFG) in sample one (151 participants). We further conducted a verification procedure on another sample (108 participants) using region-of-interest analysis to examine the reliability of these results. Results showed procrastination can be predicted by the GM volume of the OFC and the MFG. The present findings suggest that the MFG and OFC, which are the key regions of self-control and emotion regulation, may play an important role in procrastination. Copyright © 2018 Elsevier Inc. All rights reserved.
18F-FDG PET brain images as features for Alzheimer classification
NASA Astrophysics Data System (ADS)
Azmi, M. H.; Saripan, M. I.; Nordin, A. J.; Ahmad Saad, F. F.; Abdul Aziz, S. A.; Wan Adnan, W. A.
2017-08-01
2-Deoxy-2-[fluorine-18] fluoro-D-glucose (18F-FDG) Positron Emission Tomography (PET) imaging offers meaningful information for various types of diseases diagnosis. In Alzheimer's disease (AD), the hypometabolism of glucose which observed on the low intensity voxel in PET image may relate to the onset of the disease. The importance of early detection of AD is inevitable because the resultant brain damage is irreversible. Several statistical analysis and machine learning algorithm have been proposed to investigate the rate and the pattern of the hypometabolism. This study focus on the same aim with further investigation was performed on several hypometabolism pattern. Some pre-processing steps were implemented to standardize the data in order to minimize the effect of resolution and anatomical differences. The features used are the mean voxel intensity within the AD pattern mask, which derived from several z-score and FDR threshold values. The global mean voxel (GMV) and slice-based mean voxel (SbMV) intensity were observed and used as input to the neural network. Several neural network architectures were tested and compared to the nearest neighbour method. The highest accuracy equals to 0.9 and recorded at z-score ≤-1.3 with 1 node neural network architecture (sensitivity=0.81 and specificity=0.95) and at z-score ≤-0.7 with 10 nodes neural network (sensitivity=0.83 and specificity=0.94).
Yang, Guang; Nawaz, Tahir; Barrick, Thomas R; Howe, Franklyn A; Slabaugh, Greg
2015-12-01
Many approaches have been considered for automatic grading of brain tumors by means of pattern recognition with magnetic resonance spectroscopy (MRS). Providing an improved technique which can assist clinicians in accurately identifying brain tumor grades is our main objective. The proposed technique, which is based on the discrete wavelet transform (DWT) of whole-spectral or subspectral information of key metabolites, combined with unsupervised learning, inspects the separability of the extracted wavelet features from the MRS signal to aid the clustering. In total, we included 134 short echo time single voxel MRS spectra (SV MRS) in our study that cover normal controls, low grade and high grade tumors. The combination of DWT-based whole-spectral or subspectral analysis and unsupervised clustering achieved an overall clustering accuracy of 94.8% and a balanced error rate of 7.8%. To the best of our knowledge, it is the first study using DWT combined with unsupervised learning to cluster brain SV MRS. Instead of dimensionality reduction on SV MRS or feature selection using model fitting, our study provides an alternative method of extracting features to obtain promising clustering results.
Beyond mind-reading: multi-voxel pattern analysis of fMRI data.
Norman, Kenneth A; Polyn, Sean M; Detre, Greg J; Haxby, James V
2006-09-01
A key challenge for cognitive neuroscience is determining how mental representations map onto patterns of neural activity. Recently, researchers have started to address this question by applying sophisticated pattern-classification algorithms to distributed (multi-voxel) patterns of functional MRI data, with the goal of decoding the information that is represented in the subject's brain at a particular point in time. This multi-voxel pattern analysis (MVPA) approach has led to several impressive feats of mind reading. More importantly, MVPA methods constitute a useful new tool for advancing our understanding of neural information processing. We review how researchers are using MVPA methods to characterize neural coding and information processing in domains ranging from visual perception to memory search.
Tensor-product kernel-based representation encoding joint MRI view similarity.
Alvarez-Meza, A; Cardenas-Pena, D; Castro-Ospina, A E; Alvarez, M; Castellanos-Dominguez, G
2014-01-01
To support 3D magnetic resonance image (MRI) analysis, a marginal image similarity (MIS) matrix holding MR inter-slice relationship along every axis view (Axial, Coronal, and Sagittal) can be estimated. However, mutual inference from MIS view information poses a difficult task since relationships between axes are nonlinear. To overcome this issue, we introduce a Tensor-Product Kernel-based Representation (TKR) that allows encoding brain structure patterns due to patient differences, gathering all MIS matrices into a single joint image similarity framework. The TKR training strategy is carried out into a low dimensional projected space to get less influence of voxel-derived noise. Obtained results for classifying the considered patient categories (gender and age) on real MRI database shows that the proposed TKR training approach outperforms the conventional voxel-wise sum of squared differences. The proposed approach may be useful to support MRI clustering and similarity inference tasks, which are required on template-based image segmentation and atlas construction.
ERIC Educational Resources Information Center
Parks, Lauren K.; Hill, Dina E.; Thoma, Robert J.; Euler, Matthew J.; Lewine, Jeffrey D.; Yeo, Ronald A.
2009-01-01
Although many studies have compared the brains of normal controls and individuals with autism, especially older, higher-functioning individuals with autism, little is known of the neural correlates of the vast clinical heterogeneity characteristic of the disorder. In this study, we used voxel-based morphometry (VBM) to examine gray matter…
ERIC Educational Resources Information Center
Thothathiri, Malathi; Kimberg, Daniel Y.; Schwartz, Myrna F.
2012-01-01
We explored the neural basis of reversible sentence comprehension in a large group of aphasic patients (n = 79). Voxel-based lesion symptom mapping revealed a significant association between damage in temporo-parietal cortex and impaired sentence comprehension. This association remained after we controlled for phonological working memory. We…
4D Cone-beam CT reconstruction using a motion model based on principal component analysis
Staub, David; Docef, Alen; Brock, Robert S.; Vaman, Constantin; Murphy, Martin J.
2011-01-01
Purpose: To provide a proof of concept validation of a novel 4D cone-beam CT (4DCBCT) reconstruction algorithm and to determine the best methods to train and optimize the algorithm. Methods: The algorithm animates a patient fan-beam CT (FBCT) with a patient specific parametric motion model in order to generate a time series of deformed CTs (the reconstructed 4DCBCT) that track the motion of the patient anatomy on a voxel by voxel scale. The motion model is constrained by requiring that projections cast through the deformed CT time series match the projections of the raw patient 4DCBCT. The motion model uses a basis of eigenvectors that are generated via principal component analysis (PCA) of a training set of displacement vector fields (DVFs) that approximate patient motion. The eigenvectors are weighted by a parameterized function of the patient breathing trace recorded during 4DCBCT. The algorithm is demonstrated and tested via numerical simulation. Results: The algorithm is shown to produce accurate reconstruction results for the most complicated simulated motion, in which voxels move with a pseudo-periodic pattern and relative phase shifts exist between voxels. The tests show that principal component eigenvectors trained on DVFs from a novel 2D/3D registration method give substantially better results than eigenvectors trained on DVFs obtained by conventionally registering 4DCBCT phases reconstructed via filtered backprojection. Conclusions: Proof of concept testing has validated the 4DCBCT reconstruction approach for the types of simulated data considered. In addition, the authors found the 2D/3D registration approach to be our best choice for generating the DVF training set, and the Nelder-Mead simplex algorithm the most robust optimization routine. PMID:22149852
Hattori, Naoya; Yabe, Ichiro; Hirata, Kenji; Shiga, Tohru; Sakushima, Ken; Tsuji-Akimoto, Sachiko; Sasaki, Hidenao; Tamaki, Nagara
2013-05-01
Cognitive impairment is a representative neuropsychiatric presentation that accompanies Parkinson disease (PD). The purpose of this study was to localize the cerebral regions associated with cognitive impairment in patients with PD using quantitative SPECT. Thirty-two patients with PD (mean [SD] age, 75 [8] years; 25 women; Hoehn-Yahr scores from 2 to 5) underwent quantitative brain SPECT using 123I iodoamphetamine. Parametric images of regional cerebral blood flow (rCBF) were spatially normalized to the standard brain atlas. First, voxel-by-voxel comparison between patients with PD with versus without cognitive impairment was performed to visualize overall trend of regional differences. Next, the individual quantitative rCBF values were extracted in representative cortical regions using a standard region-of-interest template to compare the quantitative rCBF values. Patients with cognitive impairment showed trends of lower rCBF in the left frontal and temporal cortices as well as in the bilateral medial frontal and anterior cingulate cortices in the voxel-by-voxel analyses. Region-of-interest-based analysis demonstrated significantly lower rCBF in the bilateral anterior cingulate cortices (right, 25.8 [5.5] vs 28.9 [5.7] mL per 100 g/min, P < 0.05; left, 25.8 [5.8] vs 29.1 [5.7] mL per 100 g/min, P < 0.05) associated with cognitive impairment. Patients with cognitive impairment showed lower rCBF in the left frontal and temporal cortices as well as in the bilateral medial frontal and anterior cingulate cortices. The results suggested dysexecutive function as an underlining mechanism of cognitive impairment in patients with PD.
Separation of β-amyloid binding and white matter uptake of 18F-flutemetamol using spectral analysis
Heurling, Kerstin; Buckley, Christopher; Vandenberghe, Rik; Laere, Koen Van; Lubberink, Mark
2015-01-01
The kinetic components of the β-amyloid ligand 18F-flutemetamol binding in grey and white matter were investigated through spectral analysis, and a method developed for creation of parametric images separating grey and white matter uptake. Tracer uptake in grey and white matter and cerebellar cortex was analyzed through spectral analysis in six subjects, with (n=4) or without (n=2) apparent β-amyloid deposition, having undergone dynamic 18F-flutemetamol scanning with arterial blood sampling. The spectra were divided into three components: slow, intermediate and fast basis function rates. The contribution of each of the components to total volume of distribution (VT) was assessed for different tissue types. The slow component dominated in white matter (average 90%), had a higher contribution to grey matter VT in subjects with β-amyloid deposition (average 44%) than without (average 6%) and was absent in cerebellar cortex, attributing the slow component of 18F-flutemetamol uptake in grey matter to β-amyloid binding. Parametric images of voxel-based spectral analysis were created for VT, the slow component and images segmented based on the slow component contribution; confirming that grey matter and white matter uptake can be discriminated on voxel-level using a threshold for the contribution from the slow component to VT. PMID:26550542
Applications of wavelets in morphometric analysis of medical images
NASA Astrophysics Data System (ADS)
Davatzikos, Christos; Tao, Xiaodong; Shen, Dinggang
2003-11-01
Morphometric analysis of medical images is playing an increasingly important role in understanding brain structure and function, as well as in understanding the way in which these change during development, aging and pathology. This paper presents three wavelet-based methods with related applications in morphometric analysis of magnetic resonance (MR) brain images. The first method handles cases where very limited datasets are available for the training of statistical shape models in the deformable segmentation. The method is capable of capturing a larger range of shape variability than the standard active shape models (ASMs) can, by using the elegant spatial-frequency decomposition of the shape contours provided by wavelet transforms. The second method addresses the difficulty of finding correspondences in anatomical images, which is a key step in shape analysis and deformable registration. The detection of anatomical correspondences is completed by using wavelet-based attribute vectors as morphological signatures of voxels. The third method uses wavelets to characterize the morphological measurements obtained from all voxels in a brain image, and the entire set of wavelet coefficients is further used to build a brain classifier. Since the classification scheme operates in a very-high-dimensional space, it can determine subtle population differences with complex spatial patterns. Experimental results are provided to demonstrate the performance of the proposed methods.
Bailey, Jennifer Anne; Zatorre, Robert J; Penhune, Virginia B
2014-04-01
Evidence in animals and humans indicates that there are sensitive periods during development, times when experience or stimulation has a greater influence on behavior and brain structure. Sensitive periods are the result of an interaction between maturational processes and experience-dependent plasticity mechanisms. Previous work from our laboratory has shown that adult musicians who begin training before the age of 7 show enhancements in behavior and white matter structure compared with those who begin later. Plastic changes in white matter and gray matter are hypothesized to co-occur; therefore, the current study investigated possible differences in gray matter structure between early-trained (ET; <7) and late-trained (LT; >7) musicians, matched for years of experience. Gray matter structure was assessed using voxel-wise analysis techniques (optimized voxel-based morphometry, traditional voxel-based morphometry, and deformation-based morphometry) and surface-based measures (cortical thickness, surface area and mean curvature). Deformation-based morphometry analyses identified group differences between ET and LT musicians in right ventral premotor cortex (vPMC), which correlated with performance on an auditory motor synchronization task and with age of onset of musical training. In addition, cortical surface area in vPMC was greater for ET musicians. These results are consistent with evidence that premotor cortex shows greatest maturational change between the ages of 6-9 years and that this region is important for integrating auditory and motor information. We propose that the auditory and motor interactions required by musical practice drive plasticity in vPMC and that this plasticity is greatest when maturation is near its peak.
Diffusion anisotropy in fresh and fixed prostate tissue ex vivo.
Bourne, Roger M; Bongers, Andre; Chatterjee, Aritrick; Sved, Paul; Watson, Geoffrey
2016-08-01
To investigate diffusion anisotropy in whole human prostate specimens Seven whole radical prostatectomy specimens were obtained with informed patient consent and institutional ethics approval. Diffusion tensor imaging was performed at 9.4 Tesla. Diffusion tensors were calculated from the native acquired data and after progressive downsampling Fractional anisotropy (FA) decreased as voxel volume increased, and differed widely between prostates. Fixation decreased mean FA by ∼0.05-0.08 at all voxel volumes but did not alter principle eigenvector orientation. In unfixed tissue high FA (> 0.6) was found only in voxels of volume <0.5 mm(3) , and then only in a small fraction of all voxels. At typical clinical voxel volumes (4-16 mm(3) ) less than 50% of voxels had FA > 0.25. FA decreased at longer diffusion times (Δ = 60 or 80 ms compared with 20 ms), but only by ∼0.02 at typical clinical voxel volume. Peripheral zone FA was significantly lower than transition zone FA in five of the seven prostates FA varies widely between prostates. The very small proportion of clinical size voxels with high FA suggests that in clinical DWI studies ADC based on three-direction measurements will be minimally affected by anisotropy. Magn Reson Med 76:626-634, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Reconstruction of Human Monte Carlo Geometry from Segmented Images
NASA Astrophysics Data System (ADS)
Zhao, Kai; Cheng, Mengyun; Fan, Yanchang; Wang, Wen; Long, Pengcheng; Wu, Yican
2014-06-01
Human computational phantoms have been used extensively for scientific experimental analysis and experimental simulation. This article presented a method for human geometry reconstruction from a series of segmented images of a Chinese visible human dataset. The phantom geometry could actually describe detailed structure of an organ and could be converted into the input file of the Monte Carlo codes for dose calculation. A whole-body computational phantom of Chinese adult female has been established by FDS Team which is named Rad-HUMAN with about 28.8 billion voxel number. For being processed conveniently, different organs on images were segmented with different RGB colors and the voxels were assigned with positions of the dataset. For refinement, the positions were first sampled. Secondly, the large sums of voxels inside the organ were three-dimensional adjacent, however, there were not thoroughly mergence methods to reduce the cell amounts for the description of the organ. In this study, the voxels on the organ surface were taken into consideration of the mergence which could produce fewer cells for the organs. At the same time, an indexed based sorting algorithm was put forward for enhancing the mergence speed. Finally, the Rad-HUMAN which included a total of 46 organs and tissues was described by the cuboids into the Monte Carlo Monte Carlo Geometry for the simulation. The Monte Carlo geometry was constructed directly from the segmented images and the voxels was merged exhaustively. Each organ geometry model was constructed without ambiguity and self-crossing, its geometry information could represent the accuracy appearance and precise interior structure of the organs. The constructed geometry largely retaining the original shape of organs could easily be described into different Monte Carlo codes input file such as MCNP. Its universal property was testified and high-performance was experimentally verified
Voxel-wise grey matter asymmetry analysis in left- and right-handers.
Ocklenburg, Sebastian; Friedrich, Patrick; Güntürkün, Onur; Genç, Erhan
2016-10-28
Handedness is thought to originate in the brain, but identifying its structural correlates in the cortex has yielded surprisingly incoherent results. One idea proclaimed by several authors is that structural grey matter asymmetries might underlie handedness. While some authors have found significant associations with handedness in different brain areas (e.g. in the central sulcus and precentral sulcus), others have failed to identify such associations. One method used by many researchers to determine structural grey matter asymmetries is voxel based morphometry (VBM). However, it has recently been suggested that the standard VBM protocol might not be ideal to assess structural grey matter asymmetries, as it establishes accurate voxel-wise correspondence across individuals but not across both hemispheres. This could potentially lead to biased and incoherent results. Recently, a new toolbox specifically geared at assessing structural asymmetries and involving accurate voxel-wise correspondence across hemispheres has been published [F. Kurth, C. Gaser, E. Luders. A 12-step user guide for analyzing voxel-wise gray matter asymmetries in statistical parametric mapping (SPM), Nat Protoc 10 (2015), 293-304]. Here, we used this new toolbox to re-assess grey matter asymmetry differences in left- vs. right-handers and linked them to quantitative measures of hand preference and hand skill. While we identified several significant left-right asymmetries in the overall sample, no difference between left- and right-handers reached significance after correction for multiple comparisons. These findings indicate that the structural brain correlates of handedness are unlikely to be rooted in macroscopic grey matter area differences that can be assessed with VBM. Future studies should focus on other potential structural correlates of handedness, e.g. structural white matter asymmetries. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
TU-AB-303-11: Predict Parotids Deformation Applying SIS Epidemiological Model in H&N Adaptive RT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maffei, N; Guidi, G; University of Bologna, Bologna, Bologna
2015-06-15
Purpose: The aim is to investigate the use of epidemiological models to predict morphological variations in patients undergoing radiation therapy (RT). The susceptible-infected-susceptible (SIS) deterministic model was applied to simulate warping within a focused region of interest (ROI). Hypothesis is to consider each voxel like a single subject of the whole sample and to treat displacement vector fields like an infection. Methods: Using Raystation hybrid deformation algorithms and automatic re-contouring based on mesh grid, we post-processed 360 MVCT images of 12 H&N patients treated with Tomotherapy. Study focused on parotid glands, identified by literature and previous analysis, as ROI moremore » susceptible to warping in H&N region. Susceptible (S) and infectious (I) cases were identified in voxels with inter-fraction movement respectively under and over a set threshold. IronPython scripting allowed to export positions and displacement data of surface voxels for every fraction. A MATLAB homemade toolbox was developed to model the SIS. Results: SIS model was validated simulating organ motion on QUASAR phantom. Applying model in patients, within a [0–1cm] range, a single voxel movement of 0.4cm was selected as displacement threshold. SIS indexes were evaluated by MATLAB simulations. Dynamic time warping algorithm was used to assess matching between model and parotids behavior days of treatments. The best fit of the model was obtained with contact rate of 7.89±0.94 and recovery rate of 2.36±0.21. Conclusion: SIS model can follow daily structures evolutions, making possible to compare warping conditions and highlighting challenges due to abnormal variation and set-up errors. By epidemiology approach, organ motion could be assessed and predicted not in terms of average of the whole ROI, but in a voxel-by-voxel deterministic trend. Identifying anatomical region subjected to variations, would be possible to focus clinic controls within a cohort of pre-selected patients eligible for adaptive RT. The research is partially co-funded by the Italian Research Grant: Dose warping methods for IGRT and Adaptive RT: dose accumulation based on organ motion and anatomical variations of the patients during radiation therapy treatments,MoH (GR-2010-2318757) and Tecnologie Avanzate S.r.l.(Italy)« less
Accelerating IMRT optimization by voxel sampling
NASA Astrophysics Data System (ADS)
Martin, Benjamin C.; Bortfeld, Thomas R.; Castañon, David A.
2007-12-01
This paper presents a new method for accelerating intensity-modulated radiation therapy (IMRT) optimization using voxel sampling. Rather than calculating the dose to the entire patient at each step in the optimization, the dose is only calculated for some randomly selected voxels. Those voxels are then used to calculate estimates of the objective and gradient which are used in a randomized version of a steepest descent algorithm. By selecting different voxels on each step, we are able to find an optimal solution to the full problem. We also present an algorithm to automatically choose the best sampling rate for each structure within the patient during the optimization. Seeking further improvements, we experimented with several other gradient-based optimization algorithms and found that the delta-bar-delta algorithm performs well despite the randomness. Overall, we were able to achieve approximately an order of magnitude speedup on our test case as compared to steepest descent.
Functional quantitative susceptibility mapping (fQSM).
Balla, Dávid Z; Sanchez-Panchuelo, Rosa M; Wharton, Samuel J; Hagberg, Gisela E; Scheffler, Klaus; Francis, Susan T; Bowtell, Richard
2014-10-15
Blood oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI) is a powerful technique, typically based on the statistical analysis of the magnitude component of the complex time-series. Here, we additionally interrogated the phase data of the fMRI time-series and used quantitative susceptibility mapping (QSM) in order to investigate the potential of functional QSM (fQSM) relative to standard magnitude BOLD fMRI. High spatial resolution data (1mm isotropic) were acquired every 3 seconds using zoomed multi-slice gradient-echo EPI collected at 7 T in single orientation (SO) and multiple orientation (MO) experiments, the latter involving 4 repetitions with the subject's head rotated relative to B0. Statistical parametric maps (SPM) were reconstructed for magnitude, phase and QSM time-series and each was subjected to detailed analysis. Several fQSM pipelines were evaluated and compared based on the relative number of voxels that were coincidentally found to be significant in QSM and magnitude SPMs (common voxels). We found that sensitivity and spatial reliability of fQSM relative to the magnitude data depended strongly on the arbitrary significance threshold defining "activated" voxels in SPMs, and on the efficiency of spatio-temporal filtering of the phase time-series. Sensitivity and spatial reliability depended slightly on whether MO or SO fQSM was performed and on the QSM calculation approach used for SO data. Our results present the potential of fQSM as a quantitative method of mapping BOLD changes. We also critically discuss the technical challenges and issues linked to this intriguing new technique. Copyright © 2014 Elsevier Inc. All rights reserved.
Distinct Cortical Pathways for Music and Speech Revealed by Hypothesis-Free Voxel Decomposition
Norman-Haignere, Sam
2015-01-01
SUMMARY The organization of human auditory cortex remains unresolved, due in part to the small stimulus sets common to fMRI studies and the overlap of neural populations within voxels. To address these challenges, we measured fMRI responses to 165 natural sounds and inferred canonical response profiles (“components”) whose weighted combinations explained voxel responses throughout auditory cortex. This analysis revealed six components, each with interpretable response characteristics despite being unconstrained by prior functional hypotheses. Four components embodied selectivity for particular acoustic features (frequency, spectrotemporal modulation, pitch). Two others exhibited pronounced selectivity for music and speech, respectively, and were not explainable by standard acoustic features. Anatomically, music and speech selectivity concentrated in distinct regions of non-primary auditory cortex. However, music selectivity was weak in raw voxel responses, and its detection required a decomposition method. Voxel decomposition identifies primary dimensions of response variation across natural sounds, revealing distinct cortical pathways for music and speech. PMID:26687225
Distinct Cortical Pathways for Music and Speech Revealed by Hypothesis-Free Voxel Decomposition.
Norman-Haignere, Sam; Kanwisher, Nancy G; McDermott, Josh H
2015-12-16
The organization of human auditory cortex remains unresolved, due in part to the small stimulus sets common to fMRI studies and the overlap of neural populations within voxels. To address these challenges, we measured fMRI responses to 165 natural sounds and inferred canonical response profiles ("components") whose weighted combinations explained voxel responses throughout auditory cortex. This analysis revealed six components, each with interpretable response characteristics despite being unconstrained by prior functional hypotheses. Four components embodied selectivity for particular acoustic features (frequency, spectrotemporal modulation, pitch). Two others exhibited pronounced selectivity for music and speech, respectively, and were not explainable by standard acoustic features. Anatomically, music and speech selectivity concentrated in distinct regions of non-primary auditory cortex. However, music selectivity was weak in raw voxel responses, and its detection required a decomposition method. Voxel decomposition identifies primary dimensions of response variation across natural sounds, revealing distinct cortical pathways for music and speech. Copyright © 2015 Elsevier Inc. All rights reserved.
Mapping neurotransmitter networks with PET: an example on serotonin and opioid systems.
Tuominen, Lauri; Nummenmaa, Lauri; Keltikangas-Järvinen, Liisa; Raitakari, Olli; Hietala, Jarmo
2014-05-01
All functions of the human brain are consequences of altered activity of specific neural pathways and neurotransmitter systems. Although the knowledge of "system level" connectivity in the brain is increasing rapidly, we lack "molecular level" information on brain networks and connectivity patterns. We introduce novel voxel-based positron emission tomography (PET) methods for studying internal neurotransmitter network structure and intercorrelations of different neurotransmitter systems in the human brain. We chose serotonin transporter and μ-opioid receptor for this analysis because of their functional interaction at the cellular level and similar regional distribution in the brain. Twenty-one healthy subjects underwent two consecutive PET scans using [(11)C]MADAM, a serotonin transporter tracer, and [(11)C]carfentanil, a μ-opioid receptor tracer. First, voxel-by-voxel "intracorrelations" (hub and seed analyses) were used to study the internal structure of opioid and serotonin systems. Second, voxel-level opioid-serotonin intercorrelations (between neurotransmitters) were computed. Regional μ-opioid receptor binding potentials were uniformly correlated throughout the brain. However, our analyses revealed nonuniformity in the serotonin transporter intracorrelations and identified a highly connected local network (midbrain-striatum-thalamus-amygdala). Regionally specific intercorrelations between the opioid and serotonin tracers were found in anteromedial thalamus, amygdala, anterior cingulate cortex, dorsolateral prefrontal cortex, and left parietal cortex, i.e., in areas relevant for several neuropsychiatric disorders, especially affective disorders. This methodology enables in vivo mapping of connectivity patterns within and between neurotransmitter systems. Quantification of functional neurotransmitter balances may be a useful approach in etiological studies of neuropsychiatric disorders and also in drug development as a biomarker-based rationale for targeted modulation of neurotransmitter networks. Copyright © 2013 Wiley Periodicals, Inc.
Pairwise Classifier Ensemble with Adaptive Sub-Classifiers for fMRI Pattern Analysis.
Kim, Eunwoo; Park, HyunWook
2017-02-01
The multi-voxel pattern analysis technique is applied to fMRI data for classification of high-level brain functions using pattern information distributed over multiple voxels. In this paper, we propose a classifier ensemble for multiclass classification in fMRI analysis, exploiting the fact that specific neighboring voxels can contain spatial pattern information. The proposed method converts the multiclass classification to a pairwise classifier ensemble, and each pairwise classifier consists of multiple sub-classifiers using an adaptive feature set for each class-pair. Simulated and real fMRI data were used to verify the proposed method. Intra- and inter-subject analyses were performed to compare the proposed method with several well-known classifiers, including single and ensemble classifiers. The comparison results showed that the proposed method can be generally applied to multiclass classification in both simulations and real fMRI analyses.
de-Azevedo-Vaz, Sergio Lins; Vasconcelos, Karla de Faria; Neves, Frederico Sampaio; Melo, Saulo Leonardo Sousa; Campos, Paulo Sérgio Flores; Haiter-Neto, Francisco
2013-01-01
To assess the accuracy of cone-beam computed tomography (CBCT) in periimplant fenestration and dehiscence detection, and to determine the effects of 2 voxel sizes and scan modes. One hundred titanium implants were placed in bovine ribs in which periimplant fenestration and dehiscence were simulated. CBCT images were acquired with the use of 3 protocols of the i-CAT NG unit: A) 0.2 mm voxel size half-scan (180°); B) 0.2 mm voxel size full-scan (360°); and C) 0.12 mm voxel size full scan (360°). Receiver operating characteristic curves and diagnostic values were obtained. The Az values were compared with the use of analysis of variance. The Az value for dehiscence in protocol A was significantly lower than those of B or C (P < .01). They did not statistically differ for fenestration (P > .05). Protocol B yielded the highest values. The voxel sizes did not affect fenestration and dehiscence detection, and for dehiscence full-scan performed better than half-scan. Copyright © 2013 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Can, Dilara Deniz; Richards, Todd; Kuhl, Patricia K.
2013-01-01
Magnetic Resonance Imaging (MRI) brain scans were obtained from 19 infants at 7 months. Expressive and receptive language performance was assessed at 12 months. Voxel-based morphometry (VBM) identified brain regions where gray-matter and white-matter concentrations at 7 months correlated significantly with children's language scores at 12 months.…
ERIC Educational Resources Information Center
Tamboer, Peter; Scholte, H. Steven; Vorst, Harrie C. M.
2015-01-01
In voxel-based morphometry studies of dyslexia, the relation between causal theories of dyslexia and gray matter (GM) and white matter (WM) volume alterations is still under debate. Some alterations are consistently reported, but others failed to reach significance. We investigated GM alterations in a large sample of Dutch students (37 dyslexics…
Feature Selection based on Machine Learning in MRIs for Hippocampal Segmentation
NASA Astrophysics Data System (ADS)
Tangaro, Sabina; Amoroso, Nicola; Brescia, Massimo; Cavuoti, Stefano; Chincarini, Andrea; Errico, Rosangela; Paolo, Inglese; Longo, Giuseppe; Maglietta, Rosalia; Tateo, Andrea; Riccio, Giuseppe; Bellotti, Roberto
2015-01-01
Neurodegenerative diseases are frequently associated with structural changes in the brain. Magnetic resonance imaging (MRI) scans can show these variations and therefore can be used as a supportive feature for a number of neurodegenerative diseases. The hippocampus has been known to be a biomarker for Alzheimer disease and other neurological and psychiatric diseases. However, it requires accurate, robust, and reproducible delineation of hippocampal structures. Fully automatic methods are usually the voxel based approach; for each voxel a number of local features were calculated. In this paper, we compared four different techniques for feature selection from a set of 315 features extracted for each voxel: (i) filter method based on the Kolmogorov-Smirnov test; two wrapper methods, respectively, (ii) sequential forward selection and (iii) sequential backward elimination; and (iv) embedded method based on the Random Forest Classifier on a set of 10 T1-weighted brain MRIs and tested on an independent set of 25 subjects. The resulting segmentations were compared with manual reference labelling. By using only 23 feature for each voxel (sequential backward elimination) we obtained comparable state-of-the-art performances with respect to the standard tool FreeSurfer.
Fine-resolution voxel S values for constructing absorbed dose distributions at variable voxel size.
Dieudonné, Arnaud; Hobbs, Robert F; Bolch, Wesley E; Sgouros, George; Gardin, Isabelle
2010-10-01
This article presents a revised voxel S values (VSVs) approach for dosimetry in targeted radiotherapy, allowing dose calculation for any voxel size and shape of a given SPECT or PET dataset. This approach represents an update to the methodology presented in MIRD pamphlet no. 17. VSVs were generated in soft tissue with a fine spatial sampling using the Monte Carlo (MC) code MCNPX for particle emissions of 9 radionuclides: (18)F, (90)Y, (99m)Tc, (111)In, (123)I, (131)I, (177)Lu, (186)Re, and (201)Tl. A specific resampling algorithm was developed to compute VSVs for desired voxel dimensions. The dose calculation was performed by convolution via a fast Hartley transform. The fine VSVs were calculated for cubic voxels of 0.5 mm for electrons and 1.0 mm for photons. Validation studies were done for (90)Y and (131)I VSV sets by comparing the revised VSV approach to direct MC simulations. The first comparison included 20 spheres with different voxel sizes (3.8-7.7 mm) and radii (4-64 voxels) and the second comparison a hepatic tumor with cubic voxels of 3.8 mm. MC simulations were done with MCNPX for both. The third comparison was performed on 2 clinical patients with the 3D-RD (3-Dimensional Radiobiologic Dosimetry) software using the EGSnrc (Electron Gamma Shower National Research Council Canada)-based MC implementation, assuming a homogeneous tissue-density distribution. For the sphere model study, the mean relative difference in the average absorbed dose was 0.20% ± 0.41% for (90)Y and -0.36% ± 0.51% for (131)I (n = 20). For the hepatic tumor, the difference in the average absorbed dose to tumor was 0.33% for (90)Y and -0.61% for (131)I and the difference in average absorbed dose to the liver was 0.25% for (90)Y and -1.35% for (131)I. The comparison with the 3D-RD software showed an average voxel-to-voxel dose ratio between 0.991 and 0.996. The calculation time was below 10 s with the VSV approach and 50 and 15 h with 3D-RD for the 2 clinical patients. This new VSV approach enables the calculation of absorbed dose based on a SPECT or PET cumulated activity map, with good agreement with direct MC methods, in a faster and more clinically compatible manner.
Correlation between Gray/White Matter Volume and Cognition in Healthy Elderly People
ERIC Educational Resources Information Center
Taki, Yasuyuki; Kinomura, Shigeo; Sato, Kazunori; Goto, Ryoi; Wu, Kai; Kawashima, Ryuta; Fukuda, Hiroshi
2011-01-01
This study applied volumetric analysis and voxel-based morphometry (VBM) of brain magnetic resonance (MR) images to assess whether correlations exist between global and regional gray/white matter volume and the cognitive functions of semantic memory and short-term memory, which are relatively well preserved with aging, using MR image data from 109…
Meuwese, Julia D.I.; Towgood, Karren J.; Frith, Christopher D.; Burgess, Paul W.
2009-01-01
Multi-voxel pattern analyses have proved successful in ‘decoding’ mental states from fMRI data, but have not been used to examine brain differences associated with atypical populations. We investigated a group of 16 (14 males) high-functioning participants with autism spectrum disorder (ASD) and 16 non-autistic control participants (12 males) performing two tasks (spatial/verbal) previously shown to activate medial rostral prefrontal cortex (mrPFC). Each task manipulated: (i) attention towards perceptual versus self-generated information and (ii) reflection on another person's mental state (‘mentalizing'versus ‘non-mentalizing’) in a 2 × 2 design. Behavioral performance and group-level fMRI results were similar between groups. However, multi-voxel similarity analyses revealed strong differences. In control participants, the spatial distribution of activity generalized significantly between task contexts (spatial/verbal) when examining the same function (attention/mentalizing) but not when comparing different functions. This pattern was disrupted in the ASD group, indicating abnormal functional specialization within mrPFC, and demonstrating the applicability of multi-voxel pattern analysis to investigations of atypical populations. PMID:19174370
Deformation Invariant Attribute Vector for Deformable Registration of Longitudinal Brain MR Images
Li, Gang; Guo, Lei; Liu, Tianming
2009-01-01
This paper presents a novel approach to define deformation invariant attribute vector (DIAV) for each voxel in 3D brain image for the purpose of anatomic correspondence detection. The DIAV method is validated by using synthesized deformation in 3D brain MRI images. Both theoretic analysis and experimental studies demonstrate that the proposed DIAV is invariant to general nonlinear deformation. Moreover, our experimental results show that the DIAV is able to capture rich anatomic information around the voxels and exhibit strong discriminative ability. The DIAV has been integrated into a deformable registration algorithm for longitudinal brain MR images, and the results on both simulated and real brain images are provided to demonstrate the good performance of the proposed registration algorithm based on matching of DIAVs. PMID:19369031
Accurate B-spline-based 3-D interpolation scheme for digital volume correlation
NASA Astrophysics Data System (ADS)
Ren, Maodong; Liang, Jin; Wei, Bin
2016-12-01
An accurate and efficient 3-D interpolation scheme, based on sampling theorem and Fourier transform technique, is proposed to reduce the sub-voxel matching error caused by intensity interpolation bias in digital volume correlation. First, the influence factors of the interpolation bias are investigated theoretically using the transfer function of an interpolation filter (henceforth filter) in the Fourier domain. A law that the positional error of a filter can be expressed as a function of fractional position and wave number is found. Then, considering the above factors, an optimized B-spline-based recursive filter, combining B-spline transforms and least squares optimization method, is designed to virtually eliminate the interpolation bias in the process of sub-voxel matching. Besides, given each volumetric image containing different wave number ranges, a Gaussian weighting function is constructed to emphasize or suppress certain of wave number ranges based on the Fourier spectrum analysis. Finally, a novel software is developed and series of validation experiments were carried out to verify the proposed scheme. Experimental results show that the proposed scheme can reduce the interpolation bias to an acceptable level.
Silvoniemi, Antti; Din, Mueez U; Suilamo, Sami; Shepherd, Tony; Minn, Heikki
2016-11-01
Delineation of gross tumour volume in 3D is a critical step in the radiotherapy (RT) treatment planning for oropharyngeal cancer (OPC). Static [ 18 F]-FDG PET/CT imaging has been suggested as a method to improve the reproducibility of tumour delineation, but it suffers from low specificity. We undertook this pilot study in which dynamic features in time-activity curves (TACs) of [ 18 F]-FDG PET/CT images were applied to help the discrimination of tumour from inflammation and adjacent normal tissue. Five patients with OPC underwent dynamic [ 18 F]-FDG PET/CT imaging in treatment position. Voxel-by-voxel analysis was performed to evaluate seven dynamic features developed with the knowledge of differences in glucose metabolism in different tissue types and visual inspection of TACs. The Gaussian mixture model and K-means algorithms were used to evaluate the performance of the dynamic features in discriminating tumour voxels compared to the performance of standardized uptake values obtained from static imaging. Some dynamic features showed a trend towards discrimination of different metabolic areas but lack of consistency means that clinical application is not recommended based on these results alone. Impact of inflammatory tissue remains a problem for volume delineation in RT of OPC, but a simple dynamic imaging protocol proved practicable and enabled simple data analysis techniques that show promise for complementing the information in static uptake values.
Quantitative characterization of brain β-amyloid using a joint PiB/FDG PET image histogram
NASA Astrophysics Data System (ADS)
Camp, Jon J.; Hanson, Dennis P.; Holmes, David R.; Kemp, Bradley J.; Senjem, Matthew L.; Murray, Melissa E.; Dickson, Dennis W.; Parisi, Joseph; Petersen, Ronald C.; Lowe, Val J.; Robb, Richard A.
2014-03-01
A complex analysis performed by spatial registration of PiB and MRI patient images in order to localize the PiB signal to specific cortical brain regions has been proven effective in identifying imaging characteristics associated with underlying Alzheimer's Disease (AD) and Lewy Body Disease (LBD) pathology. This paper presents an original method of image analysis and stratification of amyloid-related brain disease based on the global spatial correlation of PiB PET images with 18F-FDG PET images (without MR images) to categorize the PiB signal arising from the cortex. Rigid registration of PiB and 18F-FDG images is relatively straightforward, and in registration the 18F-FDG signal serves to identify the cortical region in which the PiB signal is relevant. Cortical grey matter demonstrates the highest levels of amyloid accumulation and therefore the greatest PiB signal related to amyloid pathology. The highest intensity voxels in the 18F-FDG image are attributed to the cortical grey matter. The correlation of the highest intensity PiB voxels with the highest 18F-FDG values indicates the presence of β-amyloid protein in the cortex in disease states, while correlation of the highest intensity PiB voxels with mid-range 18F-FDG values indicates only nonspecific binding in the white matter.
NASA Astrophysics Data System (ADS)
Acosta, Oscar; Drean, Gael; Ospina, Juan D.; Simon, Antoine; Haigron, Pascal; Lafond, Caroline; de Crevoisier, Renaud
2013-04-01
The majority of current models utilized for predicting toxicity in prostate cancer radiotherapy are based on dose-volume histograms. One of their main drawbacks is the lack of spatial accuracy, since they consider the organs as a whole volume and thus ignore the heterogeneous intra-organ radio-sensitivity. In this paper, we propose a dose-image-based framework to reveal the relationships between local dose and toxicity. In this approach, the three-dimensional (3D) planned dose distributions across a population are non-rigidly registered into a common coordinate system and compared at a voxel level, therefore enabling the identification of 3D anatomical patterns, which may be responsible for toxicity, at least to some extent. Additionally, different metrics were employed in order to assess the quality of the dose mapping. The value of this approach was demonstrated by prospectively analyzing rectal bleeding (⩾Grade 1 at 2 years) according to the CTCAE v3.0 classification in a series of 105 patients receiving 80 Gy to the prostate by intensity modulated radiation therapy (IMRT). Within the patients presenting bleeding, a significant dose excess (6 Gy on average, p < 0.01) was found in a region of the anterior rectal wall. This region, close to the prostate (1 cm), represented less than 10% of the rectum. This promising voxel-wise approach allowed subregions to be defined within the organ that may be involved in toxicity and, as such, must be considered during the inverse IMRT planning step.
Individual classification of Alzheimer's disease with diffusion magnetic resonance imaging.
Schouten, Tijn M; Koini, Marisa; Vos, Frank de; Seiler, Stephan; Rooij, Mark de; Lechner, Anita; Schmidt, Reinhold; Heuvel, Martijn van den; Grond, Jeroen van der; Rombouts, Serge A R B
2017-05-15
Diffusion magnetic resonance imaging (MRI) is a powerful non-invasive method to study white matter integrity, and is sensitive to detect differences in Alzheimer's disease (AD) patients. Diffusion MRI may be able to contribute towards reliable diagnosis of AD. We used diffusion MRI to classify AD patients (N=77), and controls (N=173). We use different methods to extract information from the diffusion MRI data. First, we use the voxel-wise diffusion tensor measures that have been skeletonised using tract based spatial statistics. Second, we clustered the voxel-wise diffusion measures with independent component analysis (ICA), and extracted the mixing weights. Third, we determined structural connectivity between Harvard Oxford atlas regions with probabilistic tractography, as well as graph measures based on these structural connectivity graphs. Classification performance for voxel-wise measures ranged between an AUC of 0.888, and 0.902. The ICA-clustered measures ranged between an AUC of 0.893, and 0.920. The AUC for the structural connectivity graph was 0.900, while graph measures based upon this graph ranged between an AUC of 0.531, and 0.840. All measures combined with a sparse group lasso resulted in an AUC of 0.896. Overall, fractional anisotropy clustered into ICA components was the best performing measure. These findings may be useful for future incorporation of diffusion MRI into protocols for AD classification, or as a starting point for early detection of AD using diffusion MRI. Copyright © 2017 Elsevier Inc. All rights reserved.
Quantitative Rapid Assessment of Leukoaraiosis in CT : Comparison to Gold Standard MRI.
Hanning, Uta; Sporns, Peter Bernhard; Schmidt, Rene; Niederstadt, Thomas; Minnerup, Jens; Bier, Georg; Knecht, Stefan; Kemmling, André
2017-10-20
The severity of white matter lesions (WML) is a risk factor of hemorrhage and predictor of clinical outcome after ischemic stroke; however, in contrast to magnetic resonance imaging (MRI) reliable quantification for this surrogate marker is limited for computed tomography (CT), the leading stroke imaging technique. We aimed to present and evaluate a CT-based automated rater-independent method for quantification of microangiopathic white matter changes. Patients with suspected minor stroke (National Institutes of Health Stroke scale, NIHSS < 4) were screened for the analysis of non-contrast computerized tomography (NCCT) at admission and compared to follow-up MRI. The MRI-based WML volume and visual Fazekas scores were assessed as the gold standard reference. We employed a recently published probabilistic brain segmentation algorithm for CT images to determine the tissue-specific density of WM space. All voxel-wise densities were quantified in WM space and weighted according to partial probabilistic WM content. The resulting mean weighted density of WM space in NCCT, the surrogate of WML, was correlated with reference to MRI-based WML parameters. The process of CT-based tissue-specific segmentation was reliable in 79 cases with varying severity of microangiopathy. Voxel-wise weighted density within WM spaces showed a noticeable correlation (r = -0.65) with MRI-based WML volume. Particularly in patients with moderate or severe lesion load according to the visual Fazekas score the algorithm provided reliable prediction of MRI-based WML volume. Automated observer-independent quantification of voxel-wise WM density in CT significantly correlates with microangiopathic WM disease in gold standard MRI. This rapid surrogate of white matter lesion load in CT may support objective WML assessment and therapeutic decision-making during acute stroke triage.
White matter structural connectivity is associated with sensorimotor function in stroke survivors☆
Kalinosky, Benjamin T.; Schindler-Ivens, Sheila; Schmit, Brian D.
2013-01-01
Purpose Diffusion tensor imaging (DTI) provides functionally relevant information about white matter structure. Local anatomical connectivity information combined with fractional anisotropy (FA) and mean diffusivity (MD) may predict functional outcomes in stroke survivors. Imaging methods for predicting functional outcomes in stroke survivors are not well established. This work uses DTI to objectively assess the effects of a stroke lesion on white matter structure and sensorimotor function. Methods A voxel-based approach is introduced to assess a stroke lesion's global impact on motor function. Anatomical T1-weighted and diffusion tensor images of the brain were acquired for nineteen subjects (10 post-stroke and 9 age-matched controls). A manually selected volume of interest was used to alleviate the effects of stroke lesions on image registration. Images from all subjects were registered to the images of the control subject that was anatomically closest to Talairach space. Each subject's transformed image was uniformly seeded for DTI tractography. Each seed was inversely transformed into the individual subject space, where DTI tractography was conducted and then the results were transformed back to the reference space. A voxel-wise connectivity matrix was constructed from the fibers, which was then used to calculate the number of directly and indirectly connected neighbors of each voxel. A novel voxel-wise indirect structural connectivity (VISC) index was computed as the average number of direct connections to a voxel's indirect neighbors. Voxel-based analyses (VBA) were performed to compare VISC, FA, and MD for the detection of lesion-induced changes in sensorimotor function. For each voxel, a t-value was computed from the differences between each stroke brain and the 9 controls. A series of linear regressions was performed between Fugl-Meyer (FM) assessment scores of sensorimotor impairment and each DTI metric's log number of voxels that differed from the control group. Results Correlation between the logarithm of the number of significant voxels in the ipsilesional hemisphere and total Fugl-Meyer score was moderate for MD (R2 = 0.512), and greater for VISC (R2 = 0.796) and FA (R2 = 0.674). The slopes of FA (p = 0.0036), VISC (p = 0.0005), and MD (p = 0.0199) versus the total FM score were significant. However, these correlations were driven by the upper extremity motor component of the FM score (VISC: R2 = 0.879) with little influence of the lower extremity motor component (FA: R2 = 0.177). Conclusion The results suggest that a voxel-wise metric based on DTI tractography can predict upper extremity sensorimotor function of stroke survivors, and that supraspinal intraconnectivity may have a less dominant role in lower extremity function. PMID:24179827
Automatic pole-like object modeling via 3D part-based analysis of point cloud
NASA Astrophysics Data System (ADS)
He, Liu; Yang, Haoxiang; Huang, Yuchun
2016-10-01
Pole-like objects, including trees, lampposts and traffic signs, are indispensable part of urban infrastructure. With the advance of vehicle-based laser scanning (VLS), massive point cloud of roadside urban areas becomes applied in 3D digital city modeling. Based on the property that different pole-like objects have various canopy parts and similar trunk parts, this paper proposed the 3D part-based shape analysis to robustly extract, identify and model the pole-like objects. The proposed method includes: 3D clustering and recognition of trunks, voxel growing and part-based 3D modeling. After preprocessing, the trunk center is identified as the point that has local density peak and the largest minimum inter-cluster distance. Starting from the trunk centers, the remaining points are iteratively clustered to the same centers of their nearest point with higher density. To eliminate the noisy points, cluster border is refined by trimming boundary outliers. Then, candidate trunks are extracted based on the clustering results in three orthogonal planes by shape analysis. Voxel growing obtains the completed pole-like objects regardless of overlaying. Finally, entire trunk, branch and crown part are analyzed to obtain seven feature parameters. These parameters are utilized to model three parts respectively and get signal part-assembled 3D model. The proposed method is tested using the VLS-based point cloud of Wuhan University, China. The point cloud includes many kinds of trees, lampposts and other pole-like posters under different occlusions and overlaying. Experimental results show that the proposed method can extract the exact attributes and model the roadside pole-like objects efficiently.
Frank, Florian; Liu, Chen; Scanziani, Alessio; Alpak, Faruk O; Riviere, Beatrice
2018-08-01
We consider an energy-based boundary condition to impose an equilibrium wetting angle for the Cahn-Hilliard-Navier-Stokes phase-field model on voxel-set-type computational domains. These domains typically stem from μCT (micro computed tomography) imaging of porous rock and approximate a (on μm scale) smooth domain with a certain resolution. Planar surfaces that are perpendicular to the main axes are naturally approximated by a layer of voxels. However, planar surfaces in any other directions and curved surfaces yield a jagged/topologically rough surface approximation by voxels. For the standard Cahn-Hilliard formulation, where the contact angle between the diffuse interface and the domain boundary (fluid-solid interface/wall) is 90°, jagged surfaces have no impact on the contact angle. However, a prescribed contact angle smaller or larger than 90° on jagged voxel surfaces is amplified. As a remedy, we propose the introduction of surface energy correction factors for each fluid-solid voxel face that counterbalance the difference of the voxel-set surface area with the underlying smooth one. The discretization of the model equations is performed with the discontinuous Galerkin method. However, the presented semi-analytical approach of correcting the surface energy is equally applicable to other direct numerical methods such as finite elements, finite volumes, or finite differences, since the correction factors appear in the strong formulation of the model. Copyright © 2018 Elsevier Inc. All rights reserved.
WE-FG-202-12: Investigation of Longitudinal Salivary Gland DCE-MRI Changes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ger, R; Howell, R; Li, H
Purpose: To determine the correlation between dose and changes through treatment in dynamic contrast enhanced (DCE) MRI voxel parameters (Ktrans, kep, Ve, and Vp) within salivary glands of head and neck oropharyngeal squamous cell carcinoma (HNSCC) patients. Methods: 17 HNSCC patients treated with definitive radiation therapy completed DCE-MRI scans on a 3T scanner at pre-treatment, mid-treatment, and post-treatment time points. Mid-treatment and post-treatment DCE images were deformably registered to pre-treatment DCE images (Velocity software package). Pharmacokinetic analysis of the DCE images used a modified Tofts model to produce parameter maps with an arterial input function selected from each patient’s perivertebralmore » space on the image (NordicICE software package). In-house software was developed for voxel-by-voxel longitudinal analysis of the salivary glands within the registered images. The planning CT was rigidly registered to the pre-treatment DCE image to obtain dose values in each voxel. Voxels within the lower and upper dose quartiles for each gland were averaged for each patient, then an average of the patients’ means for the two quartiles were compared. Dose-relationships were also assessed by Spearman correlations between dose and voxel parameter changes for each patient’s gland. Results: Changes in parameters’ means between time points were observed, but inter-patient variability was high. Ve of the parotid was the only parameter that had a consistently significant longitudinal difference between dose quartiles. The highest Spearman correlation was Vp of the sublingual gland for the change in the pre-treatment to mid-treatment values with only a ρ=0.29. Conclusion: In this preliminary study, there was large inter-patient variability in the changes of DCE voxel parameters with no clear relationship with dose. Additional patients may reduce the uncertainties and allow for the determination of the existence of parameter and dose relationships.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, S; Wilson, G; Krauss, D
Purpose: Adaptive dose-painting-by-number (DPbN) requires a dose-response-mapping (DRM) obtained early in the treatment course. To obtain DRM, voxel-by-voxel tumor dose response needs to be quantified. Our recent study has demonstrated that voxel-by-voxel radio-sensitivity of patient tumor can be determined using tumor-metabolic-ratio measured early during the treatment using FDG-PET images. In this study, the measurements were utilized to construct tumor metabolic control probability (TMCP) and DRM for DPbN. Methods: FDG-PET/CT images of 18 HN cancer patients obtained pre- and weekly during the treatment were used. Spatial parametric images of tumor-metabolic-ratio (dSUV) were constructed following voxel-by-voxel deformable image registration. Each voxel valuemore » in dSUV was a function of baseline SUV and delivered dose. Utilizing all values of dSUV in the controlled tumor group at the last treatment week, a cut-off function between the baseline SUV and dSUV was formed, and applied in early treatment days on dSUV of all tumors to model the TMCP. At the treatment week k, TMCP was constructed with respect to the tumor voxel dSUV appeared at the week using the maximum likelihood estimation for all dose levels, and used for DRM construction. Results: TMCPs estimated in the week 2 & 3 have D{sub 50}=11.1∼47.6Gy; γ{sub 50}=0.55∼0.92 respectively with respect to dSUV=0.3∼1.2. The corresponding DRM between tumor voxel dSUV and the expected treatment dose has sigmoid shape. The expected treatment dose are 26∼40Gy (for 95% TMCP) for high sensitive tumor voxels with dSUV=0.3∼0.5; and 65∼110Gy for low sensitive tumor voxels with the dSUV>1.0 depending on the time of the estimation. Conclusion: TMCP can be constructed voxel-by-voxel in human tumor using multiple FDG-PET imaging obtained in early treatment days. TMCP provides a potential quantitative objective of tumor DRM for DPbN to plan the best dose, escalate or de-escalate, in tumor adaptively based on its own radio-sensitivity.« less
Anwar, Mekhail; Molinaro, Annette M; Morin, Olivier; Chang, Susan M; Haas-Kogan, Daphne A; Nelson, Sarah J; Lupo, Janine M
2017-09-01
Despite the longstanding role of radiation in cancer treatment and the presence of advanced, high-resolution imaging techniques, delineation of voxels at-risk for progression remains purely a geometric expansion of anatomic images, missing subclinical disease at risk for recurrence while treating potentially uninvolved tissue and increasing toxicity. This remains despite the modern ability to precisely shape radiation fields. A striking example of this is the treatment of glioblastoma, a highly infiltrative tumor that may benefit from accurate identification of subclinical disease. In this study, we hypothesize that parameters from physiologic and metabolic magnetic resonance imaging (MRI) at diagnosis could predict the likelihood of voxel progression at radiographic recurrence in glioblastoma by identifying voxel characteristics that indicate subclinical disease. Integrating dosimetry can reveal its effect on voxel outcome, enabling risk-adapted voxel dosing. As a system example, 24 patients with glioblastoma treated with radiotherapy, temozolomide and an anti-angiogenic agent were analyzed. Pretreatment median apparent diffusion coefficient (ADC), fractional anisotropy (FA), relative cerebral blood volume (rCBV), vessel leakage (percentage recovery), choline-to-NAA index (CNI) and dose of voxels in the T2 nonenhancing lesion (NEL), T1 post-contrast enhancing lesion (CEL) or normal-appearing volume (NAV) of brain, were calculated for voxels that progressed [NAV→NEL, CEL (N = 8,765)] and compared against those that remained stable [NAV→NAV (N = 98,665)]. Voxels that progressed (NAV→NEL) had significantly different (P < 0.01) ADC (860), FA (0.36) and CNI (0.67) versus stable voxels (804, 0.43 and 0.05, respectively), indicating increased cell turnover, edema and decreased directionality, consistent with subclinical disease. NAV→CEL voxels were more abnormal (1,014, 0.28, 2.67, respectively) and leakier (percentage recovery = 70). A predictive model identified areas of recurrence, demonstrating that elevated CNI potentiates abnormal diffusion, even far (>2 cm) from the tumor and dose escalation >45 Gy has diminishing benefits. Integrating advanced MRI with dosimetry can identify at voxels at risk for progression and may allow voxel-level risk-adapted dose escalation to subclinical disease while sparing normal tissue. When combined with modern planning software, this technique may enable risk-adapted radiotherapy in any disease site with multimodal imaging.
Kerner, Gerald S M A; Bollineni, Vikram R; Hiltermann, Thijo J N; Sijtsema, Nanna M; Fischer, Alexander; Bongaerts, Alphons H H; Pruim, Jan; Groen, Harry J M
2016-12-01
Hypoxia is associated with resistance to chemotherapy and radiotherapy and is randomly distributed within malignancies. Characterization of changes in intratumoral hypoxic regions is possible with specially developed PET tracers such as (18)F-fluoroazomycin arabinoside ((18)F-FAZA) while tumor metabolism can be measured with 2-deoxy-2-[(18)F]fluoro-D-glucose ((18)F-FDG). The purpose of this study was to study the effects of chemotherapy on (18)F-FAZA and (18)F-FDG uptake simultaneously in non-small-cell lung cancer (NSCLC) patients At baseline and after the second chemotherapy cycle, both PET/CT with (18)F-FDG and (18)F-FAZA was performed in seven patients with metastasized NSCLC. (18)F-FAZA and (18)F-FDG scans were aligned with deformable image registration using Mirada DBx. The primary tumors were contoured, and on the (18)F-FDG scan, volumes of interest (VOI) were drawn using a 41 % adaptive threshold technique. Subsequently, the resulting VOI was transferred to the (18)F-FAZA scan. (18)F-FAZA maximum tumor-to-background (T/Bgmax) ratio and the fractional hypoxic volume (FHV) were assessed. Measurements were corrected for partial volume effects. Finally, a voxel-by-voxel analysis of the primary tumor was performed to assess regional uptake differences. In the primary tumor of all seven patients, median (18)F-FDG standard uptake value (SUVmax) decreased significantly (p = 0.03). There was no significant decrease in (18)F-FAZA uptake as measured with T/Bgmax (p = 0.24) or the FHV (p = 0.35). Additionally, volumetric voxel-by-voxel analysis showed that low hypoxic tumors did not significantly change in hypoxic status between baseline and two cycles of chemotherapy, whereas highly hypoxic tumors did. Individualized volumetric voxel-by-voxel analysis revealed that hypoxia and metabolism were not associated before and after 2 cycles of chemotherapy. Tumor hypoxia and metabolism are independent dynamic events as measured by (18)F-FAZA PET and (18)F-FDG PET, both prior to and after treatment with chemotherapy in NSCLC patients.
[Diffusion tensor imaging findings in first-episode and chronic schizophrenics].
Wei, Qin-Ling; Kang, Zhuang; Wu, Xiao-Li; Zhang, Jin-Bei; Li, Lei-Jun; Zheng, Liang-Rong; Guo, Xiao-Feng; Zhao, Jing-Ping
2011-08-23
To investigate the integrity of white matters in first-episode and chronic schizophrenics. For this study, 39 first-episode and 38 chronic schizophrenics, 69 healthy controls (age, gender and years of received education no significantly different from those of the patients) underwent diffusion weighted images with a single-shot echo planar imaging (EPI) sequence aligned to the straight axial plane. The fractional anisotropy (FA) images of three groups underwent one-way ANOVA with the methods of voxel-based morphometric (VBM) analysis. (1) There were three brain regions where the FA values of white matter were different among three groups: right caudate nucleus (MNI: 20, 12, 14; cluster = 432 voxels; FA value: 0.36 ± 0.18 vs 0.35 ± 0.24 vs 0.38 ± 0.17), left insula (MNI: -32, 18, 2; cluster = 204 voxels; FA value: 0.35 ± 0.31 vs 0.33 ± 0.24 vs 0.36 ± 0.21) and right anterior cingulate (MNI: 16, 36, 12; cluster = 132 voxels; FA value: 0.35 ± 0.29 vs 0.34 ± 0.31 vs 0.37 ± 0.25). (2) The mean FA values of the three brain regions of two patients groups decreased versus those of healthy controls (P < 0.05). (3) The mean FA values of left insular region in chronic patients decreased versus those of the first-episode patients (P < 0.05). The reduced integrity of white matter may play an etiological role in schizophrenia and the changes are probably progressive.
Liu, Feng; Tian, Hongjun; Li, Jie; Li, Shen; Zhuo, Chuanjun
2018-05-04
Previous seed- and atlas-based structural covariance/connectivity analyses have demonstrated that patients with schizophrenia is accompanied by aberrant structural connection and abnormal topological organization. However, it remains unclear whether this disruption is present in unbiased whole-brain voxel-wise structural covariance networks (SCNs) and whether brain genetic expression variations are linked with network alterations. In this study, ninety-five patients with schizophrenia and 95 matched healthy controls were recruited and gray matter volumes were extracted from high-resolution structural magnetic resonance imaging scans. Whole-brain voxel-wise gray matter SCNs were constructed at the group level and were further analyzed by using graph theory method. Nonparametric permutation tests were employed for group comparisons. In addition, regression modes along with random effect analysis were utilized to explore the associations between structural network changes and gene expression from the Allen Human Brain Atlas. Compared with healthy controls, the patients with schizophrenia showed significantly increased structural covariance strength (SCS) in the right orbital part of superior frontal gyrus and bilateral middle frontal gyrus, while decreased SCS in the bilateral superior temporal gyrus and precuneus. The altered SCS showed reproducible correlations with the expression profiles of the gene classes involved in therapeutic targets and neurodevelopment. Overall, our findings not only demonstrate that the topological architecture of whole-brain voxel-wise SCNs is impaired in schizophrenia, but also provide evidence for the possible role of therapeutic targets and neurodevelopment-related genes in gray matter structural brain networks in schizophrenia.
Dona, Olga; Noseworthy, Michael D; DeMatteo, Carol; Connolly, John F
2017-01-01
Conventional imaging techniques are unable to detect abnormalities in the brain following mild traumatic brain injury (mTBI). Yet patients with mTBI typically show delayed response on neuropsychological evaluation. Because fractal geometry represents complexity, we explored its utility in measuring temporal fluctuations of brain resting state blood oxygen level dependent (rs-BOLD) signal. We hypothesized that there could be a detectable difference in rs-BOLD signal complexity between healthy subjects and mTBI patients based on previous studies that associated reduction in signal complexity with disease. Fifteen subjects (13.4 ± 2.3 y/o) and 56 age-matched (13.5 ± 2.34 y/o) healthy controls were scanned using a GE Discovery MR750 3T MRI and 32-channel RF-coil. Axial FSPGR-3D images were used to prescribe rs-BOLD (TE/TR = 35/2000ms), acquired over 6 minutes. Motion correction was performed and anatomical and functional images were aligned and spatially warped to the N27 standard atlas. Fractal analysis, performed on grey matter, was done by estimating the Hurst exponent using de-trended fluctuation analysis and signal summation conversion methods. Voxel-wise fractal dimension (FD) was calculated for every subject in the control group to generate mean and standard deviation maps for regional Z-score analysis. Voxel-wise validation of FD normality across controls was confirmed, and non-Gaussian voxels (3.05% over the brain) were eliminated from subsequent analysis. For each mTBI patient, regions where Z-score values were at least 2 standard deviations away from the mean (i.e. where |Z| > 2.0) were identified. In individual patients the frequently affected regions were amygdala (p = 0.02), vermis(p = 0.03), caudate head (p = 0.04), hippocampus(p = 0.03), and hypothalamus(p = 0.04), all previously reported as dysfunctional after mTBI, but based on group analysis. It is well known that the brain is best modeled as a complex system. Therefore a measure of complexity using rs-BOLD signal FD could provide an additional method to grade and monitor mTBI. Furthermore, this approach can be personalized thus providing unique patient specific assessment.
Maikusa, Norihide; Yamashita, Fumio; Tanaka, Kenichiro; Abe, Osamu; Kawaguchi, Atsushi; Kabasawa, Hiroyuki; Chiba, Shoma; Kasahara, Akihiro; Kobayashi, Nobuhisa; Yuasa, Tetsuya; Sato, Noriko; Matsuda, Hiroshi; Iwatsubo, Takeshi
2013-06-01
Serial magnetic resonance imaging (MRI) images acquired from multisite and multivendor MRI scanners are widely used in measuring longitudinal structural changes in the brain. Precise and accurate measurements are important in understanding the natural progression of neurodegenerative disorders such as Alzheimer's disease. However, geometric distortions in MRI images decrease the accuracy and precision of volumetric or morphometric measurements. To solve this problem, the authors suggest a commercially available phantom-based distortion correction method that accommodates the variation in geometric distortion within MRI images obtained with multivendor MRI scanners. The authors' method is based on image warping using a polynomial function. The method detects fiducial points within a phantom image using phantom analysis software developed by the Mayo Clinic and calculates warping functions for distortion correction. To quantify the effectiveness of the authors' method, the authors corrected phantom images obtained from multivendor MRI scanners and calculated the root-mean-square (RMS) of fiducial errors and the circularity ratio as evaluation values. The authors also compared the performance of the authors' method with that of a distortion correction method based on a spherical harmonics description of the generic gradient design parameters. Moreover, the authors evaluated whether this correction improves the test-retest reproducibility of voxel-based morphometry in human studies. A Wilcoxon signed-rank test with uncorrected and corrected images was performed. The root-mean-square errors and circularity ratios for all slices significantly improved (p < 0.0001) after the authors' distortion correction. Additionally, the authors' method was significantly better than a distortion correction method based on a description of spherical harmonics in improving the distortion of root-mean-square errors (p < 0.001 and 0.0337, respectively). Moreover, the authors' method reduced the RMS error arising from gradient nonlinearity more than gradwarp methods. In human studies, the coefficient of variation of voxel-based morphometry analysis of the whole brain improved significantly from 3.46% to 2.70% after distortion correction of the whole gray matter using the authors' method (Wilcoxon signed-rank test, p < 0.05). The authors proposed a phantom-based distortion correction method to improve reproducibility in longitudinal structural brain analysis using multivendor MRI. The authors evaluated the authors' method for phantom images in terms of two geometrical values and for human images in terms of test-retest reproducibility. The results showed that distortion was corrected significantly using the authors' method. In human studies, the reproducibility of voxel-based morphometry analysis for the whole gray matter significantly improved after distortion correction using the authors' method.
Comparison of NMR simulations of porous media derived from analytical and voxelized representations.
Jin, Guodong; Torres-Verdín, Carlos; Toumelin, Emmanuel
2009-10-01
We develop and compare two formulations of the random-walk method, grain-based and voxel-based, to simulate the nuclear-magnetic-resonance (NMR) response of fluids contained in various models of porous media. The grain-based approach uses a spherical grain pack as input, where the solid surface is analytically defined without an approximation. In the voxel-based approach, the input is a computer-tomography or computer-generated image of reconstructed porous media. Implementation of the two approaches is largely the same, except for the representation of porous media. For comparison, both approaches are applied to various analytical and digitized models of porous media: isolated spherical pore, simple cubic packing of spheres, and random packings of monodisperse and polydisperse spheres. We find that spin magnetization decays much faster in the digitized models than in their analytical counterparts. The difference in decay rate relates to the overestimation of surface area due to the discretization of the sample; it cannot be eliminated even if the voxel size decreases. However, once considering the effect of surface-area increase in the simulation of surface relaxation, good quantitative agreement is found between the two approaches. Different grain or pore shapes entail different rates of increase of surface area, whereupon we emphasize that the value of the "surface-area-corrected" coefficient may not be universal. Using an example of X-ray-CT image of Fontainebleau rock sample, we show that voxel size has a significant effect on the calculated surface area and, therefore, on the numerically simulated magnetization response.
Park, Kang Min; Kim, Sung Eun; Lee, Byung In
2016-01-01
The pathogenesis of card game-induced reflex epilepsy has not been determined so far. The aim of this study was to evaluate structural abnormalities using voxel-based morphometry (VBM) analysis, which may give some clue about the pathogenesis in card game-induced reflex epilepsy. The 3 subjects were diagnosed with card game-induced reflex epilepsy. Evaluation involved a structured interview to obtain clinical information and brain MRI. In VBM analysis, Statistical Parametric Mapping 8 running on the MATLAB platform was employed to analyze the structural differences between patients with card game-induced reflex epilepsy and age- and sex-matched control subjects. The results of VBM analysis revealed that patients with card game-induced reflex epilepsy had significantly increased gray matter volume in the right occipital and parietal lobe. However, there were no structures with decreased gray matter volume in patients with card game-induced reflex epilepsy compared with control subjects. In addition, we found that the patients with card game-induced reflex epilepsy had onset of seizures in adulthood rather than in adolescence, and all of the patients were men. The parieto-occipital lobes might be partially involved in the neuronal network responsible for card game-induced reflex epilepsy. © 2016 S. Karger AG, Basel.
Vitolo, Enrico; Tatu, Mona Karina; Pignolo, Claudia; Cauda, Franco; Costa, Tommaso; Ando', Agata; Zennaro, Alessandro
2017-12-30
Voxel-based morphometry (VBM) and diffusion tensor imaging (DTI) are the most implemented methodologies to detect alterations of both gray and white matter (WM). However, the role of WM in mental disorders is still not well defined. We aimed at clarifying the role of WM disruption in schizophrenia and at identifying the most frequently involved brain networks. A systematic literature search was conducted to identify VBM and DTI studies focusing on WM alterations in patients with schizophrenia compared to control subjects. We selected studies reporting the coordinates of WM reductions and we performed the anatomical likelihood estimation (ALE). Moreover, we labeled the WM bundles with an anatomical atlas and compared VBM and DTI ALE-scores of each significant WM tract. A total of 59 studies were eligible for the meta-analysis. WM alterations were reported in 31 and 34 foci with VBM and DTI methods, respectively. The most occurred WM bundles in both VBM and DTI studies and largely involved in schizophrenia were long projection fibers, callosal and commissural fibers, part of motor descending fibers, and fronto-temporal-limbic pathways. The meta-analysis showed a widespread WM disruption in schizophrenia involving specific cerebral circuits instead of well-defined regions. Copyright © 2017 Elsevier B.V. All rights reserved.
Inter-patient image registration algorithms to disentangle regional dose bioeffects.
Monti, Serena; Pacelli, Roberto; Cella, Laura; Palma, Giuseppe
2018-03-20
Radiation therapy (RT) technological advances call for a comprehensive reconsideration of the definition of dose features leading to radiation induced morbidity (RIM). In this context, the voxel-based approach (VBA) to dose distribution analysis in RT offers a radically new philosophy to evaluate local dose response patterns, as an alternative to dose-volume-histograms for identifying dose sensitive regions of normal tissue. The VBA relies on mapping patient dose distributions into a single reference case anatomy which serves as anchor for local dosimetric evaluations. The inter-patient elastic image registrations (EIRs) of the planning CTs provide the deformation fields necessary for the actual warp of dose distributions. In this study we assessed the impact of EIR on the VBA results in thoracic patients by identifying two state-of-the-art EIR algorithms (Demons and B-Spline). Our analysis demonstrated that both the EIR algorithms may be successfully used to highlight subregions with dose differences associated with RIM that substantially overlap. Furthermore, the inclusion for the first time of covariates within a dosimetric statistical model that faces the multiple comparison problem expands the potential of VBA, thus paving the way to a reliable voxel-based analysis of RIM in datasets with strong correlation of the outcome with non-dosimetric variables.
Decoding Information in the Human Hippocampus: A User's Guide
ERIC Educational Resources Information Center
Chadwick, Martin J.; Bonnici, Heidi M.; Maguire, Eleanor A.
2012-01-01
Multi-voxel pattern analysis (MVPA), or "decoding", of fMRI activity has gained popularity in the neuroimaging community in recent years. MVPA differs from standard fMRI analyses by focusing on whether information relating to specific stimuli is encoded in patterns of activity across multiple voxels. If a stimulus can be predicted, or decoded,…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mínguez, Pablo, E-mail: pablo.minguezgabina@osakid
Purpose: To investigate the possible differences between SPECT/CT based whole-remnant and maximum-voxel dosimetry in patients receiving radio-iodine ablation treatment of differentiated thyroid cancer (DTC). Methods: Eighteen DTC patients were administered 1.11 GBq of {sup 131}I-NaI after near-total thyroidectomy and rhTSH stimulation. Two patients had two remnants, so in total dosimetry was performed for 20 sites. Three SPECT/CT scans were performed for each patient at 1, 2, and 3–7 days after administration. The activity, the remnant mass, and the maximum-voxel activity were determined from these images and from a recovery-coefficient curve derived from experimental phantom measurements. The cumulated activity was estimatedmore » using trapezoidal-exponential integration. Finally, the absorbed dose was calculated using S-values for unit-density spheres in whole-remnant dosimetry and S-values for voxels in maximum-voxel dosimetry. Results: The mean absorbed dose obtained from whole-remnant dosimetry was 40 Gy (range 2–176 Gy) and from maximum-voxel dosimetry 34 Gy (range 2–145 Gy). For any given patient, the activity concentrations for each of the three time-points were approximately the same for the two methods. The effective half-lives varied (R = 0.865), mainly due to discrepancies in estimation of the longer effective half-lives. On average, absorbed doses obtained from whole-remnant dosimetry were 1.2 ± 0.2 (1 SD) higher than for maximum-voxel dosimetry, mainly due to differences in the S-values. The method-related differences were however small in comparison to the wide range of absorbed doses obtained in patients. Conclusions: Simple and consistent procedures for SPECT/CT based whole-volume and maximum-voxel dosimetry have been described, both based on experimentally determined recovery coefficients. Generally the results from the two approaches are consistent, although there is a small, systematic difference in the absorbed dose due to differences in the S-values, and some variability due to differences in the estimated effective half-lives, especially when the effective half-life is long. Irrespective of the method used, the patient absorbed doses obtained span over two orders of magnitude.« less
Matsuoka, Kiwamu; Yasuno, Fumihiko; Hashimoto, Akiko; Miyasaka, Toshiteru; Takahashi, Masato; Kiuchi, Kuniaki; Iida, Junzo; Kichikawa, Kimihiko; Kishimoto, Toshifumi
2018-05-01
Caregivers of patients with dementia experience physical and mental deterioration. We have previously reported a correlation between caregiver burden and the Frontal Assessment Battery (FAB) total scores of patients with Alzheimer's disease (AD), especially regarding the dependency factor from the Zarit Burden Interview. The present study aimed to identify an objective biomarker for predicting caregiver burden. The participants were 26 pairs of caregivers and patients with AD and mild-to-moderate dementia. Correlations between regional gray matter volumes in the patients with AD and the FAB total scores were explored by using whole-brain voxel-based morphometric analysis. Path analysis was used to estimate the relationships between regional gray matter volumes, FAB total scores, and caregiver burden based on the Zarit Burden Interview. The voxel-based morphometric revealed a significant positive correlation between the FAB total scores and the volume of the left dorsolateral prefrontal cortex. This positive correlation persisted after controlling for the effect of general cognitive dysfunction, which was assessed by using the Mini-Mental State Examination. Path analysis revealed that decreases in FAB scores, caused by reduced frontal lobe volumes, negatively affected caregiver burden. The present study revealed that frontal lobe function, based on FAB scores, was affected by the volume of the left dorsolateral prefrontal cortex. Decreased scores were associated with greater caregiver burden, especially for the dependency factor. These findings may facilitate the development of an objective biomarker for predicting caregiver burden. Copyright © 2017 John Wiley & Sons, Ltd.
Non-local means denoising of dynamic PET images.
Dutta, Joyita; Leahy, Richard M; Li, Quanzheng
2013-01-01
Dynamic positron emission tomography (PET), which reveals information about both the spatial distribution and temporal kinetics of a radiotracer, enables quantitative interpretation of PET data. Model-based interpretation of dynamic PET images by means of parametric fitting, however, is often a challenging task due to high levels of noise, thus necessitating a denoising step. The objective of this paper is to develop and characterize a denoising framework for dynamic PET based on non-local means (NLM). NLM denoising computes weighted averages of voxel intensities assigning larger weights to voxels that are similar to a given voxel in terms of their local neighborhoods or patches. We introduce three key modifications to tailor the original NLM framework to dynamic PET. Firstly, we derive similarities from less noisy later time points in a typical PET acquisition to denoise the entire time series. Secondly, we use spatiotemporal patches for robust similarity computation. Finally, we use a spatially varying smoothing parameter based on a local variance approximation over each spatiotemporal patch. To assess the performance of our denoising technique, we performed a realistic simulation on a dynamic digital phantom based on the Digimouse atlas. For experimental validation, we denoised [Formula: see text] PET images from a mouse study and a hepatocellular carcinoma patient study. We compared the performance of NLM denoising with four other denoising approaches - Gaussian filtering, PCA, HYPR, and conventional NLM based on spatial patches. The simulation study revealed significant improvement in bias-variance performance achieved using our NLM technique relative to all the other methods. The experimental data analysis revealed that our technique leads to clear improvement in contrast-to-noise ratio in Patlak parametric images generated from denoised preclinical and clinical dynamic images, indicating its ability to preserve image contrast and high intensity details while lowering the background noise variance.
Partial volume segmentation in 3D of lesions and tissues in magnetic resonance images
NASA Astrophysics Data System (ADS)
Johnston, Brian; Atkins, M. Stella; Booth, Kellogg S.
1994-05-01
An important first step in diagnosis and treatment planning using tomographic imaging is differentiating and quantifying diseased as well as healthy tissue. One of the difficulties encountered in solving this problem to date has been distinguishing the partial volume constituents of each voxel in the image volume. Most proposed solutions to this problem involve analysis of planar images, in sequence, in two dimensions only. We have extended a model-based method of image segmentation which applies the technique of iterated conditional modes in three dimensions. A minimum of user intervention is required to train the algorithm. Partial volume estimates for each voxel in the image are obtained yielding fractional compositions of multiple tissue types for individual voxels. A multispectral approach is applied, where spatially registered data sets are available. The algorithm is simple and has been parallelized using a dataflow programming environment to reduce the computational burden. The algorithm has been used to segment dual echo MRI data sets of multiple sclerosis patients using lesions, gray matter, white matter, and cerebrospinal fluid as the partial volume constituents. The results of the application of the algorithm to these datasets is presented and compared to the manual lesion segmentation of the same data.
Pain and temperature processing in dementia: a clinical and neuroanatomical analysis
Fletcher, Phillip D.; Downey, Laura E.; Golden, Hannah L.; Clark, Camilla N.; Slattery, Catherine F.; Paterson, Ross W.; Rohrer, Jonathan D.; Schott, Jonathan M.; Rossor, Martin N.
2015-01-01
Symptoms suggesting altered processing of pain and temperature have been described in dementia diseases and may contribute importantly to clinical phenotypes, particularly in the frontotemporal lobar degeneration spectrum, but the basis for these symptoms has not been characterized in detail. Here we analysed pain and temperature symptoms using a semi-structured caregiver questionnaire recording altered behavioural responsiveness to pain or temperature for a cohort of patients with frontotemporal lobar degeneration (n = 58, 25 female, aged 52–84 years, representing the major clinical syndromes and representative pathogenic mutations in the C9orf72 and MAPT genes) and a comparison cohort of patients with amnestic Alzheimer’s disease (n = 20, eight female, aged 53–74 years). Neuroanatomical associations were assessed using blinded visual rating and voxel-based morphometry of patients’ brain magnetic resonance images. Certain syndromic signatures were identified: pain and temperature symptoms were particularly prevalent in behavioural variant frontotemporal dementia (71% of cases) and semantic dementia (65% of cases) and in association with C9orf72 mutations (6/6 cases), but also developed in Alzheimer’s disease (45% of cases) and progressive non-fluent aphasia (25% of cases). While altered temperature responsiveness was more common than altered pain responsiveness across syndromes, blunted responsiveness to pain and temperature was particularly associated with behavioural variant frontotemporal dementia (40% of symptomatic cases) and heightened responsiveness with semantic dementia (73% of symptomatic cases) and Alzheimer’s disease (78% of symptomatic cases). In the voxel-based morphometry analysis of the frontotemporal lobar degeneration cohort, pain and temperature symptoms were associated with grey matter loss in a right-lateralized network including insula (P < 0.05 corrected for multiple voxel-wise comparisons within the prespecified anatomical region of interest) and anterior temporal cortex (P < 0.001 uncorrected over whole brain) previously implicated in processing homeostatic signals. Pain and temperature symptoms accompanying C9orf72 mutations were specifically associated with posterior thalamic atrophy (P < 0.05 corrected for multiple voxel-wise comparisons within the prespecified anatomical region of interest). Together the findings suggest candidate cognitive and neuroanatomical bases for these salient but under-appreciated phenotypic features of the dementias, with wider implications for the homeostatic pathophysiology and clinical management of neurodegenerative diseases. PMID:26463677
A voxel-based investigation for MRI-only radiotherapy of the brain using ultra short echo times
NASA Astrophysics Data System (ADS)
Edmund, Jens M.; Kjer, Hans M.; Van Leemput, Koen; Hansen, Rasmus H.; Andersen, Jon AL; Andreasen, Daniel
2014-12-01
Radiotherapy (RT) based on magnetic resonance imaging (MRI) as the only modality, so-called MRI-only RT, would remove the systematic registration error between MR and computed tomography (CT), and provide co-registered MRI for assessment of treatment response and adaptive RT. Electron densities, however, need to be assigned to the MRI images for dose calculation and patient setup based on digitally reconstructed radiographs (DRRs). Here, we investigate the geometric and dosimetric performance for a number of popular voxel-based methods to generate a so-called pseudo CT (pCT). Five patients receiving cranial irradiation, each containing a co-registered MRI and CT scan, were included. An ultra short echo time MRI sequence for bone visualization was used. Six methods were investigated for three popular types of voxel-based approaches; (1) threshold-based segmentation, (2) Bayesian segmentation and (3) statistical regression. Each approach contained two methods. Approach 1 used bulk density assignment of MRI voxels into air, soft tissue and bone based on logical masks and the transverse relaxation time T2 of the bone. Approach 2 used similar bulk density assignments with Bayesian statistics including or excluding additional spatial information. Approach 3 used a statistical regression correlating MRI voxels with their corresponding CT voxels. A similar photon and proton treatment plan was generated for a target positioned between the nasal cavity and the brainstem for all patients. The CT agreement with the pCT of each method was quantified and compared with the other methods geometrically and dosimetrically using both a number of reported metrics and introducing some novel metrics. The best geometrical agreement with CT was obtained with the statistical regression methods which performed significantly better than the threshold and Bayesian segmentation methods (excluding spatial information). All methods agreed significantly better with CT than a reference water MRI comparison. The mean dosimetric deviation for photons and protons compared to the CT was about 2% and highest in the gradient dose region of the brainstem. Both the threshold based method and the statistical regression methods showed the highest dosimetrical agreement. Generation of pCTs using statistical regression seems to be the most promising candidate for MRI-only RT of the brain. Further, the total amount of different tissues needs to be taken into account for dosimetric considerations regardless of their correct geometrical position.
MRI-negative refractory partial epilepsy: role for diffusion tensor imaging in high field MRI.
Chen, Qin; Lui, Su; Li, Chun-Xiao; Jiang, Li-Jun; Ou-Yang, Luo; Tang, He-Han; Shang, Hui-Fang; Huang, Xiao-Qi; Gong, Qi-Yong; Zhou, Dong
2008-07-01
Our aim is to use the high field MR scanner (3T) to verify whether diffusion tensor imaging (DTI) could help in locating the epileptogenic zone in patients with MRI-negative refractory partial epilepsy. Fifteen patients with refractory partial epilepsy who had normal conventional MRI, and 40 healthy volunteers were recruited for the study. DTI was performed on a 3T MR scanner, individual maps of mean diffusivity (MD) and fractional anisotropy (FA) were calculated, and Voxel-Based Analysis (VBA) was performed for individual comparison between patients and controls. Voxel-based analysis revealed significant MD increase in variant regions in 13 patients. The electroclinical seizure localization was concurred to seven patients. No patient exhibited regions of significant decreased MD. Regions of significant reduced FA were observed in five patients, with two of these concurring with electroclinical seizure localization. Two patients had regions of significant increase in FA, which were distinct from electroclinical seizure localization. Our study's results revealed that DTI is a responsive neuroradiologic technique that provides information about the epileptogenic areas in patients with MRI-negative refractory partial epilepsy. This technique may also helpful in pre-surgical evaluation.
Singh, S; Modi, S; Bagga, D; Kaur, P; Shankar, L R; Khushu, S
2013-03-01
The present study aimed to investigate whether brain morphological differences exist between adult hypothyroid subjects and age-matched controls using voxel-based morphometry (VBM) with diffeomorphic anatomic registration via an exponentiated lie algebra algorithm (DARTEL) approach. High-resolution structural magnetic resonance images were taken in ten healthy controls and ten hypothyroid subjects. The analysis was conducted using statistical parametric mapping. The VBM study revealed a reduction in grey matter volume in the left postcentral gyrus and cerebellum of hypothyroid subjects compared to controls. A significant reduction in white matter volume was also found in the cerebellum, right inferior and middle frontal gyrus, right precentral gyrus, right inferior occipital gyrus and right temporal gyrus of hypothyroid patients compared to healthy controls. Moreover, no meaningful cluster for greater grey or white matter volume was obtained in hypothyroid subjects compared to controls. Our study is the first VBM study of hypothyroidism in an adult population and suggests that, compared to controls, this disorder is associated with differences in brain morphology in areas corresponding to known functional deficits in attention, language, motor speed, visuospatial processing and memory in hypothyroidism. © 2012 British Society for Neuroendocrinology.
What do results from coordinate-based meta-analyses tell us?
Albajes-Eizagirre, Anton; Radua, Joaquim
2018-08-01
Coordinate-based meta-analyses (CBMA) methods, such as Activation Likelihood Estimation (ALE) and Seed-based d Mapping (SDM), have become an invaluable tool for summarizing the findings of voxel-based neuroimaging studies. However, the progressive sophistication of these methods may have concealed two particularities of their statistical tests. Common univariate voxelwise tests (such as the t/z-tests used in SPM and FSL) detect voxels that activate, or voxels that show differences between groups. Conversely, the tests conducted in CBMA test for "spatial convergence" of findings, i.e., they detect regions where studies report "more peaks than in most regions", regions that activate "more than most regions do", or regions that show "larger differences between groups than most regions do". The first particularity is that these tests rely on two spatial assumptions (voxels are independent and have the same probability to have a "false" peak), whose violation may make their results either conservative or liberal, though fortunately current versions of ALE, SDM and some other methods consider these assumptions. The second particularity is that the use of these tests involves an important paradox: the statistical power to detect a given effect is higher if there are no other effects in the brain, whereas lower in presence of multiple effects. Copyright © 2018 Elsevier Inc. All rights reserved.
Effect of Experimental Thyrotoxicosis on Brain Gray Matter: A Voxel-Based Morphometry Study.
Göbel, Anna; Heldmann, Marcus; Göttlich, Martin; Dirk, Anna-Luise; Brabant, Georg; Münte, Thomas F
2015-09-01
Hyper-as well hypothyroidism have an effect on behavior and brain function. Moreover, during development thyroid hormones influence brain structure. This study aimed to demonstrate an effect of experimentally induced hyperthyroidism on brain gray matter in healthy adult humans. High-resolution 3D T1-weighted images were acquired in 29 healthy young subjects prior to as well as after receiving 250 µg of T4 per day for 8 weeks. Voxel-based morphometry analysis was performed using Statistical Parametric Mapping 8 (SPM8). Laboratory testing confirmed the induction of hyperthyroidism. In the hyperthyroid condition, gray matter volumes were increased in the right posterior cerebellum (lobule VI) and decreased in the bilateral visual cortex and anterior cerebellum (lobules I-IV) compared to the euthyroid condition. Our study provides evidence that short periods of hyperthyroidism induce distinct alterations in brain structures of cerebellar regions that have been associated with sensorimotor functions as well as working memory in the literature.
Guo, Zhongwei; Liu, Xiaozheng; Hou, Hongtao; Wei, Fuquan; Liu, Jian; Chen, Xingli
2016-06-15
Depression is common in Alzheimer's disease (AD) and occurs in AD patients with a prevalence of up to 40%. It reduces cognitive function and increases the burden on caregivers. Currently, there are very few medications that are useful for treating depression in AD patients. Therefore, understanding the brain abnormalities in AD patients with depression (D-AD) is crucial for developing effective interventions. The aim of this study was to investigate the intrinsic dysconnectivity pattern of whole-brain functional networks at the voxel level in D-AD patients based on degree centrality (DC) as measured by resting-state functional magnetic resonance imaging (R-fMRI). Our study included 32 AD patients. All patients were evaluated using the Neuropsychiatric Inventory and Hamilton Depression Rating Scale and further divided into two groups: 15 D-AD patients and 17 non-depressed AD (nD-AD) patients. R-fMRI datasets were acquired from these D-AD and nD-AD patients. First, we performed a DC analysis to identify voxels that showed altered whole brain functional connectivity (FC) with other voxels. We then further investigated FC using the abnormal DC regions to examine in more detail the connectivity patterns of the identified DC changes. D-AD patients had lower DC values in the right middle frontal, precentral, and postcentral gyrus than nD-AD patients. Seed-based analysis revealed decreased connectivity between the precentral and postcentral gyrus to the supplementary motor area and middle cingulum. FC also decreased in the right middle frontal, precentral, and postcentral gyrus. Thus, AD patients with depression fit a 'network dysfunction model' distinct from major depressive disorder and AD. Copyright © 2016. Published by Elsevier Inc.
Bruce, Iain P.; Karaman, M. Muge; Rowe, Daniel B.
2012-01-01
The acquisition of sub-sampled data from an array of receiver coils has become a common means of reducing data acquisition time in MRI. Of the various techniques used in parallel MRI, SENSitivity Encoding (SENSE) is one of the most common, making use of a complex-valued weighted least squares estimation to unfold the aliased images. It was recently shown in Bruce et al. [Magn. Reson. Imag. 29(2011):1267–1287] that when the SENSE model is represented in terms of a real-valued isomorphism, it assumes a skew-symmetric covariance between receiver coils, as well as an identity covariance structure between voxels. In this manuscript, we show that not only is the skew-symmetric coil covariance unlike that of real data, but the estimated covariance structure between voxels over a time series of experimental data is not an identity matrix. As such, a new model, entitled SENSE-ITIVE, is described with both revised coil and voxel covariance structures. Both the SENSE and SENSE-ITIVE models are represented in terms of real-valued isomorphisms, allowing for a statistical analysis of reconstructed voxel means, variances, and correlations resulting from the use of different coil and voxel covariance structures used in the reconstruction processes to be conducted. It is shown through both theoretical and experimental illustrations that the miss-specification of the coil and voxel covariance structures in the SENSE model results in a lower standard deviation in each voxel of the reconstructed images, and thus an artificial increase in SNR, compared to the standard deviation and SNR of the SENSE-ITIVE model where both the coil and voxel covariances are appropriately accounted for. It is also shown that there are differences in the correlations induced by the reconstruction operations of both models, and consequently there are differences in the correlations estimated throughout the course of reconstructed time series. These differences in correlations could result in meaningful differences in interpretation of results. PMID:22617147
Lee, Jun Ho; Byun, Min Soo; Sohn, Bo Kyung; Choe, Young Min; Yi, Dahyun; Han, Ji Young; Choi, Hyo Jung; Baek, Hyewon; Woo, Jong Inn; Lee, Dong Young
2015-09-01
We aimed to elucidate the functional neuroanatomical correlates of Frontal Assessment Battery (FAB) performances by applying [(18)F]fluorodeoxyglucose positron emission tomography (FDG-PET) to a large population of patients with Alzheimer disease (AD). The FAB was administered to 177 patients with AD, and regional cerebral glucose metabolism (rCMglc) was measured by FDG-PET scan. Correlations between FAB scores and rCMglc were explored using both region-of-interest-based (ROI-based) and voxel-based approaches. The ROI-based analysis showed that FAB scores correlated with the rCMglc of the dorsolateral prefrontal cortices. Voxel-based approach revealed significant positive correlations between FAB scores and rCMglc which were in various cortical regions including the temporal and parietal cortices as well as frontal regions, independent of age, gender, and education. After controlling the effect of global disease severity with Mini-Mental State Examination score, significant positive correlation was found only in the bilateral prefrontal regions. Although FAB scores are influenced by temporoparietal dysfunction due to the overall progression of AD, it likely reflects prefrontal dysfunction specifically regardless of global cognitive state or disease severity in patients with AD. © The Author(s) 2015.
Rigters, Stephanie C; Cremers, Lotte G M; Ikram, M Arfan; van der Schroeff, Marc P; de Groot, Marius; Roshchupkin, Gennady V; Niessen, Wiro J N; Baatenburg de Jong, Robert J; Goedegebure, André; Vernooij, Meike W
2018-01-01
To study the relation between the microstructure of white matter in the brain and hearing function in older adults we carried out a population-based, cross-sectional study. In 2562 participants of the Rotterdam Study, we conducted diffusion tensor imaging to determine the microstructure of the white-matter tracts. We performed pure-tone audiogram and digit-in-noise tests to quantify hearing acuity. Poorer white-matter microstructure, especially in the association tracts, was related to poorer hearing acuity. After differentiating the separate white-matter tracts in the left and right hemisphere, poorer white-matter microstructure in the right superior longitudinal fasciculus and the right uncinate fasciculus remained significantly associated with worse hearing. These associations did not significantly differ between middle-aged (51-69 years old) and older (70-100 years old) participants. Progressing age was thus not found to be an effect modifier. In a voxel-based analysis no voxels in the white matter were significantly associated with hearing impairment. Copyright © 2017 Elsevier Inc. All rights reserved.
Zhang, Tianhao; Casanova, Ramon; Resnick, Susan M.; Manson, JoAnn E.; Baker, Laura D.; Padual, Claudia B.; Kuller, Lewis H.; Bryan, R. Nick; Espeland, Mark A.; Davatzikos, Christos
2016-01-01
Backgrounds The Women's Health Initiative Memory Study Magnetic Resonance Imaging (WHIMS-MRI) provides an opportunity to evaluate how menopausal hormone therapy (HT) affects the structure of older women’s brains. Our earlier work based on region of interest (ROI) analysis demonstrated potential structural changes underlying adverse effects of HT on cognition. However, the ROI-based analysis is limited in statistical power and precision, and cannot provide fine-grained mapping of whole-brain changes. Methods We aimed to identify local structural differences between HT and placebo groups from WHIMS-MRI in a whole-brain refined level, by using a novel method, named Optimally-Discriminative Voxel-Based Analysis (ODVBA). ODVBA is a recently proposed imaging pattern analysis approach for group comparisons utilizing a spatially adaptive analysis scheme to accurately locate areas of group differences, thereby providing superior sensitivity and specificity to detect the structural brain changes over conventional methods. Results Women assigned to HT treatments had significant Gray Matter (GM) losses compared to the placebo groups in the anterior cingulate and the adjacent medial frontal gyrus, and the orbitofrontal cortex, which persisted after multiple comparison corrections. There were no regions where HT was significantly associated with larger volumes compared to placebo, although a trend of marginal significance was found in the posterior cingulate cortical area. The CEE-Alone and CEE+MPA groups, although compared with different placebo controls, demonstrated similar effects according to the spatial patterns of structural changes. Conclusions HT had adverse effects on GM volumes and risk for cognitive impairment and dementia in older women. These findings advanced our understanding of the neurobiological underpinnings of HT effects. PMID:26974440
Vitality Forms Processing in the Insula during Action Observation: A Multivoxel Pattern Analysis
Di Cesare, Giuseppe; Valente, Giancarlo; Di Dio, Cinzia; Ruffaldi, Emanuele; Bergamasco, Massimo; Goebel, Rainer; Rizzolatti, Giacomo
2016-01-01
Observing the style of an action done by others allows the observer to understand the cognitive state of the agent. This information has been defined by Stern “vitality forms”. Previous experiments showed that the dorso-central insula is selectively active both during vitality form observation and execution. In the present study, we presented participants with videos showing hand actions performed with different velocities and asked them to judge either their vitality form (gentle, neutral, rude) or their velocity (slow, medium, fast). The aim of the present study was to assess, using multi-voxel pattern analysis, whether vitality forms and velocities of observed goal-directed actions are differentially processed in the insula, and more specifically whether action velocity is encoded per se or it is an element that triggers neural populations of the insula encoding the vitality form. The results showed that, consistently across subjects, in the dorso-central sector of the insula there were voxels selectively tuned to vitality forms, while voxel tuned to velocity were rare. These results indicate that the dorso-central insula, which previous data showed to be involved in the vitality form processing, contains voxels specific for the action style processing. PMID:27375461
Vitality Forms Processing in the Insula during Action Observation: A Multivoxel Pattern Analysis.
Di Cesare, Giuseppe; Valente, Giancarlo; Di Dio, Cinzia; Ruffaldi, Emanuele; Bergamasco, Massimo; Goebel, Rainer; Rizzolatti, Giacomo
2016-01-01
Observing the style of an action done by others allows the observer to understand the cognitive state of the agent. This information has been defined by Stern "vitality forms". Previous experiments showed that the dorso-central insula is selectively active both during vitality form observation and execution. In the present study, we presented participants with videos showing hand actions performed with different velocities and asked them to judge either their vitality form (gentle, neutral, rude) or their velocity (slow, medium, fast). The aim of the present study was to assess, using multi-voxel pattern analysis, whether vitality forms and velocities of observed goal-directed actions are differentially processed in the insula, and more specifically whether action velocity is encoded per se or it is an element that triggers neural populations of the insula encoding the vitality form. The results showed that, consistently across subjects, in the dorso-central sector of the insula there were voxels selectively tuned to vitality forms, while voxel tuned to velocity were rare. These results indicate that the dorso-central insula, which previous data showed to be involved in the vitality form processing, contains voxels specific for the action style processing.
Lin, Hsin-Hon; Chuang, Keh-Shih; Lin, Yi-Hsing; Ni, Yu-Ching; Wu, Jay; Jan, Meei-Ling
2014-10-21
GEANT4 Application for Tomographic Emission (GATE) is a powerful Monte Carlo simulator that combines the advantages of the general-purpose GEANT4 simulation code and the specific software tool implementations dedicated to emission tomography. However, the detailed physical modelling of GEANT4 is highly computationally demanding, especially when tracking particles through voxelized phantoms. To circumvent the relatively slow simulation of voxelized phantoms in GATE, another efficient Monte Carlo code can be used to simulate photon interactions and transport inside a voxelized phantom. The simulation system for emission tomography (SimSET), a dedicated Monte Carlo code for PET/SPECT systems, is well-known for its efficiency in simulation of voxel-based objects. An efficient Monte Carlo workflow integrating GATE and SimSET for simulating pinhole SPECT has been proposed to improve voxelized phantom simulation. Although the workflow achieves a desirable increase in speed, it sacrifices the ability to simulate decaying radioactive sources such as non-pure positron emitters or multiple emission isotopes with complex decay schemes and lacks the modelling of time-dependent processes due to the inherent limitations of the SimSET photon history generator (PHG). Moreover, a large volume of disk storage is needed to store the huge temporal photon history file produced by SimSET that must be transported to GATE. In this work, we developed a multiple photon emission history generator (MPHG) based on SimSET/PHG to support a majority of the medically important positron emitters. We incorporated the new generator codes inside GATE to improve the simulation efficiency of voxelized phantoms in GATE, while eliminating the need for the temporal photon history file. The validation of this new code based on a MicroPET R4 system was conducted for (124)I and (18)F with mouse-like and rat-like phantoms. Comparison of GATE/MPHG with GATE/GEANT4 indicated there is a slight difference in energy spectra for energy below 50 keV due to the lack of x-ray simulation from (124)I decay in the new code. The spatial resolution, scatter fraction and count rate performance are in good agreement between the two codes. For the case studies of (18)F-NaF ((124)I-IAZG) using MOBY phantom with 1 × 1 × 1 mm(3) voxel sizes, the results show that GATE/MPHG can achieve acceleration factors of approximately 3.1 × (4.5 ×), 6.5 × (10.7 ×) and 9.5 × (31.0 ×) compared with GATE using the regular navigation method, the compressed voxel method and the parameterized tracking technique, respectively. In conclusion, the implementation of MPHG in GATE allows for improved efficiency of voxelized phantom simulations and is suitable for studying clinical and preclinical imaging.
Calculation of Dose Deposition in 3D Voxels by Heavy Ions
NASA Technical Reports Server (NTRS)
Plante, Ianik; Cucinotta, Francis A.
2010-01-01
The biological response to high-LET radiation is very different from low-LET radiation, and can be partly attributed to the energy deposition by the radiation. Several experiments, notably detection of gamma-H2AX foci by immunofluorescence, has revealed important differences in the nature and in the spatial distribution of double-strand breaks (DSB) induced by low- and high-LET radiations. Many calculations, most of which are based on amorphous track models with radial dose, have been combined with chromosome models to calculate the number and distribution of DSB within nuclei and chromosome aberrations. In this work, the Monte-Carlo track structure simulation code RITRACKS have been used to calculate directly the energy deposition in voxels (3D pixels). A cubic volume of 5 micrometers of side was irradiated by 1) 450 (1)H+ ions of 300 MeV (LET is approximately 0.3 keV/micrometer) and 2) by 1 (56)Fe26+ ion of 1 GeV/amu (LET is approximately 150 keV/micrometer). In both cases, the dose deposited in the volume is approximately 1 Gy. All energy deposition events are recorded and dose is calculated in voxels of 20 micrometers of side. The voxels are then visualized in 3D by using a color scale to represent the intensity of the dose in a voxel. This simple approach has revealed several important points which may help understand experimental observations. In both simulations, voxels which receive low dose are the most numerous, and those corresponding to electron track ends received a dose which is in the higher range. The dose voxels are distributed randomly and scattered uniformly within the volume irradiated by low-LET radiation. The distribution of the voxels shows major differences for the (56)Fe26+ ion. The track structure can still be seen, and voxels with much higher dose are found in the region corresponding to the track "core". These high-dose voxels are not found in the low-LET irradiation simulation and may be responsible for DSB that are more difficult to repair. By applying a threshold on the dose visualization, voxels corresponding to electron track ends are evidenced and the spatial distribution of voxels is very similar to the distribution of DSB observed in gamma H2AX experiments, even if no chromosomes have been included in the simulation. Furthermore, this work has shown that a significant dose is deposited in voxels corresponding to electron track ends. Since some delta-rays from iron ion can travel several millimeters, they may also be of radiobiological importance.
[Voxel-Based Morphometry in Autism Spectrum Disorder].
Yamasue, Hidenori
2017-05-01
Autism spectrum disorder shows deficits in social communication and interaction including nonverbal communicative behaviors (e.g., eye contact, gestures, voice prosody, and facial expressions) and restricted and repetitive behaviors as its core symptoms. These core symptoms are emerged as an atypical behavioral development in toddlers with the disorder. Atypical neural development is considered to be a neural underpinning of such behaviorally atypical development. A number of studies using voxel-based morphometry have already been conducted to compare regional brain volumes between individuals with autism spectrum disorder and those with typical development. Furthermore, more than ten papers employing meta-analyses of the comparisons using voxel based morphometry between individuals with autism spectrum disorder and those with typical development have already been published. The current review paper adds some brief discussions about potential factors contributing to the inconsistency observed in the previous findings such as difficulty in controlling the confounding effects of different developmental phases among study participants.
In vivo spatial correlation between (18)F-BPA and (18)F-FDG uptakes in head and neck cancer.
Kobayashi, Kazuma; Kurihara, Hiroaki; Watanabe, Yoshiaki; Murakami, Naoya; Inaba, Koji; Nakamura, Satoshi; Wakita, Akihisa; Okamoto, Hiroyuki; Umezawa, Rei; Takahashi, Kana; Igaki, Hiroshi; Ito, Yoshinori; Yoshimoto, Seiichi; Shigematsu, Naoyuki; Itami, Jun
2016-09-01
Borono-2-(18)F-fluoro-phenylalanine ((18)F-BPA) has been used to estimate the therapeutic effects of boron neutron capture therapy (BNCT), while (18)F-fluorodeoxyglucose ((18)F-FDG) is the most commonly used positron emission tomography (PET) radiopharmaceutical in a routine clinical use. The aim of the present study was to evaluate spatial correlation between (18)F-BPA and (18)F-FDG uptakes using a deformable image registration-based technique. Ten patients with head and neck cancer were recruited from January 2014 to December 2014. All patients underwent whole-body (18)F-BPA PET/computed tomography (CT) and (18)F-FDG PET/CT within a 2-week period. For each patient, (18)F-BPA PET/CT and (18)F-FDG PET/CT images were aligned based on a deformable image registration framework. The voxel-by-voxel spatial correlation of standardized uptake value (SUV) within the tumor was analyzed. Our image processing framework achieved accurate and validated registration results for each PET/CT image. In 9/10 patients, the spatial distribution of SUVs between (18)F-BPA and (18)F-FDG showed a significant, positive correlation in the tumor volume. Deformable image registration-based voxel-wise analysis demonstrated a spatial correlation between (18)F-BPA and (18)F-FDG uptakes in the head and neck cancer. A tumor sub-volume with a high (18)F-FDG uptake may predict high accumulation of (18)F-BPA. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Thinner retinal layers are associated with changes in the visual pathway: A population-based study.
Mutlu, Unal; Ikram, Mohammad K; Roshchupkin, Gennady V; Bonnemaijer, Pieter W M; Colijn, Johanna M; Vingerling, Johannes R; Niessen, Wiro J; Ikram, Mohammad A; Klaver, Caroline C W; Vernooij, Meike W
2018-06-23
Increasing evidence shows that thinner retinal nerve fiber layer (RNFL) and ganglion cell layer (GCL), assessed on optical coherence tomography (OCT), are reflecting global brain atrophy. Yet, little is known on the relation of these layers with specific brain regions. Using voxel-based analysis, we aimed to unravel specific brain regions associated with these retinal layers. We included 2,235 persons (mean age: 67.3 years, 55% women) from the Rotterdam Study (2007-2012) who had gradable retinal OCT images and brain magnetic resonance imaging (MRI) scans, including diffusion tensor (DT) imaging. Thicknesses of peripapillary RNFL and perimacular GCL were measured using an automated segmentation algorithm. Voxel-based morphometry protocols were applied to process DT-MRI data. We investigated the association between retinal layer thickness with voxel-wise gray matter density and white matter microstructure by performing linear regression models. We found that thinner RNFL and GCL were associated with lower gray matter density in the visual cortex, and with lower fractional anisotropy and higher mean diffusivity in white matter tracts that are part of the optic radiation. Furthermore, thinner GCL was associated with lower gray matter density of the thalamus. Thinner RNFL and GCL are associated with gray and white matter changes in the visual pathway suggesting that retinal thinning on OCT may be specifically associated with changes in the visual pathway rather than with changes in the global brain. These findings may serve as a basis for understanding visual symptoms in elderly patients, patients with Alzheimer's disease, or patients with posterior cortical atrophy. © 2018 Wiley Periodicals, Inc.
Cavallin, L; Axelsson, R; Wahlund, L O; Oksengard, A R; Svensson, L; Juhlin, P; Wiberg, M Kristoffersen; Frank, A
2008-12-01
Current diagnosis of Alzheimer disease is made by clinical, neuropsychologic, and neuroimaging assessments. Neuroimaging techniques such as magnetic resonance imaging (MRI) and single-photon emission computed tomography (SPECT) could be valuable in the differential diagnosis of Alzheimer disease, as well as in assessing prognosis. To compare SPECT and MRI in a cohort of patients examined for suspected dementia, including patients with no objective cognitive impairment (control group), mild cognitive impairment (MCI), and Alzheimer disease (AD). 24 patients, eight with AD, 10 with MCI, and six controls, were investigated with SPECT using (99m)Tc-hexamethylpropyleneamine oxime (HMPAO, Ceretec; GE Healthcare Ltd., Little Chalsont UK) and dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) with a contrast-enhancing gadobutrol formula (Gadovist; Bayer Schering Pharma, Berlin, Germany). Voxel-based correlation between coregistered SPECT and DSC-MR images was calculated. Region-of-interest (ROI) analyses were then performed in 24 different brain areas using brain registration and analysis of SPECT studies (BRASS; Nuclear Diagnostics AB, Stockholm, Sweden) on both SPECT and DSC-MRI. Voxel-based correlation between coregistered SPECT and DSC-MR showed a high correlation, with a mean correlation coefficient of 0.94. ROI analyses of 24 regions showed significant differences between the control group and AD patients in 10 regions using SPECT and five regions in DSC-MR. SPECT remains superior to DSC-MRI in differentiating normal from pathological perfusion, and DSC-MRI could not replace SPECT in the diagnosis of patients with Alzheimer disease.
Aydin, K; Ucar, A; Oguz, K K; Okur, O O; Agayev, A; Unal, Z; Yilmaz, S; Ozturk, C
2007-01-01
The training to acquire or practicing to perform a skill, which may lead to structural changes in the brain, is called experience-dependent structural plasticity. The main purpose of this cross-sectional study was to investigate the presence of experience-dependent structural plasticity in mathematicians' brains, which may develop after long-term practice of mathematic thinking. Twenty-six volunteer mathematicians, who have been working as academicians, were enrolled in the study. We applied an optimized method of voxel-based morphometry in the mathematicians and the age- and sex-matched control subjects. We assessed the gray and white matter density differences in mathematicians and the control subjects. Moreover, the correlation between the cortical density and the time spent as an academician was investigated. We found that cortical gray matter density in the left inferior frontal and bilateral inferior parietal lobules of the mathematicians were significantly increased compared with the control subjects. Furthermore, increase in gray matter density in the right inferior parietal lobule of the mathematicians was strongly correlated with the time spent as an academician (r = 0.84; P < .01). Left-inferior frontal and bilateral parietal regions are involved in arithmetic processing. Inferior parietal regions are also involved in high-level mathematic thinking, which requires visuospatial imagery, such as mental creation and manipulation of 3D objects. The voxel-based morphometric analysis of mathematicians' brains revealed increased gray matter density in the cortical regions related to mathematic thinking. The correlation between cortical density increase and the time spent as an academician suggests experience-dependent structural plasticity in mathematicians' brains.
A SVM-based quantitative fMRI method for resting-state functional network detection.
Song, Xiaomu; Chen, Nan-kuei
2014-09-01
Resting-state functional magnetic resonance imaging (fMRI) aims to measure baseline neuronal connectivity independent of specific functional tasks and to capture changes in the connectivity due to neurological diseases. Most existing network detection methods rely on a fixed threshold to identify functionally connected voxels under the resting state. Due to fMRI non-stationarity, the threshold cannot adapt to variation of data characteristics across sessions and subjects, and generates unreliable mapping results. In this study, a new method is presented for resting-state fMRI data analysis. Specifically, the resting-state network mapping is formulated as an outlier detection process that is implemented using one-class support vector machine (SVM). The results are refined by using a spatial-feature domain prototype selection method and two-class SVM reclassification. The final decision on each voxel is made by comparing its probabilities of functionally connected and unconnected instead of a threshold. Multiple features for resting-state analysis were extracted and examined using an SVM-based feature selection method, and the most representative features were identified. The proposed method was evaluated using synthetic and experimental fMRI data. A comparison study was also performed with independent component analysis (ICA) and correlation analysis. The experimental results show that the proposed method can provide comparable or better network detection performance than ICA and correlation analysis. The method is potentially applicable to various resting-state quantitative fMRI studies. Copyright © 2014 Elsevier Inc. All rights reserved.
Barnea-Goraly, Naama; Chang, Kiki D; Karchemskiy, Asya; Howe, Meghan E; Reiss, Allan L
2009-08-01
Bipolar disorder (BD) is a common and debilitating condition, often beginning in adolescence. Converging evidence from genetic and neuroimaging studies indicates that white matter abnormalities may be involved in BD. In this study, we investigated white matter structure in adolescents with familial bipolar disorder using diffusion tensor imaging (DTI) and a whole brain analysis. We analyzed DTI images using tract-based spatial statistics (TBSS), a whole-brain voxel-by-voxel analysis, to investigate white matter structure in 21 adolescents with BD, who also were offspring of at least one parent with BD, and 18 age- and IQ-matched control subjects. Fractional anisotropy (FA; a measure of diffusion anisotropy), trace values (average diffusivity), and apparent diffusion coefficient (ADC; a measure of overall diffusivity) were used as variables in this analysis. In a post hoc analysis, we correlated between FA values, behavioral measures, and medication exposure. Adolescents with BD had lower FA values than control subjects in the fornix, the left mid-posterior cingulate gyrus, throughout the corpus callosum, in fibers extending from the fornix to the thalamus, and in parietal and occipital corona radiata bilaterally. There were no significant between-group differences in trace or ADC values and no significant correlation between behavioral measures, medication exposure, and FA values. Significant white matter tract alterations in adolescents with BD were observed in regions involved in emotional, behavioral, and cognitive regulation. These results suggest that alterations in white matter are present early in the course of disease in familial BD.
Soto, Fabian A.; Waldschmidt, Jennifer G.; Helie, Sebastien; Ashby, F. Gregory
2013-01-01
Previous evidence suggests that relatively separate neural networks underlie initial learning of rule-based and information-integration categorization tasks. With the development of automaticity, categorization behavior in both tasks becomes increasingly similar and exclusively related to activity in cortical regions. The present study uses multi-voxel pattern analysis to directly compare the development of automaticity in different categorization tasks. Each of three groups of participants received extensive training in a different categorization task: either an information-integration task, or one of two rule-based tasks. Four training sessions were performed inside an MRI scanner. Three different analyses were performed on the imaging data from a number of regions of interest (ROIs). The common patterns analysis had the goal of revealing ROIs with similar patterns of activation across tasks. The unique patterns analysis had the goal of revealing ROIs with dissimilar patterns of activation across tasks. The representational similarity analysis aimed at exploring (1) the similarity of category representations across ROIs and (2) how those patterns of similarities compared across tasks. The results showed that common patterns of activation were present in motor areas and basal ganglia early in training, but only in the former later on. Unique patterns were found in a variety of cortical and subcortical areas early in training, but they were dramatically reduced with training. Finally, patterns of representational similarity between brain regions became increasingly similar across tasks with the development of automaticity. PMID:23333700
Biesbroek, J Matthijs; Weaver, Nick A; Hilal, Saima; Kuijf, Hugo J; Ikram, Mohammad Kamran; Xu, Xin; Tan, Boon Yeow; Venketasubramanian, Narayanaswamy; Postma, Albert; Biessels, Geert Jan; Chen, Christopher P L H
2016-01-01
Studies on the impact of small vessel disease (SVD) on cognition generally focus on white matter hyperintensity (WMH) volume. The extent to which WMH location relates to cognitive performance has received less attention, but is likely to be functionally important. We examined the relation between WMH location and cognition in a memory clinic cohort of patients with sporadic SVD. A total of 167 patients with SVD were recruited from memory clinics. Assumption-free region of interest-based analyses based on major white matter tracts and voxel-wise analyses were used to determine the association between WMH location and executive functioning, visuomotor speed and memory. Region of interest-based analyses showed that WMHs located particularly within the anterior thalamic radiation and forceps minor were inversely associated with both executive functioning and visuomotor speed, independent of total WMH volume. Memory was significantly associated with WMH volume in the forceps minor, independent of total WMH volume. An independent assumption-free voxel-wise analysis identified strategic voxels in these same tracts. Region of interest-based analyses showed that WMH volume within the anterior thalamic radiation explained 6.8% of variance in executive functioning, compared to 3.9% for total WMH volume; WMH volume within the forceps minor explained 4.6% of variance in visuomotor speed and 4.2% of variance in memory, compared to 1.8% and 1.3% respectively for total WMH volume. Our findings identify the anterior thalamic radiation and forceps minor as strategic white matter tracts in which WMHs are most strongly associated with cognitive impairment in memory clinic patients with SVD. WMH volumes in individual tracts explained more variance in cognition than total WMH burden, emphasizing the importance of lesion location when addressing the functional consequences of WMHs.
Multivariate detrending of fMRI signal drifts for real-time multiclass pattern classification.
Lee, Dongha; Jang, Changwon; Park, Hae-Jeong
2015-03-01
Signal drift in functional magnetic resonance imaging (fMRI) is an unavoidable artifact that limits classification performance in multi-voxel pattern analysis of fMRI. As conventional methods to reduce signal drift, global demeaning or proportional scaling disregards regional variations of drift, whereas voxel-wise univariate detrending is too sensitive to noisy fluctuations. To overcome these drawbacks, we propose a multivariate real-time detrending method for multiclass classification that involves spatial demeaning at each scan and the recursive detrending of drifts in the classifier outputs driven by a multiclass linear support vector machine. Experiments using binary and multiclass data showed that the linear trend estimation of the classifier output drift for each class (a weighted sum of drifts in the class-specific voxels) was more robust against voxel-wise artifacts that lead to inconsistent spatial patterns and the effect of online processing than voxel-wise detrending. The classification performance of the proposed method was significantly better, especially for multiclass data, than that of voxel-wise linear detrending, global demeaning, and classifier output detrending without demeaning. We concluded that the multivariate approach using classifier output detrending of fMRI signals with spatial demeaning preserves spatial patterns, is less sensitive than conventional methods to sample size, and increases classification performance, which is a useful feature for real-time fMRI classification. Copyright © 2014 Elsevier Inc. All rights reserved.
Coarse Point Cloud Registration by Egi Matching of Voxel Clusters
NASA Astrophysics Data System (ADS)
Wang, Jinhu; Lindenbergh, Roderik; Shen, Yueqian; Menenti, Massimo
2016-06-01
Laser scanning samples the surface geometry of objects efficiently and records versatile information as point clouds. However, often more scans are required to fully cover a scene. Therefore, a registration step is required that transforms the different scans into a common coordinate system. The registration of point clouds is usually conducted in two steps, i.e. coarse registration followed by fine registration. In this study an automatic marker-free coarse registration method for pair-wise scans is presented. First the two input point clouds are re-sampled as voxels and dimensionality features of the voxels are determined by principal component analysis (PCA). Then voxel cells with the same dimensionality are clustered. Next, the Extended Gaussian Image (EGI) descriptor of those voxel clusters are constructed using significant eigenvectors of each voxel in the cluster. Correspondences between clusters in source and target data are obtained according to the similarity between their EGI descriptors. The random sampling consensus (RANSAC) algorithm is employed to remove outlying correspondences until a coarse alignment is obtained. If necessary, a fine registration is performed in a final step. This new method is illustrated on scan data sampling two indoor scenarios. The results of the tests are evaluated by computing the point to point distance between the two input point clouds. The presented two tests resulted in mean distances of 7.6 mm and 9.5 mm respectively, which are adequate for fine registration.
Reliability evaluation of I-123 ADAM SPECT imaging using SPM software and AAL ROI methods
NASA Astrophysics Data System (ADS)
Yang, Bang-Hung; Tsai, Sung-Yi; Wang, Shyh-Jen; Su, Tung-Ping; Chou, Yuan-Hwa; Chen, Chia-Chieh; Chen, Jyh-Cheng
2011-08-01
The level of serotonin was regulated by serotonin transporter (SERT), which is a decisive protein in regulation of serotonin neurotransmission system. Many psychiatric disorders and therapies were also related to concentration of cerebral serotonin. I-123 ADAM was the novel radiopharmaceutical to image SERT in brain. The aim of this study was to measure reliability of SERT densities of healthy volunteers by automated anatomical labeling (AAL) method. Furthermore, we also used statistic parametric mapping (SPM) on a voxel by voxel analysis to find difference of cortex between test and retest of I-123 ADAM single photon emission computed tomography (SPECT) images.Twenty-one healthy volunteers were scanned twice with SPECT at 4 h after intravenous administration of 185 MBq of 123I-ADAM. The image matrix size was 128×128 and pixel size was 3.9 mm. All images were obtained through filtered back-projection (FBP) reconstruction algorithm. Region of interest (ROI) definition was performed based on the AAL brain template in PMOD version 2.95 software package. ROI demarcations were placed on midbrain, pons, striatum, and cerebellum. All images were spatially normalized to the SPECT MNI (Montreal Neurological Institute) templates supplied with SPM2. And each image was transformed into standard stereotactic space, which was matched to the Talairach and Tournoux atlas. Then differences across scans were statistically estimated on a voxel by voxel analysis using paired t-test (population main effect: 2 cond's, 1 scan/cond.), which was applied to compare concentration of SERT between the test and retest cerebral scans.The average of specific uptake ratio (SUR: target/cerebellum-1) of 123I-ADAM binding to SERT in midbrain was 1.78±0.27, pons was 1.21±0.53, and striatum was 0.79±0.13. The cronbach's α of intra-class correlation coefficient (ICC) was 0.92. Besides, there was also no significant statistical finding in cerebral area using SPM2 analysis. This finding might help us to understand reliability of I-123 ADAM SPECT imaging and further develop new strategy for the treatment of psychiatric disorders.
Functional Connectivity Parcellation of the Human Thalamus by Independent Component Analysis.
Zhang, Sheng; Li, Chiang-Shan R
2017-11-01
As a key structure to relay and integrate information, the thalamus supports multiple cognitive and affective functions through the connectivity between its subnuclei and cortical and subcortical regions. Although extant studies have largely described thalamic regional functions in anatomical terms, evidence accumulates to suggest a more complex picture of subareal activities and connectivities of the thalamus. In this study, we aimed to parcellate the thalamus and examine whole-brain connectivity of its functional clusters. With resting state functional magnetic resonance imaging data from 96 adults, we used independent component analysis (ICA) to parcellate the thalamus into 10 components. On the basis of the independence assumption, ICA helps to identify how subclusters overlap spatially. Whole brain functional connectivity of each subdivision was computed for independent component's time course (ICtc), which is a unique time series to represent an IC. For comparison, we computed seed-region-based functional connectivity using the averaged time course across all voxels within a thalamic subdivision. The results showed that, at p < 10 -6 , corrected, 49% of voxels on average overlapped among subdivisions. Compared with seed-region analysis, ICtc analysis revealed patterns of connectivity that were more distinguished between thalamic clusters. ICtc analysis demonstrated thalamic connectivity to the primary motor cortex, which has eluded the analysis as well as previous studies based on averaged time series, and clarified thalamic connectivity to the hippocampus, caudate nucleus, and precuneus. The new findings elucidate functional organization of the thalamus and suggest that ICA clustering in combination with ICtc rather than seed-region analysis better distinguishes whole-brain connectivities among functional clusters of a brain region.
Real-time Interpolation for True 3-Dimensional Ultrasound Image Volumes
Ji, Songbai; Roberts, David W.; Hartov, Alex; Paulsen, Keith D.
2013-01-01
We compared trilinear interpolation to voxel nearest neighbor and distance-weighted algorithms for fast and accurate processing of true 3-dimensional ultrasound (3DUS) image volumes. In this study, the computational efficiency and interpolation accuracy of the 3 methods were compared on the basis of a simulated 3DUS image volume, 34 clinical 3DUS image volumes from 5 patients, and 2 experimental phantom image volumes. We show that trilinear interpolation improves interpolation accuracy over both the voxel nearest neighbor and distance-weighted algorithms yet achieves real-time computational performance that is comparable to the voxel nearest neighbor algrorithm (1–2 orders of magnitude faster than the distance-weighted algorithm) as well as the fastest pixel-based algorithms for processing tracked 2-dimensional ultrasound images (0.035 seconds per 2-dimesional cross-sectional image [76,800 pixels interpolated, or 0.46 ms/1000 pixels] and 1.05 seconds per full volume with a 1-mm3 voxel size [4.6 million voxels interpolated, or 0.23 ms/1000 voxels]). On the basis of these results, trilinear interpolation is recommended as a fast and accurate interpolation method for rectilinear sampling of 3DUS image acquisitions, which is required to facilitate subsequent processing and display during operating room procedures such as image-guided neurosurgery. PMID:21266563
Real-time interpolation for true 3-dimensional ultrasound image volumes.
Ji, Songbai; Roberts, David W; Hartov, Alex; Paulsen, Keith D
2011-02-01
We compared trilinear interpolation to voxel nearest neighbor and distance-weighted algorithms for fast and accurate processing of true 3-dimensional ultrasound (3DUS) image volumes. In this study, the computational efficiency and interpolation accuracy of the 3 methods were compared on the basis of a simulated 3DUS image volume, 34 clinical 3DUS image volumes from 5 patients, and 2 experimental phantom image volumes. We show that trilinear interpolation improves interpolation accuracy over both the voxel nearest neighbor and distance-weighted algorithms yet achieves real-time computational performance that is comparable to the voxel nearest neighbor algrorithm (1-2 orders of magnitude faster than the distance-weighted algorithm) as well as the fastest pixel-based algorithms for processing tracked 2-dimensional ultrasound images (0.035 seconds per 2-dimesional cross-sectional image [76,800 pixels interpolated, or 0.46 ms/1000 pixels] and 1.05 seconds per full volume with a 1-mm(3) voxel size [4.6 million voxels interpolated, or 0.23 ms/1000 voxels]). On the basis of these results, trilinear interpolation is recommended as a fast and accurate interpolation method for rectilinear sampling of 3DUS image acquisitions, which is required to facilitate subsequent processing and display during operating room procedures such as image-guided neurosurgery.
Use of the GEANT4 Monte Carlo to determine three-dimensional dose factors for radionuclide dosimetry
NASA Astrophysics Data System (ADS)
Amato, Ernesto; Italiano, Antonio; Minutoli, Fabio; Baldari, Sergio
2013-04-01
The voxel-level dosimetry is the most simple and common approach to internal dosimetry of nonuniform distributions of activity within the human body. Aim of this work was to obtain the dose "S" factors (mGy/MBqs) at the voxel level for eight beta and beta-gamma emitting radionuclides commonly used in nuclear medicine diagnostic and therapeutic procedures. We developed a Monte Carlo simulation in GEANT4 of a region of soft tissue as defined by the ICRP, divided into 11×11×11 cubic voxels, 3 mm in side. The simulation used the parameterizations of the electromagnetic interaction optimized for low energy (EEDL, EPDL). The decay of each radionuclide (32P, 90Y, 99mTc, 177Lu, 131I, 153Sm, 186Re, 188Re) were simulated homogeneously distributed within the central voxel (0,0,0), and the energy deposited in the surrounding voxels was mediated on the 8 octants of the three dimensional space, for reasons of symmetry. The results obtained were compared with those available in the literature. While the iodine deviations remain within 16%, for phosphorus, a pure beta emitter, the agreement is very good for self-dose (0,0,0) and good for the dose to first neighbors, while differences are observed ranging from -60% to +100% for voxels far distant from the source. The existence of significant differences in the percentage calculation of the voxel S factors, especially for pure beta emitters such as 32P or 90Y, has already been highlighted by other authors. These data can usefully extend the dosimetric approach based on the voxel to other radionuclides not covered in the available literature.
Buchsbaum, Monte S; Simmons, Alan N; DeCastro, Alex; Farid, Nikdokht; Matthews, Scott C
2015-11-15
Individuals with mild traumatic brain injury (TBI) show diminished metabolic activity when studied with positron emission tomography (PET) with (18)F-fluorodeoxyglucose (FDG). Since blast injury may not be localized in the same specific anatomical areas in every patient or may be diffuse, significance probability mapping may be vulnerable to false-negative detection of abnormalities. To address this problem, we used an anatomically independent measure to assess PET scans: increased numbers of contiguous voxels that are 2 standard deviations below values found in an uninjured control group. We examined this in three age-matched groups of male patients: 16 veterans with a history of mild TBI, 17 veterans with both mild TBI and post-traumatic stress disorder (PTSD), and 15 veterans without either condition. After FDG administration, subjects performed a modified version of the California Verbal Learning Task. Clusters of low uptake voxels were identified by computing the mean and standard deviation for each voxel in the healthy combat veteran group and then determining the voxel-based z-score for the patient groups. Abnormal clusters were defined as those that contained contiguous voxels with a z-score <-2. Patients with mild TBI alone and patients with TBI+PTSD had larger clusters of low uptake voxels, and cluster size significantly differentiated the mild TBI groups from combat controls. Clusters were more irregular in shape in patients, and patients also had a larger number of low-activity voxels throughout the brain. In mild TBI and TBI+PTSD patients, but not healthy subjects, cluster volume was significantly correlated with verbal learning during FDG uptake.
Schmitter, Daniel; Roche, Alexis; Maréchal, Bénédicte; Ribes, Delphine; Abdulkadir, Ahmed; Bach-Cuadra, Meritxell; Daducci, Alessandro; Granziera, Cristina; Klöppel, Stefan; Maeder, Philippe; Meuli, Reto; Krueger, Gunnar
2014-01-01
Voxel-based morphometry from conventional T1-weighted images has proved effective to quantify Alzheimer's disease (AD) related brain atrophy and to enable fairly accurate automated classification of AD patients, mild cognitive impaired patients (MCI) and elderly controls. Little is known, however, about the classification power of volume-based morphometry, where features of interest consist of a few brain structure volumes (e.g. hippocampi, lobes, ventricles) as opposed to hundreds of thousands of voxel-wise gray matter concentrations. In this work, we experimentally evaluate two distinct volume-based morphometry algorithms (FreeSurfer and an in-house algorithm called MorphoBox) for automatic disease classification on a standardized data set from the Alzheimer's Disease Neuroimaging Initiative. Results indicate that both algorithms achieve classification accuracy comparable to the conventional whole-brain voxel-based morphometry pipeline using SPM for AD vs elderly controls and MCI vs controls, and higher accuracy for classification of AD vs MCI and early vs late AD converters, thereby demonstrating the potential of volume-based morphometry to assist diagnosis of mild cognitive impairment and Alzheimer's disease. PMID:25429357
NASA Astrophysics Data System (ADS)
Li, Xia; Welch, E. Brian; Arlinghaus, Lori R.; Bapsi Chakravarthy, A.; Xu, Lei; Farley, Jaime; Loveless, Mary E.; Mayer, Ingrid A.; Kelley, Mark C.; Meszoely, Ingrid M.; Means-Powell, Julie A.; Abramson, Vandana G.; Grau, Ana M.; Gore, John C.; Yankeelov, Thomas E.
2011-09-01
Quantitative analysis of dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) data requires the accurate determination of the arterial input function (AIF). A novel method for obtaining the AIF is presented here and pharmacokinetic parameters derived from individual and population-based AIFs are then compared. A Philips 3.0 T Achieva MR scanner was used to obtain 20 DCE-MRI data sets from ten breast cancer patients prior to and after one cycle of chemotherapy. Using a semi-automated method to estimate the AIF from the axillary artery, we obtain the AIF for each patient, AIFind, and compute a population-averaged AIF, AIFpop. The extended standard model is used to estimate the physiological parameters using the two types of AIFs. The mean concordance correlation coefficient (CCC) for the AIFs segmented manually and by the proposed AIF tracking approach is 0.96, indicating accurate and automatic tracking of an AIF in DCE-MRI data of the breast is possible. Regarding the kinetic parameters, the CCC values for Ktrans, vp and ve as estimated by AIFind and AIFpop are 0.65, 0.74 and 0.31, respectively, based on the region of interest analysis. The average CCC values for the voxel-by-voxel analysis are 0.76, 0.84 and 0.68 for Ktrans, vp and ve, respectively. This work indicates that Ktrans and vp show good agreement between AIFpop and AIFind while there is a weak agreement on ve.
Neural correlates of text-based emoticons: a preliminary fMRI study.
Kim, Ko Woon; Lee, Sang Won; Choi, Jeewook; Kim, Tae Min; Jeong, Bumseok
2016-08-01
Like nonverbal cues in oral interactions, text-based emoticons, which are textual portrayals of a writer's facial expressions, are commonly used in electronic device-mediated communication. Little is known, however, about how text-based emoticons are processed in the human brain. With this study, we investigated whether the text-based emoticons are processed as face expressions using fMRI. During fMRI scan, subjects were asked to respond by pressing a button, indicating whether text-based emoticons represented positive or negative emotions. Voxel-wise analyses were performed to compare the responses and contrasted with emotional versus scrambled emoticons and among emoticons with different emotions. To explore processing strategies for text-based emoticons, brain activity in the bilateral occipital and fusiform face areas were compared. In the voxel-wise analysis, both emotional and scrambled emoticons were processed mainly in the bilateral fusiform gyri, inferior division of lateral occipital cortex, inferior frontal gyri, dorsolateral prefrontal cortex (DLPFC), dorsal anterior cingulate cortex (dACC), and parietal cortex. In a percent signal change analysis, the right occipital and fusiform face areas showed significantly higher activation than left ones. In comparisons among emoticons, sad one showed significant BOLD signal decrease in the dACC, the left AIC, the bilateral thalamus, and the precuneus as compared with other conditions. The results of this study imply that people recognize text-based emoticons as pictures representing face expressions. Even though text-based emoticons contain emotional meaning, they are not associated with the amygdala while previous studies using emotional stimuli documented amygdala activation.
Tavazzi, Eleonora; Laganà, Maria Marcella; Bergsland, Niels; Tortorella, Paola; Pinardi, Giovanna; Lunetta, Christian; Corbo, Massimo; Rovaris, Marco
2015-03-01
Primary progressive multiple sclerosis (PPMS) and amyotrophic lateral sclerosis (ALS) seem to share some clinical and pathological features. MRI studies revealed the presence of grey matter (GM) atrophy in both diseases, but no comparative data are available. The objective was to compare the regional patterns of GM tissue loss in PPMS and ALS with voxel-based morphometry (VBM). Eighteen PPMS patients, 20 ALS patients, and 31 healthy controls (HC) were studied with a 1.5 Tesla scanner. VBM was performed to assess volumetric GM differences with age and sex as covariates. Threshold-free cluster enhancement analysis was used to obtain significant clusters. Group comparisons were tested with family-wise error correction for multiple comparisons (p < 0.05) except for HC versus MND which was tested at a level of p < 0.001 uncorrected and a cluster threshold of 20 contiguous voxels. Compared to HC, ALS patients showed GM tissue reduction in selected frontal and temporal areas, while PPMS patients showed a widespread bilateral GM volume decrease, involving both deep and cortical regions. Compared to ALS, PPMS patients showed tissue volume reductions in both deep and cortical GM areas. This preliminary study confirms that PPMS is characterized by a more diffuse cortical and subcortical GM atrophy than ALS and that, in the latter condition, brain damage is present outside the motor system. These results suggest that PPMS and ALS may share pathological features leading to GM tissue loss.
NASA Astrophysics Data System (ADS)
Kramer, R.; Vieira, J. W.; Khoury, H. J.; Lima, F. de Andrade
2004-03-01
The International Commission on Radiological Protection intends to revise the organ and tissue equivalent dose conversion coefficients published in various reports. For this purpose the mathematical human medical internal radiation dose (MIRD) phantoms, actually in use, have to be replaced by recently developed voxel-based phantoms. This study investigates the dosimetric consequences, especially with respect to the effective male dose, if not only a MIRD phantom is replaced by a voxel phantom, but also if the tissue compositions and the radiation transport codes are changed. This task will be resolved by systematically replacing in the mathematical ADAM/GSF exposure model, first the radiation transport code, then the tissue composition and finally the phantom anatomy, in order to arrive at the voxel-based MAX/EGS4 exposure model. The results show that the combined effect of these replacements can decrease the effective male dose by up to 25% for external exposures to photons for incident energies above 30 keV for different field geometries, mainly because of increased shielding by a heterogeneous skeleton and by the overlying adipose and muscle tissue, and also because of the positions internal organs have in a realistically designed human body compared to their positions in the mathematically constructed phantom.
- and Graph-Based Point Cloud Segmentation of 3d Scenes Using Perceptual Grouping Laws
NASA Astrophysics Data System (ADS)
Xu, Y.; Hoegner, L.; Tuttas, S.; Stilla, U.
2017-05-01
Segmentation is the fundamental step for recognizing and extracting objects from point clouds of 3D scene. In this paper, we present a strategy for point cloud segmentation using voxel structure and graph-based clustering with perceptual grouping laws, which allows a learning-free and completely automatic but parametric solution for segmenting 3D point cloud. To speak precisely, two segmentation methods utilizing voxel and supervoxel structures are reported and tested. The voxel-based data structure can increase efficiency and robustness of the segmentation process, suppressing the negative effect of noise, outliers, and uneven points densities. The clustering of voxels and supervoxel is carried out using graph theory on the basis of the local contextual information, which commonly conducted utilizing merely pairwise information in conventional clustering algorithms. By the use of perceptual laws, our method conducts the segmentation in a pure geometric way avoiding the use of RGB color and intensity information, so that it can be applied to more general applications. Experiments using different datasets have demonstrated that our proposed methods can achieve good results, especially for complex scenes and nonplanar surfaces of objects. Quantitative comparisons between our methods and other representative segmentation methods also confirms the effectiveness and efficiency of our proposals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klüter, Sebastian, E-mail: sebastian.klueter@med.uni-heidelberg.de; Schubert, Kai; Lissner, Steffen
Purpose: The dosimetric verification of treatment plans in helical tomotherapy usually is carried out via verification measurements. In this study, a method for independent dose calculation of tomotherapy treatment plans is presented, that uses a conventional treatment planning system with a pencil kernel dose calculation algorithm for generation of verification dose distributions based on patient CT data. Methods: A pencil beam algorithm that directly uses measured beam data was configured for dose calculation for a tomotherapy machine. Tomotherapy treatment plans were converted into a format readable by an in-house treatment planning system by assigning each projection to one static treatmentmore » field and shifting the calculation isocenter for each field in order to account for the couch movement. The modulation of the fluence for each projection is read out of the delivery sinogram, and with the kernel-based dose calculation, this information can directly be used for dose calculation without the need for decomposition of the sinogram. The sinogram values are only corrected for leaf output and leaf latency. Using the converted treatment plans, dose was recalculated with the independent treatment planning system. Multiple treatment plans ranging from simple static fields to real patient treatment plans were calculated using the new approach and either compared to actual measurements or the 3D dose distribution calculated by the tomotherapy treatment planning system. In addition, dose–volume histograms were calculated for the patient plans. Results: Except for minor deviations at the maximum field size, the pencil beam dose calculation for static beams agreed with measurements in a water tank within 2%/2 mm. A mean deviation to point dose measurements in the cheese phantom of 0.89% ± 0.81% was found for unmodulated helical plans. A mean voxel-based deviation of −0.67% ± 1.11% for all voxels in the respective high dose region (dose values >80%), and a mean local voxel-based deviation of −2.41% ± 0.75% for all voxels with dose values >20% were found for 11 modulated plans in the cheese phantom. Averaged over nine patient plans, the deviations amounted to −0.14% ± 1.97% (voxels >80%) and −0.95% ± 2.27% (>20%, local deviations). For a lung case, mean voxel-based deviations of more than 4% were found, while for all other patient plans, all mean voxel-based deviations were within ±2.4%. Conclusions: The presented method is suitable for independent dose calculation for helical tomotherapy within the known limitations of the pencil beam algorithm. It can serve as verification of the primary dose calculation and thereby reduce the need for time-consuming measurements. By using the patient anatomy and generating full 3D dose data, and combined with measurements of additional machine parameters, it can substantially contribute to overall patient safety.« less
Significance of the impact of motion compensation on the variability of PET image features
NASA Astrophysics Data System (ADS)
Carles, M.; Bach, T.; Torres-Espallardo, I.; Baltas, D.; Nestle, U.; Martí-Bonmatí, L.
2018-03-01
In lung cancer, quantification by positron emission tomography/computed tomography (PET/CT) imaging presents challenges due to respiratory movement. Our primary aim was to study the impact of motion compensation implied by retrospectively gated (4D)-PET/CT on the variability of PET quantitative parameters. Its significance was evaluated by comparison with the variability due to (i) the voxel size in image reconstruction and (ii) the voxel size in image post-resampling. The method employed for feature extraction was chosen based on the analysis of (i) the effect of discretization of the standardized uptake value (SUV) on complementarity between texture features (TF) and conventional indices, (ii) the impact of the segmentation method on the variability of image features, and (iii) the variability of image features across the time-frame of 4D-PET. Thirty-one PET-features were involved. Three SUV discretization methods were applied: a constant width (SUV resolution) of the resampling bin (method RW), a constant number of bins (method RN) and RN on the image obtained after histogram equalization (method EqRN). The segmentation approaches evaluated were 40% of SUVmax and the contrast oriented algorithm (COA). Parameters derived from 4D-PET images were compared with values derived from the PET image obtained for (i) the static protocol used in our clinical routine (3D) and (ii) the 3D image post-resampled to the voxel size of the 4D image and PET image derived after modifying the reconstruction of the 3D image to comprise the voxel size of the 4D image. Results showed that TF complementarity with conventional indices was sensitive to the SUV discretization method. In the comparison of COA and 40% contours, despite the values not being interchangeable, all image features showed strong linear correlations (r > 0.91, p\\ll 0.001 ). Across the time-frames of 4D-PET, all image features followed a normal distribution in most patients. For our patient cohort, the compensation of tumor motion did not have a significant impact on the quantitative PET parameters. The variability of PET parameters due to voxel size in image reconstruction was more significant than variability due to voxel size in image post-resampling. In conclusion, most of the parameters (apart from the contrast of neighborhood matrix) were robust to the motion compensation implied by 4D-PET/CT. The impact on parameter variability due to the voxel size in image reconstruction and in image post-resampling could not be assumed to be equivalent.
Van Hecke, Wim; Sijbers, Jan; De Backer, Steve; Poot, Dirk; Parizel, Paul M; Leemans, Alexander
2009-07-01
Although many studies are starting to use voxel-based analysis (VBA) methods to compare diffusion tensor images between healthy and diseased subjects, it has been demonstrated that VBA results depend heavily on parameter settings and implementation strategies, such as the applied coregistration technique, smoothing kernel width, statistical analysis, etc. In order to investigate the effect of different parameter settings and implementations on the accuracy and precision of the VBA results quantitatively, ground truth knowledge regarding the underlying microstructural alterations is required. To address the lack of such a gold standard, simulated diffusion tensor data sets are developed, which can model an array of anomalies in the diffusion properties of a predefined location. These data sets can be employed to evaluate the numerous parameters that characterize the pipeline of a VBA algorithm and to compare the accuracy, precision, and reproducibility of different post-processing approaches quantitatively. We are convinced that the use of these simulated data sets can improve the understanding of how different diffusion tensor image post-processing techniques affect the outcome of VBA. In turn, this may possibly lead to a more standardized and reliable evaluation of diffusion tensor data sets of large study groups with a wide range of white matter altering pathologies. The simulated DTI data sets will be made available online (http://www.dti.ua.ac.be).
Positive Contrast Visualization of Nitinol Devices using Susceptibility Gradient Mapping
Vonken, Evert-jan P.A.; Schär, Michael; Stuber, Matthias
2008-01-01
MRI visualization of devices is traditionally based on the signal loss due to T2* effects originating from the local susceptibility differences. To visualize nitinol devices with positive contrast a recently introduced post processing method is adapted to map the induced susceptibility gradients. This method operates on regular gradient echo MR images and maps the shift in k-space in a (small) neighborhood of every voxel by Fourier analysis followed by a center of mass calculation. The quantitative map of the local shifts generates the positive contrast image of the devices, while areas without susceptibility gradients render a background with noise only. The positive signal response of this method depends only on the choice of the voxel neighborhood size. The properties of the method are explained and the visualization of a nitinol wire and two stents are shown for illustration. PMID:18727096
Advances in Modal Analysis Using a Robust and Multiscale Method
NASA Astrophysics Data System (ADS)
Picard, Cécile; Frisson, Christian; Faure, François; Drettakis, George; Kry, Paul G.
2010-12-01
This paper presents a new approach to modal synthesis for rendering sounds of virtual objects. We propose a generic method that preserves sound variety across the surface of an object at different scales of resolution and for a variety of complex geometries. The technique performs automatic voxelization of a surface model and automatic tuning of the parameters of hexahedral finite elements, based on the distribution of material in each cell. The voxelization is performed using a sparse regular grid embedding of the object, which permits the construction of plausible lower resolution approximations of the modal model. We can compute the audible impulse response of a variety of objects. Our solution is robust and can handle nonmanifold geometries that include both volumetric and surface parts. We present a system which allows us to manipulate and tune sounding objects in an appropriate way for games, training simulations, and other interactive virtual environments.
Nithiananthan, Sajendra; Schafer, Sebastian; Mirota, Daniel J; Stayman, J Webster; Zbijewski, Wojciech; Reh, Douglas D; Gallia, Gary L; Siewerdsen, Jeffrey H
2012-09-01
A deformable registration method capable of accounting for missing tissue (e.g., excision) is reported for application in cone-beam CT (CBCT)-guided surgical procedures. Excisions are identified by a segmentation step performed simultaneous to the registration process. Tissue excision is explicitly modeled by increasing the dimensionality of the deformation field to allow motion beyond the dimensionality of the image. The accuracy of the model is tested in phantom, simulations, and cadaver models. A variant of the Demons deformable registration algorithm is modified to include excision segmentation and modeling. Segmentation is performed iteratively during the registration process, with initial implementation using a threshold-based approach to identify voxels corresponding to "tissue" in the moving image and "air" in the fixed image. With each iteration of the Demons process, every voxel is assigned a probability of excision. Excisions are modeled explicitly during registration by increasing the dimensionality of the deformation field so that both deformations and excisions can be accounted for by in- and out-of-volume deformations, respectively. The out-of-volume (i.e., fourth) component of the deformation field at each voxel carries a magnitude proportional to the excision probability computed in the excision segmentation step. The registration accuracy of the proposed "extra-dimensional" Demons (XDD) and conventional Demons methods was tested in the presence of missing tissue in phantom models, simulations investigating the effect of excision size on registration accuracy, and cadaver studies emulating realistic deformations and tissue excisions imparted in CBCT-guided endoscopic skull base surgery. Phantom experiments showed the normalized mutual information (NMI) in regions local to the excision to improve from 1.10 for the conventional Demons approach to 1.16 for XDD, and qualitative examination of the resulting images revealed major differences: the conventional Demons approach imparted unrealistic distortions in areas around tissue excision, whereas XDD provided accurate "ejection" of voxels within the excision site and maintained the registration accuracy throughout the rest of the image. Registration accuracy in areas far from the excision site (e.g., > ∼5 mm) was identical for the two approaches. Quantitation of the effect was consistent in analysis of NMI, normalized cross-correlation (NCC), target registration error (TRE), and accuracy of voxels ejected from the volume (true-positive and false-positive analysis). The registration accuracy for conventional Demons was found to degrade steeply as a function of excision size, whereas XDD was robust in this regard. Cadaver studies involving realistic excision of the clivus, vidian canal, and ethmoid sinuses demonstrated similar results, with unrealistic distortion of anatomy imparted by conventional Demons and accurate ejection and deformation for XDD. Adaptation of the Demons deformable registration process to include segmentation (i.e., identification of excised tissue) and an extra dimension in the deformation field provided a means to accurately accommodate missing tissue between image acquisitions. The extra-dimensional approach yielded accurate "ejection" of voxels local to the excision site while preserving the registration accuracy (typically subvoxel) of the conventional Demons approach throughout the rest of the image. The ability to accommodate missing tissue volumes is important to application of CBCT for surgical guidance (e.g., skull base drillout) and may have application in other areas of CBCT guidance.
Extra-dimensional Demons: A method for incorporating missing tissue in deformable image registration
Nithiananthan, Sajendra; Schafer, Sebastian; Mirota, Daniel J.; Stayman, J. Webster; Zbijewski, Wojciech; Reh, Douglas D.; Gallia, Gary L.; Siewerdsen, Jeffrey H.
2012-01-01
Purpose: A deformable registration method capable of accounting for missing tissue (e.g., excision) is reported for application in cone-beam CT (CBCT)-guided surgical procedures. Excisions are identified by a segmentation step performed simultaneous to the registration process. Tissue excision is explicitly modeled by increasing the dimensionality of the deformation field to allow motion beyond the dimensionality of the image. The accuracy of the model is tested in phantom, simulations, and cadaver models. Methods: A variant of the Demons deformable registration algorithm is modified to include excision segmentation and modeling. Segmentation is performed iteratively during the registration process, with initial implementation using a threshold-based approach to identify voxels corresponding to “tissue” in the moving image and “air” in the fixed image. With each iteration of the Demons process, every voxel is assigned a probability of excision. Excisions are modeled explicitly during registration by increasing the dimensionality of the deformation field so that both deformations and excisions can be accounted for by in- and out-of-volume deformations, respectively. The out-of-volume (i.e., fourth) component of the deformation field at each voxel carries a magnitude proportional to the excision probability computed in the excision segmentation step. The registration accuracy of the proposed “extra-dimensional” Demons (XDD) and conventional Demons methods was tested in the presence of missing tissue in phantom models, simulations investigating the effect of excision size on registration accuracy, and cadaver studies emulating realistic deformations and tissue excisions imparted in CBCT-guided endoscopic skull base surgery. Results: Phantom experiments showed the normalized mutual information (NMI) in regions local to the excision to improve from 1.10 for the conventional Demons approach to 1.16 for XDD, and qualitative examination of the resulting images revealed major differences: the conventional Demons approach imparted unrealistic distortions in areas around tissue excision, whereas XDD provided accurate “ejection” of voxels within the excision site and maintained the registration accuracy throughout the rest of the image. Registration accuracy in areas far from the excision site (e.g., > ∼5 mm) was identical for the two approaches. Quantitation of the effect was consistent in analysis of NMI, normalized cross-correlation (NCC), target registration error (TRE), and accuracy of voxels ejected from the volume (true-positive and false-positive analysis). The registration accuracy for conventional Demons was found to degrade steeply as a function of excision size, whereas XDD was robust in this regard. Cadaver studies involving realistic excision of the clivus, vidian canal, and ethmoid sinuses demonstrated similar results, with unrealistic distortion of anatomy imparted by conventional Demons and accurate ejection and deformation for XDD. Conclusions: Adaptation of the Demons deformable registration process to include segmentation (i.e., identification of excised tissue) and an extra dimension in the deformation field provided a means to accurately accommodate missing tissue between image acquisitions. The extra-dimensional approach yielded accurate “ejection” of voxels local to the excision site while preserving the registration accuracy (typically subvoxel) of the conventional Demons approach throughout the rest of the image. The ability to accommodate missing tissue volumes is important to application of CBCT for surgical guidance (e.g., skull base drillout) and may have application in other areas of CBCT guidance. PMID:22957637
Cerasa, Antonio; Castiglioni, Isabella; Salvatore, Christian; Funaro, Angela; Martino, Iolanda; Alfano, Stefania; Donzuso, Giulia; Perrotta, Paolo; Gioia, Maria Cecilia; Gilardi, Maria Carla; Quattrone, Aldo
2015-01-01
Presently, there are no valid biomarkers to identify individuals with eating disorders (ED). The aim of this work was to assess the feasibility of a machine learning method for extracting reliable neuroimaging features allowing individual categorization of patients with ED. Support Vector Machine (SVM) technique, combined with a pattern recognition method, was employed utilizing structural magnetic resonance images. Seventeen females with ED (six with diagnosis of anorexia nervosa and 11 with bulimia nervosa) were compared against 17 body mass index-matched healthy controls (HC). Machine learning allowed individual diagnosis of ED versus HC with an Accuracy ≥ 0.80. Voxel-based pattern recognition analysis demonstrated that voxels influencing the classification Accuracy involved the occipital cortex, the posterior cerebellar lobule, precuneus, sensorimotor/premotor cortices, and the medial prefrontal cortex, all critical regions known to be strongly involved in the pathophysiological mechanisms of ED. Although these findings should be considered preliminary given the small size investigated, SVM analysis highlights the role of well-known brain regions as possible biomarkers to distinguish ED from HC at an individual level, thus encouraging the translational implementation of this new multivariate approach in the clinical practice. PMID:26648660
Arterial input function derived from pairwise correlations between PET-image voxels.
Schain, Martin; Benjaminsson, Simon; Varnäs, Katarina; Forsberg, Anton; Halldin, Christer; Lansner, Anders; Farde, Lars; Varrone, Andrea
2013-07-01
A metabolite corrected arterial input function is a prerequisite for quantification of positron emission tomography (PET) data by compartmental analysis. This quantitative approach is also necessary for radioligands without suitable reference regions in brain. The measurement is laborious and requires cannulation of a peripheral artery, a procedure that can be associated with patient discomfort and potential adverse events. A non invasive procedure for obtaining the arterial input function is thus preferable. In this study, we present a novel method to obtain image-derived input functions (IDIFs). The method is based on calculation of the Pearson correlation coefficient between the time-activity curves of voxel pairs in the PET image to localize voxels displaying blood-like behavior. The method was evaluated using data obtained in human studies with the radioligands [(11)C]flumazenil and [(11)C]AZ10419369, and its performance was compared with three previously published methods. The distribution volumes (VT) obtained using IDIFs were compared with those obtained using traditional arterial measurements. Overall, the agreement in VT was good (∼3% difference) for input functions obtained using the pairwise correlation approach. This approach performed similarly or even better than the other methods, and could be considered in applied clinical studies. Applications to other radioligands are needed for further verification.
A Bayesian spatial model for neuroimaging data based on biologically informed basis functions.
Huertas, Ismael; Oldehinkel, Marianne; van Oort, Erik S B; Garcia-Solis, David; Mir, Pablo; Beckmann, Christian F; Marquand, Andre F
2017-11-01
The dominant approach to neuroimaging data analysis employs the voxel as the unit of computation. While convenient, voxels lack biological meaning and their size is arbitrarily determined by the resolution of the image. Here, we propose a multivariate spatial model in which neuroimaging data are characterised as a linearly weighted combination of multiscale basis functions which map onto underlying brain nuclei or networks or nuclei. In this model, the elementary building blocks are derived to reflect the functional anatomy of the brain during the resting state. This model is estimated using a Bayesian framework which accurately quantifies uncertainty and automatically finds the most accurate and parsimonious combination of basis functions describing the data. We demonstrate the utility of this framework by predicting quantitative SPECT images of striatal dopamine function and we compare a variety of basis sets including generic isotropic functions, anatomical representations of the striatum derived from structural MRI, and two different soft functional parcellations of the striatum derived from resting-state fMRI (rfMRI). We found that a combination of ∼50 multiscale functional basis functions accurately represented the striatal dopamine activity, and that functional basis functions derived from an advanced parcellation technique known as Instantaneous Connectivity Parcellation (ICP) provided the most parsimonious models of dopamine function. Importantly, functional basis functions derived from resting fMRI were more accurate than both structural and generic basis sets in representing dopamine function in the striatum for a fixed model order. We demonstrate the translational validity of our framework by constructing classification models for discriminating parkinsonian disorders and their subtypes. Here, we show that ICP approach is the only basis set that performs well across all comparisons and performs better overall than the classical voxel-based approach. This spatial model constitutes an elegant alternative to voxel-based approaches in neuroimaging studies; not only are their atoms biologically informed, they are also adaptive to high resolutions, represent high dimensions efficiently, and capture long-range spatial dependencies, which are important and challenging objectives for neuroimaging data. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
TH-A-9A-01: Active Optical Flow Model: Predicting Voxel-Level Dose Prediction in Spine SBRT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, J; Wu, Q.J.; Yin, F
2014-06-15
Purpose: To predict voxel-level dose distribution and enable effective evaluation of cord dose sparing in spine SBRT. Methods: We present an active optical flow model (AOFM) to statistically describe cord dose variations and train a predictive model to represent correlations between AOFM and PTV contours. Thirty clinically accepted spine SBRT plans are evenly divided into training and testing datasets. The development of predictive model consists of 1) collecting a sequence of dose maps including PTV and OAR (spinal cord) as well as a set of associated PTV contours adjacent to OAR from the training dataset, 2) classifying data into fivemore » groups based on PTV's locations relative to OAR, two “Top”s, “Left”, “Right”, and “Bottom”, 3) randomly selecting a dose map as the reference in each group and applying rigid registration and optical flow deformation to match all other maps to the reference, 4) building AOFM by importing optical flow vectors and dose values into the principal component analysis (PCA), 5) applying another PCA to features of PTV and OAR contours to generate an active shape model (ASM), and 6) computing a linear regression model of correlations between AOFM and ASM.When predicting dose distribution of a new case in the testing dataset, the PTV is first assigned to a group based on its contour characteristics. Contour features are then transformed into ASM's principal coordinates of the selected group. Finally, voxel-level dose distribution is determined by mapping from the ASM space to the AOFM space using the predictive model. Results: The DVHs predicted by the AOFM-based model and those in clinical plans are comparable in training and testing datasets. At 2% volume the dose difference between predicted and clinical plans is 4.2±4.4% and 3.3±3.5% in the training and testing datasets, respectively. Conclusion: The AOFM is effective in predicting voxel-level dose distribution for spine SBRT. Partially supported by NIH/NCI under grant #R21CA161389 and a master research grant by Varian Medical System.« less
Fine tuning breath-hold-based cerebrovascular reactivity analysis models.
van Niftrik, Christiaan Hendrik Bas; Piccirelli, Marco; Bozinov, Oliver; Pangalu, Athina; Valavanis, Antonios; Regli, Luca; Fierstra, Jorn
2016-02-01
We elaborate on existing analysis methods for breath-hold (BH)-derived cerebrovascular reactivity (CVR) measurements and describe novel insights and models toward more exact CVR interpretation. Five blood-oxygen-level-dependent (BOLD) fMRI datasets of neurovascular patients with unilateral hemispheric hemodynamic impairment were used to test various BH CVR analysis methods. Temporal lag (phase), percent BOLD signal change (CVR), and explained variance (coherence) maps were calculated using three different sine models and two novel "Optimal Signal" model-free methods based on the unaffected hemisphere and the sagittal sinus fMRI signal time series, respectively. All models showed significant differences in CVR and coherence between the affected-hemodynamic impaired-and unaffected hemisphere. Voxel-wise phase determination significantly increases CVR (0.60 ± 0.18 vs. 0.82 ± 0.27; P < 0.05). Incorporating different durations of breath hold and resting period in one sine model (two-task) did increase coherence in the unaffected hemisphere, as well as eliminating negative phase commonly obtained by one-task frequency models. The novel model-free "optimal signal" methods both explained the BOLD MR data similar to the two task sine model. Our CVR analysis demonstrates an improved CVR and coherence after implementation of voxel-wise phase and frequency adjustment. The novel "optimal signal" methods provide a robust and feasible alternative to the sine models, as both are model-free and independent of compliance. Here, the sagittal sinus model may be advantageous, as it is independent of hemispheric CVR impairment.
Shi, HaiCun; Yuan, CongHu; Dai, ZhenYu; Ma, HaiRong; Sheng, LiQin
2016-12-01
Studies employing voxel-based morphometry (VBM) have reported inconsistent findings on the association of gray matter (GM) abnormalities with fibromyalgia. The aim of the present study is to identify the most prominent and replicable GM areas that involved in fibromyalgia. A systematic search of the PubMed database from January 2000 to September 2015 was performed to identify eligible whole-brain VBM studies. Comprehensive meta-analyses to investigate regional GM abnormalities in fibromyalgia were conducted with the Seed-based d Mapping software package. Seven studies, reporting nine comparisons and including a grand total of 180 fibromyalgia patients and 126 healthy controls, were included in the meta-analyses. In fibromyalgia patients compared with healthy controls, regional GM decreases were consistently found in the bilateral anterior cingulate/paracingulate cortex/medial prefrontal cortex, the bilateral posterior cingulate/paracingulate cortex, the left parahippocampal gyrus/fusiform cortex, and the right parahippocampal gyrus/hippocampus. Regional GM increases were consistently found in the left cerebellum. Meta-regression demonstrated that age was correlated with GM anomalies in fibromyalgia patients. The current meta-analysis identified a characteristic pattern of GM alterations within the medial pain system, default mode network, and cerebro-cerebellar circuits, which further supports the concept that fibromyalgia is a symptom complex involving brain areas beyond those implicated in chronic pain. Copyright © 2016 Elsevier Inc. All rights reserved.
Al-Kadi, Omar S; Chung, Daniel Y F; Carlisle, Robert C; Coussios, Constantin C; Noble, J Alison
2015-04-01
Intensity variations in image texture can provide powerful quantitative information about physical properties of biological tissue. However, tissue patterns can vary according to the utilized imaging system and are intrinsically correlated to the scale of analysis. In the case of ultrasound, the Nakagami distribution is a general model of the ultrasonic backscattering envelope under various scattering conditions and densities where it can be employed for characterizing image texture, but the subtle intra-heterogeneities within a given mass are difficult to capture via this model as it works at a single spatial scale. This paper proposes a locally adaptive 3D multi-resolution Nakagami-based fractal feature descriptor that extends Nakagami-based texture analysis to accommodate subtle speckle spatial frequency tissue intensity variability in volumetric scans. Local textural fractal descriptors - which are invariant to affine intensity changes - are extracted from volumetric patches at different spatial resolutions from voxel lattice-based generated shape and scale Nakagami parameters. Using ultrasound radio-frequency datasets we found that after applying an adaptive fractal decomposition label transfer approach on top of the generated Nakagami voxels, tissue characterization results were superior to the state of art. Experimental results on real 3D ultrasonic pre-clinical and clinical datasets suggest that describing tumor intra-heterogeneity via this descriptor may facilitate improved prediction of therapy response and disease characterization. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Jiang, Ming-Ming; Zhou, Qing; Liu, Xiao-Yong; Shi, Chang-Zheng; Chen, Jian; Huang, Xiang-He
2017-03-01
To investigate structural and functional brain changes in patients with primary open-angle glaucoma (POAG) by using voxel-based morphometry based on diffeomorphic anatomical registration through exponentiated Lie algebra (VBM-DARTEL) and blood oxygenation level dependent functional magnetic resonance imaging (BOLD-fMRI), respectively.Thirteen patients diagnosed with POAG and 13 age- and sex-matched healthy controls were enrolled in the study. For each participant, high-resolution structural brain imaging and blood flow imaging were acquired on a 3.0-Tesla magnetic resonance imaging (MRI) scanner. Structural and functional changes between the POAG and control groups were analyzed. An analysis was carried out to identify correlations between structural and functional changes acquired in the previous analysis and the retinal nerve fiber layer (RNFL).Patients in the POAG group showed a significant (P < 0.001) volume increase in the midbrain, left brainstem, frontal gyrus, cerebellar vermis, left inferior parietal lobule, caudate nucleus, thalamus, precuneus, and Brodmann areas 7, 18, and 46. Moreover, significant (P < 0.001) BOLD signal changes were observed in the right supramarginal gyrus, frontal gyrus, superior frontal gyrus, left inferior parietal lobule, left cuneus, and left midcingulate area; many of these regions had high correlations with the RNFL.Patients with POAG undergo widespread and complex changes in cortical brain structure and blood flow. (ClinicalTrials.gov number: NCT02570867).
Sparse representation of whole-brain fMRI signals for identification of functional networks.
Lv, Jinglei; Jiang, Xi; Li, Xiang; Zhu, Dajiang; Chen, Hanbo; Zhang, Tuo; Zhang, Shu; Hu, Xintao; Han, Junwei; Huang, Heng; Zhang, Jing; Guo, Lei; Liu, Tianming
2015-02-01
There have been several recent studies that used sparse representation for fMRI signal analysis and activation detection based on the assumption that each voxel's fMRI signal is linearly composed of sparse components. Previous studies have employed sparse coding to model functional networks in various modalities and scales. These prior contributions inspired the exploration of whether/how sparse representation can be used to identify functional networks in a voxel-wise way and on the whole brain scale. This paper presents a novel, alternative methodology of identifying multiple functional networks via sparse representation of whole-brain task-based fMRI signals. Our basic idea is that all fMRI signals within the whole brain of one subject are aggregated into a big data matrix, which is then factorized into an over-complete dictionary basis matrix and a reference weight matrix via an effective online dictionary learning algorithm. Our extensive experimental results have shown that this novel methodology can uncover multiple functional networks that can be well characterized and interpreted in spatial, temporal and frequency domains based on current brain science knowledge. Importantly, these well-characterized functional network components are quite reproducible in different brains. In general, our methods offer a novel, effective and unified solution to multiple fMRI data analysis tasks including activation detection, de-activation detection, and functional network identification. Copyright © 2014 Elsevier B.V. All rights reserved.
Kusano, Toshiki; Kurashige, Hiroki; Nambu, Isao; Moriguchi, Yoshiya; Hanakawa, Takashi; Wada, Yasuhiro; Osu, Rieko
2015-08-01
It has been suggested that resting-state brain activity reflects task-induced brain activity patterns. In this study, we examined whether neural representations of specific movements can be observed in the resting-state brain activity patterns of motor areas. First, we defined two regions of interest (ROIs) to examine brain activity associated with two different behavioral tasks. Using multi-voxel pattern analysis with regularized logistic regression, we designed a decoder to detect voxel-level neural representations corresponding to the tasks in each ROI. Next, we applied the decoder to resting-state brain activity. We found that the decoder discriminated resting-state neural activity with accuracy comparable to that associated with task-induced neural activity. The distribution of learned weighted parameters for each ROI was similar for resting-state and task-induced activities. Large weighted parameters were mainly located on conjunctive areas. Moreover, the accuracy of detection was higher than that for a decoder whose weights were randomly shuffled, indicating that the resting-state brain activity includes multi-voxel patterns similar to the neural representation for the tasks. Therefore, these results suggest that the neural representation of resting-state brain activity is more finely organized and more complex than conventionally considered.
A 3D contact analysis approach for the visualization of the electrical contact asperities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roussos, Constantinos C.; Swingler, Jonathan
The electrical contact is an important phenomenon that should be given into consideration to achieve better performance and long term reliability for the design of devices. Based upon this importance, the electrical contact interface has been visualized as a “3D Contact Map” and used in order to investigate the contact asperities. The contact asperities describe the structures above and below the contact spots (the contact spots define the 3D contact map) to the two conductors which make the contact system. The contact asperities require the discretization of the 3D microstructures of the contact system into voxels. A contact analysis approachmore » has been developed and introduced in this paper which shows the way to the 3D visualization of the contact asperities of a given contact system. For the discretization of 3D microstructure of contact system into voxels, X-ray Computed Tomography (CT) method is used in order to collect the data of a 250 V, 16 A rated AC single pole rocker switch which is used as a contact system for investigation.« less
Ma, Hai Rong; Sheng, Li Qin; Pan, Ping Lei; Wang, Gen Di; Luo, Rong; Shi, Hai Cun; Dai, Zhen Yu; Zhong, Jian Guo
2018-01-01
Brain 18 F-fluorodeoxyglucose positron emission tomography (FDG-PET) has been utilized to monitor disease conversion from amnestic mild cognitive impairment (aMCI) to Alzheimer's dementia (AD). However, the conversion patterns of FDG-PET metabolism across studies are not conclusive. We conducted a voxel-wise meta-analysis using Seed-based d Mapping that included 10 baseline voxel-wise FDG-PET comparisons between 93 aMCI converters and 129 aMCI non-converters from nine longitudinal studies. The most robust and reliable metabolic alterations that predicted conversion from aMCI to AD were localized in the left posterior cingulate cortex (PCC)/precuneus. Furthermore, meta-regression analyses indicated that baseline mean age and severity of cognitive impairment, and follow-up duration were significant moderators for metabolic alterations in aMCI converters. Our study revealed hypometabolism in the left PCC/precuneus as an early feature in the development of AD. This finding has important implications in understanding the neural substrates for AD conversion and could serve as a potential imaging biomarker for early detection of AD as well as for tracking disease progression at the predementia stage.
A 3D contact analysis approach for the visualization of the electrical contact asperities
Swingler, Jonathan
2017-01-01
The electrical contact is an important phenomenon that should be given into consideration to achieve better performance and long term reliability for the design of devices. Based upon this importance, the electrical contact interface has been visualized as a ‘‘3D Contact Map’’ and used in order to investigate the contact asperities. The contact asperities describe the structures above and below the contact spots (the contact spots define the 3D contact map) to the two conductors which make the contact system. The contact asperities require the discretization of the 3D microstructures of the contact system into voxels. A contact analysis approach has been developed and introduced in this paper which shows the way to the 3D visualization of the contact asperities of a given contact system. For the discretization of 3D microstructure of contact system into voxels, X-ray Computed Tomography (CT) method is used in order to collect the data of a 250 V, 16 A rated AC single pole rocker switch which is used as a contact system for investigation. PMID:28105383
A 3D contact analysis approach for the visualization of the electrical contact asperities
Roussos, Constantinos C.; Swingler, Jonathan
2017-01-11
The electrical contact is an important phenomenon that should be given into consideration to achieve better performance and long term reliability for the design of devices. Based upon this importance, the electrical contact interface has been visualized as a “3D Contact Map” and used in order to investigate the contact asperities. The contact asperities describe the structures above and below the contact spots (the contact spots define the 3D contact map) to the two conductors which make the contact system. The contact asperities require the discretization of the 3D microstructures of the contact system into voxels. A contact analysis approachmore » has been developed and introduced in this paper which shows the way to the 3D visualization of the contact asperities of a given contact system. For the discretization of 3D microstructure of contact system into voxels, X-ray Computed Tomography (CT) method is used in order to collect the data of a 250 V, 16 A rated AC single pole rocker switch which is used as a contact system for investigation.« less
Voxel-based morphometry of auditory and speech-related cortex in stutterers.
Beal, Deryk S; Gracco, Vincent L; Lafaille, Sophie J; De Nil, Luc F
2007-08-06
Stutterers demonstrate unique functional neural activation patterns during speech production, including reduced auditory activation, relative to nonstutterers. The extent to which these functional differences are accompanied by abnormal morphology of the brain in stutterers is unclear. This study examined the neuroanatomical differences in speech-related cortex between stutterers and nonstutterers using voxel-based morphometry. Results revealed significant differences in localized grey matter and white matter densities of left and right hemisphere regions involved in auditory processing and speech production.
Hiller, Mauritius; Dewji, Shaheen Azim
2017-02-16
Dose rate coefficients computed using the International Commission on Radiological Protection (ICRP) reference adult female voxel phantom were compared with values computed using the Oak Ridge National Laboratory (ORNL) adult female stylized phantom in an air submersion exposure geometry. This is a continuation of previous work comparing monoenergetic organ dose rate coefficients for the male adult phantoms. With both the male and female data computed, effective dose rate as defined by ICRP Publication 103 was compared for both phantoms. Organ dose rate coefficients for the female phantom and ratios of organ dose rates for the voxel and stylized phantoms aremore » provided in the energy range from 30 to 5 MeV. Analysis of the contribution of the organs to effective dose is also provided. Lastly, comparison of effective dose rates between the voxel and stylized phantoms was within 8% at 100 keV and is <5% between 200 and 5000 keV.« less
Supercomputer description of human lung morphology for imaging analysis.
Martonen, T B; Hwang, D; Guan, X; Fleming, J S
1998-04-01
A supercomputer code that describes the three-dimensional branching structure of the human lung has been developed. The algorithm was written for the Cray C94. In our simulations, the human lung was divided into a matrix containing discrete volumes (voxels) so as to be compatible with analyses of SPECT images. The matrix has 3840 voxels. The matrix can be segmented into transverse, sagittal and coronal layers analogous to human subject examinations. The compositions of individual voxels were identified by the type and respective number of airways present. The code provides a mapping of the spatial positions of the almost 17 million airways in human lungs and unambiguously assigns each airway to a voxel. Thus, the clinician and research scientist in the medical arena have a powerful new tool to be used in imaging analyses. The code was designed to be integrated into diverse applications, including the interpretation of SPECT images, the design of inhalation exposure experiments and the targeted delivery of inhaled pharmacologic drugs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hiller, Mauritius; Dewji, Shaheen Azim
Dose rate coefficients computed using the International Commission on Radiological Protection (ICRP) reference adult female voxel phantom were compared with values computed using the Oak Ridge National Laboratory (ORNL) adult female stylized phantom in an air submersion exposure geometry. This is a continuation of previous work comparing monoenergetic organ dose rate coefficients for the male adult phantoms. With both the male and female data computed, effective dose rate as defined by ICRP Publication 103 was compared for both phantoms. Organ dose rate coefficients for the female phantom and ratios of organ dose rates for the voxel and stylized phantoms aremore » provided in the energy range from 30 to 5 MeV. Analysis of the contribution of the organs to effective dose is also provided. Lastly, comparison of effective dose rates between the voxel and stylized phantoms was within 8% at 100 keV and is <5% between 200 and 5000 keV.« less
Bergstrom, Paul M.; Daly, Thomas P.; Moses, Edward I.; Patterson, Jr., Ralph W.; Schach von Wittenau, Alexis E.; Garrett, Dewey N.; House, Ronald K.; Hartmann-Siantar, Christine L.; Cox, Lawrence J.; Fujino, Donald H.
2000-01-01
A system and method is disclosed for radiation dose calculation within sub-volumes of a particle transport grid. In a first step of the method voxel volumes enclosing a first portion of the target mass are received. A second step in the method defines dosel volumes which enclose a second portion of the target mass and overlap the first portion. A third step in the method calculates common volumes between the dosel volumes and the voxel volumes. A fourth step in the method identifies locations in the target mass of energy deposits. And, a fifth step in the method calculates radiation doses received by the target mass within the dosel volumes. A common volume calculation module inputs voxel volumes enclosing a first portion of the target mass, inputs voxel mass densities corresponding to a density of the target mass within each of the voxel volumes, defines dosel volumes which enclose a second portion of the target mass and overlap the first portion, and calculates common volumes between the dosel volumes and the voxel volumes. A dosel mass module, multiplies the common volumes by corresponding voxel mass densities to obtain incremental dosel masses, and adds the incremental dosel masses corresponding to the dosel volumes to obtain dosel masses. A radiation transport module identifies locations in the target mass of energy deposits. And, a dose calculation module, coupled to the common volume calculation module and the radiation transport module, for calculating radiation doses received by the target mass within the dosel volumes.
Speeding up 3D speckle tracking using PatchMatch
NASA Astrophysics Data System (ADS)
Zontak, Maria; O'Donnell, Matthew
2016-03-01
Echocardiography provides valuable information to diagnose heart dysfunction. A typical exam records several minutes of real-time cardiac images. To enable complete analysis of 3D cardiac strains, 4-D (3-D+t) echocardiography is used. This results in a huge dataset and requires effective automated analysis. Ultrasound speckle tracking is an effective method for tissue motion analysis. It involves correlation of a 3D kernel (block) around a voxel with kernels in later frames. The search region is usually confined to a local neighborhood, due to biomechanical and computational constraints. For high strains and moderate frame-rates, however, this search region will remain large, leading to a considerable computational burden. Moreover, speckle decorrelation (due to high strains) leads to errors in tracking. To solve this, spatial motion coherency between adjacent voxels should be imposed, e.g., by averaging their correlation functions.1 This requires storing correlation functions for neighboring voxels, thus increasing memory demands. In this work, we propose an efficient search using PatchMatch, 2 a powerful method to find correspondences between images. Here we adopt PatchMatch for 3D volumes and radio-frequency signals. As opposed to an exact search, PatchMatch performs random sampling of the search region and propagates successive matches among neighboring voxels. We show that: 1) Inherently smooth offset propagation in PatchMatch contributes to spatial motion coherence without any additional processing or memory demand. 2) For typical scenarios, PatchMatch is at least 20 times faster than the exact search, while maintaining comparable tracking accuracy.
Imaging Lung Function in Mice Using SPECT/CT and Per-Voxel Analysis
Jobse, Brian N.; Rhem, Rod G.; McCurry, Cory A. J. R.; Wang, Iris Q.; Labiris, N. Renée
2012-01-01
Chronic lung disease is a major worldwide health concern but better tools are required to understand the underlying pathologies. Ventilation/perfusion (V/Q) single photon emission computed tomography (SPECT) with per-voxel analysis allows for non-invasive measurement of regional lung function. A clinically adapted V/Q methodology was used in healthy mice to investigate V/Q relationships. Twelve week-old mice were imaged to describe normal lung function while 36 week-old mice were imaged to determine how age affects V/Q. Mice were ventilated with Technegas™ and injected with 99mTc-macroaggregated albumin to trace ventilation and perfusion, respectively. For both processes, SPECT and CT images were acquired, co-registered, and quantitatively analyzed. On a per-voxel basis, ventilation and perfusion were moderately correlated (R = 0.58±0.03) in 12 week old animals and a mean log(V/Q) ratio of −0.07±0.01 and standard deviation of 0.36±0.02 were found, defining the extent of V/Q matching. In contrast, 36 week old animals had significantly increased levels of V/Q mismatching throughout the periphery of the lung. Measures of V/Q were consistent across healthy animals and differences were observed with age demonstrating the capability of this technique in quantifying lung function. Per-voxel analysis and the ability to non-invasively assess lung function will aid in the investigation of chronic lung disease models and drug efficacy studies. PMID:22870297
Gilbert, Andrew R.; Keshavan, Matcheri S.; Diwadkar, Vaibhav; Nutche, Jeffrey; MacMaster, Frank; Easter, Phillip C.; Buhagiar, Christian J.; Rosenberg, David R.
2008-01-01
Neuroimaging studies have identified alterations in frontostriatal circuitry in OCD. Voxel-based morphometry (VBM) allows for the assessment of differences in gray matter density across the whole brain. VBM has not previously been used to examine regional gray matter density in pediatric OCD patients and the siblings of pediatric OCD patients. Volumetric magnetic resonance imaging (MRI) studies were conducted in 10 psychotropic-naïve pediatric patients with OCD, 10 unaffected siblings of pediatric patients with OCD, and 10 healthy controls. VBM analysis was conducted using SPM2. Statistical comparisons were performed with the general linear model, implementing small volume random field corrections for a priori regions of interest (anterior cingulate cortex or ACC, striatum and thalamus). VBM analysis revealed significantly lower gray matter density in OCD patients compared to healthy in the left ACC and bilateral medial superior frontal gyrus (SFG). Furthermore, a small volume correction was used to identify a significantly greater gray matter density in the right putamen in OCD patients as compared to unaffected siblings of OCD patients. These findings in patients, siblings, and healthy controls, although preliminary, suggest the presence of gray matter structural differences between affected subjects and healthy controls as well as between affected subjects and individuals at risk for OCD. PMID:18314272
Small gray matter volume in orbitofrontal cortex in Prader-Willi syndrome: a voxel-based MRI study.
Ogura, Kaeko; Fujii, Toshikatsu; Abe, Nobuhito; Hosokai, Yoshiyuki; Shinohara, Mayumi; Takahashi, Shoki; Mori, Etsuro
2011-07-01
Prader-Willi syndrome (PWS) is a genetically determined neurodevelopmental disorder presenting with behavioral symptoms including hyperphagia, disinhibition, and compulsive behavior. The behavioral problems in individuals with PWS are strikingly similar to those in patients with frontal pathologies, particularly those affecting the orbitofrontal cortex (OFC). However, neuroanatomical abnormalities in the frontal lobe have not been established in PWS. The aim of this study was to look, using volumetric analysis, for morphological changes in the frontal lobe, especially the OFC, of the brains of individuals with PWS. Twelve adults with PWS and 13 age- and gender-matched control subjects participated in structural magnetic resonance imaging (MRI) scans. The whole-brain images were segmented and normalized to a standard stereotactic space. Regional gray matter volumes were compared between the PWS group and the control group using voxel-based morphometry. The PWS subjects showed small gray-matter volume in several regions, including the OFC, caudate nucleus, inferior temporal gyrus, precentral gyrus, supplementary motor area, postcentral gyrus, and cerebellum. The small gray-matter volume in the OFC remained significant in a separate analysis that included total gray matter volume as a covariate. These preliminary findings suggest that the neurobehavioral symptoms in individuals with PWS are related to structural brain abnormalities in these areas. Copyright © 2010 Wiley-Liss, Inc.
[A voxel-based morphometric analysis of brain gray matter in online game addicts].
Weng, Chuan-bo; Qian, Ruo-bing; Fu, Xian-ming; Lin, Bin; Ji, Xue-bing; Niu, Chao-shi; Wang, Ye-han
2012-12-04
To explore the possible brain mechanism of online game addiction (OGA) in terms of brain morphology through voxel-based morphometric (VBM) analysis. Seventeen subjects with OGA and 17 age- and gender-matched healthy controls (HC group) were recruited from Department of Psychology at our hospital during February-December 2011. The internet addiction scale (IAS) was used to measure the degree of OGA tendency. Magnetic resonance imaging (MRI) scans were performed to acquire 3-dimensional T1-weighted images. And FSL 4.1 software was employed to confirm regional gray matter volume changes. For the regions where OGA subjects showed significantly different gray matter volumes from the controls, the gray matter volumes of these areas were extracted, averaged and regressed against the scores of IAS. The OGA group had lower gray matter volume in left orbitofrontal cortex (OFC), left medial prefrontal cortex (mPFC), bilateral insula (INS), left posterior cingulate cortex (PCC) and left supplementary motor area (SMA). Gray matter volumes of left OFC and bilateral INS showed a negative correlation with the scores of IAS (r = -0.65, r = -0.78, P < 0.05). Gray matter volume changes are present in online game addicts and they may be correlated with the occurrence and maintenance of OGA.
Gaing, Byron; Sigmund, Eric E; Huang, William C; Babb, James S; Parikh, Nainesh S; Stoffel, David; Chandarana, Hersh
2015-03-01
The aim of this study was to determine if voxel-based histogram analysis of intravoxel incoherent motion imaging (IVIM) parameters can differentiate various subtypes of renal tumors, including benign and malignant lesions. A total of 44 patients with renal tumors who underwent surgery and had histopathology available were included in this Health Insurance Portability and Accountability Act-compliant, institutional review board-approved, single-institution prospective study. In addition to routine renal magnetic resonance imaging examination performed on a 1.5-T system, all patients were imaged with axial diffusion-weighted imaging using 8 b values (range, 0-800 s/mm). A biexponential model was fitted to the diffusion signal data using a segmented algorithm to extract the IVIM parameters perfusion fraction (fp), tissue diffusivity (Dt), and pseudodiffusivity (Dp) for each voxel. Mean and histogram measures of heterogeneity (standard deviation, skewness, and kurtosis) of IVIM parameters were correlated with pathology results of tumor subtype using unequal variance t tests to compare subtypes in terms of each measure. Correction for multiple comparisons was accomplished using the Tukey honestly significant difference procedure. A total of 44 renal tumors including 23 clear cell (ccRCC), 4 papillary (pRCC), 5 chromophobe, and 5 cystic renal cell carcinomas, as well as benign lesions, 4 oncocytomas (Onc) and 3 angiomyolipomas (AMLs), were included in our analysis. Mean IVIM parameters fp and Dt differentiated 8 of 15 pairs of renal tumors. Histogram analysis of IVIM parameters differentiated 9 of 15 subtype pairs. One subtype pair (ccRCC vs pRCC) was differentiated by mean analysis but not by histogram analysis. However, 2 other subtype pairs (AML vs Onc and ccRCC vs Onc) were differentiated by histogram distribution parameters exclusively. The standard deviation of Dt [σ(Dt)] differentiated ccRCC (0.362 ± 0.136 × 10 mm/s) from AML (0.199 ± 0.043 × 10 mm/s) (P = 0.002). Kurtosis of fp separated Onc (2.767 ± 1.299) from AML (-0.325 ± 0.279; P = 0.001), ccRCC (0.612 ± 1.139; P = 0.042), and pRCC (0.308 ± 0.730; P = 0.025). Intravoxel incoherent motion imaging parameters with inclusion of histogram measures of heterogeneity can help differentiate malignant from benign lesions as well as various subtypes of renal cancers.
Longo, Dario Livio; Dastrù, Walter; Consolino, Lorena; Espak, Miklos; Arigoni, Maddalena; Cavallo, Federica; Aime, Silvio
2015-07-01
The objective of this study was to compare a clustering approach to conventional analysis methods for assessing changes in pharmacokinetic parameters obtained from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) during antiangiogenic treatment in a breast cancer model. BALB/c mice bearing established transplantable her2+ tumors were treated with a DNA-based antiangiogenic vaccine or with an empty plasmid (untreated group). DCE-MRI was carried out by administering a dose of 0.05 mmol/kg of Gadocoletic acid trisodium salt, a Gd-based blood pool contrast agent (CA) at 1T. Changes in pharmacokinetic estimates (K(trans) and vp) in a nine-day interval were compared between treated and untreated groups on a voxel-by-voxel analysis. The tumor response to therapy was assessed by a clustering approach and compared with conventional summary statistics, with sub-regions analysis and with histogram analysis. Both the K(trans) and vp estimates, following blood-pool CA injection, showed marked and spatial heterogeneous changes with antiangiogenic treatment. Averaged values for the whole tumor region, as well as from the rim/core sub-regions analysis were unable to assess the antiangiogenic response. Histogram analysis resulted in significant changes only in the vp estimates (p<0.05). The proposed clustering approach depicted marked changes in both the K(trans) and vp estimates, with significant spatial heterogeneity in vp maps in response to treatment (p<0.05), provided that DCE-MRI data are properly clustered in three or four sub-regions. This study demonstrated the value of cluster analysis applied to pharmacokinetic DCE-MRI parametric maps for assessing tumor response to antiangiogenic therapy. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, H; Leszczynski, K; Lee, Y
Purpose: To evaluate MR-only treatment planning for brain Stereotactic Ablative Radiotherapy (SABR) based on pseudo-CT (pCT) generation using one set of T1-weighted MRI. Methods: T1-weighted MR and CT images from 12 patients who were eligible for brain SABR were retrospectively acquired for this study. MR-based pCT was generated by using a newly in-house developed algorithm based on MR tissue segmentation and voxel-based electron density (ED) assignment (pCTv). pCTs using bulk density assignment (pCTb where bone and soft tissue were assigned 800HU and 0HU,respectively), and water density assignment (pCTw where all tissues were assigned 0HU) were generated for comparison of EDmore » assignment techniques. The pCTs were registered with CTs and contours of radiation targets and Organs-at-Risk (OARs) from clinical CT-based plans were copied to co-registered pCTs. Volumetric-Modulated-Arc-Therapy(VMAT) plans were independently created for pCTv and CT using the same optimization settings and a prescription (50Gy/10 fractions) to planning-target-volume (PTV) mean dose. pCTv-based plans and CT-based plans were compared with dosimetry parameters and monitor units (MUs). Beam fluence maps of CT-based plans were transferred to co-registered pCTs, and dose was recalculated on pCTs. Dose distribution agreement between pCTs and CT plans were quantified using Gamma analysis (2%/2mm, 1%/1mm with a 10% cut-off threshold) in axial, coronal and sagittal planes across PTV. Results: The average differences of PTV mean and maximum doses, and monitor units between independently created pCTv-based and CT-based plans were 0.5%, 1.5% and 1.1%, respectively. Gamma analysis of dose distributions of the pCTs and the CT calculated using the same fluence map resulted in average agreements of 92.6%/79.1%/52.6% with 1%/1mm criterion, and 98.7%/97.4%/71.5% with 2%/2mm criterion, for pCTv/CT, pCTb/CT and pCTw/CT, respectively. Conclusion: Plans produced on Voxel-based pCT is dosimetrically more similar to CT plans than bulk assignment-based pCTs. MR-only treatment planning using voxel-based pCT generated from T1-wieghted MRI may be feasible.« less
Sparse network-based models for patient classification using fMRI
Rosa, Maria J.; Portugal, Liana; Hahn, Tim; Fallgatter, Andreas J.; Garrido, Marta I.; Shawe-Taylor, John; Mourao-Miranda, Janaina
2015-01-01
Pattern recognition applied to whole-brain neuroimaging data, such as functional Magnetic Resonance Imaging (fMRI), has proved successful at discriminating psychiatric patients from healthy participants. However, predictive patterns obtained from whole-brain voxel-based features are difficult to interpret in terms of the underlying neurobiology. Many psychiatric disorders, such as depression and schizophrenia, are thought to be brain connectivity disorders. Therefore, pattern recognition based on network models might provide deeper insights and potentially more powerful predictions than whole-brain voxel-based approaches. Here, we build a novel sparse network-based discriminative modeling framework, based on Gaussian graphical models and L1-norm regularized linear Support Vector Machines (SVM). In addition, the proposed framework is optimized in terms of both predictive power and reproducibility/stability of the patterns. Our approach aims to provide better pattern interpretation than voxel-based whole-brain approaches by yielding stable brain connectivity patterns that underlie discriminative changes in brain function between the groups. We illustrate our technique by classifying patients with major depressive disorder (MDD) and healthy participants, in two (event- and block-related) fMRI datasets acquired while participants performed a gender discrimination and emotional task, respectively, during the visualization of emotional valent faces. PMID:25463459
NASA Astrophysics Data System (ADS)
Kramer, R.; Khoury, H. J.; Vieira, J. W.; Kawrakow, I.
2006-12-01
3D-microCT images of vertebral bodies from three different individuals have been segmented into trabecular bone, bone marrow and bone surface cells (BSC), and then introduced into the spongiosa voxels of the MAX06 and the FAX06 phantoms, in order to calculate the equivalent dose to the red bone marrow (RBM) and the BSC in the marrow cavities of trabecular bone with the EGSnrc Monte Carlo code from whole-body exposure to external photon radiation. The MAX06 and the FAX06 phantoms consist of about 150 million 1.2 mm cubic voxels each, a part of which are spongiosa voxels surrounded by cortical bone. In order to use the segmented 3D-microCT images for skeletal dosimetry, spongiosa voxels in the MAX06 and the FAX06 phantom were replaced at runtime by so-called micro matrices representing segmented trabecular bone, marrow and BSC in 17.65, 30 and 60 µm cubic voxels. The 3D-microCT image-based RBM and BSC equivalent doses for external exposure to photons presented here for the first time for complete human skeletons are in agreement with the results calculated with the three correction factor method and the fluence-to-dose response functions for the same phantoms taking into account the conceptual differences between the different methods. Additionally the microCT image-based results have been compared with corresponding data from earlier studies for other human phantoms. This article is dedicated to Prof. Dr Guenter Drexler from the Laboratório de Ciências Radiológicas, State University of Rio de Janeiro, on the occasion of his 70th birthday.
ERIC Educational Resources Information Center
Walker, Grant M.; Schwartz, Myrna F.; Kimberg, Daniel Y.; Faseyitan, Olufunsho; Brecher, Adelyn; Dell, Gary S.; Coslett, H. Branch
2011-01-01
Semantic errors in aphasia (e.g., naming a horse as "dog") frequently arise from faulty mapping of concepts onto lexical items. A recent study by our group used voxel-based lesion-symptom mapping (VLSM) methods with 64 patients with chronic aphasia to identify voxels that carry an association with semantic errors. The strongest associations were…
NASA Astrophysics Data System (ADS)
Baumann, Kilian-Simon; Witt, Matthias; Weber, Uli; Engenhart-Cabillic, Rita; Zink, Klemens
2017-05-01
Sub-millimetre-sized heterogeneities such as lung parenchyma cause Bragg peak degradation which can lead to an underdose of the tumor and an overdose of healthy tissue when not accounted for in treatment planning. Since commonly used treatment-planning CTs do not resolve the fine structure of lungs, this degradation can hardly be considered. We present a mathematical model capable of predicting and describing Bragg peak degradation due to a lung-equivalent geometry consisting of sub-millimetre voxels filled with either lung tissue or air. The material characteristic ‘modulation power’ is introduced to quantify the Bragg peak degradation. A strategy was developed to transfer the modulating effects of such fine structures to rougher structures such as 2 mm thick CT voxels, which is the resolution of typically used CTs. This is done by using the modulation power to derive a density distribution applicable to these voxels. By replacing the previously used sub-millimetre voxels by 2 mm thick voxels filled with lung tissue and modulating the lung tissue’s density in each voxel individually, we were able to reproduce the Bragg peak degradation. Hence a solution is found to include Bragg curve degradation due to lung-equivalent materials in Monte Carlo-based treatment-planning systems.
Brain tumor classification and segmentation using sparse coding and dictionary learning.
Salman Al-Shaikhli, Saif Dawood; Yang, Michael Ying; Rosenhahn, Bodo
2016-08-01
This paper presents a novel fully automatic framework for multi-class brain tumor classification and segmentation using a sparse coding and dictionary learning method. The proposed framework consists of two steps: classification and segmentation. The classification of the brain tumors is based on brain topology and texture. The segmentation is based on voxel values of the image data. Using K-SVD, two types of dictionaries are learned from the training data and their associated ground truth segmentation: feature dictionary and voxel-wise coupled dictionaries. The feature dictionary consists of global image features (topological and texture features). The coupled dictionaries consist of coupled information: gray scale voxel values of the training image data and their associated label voxel values of the ground truth segmentation of the training data. For quantitative evaluation, the proposed framework is evaluated using different metrics. The segmentation results of the brain tumor segmentation (MICCAI-BraTS-2013) database are evaluated using five different metric scores, which are computed using the online evaluation tool provided by the BraTS-2013 challenge organizers. Experimental results demonstrate that the proposed approach achieves an accurate brain tumor classification and segmentation and outperforms the state-of-the-art methods.
a Super Voxel-Based Riemannian Graph for Multi Scale Segmentation of LIDAR Point Clouds
NASA Astrophysics Data System (ADS)
Li, Minglei
2018-04-01
Automatically segmenting LiDAR points into respective independent partitions has become a topic of great importance in photogrammetry, remote sensing and computer vision. In this paper, we cast the problem of point cloud segmentation as a graph optimization problem by constructing a Riemannian graph. The scale space of the observed scene is explored by an octree-based over-segmentation with different depths. The over-segmentation produces many super voxels which restrict the structure of the scene and will be used as nodes of the graph. The Kruskal coordinates are used to compute edge weights that are proportional to the geodesic distance between nodes. Then we compute the edge-weight matrix in which the elements reflect the sectional curvatures associated with the geodesic paths between super voxel nodes on the scene surface. The final segmentation results are generated by clustering similar super voxels and cutting off the weak edges in the graph. The performance of this method was evaluated on LiDAR point clouds for both indoor and outdoor scenes. Additionally, extensive comparisons to state of the art techniques show that our algorithm outperforms on many metrics.
van Amerom, Joshua F P; Kellenberger, Christian J; Yoo, Shi-Joon; Macgowan, Christopher K
2009-01-01
An automated method was evaluated to detect blood flow in small pulmonary arteries and classify each as artery or vein, based on a temporal correlation analysis of their blood-flow velocity patterns. The method was evaluated using velocity-sensitive phase-contrast magnetic resonance data collected in vitro with a pulsatile flow phantom and in vivo in 11 human volunteers. The accuracy of the method was validated in vitro, which showed relative velocity errors of 12% at low spatial resolution (four voxels per diameter), but was reduced to 5% at increased spatial resolution (16 voxels per diameter). The performance of the method was evaluated in vivo according to its reproducibility and agreement with manual velocity measurements by an experienced radiologist. In all volunteers, the correlation analysis was able to detect and segment peripheral pulmonary vessels and distinguish arterial from venous velocity patterns. The intrasubject variability of repeated measurements was approximately 10% of peak velocity, or 2.8 cm/s root-mean-variance, demonstrating the high reproducibility of the method. Excellent agreement was obtained between the correlation analysis and radiologist measurements of pulmonary velocities, with a correlation of R2=0.98 (P<.001) and a slope of 0.99+/-0.01.
Cortical and subcortical atrophy in Alzheimer disease: parallel atrophy of thalamus and hippocampus.
Štěpán-Buksakowska, Irena; Szabó, Nikoletta; Hořínek, Daniel; Tóth, Eszter; Hort, Jakub; Warner, Joshua; Charvát, František; Vécsei, László; Roček, Miloslav; Kincses, Zsigmond T
2014-01-01
Brain atrophy is a key imaging hallmark of Alzheimer disease (AD). In this study, we carried out an integrative evaluation of AD-related atrophy. Twelve patients with AD and 13 healthy controls were enrolled. We conducted a cross-sectional analysis of total brain tissue volumes with SIENAX. Localized gray matter atrophy was identified with optimized voxel-wise morphometry (FSL-VBM), and subcortical atrophy was evaluated by active shape model implemented in FMRIB's Integrated Registration Segmentation Toolkit. SIENAX analysis demonstrated total brain atrophy in AD patients; voxel-based morphometry analysis showed atrophy in the bilateral mediotemporal regions and in the posterior brain regions. In addition, regarding the diminished volumes of thalami and hippocampi in AD patients, subsequent vertex analysis of the segmented structures indicated shrinkage of the bilateral anterior thalami and the left medial hippocampus. Interestingly, the volume of the thalami and hippocampi were highly correlated with the volume of the thalami and amygdalae on both sides in AD patients, but not in healthy controls. This complex structural information proved useful in the detailed interpretation of AD-related neurodegenerative process, as the multilevel approach showed both global and local atrophy on cortical and subcortical levels. Most importantly, our results raise the possibility that subcortical structure atrophy is not independent in AD patients.
Liu, Qi; Chen, Lizhou; Li, Fei; Chen, Ying; Guo, Lanting; Gong, Qiyong; Huang, Xiaoqi
2016-06-01
Attention-deficit/hyperactivity disorder(ADHD)is one of the most common neuro-developmental disorders occurring in childhood,characterized by symptoms of age-inappropriate inattention,hyperactivity/impulsivity,and the prevalence is higher in boys.Although gray matter volume deficits have been frequently reported for ADHD children via structural magnetic resonance imaging,few of them had specifically focused on male patients.The present study aimed to explore the alterations of gray matter volumes in medicated-naive boys with ADHD via a relatively new voxel-based morphometry technique.According to the criteria of DSM-IV-TR,43medicated-naive ADHD boys and 44age-matched healthy boys were recruited.The magnetic resonance image(MRI)scan was performed via a 3T MRI system with three-dimensional(3D)spoiled gradient recalled echo(SPGR)sequence.Voxel-based morphometry with diffeomorphic anatomical registration through exponentiated lie algebra in SPM8 was used to preprocess the3DT1-weighted images.To identify gray matter volume differences between the ADHD and the controls,voxelbased analysis of whole brain gray matter volumes between two groups were done via two sample t-test in SPM8 with age as covariate,threshold at P<0.001.Finally,compared to the controls,significantly reduced gray matter volumes were identified in the right orbitofrontal cortex(peak coordinates[-2,52,-25],t=4.01),and bilateral hippocampus(Left:peak coordinates[14,0,-18],t=3.61;Right:peak coordinates[-14,15,-28],t=3.64)of ADHD boys.Our results demonstrated obvious reduction of whole brain gray matter volumes in right orbitofrontal cortex and bilateral hippocampus in boys with ADHD.This suggests that the abnormalities of prefrontal-hippocampus circuit may be the underlying cause of the cognitive dysfunction and abnormal behavioral inhibition in medicatednaive boys with ADHD.
NASA Astrophysics Data System (ADS)
Mitasova, H.; Hardin, E. J.; Kratochvilova, A.; Landa, M.
2012-12-01
Multitemporal data acquired by modern mapping technologies provide unique insights into processes driving land surface dynamics. These high resolution data also offer an opportunity to improve the theoretical foundations and accuracy of process-based simulations of evolving landforms. We discuss development of new generation of visualization and analytics tools for GRASS GIS designed for 3D multitemporal data from repeated lidar surveys and from landscape process simulations. We focus on data and simulation methods that are based on point sampling of continuous fields and lead to representation of evolving surfaces as series of raster map layers or voxel models. For multitemporal lidar data we present workflows that combine open source point cloud processing tools with GRASS GIS and custom python scripts to model and analyze dynamics of coastal topography (Figure 1) and we outline development of coastal analysis toolbox. The simulations focus on particle sampling method for solving continuity equations and its application for geospatial modeling of landscape processes. In addition to water and sediment transport models, already implemented in GIS, the new capabilities under development combine OpenFOAM for wind shear stress simulation with a new module for aeolian sand transport and dune evolution simulations. Comparison of observed dynamics with the results of simulations is supported by a new, integrated 2D and 3D visualization interface that provides highly interactive and intuitive access to the redesigned and enhanced visualization tools. Several case studies will be used to illustrate the presented methods and tools and demonstrate the power of workflows built with FOSS and highlight their interoperability.Figure 1. Isosurfaces representing evolution of shoreline and a z=4.5m contour between the years 1997-2011at Cape Hatteras, NC extracted from a voxel model derived from series of lidar-based DEMs.
Mis-segmentation in voxel-based morphometry due to a signal intensity change in the putamen.
Goto, Masami; Abe, Osamu; Miyati, Tosiaki; Aoki, Shigeki; Gomi, Tsutomu; Takeda, Tohoru
2017-12-01
The aims of this study were to demonstrate an association between changes in the signal intensity of the putamen on three-dimensional T1-weighted magnetic resonance images (3D-T1WI) and mis-segmentation, using the voxel-based morphometry (VBM) 8 toolbox. The sagittal 3D-T1WIs of 22 healthy volunteers were obtained for VBM analysis using the 1.5-T MR scanner. We prepared five levels of 3D-T1WI signal intensity (baseline, same level, background level, low level, and high level) in regions of interest containing the putamen. Groups of smoothed, spatially normalized tissue images were compared to the baseline group using a paired t test. The baseline was compared to the other four levels. In all comparisons, significant volume changes were observed around and outside the area that included the signal intensity change. The present study demonstrated an association between a change in the signal intensity of the putamen on 3D-T1WI and changed volume in segmented tissue images.
Reduced volume of gray matter in patients with trigeminal neuralgia.
Li, Meng; Yan, Jianhao; Li, Shumei; Wang, Tianyue; Zhan, Wenfeng; Wen, Hua; Ma, Xiaofen; Zhang, Yong; Tian, Junzhang; Jiang, Guihua
2017-04-01
Accumulating evidence from brain structural imaging studies has supported that chronic pain could induce changes in brain gray matter volume. However, few studies have focused on the gray matter alterations of Trigeminal neuralgia (TN). In this study, twenty-eight TN patients (thirteen females; mean age, 45.86 years ±11.17) and 28 healthy controls (HC; thirteen females; mean age, 44.89 years ±7.67) were included. Using voxel-based morphometry (VBM), we detected abnormalities in gray matter volume in the TN patients. Based on a voxel-wise analysis, the TN group showed significantly decreased gray matter volume in the bilateral superior/middle temporal gyrus (STG/MTG), bilateral parahippocampus, left anterior cingulate cortex (ACC), caudate nucleus, right fusiform gyrus, and right cerebellum compared with the HC. In addition, we found that the gray matter volume in the bilateral STG/MTG was negatively correlated with the duration of TN. These results provide compelling evidence for gray matter abnormalities in TN and suggest that the duration of TN may be a critical factor associated with brain alterations.
Gray matter alteration in isolated congenital anosmia patient: a voxel-based morphometry study.
Yao, Linyin; Yi, Xiaoli; Wei, Yongxiang
2013-09-01
Decreased volume of gray matter (GM) was observed in olfactory loss in patients with neurodegenerative disorder. However, GM volume has not yet been investigated in isolated congenital anosmia (ICA) people. We herewith investigated the volume change of gray matter of an ICA boy by morphometric analysis of magnetic resonance images (voxel-based morphometry), and compared with that of 20 age-matched healthy controls. ICA boy presented a significant decrease in GM volume in the orbitofrontal cortex, anterior cingulate cortex, middle cingulate cortex, thalamus, insular cortex, cerebellum, precuneus, gyrus rectus, subcallosal gyrus, middle temporal gyrus, fusiform gyrus and piriform cortex. No significant GM volume increase was detected in other brain areas. The pattern of GM atrophy was similar as previous literature reported. Our results identified similar GM volume alterations regardless of the causes of olfactory impairment. Decreased GM volume was not only shown in olfactory bulbs, olfactory tracts and olfactory sulcus, also in primary olfactory cortex and the secondary cerebral olfactory areas in ICA people. This is the first study to evaluate GM volume alterations in ICA people.
Yoon, Jong H.; Tamir, Diana; Minzenberg, Michael J.; Ragland, J. Daniel; Ursu, Stefan; Carter, Cameron S.
2009-01-01
Background Multivariate pattern analysis is an alternative method of analyzing fMRI data, which is capable of decoding distributed neural representations. We applied this method to test the hypothesis of the impairment in distributed representations in schizophrenia. We also compared the results of this method with traditional GLM-based univariate analysis. Methods 19 schizophrenia and 15 control subjects viewed two runs of stimuli--exemplars of faces, scenes, objects, and scrambled images. To verify engagement with stimuli, subjects completed a 1-back matching task. A multi-voxel pattern classifier was trained to identify category-specific activity patterns on one run of fMRI data. Classification testing was conducted on the remaining run. Correlation of voxel-wise activity across runs evaluated variance over time in activity patterns. Results Patients performed the task less accurately. This group difference was reflected in the pattern analysis results with diminished classification accuracy in patients compared to controls, 59% and 72% respectively. In contrast, there was no group difference in GLM-based univariate measures. In both groups, classification accuracy was significantly correlated with behavioral measures. Both groups showed highly significant correlation between inter-run correlations and classification accuracy. Conclusions Distributed representations of visual objects are impaired in schizophrenia. This impairment is correlated with diminished task performance, suggesting that decreased integrity of cortical activity patterns is reflected in impaired behavior. Comparisons with univariate results suggest greater sensitivity of pattern analysis in detecting group differences in neural activity and reduced likelihood of non-specific factors driving these results. PMID:18822407
Lakshmanan, Manu N.; Greenberg, Joel A.; Samei, Ehsan; Kapadia, Anuj J.
2017-01-01
Abstract. Although transmission-based x-ray imaging is the most commonly used imaging approach for breast cancer detection, it exhibits false negative rates higher than 15%. To improve cancer detection accuracy, x-ray coherent scatter computed tomography (CSCT) has been explored to potentially detect cancer with greater consistency. However, the 10-min scan duration of CSCT limits its possible clinical applications. The coded aperture coherent scatter spectral imaging (CACSSI) technique has been shown to reduce scan time through enabling single-angle imaging while providing high detection accuracy. Here, we use Monte Carlo simulations to test analytical optimization studies of the CACSSI technique, specifically for detecting cancer in ex vivo breast samples. An anthropomorphic breast tissue phantom was modeled, a CACSSI imaging system was virtually simulated to image the phantom, a diagnostic voxel classification algorithm was applied to all reconstructed voxels in the phantom, and receiver-operator characteristics analysis of the voxel classification was used to evaluate and characterize the imaging system for a range of parameters that have been optimized in a prior analytical study. The results indicate that CACSSI is able to identify the distribution of cancerous and healthy tissues (i.e., fibroglandular, adipose, or a mix of the two) in tissue samples with a cancerous voxel identification area-under-the-curve of 0.94 through a scan lasting less than 10 s per slice. These results show that coded aperture scatter imaging has the potential to provide scatter images that automatically differentiate cancerous and healthy tissue within ex vivo samples. Furthermore, the results indicate potential CACSSI imaging system configurations for implementation in subsequent imaging development studies. PMID:28331884
Guo, Bing-bing; Zheng, Xiao-lin; Lu, Zhen-gang; Wang, Xing; Yin, Zheng-qin; Hou, Wen-sheng; Meng, Ming
2015-01-01
Visual cortical prostheses have the potential to restore partial vision. Still limited by the low-resolution visual percepts provided by visual cortical prostheses, implant wearers can currently only “see” pixelized images, and how to obtain the specific brain responses to different pixelized images in the primary visual cortex (the implant area) is still unknown. We conducted a functional magnetic resonance imaging experiment on normal human participants to investigate the brain activation patterns in response to 18 different pixelized images. There were 100 voxels in the brain activation pattern that were selected from the primary visual cortex, and voxel size was 4 mm × 4 mm × 4 mm. Multi-voxel pattern analysis was used to test if these 18 different brain activation patterns were specific. We chose a Linear Support Vector Machine (LSVM) as the classifier in this study. The results showed that the classification accuracies of different brain activation patterns were significantly above chance level, which suggests that the classifier can successfully distinguish the brain activation patterns. Our results suggest that the specific brain activation patterns to different pixelized images can be obtained in the primary visual cortex using a 4 mm × 4 mm × 4 mm voxel size and a 100-voxel pattern. PMID:26692860
NASA Astrophysics Data System (ADS)
Park, S. Y.; Kim, G. A.; Cho, H. S.; Park, C. K.; Lee, D. Y.; Lim, H. W.; Lee, H. W.; Kim, K. S.; Kang, S. Y.; Park, J. E.; Kim, W. S.; Jeon, D. H.; Je, U. K.; Woo, T. H.; Oh, J. E.
2018-02-01
In recent digital tomosynthesis (DTS), iterative reconstruction methods are often used owing to the potential to provide multiplanar images of superior image quality to conventional filtered-backprojection (FBP)-based methods. However, they require enormous computational cost in the iterative process, which has still been an obstacle to put them to practical use. In this work, we propose a new DTS reconstruction method incorporated with a dual-resolution voxelization scheme in attempt to overcome these difficulties, in which the voxels outside a small region-of-interest (ROI) containing target diagnosis are binned by 2 × 2 × 2 while the voxels inside the ROI remain unbinned. We considered a compressed-sensing (CS)-based iterative algorithm with a dual-constraint strategy for more accurate DTS reconstruction. We implemented the proposed algorithm and performed a systematic simulation and experiment to demonstrate its viability. Our results indicate that the proposed method seems to be effective for reducing computational cost considerably in iterative DTS reconstruction, keeping the image quality inside the ROI not much degraded. A binning size of 2 × 2 × 2 required only about 31.9% computational memory and about 2.6% reconstruction time, compared to those for no binning case. The reconstruction quality was evaluated in terms of the root-mean-square error (RMSE), the contrast-to-noise ratio (CNR), and the universal-quality index (UQI).
Xue, Zhong; Li, Hai; Guo, Lei; Wong, Stephen T.C.
2010-01-01
It is a key step to spatially align diffusion tensor images (DTI) to quantitatively compare neural images obtained from different subjects or the same subject at different timepoints. Different from traditional scalar or multi-channel image registration methods, tensor orientation should be considered in DTI registration. Recently, several DTI registration methods have been proposed in the literature, but deformation fields are purely dependent on the tensor features not the whole tensor information. Other methods, such as the piece-wise affine transformation and the diffeomorphic non-linear registration algorithms, use analytical gradients of the registration objective functions by simultaneously considering the reorientation and deformation of tensors during the registration. However, only relatively local tensor information such as voxel-wise tensor-similarity, is utilized. This paper proposes a new DTI image registration algorithm, called local fast marching (FM)-based simultaneous registration. The algorithm not only considers the orientation of tensors during registration but also utilizes the neighborhood tensor information of each voxel to drive the deformation, and such neighborhood tensor information is extracted from a local fast marching algorithm around the voxels of interest. These local fast marching-based tensor features efficiently reflect the diffusion patterns around each voxel within a spherical neighborhood and can capture relatively distinctive features of the anatomical structures. Using simulated and real DTI human brain data the experimental results show that the proposed algorithm is more accurate compared with the FA-based registration and is more efficient than its counterpart, the neighborhood tensor similarity-based registration. PMID:20382233
Chi, Yujie; Tian, Zhen; Jia, Xun
2016-08-07
Monte Carlo (MC) particle transport simulation on a graphics-processing unit (GPU) platform has been extensively studied recently due to the efficiency advantage achieved via massive parallelization. Almost all of the existing GPU-based MC packages were developed for voxelized geometry. This limited application scope of these packages. The purpose of this paper is to develop a module to model parametric geometry and integrate it in GPU-based MC simulations. In our module, each continuous region was defined by its bounding surfaces that were parameterized by quadratic functions. Particle navigation functions in this geometry were developed. The module was incorporated to two previously developed GPU-based MC packages and was tested in two example problems: (1) low energy photon transport simulation in a brachytherapy case with a shielded cylinder applicator and (2) MeV coupled photon/electron transport simulation in a phantom containing several inserts of different shapes. In both cases, the calculated dose distributions agreed well with those calculated in the corresponding voxelized geometry. The averaged dose differences were 1.03% and 0.29%, respectively. We also used the developed package to perform simulations of a Varian VS 2000 brachytherapy source and generated a phase-space file. The computation time under the parameterized geometry depended on the memory location storing the geometry data. When the data was stored in GPU's shared memory, the highest computational speed was achieved. Incorporation of parameterized geometry yielded a computation time that was ~3 times of that in the corresponding voxelized geometry. We also developed a strategy to use an auxiliary index array to reduce frequency of geometry calculations and hence improve efficiency. With this strategy, the computational time ranged in 1.75-2.03 times of the voxelized geometry for coupled photon/electron transport depending on the voxel dimension of the auxiliary index array, and in 0.69-1.23 times for photon only transport.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ikushima, K; Arimura, H; Jin, Z
Purpose: In radiation treatment planning, delineation of gross tumor volume (GTV) is very important, because the GTVs affect the accuracies of radiation therapy procedure. To assist radiation oncologists in the delineation of GTV regions while treatment planning for lung cancer, we have proposed a machine-learning-based delineation framework of GTV regions of solid and ground glass opacity (GGO) lung tumors following by optimum contour selection (OCS) method. Methods: Our basic idea was to feed voxel-based image features around GTV contours determined by radiation oncologists into a machine learning classifier in the training step, after which the classifier produced the degree ofmore » GTV for each voxel in the testing step. Ten data sets of planning CT and PET/CT images were selected for this study. The support vector machine (SVM), which learned voxel-based features which include voxel value and magnitudes of image gradient vector that obtained from each voxel in the planning CT and PET/CT images, extracted initial GTV regions. The final GTV regions were determined using the OCS method that was able to select a global optimum object contour based on multiple active delineations with a level set method around the GTV. To evaluate the results of proposed framework for ten cases (solid:6, GGO:4), we used the three-dimensional Dice similarity coefficient (DSC), which denoted the degree of region similarity between the GTVs delineated by radiation oncologists and the proposed framework. Results: The proposed method achieved an average three-dimensional DSC of 0.81 for ten lung cancer patients, while a standardized uptake value-based method segmented GTV regions with the DSC of 0.43. The average DSCs for solid and GGO were 0.84 and 0.76, respectively, obtained by the proposed framework. Conclusion: The proposed framework with the support vector machine may be useful for assisting radiation oncologists in delineating solid and GGO lung tumors.« less
Voxel modelling of sands and gravels of Pleistocene Rhine and Meuse deposits in Flanders (Belgium)
NASA Astrophysics Data System (ADS)
van Haren, Tom; Dirix, Katrijn; De Koninck, Roel
2017-04-01
Voxel modelling or 3D volume modelling of Quaternary raw materials is VITO's next step in the geological layer modelling of the Flanders and Brussels Capital Region in Belgium (G3D - Matthijs et al., 2013). The aim is to schematise deposits as voxels ('volumetric pixels') that represent lithological information on a grid in three-dimensional space (25 x 25 x 0.5 m). A new voxel model on Pleistocene Meuse and Rhine sands and gravels will be illustrated succeeding a voxel model on loess resources (van Haren et al., 2016). The model methodology is based on a geological 'skeleton' extracted from the regional geological layer model of Flanders. This framework holds the 3D interpolated lithological information of 5.000 boreholes. First a check on quality and spatial location filtered out significant and usable lithological information. Subsequently a manual geological interpretation was performed to analyse stratigraphical arrangement and identify the raw materials of interest. Finally, a workflow was developed that automatically encodes and classifies the borehole descriptions in a standardized manner. This workflow was implemented by combining Microsoft Access® and ArcMap® and is able to convert borehole descriptions into specific geological parameters. An analysis of the conversed lithological data prior to interpolation improves the understanding of the spatial distribution, to fine tune the modelling process and to know the limitations of the data. The converted lithological data were 3D interpolated in Voxler using IDW and resulted in a model containing 52 million voxels. It gives an overview on the regional distribution and thickness variation of interesting Pleistocene aggregates of Meuse and Rhine. Much effort has been put in setting up a database structure in Microsoft Access® and Microsoft SQL Server® in order to arrange and analyse the lithological information, link the voxel model with the geological layer model and handle and analyse the resulting voxelmodel data. The database structure allows to analyse and set certain preconditions (minimal thickness or maximum depth of aggregates, maximum thickness of intercalating clays) on the model in order to calculate and view distributions of deposits which meet these preconditions. These results are interesting for pre-prospective purposes, illustrating the distribution of lithological information and making the end user more aware of the potential economic value of the subsurface. References van Haren T. et al (2016) - An interactive voxel model for mineral resources: loess deposits in Flanders (Belgium). Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, Volume 167, Number 4, pp. 363-376(14). Matthijs J. et al. (2013) - Geological 3D layer model of the Flanders Region and Brussels-Capital Region - 2nd version. Study performed in order of the Ministery of the Flemish Community. VITO report 2013/R/ETE/43, 24p. (in Dutch)
Kramer, R; Khoury, H J; Vieira, J W; Loureiro, E C M; Lima, V J M; Lima, F R A; Hoff, G
2004-12-07
The International Commission on Radiological Protection (ICRP) has created a task group on dose calculations, which, among other objectives, should replace the currently used mathematical MIRD phantoms by voxel phantoms. Voxel phantoms are based on digital images recorded from scanning of real persons by computed tomography or magnetic resonance imaging (MRI). Compared to the mathematical MIRD phantoms, voxel phantoms are true to the natural representations of a human body. Connected to a radiation transport code, voxel phantoms serve as virtual humans for which equivalent dose to organs and tissues from exposure to ionizing radiation can be calculated. The principal database for the construction of the FAX (Female Adult voXel) phantom consisted of 151 CT images recorded from scanning of trunk and head of a female patient, whose body weight and height were close to the corresponding data recommended by the ICRP in Publication 89. All 22 organs and tissues at risk, except for the red bone marrow and the osteogenic cells on the endosteal surface of bone ('bone surface'), have been segmented manually with a technique recently developed at the Departamento de Energia Nuclear of the UFPE in Recife, Brazil. After segmentation the volumes of the organs and tissues have been adjusted to agree with the organ and tissue masses recommended by ICRP for the Reference Adult Female in Publication 89. Comparisons have been made with the organ and tissue masses of the mathematical EVA phantom, as well as with the corresponding data for other female voxel phantoms. The three-dimensional matrix of the segmented images has eventually been connected to the EGS4 Monte Carlo code. Effective dose conversion coefficients have been calculated for exposures to photons, and compared to data determined for the mathematical MIRD-type phantoms, as well as for other voxel phantoms.
Exploring connectivity with large-scale Granger causality on resting-state functional MRI.
DSouza, Adora M; Abidin, Anas Z; Leistritz, Lutz; Wismüller, Axel
2017-08-01
Large-scale Granger causality (lsGC) is a recently developed, resting-state functional MRI (fMRI) connectivity analysis approach that estimates multivariate voxel-resolution connectivity. Unlike most commonly used multivariate approaches, which establish coarse-resolution connectivity by aggregating voxel time-series avoiding an underdetermined problem, lsGC estimates voxel-resolution, fine-grained connectivity by incorporating an embedded dimension reduction. We investigate application of lsGC on realistic fMRI simulations, modeling smoothing of neuronal activity by the hemodynamic response function and repetition time (TR), and empirical resting-state fMRI data. Subsequently, functional subnetworks are extracted from lsGC connectivity measures for both datasets and validated quantitatively. We also provide guidelines to select lsGC free parameters. Results indicate that lsGC reliably recovers underlying network structure with area under receiver operator characteristic curve (AUC) of 0.93 at TR=1.5s for a 10-min session of fMRI simulations. Furthermore, subnetworks of closely interacting modules are recovered from the aforementioned lsGC networks. Results on empirical resting-state fMRI data demonstrate recovery of visual and motor cortex in close agreement with spatial maps obtained from (i) visuo-motor fMRI stimulation task-sequence (Accuracy=0.76) and (ii) independent component analysis (ICA) of resting-state fMRI (Accuracy=0.86). Compared with conventional Granger causality approach (AUC=0.75), lsGC produces better network recovery on fMRI simulations. Furthermore, it cannot recover functional subnetworks from empirical fMRI data, since quantifying voxel-resolution connectivity is not possible as consequence of encountering an underdetermined problem. Functional network recovery from fMRI data suggests that lsGC gives useful insight into connectivity patterns from resting-state fMRI at a multivariate voxel-resolution. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deviers, Alexandra; UMR; INP
Purpose: Because lactate accumulation is considered a surrogate for hypoxia and tumor radiation resistance, we studied the spatial distribution of the lactate-to-N-acetyl-aspartate ratio (LNR) before radiation therapy (RT) with 3D proton magnetic resonance spectroscopic imaging (3D-{sup 1}H-MRSI) and assessed its impact on local tumor control in glioblastoma (GBM). Methods and Materials: Fourteen patients with newly diagnosed GBM included in a phase 2 chemoradiation therapy trial constituted our database. Magnetic resonance imaging (MRI) and MRSI data before RT were evaluated and correlated to MRI data at relapse. The optimal threshold for tumor-associated LNR was determined with receiver-operating-characteristic (ROC) curve analysis ofmore » the pre-RT LNR values and MRI characteristics of the tumor. This threshold was used to segment pre-RT normalized LNR maps. Two spatial analyses were performed: (1) a pre-RT volumetric comparison of abnormal LNR areas with regions of MRI-defined lesions and a choline (Cho)-to- N-acetyl-aspartate (NAA) ratio ≥2 (CNR2); and (2) a voxel-by-voxel spatial analysis of 4,186,185 voxels with the intention of evaluating whether pre-RT abnormal LNR areas were predictive of the site of local recurrence. Results: A LNR of ≥0.4 (LNR-0.4) discriminated between tumor-associated and normal LNR values with 88.8% sensitivity and 97.6% specificity. LNR-0.4 voxels were spatially different from those of MRI-defined lesions, representing 44% of contrast enhancement, 64% of central necrosis, and 26% of fluid-attenuated inversion recovery (FLAIR) abnormality volumes before RT. They extended beyond the overlap with CNR2 for most patients (median: 20 cm{sup 3}; range: 6-49 cm{sup 3}). LNR-0.4 voxels were significantly predictive of local recurrence, regarded as contrast enhancement at relapse: 71% of voxels with a LNR-0.4 before RT were contrast enhanced at relapse versus 10% of voxels with a normal LNR (P<.01). Conclusions: Pre-RT LNR-0.4 in GBM indicates tumor areas that are likely to relapse. Further investigations are needed to confirm lactate imaging as a tool to define additional biological target volumes for dose painting.« less
Lee, Alison M; Beasley, Michaela J; Barrett, Emerald D; James, Judy R; Gambino, Jennifer M
2018-06-10
Conventional magnetic resonance imaging (MRI) characteristics of canine brain diseases are often nonspecific. Single- and multi-voxel spectroscopy techniques allow quantification of chemical biomarkers for tissues of interest and may help to improve diagnostic specificity. However, published information is currently lacking for the in vivo performance of these two techniques in dogs. The aim of this prospective, methods comparison study was to compare the performance of single- and multi-voxel spectroscopy in the brains of eight healthy, juvenile dogs using 3 Tesla MRI. Ipsilateral regions of single- and multi-voxel spectroscopy were performed in symmetric regions of interest of each brain in the parietal (n = 3), thalamic (n = 2), and piriform lobes (n = 3). In vivo single-voxel spectroscopy and multi-voxel spectroscopy metabolite ratios from the same size and multi-voxel spectroscopy ratios from different sized regions of interest were compared. No significant difference was seen between single-voxel spectroscopy and multi-voxel spectroscopy metabolite ratios for any lobe when regions of interest were similar in size and shape. Significant lobar single-voxel spectroscopy and multi-voxel spectroscopy differences were seen between the parietal lobe and thalamus (P = 0.047) for the choline to N-acetyl aspartase ratios when large multi-voxel spectroscopy regions of interest were compared to very small multi-voxel spectroscopy regions of interest within the same lobe; and for the N-acetyl aspartase to creatine ratios in all lobes when single-voxel spectroscopy was compared to combined (pooled) multi-voxel spectroscopy datasets. Findings from this preliminary study indicated that single- and multi-voxel spectroscopy techniques using 3T MRI yield comparable results for similar sized regions of interest in the normal canine brain. Findings also supported using the contralateral side as an internal control for dogs with brain lesions. © 2018 American College of Veterinary Radiology.
New hybrid voxelized/analytical primitive in Monte Carlo simulations for medical applications
NASA Astrophysics Data System (ADS)
Bert, Julien; Lemaréchal, Yannick; Visvikis, Dimitris
2016-05-01
Monte Carlo simulations (MCS) applied in particle physics play a key role in medical imaging and particle therapy. In such simulations, particles are transported through voxelized phantoms derived from predominantly patient CT images. However, such voxelized object representation limits the incorporation of fine elements, such as artificial implants from CAD modeling or anatomical and functional details extracted from other imaging modalities. In this work we propose a new hYbrid Voxelized/ANalytical primitive (YVAN) that combines both voxelized and analytical object descriptions within the same MCS, without the need to simultaneously run two parallel simulations, which is the current gold standard methodology. Given that YVAN is simply a new primitive object, it does not require any modifications on the underlying MC navigation code. The new proposed primitive was assessed through a first simple MCS. Results from the YVAN primitive were compared against an MCS using a pure analytical geometry and the layer mass geometry concept. A perfect agreement was found between these simulations, leading to the conclusion that the new hybrid primitive is able to accurately and efficiently handle phantoms defined by a mixture of voxelized and analytical objects. In addition, two application-based evaluation studies in coronary angiography and intra-operative radiotherapy showed that the use of YVAN was 6.5% and 12.2% faster than the layered mass geometry method, respectively, without any associated loss of accuracy. However, the simplification advantages and differences in computational time improvements obtained with YVAN depend on the relative proportion of the analytical and voxelized structures used in the simulation as well as the size and number of triangles used in the description of the analytical object meshes.
Christen, Patrik; Schulte, Friederike A.; Zwahlen, Alexander; van Rietbergen, Bert; Boutroy, Stephanie; Melton, L. Joseph; Amin, Shreyasee; Khosla, Sundeep; Goldhahn, Jörg; Müller, Ralph
2016-01-01
A bone loading estimation algorithm was previously developed that provides in vivo loading conditions required for in vivo bone remodelling simulations. The algorithm derives a bone's loading history from its microstructure as assessed by high-resolution (HR) computed tomography (CT). This reverse engineering approach showed accurate and realistic results based on micro-CT and HR-peripheral quantitative CT images. However, its voxel size dependency, reproducibility and sensitivity still need to be investigated, which is the purpose of this study. Voxel size dependency was tested on cadaveric distal radii with micro-CT images scanned at 25 µm and downscaled to 50, 61, 75, 82, 100, 125 and 150 µm. Reproducibility was calculated with repeated in vitro as well as in vivo HR-pQCT measurements at 82 µm. Sensitivity was defined using HR-pQCT images from women with fracture versus non-fracture, and low versus high bone volume fraction, expecting similar and different loading histories, respectively. Our results indicate that the algorithm is voxel size independent within an average (maximum) error of 8.2% (32.9%) at 61 µm, but that the dependency increases considerably at voxel sizes bigger than 82 µm. In vitro and in vivo reproducibility are up to 4.5% and 10.2%, respectively, which is comparable to other in vitro studies and slightly higher than in other in vivo studies. Subjects with different bone volume fraction were clearly distinguished but not subjects with and without fracture. This is in agreement with bone adapting to customary loading but not to fall loads. We conclude that the in vivo bone loading estimation algorithm provides reproducible, sensitive and fairly voxel size independent results at up to 82 µm, but that smaller voxel sizes would be advantageous. PMID:26790999
Rocca, Maria A; Valsasina, Paola; Damjanovic, Dusan; Horsfield, Mark A; Mesaros, Sarlota; Stosic-Opincal, Tatjana; Drulovic, Jelena; Filippi, Massimo
2013-01-01
To apply voxel-based methods to map the regional distribution of atrophy and T2 hyperintense lesions in the cervical cord of multiple sclerosis (MS) patients with different clinical phenotypes. Brain and cervical cord 3D T1-weighted and T2-weighted scans were acquired from 31 healthy controls (HC) and 77 MS patients (15 clinically isolated syndromes (CIS), 15 relapsing-remitting (RR), 19 benign (B), 15 primary progressive (PP) and 13 secondary progressive (SP) MS). Hyperintense cord lesions were outlined on T2-weighted scans. The T2- and 3D T1-weighted cord images were then analysed using an active surface method which created output images reformatted in planes perpendicular to the estimated cord centre line. These unfolded cervical cord images were co-registered into a common space; then smoothed binary cord masks and lesion masks underwent spatial statistic analysis (SPM8). No cord atrophy was found in CIS patients versus HC, while PPMS had significant cord atrophy. Clusters of cord atrophy were found in BMS versus RRMS, and in SPMS versus RRMS, BMS and PPMS patients, mainly involving the posterior and lateral cord segments. Cord lesion probability maps showed a significantly greater likelihood of abnormalities in RRMS, PPMS and SPMS than in CIS and BMS patients. The spatial distributions of cord atrophy and cord lesions were not correlated. In progressive MS, regional cord atrophy was correlated with clinical disability and impairment in the pyramidal system. Voxel-based assessment of cervical cord damage is feasible and may contribute to a better characterisation of the clinical heterogeneity of MS patients.
Tamboer, Peter; Scholte, H Steven; Vorst, Harrie C M
2015-10-01
In voxel-based morphometry studies of dyslexia, the relation between causal theories of dyslexia and gray matter (GM) and white matter (WM) volume alterations is still under debate. Some alterations are consistently reported, but others failed to reach significance. We investigated GM alterations in a large sample of Dutch students (37 dyslexics and 57 non-dyslexics) with two analyses: group differences in local GM and total GM and WM volume and correlations between GM and WM volumes and five behavioural measures. We found no significant group differences after corrections for multiple comparisons although total WM volume was lower in the group of dyslexics when age was partialled out. We presented an overview of uncorrected clusters of voxels (p < 0.05, cluster size k > 200) with reduced or increased GM volume. We found four significant correlations between factors of dyslexia representing various behavioural measures and the clusters found in the first analysis. In the whole sample, a factor related to performances in spelling correlated negatively with GM volume in the left posterior cerebellum. Within the group of dyslexics, a factor related to performances in Dutch-English rhyme words correlated positively with GM volume in the left and right caudate nucleus and negatively with increased total WM volume. Most of our findings were in accordance with previous reports. A relatively new finding was the involvement of the caudate nucleus. We confirmed the multiple cognitive nature of dyslexia and suggested that experience greatly influences anatomical alterations depending on various subtypes of dyslexia, especially in a student sample.
Spisák, Tamás; Jakab, András; Kis, Sándor A; Opposits, Gábor; Aranyi, Csaba; Berényi, Ervin; Emri, Miklós
2014-01-01
Functional Magnetic Resonance Imaging (fMRI) based brain connectivity analysis maps the functional networks of the brain by estimating the degree of synchronous neuronal activity between brain regions. Recent studies have demonstrated that "resting-state" fMRI-based brain connectivity conclusions may be erroneous when motion artifacts have a differential effect on fMRI BOLD signals for between group comparisons. A potential explanation could be that in-scanner displacement, due to rotational components, is not spatially constant in the whole brain. However, this localized nature of motion artifacts is poorly understood and is rarely considered in brain connectivity studies. In this study, we initially demonstrate the local correspondence between head displacement and the changes in the resting-state fMRI BOLD signal. Than, we investigate how connectivity strength is affected by the population-level variation in the spatial pattern of regional displacement. We introduce Regional Displacement Interaction (RDI), a new covariate parameter set for second-level connectivity analysis and demonstrate its effectiveness in reducing motion related confounds in comparisons of groups with different voxel-vise displacement pattern and preprocessed using various nuisance regression methods. The effect of using RDI as second-level covariate is than demonstrated in autism-related group comparisons. The relationship between the proposed method and some of the prevailing subject-level nuisance regression techniques is evaluated. Our results show that, depending on experimental design, treating in-scanner head motion as a global confound may not be appropriate. The degree of displacement is highly variable among various brain regions, both within and between subjects. These regional differences bias correlation-based measures of brain connectivity. The inclusion of the proposed second-level covariate into the analysis successfully reduces artifactual motion-related group differences and preserves real neuronal differences, as demonstrated by the autism-related comparisons.
BrainMap VBM: An environment for structural meta-analysis.
Vanasse, Thomas J; Fox, P Mickle; Barron, Daniel S; Robertson, Michaela; Eickhoff, Simon B; Lancaster, Jack L; Fox, Peter T
2018-05-02
The BrainMap database is a community resource that curates peer-reviewed, coordinate-based human neuroimaging literature. By pairing the results of neuroimaging studies with their relevant meta-data, BrainMap facilitates coordinate-based meta-analysis (CBMA) of the neuroimaging literature en masse or at the level of experimental paradigm, clinical disease, or anatomic location. Initially dedicated to the functional, task-activation literature, BrainMap is now expanding to include voxel-based morphometry (VBM) studies in a separate sector, titled: BrainMap VBM. VBM is a whole-brain, voxel-wise method that measures significant structural differences between or within groups which are reported as standardized, peak x-y-z coordinates. Here we describe BrainMap VBM, including the meta-data structure, current data volume, and automated reverse inference functions (region-to-disease profile) of this new community resource. CBMA offers a robust methodology for retaining true-positive and excluding false-positive findings across studies in the VBM literature. As with BrainMap's functional database, BrainMap VBM may be synthesized en masse or at the level of clinical disease or anatomic location. As a use-case scenario for BrainMap VBM, we illustrate a trans-diagnostic data-mining procedure wherein we explore the underlying network structure of 2,002 experiments representing over 53,000 subjects through independent components analysis (ICA). To reduce data-redundancy effects inherent to any database, we demonstrate two data-filtering approaches that proved helpful to ICA. Finally, we apply hierarchical clustering analysis (HCA) to measure network- and disease-specificity. This procedure distinguished psychiatric from neurological diseases. We invite the neuroscientific community to further exploit BrainMap VBM with other modeling approaches. © 2018 Wiley Periodicals, Inc.
Lohmann, Gabriele; Stelzer, Johannes; Zuber, Verena; Buschmann, Tilo; Margulies, Daniel; Bartels, Andreas; Scheffler, Klaus
2016-01-01
The formation of transient networks in response to external stimuli or as a reflection of internal cognitive processes is a hallmark of human brain function. However, its identification in fMRI data of the human brain is notoriously difficult. Here we propose a new method of fMRI data analysis that tackles this problem by considering large-scale, task-related synchronisation networks. Networks consist of nodes and edges connecting them, where nodes correspond to voxels in fMRI data, and the weight of an edge is determined via task-related changes in dynamic synchronisation between their respective times series. Based on these definitions, we developed a new data analysis algorithm that identifies edges that show differing levels of synchrony between two distinct task conditions and that occur in dense packs with similar characteristics. Hence, we call this approach “Task-related Edge Density” (TED). TED proved to be a very strong marker for dynamic network formation that easily lends itself to statistical analysis using large scale statistical inference. A major advantage of TED compared to other methods is that it does not depend on any specific hemodynamic response model, and it also does not require a presegmentation of the data for dimensionality reduction as it can handle large networks consisting of tens of thousands of voxels. We applied TED to fMRI data of a fingertapping and an emotion processing task provided by the Human Connectome Project. TED revealed network-based involvement of a large number of brain areas that evaded detection using traditional GLM-based analysis. We show that our proposed method provides an entirely new window into the immense complexity of human brain function. PMID:27341204
Lohmann, Gabriele; Stelzer, Johannes; Zuber, Verena; Buschmann, Tilo; Margulies, Daniel; Bartels, Andreas; Scheffler, Klaus
2016-01-01
The formation of transient networks in response to external stimuli or as a reflection of internal cognitive processes is a hallmark of human brain function. However, its identification in fMRI data of the human brain is notoriously difficult. Here we propose a new method of fMRI data analysis that tackles this problem by considering large-scale, task-related synchronisation networks. Networks consist of nodes and edges connecting them, where nodes correspond to voxels in fMRI data, and the weight of an edge is determined via task-related changes in dynamic synchronisation between their respective times series. Based on these definitions, we developed a new data analysis algorithm that identifies edges that show differing levels of synchrony between two distinct task conditions and that occur in dense packs with similar characteristics. Hence, we call this approach "Task-related Edge Density" (TED). TED proved to be a very strong marker for dynamic network formation that easily lends itself to statistical analysis using large scale statistical inference. A major advantage of TED compared to other methods is that it does not depend on any specific hemodynamic response model, and it also does not require a presegmentation of the data for dimensionality reduction as it can handle large networks consisting of tens of thousands of voxels. We applied TED to fMRI data of a fingertapping and an emotion processing task provided by the Human Connectome Project. TED revealed network-based involvement of a large number of brain areas that evaded detection using traditional GLM-based analysis. We show that our proposed method provides an entirely new window into the immense complexity of human brain function.
Nakatsuka, Tomoya; Imabayashi, Etsuko; Matsuda, Hiroshi; Sakakibara, Ryuji; Inaoka, Tsutomu; Terada, Hitoshi
2013-05-01
The purpose of this study was to identify brain atrophy specific for dementia with Lewy bodies (DLB) and to evaluate the discriminatory performance of this specific atrophy between DLB and Alzheimer's disease (AD). We retrospectively reviewed 60 DLB and 30 AD patients who had undergone 3D T1-weighted MRI. We randomly divided the DLB patients into two equal groups (A and B). First, we obtained a target volume of interest (VOI) for DLB-specific atrophy using correlation analysis of the percentage rate of significant whole white matter (WM) atrophy calculated using the Voxel-based Specific Regional Analysis System for Alzheimer's Disease (VSRAD) based on statistical parametric mapping 8 (SPM8) plus diffeomorphic anatomic registration through exponentiated Lie algebra, with segmented WM images in group A. We then evaluated the usefulness of this target VOI for discriminating the remaining 30 DLB patients in group B from the 30 AD patients. Z score values in this target VOI obtained from VSRAD were used as the determinant in receiver operating characteristic (ROC) analysis. Specific target VOIs for DLB were determined in the right-side dominant dorsal midbrain, right-side dominant dorsal pons, and bilateral cerebellum. ROC analysis revealed that the target VOI limited to the midbrain exhibited the highest area under the ROC curves of 0.75. DLB patients showed specific atrophy in the midbrain, pons, and cerebellum. Midbrain atrophy demonstrated the highest power for discriminating DLB and AD. This approach may be useful for determining the contributions of DLB and AD pathologies to the dementia syndrome.
NASA Astrophysics Data System (ADS)
Lee, Choonsik; Lee, Choonik; Lee, Jai-Ki
2006-11-01
Distributions of radiation absorbed dose within human anatomy have been estimated through Monte Carlo radiation transport techniques implemented for two different classes of computational anthropomorphic phantoms: (1) mathematical equation-based stylized phantoms and (2) tomographic image-based voxel phantoms. Voxel phantoms constructed from tomographic images of real human anatomy have been actively developed since the late 1980s to overcome the anatomical approximations necessary with stylized phantoms, which themselves have been utilized since the mid 1960s. However, revisions of stylized phantoms have also been pursued in parallel to the development of voxel phantoms since voxel phantoms (1) are initially restricted to the individual-specific anatomy of the person originally imaged, (2) must be restructured on an organ-by-organ basis to conform to reference individual anatomy and (3) cannot easily represent very fine anatomical structures and tissue layers that are thinner than the voxel dimensions of the overall phantom. Although efforts have been made to improve the anatomic realism of stylized phantoms, most of these efforts have been limited to attempts to alter internal organ structures. Aside from the internal organs, the exterior shapes, and especially the arm structures, of stylized phantoms are also far from realistic descriptions of human anatomy, and may cause dosimetry errors in the calculation of organ-absorbed doses for external irradiation scenarios. The present study was intended to highlight the need to revise the existing arm structure within stylized phantoms by comparing organ doses of stylized adult phantoms with those from three adult voxel phantoms in the lateral photon irradiation geometry. The representative stylized phantom, the adult phantom of the Oak Ridge National Laboratory (ORNL) series and two adult male voxel phantoms, KTMAN-2 and VOXTISS8, were employed for Monte Carlo dose calculation, and data from another voxel phantom, VIP-Man, were obtained from literature sources. The absorbed doses for lungs, oesophagus, liver and kidneys that could be affected by arm structures in the lateral irradiation geometry were obtained for both classes of phantoms in lateral monoenergetic photon irradiation geometries. As expected, those organs in the ORNL phantoms received apparently higher absorbed doses than those in the voxel phantoms. The overestimation is mainly attributed to the relatively poor representation of the arm structure in the ORNL phantom in which the arm bones are embedded within the regions describing the phantom's torso. The results of this study suggest that the overestimation of organ doses, due to unrealistic arm representation, should be taken into account when stylized phantoms are employed for equivalent or effective dose estimates, especially in the case of an irradiation scenario with dominating lateral exposure. For such a reason, the stylized phantom arm structure definition should be revised in order to obtain more realistic evaluations.
Efficient Skeletonization of Volumetric Objects.
Zhou, Yong; Toga, Arthur W
1999-07-01
Skeletonization promises to become a powerful tool for compact shape description, path planning, and other applications. However, current techniques can seldom efficiently process real, complicated 3D data sets, such as MRI and CT data of human organs. In this paper, we present an efficient voxel-coding based algorithm for Skeletonization of 3D voxelized objects. The skeletons are interpreted as connected centerlines. consisting of sequences of medial points of consecutive clusters. These centerlines are initially extracted as paths of voxels, followed by medial point replacement, refinement, smoothness, and connection operations. The voxel-coding techniques have been proposed for each of these operations in a uniform and systematic fashion. In addition to preserving basic connectivity and centeredness, the algorithm is characterized by straightforward computation, no sensitivity to object boundary complexity, explicit extraction of ready-to-parameterize and branch-controlled skeletons, and efficient object hole detection. These issues are rarely discussed in traditional methods. A range of 3D medical MRI and CT data sets were used for testing the algorithm, demonstrating its utility.
NASA Astrophysics Data System (ADS)
Courageot, Estelle; Sayah, Rima; Huet, Christelle
2010-05-01
Estimating the dose distribution in a victim's body is a relevant indicator in assessing biological damage from exposure in the event of a radiological accident caused by an external source. When the dose distribution is evaluated with a numerical anthropomorphic model, the posture and morphology of the victim have to be reproduced as realistically as possible. Several years ago, IRSN developed a specific software application, called the simulation of external source accident with medical images (SESAME), for the dosimetric reconstruction of radiological accidents by numerical simulation. This tool combines voxel geometry and the MCNP(X) Monte Carlo computer code for radiation-material interaction. This note presents a new functionality in this software that enables the modelling of a victim's posture and morphology based on non-uniform rational B-spline (NURBS) surfaces. The procedure for constructing the modified voxel phantoms is described, along with a numerical validation of this new functionality using a voxel phantom of the RANDO tissue-equivalent physical model.
Courageot, Estelle; Sayah, Rima; Huet, Christelle
2010-05-07
Estimating the dose distribution in a victim's body is a relevant indicator in assessing biological damage from exposure in the event of a radiological accident caused by an external source. When the dose distribution is evaluated with a numerical anthropomorphic model, the posture and morphology of the victim have to be reproduced as realistically as possible. Several years ago, IRSN developed a specific software application, called the simulation of external source accident with medical images (SESAME), for the dosimetric reconstruction of radiological accidents by numerical simulation. This tool combines voxel geometry and the MCNP(X) Monte Carlo computer code for radiation-material interaction. This note presents a new functionality in this software that enables the modelling of a victim's posture and morphology based on non-uniform rational B-spline (NURBS) surfaces. The procedure for constructing the modified voxel phantoms is described, along with a numerical validation of this new functionality using a voxel phantom of the RANDO tissue-equivalent physical model.
Novel cardiac magnetic resonance biomarkers: native T1 and extracellular volume myocardial mapping.
Cannaò, Paola Maria; Altabella, Luisa; Petrini, Marcello; Alì, Marco; Secchi, Francesco; Sardanelli, Francesco
2016-04-28
Cardiac magnetic resonance (CMR) is a non-invasive diagnostic tool playing a key role in the assessment of cardiac morphology and function as well as in tissue characterization. Late gadolinium enhancement is a fundamental CMR technique for detecting focal or regional abnormalities such as scar tissue, replacement fibrosis, or inflammation using qualitative, semi-quantitative, or quantitative methods, but not allowing for evaluating the whole myocardium in the presence of diffuse disease. The novel T1 mapping approach permits a quantitative assessment of the entire myocardium providing a voxel-by-voxel map of native T1 relaxation time, obtained before the intravenous administration of gadolinium-based contrast material. Combining T1 data obtained before and after contrast injection, it is also possible to calculate the voxel-by-voxel extracellular volume (ECV), resulting in another myocardial parametric map. This article describes technical challenges and clinical perspectives of these two novel CMR biomarkers: myocardial native T1 and ECV mapping.
Estimation of urinary stone composition by automated processing of CT images.
Chevreau, Grégoire; Troccaz, Jocelyne; Conort, Pierre; Renard-Penna, Raphaëlle; Mallet, Alain; Daudon, Michel; Mozer, Pierre
2009-10-01
The objective of this article was developing an automated tool for routine clinical practice to estimate urinary stone composition from CT images based on the density of all constituent voxels. A total of 118 stones for which the composition had been determined by infrared spectroscopy were placed in a helical CT scanner. A standard acquisition, low-dose and high-dose acquisitions were performed. All voxels constituting each stone were automatically selected. A dissimilarity index evaluating variations of density around each voxel was created in order to minimize partial volume effects: stone composition was established on the basis of voxel density of homogeneous zones. Stone composition was determined in 52% of cases. Sensitivities for each compound were: uric acid: 65%, struvite: 19%, cystine: 78%, carbapatite: 33.5%, calcium oxalate dihydrate: 57%, calcium oxalate monohydrate: 66.5%, brushite: 75%. Low-dose acquisition did not lower the performances (P < 0.05). This entirely automated approach eliminates manual intervention on the images by the radiologist while providing identical performances including for low-dose protocols.
Chiu, Su-Chin; Lin, Te-Ming; Lin, Jyh-Miin; Chung, Hsiao-Wen; Ko, Cheng-Wen; Büchert, Martin; Bock, Michael
2017-09-01
To investigate possible errors in T1 and T2 quantification via MR fingerprinting with balanced steady-state free precession readout in the presence of intra-voxel phase dispersion and RF pulse profile imperfections, using computer simulations based on Bloch equations. A pulse sequence with TR changing in a Perlin noise pattern and a nearly sinusoidal pattern of flip angle following an initial 180-degree inversion pulse was employed. Gaussian distributions of off-resonance frequency were assumed for intra-voxel phase dispersion effects. Slice profiles of sinc-shaped RF pulses were computed to investigate flip angle profile influences. Following identification of the best fit between the acquisition signals and those established in the dictionary based on known parameters, estimation errors were reported. In vivo experiments were performed at 3T to examine the results. Slight intra-voxel phase dispersion with standard deviations from 1 to 3Hz resulted in prominent T2 under-estimations, particularly at large T2 values. T1 and off-resonance frequencies were relatively unaffected. Slice profile imperfections led to under-estimations of T1, which became greater as regional off-resonance frequencies increased, but could be corrected by including slice profile effects in the dictionary. Results from brain imaging experiments in vivo agreed with the simulation results qualitatively. MR fingerprinting using balanced SSFP readout in the presence of intra-voxel phase dispersion and imperfect slice profile leads to inaccuracies in quantitative estimations of the relaxation times. Copyright © 2017 Elsevier Inc. All rights reserved.
Automated Coarse Registration of Point Clouds in 3d Urban Scenes Using Voxel Based Plane Constraint
NASA Astrophysics Data System (ADS)
Xu, Y.; Boerner, R.; Yao, W.; Hoegner, L.; Stilla, U.
2017-09-01
For obtaining a full coverage of 3D scans in a large-scale urban area, the registration between point clouds acquired via terrestrial laser scanning (TLS) is normally mandatory. However, due to the complex urban environment, the automatic registration of different scans is still a challenging problem. In this work, we propose an automatic marker free method for fast and coarse registration between point clouds using the geometric constrains of planar patches under a voxel structure. Our proposed method consists of four major steps: the voxelization of the point cloud, the approximation of planar patches, the matching of corresponding patches, and the estimation of transformation parameters. In the voxelization step, the point cloud of each scan is organized with a 3D voxel structure, by which the entire point cloud is partitioned into small individual patches. In the following step, we represent points of each voxel with the approximated plane function, and select those patches resembling planar surfaces. Afterwards, for matching the corresponding patches, a RANSAC-based strategy is applied. Among all the planar patches of a scan, we randomly select a planar patches set of three planar surfaces, in order to build a coordinate frame via their normal vectors and their intersection points. The transformation parameters between scans are calculated from these two coordinate frames. The planar patches set with its transformation parameters owning the largest number of coplanar patches are identified as the optimal candidate set for estimating the correct transformation parameters. The experimental results using TLS datasets of different scenes reveal that our proposed method can be both effective and efficient for the coarse registration task. Especially, for the fast orientation between scans, our proposed method can achieve a registration error of less than around 2 degrees using the testing datasets, and much more efficient than the classical baseline methods.
Heussinger, Nicole; Saake, Marc; Mennecke, Angelika; Dörr, Helmuth-Günther; Trollmann, Regina
2017-02-01
The X-linked creatine transporter deficiency (CRTD) caused by an SLC6A8 mutation represents the second most common cause of X-linked intellectual disability. The clinical phenotype ranges from mild to severe intellectual disability, epilepsy, short stature, poor language skills, and autism spectrum disorders. The objective of this study was to investigate phenotypic variability in the context of genotype, cerebral creatine concentration, and volumetric analysis in a family with CRTD. The clinical phenotype and manifestations of epilepsy were assessed in a Caucasian family with CRTD. DNA sequencing and creatine metabolism analysis confirmed the diagnosis. Cerebral magnetic resonance imaging (cMRI) with voxel-based morphometry and magnetic resonance spectroscopy was performed in all family members. An SLC6A8 missense mutation (c.1169C>T; p.Pro390Leu, exon 8) was detected in four of five individuals. Both male siblings were hemizygous, the mother and the affected sister heterozygous for the mutation. Structural cMRI was normal, whereas voxel-based morphometry analysis showed reduced white matter volume below the first percentile of the reference population of 290 subjects in the more severely affected boy compared with family members and controls. Normalized creatine concentration differed significantly between the individuals (P < 0.005). There is a broad phenotypic variability in CRTD even in family members with the same mutation. Differences in mental development could be related to atrophy of the subcortical white matter. Copyright © 2016 Elsevier Inc. All rights reserved.
Wang, Yunsheng; Weinacker, Holger; Koch, Barbara
2008-01-01
A procedure for both vertical canopy structure analysis and 3D single tree modelling based on Lidar point cloud is presented in this paper. The whole area of research is segmented into small study cells by a raster net. For each cell, a normalized point cloud whose point heights represent the absolute heights of the ground objects is generated from the original Lidar raw point cloud. The main tree canopy layers and the height ranges of the layers are detected according to a statistical analysis of the height distribution probability of the normalized raw points. For the 3D modelling of individual trees, individual trees are detected and delineated not only from the top canopy layer but also from the sub canopy layer. The normalized points are resampled into a local voxel space. A series of horizontal 2D projection images at the different height levels are then generated respect to the voxel space. Tree crown regions are detected from the projection images. Individual trees are then extracted by means of a pre-order forest traversal process through all the tree crown regions at the different height levels. Finally, 3D tree crown models of the extracted individual trees are reconstructed. With further analyses on the 3D models of individual tree crowns, important parameters such as crown height range, crown volume and crown contours at the different height levels can be derived. PMID:27879916
Supratentorial lesions contribute to trigeminal neuralgia in multiple sclerosis.
Fröhlich, Kilian; Winder, Klemens; Linker, Ralf A; Engelhorn, Tobias; Dörfler, Arnd; Lee, De-Hyung; Hilz, Max J; Schwab, Stefan; Seifert, Frank
2018-06-01
Background It has been proposed that multiple sclerosis lesions afflicting the pontine trigeminal afferents contribute to trigeminal neuralgia in multiple sclerosis. So far, there are no imaging studies that have evaluated interactions between supratentorial lesions and trigeminal neuralgia in multiple sclerosis patients. Methods We conducted a retrospective study and sought multiple sclerosis patients with trigeminal neuralgia and controls in a local database. Multiple sclerosis lesions were manually outlined and transformed into stereotaxic space. We determined the lesion overlap and performed a voxel-wise subtraction analysis. Secondly, we conducted a voxel-wise non-parametric analysis using the Liebermeister test. Results From 12,210 multiple sclerosis patient records screened, we identified 41 patients with trigeminal neuralgia. The voxel-wise subtraction analysis yielded associations between trigeminal neuralgia and multiple sclerosis lesions in the pontine trigeminal afferents, as well as larger supratentorial lesion clusters in the contralateral insula and hippocampus. The non-parametric statistical analysis using the Liebermeister test yielded similar areas to be associated with multiple sclerosis-related trigeminal neuralgia. Conclusions Our study confirms previous data on associations between multiple sclerosis-related trigeminal neuralgia and pontine lesions, and showed for the first time an association with lesions in the insular region, a region involved in pain processing and endogenous pain modulation.
NASA Astrophysics Data System (ADS)
Wang, Bingyuan; Zhang, Yao; Liu, Dongyuan; Ding, Xuemei; Dan, Mai; Pan, Tiantian; Wang, Yihan; Li, Jiao; Zhou, Zhongxing; Zhang, Limin; Zhao, Huijuan; Gao, Feng
2018-02-01
Functional near-infrared spectroscopy (fNIRS) is a non-invasive neuroimaging method to monitor the cerebral hemodynamic through the optical changes measured at the scalp surface. It has played a more and more important role in psychology and medical imaging communities. Real-time imaging of brain function using NIRS makes it possible to explore some sophisticated human brain functions unexplored before. Kalman estimator has been frequently used in combination with modified Beer-Lamber Law (MBLL) based optical topology (OT), for real-time brain function imaging. However, the spatial resolution of the OT is low, hampering the application of OT in exploring some complicated brain functions. In this paper, we develop a real-time imaging method combining diffuse optical tomography (DOT) and Kalman estimator, much improving the spatial resolution. Instead of only presenting one spatially distributed image indicating the changes of the absorption coefficients at each time point during the recording process, one real-time updated image using the Kalman estimator is provided. Its each voxel represents the amplitude of the hemodynamic response function (HRF) associated with this voxel. We evaluate this method using some simulation experiments, demonstrating that this method can obtain more reliable spatial resolution images. Furthermore, a statistical analysis is also conducted to help to decide whether a voxel in the field of view is activated or not.
Cortical connective field estimates from resting state fMRI activity.
Gravel, Nicolás; Harvey, Ben; Nordhjem, Barbara; Haak, Koen V; Dumoulin, Serge O; Renken, Remco; Curčić-Blake, Branislava; Cornelissen, Frans W
2014-01-01
One way to study connectivity in visual cortical areas is by examining spontaneous neural activity. In the absence of visual input, such activity remains shaped by the underlying neural architecture and, presumably, may still reflect visuotopic organization. Here, we applied population connective field (CF) modeling to estimate the spatial profile of functional connectivity in the early visual cortex during resting state functional magnetic resonance imaging (RS-fMRI). This model-based analysis estimates the spatial integration between blood-oxygen level dependent (BOLD) signals in distinct cortical visual field maps using fMRI. Just as population receptive field (pRF) mapping predicts the collective neural activity in a voxel as a function of response selectivity to stimulus position in visual space, CF modeling predicts the activity of voxels in one visual area as a function of the aggregate activity in voxels in another visual area. In combination with pRF mapping, CF locations on the cortical surface can be interpreted in visual space, thus enabling reconstruction of visuotopic maps from resting state data. We demonstrate that V1 ➤ V2 and V1 ➤ V3 CF maps estimated from resting state fMRI data show visuotopic organization. Therefore, we conclude that-despite some variability in CF estimates between RS scans-neural properties such as CF maps and CF size can be derived from resting state data.
Latzman, Robert D; Young, Larry J; Hopkins, William D
2016-03-01
The current study aimed to systematically investigate genetic and neuroanatomical correlates of individual variation in scratching behaviors, a well-validated animal-behavioral indicator of negative emotional states with clear links to the NIMH Research Domain Criteria (RDoC) response to potential harm ("anxiety") construct within the Negative Valence Systems domain. Utilizing data from a sample of 76 captive chimpanzees (Pan troglodytes), we (a) examined the association between scratching and presence or absence of the RS3-containing DupB element in the AVPR1A 5' flanking region, (b) utilized voxel-based morphometry (VBM) to identify gray matter (GM) voxel clusters that differentiated AVPR1A genotype, and (c) conducted a VBM-guided voxel-of-interest analysis to examine the association between GM intensity and scratching. AVPR1A evidenced sexually dimorphic associations with scratching. VBM analyses revealed significant differences in GM by genotype across twelve clusters largely in the frontal cortex. Regions differentiating AVPR1A genotype showed sex-specific associations with scratching. Results suggest that sexually dimorphic associations between AVPR1A and scratching may be explained by genotype-specific neuroanatomical variation. The current study provides an example of the way in which chimpanzee research is uniquely poised for multilevel, systematic investigations of psychopathology-relevant constructs within the context of the RDoC framework. © 2016 Society for Psychophysiological Research.
A nonvoxel-based dose convolution/superposition algorithm optimized for scalable GPU architectures.
Neylon, J; Sheng, K; Yu, V; Chen, Q; Low, D A; Kupelian, P; Santhanam, A
2014-10-01
Real-time adaptive planning and treatment has been infeasible due in part to its high computational complexity. There have been many recent efforts to utilize graphics processing units (GPUs) to accelerate the computational performance and dose accuracy in radiation therapy. Data structure and memory access patterns are the key GPU factors that determine the computational performance and accuracy. In this paper, the authors present a nonvoxel-based (NVB) approach to maximize computational and memory access efficiency and throughput on the GPU. The proposed algorithm employs a ray-tracing mechanism to restructure the 3D data sets computed from the CT anatomy into a nonvoxel-based framework. In a process that takes only a few milliseconds of computing time, the algorithm restructured the data sets by ray-tracing through precalculated CT volumes to realign the coordinate system along the convolution direction, as defined by zenithal and azimuthal angles. During the ray-tracing step, the data were resampled according to radial sampling and parallel ray-spacing parameters making the algorithm independent of the original CT resolution. The nonvoxel-based algorithm presented in this paper also demonstrated a trade-off in computational performance and dose accuracy for different coordinate system configurations. In order to find the best balance between the computed speedup and the accuracy, the authors employed an exhaustive parameter search on all sampling parameters that defined the coordinate system configuration: zenithal, azimuthal, and radial sampling of the convolution algorithm, as well as the parallel ray spacing during ray tracing. The angular sampling parameters were varied between 4 and 48 discrete angles, while both radial sampling and parallel ray spacing were varied from 0.5 to 10 mm. The gamma distribution analysis method (γ) was used to compare the dose distributions using 2% and 2 mm dose difference and distance-to-agreement criteria, respectively. Accuracy was investigated using three distinct phantoms with varied geometries and heterogeneities and on a series of 14 segmented lung CT data sets. Performance gains were calculated using three 256 mm cube homogenous water phantoms, with isotropic voxel dimensions of 1, 2, and 4 mm. The nonvoxel-based GPU algorithm was independent of the data size and provided significant computational gains over the CPU algorithm for large CT data sizes. The parameter search analysis also showed that the ray combination of 8 zenithal and 8 azimuthal angles along with 1 mm radial sampling and 2 mm parallel ray spacing maintained dose accuracy with greater than 99% of voxels passing the γ test. Combining the acceleration obtained from GPU parallelization with the sampling optimization, the authors achieved a total performance improvement factor of >175 000 when compared to our voxel-based ground truth CPU benchmark and a factor of 20 compared with a voxel-based GPU dose convolution method. The nonvoxel-based convolution method yielded substantial performance improvements over a generic GPU implementation, while maintaining accuracy as compared to a CPU computed ground truth dose distribution. Such an algorithm can be a key contribution toward developing tools for adaptive radiation therapy systems.
A nonvoxel-based dose convolution/superposition algorithm optimized for scalable GPU architectures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neylon, J., E-mail: jneylon@mednet.ucla.edu; Sheng, K.; Yu, V.
Purpose: Real-time adaptive planning and treatment has been infeasible due in part to its high computational complexity. There have been many recent efforts to utilize graphics processing units (GPUs) to accelerate the computational performance and dose accuracy in radiation therapy. Data structure and memory access patterns are the key GPU factors that determine the computational performance and accuracy. In this paper, the authors present a nonvoxel-based (NVB) approach to maximize computational and memory access efficiency and throughput on the GPU. Methods: The proposed algorithm employs a ray-tracing mechanism to restructure the 3D data sets computed from the CT anatomy intomore » a nonvoxel-based framework. In a process that takes only a few milliseconds of computing time, the algorithm restructured the data sets by ray-tracing through precalculated CT volumes to realign the coordinate system along the convolution direction, as defined by zenithal and azimuthal angles. During the ray-tracing step, the data were resampled according to radial sampling and parallel ray-spacing parameters making the algorithm independent of the original CT resolution. The nonvoxel-based algorithm presented in this paper also demonstrated a trade-off in computational performance and dose accuracy for different coordinate system configurations. In order to find the best balance between the computed speedup and the accuracy, the authors employed an exhaustive parameter search on all sampling parameters that defined the coordinate system configuration: zenithal, azimuthal, and radial sampling of the convolution algorithm, as well as the parallel ray spacing during ray tracing. The angular sampling parameters were varied between 4 and 48 discrete angles, while both radial sampling and parallel ray spacing were varied from 0.5 to 10 mm. The gamma distribution analysis method (γ) was used to compare the dose distributions using 2% and 2 mm dose difference and distance-to-agreement criteria, respectively. Accuracy was investigated using three distinct phantoms with varied geometries and heterogeneities and on a series of 14 segmented lung CT data sets. Performance gains were calculated using three 256 mm cube homogenous water phantoms, with isotropic voxel dimensions of 1, 2, and 4 mm. Results: The nonvoxel-based GPU algorithm was independent of the data size and provided significant computational gains over the CPU algorithm for large CT data sizes. The parameter search analysis also showed that the ray combination of 8 zenithal and 8 azimuthal angles along with 1 mm radial sampling and 2 mm parallel ray spacing maintained dose accuracy with greater than 99% of voxels passing the γ test. Combining the acceleration obtained from GPU parallelization with the sampling optimization, the authors achieved a total performance improvement factor of >175 000 when compared to our voxel-based ground truth CPU benchmark and a factor of 20 compared with a voxel-based GPU dose convolution method. Conclusions: The nonvoxel-based convolution method yielded substantial performance improvements over a generic GPU implementation, while maintaining accuracy as compared to a CPU computed ground truth dose distribution. Such an algorithm can be a key contribution toward developing tools for adaptive radiation therapy systems.« less
Relation between brain architecture and mathematical ability in children: a DBM study.
Han, Zhaoying; Davis, Nicole; Fuchs, Lynn; Anderson, Adam W; Gore, John C; Dawant, Benoit M
2013-12-01
Population-based studies indicate that between 5 and 9 percent of US children exhibit significant deficits in mathematical reasoning, yet little is understood about the brain morphological features related to mathematical performances. In this work, deformation-based morphometry (DBM) analyses have been performed on magnetic resonance images of the brains of 79 third graders to investigate whether there is a correlation between brain morphological features and mathematical proficiency. Group comparison was also performed between Math Difficulties (MD-worst math performers) and Normal Controls (NC), where each subgroup consists of 20 age and gender matched subjects. DBM analysis is based on the analysis of the deformation fields generated by non-rigid registration algorithms, which warp the individual volumes to a common space. To evaluate the effect of registration algorithms on DBM results, five nonrigid registration algorithms have been used: (1) the Adaptive Bases Algorithm (ABA); (2) the Image Registration Toolkit (IRTK); (3) the FSL Nonlinear Image Registration Tool; (4) the Automatic Registration Tool (ART); and (5) the normalization algorithm available in SPM8. The deformation field magnitude (DFM) was used to measure the displacement at each voxel, and the Jacobian determinant (JAC) was used to quantify local volumetric changes. Results show there are no statistically significant volumetric differences between the NC and the MD groups using JAC. However, DBM analysis using DFM found statistically significant anatomical variations between the two groups around the left occipital-temporal cortex, left orbital-frontal cortex, and right insular cortex. Regions of agreement between at least two algorithms based on voxel-wise analysis were used to define Regions of Interest (ROIs) to perform an ROI-based correlation analysis on all 79 volumes. Correlations between average DFM values and standard mathematical scores over these regions were found to be significant. We also found that the choice of registration algorithm has an impact on DBM-based results, so we recommend using more than one algorithm when conducting DBM studies. To the best of our knowledge, this is the first study that uses DBM to investigate brain anatomical features related to mathematical performance in a relatively large population of children. © 2013.
TH-EF-207A-04: A Dynamic Contrast Enhanced Cone Beam CT Technique for Evaluation of Renal Functions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Z; Shi, J; Yang, Y
Purpose: To develop a simple but robust method for the early detection and evaluation of renal functions using dynamic contrast enhanced cone beam CT technique. Methods: Experiments were performed on an integrated imaging and radiation research platform developed by our lab. Animals (n=3) were anesthetized with 20uL Ketamine/Xylazine cocktail, and then received 200uL injection of iodinated contrast agent Iopamidol via tail vein. Cone beam CT was acquired following contrast injection once per minute and up to 25 minutes. The cone beam CT was reconstructed with a dimension of 300×300×800 voxels of 130×130×130um voxel resolution. The middle kidney slices in themore » transvers and coronal planes were selected for image analysis. A double exponential function was used to fit the contrast enhanced signal intensity versus the time after contrast injection. Both pixel-based and region of interest (ROI)-based curve fitting were performed. Four parameters obtained from the curve fitting, namely the amplitude and flow constant for both contrast wash in and wash out phases, were investigated for further analysis. Results: Robust curve fitting was demonstrated for both pixel based (with R{sup 2}>0.8 for >85% pixels within the kidney contour) and ROI based (R{sup 2}>0.9 for all regions) analysis. Three different functional regions: renal pelvis, medulla and cortex, were clearly differentiated in the functional parameter map in the pixel based analysis. ROI based analysis showed the half-life T1/2 for contrast wash in and wash out phases were 0.98±0.15 and 17.04±7.16, 0.63±0.07 and 17.88±4.51, and 1.48±0.40 and 10.79±3.88 minutes for the renal pelvis, medulla and cortex, respectively. Conclusion: A robust method based on dynamic contrast enhanced cone beam CT and double exponential curve fitting has been developed to analyze the renal functions for different functional regions. Future study will be performed to investigate the sensitivity of this technique in the detection of radiation induced kidney dysfunction.« less
2017-01-01
Objective The purpose of this study was to investigate the resting-state interhemispheric functional connectivity in early blindness by using voxel-mirrored homotopic connectivity (VMHC). Materials and Methods Sixteen early blind patients (EB group) and sixteen age- and gender-matched sighted control volunteers (SC group) were recruited in this study. We used VMHC to identify brain areas with significant differences in functional connectivity between different groups and used voxel-based morphometry (VBM) to calculate the individual gray matter volume (GMV). Results VMHC analysis showed a significantly lower connectivity in primary visual cortex, visual association cortex, and somatosensory association cortex in EB group compared to sighted controls. Additionally, VBM analysis revealed that GMV was reduced in the left lateral calcarine cortices in EB group compared to sighted controls, while it was increased in the left lateral middle occipital gyri. Statistical analysis showed the duration of blindness negatively correlated with VMHC in the bilateral middle frontal gyri, middle temporal gyri, and inferior temporal gyri. Conclusions Our findings help elucidate the pathophysiological mechanisms of EB. The interhemispheric functional connectivity was impaired in EB patients. Additionally, the middle frontal gyri, middle temporal gyri, and inferior temporal gyri may be potential target regions for rehabilitation. PMID:28656145
Structure-seeking multilinear methods for the analysis of fMRI data.
Andersen, Anders H; Rayens, William S
2004-06-01
In comprehensive fMRI studies of brain function, the data structures often contain higher-order ways such as trial, task condition, subject, and group in addition to the intrinsic dimensions of time and space. While multivariate bilinear methods such as principal component analysis (PCA) have been used successfully for extracting information about spatial and temporal features in data from a single fMRI run, the need to unfold higher-order data sets into bilinear arrays has led to decompositions that are nonunique and to the loss of multiway linkages and interactions present in the data. These additional dimensions or ways can be retained in multilinear models to produce structures that are unique and which admit interpretations that are neurophysiologically meaningful. Multiway analysis of fMRI data from multiple runs of a bilateral finger-tapping paradigm was performed using the parallel factor (PARAFAC) model. A trilinear model was fitted to a data cube of dimensions voxels by time by run. Similarly, a quadrilinear model was fitted to a higher-way structure of dimensions voxels by time by trial by run. The spatial and temporal response components were extracted and validated by comparison to results from traditional SVD/PCA analyses based on scenarios of unfolding into lower-order bilinear structures.
Comparison of organs' shapes with geometric and Zernike 3D moments.
Broggio, D; Moignier, A; Ben Brahim, K; Gardumi, A; Grandgirard, N; Pierrat, N; Chea, M; Derreumaux, S; Desbrée, A; Boisserie, G; Aubert, B; Mazeron, J-J; Franck, D
2013-09-01
The morphological similarity of organs is studied with feature vectors based on geometric and Zernike 3D moments. It is particularly investigated if outliers and average models can be identified. For this purpose, the relative proximity to the mean feature vector is defined, principal coordinate and clustering analyses are also performed. To study the consistency and usefulness of this approach, 17 livers and 76 hearts voxel models from several sources are considered. In the liver case, models with similar morphological feature are identified. For the limited amount of studied cases, the liver of the ICRP male voxel model is identified as a better surrogate than the female one. For hearts, the clustering analysis shows that three heart shapes represent about 80% of the morphological variations. The relative proximity and clustering analysis rather consistently identify outliers and average models. For the two cases, identification of outliers and surrogate of average models is rather robust. However, deeper classification of morphological feature is subject to caution and can only be performed after cross analysis of at least two kinds of feature vectors. Finally, the Zernike moments contain all the information needed to re-construct the studied objects and thus appear as a promising tool to derive statistical organ shapes. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Wang, Chunxia; Fu, Kailiang; Liu, Huaijun; Xing, Fei; Zhang, Songyun
2014-08-15
Voxel-based morphometry has been used in the study of alterations in brain structure in type 1 diabetes mellitus patients. These changes are associated with clinical indices. The age at onset, pathogenesis, and treatment of type 1 diabetes mellitus are different from those for type 2 diabetes mellitus. Thus, type 1 and type 2 diabetes mellitus may have different impacts on brain structure. Only a few studies of the alterations in brain structure in type 2 diabetes mellitus patients using voxel-based morphometry have been conducted, with inconsistent results. We detected subtle changes in the brain structure of 23 cases of type 2 diabetes mellitus, and demonstrated that there was no significant difference between the total volume of gray and white matter of the brain of type 2 diabetes mellitus patients and that in controls. Regional atrophy of gray matter mainly occurred in the right temporal and left occipital cortex, while regional atrophy of white matter involved the right temporal lobe and the right cerebellar hemisphere. The ankle-brachial index in patients with type 2 diabetes mellitus strongly correlated with the volume of brain regions in the default mode network. The ankle-brachial index, followed by the level of glycosylated hemoglobin, most strongly correlated with the volume of gray matter in the right temporal lobe. These data suggest that voxel-based morphometry could detect small structural changes in patients with type 2 diabetes mellitus. Early macrovascular atherosclerosis may play a crucial role in subtle brain atrophy in type 2 diabetes mellitus patients, with chronic hyperglycemia playing a lesser role.
Calamante, Fernando; Masterton, Richard A J; Tournier, Jacques-Donald; Smith, Robert E; Willats, Lisa; Raffelt, David; Connelly, Alan
2013-04-15
MRI provides a powerful tool for studying the functional and structural connections in the brain non-invasively. The technique of functional connectivity (FC) exploits the intrinsic temporal correlations of slow spontaneous signal fluctuations to characterise brain functional networks. In addition, diffusion MRI fibre-tracking can be used to study the white matter structural connections. In recent years, there has been considerable interest in combining these two techniques to provide an overall structural-functional description of the brain. In this work we applied the recently proposed super-resolution track-weighted imaging (TWI) methodology to demonstrate how whole-brain fibre-tracking data can be combined with FC data to generate a track-weighted (TW) FC map of FC networks. The method was applied to data from 8 healthy volunteers, and illustrated with (i) FC networks obtained using a seeded connectivity-based analysis (seeding in the precuneus/posterior cingulate cortex, PCC, known to be part of the default mode network), and (ii) with FC networks generated using independent component analysis (in particular, the default mode, attention, visual, and sensory-motor networks). TW-FC maps showed high intensity in white matter structures connecting the nodes of the FC networks. For example, the cingulum bundles show the strongest TW-FC values in the PCC seeded-based analysis, due to their major role in the connection between medial frontal cortex and precuneus/posterior cingulate cortex; similarly the superior longitudinal fasciculus was well represented in the attention network, the optic radiations in the visual network, and the corticospinal tract and corpus callosum in the sensory-motor network. The TW-FC maps highlight the white matter connections associated with a given FC network, and their intensity in a given voxel reflects the functional connectivity of the part of the nodes of the network linked by the structural connections traversing that voxel. They therefore contain a different (and novel) image contrast from that of the images used to generate them. The results shown in this study illustrate the potential of the TW-FC approach for the fusion of structural and functional data into a single quantitative image. This technique could therefore have important applications in neuroscience and neurology, such as for voxel-based comparison studies. Copyright © 2012 Elsevier Inc. All rights reserved.
Fusar-Poli, Paolo; Placentino, Anna; Carletti, Francesco; Landi, Paola; Allen, Paul; Surguladze, Simon; Benedetti, Francesco; Abbamonte, Marta; Gasparotti, Roberto; Barale, Francesco; Perez, Jorge; McGuire, Philip; Politi, Pierluigi
2009-01-01
Background Most of our social interactions involve perception of emotional information from the faces of other people. Furthermore, such emotional processes are thought to be aberrant in a range of clinical disorders, including psychosis and depression. However, the exact neurofunctional maps underlying emotional facial processing are not well defined. Methods Two independent researchers conducted separate comprehensive PubMed (1990 to May 2008) searches to find all functional magnetic resonance imaging (fMRI) studies using a variant of the emotional faces paradigm in healthy participants. The search terms were: “fMRI AND happy faces,” “fMRI AND sad faces,” “fMRI AND fearful faces,” “fMRI AND angry faces,” “fMRI AND disgusted faces” and “fMRI AND neutral faces.” We extracted spatial coordinates and inserted them in an electronic database. We performed activation likelihood estimation analysis for voxel-based meta-analyses. Results Of the originally identified studies, 105 met our inclusion criteria. The overall database consisted of 1785 brain coordinates that yielded an overall sample of 1600 healthy participants. Quantitative voxel-based meta-analysis of brain activation provided neurofunctional maps for 1) main effect of human faces; 2) main effect of emotional valence; and 3) modulatory effect of age, sex, explicit versus implicit processing and magnetic field strength. Processing of emotional faces was associated with increased activation in a number of visual, limbic, temporoparietal and prefrontal areas; the putamen; and the cerebellum. Happy, fearful and sad faces specifically activated the amygdala, whereas angry or disgusted faces had no effect on this brain region. Furthermore, amygdala sensitivity was greater for fearful than for happy or sad faces. Insular activation was selectively reported during processing of disgusted and angry faces. However, insular sensitivity was greater for disgusted than for angry faces. Conversely, neural response in the visual cortex and cerebellum was observable across all emotional conditions. Limitations Although the activation likelihood estimation approach is currently one of the most powerful and reliable meta-analytical methods in neuroimaging research, it is insensitive to effect sizes. Conclusion Our study has detailed neurofunctional maps to use as normative references in future fMRI studies of emotional facial processing in psychiatric populations. We found selective differences between neural networks underlying the basic emotions in limbic and insular brain regions. PMID:19949718
The Monte Carlo code MCPTV--Monte Carlo dose calculation in radiation therapy with carbon ions.
Karg, Juergen; Speer, Stefan; Schmidt, Manfred; Mueller, Reinhold
2010-07-07
The Monte Carlo code MCPTV is presented. MCPTV is designed for dose calculation in treatment planning in radiation therapy with particles and especially carbon ions. MCPTV has a voxel-based concept and can perform a fast calculation of the dose distribution on patient CT data. Material and density information from CT are taken into account. Electromagnetic and nuclear interactions are implemented. Furthermore the algorithm gives information about the particle spectra and the energy deposition in each voxel. This can be used to calculate the relative biological effectiveness (RBE) for each voxel. Depth dose distributions are compared to experimental data giving good agreement. A clinical example is shown to demonstrate the capabilities of the MCPTV dose calculation.
Chin, P W; Spezi, E; Lewis, D G
2003-08-21
A software solution has been developed to carry out Monte Carlo simulations of portal dosimetry using the BEAMnrc/DOSXYZnrc code at oblique gantry angles. The solution is based on an integrated phantom, whereby the effect of incident beam obliquity was included using geometric transformations. Geometric transformations are accurate within +/- 1 mm and +/- 1 degrees with respect to exact values calculated using trigonometry. An application in portal image prediction of an inhomogeneous phantom demonstrated good agreement with measured data, where the root-mean-square of the difference was under 2% within the field. Thus, we achieved a dose model framework capable of handling arbitrary gantry angles, voxel-by-voxel phantom description and realistic particle transport throughout the geometry.
NASA Astrophysics Data System (ADS)
Zhang, Ying; Feng, Yuanming; Wang, Wei; Yang, Chengwen; Wang, Ping
2017-03-01
A novel and versatile “bottom-up” approach is developed to estimate the radiobiological effect of clinic radiotherapy. The model consists of multi-scale Monte Carlo simulations from organ to cell levels. At cellular level, accumulated damages are computed using a spectrum-based accumulation algorithm and predefined cellular damage database. The damage repair mechanism is modeled by an expanded reaction-rate two-lesion kinetic model, which were calibrated through replicating a radiobiological experiment. Multi-scale modeling is then performed on a lung cancer patient under conventional fractionated irradiation. The cell killing effects of two representative voxels (isocenter and peripheral voxel of the tumor) are computed and compared. At microscopic level, the nucleus dose and damage yields vary among all nucleuses within the voxels. Slightly larger percentage of cDSB yield is observed for the peripheral voxel (55.0%) compared to the isocenter one (52.5%). For isocenter voxel, survival fraction increase monotonically at reduced oxygen environment. Under an extreme anoxic condition (0.001%), survival fraction is calculated to be 80% and the hypoxia reduction factor reaches a maximum value of 2.24. In conclusion, with biological-related variations, the proposed multi-scale approach is more versatile than the existing approaches for evaluating personalized radiobiological effects in radiotherapy.
A new method for photon transport in Monte Carlo simulation
NASA Astrophysics Data System (ADS)
Sato, T.; Ogawa, K.
1999-12-01
Monte Carlo methods are used to evaluate data methods such as scatter and attenuation compensation in single photon emission CT (SPECT), treatment planning in radiation therapy, and in many industrial applications. In Monte Carlo simulation, photon transport requires calculating the distance from the location of the emitted photon to the nearest boundary of each uniform attenuating medium along its path of travel, and comparing this distance with the length of its path generated at emission. Here, the authors propose a new method that omits the calculation of the location of the exit point of the photon from each voxel and of the distance between the exit point and the original position. The method only checks the medium of each voxel along the photon's path. If the medium differs from that in the voxel from which the photon was emitted, the authors calculate the location of the entry point in the voxel, and the length of the path is compared with the mean free path length generated by a random number. Simulations using the MCAT phantom show that the ratios of the calculation time were 1.0 for the voxel-based method, and 0.51 for the proposed method with a 256/spl times/256/spl times/256 matrix image, thereby confirming the effectiveness of the algorithm.
Pölz, Stefan; Laubersheimer, Sven; Eberhardt, Jakob S; Harrendorf, Marco A; Keck, Thomas; Benzler, Andreas; Breustedt, Bastian
2013-08-21
The basic idea of Voxel2MCNP is to provide a framework supporting users in modeling radiation transport scenarios using voxel phantoms and other geometric models, generating corresponding input for the Monte Carlo code MCNPX, and evaluating simulation output. Applications at Karlsruhe Institute of Technology are primarily whole and partial body counter calibration and calculation of dose conversion coefficients. A new generic data model describing data related to radiation transport, including phantom and detector geometries and their properties, sources, tallies and materials, has been developed. It is modular and generally independent of the targeted Monte Carlo code. The data model has been implemented as an XML-based file format to facilitate data exchange, and integrated with Voxel2MCNP to provide a common interface for modeling, visualization, and evaluation of data. Also, extensions to allow compatibility with several file formats, such as ENSDF for nuclear structure properties and radioactive decay data, SimpleGeo for solid geometry modeling, ImageJ for voxel lattices, and MCNPX's MCTAL for simulation results have been added. The framework is presented and discussed in this paper and example workflows for body counter calibration and calculation of dose conversion coefficients is given to illustrate its application.
Hilal, Saima; Kuijf, Hugo J.; Ikram, Mohammad Kamran; Xu, Xin; Tan, Boon Yeow; Venketasubramanian, Narayanaswamy; Postma, Albert; Biessels, Geert Jan; Chen, Christopher P. L. H.
2016-01-01
Background and Purpose Studies on the impact of small vessel disease (SVD) on cognition generally focus on white matter hyperintensity (WMH) volume. The extent to which WMH location relates to cognitive performance has received less attention, but is likely to be functionally important. We examined the relation between WMH location and cognition in a memory clinic cohort of patients with sporadic SVD. Methods A total of 167 patients with SVD were recruited from memory clinics. Assumption-free region of interest-based analyses based on major white matter tracts and voxel-wise analyses were used to determine the association between WMH location and executive functioning, visuomotor speed and memory. Results Region of interest-based analyses showed that WMHs located particularly within the anterior thalamic radiation and forceps minor were inversely associated with both executive functioning and visuomotor speed, independent of total WMH volume. Memory was significantly associated with WMH volume in the forceps minor, independent of total WMH volume. An independent assumption-free voxel-wise analysis identified strategic voxels in these same tracts. Region of interest-based analyses showed that WMH volume within the anterior thalamic radiation explained 6.8% of variance in executive functioning, compared to 3.9% for total WMH volume; WMH volume within the forceps minor explained 4.6% of variance in visuomotor speed and 4.2% of variance in memory, compared to 1.8% and 1.3% respectively for total WMH volume. Conclusions Our findings identify the anterior thalamic radiation and forceps minor as strategic white matter tracts in which WMHs are most strongly associated with cognitive impairment in memory clinic patients with SVD. WMH volumes in individual tracts explained more variance in cognition than total WMH burden, emphasizing the importance of lesion location when addressing the functional consequences of WMHs. PMID:27824925
The application of muscle wrapping to voxel-based finite element models of skeletal structures.
Liu, Jia; Shi, Junfen; Fitton, Laura C; Phillips, Roger; O'Higgins, Paul; Fagan, Michael J
2012-01-01
Finite elements analysis (FEA) is now used routinely to interpret skeletal form in terms of function in both medical and biological applications. To produce accurate predictions from FEA models, it is essential that the loading due to muscle action is applied in a physiologically reasonable manner. However, it is common for muscle forces to be represented as simple force vectors applied at a few nodes on the model's surface. It is certainly rare for any wrapping of the muscles to be considered, and yet wrapping not only alters the directions of muscle forces but also applies an additional compressive load from the muscle belly directly to the underlying bone surface. This paper presents a method of applying muscle wrapping to high-resolution voxel-based finite element (FE) models. Such voxel-based models have a number of advantages over standard (geometry-based) FE models, but the increased resolution with which the load can be distributed over a model's surface is particularly advantageous, reflecting more closely how muscle fibre attachments are distributed. In this paper, the development, application and validation of a muscle wrapping method is illustrated using a simple cylinder. The algorithm: (1) calculates the shortest path over the surface of a bone given the points of origin and ultimate attachment of the muscle fibres; (2) fits a Non-Uniform Rational B-Spline (NURBS) curve from the shortest path and calculates its tangent, normal vectors and curvatures so that normal and tangential components of the muscle force can be calculated and applied along the fibre; and (3) automatically distributes the loads between adjacent fibres to cover the bone surface with a fully distributed muscle force, as is observed in vivo. Finally, we present a practical application of this approach to the wrapping of the temporalis muscle around the cranium of a macaque skull.
Multi-Atlas Based Segmentation of Brainstem Nuclei from MR Images by Deep Hyper-Graph Learning.
Dong, Pei; Guo, Yangrong; Gao, Yue; Liang, Peipeng; Shi, Yonghong; Wang, Qian; Shen, Dinggang; Wu, Guorong
2016-10-01
Accurate segmentation of brainstem nuclei (red nucleus and substantia nigra) is very important in various neuroimaging applications such as deep brain stimulation and the investigation of imaging biomarkers for Parkinson's disease (PD). Due to iron deposition during aging, image contrast in the brainstem is very low in Magnetic Resonance (MR) images. Hence, the ambiguity of patch-wise similarity makes the recently successful multi-atlas patch-based label fusion methods have difficulty to perform as competitive as segmenting cortical and sub-cortical regions from MR images. To address this challenge, we propose a novel multi-atlas brainstem nuclei segmentation method using deep hyper-graph learning. Specifically, we achieve this goal in three-fold. First , we employ hyper-graph to combine the advantage of maintaining spatial coherence from graph-based segmentation approaches and the benefit of harnessing population priors from multi-atlas based framework. Second , besides using low-level image appearance, we also extract high-level context features to measure the complex patch-wise relationship. Since the context features are calculated on a tentatively estimated label probability map, we eventually turn our hyper-graph learning based label propagation into a deep and self-refining model. Third , since anatomical labels on some voxels (usually located in uniform regions) can be identified much more reliably than other voxels (usually located at the boundary between two regions), we allow these reliable voxels to propagate their labels to the nearby difficult-to-label voxels. Such hierarchical strategy makes our proposed label fusion method deep and dynamic. We evaluate our proposed label fusion method in segmenting substantia nigra (SN) and red nucleus (RN) from 3.0 T MR images, where our proposed method achieves significant improvement over the state-of-the-art label fusion methods.
Harmouche, Rola; Subbanna, Nagesh K; Collins, D Louis; Arnold, Douglas L; Arbel, Tal
2015-05-01
In this paper, a fully automatic probabilistic method for multiple sclerosis (MS) lesion classification is presented, whereby the posterior probability density function over healthy tissues and two types of lesions (T1-hypointense and T2-hyperintense) is generated at every voxel. During training, the system explicitly models the spatial variability of the intensity distributions throughout the brain by first segmenting it into distinct anatomical regions and then building regional likelihood distributions for each tissue class based on multimodal magnetic resonance image (MRI) intensities. Local class smoothness is ensured by incorporating neighboring voxel information in the prior probability through Markov random fields. The system is tested on two datasets from real multisite clinical trials consisting of multimodal MRIs from a total of 100 patients with MS. Lesion classification results based on the framework are compared with and without the regional information, as well as with other state-of-the-art methods against the labels from expert manual raters. The metrics for comparison include Dice overlap, sensitivity, and positive predictive rates for both voxel and lesion classifications. Statistically significant improvements in Dice values ( ), for voxel-based and lesion-based sensitivity values ( ), and positive predictive rates ( and respectively) are shown when the proposed method is compared to the method without regional information, and to a widely used method [1]. This holds particularly true in the posterior fossa, an area where classification is very challenging. The proposed method allows us to provide clinicians with accurate tissue labels for T1-hypointense and T2-hyperintense lesions, two types of lesions that differ in appearance and clinical ramifications, and with a confidence level in the classification, which helps clinicians assess the classification results.
2001-10-25
a CT image, each voxel contains an integer number which is the CT value, in Hounsfield units (HU), of the voxel. Therefore, the standard method of...Task Number Work Unit Number Performing Organization Name(s) and Address(es) Department of Electrical and Computer Engineering, University of...34, Journal of Pediatric Surgery, vol 24(7), pp. 708-711, 1989. [4] I. N. Bankman, editor, Handbook of Medical Image Analysis, Academic Press, London, UK
Three-Dimensional Medical Image Registration Using a Patient Space Correlation Technique
1991-12-01
dates (e.g. 10 Seenon Technial Jun 87 - 30 Jun 88). Statements on TechnicalDocuments." Block 4. Title and Subtitle. A title is taken from DOE - See...requirements ( 30 :6). The context analysis for this development was conducted primarily to bound the image regis- tration problem and to isolate the required...a series of 30 transverse slices. Each slice is composed of 240 voxels in the x-dimension and 164 voxels in the y-dimension. The dataset was provided
Buchanan, Colin R; Pettit, Lewis D; Storkey, Amos J; Abrahams, Sharon; Bastin, Mark E
2015-05-01
To investigate white matter structural connectivity changes associated with amyotrophic lateral sclerosis (ALS) using network analysis and compare the results with those obtained using standard voxel-based methods, specifically Tract-based Spatial Statistics (TBSS). MRI data were acquired from 30 patients with ALS and 30 age-matched healthy controls. For each subject, 85 grey matter regions (network nodes) were identified from high resolution structural MRI, and network connections formed from the white matter tracts generated by diffusion MRI and probabilistic tractography. Whole-brain networks were constructed using strong constraints on anatomical plausibility and a weighting reflecting tract-averaged fractional anisotropy (FA). Analysis using Network-based Statistics (NBS), without a priori selected regions, identified an impaired motor-frontal-subcortical subnetwork (10 nodes and 12 bidirectional connections), consistent with upper motor neuron pathology, in the ALS group compared with the controls (P = 0.020). Reduced FA in three of the impaired network connections, which involved fibers of the corticospinal tract, correlated with rate of disease progression (P ≤ 0.024). A novel network-tract comparison revealed that the connections involved in the affected network had a strong correspondence (mean overlap of 86.2%) with white matter tracts identified as having reduced FA compared with the control group using TBSS. These findings suggest that white matter degeneration in ALS is strongly linked to the motor cortex, and that impaired structural networks identified using NBS have a strong correspondence to affected white matter tracts identified using more conventional voxel-based methods. © 2014 Wiley Periodicals, Inc.
Multi-parameter MRI in the 6-OPRI variant of inherited prion disease
De Vita, Enrico; Ridgway, Gerard R.; Scahill, Rachael I; Caine, Diana; Rudge, Peter; Yousry, Tarek A; Mead, Simon; Collinge, John; Jäger, H R; Thornton, John S; Hyare, Harpreet
2013-01-01
Background and Purpose To define the distribution of cerebral volumetric and microstructural parenchymal tissue changes in a specific mutation within inherited human prion diseases (IPD) combining voxel-based morphometry (VBM) with voxel-based analysis (VBA) of cerebral magnetization transfer ratio (MTR) and mean diffusivity (MD). Materials and Methods VBM and VBA of cerebral MTR and MD were performed in 16 healthy controls and 9 patients with the 6-octapeptide repeat insertion (6-OPRI) mutation. An ANCOVA consisting of diagnostic grouping with age and total intracranial volume as covariates was performed. Results On VBM there was significant grey matter (GM) volume reduction in patients compared with controls in the basal ganglia, perisylvian cortex, lingual gyrus and precuneus. Significant MTR reduction and MD increases were more anatomically extensive than volume differences on VBM in the same cortical areas, but MTR and MD changes were not seen in the basal ganglia. Conclusions GM and WM changes were seen in brain areas associated with motor and cognitive functions known to be impaired in patients with the 6-OPRI mutation. There were some differences in the anatomical distribution of MTR-VBA and MDVBA changes compared to VBM, likely to reflect regional variations in the type and degree of the respective pathophysiological substrates. Combined analysis of complementary multi-parameter MRI data furthers our understanding of prion disease pathophysiology. PMID:23538406
Fornito, A; Yücel, M; Patti, J; Wood, S J; Pantelis, C
2009-03-01
Voxel-based morphometry (VBM) is a popular tool for mapping neuroanatomical changes in schizophrenia patients. Several recent meta-analyses have identified the brain regions in which patients most consistently show grey matter reductions, although they have not examined whether such changes reflect differences in grey matter concentration (GMC) or grey matter volume (GMV). These measures assess different aspects of grey matter integrity, and may therefore reflect different pathological processes. In this study, we used the Anatomical Likelihood Estimation procedure to analyse significant differences reported in 37 VBM studies of schizophrenia patients, incorporating data from 1646 patients and 1690 controls, and compared the findings of studies using either GMC or GMV to index grey matter differences. Analysis of all studies combined indicated that grey matter reductions in a network of frontal, temporal, thalamic and striatal regions are among the most frequently reported in literature. GMC reductions were generally larger and more consistent than GMV reductions, and were more frequent in the insula, medial prefrontal, medial temporal and striatal regions. GMV reductions were more frequent in dorso-medial frontal cortex, and lateral and orbital frontal areas. These findings support the primacy of frontal, limbic, and subcortical dysfunction in the pathophysiology of schizophrenia, and suggest that the grey matter changes observed with MRI may not necessarily result from a unitary pathological process.
Are power calculations useful? A multicentre neuroimaging study
Suckling, John; Henty, Julian; Ecker, Christine; Deoni, Sean C; Lombardo, Michael V; Baron-Cohen, Simon; Jezzard, Peter; Barnes, Anna; Chakrabarti, Bhismadev; Ooi, Cinly; Lai, Meng-Chuan; Williams, Steven C; Murphy, Declan GM; Bullmore, Edward
2014-01-01
There are now many reports of imaging experiments with small cohorts of typical participants that precede large-scale, often multicentre studies of psychiatric and neurological disorders. Data from these calibration experiments are sufficient to make estimates of statistical power and predictions of sample size and minimum observable effect sizes. In this technical note, we suggest how previously reported voxel-based power calculations can support decision making in the design, execution and analysis of cross-sectional multicentre imaging studies. The choice of MRI acquisition sequence, distribution of recruitment across acquisition centres, and changes to the registration method applied during data analysis are considered as examples. The consequences of modification are explored in quantitative terms by assessing the impact on sample size for a fixed effect size and detectable effect size for a fixed sample size. The calibration experiment dataset used for illustration was a precursor to the now complete Medical Research Council Autism Imaging Multicentre Study (MRC-AIMS). Validation of the voxel-based power calculations is made by comparing the predicted values from the calibration experiment with those observed in MRC-AIMS. The effect of non-linear mappings during image registration to a standard stereotactic space on the prediction is explored with reference to the amount of local deformation. In summary, power calculations offer a validated, quantitative means of making informed choices on important factors that influence the outcome of studies that consume significant resources. PMID:24644267
Mapping of ApoE4 related white matter damage using diffusion MRI
NASA Astrophysics Data System (ADS)
Tsao, Sinchai; Gajawelli, Niharika; Hwang, Darryl H.; Kriger, Stephen; Law, Meng; Chui, Helena; Weiner, Michael; Lepore, Natasha
2014-04-01
ApoliopoproteinE Ɛ4 (ApoE-Ɛ4) polymorphism is the most well known genetic risk factor for developing Alzheimers Disease. The exact mechanism through which ApoE 4 increases AD risk is not fully known, but may be related to decreased clearance and increased oligomerization of Aβ. By making measurements of white matter integrity via diffusion MR and correlating the metrics in a voxel-based statistical analysis with ApoE-Ɛ4 genotype (whilst controlling for vascular risk factor, gender, cognitive status and age) we are able to identify changes in white matter associated with carrying an ApoE Ɛ4 allele. We found potentially significant regions (Puncorrected < 0:05) near the hippocampus and the posterior cingulum that were independent of voxels that correlated with age or clinical dementia rating (CDR) status suggesting that ApoE may affect cognitive decline via a pathway in dependent of normal aging and acute insults that can be measured by CDR and Framingham Coronary Risk Score (FCRS).
Hemani, H; Warrier, M; Sakthivel, N; Chaturvedi, S
2014-05-01
Molecular dynamics (MD) simulations are used in the study of void nucleation and growth in crystals that are subjected to tensile deformation. These simulations are run for typically several hundred thousand time steps depending on the problem. We output the atom positions at a required frequency for post processing to determine the void nucleation, growth and coalescence due to tensile deformation. The simulation volume is broken up into voxels of size equal to the unit cell size of crystal. In this paper, we present the algorithm to identify the empty unit cells (voids), their connections (void size) and dynamic changes (growth and coalescence of voids) for MD simulations of large atomic systems (multi-million atoms). We discuss the parallel algorithms that were implemented and discuss their relative applicability in terms of their speedup and scalability. We also present the results on scalability of our algorithm when it is incorporated into MD software LAMMPS. Copyright © 2014 Elsevier Inc. All rights reserved.
Liu, X. Sherry; Wang, Ji; Zhou, Bin; Stein, Emily; Shi, Xiutao; Adams, Mark; Shane, Elizabeth; Guo, X. Edward
2013-01-01
While high-resolution peripheral quantitative computed tomography (HR-pQCT) has advanced clinical assessment of trabecular bone microstructure, nonlinear microstructural finite element (μFE) prediction of yield strength by HR-pQCT voxel model is impractical for clinical use due to its prohibitively high computational costs. The goal of this study was to develop an efficient HR-pQCT-based plate and rod (PR) modeling technique to fill the unmet clinical need for fast bone strength estimation. By using individual trabecula segmentation (ITS) technique to segment the trabecular structure into individual plates and rods, a patient-specific PR model was implemented by modeling each trabecular plate with multiple shell elements and each rod with a beam element. To validate this modeling technique, predictions by HR-pQCT PR model were compared with those of the registered high resolution μCT voxel model of 19 trabecular sub-volumes from human cadaveric tibiae samples. Both Young’s modulus and yield strength of HR-pQCT PR models strongly correlated with those of μCT voxel models (r2=0.91 and 0.86). Notably, the HR-pQCT PR models achieved major reductions in element number (>40-fold) and CPU time (>1,200-fold). Then, we applied PR model μFE analysis to HR-pQCT images of 60 postmenopausal women with (n=30) and without (n=30) a history of vertebral fracture. HR-pQCT PR model revealed significantly lower Young’s modulus and yield strength at the radius and tibia in fracture subjects compared to controls. Moreover, these mechanical measurements remained significantly lower in fracture subjects at both sites after adjustment for aBMD T-score at the ultradistal radius or total hip. In conclusion, we validated a novel HR-pQCT PR model of human trabecular bone against μCT voxel models and demonstrated its ability to discriminate vertebral fracture status in postmenopausal women. This accurate nonlinear μFE prediction of HR-pQCT PR model, which requires only seconds of desktop computer time, has tremendous promise for clinical assessment of bone strength. PMID:23456922
[Gray matter abnormalities in developmental stuttering determined with voxel-based morphometry].
Song, Lu-ping; Peng, Dan-ling; Jin, Zhen; Yao, Li; Ning, Ning; Guo, Xiao-juan; Zhang, Tong
2007-11-06
To investigate the differences of regional grey matter volume between adults with persistent developmental stuttering and fluent speaking adults, and to determine whether stutterers have anomalous anatomy of speech-relevant brain areas that possibly affect speech fluency. High-resolution magnetic resonance imaging (MRI) scanning was performed on 10 adults with developmental stuttering, aged 26 (21 - 35) with the onset age of 4 (3 - 7) and 12 age, sex, hand preference, and education-matched controls. The customized brain templates were created in order to improve spatial normalization and segmentation. Then automated preprocessing of MRI data was conducted using an optimized version of VBM, a fully automated unbiased and objective whole-brain MRI analysis technique. VBM analysis revealed that compared with the controls, the stuttering adults had significant clusters of locally gray matter volume increased in the superior temporal, middle temporal, precentral and postcentral gyrus, and inferior parietal lobule of the bilateral hemisphere (P < 0.001), the numbers of increased gray matter volume in the right and left hemispheres were 60,247 and 48,782 voxels respectively. The, Grey matter decrease was shown with an overall decreased gray matter volume of 32 394 voxels, mainly in the bilateral cerebella posterior lobe and dorsal part of medulla, especially inferior semi-lunar lobule, followed by cerebellar tonsil and bilateral medulla in comparison with the controls (P < 0.001). The reduction of the regional gray matter volume of bilateral cerebella and medulla is related to the neural mechanism of the controlling disorder of speech production and may be the essential cause of stuttering. Some areas with increased gray matter volume in temporal lobe, parietal lobe, and frontal lobe, may be the result of long term functional compensation for the cerebella and medulla function deficiency.
Cusack, Rhodri; Vicente-Grabovetsky, Alejandro; Mitchell, Daniel J; Wild, Conor J; Auer, Tibor; Linke, Annika C; Peelle, Jonathan E
2014-01-01
Recent years have seen neuroimaging data sets becoming richer, with larger cohorts of participants, a greater variety of acquisition techniques, and increasingly complex analyses. These advances have made data analysis pipelines complicated to set up and run (increasing the risk of human error) and time consuming to execute (restricting what analyses are attempted). Here we present an open-source framework, automatic analysis (aa), to address these concerns. Human efficiency is increased by making code modular and reusable, and managing its execution with a processing engine that tracks what has been completed and what needs to be (re)done. Analysis is accelerated by optional parallel processing of independent tasks on cluster or cloud computing resources. A pipeline comprises a series of modules that each perform a specific task. The processing engine keeps track of the data, calculating a map of upstream and downstream dependencies for each module. Existing modules are available for many analysis tasks, such as SPM-based fMRI preprocessing, individual and group level statistics, voxel-based morphometry, tractography, and multi-voxel pattern analyses (MVPA). However, aa also allows for full customization, and encourages efficient management of code: new modules may be written with only a small code overhead. aa has been used by more than 50 researchers in hundreds of neuroimaging studies comprising thousands of subjects. It has been found to be robust, fast, and efficient, for simple-single subject studies up to multimodal pipelines on hundreds of subjects. It is attractive to both novice and experienced users. aa can reduce the amount of time neuroimaging laboratories spend performing analyses and reduce errors, expanding the range of scientific questions it is practical to address.
Kim, Yong Wook; Kim, Hyoung Seop; An, Young-Sil; Im, Sang Hee
2010-10-01
Permanent vegetative state is defined as the impaired level of consciousness longer than 12 months after traumatic causes and 3 months after non-traumatic causes of brain injury. Although many studies assessed the cerebral metabolism in patients with acute and persistent vegetative state after brain injury, few studies investigated the cerebral metabolism in patients with permanent vegetative state. In this study, we performed the voxel-based analysis of cerebral glucose metabolism and investigated the relationship between regional cerebral glucose metabolism and the severity of impaired consciousness in patients with permanent vegetative state after acquired brain injury. We compared the regional cerebral glucose metabolism as demonstrated by F-18 fluorodeoxyglucose positron emission tomography from 12 patients with permanent vegetative state after acquired brain injury with those from 12 control subjects. Additionally, covariance analysis was performed to identify regions where decreased changes in regional cerebral glucose metabolism significantly correlated with a decrease of level of consciousness measured by JFK-coma recovery scale. Statistical analysis was performed using statistical parametric mapping. Compared with controls, patients with permanent vegetative state demonstrated decreased cerebral glucose metabolism in the left precuneus, both posterior cingulate cortices, the left superior parietal lobule (P(corrected) < 0.001), and increased cerebral glucose metabolism in the both cerebellum and the right supramarginal cortices (P(corrected) < 0.001). In the covariance analysis, a decrease in the level of consciousness was significantly correlated with decreased cerebral glucose metabolism in the both posterior cingulate cortices (P(uncorrected) < 0.005). Our findings suggest that the posteromedial parietal cortex, which are part of neural network for consciousness, may be relevant structure for pathophysiological mechanism in patients with permanent vegetative state after acquired brain injury.
Cortical surface-based threshold-free cluster enhancement and cortexwise mediation.
Lett, Tristram A; Waller, Lea; Tost, Heike; Veer, Ilya M; Nazeri, Arash; Erk, Susanne; Brandl, Eva J; Charlet, Katrin; Beck, Anne; Vollstädt-Klein, Sabine; Jorde, Anne; Kiefer, Falk; Heinz, Andreas; Meyer-Lindenberg, Andreas; Chakravarty, M Mallar; Walter, Henrik
2017-06-01
Threshold-free cluster enhancement (TFCE) is a sensitive means to incorporate spatial neighborhood information in neuroimaging studies without using arbitrary thresholds. The majority of methods have applied TFCE to voxelwise data. The need to understand the relationship among multiple variables and imaging modalities has become critical. We propose a new method of applying TFCE to vertexwise statistical images as well as cortexwise (either voxel- or vertexwise) mediation analysis. Here we present TFCE_mediation, a toolbox that can be used for cortexwise multiple regression analysis with TFCE, and additionally cortexwise mediation using TFCE. The toolbox is open source and publicly available (https://github.com/trislett/TFCE_mediation). We validated TFCE_mediation in healthy controls from two independent multimodal neuroimaging samples (N = 199 and N = 183). We found a consistent structure-function relationship between surface area and the first independent component (IC1) of the N-back task, that white matter fractional anisotropy is strongly associated with IC1 N-back, and that our voxel-based results are essentially identical to FSL randomise using TFCE (all P FWE <0.05). Using cortexwise mediation, we showed that the relationship between white matter FA and IC1 N-back is mediated by surface area in the right superior frontal cortex (P FWE < 0.05). We also demonstrated that the same mediation model is present using vertexwise mediation (P FWE < 0.05). In conclusion, cortexwise analysis with TFCE provides an effective analysis of multimodal neuroimaging data. Furthermore, cortexwise mediation analysis may identify or explain a mechanism that underlies an observed relationship among a predictor, intermediary, and dependent variables in which one of these variables is assessed at a whole-brain scale. Hum Brain Mapp 38:2795-2807, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Palaniyappan, Lena; Maayan, Nicola; Bergman, Hanna; Davenport, Clare; Adams, Clive E; Soares-Weiser, Karla
2016-03-01
Subtle but widespread deficit in the cortical and subcortical grey matter is a consistent neuroimaging observation in schizophrenia. Several studies have used voxel based morphometry (VBM) to investigate the nature of this structural deficit. We conducted a diagnostic test review to explore the diagnostic potential of VBM in differentiating schizophrenia from other types of first-episode psychoses. © The Author 2016. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Petoussi-Henss, Nina; Becker, Janine; Greiter, Matthias; Schlattl, Helmut; Zankl, Maria; Hoeschen, Christoph
2014-03-01
In radiography there is generally a conflict between the best image quality and the lowest possible patient dose. A proven method of dosimetry is the simulation of radiation transport in virtual human models (i.e. phantoms). However, while the resolution of these voxel models is adequate for most dosimetric purposes, they cannot provide the required organ fine structures necessary for the assessment of the imaging quality. The aim of this work is to develop hybrid/dual-lattice voxel models (called also phantoms) as well as simulation methods by which patient dose and image quality for typical radiographic procedures can be determined. The results will provide a basis to investigate by means of simulations the relationships between patient dose and image quality for various imaging parameters and develop methods for their optimization. A hybrid model, based on NURBS (Non Linear Uniform Rational B-Spline) and PM (Polygon Mesh) surfaces, was constructed from an existing voxel model of a female patient. The organs of the hybrid model can be then scaled and deformed in a non-uniform way i.e. organ by organ; they can be, thus, adapted to patient characteristics without losing their anatomical realism. Furthermore, the left lobe of the lung was substituted by a high resolution lung voxel model, resulting in a dual-lattice geometry model. "Dual lattice" means in this context the combination of voxel models with different resolution. Monte Carlo simulations of radiographic imaging were performed with the code EGS4nrc, modified such as to perform dual lattice transport. Results are presented for a thorax examination.
Dewaraja, Yuni K.; Frey, Eric C.; Sgouros, George; Brill, A. Bertrand; Roberson, Peter; Zanzonico, Pat B.; Ljungberg, Michael
2012-01-01
In internal radionuclide therapy, a growing interest in voxel-level estimates of tissue-absorbed dose has been driven by the desire to report radiobiologic quantities that account for the biologic consequences of both spatial and temporal nonuniformities in these dose estimates. This report presents an overview of 3-dimensional SPECT methods and requirements for internal dosimetry at both regional and voxel levels. Combined SPECT/CT image-based methods are emphasized, because the CT-derived anatomic information allows one to address multiple technical factors that affect SPECT quantification while facilitating the patient-specific voxel-level dosimetry calculation itself. SPECT imaging and reconstruction techniques for quantification in radionuclide therapy are not necessarily the same as those designed to optimize diagnostic imaging quality. The current overview is intended as an introduction to an upcoming series of MIRD pamphlets with detailed radionuclide-specific recommendations intended to provide best-practice SPECT quantification–based guidance for radionuclide dosimetry. PMID:22743252
NASA Astrophysics Data System (ADS)
Condro, A. A.; Pawitan, H.; Risdiyanto, I.
2018-05-01
Peatlands are very vulnerable to widespread fires during dry seasons, due to availability of aboveground fuel biomass on the surface and belowground fuel biomass on the sub-surface. Hence, understanding drought propagation occurring within peat layers is crucial with regards to disaster mitigation activities on peatlands. Using a three dimensionally explicit voxel-based model of peatland hydrology, this study predicted drought propagation time lags into sub-surface peat layers after drought events occurrence on the surface of about 1 month during La-Nina and 2.5 months during El-Nino. The study was carried out on a high-conservation-value area of oil palm plantation in West Kalimantan. Validity of the model was evaluated and its applicability for disaster mitigation was discussed. The animations of simulated voxels are available at: goo.gl/HDRMYN (El-Nino 2015 episode) and goo.gl/g1sXPl (La-Nina 2016 episode). The model is available at: goo.gl/RiuMQz.
Karampinos, Dimitrios C.; Melkus, Gerd; Baum, Thomas; Bauer, Jan S.; Rummeny, Ernst J.; Krug, Roland
2013-01-01
Purpose The purpose of the present study was to test the relative performance of chemical shift-based water-fat imaging in measuring bone marrow fat fraction in the presence of trabecular bone, having as reference standard the single-voxel magnetic resonance spectroscopy (MRS). Methods Six-echo gradient echo imaging and single-voxel MRS measurements were performed on the proximal femur of seven healthy volunteers. The bone marrow fat spectrum was characterized based on the magnitude of measurable fat peaks and an a priori knowledge of the chemical structure of triglycerides, in order to accurately extract the water peak from the overlapping broad fat peaks in MRS. The imaging-based fat fraction results were then compared to the MRS-based results both without and with taking into consideration the presence of short T2* water components in MRS. Results There was a significant underestimation of the fat fraction using the MRS model not accounting for short T2* species with respect to the imaging-based water fraction. A good equivalency was observed between the fat fraction using the MRS model accounting for short T2* species and the imaging-based fat fraction (R2=0.87). Conclusion The consideration of the short T2* water species effect on bone marrow fat quantification is essential when comparing MRS-based and imaging-based fat fraction results. PMID:23657998
DOE Office of Scientific and Technical Information (OSTI.GOV)
Owen, D; Anderson, C; Mayo, C
Purpose: To extend the functionality of a commercial treatment planning system (TPS) to support (i) direct use of quantitative image-based metrics within treatment plan optimization and (ii) evaluation of dose-functional volume relationships to assist in functional image adaptive radiotherapy. Methods: A script was written that interfaces with a commercial TPS via an Application Programming Interface (API). The script executes a program that performs dose-functional volume analyses. Written in C#, the script reads the dose grid and correlates it with image data on a voxel-by-voxel basis through API extensions that can access registration transforms. A user interface was designed through WinFormsmore » to input parameters and display results. To test the performance of this program, image- and dose-based metrics computed from perfusion SPECT images aligned to the treatment planning CT were generated, validated, and compared. Results: The integration of image analysis information was successfully implemented as a plug-in to a commercial TPS. Perfusion SPECT images were used to validate the calculation and display of image-based metrics as well as dose-intensity metrics and histograms for defined structures on the treatment planning CT. Various biological dose correction models, custom image-based metrics, dose-intensity computations, and dose-intensity histograms were applied to analyze the image-dose profile. Conclusion: It is possible to add image analysis features to commercial TPSs through custom scripting applications. A tool was developed to enable the evaluation of image-intensity-based metrics in the context of functional targeting and avoidance. In addition to providing dose-intensity metrics and histograms that can be easily extracted from a plan database and correlated with outcomes, the system can also be extended to a plug-in optimization system, which can directly use the computed metrics for optimization of post-treatment tumor or normal tissue response models. Supported by NIH - P01 - CA059827.« less
MIDAS: Regionally linear multivariate discriminative statistical mapping.
Varol, Erdem; Sotiras, Aristeidis; Davatzikos, Christos
2018-07-01
Statistical parametric maps formed via voxel-wise mass-univariate tests, such as the general linear model, are commonly used to test hypotheses about regionally specific effects in neuroimaging cross-sectional studies where each subject is represented by a single image. Despite being informative, these techniques remain limited as they ignore multivariate relationships in the data. Most importantly, the commonly employed local Gaussian smoothing, which is important for accounting for registration errors and making the data follow Gaussian distributions, is usually chosen in an ad hoc fashion. Thus, it is often suboptimal for the task of detecting group differences and correlations with non-imaging variables. Information mapping techniques, such as searchlight, which use pattern classifiers to exploit multivariate information and obtain more powerful statistical maps, have become increasingly popular in recent years. However, existing methods may lead to important interpretation errors in practice (i.e., misidentifying a cluster as informative, or failing to detect truly informative voxels), while often being computationally expensive. To address these issues, we introduce a novel efficient multivariate statistical framework for cross-sectional studies, termed MIDAS, seeking highly sensitive and specific voxel-wise brain maps, while leveraging the power of regional discriminant analysis. In MIDAS, locally linear discriminative learning is applied to estimate the pattern that best discriminates between two groups, or predicts a variable of interest. This pattern is equivalent to local filtering by an optimal kernel whose coefficients are the weights of the linear discriminant. By composing information from all neighborhoods that contain a given voxel, MIDAS produces a statistic that collectively reflects the contribution of the voxel to the regional classifiers as well as the discriminative power of the classifiers. Critically, MIDAS efficiently assesses the statistical significance of the derived statistic by analytically approximating its null distribution without the need for computationally expensive permutation tests. The proposed framework was extensively validated using simulated atrophy in structural magnetic resonance imaging (MRI) and further tested using data from a task-based functional MRI study as well as a structural MRI study of cognitive performance. The performance of the proposed framework was evaluated against standard voxel-wise general linear models and other information mapping methods. The experimental results showed that MIDAS achieves relatively higher sensitivity and specificity in detecting group differences. Together, our results demonstrate the potential of the proposed approach to efficiently map effects of interest in both structural and functional data. Copyright © 2018. Published by Elsevier Inc.
Woodward, Neil D.; Zald, David H.; Ding, Zhaohua; Riccardi, Patrizia; Ansari, M. Sib; Baldwin, Ronald M.; Cowan, Ronald L.; Li, Rui; Kessler, Robert M.
2009-01-01
The relationship between cerebral morphology and the expression of dopamine receptors has not been extensively studied in humans. Elucidation of such relationships may have important methodological implications for clinical studies of dopamine receptor ligand binding differences between control and patient groups. The association between cerebral morphology and dopamine receptor distribution was examined in 45 healthy subjects who completed T1-weighted structural MRI and PET scanning with the D2/D3 ligand [18F]fallypride. Optimized voxel-based morphometry was used to create grey matter volume and density images. Grey matter volume and density images were correlated with binding potential (BPND) images on a voxel-by-voxel basis using the Biological Parametric Mapping toolbox. Associations between cerebral morphology and BPND were also examined for selected regions-of-interest (ROIs) after spatial normalization. Voxel-wise analyses indicated that grey matter volume and density positively correlated with BPND throughout the midbrain, including the substantia nigra. Positive correlations were observed in medial cortical areas, including anterior cingulate and medial prefrontal cortex, and circumscribed regions of the temporal, frontal, and parietal lobes. ROI analyses revealed significant positive correlations between BPND and cerebral morphology in the caudate, thalamus, and amygdala. Few negative correlations between morphology and BPND were observed. Overall, grey matter density appeared more strongly correlated with BPND than grey matter volume. Cerebral morphology, particularly grey matter density, correlates with [18F]fallypride BPND in a regionally specific manner. Clinical studies comparing dopamine receptor availability between clinical and control groups may benefit by accounting for potential differences in cerebral morphology that exist even after spatial normalization. PMID:19457373
Woodward, Neil D; Zald, David H; Ding, Zhaohua; Riccardi, Patrizia; Ansari, M Sib; Baldwin, Ronald M; Cowan, Ronald L; Li, Rui; Kessler, Robert M
2009-05-15
The relationship between cerebral morphology and the expression of dopamine receptors has not been extensively studied in humans. Elucidation of such relationships may have important methodological implications for clinical studies of dopamine receptor ligand binding differences between control and patient groups. The association between cerebral morphology and dopamine receptor distribution was examined in 45 healthy subjects who completed T1-weighted structural MRI and PET scanning with the D(2)/D(3) ligand [(18)F]fallypride. Optimized voxel-based morphometry was used to create grey matter volume and density images. Grey matter volume and density images were correlated with binding potential (BP(ND)) images on a voxel-by-voxel basis using the Biological Parametric Mapping toolbox. Associations between cerebral morphology and BP(ND) were also examined for selected regions-of-interest (ROIs) after spatial normalization. Voxel-wise analyses indicated that grey matter volume and density positively correlated with BP(ND) throughout the midbrain, including the substantia nigra. Positive correlations were observed in medial cortical areas, including anterior cingulate and medial prefrontal cortex, and circumscribed regions of the temporal, frontal, and parietal lobes. ROI analyses revealed significant positive correlations between BP(ND) and cerebral morphology in the caudate, thalamus, and amygdala. Few negative correlations between morphology and BP(ND) were observed. Overall, grey matter density appeared more strongly correlated with BP(ND) than grey matter volume. Cerebral morphology, particularly grey matter density, correlates with [(18)F]fallypride BP(ND) in a regionally specific manner. Clinical studies comparing dopamine receptor availability between clinical and control groups may benefit by accounting for potential differences in cerebral morphology that exist even after spatial normalization.
Assessing the Regional Frequency, Intensity, and Spatial Extent of Tropical Cyclone Rainfall
NASA Astrophysics Data System (ADS)
Bosma, C.; Wright, D.; Nguyen, P.
2017-12-01
While the strength of a hurricane is generally classified based on its wind speed, the unprecedented rainfall-driven flooding experienced in southeastern Texas during Hurricane Harvey clearly highlights the need for better understanding of the hazards associated with extreme rainfall from hurricanes and other tropical systems. In this study, we seek to develop a framework for describing the joint probabilistic and spatio-temporal properties of extreme rainfall from hurricanes and other tropical systems. Furthermore, we argue that commonly-used terminology - such as the "500-year storm" - fail to convey the true properties of tropical cyclone rainfall occurrences in the United States. To quantify the magnitude and spatial extent of these storms, a database consisting of hundreds of unique rainfall volumetric shapes (or "voxels") was created. Each voxel is a four-dimensional object, created by connecting, in both space and time, gridded rainfall observations from the daily, gauge-based NOAA CPC-Unified precipitation dataset. Individual voxels were then associated with concurrent tropical cyclone tracks from NOAA's HURDAT-2 archive, to create distinct representations of the rainfall associated with every Atlantic tropical system making landfall over (or passing near) the United States since 1948. Using these voxels, a series of threshold-excess extreme value models were created to estimate the recurrence intervals of extreme tropical cyclone rainfall, both nationally and locally, for single and multi-day timescales. This voxel database also allows for the "indexing" of past events, placing recent extremes - such as the 50+ inches of rain observed during Hurricane Harvey - into a national context and emphasizing how rainfall totals that are rare at the point scale may be more frequent from a regional perspective.
Liu, Peiwei; Feng, Tingyong
2017-09-30
Procrastination is a prevalent problematic behavior that brings serious consequences, such as lower levels of health, wealth, and well-being. Previous research has verified that impulsivity is one of the traits most strongly correlated with procrastination. However, little is known about why there is a tight behavioral relationship between them. To address this question, we used voxel-based morphometry (VBM) to explore the common neural substrates between procrastination and impulsivity. In line with previous findings, the behavioral results showed a strong behavioral correlation between procrastination and impulsivity. Neuroimaging results showed impulsivity and procrastination shared the common neurobiological underpinnings in the dorsolateral prefrontal cortex (DLPFC) based on the data from 85 participants (sample 1). Furthermore, the mediation analysis revealed that impulsivity mediated the impact of gray matter (GM) volumes of this overlapping region in the DLPFC on procrastination on another independent 84 participants' data (sample 2). In conclusion, the overlapping brain region in the DLPFC would be responsible for the close relationship between procrastination and impulsivity. As a whole, the present study extends our knowledge on procrastination, and provides a novel perspective to explain the tight impulsivity - procrastination relationship. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
Strappini, Francesca; Gilboa, Elad; Pitzalis, Sabrina; Kay, Kendrick; McAvoy, Mark; Nehorai, Arye; Snyder, Abraham Z
2017-03-01
Temporal and spatial filtering of fMRI data is often used to improve statistical power. However, conventional methods, such as smoothing with fixed-width Gaussian filters, remove fine-scale structure in the data, necessitating a tradeoff between sensitivity and specificity. Specifically, smoothing may increase sensitivity (reduce noise and increase statistical power) but at the cost loss of specificity in that fine-scale structure in neural activity patterns is lost. Here, we propose an alternative smoothing method based on Gaussian processes (GP) regression for single subjects fMRI experiments. This method adapts the level of smoothing on a voxel by voxel basis according to the characteristics of the local neural activity patterns. GP-based fMRI analysis has been heretofore impractical owing to computational demands. Here, we demonstrate a new implementation of GP that makes it possible to handle the massive data dimensionality of the typical fMRI experiment. We demonstrate how GP can be used as a drop-in replacement to conventional preprocessing steps for temporal and spatial smoothing in a standard fMRI pipeline. We present simulated and experimental results that show the increased sensitivity and specificity compared to conventional smoothing strategies. Hum Brain Mapp 38:1438-1459, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Calculation of Dose Deposition in 3D Voxels by Heavy Ions and Simulation of gamma-H2AX Experiments
NASA Technical Reports Server (NTRS)
Plante, I.; Ponomarev, A. L.; Wang, M.; Cucinotta, F. A.
2011-01-01
The biological response to high-LET radiation is different from low-LET radiation due to several factors, notably difference in energy deposition and formation of radiolytic species. Of particular importance in radiobiology is the formation of double-strand breaks (DSB), which can be detected by -H2AX foci experiments. These experiments has revealed important differences in the spatial distribution of DSB induced by low- and high-LET radiations [1,2]. To simulate -H2AX experiments, models based on amorphous track with radial dose are often combined with random walk chromosome models [3,4]. In this work, a new approach using the Monte-Carlo track structure code RITRACKS [5] and chromosome models have been used to simulate DSB formation. At first, RITRACKS have been used to simulate the irradiation of a cubic volume of 5 m by 1) 450 1H+ ions of 300 MeV (LET 0.3 keV/ m) and 2) by 1 56Fe26+ ion of 1 GeV/amu (LET 150 keV/ m). All energy deposition events are recorded to calculate dose in voxels of 20 m. The dose voxels are distributed randomly and scattered uniformly within the volume irradiated by low-LET radiation. Many differences are found in the spatial distribution of dose voxels for the 56Fe26+ ion. The track structure can be distinguished, and voxels with very high dose are found in the region corresponding to the track "core". These high-dose voxels are not found in the low-LET irradiation simulation and indicate clustered energy deposition, which may be responsible for complex DSB. In the second step, assuming that DSB will be found only in voxels where energy is deposited by the radiation, the intersection points between voxels with dose > 0 and simulated chromosomes were obtained. The spatial distribution of the intersection points is similar to -H2AX foci experiments. These preliminary results suggest that combining stochastic track structure and chromosome models could be a good approach to understand radiation-induced DSB and chromosome aberrations.
O'Sullivan, Finbarr; Muzi, Mark; Mankoff, David A; Eary, Janet F; Spence, Alexander M; Krohn, Kenneth A
2014-06-01
Most radiotracers used in dynamic positron emission tomography (PET) scanning act in a linear time-invariant fashion so that the measured time-course data are a convolution between the time course of the tracer in the arterial supply and the local tissue impulse response, known as the tissue residue function. In statistical terms the residue is a life table for the transit time of injected radiotracer atoms. The residue provides a description of the tracer kinetic information measurable by a dynamic PET scan. Decomposition of the residue function allows separation of rapid vascular kinetics from slower blood-tissue exchanges and tissue retention. For voxel-level analysis, we propose that residues be modeled by mixtures of nonparametrically derived basis residues obtained by segmentation of the full data volume. Spatial and temporal aspects of diagnostics associated with voxel-level model fitting are emphasized. Illustrative examples, some involving cancer imaging studies, are presented. Data from cerebral PET scanning with 18 F fluoro-deoxyglucose (FDG) and 15 O water (H2O) in normal subjects is used to evaluate the approach. Cross-validation is used to make regional comparisons between residues estimated using adaptive mixture models with more conventional compartmental modeling techniques. Simulations studies are used to theoretically examine mean square error performance and to explore the benefit of voxel-level analysis when the primary interest is a statistical summary of regional kinetics. The work highlights the contribution that multivariate analysis tools and life-table concepts can make in the recovery of local metabolic information from dynamic PET studies, particularly ones in which the assumptions of compartmental-like models, with residues that are sums of exponentials, might not be certain.
Belke, Marcus; Heverhagen, Johannes T; Keil, Boris; Rosenow, Felix; Oertel, Wolfgang H; Stiasny-Kolster, Karin; Knake, Susanne; Menzler, Katja
2015-01-01
Background and Purpose We evaluated cerebral white and gray matter changes in patients with iRLS in order to shed light on the pathophysiology of this disease. Methods Twelve patients with iRLS were compared to 12 age- and sex-matched controls using whole-head diffusion tensor imaging (DTI) and voxel-based morphometry (VBM) techniques. Evaluation of the DTI scans included the voxelwise analysis of the fractional anisotropy (FA), radial diffusivity (RD), and axial diffusivity (AD). Results Diffusion tensor imaging revealed areas of altered FA in subcortical white matter bilaterally, mainly in temporal regions as well as in the right internal capsule, the pons, and the right cerebellum. These changes overlapped with changes in RD. Voxel-based morphometry did not reveal any gray matter alterations. Conclusions We showed altered diffusion properties in several white matter regions in patients with iRLS. White matter changes could mainly be attributed to changes in RD, a parameter thought to reflect altered myelination. Areas with altered white matter microstructure included areas in the internal capsule which include the corticospinal tract to the lower limbs, thereby supporting studies that suggest changes in sensorimotor pathways associated with RLS. PMID:26442748
A voxel-based lesion study on facial emotion recognition after penetrating brain injury
Dal Monte, Olga; Solomon, Jeffrey M.; Schintu, Selene; Knutson, Kristine M.; Strenziok, Maren; Pardini, Matteo; Leopold, Anne; Raymont, Vanessa; Grafman, Jordan
2013-01-01
The ability to read emotions in the face of another person is an important social skill that can be impaired in subjects with traumatic brain injury (TBI). To determine the brain regions that modulate facial emotion recognition, we conducted a whole-brain analysis using a well-validated facial emotion recognition task and voxel-based lesion symptom mapping (VLSM) in a large sample of patients with focal penetrating TBIs (pTBIs). Our results revealed that individuals with pTBI performed significantly worse than normal controls in recognizing unpleasant emotions. VLSM mapping results showed that impairment in facial emotion recognition was due to damage in a bilateral fronto-temporo-limbic network, including medial prefrontal cortex (PFC), anterior cingulate cortex, left insula and temporal areas. Beside those common areas, damage to the bilateral and anterior regions of PFC led to impairment in recognizing unpleasant emotions, whereas bilateral posterior PFC and left temporal areas led to impairment in recognizing pleasant emotions. Our findings add empirical evidence that the ability to read pleasant and unpleasant emotions in other people's faces is a complex process involving not only a common network that includes bilateral fronto-temporo-limbic lobes, but also other regions depending on emotional valence. PMID:22496440
Sidtis, John J; Tagliati, Michele; Alterman, Ron; Sidtis, Diana; Dhawan, Vijay; Eidelberg, David
2012-01-01
Chronic, high-frequency electrical stimulation of the subthalamic nuclei (STNs) has become an effective and widely used therapy in Parkinson's disease (PD), but the therapeutic mechanism is not understood. Stimulation of the STN is believed to reorganize neurophysiological activity patterns within the basal ganglia, whereas local field effects extending to tracts adjacent to the STN are viewed as sources of nontherapeutic side effects. This study is part of a larger project investigating the effects of STN stimulation on speech and regional cerebral blood flow (CBF) in human subjects with PD. While generating measures of global CBF (gCBF) to normalize regional CBF values for a subsequent combined analysis of regional CBF and speech data, we observed a third effect of this therapy: a gCBF increase. This effect was present across three estimates of gCBF ranging from values based on the highest activity voxels to those based on all voxels. The magnitude of the gCBF increase was related to the subject's duration of PD. It is not clear whether this CBF effect has a therapeutic role, but the impact of deep brain stimulation on cerebrovascular control warrants study from neuroscience, pathophysiological, and therapeutic perspectives.
Greater cerebellar gray matter volume in car drivers: an exploratory voxel-based morphometry study
Sakai, Hiroyuki; Ando, Takafumi; Sadato, Norihiro; Uchiyama, Yuji
2017-01-01
Previous functional neuroimaging studies have identified multiple brain areas associated with distinct aspects of car driving in simulated traffic environments. Few studies, however, have examined brain morphology associated with everyday car-driving experience in real traffic. Thus, the aim of the current study was to identify gray matter volume differences between drivers and non-drivers. We collected T1-weighted structural brain images from 73 healthy young adults (36 drivers and 37 non-drivers). We performed a whole-brain voxel-based morphometry analysis to examine between-group differences in regional gray matter volume. Compared with non-drivers, drivers showed significantly greater gray matter volume in the left cerebellar hemisphere, which has been associated with cognitive rather than motor functioning. In contrast, we found no brain areas with significantly greater gray matter volume in non-drivers compared with drivers. Our findings indicate that experience with everyday car driving in real traffic is associated with greater gray matter volume in the left cerebellar hemisphere. This brain area may be involved in abilities that are critical for driving a car, but are not commonly or frequently used during other daily activities. PMID:28417971
Analyzing brain networks with PCA and conditional Granger causality.
Zhou, Zhenyu; Chen, Yonghong; Ding, Mingzhou; Wright, Paul; Lu, Zuhong; Liu, Yijun
2009-07-01
Identifying directional influences in anatomical and functional circuits presents one of the greatest challenges for understanding neural computations in the brain. Granger causality mapping (GCM) derived from vector autoregressive models of data has been employed for this purpose, revealing complex temporal and spatial dynamics underlying cognitive processes. However, the traditional GCM methods are computationally expensive, as signals from thousands of voxels within selected regions of interest (ROIs) are individually processed, and being based on pairwise Granger causality, they lack the ability to distinguish direct from indirect connectivity among brain regions. In this work a new algorithm called PCA based conditional GCM is proposed to overcome these problems. The algorithm implements the following two procedures: (i) dimensionality reduction in ROIs of interest with principle component analysis (PCA), and (ii) estimation of the direct causal influences in local brain networks, using conditional Granger causality. Our results show that the proposed method achieves greater accuracy in detecting network connectivity than the commonly used pairwise Granger causality method. Furthermore, the use of PCA components in conjunction with conditional GCM greatly reduces the computational cost relative to the use of individual voxel time series. Copyright 2009 Wiley-Liss, Inc
Mao, Cuiping; Wei, Longxiao; Zhang, Qiuli; Liao, Xia; Yang, Xiaoli; Zhang, Ming
2013-01-01
A reduction in gray matter volume is common in patients with chronic back pain, and different types of pain are associated with gray matter abnormalities in distinct brain regions. To examine differences in brain morphology in patients with low back pain or neck and upper back pain, we investigated changes in gray matter volume in chronic back pain patients having different sites of pain using voxel-based morphometry. A reduction in cortical gray matter volume was found primarily in the left postcentral gyrus and in the left precuneus and bilateral cuneal cortex of patients with low back pain. In these patients, there was an increase in subcortical gray matter volume in the bilateral putamen and accumbens, right pallidum, right caudate nucleus, and left amygdala. In upper back pain patients, reduced cortical gray matter volume was found in the left precentral and left postcentral cortices. Our findings suggest that regional gray matter volume abnormalities in low back pain patients are more extensive than in upper back pain patients. Subcortical gray matter volume increases are found only in patients with low back pain. PMID:25206618
Greater cerebellar gray matter volume in car drivers: an exploratory voxel-based morphometry study.
Sakai, Hiroyuki; Ando, Takafumi; Sadato, Norihiro; Uchiyama, Yuji
2017-04-18
Previous functional neuroimaging studies have identified multiple brain areas associated with distinct aspects of car driving in simulated traffic environments. Few studies, however, have examined brain morphology associated with everyday car-driving experience in real traffic. Thus, the aim of the current study was to identify gray matter volume differences between drivers and non-drivers. We collected T1-weighted structural brain images from 73 healthy young adults (36 drivers and 37 non-drivers). We performed a whole-brain voxel-based morphometry analysis to examine between-group differences in regional gray matter volume. Compared with non-drivers, drivers showed significantly greater gray matter volume in the left cerebellar hemisphere, which has been associated with cognitive rather than motor functioning. In contrast, we found no brain areas with significantly greater gray matter volume in non-drivers compared with drivers. Our findings indicate that experience with everyday car driving in real traffic is associated with greater gray matter volume in the left cerebellar hemisphere. This brain area may be involved in abilities that are critical for driving a car, but are not commonly or frequently used during other daily activities.
Illa, Miriam; Eixarch, Elisenda; Batalle, Dafnis; Arbat-Plana, Ariadna; Muñoz-Moreno, Emma; Figueras, Francesc; Gratacos, Eduard
2013-01-01
Background Intrauterine growth restriction (IUGR) affects 5–10% of all newborns and is associated with increased risk of memory, attention and anxiety problems in late childhood and adolescence. The neurostructural correlates of long-term abnormal neurodevelopment associated with IUGR are unknown. Thus, the aim of this study was to provide a comprehensive description of the long-term functional and neurostructural correlates of abnormal neurodevelopment associated with IUGR in a near-term rabbit model (delivered at 30 days of gestation) and evaluate the development of quantitative imaging biomarkers of abnormal neurodevelopment based on diffusion magnetic resonance imaging (MRI) parameters and connectivity. Methodology At +70 postnatal days, 10 cases and 11 controls were functionally evaluated with the Open Field Behavioral Test which evaluates anxiety and attention and the Object Recognition Task that evaluates short-term memory and attention. Subsequently, brains were collected, fixed and a high resolution MRI was performed. Differences in diffusion parameters were analyzed by means of voxel-based and connectivity analysis measuring the number of fibers reconstructed within anxiety, attention and short-term memory networks over the total fibers. Principal Findings The results of the neurobehavioral and cognitive assessment showed a significant higher degree of anxiety, attention and memory problems in cases compared to controls in most of the variables explored. Voxel-based analysis (VBA) revealed significant differences between groups in multiple brain regions mainly in grey matter structures, whereas connectivity analysis demonstrated lower ratios of fibers within the networks in cases, reaching the statistical significance only in the left hemisphere for both networks. Finally, VBA and connectivity results were also correlated with functional outcome. Conclusions The rabbit model used reproduced long-term functional impairments and their neurostructural correlates of abnormal neurodevelopment associated with IUGR. The description of the pattern of microstructural changes underlying functional defects may help to develop biomarkers based in diffusion MRI and connectivity analysis. PMID:24143189
Illa, Miriam; Eixarch, Elisenda; Batalle, Dafnis; Arbat-Plana, Ariadna; Muñoz-Moreno, Emma; Figueras, Francesc; Gratacos, Eduard
2013-01-01
Intrauterine growth restriction (IUGR) affects 5-10% of all newborns and is associated with increased risk of memory, attention and anxiety problems in late childhood and adolescence. The neurostructural correlates of long-term abnormal neurodevelopment associated with IUGR are unknown. Thus, the aim of this study was to provide a comprehensive description of the long-term functional and neurostructural correlates of abnormal neurodevelopment associated with IUGR in a near-term rabbit model (delivered at 30 days of gestation) and evaluate the development of quantitative imaging biomarkers of abnormal neurodevelopment based on diffusion magnetic resonance imaging (MRI) parameters and connectivity. At +70 postnatal days, 10 cases and 11 controls were functionally evaluated with the Open Field Behavioral Test which evaluates anxiety and attention and the Object Recognition Task that evaluates short-term memory and attention. Subsequently, brains were collected, fixed and a high resolution MRI was performed. Differences in diffusion parameters were analyzed by means of voxel-based and connectivity analysis measuring the number of fibers reconstructed within anxiety, attention and short-term memory networks over the total fibers. The results of the neurobehavioral and cognitive assessment showed a significant higher degree of anxiety, attention and memory problems in cases compared to controls in most of the variables explored. Voxel-based analysis (VBA) revealed significant differences between groups in multiple brain regions mainly in grey matter structures, whereas connectivity analysis demonstrated lower ratios of fibers within the networks in cases, reaching the statistical significance only in the left hemisphere for both networks. Finally, VBA and connectivity results were also correlated with functional outcome. The rabbit model used reproduced long-term functional impairments and their neurostructural correlates of abnormal neurodevelopment associated with IUGR. The description of the pattern of microstructural changes underlying functional defects may help to develop biomarkers based in diffusion MRI and connectivity analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeung, Timothy P C; Robarts Research Institute, The University of Western Ontario, Ontario, Canada, N6A 5B7; Department of Medical Biophysics, The University of Western Ontario, Ontario, Canada, N6A 5C1
Introduction: This study aimed to explore the potential for computed tomography (CT) perfusion and 18-Fluorodeoxyglucose positron emission tomography (FDG-PET) in predicting sites of future progressive tumour on a voxel-by-voxel basis after radiotherapy and chemotherapy. Methods: Ten patients underwent pre-radiotherapy magnetic resonance (MR), FDG-PET and CT perfusion near the end of radiotherapy and repeated post-radiotherapy follow-up MR scans. The relationships between these images and tumour progression were assessed using logistic regression. Cross-validation with receiver operating characteristic (ROC) analysis was used to assess the value of these images in predicting sites of tumour progression. Results: Pre-radiotherapy MR-defined gross tumour; near-end-of-radiotherapy CT-defined enhancingmore » lesion; CT perfusion blood flow (BF), blood volume (BV) and permeability-surface area (PS) product; FDG-PET standard uptake value (SUV); and SUV:BF showed significant associations with tumour progression on follow-up MR imaging (P < 0.0001). The mean sensitivity (±standard deviation), specificity and area under the ROC curve (AUC) of PS were 0.64 ± 0.15, 0.74 ± 0.07 and 0.72 ± 0.12 respectively. This mean AUC was higher than that of the pre-radiotherapy MR-defined gross tumour and near-end-of-radiotherapy CT-defined enhancing lesion (both AUCs = 0.6 ± 0.1, P ≤ 0.03). The multivariate model using BF, BV, PS and SUV had a mean AUC of 0.8 ± 0.1, but this was not significantly higher than the PS only model. Conclusion: PS is the single best predictor of tumour progression when compared to other parameters, but voxel-based prediction based on logistic regression had modest sensitivity and specificity.« less
Narayanaswamy, Arunachalam; Dwarakapuram, Saritha; Bjornsson, Christopher S; Cutler, Barbara M; Shain, William; Roysam, Badrinath
2010-03-01
This paper presents robust 3-D algorithms to segment vasculature that is imaged by labeling laminae, rather than the lumenal volume. The signal is weak, sparse, noisy, nonuniform, low-contrast, and exhibits gaps and spectral artifacts, so adaptive thresholding and Hessian filtering based methods are not effective. The structure deviates from a tubular geometry, so tracing algorithms are not effective. We propose a four step approach. The first step detects candidate voxels using a robust hypothesis test based on a model that assumes Poisson noise and locally planar geometry. The second step performs an adaptive region growth to extract weakly labeled and fine vessels while rejecting spectral artifacts. To enable interactive visualization and estimation of features such as statistical confidence, local curvature, local thickness, and local normal, we perform the third step. In the third step, we construct an accurate mesh representation using marching tetrahedra, volume-preserving smoothing, and adaptive decimation algorithms. To enable topological analysis and efficient validation, we describe a method to estimate vessel centerlines using a ray casting and vote accumulation algorithm which forms the final step of our algorithm. Our algorithm lends itself to parallel processing, and yielded an 8 x speedup on a graphics processor (GPU). On synthetic data, our meshes had average error per face (EPF) values of (0.1-1.6) voxels per mesh face for peak signal-to-noise ratios from (110-28 dB). Separately, the error from decimating the mesh to less than 1% of its original size, the EPF was less than 1 voxel/face. When validated on real datasets, the average recall and precision values were found to be 94.66% and 94.84%, respectively.
Borghammer, Per; Chakravarty, Mallar; Jonsdottir, Kristjana Yr; Sato, Noriko; Matsuda, Hiroshi; Ito, Kengo; Arahata, Yutaka; Kato, Takashi; Gjedde, Albert
2010-05-01
Recent cerebral blood flow (CBF) and glucose consumption (CMRglc) studies of Parkinson's disease (PD) revealed conflicting results. Using simulated data, we previously demonstrated that the often-reported subcortical hypermetabolism in PD could be explained as an artifact of biased global mean (GM) normalization, and that low-magnitude, extensive cortical hypometabolism is best detected by alternative data-driven normalization methods. Thus, we hypothesized that PD is characterized by extensive cortical hypometabolism but no concurrent widespread subcortical hypermetabolism and tested it on three independent samples of PD patients. We compared SPECT CBF images of 32 early-stage and 33 late-stage PD patients with that of 60 matched controls. We also compared PET FDG images from 23 late-stage PD patients with that of 13 controls. Three different normalization methods were compared: (1) GM normalization, (2) cerebellum normalization, (3) reference cluster normalization (Yakushev et al.). We employed standard voxel-based statistics (fMRIstat) and principal component analysis (SSM). Additionally, we performed a meta-analysis of all quantitative CBF and CMRglc studies in the literature to investigate whether the global mean (GM) values in PD are decreased. Voxel-based analysis with GM normalization and the SSM method performed similarly, i.e., both detected decreases in small cortical clusters and concomitant increases in extensive subcortical regions. Cerebellum normalization revealed more widespread cortical decreases but no subcortical increase. In all comparisons, the Yakushev method detected nearly identical patterns of very extensive cortical hypometabolism. Lastly, the meta-analyses demonstrated that global CBF and CMRglc values are decreased in PD. Based on the results, we conclude that PD most likely has widespread cortical hypometabolism, even at early disease stages. In contrast, extensive subcortical hypermetabolism is probably not a feature of PD.
Le Pogam, Adrien; Hatt, Mathieu; Descourt, Patrice; Boussion, Nicolas; Tsoumpas, Charalampos; Turkheimer, Federico E; Prunier-Aesch, Caroline; Baulieu, Jean-Louis; Guilloteau, Denis; Visvikis, Dimitris
2011-09-01
Partial volume effects (PVEs) are consequences of the limited spatial resolution in emission tomography leading to underestimation of uptake in tissues of size similar to the point spread function (PSF) of the scanner as well as activity spillover between adjacent structures. Among PVE correction methodologies, a voxel-wise mutual multiresolution analysis (MMA) was recently introduced. MMA is based on the extraction and transformation of high resolution details from an anatomical image (MR/CT) and their subsequent incorporation into a low-resolution PET image using wavelet decompositions. Although this method allows creating PVE corrected images, it is based on a 2D global correlation model, which may introduce artifacts in regions where no significant correlation exists between anatomical and functional details. A new model was designed to overcome these two issues (2D only and global correlation) using a 3D wavelet decomposition process combined with a local analysis. The algorithm was evaluated on synthetic, simulated and patient images, and its performance was compared to the original approach as well as the geometric transfer matrix (GTM) method. Quantitative performance was similar to the 2D global model and GTM in correlated cases. In cases where mismatches between anatomical and functional information were present, the new model outperformed the 2D global approach, avoiding artifacts and significantly improving quality of the corrected images and their quantitative accuracy. A new 3D local model was proposed for a voxel-wise PVE correction based on the original mutual multiresolution analysis approach. Its evaluation demonstrated an improved and more robust qualitative and quantitative accuracy compared to the original MMA methodology, particularly in the absence of full correlation between anatomical and functional information.
Le Pogam, Adrien; Hatt, Mathieu; Descourt, Patrice; Boussion, Nicolas; Tsoumpas, Charalampos; Turkheimer, Federico E.; Prunier-Aesch, Caroline; Baulieu, Jean-Louis; Guilloteau, Denis; Visvikis, Dimitris
2011-01-01
Purpose Partial volume effects (PVE) are consequences of the limited spatial resolution in emission tomography leading to under-estimation of uptake in tissues of size similar to the point spread function (PSF) of the scanner as well as activity spillover between adjacent structures. Among PVE correction methodologies, a voxel-wise mutual multi-resolution analysis (MMA) was recently introduced. MMA is based on the extraction and transformation of high resolution details from an anatomical image (MR/CT) and their subsequent incorporation into a low resolution PET image using wavelet decompositions. Although this method allows creating PVE corrected images, it is based on a 2D global correlation model which may introduce artefacts in regions where no significant correlation exists between anatomical and functional details. Methods A new model was designed to overcome these two issues (2D only and global correlation) using a 3D wavelet decomposition process combined with a local analysis. The algorithm was evaluated on synthetic, simulated and patient images, and its performance was compared to the original approach as well as the geometric transfer matrix (GTM) method. Results Quantitative performance was similar to the 2D global model and GTM in correlated cases. In cases where mismatches between anatomical and functional information were present the new model outperformed the 2D global approach, avoiding artefacts and significantly improving quality of the corrected images and their quantitative accuracy. Conclusions A new 3D local model was proposed for a voxel-wise PVE correction based on the original mutual multi-resolution analysis approach. Its evaluation demonstrated an improved and more robust qualitative and quantitative accuracy compared to the original MMA methodology, particularly in the absence of full correlation between anatomical and functional information. PMID:21978037
Jednoróg, Katarzyna; Marchewka, Artur; Altarelli, Irene; Monzalvo Lopez, Ana Karla; van Ermingen-Marbach, Muna; Grande, Marion; Grabowska, Anna; Heim, Stefan; Ramus, Franck
2015-05-01
The neural basis of specific reading disability (SRD) remains only partly understood. A dozen studies have used voxel-based morphometry (VBM) to investigate gray matter volume (GMV) differences between SRD and control children, however, recent meta-analyses suggest that few regions are consistent across studies. We used data collected across three countries (France, Poland, and Germany) with the aim of both increasing sample size (236 SRD and controls) to obtain a clearer picture of group differences, and of further assessing the consistency of the findings across languages. VBM analysis reveals a significant group difference in a single cluster in the left thalamus. Furthermore, we observe correlations between reading accuracy and GMV in the left supramarginal gyrus and in the left cerebellum, in controls only. Most strikingly, we fail to replicate all the group differences in GMV reported in previous studies, despite the superior statistical power. The main limitation of this study is the heterogeneity of the sample drawn from different countries (i.e., speaking languages with varying orthographic transparencies) and selected based on different assessment batteries. Nevertheless, analyses within each country support the conclusions of the cross-linguistic analysis. Explanations for the discrepancy between the present and previous studies may include: (1) the limited suitability of VBM to reveal the subtle brain disruptions underlying SRD; (2) insufficient correction for multiple statistical tests and flexibility in data analysis, and (3) publication bias in favor of positive results. Thus the study echoes widespread concerns about the risk of false-positive results inherent to small-scale VBM studies. © 2015 Wiley Periodicals, Inc.
The NUKDOS software for treatment planning in molecular radiotherapy.
Kletting, Peter; Schimmel, Sebastian; Hänscheid, Heribert; Luster, Markus; Fernández, Maria; Nosske, Dietmar; Lassmann, Michael; Glatting, Gerhard
2015-09-01
The aim of this work was the development of a software tool for treatment planning prior to molecular radiotherapy, which comprises all functionality to objectively determine the activity to administer and the pertaining absorbed doses (including the corresponding error) based on a series of gamma camera images and one SPECT/CT or probe data. NUKDOS was developed in MATLAB. The workflow is based on the MIRD formalism For determination of the tissue or organ pharmacokinetics, gamma camera images as well as probe, urine, serum and blood activity data can be processed. To estimate the time-integrated activity coefficients (TIAC), sums of exponentials are fitted to the time activity data and integrated analytically. To obtain the TIAC on the voxel level, the voxel activity distribution from the quantitative 3D SPECT/CT (or PET/CT) is used for scaling and weighting the TIAC derived from the 2D organ data. The voxel S-values are automatically calculated based on the voxel-size of the image and the therapeutic nuclide ((90)Y, (131)I or (177)Lu). The absorbed dose coefficients are computed by convolution of the voxel TIAC and the voxel S-values. The activity to administer and the pertaining absorbed doses are determined by entering the absorbed dose for the organ at risk. The overall error of the calculated absorbed doses is determined by Gaussian error propagation. NUKDOS was tested for the operation systems Windows(®) 7 (64 Bit) and 8 (64 Bit). The results of each working step were compared to commercially available (SAAMII, OLINDA/EXM) and in-house (UlmDOS) software. The application of the software is demonstrated using examples form peptide receptor radionuclide therapy (PRRT) and from radioiodine therapy of benign thyroid diseases. For the example from PRRT, the calculated activity to administer differed by 4% comparing NUKDOS and the final result using UlmDos, SAAMII and OLINDA/EXM sequentially. The absorbed dose for the spleen and tumour differed by 7% and 8%, respectively. The results from the example from radioiodine therapy of benign thyroid diseases and the example given in the latest corresponding SOP were identical. The implemented, objective methods facilitate accurate and reproducible results. The software is freely available. Copyright © 2015. Published by Elsevier GmbH.
Fiducial-based fusion of 3D dental models with magnetic resonance imaging.
Abdi, Amir H; Hannam, Alan G; Fels, Sidney
2018-04-16
Magnetic resonance imaging (MRI) is widely used in study of maxillofacial structures. While MRI is the modality of choice for soft tissues, it fails to capture hard tissues such as bone and teeth. Virtual dental models, acquired by optical 3D scanners, are becoming more accessible for dental practice and are starting to replace the conventional dental impressions. The goal of this research is to fuse the high-resolution 3D dental models with MRI to enhance the value of imaging for applications where detailed analysis of maxillofacial structures are needed such as patient examination, surgical planning, and modeling. A subject-specific dental attachment was digitally designed and 3D printed based on the subject's face width and dental anatomy. The attachment contained 19 semi-ellipsoidal concavities in predetermined positions where oil-based ellipsoidal fiducial markers were later placed. The MRI was acquired while the subject bit on the dental attachment. The spatial position of the center of mass of each fiducial in the resultant MR Image was calculated by averaging its voxels' spatial coordinates. The rigid transformation to fuse dental models to MRI was calculated based on the least squares mapping of corresponding fiducials and solved via singular-value decomposition. The target registration error (TRE) of the proposed fusion process, calculated in a leave-one-fiducial-out fashion, was estimated at 0.49 mm. The results suggest that 6-9 fiducials suffice to achieve a TRE of equal to half the MRI voxel size. Ellipsoidal oil-based fiducials produce distinguishable intensities in MRI and can be used as registration fiducials. The achieved accuracy of the proposed approach is sufficient to leverage the merged 3D dental models with the MRI data for a finer analysis of the maxillofacial structures where complete geometry models are needed.
An investigation of voxel geometries for MCNP-based radiation dose calculations.
Zhang, Juying; Bednarz, Bryan; Xu, X George
2006-11-01
Voxelized geometry such as those obtained from medical images is increasingly used in Monte Carlo calculations of absorbed doses. One useful application of calculated absorbed dose is the determination of fluence-to-dose conversion factors for different organs. However, confusion still exists about how such a geometry is defined and how the energy deposition is best computed, especially involving a popular code, MCNP5. This study investigated two different types of geometries in the MCNP5 code, cell and lattice definitions. A 10 cm x 10 cm x 10 cm test phantom, which contained an embedded 2 cm x 2 cm x 2 cm target at its center, was considered. A planar source emitting parallel photons was also considered in the study. The results revealed that MCNP5 does not calculate total target volume for multi-voxel geometries. Therefore, tallies which involve total target volume must be divided by the user by the total number of voxels to obtain a correct dose result. Also, using planar source areas greater than the phantom size results in the same fluence-to-dose conversion factor.
Traino, A C; Marcatili, S; Avigo, C; Sollini, M; Erba, P A; Mariani, G
2013-04-01
Nonuniform activity within the target lesions and the critical organs constitutes an important limitation for dosimetric estimates in patients treated with tumor-seeking radiopharmaceuticals. The tumor control probability and the normal tissue complication probability are affected by the distribution of the radionuclide in the treated organ/tissue. In this paper, a straightforward method for calculating the absorbed dose at the voxel level is described. This new method takes into account a nonuniform activity distribution in the target/organ. The new method is based on the macroscopic S-values (i.e., the S-values calculated for the various organs, as defined in the MIRD approach), on the definition of the number of voxels, and on the raw-count 3D array, corrected for attenuation, scatter, and collimator resolution, in the lesion/organ considered. Starting from these parameters, the only mathematical operation required is to multiply the 3D array by a scalar value, thus avoiding all the complex operations involving the 3D arrays. A comparison with the MIRD approach, fully described in the MIRD Pamphlet No. 17, using S-values at the voxel level, showed a good agreement between the two methods for (131)I and for (90)Y. Voxel dosimetry is becoming more and more important when performing therapy with tumor-seeking radiopharmaceuticals. The method presented here does not require calculating the S-values at the voxel level, and thus bypasses the mathematical problems linked to the convolution of 3D arrays and to the voxel size. In the paper, the results obtained with this new simplified method as well as the possibility of using it for other radionuclides commonly employed in therapy are discussed. The possibility of using the correct density value of the tissue/organs involved is also discussed.
SU-F-J-59: Assessment of Dose Response Distribution in Individual Human Tumor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, D; Chen, S; Krauss, D
Purpose: To fulfill precision radiotherapy via adaptive dose painting by number, voxel-by-voxel dose response or radio-sensitivity in individual human tumor needs to be determined in early treatment to guide treatment adaptation. In this study, multiple FDG PET images obtained pre- and weekly during the treatment course were utilized to determine the distribution/spectrum of dose response parameters in individual human tumors. Methods: FDG PET/CT images of 18 HN cancer patients were used in the study. Spatial parametric image of tumor metabolic ratio (dSUV) was created following voxel by voxel deformable image registration. Each voxel value in dSUV was a function ofmore » pre-treatment baseline SUV and treatment delivered dose, and used as a surrogate of tumor survival fraction (SF). Regression fitting with break points was performed using the LQ-model with tumor proliferation for the control and failure group of tumors separately. The distribution and spectrum of radiation sensitivity and growth in individual tumors were determined and evaluated. Results: Spectrum of tumor dose-sensitivity and proliferation in the controlled group was broad with α in tumor survival LQ-model from 0.17 to 0.8. It was proportional to the baseline SUV. Tlag was about 21∼25 days, and Tpot about 0.56∼1.67 days respectively. Commonly tumor voxels with high radio-sensitivity or larger α had small Tlag and Tpot. For the failure group, the radio-sensitivity α was low within 0.05 to 0.3, but did not show clear Tlag. In addition, tumor voxel radio-sensitivity could be estimated during the early treatment weeks. Conclusion: Dose response distribution with respect to radio-sensitivity and growth in individual human tumor can be determined using FDG PET imaging based tumor metabolic ratio measured in early treatment course. The discover is critical and provides a potential quantitative objective to implement tumor specific precision radiotherapy via adaptive dose painting by number.« less
Lyksborg, Mark; Siebner, Hartwig R.; Sørensen, Per S.; Blinkenberg, Morten; Parker, Geoff J. M.; Dogonowski, Anne-Marie; Garde, Ellen; Larsen, Rasmus; Dyrby, Tim B.
2014-01-01
Multiple sclerosis (MS) damages central white matter pathways which has considerable impact on disease-related disability. To identify disease-related alterations in anatomical connectivity, 34 patients (19 with relapsing remitting MS (RR-MS), 15 with secondary progressive MS (SP-MS) and 20 healthy subjects underwent diffusion magnetic resonance imaging (dMRI) of the brain. Based on the dMRI, anatomical connectivity mapping (ACM) yielded a voxel-based metric reflecting the connectivity shared between each individual voxel and all other brain voxels. To avoid biases caused by inter-individual brain-shape differences, they were estimated in a spatially normalized space. Voxel-based statistical analyses using ACM were compared with analyses based on the localized microstructural indices of fractional anisotropy (FA). In both RR-MS and SP-MS patients, considerable portions of the motor-related white matter revealed decreases in ACM and FA when compared with healthy subjects. Patients with SP-MS exhibited reduced ACM values relative to RR-MS in the motor-related tracts, whereas there were no consistent decreases in FA between SP-MS and RR-MS patients. Regional ACM statistics exhibited moderate correlation with clinical disability as reflected by the expanded disability status scale (EDSS). The correlation between these statistics and EDSS was either similar to or stronger than the correlation between FA statistics and the EDSS. Together, the results reveal an improved relationship between ACM, the clinical phenotype, and impairment. This highlights the potential of the ACM connectivity indices to be used as a marker which can identify disease related-alterations due to MS which may not be seen using localized microstructural indices. PMID:24748023
Bashir, Mustafa R; Merkle, Elmar M; Smith, Alastair D; Boll, Daniel T
2012-02-01
To assess whether in vivo dual-ratio Dixon discrimination can improve detection of diffuse liver disease, specifically steatosis, iron deposition and combined disease over traditional single-ratio in/opposed phase analysis. Seventy-one patients with biopsy-proven (17.7 ± 17.0 days) hepatic steatosis (n = 16), iron deposition (n = 11), combined deposition (n = 3) and neither disease (n = 41) underwent MR examinations. Dual-echo in/opposed-phase MR with Dixon water/fat reconstructions were acquired. Analysis consisted of: (a) single-ratio hepatic region-of-interest (ROI)-based assessment of in/opposed ratios; (b) dual-ratio hepatic ROI assessment of in/opposed and fat/water ratios; (c) computer-aided dual-ratio assessment evaluating all hepatic voxels. Disease-specific thresholds were determined; statistical analyses assessed disease-dependent voxel ratios, based on single-ratio (a) and dual-ratio (b and c) techniques. Single-ratio discrimination succeeded in identifying iron deposition (I/O(Ironthreshold)<0.88) and steatosis (I/O(Fatthreshold>1.15)) from normal parenchyma, sensitivity 70.0%; it failed to detect combined disease. Dual-ratio discrimination succeeded in identifying abnormal hepatic parenchyma (F/W(Normalthreshold)>0.05), sensitivity 96.7%; logarithmic functions for iron deposition (I/O(Irondiscriminator)
Cocaine dependence and thalamic functional connectivity: a multivariate pattern analysis.
Zhang, Sheng; Hu, Sien; Sinha, Rajita; Potenza, Marc N; Malison, Robert T; Li, Chiang-Shan R
2016-01-01
Cocaine dependence is associated with deficits in cognitive control. Previous studies demonstrated that chronic cocaine use affects the activity and functional connectivity of the thalamus, a subcortical structure critical for cognitive functioning. However, the thalamus contains nuclei heterogeneous in functions, and it is not known how thalamic subregions contribute to cognitive dysfunctions in cocaine dependence. To address this issue, we used multivariate pattern analysis (MVPA) to examine how functional connectivity of the thalamus distinguishes 100 cocaine-dependent participants (CD) from 100 demographically matched healthy control individuals (HC). We characterized six task-related networks with independent component analysis of fMRI data of a stop signal task and employed MVPA to distinguish CD from HC on the basis of voxel-wise thalamic connectivity to the six independent components. In an unbiased model of distinct training and testing data, the analysis correctly classified 72% of subjects with leave-one-out cross-validation (p < 0.001), superior to comparison brain regions with similar voxel counts (p < 0.004, two-sample t test). Thalamic voxels that form the basis of classification aggregate in distinct subclusters, suggesting that connectivities of thalamic subnuclei distinguish CD from HC. Further, linear regressions provided suggestive evidence for a correlation of the thalamic connectivities with clinical variables and performance measures on the stop signal task. Together, these findings support thalamic circuit dysfunction in cognitive control as an important neural marker of cocaine dependence.
Fuzzy pulmonary vessel segmentation in contrast enhanced CT data
NASA Astrophysics Data System (ADS)
Kaftan, Jens N.; Kiraly, Atilla P.; Bakai, Annemarie; Das, Marco; Novak, Carol L.; Aach, Til
2008-03-01
Pulmonary vascular tree segmentation has numerous applications in medical imaging and computer-aided diagnosis (CAD), including detection and visualization of pulmonary emboli (PE), improved lung nodule detection, and quantitative vessel analysis. We present a novel approach to pulmonary vessel segmentation based on a fuzzy segmentation concept, combining the strengths of both threshold and seed point based methods. The lungs of the original image are first segmented and a threshold-based approach identifies core vessel components with a high specificity. These components are then used to automatically identify reliable seed points for a fuzzy seed point based segmentation method, namely fuzzy connectedness. The output of the method consists of the probability of each voxel belonging to the vascular tree. Hence, our method provides the possibility to adjust the sensitivity/specificity of the segmentation result a posteriori according to application-specific requirements, through definition of a minimum vessel-probability required to classify a voxel as belonging to the vascular tree. The method has been evaluated on contrast-enhanced thoracic CT scans from clinical PE cases and demonstrates overall promising results. For quantitative validation we compare the segmentation results to randomly selected, semi-automatically segmented sub-volumes and present the resulting receiver operating characteristic (ROC) curves. Although we focus on contrast enhanced chest CT data, the method can be generalized to other regions of the body as well as to different imaging modalities.
Reconstruction of 3d Models from Point Clouds with Hybrid Representation
NASA Astrophysics Data System (ADS)
Hu, P.; Dong, Z.; Yuan, P.; Liang, F.; Yang, B.
2018-05-01
The three-dimensional (3D) reconstruction of urban buildings from point clouds has long been an active topic in applications related to human activities. However, due to the structures significantly differ in terms of complexity, the task of 3D reconstruction remains a challenging issue especially for the freeform surfaces. In this paper, we present a new reconstruction algorithm which allows the 3D-models of building as a combination of regular structures and irregular surfaces, where the regular structures are parameterized plane primitives and the irregular surfaces are expressed as meshes. The extraction of irregular surfaces starts with an over-segmented method for the unstructured point data, a region growing approach based the adjacent graph of super-voxels is then applied to collapse these super-voxels, and the freeform surfaces can be clustered from the voxels filtered by a thickness threshold. To achieve these regular planar primitives, the remaining voxels with a larger flatness will be further divided into multiscale super-voxels as basic units, and the final segmented planes are enriched and refined in a mutually reinforcing manner under the framework of a global energy optimization. We have implemented the proposed algorithms and mainly tested on two point clouds that differ in point density and urban characteristic, and experimental results on complex building structures illustrated the efficacy of the proposed framework.
The Attentional Field Revealed by Single-Voxel Modeling of fMRI Time Courses
DeYoe, Edgar A.
2015-01-01
The spatial topography of visual attention is a distinguishing and critical feature of many theoretical models of visuospatial attention. Previous fMRI-based measurements of the topography of attention have typically been too crude to adequately test the predictions of different competing models. This study demonstrates a new technique to make detailed measurements of the topography of visuospatial attention from single-voxel, fMRI time courses. Briefly, this technique involves first estimating a voxel's population receptive field (pRF) and then “drifting” attention through the pRF such that the modulation of the voxel's fMRI time course reflects the spatial topography of attention. The topography of the attentional field (AF) is then estimated using a time-course modeling procedure. Notably, we are able to make these measurements in many visual areas including smaller, higher order areas, thus enabling a more comprehensive comparison of attentional mechanisms throughout the full hierarchy of human visual cortex. Using this technique, we show that the AF scales with eccentricity and varies across visual areas. We also show that voxels in multiple visual areas exhibit suppressive attentional effects that are well modeled by an AF having an enhancing Gaussian center with a suppressive surround. These findings provide extensive, quantitative neurophysiological data for use in modeling the psychological effects of visuospatial attention. PMID:25810532
NASA Astrophysics Data System (ADS)
Bruns, S.; Stipp, S. L. S.; Sørensen, H. O.
2017-09-01
Digital rock physics carries the dogmatic concept of having to segment volume images for quantitative analysis but segmentation rejects huge amounts of signal information. Information that is essential for the analysis of difficult and marginally resolved samples, such as materials with very small features, is lost during segmentation. In X-ray nanotomography reconstructions of Hod chalk we observed partial volume voxels with an abundance that limits segmentation based analysis. Therefore, we investigated the suitability of greyscale analysis for establishing statistical representative elementary volumes (sREV) for the important petrophysical parameters of this type of chalk, namely porosity, specific surface area and diffusive tortuosity, by using volume images without segmenting the datasets. Instead, grey level intensities were transformed to a voxel level porosity estimate using a Gaussian mixture model. A simple model assumption was made that allowed formulating a two point correlation function for surface area estimates using Bayes' theory. The same assumption enables random walk simulations in the presence of severe partial volume effects. The established sREVs illustrate that in compacted chalk, these simulations cannot be performed in binary representations without increasing the resolution of the imaging system to a point where the spatial restrictions of the represented sample volume render the precision of the measurement unacceptable. We illustrate this by analyzing the origins of variance in the quantitative analysis of volume images, i.e. resolution dependence and intersample and intrasample variance. Although we cannot make any claims on the accuracy of the approach, eliminating the segmentation step from the analysis enables comparative studies with higher precision and repeatability.
Multi-layer cube sampling for liver boundary detection in PET-CT images.
Liu, Xinxin; Yang, Jian; Song, Shuang; Song, Hong; Ai, Danni; Zhu, Jianjun; Jiang, Yurong; Wang, Yongtian
2018-06-01
Liver metabolic information is considered as a crucial diagnostic marker for the diagnosis of fever of unknown origin, and liver recognition is the basis of automatic diagnosis of metabolic information extraction. However, the poor quality of PET and CT images is a challenge for information extraction and target recognition in PET-CT images. The existing detection method cannot meet the requirement of liver recognition in PET-CT images, which is the key problem in the big data analysis of PET-CT images. A novel texture feature descriptor called multi-layer cube sampling (MLCS) is developed for liver boundary detection in low-dose CT and PET images. The cube sampling feature is proposed for extracting more texture information, which uses a bi-centric voxel strategy. Neighbour voxels are divided into three regions by the centre voxel and the reference voxel in the histogram, and the voxel distribution information is statistically classified as texture feature. Multi-layer texture features are also used to improve the ability and adaptability of target recognition in volume data. The proposed feature is tested on the PET and CT images for liver boundary detection. For the liver in the volume data, mean detection rate (DR) and mean error rate (ER) reached 95.15 and 7.81% in low-quality PET images, and 83.10 and 21.08% in low-contrast CT images. The experimental results demonstrated that the proposed method is effective and robust for liver boundary detection.
NASA Astrophysics Data System (ADS)
Choi, Hon-Chit; Wen, Lingfeng; Eberl, Stefan; Feng, Dagan
2006-03-01
Dynamic Single Photon Emission Computed Tomography (SPECT) has the potential to quantitatively estimate physiological parameters by fitting compartment models to the tracer kinetics. The generalized linear least square method (GLLS) is an efficient method to estimate unbiased kinetic parameters and parametric images. However, due to the low sensitivity of SPECT, noisy data can cause voxel-wise parameter estimation by GLLS to fail. Fuzzy C-Mean (FCM) clustering and modified FCM, which also utilizes information from the immediate neighboring voxels, are proposed to improve the voxel-wise parameter estimation of GLLS. Monte Carlo simulations were performed to generate dynamic SPECT data with different noise levels and processed by general and modified FCM clustering. Parametric images were estimated by Logan and Yokoi graphical analysis and GLLS. The influx rate (K I), volume of distribution (V d) were estimated for the cerebellum, thalamus and frontal cortex. Our results show that (1) FCM reduces the bias and improves the reliability of parameter estimates for noisy data, (2) GLLS provides estimates of micro parameters (K I-k 4) as well as macro parameters, such as volume of distribution (Vd) and binding potential (BP I & BP II) and (3) FCM clustering incorporating neighboring voxel information does not improve the parameter estimates, but improves noise in the parametric images. These findings indicated that it is desirable for pre-segmentation with traditional FCM clustering to generate voxel-wise parametric images with GLLS from dynamic SPECT data.
Brain volumes in healthy adults aged 40 years and over: a voxel-based morphometry study.
Riello, Roberta; Sabattoli, Francesca; Beltramello, Alberto; Bonetti, Matteo; Bono, Giorgio; Falini, Andrea; Magnani, Giuseppe; Minonzio, Giorgio; Piovan, Enrico; Alaimo, Giuseppina; Ettori, Monica; Galluzzi, Samantha; Locatelli, Enrico; Noiszewska, Malgorzata; Testa, Cristina; Frisoni, Giovanni B
2005-08-01
Gender and age effect on brain morphology have been extensively investigated. However, the great variety in methods applied to morphology partly explain the conflicting results of linear patterns of tissue changes and lateral asymmetry in men and women. The aim of the present study was to assess the effect of age, gender and laterality on the volumes of gray matter (GM) and white matter (WM) in a large group of healthy adults by means of voxel-based morphometry. This technique, based on observer-independent algorithms, automatically segments the 3 types of tissue and computes the amount of tissue in each single voxel. Subjects were 229 healthy subjects of 40 years of age or older, who underwent magnetic resonance (MR) for reasons other than cognitive impairment. MR images were reoriented following the AC-PC line and, after removing the voxels below the cerebellum, were processed by Statistical Parametric Mapping (SPM99). GM and WM volumes were normalized for intracranial volume. Women had more fractional GM and WM volumes than men. Age was negatively correlated with both fractional GM and WM, and a gender x age interaction effect was found for WM, men having greater WM loss with advancing age. Pairwise differences between left and right GM were negative (greater GM in right hemisphere) in men, and positive (greater GM in left hemisphere) in women (-0.56+/-4.2 vs 0.99+/-4.8; p=0.019). These results support side-specific accelerated WM loss in men, and may help our better understanding of changes in regional brain structures associated with pathological aging.
Emotional modulation of body-selective visual areas.
Peelen, Marius V; Atkinson, Anthony P; Andersson, Frederic; Vuilleumier, Patrik
2007-12-01
Emotionally expressive faces have been shown to modulate activation in visual cortex, including face-selective regions in ventral temporal lobe. Here, we tested whether emotionally expressive bodies similarly modulate activation in body-selective regions. We show that dynamic displays of bodies with various emotional expressions vs neutral bodies, produce significant activation in two distinct body-selective visual areas, the extrastriate body area and the fusiform body area. Multi-voxel pattern analysis showed that the strength of this emotional modulation was related, on a voxel-by-voxel basis, to the degree of body selectivity, while there was no relation with the degree of selectivity for faces. Across subjects, amygdala responses to emotional bodies positively correlated with the modulation of body-selective areas. Together, these results suggest that emotional cues from body movements produce topographically selective influences on category-specific populations of neurons in visual cortex, and these increases may implicate discrete modulatory projections from the amygdala.
Wise, T; Radua, J; Via, E; Cardoner, N; Abe, O; Adams, T M; Amico, F; Cheng, Y; Cole, J H; de Azevedo Marques Périco, C; Dickstein, D P; Farrow, T F D; Frodl, T; Wagner, G; Gotlib, I H; Gruber, O; Ham, B J; Job, D E; Kempton, M J; Kim, M J; Koolschijn, P C M P; Malhi, G S; Mataix-Cols, D; McIntosh, A M; Nugent, A C; O'Brien, J T; Pezzoli, S; Phillips, M L; Sachdev, P S; Salvadore, G; Selvaraj, S; Stanfield, A C; Thomas, A J; van Tol, M J; van der Wee, N J A; Veltman, D J; Young, A H; Fu, C H; Cleare, A J; Arnone, D
2017-10-01
Finding robust brain substrates of mood disorders is an important target for research. The degree to which major depression (MDD) and bipolar disorder (BD) are associated with common and/or distinct patterns of volumetric changes is nevertheless unclear. Furthermore, the extant literature is heterogeneous with respect to the nature of these changes. We report a meta-analysis of voxel-based morphometry (VBM) studies in MDD and BD. We identified studies published up to January 2015 that compared grey matter in MDD (50 data sets including 4101 individuals) and BD (36 data sets including 2407 individuals) using whole-brain VBM. We used statistical maps from the studies included where available and reported peak coordinates otherwise. Group comparisons and conjunction analyses identified regions in which the disorders showed common and distinct patterns of volumetric alteration. Both disorders were associated with lower grey-matter volume relative to healthy individuals in a number of areas. Conjunction analysis showed smaller volumes in both disorders in clusters in the dorsomedial and ventromedial prefrontal cortex, including the anterior cingulate cortex and bilateral insula. Group comparisons indicated that findings of smaller grey-matter volumes relative to controls in the right dorsolateral prefrontal cortex and left hippocampus, along with cerebellar, temporal and parietal regions were more substantial in major depression. These results suggest that MDD and BD are characterised by both common and distinct patterns of grey-matter volume changes. This combination of differences and similarities has the potential to inform the development of diagnostic biomarkers for these conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, H; Jing, J; Xie, C
Purpose: To find effective setting methods to mitigate the irradiation injure in synchrotron radiation microangiography(SRA) by Monte Carlo simulation. Methods: A mouse 1-D head model and a segmented voxel mouse head phantom were simulated by EGSnrc/Dosxyznrc code to investigate the dose enhancement effect of the iodine contrast agent irradiated by a monochromatic synchrotron radiation(SR) source. The influence of, like iodine concentration (IC), vessel width and depth, with and without skull layer protection and the various incident X ray energies, were simulated. The dose enhancement effect and the absolute dose based on the segmented voxel mouse head phantom were evaluated. Results:more » The dose enhancement ratio depends little on the irradiation depth, but strongly on the IC, which is linearly increases with IC. The skull layer protection cannot be ignored in SRA, the 700µm thick skull could decrease 10% of the dose. The incident X-ray energy can significantly affact the dose. E.g. compared to the dose of 33.2keV for 50mgI/ml, the 32.7keV dose decreases 38%, whereas the dose of 33.7 keV increases 69.2%, and the variation will strengthen more with enhanced IC. The segmented voxel mouse head phantom also showed that the average dose enhancement effect and the maximal voxel dose per photon depends little on the iodine voxel volume ratio, but strongly on IC. Conclusion: To decrease dose damage in SRA, the high-Z contrast agent should be used as little as possible, and try to avoid radiating locally the injected position immediately after the contrast agent injection. The fragile vessel containing iodine should avoid closely irradiating. Avoiding irradiating through the no or thin skull region, or appending thin equivalent material from outside to protect is also a better method. As long as SRA image quality is ensured, using incident X-ray energy as low as possible.« less
Datta, Sushmita; Staewen, Terrell D; Cofield, Stacy S; Cutter, Gary R; Lublin, Fred D; Wolinsky, Jerry S; Narayana, Ponnada A
2015-03-01
Regional gray matter (GM) atrophy in multiple sclerosis (MS) at disease onset and its temporal variation can provide objective information regarding disease evolution. An automated pipeline for estimating atrophy of various GM structures was developed using tensor based morphometry (TBM) and implemented on a multi-center sub-cohort of 1008 relapsing remitting MS (RRMS) patients enrolled in a Phase 3 clinical trial. Four hundred age and gender matched healthy controls were used for comparison. Using the analysis of covariance, atrophy differences between MS patients and healthy controls were assessed on a voxel-by-voxel analysis. Regional GM atrophy was observed in a number of deep GM structures that included thalamus, caudate nucleus, putamen, and cortical GM regions. General linear regression analysis was performed to analyze the effects of age, gender, and scanner field strength, and imaging sequence on the regional atrophy. Correlations between regional GM volumes and expanded disability status scale (EDSS) scores, disease duration (DD), T2 lesion load (T2 LL), T1 lesion load (T1 LL), and normalized cerebrospinal fluid (nCSF) were analyzed using Pearson׳s correlation coefficient. Thalamic atrophy observed in MS patients compared to healthy controls remained consistent within subgroups based on gender and scanner field strength. Weak correlations between thalamic volume and EDSS (r=-0.133; p<0.001) and DD (r=-0.098; p=0.003) were observed. Of all the structures, thalamic volume moderately correlated with T2 LL (r=-0.492; P-value<0.001), T1 LL (r=-0.473; P-value<0.001) and nCSF (r=-0.367; P-value<0.001). Copyright © 2015 Elsevier B.V. All rights reserved.
Lausch, Anthony; Yeung, Timothy Pok-Chi; Chen, Jeff; Law, Elton; Wang, Yong; Urbini, Benedetta; Donelli, Filippo; Manco, Luigi; Fainardi, Enrico; Lee, Ting-Yim; Wong, Eugene
2017-11-01
Parametric response map (PRM) analysis of functional imaging has been shown to be an effective tool for early prediction of cancer treatment outcomes and may also be well-suited toward guiding personalized adaptive radiotherapy (RT) strategies such as sub-volume boosting. However, the PRM method was primarily designed for analysis of longitudinally acquired pairs of single-parameter image data. The purpose of this study was to demonstrate the feasibility of a generalized parametric response map analysis framework, which enables analysis of multi-parametric data while maintaining the key advantages of the original PRM method. MRI-derived apparent diffusion coefficient (ADC) and relative cerebral blood volume (rCBV) maps acquired at 1 and 3-months post-RT for 19 patients with high-grade glioma were used to demonstrate the algorithm. Images were first co-registered and then standardized using normal tissue image intensity values. Tumor voxels were then plotted in a four-dimensional Cartesian space with coordinate values equal to a voxel's image intensity in each of the image volumes and an origin defined as the multi-parametric mean of normal tissue image intensity values. Voxel positions were orthogonally projected onto a line defined by the origin and a pre-determined response vector. The voxels are subsequently classified as positive, negative or nil, according to whether projected positions along the response vector exceeded a threshold distance from the origin. The response vector was selected by identifying the direction in which the standard deviation of tumor image intensity values was maximally different between responding and non-responding patients within a training dataset. Voxel classifications were visualized via familiar three-class response maps and then the fraction of tumor voxels associated with each of the classes was investigated for predictive utility analogous to the original PRM method. Independent PRM and MPRM analyses of the contrast-enhancing lesion (CEL) and a 1 cm shell of surrounding peri-tumoral tissue were performed. Prediction using tumor volume metrics was also investigated. Leave-one-out cross validation (LOOCV) was used in combination with permutation testing to assess preliminary predictive efficacy and estimate statistically robust P-values. The predictive endpoint was overall survival (OS) greater than or equal to the median OS of 18.2 months. Single-parameter PRM and multi-parametric response maps (MPRMs) were generated for each patient and used to predict OS via the LOOCV. Tumor volume metrics (P ≥ 0.071 ± 0.01) and single-parameter PRM analyses (P ≥ 0.170 ± 0.01) were not found to be predictive of OS within this study. MPRM analysis of the peri-tumoral region but not the CEL was found to be predictive of OS with a classification sensitivity, specificity and accuracy of 80%, 100%, and 89%, respectively (P = 0.001 ± 0.01). The feasibility of a generalized MPRM analysis framework was demonstrated with improved prediction of overall survival compared to the original single-parameter method when applied to a glioblastoma dataset. The proposed algorithm takes the spatial heterogeneity in multi-parametric response into consideration and enables visualization. MPRM analysis of peri-tumoral regions was shown to have predictive potential supporting further investigation of a larger glioblastoma dataset. © 2017 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Acosta, Oscar; Dowling, Jason; Cazoulat, Guillaume; Simon, Antoine; Salvado, Olivier; de Crevoisier, Renaud; Haigron, Pascal
The prediction of toxicity is crucial to managing prostate cancer radiotherapy (RT). This prediction is classically organ wise and based on the dose volume histograms (DVH) computed during the planning step, and using for example the mathematical Lyman Normal Tissue Complication Probability (NTCP) model. However, these models lack spatial accuracy, do not take into account deformations and may be inappropiate to explain toxicity events related with the distribution of the delivered dose. Producing voxel wise statistical models of toxicity might help to explain the risks linked to the dose spatial distribution but is challenging due to the difficulties lying on the mapping of organs and dose in a common template. In this paper we investigate the use of atlas based methods to perform the non-rigid mapping and segmentation of the individuals' organs at risk (OAR) from CT scans. To build a labeled atlas, 19 CT scans were selected from a population of patients treated for prostate cancer by radiotherapy. The prostate and the OAR (Rectum, Bladder, Bones) were then manually delineated by an expert and constituted the training data. After a number of affine and non rigid registration iterations, an average image (template) representing the whole population was obtained. The amount of consensus between labels was used to generate probabilistic maps for each organ. We validated the accuracy of the approach by segmenting the organs using the training data in a leave one out scheme. The agreement between the volumes after deformable registration and the manually segmented organs was on average above 60% for the organs at risk. The proposed methodology provides a way to map the organs from a whole population on a single template and sets the stage to perform further voxel wise analysis. With this method new and accurate predictive models of toxicity will be built.
Fuzzy hidden Markov chains segmentation for volume determination and quantitation in PET.
Hatt, M; Lamare, F; Boussion, N; Turzo, A; Collet, C; Salzenstein, F; Roux, C; Jarritt, P; Carson, K; Cheze-Le Rest, C; Visvikis, D
2007-06-21
Accurate volume of interest (VOI) estimation in PET is crucial in different oncology applications such as response to therapy evaluation and radiotherapy treatment planning. The objective of our study was to evaluate the performance of the proposed algorithm for automatic lesion volume delineation; namely the fuzzy hidden Markov chains (FHMC), with that of current state of the art in clinical practice threshold based techniques. As the classical hidden Markov chain (HMC) algorithm, FHMC takes into account noise, voxel intensity and spatial correlation, in order to classify a voxel as background or functional VOI. However the novelty of the fuzzy model consists of the inclusion of an estimation of imprecision, which should subsequently lead to a better modelling of the 'fuzzy' nature of the object of interest boundaries in emission tomography data. The performance of the algorithms has been assessed on both simulated and acquired datasets of the IEC phantom, covering a large range of spherical lesion sizes (from 10 to 37 mm), contrast ratios (4:1 and 8:1) and image noise levels. Both lesion activity recovery and VOI determination tasks were assessed in reconstructed images using two different voxel sizes (8 mm3 and 64 mm3). In order to account for both the functional volume location and its size, the concept of % classification errors was introduced in the evaluation of volume segmentation using the simulated datasets. Results reveal that FHMC performs substantially better than the threshold based methodology for functional volume determination or activity concentration recovery considering a contrast ratio of 4:1 and lesion sizes of <28 mm. Furthermore differences between classification and volume estimation errors evaluated were smaller for the segmented volumes provided by the FHMC algorithm. Finally, the performance of the automatic algorithms was less susceptible to image noise levels in comparison to the threshold based techniques. The analysis of both simulated and acquired datasets led to similar results and conclusions as far as the performance of segmentation algorithms under evaluation is concerned.
Sturgeon, Gregory M; Kiarashi, Nooshin; Lo, Joseph Y; Samei, E; Segars, W P
2016-05-01
The authors are developing a series of computational breast phantoms based on breast CT data for imaging research. In this work, the authors develop a program that will allow a user to alter the phantoms to simulate the effect of gravity and compression of the breast (craniocaudal or mediolateral oblique) making the phantoms applicable to multimodality imaging. This application utilizes a template finite-element (FE) breast model that can be applied to their presegmented voxelized breast phantoms. The FE model is automatically fit to the geometry of a given breast phantom, and the material properties of each element are set based on the segmented voxels contained within the element. The loading and boundary conditions, which include gravity, are then assigned based on a user-defined position and compression. The effect of applying these loads to the breast is computed using a multistage contact analysis in FEBio, a freely available and well-validated FE software package specifically designed for biomedical applications. The resulting deformation of the breast is then applied to a boundary mesh representation of the phantom that can be used for simulating medical images. An efficient script performs the above actions seamlessly. The user only needs to specify which voxelized breast phantom to use, the compressed thickness, and orientation of the breast. The authors utilized their FE application to simulate compressed states of the breast indicative of mammography and tomosynthesis. Gravity and compression were simulated on example phantoms and used to generate mammograms in the craniocaudal or mediolateral oblique views. The simulated mammograms show a high degree of realism illustrating the utility of the FE method in simulating imaging data of repositioned and compressed breasts. The breast phantoms and the compression software can become a useful resource to the breast imaging research community. These phantoms can then be used to evaluate and compare imaging modalities that involve different positioning and compression of the breast.
Multi-scale X-ray Microtomography Imaging of Immiscible Fluids After Imbibition
NASA Astrophysics Data System (ADS)
Garing, C.; de Chalendar, J.; Voltolini, M.; Ajo Franklin, J. B.; Benson, S. M.
2015-12-01
A major issue for CO2 storage security is the efficiency and long-term reliability of the trapping mechanisms occurring in the reservoir where CO2 is injected. Residual trapping is one of the key processes for storage security beyond the primary stratigraphic seal. Although classical conceptual models of residual fluid trapping assume that disconnected ganglia are permanently immobilized, multiple mechanisms exist which could allow the remobilization of residually trapped CO2. The aim of this study is to quantify fluid phases saturation, connectivity and morphology after imbibition using x-ray microtomography in order to evaluate potential changes in droplets organization due to differences in capillary pressure between disconnected ganglia. Particular emphasis is placed on the effect of image resolution. Synchrotron-based x-ray microtomographic datasets of air-water spontaneous imbibition were acquired in sintered glass beads and sandstone samples with voxel sizes varying from 0.64 to 4.44 μm. The results show that for both sandstones the residual air phase is homogeneously distributed within the entire pore space and consists of disconnected clusters of multiple sizes and morphologies. The multi-scale analysis of subsamples of few pores and throats imaged at the same location of the sample reveals significant variations in the estimation of connectivity, size and shape of the fluid phases. This is particularly noticeable when comparing the results from the images with voxel sizes above 1 μm with the results from the images acquired with voxel sizes below 1 μm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, L; Shen, C; Wang, J
Purpose: To reduce cone beam CT (CBCT) imaging dose, we previously proposed a progressive dose control (PDC) scheme to employ temporal correlation between CBCT images at different fractions for image quality enhancement. A temporal non-local means (TNLM) method was developed to enhance quality of a new low-dose CBCT using existing high-quality CBCT. To enhance a voxel value, the TNLM method searches for similar voxels in a window. Due to patient deformation among the two CBCTs, a large searching window was required, reducing image quality and computational efficiency. This abstract proposes a deformation-assisted TNLM (DA-TNLM) method to solve this problem. Methods:more » For a low-dose CBCT to be enhanced using a high-quality CBCT, we first performed deformable image registration between the low-dose CBCT and the high-quality CBCT to approximately establish voxel correspondence between the two. A searching window for a voxel was then set based on the deformation vector field. Specifically, the search window for each voxel was shifted by the deformation vector. A TNLM step was then applied using only voxels within this determined window to correct image intensity at the low-dose CBCT. Results: We have tested the proposed scheme on simulated CIRS phantom data and real patient data. The CITS phantom was scanned on Varian onboard imaging CBCT system with coach shifting and dose reducing for each time. The real patient data was acquired in four fractions with dose reduced from standard CBCT dose to 12.5% of standard dose. It was found that the DA-TNLM method can reduce total dose by over 75% on average in the first four fractions. Conclusion: We have developed a PDC scheme which can enhance the quality of image scanned at low dose using a DA-TNLM method. Tests in phantom and patient studies demonstrated promising results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fried, D; Meier, J; Mawlawi, O
Purpose: Use a NEMA-IEC PET phantom to assess the robustness of FDG-PET-based radiomics features to changes in reconstruction parameters across different scanners. Methods: We scanned a NEMA-IEC PET phantom on 3 different scanners (GE Discovery VCT, GE Discovery 710, and Siemens mCT) using a FDG source-to-background ratio of 10:1. Images were retrospectively reconstructed using different iterations (2–3), subsets (21–24), Gaussian filter widths (2, 4, 6mm), and matrix sizes (128,192,256). The 710 and mCT used time-of-flight and point-spread-functions in reconstruction. The axial-image through the center of the 6 active spheres was used for analysis. A region-of-interest containing all spheres was ablemore » to simulate a heterogeneous lesion due to partial volume effects. Maximum voxel deviations from all retrospectively reconstructed images (18 per scanner) was compared to our standard clinical protocol. PET Images from 195 non-small cell lung cancer patients were used to compare feature variation. The ratio of a feature’s standard deviation from the patient cohort versus the phantom images was calculated to assess for feature robustness. Results: Across all images, the percentage of voxels differing by <1SUV and <2SUV ranged from 61–92% and 88–99%, respectively. Voxel-voxel similarity decreased when using higher resolution image matrices (192/256 versus 128) and was comparable across scanners. Taking the ratio of patient and phantom feature standard deviation was able to identify features that were not robust to changes in reconstruction parameters (e.g. co-occurrence correlation). Metrics found to be reasonably robust (standard deviation ratios > 3) were observed for routinely used SUV metrics (e.g. SUVmean and SUVmax) as well as some radiomics features (e.g. co-occurrence contrast, co-occurrence energy, standard deviation, and uniformity). Similar standard deviation ratios were observed across scanners. Conclusions: Our method enabled a comparison of feature variability across scanners and was able to identify features that were not robust to changes in reconstruction parameters.« less
Webb, C A; Weber, M; Mundy, E A; Killgore, W D S
2014-10-01
Studies investigating structural brain abnormalities in depression have typically employed a categorical rather than dimensional approach to depression [i.e., comparing subjects with Diagnostic and Statistical Manual of Mental Disorders (DSM)-defined major depressive disorder (MDD) v. healthy controls]. The National Institute of Mental Health, through their Research Domain Criteria initiative, has encouraged a dimensional approach to the study of psychopathology as opposed to an over-reliance on categorical (e.g., DSM-based) diagnostic approaches. Moreover, subthreshold levels of depressive symptoms (i.e., severity levels below DSM criteria) have been found to be associated with a range of negative outcomes, yet have been relatively neglected in neuroimaging research. To examine the extent to which depressive symptoms--even at subclinical levels--are linearly related to gray matter volume reductions in theoretically important brain regions, we employed whole-brain voxel-based morphometry in a sample of 54 participants. The severity of mild depressive symptoms, even in a subclinical population, was associated with reduced gray matter volume in the orbitofrontal cortex, anterior cingulate, thalamus, superior temporal gyrus/temporal pole and superior frontal gyrus. A conjunction analysis revealed concordance across two separate measures of depression. Reduced gray matter volume in theoretically important brain regions can be observed even in a sample that does not meet DSM criteria for MDD, but who nevertheless report relatively elevated levels of depressive symptoms. Overall, these findings highlight the need for additional research using dimensional conceptual and analytic approaches, as well as further investigation of subclinical populations.
Subcortical grey matter changes in untreated, early stage Parkinson's disease without dementia.
Lee, Hye Mi; Kwon, Kyum-Yil; Kim, Min-Jik; Jang, Ji-Wan; Suh, Sang-Il; Koh, Seong-Beom; Kim, Ji Hyun
2014-06-01
Previous MRI studies have investigated cortical or subcortical grey matter changes in patients with Parkinson's disease (PD), yielding inconsistent findings between the studies. We therefore sought to determine whether focal cortical or subcortical grey matter changes may be present from the early disease stage. We recruited 49 untreated, early stage PD patients without dementia and 53 control subjects. Voxel-based morphometry was used to evaluate cortical grey matter changes, and automated volumetry and shape analysis were used to assess volume changes and shape deformation of the subcortical grey matter structures, respectively. Voxel-based morphometry showed neither reductions nor increases in grey matter volume in patients compared to controls. Compared to controls, PD patients had significant reductions in adjusted volumes of putamen, nucleus accumbens, and hippocampus (corrected p < 0.05). Vertex-based shape analysis showed regionally contracted area on the posterolateral and ventromedial putamen bilaterally in PD patients (corrected p < 0.05). No correlations were found between cortical and subcortical grey matter and clinical variables representing disease duration and severity. Our results suggest that untreated, early stage PD without dementia is associated with volume reduction and shape deformation of subcortical grey matter, but not with cortical grey matter reduction. Our findings of structural changes in the posterolateral putamen and ventromedial putamen/nucleus accumbens could provide neuroanatomical basis for the involvement of motor and limbic striatum, further implicating motor and non-motor symptoms in PD, respectively. Early hippocampal involvement might be related to the risk for developing dementia in PD patients. Copyright © 2014 Elsevier Ltd. All rights reserved.
Zaremba, Dario; Enneking, Verena; Meinert, Susanne; Förster, Katharina; Bürger, Christian; Dohm, Katharina; Grotegerd, Dominik; Redlich, Ronny; Dietsche, Bruno; Krug, Axel; Kircher, Tilo; Kugel, Harald; Heindel, Walter; Baune, Bernhard T; Arolt, Volker; Dannlowski, Udo
2018-02-08
Patients with major depression show reduced hippocampal volume compared to healthy controls. However, the contribution of patients' cumulative illness severity to hippocampal volume has rarely been investigated. It was the aim of our study to find a composite score of cumulative illness severity that is associated with hippocampal volume in depression. We estimated hippocampal gray matter volume using 3-tesla brain magnetic resonance imaging in 213 inpatients with acute major depression according to DSM-IV criteria (employing the SCID interview) and 213 healthy controls. Patients' cumulative illness severity was ascertained by six clinical variables via structured clinical interviews. A principal component analysis was conducted to identify components reflecting cumulative illness severity. Regression analyses and a voxel-based morphometry approach were used to investigate the influence of patients' individual component scores on hippocampal volume. Principal component analysis yielded two main components of cumulative illness severity: Hospitalization and Duration of Illness. While the component Hospitalization incorporated information from the intensity of inpatient treatment, the component Duration of Illness was based on the duration and frequency of illness episodes. We could demonstrate a significant inverse association of patients' Hospitalization component scores with bilateral hippocampal gray matter volume. This relationship was not found for Duration of Illness component scores. Variables associated with patients' history of psychiatric hospitalization seem to be accurate predictors of hippocampal volume in major depression and reliable estimators of patients' cumulative illness severity. Future studies should pay attention to these measures when investigating hippocampal volume changes in major depression.
Marchewka, Artur; Kherif, Ferath; Krueger, Gunnar; Grabowska, Anna; Frackowiak, Richard; Draganski, Bogdan
2014-05-01
Multi-centre data repositories like the Alzheimer's Disease Neuroimaging Initiative (ADNI) offer a unique research platform, but pose questions concerning comparability of results when using a range of imaging protocols and data processing algorithms. The variability is mainly due to the non-quantitative character of the widely used structural T1-weighted magnetic resonance (MR) images. Although the stability of the main effect of Alzheimer's disease (AD) on brain structure across platforms and field strength has been addressed in previous studies using multi-site MR images, there are only sparse empirically-based recommendations for processing and analysis of pooled multi-centre structural MR data acquired at different magnetic field strengths (MFS). Aiming to minimise potential systematic bias when using ADNI data we investigate the specific contributions of spatial registration strategies and the impact of MFS on voxel-based morphometry in AD. We perform a whole-brain analysis within the framework of Statistical Parametric Mapping, testing for main effects of various diffeomorphic spatial registration strategies, of MFS and their interaction with disease status. Beyond the confirmation of medial temporal lobe volume loss in AD, we detect a significant impact of spatial registration strategy on estimation of AD related atrophy. Additionally, we report a significant effect of MFS on the assessment of brain anatomy (i) in the cerebellum, (ii) the precentral gyrus and (iii) the thalamus bilaterally, showing no interaction with the disease status. We provide empirical evidence in support of pooling data in multi-centre VBM studies irrespective of disease status or MFS. Copyright © 2013 Wiley Periodicals, Inc.
Improving accuracy and power with transfer learning using a meta-analytic database.
Schwartz, Yannick; Varoquaux, Gaël; Pallier, Christophe; Pinel, Philippe; Poline, Jean-Baptiste; Thirion, Bertrand
2012-01-01
Typical cohorts in brain imaging studies are not large enough for systematic testing of all the information contained in the images. To build testable working hypotheses, investigators thus rely on analysis of previous work, sometimes formalized in a so-called meta-analysis. In brain imaging, this approach underlies the specification of regions of interest (ROIs) that are usually selected on the basis of the coordinates of previously detected effects. In this paper, we propose to use a database of images, rather than coordinates, and frame the problem as transfer learning: learning a discriminant model on a reference task to apply it to a different but related new task. To facilitate statistical analysis of small cohorts, we use a sparse discriminant model that selects predictive voxels on the reference task and thus provides a principled procedure to define ROIs. The benefits of our approach are twofold. First it uses the reference database for prediction, i.e., to provide potential biomarkers in a clinical setting. Second it increases statistical power on the new task. We demonstrate on a set of 18 pairs of functional MRI experimental conditions that our approach gives good prediction. In addition, on a specific transfer situation involving different scanners at different locations, we show that voxel selection based on transfer learning leads to higher detection power on small cohorts.
Topologically preserving straightening of spinal cord MRI.
De Leener, Benjamin; Mangeat, Gabriel; Dupont, Sara; Martin, Allan R; Callot, Virginie; Stikov, Nikola; Fehlings, Michael G; Cohen-Adad, Julien
2017-10-01
To propose a robust and accurate method for straightening magnetic resonance (MR) images of the spinal cord, based on spinal cord segmentation, that preserves spinal cord topology and that works for any MRI contrast, in a context of spinal cord template-based analysis. The spinal cord curvature was computed using an iterative Non-Uniform Rational B-Spline (NURBS) approximation. Forward and inverse deformation fields for straightening were computed by solving analytically the straightening equations for each image voxel. Computational speed-up was accomplished by solving all voxel equation systems as one single system. Straightening accuracy (mean and maximum distance from straight line), computational time, and robustness to spinal cord length was evaluated using the proposed and the standard straightening method (label-based spline deformation) on 3T T 2 - and T 1 -weighted images from 57 healthy subjects and 33 patients with spinal cord compression due to degenerative cervical myelopathy (DCM). The proposed algorithm was more accurate, more robust, and faster than the standard method (mean distance = 0.80 vs. 0.83 mm, maximum distance = 1.49 vs. 1.78 mm, time = 71 vs. 174 sec for the healthy population and mean distance = 0.65 vs. 0.68 mm, maximum distance = 1.28 vs. 1.55 mm, time = 32 vs. 60 sec for the DCM population). A novel image straightening method that enables template-based analysis of quantitative spinal cord MRI data is introduced. This algorithm works for any MRI contrast and was validated on healthy and patient populations. The presented method is implemented in the Spinal Cord Toolbox, an open-source software for processing spinal cord MRI data. 1 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2017;46:1209-1219. © 2017 International Society for Magnetic Resonance in Medicine.
Alexithymia is related to differences in gray matter volume: a voxel-based morphometry study.
Ihme, Klas; Dannlowski, Udo; Lichev, Vladimir; Stuhrmann, Anja; Grotegerd, Dominik; Rosenberg, Nicole; Kugel, Harald; Heindel, Walter; Arolt, Volker; Kersting, Anette; Suslow, Thomas
2013-01-23
Alexithymia has been characterized as the inability to identify and describe feelings. Functional imaging studies have revealed that alexithymia is linked to reactivity changes in emotion- and face-processing-relevant brain areas. In this respect, anterior cingulate cortex (ACC), amygdala, anterior insula and fusiform gyrus (FFG) have been consistently reported. However, it remains to be clarified whether alexithymia is also associated with structural differences. Voxel-based morphometry on T1-weighted magnetic resonance images was used to investigate gray matter volume in 17 high alexithymics (HA) and 17 gender-matched low alexithymics (LA), which were selected from a sample of 161 healthy volunteers on basis of the 20-item Toronto Alexithymia Scale. Data were analyzed as statistic parametric maps for the comparisons LA>HA and HA>LA in a priori determined regions of interests (ROIs), i.e., ACC, amygdala, anterior insula and FFG. Moreover, an exploratory whole brain analysis was accomplished. For the contrast LA>HA, significant clusters were detected in the ACC, left amygdala and left anterior insula. Additionally, the whole brain analysis revealed volume differences in the left middle temporal gyrus. No significant differences were found for the comparison HA>LA. Our findings suggest that high compared to low alexithymics show less gray matter volume in several emotion-relevant brain areas. These structural differences might contribute to the functional alterations found in previous imaging studies in alexithymia. Copyright © 2012 Elsevier B.V. All rights reserved.
Voxel-based morphometric multisite collaborative study on schizophrenia.
Segall, Judith M; Turner, Jessica A; van Erp, Theo G M; White, Tonya; Bockholt, H Jeremy; Gollub, Randy L; Ho, Beng C; Magnotta, Vince; Jung, Rex E; McCarley, Robert W; Schulz, S Charles; Lauriello, John; Clark, Vince P; Voyvodic, James T; Diaz, Michele T; Calhoun, Vince D
2009-01-01
Regional gray matter (GM) abnormalities are well known to exist in patients with chronic schizophrenia. Voxel-based morphometry (VBM) has been previously used on structural magnetic resonance images (MRI) data to characterize these abnormalities. Two multisite schizophrenia studies, the Functional Biomedical Informatics Research Network and the Mind Clinical Imaging Consortium, which include 9 data collection sites, are evaluating the efficacy of pooling structural imaging data across imaging centers. Such a pooling of data could yield the increased statistical power needed to elucidate effects that may not be seen with smaller samples. VBM analyses were performed to evaluate the consistency of patient versus control gray matter concentration (GMC) differences across the study sites, as well as the effects of combining multisite data. Integration of data from both studies yielded a large sample of 503 subjects, including 266 controls and 237 patients diagnosed with schizophrenia, schizoaffective or schizophreniform disorder. The data were analyzed using the combined sample, as well as analyzing each of the 2 multisite studies separately. A consistent pattern of reduced relative GMC in schizophrenia patients compared with controls was found across all study sites. Imaging center-specific effects were evaluated using a region of interest analysis. Overall, the findings support the use of VBM in combined multisite studies. This analysis of schizophrenics and controls from around the United States provides continued supporting evidence for GM deficits in the temporal lobes, anterior cingulate, and frontal regions in patients with schizophrenia spectrum disorders.
Spinal focal lesion detection in multiple myeloma using multimodal image features
NASA Astrophysics Data System (ADS)
Fränzle, Andrea; Hillengass, Jens; Bendl, Rolf
2015-03-01
Multiple myeloma is a tumor disease in the bone marrow that affects the skeleton systemically, i.e. multiple lesions can occur in different sites in the skeleton. To quantify overall tumor mass for determining degree of disease and for analysis of therapy response, volumetry of all lesions is needed. Since the large amount of lesions in one patient impedes manual segmentation of all lesions, quantification of overall tumor volume is not possible until now. Therefore development of automatic lesion detection and segmentation methods is necessary. Since focal tumors in multiple myeloma show different characteristics in different modalities (changes in bone structure in CT images, hypointensity in T1 weighted MR images and hyperintensity in T2 weighted MR images), multimodal image analysis is necessary for the detection of focal tumors. In this paper a pattern recognition approach is presented that identifies focal lesions in lumbar vertebrae based on features from T1 and T2 weighted MR images. Image voxels within bone are classified using random forests based on plain intensities and intensity value derived features (maximum, minimum, mean, median) in a 5 x 5 neighborhood around a voxel from both T1 and T2 weighted MR images. A test data sample of lesions in 8 lumbar vertebrae from 4 multiple myeloma patients can be classified at an accuracy of 95% (using a leave-one-patient-out test). The approach provides a reasonable delineation of the example lesions. This is an important step towards automatic tumor volume quantification in multiple myeloma.
FDTD based model of ISOCT imaging for validation of nanoscale sensitivity (Conference Presentation)
NASA Astrophysics Data System (ADS)
Eid, Aya; Zhang, Di; Yi, Ji; Backman, Vadim
2017-02-01
Many of the earliest structural changes associated with neoplasia occur on the micro and nanometer scale, and thus appear histologically normal. Our group has established Inverse Spectroscopic OCT (ISOCT), a spectral based technique to extract nanoscale sensitive metrics derived from the OCT signal. Thus, there is a need to model light transport through relatively large volumes (< 50 um^3) of media with nanoscale level resolution. Finite Difference Time Domain (FDTD) is an iterative approach which directly solves Maxwell's equations to robustly estimate the electric and magnetic fields propagating through a sample. The sample's refractive index for every spatial voxel and wavelength are specified upon a grid with voxel sizes on the order of λ/20, making it an ideal modelling technique for nanoscale structure analysis. Here, we utilize the FDTD technique to validate the nanoscale sensing ability of ISOCT. The use of FDTD for OCT modelling requires three components: calculating the source beam as it propagates through the optical system, computing the sample's scattered field using FDTD, and finally propagating the scattered field back through the optical system. The principles of Fourier optics are employed to focus this interference field through a 4f optical system and onto the detector. Three-dimensional numerical samples are generated from a given refractive index correlation function with known parameters, and subsequent OCT images and mass density correlation function metrics are computed. We show that while the resolvability of the OCT image remains diffraction limited, spectral analysis allows nanoscale sensitive metrics to be extracted.
Automatic segmentation of multimodal brain tumor images based on classification of super-voxels.
Kadkhodaei, M; Samavi, S; Karimi, N; Mohaghegh, H; Soroushmehr, S M R; Ward, K; All, A; Najarian, K
2016-08-01
Despite the rapid growth in brain tumor segmentation approaches, there are still many challenges in this field. Automatic segmentation of brain images has a critical role in decreasing the burden of manual labeling and increasing robustness of brain tumor diagnosis. We consider segmentation of glioma tumors, which have a wide variation in size, shape and appearance properties. In this paper images are enhanced and normalized to same scale in a preprocessing step. The enhanced images are then segmented based on their intensities using 3D super-voxels. Usually in images a tumor region can be regarded as a salient object. Inspired by this observation, we propose a new feature which uses a saliency detection algorithm. An edge-aware filtering technique is employed to align edges of the original image to the saliency map which enhances the boundaries of the tumor. Then, for classification of tumors in brain images, a set of robust texture features are extracted from super-voxels. Experimental results indicate that our proposed method outperforms a comparable state-of-the-art algorithm in term of dice score.
Making data matter: Voxel printing for the digital fabrication of data across scales and domains.
Bader, Christoph; Kolb, Dominik; Weaver, James C; Sharma, Sunanda; Hosny, Ahmed; Costa, João; Oxman, Neri
2018-05-01
We present a multimaterial voxel-printing method that enables the physical visualization of data sets commonly associated with scientific imaging. Leveraging voxel-based control of multimaterial three-dimensional (3D) printing, our method enables additive manufacturing of discontinuous data types such as point cloud data, curve and graph data, image-based data, and volumetric data. By converting data sets into dithered material deposition descriptions, through modifications to rasterization processes, we demonstrate that data sets frequently visualized on screen can be converted into physical, materially heterogeneous objects. Our approach alleviates the need to postprocess data sets to boundary representations, preventing alteration of data and loss of information in the produced physicalizations. Therefore, it bridges the gap between digital information representation and physical material composition. We evaluate the visual characteristics and features of our method, assess its relevance and applicability in the production of physical visualizations, and detail the conversion of data sets for multimaterial 3D printing. We conclude with exemplary 3D-printed data sets produced by our method pointing toward potential applications across scales, disciplines, and problem domains.
Structural covariance in the hallucinating brain: a voxel-based morphometry study
Modinos, Gemma; Vercammen, Ans; Mechelli, Andrea; Knegtering, Henderikus; McGuire, Philip K.; Aleman, André
2009-01-01
Background Neuroimaging studies have indicated that a number of cortical regions express altered patterns of structural covariance in schizophrenia. The relation between these alterations and specific psychotic symptoms is yet to be investigated. We used voxel-based morphometry to examine regional grey matter volumes and structural covariance associated with severity of auditory verbal hallucinations. Methods We applied optimized voxel-based morphometry to volumetric magnetic resonance imaging data from 26 patients with medication-resistant auditory verbal hallucinations (AVHs); statistical inferences were made at p < 0.05 after correction for multiple comparisons. Results Grey matter volume in the left inferior frontal gyrus was positively correlated with severity of AVHs. Hallucination severity influenced the pattern of structural covariance between this region and the left superior/middle temporal gyri, the right inferior frontal gyrus and hippocampus, and the insula bilaterally. Limitations The results are based on self-reported severity of auditory hallucinations. Complementing with a clinician-based instrument could have made the findings more compelling. Future studies would benefit from including a measure to control for other symptoms that may covary with AVHs and for the effects of antipsychotic medication. Conclusion The results revealed that overall severity of AVHs modulated cortical intercorrelations between frontotemporal regions involved in language production and verbal monitoring, supporting the critical role of this network in the pathophysiology of hallucinations. PMID:19949723
SU-E-T-558: Monte Carlo Photon Transport Simulations On GPU with Quadric Geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chi, Y; Tian, Z; Jiang, S
Purpose: Monte Carlo simulation on GPU has experienced rapid advancements over the past a few years and tremendous accelerations have been achieved. Yet existing packages were developed only in voxelized geometry. In some applications, e.g. radioactive seed modeling, simulations in more complicated geometry are needed. This abstract reports our initial efforts towards developing a quadric geometry module aiming at expanding the application scope of GPU-based MC simulations. Methods: We defined the simulation geometry consisting of a number of homogeneous bodies, each specified by its material composition and limiting surfaces characterized by quadric functions. A tree data structure was utilized tomore » define geometric relationship between different bodies. We modified our GPU-based photon MC transport package to incorporate this geometry. Specifically, geometry parameters were loaded into GPU’s shared memory for fast access. Geometry functions were rewritten to enable the identification of the body that contains the current particle location via a fast searching algorithm based on the tree data structure. Results: We tested our package in an example problem of HDR-brachytherapy dose calculation for shielded cylinder. The dose under the quadric geometry and that under the voxelized geometry agreed in 94.2% of total voxels within 20% isodose line based on a statistical t-test (95% confidence level), where the reference dose was defined to be the one at 0.5cm away from the cylinder surface. It took 243sec to transport 100million source photons under this quadric geometry on an NVidia Titan GPU card. Compared with simulation time of 99.6sec in the voxelized geometry, including quadric geometry reduced efficiency due to the complicated geometry-related computations. Conclusion: Our GPU-based MC package has been extended to support photon transport simulation in quadric geometry. Satisfactory accuracy was observed with a reduced efficiency. Developments for charged particle transport in this geometry are currently in progress.« less
Chen, Vincent Chin-Hung; Shen, Chao-Yu; Liang, Sophie Hsin-Yi; Li, Zhen-Hui; Tyan, Yeu-Sheng; Liao, Yin-To; Huang, Yin-Chen; Lee, Yena; McIntyre, Roger S; Weng, Jun-Cheng
2016-11-15
It is hypothesized that the phenomenology of major depressive disorder (MDD) is subserved by disturbances in the structure and function of brain circuits; however, findings of structural abnormalities using MRI have been inconsistent. Generalized q-sampling imaging (GQI) methodology provides an opportunity to assess the functional integrity of white matter tracts in implicated circuits. The study population was comprised of 16 outpatients with MDD (mean age 44.81±2.2 years) and 30 age- and gender-matched healthy controls (mean age 45.03±1.88 years). We excluded participants with any other primary mental disorder, substance use disorder, or any neurological illnesses. We used T1-weighted 3D MRI with voxel-based morphometry (VBM) and vertex-wise shape analysis, and GQI with voxel-based statistical analysis (VBA), graph theoretical analysis (GTA) and network-based statistical (NBS) analysis to evaluate brain structure and connectivity abnormalities in MDD compared to healthy controls correlates with clinical measures of depressive symptom severity, Hamilton Depression Rating Scale 17-item (HAMD) and Hospital Anxiety and Depression Scale (HADS). Using VBM and vertex-wise shape analyses, we found significant volumetric decreases in the hippocampus and amygdala among subjects with MDD (p<0.001). Using GQI, we found decreases in diffusion anisotropy in the superior longitudinal fasciculus and increases in diffusion probability distribution in the frontal lobe among subjects with MDD (p<0.01). In GTA and NBS analyses, we found several disruptions in connectivity among subjects with MDD, particularly in the frontal lobes (p<0.05). In addition, structural alterations were correlated with depressive symptom severity (p<0.01). Small sample size; the cross-sectional design did not allow us to observe treatment effects in the MDD participants. Our results provide further evidence indicating that MDD may be conceptualized as a brain disorder with abnormal circuit structure and connectivity. Copyright © 2016 Elsevier B.V. All rights reserved.
Motor Learning Induces Plasticity in the Resting Brain-Drumming Up a Connection.
Amad, Ali; Seidman, Jade; Draper, Stephen B; Bruchhage, Muriel M K; Lowry, Ruth G; Wheeler, James; Robertson, Andrew; Williams, Steven C R; Smith, Marcus S
2017-03-01
Neuroimaging methods have recently been used to investigate plasticity-induced changes in brain structure. However, little is known about the dynamic interactions between different brain regions after extensive coordinated motor learning such as drumming. In this article, we have compared the resting-state functional connectivity (rs-FC) in 15 novice healthy participants before and after a course of drumming (30-min drumming sessions, 3 days a week for 8 weeks) and 16 age-matched novice comparison participants. To identify brain regions showing significant FC differences before and after drumming, without a priori regions of interest, a multivariate pattern analysis was performed. Drum training was associated with an increased FC between the posterior part of bilateral superior temporal gyri (pSTG) and the rest of the brain (i.e., all other voxels). These regions were then used to perform seed-to-voxel analysis. The pSTG presented an increased FC with the premotor and motor regions, the right parietal lobe and a decreased FC with the cerebellum. Perspectives and the potential for rehabilitation treatments with exercise-based intervention to overcome impairments due to brain diseases are also discussed. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Klaassen, Remy; Gurney-Champion, Oliver J; Wilmink, Johanna W; Besselink, Marc G; Engelbrecht, Marc R W; Stoker, Jaap; Nederveen, Aart J; van Laarhoven, Hanneke W M
2018-07-01
In current oncological practice of pancreatic ductal adenocarcinoma (PDAC), there is a great demand for response predictors and markers for early treatment evaluation. In this study, we investigated the repeatability and the interaction of dynamic contrast enhanced (DCE) and T2* MRI in patients with advanced PDAC to enable for such evaluation using these techniques. 15 PDAC patients underwent two DCE, T2* and anatomical 3 T MRI sessions before start of treatment. Parametric maps were calculated for the transfer constant (K trans ), rate constant (k ep ), extracellular extravascular space (v e ) and perfusion fraction (v p ). Quantitative R2* (1/T2*) maps were obtained from the multi-echo T2* images. Differences between normal and cancerous pancreas were determined using a Wilcoxon matched pairs test. Repeatability was obtained using Bland-Altman analysis and relations between DCE and T2*/R2* were observed by Spearman correlation and voxel-wise binned plots of tumor voxels. PDAC K trans (p = 0.007), k ep (p < 0.001), v p (p = 0.035) were lower and v e (p < 0.001) was higher compared to normal pancreas. The coefficient of variation between sessions was 21.8% for K trans , 9.9% for k ep , 19.3% for v e , 18.2% for v p and 18.7% for R2*. Variation between patients ranged from 20.2% for k ep to 43.6% for K trans . In the tumor both K trans (r = 0.56, p = 0.030) and v e (r = 0.54, p = 0.037) showed a positive correlation with T2*. Voxel wise analysis showed a steep increase in R2* for tumor voxels with lower K trans and v e . We showed good repeatability of DCE and T2* related MRI parameters in advanced PDAC patients. Furthermore, we have illustrated the relation of DCE K trans and v e with tissue T2* and R2* indicating substantial value of these parameters for detecting tumor hypoxia in future studies. The results from our study pave the way for further response evaluation studies and patient selection based on DCE and T2* parameters. Copyright © 2018 Elsevier Inc. All rights reserved.
Ippoliti, Matteo; Adams, Lisa C; Winfried, Brenner; Hamm, Bernd; Spincemaille, Pascal; Wang, Yi; Makowski, Marcus R
2018-04-16
Quantitative susceptibility mapping (QSM) is an MRI postprocessing technique that allows quantification of the spatial distribution of tissue magnetic susceptibility in vivo. Contributing sources include iron, blood products, calcium, myelin, and lipid content. To evaluate the reproducibility and consistency of QSM across clinical field strengths of 1.5T and 3T and to optimize the contrast-to-noise ratio (CNR) at 1.5T through bandwidth tuning. Prospective. Sixteen healthy volunteers (10 men, 6 women; age range 24-37; mean age 27.8 ± 3.2 years). 1.5T and 3T systems from the same vendor. Four spoiled gradient echo (SPGR) sequences were designed with different acquisition bandwidths. QSM reconstruction was achieved through a nonlinear morphology-enabled dipole inversion (MEDI) algorithm employing L1 regularization. CNR was calculated in seven regions of interest (ROIs), while reproducibility and consistency of QSM measurements were evaluated through voxel-based and region-specific linear correlation analyses and Bland-Altman plots. Interclass correlation, Wilcoxon rank sum test, linear regression analysis, Bland-Altman analysis, Welch's t-test. CNR analysis showed a statistically significant (P < 0.05) increase in four out of seven ROIs for the lowest bandwidth employed with respect to the highest (25.18% increase in CNR of caudate nucleus). All sequences reported an excellent correlation across field strength and bandwidth variation (R ≥ 0.96, widest limits of agreement from -18.7 to 25.8 ppb) in the ROI-based analysis, while the correlation was found to be good for the voxel-based analysis of averaged maps (R ≥ 0.90, widest limits of agreement from -9.3 to 9.1 ppb). CNR of QSM images reconstructed from 1.5T acquisitions can be enhanced through bandwidth tuning. MEDI-based QSM reconstruction demonstrated to be reproducible and consistent both across field strengths (1.5T and 3T) and bandwidth variation. 1 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018. © 2018 International Society for Magnetic Resonance in Medicine.
Electronically tunable metamaterials using subwavelength magnetoresponsive particles
NASA Astrophysics Data System (ADS)
Allen, Monica; Allen, Jeffery; Parrow, Jacob; Asif, Sajid; Iftikar, Adnan; Wenner, Brett; Braaten, Benjamin
We demonstrate tunability of material properties of an engineered electromagnetic material in the RF regime using microparticles that respond to static magnetic biasing fields. The magnetic particles align with field lines creating a short/inductive state of the switch in the addressed voxel. When the biasing magnetic field is removed, the switch returns to an open/capacitive state. Each voxel measures 1.5 mm x 1.5 mm x 0.508 mm in the x, y, and z direction respectively, with a 0.9 mm diameter cylindrical cavity. The cavity is along the z-axis and is partially filled with microparticles composed of a magnetite core with Ag coating. Cu foil placed on the top and bottom encloses the particles in the cavity and acts as the biasing electrodes. Switching between inductive and capacitive states in spatially addressed voxels controls the cumulative ɛ and μ of the host material (i.e., layer) and controls the phase of an incident wave. We present finite element based models of prototype voxels with experimental measurements that validate the models on a host. This research can be applied to real-time tuning of material parameters with subwavelength voxel precision enabling wave control/manipulation as well as devices for switching and software-dictated tunable impedance capabilities. Authors JWA, MSA and BRW are grateful for support from AFOSR Lab Task 17RWCOR397 (Dr. H. Weinstock). NDSU was supported by (FA-8651-15-2-002) from the US Air Force Research Laboratory Munitions Directorate.
Improved estimates of partial volume coefficients from noisy brain MRI using spatial context.
Manjón, José V; Tohka, Jussi; Robles, Montserrat
2010-11-01
This paper addresses the problem of accurate voxel-level estimation of tissue proportions in the human brain magnetic resonance imaging (MRI). Due to the finite resolution of acquisition systems, MRI voxels can contain contributions from more than a single tissue type. The voxel-level estimation of this fractional content is known as partial volume coefficient estimation. In the present work, two new methods to calculate the partial volume coefficients under noisy conditions are introduced and compared with current similar methods. Concretely, a novel Markov Random Field model allowing sharp transitions between partial volume coefficients of neighbouring voxels and an advanced non-local means filtering technique are proposed to reduce the errors due to random noise in the partial volume coefficient estimation. In addition, a comparison was made to find out how the different methodologies affect the measurement of the brain tissue type volumes. Based on the obtained results, the main conclusions are that (1) both Markov Random Field modelling and non-local means filtering improved the partial volume coefficient estimation results, and (2) non-local means filtering was the better of the two strategies for partial volume coefficient estimation. Copyright 2010 Elsevier Inc. All rights reserved.
Frost, Anja; Renners, Eike; Hötter, Michael; Ostermann, Jörn
2013-01-01
An important part of computed tomography is the calculation of a three-dimensional reconstruction of an object from series of X-ray images. Unfortunately, some applications do not provide sufficient X-ray images. Then, the reconstructed objects no longer truly represent the original. Inside of the volumes, the accuracy seems to vary unpredictably. In this paper, we introduce a novel method to evaluate any reconstruction, voxel by voxel. The evaluation is based on a sophisticated probabilistic handling of the measured X-rays, as well as the inclusion of a priori knowledge about the materials that the object receiving the X-ray examination consists of. For each voxel, the proposed method outputs a numerical value that represents the probability of existence of a predefined material at the position of the voxel while doing X-ray. Such a probabilistic quality measure was lacking so far. In our experiment, false reconstructed areas get detected by their low probability. In exact reconstructed areas, a high probability predominates. Receiver Operating Characteristics not only confirm the reliability of our quality measure but also demonstrate that existing methods are less suitable for evaluating a reconstruction. PMID:23344378
ADHD classification using bag of words approach on network features
NASA Astrophysics Data System (ADS)
Solmaz, Berkan; Dey, Soumyabrata; Rao, A. Ravishankar; Shah, Mubarak
2012-02-01
Attention Deficit Hyperactivity Disorder (ADHD) is receiving lots of attention nowadays mainly because it is one of the common brain disorders among children and not much information is known about the cause of this disorder. In this study, we propose to use a novel approach for automatic classification of ADHD conditioned subjects and control subjects using functional Magnetic Resonance Imaging (fMRI) data of resting state brains. For this purpose, we compute the correlation between every possible voxel pairs within a subject and over the time frame of the experimental protocol. A network of voxels is constructed by representing a high correlation value between any two voxels as an edge. A Bag-of-Words (BoW) approach is used to represent each subject as a histogram of network features; such as the number of degrees per voxel. The classification is done using a Support Vector Machine (SVM). We also investigate the use of raw intensity values in the time series for each voxel. Here, every subject is represented as a combined histogram of network and raw intensity features. Experimental results verified that the classification accuracy improves when the combined histogram is used. We tested our approach on a highly challenging dataset released by NITRC for ADHD-200 competition and obtained promising results. The dataset not only has a large size but also includes subjects from different demography and edge groups. To the best of our knowledge, this is the first paper to propose BoW approach in any functional brain disorder classification and we believe that this approach will be useful in analysis of many brain related conditions.
Liu, W; Mohan, R
2012-06-01
Proton dose distributions, IMPT in particular, are highly sensitive to setup and range uncertainties. We report a novel method, based on per-voxel standard deviation (SD) of dose distributions, to evaluate the robustness of proton plans and to robustly optimize IMPT plans to render them less sensitive to uncertainties. For each optimization iteration, nine dose distributions are computed - the nominal one, and one each for ± setup uncertainties along x, y and z axes and for ± range uncertainty. SD of dose in each voxel is used to create SD-volume histogram (SVH) for each structure. SVH may be considered a quantitative representation of the robustness of the dose distribution. For optimization, the desired robustness may be specified in terms of an SD-volume (SV) constraint on the CTV and incorporated as a term in the objective function. Results of optimization with and without this constraint were compared in terms of plan optimality and robustness using the so called'worst case' dose distributions; which are obtained by assigning the lowest among the nine doses to each voxel in the clinical target volume (CTV) and the highest to normal tissue voxels outside the CTV. The SVH curve and the area under it for each structure were used as quantitative measures of robustness. Penalty parameter of SV constraint may be varied to control the tradeoff between robustness and plan optimality. We applied these methods to one case each of H&N and lung. In both cases, we found that imposing SV constraint improved plan robustness but at the cost of normal tissue sparing. SVH-based optimization and evaluation is an effective tool for robustness evaluation and robust optimization of IMPT plans. Studies need to be conducted to test the methods for larger cohorts of patients and for other sites. This research is supported by National Cancer Institute (NCI) grant P01CA021239, the University Cancer Foundation via the Institutional Research Grant program at the University of Texas MD Anderson Cancer Center, and MD Anderson’s cancer center support grant CA016672. © 2012 American Association of Physicists in Medicine.
Accurate airway centerline extraction based on topological thinning using graph-theoretic analysis.
Bian, Zijian; Tan, Wenjun; Yang, Jinzhu; Liu, Jiren; Zhao, Dazhe
2014-01-01
The quantitative analysis of the airway tree is of critical importance in the CT-based diagnosis and treatment of popular pulmonary diseases. The extraction of airway centerline is a precursor to identify airway hierarchical structure, measure geometrical parameters, and guide visualized detection. Traditional methods suffer from extra branches and circles due to incomplete segmentation results, which induce false analysis in applications. This paper proposed an automatic and robust centerline extraction method for airway tree. First, the centerline is located based on the topological thinning method; border voxels are deleted symmetrically to preserve topological and geometrical properties iteratively. Second, the structural information is generated using graph-theoretic analysis. Then inaccurate circles are removed with a distance weighting strategy, and extra branches are pruned according to clinical anatomic knowledge. The centerline region without false appendices is eventually determined after the described phases. Experimental results show that the proposed method identifies more than 96% branches and keep consistency across different cases and achieves superior circle-free structure and centrality.
Bahadori, Amir A; Van Baalen, Mary; Shavers, Mark R; Dodge, Charles; Semones, Edward J; Bolch, Wesley E
2011-03-21
The National Aeronautics and Space Administration (NASA) performs organ dosimetry and risk assessment for astronauts using model-normalized measurements of the radiation fields encountered in space. To determine the radiation fields in an organ or tissue of interest, particle transport calculations are performed using self-shielding distributions generated with the computer program CAMERA to represent the human body. CAMERA mathematically traces linear rays (or path lengths) through the computerized anatomical man (CAM) phantom, a computational stylized model developed in the early 1970s with organ and body profiles modeled using solid shapes and scaled to represent the body morphometry of the 1950 50th percentile (PCTL) Air Force male. With the increasing use of voxel phantoms in medical and health physics, a conversion from a mathematical-based to a voxel-based ray-tracing algorithm is warranted. In this study, the voxel-based ray tracer (VoBRaT) is introduced to ray trace voxel phantoms using a modified version of the algorithm first proposed by Siddon (1985 Med. Phys. 12 252-5). After validation, VoBRAT is used to evaluate variations in body self-shielding distributions for NASA phantoms and six University of Florida (UF) hybrid phantoms, scaled to represent the 5th, 50th, and 95th PCTL male and female astronaut body morphometries, which have changed considerably since the inception of CAM. These body self-shielding distributions are used to generate organ dose equivalents and effective doses for five commonly evaluated space radiation environments. It is found that dosimetric differences among the phantoms are greatest for soft radiation spectra and light vehicular shielding.
WE-G-BRE-03: Dose Painting by Numbers Using Targeted Gold Nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altundal, Y; Sajo, E; Korideck, H
Purpose: Homogeneous dose enhancement in tumor cells of lung cancer patients treated with conventional dose of 60–66 Gy in five fractions is limited due to increased risk of toxicity to normal structures. Dose painting by numbers (DPBN) is the prescription of a non-uniform radiation dose distribution in the tumor for each voxel based on the intensity level of that voxel obtained from the tumor image. The purpose of this study is to show that DPBN using targeted gold nanoparticles (GNPs) could enhance conventional doses in the more resistant tumor areas. Methods: Cone beam computed tomography (CBCT) images of GNPs aftermore » intratumoral injection into human tumor were taken at 0, 48, 144 and 160 hours. The dose enhancement in the tumor voxels by secondary electrons from the GNPs was calculated based on analytical microdosimetry methods. The dose enhancement factor (DEF) is the ratio of the doses to the tumor with and without the presence of GNPs. The DEF was calculated for each voxel of the images based on the GNP concentration in the tumor sub-volumes using 6-MV photon spectra obtained using Monte Carlo simulations at 5 cm depth (10×10 cm2 field). Results: The results revealed DEF values of 1.05–2.38 for GNPs concentrations of 1–30 mg/g which corresponds to 12.60 – 28.56 Gy per fraction for delivering 12 Gy per fraction homogenously to lung tumor region. Conclusion: Our preliminary results verify that DPBN could be achieved using GNPs to enhance conventional doses to high risk tumor sub-volumes. In practice, DPBN using GNPs could be achieved due to diffusion of targeted GNPs sustainably released in-situ from radiotherapy biomaterials (e.g. fiducials) coated with polymer film containing the GNPs.« less
Fischer, Corinne E; Ting, Windsor Kwan-Chun; Millikin, Colleen P; Ismail, Zahinoor; Schweizer, Tom A
2016-01-01
We conducted a neuroimaging analysis to understand the neuroanatomical correlates of gray matter loss in a group of mild cognitive impairment and early Alzheimer's disease patients who developed delusions. With data collected as part of the Alzheimer's Disease Neuroimaging Initiative, we conducted voxel-based morphometry to determine areas of gray matter change in the same Alzheimer's Disease Neuroimaging Initiative participants, before and after they developed delusions. We identified 14 voxel clusters with significant gray matter decrease in patient scans post-delusional onset, correcting for multiple comparisons (false discovery rate, p < 0.05). Major areas of difference included the right and left insulae, left precuneus, the right and left cerebellar culmen, the left superior temporal gyrus, the right posterior cingulate, the right thalamus, and the left parahippocampal gyrus. Although contrary to our initial predictions of enhanced right frontal atrophy, our preliminary work identifies several neuroanatomical areas, including the cerebellum and left posterior hemisphere, which may be involved in delusional development in these patients. Copyright © 2015 John Wiley & Sons, Ltd.
Multi-resolution Gabor wavelet feature extraction for needle detection in 3D ultrasound
NASA Astrophysics Data System (ADS)
Pourtaherian, Arash; Zinger, Svitlana; Mihajlovic, Nenad; de With, Peter H. N.; Huang, Jinfeng; Ng, Gary C.; Korsten, Hendrikus H. M.
2015-12-01
Ultrasound imaging is employed for needle guidance in various minimally invasive procedures such as biopsy guidance, regional anesthesia and brachytherapy. Unfortunately, a needle guidance using 2D ultrasound is very challenging, due to a poor needle visibility and a limited field of view. Nowadays, 3D ultrasound systems are available and more widely used. Consequently, with an appropriate 3D image-based needle detection technique, needle guidance and interventions may significantly be improved and simplified. In this paper, we present a multi-resolution Gabor transformation for an automated and reliable extraction of the needle-like structures in a 3D ultrasound volume. We study and identify the best combination of the Gabor wavelet frequencies. High precision in detecting the needle voxels leads to a robust and accurate localization of the needle for the intervention support. Evaluation in several ex-vivo cases shows that the multi-resolution analysis significantly improves the precision of the needle voxel detection from 0.23 to 0.32 at a high recall rate of 0.75 (gain 40%), where a better robustness and confidence were confirmed in the practical experiments.
Time-Optimized High-Resolution Readout-Segmented Diffusion Tensor Imaging
Reishofer, Gernot; Koschutnig, Karl; Langkammer, Christian; Porter, David; Jehna, Margit; Enzinger, Christian; Keeling, Stephen; Ebner, Franz
2013-01-01
Readout-segmented echo planar imaging with 2D navigator-based reacquisition is an uprising technique enabling the sampling of high-resolution diffusion images with reduced susceptibility artifacts. However, low signal from the small voxels and long scan times hamper the clinical applicability. Therefore, we introduce a regularization algorithm based on total variation that is applied directly on the entire diffusion tensor. The spatially varying regularization parameter is determined automatically dependent on spatial variations in signal-to-noise ratio thus, avoiding over- or under-regularization. Information about the noise distribution in the diffusion tensor is extracted from the diffusion weighted images by means of complex independent component analysis. Moreover, the combination of those features enables processing of the diffusion data absolutely user independent. Tractography from in vivo data and from a software phantom demonstrate the advantage of the spatially varying regularization compared to un-regularized data with respect to parameters relevant for fiber-tracking such as Mean Fiber Length, Track Count, Volume and Voxel Count. Specifically, for in vivo data findings suggest that tractography results from the regularized diffusion tensor based on one measurement (16 min) generates results comparable to the un-regularized data with three averages (48 min). This significant reduction in scan time renders high resolution (1×1×2.5 mm3) diffusion tensor imaging of the entire brain applicable in a clinical context. PMID:24019951
Neumann, Nicola; Domin, Martin; Erhard, Katharina; Lotze, Martin
2018-05-18
Continuous practice modulates those features of brain anatomy specifically associated with requirements of the respective training task. The current study aimed to highlight brain structural changes going along with long-term experience in creative writing. To this end, we investigated the gray-matter volume of 23 expert writers with voxel-based morphometry and compared it to 28 matched non-expert controls. Expert writers had higher gray-matter volume in the right superior frontal and middle frontal gyri (BA 9,10) as well as left middle frontal gyrus (BA 9, 10, 46), the bilateral medial dorsal nuclei of the thalamus and left posterior cerebellum. A regression analysis confirmed the association of enhanced gray-matter volume in the right superior frontal gyrus (BA 10) with practice index of writing. In region-of interest based regression analyses, we found associations of gray-matter volume in the right Broca's analogue (BA 44) and right primary visual cortex (BA 17) with creativity ratings of the texts written during scanning, but not with a standardized verbal creativity test. Creative writing thus seems to be strongly connected to a prefronto-thalamic-cerebellar network that supports the continuous generation, organization and revision of ideas that is necessary to write literary texts. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Borri, Marco; Schmidt, Maria A; Powell, Ceri; Koh, Dow-Mu; Riddell, Angela M; Partridge, Mike; Bhide, Shreerang A; Nutting, Christopher M; Harrington, Kevin J; Newbold, Katie L; Leach, Martin O
2015-01-01
To describe a methodology, based on cluster analysis, to partition multi-parametric functional imaging data into groups (or clusters) of similar functional characteristics, with the aim of characterizing functional heterogeneity within head and neck tumour volumes. To evaluate the performance of the proposed approach on a set of longitudinal MRI data, analysing the evolution of the obtained sub-sets with treatment. The cluster analysis workflow was applied to a combination of dynamic contrast-enhanced and diffusion-weighted imaging MRI data from a cohort of squamous cell carcinoma of the head and neck patients. Cumulative distributions of voxels, containing pre and post-treatment data and including both primary tumours and lymph nodes, were partitioned into k clusters (k = 2, 3 or 4). Principal component analysis and cluster validation were employed to investigate data composition and to independently determine the optimal number of clusters. The evolution of the resulting sub-regions with induction chemotherapy treatment was assessed relative to the number of clusters. The clustering algorithm was able to separate clusters which significantly reduced in voxel number following induction chemotherapy from clusters with a non-significant reduction. Partitioning with the optimal number of clusters (k = 4), determined with cluster validation, produced the best separation between reducing and non-reducing clusters. The proposed methodology was able to identify tumour sub-regions with distinct functional properties, independently separating clusters which were affected differently by treatment. This work demonstrates that unsupervised cluster analysis, with no prior knowledge of the data, can be employed to provide a multi-parametric characterization of functional heterogeneity within tumour volumes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lai, C; Zhong, Y; Wang, T
2015-06-15
Purpose: To investigate the accuracy in estimating the mean glandular dose (MGD) for homogeneous breast phantoms by converting from the average breast dose using the F-factor in cone beam breast CT. Methods: EGSnrc-based Monte Carlo codes were used to estimate the MGDs. 13-cm in diameter, 10-cm high hemi-ellipsoids were used to simulate pendant-geometry breasts. Two different types of hemi-ellipsoidal models were employed: voxels in quasi-homogeneous phantoms were designed as either adipose or glandular tissue while voxels in homogeneous phantoms were designed as the mixture of adipose and glandular tissues. Breast compositions of 25% and 50% volume glandular fractions (VGFs), definedmore » as the ratio of glandular tissue voxels to entire breast voxels in the quasi-homogeneous phantoms, were studied. These VGFs were converted into glandular fractions by weight and used to construct the corresponding homogeneous phantoms. 80 kVp x-rays with a mean energy of 47 keV was used in the simulation. A total of 109 photons were used to image the phantoms and the energies deposited in the phantom voxels were tallied. Breast doses in homogeneous phantoms were averaged over all voxels and then used to calculate the MGDs using the F-factors evaluated at the mean energy of the x-rays. The MGDs for quasi-homogeneous phantoms were computed directly by averaging the doses over all glandular tissue voxels. The MGDs estimated for the two types of phantoms were normalized to the free-in-air dose at the iso-center and compared. Results: The normalized MGDs were 0.756 and 0.732 mGy/mGy for the 25% and 50% VGF homogeneous breasts and 0.761 and 0.733 mGy/mGy for the corresponding quasi-homogeneous breasts, respectively. The MGDs estimated for the two types of phantoms were similar within 1% in this study. Conclusion: MGDs for homogeneous breast models may be adequately estimated by converting from the average breast dose using the F-factor.« less
NASA Astrophysics Data System (ADS)
Rajon, Didier Alain
Radiation damage to the hematopoietic bone marrow is clearly defined as the limiting factor to the development of internal emitter therapies. Current dosimetry models rely on chord-length distributions measured through the complex microstructure of the trabecular bone regions of the skeleton in which most of the active marrow is located. Recently, Nuclear Magnetic Resonance (NMR) has been used to obtain high-resolution three-dimensional (3D) images of small trabecular bone samples. These images have been coupled with computer programs to estimate dosimetric parameters such as chord-length distributions, and energy depositions by monoenergetic electrons. This new technique is based on the assumption that each voxel of the image is assigned either to bone tissue or to marrow tissue after application of a threshold value. Previous studies showed that this assumption had important consequences on the outcome of the computer calculations. Both the chord-length distribution measurements and the energy deposition calculations are subject to voxel effects that are responsible for large discrepancies when applied to mathematical models of trabecular bone. The work presented in this dissertation proposes first a quantitative study of the voxel effects. Consensus is that the voxelized representation of surfaces should not be used as direct input to dosimetry computer programs. Instead we need a new technique to transform the interfaces into smooth surfaces. The Marching Cube (MC) algorithm was used and adapted to do this transformation. The initial image was used to generate a continuous gray-level field throughout the image. The interface between bone and marrow was then simulated by the iso-gray-level surface that corresponds to a predetermined threshold value. Calculations were then performed using this new representation. Excellent results were obtained for both the chord-length distribution and the energy deposition measurements. Voxel effects were reduced to an acceptable level and the discrepancies found when using the voxelized representation of the interface were reduced to a few percent. We conclude that this new model should be used every time one performs dosimetry estimates using NMR images of trabecular bone samples.
Ahamed, Tosif; Kawanabe, Motoaki; Ishii, Shin; Callan, Daniel E.
2014-01-01
Glider flying is a unique skill that requires pilots to control an aircraft at high speeds in three dimensions and amidst frequent full-body rotations. In the present study, we investigated the neural correlates of flying a glider using voxel-based morphometry. The comparison between gray matter densities of 15 glider pilots and a control group of 15 non-pilots exhibited significant gray matter density increases in left ventral premotor cortex, anterior cingulate cortex, and the supplementary eye field. We posit that the identified regions might be associated with cognitive and motor processes related to flying, such as joystick control, visuo-vestibular interaction, and oculomotor control. PMID:25506339
Thothathiri, Malathi; Kimberg, Daniel Y.; Schwartz, Myrna F.
2012-01-01
We explored the neural basis of reversible sentence comprehension in a large group of aphasic patients (N=79). Voxel-based lesion-symptom mapping revealed a significant association between damage in temporoparietal cortex and impaired sentence comprehension. This association remained after we controlled for phonological working memory. We hypothesize that this region plays an important role in the thematic or what-where processing of sentences. In contrast, we detected weak or no association between reversible sentence comprehension and the ventrolateral prefrontal cortex, which includes Broca’s area, even for syntactically complex sentences. This casts doubt on theories that presuppose a critical role for this region in syntactic computations. PMID:21861679
Ahamed, Tosif; Kawanabe, Motoaki; Ishii, Shin; Callan, Daniel E
2014-01-01
Glider flying is a unique skill that requires pilots to control an aircraft at high speeds in three dimensions and amidst frequent full-body rotations. In the present study, we investigated the neural correlates of flying a glider using voxel-based morphometry. The comparison between gray matter densities of 15 glider pilots and a control group of 15 non-pilots exhibited significant gray matter density increases in left ventral premotor cortex, anterior cingulate cortex, and the supplementary eye field. We posit that the identified regions might be associated with cognitive and motor processes related to flying, such as joystick control, visuo-vestibular interaction, and oculomotor control.
Linguistic Summarization of Video for Fall Detection Using Voxel Person and Fuzzy Logic
Anderson, Derek; Luke, Robert H.; Keller, James M.; Skubic, Marjorie; Rantz, Marilyn; Aud, Myra
2009-01-01
In this paper, we present a method for recognizing human activity from linguistic summarizations of temporal fuzzy inference curves representing the states of a three-dimensional object called voxel person. A hierarchy of fuzzy logic is used, where the output from each level is summarized and fed into the next level. We present a two level model for fall detection. The first level infers the states of the person at each image. The second level operates on linguistic summarizations of voxel person’s states and inference regarding activity is performed. The rules used for fall detection were designed under the supervision of nurses to ensure that they reflect the manner in which elders perform these activities. The proposed framework is extremely flexible. Rules can be modified, added, or removed, allowing for per-resident customization based on knowledge about their cognitive and physical ability. PMID:20046216
Katja — the 24th week of virtual pregnancy for dosimetric calculations
NASA Astrophysics Data System (ADS)
Becker, Janine; Zankl, Maria; Fill, Ute; Hoeschen, Christoph
2008-01-01
Virtual human models, a.k.a. voxel models, are currently the
Metzger, Gregory J; Kalavagunta, Chaitanya; Spilseth, Benjamin; Bolan, Patrick J; Li, Xiufeng; Hutter, Diane; Nam, Jung W; Johnson, Andrew D; Henriksen, Jonathan C; Moench, Laura; Konety, Badrinath; Warlick, Christopher A; Schmechel, Stephen C; Koopmeiners, Joseph S
2016-06-01
Purpose To develop multiparametric magnetic resonance (MR) imaging models to generate a quantitative, user-independent, voxel-wise composite biomarker score (CBS) for detection of prostate cancer by using coregistered correlative histopathologic results, and to compare performance of CBS-based detection with that of single quantitative MR imaging parameters. Materials and Methods Institutional review board approval and informed consent were obtained. Patients with a diagnosis of prostate cancer underwent multiparametric MR imaging before surgery for treatment. All MR imaging voxels in the prostate were classified as cancer or noncancer on the basis of coregistered histopathologic data. Predictive models were developed by using more than one quantitative MR imaging parameter to generate CBS maps. Model development and evaluation of quantitative MR imaging parameters and CBS were performed separately for the peripheral zone and the whole gland. Model accuracy was evaluated by using the area under the receiver operating characteristic curve (AUC), and confidence intervals were calculated with the bootstrap procedure. The improvement in classification accuracy was evaluated by comparing the AUC for the multiparametric model and the single best-performing quantitative MR imaging parameter at the individual level and in aggregate. Results Quantitative T2, apparent diffusion coefficient (ADC), volume transfer constant (K(trans)), reflux rate constant (kep), and area under the gadolinium concentration curve at 90 seconds (AUGC90) were significantly different between cancer and noncancer voxels (P < .001), with ADC showing the best accuracy (peripheral zone AUC, 0.82; whole gland AUC, 0.74). Four-parameter models demonstrated the best performance in both the peripheral zone (AUC, 0.85; P = .010 vs ADC alone) and whole gland (AUC, 0.77; P = .043 vs ADC alone). Individual-level analysis showed statistically significant improvement in AUC in 82% (23 of 28) and 71% (24 of 34) of patients with peripheral-zone and whole-gland models, respectively, compared with ADC alone. Model-based CBS maps for cancer detection showed improved visualization of cancer location and extent. Conclusion Quantitative multiparametric MR imaging models developed by using coregistered correlative histopathologic data yielded a voxel-wise CBS that outperformed single quantitative MR imaging parameters for detection of prostate cancer, especially when the models were assessed at the individual level. (©) RSNA, 2016 Online supplemental material is available for this article.
NASA Astrophysics Data System (ADS)
Nwankwo, Obioma; Sihono, Dwi Seno K.; Schneider, Frank; Wenz, Frederik
2014-09-01
Introduction: the quality of radiotherapy treatment plans varies across institutions and depends on the experience of the planner. For the purpose of intra- and inter-institutional homogenization of treatment plan quality, we present an algorithm that learns the organs-at-risk (OARs) sparing patterns from a database of high quality plans. Thereafter, the algorithm predicts the dose that similar organs will receive in future radiotherapy plans prior to treatment planning on the basis of the anatomies of the organs. The predicted dose provides the basis for the individualized specification of planning objectives, and for the objective assessment of the quality of radiotherapy plans. Materials and method: one hundred and twenty eight (128) Volumetric Modulated Arc Therapy (VMAT) plans were selected from a database of prostate cancer plans. The plans were divided into two groups, namely a training set that is made up of 95 plans and a validation set that consists of 33 plans. A multivariate analysis technique was used to determine the relationships between the positions of voxels and their dose. This information was used to predict the likely sparing of the OARs of the plans of the validation set. The predicted doses were visually and quantitatively compared to the reference data using dose volume histograms, the 3D dose distribution, and a novel evaluation metric that is based on the dose different test. Results: a voxel of the bladder on the average receives a higher dose than a voxel of the rectum in optimized radiotherapy plans for the treatment of prostate cancer in our institution if both voxels are at the same distance to the PTV. Based on our evaluation metric, the predicted and reference dose to the bladder agree to within 5% of the prescribed dose to the PTV in 18 out of 33 cases, while the predicted and reference doses to the rectum agree to within 5% in 28 out of the 33 plans of the validation set. Conclusion: We have described a method to predict the likely dose that OARs will receive before treatment planning. This prospective knowledge could be used to implement a global quality assurance system for personalized radiation therapy treatment planning.
de Bakker, Chantal M. J.; Altman, Allison R.; Li, Connie; Tribble, Mary Beth; Lott, Carina; Tseng, Wei-Ju; Liu, X. Sherry
2016-01-01
In vivo μCT imaging allows for high-resolution, longitudinal evaluation of bone properties. Based on this technology, several recent studies have developed in vivo dynamic bone histomorphometry techniques that utilize registered μCT images to identify regions of bone formation and resorption, allowing for longitudinal assessment of bone remodeling. However, this analysis requires a direct voxel-by-voxel subtraction between image pairs, necessitating rotation of the images into the same coordinate system, which introduces interpolation errors. We developed a novel image transformation scheme, matched-angle transformation (MAT), whereby the interpolation errors are minimized by equally rotating both the follow-up and baseline images instead of the standard of rotating one image while the other remains fixed. This new method greatly reduced interpolation biases caused by the standard transformation. Additionally, our study evaluated the reproducibility and precision of bone remodeling measurements made via in vivo dynamic bone histomorphometry. Although bone remodeling measurements showed moderate baseline noise, precision was adequate to measure physiologically relevant changes in bone remodeling, and measurements had relatively good reproducibility, with intra-class correlation coefficients of 0.75-0.95. This indicates that, when used in conjunction with MAT, in vivo dynamic histomorphometry provides a reliable assessment of bone remodeling. PMID:26786342
de Bakker, Chantal M J; Altman, Allison R; Li, Connie; Tribble, Mary Beth; Lott, Carina; Tseng, Wei-Ju; Liu, X Sherry
2016-08-01
In vivo µCT imaging allows for high-resolution, longitudinal evaluation of bone properties. Based on this technology, several recent studies have developed in vivo dynamic bone histomorphometry techniques that utilize registered µCT images to identify regions of bone formation and resorption, allowing for longitudinal assessment of bone remodeling. However, this analysis requires a direct voxel-by-voxel subtraction between image pairs, necessitating rotation of the images into the same coordinate system, which introduces interpolation errors. We developed a novel image transformation scheme, matched-angle transformation (MAT), whereby the interpolation errors are minimized by equally rotating both the follow-up and baseline images instead of the standard of rotating one image while the other remains fixed. This new method greatly reduced interpolation biases caused by the standard transformation. Additionally, our study evaluated the reproducibility and precision of bone remodeling measurements made via in vivo dynamic bone histomorphometry. Although bone remodeling measurements showed moderate baseline noise, precision was adequate to measure physiologically relevant changes in bone remodeling, and measurements had relatively good reproducibility, with intra-class correlation coefficients of 0.75-0.95. This indicates that, when used in conjunction with MAT, in vivo dynamic histomorphometry provides a reliable assessment of bone remodeling.
A synchrotron radiation microtomography system for the analysis of trabecular bone samples.
Salomé, M; Peyrin, F; Cloetens, P; Odet, C; Laval-Jeantet, A M; Baruchel, J; Spanne, P
1999-10-01
X-ray computed microtomography is particularly well suited for studying trabecular bone architecture, which requires three-dimensional (3-D) images with high spatial resolution. For this purpose, we describe a three-dimensional computed microtomography (microCT) system using synchrotron radiation, developed at ESRF. Since synchrotron radiation provides a monochromatic and high photon flux x-ray beam, it allows high resolution and a high signal-to-noise ratio imaging. The principle of the system is based on truly three-dimensional parallel tomographic acquisition. It uses a two-dimensional (2-D) CCD-based detector to record 2-D radiographs of the transmitted beam through the sample under different angles of view. The 3-D tomographic reconstruction, performed by an exact 3-D filtered backprojection algorithm, yields 3-D images with cubic voxels. The spatial resolution of the detector was experimentally measured. For the application to bone investigation, the voxel size was set to 6.65 microm, and the experimental spatial resolution was found to be 11 microm. The reconstructed linear attenuation coefficient was calibrated from hydroxyapatite phantoms. Image processing tools are being developed to extract structural parameters quantifying trabecular bone architecture from the 3-D microCT images. First results on human trabecular bone samples are presented.
Fritz, Thomas Hans; Renders, Wiske; Müller, Karsten; Schmude, Paul; Leman, Marc; Turner, Robert; Villringer, Arno
2013-10-01
Helmholtz himself speculated about a role of the cochlea in the perception of musical dissonance. Here we indirectly investigated this issue, assessing the valence judgment of musical stimuli with variable consonance/dissonance and presented diotically (exactly the same dissonant signal was presented to both ears) or dichotically (a consonant signal was presented to each ear--both consonant signals were rhythmically identical but differed by a semitone in pitch). Differences in brain organisation underlying inter-subject differences in the percept of dichotically presented dissonance were determined with voxel-based morphometry. Behavioral results showed that diotic dissonant stimuli were perceived as more unpleasant than dichotically presented dissonance, indicating that interactions within the cochlea modulated the valence percept during dissonance. However, the behavioral data also suggested that the dissonance percept did not depend crucially on the cochlea, but also occurred as a result of binaural integration when listening to dichotic dissonance. These results also showed substantial between-participant variations in the valence response to dichotic dissonance. These differences were in a voxel-based morphometry analysis related to differences in gray matter density in the inferior colliculus, which strongly substantiated a key role of the inferior colliculus in consonance/dissonance representation in humans. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Automated three-dimensional quantification of myocardial perfusion and brain SPECT.
Slomka, P J; Radau, P; Hurwitz, G A; Dey, D
2001-01-01
To allow automated and objective reading of nuclear medicine tomography, we have developed a set of tools for clinical analysis of myocardial perfusion tomography (PERFIT) and Brain SPECT/PET (BRASS). We exploit algorithms for image registration and use three-dimensional (3D) "normal models" for individual patient comparisons to composite datasets on a "voxel-by-voxel basis" in order to automatically determine the statistically significant abnormalities. A multistage, 3D iterative inter-subject registration of patient images to normal templates is applied, including automated masking of the external activity before final fit. In separate projects, the software has been applied to the analysis of myocardial perfusion SPECT, as well as brain SPECT and PET data. Automatic reading was consistent with visual analysis; it can be applied to the whole spectrum of clinical images, and aid physicians in the daily interpretation of tomographic nuclear medicine images.
Segmentation of human brain using structural MRI.
Helms, Gunther
2016-04-01
Segmentation of human brain using structural MRI is a key step of processing in imaging neuroscience. The methods have undergone a rapid development in the past two decades and are now widely available. This non-technical review aims at providing an overview and basic understanding of the most common software. Starting with the basis of structural MRI contrast in brain and imaging protocols, the concepts of voxel-based and surface-based segmentation are discussed. Special emphasis is given to the typical contrast features and morphological constraints of cortical and sub-cortical grey matter. In addition to the use for voxel-based morphometry, basic applications in quantitative MRI, cortical thickness estimations, and atrophy measurements as well as assignment of cortical regions and deep brain nuclei are briefly discussed. Finally, some fields for clinical applications are given.
Doucet, Gaelle E; He, Xiaosong; Sperling, Michael; Sharan, Ashwini; Tracy, Joseph I
2015-01-01
Developing more reliable predictors of seizure outcome following temporal lobe surgery for intractable epilepsy is an important clinical goal. In this context, we investigated patients with refractory temporal lobe epilepsy (TLE) before and after temporal resection. In detail, we explored gray matter (GM) volume change in relation with seizure outcome, using a voxel-based morphometry (VBM) approach. To do so, this study was divided into two parts. The first one involved group analysis of differences in regional GM volume between the groups (good outcome (GO), e.g., no seizures after surgery; poor outcome (PO), e.g., persistent postoperative seizures; and controls, N = 24 in each group), pre- and post-surgery. The second part of the study focused on pre-surgical data only (N = 61), determining whether the degree of GM abnormalities can predict surgical outcomes. For this second step, GM abnormalities were identified, within each lobe, in each patient when compared with an ad hoc sample of age-matched controls. For the first analysis, the results showed larger GM atrophy, mostly in the frontal lobe, in PO patients, relative to both GO patients and controls, pre-surgery. When comparing pre-to-post changes, we found relative GM gains in the GO but not in the PO patients, mostly in the non-resected hemisphere. For the second analysis, only the frontal lobe displayed reliable prediction of seizure outcome. 81% of the patients showing pre-surgical increased GM volume in the frontal lobe became seizure free, post-surgery; while 77% of the patients with pre-surgical reduced frontal GM volume had refractory seizures, post-surgery. A regression analysis revealed that the proportion of voxels with reduced frontal GM volume was a significant predictor of seizure outcome (p = 0.014). Importantly, having less than 1% of the frontal voxels with GM atrophy increased the likelihood of being seizure-free, post-surgery, by seven times. Overall, our results suggest that using pre-surgical GM abnormalities within the frontal lobe is a reliable predictor of seizure outcome post-surgery in TLE. We believe that this frontal GM atrophy captures seizure burden outside the pre-existing ictal temporal lobe, reflecting either the development of epileptogenesis or the loss of a protective, adaptive force helping to control or limit seizures. This study provides evidence of the potential of VBM-based approaches to predict surgical outcomes in refractory TLE candidates.
Doucet, Gaelle E.; He, Xiaosong; Sperling, Michael; Sharan, Ashwini; Tracy, Joseph I.
2015-01-01
Developing more reliable predictors of seizure outcome following temporal lobe surgery for intractable epilepsy is an important clinical goal. In this context, we investigated patients with refractory temporal lobe epilepsy (TLE) before and after temporal resection. In detail, we explored gray matter (GM) volume change in relation with seizure outcome, using a voxel-based morphometry (VBM) approach. To do so, this study was divided into two parts. The first one involved group analysis of differences in regional GM volume between the groups (good outcome (GO), e.g., no seizures after surgery; poor outcome (PO), e.g., persistent postoperative seizures; and controls, N = 24 in each group), pre- and post-surgery. The second part of the study focused on pre-surgical data only (N = 61), determining whether the degree of GM abnormalities can predict surgical outcomes. For this second step, GM abnormalities were identified, within each lobe, in each patient when compared with an ad hoc sample of age-matched controls. For the first analysis, the results showed larger GM atrophy, mostly in the frontal lobe, in PO patients, relative to both GO patients and controls, pre-surgery. When comparing pre-to-post changes, we found relative GM gains in the GO but not in the PO patients, mostly in the non-resected hemisphere. For the second analysis, only the frontal lobe displayed reliable prediction of seizure outcome. 81% of the patients showing pre-surgical increased GM volume in the frontal lobe became seizure free, post-surgery; while 77% of the patients with pre-surgical reduced frontal GM volume had refractory seizures, post-surgery. A regression analysis revealed that the proportion of voxels with reduced frontal GM volume was a significant predictor of seizure outcome (p = 0.014). Importantly, having less than 1% of the frontal voxels with GM atrophy increased the likelihood of being seizure-free, post-surgery, by seven times. Overall, our results suggest that using pre-surgical GM abnormalities within the frontal lobe is a reliable predictor of seizure outcome post-surgery in TLE. We believe that this frontal GM atrophy captures seizure burden outside the pre-existing ictal temporal lobe, reflecting either the development of epileptogenesis or the loss of a protective, adaptive force helping to control or limit seizures. This study provides evidence of the potential of VBM-based approaches to predict surgical outcomes in refractory TLE candidates. PMID:26594628
Andrzejewski, Piotr; Baltzer, Pascal; Polanec, Stephan H.; Sturdza, Alina; Georg, Dietmar; Helbich, Thomas H.; Karanikas, Georgios; Grimm, Christoph; Polterauer, Stephan; Poetter, Richard; Wadsak, Wolfgang; Mitterhauser, Markus; Georg, Petra
2016-01-01
Objectives To investigate fused multiparametric positron emission tomography/magnetic resonance imaging (MP PET/MRI) at 3T in patients with locally advanced cervical cancer, using high-resolution T2-weighted, contrast-enhanced MRI (CE-MRI), diffusion-weighted imaging (DWI), and the radiotracers [18F]fluorodeoxyglucose ([18F]FDG) and [18F]fluoromisonidazol ([18F]FMISO) for the non-invasive detection of tumor heterogeneity for an improved planning of chemo-radiation therapy (CRT). Materials and Methods Sixteen patients with locally advanced cervix were enrolled in this IRB approved and were examined with fused MP [18F]FDG/ [18F]FMISO PET/MRI and in eleven patients complete data sets were acquired. MP PET/MRI was assessed for tumor volume, enhancement (EH)-kinetics, diffusivity, and [18F]FDG/ [18F]FMISO-avidity. Descriptive statistics and voxel-by-voxel analysis of MRI and PET parameters were performed. Correlations were assessed using multiple correlation analysis. Results All tumors displayed imaging parameters concordant with cervix cancer, i.e. type II/III EH-kinetics, restricted diffusivity (median ADC 0.80x10-3mm2/sec), [18F]FDG- (median SUVmax16.2) and [18F]FMISO-avidity (median SUVmax3.1). In all patients, [18F]FMISO PET identified the hypoxic tumor subvolume, which was independent of tumor volume. A voxel-by-voxel analysis revealed only weak correlations between the MRI and PET parameters (0.05–0.22), indicating that each individual parameter yields independent information and the presence of tumor heterogeneity. Conclusion MP [18F]FDG/ [18F]FMISO PET/MRI in patients with cervical cancer facilitates the acquisition of independent predictive and prognostic imaging parameters. MP [18F]FDG/ [18F]FMISO PET/MRI enables insights into tumor biology on multiple levels and provides information on tumor heterogeneity, which has the potential to improve the planning of CRT. PMID:27167829
Pinker, Katja; Andrzejewski, Piotr; Baltzer, Pascal; Polanec, Stephan H; Sturdza, Alina; Georg, Dietmar; Helbich, Thomas H; Karanikas, Georgios; Grimm, Christoph; Polterauer, Stephan; Poetter, Richard; Wadsak, Wolfgang; Mitterhauser, Markus; Georg, Petra
2016-01-01
To investigate fused multiparametric positron emission tomography/magnetic resonance imaging (MP PET/MRI) at 3T in patients with locally advanced cervical cancer, using high-resolution T2-weighted, contrast-enhanced MRI (CE-MRI), diffusion-weighted imaging (DWI), and the radiotracers [18F]fluorodeoxyglucose ([18F]FDG) and [18F]fluoromisonidazol ([18F]FMISO) for the non-invasive detection of tumor heterogeneity for an improved planning of chemo-radiation therapy (CRT). Sixteen patients with locally advanced cervix were enrolled in this IRB approved and were examined with fused MP [18F]FDG/ [18F]FMISO PET/MRI and in eleven patients complete data sets were acquired. MP PET/MRI was assessed for tumor volume, enhancement (EH)-kinetics, diffusivity, and [18F]FDG/ [18F]FMISO-avidity. Descriptive statistics and voxel-by-voxel analysis of MRI and PET parameters were performed. Correlations were assessed using multiple correlation analysis. All tumors displayed imaging parameters concordant with cervix cancer, i.e. type II/III EH-kinetics, restricted diffusivity (median ADC 0.80x10-3mm2/sec), [18F]FDG- (median SUVmax16.2) and [18F]FMISO-avidity (median SUVmax3.1). In all patients, [18F]FMISO PET identified the hypoxic tumor subvolume, which was independent of tumor volume. A voxel-by-voxel analysis revealed only weak correlations between the MRI and PET parameters (0.05-0.22), indicating that each individual parameter yields independent information and the presence of tumor heterogeneity. MP [18F]FDG/ [18F]FMISO PET/MRI in patients with cervical cancer facilitates the acquisition of independent predictive and prognostic imaging parameters. MP [18F]FDG/ [18F]FMISO PET/MRI enables insights into tumor biology on multiple levels and provides information on tumor heterogeneity, which has the potential to improve the planning of CRT.
A method for multitask fMRI data fusion applied to schizophrenia.
Calhoun, Vince D; Adali, Tulay; Kiehl, Kent A; Astur, Robert; Pekar, James J; Pearlson, Godfrey D
2006-07-01
It is becoming common to collect data from multiple functional magnetic resonance imaging (fMRI) paradigms on a single individual. The data from these experiments are typically analyzed separately and sometimes directly subtracted from one another on a voxel-by-voxel basis. These comparative approaches, although useful, do not directly attempt to examine potential commonalities between tasks and between voxels. To remedy this we propose a method to extract maximally spatially independent maps for each task that are "coupled" together by a shared loading parameter. We first compute an activation map for each task and each individual as "features," which are then used to perform joint independent component analysis (jICA) on the group data. We demonstrate our approach on a data set derived from healthy controls and schizophrenia patients, each of which carried out an auditory oddball task and a Sternberg working memory task. Our analysis approach revealed two interesting findings in the data that were missed with traditional analyses. First, consistent with our hypotheses, schizophrenia patients demonstrate "decreased" connectivity in a joint network including portions of regions implicated in two prevalent models of schizophrenia. A second finding is that for the voxels identified by the jICA analysis, the correlation between the two tasks was significantly higher in patients than in controls. This finding suggests that schizophrenia patients activate "more similarly" for both tasks than do controls. A possible synthesis of both findings is that patients are activating less, but also activating with a less-unique set of regions for these very different tasks. Both of the findings described support the claim that examination of joint activation across multiple tasks can enable new questions to be posed about fMRI data. Our approach can also be applied to data using more than two tasks. It thus provides a way to integrate and probe brain networks using a variety of tasks and may increase our understanding of coordinated brain networks and the impact of pathology upon them. 2005 Wiley-Liss, Inc.
García-Panach, Javier; Lull, Nuria; Lull, Juan José; Ferri, Joan; Martínez, Carlos; Sopena, Pablo; Robles, Montserrat; Chirivella, Javier; Noé, Enrique
2011-09-01
The objective was to study the correlations and the differences in glucose metabolism between the thalamus and cortical structures in a sample of severe traumatic brain injury (TBI) patients with different neurological outcomes. We studied 49 patients who had suffered a severe TBI and 10 healthy control subjects using 18F-fluorodeoxyglucose positron emission tomography (18F-FDG-PET). The patients were divided into three groups: a vegetative or minimally-conscious state (MCS&VS) group (n=17), which included patients who were in a vegetative or a minimally conscious state; an In-post-traumatic amnesia (In-PTA) group (n=12), which included patients in PTA; and an Out-PTA group (n=20), which included patients who had recovered from PTA. SPM5 software was used to determine the metabolic differences between the groups. FDG-PET images were normalized and four regions of interest were generated around the thalamus, precuneus, and the frontal and temporal lobes. The groups were parameterized using Student's t-test. Principal component analysis was used to obtain an intensity-estimated-value per subject to correlate the function between the structures. Differences in glucose metabolism in all structures were related to the neurological outcome, and the most severe patients showed the most severe hypometabolism. We also found a significant correlation between the cortico-thalamo-cortical metabolism in all groups. Voxel-based analysis suggests a functional correlation between these four areas, and decreased metabolism was associated with less favorable outcomes. Higher levels of activation of the cortico-cortical connections appear to be related to better neurological condition. Differences in the thalamo-cortical correlations between patients and controls may be related to traumatic dysfunction due to focal or diffuse lesions.
Krumm, Sabine; Kivisaari, Sasa L; Monsch, Andreas U; Reinhardt, Julia; Ulmer, Stephan; Stippich, Christoph; Kressig, Reto W; Taylor, Kirsten I
2017-05-01
The parietal lobe is important for successful recognition memory, but its role is not yet fully understood. We investigated the parietal lobes' contribution to immediate paired-associate memory and delayed item-recognition memory separately for hits (targets) and correct rejections (distractors). We compared the behavioral performance of 56 patients with known parietal and medial temporal lobe dysfunction (i.e. early Alzheimer's Disease) to 56 healthy control participants in an immediate paired and delayed single item object memory task. Additionally, we performed voxel-based morphometry analyses to investigate the functional-neuroanatomic relationships between performance and voxel-based estimates of atrophy in whole-brain analyses. Behaviorally, all participants performed better identifying targets than rejecting distractors. The voxel-based morphometry analyses associated atrophy in the right ventral parietal cortex with fewer correct responses to familiar items (i.e. hits) in the immediate and delayed conditions. Additionally, medial temporal lobe integrity correlated with better performance in rejecting distractors, but not in identifying targets, in the immediate paired-associate task. Our findings suggest that the parietal lobe critically supports successful immediate and delayed target recognition memory, and that the ventral aspect of the parietal cortex and the medial temporal lobe may have complementary preferences for identifying targets and rejecting distractors, respectively, during recognition memory. Copyright © 2017. Published by Elsevier Inc.
Application of 3D-MR image registration to monitor diseases around the knee joint.
Takao, Masaki; Sugano, Nobuhiko; Nishii, Takashi; Miki, Hidenobu; Koyama, Tsuyoshi; Masumoto, Jun; Sato, Yoshinobu; Tamura, Shinichi; Yoshikawa, Hideki
2005-11-01
To estimate the accuracy and consistency of a method using a voxel-based MR image registration algorithm for precise monitoring of knee joint diseases. Rigid body transformation was calculated using a normalized cross-correlation (NCC) algorithm involving simple manual segmentation of the bone region based on its anatomical features. The accuracy of registration was evaluated using four phantoms, followed by a consistency test using MR data from the 11 patients with knee joint disease. The registration accuracy in the phantom experiment was 0.49+/-0.19 mm (SD) for the femur and 0.56+/-0.21 mm (SD) for the tibia. The consistency value in the experiment using clinical data was 0.69+/-0.25 mm (SD) for the femur and 0.77+/-0.37 mm (SD) for the tibia. These values were all smaller than a voxel (1.25 x 1.25 x 1.5 mm). The present method based on an NCC algorithm can be used to register serial MR images of the knee joint with error on the order of a sub-voxel. This method would be useful for precisely assessing therapeutic response and monitoring knee joint diseases; normalized cross-correlation; accuracy. J. Magn. Reson. Imaging 2005. (c) 2005 Wiley-Liss, Inc.
Li, Sheng; Zöllner, Frank G; Merrem, Andreas D; Peng, Yinghong; Roervik, Jarle; Lundervold, Arvid; Schad, Lothar R
2012-03-01
Renal diseases can lead to kidney failure that requires life-long dialysis or renal transplantation. Early detection and treatment can prevent progression towards end stage renal disease. MRI has evolved into a standard examination for the assessment of the renal morphology and function. We propose a wavelet-based clustering to group the voxel time courses and thereby, to segment the renal compartments. This approach comprises (1) a nonparametric, discrete wavelet transform of the voxel time course, (2) thresholding of the wavelet coefficients using Stein's Unbiased Risk estimator, and (3) k-means clustering of the wavelet coefficients to segment the kidneys. Our method was applied to 3D dynamic contrast enhanced (DCE-) MRI data sets of human kidney in four healthy volunteers and three patients. On average, the renal cortex in the healthy volunteers could be segmented at 88%, the medulla at 91%, and the pelvis at 98% accuracy. In the patient data, with aberrant voxel time courses, the segmentation was also feasible with good results for the kidney compartments. In conclusion wavelet based clustering of DCE-MRI of kidney is feasible and a valuable tool towards automated perfusion and glomerular filtration rate quantification. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Solomon, Justin; Ba, Alexandre; Diao, Andrew; Lo, Joseph; Bier, Elianna; Bochud, François; Gehm, Michael; Samei, Ehsan
2016-03-01
In x-ray computed tomography (CT), task-based image quality studies are typically performed using uniform background phantoms with low-contrast signals. Such studies may have limited clinical relevancy for modern non-linear CT systems due to possible influence of background texture on image quality. The purpose of this study was to design and implement anatomically informed textured phantoms for task-based assessment of low-contrast detection. Liver volumes were segmented from 23 abdominal CT cases. The volumes were characterized in terms of texture features from gray-level co-occurrence and run-length matrices. Using a 3D clustered lumpy background (CLB) model, a fitting technique based on a genetic optimization algorithm was used to find the CLB parameters that were most reflective of the liver textures, accounting for CT system factors of spatial blurring and noise. With the modeled background texture as a guide, a cylinder phantom (165 mm in diameter and 30 mm height) was designed, containing 20 low-contrast spherical signals (6 mm in diameter at targeted contrast levels of ~3.2, 5.2, 7.2, 10, and 14 HU, 4 repeats per signal). The phantom was voxelized and input into a commercial multi-material 3D printer (Object Connex 350), with custom software for voxel-based printing. Using principles of digital half-toning and dithering, the 3D printer was programmed to distribute two base materials (VeroWhite and TangoPlus, nominal voxel size of 42x84x30 microns) to achieve the targeted spatial distribution of x-ray attenuation properties. The phantom was used for task-based image quality assessment of a clinically available iterative reconstruction algorithm (Sinogram Affirmed Iterative Reconstruction, SAFIRE) using a channelized Hotelling observer paradigm. Images of the textured phantom and a corresponding uniform phantom were acquired at six dose levels and observer model performance was estimated for each condition (5 contrasts x 6 doses x 2 reconstructions x 2 backgrounds = 120 total conditions). Based on the observer model results, the dose reduction potential of SAFIRE was computed and compared between the uniform and textured phantom. The dose reduction potential of SAFIRE was found to be 23% based on the uniform phantom and 17% based on the textured phantom. This discrepancy demonstrates the need to consider background texture when assessing non-linear reconstruction algorithms.
Volumetric abnormalities of the brain in a rat model of recurrent headache.
Jia, Zhihua; Tang, Wenjing; Zhao, Dengfa; Hu, Guanqun; Li, Ruisheng; Yu, Shengyuan
2018-01-01
Voxel-based morphometry is used to detect structural brain changes in patients with migraine. However, the relevance of migraine and structural changes is not clear. This study investigated structural brain abnormalities based on voxel-based morphometry using a rat model of recurrent headache. The rat model was established by infusing an inflammatory soup through supradural catheters in conscious male rats. Rats were subgrouped according to the frequency and duration of the inflammatory soup infusion. Tactile sensory testing was conducted prior to infusion of the inflammatory soup or saline. The periorbital tactile thresholds in the high-frequency inflammatory soup stimulation group declined persistently from day 5. Increased white matter volume was observed in the rats three weeks after inflammatory soup stimulation, brainstem in the in the low-frequency inflammatory soup-infusion group and cortex in the high-frequency inflammatory soup-infusion group. After six weeks' stimulation, rats showed gray matter volume changes. The brain structural abnormalities recovered after the stimulation was stopped in the low-frequency inflammatory soup-infused rats and persisted even after the high-frequency inflammatory soup stimulus stopped. The changes of voxel-based morphometry in migraineurs may be the result of recurrent headache. Cognition, memory, and learning may play an important role in the chronification of migraines. Reducing migraine attacks has the promise of preventing chronicity of migraine.
Neural signature of coma revealed by posteromedial cortex connection density analysis.
Malagurski, Briguita; Péran, Patrice; Sarton, Benjamine; Riu, Beatrice; Gonzalez, Leslie; Vardon-Bounes, Fanny; Seguin, Thierry; Geeraerts, Thomas; Fourcade, Olivier; de Pasquale, Francesco; Silva, Stein
2017-01-01
Posteromedial cortex (PMC) is a highly segregated and dynamic core, which appears to play a critical role in internally/externally directed cognitive processes, including conscious awareness. Nevertheless, neuroimaging studies on acquired disorders of consciousness, have traditionally explored PMC as a homogenous and indivisible structure. We suggest that a fine-grained description of intrinsic PMC topology during coma, could expand our understanding about how this cortical hub contributes to consciousness generation and maintain, and could permit the identification of specific markers related to brain injury mechanism and useful for neurological prognostication. To explore this, we used a recently developed voxel-based unbiased approach, named functional connectivity density (CD). We compared 27 comatose patients (15 traumatic and 12 anoxic), to 14 age-matched healthy controls. The patients' outcome was assessed 3 months later using Coma Recovery Scale-Revised (CRS-R). A complex pattern of decreased and increased connections was observed, suggesting a network imbalance between internal/external processing systems, within PMC during coma. The number of PMC voxels with hypo-CD positive correlation showed a significant negative association with the CRS-R score, notwithstanding aetiology. Traumatic injury specifically appeared to be associated with a greater prevalence of hyper-connected (negative correlation) voxels, which was inversely associated with patient neurological outcome. A logistic regression model using the number of hypo-CD positive and hyper-CD negative correlations, accurately permitted patient's outcome prediction (AUC = 0.906, 95%IC = 0.795-1). These points might reflect adaptive plasticity mechanism and pave the way for innovative prognosis and therapeutics methods.