Sample records for voyager space probes

  1. Voyager in Interstellar Space

    NASA Image and Video Library

    2013-09-12

    Ed Stone, Voyager project scientist, California Institute of Technology, holds a model of NASA's Voyager spacecraft at a news conference, Thursday, Sept. 12, 2013 at NASA Headquarters in Washington. NASA's Voyager 1 spacecraft officially is the first human-made object to venture into interstellar space. The 36-year-old probe is about 12 billion miles (19 billion kilometers) from our sun. New and unexpected data indicate Voyager 1 has been traveling for about one year through plasma, or ionized gas, present in the space between stars. A report on the analysis of this new data is published in Thursday's edition of the journal Science. Photo Credit: (NASA/Carla Cioffi)

  2. Voyager in Interstellar Space

    NASA Image and Video Library

    2013-09-12

    Ed Stone, Voyager project scientist, California Institute of Technology, is seen as he speaks at a news conference on NASA's Voyager 1 spacecraft, Thursday, Sept. 12, 2013 at NASA Headquarters in Washington. NASA's Voyager 1 spacecraft officially is the first human-made object to venture into interstellar space. The 36-year-old probe is about 12 billion miles (19 billion kilometers) from our sun. New and unexpected data indicate Voyager 1 has been traveling for about one year through plasma, or ionized gas, present in the space between stars. A report on the analysis of this new data is published in Thursday's edition of the journal Science. Photo Credit: (NASA/Carla Cioffi)

  3. Voyager in Interstellar Space

    NASA Image and Video Library

    2013-09-12

    Suzanne Dodd, Voyager project manager, NASA's Jet Propulsion Lab (JPL) holds a replica of the golden record carried on Voyager at a news conference on NASA's Voyager 1 spacecraft, Thursday, Sept. 12, 2013 at NASA Headquarters in Washington. The Golden Record was intended to communicate a story of our world to extraterrestrials. NASA's Voyager 1 spacecraft officially is the first human-made object to venture into interstellar space. The 36-year-old probe is about 12 billion miles (19 billion kilometers) from our sun. New and unexpected data indicate Voyager 1 has been traveling for about one year through plasma, or ionized gas, present in the space between stars. A report on the analysis of this new data is published in Thursday's edition of the journal Science. Photo Credit: (NASA/Carla Cioffi)

  4. Voyager in Interstellar Space

    NASA Image and Video Library

    2013-09-12

    Dwayne Brown, Senior Public Affairs Officer, NASA Science Mission Directorate at NASA Headquarters, kicks off a news conference on NASA's Voyager 1 spacecraft, Thursday, Sept. 12, 2013 in Washington. NASA's Voyager 1 spacecraft officially is the first human-made object to venture into interstellar space. The 36-year-old probe is about 12 billion miles (19 billion kilometers) from our sun. New and unexpected data indicate Voyager 1 has been traveling for about one year through plasma, or ionized gas, present in the space between stars. A report on the analysis of this new data is published in Thursday's edition of the journal Science. Photo Credit: (NASA/Carla Cioffi)

  5. Voyager 1: Three "Tsunami Waves" in Interstellar Space

    NASA Image and Video Library

    2017-03-22

    Voyager 1: Three "Tsunami Waves" in Interstellar Space. The Voyager 1 spacecraft has experienced three "tsunami waves" in interstellar space. Listen to how these waves cause surrounding ionized matter to ring. More details on this sound can be found here: www.nasa.gov/jpl/nasa-voyager-t…nterstellar-space/

  6. Nick Sagan Reflects on Voyager 1 and the Golden Record

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2013-10-01

    When scientists confirmed on 12 September that NASA's Voyager 1 spacecraft had entered interstellar space (Eos, 94(39), 339, doi:10.1002/2013EO390003), the probe was acknowledged as the first human-made object to travel into that realm. The probe and its twin, Voyager 2, each carry a 12-inch gold-plated copper disk, known as the Golden Record.

  7. Voyager 1 Entering Interstellar Space Artist Concept

    NASA Image and Video Library

    2013-09-12

    This artist concept depicts NASA Voyager 1 spacecraft entering interstellar space. Interstellar space is dominated by the plasma, or ionized gas, that was ejected by the death of nearby giant stars millions of years ago.

  8. Voyager Captures Sounds of Interstellar Space

    NASA Image and Video Library

    2013-09-12

    The plasma wave instrument on NASA's Voyager 1 spacecraft captured these sounds of dense plasma, or ionized gas, vibrating in interstellar space. There were two times the instrument heard these vibrations: October to November 2012 and April to May 2013.

  9. One Voyager Out, One Voyager In Artist Concept

    NASA Image and Video Library

    2013-09-12

    This artist concept shows the general locations of NASA two Voyager spacecraft. Voyager 1 top has sailed beyond our solar bubble into interstellar space. Voyager 2 bottom is still exploring the outer layer of the solar bubble.

  10. JPL-20170720-VOYAGEs-0001-Voyager Media Reel 3

    NASA Image and Video Library

    2017-07-20

    The continuing mission of Voyager 1 and Voyager 2 to Jupiter, Saturn, Uranus, Neptune and interstellar space is documented. Included: construction and launch of the spacecraft. Movies made by the spacecraft. Animation of the Voyagers at the outer planets. A description of the "solar system portrait." The sounds recorded by Voyager 1 passing through dense interstellar plasma.

  11. Voyager telecommunications - The broadcast from Jupiter

    NASA Technical Reports Server (NTRS)

    Edelson, R. E.; Madsen, B. D.; Davis, E. K.; Garrison, G. W.

    1979-01-01

    The means by which the data collected by the Voyager 1 mission to Jupiter were returned to earth are presented. Radio links between the earth and the spacecraft are used for the transmission of both imaging and nonimaging telemetry from the spacecraft and commands from the earth and for radiometric observations of the spacecraft and its environment. Features which have lead to vast improvements in the capability of the Voyager telecommunications system over that of previous space probes include the use of X-band rather than S-band telemetry, a dual power X-band traveling wave tube amplifier, a 3.7 m spacecraft antenna and a single channel telemetry system with concatenated coding. Communications equipment at the three ground complexes of the Deep Space Network for telemetry reception includes 64 m steerable antennas, cryogenic maser preamplifiers and a phase-lock loop receiver. Voyager 1 has met or exceeded all of its telecommunications requirements, providing a 98% data return and a total of 2 x 10 to the 11th data bits during the Jupiter encounter.

  12. A voyage to Mars: space radiation, aging, and nutrition

    USDA-ARS?s Scientific Manuscript database

    On exploratory class missions, such as a voyage to Mars, astronauts will be exposed to doses and types of radiation that are not experienced in low earth orbit where the space shuttle and International Space Station operate. Astronauts who participate in exploratory class missions outside the magne...

  13. Communicating with Voyager

    NASA Technical Reports Server (NTRS)

    Dumas, Larry N.; Hornstein, Robert M.

    1990-01-01

    The Deep Space Network for receiving Voyager 2 data is discussed. The functions of the earth-Voyager radio link are examined, including radiometrics, transmission of commands to the spacecraft, radio sciences, and the transmission of telemetry from the spacecraft to earth. The use of ranging, Doppler, and VLBI measurements to maintain position and velocity data on Voyager 2 is described. Emphasis is placed on the international tracking network for obtaining Voyager 2 data on Neptune and Triton.

  14. Voyagers in the Heliosheath Artist Concept

    NASA Image and Video Library

    2011-03-08

    This artist concept shows NASA two Voyager spacecraft exploring a turbulent region of space known as the heliosheath, the outer shell of the bubble of charged particles around our sun. The Voyagers have been in space 33 years.

  15. Voyager to the giant planets

    NASA Astrophysics Data System (ADS)

    Smith, B. A.

    The exploration of Jupiter and Saturn by the Pioneer and Voyager probes is reviewed chronologically. Consideration is given to the launching techniques and probe designs; the complex convection patterns in the Jovian atmosphere; the lightning and auroras seen on Jupiter's dark side; the faint Jovian ring; the surfaces of Ganymede, Callisto, and Europa; and the discovery of volcanic activity on Io. The features of Saturn discussed include the earth-like atmospheric jets, the surface and atmosphere of Titan, the orbits of the other satellites, the surface characteristics of Iapetus and Enceladus, the 10,000 ringlets comprising the ring system, the apparent 'spokes' in the rings, and the narrow, knotted F ring. Voyager images of the most significant features are provided.

  16. Voyager 2: Rendezvous with Saturn - America celebrates its space flight at the JPL

    NASA Astrophysics Data System (ADS)

    Thiele, S.

    1981-11-01

    Impressions of a German scientist invited to the Jet Propulsion Laboratory during the time of the rendezvous of Voyager 2 with Saturn are presented. During the period from the 21st to the 28th of August 1981, Voyager 2 transmitted data concerning Saturn and its satellites to earth. The received information, including photographs and measurement results, were made available at the JPL to approximately 100 scientists and a few hundred reporters. The future of planetary research is briefly discussed, and attention is given to a space mission for the study of the comet Halley in 1986.

  17. Voyager the Explorer

    NASA Image and Video Library

    2013-07-03

    This artist concept shows NASA Voyager spacecraft against a field of stars in the darkness of space as they travel farther away from Earth, on a journey to interstellar space, and will eventually circle around the center of the Milky Way galaxy.

  18. Voyager Testing

    NASA Image and Video Library

    2017-07-05

    This image shows one of the Voyagers in the 25-foot space simulator chamber at NASA's Jet Propulsion Laboratory, Pasadena, California. The photo is dated April 27, 1977. https://photojournal.jpl.nasa.gov/catalog/PIA21737

  19. The Voyager Neptune travel guide

    NASA Technical Reports Server (NTRS)

    Kohlhase, Charles (Editor)

    1989-01-01

    The Voyager mission to the giant outer planets of our solar system is described. Scientific highlights include interplanetary cruise, Jupiter, Saturn, Uranus, and their vast satellite and ring systems. Detailed plans are provided for the August 1989 Neptune encounter and subsequent interstellar journey to reach the heliopause. As background, the elements of an unmanned space mission are explained, with emphasis on the capabilities of the spacecraft and the scientific sensors. Other topics include the Voyager Grand Tour trajectory design, deep-space navigation, and gravity-assist concepts. The Neptune flyby is animated through the use of computer-generated, flip-page movie frames that appear in the corners of the publication. Useful historical information is also presented, including facts associated with the Voyager mission. Finally, short summaries are provided to describe the major objectives and schedules for several space missions planned for the remainder of the 20th century.

  20. Voyager in Deep Space (Artist Concept)

    NASA Image and Video Library

    2017-07-31

    An artist concept depicting one of NASA's twin Voyager spacecraft. Humanity's farthest and longest-lived spacecraft are celebrating 40 years in August and September 2017. https://photojournal.jpl.nasa.gov/catalog/PIA21839

  1. Gigapan Voyage for Robotic Recon

    NASA Technical Reports Server (NTRS)

    Lee, Susan Y.; Moorse, Theodore Fitzgerald; Park, Eric J.

    2010-01-01

    Gigapan Voyage (GV) is a self-contained remotely-operable Gigapan capturing system that is currently being developed by the Intelligent Robotics Group (IRG) at NASA Ames Research Center. Gigapan Voyage was primarily designed to be integrated onto Johnson Space Center s Lunar Electric Rovers (LER). While on LER, Gigapan Voyage was used by scientists and astronauts during the 2009 and 2010 Desert RATS field tests. The concept behind Gigapan Voyage is to merge all the sub-components of the commercial GigaPan system into an all-in-one system that can capture, stitch, and display Gigapans in an automated way via a simple web interface. The GV system enables NASA to quickly and easily add remote-controlled Gigapan capturing capability onto rovers with minimal integration effort. Key Words: Geology, NASA, Black Point Lava Flow, Robot, K10, LER, Gigapan Voyage, Desert RATS, Intelligent Robotics Group

  2. Voyager Test Model Configuration

    NASA Image and Video Library

    2017-07-05

    This archival photo shows the Voyager proof test model, which did not fly in space, in the 25-foot space simulator chamber at NASA's Jet Propulsion Laboratory on December 3, 1976. https://photojournal.jpl.nasa.gov/catalog/PIA21735

  3. NASA Facts: an Educational Publication of the National Aeronautics and Space Administration. the Voyager Mission. [Jupiter probes

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The evolution of Jupiter, as well as its rotation, atmosphere and magnetosphere are described in this third in a series of publications on the exploration of the outer planets by the Voyager spacecraft. Activities for student participation are included with a selected reading list.

  4. Plasma Flow Near Voyager 1 Artist Animation

    NASA Image and Video Library

    2012-12-03

    This artist concept shows plasma flows around NASA Voyager 1 spacecraft as it approaches interstellar space. Voyager 1 low-energy charged particle instrument detects the speed of the wind of plasma, or hot ionized gas, streaming off the sun.

  5. Interstellar Probe: First Step to the Stars

    NASA Astrophysics Data System (ADS)

    McNutt, R. L., Jr.

    2017-12-01

    The idea of an "Interstellar Probe," a robotic spacecraft traveling into the nearby interstellar medium for the purpose of scientific investigation, dates to the mid-1960s. The Voyager Interstellar Mission (VIM), an "accidental" 40-year-old by-product of the Grand Tour of the solar system, has provided initial answers to the problem of the global heliospheric configuration and the details of its interface with interstellar space. But the twin Voyager spacecraft have, at most, only another decade of lifetime, and only Voyager 1 has emerged from the heliosheath interaction region. To understand the nature of the interaction, a near-term mission to the "near-by" interstellar medium with modern and focused instrumentation remains a compelling priority. Imaging of energetic neutral atoms (ENAs) by the Ion Neutral CAmera (INCA) on Cassini and from the Interstellar Boundary Explorer (IBEX) in Earth orbit have provided significant new insights into the global interaction region but point to discrepancies with our current understanding. Exploring "as far as possible" into "pristine" interstellar space can resolve these. Hence, reaching large heliocentric distances rapidly is a driver for an Interstellar Probe. Such a mission is timely; understanding the interstellar context of exoplanet systems - and perhaps the context for the emergence of life both here and there - hinges upon what we can discover within our own stellar neighborhood. With current spacecraft technology and high-capability launch vehicles, such as the Space Launch System (SLS), a small, but extremely capable spacecraft, could be dispatched to the near-by interstellar medium with at least twice the speed of the Voyagers. Challenges remain with payload mass and power constraints for optimized science measurements. Mission longevity, as experienced by, but not designed into, the Voyagers, communications capability, and radioisotope power system performance and lifetime are solvable engineering challenges. Such

  6. Voyager Development Test Model

    NASA Image and Video Library

    2017-07-05

    This archival photo shows the encapsulation of the Voyager Development Test Model at NASA's Kennedy Space Center's Eastern Test Range. The picture was taken on October 8, 1976. https://photojournal.jpl.nasa.gov/catalog/PIA21730

  7. Voyager picture of Jupiter

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA's Voyager 1 took this picture of the planet Jupiter on Saturday, Jan. 6, the first in its three-month-long, close-up investigation of the largest planet. The spacecraft, flying toward a March 5 closest approach, was 35.8 million miles (57.6 million kilometers) from Jupiter and 371.7 million miles (598.2 million kilometers) from Earth when the picture was taken. As the Voyager cameras begin their meteorological surveillance of Jupiter, they reveal a dynamic atmosphere with more convective structure than had previously been thought. While the smallest atmospheric features seen in this picture are still as large as 600 miles (1,000 kilometers) across, Voyager will be able to detect individual storm systems as small as 3 miles (5 kilometers) at closest approach. The Great Red Spot can be seen near the limb at the far right. Most of the other features are too small to be seen in terrestrial telescopes. This picture was transmitted to the Jet Propulsion Laboratory through the Deep Space Network's tracking station at Madrid, Spain. The Voyager Project is managed for NASA by Caltech's Jet Propulsion Laboratory.

  8. Voyager's Grand Tour

    NASA Technical Reports Server (NTRS)

    Uri, Joihn J.

    2017-01-01

    In the early days of the Space Age, scientists realized that given the right planetary alignments it might be possible to use the gravity of one planet to change the trajectory of a spacecraft and send it on to another planet without expending any fuel. This slingshot or gravity assist trajectory principle was first tested by Mariner 10, which used the gravity of Venus to slingshot its way to Mercury in 1974. A very rare planetary alignment would occur in the late 1970's allowing a spacecraft to visit all the outer planets (Jupiter, Saturn, Uranus, Neptune and Pluto) using gravity assists at each planet to send it on to the next. This unique alignment would not occur again for another 175 years! The initial ambitious plan, called the Grand Tour, was to send two pairs of spacecraft, one pair to visit Jupiter, Saturn and Pluto, the other to fly by Jupiter, Uranus and Neptune. However, the original plan was scaled back in the budget conscious early 1970's to just two less capable spacecraft visiting only Jupiter and Saturn, and Titan, Saturn's largest moon Taking advantage of this alignment would be two Voyager spacecraft, both beginning their long journeys in 1977. Voyager 2 launched first, on August 20, followed by Voyager 1 on September 5. Both spacecraft would first fly by Jupiter and use that planet's massive gravity to bend their trajectories to then fly by Saturn. Voyager 1 would also be targeted to fly by Saturn's moon Titan, which was known to have a dense atmosphere, a trajectory that would preclude any future planetary flybys. But the option was kept open, if Voyager 1's Titan flyby was successful, to retarget Voyager 2 to send it on to Uranus and maybe even Neptune - assuming it would survive that long! Just 13 days after its launch, Voyager 1 scored the first of its many firsts: at a distance of 7.25 million miles, it turned its camera back toward Earth and snapped the first ever photograph of the Earth-Moon system in a single frame, giving a sneak

  9. 40th Anniversary of Voyager

    NASA Image and Video Library

    2017-09-05

    On September 5, 1977, Voyager 1 was launched on a mission to explore where nothing had flown before. First on its journey were Jupiter and Saturn and it is currently exploring interstellar space. Its twin spacecraft, Voyager 2, visited Uranus and Neptune and is now in the outermost layer of the heliosphere, called the heliosheath. Forty years later, both spacecraft continue to send back data and are searching for the heliopause, the region where the Sun’s influence wanes, which has never been reached by any spacecraft.

  10. Reacting to nuclear power systems in space: American public protests over outer planetary probes since the 1980s

    NASA Astrophysics Data System (ADS)

    Launius, Roger D.

    2014-03-01

    The United States has pioneered the use of nuclear power systems for outer planetary space probes since the 1970s. These systems have enabled the Viking landings to reach the surface of Mars and both Pioneers 10 and 11 and Voyagers 1 and 2 to travel to the limits of the solar system. Although the American public has long been concerned about safety of these systems, in the 1980s a reaction to nuclear accidents - especially the Soviet Cosmos 954 spacecraft destruction and the Three Mile Island nuclear power plant accidents - heightened awareness about the hazards of nuclear power and every spacecraft launch since that time has been contested by opponents of nuclear energy. This has led to a debate over the appropriateness of the use of nuclear power systems for spacecraft. It has also refocused attention on the need for strict systems of control and rigorous checks and balances to assure safety. This essay describes the history of space radioisotope power systems, the struggles to ensure safe operations, and the political confrontation over whether or not to allow the launch the Galileo and Cassini space probes to the outer planets. Effectively, these efforts have led to the successful flights of 12 deep space planetary probes, two-thirds of them operated since the accidents of Cosmos 954, Three Mile Island, and Chernobyl.

  11. Voyager 1's Launch Vehicle

    NASA Image and Video Library

    1977-09-05

    The Titan/Centaur-6 launch vehicle was moved to Launch Complex 41 at Kennedy Space Center in Florida to complete checkout procedures in preparation for launch. The photo is dated January 1977. This launch vehicle carried Voyager 1 into space on September 5, 1977. https://photojournal.jpl.nasa.gov/catalog/PIA21739

  12. Voyager-Jupiter radio science data papers

    NASA Technical Reports Server (NTRS)

    Levy, G. S.; Wood, G. E.

    1980-01-01

    The reduction and interpretation of the radio science data from the Voyager 1 and 2 encounters of the planet Jupiter and its satellites resulted in the preparation of several papers for publication in the special Voyager-Jupiter issue of the Journal of Geophysical Research. The radio science and tracking systems of the Deep Space Network provide the data which makes this research possible. This article lists submitted papers by title, with their authors and with abstracts of their contents.

  13. NASA Facts, Voyager.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC. Educational Programs Div.

    This document is one of a series of publications of the National Aeronautics and Space Administration (NASA) on facts about the exploration of Jupiter and Saturn. This NASA mission consists of two unmanned Voyager spacecrafts launched in August and September of 1977, and due to arrive at Jupiter in 1979. An account of the scientific equipment…

  14. Voyager 2 Jupiter encounter

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A NASA News Release is presented which contains the following: (1) general release; (2) two views of Voyager 2 flight past Jupiter; (3) Voyager mission summary; (4) Voyager 1 science results; (5) Jupiter science objectives; (6) Jupiter the planet and its satellites; (7) Voyager experiments; (8) planet comparison; (9) a list of Voyager science investigators and (10) the Voyager team.

  15. This view of Jupiter was taken by Voyager 1

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This view of Jupiter was taken by Voyager 1. This image was taken through color filters and recombined to produce the color image. This photo was assembled from three black and white negatives by the Image Processing Lab at Jet Propulsion Laboratory. JPL manages and controls the VOyager project for NASA's Office of Space Science.

  16. The Voyager flights to Jupiter and Saturn

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The results of the mini-Grand Tour to Jupiter and Saturn by the Voyager 1 and 2 spacecraft are highlighted. Features of the spacecraft are depicted including the 11 instruments designed to probe the planets and their magnetic environments, the rings of Saturn, the fleets of satellites escorting the planets, and the interplanetary medium. Major scientific discoveries relating to these phenomena are summarized.

  17. NASA Facts: Voyager

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A news release on NASA's Voyager project is presented. The spacecraft, science instrumentation, experiments and a mission profile are described. A drawing identifying Voyager's major components and instrumentation was included along with diagrams showing the path of Voyager 1 (JST trajectory) past Jupiter, and the path of Voyager 2 (JXT trajectory) during its encounter with Jupiter. An exercise for student involvement was also provided.

  18. Erratum: Voyager Color Photometry of Saturn's Main Rings

    NASA Technical Reports Server (NTRS)

    Estrada, Paul R.; Cuzzi, Jeffrey N.; Showalter, Mark R.; DeVincenzi, Donald (Technical Monitor)

    2002-01-01

    We correct a calibration error in our earlier analysis of Voyager color observations of Saturn's main rings at 14 deg phase angle and present thoroughly revised and reanalyzed radial profiles of the brightness of the main rings in Voyager G, V, and UV filters, and ratios of these brightnesses. These results are consistent with more recent HST results at 6 deg phase angle, once allowance is made for plausible phase reddening of the rings. Unfortunately, the Voyager camera calibration factors are simply not sufficiently well known for a combination of the Voyager and HST data to be used to constrain the phase reddening quantitatively. However, some interesting radial variations in reddening between 6-14 deg phase angles are hinted at. We update a ring-and-satellite color vs. albedo plot from Cuzzi and Estrada in several ways. The A and B rings are still found to be in a significantly redder part of color-albedo space than Saturn's icy satellites.

  19. Voyager program. Voyager 1 encounter at Jupiter, 5 March 1979

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Highlights of Voyager 1 activity during the observatory and far-encounter phases are summarized. Daily sequence of events for the spacecraft during the period of greatest encounter activity (Feb. 26 through Mar. 7) the near-encounter phase is given. Times shown designate the time of signal reception at Deep Space Network stations. Events listed emphasize activities pertaining to the four remote sensing instruments on the scan platforms. However, the other 7 experiments will continuously collect data throughout the encounter period.

  20. Employment of Asteroids for Movement Space Ship and Probes

    NASA Technical Reports Server (NTRS)

    Bolonkin, Alexander

    2002-01-01

    At present, rockets are used to change the trajectory of space ships and probes. This method is very expensive and requires a lot of fuel, which limits the feasibility of space stations, interplanetary space ships, and probes. Sometimes space probes use the gravity field of a planet. However, there are only 9 planets in our solar system and they are separated by great distances. There are tens of millions of asteroids in outer space. The author offers a revolutionary method for changing the trajectory of space probes. This method uses the kinetic or rotary energy of asteroids, meteorites or other space bodies (small planets, natural planet satellites, etc.). to increase (to decrease) ship (probe) speed up to 1000 m/sec (or more) and to get any new direction in outer space. The flight possibilities of space ships and probes are increased by a factor of millions.

  1. The Voyager encounter with Neptune

    NASA Technical Reports Server (NTRS)

    Stone, E. C.; Miner, E. D.

    1991-01-01

    The investigations carried out by the Voyager Neptune/Interstellar Mission are discussed. Attention is given to the location of the various science instruments and the spacecraft subsystems on the Voyager spacecraft and to the charactgeristics of eleven instruments used in the Voyager mission. The Voyager 1 and 2 trajectories from the launch through the Voyager-2 Neptune encounter are presented together with data for the Neptune encounter events.

  2. Optical navigation during the Voyager Neptune encounter

    NASA Technical Reports Server (NTRS)

    Riedel, J. E.; Owen, W. M., Jr.; Stuve, J. A.; Synnott, S. P.; Vaughan, R. M.

    1990-01-01

    Optical navigation techniques were required to successfully complete the planetary exploration phase of the NASA deep-space Voyager mission. The last of Voyager's planetary encounters, with Neptune, posed unique problems from an optical navigation standpoint. In this paper we briefly review general aspects of the optical navigation process as practiced during the Voyager mission, and discuss in detail particular features of the Neptune encounter which affected optical navigation. New approaches to the centerfinding problem were developed for both stars and extended bodies, and these are described. Results of the optical navigation data analysis are presented, as well as a description of the optical orbit determination system and results of its use during encounter. Partially as a result of the optical navigation processing, results of scientific significance were obtained. These results include the discovery and orbit determination of several new satellites of Neptune and the determination of the size of Triton, Neptune's largest moon.

  3. Voyage to Jupiter

    NASA Technical Reports Server (NTRS)

    Morrison, D.; Samz, J.

    1980-01-01

    Early observations of the Jovian system are reviewed as well as the scientific objectives of the Pioneer and Voyager flyby missions. Launch vehicles, spacecraft trajectories, and the instruments carried are described. Photographs obtained by both voyage spacecraft are presented along with day-by-day summaries of the findings recorded by the various instruments and experiments carried by each spacecraft. Pictorial maps of the Galilean satellites, and lists of the Voyager science and managements teams are included.

  4. Einstein's Symphony: A Gravitational Wave Voyage Through Space and Time

    NASA Astrophysics Data System (ADS)

    Shapiro Key, Joey; Yunes, Nico; Grimberg, Irene

    2015-01-01

    Einstein's Symphony: A Gravitational Wave Voyage Through Space and Time is a gravitational wave astronomy planetarium show in production by a collaboration of scientists, filmmakers, and artisits from the Center for Gravitational Wave Astonomy (CGWA) at the University of Texas at Brownsville (UTB) and Montana State University (MSU). The project builds on the success of the interdisciplinary Celebrating Einstein collaboration. The artists and scientists who created the A Shout Across Time original film and the Black (W)hole immersive art installation for Celebrating Einstein are teaming with the Museum of the Rockies Taylor Planetarium staff and students to create a new full dome Digistar planetarium show that will be freely and widely distributed to planetaria in the US and abroad. The show uses images and animations filmed and collected for A Shout Across Time and for Black (W)hole as well as new images and animations and a new soundtrack composed and produced by the MSU School of Music to use the full capability of planetarium sound systems. The planetarium show will be narrated with ideas drawn from the Celebrating Einstein danced lecture on gravitational waves that the collaboration produced. The combination of products, resources, and team members assembled for this project allows us to create an original planetarium show for a fraction of the cost of a typical show. In addition, STEM education materials for G6-12 students and teachers will be provided to complement and support the show. This project is supported by the Texas Space Grant Consortium (TSGC), Montana Space Grant Consortium (MSGC), and the American Physical Society (APS).

  5. Cryogenic temperature control by means of energy storage materials. [for long space voyages

    NASA Technical Reports Server (NTRS)

    Grodzka, P. G.; Picklesimer, E. A.; Connor, L. E.

    1977-01-01

    An investigation was conducted to study the concept of thermal control by means of physical or chemical reaction heats for applications involving the storage of cryogens during long-term space voyages. The investigation included some preliminary experimental tests of energy storage material (ESM) effectiveness. The materials considered can store and liberate large amounts of thermal energy by means of mechanisms such as sensible heat, heat of fusion, and physical or chemical reaction heat. A differential thermal analysis was utilized in the laboratory tests. Attention is given to the evaluation of cryogenic ESM thermal control concepts, the experimental determination of phase change materials characteristics, and adsorption ESMs. It is found that an ESM shield surrounded by multiple layer insulation provides the best protection for a cryogen store.

  6. Médecine des voyages

    PubMed Central

    Aw, Brian; Boraston, Suni; Botten, David; Cherniwchan, Darin; Fazal, Hyder; Kelton, Timothy; Libman, Michael; Saldanha, Colin; Scappatura, Philip; Stowe, Brian

    2014-01-01

    Résumé Objectif Définir la pratique de la médecine des voyages, présenter les éléments fondamentaux d’une consultation complète préalable aux voyages à des voyageurs internationaux et aider à identifier les patients qu’il vaudrait mieux envoyer en consultation auprès de professionnels de la médecine des voyages. Sources des données Les lignes directrices et les recommandations sur la médecine des voyages et les maladies liées aux voyages publiées par les autorités sanitaires nationales et internationales ont fait l’objet d’un examen. Une recension des ouvrages connexes dans MEDLINE et EMBASE a aussi été effectuée. Message principal La médecine des voyages est une spécialité très dynamique qui se concentre sur les soins préventifs avant un voyage. Une évaluation exhaustive du risque pour chaque voyageur est essentielle pour mesurer avec exactitude les risques particuliers au voyageur, à son itinéraire et à sa destination et pour offrir des conseils sur les interventions les plus appropriées en gestion du risque afin de promouvoir la santé et prévenir les problèmes médicaux indésirables durant le voyage. Des vaccins peuvent aussi être nécessaires et doivent être personnalisés en fonction des antécédents d’immunisation du voyageur, de son itinéraire et du temps qu’il reste avant son départ. Conclusion La santé et la sécurité d’un voyageur dépendent du degré d’expertise du médecin qui offre le counseling préalable à son voyage et les vaccins, au besoin. On recommande à ceux qui donnent des conseils aux voyageurs d’être conscients de l’ampleur de cette responsabilité et de demander si possible une consultation auprès de professionnels de la médecine des voyages pour tous les voyageurs à risque élevé.

  7. Voyage to Jupiter.

    ERIC Educational Resources Information Center

    Morrison, David; Samz, Jane

    This publication illustrates the features of Jupiter and its family of satellites pictured by the Pioneer and the Voyager missions. Chapters included are: (1) "The Jovian System" (describing the history of astronomy); (2) "Pioneers to Jupiter" (outlining the Pioneer Mission); (3) "The Voyager Mission"; (4)…

  8. Voyager Outreach Compilation

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This NASA JPL (Jet Propulsion Laboratory) video presents a collection of the best videos that have been published of the Voyager mission. Computer animation/simulations comprise the largest portion of the video and include outer planetary magnetic fields, outer planetary lunar surfaces, and the Voyager spacecraft trajectory. Voyager visited the four outer planets: Jupiter, Saturn, Uranus, and Neptune. The video contains some live shots of Jupiter (actual), the Earth's moon (from orbit), Saturn (actual), Neptune (actual) and Uranus (actual), but is mainly comprised of computer animations of these planets and their moons. Some of the individual short videos that are compiled are entitled: The Solar System; Voyage to the Outer Planets; A Tour of the Solar System; and the Neptune Encounter. Computerized simulations of Viewing Neptune from Triton, Diving over Neptune to Meet Triton, and Catching Triton in its Retrograde Orbit are included. Several animations of Neptune's atmosphere, rotation and weather features as well as significant discussion of the planet's natural satellites are also presented.

  9. 46 CFR Sec. 2 - Voyage numbers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... voyage No. 1 having the prefixed designation NSA and followed by the General Agents' abbreviated designation and voyage number, as NSA-1/ABC-1. (b) The continuity of NSA voyage numbers shall not change with... General Agent shall affix his abbreviated designation and initial voyage numbers, as NSA-13/XYZ-1. ...

  10. 46 CFR Sec. 2 - Voyage numbers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... voyage No. 1 having the prefixed designation NSA and followed by the General Agents' abbreviated designation and voyage number, as NSA-1/ABC-1. (b) The continuity of NSA voyage numbers shall not change with... General Agent shall affix his abbreviated designation and initial voyage numbers, as NSA-13/XYZ-1. ...

  11. 46 CFR Sec. 2 - Voyage numbers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... voyage No. 1 having the prefixed designation NSA and followed by the General Agents' abbreviated designation and voyage number, as NSA-1/ABC-1. (b) The continuity of NSA voyage numbers shall not change with... General Agent shall affix his abbreviated designation and initial voyage numbers, as NSA-13/XYZ-1. ...

  12. 46 CFR Sec. 2 - Voyage numbers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... voyage No. 1 having the prefixed designation NSA and followed by the General Agents' abbreviated designation and voyage number, as NSA-1/ABC-1. (b) The continuity of NSA voyage numbers shall not change with... General Agent shall affix his abbreviated designation and initial voyage numbers, as NSA-13/XYZ-1. ...

  13. 46 CFR Sec. 2 - Voyage numbers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... voyage No. 1 having the prefixed designation NSA and followed by the General Agents' abbreviated designation and voyage number, as NSA-1/ABC-1. (b) The continuity of NSA voyage numbers shall not change with... General Agent shall affix his abbreviated designation and initial voyage numbers, as NSA-13/XYZ-1. ...

  14. First Close-up Image of Jupiter from Voyager 1

    NASA Technical Reports Server (NTRS)

    1979-01-01

    NASA'S Voyager 1 took this picture of the planet Jupiter on Saturday, Jan. 6, the first in its three-month-long, close-up investigation of the largest planet. The spacecraft, flying toward a March 5 closest approach, was 35.8 million miles (57.6 million kilometers) from Jupiter and 371.7 million miles (598.2 million kilometers) from Earth when the picture was taken. As the Voyager cameras begin their meteorological surveillance of Jupiter, they reveal a dynamic atmosphere with more convective structure than had previously been thought. While the smallest atmospheric features seen in this picture are still as large as 600 miles (1,000 kilometers) across, Voyager will be able to detect individual storm systems as small as 3 miles (5 kilometers) at closest approach. The Great Red Spot can be seen near the limb at the far right. Most of the other features are too small to be seen in terrestrial telescopes. This picture is really a combination of three images taken through color filters, then transmitted to Jet Propulsion Laboratory through the Deep Space Network's antennas, and assembled by JPL's Image Processing Lab. The Voyager Project is managed for NASA by Caltech's Jet Propulsion Laboratory.

  15. Voyager: The grandest tour. The mission to the outer planets

    NASA Astrophysics Data System (ADS)

    1991-04-01

    A history and general accomplishments of the Voyager 1 and 2 missions to the outer planets are presented. Over the course of 12 years, these spacecraft drew back the curtain on nearly half the solar system. They brought into sharp focus the faces of the four giant outer planets - Jupiter, Saturn, Uranus, and Neptune - and their families of disparate moons. The Voyagers showed us unimagined worlds: frozen beauty in the rings of Saturn, and molten violence in the explosive sulfur volcanoes on Jupiter's moon Io. They brought us close-ups of the florid and intricate storms of Jupiter itself. Voyager 2 went on to reveal the peculiarities of cockeyed Uranus and its equally skewed rings and moons. Then finally, Neptune, nearly invisible from earth, was unveiled in all its big, blue splendor, circled by shadowy rings and a bright pastel moon called Triton. Both Voyagers are headed toward the outer boundary of the solar system in search of the heliopause, the region where the sun's influence wanes and the beginning of interstellar space can be sensed.

  16. Voyager: The grandest tour. The mission to the outer planets

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A history and general accomplishments of the Voyager 1 and 2 missions to the outer planets are presented. Over the course of 12 years, these spacecraft drew back the curtain on nearly half the solar system. They brought into sharp focus the faces of the four giant outer planets - Jupiter, Saturn, Uranus, and Neptune - and their families of disparate moons. The Voyagers showed us unimagined worlds: frozen beauty in the rings of Saturn, and molten violence in the explosive sulfur volcanoes on Jupiter's moon Io. They brought us close-ups of the florid and intricate storms of Jupiter itself. Voyager 2 went on to reveal the peculiarities of cockeyed Uranus and its equally skewed rings and moons. Then finally, Neptune, nearly invisible from earth, was unveiled in all its big, blue splendor, circled by shadowy rings and a bright pastel moon called Triton. Both Voyagers are headed toward the outer boundary of the solar system in search of the heliopause, the region where the sun's influence wanes and the beginning of interstellar space can be sensed.

  17. 46 CFR 122.503 - Voyage plan.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Voyage plan. 122.503 Section 122.503 Shipping COAST... Emergencies § 122.503 Voyage plan. (a) The master of the following vessels shall prepare a voyage plan: (1) A... United States Great Lakes port from a Canadian Great Lakes port. (b) The voyage plan required by...

  18. 46 CFR 80.15 - Ocean voyage.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 3 2012-10-01 2012-10-01 false Ocean voyage. 80.15 Section 80.15 Shipping COAST GUARD... REGISTRY § 80.15 Ocean voyage. An ocean voyage for the purposes of this part means: A voyage on any body of water seaward of the low water mark such as an ocean or arm thereof, other major bodies of water such as...

  19. 46 CFR 80.15 - Ocean voyage.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 3 2013-10-01 2013-10-01 false Ocean voyage. 80.15 Section 80.15 Shipping COAST GUARD... REGISTRY § 80.15 Ocean voyage. An ocean voyage for the purposes of this part means: A voyage on any body of water seaward of the low water mark such as an ocean or arm thereof, other major bodies of water such as...

  20. 46 CFR 80.15 - Ocean voyage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Ocean voyage. 80.15 Section 80.15 Shipping COAST GUARD... REGISTRY § 80.15 Ocean voyage. An ocean voyage for the purposes of this part means: A voyage on any body of water seaward of the low water mark such as an ocean or arm thereof, other major bodies of water such as...

  1. 46 CFR 80.15 - Ocean voyage.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 3 2014-10-01 2014-10-01 false Ocean voyage. 80.15 Section 80.15 Shipping COAST GUARD... REGISTRY § 80.15 Ocean voyage. An ocean voyage for the purposes of this part means: A voyage on any body of water seaward of the low water mark such as an ocean or arm thereof, other major bodies of water such as...

  2. 46 CFR 80.15 - Ocean voyage.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 3 2011-10-01 2011-10-01 false Ocean voyage. 80.15 Section 80.15 Shipping COAST GUARD... REGISTRY § 80.15 Ocean voyage. An ocean voyage for the purposes of this part means: A voyage on any body of water seaward of the low water mark such as an ocean or arm thereof, other major bodies of water such as...

  3. Voyager: Neptune Encounter Highlights

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Voyager encounter data are presented in computer animation (CA) and real (R) animation. The highlights include a view of 2 full rotations of Neptune. It shows spacecraft trajectory 'diving' over Neptune and intercepting Triton's orbit, depicting radiation and occulation zones. Also shown are a renegade orbit of Triton and Voyager's encounter with Neptune's Magnetopause. A model of the spacecraft's complex maneuvers during close encounters of Neptune and Triton is presented. A view from Earth of Neptune's occulation experiment is is shown as well as a recreation of Voyager's final pass. There is detail of Voyager's Image Compensation technique which produces Voyager images. Eighteen images were produced on June 22 - 23, 1989, from 57 million miles away. A 68 day sequence which provides a stroboscopic view - colorization approximates what is seen by the human eye. Real time images recorded live from Voyager on 8/24/89 are presented. Photoclinometry produced the topography of Triton. Three images are used to create a sequence of Neptune's rings. The globe of Neptune and 2 views of the south pole are shown as well as Neptune rotating. The rotation of a scooter is frozen in images showing differential motion. There is a view of rotation of the Great Dark Spot about its own axis. Photoclinometry provides a 3-dimensional perspective using a color mosaic of Triton images. The globe is used to indicate the orientation of Neptune's crescent. The east and west plumes on Triton are shown.

  4. VLA telemetry performance with concatenated coding for Voyager at Neptune

    NASA Technical Reports Server (NTRS)

    Dolinar, S. J., Jr.

    1988-01-01

    Current plans for supporting the Voyager encounter at Neptune include the arraying of the Deep Space Network (DSN) antennas at Goldstone, California, with the National Radio Astronomy Observatory's Very Large Array (VLA) in New Mexico. Not designed as a communications antenna, the VLA signal transmission facility suffers a disadvantage in that the received signal is subjected to a gap or blackout period of approximately 1.6 msec once every 5/96 sec control cycle. Previous analyses showed that the VLA data gaps could cause disastrous performance degradation in a VLA stand-alone system and modest degradation when the VLA is arrayed equally with Goldstone. New analysis indicates that the earlier predictions for concatenated code performance were overly pessimistic for most combinations of system parameters, including those of Voyager-VLA. The periodicity of the VLA gap cycle tends to guarantee that all Reed-Solomon codewords will receive an average share of erroneous symbols from the gaps. However, large deterministic fluctuations in the number of gapped symbols from codeword to codeword may occur for certain combinations of code parameters, gap cycle parameters, and data rates. Several mechanisms for causing these fluctuations are identified and analyzed. Even though graceful degradation is predicted for the Voyager-VLA parameters, catastrophic degradation greater than 2 dB can occur for a VLA stand-alone system at certain non-Voyager data rates inside the range of the actual Voyager rates. Thus, it is imperative that all of the Voyager-VLA parameters be very accurately known and precisely controlled.

  5. Voyager electronic parts radiation program, volume 1

    NASA Technical Reports Server (NTRS)

    Stanley, A. G.; Martin, K. E.; Price, W. E.

    1977-01-01

    The Voyager spacecraft is subject to radiation from external natural space, from radioisotope thermoelectric generators and heater units, and from the internal environment where penetrating electrons generate surface ionization effects in semiconductor devices. Methods for radiation hardening and tests for radiation sensitivity are described. Results of characterization testing and sample screening of over 200 semiconductor devices in a radiation environment are summarized.

  6. Voyages to Saturn

    NASA Technical Reports Server (NTRS)

    Morrison, D.

    1982-01-01

    The Voyager mission to Saturn is explained in detail. A history of Saturn observations from ancient times to the present is given. The Voyager spacecraft and their instruments are described. An overview of planetary astronomy is presented. The text is supplemented by numerous black and white and color photographs. The Saturn satellites are discussed in detail, and preliminary pictorial maps of the satellites are given.

  7. Voyager at Neptune: 1989

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Voyager mission has taken advantage of a rare planetary alignment that occurs at intervals of about 175 years and affords an extraordinary opportunity: a grand tour by a single spacecraft of the outer planets Jupiter, Saturn, Uranus, and Neptune. Voyager 2 will fly past Nepture and its large moon Triton on August 24, 1989. The discovery of Neptune, along with its current history is discussed. The imaging challenges, tracking and data acquisition, and the Voyager spacecraft are explained. Data will be gathered on the ring arcs of Neptune, the atmosphere and surface of Neptune, Triton, and Nereid (the smaller moon).

  8. Estimation of a melting probe's penetration velocity range to reach icy moons' subsurface ocean

    NASA Astrophysics Data System (ADS)

    Erokhina, Olga; Chumachenko, Eugene

    2014-05-01

    In modern space science one of the actual branches is icy satellites explorations. The main interest is concentrated around Jovian's moons Europa and Ganymede, Saturn's moons Titan and Enceladus that are covered by thick icy layer according to "Voyager1", "Voyager2", "Galileo" and "Cassini" missions. There is a big possibility that under icy shell could be a deep ocean. Also conditions on these satellites allow speculating about possible habitability, and considering these moons from an astrobiological point of view. One of the possible tasks of planned missions is a subsurface study. For this goal it is necessary to design special equipment that could be suitable for planetary application. One of the possible means is to use a melting probe which operates by melting and moves by gravitational force. Such a probe should be relatively small, should not weight too much and should require not too much energy. In terrestrial case such kind of probe has been successfully used for glaciers study. And it is possible to extrapolate the usage of such probe to extraterrestrial application. One of the tasks is to estimate melting probe's penetration velocity. Although there are other unsolved problems such as analyzing how the probe will move in low gravity and low atmospheric pressure; knowing whether hole will be closed or not when probe penetrate thick enough; and considering what order could be a penetration velocity. This study explores two techniques of melting probe's movement. One of them based on elasto-plastic theory and so-called "solid water" theory, and other one takes phase changing into account. These two techniques allow estimating melting probe's velocity range and study whole process. Based on these technique several cases of melting probe movement were considered, melting probe's velocity range estimated, influence of different factors studied and discussed and an easy way to optimize parameters of the melting probe proposed.

  9. Voyager Saturn encounter press briefing

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The briefing reviewed the mission planning of the Voyager project. The near encounter trajectories of both Voyager spacecraft were examined. The Saturn system is discussed with particular emphasis on Saturn's moons.

  10. NASA Celebrates 40 Years of the Voyager Mission

    NASA Image and Video Library

    2017-09-05

    NASA celebrates 40 years of the Voyager 1 and 2 spacecraft -- humanity's farthest and longest-lived mission -- on Tuesday, Sept. 5. The Voyagers’ original mission was to explore Jupiter and Saturn. Although the twin spacecraft are now far beyond the planets in the solar system, NASA continues to communicate with them daily as they explore the frontier where interstellar space begins.

  11. Voyager Signal Spotted By Earth Radio Telescopes

    NASA Image and Video Library

    2013-09-12

    Radio telescopes cannot see Voyager 1 in visible light, but rather see the spacecraft signal in radio light. This image of Voyager 1 signal on Feb. 21, 2013. At the time, Voyager 1 was 11.5 billion miles 18.5 billion kilometers away.

  12. A Voyage through the Heliosphere (Invited)

    NASA Astrophysics Data System (ADS)

    Burlaga, L. F.

    2009-12-01

    Parker adopted the word “Heliosphere” to denote “the region of interstellar space swept out by the solar wind” His book “Interplanetary Dynamical Processes” (1963) provided “a comprehensive self-consistent dynamical picture of interplanetary activity” on spatial scales from the Larmor radius to the outermost limits of the heliosphere and over a broad range of temporal scales. The spacecraft Voyagers 1 and 2 have taken us on a journey through much of the heliosphere: from Earth, past the termination shock near 90 AU, and into the inner heliosheath. This talk will use magnetic field observations from V1 and V2 to illustrate how Parker’s dynamical picture has been largely confirmed by observations out to ~100 AU. It will also discuss some “complicating aspects of the dynamics…which will turn up in future observations…” that Parker envisaged. With continued funding, the Voyager spacecraft will allow us to explore the heliosheath, cross the boundary of the heliosphere, and sample the local interstellar medium, guided by still untested predictions of Parker.

  13. Voyager at Uranus: 1986

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The voyager 2 spacecraft begins its initial observations of Uranus November 4, 1985, and makes its final observation February 25, 1996. The data from the infrared interfermometer spectrometer, photopolarimeters, plasma wave, plasma detecter, and ultraviolet spectrometer will be processed to add a large block of infermation to the small amount already known. The trajectory of Voyager 2 is also discussed.

  14. Historical Reveiw of Interstellar Probe Concepts and Examination of Payload Mass Considerations for Different System Architectures

    NASA Astrophysics Data System (ADS)

    Long, K.

    2017-12-01

    The ability to send a space probe beyond the Voyager probes, through the interstellar medium and towardsthe distant stars, has long been the ambition of both the science ction literature but also a small community ofadvocates that have argued for a broader and deeper vision of space exploration that goes outside of our SolarSystem. In this paper we discuss some of the historical interstellar probe concepts which are propelled usingdierent types of propulsion technology, from energetic reaction engines to directed energy beaming, and considerthe payload mass associated with such concepts. We compare and contrast the dierent design concepts, payloadmass fractions, powers and energies and discuss the implications for robotic space exploration within the stellarneighbourhood. Finally, we consider the Breakthrough Starshot initiative, which proposes to send a Gram-scalelaser driven spacecraft to the Alpha Centauri system in a 20 year mission travelling at v 0.2c. We show howthis is a good start in pushing our robotic probes towards interstellar destinations, but also discuss the potentialfor scaling up this systems architecture to missions closer at home, or higher mass missions wider aeld. This is apresentation for the American Geophysical Union at the AGU Fall meeting, New Orleans, 11-15 December 2017,Special Session on the Interstellar Probe Missions.Keywords: Interstellar Probe, Breakthrough Starshot

  15. Solar-Heliospheric-Interstellar Cosmic Ray Tour with the NASA Virtual Energetic Particle Observatory and the Space Physics Data Facility

    NASA Astrophysics Data System (ADS)

    Cooper, John F.; Papitashvili, Natalia E.; Johnson, Rita C.; Lal, Nand; McGuire, Robert E.

    2015-04-01

    NASA now has a large collection of solar, heliospheric, and local interstellar (Voyager 1) cosmic ray particle data sets that can be accessed through the data system services of the NASA Virtual Energetic Particle Observatory (VEPO) in collaboration with the NASA Space Physics Data Facility SPDF), respectively led by the first and last authors. The VEPO services were developed to enhance the long-existing OMNIWeb solar wind and energetic particle services of SPDF for on-line browse, correlative, and statistical analysis of NASA and ESA mission fields, plasma, and energetic particle data. In this presentation we take of tour through VEPO and SPDF of SEP reservoir events, the outer heliosphere earlier surveyed by the Pioneer, Voyager, and Ulysses spacecraft and now being probed by New Horizons, and the heliosheath-heliopause-interstellar regions now being explored by the Voyagers and IBEX. Implications of the latter measurements are also considered for the flux spectra of low to high energy cosmic rays in interstellar space.

  16. Voyages Guided by the Skies: Ancient Concepts of Exploring and Domesticating Time and Space across Cultures

    NASA Astrophysics Data System (ADS)

    Rappenglück, Michael A.

    2015-05-01

    Persistence and change are necessary for the stability and development of both the human individual and the human society, since the beginnings of human history. Man needs a static framework which, related to his self-awareness, defines a topocentric system of perception, evaluation, order, and meaning. He also requires a dynamic impetus, which allows exceeding the limits of special world views, shifting of perspectives and transformations of individual as well as social approaches to life. Travelling especially helped to broaden man's horizon and mind. Across cultures voyages guided by the skies are linked with practical concepts of exploring and domesticating time and space, but also figuratively with the life's journey and with other worlds, being expressed by mythic, ritual and later scientific language.

  17. 46 CFR 42.05-45 - International voyage.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES DOMESTIC AND FOREIGN VOYAGES BY SEA...) of the 1966 Convention, an international voyage means a sea voyage from any country to a port outside... solely navigating the Great Lakes. Accordingly, such vessels shall not be considered as being on an...

  18. 46 CFR 42.05-45 - International voyage.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES DOMESTIC AND FOREIGN VOYAGES BY SEA...) of the 1966 Convention, an international voyage means a sea voyage from any country to a port outside... solely navigating the Great Lakes. Accordingly, such vessels shall not be considered as being on an...

  19. 46 CFR 42.05-45 - International voyage.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES DOMESTIC AND FOREIGN VOYAGES BY SEA...) of the 1966 Convention, an international voyage means a sea voyage from any country to a port outside... solely navigating the Great Lakes. Accordingly, such vessels shall not be considered as being on an...

  20. 46 CFR 42.05-45 - International voyage.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES DOMESTIC AND FOREIGN VOYAGES BY SEA...) of the 1966 Convention, an international voyage means a sea voyage from any country to a port outside... solely navigating the Great Lakes. Accordingly, such vessels shall not be considered as being on an...

  1. Attitude control fault protection - The Voyager experience

    NASA Technical Reports Server (NTRS)

    Litty, E. C.

    1980-01-01

    The length of the Voyager mission and the communication delay caused by the distances involved made fault protection a necessary part of the Voyager Attitude and Articulation Control Subsystem (AACS) design. An overview of the Voyager attitude control fault protection is given and flight experiences relating to fault protection are provided.

  2. 46 CFR 46.05-15 - Coastwise voyages.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... and navigates on the high seas, and then returns to the same port or place. ... VESSELS Definitions Used in This Part § 46.05-15 Coastwise voyages. (a) A coastwise voyage by sea, for the... possession, and passes outside the line dividing inland waters from the high seas (a voyage exclusively on...

  3. 46 CFR 46.05-15 - Coastwise voyages.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... and navigates on the high seas, and then returns to the same port or place. ... VESSELS Definitions Used in This Part § 46.05-15 Coastwise voyages. (a) A coastwise voyage by sea, for the... possession, and passes outside the line dividing inland waters from the high seas (a voyage exclusively on...

  4. 46 CFR 46.05-15 - Coastwise voyages.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... and navigates on the high seas, and then returns to the same port or place. ... VESSELS Definitions Used in This Part § 46.05-15 Coastwise voyages. (a) A coastwise voyage by sea, for the... possession, and passes outside the line dividing inland waters from the high seas (a voyage exclusively on...

  5. 46 CFR 46.05-15 - Coastwise voyages.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... and navigates on the high seas, and then returns to the same port or place. ... VESSELS Definitions Used in This Part § 46.05-15 Coastwise voyages. (a) A coastwise voyage by sea, for the... possession, and passes outside the line dividing inland waters from the high seas (a voyage exclusively on...

  6. 46 CFR 46.05-15 - Coastwise voyages.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... and navigates on the high seas, and then returns to the same port or place. ... VESSELS Definitions Used in This Part § 46.05-15 Coastwise voyages. (a) A coastwise voyage by sea, for the... possession, and passes outside the line dividing inland waters from the high seas (a voyage exclusively on...

  7. 46 CFR 188.10-35 - International voyage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... International Convention for Safety of Life at Sea, 1974, does not apply to vessels “solely navigating the Great... International Convention for Safety of Life at Sea, 1974, i.e., International voyage means a voyage from a... International Convention for Safety of Life at Sea, 1974, such voyages are similar in nature and shall be...

  8. 46 CFR 188.10-35 - International voyage.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... International Convention for Safety of Life at Sea, 1974, does not apply to vessels “solely navigating the Great... International Convention for Safety of Life at Sea, 1974, i.e., International voyage means a voyage from a... International Convention for Safety of Life at Sea, 1974, such voyages are similar in nature and shall be...

  9. 46 CFR 188.10-35 - International voyage.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... International Convention for Safety of Life at Sea, 1974, does not apply to vessels “solely navigating the Great... International Convention for Safety of Life at Sea, 1974, i.e., International voyage means a voyage from a... International Convention for Safety of Life at Sea, 1974, such voyages are similar in nature and shall be...

  10. 46 CFR 188.10-35 - International voyage.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... International Convention for Safety of Life at Sea, 1974, does not apply to vessels “solely navigating the Great... International Convention for Safety of Life at Sea, 1974, i.e., International voyage means a voyage from a... International Convention for Safety of Life at Sea, 1974, such voyages are similar in nature and shall be...

  11. 46 CFR 188.10-35 - International voyage.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... International Convention for Safety of Life at Sea, 1974, does not apply to vessels “solely navigating the Great... International Convention for Safety of Life at Sea, 1974, i.e., International voyage means a voyage from a... International Convention for Safety of Life at Sea, 1974, such voyages are similar in nature and shall be...

  12. Jupiter and the Voyager mission

    USGS Publications Warehouse

    Soderblom, L.; Spall, Henry

    1980-01-01

    In 1977, the United States launched two unmanned Voyager spacecraft that were to take part in an extensive reconnaissance of the outer planets over a 12-year period visiting the environs of Jupiter, Saturn, Uranus, and Neptune. Their first encounter was with the complex Jupiter planetary system 400 million miles away. Sweeping by Jupiter and its five moons in 1979, the two spacecraft have sent back to Earth an enormous amount of data that will prove to be vital in understanding our solar system. Voyager 1 is scheduled to fly past Saturn on November 13 of this year; Voyager 2, in August of the following year. 

  13. Voyager 1: Encounter with Jupiter

    NASA Technical Reports Server (NTRS)

    1979-01-01

    An overview of the Voyager is presented along with samples of the nearly 19,000 photographs returned by Voyager 1 spacecraft at the midpoint of its 38-month mission to Jupiter and Saturn. Particular emphasis is given to color photographs of the Great Red Spot, and the surface features of the Gallilean satellites.

  14. Voyager Special Cargo: The Golden Record

    NASA Image and Video Library

    2011-04-29

    This image highlights the special cargo onboard NASA Voyager spacecraft: the Golden Record. Each of the two Voyager spacecraft launched in 1977 carry a 12-inch gold-plated phonograph record with images and sounds from Earth.

  15. Planning the Voyager spacecraft's mission to Uranus

    NASA Technical Reports Server (NTRS)

    Plagemann, Stephen H.

    1987-01-01

    The application of the systems engineering process to the planning of the Voyager spacecraft mission is described. The Mission Planning Office prepared guidelines that controlled the use of the project and multimission resources and spacecraft consumables in order to obtain valuable scientific data at an acceptable risk level. Examples of mission planning which are concerned with the design of the Deep Space Network antenna, the uplink window for transmitting computer command subsystem loads, and the contingency and risk assessment functions are presented.

  16. The ISS as a platform for a fully simulated mars voyage

    NASA Astrophysics Data System (ADS)

    Narici, Livio; Reitz, Guenther

    2016-07-01

    The ISS can mimic the impact of microgravity, radiation, living and psychological conditions that astronauts will face during a deep space cruise, for example to Mars. This suggests the ISS as the most valuable "analogue" for deep space exploration. NASA has indeed suggested a 'full-up deep space simulation on last available ISS Mission: 6/7 crew for one year duration; full simulation of time delays & autonomous operations'. This idea should be pushed further. It is indeed conceivable to use the ISS as the final "analogue", performing a real 'dry-run' of a deep space mission (such as a mission to Mars), as close as reasonably possible to what will be the real voyage. This Mars ISS dry run (ISS4Mars) would last 500-800 days, mimicking most of the challenges which will be undertaken such as length, isolation, food provision, decision making, time delays, health monitoring diagnostic and therapeutic actions and more: not a collection of "single experiments", but a complete exploration simulation were all the pieces will come together for the first in space simulated Mars voyage. Most of these challenges are the same that those that will be encountered during a Moon voyage, with the most evident exceptions being the duration and the communication delay. At the time of the Mars ISS dry run all the science and technological challenges will have to be mostly solved by dedicated works. These solutions will be synergistically deployed in the dry run which will simulate all the different aspects of the voyage, the trip to Mars, the permanence on the planet and the return to Earth. During the dry run i) There will be no arrivals/departure of spacecrafts; 2) Proper communications delay with ground will be simulated; 3) Decision processes will migrate from Ground to ISS; 4) Permanence on Mars will be simulated. Mars ISS dry run will use just a portion of the ISS which will be totally isolated from the rest of the ISS, leaving to the other ISS portions the task to provide the

  17. Calibration of the Voyager Ultraviolet Spectrometers and the Composition of the Heliosphere Neutrals: Reassessment

    NASA Astrophysics Data System (ADS)

    Ben-Jaffel, Lotfi; Holberg, J. B.

    2016-06-01

    The data harvest from the Voyagers’ (V 1 and V 2) Ultraviolet Spectrometers (UVS) covers encounters with the outer planets, measurements of the heliosphere sky-background, and stellar spectrophotometry. Because their period of operation overlaps with many ultraviolet missions, the calibration of V1 and V2 UVS with other spectrometers is invaluable. Here we revisit the UVS calibration to assess the intriguing sensitivity enhancements of 243% (V1) and 156% (V2) proposed recently. Using the Lyα airglow from Saturn, observed in situ by both Voyagers, and remotely by International Ultraviolet Explorer (IUE), we match the Voyager values to IUE, taking into account the shape of the Saturn Lyα line observed with the Goddard High Resolution Spectrograph on board the Hubble Space Telescope. For all known ranges of the interplanetary hydrogen density, we show that the V1 and V2 UVS sensitivities cannot be enhanced by the amounts thus far proposed. The same diagnostic holds for distinct channels covering the diffuse He I 58.4 nm emission. Our prescription is to keep the original calibration of the Voyager UVS with a maximum uncertainty of 30%, making both instruments some of the most stable EUV/FUV spectrographs in the history of space exploration. In that frame, we reassess the excess Lyα emission detected by Voyager UVS deep in the heliosphere, to show its consistency with a heliospheric but not galactic origin. Our finding confirms results obtained nearly two decades ago—namely, the UVS discovery of the distortion of the heliosphere and the corresponding obliquity of the local interstellar magnetic field (˜ 40^\\circ from upwind) in the solar system neighborhood—without requiring any revision of the Voyager UVS calibration.

  18. Measuring the Local ISM along the Sight Lines of the Two Voyager Spacecraft with HST/STIS

    NASA Astrophysics Data System (ADS)

    Zachary, Julia; Redfield, Seth; Linsky, Jeffrey L.; Wood, Brian E.

    2018-05-01

    In 2012 August, Voyager 1 crossed the heliopause, becoming the first human-made object to exit the solar system. This milestone signifies the beginning of an important new era for local interstellar medium (LISM) exploration. We present measurements of the structure and composition of the LISM in the immediate path of the Voyager spacecraft by using high-resolution Hubble Space Telescope (HST) spectra of nearby stars that lie along the same lines of sight. We provide a comprehensive inventory of LISM absorption in the near-ultraviolet (2600–2800 Å) and far-ultraviolet (1200–1500 Å). The LISM absorption profiles are used to make comparisons between each pair of closely spaced (<15°) sight lines. With fits to several absorption lines, we make measurements of the physical properties of the LISM. We estimate electron density along the Voyager 2 sight line, and our values are consistent with recent measurements by Voyager 1. Excess absorption in the H I Lyα line displays the presence of both the heliosphere and an astrosphere around GJ 780. This is only the 14th detection of an astrosphere, and the large mass-loss rate (\\dot{M}=10 {\\dot{M}}ȯ ) is consistent with other subgiant stars. The heliospheric absorption matches the predicted strength for a sight line 58° from the upwind direction. As both HST and Voyager reach the end of their lifetimes, we have the opportunity to synthesize their respective observations, combining in situ measurements with the shortest possible line-of-sight measurements to study the Galactic ISM surrounding the Sun.

  19. The Voyager encounter with Uranus and Neptune

    NASA Technical Reports Server (NTRS)

    Miner, Ellis D.

    1986-01-01

    Voyager 2 approaches Uranus at a relative low phase angle and high southerly latitude. Only when the spacecraft is very close to Uranus does the geometry change appreciably. Most of the important observations occur within six hours of closest approach. Voyager flies through an Earth and solar occulation zone and leaves Uranus at a relatively high phase angle of about 145 degrees. There isn't much of an opportunity to look at the equatorial region of the planet. At Neptune, on the other hand, the approach is more nearly equatorial (about 35 deg S lat). Voyager 2 will come much closer to Nepture than to any of the other gas giants as it skims within about 2000 km of Neptune's cloudtops. It will pass through earth and solar occultation zones at both Neptune and its satellite, Triton. Again, Voyager 2 will leave Neptune at about 35 deg S latitude. Voyager operational instrument, interplanetary trajectories and planetary encounters are briefly discussed.

  20. Voyager 1 'Blue Movie'

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This is the original Voyager 'Blue Movie' (so named because it was built from Blue filter images). It records the approach of Voyager 1 during a period of over 60 Jupiter days. Notice the difference in speed and direction of the various zones of the atmosphere. The interaction of the atmospheric clouds and storms shows how dynamic the Jovian atmosphere is.

    As Voyager 1 approached Jupiter in 1979, it took images of the planet at regular intervals. This sequence is made from 66 images taken once every Jupiter rotation period (about 10 hours). This time-lapse movie uses images taken every time Jupiter longitude 68W passed under the spacecraft. These images were acquired in the Blue filter from Jan. 6 to Feb. 3 1979. The spacecraft flew from 58 million kilometers to 31 million kilometers from Jupiter during that time.

    This time-lapse movie was produced at JPL by the Image Processing Laboratory in 1979.

  1. Voyager Reading Programs. What Works Clearinghouse Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2010

    2010-01-01

    "Voyager Passport"[TM] is a supplemental reading intervention system for students in grades K-5. "Voyager Passport Reading Journeys"[TM] is a reading intervention program designed for adolescents who struggle with reading. The "Voyager Universal Literacy System"[R] is a K-3 reading program that includes a core reading…

  2. IBEX: The Evolving Global View and Synergies with In Situ Voyager Observations

    NASA Astrophysics Data System (ADS)

    McComas, D. J.

    2015-12-01

    The Interstellar Boundary Explorer (IBEX) has now returned nearly seven years of observations, which comprise 14 full sets of energy resolved all-sky maps and provide the global view of our Sun's interaction with very local part of the galaxy. With such a long baseline of observations, we are able to examine time variations in the outer heliosphere as it responds to both 11-year solar cycle variations and longer term secular evolution of the three dimensional solar wind. Now that we have collected over half a solar cycle of observations, IBEX is beginning to show us how the heliosphere - our home in the galaxy - varies in time as well as space. In this talk we present the most recent observations and review some other recent discoveries from IBEX. We also examine the synergy between the global view provided by IBEX and the in situ observations form the Voyager 1 and 2 spacecraft. Finally, we discuss the incredible improvement in interstellar observations - and our understanding of the local interstellar medium - that the Interstellar Mapping and Acceleration Probe (IMAP) will provide.

  3. Heliospheric and Local Interstellar Space Weathering Environments of Extreme Kuiper Belt Objects

    NASA Astrophysics Data System (ADS)

    Cooper, J. F.; Sturner, S. J.

    2017-12-01

    Since the first direct detection of a Kuiper Belt Object (KBO), (15760) 1992 QB1, in 1992, observational evidence via direct detection has accumulated for thousands (and via inference for hundreds of thousands) of small to large icy bodies that populate the solar system from within the supersonic heliosphere out into the local interstellar medium (LISM). These objects have mainly been discovered when within the heliosphere but the orbits of the more extreme KBOs, fifteen percent of the total known KBO population, take them out into the heliosheath and about half of these continue further out into the LISM. Continuing observations will inevitably increase the known inventory of extreme KBOs, possibly including a few that may be accessible as near-encounter targets for a future interstellar probe mission directed beyond 200 AU into the upstream LISM. Here we review the known population of extreme KBOs and address the properties of the heliospheric and LISM environments that could potentially affect object visibility and surface composition. The twin Voyager spacecraft are our present source of in-situ measurements for the plasma and energetic particle environments, except that there are no plasma data from Voyager 1. Voyager 1 and 2 are now respectively in the LISM and the heliosheath after earlier passing through the outer regions of the supersonic heliosphere upstream of the solar wind termination shock. The Voyager data coverage is complemented by energetic neutral atom (ENA) measurements of the Interstellar Background Explorer (IBEX) and Cassini Orbiter spacecraft that can be used to infer proton flux spectra from models of ENA production in the outer heliosphere. High radiation background in the LISM has precluded sub-MeV energetic ion measurements by Voyager 1, so we use limits from Cummings et al. (ApJ, 2016) for molecular cloud ionization. This would be an important energy region to cover with interstellar probe measurements. These sources of plasma and

  4. Radiometric performance of the Voyager cameras

    NASA Technical Reports Server (NTRS)

    Danielson, G. E.; Kupferman, P. N.; Johnson, T. V.; Soderblom, L. A.

    1981-01-01

    The Voyager Imaging Experiment provided high-quality data of Jupiter and the Galilean satellites with the two flyby trajectories in March and July of 1979. Moderately accurate radiometric measurements have been made using these data. This paper evaluates the radiometric results and describes the inflight and ground geometric and radiometric correction factors. The radiometric quantities of intensity I and geometric albedo I/F are derived, and scaling factors for each of the filters are tabulated for correcting the 'calibrated' data from the Image Processing Laboratory at JPL. In addition, the key characteristics of both Voyager I and Voyager 2 cameras are tabulated.

  5. Interstellar Mapping and Acceleration Probe (IMAP)

    NASA Astrophysics Data System (ADS)

    Schwadron, N. A.; Opher, M.; Kasper, J.; Mewaldt, R.; Moebius, E.; Spence, H. E.; Zurbuchen, T. H.

    2016-11-01

    Our piece of cosmic real estate, the heliosphere, is the domain of all human existence - an astrophysical case history of the successful evolution of life in a habitable system. By exploring our global heliosphere and its myriad interactions, we develop key physical knowledge of the interstellar interactions that influence exoplanetary habitability as well as the distant history and destiny of our solar system and world. IBEX is the first mission to explore the global heliosphere and in concert with Voyager 1 and Voyager 2 is discovering a fundamentally new and uncharted physical domain of the outer heliosphere. In parallel, Cassini/INCA maps the global heliosphere at energies (˜5-55 keV) above those measured by IBEX. The enigmatic IBEX ribbon and the INCA belt were unanticipated discoveries demonstrating that much of what we know or think we understand about the outer heliosphere needs to be revised. This paper summarizes the next quantum leap enabled by IMAP that will open new windows on the frontier of Heliophysics at a time when the space environment is rapidly evolving. IMAP with 100 times the combined resolution and sensitivity of IBEX and INCA will discover the substructure of the IBEX ribbon and will reveal, with unprecedented resolution, global maps of our heliosphere. The remarkable synergy between IMAP, Voyager 1 and Voyager 2 will remain for at least the next decade as Voyager 1 pushes further into the interstellar domain and Voyager 2 moves through the heliosheath. Voyager 2 moves outward in the same region of sky covered by a portion of the IBEX ribbon. Voyager 2’s plasma measurements will create singular opportunities for discovery in the context of IMAP's global measurements. IMAP, like ACE before, will be a keystone of the Heliophysics System Observatory by providing comprehensive measurements of interstellar neutral atoms and pickup ions, the solar wind distribution, composition, and magnetic field, as well as suprathermal ion, energetic

  6. Radio science ground data system for the Voyager-Neptune encounter, part 1

    NASA Technical Reports Server (NTRS)

    Kursinski, E. R.; Asmar, S. W.

    1991-01-01

    The Voyager radio science experiments at Neptune required the creation of a ground data system array that includes a Deep Space Network complex, the Parkes Radio Observatory, and the Usuda deep space tracking station. The performance requirements were based on experience with the previous Voyager encounters, as well as the scientific goals at Neptune. The requirements were stricter than those of the Uranus encounter because of the need to avoid the phase-stability problems experienced during that encounter and because the spacecraft flyby was faster and closer to the planet than previous encounters. The primary requirement on the instrument was to recover the phase and amplitude of the S- and X-band (2.3 and 8.4 GHz) signals under the dynamic conditions encountered during the occultations. The primary receiver type for the measurements was open loop with high phase-noise and frequency stability performance. The receiver filter bandwidth was predetermined based on the spacecraft's trajectory and frequency uncertainties.

  7. Voyager 2 to make closest encounter with Saturn in August

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The planned Voyager 2 Saturn mission is described. Information about Saturn obtained from the Voyager 1 encounter is summarized. Data on the satellites and rings of Saturn are tabulated. The video programming schedule for the Voyager 2 Saturn encounter is given. The Voyager science team is listed.

  8. Infrared spectrometer for Voyager

    NASA Technical Reports Server (NTRS)

    Hanel, R.; Crosby, D.; Herath, L.; Vanous, D.; Collins, D.; Creswick, H.; Harris, C.; Rhodes, M.

    1980-01-01

    The Voyager IR investigation is described, which uses a Michelson interferometer in the 180-2500/cm range, and a single-channel radiometer for the visible and near-IR, sharing a 50-cm diameter telescope. Emphasis is placed on the differences between the Voyager and the previous designs, including reductions in the field of view and in the noise equivalent spectral radiance of the instrument. Attention is given to the optical layout, the electronics module, power supply placement, thermal control heaters and flash heaters, data reduction, and calibration. A sample spectrum of Jupiter is also discussed.

  9. Aspects of Voyager photogrammetry

    NASA Technical Reports Server (NTRS)

    Wu, Sherman S. C.; Schafer, Francis J.; Jordan, Raymond; Howington, Annie-Elpis

    1987-01-01

    In January 1986, Voyager 2 took a series of pictures of Uranus and its satellites with the Imaging Science System (ISS) on board the spacecraft. Based on six stereo images from the ISS narrow-angle camera, a topographic map was compiled of the Southern Hemisphere of Miranda, one of Uranus' moons. Assuming a spherical figure, a 20-km surface relief is shown on the map. With three additional images from the ISS wide-angle camera, a control network of Miranda's Southern Hemisphere was established by analytical photogrammetry, producing 88 ground points for the control of multiple-model compilation on the AS-11AM analytical stereoplotter. Digital terrain data from the topographic map of Miranda have also been produced. By combining these data and the image data from the Voyager 2 mission, perspective views or even a movie of the mapped area can be made. The application of these newly developed techniques to Voyager 1 imagery, which includes a few overlapping pictures of Io and Ganymede, permits the compilation of contour maps or topographic profiles of these bodies on the analytical stereoplotters.

  10. Voyager Cartography

    NASA Technical Reports Server (NTRS)

    Batson, R. M.; Bridges, P. M.; Mullins, K. F.

    1985-01-01

    The Jovian and Saturnian satellites are being mapped at several scales from Voyager 1 and 2 data. The maps include specially formatted color mosaics, controlled photomosaics, and airbrush maps. More than 500 Voyager images of the Jovian and Saturnian satellites were radiometrically processed in preparation for cartographic processing. Of these images, 235 were geometrically transformed to map projections for base mosaic compilations. Special techniques for producing hybrid photomosaic/airbrush maps of Callisto are under investigation. The techniques involve making controlled computer mosaics of all available images with highest resolution images superimposed on lowest resolution images. The mosaics are then improved by airbrushing: seams and artifacts are removed, and image details enhanced that had been lost by saturation in some images. A controlled mosaic of the northern hemisphere of Rhea is complete, as is all processing for a similar mosaic of the equatorial region. Current plans and status of the various series are shown in a table.

  11. Space-brain: The negative effects of space exposure on the central nervous system.

    PubMed

    Jandial, Rahul; Hoshide, Reid; Waters, J Dawn; Limoli, Charles L

    2018-01-01

    Journey to Mars will be a large milestone for all humankind. Throughout history, we have learned lessons about the health dangers associated with exploratory voyages to expand our frontiers. Travelling through deep space, the final frontier, is planned for the 2030s by NASA. The lessons learned from the adverse health effects of space exposure have been encountered from previous, less-lengthy missions. Prolonged multiyear deep space travel to Mars could be encumbered by significant adverse health effects, which could critically affect the safety of the mission and its voyagers. In this review, we discuss the health effects of the central nervous system by space exposure. The negative effects from space radiation and microgravity have been detailed. Future aims and recommendations for the safety of the voyagers have been discussed. With proper planning and anticipation, the mission to Mars can be done safely and securely.

  12. Triumph of the Voyager mission

    USGS Publications Warehouse

    Kerr, R. A.

    1989-01-01

    It had been a long, productive trip. Launched in 1977, the two Voyager spacecraft had visited three giant planets, a dozen major Moons, three ring systems with thousands of rings composed of a myriad of tiny Moonlets. The spacecraft had returned 5 trillion bits of data and over 100,000 photographs. The last encounter in our Solar System by Voyager 2 with Neptune was to be a spectacular finale to the 12-year drama. 

  13. Voyager Sails into Market for Reading

    ERIC Educational Resources Information Center

    Manzo, Kathleen Kennedy

    2006-01-01

    This article reports how the Voyager Universal Literacy core program, which is sailing successively into the market for reading programs, has been the target of several speculations over its secrets of success. Use of the Voyager Universal Literacy program has since spread to 1,000 districts throughout the country since its introduction into the…

  14. Voyager flight engineering - Preparing for Uranus

    NASA Technical Reports Server (NTRS)

    Mclaughlin, W. I.; Wolff, D. M.

    1985-01-01

    Two Voyager spacecraft are currently engaged in exploration of the outer solar system with Voyager 2 scheduled to conduct the first close-up investigation of the planet Uranus during the period November 4, 1985 through March 3, 1986. Flight engineering for the Voyager project has the objectives of delivering a functioning spacecraft containing observing sequences to the right places at the right times. Due to the changing environment as the mission has progressed outward from Jupiter to Saturn to Uranus (and on to Neptune), this engineering task has included the development of significant new capabilities. The paper utilizes the case-study method to examine some new spacecraft capabilities in three subsystems: data, attitude and articulation control, and power. The implementation of a new navigational data-type, delta DOR, is also reviewed. An overview is given of the Voyager sequencing process for the cruise and encounter phases with a case study focusing on late updating of part of the near encounter sequence. The prospective mission to Neptune is previewed.

  15. Voyager spacecraft electrostatic discharge testing

    NASA Technical Reports Server (NTRS)

    Whittlesey, A.; Inouye, G.

    1980-01-01

    The program of environmental testing undergone by the Voyager spacecraft in order to simulate the transient voltage effects of electrostatic discharges expected in the energetic plasma environment of Jupiter is reported. The testing consists of studies of the electrostatic discharge characteristics of spacecraft dielectrics in a vacuum-chamber-electron beam facility, brief piece part sensitivity tests on such items as a MOSFET multiplexer and the grounding of the thermal blanket, and assembly tests of the magnetometer boom and the science boom. In addition, testing of a complete spacecraft was performed using two arc sources to simulate long and short duration discharge sources for successive spacecraft shielding and grounding improvements. Due to the testing program, both Voyager 1 and Voyager 2 experienced tolerable electrostatic discharge-caused transient anomalies in science and engineering subsystems, however, a closer duplication of the spacecraft environment is necessary to predict and design actual spacecraft responses more accurately.

  16. SEAC 2011 Stars and Stones: Voyages in Archaeoastronomy and Cultural Astronomy

    NASA Astrophysics Data System (ADS)

    Pimenta, F.; Ribeiro, N.; Silva, F.; Campion, N.; Joaquinito, A.; Tirapicos, L.

    2015-05-01

    Since Prehistory the sky has always been integrated as part of the cosmovision of human societies. The sky played a fundamental role not only in the orientation in space, time organization, ritual practices or celestial divination but also as an element of power. Migrations and voyages are intrinsic to humankind, they opened the routes for cultural diffusion and trade, but also for power dominance. Following these routes is also to follow cultural diversity and how human societies met or clashed. The sky and astronomical phenomena provided the tools for time reckoning, calendar organization and celestial navigation that supported those voyages. Astronomy gives us today the capacity to reproduce the sky, opening a window through which we can glimpse how those societies perceived, integrated and manipulated the sky into their world-views and their myths and, ultimately, into their social organization. A voyage is always a meeting of different worlds and eventually a process to accept diversity and thus we challenged the participants of the 19th meeting of the European Society for Astronomy in Culture to present their papers in the form of a voyage or an encounter for the following topics: - Techniques of celestial navigation and orientation of the past. Astronomical navigation and nautical instruments in the XIVth, XVth and XVIth centuries; - Expressions of astronomical knowledge in architecture and monuments, rock art, archaeology and landscape. People migration, a meeting between different cultures; - History of astronomy. An encounter between different conceptions; - Astronomy and the Jesuits. A meeting between different worlds; - Astronomy in antiquity. A meeting between different knowledge; - Ethno-astronomy, Cultural Astronomy and myths, voyages in space and in time through different cultures; - To where is Archaeoastronomy voyaging? A round table about Archaeoastronomy, Cultural Astronomy and Education. The 19th meeting of the European Society for Astronomy in

  17. On whether or not voyager 1 has crossed the heliopause

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisk, L. A.; Gloeckler, G., E-mail: lafisk@umich.edu

    The Voyager 1 spacecraft is currently in the vicinity of the heliopause, which separates the heliosphere from the local interstellar medium. There has been a precipitous decrease in particles accelerated in the heliosphere, and a substantial increase in galactic cosmic rays (GCRs), suggesting easy escape of the former across the heliopause, and entry of the latter. The question is, has Voyager 1 actually crossed the heliopause and is it now in the interstellar medium? We contend that the evidence is inconclusive. The direction of the magnetic field observed by Voyager 1 is unchanged from the direction of the heliospheric magneticmore » field, and different from the expected direction of the interstellar magnetic field. However, the plasma density, which is measured from observations of plasma waves, is similar to the expected interstellar density and much larger than the solar wind plasma density observed by Voyager 2 (which has a working plasma detector) at smaller heliocentric distances than Voyager 1. In this paper, an analytic model is presented that is based upon and is consistent with all Voyager observations, and in which the higher plasma densities measured by Voyager 1 are due simply to compressed solar wind. Thus both the magnetic field and the plasma density observations are consistent with Voyager 1 still remaining well within the heliosheath. The model has a simple test: Voyager 1 should encounter a magnetic sector boundary crossing, where the behavior of particles accelerated in the heliosphere and the GCRs will be different from what Voyager 1 is now observing.« less

  18. The Voyager Cosmic Ray Experiment

    NASA Technical Reports Server (NTRS)

    Stilwell, D. E.; Davis, W. D.; Joyce, R. M.; Mcdonald, F. B.; Trainor, J. H.; Althouse, W. E.; Cummings, A. C.; Garrard, T. L.; Stone, E. C.; Vogt, R. E.

    1979-01-01

    The Voyager Cosmic Ray Experiment includes seven dE/dx-E telescopes to measure the energy and charge of particles with atomic numbers from 1 to 26 in the energy range 1-500 MeV/nucleon and to measure electron energy in the range from 3 to 110 MeV. Isotopic composition of hydrogen through sulfur in the range up to 75 Mev/nucleon can also be resolved. The electronic systems include a dual-gain, charge sensitive preamplifier, 4096-channel pulse height analyzers for three parameter analysis of selected events, and an event type readout polling scheme to maximize the use of available telemetry space and to enhance the occurrence of rare events in the data. Details of the detector, electronic and mechanical design are presented.

  19. DSN radio science system design and testing for Voyager-Neptune encounter

    NASA Technical Reports Server (NTRS)

    Ham, N. C.; Rebold, T. A.; Weese, J. F.

    1989-01-01

    The Deep Space Network (DSN) Radio Science System presently implemented within the Deep Space Network was designed to meet stringent requirements imposed by the demands of the Voyager-Neptune encounter and future missions. One of the initial parameters related to frequency stability is discussed. The requirement, specification, design, and methodology for measuring this parameter are described. A description of special instrumentation that was developed for the test measurements and initial test data resulting from the system tests performed at Canberra, Australia and Usuda, Japan are given.

  20. Telecommunications and data acquisition systems support for Voyager missions to Jupiter and Saturn, 1972-1981, prelaunch through Saturn encounter

    NASA Technical Reports Server (NTRS)

    Traxler, M. R.; Beauchamp, D. F.

    1983-01-01

    The Deep Space Network has supported the Voyager Project for approximately nine years, during which time implementation, testing, and operational support was provided. Four years of this time involved testing prior to launch; the final five years included network operations support and additional network implementation. Intensive and critical support intervals included launch and four planetary encounters. The telecommunications and data acquisition support for the Voyager Missions to Jupiter and Saturn are summarized.

  1. Near-Local Interstellar Medium (LISM): What we know from the Voyagers and ENA and what an Interstellar Probe (ISP) can do

    NASA Astrophysics Data System (ADS)

    Krimigis, S. M.

    2017-12-01

    In situ measurements by the two Voyagers over the past 13 years have revealed the presence of the long-predicted termination shock (TS) and heliopause (HP), albeit not where theory had placed them. Further, the advent of energetic neutral atom (ENA) imaging by Cassini/INCA since 2003 and IBEX since 2009 have provided images of the global heliosphere that have challenged our long-held views of its shape and the processes that are dominant in its formation (Krimigis et al, and McComas et al, 2009; Dialynas et al, 2017). In addition, continuing measurements from Voyager 1 beyond the HP, now at 140 AU (1 AU=1.5x108 km, the Sun-Earth distance), have shown that the influence of the Sun extends well beyond the HP (at 122 AU). This influence is manifested through the occasional appearance of anisotropies in the galactic cosmic rays (GCR) where none were predicted, that last as long as a year and are accompanied by electron plasma oscillations in the vicinity of the spacecraft. Thus, an ISP mission with a fast ( 15 AU per year compared to Voyager's 3.6) trajectory would traverse a dynamic region near and beyond the TS and HP, and enable imaging the shape of the heliosphere from beyond its boundaries through ENA. In situ measurements should include the ISM magnetic field (ISMF), plasma density and distribution function, plasma waves, and neutral atom density and composition, as a minimum. All of these measurements would be new information with modern instrumentation that would place the very limited Voyager measurements into the proper context. References: Krimigis, S. M., D. G. Mitchell, E. C. Roelof, K. C. Hsieh and D. J. McComas, Imaging the Interaction of the Heliosphere with the Interstellar Medium from Saturn with Cassini, Science, 326, 5955, p. 971, doi: 10.1126/science.1181079, 2009 McComas, D. J., et al, Global Observations of the Interstellar Interaction from the Interstellar Boundary Explorer (IBEX), Science, 326, 5955, pp. 959, doi: 10.1126/science.1180906, 2009

  2. 46 CFR 42.05-45 - International voyage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... such country, or conversely. For this purpose, every territory for the international relations of which... 46 Shipping 2 2010-10-01 2010-10-01 false International voyage. 42.05-45 Section 42.05-45 Shipping... Definition of Terms Used in This Subchapter § 42.05-45 International voyage. (a) The term international...

  3. Voyager backgrounder

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The Voyager spacecraft and experiments are described. The spacecraft description includes the structure and configuration, communications systems, power supplies, computer command subsystems, and the science platform. The experiments discussed are investigations of cosmic rays, low-energy charged particles, magnetic fields, and plasma waves, along with studies in radio astronomy photopolarimetry. The tracking and data acquisition procedures for the missions are presented.

  4. IS VOYAGER 1 INSIDE AN INTERSTELLAR FLUX TRANSFER EVENT?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwadron, N. A.; McComas, D. J., E-mail: n.schwadron@unh.edu

    Plasma wave observations from Voyager 1 have recently shown large increases in plasma density, to about 0.1 cm{sup –3}, consistent with the density of the local interstellar medium. However, corresponding magnetic field observations continue to show the spiral magnetic field direction observed throughout the inner heliosheath. These apparently contradictory observations may be reconciled if Voyager 1 is inside an interstellar flux transfer event—similar to flux transfer events routinely seen at the Earth's magnetopause. If this were the case, Voyager 1 remains inside the heliopause and based on the Voyager 1 observations we can determine the polarity of the interstellar magnetic field for the first time.

  5. Interagency telemetry arraying for Voyager-Neptune encounter

    NASA Technical Reports Server (NTRS)

    Brown, D. W.; Brundage, W. D.; Ulvestad, J. S.; Kent, S. S.; Bartos, K. P.

    1990-01-01

    The reception capability of the Deep Space Network (DSN) has been improved over the years by increasing both the size and number of antennas at each complex to meet spacecraft-support requirements. However, even more aperture was required for the final planetary encounters of the Voyager 2 spacecraft. This need was met by arraying one radio astronomy observatory with the DSN complex in the United States and another with the complex in Australia. Following a review of augmentation for the Uranus encounter, both the preparation at the National Radio Astronomy (NRAO) Very Large Array (VLA) and the Neptune encounter results for the Parkes-Canberra and VLA-Goldstone arrays are presented.

  6. Enhancing Resilience in Youth through a 10-Day Developmental Voyage

    ERIC Educational Resources Information Center

    Hayhurst, Jill; Hunter, John A.; Kafka, Sarah; Boyes, Mike

    2015-01-01

    The present study sought to examine the potential for resilience to be enhanced in a group of youth participating in a developmental voyage, and to identify the factors that contribute to increased resilience following the voyage. Two studies are reported. Study 1 revealed that voyage participants experienced increased resilience over the course…

  7. Recent Measurement of Energetic Particles from Voyagers 1 and 2

    NASA Astrophysics Data System (ADS)

    Decker, R. B.; Krimigis, S. M.; Hill, M. E.; Roelof, E. C.

    2017-12-01

    We review recent measurements of energetic particles made at Voyager 2 (at 116 AU, S32 deg) in the heliosheath and at Voyager 1 (at 140 AU, N35 deg) in the local interstellar medium. Voyager 2 is 31 AU beyond its termination shock crossing (84.4 AU in August 2007), showing that the heliosheath at Voyager 2 is at least 3-4 AU thicker than that traversed by Voyager 1. In the 2017 data at Voyager 2, intensities of heliosheath ions >30 keV and electrons >20 keV have levelled off, with the ions reaching values comparable to those in 2011, following a four-year step-like recovery from minima reached in early 2013. In addition, during 2014-17, variations of the lowest energy ion intensities with scales of order several months or less tend to correlate with similar variations in the solar wind density. This similarity of relatively short-term temporal variations between the thermal and suprathermal ions was not seen in the earlier heliosheath data from Voyager 2. Voyager 1 is now about 18 AU upstream of the heliopause nose. Intensities of low-energy ions and electrons and of anomalous cosmic rays, all of which were routinely measured in the heliosheath, remain at background levels at Voyager 1 through July 2017. Angular distributions of galactic cosmic ray protons >211 MeV continue to depart from isotropy, being characterized instead by broad (0.3-0.8 year) episodes of steady intensity depletions of protons gyrating nearly perpendicular to the magnetic field. Although data in the first half of 2017 continue to show departures from isotropy, the anisotropy amplitudes are generally small, comparable to periods of quasi-isotropy measured during six-month periods in 2013-14 and in 2014-15.

  8. Gravity Probe B Space Vehicle

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The space vehicle for Gravity Probe B (GP-B) arrives at the launch site at Vandenburg Air Force Base. GP-B is the relativity experiment being developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. Scheduled for launch in 2003 and managed for NASA by the Marshall Space Flight Center, development of the GP-B is the responsibility of Stanford University, with major subcontractor Lockheed Martin Corporation.

  9. Development of a Double Hemispherical Probe for Improved Space Plasma Measurements

    NASA Astrophysics Data System (ADS)

    Wang, X.; Samaniego, J. I.; Hsu, H.-W.; Horányi, M.; Wahlund, J.-E.; Ergun, R. E.; Bering, E. A.

    2018-04-01

    Langmuir probes have been widely used for space plasma measurements for decades. However, there are still challenges in the interpretation of their measurements. Due to the interaction of the ambient plasma with a spacecraft and an onboard probe itself, the local plasma conditions around the probe could be very different from the true ambient plasma of interest. These local plasma conditions are often anisotropic and/or inhomogeneous. Most of the Langmuir probes that are made of a single electrode have difficulties to remove these local plasma effects, introducing errors in the derived plasma characteristics. Directional probes are able to characterize anisotropic and inhomogeneous plasmas. The split Langmuir probe and the Segmented Langmuir Probe have been developed to characterize the plasma flow in the Earth's ionosphere. Here we introduce a new type of a directional Langmuir probe, the Double Hemispherical Probe (DHP), to improve the space plasma measurements in a broad range of scenarios: (a) low-density plasmas, (b) high surface-emission (photo and/or secondary electron emission) environments, (c) flowing plasmas, and (d) dust-rich plasma environments. The DHP consists of two identical hemispheres that are electrically insulated and swept with the same voltages simultaneously. The difference currents between the two hemispheres are used to characterize the anisotropic/inhomogeneous plasma conditions created around the probe, which will be then removed or minimized on the interpretation of their current-voltage curves. This paper describes the basic concept and design of the DHP sensor, as well as its initial results tested in the laboratory plasma environments.

  10. The Interstellar Mapping and Acceleration Probe - A Mission to Discover the Origin of Particle Acceleration and its Fundamental Connection to the Global Interstellar Interaction

    NASA Astrophysics Data System (ADS)

    Schwadron, N.

    2017-12-01

    Our piece of cosmic real-estate, the heliosphere, is the domain of all human existence - an astrophysical case-history of the successful evolution of life in a habitable system. The Interstellar Boundary Explorer (IBEX) was the first mission to explore the global heliosphere and in concert with Voyager 1 and Voyager 2 is discovering a fundamentally new and uncharted physical domain of the outer heliosphere. In parallel, Cassini/INCA maps the global heliosphere at energies ( 5-55 keV) above those measured by IBEX. The enigmatic IBEX ribbon and the INCA belt were unanticipated discoveries demonstrating that much of what we know or think we understand about the outer heliosphere needs to be revised. The global structure of the heliosphere is highly complex and influenced by competing factors ranging from the local interstellar magnetic field, suprathermal populations both within and beyond the heliopause, and the detailed flow properties of the LISM. Global heliospheric structure and microphysics in turn influences the acceleration of energetic particles and creates feedbacks that modify the interstellar interaction as a whole. The next quantum leap enabled by IMAP will open new windows on the frontier of Heliophysics and probe the acceleration of suprathermal and higher energy particles at a time when the space environment is rapidly evolving. IMAP ultimately connects the acceleration processes observed directly at 1 AU with unprecedented sensitivity and temporal resolution with the global structure of our heliosphere. The remarkable synergy between IMAP, Voyager 1 and Voyager 2 will remain for at least the next decade as Voyager 1 pushes further into the interstellar domain and Voyager 2 moves through the heliosheath. IMAP, like ACE before it, will be a keystone of the Heliophysics System Observatory by providing comprehensive energetic particle, pickup ion, suprathermal ion, neutral atom, solar wind, solar wind heavy ion, and magnetic field observations to diagnose

  11. Advanced Receiver tracking of Voyager 2 near solar conjunction

    NASA Technical Reports Server (NTRS)

    Brown, D. H.; Hurd, W. J.; Vilnrotter, V. A.; Wiggins, J. D.

    1988-01-01

    The Advanced Receiver (ARX) was used to track the Voyager 2 spacecraft at low Sun-Earth-Probe (SEP) angles near solar conjunction in December of 1987. The received carrier signal exhibited strong fluctuations in both phase and amplitude. The ARX used spectral estimation and mathematical modeling of the phase and receiver noise processes to set an optimum carrier tracking bandwidth. This minimized the mean square phase error in tracking carrier phase and thus minimized the loss in the telemetry signal-to-noise ratio due to the carrier loop. Recovered symbol SNRs and errors in decoded engineering data for the ARX are compared with those for the current Block 3 telemetry stream. Optimum bandwidths are plotted against SEP angle. Measurements of the power spectral density of the solar phase and amplitude fluctuations are also given.

  12. Van Allen Probes Science Gateway and Space Weather Data Processing

    NASA Astrophysics Data System (ADS)

    Romeo, G.; Barnes, R. J.; Weiss, M.; Fox, N. J.; Mauk, B.; Potter, M.; Kessel, R.

    2014-12-01

    The Van Allen Probes Science Gateway acts as a centralized interface to the instrument Science Operation Centers (SOCs), provides mission planning tools, and hosts a number of science related activities such as the mission bibliography. Most importantly, the Gateway acts as the primary site for processing and delivering the VAP Space Weather data to users. Over the past year, the web-site has been completely redesigned with the focus on easier navigation and improvements of the existing tools such as the orbit plotter, position calculator and magnetic footprint tool. In addition, a new data plotting facility has been added. Based on HTML5, which allows users to interactively plot Van Allen Probes summary and space weather data. The user can tailor the tool to display exactly the plot they wish to see and then share this with other users via either a URL or by QR code. Various types of plots can be created, including simple time series, data plotted as a function of orbital location, and time versus L-Shell. We discuss the new Van Allen Probes Science Gateway and the Space Weather Data Pipeline.

  13. Titan: Evidence for seasonal change - A comparison of Hubble Space Telescope and Voyager images

    NASA Technical Reports Server (NTRS)

    Caldwell, John; Cunningham, Cindy C.; Anthony, David; White, H. P.; Groth, E. J.; Hasan, H.; Noll, K.; Smith, P. H.; Tomasko, M. G.; Weaver, H. A.

    1992-01-01

    A comparison of images of Titan obtained by the HST in August, 1990 with Voyager 1 and 2 images respectively obtained 10 and 9 years earlier has indicated a reversal of the seasonal hemispheric brightness asymmetry near 440 and 550 nm wavelengths; the northern hemisphere is in the more recent observations the brighter of the two, by about 10 percent. Titan's albedo pattern is therefore adequately explained by a seasonal model.

  14. NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy o

    NASA Image and Video Library

    2014-08-25

    Dr. David H. Grinspoon, senior scientist at the Planetary Science Institute, speaks about working on NASA's Voyager team while serving as moderator for a panel discussion at the "NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy of Exploration" event on Monday, August, 25, 2014, in the James E. Webb Auditorium at NASA Headquarters in Washington, DC. The panelists gave their accounts of Voyager's encounter with Neptune and discussed their current assignments on NASA's New Horizons mission to Pluto. Photo Credit: (NASA/Joel Kowsky)

  15. Voyager: Antenna Dish Construction

    NASA Image and Video Library

    1976-07-09

    This archival photo shows an engineer working on the construction of a large, dish-shaped Voyager high-gain antenna. The picture was taken on July 9, 1976. https://photojournal.jpl.nasa.gov/catalog/PIA21480

  16. Interstellar Probe: The Next Step To Flight

    NASA Astrophysics Data System (ADS)

    McNutt, Ralph; Zurbuchen, Thomas H.

    2016-07-01

    In the years following the discovery of the solar wind, the term "heliosphere" was coined and defined as "the region of interplanetary space where the solar wind is flowing supersonically." In June 1971, with the development of the Pioneer probes to Jupiter and beyond well underway, a session of the American Astronautical Society meeting considered scientific exploration reaching beyond the solar system and into the interstellar medium. Despite many discussions, studies, and meetings since, the most recent held under the auspices of the Keck Institute for Space Studies (8-11 September 2014 and 13-15 January 2015), such missions have been relegated to the '"future" due to the large distances and solar system escape speeds contemplated for their execution. In the meantime, the Voyager Interstellar Mission (VIM), consisting of the twin Voyager spacecraft almost 40 years since their respective launches, are making inroads into this region beyond the termination shock of the solar wind, a new region of the solid bodies of the solar system has been opened by the New Horizons flyby of the Pluto system, and the Cassini Ion and Neutral CAmera (INCA) and Interstellar Boundary Explorer (IBEX) have remotely sensed neutral atoms that have provided significant clues to the global structure of the interaction of the solar wind and interstellar medium. It is now time for a dedicated mission to the regime beyond the solar system to explore our galactic environment. A first, near-term implementation can be carried out with the near-current flight system technology. What is also clear is that the high speeds required will limit the spacecraft to a relatively small mass of no more than ~500 kg, regardless of the propulsion details. The recent success of the New Horizons mission at the Pluto system illustrates that with modern technologies, such spacecraft sizes can still accommodate the means to produce paradigm-shifting science, providing for a compelling scientific mission. The

  17. Voyager's last encounter

    NASA Technical Reports Server (NTRS)

    Miner, Ellis D.

    1989-01-01

    Preliminary results from Voyager's encounter with Neptune are reviewed. The major events of the encounter are listed and the data on the atmosphere, magnetosphere, and ring-arc region of Neptune are discussed. The communications and photographical techniques used in the mission are examined. In addition, a search for Neptune satellites is considered.

  18. Long-range planning cost model for support of future space missions by the deep space network

    NASA Technical Reports Server (NTRS)

    Sherif, J. S.; Remer, D. S.; Buchanan, H. R.

    1990-01-01

    A simple model is suggested to do long-range planning cost estimates for Deep Space Network (DSP) support of future space missions. The model estimates total DSN preparation costs and the annual distribution of these costs for long-range budgetary planning. The cost model is based on actual DSN preparation costs from four space missions: Galileo, Voyager (Uranus), Voyager (Neptune), and Magellan. The model was tested against the four projects and gave cost estimates that range from 18 percent above the actual total preparation costs of the projects to 25 percent below. The model was also compared to two other independent projects: Viking and Mariner Jupiter/Saturn (MJS later became Voyager). The model gave cost estimates that range from 2 percent (for Viking) to 10 percent (for MJS) below the actual total preparation costs of these missions.

  19. The Voyager Spacecraft. [Jupiter-Saturn mission investigations

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The configuration of the Voyager spacecraft is described as well as the subsystems for power, temperature control, attitude control, and propulsion. Major features of Jupiter and Saturn including their atmospheres, surfaces, and natural satellites are discussed. The 13 onboard experiments and their scientific objectives are explained. Other aspects covered include tracking, data acquisition, and the mission control and computing center. Members of the Voyager team and subcontractors are listed.

  20. The Future of NASA's Deep Space Network and Applications to Planetary Probe Missions

    NASA Technical Reports Server (NTRS)

    Deutsch, Leslie J.; Preston, Robert A.; Vrotsos, Peter

    2010-01-01

    NASA's Deep Space Network (DSN) has been an invaluable tool in the world's exploration of space. It has served the space-faring community for more than 45 years. The DSN has provided a primary communication pathway for planetary probes, either through direct- to-Earth links or through intermediate radio relays. In addition, its radiometric systems are critical to probe navigation and delivery to target. Finally, the radio link can also be used for direct scientific measurement of the target body ('radio science'). This paper will examine the special challenges in supporting planetary probe missions, the future evolution of the DSN and related spacecraft technology, the advantages and disadvantages of radio relay spacecraft, and the use of the DSN radio links for navigation and scientific measurements.

  1. Deep space communication - Past, present, and future

    NASA Technical Reports Server (NTRS)

    Posner, E. C.; Stevens, R.

    1984-01-01

    This paper reviews the progress made in deep space communication from its beginnings until now, describes the development and applications of NASA's Deep Space Network, and indicates directions for the future. Limiting factors in deep space communication are examined using the upcoming Voyager encounter with Uranus, centered on the downlink telemetry from spacecraft to earth, as an example. A link calculation for Voyager at Uranus over Australia is exhibited. Seven basic deep space communication functions are discussed, and technical aspects of spacecraft communication equipment, ground antennas, and ground electronics and processing are considered.

  2. A voyage to Mars: A challenge to collaboration between man and machines

    NASA Technical Reports Server (NTRS)

    Statler, Irving C.

    1991-01-01

    A speech addressing the design of man machine systems for exploration of space beyond Earth orbit from the human factors perspective is presented. Concerns relative to the design of automated and intelligent systems for the NASA Space Exploration Initiative (SEI) missions are largely based on experiences with integrating humans and comparable systems in aviation. The history, present status, and future prospect, of human factors in machine design are discussed in relation to a manned voyage to Mars. Three different cases for design philosophy are presented. The use of simulation is discussed. Recommendations for required research are given.

  3. The near real time image navigation of pictures returned by Voyager 2 at Neptune

    NASA Technical Reports Server (NTRS)

    Underwood, Ian M.; Bachman, Nathaniel J.; Taber, William L.; Wang, Tseng-Chan; Acton, Charles H.

    1990-01-01

    The development of a process for performing image navigation in near real time is described. The process was used to accurately determine the camera pointing for pictures returned by the Voyager 2 spacecraft at Neptune Encounter. Image navigation improves knowledge of the pointing of an imaging instrument at a particular epoch by correlating the spacecraft-relative locations of target bodies in inertial space with the locations of their images in a picture taken at that epoch. More than 8,500 pictures returned by Voyager 2 at Neptune were processed in near real time. The results were used in several applications, including improving pointing knowledge for nonimaging instruments ('C-smithing'), making 'Neptune, the Movie', and providing immediate access to geometrical quantities similar to those traditionally supplied in the Supplementary Experiment Data Record.

  4. Welded Titanium Case for Space-Probe Rocket Motor

    NASA Technical Reports Server (NTRS)

    Brothers, A. J.; Boundy, R. A.; Martens, H. E.; Jaffe, L. D.

    1959-01-01

    The high strength-to-weight ratio of titanium alloys suggests their use for solid-propellant rocket-motor cases for high-performance orbiting or space-probe vehicles. The paper describes the fabrication of a 6-in.-diam., 0.025-in.-wall rocket-motor from the 6A1-4V titanium alloy. The rocket-motor case, used in the fourth stage of a successful JPL-NASA lunar-probe flight, was constructed using a design previously proven satisfactory for Type 410 stainless steel. The nature and scope of the problems peculiar to the use of the titanium alloy, which effected an average weight saving of 34%, are described.

  5. Formation of relief on Europa's surface and analysis of a melting probe movement through the ice

    NASA Astrophysics Data System (ADS)

    Erokhina, O. S.; Chumachenko, E. N.; Dunham, D. W.; Aksenov, S. A.; Logashina, I. V.

    2013-12-01

    These days, studies of planetary bodies' are of great interest. And of special interest are the icy moons of the giant planets like Jupiter and Saturn. Analysis of 'Voyager 1', 'Voyager 2', 'Galileo' and 'Cassini' spacecraft data showed that icy covers were observed on Jupiter's moons Ganymede, Europa and Calisto, and Saturn's moons Titan and Enceladus. Of particular interest is the relatively smooth surface of Europa. The entire surface is covered by a system of bands, valleys, and ridges. These structures are explained by the mobility of surface ice, and the impact of stress and large-scale tectonic processes. Also conditions on these moons allow speculation about possible life, considering these moons from an astrobiological point of view. To study the planetary icy body in future space missions, one of the problems to solve is the problem of design of a special device capable of penetrating through the ice, as well as the choice of the landing site of this probe. To select a possible landing site, analysis of Europa's surface relief formation is studied. This analysis showed that compression, extention, shearing, and bending can influence some arbitrarily separated section of Europe's icy surface. The computer simulation with the finite element method (FEM) was performed to see what types of defects could arise from such effects. The analysis showed that fractures and cracks could have various forms depending on the stress-strained state arising in their vicinity. Also the problem of a melting probe's movement through the ice is considered: How the probe will move in low gravity and low atmospheric pressure; whether the hole formed in the ice will be closed when the probe penetrates far enough or not; what is the influence of the probe's characteristics on the melting process; what would be the order of magnitude of the penetration velocity. This study explores the technique based on elasto-plastic theory and so-called 'solid water' theory to estimate the

  6. Voyager 1 observes low-energy galactic cosmic rays in a region depleted of heliospheric ions.

    PubMed

    Stone, E C; Cummings, A C; McDonald, F B; Heikkila, B C; Lal, N; Webber, W R

    2013-07-12

    On 25 August 2012, Voyager 1 was at 122 astronomical units when the steady intensity of low-energy ions it had observed for the previous 6 years suddenly dropped for a third time and soon completely disappeared as the ions streamed away into interstellar space. Although the magnetic field observations indicate that Voyager 1 remained inside the heliosphere, the intensity of cosmic ray nuclei from outside the heliosphere abruptly increased. We report the spectra of galactic cosmic rays down to ~3 × 10(6) electron volts per nucleon, revealing H and He energy spectra with broad peaks from 10 × 10(6) to 40 × 10(6) electron volts per nucleon and an increasing galactic cosmic-ray electron intensity down to ~10 × 10(6) electron volts.

  7. Voyager First Science Meeting

    NASA Image and Video Library

    2016-10-27

    This archival image was released as part of a gallery comparing JPL's past and present, commemorating the 80th anniversary of NASA's Jet Propulsion Laboratory on Oct. 31, 2016. In December 1972, the science steering group for a mission then-known as Mariner Jupiter Saturn 1977 -- later renamed Voyager -- met for the first time at NASA's Jet Propulsion Laboratory in Pasadena, Calif. They are gathered on the steps in front of the administration building (180). The mission was so named because it was planning to send Mariner-class spacecraft to Jupiter and Saturn. It was renamed Voyager a few months before the launch of the twin spacecraft in August and September 1977. This photo shows principal investigators and team leaders for the science experiments and several others from the project and NASA who attended the first meeting. In the first row: Radio Science Subsystem Team Leader Von Eshleman, Project Scientist Edward Stone, Project Manager Harris (Bud) Schurmeier, Mission Analysis and Engineering Manager Ralph Miles, Magnetometer Principal Investigator Norman Ness, NASA Planetary Program Office Deputy Director Ichtiaque Rasool, Robert Soberman (who was proposed to be the principal investigator of the Particulate Matter Investigation, which was not confirmed) and an unidentified member of the NASA Office of Space Science. In the second row: Infrared Interferometer Spectrometer Principal Investigator Rudolf Hanel, Planetary Radio Astronomy Principal Investigator James Warwick, Ultraviolet and Spectrometer Principal Investigator A. Lyle Broadfoot. In the third row: Low-Energy Charged Particles Principal Investigator Stamatios (Tom) Krimigis, Cosmic Ray Subsystem Principal Investigator Rochus (Robbie) Vogt, NASA Outer Planets Missions Program Manager Warren Keller, Imaging Science Subsystem Team Leader Bradford Smith and Photopolarimeter Principal Investigator Charles Lillie. In the fourth row: Plasma Investigation Principal Investigator Herbert Bridge, Spacecraft

  8. Voyager 2 Uranus targeting strategy

    NASA Technical Reports Server (NTRS)

    Cesarone, R. J.; Gray, D. L.; Potts, C. L.; Francis, K.

    1986-01-01

    One of the major challenges involved in the Voyager 2 Uranus flyby is to deliver the spacecraft to an appropriate aimpoint at the optimum time, so as to maximize the science return of the mission, while yet keeping propellant expenditure low. An unusual targeting strategy has been devised to satisfy these requirements. Its complexity arises from the great distance of the planet Uranus and the limited performance capabilities of Voyager. This selected strategy is developed in relation to a set of candidate strategies, mission requirements and shifting science objectives. The analysis of these candidates is conducted via a Monte Carlo simulation, the results of which yield data for the comparative evaluation and eventual and selection of the actual targeting strategy to be employed.

  9. Estimating the Deep Space Network modification costs to prepare for future space missions by using major cost drivers

    NASA Technical Reports Server (NTRS)

    Remer, Donald S.; Sherif, Josef; Buchanan, Harry R.

    1993-01-01

    This paper develops a cost model to do long range planning cost estimates for Deep Space Network (DSN) support of future space missions. The paper focuses on the costs required to modify and/or enhance the DSN to prepare for future space missions. The model is a function of eight major mission cost drivers and estimates both the total cost and the annual costs of a similar future space mission. The model is derived from actual cost data from three space missions: Voyager (Uranus), Voyager (Neptune), and Magellan. Estimates derived from the model are tested against actual cost data for two independent missions, Viking and Mariner Jupiter/Saturn (MJS).

  10. Dust Impacts In the Outer Solar System Detected by Voyagers 1 and 2

    NASA Astrophysics Data System (ADS)

    Gurnett, D. A.; Persoon, A. M.; Granroth, L. J.; Kurth, W. S.

    2011-12-01

    The plasma wave instruments (PWS) on the Voyager 1 and 2 spacecraft, which are currently at about 119 and 97 AU, have been consistently detecting a low rate of dust impacts as the spacecraft proceed outward from the Sun into interstellar space. Because of the high radial velocity of the spacecraft, ~ 17 and 15 km/sec, when a dust particle strikes the spacecraft it is almost instantly vaporized and ionized, thereby producing a rapidly expanding cloud of plasma that causes a voltage pulse in the PWS electric antenna. The voltage pulse has a very rapid rise time of about 10 μs and is an easily identifiable waveform in the wideband electric field data. Due to a failure in the Voyager 2 waveform receiver no impact data are available from Voyager 2 beyond about 60 AU. However, the Voyager 1 waveform receiver is still working. Because of the very high data rates involved, 115.2 kb/s, antenna voltage waveforms can only be recorded for less than a minute per week, so the effective observing time is very small. Nonetheless, once the regions around the outer planets are excluded, a consistent background impact rate of a few impacts per hour is observed by both spacecraft. The impact rate appears to be increasing slightly with increasing radial distance, from about 3 ± 1 impacts per hour at 30 AU, to 6 ± 4 impacts per hour at 110 AU. If the impact cross-section of the spacecraft is assumed to be determined by the spacecraft high gain antenna, which has an area of 10.75 square meters, the corresponding particle flux varies from about 0.75 x 10-14 m-2 s-1 at 30 AU, to about 1.5 x 10-14 m-2 s-1 at 110 AU. Although we have no reliable method of estimating the size or origin of the particles, we note that this flux is consistent with the flux of submicron particles (10-15 to 10-9 g) arriving from interstellar space as detected by the Ulysses spacecraft at radial distances inside of 5 AU. Therefore, we believe that the particles are probably of interstellar origin.

  11. Exploring the brain, looking for thoughts: on Asimov's second Fantastic Voyage.

    PubMed

    Cassou-Noguès, Pierre

    2011-01-01

    The aim of this paper is to investigate various concerns which appear in Isaac Asimov's Fantastic Voyage II: Destination Brain. I will disregard his first voyage inside a human body in Fantastic Voyage I, which the author disavows as not being his own work. In contrast, the second voyage is intricate, suggesting problems drawn from a variety of sources. In a nutshell, Asimov's explorers enter the body of a comatose man in order to read his thoughts. The story can be related both to philosophical thought-experiments, such as those of Gottfried Wilhelm Leibniz and of Herbert Feigl, as well as to personal anxieties peculiar to Asimov.

  12. Voyager electronic parts radiation program. Volume 2: Test requirements and procedures

    NASA Technical Reports Server (NTRS)

    Stanley, A. G.; Martin, K. E.; Price, W. E.

    1978-01-01

    Documents are presented outlining the conditions and requirements of the test program. The Appendixes are as follows: appendix A -- Electron Simulation Radiation Test Specification for Voyager Electronic Parts and Devices, appendix B -- Electronic Piece-Part Testing Program for Voyager, appendix C -- Test Procedure for Radiation Screening of Voyager Piece Parts, appendix D -- Boeing In Situ Test Fixture, and appendix E -- Irradiate - Anneal (IRAN) Screening Documents.

  13. Robots Explore the Farthest Reaches of Earth and Space

    NASA Technical Reports Server (NTRS)

    2008-01-01

    "We were the first that ever burst/Into that silent sea," the title character recounts in Samuel Taylor Coleridge s opus Rime of the Ancient Mariner. This famous couplet is equally applicable to undersea exploration today as surface voyages then, and has recently been applied to space travel in the title of a chronicle of the early years of human space flight ("Into That Silent Sea: Trailblazers of the Space Era, 1961-1965"), companion to the +n the Shadow of the Moon book and movie. The parallel is certainly fitting, considering both fields explore unknown, harsh, and tantalizingly inhospitable environments. For starters, exploring the Briny Deep and the Final Frontier requires special vehicles, and the most economical and safest means for each employ remotely operated vehicles (ROVs). ROVs have proven the tool of choice for exploring remote locations, allowing scientists to explore the deepest part of the sea and the furthest reaches of the solar system with the least weight penalty, the most flexibility and specialization of design, and without the need to provide for sustaining human life, or the risk of jeopardizing that life. Most NASA probes, including the historic Voyager I and II spacecraft and especially the Mars rovers, Spirit and Opportunity, feature remote operation, but new missions and new planetary environments will demand new capabilities from the robotic explorers of the future. NASA has an acute interest in the development of specialized ROVs, as new lessons learned on Earth can be applied to new environments and increasingly complex missions in the future of space exploration.

  14. `Voyager': an educational card game

    NASA Astrophysics Data System (ADS)

    Smith, David Ryan

    2003-01-01

    `Voyager' is an educational card game involving scientific satellites, developed for use in schools with children aged 9 to 13 years. The idea of the game is to improve pupils' knowledge about the large number of scientific satellites there are in space in a fun way, while also practising numeracy skills. Several copies of the game were produced using funding obtained from the Particle Physics and Astronomy Research Council (PPARC) as a Public Understanding of Science (PUS) award. These initial `trial' versions of the game were taken to three different schools where feedback obtained from both pupils and staff was used to produce a final copy of the game that can be distributed to other schools along with a set of companion notes to form the basis of a science lesson. This article reports the findings of the school trials and indicates possible future developments of other scientific card games that could be beneficial to the classroom.

  15. Voyager 1 Near the heliopause

    DOE PAGES

    Borovikov, S. N.; Pogorelov, N. V.

    2014-02-18

    Recent observations from the Voyager 1 spacecraft show that it is sampling the local interstellar medium (LISM). This is quite surprising because no realistic, steady-state model of the solar wind (SW) interaction with the LISM gives an inner heliosheath width as narrow as ~30 AU. This includes models that assume a strong redistribution of the ion energy to the tails in the pickup ion distribution function. We show that the heliopause (HP), which separates the SW from the LISM, is not a smooth tangential discontinuity, but rather a surface subject to Rayleigh-Taylor-type instabilities which can result in LISM material penetrationmore » deep inside the SW. We also show that the HP flanks are always subject to a Kelvin-Helmholtz instability. The instabilities are considerably suppressed near the HP nose by the heliospheric magnetic field in steady-state models, but reveal themselves in the presence of solar cycle effects. Here we argue that Voyager 1 may be in one such instability region and is therefore observing plasma densities much higher than those in the pristine SW. Lastly, these results may explain the early penetration of Voyager 1 into the LISM. They also show that there is a possibility that the spacecraft may start sampling the SW again before it finally leaves the heliosphere.« less

  16. Titan. [Voyager IRIS observation of satellite atmosphere

    NASA Technical Reports Server (NTRS)

    Lunine, Jonathan I.

    1990-01-01

    Saturn's satellite Titan is the second-largest in the solar system. Its dense atmosphere is mostly molecular nitrogen with an admixture of methane, a surface pressure of 1.5 bars and a surface temperature of 94K. The fundamental driving force in the long-term evolution of Titan's atmosphere is the photolysis of methane in the stratosphere to form higher hydrocarbons and aerosols. The current rate of photolysis and undersaturation of methane in the lower troposphere suggests the presence of a massive ethane-methane-nitrogen ocean. The ocean evolves to a more ethane-rich state over geologic time, driving changes in the atmospheric thermal structure. An outstanding issue concerning Titan's earliest history is the origin of atmospheric nitrogen: was it introduced into Titan as molecular nitrogen or ammonia? Measurement of the argon-to-nitrogen ratio in the present atmosphere provides a diagnostic test of these competing hypotheses. Many of the questions raised by the Voyager encounters about Titan and its atmosphere can be adequately addressed only by an entry probe, such as that planned for the Cassini mission.

  17. Voyager to the Seventh Planet.

    ERIC Educational Resources Information Center

    Gold, Michael

    1986-01-01

    Presents recent findings obtained by the Voyager 2 mission on Uranus. Updates information on the planet's moons, rings, atmosphere, and magnetic field. Illustrations and diagrams of selected aspects of Uranus are included. (ML)

  18. Magnetic field studies at jupiter by voyager 2: preliminary results.

    PubMed

    Ness, N F; Acuna, M H; Lepping, R P; Burlaga, L F; Behannon, K W; Neubauer, F M

    1979-11-23

    Data from the Goddard Space Flight Center magnetometers on Voyager 2 have yielded on inbound trajectory observations of multiple crossings of the bow shock and magnetosphere near the Jupiter-sun line at radial distances of 99 to 66 Jupiter radii (RJ) and 72 to 62 RJ, respectively. While outbound at a local hour angle of 0300, these distances increase appreciably so that at the time of writing only the magnetopause has been observed between 160 and 185 RJ. These results and the magnetic field geometry confirm the earlier conclusion from Voyager I studies that Jupiter has an enormous magnetic tail, approximately 300 to 400 RJ in diameter, trailing behind the planet with respect to the supersonic flow of the solar wind. Addi- tional observations of the distortion of the inner magnetosphere by a concentrated plasma show a spatial merging of the equatorial magnetodisk current with the cur- rent sheet in the magnetic tail. The spacecraft passed within 62,000 kilometers of Ganymede (radius = 2,635 kilometers) and observed characteristic fluctuations in- terpreted tentatively as being due to disturbances arising from the interaction of the Jovian magnetosphere with Ganymede.

  19. Dynamic feature analysis for Voyager at the Image Processing Laboratory

    NASA Technical Reports Server (NTRS)

    Yagi, G. M.; Lorre, J. J.; Jepsen, P. L.

    1978-01-01

    Voyager 1 and 2 were launched from Cape Kennedy to Jupiter, Saturn, and beyond on September 5, 1977 and August 20, 1977. The role of the Image Processing Laboratory is to provide the Voyager Imaging Team with the necessary support to identify atmospheric features (tiepoints) for Jupiter and Saturn data, and to analyze and display them in a suitable form. This support includes the software needed to acquire and store tiepoints, the hardware needed to interactively display images and tiepoints, and the general image processing environment necessary for decalibration and enhancement of the input images. The objective is an understanding of global circulation in the atmospheres of Jupiter and Saturn. Attention is given to the Voyager imaging subsystem, the Voyager imaging science objectives, hardware, software, display monitors, a dynamic feature study, decalibration, navigation, and data base.

  20. 33 CFR 164.80 - Tests, inspections, and voyage planning.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... fleeting-area for barges or a commercial facility, and used for restricted service, such as making up or... barges, must ensure that the voyage with the barge or barges is planned, taking into account all pertinent information before the vessel embarks on the voyage. The master must check the planned route for...

  1. Energetic particle variations measured at Voyager 1 and 2 in 2013-14

    NASA Astrophysics Data System (ADS)

    Decker, R. B.; Krimigis, S. M.; Roelof, E. C.; Hill, M. E.

    2014-12-01

    In late August of 2012 Voyager 1 evidently crossed the heliopause at 121.6 AU near the nose of the heliosphere and entered the local interstellar medium (LISM). Since that time Voyager 1 has been in a relatively stable, but not steady-state region. Low-energy ion and electron intensities measured by the LECP instrument on Voyager 1 continue to be down by factors of 103 to 104 for major ion species compared to those in the heliosheath, with no evidence of anomalous cosmic rays upstream. The anisotropy of galactic cosmic ray protons >211 MeV, which reached a maximum ≈9% in April 2013, persisted for about one year after Voyager 1 entered the LISM, suggesting a transition region upstream of the heliopause of ≈4 AU. However, the increase in anisotropy has resumed, suggesting that influence of the heliosphere persists to distances ≈7 AU. In addition, small (≈1%) increases in the angular-averaged GCR proton intensities, the most recent occurring in mid-April of 2014 (at 127.5 AU), have been attributed to large disturbances due to solar activity and are also associated with activity in the Voyager 1 Plasma Wave instrument [Gurnett et al. 2014, this session]. Voyager 2 is now at 106 AU and still firmly in the heliosheath, with the lower-energy ion intensities having increased by a factor ≈3 since reaching a minimum in early 2013. Although the intensities of low-energy heliosheath ions and electrons continue to increase, they remain variable on short time scales. The spectral hardening of low-energy ions observed at Voyager 1 beginning about ≈1.5 years before its crossing of the heliopause is totally absent at Voyager 2. Hence, it appears highly unlikely that Voyager 2 is approaching the heliopause in the near future.

  2. 46 CFR 30.01-6 - Application to vessels on an international voyage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Application to vessels on an international voyage. 30.01... PROVISIONS Administration § 30.01-6 Application to vessels on an international voyage. (a) Except as provided... vessel on an international voyage apply to a vessel that: (1) Is mechanically propelled and of at least...

  3. Selecting and implementing scientific objectives. [for Voyager 1 and 2 planetary encounters

    NASA Technical Reports Server (NTRS)

    Miner, E. D.; Stembridge, C. H.; Doms, P. E.

    1985-01-01

    The procedures used to select and implement scientific objectives for the Voyager 1 and 2 planetary encounters are described. Attention is given to the scientific tradeoffs and engineering considerations must be addressed at various stages in the mission planning process, including: the limitations of ground and spacecraft communications systems, ageing of instruments in flight, and instrument calibration over long distances. The contribution of planetary science workshops to the definition of scientific objectives for deep space missions is emphasized.

  4. Probing the Structure of Our Solar System's Edge

    NASA Astrophysics Data System (ADS)

    Hensley, Kerry

    2018-02-01

    The boundary between the solar wind and the interstellar medium (ISM) at the distant edge of our solar system has been probed remotely and directly by spacecraft, but questions about its properties persist. What can models tell us about the structure of this region?The Heliopause: A Dynamic BoundarySchematic illustrating different boundaries of our solar system and the locations of the Voyager spacecraft. [Walt Feimer/NASA GSFCs Conceptual Image Lab]As our solar system travels through interstellar space, the magnetized solar wind flows outward and pushes back on the oncoming ISM, forming a bubble called the heliosphere. The clash of plasmas generates a boundary region called the heliopause, the shape of which depends strongly on the properties of the solar wind and the local ISM.Much of our understanding of the outer heliosphere and the local ISM comes from observations made by the International Boundary Explorer (IBEX) and the Voyager 1 and Voyager 2 spacecraft. IBEX makes global maps of the flux of neutral atoms, while Voyagers 1 and 2 record the plasma density and magnetic field parameters along their trajectories as they exit the solar system. In order to interpret the IBEX and Voyager observations, astronomers rely on complex models that must capture both global and local effects.Simulations of the plasma density in the meridional plane of the heliosphere due to the interaction of the solar wind with the ISM for the case of a relatively dense ISM with a weak magnetic field. [Adapted from Pogorelov et al. 2017]Modeling the Edge of the Solar SystemIn this study, Nikolai Pogorelov (University of Alabama in Huntsville) and collaborators use a hybrid magneto-hydrodynamical (MHD) and kinetic simulation to capture fully the physical processes happening in the outer heliosphere.MHD models have been used to understand many aspects of plasma flow in the heliosphere. However, they struggle to capture processes that are better described kinetically, like charge exchange

  5. COMPARISON OF PIONEER 10, VOYAGER 1, AND VOYAGER 2 ULTRAVIOLET OBSERVATIONS WITH ANTI-SOLAR LYMAN-ALPHA BACKSCATTER SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fayock, B.; Zank, G. P.; Heerikhuisen, J., E-mail: brian.fayock@gmail.com, E-mail: garyp.zank@gmail.com, E-mail: jacob.heerikhuisen@uah.edu

    Observations made by ultraviolet (UV) detectors on board Pioneer 10, Voyager 1, and Voyager 2 can be used to analyze the distribution of neutral hydrogen throughout the heliosphere, including the interaction regions of the solar wind and local interstellar medium. Previous studies of the long-term trend of decreasing intensity with increasing heliocentric distance established the need for more sophisticated heliospheric models. Here we use state-of-the-art three-dimensional (3D) magnetohydrodynamic (MHD) neutral models to simulate Lyman-alpha backscatter as would be seen by the three spacecrafts, exploiting a new 3D Monte Carlo radiative transfer code under solar minimum conditions. Both observations and simulationsmore » of the UV backscatter intensity are normalized for each spacecraft flight path at {approx}15 AU, and we focus on the slope of decreasing intensity over an increasing heliocentric distance. Comparisons of simulations with Voyager 1 Lyman-alpha data results in a very close match, while the Pioneer 10 comparison is similar due to normalization, but not considered to be in agreement. The deviations may be influenced by a low resolution of photoionization in the 3D MHD-neutral model, a lack of solar cycle activity in our simulations, and possibly issues with instrumental sensitivity. Comparing the slope of Voyager 2 and the simulated intensities yields an almost identical match. Our results predict a large increase in the Lyman-alpha intensity as the hydrogen wall is approached, which would signal an imminent crossing of the heliopause.« less

  6. Voyager Encounters Saturn: Scientific Highlights

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Observations generated by Voyager 1's encounter with Saturn are disclosed. Atmospheric conditions, the rings, new moons and the five inner moons are described. Titan, Hyperion and Iapetus are discussed in detail, as is Saturn's magnetosphere.

  7. Dedicated Caravan Sites for French Gens du Voyage

    PubMed Central

    2017-01-01

    Abstract In France, gens du voyage (“people who travel” or “travellers”) is a term used by the government to categorize various itinerant populations, the majority of which are diverse Romani groups. People categorized as gens du voyage are legally required to reside in particular locations called “dedicated caravan sites.” Parliamentary debates about these dedicated caravan sites have clarified that one of the objectives of such sites is to help fulfill the gens du voyage’s right to health. However, there is a significant gap between the officially stated goals of such sites and the reality of life within them. This paper draws on research finding that the conditions in most dedicated caravan sites do not conform with the rights of gens du voyage to acceptable sanitary conditions and other underlying determinants of health. PMID:29302165

  8. Early Voyager 1 Images of Jupiter

    NASA Technical Reports Server (NTRS)

    1978-01-01

    These Jupiter photographs are part of a set taken by Voyager 1 on December 10 and 11, 1978 from a distance of 83 million km (52 million miles) or more than half the distance from the Earth to the sun. At this range, Voyager 1 is able to record more detail on the giant planet than the very best ground-based telescopes. The highest resolution ever obtained on the Jovian disk was recorded by Pioneer 11 four years ago. Voyager, however, has longer focal-length optics than Pioneer, and while nearly three months from encounter ( March 1979) was able to achieve higher resolution than that obtained by Pioneer only 24 hours from its encounter on 3 December 1974.

    Jupiter's colorful and turbulent atmosphere is evident in these photographs. The entire visible surface of the planet is made up of multiple layers of clouds, composed primarily of ammonia ice crystals colored by small amounts of materials of unknown composition. The Great Red Spot, seen to the lower left of 2 and lower right of 3, is now recovering from a period of relative inconspicuousness. An atmospheric system larger than the Earth and more than 100 years old, the Great Red Spot remains a mystery and a challenge to Voyager instruments. A bright convective cloud (center of and right of center in 4) displays a plume which has been swept westward (to the left) by local currents in the planet's equatorial wind system.

    Below and to the left and right of the Great Red Spot are a pair of white oval clouds; a third can be seen in 1. All three were formed almost 40 years ago and are the second oldest class of discrete features identified in the Jovian atmosphere.

    Each of the pictures was produced from blue, green, and orange originals in JPL's Image Processing Laboratory.

  9. Space Weather Operation at KASI With Van Allen Probes Beacon Signals

    NASA Astrophysics Data System (ADS)

    Lee, Jongkil; Kim, Kyung-Chan; Giuseppe, Romeo; Ukhorskiy, Sasha; Sibeck, David; Kessel, Ramona; Mauk, Barry; Giles, Barbara; Gu, Bon-Jun; Lee, Hyesook; Park, Young-Deuk; Lee, Jaejin

    2018-02-01

    The Van Allen Probes (VAPs) are the only modern National Aeronautics and Space Administration (NASA) spacecraft broadcasting real-time data on the Earth's radiation belts for space weather operations. Since 2012, the Korea Astronomy and Space Science Institute (KASI) has contributed to the receipt of these data via a 7 m satellite-tracking antenna and used these beacon data for space weather operations. An approximately 15 min period is required from measurement to acquisition of Level-1 data. In this paper, we demonstrate the use of VAP data for monitoring space weather conditions at geostationary orbit (GEO) by highlighting the Saint Patrick's Day storm of 2015. During that storm, Probe-A observed a significant increase in the relativistic electron flux at 3 RE. Those electrons diffused outward resulting in a large increase of the electron flux >2 MeV at GEO, which potentially threatened satellite operations. Based on this study, we conclude that the combination of VAP data and National Oceanic and Atmospheric Administration-Geostationary Operational Environmental Satellite (NOAA-GOES) data can provide improved space environment information to geostationary satellite operators. In addition, the findings obtained indicate that more data-receiving sites would be necessary and data connections improved if this or a similar system were to be used as an operational data service.

  10. Voyager Approaches Final Frontier Artist Concept

    NASA Image and Video Library

    2003-12-12

    An artist's concept illustrates the positions of the Voyager spacecraft in relation to structures formed around our Sun by the solar wind. Also illustrated is the termination shock, a violent region the spacecraft must pass through before reaching the outer limits of the solar system. At the termination shock, the supersonic solar wind abruptly slows from an average speed of 400 kilometers per second to less than 100 kilometer per second (900,000 to less than 225,000 miles per hour). Beyond the termination shock is the solar system's final frontier, the heliosheath, a vast region where the turbulent and hot solar wind is compressed as it presses outward against the interstellar wind that is beyond the heliopause. A bow shock likely forms as the interstellar wind approaches and is deflected around the heliosphere, forcing it into a teardrop-shaped structure with a long, comet-like tail. The exact location of the termination shock is unknown, and it originally was thought to be closer to the Sun than Voyager 1 currently is. As Voyager 1 cruised ever farther from the Sun, it confirmed that all the planets are inside an immense bubble blown by the solar wind and the termination shock was much more distant. http://photojournal.jpl.nasa.gov/catalog/PIA04927

  11. Oberon at Voyager Closest Approach

    NASA Image and Video Library

    1996-01-29

    This image of Oberon, Uranus outermost moon, was captured by NASA Voyager 2 on Jan. 24, 1986. Clearly visible are several large impact craters in Oberon icy surface surrounded by bright rays. http://photojournal.jpl.nasa.gov/catalog/PIA00034

  12. Voyager investigation of the cosmic diffuse background: Observations of rocket-studied locations with Voyager

    NASA Technical Reports Server (NTRS)

    Henry, Richard C.

    1994-01-01

    Attachments to this final report include 2 papers connected with the Voyager work: 'Voyager Observations of Dust Scattering Near the Coalsack Nebula' and 'Search for the Intergalactic Medium'. An appendix of 12 one-page write-ups prepared in connection with another program, UVISI, is also included. The one-page write-ups are: (1) Sky survey of UV point sources to 600 times fainter than previous (TD-1) survey; (2) Diffuse galactic light: starlight scattered from dust at high galactic latitude; (3) Optical properties of interstellar grains; (4) Fluorescence of molecular hydrogen in the interstellar medium; (5) Line emission from hot interstellar medium and/or hot halo of galaxy; (6) Integrated light of distant galaxies in the ultraviolet; (7) Intergalactic far-ultraviolet radiation field; (8) Radiation from recombining intergalactic medium; (9) Radiation from re-heating of intergalactic medium following recombination; (10) Radiation from radiative decay of dark matter candidates (neutrino, etc.); (11) Reflectivity of the asteroids in the Ultraviolet; and (12) Zodiacal light.

  13. Ariel at Voyager Closest Approach

    NASA Image and Video Library

    2000-06-02

    This picture is part of NASA Voyager 2 imaging sequence of Ariel, a moon of Uranus taken on January 24, 1986. The complexity of Ariel surface indicates that a variety of geologic processes have occurred. http://photojournal.jpl.nasa.gov/catalog/PIA00037

  14. And Then There Was Voyager

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA's legendary grand tour of the outer solar system from the mission conception in the early 1970's is described. The search for the heliopause is discussed. This presentation is told in the words of the key members of the Voyager team.

  15. Plasma observations near saturn: initial results from voyager 2.

    PubMed

    Bridge, H S; Bagenal, F; Belcher, J W; Lazarus, A J; McNutt, R L; Sullivan, J D; Gazis, P R; Hartle, R E; Ogilvie, K W; Scudder, J D; Sittler, E C; Eviatar, A; Siscoe, G L; Goertz, C K; Vasyliunas, V M

    1982-01-29

    Results of measurements of plasma electrons and poitive ions made during the Voyager 2 encounter with Saturn have been combined with measurements from Voyager 1 and Pioneer 11 to define more clearly the configuration of plasma in the Saturnian magnetosphere. The general morphology is well represented by four regions: (i) the shocked solar wind plasma in the magnetosheath, observed between about 30 and 22 Saturn radii (RS) near the noon meridian; (ii) a variable density region between approximately 17 RS and the magnetopause; (iii) an extended thick plasma sheet between approximately 17 and approximately 7 RS symmetrical with respect to Saturn's equatorial plane and rotation axis; and (iv) an inner plasma torus that probably originates from local sources and extends inward from L approximately 7 to less than L approximately 2.7 (L is the magnetic shell parameter). In general, the heavy ions, probably O(+), are more closely confined to the equatorial plane than H(+), so that the ratio of heavy to light ions varies along the trajectory according to the distance of the spacecraft from the equatorial plane. The general configuration of the plasma sheet at Saturn found by Voyager 1 is confirmed, with some notable differences and additions. The "extended plasma sheet," observed between L approximately 7 and L approximately 15 by Voyager 1 is considerably thicker as observed by Voyager 2. Inward of L approximately 4, the plasma sheet collapses to a thin region about the equatorial plane. At the ring plane crossing, L approximately 2.7, the observations are consistent with a density of O(+) of approximately 100 per cubic centimeter, with a temperature of approximately 10 electron volts. The location of the bow shock and magnetopause crossings were consistent with those previously observed. The entire magnetosphere was larger during the outbound passage of Voyager 2 than had been previously observed; however, a magnetosphere of this size or larger is expected approximately 3

  16. A Voyager attitude control perspective on fault tolerant systems

    NASA Technical Reports Server (NTRS)

    Rasmussen, R. D.; Litty, E. C.

    1981-01-01

    In current spacecraft design, a trend can be observed to achieve greater fault tolerance through the application of on-board software dedicated to detecting and isolating failures. Whether fault tolerance through software can meet the desired objectives depends on very careful consideration and control of the system in which the software is imbedded. The considered investigation has the objective to provide some of the insight needed for the required analysis of the system. A description is given of the techniques which have been developed in this connection during the development of the Voyager spacecraft. The Voyager Galileo Attitude and Articulation Control Subsystem (AACS) fault tolerant design is discussed to emphasize basic lessons learned from this experience. The central driver of hardware redundancy implementation on Voyager was known as the 'single point failure criterion'.

  17. Interstellar Mapping and Acceleration Probe (IMAP)

    NASA Astrophysics Data System (ADS)

    Schwadron, Nathan

    2016-04-01

    Our piece of cosmic real-estate, the heliosphere, is the domain of all human existence - an astrophysical case-history of the successful evolution of life in a habitable system. By exploring our global heliosphere and its myriad interactions, we develop key physical knowledge of the interstellar interactions that influence exoplanetary habitability as well as the distant history and destiny of our solar system and world. IBEX was the first mission to explore the global heliosphere and in concert with Voyager 1 and Voyager 2 is discovering a fundamentally new and uncharted physical domain of the outer heliosphere. In parallel, Cassini/INCA maps the global heliosphere at energies (~5-55 KeV) above those measured by IBEX. The enigmatic IBEX ribbon and the INCA belt were unanticipated discoveries demonstrating that much of what we know or think we understand about the outer heliosphere needs to be revised. The next quantum leap enabled by IMAP will open new windows on the frontier of Heliophysics at a time when the space environment is rapidly evolving. IMAP with 100 times the combined resolution and sensitivity of IBEX and INCA will discover the substructure of the IBEX ribbon and will reveal in unprecedented resolution global maps of our heliosphere. The remarkable synergy between IMAP, Voyager 1 and Voyager 2 will remain for at least the next decade as Voyager 1 pushes further into the interstellar domain and Voyager 2 moves through the heliosheath. The "A" in IMAP refers to acceleration of energetic particles. With its combination of highly sensitive pickup and suprathermal ion sensors, IMAP will provide the species and spectral coverage as well as unprecedented temporal resolution to associate emerging suprathermal tails with interplanetary structures and discover underlying physical acceleration processes. These key measurements will provide what has been a critical missing piece of suprathermal seed particles in our understanding of particle acceleration to high

  18. Titania - Highest Resolution Voyager Picture

    NASA Image and Video Library

    1996-01-29

    On Jan. 24, 1986, NASA Voyager 2 returned the highest-resolution picture of Titania, Uranus largest satellite. Abundant impact craters of many sizes pockmark the ancient surface; most prominent features are fault valleys that stretch across Titania. http://photojournal.jpl.nasa.gov/catalog/PIA00039

  19. Probing Titan's atmosphere with a stellar occultation

    NASA Technical Reports Server (NTRS)

    Hubbard, W. B.

    1991-01-01

    The 3 July, 1989 occultation of 28 Sgr by Titan is discussed. The star was readily detectable throughout the occultation, reaching a minimum normalized flux of about 0.05. The occultation probed Titan's atmosphere in a region not studied by the Voyager spacecraft. The region is important for the aerobraking of Titan entry probes, and direct information about its properties is important for the Cassini mission. Occultation data (normalized stellar flux vs universal time) is shown in chart form for NASA supported stations, along with data from a collaborating group at the Wise observatory in Israel. Strong scintillation data of the star is noticeable in the data records, and provides information on waves/turbulence in Titan's high atmosphere.

  20. Early Voyager 1 Images of Jupiter

    NASA Image and Video Library

    1996-09-26

    These Jupiter photographs are part of a set taken by NASA Voyager 1 on December 10 and 11, 1978 from a distance of 83 million km 52 million miles or more than half the distance from the Earth to the sun. At this range, Voyager 1 is able to record more detail on the giant planet than the very best ground-based telescopes. The highest resolution ever obtained on the Jovian disk was recorded by Pioneer 11 four years ago. Voyager, however, has longer focal-length optics than Pioneer, and while nearly three months from encounter (~ March 1979) was able to achieve higher resolution than that obtained by Pioneer only 24 hours from its encounter on 3 December 1974. Jupiter's colorful and turbulent atmosphere is evident in these photographs. The entire visible surface of the planet is made up of multiple layers of clouds, composed primarily of ammonia ice crystals colored by small amounts of materials of unknown composition. The Great Red Spot, seen to the lower left of 2 and lower right of 3, is now recovering from a period of relative inconspicuousness. An atmospheric system larger than the Earth and more than 100 years old, the Great Red Spot remains a mystery and a challenge to Voyager instruments. A bright convective cloud (center of and right of center in 4) displays a plume which has been swept westward (to the left) by local currents in the planet's equatorial wind system. Below and to the left and right of the Great Red Spot are a pair of white oval clouds; a third can be seen in 1. All three were formed almost 40 years ago and are the second oldest class of discrete features identified in the Jovian atmosphere. Each of the pictures was produced from blue, green, and orange originals in JPL's Image Processing Laboratory. http://photojournal.jpl.nasa.gov/catalog/PIA00454

  1. Plasma observations near jupiter: initial results from voyager 2.

    PubMed

    Bridge, H S; Belcher, J W; Lazarus, A J; Sullivan, J D; Bagenal, F; McNutt, R L; Ogilvie, K W; Scudder, J D; Sittler, E C; Vasyliunas, V M; Goertz, C K

    1979-11-23

    The first of at least nine bow shock crossings observed on the inbound pass of Voyager 2 occurred at 98.8 Jupiter radii (R(J)) with final entry into the magnetosphere at 62 R(J). On both the inbound and outbound passes the plasma showed a tendency to move in the direction of corotation, as was observed on the inbound pass of Voyager 1. Positive ion densities and electron intensities observed by Voyager 2 are comparable within a factor of 2 to those seen by Voyager 1 at the same radial distance from Jupiter; the composition of the magnetospheric plasma is again dominated by heavy ions with a ratio of mass density relative to hydrogen of about 100/1. A series of dropouts of plasma intensity near Ganymede may be related to a complex interaction between Ganymede and the magnetospheric plasma. From the planetary spin modulation of the intensity of plasma electrons it is inferred that the plasma sheet is centered at the dipole magnetic equator out to a distance of 40 to 50 R(J) and deviates from it toward the rotational equator at larger distances. The longitudinal excursion of the plasma sheet lags behind the rotating dipole by a phase angle that increases with increasing radial distance.

  2. Radio science with Voyager 2 at Uranus - Results on masses and densities of the planet and five principal satellites

    NASA Technical Reports Server (NTRS)

    Anderson, J. D.; Campbell, J. K.; Jacobson, R. A.; Sweetnam, D. N.; Taylor, A. H.

    1987-01-01

    Phase-coherent Doppler data generated by the Deep Space Network with the radio communication system during the Voyager 2 encounter with Uranus in January 1986, optical navigation data generated by the Voyager Navigation Team with the Voyager 2 imaging system, and ground-based astrometric data obtained over an 8-yr period are compiled and analyzed to determine the masses and densities of Uranus and its principal satellites. The data-analysis procedures are explained in detail, and the results are presented in tables and graphs. The mean density of Uranus is found to be 1.285 + or - 0.001 g/cu cm, whereas the mean uncompressed mass of all five satellites is 1.48 + or - 0.06 g/cu cm, or 0.10 g/cu cm above the density expected for a homogeneous solar mix of rock, H2O and NH3 ice, and CH4 as clathrate hydrate. This difference is tentatively attributed to the presence of 15 mass percent of pure graphite, which would provide the thermal conductivity required to keep the satellites cold and undifferentiated.

  3. Voyager Interactive Web Interface to EarthScope

    NASA Astrophysics Data System (ADS)

    Eriksson, S. C.; Meertens, C. M.; Estey, L.; Weingroff, M.; Hamburger, M. W.; Holt, W. E.; Richard, G. A.

    2004-12-01

    Visualization of data is essential in helping scientists and students develop a conceptual understanding of relationships among many complex types of data and keep track of large amounts of information. Developed initially by UNAVCO for study of global-scale geodynamic processes, the Voyager map visualization tools have evolved into interactive, web-based map utilities that can make scientific results accessible to a large number and variety of educators and students as well as the originally targeted scientists. A portal to these map tools can be found at: http://jules.unavco.org. The Voyager tools provide on-line interactive data visualization through pre-determined map regions via a simple HTML/JavaScript interface (for large numbers of students using the tools simultaneously) or through student-selectable areas using a Java interface to a Generic Mapping Tools (GMT) engine. Students can access a variety of maps, satellite images, and geophysical data at a range of spatial scales for the earth and other planets of the solar system. Students can also choose from a variety of base maps (satellite mosaics, global topography, geoid, sea-floor age, strain rate and seismic hazard maps, and others) and can then add a number of geographic and geophysical overlays, for example coastlines, political boundaries, rivers and lakes, earthquake and volcano locations, stress axes, and observed and model plate motion, as well as deformation velocity vectors representing a compilation of over 5000 geodetic measurements from around the world. The related educational website, "Exploring our Dynamic Planet", (http://www.dpc.ucar.edu/VoyagerJr/jvvjrtool.html) incorporates background materials and curricular activities that encourage students to explore Earth processes. One of the present curricular modules is designed for high school students or introductory-level undergraduate non-science majors. The purpose of the module is for students to examine real data to investigate how plate

  4. Parkes radio science system design and testing for Voyager Neptune encounter

    NASA Technical Reports Server (NTRS)

    Rebold, T. A.; Weese, J. F.

    1989-01-01

    The Radio Science System installed at Parkes, Australia for the Voyager Neptune encounter was specified to meet the same stringent requirements that were imposed upon the Deep Space Network Radio Science System. The system design and test methodology employed to meet these requirements at Parkes are described, and data showing the measured performance of the system are presented. The results indicate that the system operates with a comfortable margin on the requirements. There was a minor problem with frequency-dependent spurious signals which could not be fixed before the encounter. Test results characterizing these spurious signals are included.

  5. NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy o

    NASA Image and Video Library

    2014-08-25

    Dr. John Spencer, senior scientist at the Southwest Research Institute in Boulder, Colorado, speaks during a panel discussion at the "NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy of Exploration" event on Monday, August, 25, 2014, in the James E. Webb Auditorium at NASA Headquarters in Washington, DC. The panelists gave their accounts of Voyager's encounter with Neptune and discussed their current assignments on NASA's New Horizons mission to Pluto. Photo Credit: (NASA/Joel Kowsky)

  6. NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy o

    NASA Image and Video Library

    2014-08-25

    Dr. Alan Stern, Principal Investigator on NASA's New Horizons Mission, left, delivers closing remarks following a panel discussion at the "NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy of Exploration" event on Monday, August, 25, 2014, in the James E. Webb Auditorium at NASA Headquarters in Washington, DC. The panelists gave their accounts of Voyager's encounter with Neptune and discussed their current assignments on NASA's New Horizons mission to Pluto. Photo Credit: (NASA/Joel Kowsky)

  7. NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy o

    NASA Image and Video Library

    2014-08-25

    Dr. Fran Bagenal, senior scientist at the University of Colorado, speaks during a panel discussion at the "NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy of Exploration" event on Monday, August, 25, 2014, in the James E. Webb Auditorium at NASA Headquarters in Washington, DC. The panelists gave their accounts of Voyager's encounter with Neptune and discussed their current assignments on NASA's New Horizons mission to Pluto. Photo Credit: (NASA/Joel Kowsky)

  8. NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy o

    NASA Image and Video Library

    2014-08-25

    Dr. Alan Stern, Principal Investigator on NASA's New Horizons Mission, delivers closing remarks following a panel discussion at the "NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy of Exploration" event on Monday, August, 25, 2014, in the James E. Webb Auditorium at NASA Headquarters in Washington, DC. The panelists gave their accounts of Voyager's encounter with Neptune and discussed their current assignments on NASA's New Horizons mission to Pluto. Photo Credit: (NASA/Joel Kowsky)

  9. NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy o

    NASA Image and Video Library

    2014-08-25

    Dr. Fran Bagenal, senior scientist at the University of Colorado, far right, speaks during a panel discussion at the "NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy of Exploration" event on Monday, August, 25, 2014, in the James E. Webb Auditorium at NASA Headquarters in Washington, DC. The panelists gave their accounts of Voyager's encounter with Neptune and discussed their current assignments on NASA's New Horizons mission to Pluto. Photo Credit: (NASA/Joel Kowsky)

  10. NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy o

    NASA Image and Video Library

    2014-08-25

    Dr. Bonnie Buratti, senior scientist at NASA's Jet Propultion Laboratory, speaks during a panel discussion at the "NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy of Exploration" event on Monday, August, 25, 2014, in the James E. Webb Auditorium at NASA Headquarters in Washington, DC. The panelists gave their accounts of Voyager's encounter with Neptune and discussed their current assignments on NASA's New Horizons mission to Pluto. Photo Credit: (NASA/Joel Kowsky)

  11. Technology Brings Voyagers into Classrooms.

    ERIC Educational Resources Information Center

    Inn, Kristina; And Others

    1995-01-01

    Three articles focus on many classroom activities and experiments inspired by the voyage of two canoes, built of traditional materials, from Hawaii's Hilo Harbor in 1995. Nationwide, students followed daily satellite tracking, accessed the Internet for updated accounts of the canoes, talked directly with navigators, and watched television…

  12. IEC Thrusters for Space Probe Applications and Propulsion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miley, George H.; Momota, Hiromu; Wu Linchun

    Earlier conceptual design studies (Bussard, 1990; Miley et al., 1998; Burton et al., 2003) have described Inertial Electrostatic Confinement (IEC) fusion propulsion to provide a high-power density fusion propulsion system capable of aggressive deep space missions. However, this requires large multi-GW thrusters and a long term development program. As a first step towards this goal, a progression of near-term IEC thrusters, stating with a 1-10 kWe electrically-driven IEC jet thruster for satellites are considered here. The initial electrically-powered unit uses a novel multi-jet plasma thruster based on spherical IEC technology with electrical input power from a solar panel. In thismore » spherical configuration, Xe ions are generated and accelerated towards the center of double concentric spherical grids. An electrostatic potential well structure is created in the central region, providing ion trapping. Several enlarged grid opening extract intense quasi-neutral plasma jets. A variable specific impulse in the range of 1000-4000 seconds is achieved by adjusting the grid potential. This design provides high maneuverability for satellite and small space probe operations. The multiple jets, combined with gimbaled auxiliary equipment, provide precision changes in thrust direction. The IEC electrical efficiency can match or exceed efficiencies of conventional Hall Current Thrusters (HCTs) while offering advantages such as reduced grid erosion (long life time), reduced propellant leakage losses (reduced fuel storage), and a very high power-to-weight ratio. The unit is ideally suited for probing missions. The primary propulsive jet enables delicate maneuvering close to an object. Then simply opening a second jet offset 180 degrees from the propulsion one provides a 'plasma analytic probe' for interrogation of the object.« less

  13. NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy o

    NASA Image and Video Library

    2014-08-25

    Dr. John Spencer, senior scientist at the Southwest Research Institute, answers a question from the audience during a panel discussion at the "NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy of Exploration" event on Monday, August, 25, 2014, in the James E. Webb Auditorium at NASA Headquarters in Washington, DC. The panelists gave their accounts of Voyager's encounter with Neptune and discussed their current assignments on NASA's New Horizons mission to Pluto. Photo Credit: (NASA/Joel Kowsky)

  14. Plasma observations near Jupiter - Initial results from Voyager 2

    NASA Technical Reports Server (NTRS)

    Bridge, H. S.; Belcher, J. W.; Lazarus, A. J.; Sullivan, J. D.; Bagenal, F.; Mcnutt, R. L., Jr.; Ogilvie, K. W.; Scudder, J. D.; Sittler, E. D.; Vasyliunas, V. M.

    1979-01-01

    A preliminary report is presented of the results obtained by the Voyager 2 plasma experiment during the encounter of Voyager 2 with Jupiter from about 100 Jupiter radii before periapsis to about 300 Jupiter radii after periapsis, the instrument being identical to that on Voyager 1. The discussion covers the following: (1) the crossings of the bow shock and magnetopause observed on the inbound and outbound passes; (2) the radial variation of plasma properties in the magnetosphere; (3) variations in plasma properties near Ganymede; (4) corotation and composition of the plasma in the dayside magnetosphere; and (5) plasma sheet crossings observed on the inbound and outbound passes. From the planetary spin modulation of the plasma-electron intensity it is inferred that the plasma sheet is centered at the dipole magnetic equator out to a distance of 40-50 Jupiter radii and deviates from it toward the rotational equator at larger distances.

  15. MODELING THE SOLAR WIND AT THE ULYSSES , VOYAGER , AND NEW HORIZONS SPACECRAFT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, T. K.; Pogorelov, N. V.; Zank, G. P.

    The outer heliosphere is a dynamic region shaped largely by the interaction between the solar wind and the interstellar medium. While interplanetary magnetic field and plasma observations by the Voyager spacecraft have significantly improved our understanding of this vast region, modeling the outer heliosphere still remains a challenge. We simulate the three-dimensional, time-dependent solar wind flow from 1 to 80 astronomical units (au), where the solar wind is assumed to be supersonic, using a two-fluid model in which protons and interstellar neutral hydrogen atoms are treated as separate fluids. We use 1 day averages of the solar wind parameters frommore » the OMNI data set as inner boundary conditions to reproduce time-dependent effects in a simplified manner which involves interpolation in both space and time. Our model generally agrees with Ulysses data in the inner heliosphere and Voyager data in the outer heliosphere. Ultimately, we present the model solar wind parameters extracted along the trajectory of the New Horizons spacecraft. We compare our results with in situ plasma data taken between 11 and 33 au and at the closest approach to Pluto on 2015 July 14.« less

  16. SPECTRAL EVOLUTION OF ANOMALOUS COSMIC RAYS AT VOYAGER 1 BEYOND THE TERMINATION SHOCK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senanayake, U. K.; Florinski, V.; Cummings, A. C.

    When the Voyager 1 spacecraft crossed the termination shock (TS) on 2004 December 16, the energy spectra of anomalous cosmic rays (ACRs) could not have been produced by steady-state diffusive shock acceleration. However, over the next few years, in the declining phase of the solar cycle, the spectra began to evolve into the expected power-law profile. Observations at the shock led to a broad range of alternative theories for ACR acceleration. In spite of that, in this work we show that the observations could be explained by assuming ACRs are accelerated at the TS. In this paper, we propose thatmore » the solar cycle had an important effect on the unrolling of the spectra in the heliosheath. To investigate the spectral evolution of ACRs, a magnetohydrodynamic background model with stationary solar-wind inner boundary conditions was used to model the transport of helium and oxygen ions. We used a backward-in-time stochastic integration technique where phase-space trajectories are integrated until the so-called “injection energy” is reached. Our simulation results were compared with Voyager 1 observations using three different diffusion models. It is shown that the spectral evolution of ACRs in the heliosheath at Voyager 1 could be explained by an increase in the source strength and an enhancement in diffusion as a result of a decrease of the turbulent correlation length in the declining phase of the solar cycle. At the same time, drift effects seem to have had a smaller effect on the evolution of the spectra.« less

  17. 46 CFR 108.209 - Hospital spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Hospital spaces. 108.209 Section 108.209 Shipping COAST... Construction and Arrangement Accommodation Spaces § 108.209 Hospital spaces. (a) Each unit carrying twelve or more persons on a voyage of more than three days must have a hospital space. (b) Each hospital space...

  18. 46 CFR 108.209 - Hospital spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Hospital spaces. 108.209 Section 108.209 Shipping COAST... Construction and Arrangement Accommodation Spaces § 108.209 Hospital spaces. (a) Each unit carrying twelve or more persons on a voyage of more than three days must have a hospital space. (b) Each hospital space...

  19. 46 CFR 108.209 - Hospital spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Hospital spaces. 108.209 Section 108.209 Shipping COAST... Construction and Arrangement Accommodation Spaces § 108.209 Hospital spaces. (a) Each unit carrying twelve or more persons on a voyage of more than three days must have a hospital space. (b) Each hospital space...

  20. 46 CFR 108.209 - Hospital spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Hospital spaces. 108.209 Section 108.209 Shipping COAST... Construction and Arrangement Accommodation Spaces § 108.209 Hospital spaces. (a) Each unit carrying twelve or more persons on a voyage of more than three days must have a hospital space. (b) Each hospital space...

  1. 46 CFR 108.209 - Hospital spaces.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Hospital spaces. 108.209 Section 108.209 Shipping COAST... Construction and Arrangement Accommodation Spaces § 108.209 Hospital spaces. (a) Each unit carrying twelve or more persons on a voyage of more than three days must have a hospital space. (b) Each hospital space...

  2. The Space High Angular Resolution Probe for the Infrared (SHARP-IR)

    NASA Technical Reports Server (NTRS)

    Rinehart, S. A.; Rizzo, M. J.; Leisawitz, D. T.; Staguhn, J. G.; Dipirro, M.; Mentzell, J. E.; Juanola-Parramon, R.; Dhabal, A.; Mundy, L. G.; Moseley, S. H.; hide

    2016-01-01

    The Space High Angular Resolution Probe for the Infrared (SHARP-IR) is a new mission currently under study. As partof the preparation for the Decadal Survey, NASA is currently undertaking studies of four major missions, but interesthas also been shown in determining if there are feasible sub-$1B missions that could provide significant scientific return.SHARP-IR is being designed as one such potential probe. In this talk, we will discuss some of the potential scientificquestions that could be addressed with the mission, the current design, and the path forward to concept maturation.

  3. Vision and Voyages: Lessons Learned from the Planetary Decadal Survey

    NASA Astrophysics Data System (ADS)

    Squyres, S. W.

    2015-12-01

    The most recent planetary decadal survey, entitled Vision and Voyages for Planetary Science in the Decade 2013-2022, provided a detailed set of priorities for solar system exploration. Those priorities drew on broad input from the U.S. and international planetary science community. Using white papers, town hall meetings, and open meetings of the decadal committees, community views were solicited and a consensus began to emerge. The final report summarized that consensus. Like many past decadal reports, the centerpiece of Vision and Voyages was a set of priorities for future space flight projects. Two things distinguished this report from some previous decadals. First, conservative and independent cost estimates were obtained for all of the projects that were considered. These independent cost estimates, rather than estimates generated by project advocates, were used to judge each project's expected science return per dollar. Second, rather than simply accepting NASA's ten-year projection of expected funding for planetary exploration, decision rules were provided to guide program adjustments if actual funding did not follow projections. To date, NASA has closely followed decadal recommendations. In particular, the two highest priority "flagship" missions, a Mars rover to collect samples for return to Earth and a mission to investigate a possible ocean on Europa, are both underway. The talk will describe the planetary decadal process in detail, and provide a more comprehensive assessment of NASA's response to it.

  4. Application discussion of source coding standard in voyage data recorder

    NASA Astrophysics Data System (ADS)

    Zong, Yonggang; Zhao, Xiandong

    2018-04-01

    This paper analyzes the disadvantages of the audio and video compression coding technology used by Voyage Data Recorder, and combines the improvement of performance of audio and video acquisition equipment. The thinking of improving the audio and video compression coding technology of the voyage data recorder is proposed, and the feasibility of adopting the new compression coding technology is analyzed from economy and technology two aspects.

  5. Voyager Proof Test Model

    NASA Image and Video Library

    1977-01-12

    This archival photo shows the Voyager Proof Test Model undergoing a mechanical preparation and weight center of gravity test at NASA's Jet Propulsion Laboratory, Pasadena, California, on January 12, 1977. The stack of three white cylinders seen near center is a stand-in for the spacecraft's power generators (called RTGs). Above that, a silvery canister holds the spacecraft's magnetometer in its stowed configuration. https://photojournal.jpl.nasa.gov/catalog/PIA21477

  6. The Voyage of the MIMI.

    ERIC Educational Resources Information Center

    Gibbon, Sam; Hooper, Kristina

    1986-01-01

    The Voyage of MIMI is a major educational project housed at Bank Street College (New York) which is directed toward the development of extensive television, computer software, videodisc, and print materials for use in science and mathematics education in grades 5-7. The first series has been completed, and includes a 13-part dramatic television…

  7. Voyager to Jupiter and Saturn

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The NASA Voyager mission to explore planets of the outer solar system is summarized. The mission schedule and profiles for encounters with Jupiter and Saturn, and possibly with Uranus and Pluto are included along with a description of the spacecraft and its trajectories. Scientific investigations to be made and the instruments carried are also discussed.

  8. Deep Space Network Capabilities for Receiving Weak Probe Signals

    NASA Technical Reports Server (NTRS)

    Asmar, Sami; Johnston, Doug; Preston, Robert

    2005-01-01

    Planetary probes can encounter mission scenarios where communication is not favorable during critical maneuvers or emergencies. Launch, initial acquisition, landing, trajectory corrections, safing. Communication challenges due to sub-optimum antenna pointing or transmitted power, amplitude/frequency dynamics, etc. Prevent lock-up on signal and extraction of telemetry. Examples: loss of Mars Observer, nutation of Ulysses, Galileo antenna, Mars Pathfinder and Mars Exploration Rovers Entry, Descent, and Landing, and the Cassini Saturn Orbit Insertion. A Deep Space Network capability to handle such cases has been used successfully to receive signals to characterize the scenario. This paper will describe the capability and highlight the cases of the critical communications for the Mars rovers and Saturn Orbit Insertion and preparation radio tracking of the Huygens probe at (non-DSN) radio telescopes.

  9. Space Shuttle Projects

    NASA Image and Video Library

    1984-04-24

    The official mission insignia for the 41-D Space Shuttle flight features the Discovery - NASA's third orbital vehicle - as it makes its maiden voyage. The ghost ship represents the orbiter's namesakes which have figured prominently in the history of exploration. The Space Shuttle Discovery heads for new horizons to extend that proud tradition. Surnames for the crewmembers of NASA's eleventh Space Shuttle mission encircle the red, white, and blue scene.

  10. 15 CFR 970.2502 - Post voyage report.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... ENVIRONMENTAL DATA SERVICE DEEP SEABED MINING REGULATIONS FOR EXPLORATION LICENSES Pre-license Exploration § 970... citizen engaging in the voyage shall submit to NOAA a report containing any environmental data or...

  11. 15 CFR 970.2502 - Post voyage report.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... ENVIRONMENTAL DATA SERVICE DEEP SEABED MINING REGULATIONS FOR EXPLORATION LICENSES Pre-license Exploration § 970... citizen engaging in the voyage shall submit to NOAA a report containing any environmental data or...

  12. 15 CFR 970.2502 - Post voyage report.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... ENVIRONMENTAL DATA SERVICE DEEP SEABED MINING REGULATIONS FOR EXPLORATION LICENSES Pre-license Exploration § 970... citizen engaging in the voyage shall submit to NOAA a report containing any environmental data or...

  13. Multifrequency analysis of a decametric storm observed at Voyager 1 and ground-based observatories

    NASA Technical Reports Server (NTRS)

    Maeda, K.; Carr, T. D.

    1989-01-01

    Observations of a Jovian decametric non-Io-A noise storm made from Voyager 1, the University of Florida Radio Observatory, the University of Texas Radio Astronomy Observatory, and the Jupiter station at Goddard Space Flight Center at frequencies of 26.3, 22.2, 20.0, and 18.0 MHz were found to be correlated. The activity observed at the ground stations occurred 68 min after the corresponding activity at Voyager 1. After correction is made for propagation time differences, this delay is reduced to 34 min. It is demonstrated that at each frequency the envelope of the individual-event beams occurring during the storm (some or all of which are associated with dynamic spectral arcs) is a quasi-constant structure that corotates with the inner Jovian magnetosphere, and that the width of this envelope beam is frequency dependent. The width increases as frequency is decreased, mainly because of the change in position of the trailing-edge beam boundary. Evidence for a relatively slow temporal change in beam geometry is also presented.

  14. Climate windows for Polynesian voyaging to New Zealand and Easter Island.

    PubMed

    Goodwin, Ian D; Browning, Stuart A; Anderson, Atholl J

    2014-10-14

    Debate about initial human migration across the immense area of East Polynesia has focused upon seafaring technology, both of navigation and canoe capabilities, while temporal variation in sailing conditions, notably through climate change, has received less attention. One model of Polynesian voyaging observes that as tradewind easterlies are currently dominant in the central Pacific, prehistoric colonization canoes voyaging eastward to and through central East Polynesia (CEP: Society, Tuamotu, Marquesas, Gambier, Southern Cook, and Austral Islands) and to Easter Island probably had a windward capacity. Similar arguments have been applied to voyaging from CEP to New Zealand against prevailing westerlies. An alternative view is that migration required reliable off-wind sailing routes. We investigate the marine climate and potential voyaging routes during the Medieval Climate Anomaly (MCA), A.D. 800-1300, when the initial colonization of CEP and New Zealand occurred. Paleoclimate data assimilation is used to reconstruct Pacific sea level pressure and wind field patterns at bidecadal resolution during the MCA. We argue here that changing wind field patterns associated with the MCA provided conditions in which voyaging to and from the most isolated East Polynesian islands, New Zealand, and Easter Island was readily possible by off-wind sailing. The intensification and poleward expansion of the Pacific subtropical anticyclone culminating in A.D. 1140-1260 opened an anomalous climate window for off-wind sailing routes to New Zealand from the Southern Austral Islands, the Southern Cook Islands, and Tonga/Fiji Islands.

  15. Climate windows for Polynesian voyaging to New Zealand and Easter Island

    PubMed Central

    Goodwin, Ian D.; Browning, Stuart A.; Anderson, Atholl J.

    2014-01-01

    Debate about initial human migration across the immense area of East Polynesia has focused upon seafaring technology, both of navigation and canoe capabilities, while temporal variation in sailing conditions, notably through climate change, has received less attention. One model of Polynesian voyaging observes that as tradewind easterlies are currently dominant in the central Pacific, prehistoric colonization canoes voyaging eastward to and through central East Polynesia (CEP: Society, Tuamotu, Marquesas, Gambier, Southern Cook, and Austral Islands) and to Easter Island probably had a windward capacity. Similar arguments have been applied to voyaging from CEP to New Zealand against prevailing westerlies. An alternative view is that migration required reliable off-wind sailing routes. We investigate the marine climate and potential voyaging routes during the Medieval Climate Anomaly (MCA), A.D. 800–1300, when the initial colonization of CEP and New Zealand occurred. Paleoclimate data assimilation is used to reconstruct Pacific sea level pressure and wind field patterns at bidecadal resolution during the MCA. We argue here that changing wind field patterns associated with the MCA provided conditions in which voyaging to and from the most isolated East Polynesian islands, New Zealand, and Easter Island was readily possible by off-wind sailing. The intensification and poleward expansion of the Pacific subtropical anticyclone culminating in A.D. 1140–1260 opened an anomalous climate window for off-wind sailing routes to New Zealand from the Southern Austral Islands, the Southern Cook Islands, and Tonga/Fiji Islands. PMID:25267611

  16. Voyager Proof Test Model and Cleanroom

    NASA Image and Video Library

    1977-01-12

    This archival photo shows the Voyager Proof Test Model (in the foreground right of center) undergoing a mechanical preparation and weight center of gravity test at NASA's Jet Propulsion Laboratory, Pasadena, California, on January 12, 1977. https://photojournal.jpl.nasa.gov/catalog/PIA21476

  17. Implications of Voyager 1 observations beyond the heliopause for the local interstellar electron spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bisschoff, D.; Potgieter, M. S., E-mail: 20056950@nwu.ac.za

    Cosmic-ray observations made by the Voyager 1 spacecraft outside the dominant modulating influence of the heliosphere finally allow the comparison of computed galactic spectra with experimental data at lower energies. These computed spectra, based on galactic propagation models, can now be compared with observations at low energies by Voyager 1 and at high energies by the PAMELA space detector at Earth. This improves understanding of basic propagation effects and also provides solar modulation studies with reliable input spectra from 1 MeV to 100 GeV. We set out to reproduce the Voyager 1 electron observations in the energy range of 6-60more » MeV, as well as the PAMELA electron spectrum above 10 GeV, using the GALPROP code. By varying the source spectrum and galactic diffusion parameters, specifically the rigidity dependence of spatial diffusion, we find local interstellar spectra that agree with both power-law spectra observed by Voyager 1 beyond the heliopause. The local interstellar spectrum between ∼1 MeV and 100 GeV indicates that it is the combination of two power laws, with E {sup –(1.45} {sup ±} {sup 0.15)} below ∼100 MeV and E {sup –(3.15} {sup ±} {sup 0.05)} above ∼100 MeV. A gradual turn in the spectral shape matching the power laws is found, between 2.0 ± 0.5) GeV and (100 ± 10) MeV. According to our simplified modeling, this transition is caused primarily by galactic propagation effects. We find that the intensity beyond the heliopause at 10 MeV is (350 ± 50) electrons m{sup –2} s{sup –1} sr{sup –1} MeV{sup –1}, decreasing to (50 ± 5) electrons m{sup –2} s{sup –1} sr{sup –1} MeV{sup –1} at 100 MeV.« less

  18. Neptune - Unexpected and predicted: Prognosis of theory and Voyager-2 observations

    NASA Astrophysics Data System (ADS)

    Chechel'Nitskii, A. M.

    1992-08-01

    The impact of the Voyager-2 discoveries at Neptune on theory are reviewed. The theories of the shell structure of astronomical systems, shell hierarchy, the multicomponent cosmic medium, weak and power elite orbits, quantization of dynamic parameters, and transspheres are summarized and their relevance to the Neptune system, particularly the rings, is considered in the context of the findings of Voyager-2.

  19. Simulating Satellite and Space Probe Motion at High School with Spreadsheets

    ERIC Educational Resources Information Center

    Benacka, Jan

    2017-01-01

    This paper gives an account of an experiment in which thirty-three high school students of ages 17-19 developed spreadsheet numerical models of satellite and space probe motion. The models are free to download. A survey was carried out to find out the students' opinion of the lessons.

  20. Voyager 2 plasma wave observations at saturn.

    PubMed

    Scarf, F L; Gurnett, D A; Kurth, W S; Poynter, R L

    1982-01-29

    The first inbound Voyager 2 crossing of Saturn's bow shock [at 31.7 Saturn radii (RS), near local noon] and the last outbound crossing (at 87.4 RS, near local dawn) had similar plasma wave signatures. However, many other aspects of the plasma wave measurements differed considerably during the inbound and outbound passes, suggesting the presence of effects associated with significant north-south or noon-dawn asymmetries, or temporal variations. Within Saturn's magnetosphere, the plasma wave instrument detected electron plasma oscillations, upper hybrid resonance emissions, half-gyrofrequency harmonics, hiss and chorus, narrowband electromagnetic emissions and broadband Saturn radio noise, and noise bursts with characteristics of static. At the ring plane crossing, the plasma wave instrument also detected a large number of intense impulses that we interpret in terms of ring particle impacts on Voyager 2.

  1. Take a Voyage of Discovery

    ERIC Educational Resources Information Center

    Texley, Juliana

    2008-01-01

    On December 27, 1831, the "H.M.S. Beagle" left Plymouth Harbor for a round-the-world voyage. On board was would-be botanist Charles Darwin, the best tour guide biology has ever known. In 2009, we will celebrate Darwin's 200th birthday and the 150th anniversary of "The Origin of Species" publication. What better way to prepare for this celebration…

  2. Detecting 3D Vegetation Structure with the Galileo Space Probe: Can a Distant Probe Detect Vegetation Structure on Earth?

    PubMed Central

    2016-01-01

    Sagan et al. (1993) used the Galileo space probe data and first principles to find evidence of life on Earth. Here we ask whether Sagan et al. (1993) could also have detected whether life on Earth had three-dimensional structure, based on the Galileo space probe data. We reanalyse the data from this probe to see if structured vegetation could have been detected in regions with abundant photosynthetic pigments through the anisotropy of reflected shortwave radiation. We compare changing brightness of the Amazon forest (a region where Sagan et al. (1993) noted a red edge in the reflectance spectrum, indicative of photosynthesis) as the planet rotates to a common model of reflectance anisotropy and found measured increase of surface reflectance of 0.019 ± 0.003 versus a 0.007 predicted from only anisotropic effects. We hypothesize the difference was due to minor cloud contamination. However, the Galileo dataset had only a small change in phase angle (sun-satellite position) which reduced the observed anisotropy signal and we demonstrate that theoretically if the probe had a variable phase angle between 0–20°, there would have been a much larger predicted change in surface reflectance of 0.1 and under such a scenario three-dimensional vegetation structure on Earth could possibly have been detected. These results suggest that anisotropic effects may be useful to help determine whether exoplanets have three-dimensional vegetation structure in the future, but that further comparisons between empirical and theoretical results are first necessary. PMID:27973530

  3. Detecting 3D Vegetation Structure with the Galileo Space Probe: Can a Distant Probe Detect Vegetation Structure on Earth?

    PubMed

    Doughty, Christopher E; Wolf, Adam

    2016-01-01

    Sagan et al. (1993) used the Galileo space probe data and first principles to find evidence of life on Earth. Here we ask whether Sagan et al. (1993) could also have detected whether life on Earth had three-dimensional structure, based on the Galileo space probe data. We reanalyse the data from this probe to see if structured vegetation could have been detected in regions with abundant photosynthetic pigments through the anisotropy of reflected shortwave radiation. We compare changing brightness of the Amazon forest (a region where Sagan et al. (1993) noted a red edge in the reflectance spectrum, indicative of photosynthesis) as the planet rotates to a common model of reflectance anisotropy and found measured increase of surface reflectance of 0.019 ± 0.003 versus a 0.007 predicted from only anisotropic effects. We hypothesize the difference was due to minor cloud contamination. However, the Galileo dataset had only a small change in phase angle (sun-satellite position) which reduced the observed anisotropy signal and we demonstrate that theoretically if the probe had a variable phase angle between 0-20°, there would have been a much larger predicted change in surface reflectance of 0.1 and under such a scenario three-dimensional vegetation structure on Earth could possibly have been detected. These results suggest that anisotropic effects may be useful to help determine whether exoplanets have three-dimensional vegetation structure in the future, but that further comparisons between empirical and theoretical results are first necessary.

  4. 46 CFR 188.05-10 - Application to vessels on an international voyage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... mandate, whose international relations are the responsibility of a contracting SOLAS 74 government, or... 46 Shipping 7 2010-10-01 2010-10-01 false Application to vessels on an international voyage. 188... international voyage. (a) Except as provided in paragraphs (b), (c), and (d) of this section, the regulations in...

  5. 46 CFR 70.05-10 - Application to vessels on an international voyage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., whose international relations are the responsibility of a contracting SOLAS 74 government, or which is... 46 Shipping 3 2010-10-01 2010-10-01 false Application to vessels on an international voyage. 70.05... VESSELS GENERAL PROVISIONS Application § 70.05-10 Application to vessels on an international voyage. (a...

  6. A New Vision of Science and Strategy for an Interstellar Probe Mission

    NASA Astrophysics Data System (ADS)

    Gruntman, M.; McNutt, R. L.; Krimigis, S. M.; Wimmer-Schweingruber, R. F.; Gold, R. E.

    2011-12-01

    The recent in-situ and remote observations from the Voyager Interstellar Mission (VIM), the Interstellar Boundary Explorer (IBEX), and Ion and Neutral Camera (INCA) Cassini have revealed the interaction of the heliosphere with the very local interstellar medium (VLISM) to be much more complex than described by our present day concepts. These discoveries call for a major revision of the strategy for the Interstellar Probe, a mission to explore the interstellar medium surrounding the Solar System. Voyager 1 and Voyager 2 continue to reveal unanticipated flow patterns and significant fluxes of energetic particles in the heliosheath (beyond the solar wind termination shock) while pointing to a more remote location for the modulation region and source of the anomalous cosmic rays (ACRs). Remarkably, Voyager 1 has been reporting near-zero plasma flows (10's of km/s) beyond 115 AU for over the past year. One implication of this flow stagnation is that Voyager is already in a "transition layer" that could lead to the interstellar plasma. Consequently an Interstellar Probe Mission may "punch out" into the deflected interstellar plasma flow at a much smaller distance than previous models had predicted. Global imaging observations by IBEX and INCA of energetic neutral atoms (ENAs) originating from the interaction region(s) of the solar wind and the VLISM show unexpected structure and possible time dependence on a variety of scales. In addition to the general "glow" of the sky in ENAs, IBEX revealed a relatively narrow "ribbon" of enhanced atomic hydrogen emission from ~200 eV to ~6 keV. The neutrals from both the glow and ribbon are also characterized by non-thermal distribution functions. In addition, INCA on Cassini sees a "belt" of emission in ENAs, broader than the ribbon and tilted significantly away from it, at even higher energies (10s of keV). This evidence supports the idea that the bulk of the energy density in the heliosheath plasma resides in a non

  7. Software package for performing experiments about the convolutionally encoded Voyager 1 link

    NASA Technical Reports Server (NTRS)

    Cheng, U.

    1989-01-01

    A software package enabling engineers to conduct experiments to determine the actual performance of long constraint-length convolutional codes over the Voyager 1 communication link directly from the Jet Propulsion Laboratory (JPL) has been developed. Using this software, engineers are able to enter test data from the Laboratory in Pasadena, California. The software encodes the data and then sends the encoded data to a personal computer (PC) at the Goldstone Deep Space Complex (GDSC) over telephone lines. The encoded data are sent to the transmitter by the PC at GDSC. The received data, after being echoed back by Voyager 1, are first sent to the PC at GDSC, and then are sent back to the PC at the Laboratory over telephone lines for decoding and further analysis. All of these operations are fully integrated and are completely automatic. Engineers can control the entire software system from the Laboratory. The software encoder and the hardware decoder interface were developed for other applications, and have been modified appropriately for integration into the system so that their existence is transparent to the users. This software provides: (1) data entry facilities, (2) communication protocol for telephone links, (3) data displaying facilities, (4) integration with the software encoder and the hardware decoder, and (5) control functions.

  8. Plasma observations near Saturn - Initial results from Voyager 2

    NASA Technical Reports Server (NTRS)

    Bridge, H. S.; Bagenal, F.; Belcher, J. W.; Lazarus, A. J.; Mcnutt, R. L.; Sullivan, J. D.; Gazis, P. R.; Hartle, R. E.; Ogilvie, K. W.; Scudder, J. D.

    1982-01-01

    Results of plasma measurements made by Voyager 2 in the vicinity of Saturn are discussed and compared with those made by Pioneer 11 and Voyager 1 in a more limited range of latitudes. The initial bow shock crossing on the inbound trajectory closely agreed with the shock position inferred from the external ram pressure in the solar wind, although boundaries on the outbound pass were much further out than expected. Magnetospheric plasma observations reveal the presence of (1) shocked solar wind plasma in the magnetosheath between 30 and 22 Saturn radii; (2) a variable density region between 17 Saturn radii and the magnetopause; (3) an extended thick plasma sheet between 17 and 7 Saturn radii; and (4) an inner plasma torus probably originating from local sources. The ratio of heavy to light ions was observed to vary with distance to the equatorial plane in the dayside magnetosphere, with the heavy ions, probably O(+), more closely confined to the equatorial plane. The plasma data also account for the observed inner boundary of the neutral hydrogen torus discovered by Voyager 1.

  9. Planetary radio astronomy observations from Voyager-2 near Saturn

    NASA Technical Reports Server (NTRS)

    Warwick, J. W.; Evans, D. R.; Romig, J. H.; Alexander, J. K.; Desch, M. D.; Kaiser, M. L.; Aubier, M.; Leblanc, Y.; Lecacheux, A.; Pedersen, B. M.

    1981-01-01

    Voyager-2 planetry radio astronomy measurements obtained near Saturn are discussed. They indicate that Saturnian kilometric radiation is emitted by a strong, dayside source at auroral latitudes in the northern hemisphere and by a weaker (by more than an order of magnitude) source at complementary latitudes in the southern hemisphere. These emissions are variable both due to Saturn's rotation and, on longer time scales, probably due to influences of the solar wind and the satellite Dione. The Saturn electrostatic discharge bursts first discovered by Voyager-1 and attributed to emissions from the B-ring were again observed with the same broadband spectral properties and a 10(h)11(m) + or - 5(m) episodic recurrence period but with an occurrence frequency of only of about 30 percent of that detected with Voyager-1. During the crossing of the ring plane at a distance of 2.88 R sub S, an intense noise event is interpreted to be consequence of the impact/vaporization/ionization of charged micron-size G-ring particles distributed over a total vertical thickness of about 1500 km.

  10. Understanding of Jupiter's Atmosphere after the Galileo Probe Entry

    NASA Technical Reports Server (NTRS)

    Fonda, Mark (Technical Monitor); Young, Richard E.

    2003-01-01

    Instruments on the Galileo probe measured composition, cloud properties, thermal structure, winds, radiative energy balance, and electrical properties of the Jovian atmosphere. As expected the probe results confirm some expectations about Jupiter's atmosphere, refute others, and raise new questions which still remain unanswered. This talk will concentrate on those aspects of the probe observations which either raised new questions or remain unresolved. The Galileo probe observations of composition and clouds provided some of the biggest surprises of the mission. Helium abundance measured by the probe differed significantly from the remote sensing derivations from Voyager. Discrepancy between the Voyager helium abundance determinations for Jupiter and the Galileo probe value have now led to a considerably increased helium determination for Saturn. Global abundance of N in the form of ammonia was observed to be super-solar by approximately the same factor as carbon, in contrast to expectations that C/N would be significantly larger than solar. This has implications for the formation and evolution of Jupiter. The cloud structure was not what was generally anticipated, even though most previous remote sensing results below the uppermost cloud referred to 5 micron hot spots, local regions with reduced cloud opacity. The Galileo probe descended in one of these hot spots. Only a tenuous, presumed ammomium hydrosulfide, cloud was detected, and no significant water cloud or super-solar water abundance was measured. The mixing ratios as a function of depth for the condensibles ammonia, hydrogen sulfide, and water, exhibited no apparent correlation with either condensation levels or with each other, an observation that is still a puzzle, although there are now dynamical models of hot spots which show promise in being able to explain such behavior. Probe tracked zonal winds show that wind magnitude increases with depth to pressures of about 4 bars, with the winds extending to

  11. Understanding of Jupiter's Atmosphere After the Galileo Probe Entry

    NASA Technical Reports Server (NTRS)

    Young, Richard E.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Instruments on the Galileo probe measured composition, cloud properties, thermal structure. winds, radiative energy balance, and electrical properties of the Jovian atmosphere. As expected the probe results confirm some expectations about Jupiter's atmosphere, refute others, and raise new questions which still remain unanswered. This talk will concentrate on those aspects of the probe observations which either raised new questions or remain unresolved. The Galileo probe observations of composition and clouds provided some of the biggest surprises of the mission. Helium abundance measured by the probe differed significantly from the remote sensing derivations from Voyager. discrepancy between the Voyager helium abundance determinations for Jupiter and the Galileo probe value have now led to a considerably increased helium determination for Saturn. Global abundance of N in the form of ammonia was observed to be supersolar by approximately the same factor as carbon, in contrast to expectations that C/N would be significantly larger than solar. This has implications for the formation and evolution of Jupiter. The cloud structure was not what was generally anticipated, even though most previous remote sensing results below the uppermost cloud referred to 5 micron hot spots, local regions with reduced cloud opacity. The Galileo probe descended in one of these hot spots. Only a tenuous, presumed ammonium hydrosulfide, cloud was detected, and no significant water cloud or super-solar water abundance was measured. The mixing ratios as a function of depth for the condensibles ammonia, hydrogen sulfide, and water, exhibited no apparent correlation with either condensation levels or with each other, an observation that is still a puzzle, although there are now dynamical models of hot spots which show promise in being able to explain such behavior. Probe tracked zonal winds show that wind magnitude increases with depth to pressures of about 4 bars, with the winds extending to

  12. Voyager 1 Planetary Radio Astronomy Observations Near Jupiter

    NASA Technical Reports Server (NTRS)

    Warwick, J. W.; Pearce, J. B.; Riddle, A. C.; Alexander, J. K.; Desch, M. D.; Kaiser, M. L.; Thieman, J. R.; Carr, T. B.; Gulkis, S.; Boischot, A.

    1979-01-01

    Results are reported from the first low frequency radio receiver to be transported into the Jupiter magnetosphere. Dramatic new information was obtained both because Voyager was near or in Jupiter's radio emission sources and also because it was outside the relatively dense solar wind plasma of the inner solar system. Extensive radio arcs, from above 30 MHz to about 1 MHz, occurred in patterns correlated with planetary longitude. A newly discovered kilometric wavelength radio source may relate to the plasma torus near Io's orbit. In situ wave resonances near closest approach define an electron density profile along the Voyager trajectory and form the basis for a map of the torus. Studies in progress are outlined briefly.

  13. Langmuir probe measurements aboard the International Space Station

    NASA Astrophysics Data System (ADS)

    Kirov, B.; Asenovski, S.; Bachvarov, D.; Boneva, A.; Grushin, V.; Georgieva, K.; Klimov, S. I.

    2016-12-01

    In the current work we describe the Langmuir Probe (LP) and its operation on board the International Space Station. This instrument is a part of the scientific complex "Ostonovka". The main goal of the complex is to establish, on one hand how such big body as the International Space Station affects the ambient plasma and on the other how Space Weather factors influence the Station. The LP was designed and developed at BAS-SRTI. With this instrument we measure the thermal plasma parameters-electron temperature Te, electron and ion concentration, respectively Ne and Ni, and also the potential at the Station's surface. The instrument is positioned at around 1.5 meters from the surface of the Station, at the Russian module "Zvezda", located at the farthermost point of the Space Station, considering the velocity vector. The Multi- Purpose Laboratory (MLM) module is providing additional shielding for our instrument, from the oncoming plasma flow (with respect to the velocity vector). Measurements show that in this area, the plasma concentration is two orders of magnitude lower, in comparison with the unperturbed areas. The surface potential fluctuates between-3 and-25 volts with respect to the ambient plasma. Fast upsurges in the surface potential are detected when passing over the twilight zone and the Equatorial anomaly.

  14. Io plasma torus ion composition: Voyager, Galileo, and Cassini

    NASA Astrophysics Data System (ADS)

    Nerney, Edward G.; Bagenal, Fran; Steffl, Andrew J.

    2017-01-01

    The Io torus produces ultraviolet emissions diagnostic of plasma conditions. We revisit data sets obtained by the Voyager 1, Galileo, and Cassini missions at Jupiter. With the latest version (8.0) of the CHIANTI atomic database we analyze UV spectra to determine ion composition. We compare ion composition obtained from observations from these three missions with a theoretical model of the physical chemistry of the torus by Delamere et al. (2005). We find ion abundances from the Voyager data similar to the Cassini epoch, consistent with the dissociation and ionization of SO2, but with a slightly higher average ionization state for sulfur, consistent with the higher electron temperature measured by Voyager. This reanalysis of the Voyager data produces a much lower oxygen:sulfur ratio than earlier analysis by Shemansky (1988), which was also reported by Bagenal (1994). We derive fractional ion compositions in the center of the torus to be S+/Ne 5%, S++/Ne 20%, S+++/Ne 5%, O+/Ne 20%, O++/Ne 3%, and Σ(On+)/Σ(Sn+) 0.8, leaving about 10-15% of the charge as protons. The radial profile of ion composition indicates a slightly higher average ionization state, a modest loss of sulfur relative to oxygen, and Σ(On+)/Σ(Sn+) 1.2 at about 8 RJ, beyond which the composition is basically frozen in. The Galileo observations of UV emissions from the torus suggest that the composition in June 1996 may have comprised a lower abundance of oxygen than usual, consistent with observations made at the same time by the EUVE satellite.

  15. NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy o

    NASA Image and Video Library

    2014-08-25

    Dr. John Spencer, senior scientist at the Southwest Research Institute, left, Dr. Jeffrey Moore, senior scientist at NASA Ames Researh Center, center, and Dr. David H. Grinspoon, senior scientist at the Plentary Science Institute, left, are seen during a panel discussion at the "NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy of Exploration" event on Monday, August, 25, 2014, in the James E. Webb Auditorium at NASA Headquarters in Washington, DC. The panelists gave their accounts of Voyager's encounter with Neptune and discussed their current assignments on NASA's New Horizons mission to Pluto. Photo Credit: (NASA/Joel Kowsky)

  16. Voyager 2 Movie of Saturn's Moon: Phoebe

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Voyager 2 took this photo sequence of Saturn's outer satellite, Phoebe, on Sept. 4, 1981, from 2.2 million kilometers (1.36 million miles) away. The top image is the normal version and the bottom is an enhanced version to increase resolution. This sequence lasts 23.4 hours and contains 35 images. The early images were taken about 43 minutes apart, while the later ones are about 29 minutes apart. There are two significant gaps in the sequence: images 7 and 8 are separated by 2.3 hours and images 19 and 20 are separated by 2.8 hours.

    Because the sunlight is coming from the left, mountains and ridges can best be seen as they reflect the sunlight near the terminator (right side of Phoebe). Other intrinsically bright spots can be seen rotating across the whole disk. In this time-lapse sequence, Phoebe appears to be a lumpy spheroid with possible large mountains sometimes showing on the limb (left side of Phoebe). The photos show that Phoebe is about 220 kilometers (132 miles) in diameter. Its rotation period (length of day) was determined from this set of images to be 9.4 hours (see Thomas, P., et al, 'Phoebe: Voyager 2 Observations', Journal of Geophysical Research, vol. 88, p. 8736, 1 November 1983).

    These images were processed by the Multimission Image Processing Laboratory of the Jet Propulsion Laboratory. The Voyager Project is managed for NASA by the Jet Propulsion Laboratory.

  17. Voyager: Vibration Acoustics and Pyro Shock Testing

    NASA Image and Video Library

    2017-07-05

    An engineer works on vibration acoustics and pyro shock testing for one of NASA's Voyager spacecraft on November 18, 1976. Several of the spacecraft's science instruments are visible at left. https://photojournal.jpl.nasa.gov/catalog/PIA21733

  18. Grant Proposal for the Continuation of the Voyager Interstellar Mission: LECP Investigation

    NASA Technical Reports Server (NTRS)

    Krimigis, Stamatios M.; Armstrong, Thomas P.; Lanzerotti, Louis J.; Ip, Wing-H.; Decker, Robert B.; Keath, Edwin P.; Mauk, Barry H.; McNutt, Ralph L., Jr.; Gloeckler, George; Hamilton, Douglas C.

    1996-01-01

    will include: (1) Continuing operations with regard to the receipt, processing, verification, cataloging, display, and distribution of the data from the LECP instruments on Voyager 1 and 2, (2) Monitoring the health and performance of the LECP instruments, and evaluating and characterizing the response of the LECP instruments to various energetic particle and plasma environments, (3) Participating in, and supporting Voyager Project planning exercises and other coordinated activities relevant to exploration of the outer heliosphere, (4) Developing analysis techniques and operational procedures suitable for searching for and characterizing the boundaries and unique regions of the outher heliosphere, (5) Continuing the preparation of data sets appropriate for submission to the National Space Sciences Data Center (NSSDC) and, where appropriate, the Planetary Data System (PDS), (6) Maintaining direct Web access to online LECP data through the JHU/APL Voyager LECP home page, (7) Performing scientific evaluations of the Voyager 1 and 2 LECP data sets in conjunction with other data sets and other investigators, with particular focus on the outer regions of the heliosphere, and (8) Publishing the results of these evaluations in the scientific literature and presenting the results in scientific conferences.

  19. Voyager observations of the interaction of the heliosphere with the interstellar medium

    PubMed Central

    Richardson, John D.

    2012-01-01

    This paper provides a brief review and update on the Voyager observations of the interaction of the heliosphere with the interstellar medium. Voyager has found many surprises: (1) a new energetic particle component which is accelerated at the termination shock (TS) and leaks into the outer heliosphere forming a foreshock region; (2) a termination shock which is modulated by energetic particles and which transfers most of the solar wind flow energy to the pickup ions (not the thermal ions); (3) the heliosphere is asymmetric; (4) the TS does not accelerate anomalous cosmic rays at the Voyager locations; and (5) the plasma flow in the Voyagers 1 (V1) and 2 (V2) directions are very different. At V1 the flow was small after the TS and has recently slowed to near zero, whereas at V2 the speed has remained constant while the flow direction has turned tailward. V1 may have entered an extended boundary region in front of the heliopause (HP) in 2010 in which the plasma flow speeds are near zero. PMID:25685423

  20. Voyager observations of the interaction of the heliosphere with the interstellar medium.

    PubMed

    Richardson, John D

    2013-05-01

    This paper provides a brief review and update on the Voyager observations of the interaction of the heliosphere with the interstellar medium. Voyager has found many surprises: (1) a new energetic particle component which is accelerated at the termination shock (TS) and leaks into the outer heliosphere forming a foreshock region; (2) a termination shock which is modulated by energetic particles and which transfers most of the solar wind flow energy to the pickup ions (not the thermal ions); (3) the heliosphere is asymmetric; (4) the TS does not accelerate anomalous cosmic rays at the Voyager locations; and (5) the plasma flow in the Voyagers 1 (V1) and 2 (V2) directions are very different. At V1 the flow was small after the TS and has recently slowed to near zero, whereas at V2 the speed has remained constant while the flow direction has turned tailward. V1 may have entered an extended boundary region in front of the heliopause (HP) in 2010 in which the plasma flow speeds are near zero.

  1. Investigation of Coatings for Langmuir Probes in an Oxygen-Rich Space Environment

    NASA Astrophysics Data System (ADS)

    Samaniego, J. I.; Wang, X.; Andersson, L.; Malaspina, D.; Ergun, R.; Horanyi, M.

    2017-12-01

    The surface properties of the Langmuir probes, such as the one on the MAVEN mission, will change after exposure to upper planetary atmospheres where high concentrations of atomic oxygen and other oxidizing compounds are present. TiN (Titanium Nitride) or DAG (a resin based graphite dispersion) are the most common coatings for current Langmuir probes, yet both of these coatings pose issues when exposed to oxygen-rich space environment. TiN showed reduced surface conductivity while the DAG layers erode with exposure to oxygen. It is known that Iridium (Ir) and Rhenium (Rh) are difficult to oxidize and maintain high conductivity even in their oxidized forms, suggesting them to be good candidates for probe coatings. Oxidation of most metals creates a resistive layer on the surface of the probe that will affect the amount of current being collected at a given voltage during the probe sweep and therefore affect the accuracy of plasma parameters determined by the Langmuir probe (e.g. density, temperature). We present the results of the oxidation effect on the current-voltage curves (I-V curves) and therefore the resulting measured plasma parameters of Ir and Rh wire probes compared with other control metals and coatings (Cu, Ni, TiN) in controlled plasma environments. The oxidation process is performed in an oxygen plasma chamber in which both O+ and O2+ are created and accelerated toward the probes with energies < 10 eV. An argon plasma chamber is used to compare the probe's I-V curves before and after the oxidation process. Our preliminary results indicate that iridium shows the least effect of oxidation on the probe measurements. The second objective of this study is to identify methods that can be used in orbit to clean the surface of Langmuir probes to minimize the effect of exposure to oxidizing compounds.

  2. Investigating Global Ion and Neutral Atom Populations with IBEX and Voyager

    NASA Technical Reports Server (NTRS)

    Florinski, Vladimir

    2016-01-01

    The main objective of this project was to investigate pickup ion (PUI) production in the solar wind and heliosheath (the region between the termination shock and the heliopause) and compute the distributed energetic neutral atom fluxes throughout the helioshpere. The simulations were constrained by comparing the model output against observations from Ulysses, New Horizons, Voyager 1 and 2, and IBEX space probes. As evidenced by the number of peer reviewed journal publications resulting from the project (13 plus three submitted) and their citation rate (156 citations over three years), the project has made a lasting contribution to the field. The outcome is a significant improvement of our understanding of the pickup ion production and distribution in the distant heliosphere. The team has accomplished the entire set of tasks A-H set forth in the proposal. Namely, the transport modeling framework has been augmented with two populations of pickup ions (PUIs), the boundary conditions for the plasma and interstellar neutral hydrogen were verified against Ulysses and New Horizons PUI and an optimal set of velocity diffusion parameters established. The multi-component fluxes of PUIs were computed and isotropic velocity distributions generated for each cell in the computer simulation that covered the heliosphere from 1.5 AU to the heliopause. The distributions were carefully compared with in situ measurements at 3 AU (Ulysses), 12 AU (New Horizons), and 80-90 AU (Voyager 1 and 2) as well as those inferred from ENA fluxes measured by Cassini and IBEX (Wu et al., 2016). Some examples of modeldata comparison are shown in Figure 1. We have used coupled MHD-plasma and kinetic-neutral code to investigate the likely range of plasma and magnetic field parameters in the local interstellar medium (LISM), based on the assumption that the shape of the IBEX ribbon could be used to determine the orientation of the interstellar magnetic field. While the magnetic field is believed to be

  3. Voyager 1 examines Jupiter

    NASA Technical Reports Server (NTRS)

    1979-01-01

    An overview of the Voyager mission to Jupiter, Saturn, and possibly Uranus is presented. Scientific instruments onboard the spacecraft are described as well as methods used for their calibration and evaluation during the cruise phase of the mission. Experiments to be performed cover the following areas: imaging science, radio science, cosmic rays, ultraviolet spectroscopy, photopolarimetry, planetary radio astronomy, magnetic fields, low-energy charged particles, plasma science, and infrared radiometry and spectroscopy. A list of the satellites of Jupiter and their diameters, distances, and periods is included.

  4. Voyager 1 planetary radio astronomy observations near jupiter.

    PubMed

    Warwick, J W; Pearce, J B; Riddle, A C; Alexander, J K; Desch, M D; Kaiser, M L; Thieman, J R; Carr, T D; Gulkis, S; Boischot, A; Harvey, C C; Pedersen, B M

    1979-06-01

    We report results from the first low-frequency radio receiver to be transported into the Jupiter magnetosphere. We obtained dramatic new information, both because Voyager was near or in Jupiter's radio emission sources and also because it was outside the relatively dense solar wind plasma of the inner solar system. Extensive radio spectral arcs, from above 30 to about 1 megahertz, occurred in patterns correlated with planetary longitude. A newly discovered kilometric wavelength radio source may relate to the plasma torus near Io's orbit. In situ wave resonances near closest approach define an electron density profile along the Voyager trajectory and form the basis for a map of the torus. Detailed studies are in progress and are out-lined briefly.

  5. Magnetic reconnection physics in the solar wind with Voyager 2

    NASA Astrophysics Data System (ADS)

    Stevens, Michael L.

    2009-08-01

    Magnetic reconnection is the process by which the magnetic topology evolves in collisionless plasmas. This phenomenon is fundamental to a broad range of astrophysical processes such as stellar flares, magnetospheric substorms, and plasma accretion, yet it is poorly understood and difficult to observe in situ . In this thesis, the solar wind plasma permeating interplanetary space is treated as a laboratory for reconnection physics. I present an exhaustive statistical approach to the identification of reconnection outflow jets in turbulent plasma and magnetic field time series data. This approach has been automated and characterized so that the resulting reconnection survey can be put in context with other related studies. The algorithm is shown to perform similarly to ad hoc studies in the inner heliosphere. Based on this technique, I present a survey of 138 outflow jets for the Voyager 2 spacecraft mission, including the most distant in situ evidence of reconnection discovered to date. Reconnection in the solar wind is shown to be strongly correlated with stream interactions and with solar activity. The solar wind magnetic field is found to be reconnecting via large, quasi-steady slow- mode magnetohydrodynamic structures as far out as the orbit of Neptune. The role of slow-mode shocks is explored and, in one instance, a well-developed reconnection structure is shown to be in good agreement with the Petschek theory for fast reconnection. This is the first reported example of a reconnection exhaust that satisfies the full jump conditions for a stationary slow-mode shock pair. A complete investigation into corotating stream interactions over the Voyager 2 mission has revealed that detectable reconnection structure occurs in about 23% of forced, global-scale current sheets. Contrary to previous studies, I find that signatures of this kind are most likely to be observed for current sheets where the magnetic field shear and the plasma-b are high. Evidence has been found

  6. Launch summary for 1978 - 1982. [sounding rockets, space probes, and satellites

    NASA Technical Reports Server (NTRS)

    Hills, H. K.

    1984-01-01

    Data pertinent to the launching of space probes, soundings rockets, and satellites presented in tables include launch date, time, and site; agency rocket identification; sponsoring country or countries; instruments carried for experiments; the peak altitude achieved by the rockets; and the apoapsis and periapsis for satellites. The experimenter or institution involved in the launching is also cited.

  7. Simulating Scenes In Outer Space

    NASA Technical Reports Server (NTRS)

    Callahan, John D.

    1989-01-01

    Multimission Interactive Picture Planner, MIP, computer program for scientifically accurate and fast, three-dimensional animation of scenes in deep space. Versatile, reasonably comprehensive, and portable, and runs on microcomputers. New techniques developed to perform rapidly calculations and transformations necessary to animate scenes in scientifically accurate three-dimensional space. Written in FORTRAN 77 code. Primarily designed to handle Voyager, Galileo, and Space Telescope. Adapted to handle other missions.

  8. Performance of differenced range data types in Voyager navigation

    NASA Technical Reports Server (NTRS)

    Taylor, T. H.; Campbell, J. K.; Jacobson, R. A.; Moultrie, B.; Nichols, R. A., Jr.; Riedel, J. E.

    1982-01-01

    Voyager radio navigation made use of a differenced rage data type for both Saturn encounters because of the low declination singularity of Doppler data. Nearly simultaneous two-way range from two-station baselines was explicitly differenced to produce this data type. Concurrently, a differential VLBI data type (DDOR), utilizing doubly differenced quasar-spacecraft delays, with potentially higher precision was demonstrated. Performance of these data types is investigated on the Jupiter-to-Saturn leg of Voyager 2. The statistics of performance are presented in terms of actual data noise comparisons and sample orbit estimates. Use of DDOR as a primary data type for navigation to Uranus is discussed.

  9. Performance of differenced range data types in Voyager navigation

    NASA Technical Reports Server (NTRS)

    Taylor, T. H.; Campbell, J. K.; Jacobson, R. A.; Moultrie, B.; Nichols, R. A., Jr.; Riedel, J. E.

    1982-01-01

    Voyager radio navigation made use of differenced range data type for both Saturn encounters because of the low declination singularity of Doppler data. Nearly simultaneous two-way range from two-station baselines was explicitly differenced to produce this data type. Concurrently, a differential VLBI data type (DDOR), utilizing doubly differenced quasar-spacecraft delays, with potentially higher precision was demonstrated. Performance of these data types is investigated on the Jupiter to Saturn leg of Voyager 2. The statistics of performance are presented in terms of actual data noise comparisons and sample orbit estimates. Use of DDOR as a primary data type for navigation to Uranus is discussed.

  10. The Voyager spacecraft /James Watt International Gold Medal Lecture/

    NASA Technical Reports Server (NTRS)

    Heacock, R. L.

    1980-01-01

    The Voyager Project background is reviewed with emphasis on selected features of the Voyager spacecraft. Investigations by the Thermo-electric Outer Planets Spacecraft Project are discussed, including trajectories, design requirements, and the development of a Self Test and Repair computer, and a Computer Accessed Telemetry System. The design and configuration of the spacecraft are described, including long range communications, attitude control, solar independent power, sequencing and control data handling, and spacecraft propulsion. The development program, maintained by JPL, experienced a variety of problems such as design deficiencies, and process control and manufacturing problems. Finally, the spacecraft encounter with Jupiter is discussed, and expectations for the Saturn encounter are expressed.

  11. Saturn PRobe Interior and aTmosphere Explorer (SPRITE)

    NASA Technical Reports Server (NTRS)

    Simon, Amy; Banfield, D.; Atkinson, D.; Atreya, S.; Brinckerhoff, W.; Colaprete, A.; Coustenis, A.; Fletcher, L.; Guillot, T.; Hofstadter, M.; hide

    2016-01-01

    The Vision and Voyages Planetary Decadal Survey identified a Saturn Probe mission as one of the high priority New Frontiers mission targets[1]. Many aspects of the Saturn system will not have been fully investigated at the end of the Cassini mission, because of limitations in its implementation and science instrumentation. Fundamental measurements of the interior structure and noble gas abundances of Saturn are needed to better constrain models of Solar System formation, as well as to provide an improved context for exoplanet systems. The SPRITE mission will fulfill the scientific goals of the Decadal Survey Saturn probe mission. It will also provide ground truth for quantities constrained by Cassini and conduct new investigations that improve our understanding of Saturn's interior structure and composition, and by proxy, those of extrasolar giant planets.

  12. The RF Probe: providing space situational awareness through broad-spectrum detection and characterization

    NASA Astrophysics Data System (ADS)

    Zenick, Raymond; Kohlhepp, Kimberly; Partch, Russell

    2004-09-01

    AeroAstro's patented RF Probe is a system designed to address the needs of spacecraft developers and operators interested in measuring and analyzing near-field RF emissions emanating from a nearby spacecraft of interest. The RF Probe consists of an intelligent spectrum analyzer with digital signal processing capabilities combined with a calibrated, wide-bandwidth antenna and RF front end that covers the 50 kHz to 18 GHz spectrum. It is capable of acquiring signal level and signal vector information, classifying signals, assessing the quality of a satellite"s transponders, and characterizing near-field electromagnetic emissions. The RF Probe is intended for either incorporation as part of a suite of spacecraft sensors, or as a stand-alone sensor on spacecraft or other platforms such as Unmanned Aerial Vehicles (UAVs). The RF Probe was initially conceived as a tool to detect and aid in diagnosis of malfunctions in a spacecraft of interest. However, the utility of the RF Probe goes far beyond this initial concept, spanning a wide range of military applications. Most importantly, the RF Probe can provide space situational awareness for critical on-orbit assets by detecting externally induced RF fields, aiding in protection against potentially devastating attacks.

  13. From Convicts to Colonists: the Health of Prisoners and the Voyage to Australia, 1823 – 1853

    PubMed Central

    Foxhall, Katherine

    2012-01-01

    From 1815, naval surgeons accompanied all convict voyages from Britain and Ireland to the Australian colonies. As their authority grew, naval surgeons on convict ships increasingly used their medical observations about the health of convicts to make pointed and sustained criticisms of British penal reforms. Beyond their authority at sea, surgeons’ journals and correspondence brought debates about penal reform in Britain into direct conversation with debates about colonial transportation. In the 1830s, naval surgeons’ claims brought them into direct conflict with their medical colleagues on land, as well as with the colonial governor, George Arthur. As the surgeons continued their attempts to combat scurvy, their rhetoric changed. By the late 1840s, as convicts’ bodies betrayed the disturbing effects of separate confinement as they boarded the convict ships, surgeons could argue convincingly that the voyage itself was a space that could medically, physically, and spiritually reform convicts. By the mid 1840s, surgeons took the role of key arbiters of convicts’ potential contribution to the Australian colonies. PMID:21584986

  14. Spectrophotometric probe

    DOEpatents

    Prather, W.S.; O'Rourke, P.E.

    1994-08-02

    A support structure is described bearing at least one probe for making spectrophotometric measurements of a fluid using a source of light and a spectrophotometer. The probe includes a housing with two optical fibers and a planoconvex lens. A sleeve bearing a mirror surrounds the housing. The lens is separated from the mirror by a fixed distance, defining an interior space for receiving a volume of the fluid sample. A plurality of throughholes extending through the sleeve communicate between the sample volume and the exterior of the probe, all but one hole bearing a screen. A protective jacket surrounds the probe. A hollow conduit bearing a tube is formed in the wall of the probe for venting any air in the interior space when fluid enters. The probe is held at an acute angle so the optic fibers carrying the light to and from the probe are not bent severely on emergence from the probe. 3 figs.

  15. Spectrophotometric probe

    DOEpatents

    Prather, William S.; O'Rourke, Patrick E.

    1994-01-01

    A support structure bearing at least one probe for making spectrophotometric measurements of a fluid using a source of light and a spectrophotometer. The probe includes a housing with two optical fibers and a planoconvex lens. A sleeve bearing a mirror surrounds the housing. The lens is separated from the mirror by a fixed distance, defining an interior space for receiving a volume of the fluid sample. A plurality of throughholes extending through the sleeve communicate between the sample volume and the exterior of the probe, all but one hole bearing a screen. A protective jacket surrounds the probe. A hollow conduit bearing a tube is formed in the wall of the probe for venting any air in the interior space when fluid enters. The probe is held at an acute angle so the optic fibers carrying the light to and from the probe are not bent severely on emergence from the probe.

  16. Pioneer and Voyager observations of the solar wind at large heliocentric distances and latitudes

    NASA Technical Reports Server (NTRS)

    Gazis, P. R.; Mihalov, J. D.; Barnes, A.; Lazarus, A. J.; Smith, E. J.

    1989-01-01

    Data obtained from the electrostatic analyzers aboard the Pioneer 10 and 11 spacecraft and from the Faraday cup aboard Voyager 2 were used to study spatial gradients in the distant solar wind. Prior to mid-1985, both spacecraft observed nearly identical solar wind structures. After day 150 of 1985, the velocity structure at Voyager 2 became flatter, and the Voyager 2 velocities were smaller than those observed by Pioneer 11. It is suggested that these changes in the solar wind at low latitudes may be related to a change which occurred in the coronal hole structure in early 1985.

  17. The body voyage as visual representation and art performance.

    PubMed

    Olsén, Jan Eric

    2011-01-01

    This paper looks at the notion of the body as an interior landscape that is made intelligible through visual representation. It discerns the key figure of the inner corporeal voyage, identifies its main elements and examines how contemporary artists working with performances and installations deal with it. A further aim with the paper is to discuss what kind of image of the body that is conveyed through medical visual technologies, such as endoscopy, and relate it to contemporary discussions on embodiment, embodied vision and bodily presence. The paper concludes with a recent exhibition by the French artist Christian Boltanski, which gives a somewhat different meaning to the idea of the body voyage.

  18. Voyager 1: Encounter with Saturn

    NASA Technical Reports Server (NTRS)

    Panagakos, N.

    1980-01-01

    The history of the Voyager Project is reviewed as well as known facts about Saturn and its satellites. Important results of encounters with Jupiter are summarized. Scientific objectives of the flyby of Saturn involve the planet's atmosphere, rings, and magnetic field interactions with the solar wind and satellites. The search for additional satellites, and various aspects of Titan, Rhea, Dione, Mimas, Iapetus, Hyperion, and Enceladas are also of interest. The instruments developed to obtain these goals are described.

  19. SOLAR MODULATION OF THE LOCAL INTERSTELLAR SPECTRUM WITH VOYAGER 1 , AMS-02, PAMELA , AND BESS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corti, C.; Bindi, V.; Consolandi, C.

    In recent years, the increasing precision of direct cosmic rays measurements opened the door to high-sensitivity indirect searches of dark matter and to more accurate predictions for radiation doses received by astronauts and electronics in space. The key ingredients in the study of these phenomena are the knowledge of the local interstellar spectrum (LIS) of galactic cosmic rays and the understanding of how the solar modulation affects the LIS inside the heliosphere. Voyager 1 , AMS-02, PAMELA , and BESS measurements of proton and helium fluxes provide valuable information, allowing us to shed light on the shape of the LISmore » and the details of the solar modulation during solar cycles 22-24. A new parametrization of the LIS is presented, based on the latest data from Voyager 1 and AMS-02. Using the framework of the force-field approximation, the solar modulation parameter is extracted from the time-dependent fluxes measured by PAMELA and BESS . A modified version of the force-field approximation with a rigidity-dependent modulation parameter is introduced, yielding better fits than the force-field approximation. The results are compared with the modulation parameter inferred by neutron monitors.« less

  20. Radial evolution of the solar wind from IMP 8 to Voyager 2

    NASA Technical Reports Server (NTRS)

    Richardson, John D.; Paularena, Karolen I.; Lazarus, Alan J.; Belcher, John W.

    1995-01-01

    Voyager 2 and Interplanetary Monitoring Platform (IMP) 8 data from 1977 through 1994 are presented and compared. Radial velocity and temperature structures remain intact over the distance from 1 to 43 AU, but density structures do not. Temperature and velocity changes are correlated and nearly in phase at 1 AU, but in the outer heliosphere temperature changes lead velocity changes by tens of days. Solar cycle variations are detected by both spacecraft, with minima in flux density and dynamic pressure near solar maxima. Differences between Voyager 2 and IMP 8 observations near the solar minimum in 1986-1987 are attributed to latitudinal gradients in solar wind properties. Solar rotation variations are often present even at 40 AU. The Voyager 2 temperature profile is best fit with a R(exp -0.49 +/- 0.01) decrease, much less steep than an adiabatic profile.

  1. Atmospheric entry probes for outer planet exploration. Outer planet entry probe technical summary

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The use of unmanned space probes for investigating the conditions existing on and around the outer planets of the solar system is discussed. The subjects included in the report are: (1) the design of a common entry probe for outer planet missions, (2) the significant trades related to the development of a common probe design, (3) the impact of bus selection on probe design, (4) the impact of probe requirements on bus modifications, and (5) the key technology elements recommended for advanced development. Drawings and illustrations of typical probes are included to show the components and systems used in the space probes.

  2. Aeronautics and Space Highlights [1979 Highlights

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The videotape includes footage of the following: Voyagers to Jupiter, Pioneer to Saturn, High Energy Astronomy Observatory, space telescope, space shuttle, astronauts Young and Crippen, 10th anniversary of Apollo 11, Skylab reentry, Landsat, satellite freeze warning, Fire Fighting Module, SAGE, wind generators, Solar Energy Project, electric car research, XV-15, HiMAT, and crash worthiness tests.

  3. Abundances of Jupiter's trace hydrocarbons from Voyager and Cassini

    NASA Astrophysics Data System (ADS)

    Nixon, C. A.; Achterberg, R. K.; Romani, P. N.; Allen, M.; Zhang, X.; Teanby, N. A.; Irwin, P. G. J.; Flasar, F. M.

    2010-11-01

    The flybys of Jupiter by the Voyager spacecraft in 1979, and over two decades later by Cassini in 2000, have provided us with unique datasets from two different epochs, allowing the investigation of seasonal change in the atmosphere. In this paper we model zonal averages of thermal infrared spectra from the two instruments, Voyager 1 IRIS and Cassini CIRS, to retrieve the vertical and meridional profiles of temperature, and the abundances of the two minor hydrocarbons, acetylene (C 2H 2) and ethane (C 2H 6). The spatial variation of these gases is controlled by both chemistry and dynamics, and therefore their observed distribution gives us an insight into both processes. We find that the two gases paint quite different pictures of seasonal change. Whilst the 2-D cross-section of C 2H 6 abundance is slightly increased and more symmetric in 2000 (northern summer solstice) compared to 1979 (northern fall equinox), the major trend of equator to pole increase remains. For C 2H 2 on the other hand, the Voyager epoch exhibits almost no latitudinal variation, whilst the Cassini era shows a marked decrease polewards in both hemispheres. At the present time, these experimental findings are in advance of interpretation, as there are no published models of 2-D Jovian seasonal chemical variation available for comparison.

  4. Abundances of Jupiter's Trace Hydrocarbons from Voyager and Cassini

    NASA Technical Reports Server (NTRS)

    Nixon, C. A.; Achterberg, R. K.; Romani, P. N.; Allen, M.; Zhang, X.; Teanby, N. A.; Irwin, P. G. J.; Flasar, F. M.

    2010-01-01

    The flybys of Jupiter by the Voyager spacecraft in 1979, and over two decades later by Cassini in 2000, have provided us with unique datasets from two different epochs, allowing the investigation of seasonal change in the atmosphere. In this paper we model zonal averages of thermal infrared spectra from the two instruments, Voyager 1 IRIS and Cassini CIRS, to retrieve the vertical and meridional profiles of temperature, and the abundances of the two minor hydrocarbons, acetylene (C2H2) and ethane (C2H6). The spatial variation of these gases is controlled by both chemistry and dynamics, and therefore their observed distribution gives us an insight into both processes, We find that the two gases paint quite different pictures of seasonal change. Whilst the 2-D cross-section of C2H6 abundance is slightly increased and more symmetric in 2000 (northern summer solstice) compared to 1979 (northern fall equinox), the major trend of equator to pole increase remains. For C2H2 on tile other hand, the Voyager epoch exhibits almost no latitudinal variation, whilst the Cassini era shows a marked decrease polewards in both hemispheres. At the present time, these experimental findings are in advance of interpretation, as there are no published models of 2-D Jovian seasonal chemical variation available for comparison.

  5. VOYAGER OBSERVATIONS OF MAGNETIC SECTORS AND HELIOSPHERIC CURRENT SHEET CROSSINGS IN THE OUTER HELIOSPHERE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richardson, J. D.; Burlaga, L. F.; Drake, J. F.

    Voyager 1 ( V1 ) has passed through the heliosheath and is in the local interstellar medium. Voyager 2 ( V2 ) has been in the heliosheath since 2007. The role of reconnection in the heliosheath is under debate; compression of the heliospheric current sheets (HCS) in the heliosheath could lead to rapid reconnection and a reconfiguration of the magnetic field topology. This paper compares the expected and actual amounts of time the Voyager spacecraft observe each magnetic sector and the number of HCS crossings. The predicted and observed values generally agree well. One exception is at Voyager 1 inmore » 2008 and 2009, where the distribution of sectors is more equal than expected and the number of HCS crossings is small. Two other exceptions are at V1 in 2011–2012 and at V2 in 2012, when the spacecraft are in the opposite magnetic sector less than expected and see fewer HCS crossings than expected. These features are consistent with those predicted for reconnection, and consequently searches for other reconnection signatures should focus on these times.« less

  6. Magnetic Reconnection in the Heliospheric Current Sheet: The Implications of the Different Environments Seen by the VoyagerSpacecraft

    NASA Astrophysics Data System (ADS)

    Swisdak, M. M.; Drake, J. F.; Opher, M.

    2014-12-01

    The magnetic field abutting the heliospheric current sheet (HCS) is primarily in the azimuthal direction, either east-to-west or west-to-east. Mis-alignment of the solar rotational and magnetic axesleads to the characteristic ballerina-skirt shape of the HCS and during the solar cycle there can be large excursions in the sheet's latitudinal extent. Voyager 2's observations of energetic electrondropouts are related to its crossing of this boundary. Magnetic reconnection is also thought to occur as the HCS compresses and narrows between the termination shock and the heliopause. Near theequator the two HCS field alignments are present in roughly equal amounts, while near the edges the distribution can be considerably skewed. This will lead to substantial differences in the environmentsof the two Voyager spacecraft since Voyager 1 is north of the equator, but firmly in the sector region, while Voyager 2 is south of the equator and skirting the edges of the sector region. We presentparticle-in-cell simulations demonstrating the consequences of the reconnection of asymmetric amounts of flux. In particular, we will discuss Voyager 2's remaining time in the heliosphere -- including theimplications for the solar wind velocity, energetic particle transport, and the expected structure of Voyager 2's heliopause crossing -- and compare it with the data collected from Voyager 1.

  7. Climate Voyager: An Iteratively Built Information and Visualization Tool for At-Risk Climate Communities

    NASA Astrophysics Data System (ADS)

    Terando, A. J.; Lascurain, A.; Aldridge, H. D.; Davis, C.

    2016-12-01

    Climate Voyager provides an innovative way to visualize both large-scale and local climate change projections using a three-map layout and time series plot. This product includes a suite of tools designed to assist with climate risk and opportunity assessments, including changes in average seasonal conditions and the capability to evaluate a variety of different decision-relevant thresholds (e.g. changes in extreme temperature occurrence). Each tool summarizes output from 20 downscaled global climate models and contains a historical average for comparison with the spread of projected future outcomes. The Climate Voyager website is interactive, allowing users to explore both regional and location-specific guidance for two Representative Concentration Pathways (RCPs) and four future 20-year time periods. By presenting climate model projections and measures of uncertainty of specific parameters beyond just annual temperatures and precipitation, Climate Voyager can help a wide variety of decision makers plan for climate changes that may affect them. We present a case study in which a new module was developed within Climate Voyager for use by Tribes and native communities in the eastern U.S. to help make informed resource decisions. In this first attempt, Ramps (Allium tricoccum), a plant species of great cultural significance, was incorporated through consultation with the tribal organization. We will also discuss the process of engagement employed with end-users and the potential to make the Climate Voyager interface an iterative, co-produced process to enhance the usability of climate model information for adaptation planning.

  8. Space pruning monotonic search for the non-unique probe selection problem.

    PubMed

    Pappalardo, Elisa; Ozkok, Beyza Ahlatcioglu; Pardalos, Panos M

    2014-01-01

    Identification of targets, generally viruses or bacteria, in a biological sample is a relevant problem in medicine. Biologists can use hybridisation experiments to determine whether a specific DNA fragment, that represents the virus, is presented in a DNA solution. A probe is a segment of DNA or RNA, labelled with a radioactive isotope, dye or enzyme, used to find a specific target sequence on a DNA molecule by hybridisation. Selecting unique probes through hybridisation experiments is a difficult task, especially when targets have a high degree of similarity, for instance in a case of closely related viruses. After preliminary experiments, performed by a canonical Monte Carlo method with Heuristic Reduction (MCHR), a new combinatorial optimisation approach, the Space Pruning Monotonic Search (SPMS) method, is introduced. The experiments show that SPMS provides high quality solutions and outperforms the current state-of-the-art algorithms.

  9. Absolute far-ultraviolet spectrophotometry of hot subluminous stars from Voyager

    NASA Technical Reports Server (NTRS)

    Holberg, J. B.; Ali, B.; Carone, T. E.; Polidan, R. S.

    1991-01-01

    Observations, obtained with the Voyager ultraviolet spectrometers, are presented of absolute fluxes for two well-known hot subluminous stars: BD + 28 deg 4211, an sdO, and G191 - B2B, a hot DA white dwarf. Complete absolute energy distributions for these two stars, from the Lyman limit at 912 A to 1 micron, are given. For BD + 28 deg 4211, a single power law closely represents the entire observed energy distribution. For G191 - B2B, a pure hydrogen model atmosphere provides an excellent match to the entire absolute energy distribution. Voyager absolute fluxes are discussed in relation to those reported from various sounding rocket experiments, including a recent rocket observation of BD + 28 deg 4211.

  10. Magnetic field studies at jupiter by voyager 1: preliminary results.

    PubMed

    Ness, N F; Acuna, M H; Lepping, R P; Burlaga, L F; Behannon, K W; Neubauer, F M

    1979-06-01

    Results obtained by the Goddard Space Flight Center magnetometers on Voyager 1 are described. These results concern the large-scale configuration of the Jovian bow shock and magnetopause, and the magnetic field in both the inner and outer magnetosphere. There is evidence that a magnetic tail extending away from the planet on the nightside is formed by the solar wind-Jovian field interaction. This is much like Earth's magnetosphere but is a new configuration for Jupiter's magnetosphere not previously considered from earlier Pioneer data. We report on the analysis and interpretation of magnetic field perturbations associated with intense electrical currents (approximately 5 x 10(6) amperes) flowing near or in the magnetic flux tube linking Jupiter with the satellite Jo and induced by the relative motion between Io and the corotating Jovian magnetosphere. These currents may be an important source of heating the ionosphere and interior of Io through Joule dissipation.

  11. A Curriculum Review: The Voyage of the Mimi.

    ERIC Educational Resources Information Center

    Johns, Kenneth W.

    1988-01-01

    The curriculum package, "The Voyage of the Mimi," uses computer, videocassette, student text, and workbook for integrated study of the great whales and the impact of social actions on society and the environment. This review suggests that the package also offers many ancillary teaching opportunities. (CB)

  12. John Lawson's "A New Voyage to Carolina": notes on the publication history of the London (1709) edition.

    PubMed

    Simpson, Marcus B; Simpson, Sallie W

    2008-01-01

    John Lawson's "A New Voyage to Carolina," an important source document for American colonial natural history, was first printed in 1709 in "A New Collection of Voyages and Travels," a two-volume set that also contained travel books translated by John Stevens. Lawson's publishers were leaders in the book trade of early eighteenth century London, and the "New Voyage" is typical of the resurgent popular interest in foreign travel narratives and exotic flora and fauna that began in the late 1600s. The "New Collection" was among the earliest examples of books published in serial instalments or fascicles, a marketing strategy adopted by London booksellers to broaden the audience and increase sales. Analysis of London issues of the "New Voyage" indicates that the 1709, 1711, 1714, and 1718 versions are simply bindings of the original, unsold sheets from the 1709 "New Collection" edition, differing only by new title-pages, front matter, and random stop-press corrections of type-set errors. Lawson's "New Voyage" illustrates important aspects of the British book trade during the hand press period of the early eighteenth century.

  13. Survey of compressions in the SW (1 AU), and after termination shock at Voyager (in sheath & LISM)

    NASA Astrophysics Data System (ADS)

    Berdichevsky, D. B.

    2017-12-01

    Examples of the plasma compression as it is observed in the solar wind at 1 AU with the suite of instruments in the SC Wind, and after the termination shock with both Voyager SC, as well as with Voyager 1 in the local interstellar medium (LISM) are presented. The work will focus on similarities and differences in the observations at the different locations. At priory is fair to mention that the 4 regions differ in several aspects. At 1 AU the solar wind (SW) flow is mostly alfvenic. In the sheath after the termination shock the possibly subsonic solar wind is mostly compressional but fluctuation modes in scales of one hour are much less observed at Voyager 1 than at Voyager 2 path. Finally Burlaga and Ness1 documented the nature of the compressional flow in the `depletion' layer at the start of the LISM as well later in this medium, showing the low plasma-beta character of this LISM region in Voyager 1 path. 1Burlaga L.F., and N. Ness, ApJ, 784, 146 (14pp), 2014.

  14. Voyager Saturn encounter attitude and articulation control experience

    NASA Technical Reports Server (NTRS)

    Carlisle, G.; Hill, M.

    1981-01-01

    The Voyager attitude and articulation control system is designed for a three-axis stabilized spacecraft; it uses a biasable sun sensor and a Canopus Star Tracker (CST) for celestial control, as well as a dry inertial reference unit, comprised of three dual-axis dry gryos, for inertial control. A series of complex maneuvers was required during the first of two Voyager spacecraft encounters with Saturn (November 13, 1980); these maneuvers involved rotating the spacecraft simultaneously about two or three axes while maintaining accurate pointing of the scan platform. Titan and Saturn earth occulation experiments and a ring scattering experiment are described. Target motion compensation and the effects of celestial sensor interference are also considered. Failure of the CST, which required an extensive reevaluation of the star reference and attitude control mode strategy, is discussed. Results analyzed thus far show that the system performed with high accuracy, gathering data deeper into Saturn's atmosphere than on any previous planetary encounter.

  15. Stellar Occultation Probe of Triton's Atmosphere

    NASA Technical Reports Server (NTRS)

    Elliot, James L.

    1998-01-01

    The goals of this research were (i) to better characterize Triton's atmospheric structure by probing a region not well investigated by Voyager and (ii) to begin acquiring baseline data for an investigation of the time evolution of the atmosphere which will set limits on the thermal conductivity of the surface and the total mass of N2 in the atmosphere. Our approach was to use observations (with the Kuiper Airborne Observatory) of a stellar occultation by Triton that was predicted to occur on 1993 July 10. As described in the attached reprint, we achieved these objectives through observation of this occultation and a subsequent one with the KAO in 1995. We found new results about Triton's atmospheric structure from the analysis of the two occultations observed with the KAO and ground-based data. These stellar occultation observations made both in the visible and infrared, have good spatial coverage of Triton including the first Triton central-flash observations, and are the first data to probe the 20-100 km altitude level on Triton. The small-planet light curve model of Elliot and Young (AJ 103, 991-1015) was generalized to include stellar flux refracted by the far limb, and then fitted to the data. Values of the pressure, derived from separate immersion and emersion chords, show no significant trends with latitude indicating that Triton's atmosphere is spherically symmetric at approximately 50 km altitude to within the error of the measurements. However, asymmetry observed in the central flash indicates the atmosphere is not homogeneous at the lowest levels probed (approximately 20 km altitude). From the average of the 1995 occultation data, the equivalent-isothermal temperature of the atmosphere is 47 +/- 1 K and the atmospheric pressure at 1400 km radius (approximately 50 km altitude) is 1.4 +/- 0.1 microbar. Both of these are not consistent with a model based on Voyager UVS and RSS observations in 1989 (Strobel et al, Icarus 120, 266-289). The atmospheric

  16. Spectral analysis of groove spacing on Ganymede

    NASA Technical Reports Server (NTRS)

    Grimm, R. E.

    1984-01-01

    The technique used to analyze groove spacing on Ganymede is presented. Data from Voyager images are used determine the surface topography and position of the grooves. Power spectal estimates are statistically analyzed and sample data is included.

  17. A Voyager Perspective of Ice Giant Magnetospheres: What Next?

    NASA Astrophysics Data System (ADS)

    Kurth, W. S.; Hospodarsky, G. B.

    2017-12-01

    Voyager 2 provided our only in situ observations of the magnetospheres of Uranus (in 1986) and Neptune (in 1989). And, given that Earth-based radio observations have not acquired auroral radio emissions from these planets, the only remote observations of magnetospheric phenomena at these planets are of their auroras. This paper provides an overview of the Voyager observations of these ice giant magnetospheres as a stepping off point for the possibility of missions launching to one or both of these planets in the next decade or so. Both of these magnetospheres are rich in phenomena found in other planetary magnetospheres including plasmas and energetic particles, currents, radio and plasma waves, auroras, and dust. Perhaps the thing that sets these magnetospheres off from those of Earth, Jupiter, and Saturn are the very large tilt of their magnetic moments with respect to their rotation axes. With such tilts, the magnetospheres can be reconfigured every rotation as the magnetic configuration with respect to the impinging solar wind continually changes. The Voyager flybys provided only hints of how these reconfigurations work. Certainly even another flyby mission would effectively double the range of states observed for them. But, a mission including an orbiter would provide an amazing opportunity to observe these dramatic changes through not only a cycle, but repeatedly. A suitably instrumented spacecraft could provide understanding for how these planets work as systems including satellites, rings, and magnetic fields tying them to the ice giant.

  18. Plasma observations near jupiter: initial results from voyager 1.

    PubMed

    Bridge, H S; Belcher, J W; Lazarus, A J; Sullivan, J D; McNutt, R L; Bagenal, F; Scudder, J D; Sittler, E C; Siscoe, G L; Vasyliunas, V M; Goertz, C K; Yeates, C M

    1979-06-01

    Extensive measurements of low-energy positive ions and electrons were made throughout the Jupiter encounter of Voyager 1. The bow shock and magneto-pause were crossed several times at distances consistent with variations in the upstream solar wind pressure measured on Voyager 2. During the inbound pass, the number density increased by six orders of magnitude between the innermost magnetopause crossing at approximately 47 Jupiter radii and near closest approach at approximately 5 Jupiter radii; the plasma flow during this period was predominately in the direction of corotation. Marked increases in number density were observed twice per planetary rotation, near the magnetic equator. Jupiterward of the Io plasma torus, a cold, corotating plasma was observed and the energylcharge spectra show well-resolved, heavy-ion peaks at mass-to-charge ratios A/Z* = 8, 16, 32, and 64.

  19. PRESSURE PULSES AT VOYAGER 2 : DRIVERS OF INTERSTELLAR TRANSIENTS?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richardson, J. D.; Wang, C.; Liu, Y. D.

    Voyager 1 ( V1 ) crossed the heliopause into the local interstellar medium (LISM) in 2012. The LISM is a dynamic region periodically disturbed by solar transients with outward-propagating shocks, cosmic-ray intensity changes and anisotropies, and plasma wave oscillations. Voyager 2 ( V2 ) trails V1 and thus may observe the solar transients that are later observed at V1. V2 crossed the termination shock in 2007 and is now in the heliosheath. Starting in 2012, when solar maximum conditions reached V2 , five possible merged interaction regions (MIRs) have been observed by V2 in the heliosheath. The timing is consistentmore » with these MIRs driving the transients observed by V1 in the LISM. The largest heliosheath MIR was observed by V2 in late 2015 and should reach V1 in 2018.« less

  20. Plasma observations near Jupiter - Initial results from Voyager 1

    NASA Technical Reports Server (NTRS)

    Bridge, H. S.; Belcher, J. W.; Lazarus, A. J.; Sullivan, J. D.; Mcnutt, R. L.; Bagenal, F.; Scudder, J. D.; Sittler, E. C.; Siscoe, G. L.; Vasyliunas, V. M.

    1979-01-01

    Extensive measurements of low-energy positive ions and electrons were made throughout the Jupiter encounter of Voyager 1. The bow shock and magnetopause were crossed several times at distances consistent with variations in the upstream solar wind pressure measured on Voyager 2. During the inbound pass, the number density increased by six orders of magnitude between the innermost magnetopause crossing at approximately 47 Jupiter radii and near closest approach at approximately 5 Jupiter radii; the plasma flow during this period was predominately in the direction of corotation. Marked increases in number density were observed twice per planetary rotation, near the magnetic equator. Jupiterward of the Io plasma torus, a cold, corotating plasma was observed and the energy/charge spectra show well-resolved, heavy-ion peaks at mass-to-charge ratios equal to 8, 16, 32, and 64.

  1. Preservation Methods Utilized for Space Food

    NASA Technical Reports Server (NTRS)

    Vodovotz, Yael; Bourland, Charles

    2000-01-01

    Food for manned space flight has been provided by NASA-Johnson Space Center since 1962. The various mission scenarios and space craft designs dictated the type of food preservation methodologies required to meet mission objectives. The preservation techniques used in space flight include freeze-dehydration, thermostabilization, irradiation, freezing and moisture adjustment. Innovative packaging material and techniques enhanced the shelf-stability of the food items. Future space voyages may include extended duration exploration missions requiring new packaging materials and advanced preservation techniques to meet mission goals of up to 5-year shelf-life foods.

  2. 46 CFR 252.20 - Subsidized and nonsubsidized voyages.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., idleness, delay or lay-up—(i) Report by operator. The operator shall report promptly to the Region Director any reduced crew period and any period of idleness, lay-up or delay occurring during or between... the event the nonsubsidized voyage follows a subsidized period of reduced crew, idleness or lay-up...

  3. SkyServer Voyages Website - Using Big Data to Explore Astronomy Concepts in Formal Education Settings

    NASA Astrophysics Data System (ADS)

    Meredith, Kate K.; Masters, Karen; Raddick, Jordan; Lundgren, Britt

    2015-08-01

    The Sloan Digital Sky Survey (SDSS) web interface “SkyServer” has long included online educational materials designed to help students and the public discover the fundamentals of modern astronomy using real observations from the SDSS database. The newly launched SDSS Voyages website updates and expands these activities to reflect new data from subsequent generations of the survey, advances in web technology, and evolving practices in science education. Voyages provides access to quality astronomy, astrophysics, and engineering materials to educators seeking an inquiry approach to fundamental concepts. During this session we will provide an overview of the design and development of Skyserver Voyages and discuss ways to apply this resource at K-12 and university levels.

  4. Radioisotope Power: A Key Technology for Deep Space Explorations

    NASA Technical Reports Server (NTRS)

    Schmidt, George R.; Sutliff, Thomas J.; Duddzinski, Leonard

    2009-01-01

    A Radioisotope Power System (RPS) generates power by converting the heat released from the nuclear decay of radioactive isotopes, such as Plutonium-238 (Pu-238), into electricity. First used in space by the U.S. in 1961, these devices have enabled some of the most challenging and exciting space missions in history, including the Pioneer and Voyager probes to the outer solar system; the Apollo lunar surface experiments; the Viking landers; the Ulysses polar orbital mission about the Sun; the Galileo mission to Jupiter; the Cassini mission orbiting Saturn; and the recently launched New Horizons mission to Pluto. Radioisotopes have also served as a versatile heat source for moderating equipment thermal environments on these and many other missions, including the Mars exploration rovers, Spirit and Opportunity. The key advantage of RPS is its ability to operate continuously, independent of orientation and distance relative to the Sun. Radioisotope systems are long-lived, rugged, compact, highly reliable, and relatively insensitive to radiation and other environmental effects. As such, they are ideally suited for missions involving long-lived, autonomous operations in the extreme conditions of space and other planetary bodies. This paper reviews the history of RPS for the U.S. space program. It also describes current development of a new Stirling cycle-based generator that will greatly expand the application of nuclear-powered missions in the future.

  5. Radioisotope Power: A Key Technology for Deep Space Exploration

    NASA Technical Reports Server (NTRS)

    Schmidt, George; Sutliff, Tom; Dudzinski, Leonard

    2008-01-01

    A Radioisotope Power System (RPS) generates power by converting the heat released from the nuclear decay of radioactive isotopes, such as Plutonium-238 (Pu-238), into electricity. First used in space by the U.S. in 1961, these devices have enabled some of the most challenging and exciting space missions in history, including the Pioneer and Voyager probes to the outer solar system; the Apollo lunar surface experiments; the Viking landers; the Ulysses polar orbital mission about the Sun; the Galileo mission to Jupiter; the Cassini mission orbiting Saturn; and the recently launched New Horizons mission to Pluto. Radioisotopes have also served as a versatile heat source for moderating equipment thermal environments on these and many other missions, including the Mars exploration rovers, Spirit and Opportunity. The key advantage of RPS is its ability to operate continuously, independent of orientation and distance relative to the Sun. Radioisotope systems are long-lived, rugged, compact, highly reliable, and relatively insensitive to radiation and other environmental effects. As such, they are ideally suited for missions involving long-lived, autonomous operations in the extreme conditions of space and other planetary bodies. This paper reviews the history of RPS for the U.S. space program. It also describes current development of a new Stirling cycle-based generator that will greatly expand the application of nuclear-powered missions in the future.

  6. Physical limitations in sensors for a drag-free deep space probe

    NASA Technical Reports Server (NTRS)

    Juillerat, R.

    1971-01-01

    The inner perturbing forces acting on sensors were analyzed, taking into account the technological limitations imposed on the proof mass position pickup and proof mass acquisition system. The resulting perturbing accelerations are evaluated as a function of the drag-free sensor parameters. Perturbations included gravitational attraction, electrical action, magnetic action, pressure effects, radiation effects, and action of the position pickup. These data can be used to study the laws of guidance, providing an optimization of the space probe as a whole.

  7. The Columbian Voyages, the Columbian Exchange, and Their Historians. Essays on Global and Comparative History.

    ERIC Educational Resources Information Center

    Crosby, Alfred W.

    The 500th anniversary of the Columbian discovery of America is upon us, and with it the obligation to assess existing interpretations of the significance of the voyage and establishment of permanent links between the Old and New Worlds. The traditional, or bardic, version of the Columbian voyages and their consequences was the product of narrative…

  8. Environmental Impact Specification for Direct Space Weathering of Kuiper Belt and Oort Cloud Objects

    NASA Technical Reports Server (NTRS)

    Cooper, John F.

    2010-01-01

    The Direct Space Weathering Project of NASA's Outer Planets Research Program addresses specification of the plasma and energetic particle environments for irradiation and surface chemical processing of icy bodies in the outer solar system and the local interstellar medium. Knowledge of the radiation environments is being expanded by ongoing penetration of the twin Voyager spacecraft into the heliosheath boundary region of the outer heliosphere and expected emergence within the next decade into the very local interstellar medium. The Voyager measurements are being supplemented by remote sensing from Earth orbit of energetic neutral atom emission from this boundary region by NASA's Interstellar Boundary Explorer (IBEX). Although the Voyagers long ago passed the region of the Classical Kuiper Belt, the New Horizons spacecraft will encounter Pluto in 2015 and thereafter explore one or more KBOs, meanwhile providing updated measurements of the heliospheric radiation environment in this region. Modeling of ion transport within the heliosphere allows specification of time-integrated irradiation effects while the combination of Voyager and IBEX data supports projection of the in-situ measurements into interstellar space beyond the heliosheath. Transformation of model ion flux distributions into surface sputtering and volume ionization profiles provides a multi-layer perspective for space weathering impact on the affected icy bodies and may account for some aspects of color and compositional diversity. Other important related factors may include surface erosion and gardening by meteoritic impacts and surface renewal by cryovolcanism. Chemical products of space weathering may contribute to energy resources for the latter.

  9. Photo by Voyager 1 (JPL) The spacecraft took this photo of the planet Jupiter on Jan 24, while still

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Photo by Voyager 1 (JPL) The spacecraft took this photo of the planet Jupiter on Jan 24, while still more than 25 million miles (40 million kilometers) away. As the spacecraft draws closer to the planet (about 1 million kilometers a day) more details are emergng in the turbulent clouds. The Great Red Spot shows prominently below center, surrounded by what scientists call a remarkably complex region of the giant planet's atmosphere. An elongated yellow cloud within the Great Red Spot is swirling around the spot's interior boundary in a counterclockwise direction with a period of a little less than six days, confirming the whirlpool-like circulation that astronomers have suspected from ground-based photographs. Ganymede, Jupiter's largest satellite, can be seen to the lower left of the planet. Ganymede is a planet-sized body larger than Mercury. This color photo was assembled at Jet Propulsion Laboratory's Image Processing Lab from there black and white images taken through filters. The Voyagers are managed for NASA's Office of Space Science by Jet Propulsion Laboratory. (ref: P-20945C Mission Image 1-9)

  10. The Voyager 2 Encounter with the Uranian System.

    ERIC Educational Resources Information Center

    Stone, E. C.; Miner, E. D.

    1986-01-01

    A series of 12 reports on the Voyager Two experiments in the Uranian system. Reports are included on: (1) imaging science; (2) photometry; (3) infrared; (4) ultraviolet; (5) radio science; (6) magnetic fields; (7) plasma; (8) charged particles; (9) magnetosphere (hot plasma and radiation); (10) radion observations; and (11) plasma waves. An…

  11. Voyager 1 Saturn targeting strategy

    NASA Technical Reports Server (NTRS)

    Cesarone, R. J.

    1980-01-01

    A trajectory targeting strategy for the Voyager 1 Saturn encounter has been designed to accomodate predicted uncertainties in Titan's ephemeris while maximizing spacecraft safety and science return. The encounter is characterized by a close Titan flyby 18 hours prior to Saturn periapse. Retargeting of the nominal trajectory to account for late updates in Titan's estimated position can disperse the ascending node location, which is nominally situated at a radius of low expected particle density in Saturn's ring plane. The strategy utilizes a floating Titan impact vector magnitude to minimize this dispersion. Encounter trajectory characteristics and optimal tradeoffs are presented.

  12. Wave Probe - New Instrument For Space Research

    NASA Astrophysics Data System (ADS)

    Korepanov, V.; Dudkin, F.

    2007-12-01

    The dispersion relations are very important for the wave activity study in space plasmas. One of the most efficient methods for their analysis is the simultaneous measurements of spatial current density and magnetic field fluctuations during such a wave process. Whereas the measurement of the magnetic field is a routine task realized onboard practically every spacecraft (SC), the direct measurement of spatial current density (SCD) still remains a complicated scientific and technological problem. First attempt to solve it was executed in late 60-ties by a group headed by F. Mozer. They proposed and launched in a rocket experiment the device named "Split Langmuir Probe" (SLP) - two conducting plates separated by a thin insulated split. Unfortunately this experiment failed what diverted the attention of experimenters in space branch from this instrument for many years, practically till now. But the importance to know the SCD stimulated the development of new principles and devices to measure it. A short review of known versions is discussed. The newly evoked interest to this problem caused next attempt to improve the SLP construction and methodology of its application for SCD measurements, which resulted in first successful attempt in 1985: the measured SCD onboard Prognos-10 SC in the bow shock region was in rather good agreement with the calculated value. This attempt was continued onboard Interball-Tail SC (1995-2000) where again a qualitatively good coincidence of measured and calculated values was observed. The obtained experience and further theoretical research allowed developing a new instrument - Wave Probe - which is a combination of induction magnetometer and SLP in one body. Both on-ground tests in plasma chamber and the spatial experiment executed onboard Ukrainian "Sich-1M" SC (2004) showed that the combined in-situ simultaneous measurements of SCD and magnetic field fluctuations allowed obtaining the wave number of the whistler wave. The same wave

  13. Uranus' southern circulation revealed by Voyager 2: Unique characteristics

    NASA Astrophysics Data System (ADS)

    Karkoschka, Erich

    2015-04-01

    Revised calibration and processing of 1600 images of Uranus by Voyager 2 revealed dozens of discrete features south of -45° latitude, where only a single feature was known from Voyager images and none has been seen since. Tracking of these features over five weeks defined the southern rotational profile of Uranus with high accuracy and no significant gap. The profile has kinks unlike previous profiles and is strongly asymmetric with respect to the northern profile by Sromovsky et al. (Sromovsky, L.A., Fry, P.M., Hammel, H.B., de Pater, I., Rages, K.A. [2012]. Icarus 220, 694-712). The asymmetry is larger than that of all previous data on jovian planets. A spot that included the South Pole off-center rotated with a period of 12.24 h, 2 h outside the range of all previous observations of Uranus. The region between -68° and -59° latitude rotated almost like a solid body, with a shear that was about 30 times smaller than typical shears on Uranus. At lower latitudes, features were sheared into tightly wound spirals as Voyager watched. The zone at -84° latitude was exceptionally bland; reflectivity variations were only 18 ppm, consistent with a signal-to-noise ratio estimated at 55,000. The low noise was achieved by smoothing over dozens of pixels per image and averaging 1600 images. The presented data set in eight filters contains rich information about temporal evolution and spectral characteristics of features on Uranus that will be the basis for further analysis.

  14. Voyages of Discovery: Experiencing the Emotion of History

    ERIC Educational Resources Information Center

    Kelin, Daniel A., II

    2005-01-01

    Guiding students through a dramatic exploration of an historical event can elicit strong emotional reactions that can deepen student understanding and interest in the subject matter. This article describes an integrated third grade lesson plan that focuses on Henry Hudson's voyages in the early 1600s. The students take on the roles of Hudson's…

  15. Probing Protein Fold Space with a Simplified Model

    PubMed Central

    Minary, Peter; Levitt, Michael

    2008-01-01

    We probe the stability and near-native energy landscape of protein fold space using powerful conformational sampling methods together with simple reduced models and statistical potentials. Fold space is represented by a set of 280 protein domains spanning all topological classes and having a wide range of lengths (0-300 residues), amino acid composition, and number of secondary structural elements. The degrees of freedom are taken as the loop torsion angles. This choice preserves the native secondary structure but allows the tertiary structure to change. The proteins are represented by three-point per residue, three-dimensional models with statistical potentials derived from a knowledge-based study of known protein structures. When this space is sampled by a combination of Parallel Tempering and Equi-Energy Monte Carlo, we find that the three-point model captures the known stability of protein native structures with stable energy basins that are near-native (all-α: 4.77 Å, all-β: 2.93 Å, α/β: 3.09 Å, α+β: 4.89 Å on average and within 6 Å for 71.41 %, 92.85 %, 94.29 % and 64.28 % for all-α, all-β, α/β and α+β, classes respectively). Denatured structures also occur and these have interesting structural properties that shed light on the different landscape characteristics of α and β folds. We find that α/β proteins with alternating α and β segments (such as the beta-barrel) are more stable than proteins in other fold classes. PMID:18054792

  16. Net current measurements and secondary electron emission characteristics of the Voyager plasma science experiment and their impact on data interpretation

    NASA Technical Reports Server (NTRS)

    Mcnutt, Ralph L., Jr.

    1988-01-01

    The Voyager Plasma Science (PLS) instrument is capable of returning integral (DC) current measurements, similar in some respects to measurements made with a Langmuir probe or a retarding potential analyzer, although there are significant differences. The integral measurements were made during a calibration sequence in the solar wind, during Cruise Science Maneuvers, and within the magnetospheres of Jupiter and Saturn by Voyager 1. After the failure of the PLS experiment following the Saturn encounter, that instrument was placed in the DC return mode returning possibly usable data from early 1981 through early 1985. The DC return measurements are difficult to interpret and are above threshold values only for relatively large fluxes; the determination of the measured current level is dependent on the operating temperature of the preamplifiers which further complicates the interpretation. Nevertheless, these measurements can be used to determine the efficiency of the suppressor grid at preventing the loss of secondary electrons off the collector plate. Some DC return measurements have been invaluable in aiding in the interpretation of some electron plasma measurements not previously understood. It is found that electron spectra can be significantly modified by the presence of second generation secondary electrons produced by either first generation secondaries or photoelectrons on the support ring of the negative high voltage modulator grid within the instrument housing.

  17. Dedicated Caravan Sites for French Gens du Voyage: Public Health Policy or Construction of Health and Environmental Inequalities?

    PubMed

    Foisneau, Lise

    2017-12-01

    In France, gens du voyage ("people who travel" or "travellers") is a term used by the government to categorize various itinerant populations, the majority of which are diverse Romani groups. People categorized as gens du voyage are legally required to reside in particular locations called "dedicated caravan sites." Parliamentary debates about these dedicated caravan sites have clarified that one of the objectives of such sites is to help fulfill the gens du voyage 's right to health. However, there is a significant gap between the officially stated goals of such sites and the reality of life within them. This paper draws on research finding that the conditions in most dedicated caravan sites do not conform with the rights of gens du voyage to acceptable sanitary conditions and other underlying determinants of health.

  18. On the location of the Io plasma torus: Voyager 1 observations

    NASA Astrophysics Data System (ADS)

    Volwerk, Martin

    2018-06-01

    The Voyager 1 outbound ultraviolet observations of the Io plasma torus are used to determine the location of the ansae, to obtain a third viewing angle of this structure in the Jovian magnetosphere. At an angle of -114° with respect to the Sun-Jupiter line, or a Jovian local time of 04:30 LT, the Voyager 1 data deliver a distance of 5.74±0.10 RJ for the approaching and 5.83±0.15 RJ for the receding ansa. Various periodicities in the radial distance, brightness and width of the ansae are seen with respect to system III longitude and Io phase angle. The torus ribbon feature does not appear in all ansa scans.

  19. New coding advances for deep space communications

    NASA Technical Reports Server (NTRS)

    Yuen, Joseph H.

    1987-01-01

    Advances made in error-correction coding for deep space communications are described. The code believed to be the best is a (15, 1/6) convolutional code, with maximum likelihood decoding; when it is concatenated with a 10-bit Reed-Solomon code, it achieves a bit error rate of 10 to the -6th, at a bit SNR of 0.42 dB. This code outperforms the Voyager code by 2.11 dB. The use of source statics in decoding convolutionally encoded Voyager images from the Uranus encounter is investigated, and it is found that a 2 dB decoding gain can be achieved.

  20. On the latitudinal distribution of Titan's haze at the Voyager epoch

    NASA Astrophysics Data System (ADS)

    Negrao, A.; Roos-Serote, M.; Rannou, P.; Rages, K.; McKay, C.

    2002-09-01

    In this work, we re-analyse a total of 10 high phase angle images of Titan (2 from Voyager 1 and 8 from Voyager 2). The images were acquired in different filters of the Voyager Imaging Sub System in 1980 - 1981. We apply a model, developed and used by Rannou etal. (1997) and Cabane etal. (1992), that calculates the vertical (1-D) distribution of haze particles and the I/F radial profiles as a function of a series of parameters. Two of these parameters, the haze particle production rate (P) and imaginary refractive index (xk), are used to obtain fits to the observed I/F profiles at different latitudes. Differerent from previous studies is that we consider all filters simultaneously, in an attempt to better fix the parameter values. We also include the filter response functions, not considered previously. The results show that P does not change significantly as a function of latitude, eventhough somewhat lower values are found at high northern latitudes. xk seems to increase towards southern latitudes. We will compare our results with GCM runs, that can give the haze distribution at the epoch of the observations. Work financed by portuguese Foundation for Science and Tecnology (FCT), contract ESO/PRO/40157/2000

  1. Voyager 2 Saturn encounter attitude and articulation control experience

    NASA Technical Reports Server (NTRS)

    Hill, M.

    1982-01-01

    A description is given of the Voyager Attitude and Articulation Control System (AACS). The complex series of maneuvers required for Voyager 2 during the near encounter period to obtain fields and particle data, track the limb of Saturn during the earth occultation period, and reflect the RF beam off the Saturnian ring system are discussed. It is noted that some of these maneuvers involved rotating the spacecraft simultaneously about multiple axes while maintaining accurate pointing of the scan platform, a first for interplanetary missions. Also described are two anomalies experienced by the AACS during the near encounter period. The first was the significant roll attitude error that occurred shortly after all axis inertial control and that continued to grow until celestial reacquisition. The second was that the scan platform slewing in the azimuth axis stopped midway through the near encounter. These anomalies are analyzed, and their effect on future missions is assessed.

  2. Monitor and Control of the Deep-Space network via Secure Web

    NASA Technical Reports Server (NTRS)

    Lamarra, N.

    1997-01-01

    (view graph) NASA lead center for robotic space exploration. Operating division of Caltech/Jet Propulsion Laboratory. Current missions, Voyagers, Galileo, Pathfinder, Global Surveyor. Upcoming missions, Cassini, Mars and New Millennium.

  3. 33 CFR 164.80 - Tests, inspections, and voyage planning.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Tests, inspections, and voyage... SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY NAVIGATION SAFETY REGULATIONS § 164.80 Tests, inspections... shall ensure that the following tests and inspections of gear occur before the vessel embarks on a...

  4. 33 CFR 164.80 - Tests, inspections, and voyage planning.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Tests, inspections, and voyage... SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY NAVIGATION SAFETY REGULATIONS § 164.80 Tests, inspections... shall ensure that the following tests and inspections of gear occur before the vessel embarks on a...

  5. 33 CFR 164.80 - Tests, inspections, and voyage planning.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Tests, inspections, and voyage... SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY NAVIGATION SAFETY REGULATIONS § 164.80 Tests, inspections... shall ensure that the following tests and inspections of gear occur before the vessel embarks on a...

  6. 33 CFR 164.80 - Tests, inspections, and voyage planning.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Tests, inspections, and voyage... SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY NAVIGATION SAFETY REGULATIONS § 164.80 Tests, inspections... shall ensure that the following tests and inspections of gear occur before the vessel embarks on a...

  7. Probing dimensionality using a simplified 4-probe method.

    PubMed

    Kjeldby, Snorre B; Evenstad, Otto M; Cooil, Simon P; Wells, Justin W

    2017-10-04

    4-probe electrical measurements have been in existence for many decades. One of the most useful aspects of the 4-probe method is that it is not only possible to find the resistivity of a sample (independently of the contact resistances), but that it is also possible to probe the dimensionality of the sample. In theory, this is straightforward to achieve by measuring the 4-probe resistance as a function of probe separation. In practice, it is challenging to move all four probes with sufficient precision over the necessary range. Here, we present an alternative approach. We demonstrate that the dimensionality of the conductive path within a sample can be directly probed using a modified 4-probe method in which an unconventional geometry is exploited; three of the probes are rigidly fixed, and the position of only one probe is changed. This allows 2D and 3D (and other) contributions the to resistivity to be readily disentangled. The required experimental instrumentation can be vastly simplified relative to traditional variable spacing 4-probe instruments.

  8. Celebrating One Year of Atmospheric Evolution on Titan Since Voyager with Cassini/CIRS

    NASA Technical Reports Server (NTRS)

    Coustenis, A.; Bampasidis, G.; Vinatier, S.; Arhterberg, R.; Lavvas, P.; Nixon, C.; Jennings, Donald E.; Teanby, N.; Flasar, F. M.; Carlson, R.; hide

    2012-01-01

    Seven years after Cassini's Saturn orbit insertion, we have in hand almost a complete picture of the stratospheric evolution within a Titanian year by combining Voyager 1 Infrared Radiometer Spectrometer (IRIS) measurements from 1980, Cassini Composite Infrared Spectrometer (CIRS) continuous recordings from 2004 to 2010 and the intervening ground-based and space-borne observations with ISO (Coustenis et al 2003). We have re-analyzed the Voyager l/IRIS data acquired during the 1980 encounter, 30 years (one Titan revolution) before 2010, with the most recent spectroscopic data releases and haze descriptions (Vinatier et al 2010, 2012) by using our radiative transfer code (ART). The re-analysis confirms the Vl/IRIS retrievals by Coustenis and Bezard (1995) and updates the abundances for all molecules and latitudes based on new temperature, haze and spectroscopic parameters. ART was also applied to all available CIRS spectral averages corresponding to more than 70 flybys binned over 10 deg in latitude for both medium (2.5 cm(exp -1) and higher (0.5 cm(exp -1) resolutions and from nadir and limb data both. In these spectra, we search for variations in temperature (following the method in Achterberg et al 2011) and composition at northern (around 50 deg N), equatorial and southern (around 50 deg S) latitudes as the season on Titan progresses and compare them to the new Vl/IRIS, ISO and other ground-based reported composition values (Coustenis et al., 2012, in prep). Other latitudes were examined in previous papers (e.g. Coustenis et al 2010).

  9. Performance of three-way data types during Voyager's encounter with Neptune

    NASA Technical Reports Server (NTRS)

    Roth, D. C.; Taylor, T. H.; Jacobson, R. A.; Lewis, G. D.

    1990-01-01

    Voyager's flyby of Neptune in August of 1989 was the most distant planetary encounter ever achieved. Round trip light travel time was more than eight hours, exceeding view periods at two of the three tracking station sites. Consequently, the majority of radiometric tracking was accomplished by transmitting the uplink from one station, and receiving the downlink at a different station. This procedure defines three-way data. Dependence on three-way data for orbit determination is one distinguishing element of Voyager's successful encounter with Neptune. This paper addresses the performance of three-way range and Doppler data supporting pre-encounter orbit determination and post-encounter orbit reconstruction. Also, calibrations which reduce systematic errors inherent to three-way data are described and analyzed.

  10. Voyager 2 Uranus and Neptune targeting

    NASA Technical Reports Server (NTRS)

    Gray, D. L.; Cesarone, R. J.; Van Allen, R. E.

    1982-01-01

    Targeting strategies are developed for the Voyager 2 flybys of Uranus and Neptune/Triton. The need to maximize science return, conserve propellant, and maintain spacecraft safety presents a challenge, given the difficulty in estimating the spacecraft orbit relative to these outer planets. Expected propellant usage, science return, and targeting complexity are presented for each targeting strategy. For the dual encounter of Neptune and its satellite Triton, split targeting conditions are proposed to fix the most important conditions at each body, and thus minimize science losses resulting from Triton ephemeris uncertainties.

  11. The Challenge of Space Futures: Starcomber's Galactic Voyage to Xeranthemom.

    ERIC Educational Resources Information Center

    Shimonauff, Jacqueline

    1998-01-01

    Describes a curriculum enrichment activity for gifted middle school students. Students design a long-range space travel vehicle and plan for colonizing a discovered planet. Students contact people in science and industry and produce a handbook for space travel and colonization. (DB)

  12. Survival of ship biofouling assemblages during and after voyages to the Canadian Arctic.

    PubMed

    Chan, Farrah T; MacIsaac, Hugh J; Bailey, Sarah A

    2016-01-01

    Human-mediated vectors often inadvertently translocate species assemblages to new environments. Examining the dynamics of entrained species assemblages during transport can provide insights into the introduction risk associated with these vectors. Ship biofouling is a major transport vector of nonindigenous species in coastal ecosystems globally, yet its magnitude in the Arctic is poorly understood. To determine whether biofouling organisms on ships can survive passages in Arctic waters, we examined how biofouling assemblage structure changed before, during, and after eight round-trip military voyages from temperate to Arctic ports in Canada. Species richness first decreased (~70% loss) and then recovered (~27% loss compared to the original assemblages), as ships travelled to and from the Arctic, respectively, whereas total abundance typically declined over time (~55% total loss). Biofouling community structure differed significantly before and during Arctic transits as well as between those sampled during and after voyages. Assemblage structure varied across different parts of the hull; however, temporal changes were independent of hull location, suggesting that niche areas did not provide protection for biofouling organisms against adverse conditions in the Arctic. Biofouling algae appear to be more tolerant of transport conditions during Arctic voyages than are mobile, sessile, and sedentary invertebrates. Our results suggest that biofouling assemblages on ships generally have poor survivorship during Arctic voyages. Nonetheless, some potential for transporting nonindigenous species to the Arctic via ship biofouling remains, as at least six taxa new to the Canadian Arctic, including a nonindigenous cirripede, appeared to have survived transits from temperate to Arctic ports.

  13. WHY ARE THE MAGNETIC FIELD DIRECTIONS MEASURED BY VOYAGER 1 ON BOTH SIDES OF THE HELIOPAUSE SO SIMILAR?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grygorczuk, J.; Czechowski, A.; Grzedzielski, S., E-mail: jolagry@cbk.waw.pl

    The solar wind carves a cavity in the interstellar plasma bounded by a surface, called the heliopause (HP), that separates the plasma and magnetic field of solar origin from those of interstellar origin. It is now generally accepted that in 2012 August Voyager 1 (V1) crossed that boundary. Unexpectedly, the magnetic fields on both sides of the HP, although theoretically independent of each other, were found to be similar in direction. This delayed the identification of the boundary as the HP and led to many alternative explanations. Here, we show that the Voyager 1 observations can be readily explained and,more » after the Interstellar Boundary Explorer (IBEX) discovery of the ribbon, could even have been predicted. Our explanation relies on the fact that the Voyager 1 and undisturbed interstellar field directions (which we assume to be given by the IBEX ribbon center (RC)) share the same heliolatitude (∼34.°5) and are not far separated in longitude (difference ∼27°). Our result confirms that Voyager 1 has indeed crossed the HP and offers the first independent confirmation that the IBEX RC is in fact the direction of the undisturbed interstellar magnetic field. For Voyager 2, we predict that the difference between the inner and outer magnetic field directions at the HP will be significantly larger than that observed by Voyager 1 (∼30° instead of ∼20°), and that the outer field direction will be close to the RC.« less

  14. Shared Voyage: Learning and Unlearning from Remarkable Projects

    NASA Technical Reports Server (NTRS)

    Laufer, Alexander; Post, Todd; Hoffman, Edward J.

    2005-01-01

    Shared Voyage is about four remarkable projects: the Advanced Composition Explorer (NASA), the Joint Air-to-Surface Standoff Missile (U.S. Air Force), the Pathfinder Solar-Powered Airplane (NASA), and the Advanced Medium Range Air-to-Air Missile (U.S.Air Force). Each project is presented as a case study comprised of stories collected from key members of the project teams. The stories found in the book are included with the purpose of providing an effective learning source for project management, encouraging the unlearning of outdated project management concepts, and enhancing awareness of the contexts surrounding different projects. Significantly different from project concepts found in most project management literature, Shared Voyage highlights concepts like a will to win, a results-oriented focus, and collaboration through trust. All four project teams researched in this study applied similar concepts; however, they applied them differently, tailoring them to fit the context of their own particular projects. It is clear that the one best way approach which is still the prevailing paradigm in project management literature should be replaced by a new paradigm: Even though general project management principles exist, their successful application depends on the specifics of the situation.

  15. Radiation burdens for humans on prolonged exomagnetospheric voyages.

    PubMed

    Moore, F D

    1992-03-01

    The severity of radiation exposure for astronauts outside the magnetosphere poses a critical unanswered question bearing on the use of manned vehicles in extended exploration of the solar system (moon, Mars). Such prolonged exomagnetospheric voyages (1-3 years) enter a radiologic environment more severe than that of low earth orbit, an annual dose equivalent in the range of 0.3-0.5 Sv (30-50 rem), and a lifetime excess cancer fatality risk of 3-5% due to low linear-energy-transfer components of galactic cosmic radiation alone. To this calculus must be added estimates for high-atomic-number, high-energy particles, the probability of solar particle events, and the limited effectiveness of shielding. For a 3-year Mars voyage these could elevate the dose equivalent to 1.5-2.25 Sv (150-225 rem) total (0.5-0.75 Sv [50-75 rem] annual) and risks to 5-9% excess cancer fatality. Both the mission (civilian scientific research) and the alternatives (unmanned robotic devices) enter the policy decision here. This paper presents a brief review of pertinent physical and biological data and of research urgently needed before reaching a decision on this question.

  16. Encounter with Saturn: Voyager 1 imaging science results

    USGS Publications Warehouse

    Smith, B.A.; Soderblom, L.; Beebe, R.; Boyce, J.; Briggs, G.; Bunker, A.; Collins, S.A.; Hansen, C.J.; Johnson, T.V.; Mitchell, J.L.; Terrile, R.J.; Carr, M.; Cook, A.F.; Cuzzi, J.; Pollack, James B.; Danielson, G. Edward; Ingersoll, A.; Davies, M.E.; Hunt, G.E.; Masursky, H.; Shoemaker, E.; Morrison, D.; Owen, Timothy W.; Sagan, C.; Veverka, J.; Strom, R.; Suomi, V.E.

    1981-01-01

    As Voyager 1 flew through the Saturn system it returned photographs revealing many new and surprising characteristics of this complicated community of bodies. Saturn's atmosphere has numerous, low-contrast, discrete cloud features and a pattern of circulation significantly different from that of Jupiter. Titan is shrouded in a haze layer that varies in thickness and appearance. Among the icy satellites there is considerable variety in density, albedo, and surface morphology and substantial evidence for endogenic surface modification. Trends in density and crater characteristics are quite unlike those of the Galilean satellites. Small inner satellites, three of which were discovered in Voyager images, interact gravitationally with one another and with the ring particles in ways not observed elsewhere in the solar system. Saturn's broad A, B, and C rings contain hundreds of "ringlets," and in the densest portion of the B ring there are numerous nonaxisymmetric features. The narrow F ring has three components which, in at least one instance, are kinked and crisscrossed. Two rings are observed beyond the F ring, and material is seen between the C ring and the planet. Copyright ?? 1981 AAAS.

  17. Light as a probe of the structure of space-time

    NASA Astrophysics Data System (ADS)

    Tartaglia, Angelo

    2016-05-01

    Light is an intrinsically relativistic probe and when used in an adequately sized array of ring lasers it is sensible to the curvature and to the chirality of space-time. On this basis the GINGER experiment is being implemented at the underground National Laboratories at Gran Sasso. The experiment, whose objective is the measurement of the terrestrial frame dragging effect or deviations from it, will be presented and discussed in its foundation. Furthermore, at a bigger scale, the possibilities given by the under way GAIA mission and the proposed AGP, will be analyzed with a special attention paied to the possibility of extracting information concerning the angular momenta of the sun and the main bodies of the solar system.

  18. MORE EVIDENCE THAT VOYAGER 1 IS STILL IN THE HELIOSPHERE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gloeckler, G.; Fisk, L. A., E-mail: gglo@umich.edu

    The investigators of the Voyager mission currently exploring the heliosheath have concluded and announced that Voyager 1 (V1) has crossed the heliopause and is now in the interstellar medium. This conclusion is based primarily on the plasma wave observations of Gurnett et al., which reveal a plasma electron density that resembles the density expected in the local interstellar medium. Fisk and Gloeckler have disputed the conclusion that V1 has crossed the heliopause, pointing out that to account for all the V1 observations, particularly the magnetic field direction together with the density, it is necessary to conclude that the higher densitiesmore » observed by Gurnett et al. are due to compressed solar wind. In this Letter it is shown that the model of Fisk and Gloeckler for the nose region of the heliosheath can account in detail for the intensity and spectral shape of Energetic Neutral Hydrogen observed by the Interstellar Boundary Explorer (IBEX) in the directions of V1 and Voyager 2 (V2). A key feature of the Fisk and Gloeckler model is the existence of a region in the heliosheath where the solar wind is compressed and heated, followed by a region where the solar wind is compressed but cold. The region of cold compressed solar wind provides a unique explanation for the low-energy IBEX observations, and since this is the region where V1 must now reside, the low-energy IBEX observations provide strong evidence that V1 is still in the heliosphere.« less

  19. Jupiter Data Analysis Program: Analysis of Voyager wideband plasma wave observations

    NASA Technical Reports Server (NTRS)

    Kurth, W. S.

    1983-01-01

    Voyager plasma wave wideband frames from the Jovian encounters are analyzed. The 511 frames which were analyzed were chosen on the basis of low-rate spectrum analyzer data from the plasma wave receiver. These frames were obtained in regions and during times of various types of plasma or radio wave activity as determined by the low-rate, low-resolution data and were processed in order to provide high resolution measurements of the plasma wave spectrum for use in the study of a number of outstanding problems. Chorus emissions at Jupiter were analyzed. The detailed temporal and spectral form of the very complex chorus emissions near L = 8 on the Voyager 1 inbound passage was compared to both terrestrial chorus emissions as well as to the theory which was developed to explain the terrestrial waves.

  20. Huygens space probe ready to leave Europe

    NASA Astrophysics Data System (ADS)

    1997-03-01

    Over the past year, the Huygens probe has been integrated and extensively tested at the facilities of Daimler Benz Aerospace Dornier Satellitensysteme in Ottobrunn near Munich. It was designed and developed for ESA by a European industrial consortium led by Aerospatiale (F) as prime contractor. The European activities have been successfully completed and this is to be formalised by the Flight Acceptance Review which will release the probe for shipment to the USA. To mark this important milestone a press briefing is scheduled for Wednesday, 26 March at 10.00 hours at Daimler-Benz Aerospace Dornier Satellitensysteme in Ottobrunn. The detailed programme of the press briefing is attached. If you wish to attend the press briefing, please complete the attached accreditation form and return it, preferably by fax, to : Daimler Benz Aerospace Dornier Satellitensysteme Mr. Mathias Pikelj, Fax. + 49 7545 8 5589, Tel. + 49 7545 8 9123 NOTE FOR THE EDITORS: Background facts about the Cassini Huygens mission Huygens is a medium-sized mission of ESA's Horizons 2000 programme for space science, and a contribution to the joint NASA ESA Cassini mission. Christiaan Huygens discovered Saturn s moon Titan in 1655, and the mission named after him aims to land a 343 kilogram probe on Titan carrying a package of scientific instruments through the atmosphere. Six sets of instruments will analyse the chemical composition of the atmosphere, observe the weather and topography of Titan, and examine the nature of its surface. Titan is larger than the planet Mercury, and its unique atmosphere, rich in nitrogen and hydrocarbons, may resemble the atmosphere of the primitive Earth, before life began. Nominal dates for the Huygens mission are as follows: * launch, 6 October 1997 * arrival at Saturn, 1 July 2004 * release of Huygens, 6 November 2004 * entry into Titan's atmosphere, 27 November 2004. The Saturn Orbiter, the other element in the Cassini mission, will relay the signals from Huygens to

  1. 33 CFR 157.162 - Crude oil washing during a voyage.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OIL IN BULK Crude Oil Washing (COW) System on Tank Vessels Cow Operations § 157.162 Crude oil washing during a voyage. The master of a tank vessel having a COW system under § 157.10(e), § 157.10a(a)(2), or...

  2. Possible misinterpretation of lunar cratering record in Voyager team analyses of outer planet satellites

    NASA Technical Reports Server (NTRS)

    Hartmann, William K.

    1991-01-01

    While interpreting outer planetary satellites, the Voyager imaging team repeatedly referred to a lunar frontside highland calibration curve. It was assumed that it is unmodified and not in steady state equilibrium, but rather records all impacts that have occurred. It was also assumed that it records the size distribution of an early population of impactors, called Population I, evidence for which was found on various satellites. New evidence is reported that the Voyager team interpretation of this population is wrong, a conclusion that seriously affects the cratering histories reported for outer planet satellites.

  3. Availability of feature-oriented scanning probe microscopy for remote-controlled measurements on board a space laboratory or planet exploration Rover.

    PubMed

    Lapshin, Rostislav V

    2009-06-01

    Prospects for a feature-oriented scanning (FOS) approach to investigations of sample surfaces, at the micrometer and nanometer scales, with the use of scanning probe microscopy under space laboratory or planet exploration rover conditions, are examined. The problems discussed include decreasing sensitivity of the onboard scanning probe microscope (SPM) to temperature variations, providing autonomous operation, implementing the capabilities for remote control, self-checking, self-adjustment, and self-calibration. A number of topical problems of SPM measurements in outer space or on board a planet exploration rover may be solved via the application of recently proposed FOS methods.

  4. Probing Stellar Dynamics With Space Photometry

    NASA Astrophysics Data System (ADS)

    García, Rafael A.; Salabert, D.; Ballot, J.; Beck, P. G.; Bigot, L.; Corsaro, E.; Creevey, O.; Egeland, R.; Jiménez, A.; Mathur, S.; Metcalfe, T.; do Nascimento, J.; Pallé, P. L.; Pérez Hernández, F.; Regulo, C.

    2016-08-01

    The surface magnetic field has substantial influence on various stellar properties that can be probed through various techniques. With the advent of new space-borne facilities such as CoRoT and Kepler, uninterrupted long high-precision photometry is available for hundred of thousand of stars. This number will substantially grow through the forthcoming TESS and PLATO missions. The unique Kepler observations -covering up to 4 years with a 30-min cadence- allows studying stellar variability with different origins such as pulsations, convection, surface rotation, or magnetism at several time scales from hours to years. We study the photospheric magnetic activity of solar-like stars by means of the variability induced in the observed signal by starspots crossing the visible disk. We constructed a solar photometric magnetic activity proxy, Sph from SPM/VIRGO/SoHO, as if the Sun was a distant star and we compare it with several solar well-known magnetic proxies. The results validate this approach. Thus, we compute the Sph proxy for a set of CoRoT and Kepler solar-like stars for which pulsations were already detected. After characterizing the rotation and the magnetic properties of 300 solar-like stars, we use their seismic properties to characterize 18 solar analogs for which we study their magnetism. This allows us to put the Sun into context of its siblings.

  5. Space Science

    NASA Image and Video Library

    1979-02-05

    On February 5, 1979, Voyager 1 made its closest approach to Jupiter since early 1974 and 1975 when Pioneers 10 and 11 made their voyages to Jupiter and beyond. Voyager 1 completed its Jupiter encounter in early April, after taking almost 19,000 pictures and recording many other scientific measurements. Although astronomers had studied Jupiter from Earth for several centuries, scientists were surprised by many of Voyager 1 and 2's findings. They now understand that important physical, geological, and atmospheric processes go on that they had never observed from Earth. Discovery of active volcanism on the satellite Io was probably the greatest surprise. It was the first time active volcanoes had been seen on another body in the solar system. Voyager also discovered a ring around Jupiter. Thus Jupiter joins Saturn, Uranus, and Neptune as a ringed planet -- although each ring system is unique and distinct from the others.

  6. Voyager 1 and 2 Atlas of Six Saturnian Satellites

    NASA Technical Reports Server (NTRS)

    Batson, R. M.

    1984-01-01

    Maps, compiled with data gathered primarily by Voyager 1 and 2 spacecraft, are presented which show the diversity among six of the Saturnian moons. Mimas and Enceladus are mapped in detail. Prelimary maps are given for the other four satellites. Diameter, density, albedo, and distance from mother planet, among much more data, is given for each moon.

  7. Van Allen Probes Mission Space Academy: Educating middle school students about Earth's mysterious radiation belts

    NASA Astrophysics Data System (ADS)

    Butler, L.; Turney, D.; Matiella Novak, A.; Smith, D.; Simon, M.

    2013-12-01

    How's the weather in space? Why on Earth did NASA send two satellites above Earth to study radiation belts and space weather? To learn the answer to questions about NASA's Van Allen Probes mission, 450 students and their teachers from Maryland middle schools attended Space Academy events highlighting the Van Allen Probes mission. Sponsored by the Applied Physics Laboratory (APL) and Discovery Education, the events are held at the APL campus in Laurel, MD. Space Academies take students and teachers on behind-the-scenes exploration of how spacecraft are built, what they are designed to study, and introduces them to the many professionals that work together to create some of NASA's most exciting projects. Moderated by a public relations representative in the format of an official NASA press conference, the daylong event includes a student press conference with students as reporters and mission experts as panelists. Lunch with mission team members gives students a chance to ask more questions. After lunch, students don souvenir clean room suits, enjoy interactive science demonstrations, and tour APL facilities where the Van Allen Probes were built and tested before launch. Students may even have an opportunity to peek inside a clean room to view spacecraft being assembled. Prior to the event, teachers are provided with classroom activities, lesson plans, and videos developed by APL and Discovery Education to help prepare students for the featured mission. The activities are aligned to National Science Education Standards and appropriate for use in the classroom. Following their visit, student journalists are encouraged to write a short article about their field trip; selections are posted on the Space Academy web site. Designed to engage, inspire, and influence attitudes about space science and STEM careers, Space Academies provide an opportunity to attract underserved populations and emphasize that space science is for everyone. Exposing students to a diverse group of

  8. The galilean satellites and Jupiter: Voyager 2 imaging science results

    USGS Publications Warehouse

    Smith, B.A.; Soderblom, L.A.; Beebe, R.; Boyce, J.; Briggs, G.; Carr, M.; Collins, S.A.; Cook, A.F.; Danielson, G.E.; Davies, M.E.; Hunt, G.E.; Ingersoll, A.; Johnson, T.V.; Masursky, H.; McCauley, J.; Morrison, D.; Owen, Timothy W.; Sagan, C.; Shoemaker, E.M.; Strom, R.; Suomi, V.E.; Veverka, J.

    1979-01-01

    Voyager 2, during its encounter with the Jupiter system, provided images that both complement and supplement in important ways the Voyager 1 images. While many changes have been observed in Jupiter's visual appearance, few, yet significant, changes have been detected in the principal atmospheric currents. Jupiter's ring system is strongly forward scattering at visual wavelengths and consists of a narrow annulus of highest particle density, within which is a broader region in which the density is lower. On Io, changes are observed in eruptive activity, plume structure, and surface albedo patterns. Europa's surface retains little or no record of intense meteorite bombardment, but does reveal a complex and, as yet, little-understood system of overlapping bright and dark linear features. Ganymede is found to have at least one unit of heavily cratered terrain on a surface that otherwise suggests widespread tectonism. Except for two large ringed basins, Callisto's entire surface is heavily cratered. Copyright ?? 1979 AAAS.

  9. DSN 70-meter antenna X-band gain, phase, and pointing performance, with particular application for Voyager 2 Neptune encounter

    NASA Technical Reports Server (NTRS)

    Slobin, S. D.; Bathker, D. A.

    1988-01-01

    The gain, phase, and pointing performance of the Deep Space Network (DSN) 70 m antennas are investigated using theoretical antenna analysis computer programs that consider the gravity induced deformation of the antenna surface and quadripod structure. The microwave effects are calculated for normal subreflector focusing motion and for special fixed-subreflector conditions that may be used during the Voyager 2 Neptune encounter. The frequency stability effects of stepwise lateral and axial subreflector motions are also described. Comparisons with recently measured antenna efficiency and subreflector motion tests are presented. A modification to the existing 70 m antenna pointing squint correction constant is proposed.

  10. Heliosheath Space Environment Interactions with Icy Bodies in the Outermost Solar System

    NASA Technical Reports Server (NTRS)

    Cooper, John F.; Hill, Matthew E.; Richardson, John D.; Sturner, Steven J.

    2006-01-01

    The Voyager 1 and 2 spacecraft are exploring the space environment of the outermost solar system at the same time that earth-based astronomy continues to discover new icy bodies, one larger than Pluto, in the transitional region outward from the Classical Kuiper Belt to the Inner Oort Cloud. Some of the Scattered Disk Objects in this region periodically pass through the heliosheath, entered by Voyager 1 in Dec. 2004 and later expected to be reached by Voyager 2, and out even beyond the heliopause into the Very Local Interstellar Medium. The less energetic heliosheath ions, important for implantation and sputtering processes, are abundant near and beyond the termination shock inner boundary, but the source region of the more penetrating anomalous cosmic ray component has not yet been found. Advantageous for modeling of icy body interactions, the measured heliosheath flux spectra are relatively more stable within this new regime of isotropic compressional magnetic turbulence than in the upstream heliospheric environment. The deepest interactions and resultant radiation-induced chemistry arise from the inwardly diffusing component of the galactic cosmic ray ions with significant intensity modulation also arising in the heliosheath beyond Voyager 1. Surface gardening by high-velocity impacts of smaller bodies (e.g., fragments of previous KBO collisions) and dust is a further space weathering process setting the time scales for long term exposure of different regolith layers to the ion irradiation. Sputtering and ionization of impact ejecta grains may provide a substantial feedback of pickup ions for multiple cycles of heliosheath acceleration and icy body interaction. Thus the space weathering interactions are potentially of interest not only for effects on sensible surface composition of the icy bodies but also for evolution of the heliosheath plasma energetic ion, and neutral emission environment.

  11. A study of health effects of long-distance ocean voyages on seamen using a data classification approach

    PubMed Central

    2010-01-01

    Background Long-distance ocean voyages may have substantial impacts on seamen's health, possibly causing malnutrition and other illness. Measures can possibly be taken to prevent such problems from happening through preparing special diet and making special precautions prior or during the sailing if a detailed understanding can be gained about what specific health effects such voyages may have on the seamen. Methods We present a computational study on 200 seamen using 41 chemistry indicators measured on their blood samples collected before and after the sailing. Our computational study is done using a data classification approach with a support vector machine-based classifier in conjunction with feature selections using a recursive feature elimination procedure. Results Our analysis results suggest that among the 41 blood chemistry measures, nine are most likely to be affected during the sailing, which provide important clues about the specific effects of ocean voyage on seamen's health. Conclusions The identification of the nine blood chemistry measures provides important clues about the effects of long-distance voyage on seamen's health. These findings will prove to be useful to guide in improving the living and working environment, as well as food preparation on ships. PMID:20219089

  12. In situ temperature measurements of reaction spaces under microwave irradiation using photoluminescent probes.

    PubMed

    Ano, Taishi; Kishimoto, Fuminao; Sasaki, Ryo; Tsubaki, Shuntaro; Maitani, Masato M; Suzuki, Eiichi; Wada, Yuji

    2016-05-11

    We demonstrate two novel methods for the measurement of the temperatures of reaction spaces locally heated by microwaves, which have been applied here to two example systems, i.e., BaTiO3 particles covered with a SiO2 shell (BaTiO3-SiO2) and layered tungstate particles. Photoluminescent (PL) probes showing the temperature-sensitivity in their PL lifetimes are located in the nanospaces of the above systems. In the case of BaTiO3-SiO2 core-shell particles, rhodamine B is loaded into the mesopores of the SiO2 shell covering the BaTiO3 core, which generates the heat through the dielectric loss of microwaves. The inner nanospace temperature of the SiO2 shell is determined to be 28 °C higher than the bulk temperature under microwave irradiation at 24 W. On the other hand, Eu(3+) is immobilized in the interlayer space of layered tungstate as the PL probe, showing that the nanospace temperature of the interlayer is only 4 °C higher than the bulk temperature. This method for temperature-measurement is powerful for controlling microwave heating and elucidates the ambiguous mechanisms of microwave special effects often observed in chemical reactions, contributing greatly to the practical application of microwaves in chemistry and materials sciences.

  13. Historic voyage as a catalyst for inspiring change

    Treesearch

    Ann Melinda Bell

    2007-01-01

    Navigator Nainoa Thompson for Hōkūle‘a, a replica of an ancient voyaging canoe, coined the phrase, “Navigating Change,” to implant inspiration in the hearts and minds of Hawaii’s youth to take better care of their island home. Ultimately, it was about instilling hope and a cultural based value of responsibility in our younger generation. In 2001, the...

  14. The Galileo Probe: How it Has Changed Our Understanding of Jupiter

    NASA Technical Reports Server (NTRS)

    Young, Richard E.

    2003-01-01

    The Galileo Mission to Jupiter, which arrived in December of 1995, provided the first study by an orbiter, and the first in-situ sampling via an entry probe, of an outer planet atmosphere. The rationale for an entry probe is that, even from an orbiter, remote sensing of the jovian atmosphere could not adequately retrieve the information desired. This paper provides a current summary of the most significant aspects of the data returned from the Galileo entry probe. As a result of the probe measurements, there has been a reassessment of our understanding of outer planet formation and evolution of the solar system. The primary scientific objective of the Galileo probe was to determine the composition of the jovian atmosphere, which from remote sensing remained either very uncertain, or completely unknown, with respect to several key elements. The probe found that the global He mass fraction is. significantly above the value reported from the Voyager Jupiter flybys but is slightly below the protosolar value, implying that there has been some settling of He to the deep jovian interior. The probe He measurements have also led to a reevaluation of the Voyager He mass fraction for Saturn, which is now determined to be much closer to that of Jupiter. The elements C, N, S, Ar, Kr, Xe were all found to have global abundances approximately 3 times their respective solar abundances. This result has raised a number of fundamental issues with regard to properties of planetesimals and the solar nebula at the time of giant planet formation. Ne, on the other hand, was found to be highly depleted, probably as the result of it being carried along with helium as helium settles towards the deep interior. The global abundance of O was not obtained by the probe because of the influence of local processes at the probe entry site (PES), processes which depleted condensible species, in this case H2O, well below condensation levels. Other condensible species, namely NH3 and H2S, were

  15. Photographer : JPL Range : 76 million km. ( 47 million miles) P-22892C This, Voyager 1 image shows

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Photographer : JPL Range : 76 million km. ( 47 million miles) P-22892C This, Voyager 1 image shows Saturn and five of its satellites. Saturn's largest moon, Titan, is clearly seen in the upper right corner. The smaller satellites, Dione & Tethys, are shown in the upper left corner, top and bottom respectively. Two of the innermost satellites, Mimas & Enceladus, appear to the lower right of the planet, with Mimas closest to Satun. The bright object to the left of the rings is not a moon, but an artifact of processing. Voyager 1 will make its closest approach November 12th, 1980, ata distance of 124,200 km. (77,176 mi.). this photo is just one of 17,000 images taken of Saturn, its rings, and its satellites by Voyager 1.

  16. Learning about the very local interstellar medium from the Voyagers

    NASA Astrophysics Data System (ADS)

    Florinski, V. A.; Guo, X.; Burlaga, L. F.

    2017-12-01

    The outer heliosheath is the region in front of the heliopause affected by the interaction between the solar wind and the flow of interstellar gas. Voyager 1 has been exploring this region for over five years uncovering a number of remarkable phenomena not present elsewhere in space directly accessible by spacecraft. The very local interstellar medium (VLISM) is characterized by remarkably low levels of magnetic fluctuation intensities presenting a nearly scatter free environment for energetic particle propagation. The fluctuations have power law spectra and probably belong to the inertial range of a turbulent cascade fed by a variety of sources, including large and kinetic scale instabilities and the inner heliosheath structures transmitted across the heliopause. While the fluxes of galactic cosmic rays are, on average, very steady in the VLISM, in agreement with theoretical expectations, they also show episodic depletions at the 90 degree pitch angle. These anisotropy events may be associated with the passage of weak compressive magnetic structures resembling shock waves, but with ramp widths orders of magnitude broader than the relevant kinetic plasma scales. The key to understanding the VLISM lies in recognizing the interconnections between the magnetic field data, which has a "local" character, the highly mobile cosmic rays that sample vast regions of space along magnetic field lines, and neutral atom populations measured by IBEX that can reveal kinetic scale physics of energetic ions produced in charge exchange events.

  17. ALEX neutral beam probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pourrezaei, K.

    1982-01-01

    A neutral beam probe capable of measuring plasma space potential in a fully 3-dimensional magnetic field geometry has been developed. This neutral beam was successfully used to measure an arc target plasma contained within the ALEX baseball magnetic coil. A computer simulation of the experiment was performed to refine the experimental design and to develop a numerical model for scaling the ALEX neutral beam probe to other cases of fully 3-dimensional magnetic field. Based on this scaling a 30 to 50 keV neutral cesium beam probe capable of measuring space potential in the thermal barrier region of TMX Upgrade wasmore » designed.« less

  18. Gravity Probe B

    NASA Image and Video Library

    2003-07-12

    At Vandenberg AFB, the canister enclosing the Gravity Probe B (GP-B) spacecraft is removed from the transporter. Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center.

  19. Gravity Probe B

    NASA Image and Video Library

    2003-07-12

    The Gravity Probe B experiment enters the spacecraft processing facility on North Vandenberg Air Force Base. Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center.

  20. Gravity Probe B

    NASA Image and Video Library

    2003-07-12

    The Gravity Probe B experiment is lifted from its transporter in the spacecraft processing facility on North Vandenberg Air Force Base. Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center.

  1. Gravity Probe B

    NASA Image and Video Library

    2003-07-12

    A transporter carrying the Gravity Probe B experiment backs into the spacecraft processing facility on North Vandenberg Air Force Base. Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center.

  2. Vertical mixing and methane photochemistry in the atmosphere of Uranus: Analysis of Voyager UVS occultation experiments

    NASA Technical Reports Server (NTRS)

    Bishop, James

    1991-01-01

    Extensive capabilities were developed in the analysis of ultraviolet spectrometer (UVS) absorptive lightcurves. The application of these capabilities to the Voyager UVS data sets from Uranus and Neptune has provided significant findings regarding the stratospheres of these planets. In particular, the direct comparison between photochemical models and UVS measurements accomplished by these efforts is unique, and it helps to guarantee that the information returned by the Voyager 2 spacecraft is being used to the fullest extent possible.

  3. Zonal harmonic model of Saturn's magnetic field from Voyager 1 and 2 observations

    NASA Technical Reports Server (NTRS)

    Connerney, J. E. P.; Ness, N. F.; Acuna, M. H.

    1982-01-01

    An analysis of the magnetic field of Saturn is presented which takes into account both the Voyager 1 and 2 vector magnetic field observations. The analysis is based on the traditional spherical harmonic expansion of a scale potential to derive the magnetic field within 8 Saturn radii. A third-order zonal harmonic model fitted to Voyager 1 and 2 observations is found to be capable of predicting the magnetic field characteristics at one encounter based on those observed at another, unlike models including dipole and quadrupole terms only. The third-order model is noted to lead to significantly enhanced polar surface field intensities with respect to dipole models, and probably represents the axisymmetric part of a complex dynamo field.

  4. Ganymede - Galileo Mosaic Overlayed on Voyager Data in Uruk Sulcus Region

    NASA Image and Video Library

    1997-09-07

    A mosaic of four Galileo high-resolution images of the Uruk Sulcus region of Jupiter moon Ganymede is shown within the context of an image of the region taken by Voyager 2 in 1979. http://photojournal.jpl.nasa.gov/catalog/PIA00281

  5. Jules Verne Voyager, Jr: An Interactive Map Tool for Teaching Plate Tectonics

    NASA Astrophysics Data System (ADS)

    Hamburger, M. W.; Meertens, C. M.

    2010-12-01

    We present an interactive, web-based map utility that can make new geological and geophysical results accessible to a large number and variety of users. The tool provides a user-friendly interface that allows users to access a variety of maps, satellite images, and geophysical data at a range of spatial scales. The map tool, dubbed 'Jules Verne Voyager, Jr.', allows users to interactively create maps of a variety of study areas around the world. The utility was developed in collaboration with the UNAVCO Consortium for study of global-scale tectonic processes. Users can choose from a variety of base maps (including "Face of the Earth" and "Earth at Night" satellite imagery mosaics, global topography, geoid, sea-floor age, strain rate and seismic hazard maps, and others), add a number of geographic and geophysical overlays (coastlines, political boundaries, rivers and lakes, earthquake and volcano locations, stress axes, etc.), and then superimpose both observed and model velocity vectors representing a compilation of 2933 GPS geodetic measurements from around the world. A remarkable characteristic of the geodetic compilation is that users can select from some 21 plates' frames of reference, allowing a visual representation of both 'absolute' plate motion (in a no-net rotation reference frame) and relative motion along all of the world's plate boundaries. The tool allows users to zoom among at least three map scales. The map tool can be viewed at http://jules.unavco.org/VoyagerJr/Earth. A more detailed version of the map utility, developed in conjunction with the EarthScope initiative, focuses on North America geodynamics, and provides more detailed geophysical and geographic information for the United States, Canada, and Mexico. The ‘EarthScope Voyager’ can be accessed at http://jules.unavco.org/VoyagerJr/EarthScope. Because the system uses pre-constructed gif images and overlays, the system can rapidly create and display maps to a large number of users

  6. Photographer : JPL Range : 1 million kilometers Voyager 2 completed a dramatic 10 hour time lapse

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Photographer : JPL Range : 1 million kilometers Voyager 2 completed a dramatic 10 hour time lapse photo sequence to monitor the active volcanos on Jupiter's moon Io following the spacecraft's closest approach to Jupiter. This picture is one of about 200 images that will be used to generate a time lapse motion picture to illustrate Io's volcanic activity. On the bright limb, two of the plumes (P-5 & P-6) discovered in March by Voyager 1 are again visible. The plumes are spewing materials to a height of about 100 kilometers.

  7. The Voyages of Columbus: A Turning Point in World History.

    ERIC Educational Resources Information Center

    Crosby, Alfred W.; Nader, Helen

    The far-reaching and transforming interactions of the Old World and the New are known today as "the Columbian Exchange." Part 1 of this booklet is an introduction by John J. Patrick dealing with teaching about the voyages of Christopher Columbus. Part 2, "Columbus and Ecological Imperialism," by Alfred W. Crosby, provides an…

  8. Going from lectures to expeditions: Creating a virtual voyage in undergraduate ocean science education

    NASA Astrophysics Data System (ADS)

    Reed, D.; Garfield, N.; Locke, J.; Anglin, J.; Karl, H.; Edwards, B.

    2003-04-01

    The WWW provides for new collaborations in distributed learning in higher education. The lead author has developed a highly successful online course at the undergraduate level with an enrollment of more than 300 non-science majors each year, We are currently initiating a new focus for the course by emphasizing sea-going research, primarily in the northeastern Pacific Ocean, through the development of a virtual oceanographic voyage over the WWW. The "virtual voyage" courseware combines elements of experiential learning with anytime, anywhere access of the WWW to stimulate inquiry-based learning in the ocean sciences. The first leg of the voyage is currently being synthesized from contemporary ocean research sponsored by a collaboration of U.S. government agencies, including NSF, NOAA, and the USGS. The initial portion of this effort involves transforming portions of USGS Circular 1198, Beyond the Golden Gate -- Oceanography, Geology, Biology, and Environmental Issues in the Gulf of the Farallones, into an interactive expedition by which students participate as scientists aboard a research vessel departing from San Francisco. Virtual experiments on the voyage are patterned after research cruises over the past decade in two national marine sanctuaries and include the technologies of data acquisition and data analysis, as well as providing insight into the methodologies of working marine scientists. Real-time data for monitoring the marine environment are embedded into several modules; for example, students will analyze data from offshore buoys and satellite imagery to assess ocean conditions prior to departing from port. Multibeam sonar is used to create seafloor maps near the Golden Gate Bridge and sediment cores provide evidence of sea-level change in the region. Environmental studies in the region include locating canisters of low-level radioactive waste and assessing potential sites for the disposal for dredged materials from the San Francisco Bay. Upon completion

  9. Mapping the Galilean satellites of Jupiter with Voyager data.

    USGS Publications Warehouse

    Batson, R.M.

    1980-01-01

    The four Galilean satellites of Jupiter are being mapped using image data from the Voyager 1 and 2 spacecraft. The maps are published at several scales and in several versions. Preliminary maps at 1:25,000,000-required for mission planning and preliminary science reports-were compiled within three weeks of data acquisition and have been published. Later maps incorporate Rand Corporation photogrammetric triangulations. - from Authors

  10. Educating the next generation of SETI scientists: Voyages through time

    NASA Astrophysics Data System (ADS)

    DeVore, Edna; Tarter, Jill; Fisher, Jane; O'Sullivan, Kathleen; Pendleton, Yvonne; Taylor, Sam; Burke, Margaret

    2003-08-01

    The search for extraterrestrial intelligence (SETI) could succeed tomorrow, or not for many generations, or never. SETI scientists are very cognizant of the need to train the next generation of researchers who can carry on this vast scientific exploration. Previously, the SETI Institute has met this challenge by developing supplementary teacher's guides for elementary and middle schools called "Life In the Universe" and published by Teacher Ideas Press. Currently, we are engaged in a far more challenging project that is funded primarily by the National Science Foundation (NSF). The SETI Institute is creating a year long, interdisciplinary, high school science curriculum called "Voyages Through Time: Everything Evolves". We are using the theme of evolution to weave a panoramic vista for students that begins with the origin of the universe, encompasses our own origin and evolution, and looks at the evolution of technology and our possible future. By integrating different scientific and technical disciplines to explore how we answer fundamentally important questions, we hope to excite and motivate high school students with the opportunities offered by the way science is practiced today. We invite them to plan a future in which they help to enrich the answers to the big questions: Where did I come from? Where am I going? is anybody else out there? Voyages Through Time consists of six modules on CD-ROMs for teachers and students that have been extensively tested both regionally and nationally. Publication is expected in 2003. The partners in the development of this curriculum are the SETI Institute, NASA Ames Research Center, California Academy of Sciences, and San Francisco State University. Voyages Through Time is funded by the NSF (IMD # 9730693) with additional support from NASA, Hewlett Packard Company, The Foundation for Microbiology, and the Federated Charitable Campaign. For further information, visit: http://www.seti.org/education/Welcome.html.

  11. Composition and thermal profiles of the Jovian upper atmosphere determined by the Voyager ultraviolet stellar occultation experiment

    NASA Technical Reports Server (NTRS)

    Festou, M. C.; Atreya, S. K.; Donahue, T. M.; Sandel, B. R.; Shemansky, D. E.; Broadfoot, A. L.

    1981-01-01

    During the occultation of the star Regulus (B7 type) by Jupiter as seen from the Voyager 2 spacecraft on July 9, 1979, two absorbing regions were detected. Between 911 and 1200 A, H2 was absorbing over a 600 km altitude range. Above 1300 A, the rapid increase of the absorption by the hydrocarbons was observed over an altitude interval of approximately 100 km with a height resolution of 3 km. The analysis of these absorption features has provided the height profiles of molecular hydrogen, methane, ethane, and acetylene, as well as the thermal profile in the upper atmosphere of Jupiter. Combining the Voyager ultraviolet spectrometer results with other data, such as those obtained by the Voyager infrared and radioscience instruments, has yielded a comprehensive model of the composition and structure of the atmosphere of Jupiter.

  12. Modulation of the Foreign Body Reaction for Implants in the Subcutaneous Space: Microdialysis Probes as Localized Drug Delivery/Sampling Devices

    PubMed Central

    Mou, Xiaodun; Lennartz, Michelle R; Loegering, Daniel J; Stenken, Julie A

    2011-01-01

    Modulation of the foreign body reaction is considered to be an important step toward creation of implanted sensors with reliable long-term performance. In this work, microdialysis probes were implanted into the subcutaneous space of Sprague-Dawley rats. The probe performance was evaluated by comparing collected endogenous glucose concentrations with internal standard calibration (2-deoxyglucose, antipyrine, and vitamin B12). Probes were tested until failure, which for this work was defined as loss of fluid flow. In order to determine the effect of fibrous capsule formation on probe function, monocyte chemoattractant protein-1/CC chemokine ligand 2 (MCP-1/CCL2) was delivered locally via the probe to increase capsule thickness and dexamethasone 21-phosphate was delivered to reduce capsule thickness. Probes delivering MCP-1 had a capsule that was twice the thickness (500–600 μm) of control probes (200–225 μm) and typically failed 2 days earlier than control probes. Probes delivering dexamethasone 21-phosphate had more fragile capsules and the probes typically failed 2 days later than controls. Unexpectedly, extraction efficiency and collected glucose concentrations exhibited minor differences between groups. This is an interesting result in that the foreign body capsule formation was related to the duration of probe function but did not consistently relate to probe calibration. PMID:21722577

  13. Gravity Probe B

    NASA Image and Video Library

    2003-07-12

    The Gravity Probe B experiment rests on an assembly and test stand in the spacecraft processing facility on North Vandenberg Air Force Base. Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center.

  14. Gravity Probe B

    NASA Image and Video Library

    2003-07-12

    The Gravity Probe B experiment is lowered onto an assembly and test stand in the spacecraft processing facility on North Vandenberg Air Force Base. Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center.

  15. Gravity Probe B

    NASA Image and Video Library

    2003-07-12

    Enclosed in a canister, the Gravity Probe B (GP-B) spacecraft arrives on Vandenberg Air Force Base, headed for the spacecraft processing facility. Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center.

  16. Gravity Probe B

    NASA Image and Video Library

    2003-07-18

    In the spacecraft processing facility on North Vandenberg Air Force Base, workers conduct battery charge/discharge cycles as part of the battery conditioning process on Gravity Probe B. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center.

  17. Gravity Probe B

    NASA Image and Video Library

    2003-07-18

    In the spacecraft processing facility on North Vandenberg Air Force Base, battery charge/discharge cycles are underway as part of the battery conditioning process on Gravity Probe B. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center.

  18. Engaging the Public in the 38th Voyage Of The Whaling Ship the Charles W. Morgan with Coastal Telepresence Technology

    NASA Astrophysics Data System (ADS)

    Babb, I.; Coleman, D.; Lawrence, M.

    2016-02-01

    The world's last remaining sail-powered whaling ship, the Charles W. Morgan, conducted her 38th voyage in 2014 traveling from Mystic, CT to NOAA's Stellwagen Bank National Marine Sanctuary (SBNMS) as a symbolic journey to one of the world's premier whale watching sites. This voyage captured the renaissance of the Morgan from a whale hunting ship to an emissary of ocean conservation. Low cost, microwave-based telepresence technology was installed aboard the Morgan, her support ship the M/V Rohan (a fishing vessel) and linked to the Pilgrim Monument to enable ship-to-shore webcasts that featured Sanctuary researchers, historians, artists and authors onboard the Morgan highlighting their research and outreach activities. A partnership NURTEC at UConn, the Inner Space Center at URI, NOAA, SBNMS and the Mystic Seaport developed comprehensive research and historical content that was incorporated into the broadcasts, which were delivered to thousands of viewers. The concept of telepresence as envisioned for the Morgan's voyage was not simply broadcasting a single camera feed, but to turn the Morgan into a mobile "news studio" that allowed multiple cameras onboard to focus on the business of sailing the ship, interviews with experts in maritime history and marine science onboard, and other onboard programming. In addition, an onshore studio was set up at the Pilgrim Monument in Provincetown, MA that integrated additional historians, scientists and archaeologists into the webcasts. The public was able to follow the Morgan's visit to the sanctuary on OceansLIVE (oceanslive.org) that broadcast three live shows daily from the vessel and other locations from July 11-13th. Each of the shows featured interviews and commentary with historians, scientists, authors and artists discussing the shift from whale hunting to whale watching in New England. This talk will review the range of science presented and provide an overview of the enabling technologies.

  19. Parker Solar Probe Antenna Deployment

    NASA Image and Video Library

    2018-04-19

    Antenna's on NASA's Parker Solar Probe are deployed for testing at the Astrotech processing facility in Titusville, Florida, near NASA's Kennedy Space Center on Thursday, April 19, 2018. The Parker Solar Probe will launch on a United Launch Alliance Delta IV Heavy rocket from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida no earlier than Aug. 4, 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.

  20. Voyager detection of nonthermal radio emission from Saturn

    NASA Technical Reports Server (NTRS)

    Kaiser, M. L.; Desch, M. D.; Warwick, J. W.; Pearce, J. B.

    1980-01-01

    The detection of bursts of nonthermal radio noise from Saturn by the planetary radio astonomy experiment onboard the Voyager spacecraft is discussed. The emissions occur near 200 kHz with a peak flux density comparable to higher frequency Jovian emissions. The radiation is right-hand polarized and is most likely emitted in the extraordinary magnetoionic mode from Saturn's northern hemisphere. Modulation is apparent in the data which is consistent with a planetary rotation period of 10 hr 39.9 min.

  1. Slingshot dynamics for self-replicating probes and the effect on exploration timescales

    NASA Astrophysics Data System (ADS)

    Nicholson, Arwen; Forgan, Duncan

    2013-10-01

    Interstellar probes can carry out slingshot manoeuvres around the stars they visit, gaining a boost in velocity by extracting energy from the star's motion around the Galactic Centre. These manoeuvres carry little to no extra energy cost, and in previous work it has been shown that a single Voyager-like probe exploring the Galaxy does so 100 times faster when carrying out these slingshots than when navigating purely by powered flight (Forgan et al. 2012). We expand on these results by repeating the experiment with self-replicating probes. The probes explore a box of stars representative of the local Solar neighbourhood, to investigate how self-replication affects exploration timescales when compared with a single non-replicating probe. We explore three different scenarios of probe behaviour: (i) standard powered flight to the nearest unvisited star (no slingshot techniques used), (ii) flight to the nearest unvisited star using slingshot techniques and (iii) flight to the next unvisited star that will give the maximum velocity boost under a slingshot trajectory. In all three scenarios, we find that as expected, using self-replicating probes greatly reduces the exploration time, by up to three orders of magnitude for scenarios (i) and (iii) and two orders of magnitude for (ii). The second case (i.e. nearest-star slingshots) remains the most time effective way to explore a population of stars. As the decision-making algorithms for the fleet are simple, unanticipated `race conditions' among probes are set up, causing the exploration time of the final stars to become much longer than necessary. From the scaling of the probes' performance with star number, we conclude that a fleet of self-replicating probes can indeed explore the Galaxy in a sufficiently short time to warrant the existence of the Fermi Paradox.

  2. Probing noncommutativities of phase space by using persistent charged current and its asymmetry

    NASA Astrophysics Data System (ADS)

    Ma, Kai; Ren, Ya-Jie; Wang, Ya-Hui

    2018-06-01

    Nontrivial algebra structures of the coordinate and momentum operators are potentially important for describing possible new physics. The persistent charged current in a metal ring is expected to be sensitive to the nontrivial dynamics due to noncommutativities of phase space. In this paper, we propose a new asymmetric observable for probing the noncommutativity of momentum operators. We also analyzed the temperature dependence of this observable, and we find that the asymmetry holds at a finite temperature. The critical temperature, above which the correction due to coordinate noncommutativity is negligible, is also derived.

  3. Gravity Probe B Inspection

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The space vehicle Gravity Probe B (GP-B) is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. In this photograph, engineer Gary Reynolds is inspecting the inside of the probe neck during probe thermal repairs. GP-B is scheduled for launch in April 2004 and managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Leese, Gravity Probe B, Stanford University)

  4. Voyager in-situ and Cassini Remote Measurements Suggest a Bubble-like Shape for the Global Heliosphere

    NASA Astrophysics Data System (ADS)

    Dialynas, K.; Krimigis, S. M.; Mitchell, D. G.; Decker, R. B.; Roelof, E. C.

    2017-12-01

    The Low Energy Charged Particle (LECP) in situ measurements from Voyager 1 and Voyager 2 (V1, V2) have revealed the reservoir of ions and electrons that constitute the heliosheath after crossing the termination shock 35 deg north and 32 deg south of the ecliptic plane at 94 and 84 astronomical units (1 AU=1.5x108 km), respectively. In August 2012, at 121.6 AU, V1 crossed the heliopause to enter the interstellar space, while V2 remains in the heliosheath since 2007. The advent of Energetic Neutral Atom (ENA, produced through charge exchange between ions and neutral particles flowing through the heliosphere) imaging, has revealed the global nature of the heliosheath at both high (5.2-55 keV, Cassini/Ion and Neutral Camera-INCA, from 10 AU) and low (<6 keV, Interstellar Boundary Explorer-IBEX, from 1 AU) energies. The presence of the two Voyagers measuring ions locally in the heliosheath contemporaneously with INCA global imaging through ENA in overlapping energy bands provides a powerful tool for examining the spatial, temporal, and spectral evolution of the source hot plasma ions. Here we report 5.2-55 keV ENA global images of the heliosphere from Cassini/INCA and compare them with V1,2/LECP 28-53 keV ions measured within the heliosheath over a 13-year period (2003-2016). The similarity between the time profiles of ENA and ions establish that the heliosheath ions are the source of ENA. These measurements also demonstrate that the heliosphere responds promptly, within 2-3 years, to outward propagating solar wind changes (manifested in solar sunspot numbers and solar wind energy input) in both the upstream (nose) and downstream (tail) hemispheres. These results, taken together with the V1 measurement of a 0.5 nT interstellar magnetic field and the enhanced ratio between particle pressure and magnetic pressure in the heliosheath, constrain the shape of the global heliosphere: by contrast to the magnetosphere-like heliotail (that past modeling broadly assumed for more

  5. Electrical resistivity probes

    DOEpatents

    Lee, Ki Ha; Becker, Alex; Faybishenko, Boris A.; Solbau, Ray D.

    2003-10-21

    A miniaturized electrical resistivity (ER) probe based on a known current-voltage (I-V) electrode structure, the Wenner array, is designed for local (point) measurement. A pair of voltage measuring electrodes are positioned between a pair of current carrying electrodes. The electrodes are typically about 1 cm long, separated by 1 cm, so the probe is only about 1 inch long. The electrodes are mounted to a rigid tube with electrical wires in the tube and a sand bag may be placed around the electrodes to protect the electrodes. The probes can be positioned in a borehole or on the surface. The electrodes make contact with the surrounding medium. In a dual mode system, individual probes of a plurality of spaced probes can be used to measure local resistance, i.e. point measurements, but the system can select different probes to make interval measurements between probes and between boreholes.

  6. A 'private adventure'? John Herschel's Cape voyage and the production of the 'Cape Results'

    NASA Astrophysics Data System (ADS)

    Ruskin, Steven William

    2002-07-01

    This dissertation considers the life of John Herschel (1792 1871) from the years 1833 to 1847. In 1833 Herschel sailed from London to Cape Town, southern Africa, to undertake (at his own expense) an astronomical exploration of the southern heavens, as well as a terrestrial exploration of the area around Cape Town. After his return to England in 1838, he was highly esteemed and became Britain's most recognized scientist. In 1847 his southern hemisphere astronomical observations were published as the Cape Results. The main argument of this dissertation is that Herschel's voyage, and the publication of the Cape Results, in addition to their contemporary scientific importance, were also significant for nineteenth-century politics and culture. This dissertation is a two-part dissertation. The first part is entitled “John Herschel's Cape Voyage: Private Science, Public Imagination, and the Ambitions of Empire”; and the second part, “The Production of the Cape Results.” In the first part it is demonstrated that the reason for Herschel's cultural renown was the popular notion that his voyage to the Cape was a project aligned with the imperial ambitions of the British government. By leaving England for one of its colonies, and pursuing there a significant scientific project, Herschel was seen in the same light as other British men of science who had also undertaken voyages of exploration and discovery. It is then demonstrated, in the second part of this work, that the production of the Cape Results, in part because of Herschel's status as Britain's scientific figurehead, was a significant political and cultural event. In addition to the narrow area of Herschel scholarship, this dissertation touches on other areas of research in the history of science as well: science and culture, science and empire, science and politics, and what has been called the “new” history of scientific books.

  7. A Study of Saturn's E-Ring Particles Using the Voyager 1 Plasma Wave Instrument

    NASA Technical Reports Server (NTRS)

    Tsintikidis, D.; Kurth, W. S.; Gurnett, D. A.; Barbosa, D. D.

    1993-01-01

    The flyby of Voyager 1 at Saturn resulted in the detection of a large variety of plasma waves, e.g., chorus, hiss, and electron cyclotron harmonics. Just before the outbound equator crossing, at about 6.1 R(sub s), the Voyager 1 plasma wave instrument detected a strong, well-defined low-frequency enhancement. Initially it was suggested that plasma waves might be responsible for the spectral feature but more recently dust was suggested as at least a partial contributor to the enhancement. In this report we present evidence which supports the conclusion that dust contributes to the low-frequency enhancement. A new method has been used to derive the dust impact rate. The method relies mainly on the 16-channel spectrum analyzer data. The few wide band waveform observations available (which have been used to study dust impacts during the Voyager 2 ring plane crossing) were useful for calibrating the impact rate from the spectrum analyzer data. The mass and, hence, the size of the dust particles were also obtained by analyzing the response of the plasma wave spectrum analyzer. The results show that the region sampled by Voyager 1 is populated by dust particles that have rms masses of up to few times 10(exp -11) g and sizes of up to a few microns. The dust particle number density is on the order of 10(exp -3) m(exp 3). The optical depth of the region sampled by the spacecraft is 1.04 x 10(exp -6). The particle population is centered about 2500 km south of the equatorial plane and has a north-south thickness of about 4000 km. Possible sources of these particles are the moons Enceladus and Tethys whose orbits lie within the E-ring radial extent. These results are in reasonable agreement with photometric studies and numerical simulations.

  8. Voyager 2 Neptune targeting strategy

    NASA Technical Reports Server (NTRS)

    Potts, C. L.; Francis, K.; Matousek, S. E.; Cesarone, R. J.; Gray, D. L.

    1989-01-01

    The success of the Voyager 2 flybys of Neptune and Triton depends upon the ability to correct the spacecraft's trajectory. Accurate spacecraft delivery to the desired encounter conditions will promote the maximum science return. However, Neptune's great distance causes large a priori uncertainties in Neptune and Triton ephemerides and planetary system parameters. Consequently, the 'ideal' trajectory is unknown beforehand. The targeting challenge is to utilize the gradually improving knowledge as the spacecraft approaches Neptune to meet the science objectives, but with an overriding concern for spacecraft safety and a desire to limit propellant expenditure. A unique targeting strategy has been developed in response to this challenge. Through the use of a Monte Carlo simulation, candidate strategies are evaluated by the degree to which they meet these objectives and are compared against each other in determining the targeting strategy to be adopted.

  9. Peaks in Phase Space Density: A Survey of the Van Allen Probes Era

    NASA Astrophysics Data System (ADS)

    Boyd, A. J.; Turner, D. L.; Reeves, G. D.; Spence, H. E.

    2017-12-01

    One of the challenges of radiation belt studies is the differentiation between acceleration mechanisms, particularly local acceleration and radial diffusion. This is often done through careful examination of phase space density profiles in terms of adiabatic coordinates. In particular, local acceleration processes produce growing peaks in phase space density. Many previous studies have shown clear observations of these features for individual events. However, it remains unclear how often and where these growing peaks are observed over a long time period. With the availability of several years of high quality observations from multiple spacecraft, we now have an opportunity to quantify phase space density profiles not only for multiple events, but also across a wide range of energies. In this study, we examine phase space density from more than four years of data from the Van Allen Probes and THEMIS to determine the statistical properties of the observed peaks in phase space density. First, we determine how often growing peaks are observed. Second, we examine where the peaks are located in terms of the adiabatic invariants mu, K and L* and how these locations relate to geomagnetic indices, solar wind conditions and the plasmapause location. Third, we explore how these peaks evolve in time. Together, these results will reveal the relative importance of different acceleration processes and how these affect the various electron populations within the radiation belt.

  10. At sea with disability! Transformative learning in medical undergraduates voyaging with disabled sailors.

    PubMed

    Thompson, Trevor; Lamont-Robinson, Catherine; Williams, Val

    2016-08-01

    Attitudinal objectives are difficult to formulate, teach and assess; yet good attitudes are fundamental to good practice. For instance, studies highlight negative attitudes to disability in the medical student community that contrast with the self-conceptions of disabled persons. This study was designed to better understand attitudinal learning, inadequately addressed by contemporary programmes, through the application of Mezirow's 'transformative learning theory' (TLT) to a novel educational intervention. Participating students went to sea, for voyages of 5-7 days, in tall ships operated by the Jubilee Sailing Trust. Each student was buddied with another sailor living with disability. Disabilities included cerebral palsy, loss of sight, loss of limbs and paraplegia. Students recorded their experiences using audio diaries, written logs, formal voyage reports and art work and in post-voyage seminars. The data were analysed using interpretive phenomenological analysis, and the results are considered under five themes suggested by Mezirow. Sixteen students were recruited, with four students sailing on each of four separate voyages. Each student recorded audio-diary entries, which had a total duration of between 10 and 212 minutes. For seven of the 16 students, the five key elements of TLT were demonstrable, suggesting that transformative learning, as described by Mezirow, was occurring. Drawing on diverse qualitative data, insights into different aspects of this transformation are provided. TLT can be used to characterise, and thus design, educational interventions to meet attitudinal learning objectives. Students can be helped to discover their less helpful frames of reference. In safe environments these frames can be challenged and subjected to personal and communal reflection. Drawing on audio diaries and other evidence, and in answer to critiques of contemporary medical teaching on disability, we demonstrate such transformation in students 'at sea with

  11. Cosmic Ray Proton Anisotropies Measured at Voyager 1 in the Local Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Decker, R. B.; Krimigis, S. M.; Hill, M. E.; Roelof, E. C.

    2016-12-01

    Voyager 1 entered the local interstellar medium in August of 2012 at helioradius 121.6 AU and heliolatitude N35°, and is now about 15 AU (≈12% the sun-heliopause distance at Voyager 1) upstream of the heliopause nose. Intensities of low-energy ions and electrons and of anomalous cosmic rays, all of which were routinely measured in the heliosheath, remain at background levels through July 2016. Galactic cosmic ray protons >211 MeV continue to show departures from isotropy, with broad (0.3-0.8 year) episodes of steady intensity depletions of ions gyrating nearly perpendicular to the magnetic field. Percentage intensity decreases during these depletions, relative to intensities of cosmic rays propagating along the field, peak at -7% on 2013.35, -3% on 2014.50, and -10% on 2016.00. In the last case, the peak anisotropy was preceded by an intensity decline lasting at least 9 months. The 2016.00 peak (-10%) anisotropy of was followed by a recovery back toward isotropy. But this recovery was interrupted in mid-April 2016, when the anisotropy had reached -2%, at which time the anisotropy began to again increase and continued to do so through at least July 2016, when the anisotropy reached -3%. We note that during its 4-year propagation through the local interstellar medium, Voyager 1 has encountered mainly anisotropic cosmic ray distributions. The longest period of isotropy occurred during a 4-month period in the latter half of 2014. Gurnett et al. [Ap. J., 809, 2015; Fall 2016 AGU (this meeting)] suggested that the broad periods when cosmic ray intensities evolve away from isotropy are precursor signatures produced by weak magnetic disturbances driven by solar activity. These disturbances propagate through the interstellar medium where they produce the bursts of electron plasma oscillations and peak cosmic ray anisotropies that are measured at Voyager 1 just before the disturbances cross the spacecraft.

  12. Chronicles of the Sea: The History and Literature of Man's Voyages.

    ERIC Educational Resources Information Center

    Roderer, Lawrence C.; Lacy, Richard

    In spring 1984, an interdisciplinary course on the history and literature of man's voyages and relationship with the sea was introduced at J. Sargeant Reynolds Community College (JSRCC). The course was team taught from the perspectives of the social sciences and English departments, incorporating fiction and non-fiction sources related to…

  13. The Voyage of the Beagle: Field Work Lessons from Charles Darwin.

    ERIC Educational Resources Information Center

    Smith, Louis M.

    1987-01-01

    Analyzes Charles Darwin's letters to his family during his voyage on H.M.S. Beagle. Relates the information to the development of Darwin's professional identity and the degree to which the concepts, field methods, and research methods revealed in Darwin's personal correspondence are useful to students of educational administration. (MD)

  14. Probing the inner space of resorcinarene molecular capsules with nitroxide guests.

    PubMed

    Mileo, Elisabetta; Yi, Song; Bhattacharya, Papri; Kaifer, Angel E

    2009-01-01

    In quarantine: Nitroxide spin probes are encapsulated by hexameric resorcinarene molecular capsules in dichloromethane solutions (see picture). A substantial reduction in the tumbling rates occurs upon encapsulation of two cationic probes and one neutral probe. As the molecular volume of the probe increases, the tumbling rate of the probe reflects the overall tumbling rate of the entire supramolecular assembly.

  15. Outer planet probe navigation. [considering Pioneer space missions

    NASA Technical Reports Server (NTRS)

    Friedman, L.

    1974-01-01

    A series of navigation studies in conjunction with outer planet Pioneer missions are reformed to determine navigation requirements and measurement systems in order to target probes. Some particular cases are established where optical navigation is important and some cases where radio alone navigation is suffucient. Considered are a direct Saturn mission, a Saturn Uranus mission, a Jupiter Uranus mission, and a Titan probe mission.

  16. Forward and reverse shocks in the outer heliosphere: Observations from Voyager 2

    NASA Technical Reports Server (NTRS)

    Lazarus, A. J.; Belcher, J. W.; Paularena, K. I.; Richardson, J. D.; Steinberg, J. T.; Pizzo, V. J.; Gosling, J. T.

    1995-01-01

    Observations from Voyager 2 as it moved from 10 to 14 deg S heliographic latitude in the period from 1992 through 1994 were used to gather statistics on the relative number of forward and reverse shocks. These results can be used to compare with observations from the Ulysses spacecraft which moved from 6 deg S to 70 deg S heliographic latitude during that time period. The Ulysses observations are in agreement with a 3-D, MHD model of the evolution of a steady tilted-dipole solar wind flow configuration prevalent in 1993. The model predicts and the Ulysses observations confirm a preponderance of reverse shocks at Ulysses latitudes poleward of streamer-belt latitudes. A preliminary scan of the Voyager data supports the complementary prediction of the model that forward fronts should dominate at large heliocentric distances near the heliographic equatorial plane during the same time period.

  17. Voyager 1 Jupiter Southern Hemisphere Movie

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This movie shows a portion of Jupiter in the southern hemisphere over 17Jupiter days. Above the white belt, notice the series of atmospheric vortices headed west. Even these early approach frames show wild dynamics in the roiling environment south of the white belt. Notice the small tumbling white cloud near the center.

    As Voyager 1 approached Jupiter in 1979, it took images of the planet at regular intervals. This sequence is made from 17 images taken once every Jupiter rotation period (about 10 hours). These images were acquired in the Blue filter around Feb. 1, 1979. The spacecraft was about 37 million kilometers from Jupiter at that time.

    This time-lapse movie was produced at JPL by the Image Processing Laboratory in 1979.

  18. New Cosmic Horizons: Space Astronomy from the V2 to the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Leverington, David

    2001-02-01

    Preface; 1. The sounding rocket era; 2. The start of the space race; 3. Initial exploration of the Solar System; 4. Lunar exploration; 5. Mars and Venus; early results; 6. Mars and Venus; the middle period; 7. Venus, Mars and cometary spacecraft post-1980; 8. Early missions to the outer planets; 9. The Voyager missions to the outer planets; 10. The Sun; 11. Early spacecraft observations of non-solar system sources; 12. A period of rapid growth; 13. The high energy astronomy observatory programme; 14. IUE, IRAS and Exosat - spacecraft for the early 1980s; 15. Hiatus; 16. Business as usual; 17. The Hubble Space Telescope.

  19. Historical overview of the US use of space nuclear power

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.

    1989-01-01

    Since 1961, the United States has successfully flown 35 space nuclear power sources on 20 space systems. These space systems have included the Apollo, Pioneer, Viking and Voyager spacecraft launched by the National Aeronautics and Space Administration and navigation and communications satellites launched by the Department of Defense. These power sources performed as planned and i8n many cases exceeded their power requirements and/or lifetimes. All of the power sources met their safety requirements. This paper surveys past uses of space nuclear power in the US and thus serves as a historical framework for other papers in this Conference dealing with future US applications of space nuclear power.

  20. Voyager image processing at the Image Processing Laboratory

    NASA Astrophysics Data System (ADS)

    Jepsen, P. L.; Mosher, J. A.; Yagi, G. M.; Avis, C. C.; Lorre, J. J.; Garneau, G. W.

    1980-09-01

    This paper discusses new digital processing techniques as applied to the Voyager Imaging Subsystem and devised to explore atmospheric dynamics, spectral variations, and the morphology of Jupiter, Saturn and their satellites. Radiometric and geometric decalibration processes, the modulation transfer function, and processes to determine and remove photometric properties of the atmosphere and surface of Jupiter and its satellites are examined. It is exhibited that selected images can be processed into 'approach at constant longitude' time lapse movies which are useful in observing atmospheric changes of Jupiter. Photographs are included to illustrate various image processing techniques.

  1. Voyager image processing at the Image Processing Laboratory

    NASA Technical Reports Server (NTRS)

    Jepsen, P. L.; Mosher, J. A.; Yagi, G. M.; Avis, C. C.; Lorre, J. J.; Garneau, G. W.

    1980-01-01

    This paper discusses new digital processing techniques as applied to the Voyager Imaging Subsystem and devised to explore atmospheric dynamics, spectral variations, and the morphology of Jupiter, Saturn and their satellites. Radiometric and geometric decalibration processes, the modulation transfer function, and processes to determine and remove photometric properties of the atmosphere and surface of Jupiter and its satellites are examined. It is exhibited that selected images can be processed into 'approach at constant longitude' time lapse movies which are useful in observing atmospheric changes of Jupiter. Photographs are included to illustrate various image processing techniques.

  2. Asteroids as Propulsion Systems of Space Ships

    NASA Technical Reports Server (NTRS)

    Bolonkin, Alexander

    2003-01-01

    Currently, rockets are used to change the trajectory of space ships and probes. This method is very expensive and requires a lot of fuel, which limits the feasibility of space stations, interplanetary space ships, and probes. Sometimes space probes use the gravity field of a planet However, there am only nine planets in the Solar System, all separated by great distances. There are tons of millions of asteroids in outer space. This paper offers a revolutionary method for changing the trajectory of space probes. The method uses the kinetic or rotary energy of asteroids, comet nuclei, meteorites or other space bodies (small planets, natural planetary satellites, space debris, etc.) to increase (to decrease) ship (probe) speed up to 1000 m/sec (or more) and to achieve any new direction in outer space. The flight possibilities of space ships and probes are increased by a factor of millions.

  3. Automation for deep space vehicle monitoring

    NASA Technical Reports Server (NTRS)

    Schwuttke, Ursula M.

    1991-01-01

    Information on automation for deep space vehicle monitoring is given in viewgraph form. Information is given on automation goals and strategy; the Monitor Analyzer of Real-time Voyager Engineering Link (MARVEL); intelligent input data management; decision theory for making tradeoffs; dynamic tradeoff evaluation; evaluation of anomaly detection results; evaluation of data management methods; system level analysis with cooperating expert systems; the distributed architecture of multiple expert systems; and event driven response.

  4. Deep space navigation systems and operations

    NASA Technical Reports Server (NTRS)

    Jordan, J. F.

    1981-01-01

    The history of the deep space navigation system developed by NASA is outlined. Its application to Mariner, Viking and Pioneer missions is reviewed. Voyager navigation results for Jupiter and Saturn are commented on and velocity correction in relation to fuel expenditure and computer time are discussed. The navigation requirements of the Gahleo and Venus orbiting imaging radar (VOIR) missions are assessed. The measurement and data processing systems are described.

  5. Gravity Probe B

    NASA Image and Video Library

    2003-07-13

    In the spacecraft processing facility on North Vandenberg Air Force Base, workers prepare to remove the soft shipping cover from the Gravity Probe B experiment. Immediate processing includes setting up mechanical and electrical ground support equipment, making necessary connections and conditioning the spacecraft battery. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center.

  6. Gravity Probe B

    NASA Image and Video Library

    2003-07-11

    Workers in the spacecraft processing facility on North Vandenberg Air Force Base get ready to begin processing the Gravity Probe B experiment, including setting up mechanical and electrical ground support equipment, making necessary connections and conditioning the spacecraft battery. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center.

  7. Voyager 1 Red Spot Movie

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This movie shows the portion of Jupiter around the Great Red Spot as it swirls through more than 60 Jupiter days. Notice the difference in speed and direction of the various zones of the atmosphere. The interaction of the atmospheric clouds and storm shows how dynamic the Jovian atmosphere is.

    As Voyager 1 approached Jupiter in 1979, it took images of the planet at regular intervals. This sequence is made from 66 images taken once every Jupiter rotation period (about 10 hours). This time-lapse movie uses images taken every time Jupiter longitude 68W passed under the spacecraft. These images were acquired in the Blue filter from Jan. 6 to Feb. 3 1979. The spacecraft flew from 58 million kilometers to 31 million kilometers from Jupiter during that time.

    This time-lapse movie was produced at JPL by the Image Processing Laboratory in 1979.

  8. Icy Moon Absorption Signatures: Probes of Saturnian Magnetospheric Dynamics and Moon Activity

    NASA Astrophysics Data System (ADS)

    Roussos, E.; Krupp, N.; Jones, G. H.; Paranicas, C.; Mitchell, D. G.; Krimigis, S. M.; Motschmann, U.; Dougherty, M. K.; Lagg, A.; Woch, J.

    2006-12-01

    After the first flybys at the outer planets by the Pioneer and Voyager probes, it became evident that energetic charged particle absorption features in the radiation belts are important tracers of magnetospheric dynamical features and parameters. Absorption signatures are especially important for characterizing the Saturnian magnetosphere. Due to the spin and magnetic axes' near-alignment, losses of particles to the icy moon surfaces and rings are higher compared to the losses at other planetary magnetospheres. The refilling rate of these absorption features (termed "micorsignatures") can be associated with particle diffusion. In addition, as these microsignatures drift with the properties of the pre-depletion electrons, they provide us direct information on the drift shell structure in the radiation belts and the factors that influence their shape. The multiple icy moon L-shell crossings by the Cassini spacecraft during the first 2 years of the mission provided us with almost 100 electron absorption events by eight different moons, at various longitudinal separations from each one and at various electron energies. Their analysis seems to give a consistent picture of the electron diffusion source and puts aside a lot of inconsistencies that resulted from relevant Pioneer and Voyager studies. The presence of non-axisymmetric particle drift shells even down to the orbit of Enceladus (3.98 Rs), also revealed through this analysis, suggests either large ring current disturbances or the action of global or localized electric fields. Finally, despite these absorption signatures being observed far from the originating moons, they can give us hints on the nature of the local interaction between each moon and the magnetospheric plasma. It is, nevertheless, beyond any doubt that energetic charged particle absorption signatures are a very powerful tool that can be used to effectively probe a series of dynamical processes in the Saturnian magnetosphere.

  9. An overview of the descent and landing of the Huygens probe on Titan.

    PubMed

    Lebreton, Jean-Pierre; Witasse, Olivier; Sollazzo, Claudio; Blancquaert, Thierry; Couzin, Patrice; Schipper, Anne-Marie; Jones, Jeremy B; Matson, Dennis L; Gurvits, Leonid I; Atkinson, David H; Kazeminejad, Bobby; Pérez-Ayúcar, Miguel

    2005-12-08

    Titan, Saturn's largest moon, is the only Solar System planetary body other than Earth with a thick nitrogen atmosphere. The Voyager spacecraft confirmed that methane was the second-most abundant atmospheric constituent in Titan's atmosphere, and revealed a rich organic chemistry, but its cameras could not see through the thick organic haze. After a seven-year interplanetary journey on board the Cassini orbiter, the Huygens probe was released on 25 December 2004. It reached the upper layer of Titan's atmosphere on 14 January and landed softly after a parachute descent of almost 2.5 hours. Here we report an overview of the Huygens mission, which enabled studies of the atmosphere and surface, including in situ sampling of the organic chemistry, and revealed an Earth-like landscape. The probe descended over the boundary between a bright icy terrain eroded by fluvial activity--probably due to methane-and a darker area that looked like a river- or lake-bed. Post-landing images showed centimetre-sized surface details.

  10. Geology and Topography of Ra Patera, Io, in the Voyager era: Prelude to Eruption

    NASA Technical Reports Server (NTRS)

    Schenk, Paul M.; McEwen, Alfred; Davies, A. G.; Davenport, Trevor; Jones, Kevin; Fessler, Brian

    1997-01-01

    Voyager era stereo images are used to map the geology and topography of Ra Patera (a major active volcanic center and possible site of sulfur eruptions on Io). The summit of Ra Patera reaches only approx.1 km above the surrounding plains. Pre-Voyager-era lava flows occur on slopes of 0.1-0.3 deg, comparable to the lunar mare. These flows were emplaced at either low viscosities, high eruption rates, or both. A 600- km-long ridged mountain unit (rising to approx. 8 km near Carancho Patera) forms a 60 by 90 km wide plateau approx. 0.5 km high 50 km east of Ra Patera. The new lava flows observed by Galileo flowed around the southern edge of this plateau.

  11. Voyager observations of O(+6) and other minor ions in the solar wind

    NASA Technical Reports Server (NTRS)

    Villanueva, Louis; Mcnutt, Ralph L., Jr.; Lazarus, Alan J.; Steinberg, John T.

    1994-01-01

    The plasma science (PLS) experiments on the Voyager 1 and 2 spacecraft began making measurements of the solar wind shortly after the two launches in the fall of 1977. In reviewing the data obtained prior to the Jupiter encounters in 1979, we have found that the large dynamic range of the PLS instrument generally allows a clean separation of signatures of minor ions (about 2.5% of the time) during a single instrument scan in energy per charge. The minor ions, most notably O(+6), are well separated from the protons and alpha particles during times when the solar wind Mach number (ratio of streaming speed to thermal speed) is greater than approximately 15. During the Earth to Jupiter cruise we find that the average ratio of alpha particle number density to that of oxygen is 66 +/- 7 (Voyager 1) and 71 +/- 17 (Voyager 2). These values are consistent with the value 75 +/- 20 inferred from the Ion Composition Instrument on ISEE 3 during the period spanning 1978 and 1982. We have inferred an average coronal temperature of (1.7 +/- 0.1) x 10(exp 6) K based on the ratio of O(+7) to O(+6) number densities. Our observations cover a period of increasing solar activity. During this time we have found that the alpha particle to proton number density ratio is increasing with the solar cycle, the oxygen to proton ratio increases, and the alpha particle to oxygen ratio remains relatively constant in time.

  12. New Topographic Maps of Io Using Voyager and Galileo Stereo Imaging and Photoclinometry

    NASA Astrophysics Data System (ADS)

    White, O. L.; Schenk, P. M.; Hoogenboom, T.

    2012-03-01

    Stereo and photoclinometry processing have been applied to Voyager and Galileo images of Io in order to derive regional- and local-scale topographic maps of 20% of the moon’s surface to date. We present initial mapping results.

  13. Probing free-space quantum channels with laboratory-based experiments

    NASA Astrophysics Data System (ADS)

    Bohmann, M.; Kruse, R.; Sperling, J.; Silberhorn, C.; Vogel, W.

    2017-06-01

    Atmospheric channels are a promising candidate to establish secure quantum communication on a global scale. However, due to their turbulent nature, it is crucial to understand the impact of the atmosphere on the quantum properties of light and examine it experimentally. In this paper, we introduce a method to probe atmospheric free-space links with quantum light on a laboratory scale. In contrast to previous works, our method models arbitrary intensity losses caused by turbulence to emulate general atmospheric conditions. This allows us to characterize turbulent quantum channels in a well-controlled manner. To implement this technique, we perform a series of measurements with different constant attenuations and simulate the fluctuating losses by combining the obtained data. We directly test the proposed method with an on-chip source of nonclassical light and a time-bin-multiplexed detection system. With the obtained data, we characterize the nonclassicality of the generated states for different atmospheric noise models and analyze a postselection protocol. This general technique in atmospheric quantum optics allows for studying turbulent quantum channels and predicting their properties for future applications.

  14. 46 CFR 90.05-10 - Application to vessels on an international voyage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... a protectorate or mandate, whose international relations are the responsibility of a contracting... 46 Shipping 4 2010-10-01 2010-10-01 false Application to vessels on an international voyage. 90.05... MISCELLANEOUS VESSELS GENERAL PROVISIONS Application § 90.05-10 Application to vessels on an international...

  15. Getting together in deep space - The Rosetta space probe's long trek to Comet 67/P Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    2004-02-01

    The countdown to Rosetta’s rendezvous in space began on 1 March 1997. At the end of February 2004, seven years and not a few headaches later, the European Space Agency (ESA) probe will at last be setting off on its journey to meet Comet Churyumov-Gerasimenko. The long-planned get-together will not however take place until the middle of 2014. A few months after arriving at the comet, Rosetta will release a small lander onto its surface. Then, for almost two years it will investigate Churyumov-Gerasimenko from close up. Dr Gerhard Schwehm, lead scientist for the Rosetta project, explains that, “With this mission we will be breaking new ground - this will be the first protracted cometary encounter.” The trip to the meeting place in space will certainly be a long one, located as it is some 4.5 astronomical units from the Sun, which translates into something like 675 million kilometres. Rosetta will be on the road for ten years, during which time it will clock up in excess of five billion kilometres. Launch in February 2004 Rosetta will be waved off on 26 February when it lifts off from the space centre in Kourou, French Guiana, aboard an Ariane 5 launcher. Shortly after the spacecraft’s release, its solar panels will be deployed and turned towards the Sun to build up the necessary power reserves. Its various systems and experiments will be gradually brought into operation and tested. Just three months into the mission the first active phase will be over, followed by final testing of the experiments in October 2004. Rosetta will then spend the following years flying a lonely path to the comet, passing by the Earth, Mars, the Earth and the Earth again. There is no alternative to this detour, for even Ariane 5, the most powerful launcher on the market today, lacks the power to hurl the probe on a direct route to the comet. To get the required momentum, it will rely on swing-by manœuvres, using the gravitation pull of Mars (in 2007) and the Earth (three times, in

  16. French-Soviet Cooperation in Space Research,

    DTIC Science & Technology

    SPACE FLIGHT, *SPACE PROBES, USSR, FRANCE , SCIENTIFIC RESEARCH, INSTRUMENTATION, SPACE TO SURFACE, METEOROLOGY, UPPER ATMOSPHERE, SPACE COMMUNICATIONS, LUNAR PROBES, ARTIFICIAL SATELLITES, MANAGEMENT PLANNING AND CONTROL.

  17. NOAA Photo Library - Voyage to Inner Space -- Exploring the Seas with NOAA

    Science.gov Websites

    Inner Space - Exploring the Sea with NOAA NOAA and its ancestor agencies have been exploring the sea for Inner Space -- Exploring the Sea with NOAA fish Ocean Exploration Collection submersible National

  18. Analysis of Voyager spectra of the beta Cephei star nu Eridani

    NASA Technical Reports Server (NTRS)

    Porri, A.; Stalio, R.; Ali, B.; Polidan, R. S.; Morossi, C.

    1994-01-01

    Voyager 500-1700 A spectrophotometric observations of the beta Cephei star nu Eri are presented and discussed. The Voyager observations were obtained in 1981 and cover six pulsation cycles of the star. These data are supplemented with a set of nine International Ultraviolet Explorer (IUE) SWP high-resolution observations covering one, earlier epoch, pulsation cycle. Light curves are derived from the Voyager data at 1055 and 1425 A. These light curves are found to be consistent in both shape and period with published optical curves. The 1055 A light curve also exhibits a phenomenon not seen in the optical curves: a small but highly significant systematic increase in the flux of the maximum light phases while maintaining a constant minimum light level over the interval of observation. Substantially larger errors in the longer wavelength data preclude discussion of this phenomenon in the 1425 A light curve. Examination of the far-UV continuum in nu Eri during this period shows that the color temperature is lower for the brighter maxima. Analysis of the far-UV continuum at maximum and minimum light yields an effective temperature difference between these two phases of 2200 + or - 750 K. Spectroscopically, three prominent features are seen in the Voyager data: a feature at 985 A mostly due to a blend of C III 977 A, H I Ly gamma 972 A, and N III 990 A; a feature at 1030 A due to H I Ly beta 1026 A and C II 1037 A; and the Si IV resonance doublet near 1400 A. A comparison of the 912-1700 A spectral region in nu Eri with a set of standard, i.e., nonpulsating stars, shows that nu Eri closely resembles the standard both in continuum shape and spectral line strengths with the possible exception of a slight flux excess between 912 and 975 A. The equivalent width of the 985 A feature is shown to vary in strength over the pulsation cycle in antiphase with the light curve and variations seen in the C IV 1548-1551 lines from the IUE data. This behavior of the 985 A feature is

  19. Gravity Probe B

    NASA Image and Video Library

    2003-07-11

    Workers in the spacecraft processing facility on North Vandenberg Air Force Base get ready to begin processing the Gravity Probe B experiment. Mechanical and electrical ground support equipment will be set up and necessary connections made with the spacecraft. Spacecraft battery conditioning will also begin. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center.

  20. Trajectories of inner and outer heliospheric spacecraft: Predicted through 1999

    NASA Technical Reports Server (NTRS)

    Parthasarathy, R.; King, Joseph H.

    1991-01-01

    Information is presented in tabular and graphical form on the trajectories of the international fleet of spacecraft that will be probing the far reaches of the heliosphere during the 1990s. In particular, the following spacecraft are addressed: Pioneer 10 and 11, Pioneer Venus Orbiter (PVO), Voyager 1 and 2, Galileo, Ulysses, Suisei, Sakigake, Giotto, International Cometary Explorer (ICE), and Interplanetary Monitoring Platform 8 (IMP 8). Yearly resolution listing of position information in inertial space are given for Pioneer and Voyager spacecraft from the times of their launches in the 1970s. One series of plots shows the radial distances, latitudes, and longitudes of the Pioneers and Voyagers. The solar ecliptic inertial coordinate system is used. In this system, the Z axis is normal to the ecliptic plane and the X axis is towards the first point of Aries (from Sun to Earth on the vernal equinox).

  1. Hubble Space Telescope Resolves Volcanoes on Io

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This picture is a composite of a black and white near infrared image of Jupiter and its satellite Io and a color image of Io at shorter wavelengths taken at almost the same time on March 5, 1994. These are the first images of a giant planet or its satellites taken by NASA's Hubble Space Telescope (HST) since the repair mission in December 1993.

    Io is too small for ground-based telescopes to see the surface details. The moon's angular diameter of one arc second is at the resolution limit of ground based telescopes.

    Many of these markings correspond to volcanoes that were first revealed in 1979 during the Voyager spacecraft flyby of Jupiter. Several of the volcanoes periodically are active because Io is heated by tides raised by Jupiter's powerful gravity.

    The volcano Pele appears as a dark spot surrounded by an irregular orange oval in the lower part of the image. The orange material has been ejected from the volcano and spread over a huge area. Though the volcano was first discovered by Voyager, the distinctive orange color of the volcanic deposits is a new discovery in these HST images. (Voyager missed it because its cameras were not sensitive to the near-infrared wavelengths where the color is apparent). The sulfur and sulfur dioxide that probably dominate Io's surface composition cannot produce this orange color, so the Pele volcano must be generating material with a more unusual composition, possibly rich in sodium.

    The Jupiter image, taken in near-infrared light, was obtained with HST's Wide Field and Planetary Camera in wide field mode. High altitude ammonia crystal clouds are bright in this image because they reflect infrared light before it is absorbed by methane in Jupiter's atmosphere. The most prominent feature is the Great Red Spot, which is conspicuous because of its high clouds. A cap of high-altitude haze appears at Jupiter's south pole.

    The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the

  2. Voyager 2 Jupiter Eruption Movie

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This movie records an eruptive event in the southern hemisphere of Jupiter over a period of 8 Jupiter days. Prior to the event, an undistinguished oval cloud mass cruised through the turbulent atmosphere. The eruption occurs over avery short time at the very center of the cloud. The white eruptive material is swirled about by the internal wind patterns of the cloud. As a result of the eruption, the cloud then becomes a type of feature seen elsewhere on Jupiter known as 'spaghetti bowls'.

    As Voyager 2 approached Jupiter in 1979, it took images of the planet at regular intervals. This sequence is made from 8 images taken once every Jupiter rotation period (about 10 hours). These images were acquired in the Violet filter around May 6, 1979. The spacecraft was about 50 million kilometers from Jupiter at that time.

    This time-lapse movie was produced at JPL by the Image Processing Laboratory in 1979.

  3. Stochastic Simulation of Dopamine Neuromodulation for Implementation of Fluorescent Neurochemical Probes in the Striatal Extracellular Space.

    PubMed

    Beyene, Abraham G; McFarlane, Ian R; Pinals, Rebecca L; Landry, Markita P

    2017-10-18

    Imaging the dynamic behavior of neuromodulatory neurotransmitters in the extracelluar space that arise from individual quantal release events would constitute a major advance in neurochemical imaging. Spatial and temporal resolution of these highly stochastic neuromodulatory events requires concurrent advances in the chemical development of optical nanosensors selective for neuromodulators in concert with advances in imaging methodologies to capture millisecond neurotransmitter release. Herein, we develop and implement a stochastic model to describe dopamine dynamics in the extracellular space (ECS) of the brain dorsal striatum to guide the design and implementation of fluorescent neurochemical probes that record neurotransmitter dynamics in the ECS. Our model is developed from first-principles and simulates release, diffusion, and reuptake of dopamine in a 3D simulation volume of striatal tissue. We find that in vivo imaging of neuromodulation requires simultaneous optimization of dopamine nanosensor reversibility and sensitivity: dopamine imaging in the striatum or nucleus accumbens requires nanosensors with an optimal dopamine dissociation constant (K d ) of 1 μM, whereas K d s above 10 μM are required for dopamine imaging in the prefrontal cortex. Furthermore, as a result of the probabilistic nature of dopamine terminal activity in the striatum, our model reveals that imaging frame rates of 20 Hz are optimal for recording temporally resolved dopamine release events. Our work provides a modeling platform to probe how complex neuromodulatory processes can be studied with fluorescent nanosensors and enables direct evaluation of nanosensor chemistry and imaging hardware parameters. Our stochastic model is generic for evaluating fluorescent neurotransmission probes, and is broadly applicable to the design of other neurotransmitter fluorophores and their optimization for implementation in vivo.

  4. Active Probing of Space Plasmas

    DTIC Science & Technology

    1989-09-01

    ft. shuttle wake mlay also a kect the optration (if mi’:nc di.tg. Ibk Prwwattr of ,frttirw 844 I. %rvaom ’itbi h" $od iy radlet 6�va of IkeA dtm t...probe had a specially designed inner shaft caused by the existence of some ballistic electrons after made with .pring sleel tubing. By externally...potential to the electron thermal energy i(s distances downstream of the body (see Fig. 1). This (e OIT,) was on the order of 10 in steady state. design

  5. Voyager 2 at Neptune - Imaging science results

    NASA Technical Reports Server (NTRS)

    Smith, B. A.; Soderblom, L. A.; Banfield, D.; Barnet, C.; Beebe, R. F.; Bazilevskii, A. T.; Bollinger, K.; Boyce, J. M.; Briggs, G. A.; Brahic, A.

    1989-01-01

    Neptune's atmosphere is revealed by Voyager 2 images to contain clouds of methane ice above a lower deck of hydrogen sulfide or ammonia ices, and to be dominated by an anticyclonic storm system designated the 'Great Dark Spot'; this bears both similarities and differences to the Great Red Spot of Jupiter. Like the rings of Uranus, those of Neptune are composed of very dark, but in addition very dusty, material. Six new regular satellites have been discovered whose radii range from 25 to 200 km. Triton is noted to be a differentiated body showing evidence of early surface-melting episodes. At least two active plumes are found on Triton, which may be driven by solar heating.

  6. Ultraviolet spectrometer experiment for the Voyager mission

    NASA Technical Reports Server (NTRS)

    Broadfoot, A. L.; Sandel, B. R.; Shemansky, D. E.; Atreya, S. K.; Donahue, T. M.; Moos, H. W.; Bertaux, J. L.; Blamont, J. E.; Ajello, J. M.; Strobel, D. F.

    1977-01-01

    An objective grating spectrometer covering the wavelength range of 500 to 1700 A with a 10-A resolution is employed for the Voyager ultraviolet spectrometer experiment. In determining the composition and structure of the atmospheres of Saturn, Jupiter and several satellites, the ultraviolet spectrometer will rely on airglow mode observations to measure radiation from the atmospheres due to resonant scattering of solar flux, and the occultation mode for assessments of the atmospheric extinction of solar or stellar radiation as the spacecraft enters shadow zones. Since it is capable of prolonged stellar observations in the 500 to 1000 A wavelength range, the spectrometer is expected to make important contributions to exploratory studies of UV sources.

  7. Preliminary science results of Voyager 1 Saturn encounter

    NASA Technical Reports Server (NTRS)

    Bane, D.

    1981-01-01

    Preliminary science results of the Voyager 1 encounter of the planet Saturn are reported. On August 22, 1980, the spacecraft was 109 million km (68 million mi) from Saturn. Closest approach to Saturn took place on November 12, at 3:46 p.m. (PDT), when the spacecraft passed 126,000 km (78,000 mi) from the cloud tops. Measurements of the atmosphere, wind speed, radiation, six surrounding rings, and the planet's old and newly found satellites were recorded. The encounter ended December 15, 1980. The spacecraft took more than 17,500 photographs of Saturn and its satellites.

  8. MULTIFRACTAL STRUCTURES DETECTED BY VOYAGER 1 AT THE HELIOSPHERIC BOUNDARIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macek, W. M.; Wawrzaszek, A.; Burlaga, L. F., E-mail: macek@cbk.waw.pl, E-mail: anna.wawrzaszek@cbk.waw.pl, E-mail: lburlagahsp@verizon.net

    To better understand the dynamics of turbulent systems, we have proposed a phenomenological model based on a generalized Cantor set with two rescaling and one weight parameters. In this Letter, using recent Voyager 1 magnetic field data, we extend our two-scale multifractal analysis further in the heliosheath beyond the heliospheric termination shock, and even now near the heliopause, when entering the interstellar medium for the first time in human history. We have identified the scaling inertial region for magnetized heliospheric plasma between the termination shock and the heliopause. We also show that the degree of multifractality decreases with the heliocentricmore » distance and is still modulated by the phases of the solar cycle in the entire heliosphere including the heliosheath. Moreover, we observe the change of scaling toward a nonintermittent (nonmultifractal) behavior in the nearby interstellar medium, just beyond the heliopause. We argue that this loss of multifractal behavior could be a signature of the expected crossing of the heliopause by Voyager 2 in the near future. The results obtained demonstrate that our phenomenological multifractal model exhibits some properties of intermittent turbulence in the solar system plasmas, and we hope that it could shed light on universal characteristics of turbulence.« less

  9. Science with the space-based interferometer LISA. IV: probing inflation with gravitational waves

    NASA Astrophysics Data System (ADS)

    Bartolo, Nicola; Caprini, Chiara; Domcke, Valerie; Figueroa, Daniel G.; Garcia-Bellido, Juan; Chiara Guzzetti, Maria; Liguori, Michele; Matarrese, Sabino; Peloso, Marco; Petiteau, Antoine; Ricciardone, Angelo; Sakellariadou, Mairi; Sorbo, Lorenzo; Tasinato, Gianmassimo

    2016-12-01

    We investigate the potential for the LISA space-based interferometer to detect the stochastic gravitational wave background produced from different mechanisms during inflation. Focusing on well-motivated scenarios, we study the resulting contributions from particle production during inflation, inflationary spectator fields with varying speed of sound, effective field theories of inflation with specific patterns of symmetry breaking and models leading to the formation of primordial black holes. The projected sensitivities of LISA are used in a model-independent way for various detector designs and configurations. We demonstrate that LISA is able to probe these well-motivated inflationary scenarios beyond the irreducible vacuum tensor modes expected from any inflationary background.

  10. Parker Solar Probe Light Bar Test

    NASA Image and Video Library

    2018-06-05

    In the Astrotech processing facility in Titusville, Florida, near NASA's Kennedy Space Center, on Tuesday, June 5, 2018, technicians and engineers perform light bar testing on NASA's Parker Solar Probe. The Parker Solar Probe will launch on a United Launch Alliance Delta IV Heavy rocket from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida no earlier than Aug. 4, 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.

  11. Micromachined probes for laboratory plasmas

    NASA Astrophysics Data System (ADS)

    Chiang, Franklin Changta

    As we begin to find more applications for plasmas in our everyday lives, the ability to characterize and understand their inner workings becomes increasingly important. Much of our current understanding of plasma physics comes from investigations conducted in diffuse, outer space plasmas where experimenters have no control over the environment or experimental conditions and one measures interesting phenomena only by chance when the spacecraft or satellite passes through them. Ideally, experiments should be performed in a controlled environment, where plasma events can be deliberately and reliably created when wanted and probes placed precisely within the plasma. Unfortunately, often due to their size, probes used in outer space are unsuitable for use in high-density laboratory plasmas, and constructing probes that can be used in terrestrial plasmas is a considerable challenge. This dissertation presents the development, implementation, and experimental results of three micromachined probes capable of measuring voltage and electric field, ion energies, and changing magnetic fields (B-dot) in laboratory plasmas.

  12. Jupiter plasma wave observations: an initial voyager 1 overview.

    PubMed

    Scarf, F L; Gurnett, D A; Kurth, W S

    1979-06-01

    The Voyager I plasma wave instrument detected low-frequency radio emissions, ion acoustic waves, and electron plasma oscillations for a period of months before encountering Jupiter's bow shock. In the outer magnetosphere, measurements of trapped radio waves were used to derive an electron density profile. Near and within the Io plasma torus the instrument detected high-frequency electrostatic waves, strong whistler mode turbulence, and discrete whistlers, apparently associated with lightning. Some strong emissions in the tail region and some impulsive signals have not yet been positively identified.

  13. Photographer : JPL Range : 12 million km. ( 7.56 million miles) P-23057C & BW This Voyager 1

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Photographer : JPL Range : 12 million km. ( 7.56 million miles) P-23057C & BW This Voyager 1 photograph of Titan, the largest of Saturn's 14 known satellites, shows little more than the upper layers of clouds covering the moon. The orange colored haze, is believed to be composed of photochemically produced hydrocarbons, hides Titan's solid surface from Voyager's camera. Some weak shadings in the clouds are becoming visible. However, note that the satellite's southern, lower, hemisphere is brighter than the northern. It is not known whether these subtle shadings are on the surface or are due to clouds below a high haze layer.

  14. Probing the Solar System

    ERIC Educational Resources Information Center

    Wilkinson, John

    2013-01-01

    Humans have always had the vision to one day live on other planets. This vision existed even before the first person was put into orbit. Since the early space missions of putting humans into orbit around Earth, many advances have been made in space technology. We have now sent many space probes deep into the Solar system to explore the planets and…

  15. Space Physics Cosmic & Heliospheric Data Evaluation Panel Report

    NASA Technical Reports Server (NTRS)

    McGuiere, R. E.; Cooper, J.; Gazis, P.; Kurth, W.; Lazarus, A.; McDonald, F.; McNutt, R.; Pyle, R.; Tsurutani, B. T.

    1995-01-01

    This Cosmic and Heliospheric (C&H) Data Evaluation Panel was charged with the task of identifying and prioritizing important C&H data sets. It was requested to provide C&H community input to the Space Physics Division for a program of revitalizing data holdings. Details and recommendations are provided. Highest C&H priority is assigned to Voyager, Pioneer, Helios, IMP-8, and ISEE-3 data.

  16. Space Shuttle Discovery lifts off successfully

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Tree branches on the Space Coast frame Space Shuttle Discovery's liftoff from Launch Pad 39B at 2:19 p.m. EST Oct. 29 on mission STS-95. Making his second voyage into space after 36 years is Payload Specialist John H. Glenn Jr., senator from Ohio. Other crew members are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Payload Specialist Chiaki Mukai, (M.D., Ph.D.), with the National Space Development Agency of Japan (NASDA), Mission Specialist Stephen K. Robinson, Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA), and Mission Specialist Scott E. Parazynski. The STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Discovery is expected to return to KSC at 11:49 a.m. EST on Nov. 7.

  17. Irma Tracked from Space on This Week @NASA – September 8, 2017

    NASA Image and Video Library

    2017-09-08

    During the week of Sept. 5, spacecraft captured imagery of hurricane Irma as the storm reached category 5 status in the Atlantic Ocean. Irma was seen from the International Space Station, Global Precipitation Measurement mission or GPM, and the Suomi National Polar-orbiting Partnership satellite. Imagery from space is used to help forecasters and officials track and characterize storms and other natural events. Also, Johnson Space Center Recovering from Harvey, Whitson and Fischer Return to Earth, 40 Years of Voyager, and Bridenstine Nominated for Administrator!

  18. A report on SHARP (Spacecraft Health Automated Reasoning Prototype) and the Voyager Neptune encounter

    NASA Technical Reports Server (NTRS)

    Martin, R. G. (Editor); Atkinson, D. J.; James, M. L.; Lawson, D. L.; Porta, H. J.

    1990-01-01

    The development and application of the Spacecraft Health Automated Reasoning Prototype (SHARP) for the operations of the telecommunications systems and link analysis functions in Voyager mission operations are presented. An overview is provided of the design and functional description of the SHARP system as it was applied to Voyager. Some of the current problems and motivations for automation in real-time mission operations are discussed, as are the specific solutions that SHARP provides. The application of SHARP to Voyager telecommunications had the goal of being a proof-of-capability demonstration of artificial intelligence as applied to the problem of real-time monitoring functions in planetary mission operations. AS part of achieving this central goal, the SHARP application effort was also required to address the issue of the design of an appropriate software system architecture for a ground-based, highly automated spacecraft monitoring system for mission operations, including methods for: (1) embedding a knowledge-based expert system for fault detection, isolation, and recovery within this architecture; (2) acquiring, managing, and fusing the multiple sources of information used by operations personnel; and (3) providing information-rich displays to human operators who need to exercise the capabilities of the automated system. In this regard, SHARP has provided an excellent example of how advanced artificial intelligence techniques can be smoothly integrated with a variety of conventionally programmed software modules, as well as guidance and solutions for many questions about automation in mission operations.

  19. Floating Potential Probe Deployed on the International Space Station

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.

    2001-01-01

    In the spring and summer of 2000, at the request of the International Space Station (ISS) Program Office, a Plasma Contactor Unit Tiger Team was set up to investigate the threat of the ISS arcing in the event of a plasma contactor outage. Modeling and ground tests done under that effort showed that it is possible for the external structure of the ISS to become electrically charged to as much as -160 V under some conditions. Much of this work was done in anticipation of the deployment of the first large ISS solar array in November 2000. It was recognized that, with this deployment, the power system would be energized to its full voltage and that the predicted charging would pose an immediate threat to crewmembers involved in extravehicular activities (EVA's), as well as long-term damage to the station structure, were the ISS plasma contactors to be turned off or stop functioning. The Floating Potential Probe was conceived, designed, built, and deployed in record time by a crack team of scientists and engineers led by the NASA Glenn Research Center in response to ISS concerns about crew safety.

  20. Synoptic observations of Jupiter's radio emissions: Average Statistical properties observed by Voyager

    NASA Technical Reports Server (NTRS)

    Alexander, J. K.; Carr, T. D.; Thieman, J. R.; Schauble, J. J.; Riddle, A. C.

    1980-01-01

    Observations of Jupiter's low frequency radio emissions collected over one month intervals before and after each Voyager encounter were analyzed. Compilations of occurrence probability, average power flux density and average sense of circular polarization are presented as a function of central meridian longitude, phase of Io, and frequency. The results are compared with ground based observations. The necessary geometrical conditions are preferred polarization sense for Io-related decametric emission observed by Voyager from above both the dayside and nightside hemispheres are found to be essentially the same as are observed in Earth based studies. On the other hand, there is a clear local time dependence in the Io-independent decametric emission. Io appears to have an influence on average flux density of the emission down to below 2 MHz. The average power flux density spectrum of Jupiter's emission has a broad peak near 9MHz. Integration of the average spectrum over all frequencies gives a total radiated power for an isotropic source of 4 x 10 to the 11th power W.

  1. Voyager IRIS Measurements of Triton's Thermal Emission: Impllications for Pluto?

    NASA Astrophysics Data System (ADS)

    Stansberry, John A.; Spencer, John; Linscott, Ivan

    2015-11-01

    The New Horizons Pluto encounter data set includes unique observations obtained using the Radio Science experiment to measure the night-side thermal emission at centimeter wavelengths, well beyond the emission peak (in the 70 to 100 micron range). 26 years ago the Voyager 2 Infrared Interferometer Spectrometer (IRIS) obtained spectra in the 30 - 50 micron wavelength range to try and detect thermal emission from Pluto's sibling, Triton. Conrath etal. (1989) analyzed 16 of the IRIS spectra of Triton's dayside and derived a weak limit of 36 K - 41 K. We have analysed those, and an additional 75 spectra, to refine the limits on the temperature of Triton's surface, and to explore diurnal differences in the thermal emission. Triton results from other Voyager instruments provide important constraints on our interpretation of the IRIS data, as do Spitzer measurements of Pluto's thermal emission.For unit-emissivity, average temperature is 34 K, inconsistent with the pressure of Triton's atmosphere (13 - 19 microbar), the presence of beta-phase nitrogen ice on the surface, and the likely presence ofwarm regions on the surface. The atmospheric pressure requires nitrogen ice temperatures of 37.4 K - 38.1 K, which in turn requires emissivity of 0.31--0.53. Such a low emissivity in this spectral region might be expected if the surface is dominated by nitrogen or methane ice. Averages of data subsets show evidence for brightness temperature variations across Triton's surface. Surprisingly, the data seem to indicate that Triton's nightside equatorial region was warmer than on the dayside.These Voyager results for Triton provide a useful context for interpreting New Horizons and ALMA observations of emission from Pluto in the sub-millimeter and centimeter region. JWST will be capable of detecting Triton's and Pluto's 10 - 28 micron thermal emission, although scattered light from Neptune may be an issue for the Triton. Combined with new capabilities of ALMA to measure the sub

  2. The Jupiter system through the eyes of Voyager 1

    USGS Publications Warehouse

    Smith, B.A.; Soderblom, L.A.; Johnson, T.V.; Ingersoll, A.P.; Collins, S.A.; Shoemaker, E.M.; Hunt, G.E.; Masursky, H.; Carr, M.H.; Davies, M.E.; Cook, A.F.; Boyce, J.; Danielson, G.E.; Owen, Timothy W.; Sagan, C.; Beebe, R.F.; Veverka, J.; Strom, R.G.; McCauley, J.F.; Morrison, D.; Briggs, G.A.; Suomi, V.E.

    1979-01-01

    The cameras aboard Voyager I have provided a closeup view of the Jupiter system, revealing heretofore unknown characteristics and phenomena associated with the planet's atmosphere and the surfaces of its five major satellites. On Jupiter itself, atmospheric motions-the interaction of cloud systems-display complex vorticity. On its dark side, lightning and auroras are observed. A ring was discovered surrounding Jupiter. The satellite surfaces display dramatic differences including extensive active volcanismn on Io, complex tectonism on Ganymnede and possibly Europa, and flattened remnants of enormous impact features on Callisto. Copyright ?? 1979 AAAS.

  3. New developments at Hunveyor and Husar space probe model constructions in Hungarian Universities and Colleges: status report of 2008

    NASA Astrophysics Data System (ADS)

    Hegzi, S.; Bérczi, Sz.; Hudoba, Gy.; Magyar, I.; Lang, A.; Istenes, Z.; Weidinger, T.; Tepliczky, I.; Varga, T.; Hargitai, H.

    2008-09-01

    Introduction Hunveyor and Husar space probe models are the main school robotics program in Hungary in the last decade initiated by our Cosmic Materials Space research Group (CMSRG). As a new form of planetary science education in Hungary students build their lander and rover robots and test them on test tables, carry out simulations, and go with their instruments to field works of planetary geology analog sites. Recently 10 groups work in this program and here is a status report about the new results. Planetary robot construction and simulations steps We summarized in 10 steps the main "constructional and industrial research and technology" description of planetary material studying and collecting by space probes (landers, rovers). We focused on the activity we began and teach to carry out at those steps. (Main planets considered were the Moon and Mars): 1. Reconnaissance and survey of the surface of a planet by orbital space probes (i.e. Lunar Orbiter, MGS, MRO etc.) Our studies: photogeology, geomorphology, preparations to cartography. 2. Mapping of the surface of the selected planet with geographical and stratigraphical methods. We (CMSRG) prepared thematic maps on Moon, Mercury, Mars, Venus [1] and Atlas (3) in the series [2,3]. 3. Identification of various surface materials by albedo, spectroscopic [4], thermal IR, identification and selection of the target sites. (in terrestrial analog sites during field works) 4. Planning the space probe system lander and rover working together (MPF-Sojourner type assembly). Planning of the Hunveyor and Husar models. 5. Construction and manufacturing lander and rover units. All Hunveyor groups built their models [5]. 6. Launching and traveling the space probes to the planetary surface. (No rocket building, we simulate [6] some events during the voyage only). 7. Measuring the planetary surface environment on the surface of target planet [7]. (CMSRG) groups carry out test-table measurements [8] and simulations, and later they

  4. Space Science

    NASA Image and Video Library

    1980-12-17

    Voyager 1 passed the Saturnian system in November 1980; nine months later Voyager 2 passed through this same system. The ensuing scientific discoveries were unprecedented with regards to the rings around Saturn and its satellite's chemical makeup. Pictured are: Saturn (shown with rings), Dione (forefront), Tethys and Mimas (lower right), Enceladus and Rhea (upper left) and Titan in distant orbit (upper right).

  5. Parker Solar Probe Spacecraft Arrival, Offload and Transport

    NASA Image and Video Library

    2018-04-03

    A U.S. Air Force C-5 transport aircraft arrives at Space Coast Regional Airport in Titusville, Florida, with NASA's Parker Solar Probe spacecraft aboard. The spacecraft will be offloaded and transported to the Astrotech processing facility near the agency's Kennedy Space Center. The Parker Solar Probe will launch on a United Launch Alliance Delta IV Heavy rocket from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.

  6. Parker Solar Probe Spacecraft Arrival, Offload and Transport

    NASA Image and Video Library

    2018-04-03

    NASA's Parker Solar Probe, secured in its shipping container, arrives at the Astrotech processing facility near the agency's Kennedy Space Center in Florida. The spacecraft arrived aboard a U.S. Air Force C-5 transport aircraft at Space Coast Regional Airport in Titusville, Florida. The Parker Solar Probe will launch on a United Launch Alliance Delta IV Heavy rocket from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.

  7. Parker Solar Probe Spacecraft Arrival, Offload and Transport

    NASA Image and Video Library

    2018-04-03

    A U.S. Air Force C-5 transport aircraft touches down at Space Coast Regional Airport in Titusville, Florida, with NASA's Parker Solar Probe spacecraft aboard. The spacecraft will be offloaded and transported to the Astrotech processing facility near the agency's Kennedy Space Center. The Parker Solar Probe will launch on a United Launch Alliance Delta IV Heavy rocket from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.

  8. Parker Solar Probe Spacecraft Arrival, Offload and Transport

    NASA Image and Video Library

    2018-04-03

    NASA's Parker Solar Probe, secured in its shipping container, is offloaded from a U.S. Air Force C-5 transport aircraft at Space Coast Regional Airport in Titusville, Florida. The spacecraft will be transported to the Astrotech processing facility near the agency's Kennedy Space Center. The Parker Solar Probe will launch on a United Launch Alliance Delta IV Heavy rocket from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.

  9. Parker Solar Probe Spacecraft Arrival, Offload and Transport

    NASA Image and Video Library

    2018-04-03

    A U.S. Air Force C-5 transport aircraft approaches the runway for landing at Space Coast Regional Airport in Titusville, Florida, with NASA's Parker Solar Probe spacecraft aboard. The spacecraft will be offloaded and transported to the Astrotech processing facility near the agency's Kennedy Space Center. The Parker Solar Probe will launch on a United Launch Alliance Delta IV Heavy rocket from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.

  10. Parker Solar Probe Spacecraft Arrival, Offload and Transport

    NASA Image and Video Library

    2018-04-03

    NASA's Parker Solar Probe, secured in its shipping container, has been offloaded from a U.S. Air Force C-5 transport aircraft at Space Coast Regional Airport in Titusville, Florida. The spacecraft will be transported to the Astrotech processing facility near the agency's Kennedy Space Center. The Parker Solar Probe will launch on a United Launch Alliance Delta IV Heavy rocket from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.

  11. Parker Solar Probe Spacecraft Arrival, Offload and Transport

    NASA Image and Video Library

    2018-04-03

    NASA's Parker Solar Probe, secured in its shipping container, arrives aboard a U.S. Air Force C-5 transport aircraft at Space Coast Regional Airport in Titusville, Florida. The spacecraft will be offloaded and transported to the Astrotech processing facility near the agency's Kennedy Space Center. The Parker Solar Probe will launch on a United Launch Alliance Delta IV Heavy rocket from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.

  12. "50 Cents, 50 Years": Finding the Value of the Space Program on the Back of a Quarter

    NASA Technical Reports Server (NTRS)

    Horack, John M.

    2008-01-01

    Brief presentation highlighting the accomplishments of NASA upon its 50th anniversary. NASA's first manned space flight, voyage to the moon, planetary exploration, space station construction, international cooperation, space habitat construction and the deployment of multiple satellites including the Hubble Space Telescope, Gamma Ray Observatory, Magellan and Galileo. More recent efforts include the construction of the Ares transportation system and a return to human exploration beyond low-Earth orbit. The author also urges for continued space exploration via the National Space Policy through the authorization of Congress.

  13. [Diffusion of fluorescent and magnetic molecular probes in brain interstitial space].

    PubMed

    Li, Huai-ye; Zhao, Yue; Zuo, Long; Fu, Yu; Li, Nan; Yuan, Lan; Zhang, Shu-jia; Han, Hong-bin

    2015-08-18

    To compare the diffusion properties of fluorescent probes dextran-tetramethylrhodamine (DT) and lucifer yellow CH (LY) and magnetic probe gadolinium-diethylene triamine pentaacetic acid (Gd-DTPA) in porous media and to screen out a suitable fluorescent probe for optical imaging of brain interstitial space (ISS). Agarose gels sample were divided into DT group, LY group and Gd-DTPA group, and the corresponding molecular probes were imported in each group. The dynamic diffusions of DT and LY in agarose gels at different time points (15, 30, 45, 60, 90, and 120 min) were scanned with laser scanning confocal microscope, the dynamic diffusion of Gd-DTPA was imaged with magnetic resonance imaging. The average diffusion speed of LY were demonstrated to be consistent with those of Gd-DTPA. The LY was introduced into caudate putamen of 18 rats, respectively, the diffusion of LY in the sequential slices of rat brain at different time points (0.5, 1, 2, 3, 7, 11 h) were scanned, and the results were compared with those of rats' brain with Gd-DTPA imported and imaged in vivo with magnetic resonance imaging. The diffusions of the three probes were isotropic in the agarose gels, and the average diffusion speeds of DT, LY and Gd-DTPA were: (0.07±0.02)×10(-2) mm2/s, (1.54±0.47)×10(-2) mm2/s, (1.45±0.50)×10(-2) mm2/s, respectively. The speed of DT was more slower than both LY and Gd-DTPA (ANOVA, F=367.15, P<0.001; Post-Hoc LSD, P<0.001), and there was no significant difference between the speeds of LY and Gd-DTPA (Post-Hoc LSD, P=0.091). The variation tendency of diffusion area of DT was different with both that of LY and that of Gd-DTPA (Bonferroni correction, α=0.0125, P<0.001), and there was no significant difference between LY and Gd-DTPA (Bonferroni correction, α=0.0125, P=0.203), in analysis by repeated measures data of ANOVA. The diffusions of LY and Gd-DTPA were anisotropy in rat caudate putamen,and the average diffusion speeds of LY and Gd-DTPA were: (1.03±0.29)

  14. Direct Communication to Earth from Probes

    NASA Technical Reports Server (NTRS)

    Bolton, Scott J.; Folkner, William M.; Abraham, Douglas S.

    2005-01-01

    A viewgraph presentation on outer planetary probe communications to Earth is shown. The topics include: 1) Science Rational for Atmospheric Probes to the Outer Planets; 2) Controlling the Scientific Appetite; 3) Learning more about Jupiter before we send more probes; 4) Sample Microwave Scan From Juno; 5) Jupiter s Deep Interior; 6) The Square Kilometer Array (SKA): A Breakthrough for Radio Astronomy; 7) Deep Space Array-based Network (DSAN); 8) Probe Direct-to-Earth Data Rate Calculations; 9) Summary; and 10) Enabling Ideas.

  15. Space Shuttle Discovery lifts off successfully

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Clouds of exhaust and blazing light fill Launch Pad 39B as Space Shuttle Discovery lifts off at 2:19 p.m. EST Oct. 29 on mission STS-95. Making his second voyage into space after 36 years is Payload Specialist John H. Glenn Jr., senator from Ohio. Other crew members are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Payload Specialist Chiaki Mukai, (M.D., Ph.D.), with the National Space Development Agency of Japan (NASDA), Mission Specialist Stephen K. Robinson, Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA), and Mission Specialist Scott E. Parazynski. The STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Discovery is expected to return to KSC at 11:49 a.m. EST on Nov. 7.

  16. Space Shuttle Discovery lifts off successfully

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Clouds of exhaust seem to fill the marsh near Launch Pad 39B as Space Shuttle Discovery lifts off at 2:19 p.m. EST Oct. 29 on mission STS-95. Making his second voyage into space after 36 years is Payload Specialist John H. Glenn Jr., senator from Ohio. Other crew members are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Payload Specialist Chiaki Mukai, (M.D., Ph.D.), with the National Space Development Agency of Japan (NASDA), Mission Specialist Stephen K. Robinson, Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA), and Mission Specialist Scott E. Parazynski. The STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Discovery is expected to return to KSC at 11:49 a.m. EST on Nov. 7.

  17. Space Shuttle Discovery lifts off successfully

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Space Shuttle Discovery clears Launch Pad 39B at 2:19 p.m. EST Oct. 29 as it lifts off on mission STS-95. Making his second voyage into space after 36 years is Payload Specialist John H. Glenn Jr., senator from Ohio. Other crew members are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Payload Specialist Chiaki Mukai, (M.D., Ph.D.), with the National Space Development Agency of Japan (NASDA), Mission Specialist Stephen K. Robinson, Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA), and Mission Specialist Scott E. Parazynski. The STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Discovery is expected to return to KSC at 11:49 a.m. EST on Nov. 7.

  18. Space flight-associated neuro-ocular syndrome (SANS).

    PubMed

    Lee, Andrew G; Mader, Thomas H; Gibson, C Robert; Brunstetter, Tyson J; Tarver, William J

    2018-03-12

    Interesting novel and somewhat perplexing physiologic and pathologic neuro-ocular findings have been documented in astronauts during and after long duration space flight (LDSF). These findings collectively have been termed the "space flight-associated neuro-ocular syndrome" (SANS). The National Aeronautics and Space Administration (NASA) in the United States has meticulously and prospectively documented the clinical, ultrasound, optical coherence tomography imaging, and radiographic findings of SANS including unilateral and bilateral optic disc edema, globe flattening, choroidal and retinal folds, hyperopic refractive error shifts, and nerve fiber layer infarcts (i.e., cotton wool spots). NASA and collaborating researchers continue to study SANS in preparation for future manned missions to space, including continued trips to the ISS, a return to the moon, or perhaps new voyages to the asteroid belt, or the planet, Mars.

  19. 33 CFR 151.2036 - If my voyage does not take me into waters 200 nautical miles or greater from any shore, must I...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false If my voyage does not take me into waters 200 nautical miles or greater from any shore, must I divert to conduct a ballast water... of the United States § 151.2036 If my voyage does not take me into waters 200 nautical miles or...

  20. 33 CFR 151.2036 - If my voyage does not take me into waters 200 nautical miles or greater from any shore, must I...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false If my voyage does not take me into waters 200 nautical miles or greater from any shore, must I divert to conduct a ballast water... of the United States § 151.2036 If my voyage does not take me into waters 200 nautical miles or...

  1. Parker Solar Probe Spacecraft Arrival, Offload and Transport

    NASA Image and Video Library

    2018-04-03

    Preparations are underway to offload NASA's Parker Solar Probe spacecraft, secured in its shipping container, from a U.S. Air Force C-5 transport aircraft at Space Coast Regional Airport in Titusville, Florida. The spacecraft will be transported to the Astrotech processing facility near the agency's Kennedy Space Center. The Parker Solar Probe will launch on a United Launch Alliance Delta IV Heavy rocket from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.

  2. Parker Solar Probe Spacecraft Arrival, Offload and Transport

    NASA Image and Video Library

    2018-04-03

    A forklift operator latches onto the shipping container with NASA's Parker Solar Probe inside, after it was offloaded from a U.S. Air Force C-5 transport aircraft at Space Coast Regional Airport in Titusville, Florida. The spacecraft will be transported to the Astrotech processing facility near the agency's Kennedy Space Center. The Parker Solar Probe will launch on a United Launch Alliance Delta IV Heavy rocket from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.

  3. Simultaneous calibrations of Voyager celestial and inertial attitude control systems in flight

    NASA Technical Reports Server (NTRS)

    Jahanshahi, M. H.

    1982-01-01

    A mathematical description of the data reduction technique used to simultaneously calibrate the Voyager celestial and inertial attitude control subsystems is given. It is shown that knowledge of the spacecraft limit cycle motion, as measured by the celestial and the inertial sensors, is adequate to result in the estimates of a selected number of errors which adversely affect the spacecraft attitude knowledge.

  4. HUBBLE SPACE TELESCOPE RESOLVES VOLCANOES ON IO

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This picture is a composite of a black and white near infrared image of Jupiter and its satellite Io and a color image of Io at shorter wavelengths taken at almost the same time on March 5, 1994. These are the first images of a giant planet or its satellites taken by NASA's Hubble Space Telescope (HST) since the repair mission in December 1993. Io is too small for ground-based telescopes to see the surface details. The moon's angular diameter of one arc second is at the resolution limit of ground based telescopes. Many of these markings correspond to volcanoes that were first revealed in 1979 during the Voyager spacecraft flyby of Jupiter. Several of the volcanoes periodically are active because Io is heated by tides raised by Jupiter's powerful gravity. The volcano Pele appears as a dark spot surrounded by an irregular orange oval in the lower part of the image. The orange material has been ejected from the volcano and spread over a huge area. Though the volcano was first discovered by Voyager, the distinctive orange color of the volcanic deposits is a new discovery in these HST images. (Voyager missed it because its cameras were not sensitive to the near-infrared wavelengths where the color is apparent). The sulfur and sulfur dioxide that probably dominate Io's surface composition cannot produce this orange color, so the Pele volcano must be generating material with a more unusual composition, possibly rich in sodium. The Jupiter image, taken in near-infrared light, was obtained with HST's Wide Field and Planetary Camera in wide field mode. High altitude ammonia crystal clouds are bright in this image because they reflect infrared light before it is absorbed by methane in Jupiter's atmosphere. The most prominent feature is the Great Red Spot, which is conspicuous because of its high clouds. A cap of high-altitude haze appears at Jupiter's south pole. The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced

  5. Detection of dust impacts by the Voyager planetary radio astronomy experiment

    NASA Technical Reports Server (NTRS)

    Evans, David R.

    1993-01-01

    The Planetary Radio Astronomy (PRA) instrument detected large numbers of dust particles during the Voyager 2 encounter with Neptune. The signatures of these impacts are analyzed in some detail. The major conclusions are described. PRA detects impacts from all over the spacecraft body, not just the PRA antennas. The signatures of individual impacts last substantially longer than was expected from complementary Plasma Wave Subsystem (PWS) data acquired by another Voyager experiment. The signatures of individual impacts demonstrate very rapid fluctuations in signal strength, so fast that the data are limited by the speed of response of the instrument. The PRA detects events at a rate consistently lower than does the Plasma Wave subsystem. Even so, the impact rate is so great near the inbound crossing of the ring plane that no reliable estimate of impact rate can be made for this period. The data are consistent with the presence of electrons accelerated by ions within an expanding plasma cloud from the point of impact. An ancillary conclusion is that the anomalous appearance of data acquired at 900 kHz appears to be due to an error in processing the PRA data prior to their delivery rather than due to overload of the PRA instrument.

  6. [Application of anoptomagnetic probe Gd-DO3A-EA-FITC in imaging and analyzing the brain interstitial space].

    PubMed

    Li, Y Q; Sheng, Y; Liang, L; Zhao, Y; Li, H Y; Bai, N; Wang, T; Yuan, L; Han, H B

    2018-04-18

    To investigate the application of the optical magnetic bimodal molecular probe Gd-DO3A-ethylthiouret-fluorescein isothiocyanate (Gd -DO3A-EA-FITC) in brain tissue imaging and brain interstitial space (ISS). In the study, 24 male SD rats were randomly divided into 3 groups, including magnetic probe group (n=6), optical probe group (n=6) and optical magnetic bimodal probe group (n=12), then the optical magnetic bimodal probe group was divided equally into magnetic probe subgroup (n=6) and optical probe subgroup (n=6). Referencing the brain stereotaxic atlas, the coronal globus pallidus as center level, the probes including gadolinium-diethylene triamine pentaacetic acid (Gd-DTPA), fluorescein isothiocyanate (FITC) and Gd-DO3A-EA-FITC of 2 μL (10 mmol/L) were injected into the caudate nucleus respectively, magnetic resonance imaging (MRI) was performed in the magnetic probe group and magnetic probe subgroup to image the dynamic diffusion and distribution of the probes in the brain ISS, a self-developed brain ISS image processing system was used to measure the diffusion coefficient, clearance, volume fraction and half-time in these two groups. Laser scanning confocal microscope (LSCM) was performed in vitro in the optical probe group and optical probe subgroup for fluorescence imaging at the time points 2 hours after the injection of the probe, and the distribution in the oblique sagittal slice was compared with the result of the first two groups. For the magnetic probe group and magnetic probe subgroup, there were the same imaging results between the probes of Gd-DTPA and Gd-DO3A-EA-FITC. The diffusion parameters of Gd-DTPA and Gd-DO3A-EA-FITC were as follows: the average diffusion coefficients [(3.31±0.11)×10 -4 mm 2 /s vs. (3.37±0.15)×10 -4 mm 2 /s, t=0.942, P=0.360], the clearance [(3.04±0.37) mmol/L vs. (2.90±0.51) mmol/L, t=0.640, P=0.531], the volume fractions (17.18%±0.14% vs. 17.31%±0.15%, t=1.961, P=0.068), the half-time [(86.58±3.31) min vs. (84

  7. Gradual Diffusion and Punctuated Phase Space Density Enhancements of Highly Relativistic Electrons: Van Allen Probes Observations

    NASA Technical Reports Server (NTRS)

    Baker, D. N.; Jaynes, A. N.; Li, X.; Henderson, M. G.; Kanekal, S. G.; Reeves, G. D.; Spence, H. E.; Claudepierre, S. G.; Fennell, J. F.; Hudson, M. K.

    2014-01-01

    The dual-spacecraft Van Allen Probes mission has provided a new window into mega electron volt (MeV) particle dynamics in the Earth's radiation belts. Observations (up to E (is) approximately 10MeV) show clearly the behavior of the outer electron radiation belt at different timescales: months-long periods of gradual inward radial diffusive transport and weak loss being punctuated by dramatic flux changes driven by strong solar wind transient events. We present analysis of multi-MeV electron flux and phase space density (PSD) changes during March 2013 in the context of the first year of Van Allen Probes operation. This March period demonstrates the classic signatures both of inward radial diffusive energization and abrupt localized acceleration deep within the outer Van Allen zone (L (is) approximately 4.0 +/- 0.5). This reveals graphically that both 'competing' mechanisms of multi-MeV electron energization are at play in the radiation belts, often acting almost concurrently or at least in rapid succession.

  8. Plasma observations near Saturn - Initial results from Voyager 1

    NASA Technical Reports Server (NTRS)

    Bridge, H. S.; Belcher, J. W.; Lazarus, A. J.; Olbert, S.; Sullivan, J. D.; Bagenal, F.; Gazis, P. R.; Hartle, R. E.; Ogilvie, K. W.; Scudder, J. D.

    1981-01-01

    The Voyager 1 encounter with Saturn and its satellites yielded extensive measurements of magnetospheric low-energy plasma electrons and positive ions, both heavy and light, probably of hydrogen and nitrogen or oxygen. At radial distances between 15 and 7 Saturn radii on the inbound trajectory, the plasma appears to corotate with a velocity within 20% of that theoretically expected for rigid corotation. The Titan data, taken while the moon was inside the Saturn magnetosphere, shows a clear signature characteristic of the interaction between a subsonic corotating magnetospheric plasma and the atmospheric or ionospheric exosphere of Titan.

  9. Near Sun Free-Space Optical Communications from Space

    NASA Technical Reports Server (NTRS)

    Biswas, Abhijit; Khatri, F.; Boroson, D.

    2006-01-01

    Free-space optical communications offers expanded data return capacity, from probes distributed throughout the solar system and beyond. Space-borne and Earth-based optical transceivers used for communicating optically, will periodically encounter near Sun pointing. This will result in an increase in the scattered background light flux, often contributing to degraded link performance. The varying duration of near Sun pointing link operations relative to the location of space-probes, is discussed in this paper. The impact of near Sun pointing on link performance for a direct detection photon-counting communications system is analyzed for both ground- and space-based Earth receivers. Finally, impact of near Sun pointing on spaceborne optical transceivers is discussed.

  10. Gravity Probe B: final results of a space experiment to test general relativity.

    PubMed

    Everitt, C W F; DeBra, D B; Parkinson, B W; Turneaure, J P; Conklin, J W; Heifetz, M I; Keiser, G M; Silbergleit, A S; Holmes, T; Kolodziejczak, J; Al-Meshari, M; Mester, J C; Muhlfelder, B; Solomonik, V G; Stahl, K; Worden, P W; Bencze, W; Buchman, S; Clarke, B; Al-Jadaan, A; Al-Jibreen, H; Li, J; Lipa, J A; Lockhart, J M; Al-Suwaidan, B; Taber, M; Wang, S

    2011-06-03

    Gravity Probe B, launched 20 April 2004, is a space experiment testing two fundamental predictions of Einstein's theory of general relativity (GR), the geodetic and frame-dragging effects, by means of cryogenic gyroscopes in Earth orbit. Data collection started 28 August 2004 and ended 14 August 2005. Analysis of the data from all four gyroscopes results in a geodetic drift rate of -6601.8±18.3  mas/yr and a frame-dragging drift rate of -37.2±7.2  mas/yr, to be compared with the GR predictions of -6606.1  mas/yr and -39.2  mas/yr, respectively ("mas" is milliarcsecond; 1  mas=4.848×10(-9)  rad).

  11. DSS 43 antenna gain analysis for Voyager Uranus encounter: 8.45-GHz radio science data correction

    NASA Technical Reports Server (NTRS)

    Slobin, S. D.; Imbriale, W. A.

    1987-01-01

    A malfunction of the Deep Space Network (DSN) 64-meter antenna in Australia forced the antenna to operate with a mispositioned subreflector during the Voyager Uranus encounter period (January 24, 1986). Because of changing main reflector shape and quadripod position as a function of elevation angle, the antenna gain and pointing were not as expected, and the 8.45 GHz received signal level changed during the pass. The study described here used the Geometrical Theory of Diffraction (GTD) analysis to determine actual antenna gain and pointing during that period in an attempt to reconstruct the radio science data. It is found that the 1.4 dB of signal variation can be accounted for by antenna geometry changes and pointing error. Suggested modifications to the values measured during the pass are presented. Additionally, an extremely useful tool for the analysis of gravity deformed reflectors was developed for use in future antenna design and analysis projects.

  12. Voyager and the origin of the solar system

    NASA Technical Reports Server (NTRS)

    Prentice, A. J. R.

    1981-01-01

    A unified model for the formation of regular satellite systems and the planetary system is outlined. The basis for this modern Laplacian theory is that there existed a large supersonic turbulent stress arising from overshooting convective motions within the three primitive gaseous clouds which formed Jupiter, Saturn, and the Sun. Calculations show that if each cloud possessed the same fraction of supersonic turbulent energy, equal to about 5% of the cloud's gravitational potential energy, then the broad mass distribution and chemistry of all regular satellite and planetary systems can be simultaneously accounted for. Titan is probably a captured moon of Saturn. Several predictions about observations made by Voyager 2 at Saturn are presented.

  13. Analysis of Voyager images of Europa - plasma bombardment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, R.E.; Nelson, M.L.; Nccord, T.B.

    1988-09-01

    Voyager-derived data on the albedos of Europa are presently photometrically corrected and converted into average, single-scattering form, in order to analyze them as a function of angular distance from the apex of orbital motion. A hypothesized magnetospheric modification of the Europa surface is confirmed by the UV absorption found in the 0.35-micron filter data; this absorption directly correlates with the longitudinal ion implantation distribution in both terrain types. A red spectrum is found in both terrain types as well, and is found to be constant across the surface. A uniform increase is noted in the dark terrain absorption over thatmore » in the bright terrain. 43 references.« less

  14. Microwave communications from outer planets - The Voyager Project

    NASA Technical Reports Server (NTRS)

    Brejcha, A. G.

    1980-01-01

    The paper summarizes the Voyager Project, the mission objectives, and the spacecraft communications system required to meet the mission objectives. The primary emphasis of the mission is on comparative studies of the Jupiter and Saturn systems in the areas of: (1) the environment, atmosphere and body characteristics of the planets, and one or more of the satellites, (2) the nature of the recently discovered Jovian ring and the rings of Saturn, and (3) the interplanetary medium at increasing distances from the sun. The complexities and problems, such as power consumption, weight, and antenna pointing constraints are presented, along with a detailed description of the radio frequency and S/X-band antenna subsystems.

  15. Radiation Transport of Heliospheric Lyman-alpha from Combined Cassini and Voyager Data Sets

    NASA Technical Reports Server (NTRS)

    Pryor, W.; Gangopadhyay, P.; Sandel, B.; Forrester, T.; Quemerais, E.; Moebius, E.; Esposito, L.; Stewart, I.; McClintock, W.; Jouchoux, A.; hide

    2008-01-01

    Heliospheric neutral hydrogen scatters solar Lyman-alpha radiation from the Sun with '27-day' intensity modulations observed near Earth due to the Sun's rotation combined with Earth's orbital motion. These modulations are increasingly damped in amplitude at larger distances from the Sun due to multiple scattering in the heliosphere, providing a diagnostic of the interplanetary neutral hydrogen density independent of instrument calibration. This paper presents Cassini data from 2003-2004 obtained downwind near Saturn at approximately 10 AU that at times show undamped '27-day' waves in good agreement with the single-scattering models of Pryor et al., 1992. Simultaneous Voyager 1 data from 2003- 2004 obtained upwind at a distance of 88.8-92.6 AU from the Sun show waves damped by a factor of -0.21. The observed degree of damping is interpreted in terms of Monte Carlo multiple-scattering calculations (e.g., Keller et al., 1981) applied to two heliospheric hydrogen two-shock density distributions (discussed in Gangopadhyay et al., 2006) calculated in the frame of the Baranov-Malama model of the solar wind interaction with the two-component (neutral hydrogen and plasma) interstellar wind (Baranov and Malama 1993, Izmodenov et al., 2001, Baranov and Izmodenov, 2006). We conclude that multiple scattering is definitely occurring in the outer heliosphere. Both models compare favorably to the data, using heliospheric neutral H densities at the termination shock of 0.085 cm(exp -3) and 0.095 cm(exp -3). This work generally agrees with earlier discussions of Voyager data in Quemerais et al., 1996 showing the importance of multiple scattering but is based on Voyager data obtained at larger distances from the Sun (with larger damping) simultaneously with Cassini data obtained closer to the Sun.

  16. Thermodynamic considerations in the support of life for long space voyages

    NASA Technical Reports Server (NTRS)

    Iberall, A. S.; Cardon, S. Z.

    1979-01-01

    The essential requirements for the maintenance of life, particularly human life, on isolated space missions of long duration were investigated through the study of extended irreversible thermodynamics. The characterization of a four trophic level system was developed. Questions of stability are discussed.

  17. New Voyager radio spectrograms of Uranus

    NASA Technical Reports Server (NTRS)

    Calvert, W.; Tsintikidis, D.

    1990-01-01

    New, high-resolution spectrograms of the Voyager-2 radio observations at Uranus were produced from the original, six-second Planetary Radio Astronomy (PRA) data and these show a number of new features which were not obvious in previous versions. Among these new features are the detailed structure of the so-called broadband-bursty (b-bursty) emissions, unexpected sloping striations in the smooth high-frequency (SHF) component, and the overlap of these two components during the first rotation after closest approach. In addition, a slightly different planetary rotation rate from the b-bursty emissions, was found, and at the initial onset of the SHF component, what appears to be the shadow of a Uranian plasmasphere. These new spectrograms were prepared using a special dithering algorithm to show signal strengths as gray shadings, and the data were also manually cleaned to suppress noise and interference. This produced spectrograms of exceptional quality and certain details of their production on a stand-alone personal computer are also discussed.

  18. Europa During Voyager 2 Closest Approach

    NASA Image and Video Library

    1996-09-26

    This color image of the Jovian moon Europa was acquired by NASA Voyager 2 during its close encounter on Jul. 9, 1979. Europa, the size of our moon, is thought to have a crust of ice perhaps 100 kilometers thick which overlies the silicate crust. The complex array of streaks indicate that the crust has been fractured and filled by materials from the interior. The lack of relief, any visible mountains or craters, on its bright limb is consistent with a thick ice crust. In contrast to its icy neighbors, Ganymede and Callisto, Europa has very few impact craters. One possible candidate is the small feature near the center of this image with radiating rays and a bright circular interior. The relative absence of features and low topography suggests the crust is young and warm a few kilometers below the surface. The tidal heating process suggested for Io also may be heating Europa's interior at a lower rate. http://photojournal.jpl.nasa.gov/catalog/PIA00459

  19. The International Space Station: A National Science Laboratory

    NASA Technical Reports Server (NTRS)

    Giblin, Timothy W.

    2011-01-01

    After more than a decade of assembly missions and on the heels of the final voyage of Space Shuttle Discovery, the International Space Station (ISS) has reached assembly completion. With visiting spacecraft now docking with the ISS on a regular basis, the Station now serves as a National Laboratory to scientists back on Earth. ISS strengthens relationships among NASA, other Federal entities, higher educational institutions, and the private sector in the pursuit of national priorities for the advancement of science, technology, engineering, and mathematics. In this lecture we will explore the various areas of research onboard ISS to promote this advancement: (1) Human Research, (2) Biology & Biotechnology, (3) Physical & Material Sciences, (4) Technology, and (5) Earth & Space Science. The ISS National Laboratory will also open new paths for the exploration and economic development of space.

  20. Laser-pump/X-ray-probe experiments with electrons ejected from a Cu(111) target: space-charge acceleration.

    PubMed

    Schiwietz, G; Kühn, D; Föhlisch, A; Holldack, K; Kachel, T; Pontius, N

    2016-09-01

    A comprehensive investigation of the emission characteristics for electrons induced by X-rays of a few hundred eV at grazing-incidence angles on an atomically clean Cu(111) sample during laser excitation is presented. Electron energy spectra due to intense infrared laser irradiation are investigated at the BESSY II slicing facility. Furthermore, the influence of the corresponding high degree of target excitation (high peak current of photoemission) on the properties of Auger and photoelectrons liberated by a probe X-ray beam is investigated in time-resolved pump and probe measurements. Strong electron energy shifts have been found and assigned to space-charge acceleration. The variation of the shift with laser power and electron energy is investigated and discussed on the basis of experimental as well as new theoretical results.

  1. Reusable science tools for analog exploration missions: xGDS Web Tools, VERVE, and Gigapan Voyage

    NASA Astrophysics Data System (ADS)

    Lee, Susan Y.; Lees, David; Cohen, Tamar; Allan, Mark; Deans, Matthew; Morse, Theodore; Park, Eric; Smith, Trey

    2013-10-01

    The Exploration Ground Data Systems (xGDS) project led by the Intelligent Robotics Group (IRG) at NASA Ames Research Center creates software tools to support multiple NASA-led planetary analog field experiments. The two primary tools that fall under the xGDS umbrella are the xGDS Web Tools (xGDS-WT) and Visual Environment for Remote Virtual Exploration (VERVE). IRG has also developed a hardware and software system that is closely integrated with our xGDS tools and is used in multiple field experiments called Gigapan Voyage. xGDS-WT, VERVE, and Gigapan Voyage are examples of IRG projects that improve the ratio of science return versus development effort by creating generic and reusable tools that leverage existing technologies in both hardware and software. xGDS Web Tools provides software for gathering and organizing mission data for science and engineering operations, including tools for planning traverses, monitoring autonomous or piloted vehicles, visualization, documentation, analysis, and search. VERVE provides high performance three dimensional (3D) user interfaces used by scientists, robot operators, and mission planners to visualize robot data in real time. Gigapan Voyage is a gigapixel image capturing and processing tool that improves situational awareness and scientific exploration in human and robotic analog missions. All of these technologies emphasize software reuse and leverage open source and/or commercial-off-the-shelf tools to greatly improve the utility and reduce the development and operational cost of future similar technologies. Over the past several years these technologies have been used in many NASA-led robotic field campaigns including the Desert Research and Technology Studies (DRATS), the Pavilion Lake Research Project (PLRP), the K10 Robotic Follow-Up tests, and most recently we have become involved in the NASA Extreme Environment Mission Operations (NEEMO) field experiments. A major objective of these joint robot and crew experiments is

  2. [Efficiency of preventive use of bemethyl during long-term voyages].

    PubMed

    Novikov, V S

    1991-03-01

    A positive effect of bemityl in the 24-hour dose of 0.25-0.5 g on the cellular and humoral factors of nonspecific defence, blood neutrophils intracellular exchange, barrier properties of the skin, working ability of operators and on morbidity has been established. An important property of the drug is long duration of preservation of the pharmacological effect, which prevents the development of disadaptation states following the cessation of its use. The data obtained gives the basis to recommend the actoprotective drug bemityl to increase nonspecific resistance during long-term voyages.

  3. Voyager Observations of Magnetic Fields and Cosmic Rays in the Heliosheath

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Ness, N. F.; Stone, E.; McDonald, F. B.

    2011-01-01

    The major features of the profile of >70 MeV/nuc cosmic ray intensity (CRI) observed by Voyager 1 (V1) in the heliosheath from 2005.8 - 2010.24 are described by the empirical "CR-B" relation as the cumulative effect of variations of the magnetic field strength B. The CRI profile observed by Voyager 2 (V2) from 2008.60 to 2010.28 in the heliosheath is also described by the CR-B relation. On a smaller scale, of the order of a hundred days, a sequence of 3 CRI decreases observed by V1 during 2006 was interpreted as the effect of a propagating interplanetary shock first interacting with the termination shock, then moving past V1, and finally reflecting from the heliopause and propagating back to V1. Our observations show that the second CRI decrease in this sequence began during the passage of a "Global Merged Interaction Region" (GMIR), approx. 40 days after the arrival of the GMIR and its possible shock. The first and third CRI decreases in the sequence were associated with local enhancements of B. The magnetic field observations associated with the second sequence of 3 cosmic ray intensity decreases observed by V1 in 2007/2008 are more difficult to reconcile with the scenario of Webber et al. and the CR-B relation. The discrepancy might indicate the importance of latitudinal effects.

  4. Voyager Observations of Magnetic Fields and Cosmic Rays in the Heliosheath

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Ness, N. F.; Stone, E.; McDonald, F. B.

    2011-01-01

    The major features of the profile of greater than 70 MeV/nuc cosmic ray intensity (CRI) observed by Voyager 1 (VI) in the heliosheath from 2005.8-2010.24 are described by the empirical "CR-B" relation as the cumulative effect of variations of the magnetic field strength B. The CRI profile observed by Voyager 2 (V2) from 2008.60 to 2010.28 in the heliosheath is also described by the CR-B relation. On a smaller scale, of the order of a hundred days, a sequence on CRI decreases observed by V 1 during 2006 was interpreted as the effect of a propagating interplanetary shock first interacting with the termination shock, then moving past V1, and finally reflecting from the heliopause and propagating back to V1. Our observations show that the second CRI decrease in this sequence began during the passage of a "Global Merged Interaction Region" (GMIR), 40 days after the arrival of the GMIR and its possible shock. The first and third CRI decreases in the sequence were associated with local enhancements of B. The magnetic field observations associated with the second sequence of 3 cosmic ray intensity decreases observed by V 1 in 2007/2008 are more difficult to reconcile with the scenario of Webber et al. (2009) and the CR-B relation. The discrepancy might indicate the importance of latitudinal effects

  5. Quantitative dual-probe microdialysis: mathematical model and analysis.

    PubMed

    Chen, Kevin C; Höistad, Malin; Kehr, Jan; Fuxe, Kjell; Nicholson, Charles

    2002-04-01

    Steady-state microdialysis is a widely used technique to monitor the concentration changes and distributions of substances in tissues. To obtain more information about brain tissue properties from microdialysis, a dual-probe approach was applied to infuse and sample the radiotracer, [3H]mannitol, simultaneously both in agar gel and in the rat striatum. Because the molecules released by one probe and collected by the other must diffuse through the interstitial space, the concentration profile exhibits dynamic behavior that permits the assessment of the diffusion characteristics in the brain extracellular space and the clearance characteristics. In this paper a mathematical model for dual-probe microdialysis was developed to study brain interstitial diffusion and clearance processes. Theoretical expressions for the spatial distribution of the infused tracer in the brain extracellular space and the temporal concentration at the probe outlet were derived. A fitting program was developed using the simplex algorithm, which finds local minima of the standard deviations between experiments and theory by adjusting the relevant parameters. The theoretical curves accurately fitted the experimental data and generated realistic diffusion parameters, implying that the mathematical model is capable of predicting the interstitial diffusion behavior of [3H]mannitol and that it will be a valuable quantitative tool in dual-probe microdialysis.

  6. Space Shuttle Discovery lifts off successfully

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Framed by the foliage of the Canaveral National Sea Shore, Space Shuttle Discovery soars through bright blue skies as it lifts off from Launch Pad 39B at 2:19 p.m. EST Oct. 29 on mission STS-95. Making his second voyage into space after 36 years is Payload Specialist John H. Glenn Jr., senator from Ohio. Other crew members are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Payload Specialist Chiaki Mukai, (M.D., Ph.D.), with the National agency for Space Development (NASDA), Mission Specialist Stephen K. Robinson, Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA), and Mission Specialist Scott E. Parazynski. The STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Discovery is expected to return to KSC at 11:49 a.m. EST on Nov. 7.

  7. Space Shuttle Discovery lifts off successfully

    NASA Technical Reports Server (NTRS)

    1998-01-01

    As if sprung from the rolling exhaust clouds below, Space Shuttle Discovery shoots into the heavens over the blue Atlantic Ocean from Launch Pad 39B on mission STS-95. Lifting off at 2:19 p.m. EST, Discovery carries a crew of six, including Payload Specialist John H. Glenn Jr., senator from Ohio, who is making his second voyage into space after 36 years. Other crew members are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Payload Specialist Chiaki Mukai, (M.D., Ph.D.), with the National Space Development Agency of Japan (NASDA), Mission Specialist Stephen K. Robinson, Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA), and Mission Specialist Scott E. Parazynski. The STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Discovery is expected to return to KSC at 11:49 a.m. EST on Nov. 7.

  8. Parker Solar Probe "Name Chip" Installation

    NASA Image and Video Library

    2018-05-21

    At the Astrotech processing facility in Titusville, Florida, near NASA's Kennedy Space Center, scientists and engineers from the Applied Physics Laboratory at Johns Hopkins University install a computer chip on NASA's Parker Solar Probe. Throughout its seven-year mission, NASA’s Parker Solar Probe will swoop through the Sun’s atmosphere, carrying more than scientific instruments on this historic journey — it will also hold more than 1.1 million names submitted by the public to go to the Sun. The submitted names were loaded into a memory card and mounted on a plaque bearing a dedication to the mission’s namesake, heliophysicist Dr. Eugene Parker. The Parker Solar Probe will launch on a United Launch Alliance Delta IV Heavy rocket from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida no earlier than Aug. 4, 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.

  9. Accuracy of a third (Dolphin Voyager) versus first generation pulse oximeter (Nellcor N-180) in predicting arterial oxygen saturation and pulse rate in the anesthetized dog.

    PubMed

    Burns, Patrick M; Driessen, Bernd; Boston, Ray; Gunther, Robert A

    2006-09-01

    To compare the accuracy of a 3rd (Dolphin Voyager) versus 1st generation pulse oximeter (Nellcor N-180). Prospective laboratory investigation. Eight adult dogs. In anesthetized dogs, arterial oxygen saturation (SpO(2)) was recorded simultaneously with each pulse oximeter. The oxygen fraction in inspired gas (FiO(2)) was successively reduced from 1.00 to 0.09, with re-saturation (FiO(2) 0.40) after each breathe-down step. After each 3-minute FiO(2) plateau, SpO(2) and pulse rate (PR) were compared with the fractional arterial saturation (SaO(2)) and PR determined by co-oximetry and invasive blood pressure monitoring, respectively. Data analysis included Bland-Altman (B-A) plots, Lin's concordance correlation factor (rho(c)), and linear regression models. Over a SaO(2) range of 33-99%, the overall bias (mean SpO(2) - SaO(2)), precision (SD of bias), and accuracy (A(rms)) for the Dolphin Voyager and Nellcor N-180 were 4.3%, 4.4%, and 6.1%, and 3.2%, 3.0%, and 4.3%, respectively. Bias increased at SaO(2) < 90%, more so with the Dolphin Voyager (from 1.6% to 8.6%) than Nellcor N-180 (from 3.2% to 4.5%). The SpO(2) readings correlated significantly with SaO(2) for both the Dolphin Voyager (rho(c) = 0.94) and Nellcor N-180 (rho(c) = 0.97) (p < 0.001). Regarding PR, bias, precision, and accuracy (A(rms)) for the Dolphin Voyager and Nellcor N-180 were -0.5, 4.6, and 4.6 and 1.38, 4.3, and 4.5 beats minute(-1), respectively. Significant correlation existed between pulse oximeter and directly measured PR (Dolphin Voyager: rho(c) = 0.98; Nellcor N-180: rho(c) = 0.99) (p < 0.001). In anesthetized dogs with adequate hemodynamic function, both instruments record SaO(2) relatively accurately over a wide range of normal saturation values. However, there is an increasing overestimation at SaO(2) < 90%, particularly with the Dolphin Voyager, indicating that 3rd generation pulse oximeters may not perform better than older instruments. The 5.4-fold increase in bias with the Dolphin

  10. First steps of processing VLBI data of space probes with VieVS

    NASA Astrophysics Data System (ADS)

    Plank, L.; Böhm, J.; Schuh, H.

    2011-07-01

    Since 2008 the VLBI group at the Institute of Geodesy and Geophysics (IGG) of the Vienna University of Technology has developed the Vienna VLBI Software VieVS which is capable to process geodetic VLBI data in NGS format. Constantly we are working on upgrading the new software, e.g. by developing a scheduling tool or extending the software from single session solution to a so-called global solution, allowing the joint analysis of many sessions covering several years. In this presentation we report on first steps to enable the processing of space VLBI data with the software. Driven by the recently increasing number of space VLBI applications, our goal is the geodetic usage of such data, primarily concerning frame ties between various reference frames, e. g. by connecting the dynamic reference frame of a space probe with the kinematically defined International Celestial Reference Frame (ICRF). Main parts of the software extension w.r.t. the existing VieVS are the treatment of fast moving targets, the implementation of a delay model for radio emitters at finite distances, and the adequate mathematical model and adjustment of the particular unknowns. Actual work has been done for two mission scenarios so far: On the one hand differential VLBI (D-VLBI) data from the two sub-satellites of the Japanese lunar mission Selene were processed, on the other hand VLBI observations of GNSS satellites were modelled in VieVS. Besides some general aspects, we give details on the calculation of the theoretical delay (delay model for moving sources at finite distances) and its realization in VieVS. First results with real data and comparisons with best fit mission orbit data are also presented.'

  11. Deep Space Station (DSS-13) automation demonstration

    NASA Technical Reports Server (NTRS)

    Remer, D. S.; Lorden, G.

    1980-01-01

    The data base collected during a six month demonstration of an automated Deep Space Station (DSS 13) run unattended and remotely controlled is summarized. During this period, DSS 13 received spacecraft telemetry data from Voyager, Pioneers 10 and 11, and Helios projects. Corrective and preventive maintenance are reported by subsystem including the traditional subsystems and those subsystems added for the automation demonstration. Operations and maintenance data for a comparable manned Deep Space Station (DSS 11) are also presented for comparison. The data suggests that unattended operations may reduce maintenance manhours in addition to reducing operator manhours. Corrective maintenance for the unmanned station was about one third of the manned station, and preventive maintenance was about one half.

  12. Stratospheric ethane on Neptune - Comparison of groundbased and Voyager IRIS retrievals

    NASA Technical Reports Server (NTRS)

    Kostiuk, Theodor; Romani, Paul; Espenak, Fred; Bezard, Bruno

    1992-01-01

    Near-simultaneous ground and spacecraft measurements of 12-micron ethane emission spectra during the Voyager encounter with Neptune have furnished bases for the determination of stratospheric ethane abundance and the testing and constraining of Neptune methane-photochemistry models. The ethane retrievals were sensitive to the thermal profile used. Contribution functions for warm thermal profiles peaked at higher altitudes, as expected, with the heterodyne functions covering lower-pressure regions. Both constant- and nonconstant-with-height profiles remain candidate distributions for Neptune's stratospheric ethane.

  13. Voyager Uranus encounter 0.2lbf T/VA short pulse test report

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The attitude control thrusters on the Voyager spacecraft were tested for operation at electrical pulse widths of less than the current 10-millisecond minimum to reduce impulse bit and, therefore, reduce image smear of pictures taken during the Uranus encounter. Thrusters with the identical configuration of the units on the spacecraft were fired in an altitude chamber to characterize impulse bit and impulse bit variations as a function of electrical pulse widths and to determine if the short pulses decreased thruster life. Pulse widths of 4.0 milliseconds provide approximately 45 percent of the impulse provided by a 10-ms pulse, and thruster-to-thruster and pulse-to-pulse variation is approximately plus or minus 10 percent. Pulse widths shorter than 4 ms showed wide variation, and no pulse was obtained at 3 ms. Three thrusters were each subjected to 75,000 short pulses of 4 ms or less without performance degradation. A fourth thruster exhibited partial flow blockage after 13,000 short pulses, but this was attributed to prevous test history and not short pulse exposure. The Voyager attitude control thrusters should be considered flight qualified for short pulse operation at pulse widths of 4.0 ms or more.

  14. Very High Specific Energy, Medium Power Li/CFx Primary Battery for Launchers and Space Probes

    NASA Astrophysics Data System (ADS)

    Brochard, Paul; Godillot, Gerome; Peres, Jean Paul; Corbin, Julien; Espinosa, Amaya

    2014-08-01

    Benchmark with existing technologies shows the advantages of the lithium-fluorinated carbon (Li/CFx) technology for use aboard future launchers in terms of a low Total Cost of Ownership (TCO), especially for high energy demanding missions such as re-ignitable upper stages for long GTO+ missions and probes for deep space exploration.This paper presents the new results obtained on this chemistry in terms of electrical and climatic performances, abuse tests and life tests. Studies - co-financed between CNES and Saft - looked at a pure CFx version with a specific energy up to 500 Wh/kg along with a medium power of 80 to 100 W/kg.

  15. Neuronal plasticity: adaptation and readaptation to the environment of space

    NASA Technical Reports Server (NTRS)

    Correia, M. J.

    1998-01-01

    While there have been few documented permanent neurological changes resulting from space travel, there is a growing literature which suggests that neural plasticity sometimes occurs within peripheral and central vestibular pathways during and following spaceflight. This plasticity probably has adaptive value within the context of the space environment, but it can be maladaptive upon return to the terrestrial environment. Fortunately, the maladaptive responses resulting from neuronal plasticity diminish following return to earth. However, the literature suggests that the longer the space travel, the more difficult the readaptation. With the possibility of extended space voyages and extended stays on board the international space station, it seems worthwhile to review examples of plastic vestibular responses and changes in the underlying neural substrates. Studies and facilities needed for space station investigation of plastic changes in the neural substrates are suggested. Copyright 1998 Elsevier Science B.V.

  16. The Interstellar Ethics of Self-Replicating Probes

    NASA Astrophysics Data System (ADS)

    Cooper, K.

    Robotic spacecraft have been our primary means of exploring the Universe for over 50 years. Should interstellar travel become reality it seems unlikely that humankind will stop using robotic probes. These probes will be able to replicate themselves ad infinitum by extracting raw materials from the space resources around them and reconfiguring them into replicas of themselves, using technology such as 3D printing. This will create a colonising wave of probes across the Galaxy. However, such probes could have negative as well as positive consequences and it is incumbent upon us to factor self-replicating probes into our interstellar philosophies and to take responsibility for their actions.

  17. C-smithing of Voyager 2 non-imaging instrument pointing information at Uranus

    NASA Technical Reports Server (NTRS)

    Wang, Tseng-Chan; Acton, Charles H.; Underwood, Ian M.; Synnott, Stephen P.

    1988-01-01

    The development of a family of techniques, collectively called C-smithing, for improving spacecraft nonimaging instrument pointing knowledge is discussed. C-smithing studies using data from the Voyager 2 Uranus Encounter show that significant improvements in pointing knowledge for nonimaging instruments can be achieved with these techniques. This improved pointing information can be used to regenerate instrument viewing geometry parameters for the encounter, which can then be made available to science investigators.

  18. Space Science

    NASA Image and Video Library

    2000-04-12

    The space vehicle Gravity Probe B (GP-B) is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein’s general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth’s rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. In this photograph, engineer Gary Reynolds is inspecting the inside of the probe neck during probe thermal repairs. GP-B is scheduled for launch in April 2004 and managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Leese, Gravity Probe B, Stanford University)

  19. Multispectral imaging probe

    DOEpatents

    Sandison, David R.; Platzbecker, Mark R.; Descour, Michael R.; Armour, David L.; Craig, Marcus J.; Richards-Kortum, Rebecca

    1999-01-01

    A multispectral imaging probe delivers a range of wavelengths of excitation light to a target and collects a range of expressed light wavelengths. The multispectral imaging probe is adapted for mobile use and use in confined spaces, and is sealed against the effects of hostile environments. The multispectral imaging probe comprises a housing that defines a sealed volume that is substantially sealed from the surrounding environment. A beam splitting device mounts within the sealed volume. Excitation light is directed to the beam splitting device, which directs the excitation light to a target. Expressed light from the target reaches the beam splitting device along a path coaxial with the path traveled by the excitation light from the beam splitting device to the target. The beam splitting device directs expressed light to a collection subsystem for delivery to a detector.

  20. Multispectral imaging probe

    DOEpatents

    Sandison, D.R.; Platzbecker, M.R.; Descour, M.R.; Armour, D.L.; Craig, M.J.; Richards-Kortum, R.

    1999-07-27

    A multispectral imaging probe delivers a range of wavelengths of excitation light to a target and collects a range of expressed light wavelengths. The multispectral imaging probe is adapted for mobile use and use in confined spaces, and is sealed against the effects of hostile environments. The multispectral imaging probe comprises a housing that defines a sealed volume that is substantially sealed from the surrounding environment. A beam splitting device mounts within the sealed volume. Excitation light is directed to the beam splitting device, which directs the excitation light to a target. Expressed light from the target reaches the beam splitting device along a path coaxial with the path traveled by the excitation light from the beam splitting device to the target. The beam splitting device directs expressed light to a collection subsystem for delivery to a detector. 8 figs.

  1. Voyager observations of solar wind proton temperature - 1-10 AU

    NASA Technical Reports Server (NTRS)

    Gazis, P. R.; Lazarus, A. J.

    1982-01-01

    Simultaneous measurements are made of the solar wind proton temperatures by the Voyager 1 and 2 spacecraft, far from earth, and the IMP 8 spacecraft in earth orbit. This technique permits a separation of radial and temporal variations of solar wind parameters. The average value of the proton temperature between 1 and 9 AU is observed to decrease as r (the heliocentric radius) to the -(0.7 + or - 0.2). This is slower than would be expected for adiabatic expansion. A detailed examination of the solar wind stream structure shows that considerable heating occurs at the interface between high and low speed streams.

  2. Probabilistic determination of probe locations from distance data

    PubMed Central

    Xu, Xiao-Ping; Slaughter, Brian D.; Volkmann, Niels

    2013-01-01

    Distance constraints, in principle, can be employed to determine information about the location of probes within a three-dimensional volume. Traditional methods for locating probes from distance constraints involve optimization of scoring functions that measure how well the probe location fits the distance data, exploring only a small subset of the scoring function landscape in the process. These methods are not guaranteed to find the global optimum and provide no means to relate the identified optimum to all other optima in scoring space. Here, we introduce a method for the location of probes from distance information that is based on probability calculus. This method allows exploration of the entire scoring space by directly combining probability functions representing the distance data and information about attachment sites. The approach is guaranteed to identify the global optimum and enables the derivation of confidence intervals for the probe location as well as statistical quantification of ambiguities. We apply the method to determine the location of a fluorescence probe using distances derived by FRET and show that the resulting location matches that independently derived by electron microscopy. PMID:23770585

  3. Voyager 2 in the Uranian system: Imaging science results

    USGS Publications Warehouse

    Smith, B.A.; Soderblom, L.A.; Beebe, R.; Bliss, D.; Boyce, J.M.; Brahic, A.; Briggs, G.A.; Brown, R.H.; Collins, S.A.; Cook, A.F.; Croft, S.K.; Cuzzi, J.N.; Danielson, G.E.; Davies, M.E.; Dowling, T.E.; Godfrey, D.; Hansen, C.J.; Harris, M. Camille; Hunt, G.E.; Ingersoll, A.P.; Johnson, T.V.; Krauss, R.J.; Masursky, H.; Morrison, D.; Owen, Timothy W.; Plescia, J.B.; Pollack, James B.; Porco, C.C.; Rages, K.; Sagan, C.; Shoemaker, E.M.; Sromovsky, L.A.; Stoker, C.; Strom, R.G.; Suomi, V.E.; Synnott, S.P.; Terrile, R.J.; Thomas, P.; Thompson, W.R.; Veverka, J.

    1986-01-01

    Voyager 2 images of the southern hemisphere of Uranus indicate that submicrometersize haze particles and particles of a methane condensation cloud produce faint patterns in the atmosphere. The alignment of the cloud bands is similar to that of bands on Jupiter and Saturn, but the zonal winds are nearly opposite. At mid-latitudes (-70?? to -27??), where winds were measured, the atmosphere rotates faster than the magnetic field; however, the rotation rate of the atmosphere decreases toward the equator, so that the two probably corotate at about -20??. Voyager images confirm the extremely low albedo of the ring particles. High phase angle images reveal on the order of 10 2 new ringlike features of very low optical depth and relatively high dust abundance interspersed within the main rings, as well as a broad, diffuse, low optical depth ring just inside the main ring system. Nine of the newly discovered small satellites (40 to 165 kilometers in diameter) orbit between the rings and Miranda; the tenth is within the ring system. Two of these small objects may gravitationally confine the ?? ring. Oberon and Umbriel have heavily cratered surfaces resembling the ancient cratered highlands of Earth's moon, although Umbriel is almost completely covered with uniform dark material, which perhaps indicates some ongoing process. Titania and Ariel show crater populations different from those on Oberon and Umbriel; these were probably generated by collisions with debris confined to their orbits. Titania and Ariel also show many extensional fault systems; Ariel shows strong evidence for the presence of extrusive material. About half of Miranda's surface is relatively bland, old, cratered terrain. The remainder comprises three large regions of younger terrain, each rectangular to ovoid in plan, that display complex sets of parallel and intersecting scarps and ridges as well as numerous outcrops of bright and dark materials, perhaps suggesting some exotic composition.

  4. Voss with docking probe in Service module

    NASA Image and Video Library

    2001-05-30

    ISS002-E-6478 (30 May 2001) --- James S. Voss, Expedition Two flight engineer, handles a spacecraft docking probe in the Service Module. The docking probe assists with the docking of the Soyuz and Progress vehicles to the International Space Station. The image was taken with a digital still camera.

  5. Jupiter's para-H2 distribution from SOFIA/FORCAST and Voyager/IRIS 17-37 μm spectroscopy

    NASA Astrophysics Data System (ADS)

    Fletcher, Leigh N.; de Pater, I.; Reach, W. T.; Wong, M.; Orton, G. S.; Irwin, P. G. J.; Gehrz, R. D.

    2017-04-01

    Spatially resolved maps of Jupiter's far-infrared 17-37 μm hydrogen-helium collision-induced spectrum were acquired by the FORCAST instrument on the Stratospheric Observatory for Infrared Astronomy (SOFIA) in May 2014. Spectral scans in two grisms covered the broad S(0) and S(1) absorption lines, in addition to contextual imaging in eight broad-band filters (5-37 μm) with spatial resolutions of 2-4″. The spectra were inverted to map the zonal-mean temperature and para-H2 distribution (fp, the fraction of the para spin isomer with respect to the ortho spin isomer) in Jupiter's upper troposphere (the 100-700 mbar range). We compared these to a reanalysis of Voyager-1 and -2 IRIS spectra covering the same spectral range. Tropospheric temperature contrasts match those identified by Voyager in 1979, within the limits of temporal variability consistent with previous investigations. Para-H2 increases from equator to pole, with low-fp air at the equator representing sub-equilibrium conditions (i.e., less para-H2 than expected from thermal equilibration), and high-fp air and possible super-equilibrium at higher latitudes. In particular, we confirm the continued presence of a region of high-fp air at high northern latitudes discovered by Voyager/IRIS, and an asymmetry with generally higher fp in the north than in the south. Far-IR aerosol opacity is not required to fit the data, but cannot be completely ruled out. We note that existing collision-induced absorption databases lack opacity from (H2)2 dimers, leading to under-prediction of the absorption near the S(0) and S(1) peaks. There appears to be no spatial correlation between para-H2 and tropospheric ammonia, phosphine and cloud opacity derived from Voyager/IRIS at mid-infrared wavelengths (7-15 μm). We note, however, that para-H2 tracks the similar latitudinal distribution of aerosols within Jupiter's upper tropospheric and stratospheric hazes observed in reflected sunlight, suggesting that catalysis of hydrogen

  6. Documentation for the machine-readable version of the lick Saturn-Voyager Reference Star Catalogue

    NASA Technical Reports Server (NTRS)

    Warren, W. H., Jr.

    1982-01-01

    The machine-readable version of the catalog is described. The catalog was prepared in order to determine accurate equatorial coordinates for reference stars in a band of sky against which cameras of the Voyager spacecraft were aligned for observations in the region of Saturn during the flyby. Tape contents and characteristics are described and a sample listing presented.

  7. Monitoring Physiological Variables with Membrane Probes

    NASA Technical Reports Server (NTRS)

    Janle, Elsa M.

    1997-01-01

    This project has demonstrated the possibility of using membrane probes in rodents to monitor physiological variables for extended periods of time. The utility of these probes in physiological studies of microgravity has been demonstrated. The feasibility of developing on-line sensors has also been demonstrated and allows for the possibility of developing real-time automated monitoring systems which can be used in ground-base physiological research as well as in research and medical monitoring in space. In addition to space applications these techniques can be extended to medical monitoring in critical care situations on earth as well as facilitating research in many human and animal diseases.

  8. Study of dust in the vicinity of Dione using the Voyager 1 plasma wave instrument

    NASA Technical Reports Server (NTRS)

    Tsintikidis, D.; Kurth, W. S.; Gurnett, D. A.; Barbosa, D. D.

    1995-01-01

    The flyby of Voyager 1 at Saturn yielded the detection of a large variety of plasma waves, for example, chorus, hiss, and electron cyclotron harmonics. Just before the outbound equator crossing, the Voyager 1 plasma wave instrument detected a strong, well-defined low-frequency enhancement in signal levels. Initially, it was thought that this enhancement was due to plasma waves, but more recently it was suggested that dust impacts might be at least partial contributors. In this report we present evidence that dust impacts are partly responsible for the low-frequency enhancement. A new method of analysis which relies mainly on the 16-channel spectrum analyzer has been used to derive the dust impact rate. The available wideband waveform observations (which have been used previously to study dust impacts) were useful for calibrating the impact rate from the spectrum analyzer data. The mass and hence size of the dust particles were also obtained by analyzing the response of the plasma wave spectrum and analyzer. The results show that the region sampled by Voyager 1 is populated by dust particles that have rms masses of up to a few times 10(exp -11) g and sizes of up to a few microns. The dust particle number density is of the order of 10(exp -3)/cu m. The optical depth of the region sampled by the spacecraft is approximately 10(exp -6). The particle population is centered at 2470 (+/- 150) km south of the equatorial plane and has a north-south FWHM (full-width, half-maximum) thickness of 4130 (+/- 450) km. The dust may be part of the E ring or a localized ringlet assoicated with Dione.

  9. Comparison of Metal-Backed Free-Space and Open-Ended Coaxial Probe Techniques for the Dielectric Characterization of Aeronautical Composites †

    PubMed Central

    López-Rodríguez, Patricia; Escot-Bocanegra, David; Poyatos-Martínez, David; Weinmann, Frank

    2016-01-01

    The trend in the last few decades is that current unmanned aerial vehicles are completely made of composite materials rather than metallic, such as carbon-fiber or fiberglass composites. From the electromagnetic point of view, this fact forces engineers and scientists to assess how these materials may affect their radar response or their electronics in terms of electromagnetic compatibility. In order to evaluate this, electromagnetic characterization of different composite materials has become a need. Several techniques exist to perform this characterization, all of them based on the utilization of different sensors for measuring different parameters. In this paper, an implementation of the metal-backed free-space technique, based on the employment of antenna probes, is utilized for the characterization of composite materials that belong to an actual drone. Their extracted properties are compared with those given by a commercial solution, an open-ended coaxial probe (OECP). The discrepancies found between both techniques along with a further evaluation of the methodologies, including measurements with a split-cavity resonator, conclude that the implemented free-space technique provides more reliable results for this kind of composites than the OECP technique. PMID:27347966

  10. A new look at the Saturn system: The Voyager 2 images

    USGS Publications Warehouse

    Smith, B.A.; Soderblom, L.; Batson, R.; Bridges, P.; Inge, J.; Masursky, H.; Shoemaker, E.; Beebe, R.; Boyce, J.; Briggs, G.; Bunker, A.; Collins, S.A.; Hansen, C.J.; Johnson, T.V.; Mitchell, J.L.; Terrile, R.J.; Cook, A.F.; Cuzzi, J.; Pollack, James B.; Danielson, G.E.; Ingersoll, A.P.; Davies, M.E.; Hunt, G.E.; Morrison, D.; Owen, Timothy W.; Sagan, C.; Veverka, J.; Strom, R.; Suomi, V.E.

    1982-01-01

    Voyager 2 photography has complemented that of Voyager 1 in revealing many additional characteristics of Saturn and its satellites and rings. Saturn's atmosphere contains persistent oval cloud features reminiscent of features on Jupiter. Smaller irregular features track out a pattern of zonal winds that is symmetric about Saturn's equator and appears to extend to great depth. Winds are predominantly eastward and reach 500 meters per second at the equator. Titan has several haze layers with significantly varying optical properties and a northern polar "collar" that is dark at short wavelengths. Several satellites have been photographed at substantially improved resolution. Enceladus' surface ranges from old, densely cratered terrain to relatively young, uncratered plains crossed by grooves and faults. Tethys has a crater 400 kilometers in diameter whose floor has domed to match Tethys' surface curvature and a deep trench that extends at least 270?? around Tethys' circumference. Hyperion is cratered and irregular in shape. Iapetus' bright, trailing hemisphere includes several dark-floored craters, and Phoebe has a very low albedo and rotates in the direction opposite to that of its orbital revolution with a period of 9 hours. Within Saturn's rings, the "birth" of a spoke has been observed, and surprising azimuthal and time variability is found in the ringlet structure of the outer B ring. These observations lead to speculations about Saturn's internal structure and about the collisional and thermal history of the rings and satellites. Copyright ?? 1982 AAAS.

  11. Ancient Voyaging and Polynesian Origins

    PubMed Central

    Soares, Pedro; Rito, Teresa; Trejaut, Jean; Mormina, Maru; Hill, Catherine; Tinkler-Hundal, Emma; Braid, Michelle; Clarke, Douglas J.; Loo, Jun-Hun; Thomson, Noel; Denham, Tim; Donohue, Mark; Macaulay, Vincent; Lin, Marie; Oppenheimer, Stephen; Richards, Martin B.

    2011-01-01

    The “Polynesian motif” defines a lineage of human mtDNA that is restricted to Austronesian-speaking populations and is almost fixed in Polynesians. It is widely thought to support a rapid dispersal of maternal lineages from Taiwan ∼4000 years ago (4 ka), but the chronological resolution of existing control-region data is poor, and an East Indonesian origin has also been proposed. By analyzing 157 complete mtDNA genomes, we show that the motif itself most likely originated >6 ka in the vicinity of the Bismarck Archipelago, and its immediate ancestor is >8 ka old and virtually restricted to Near Oceania. This indicates that Polynesian maternal lineages from Island Southeast Asia gained a foothold in Near Oceania much earlier than dispersal from either Taiwan or Indonesia 3–4 ka would predict. However, we find evidence in minor lineages for more recent two-way maternal gene flow between Island Southeast Asia and Near Oceania, likely reflecting movements along a “voyaging corridor” between them, as previously proposed on archaeological grounds. Small-scale mid-Holocene movements from Island Southeast Asia likely transmitted Austronesian languages to the long-established Southeast Asian colonies in the Bismarcks carrying the Polynesian motif, perhaps also providing the impetus for the expansion into Polynesia. PMID:21295281

  12. 76 FR 32323 - Limited Service Domestic Voyage Load Lines for River Barges on Lake Michigan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-06

    ...-AA17 Limited Service Domestic Voyage Load Lines for River Barges on Lake Michigan AGENCY: Coast Guard... for certain river barges operating on Lake Michigan, as established in the final rule published on... in the Federal Register (75 FR 70595) (2010 final rule) that finalized the special Lake Michigan load...

  13. Estimation of a genetically viable population for multigenerational interstellar voyaging: Review and data for project Hyperion

    NASA Astrophysics Data System (ADS)

    Smith, Cameron M.

    2014-04-01

    Designing interstellar starships for human migration to exoplanets requires establishing the starship population, which factors into many variables including closed-ecosystem design, architecture, mass and propulsion. I review the central issues of population genetics (effects of mutation, migration, selection and drift) for human populations on such voyages, specifically referencing a roughly 5-generation (c. 150-year) voyage currently in the realm of thought among Icarus Interstellar's Project Hyperion research group. I present several formulae as well as concrete numbers that can be used to help determine populations that could survive such journeys in good health. I find that previously proposed such populations, on the order of a few hundred individuals, are significantly too low to consider based on current understanding of vertebrate (including human) genetics and population dynamics. Population genetics theory, calculations and computer modeling determine that a properly screened and age- and sex-structured total founding population (Nc) of anywhere from roughly 14,000 to 44,000 people would be sufficient to survive such journeys in good health. A safe and well-considered Nc figure is 40,000, an Interstellar Migrant Population (IMP) composed of an Effective Population [Ne] of 23,400 reproductive males and females, the rest being pre- or post-reproductive individuals. This number would maintain good health over five generations despite (a) increased inbreeding resulting from a relatively small human population, (b) depressed genetic diversity due to the founder effect, (c) demographic change through time and (d) expectation of at least one severe population catastrophe over the 5-generation voyage.

  14. Macular Bioaccelerometers on Earth and in Space

    NASA Technical Reports Server (NTRS)

    Ross, M. D.; Cutler, L.; Meyer, G.; Vazin, P.; Lam, T.

    1991-01-01

    Space flight offers the opportunity to study linear bioaccelerometers (vestibular maculas) in the virtual absence of a primary stimulus, gravitational acceleration. Macular research in space is particularly important to NASA because the bioaccelerometers are proving to be weighted neural networks in which information is distributed for parallel processing. Neural networks are plastic and highly adaptive to new environments. Combined morphological-physiological studies of maculas fixed in space and following flight should reveal macular adaptive responses to microgravity, and their time-course. Ground-based research, already begun, using computer-assisted, 3-dimensional reconstruction of macular terminal fields will lead to development of computer models of functioning maculas. This research should continue in conjunction with physiological studies, including work with multichannel electrodes. The results of such a combined effort could usher in a new era in understanding vestibular function on Earth and in space. They can also provide a rational basis for counter-measures to space motion sickness, which may prove troublesome as space voyager encounter new gravitational fields on planets, or must re-adapt to 1 g upon return to earth.

  15. Probes, Moons, and Kinetic Plasma Wakes

    NASA Astrophysics Data System (ADS)

    Hutchinson, I. H.; Malaspina, D.; Zhou, C.

    2017-10-01

    Nonmagnetic objects as varied as probes in tokamaks or moons in space give rise to flowing plasma wakes in which strong distortions of the ion and electron velocity distributions cause electrostatic instabilities. Non-linear phenomena such as electron holes are then produced. Historic probe theory largely ignores the resulting unstable character of the wake, but since we can now simulate computationally the non-linear wake phenomena, a timely challenge is to reassess the influence of these instabilities both on probe measurements and on the wakes themselves. Because the electron instability wavelengths are very short (typically a few Debye-lengths), controlled laboratory experiments face serious challenges in diagnosing them. That is one reason why they have long been neglected as an influence in probe interpretation. Space-craft plasma observations, by contrast, easily obtain sub-Debye-length resolution, but have difficulty with larger-scale reconstruction of the plasma spatial variation. In addition to surveying our developing understanding of wakes in magnetized plasmas, ongoing analysis of Artemis data concerning electron holes observed in the solar-wind lunar wake will be featured. Work partially supported by NASA Grant NNX16AG82G.

  16. USRA's NCSEFSE: a new National Center for Space, Earth, and Flight Sciences Education

    NASA Astrophysics Data System (ADS)

    Livengood, T. A.; Goldstein, J.; Vanhala, H.; Hamel, J.; Miller, E. A.; Pulkkinen, K.; Richards, S.

    2005-08-01

    A new National Center for Space, Earth, and Flight Sciences Education (NCSEFSE) has been created in the Washington, DC metropolitan area under the auspices of the Universities Space Research Association. The NCSEFSE provides education and public outreach services in the areas of NASA's research foci in programs of both national and local scope. Present NCSEFSE programs include: Journey through the Universe, which unites formal and informal education within communities and connects a nationally-distributed network of communities from Hilo, HI to Washington, DC with volunteer Visiting Researchers and thematic education modules; the Voyage Scale Model Solar System exhibition on the National Mall, a showcase for planetary science placed directly outside the National Air and Space Museum; educational module development and distribution for the MESSENGER mission to Mercury through a national cadre of MESSENGER Educator Fellows; Teachable Moments in the News, which capitalizes on current events in space, Earth, and flight sciences to teach the science that underlies students' natural interests; the Voyages Across the Universe Speakers' Bureau; and Family Science Night at the National Air and Space Museum, which reaches audiences of 2000--3000 each year, drawn from the Washington metropolitan area. Staff scientists of NCSEFSE maintain active research programs, presently in the areas of planetary atmospheric composition, structure, and dynamics, and in solar system formation. NCSEFSE scientists thus are able to act as authentic representatives of frontier scientific research, and ensure accuracy, relevance, and significance in educational products. NCSEFSE instructional designers and educators ensure pedagogic clarity and effectiveness, through a commitment to quantitative assessment.

  17. Recent Science Highlights of the Van Allen Probes Mission

    NASA Astrophysics Data System (ADS)

    Ukhorskiy, Aleksandr

    2016-10-01

    The morning of 30 August 2012 saw an Atlas 5 rocket launch NASA's second Living With a Star spacecraft mission, the twin Radiation Belt Storm Probes, into an elliptic orbit cutting through Earth's radiation belts. Renamed the Van Allen Probes soon after launch, the Probes are designed to determine how the highly variable populations of high-energy charged particles within the radiation belts, dangerous to astronauts and satellites, are created, respond to solar variations, and evolve in space environments. The Van Allen Probes mission extends beyond the practical considerations of the hazard's of Earth's space environment. Twentieth century observations of space and astrophysical systems throughout the solar system and out into the observable universe have shown that the processes that generate intense particle radiation within magnetized environments such as Earth's are universal. During its mission the Van Allen Probes verified and quantified previously suggested energization processes, discovered new energization mechanisms, revealed the critical importance of dynamic plasma injections into the innermost magnetosphere, and used uniquely capable instruments to reveal inner radiation belt features that were all but invisible to previous sensors. This paper gives a brief overview of the mission, presents some recent science highlights, and discusses plans for the extended mission.

  18. The Heliosphere in Space

    NASA Astrophysics Data System (ADS)

    Frisch, P. C.; Hanson, A. J.; Fu, P. C.

    2008-12-01

    A scientifically accurate visualization of the Journey of the Sun through deep space has been created in order to share the excitement of heliospheric physics and scientific discovery with the non-expert. The MHD heliosphere model of Linde (1998) displays the interaction of the solar wind with the interstellar medium for a supersonic heliosphere traveling through a low density magnetized interstellar medium. The camera viewpoint follows the solar motion through a virtual space of the Milky Way Galaxy. This space is constructed from real data placed in the three-dimensional solar neighborhood, and populated with Hipparcos stars in front of a precisely aligned image of the Milky Way itself. The celestial audio track of this three minute movie includes the music of the heliosphere, heard by the two Voyager satellites as 3 kHz emissions from the edge of the heliosphere. This short heliosphere visualization can be downloaded from http://www.cs.indiana.edu/~soljourn/pub/AstroBioScene7Sound.mov, and the full scientific data visualization of the Solar Journey is available commercially.

  19. Magnetopause surface fluctuations observed by Voyager 1

    NASA Technical Reports Server (NTRS)

    Lepping, R. P.; Burlaga, L. F.

    1979-01-01

    Moving out of the dawnside of the earth's magnetosphere, Voyager 1 crossed the magnetopause apparently seven times, despite the high spacecraft speed of 11 km/sec. Normals to the magnetopause and their associated error cones were estimated for each of the crossings using a minimum variance analysis of the internal magnetic field. The oscillating nature of the ecliptic plane component of these normals indicates that most of the multiple crossings were due to a wave-like surface disturbance moving tailward along the magnetopause. The wave, which was aperiodic, was modeled as a sequence of sine waves. The amplitude, wavelength, and speed were determined for two pairs of intervals from the measured slopes, occurrence times, and relative positions of six magnetopause crossings. The magnetopause thickness was estimated to lie in the range 300 to 700 km with higher values possible. The estimated amplitude of these waves was obviously small compared to their wavelengths.

  20. ChemVoyage: A Web-Based, Simulated Learning Environment with Scaffolding and Linking Visualization to Conceptualization

    ERIC Educational Resources Information Center

    McRae, Christopher; Karuso, Peter; Liu, Fei

    2012-01-01

    The Web is now a standard tool for information access and dissemination in higher education. The prospect of Web-based, simulated learning platforms and technologies, however, remains underexplored. We have developed a Web-based tutorial program (ChemVoyage) for a third-year organic chemistry class on the topic of pericyclic reactions to…