Virtual Reality: Real Promises and False Expectations.
ERIC Educational Resources Information Center
Homan, Willem J.
1994-01-01
Examines virtual reality (VR), and discusses the dilemma of defining VR, the limitations of the current technology, and the implications of VR for education. Highlights include a VR experience; human factors and the interface; and altered reality versus VR. (Author/AEF)
Virtual reality and hallucination: a technoetic perspective
NASA Astrophysics Data System (ADS)
Slattery, Diana R.
2008-02-01
Virtual Reality (VR), especially in a technologically focused discourse, is defined by a class of hardware and software, among them head-mounted displays (HMDs), navigation and pointing devices; and stereoscopic imaging. This presentation examines the experiential aspect of VR. Putting "virtual" in front of "reality" modifies the ontological status of a class of experience-that of "reality." Reality has also been modified [by artists, new media theorists, technologists and philosophers] as augmented, mixed, simulated, artificial, layered, and enhanced. Modifications of reality are closely tied to modifications of perception. Media theorist Roy Ascott creates a model of three "VR's": Verifiable Reality, Virtual Reality, and Vegetal (entheogenically induced) Reality. The ways in which we shift our perceptual assumptions, create and verify illusions, and enter "the willing suspension of disbelief" that allows us entry into imaginal worlds is central to the experience of VR worlds, whether those worlds are explicitly representational (robotic manipulations by VR) or explicitly imaginal (VR artistic creations). The early rhetoric surrounding VR was interwoven with psychedelics, a perception amplified by Timothy Leary's presence on the historic SIGGRAPH panel, and the Wall Street Journal's tag of VR as "electronic LSD." This paper discusses the connections-philosophical, social-historical, and psychological-perceptual between these two domains.
Virtual Reality and Engineering Education.
ERIC Educational Resources Information Center
Pantelidis, Veronica S.
1997-01-01
Virtual Reality (VR) offers benefits to engineering education. This article defines VR and describes types; outlines reasons for using VR in engineering education; provides guidelines for using VR; presents a model for determining when to use VR; discusses VR applications; and describes hardware and software needed for a low-budget VR and…
Proof-of-Concept Part Task Trainer for Close Air Support Procedures
2016-06-01
TVDL Tactical Video Down Link VE Virtual Environment VR Virtual Reality WTI Weapons and Tactics Instructor xvii ACKNOWLEDGMENTS I would first...in training of USMC pilots for close air support operations? • What is the feasibility of developing a prototype virtual reality (VR) system that...Chapter IV provides a review of virtual reality (VR)/ virtual environment (VE) and part-task trainers currently used in military training
Tal, Aner; Wansink, Brian
2011-01-01
Virtual reality (VR) provides a potentially powerful tool for researchers seeking to investigate eating and physical activity. Some unique conditions are necessary to ensure that the psychological processes that influence real eating behavior also influence behavior in VR environments. Accounting for these conditions is critical if VR-assisted research is to accurately reflect real-world situations. The current work discusses key considerations VR researchers must take into account to ensure similar psychological functioning in virtual and actual reality and does so by focusing on the process of spontaneous mental simulation. Spontaneous mental simulation is prevalent under real-world conditions but may be absent under VR conditions, potentially leading to differences in judgment and behavior between virtual and actual reality. For simulation to occur, the virtual environment must be perceived as being available for action. A useful chart is supplied as a reference to help researchers to investigate eating and physical activity more effectively. PMID:21527088
Tal, Aner; Wansink, Brian
2011-03-01
Virtual reality (VR) provides a potentially powerful tool for researchers seeking to investigate eating and physical activity. Some unique conditions are necessary to ensure that the psychological processes that influence real eating behavior also influence behavior in VR environments. Accounting for these conditions is critical if VR-assisted research is to accurately reflect real-world situations. The current work discusses key considerations VR researchers must take into account to ensure similar psychological functioning in virtual and actual reality and does so by focusing on the process of spontaneous mental simulation. Spontaneous mental simulation is prevalent under real-world conditions but may be absent under VR conditions, potentially leading to differences in judgment and behavior between virtual and actual reality. For simulation to occur, the virtual environment must be perceived as being available for action. A useful chart is supplied as a reference to help researchers to investigate eating and physical activity more effectively. © 2011 Diabetes Technology Society.
AR Feels "Softer" than VR: Haptic Perception of Stiffness in Augmented versus Virtual Reality.
Gaffary, Yoren; Le Gouis, Benoit; Marchal, Maud; Argelaguet, Ferran; Arnaldi, Bruno; Lecuyer, Anatole
2017-11-01
Does it feel the same when you touch an object in Augmented Reality (AR) or in Virtual Reality (VR)? In this paper we study and compare the haptic perception of stiffness of a virtual object in two situations: (1) a purely virtual environment versus (2) a real and augmented environment. We have designed an experimental setup based on a Microsoft HoloLens and a haptic force-feedback device, enabling to press a virtual piston, and compare its stiffness successively in either Augmented Reality (the virtual piston is surrounded by several real objects all located inside a cardboard box) or in Virtual Reality (the same virtual piston is displayed in a fully virtual scene composed of the same other objects). We have conducted a psychophysical experiment with 12 participants. Our results show a surprising bias in perception between the two conditions. The virtual piston is on average perceived stiffer in the VR condition compared to the AR condition. For instance, when the piston had the same stiffness in AR and VR, participants would select the VR piston as the stiffer one in 60% of cases. This suggests a psychological effect as if objects in AR would feel "softer" than in pure VR. Taken together, our results open new perspectives on perception in AR versus VR, and pave the way to future studies aiming at characterizing potential perceptual biases.
Virtual Reality: Ready or Not!
ERIC Educational Resources Information Center
Lewis, Joan E.
1994-01-01
Describes the development and current status of virtual reality (VR) and VR research. Market potentials for VR are discussed, including the entertainment industry, health care and medical training, flight and other simulators, and educational possibilities. A glossary of VR-related terms is included. (LRW)
Virtual Reality: A Dream Come True or a Nightmare.
ERIC Educational Resources Information Center
Cornell, Richard; Bailey, Dan
Virtual Reality (VR) is a new medium which allows total stimulation of one's senses through human/computer interfaces. VR has applications in training simulators, nano-science, medicine, entertainment, electronic technology, and manufacturing. This paper focuses on some current and potential problems of virtual reality and virtual environments…
Telemedicine, virtual reality, and surgery
NASA Technical Reports Server (NTRS)
Mccormack, Percival D.; Charles, Steve
1994-01-01
Two types of synthetic experience are covered: virtual reality (VR) and surgery, and telemedicine. The topics are presented in viewgraph form and include the following: geometric models; physiological sensors; surgical applications; virtual cadaver; VR surgical simulation; telesurgery; VR Surgical Trainer; abdominal surgery pilot study; advanced abdominal simulator; examples of telemedicine; and telemedicine spacebridge.
Virtual reality and exercise: behavioral and psychological effects of visual feedback.
Mestre, Daniel R; Ewald, Marine; Maiano, Christophe
2011-01-01
We herein report an experimental study examining the potential positive effects of Virtual Reality (VR) feedback during an indoor bicycling exercise. Using a regular bike coupled to a VR system, we compared conditions of no VR feedback, VR feedback and VR feedback with the presence of a virtual coach, acting as a pacer. In VR feedback conditions, we observed a decreased level of perceived exertion and an increased level of enjoyment of physical activity, when compared to a regular exercise situation (no VR feedback). We also observed a shift in the subjects' attentional focus, from association (in the absence of VR feedback) to dissociation (in VR feedback conditions). Moreover, the presence of a virtual coach in the VR environment triggered a systematic regulation of the (virtual) displacement speed, whose relationship with perceived enjoyment and exertion require further work.
Technology and medicine: the evolution of virtual reality simulation in laparoscopic training.
Bashir, Gareth
2010-01-01
Virtual reality (VR) simulation for laparoscopic surgical training is now a reality. There is increasing evidence that the use of VR simulation is a powerful adjunct to traditional surgical apprenticeship in the current climate of reduced time spent in training. This article reviews the early evidence supporting the case for VR simulation training in laparoscopic surgery. A standard literature search was conducted using the following phrases--'virtual reality in surgical training', 'surgical training', 'laparoscopic training' and 'simulation in surgical training'. This article outlines the early evidence which supports the use of VR simulation in laparoscopic training and the need for further research into this new training technique.
Virtual Reality and Augmented Reality in Plastic Surgery: A Review.
Kim, Youngjun; Kim, Hannah; Kim, Yong Oock
2017-05-01
Recently, virtual reality (VR) and augmented reality (AR) have received increasing attention, with the development of VR/AR devices such as head-mounted displays, haptic devices, and AR glasses. Medicine is considered to be one of the most effective applications of VR/AR. In this article, we describe a systematic literature review conducted to investigate the state-of-the-art VR/AR technology relevant to plastic surgery. The 35 studies that were ultimately selected were categorized into 3 representative topics: VR/AR-based preoperative planning, navigation, and training. In addition, future trends of VR/AR technology associated with plastic surgery and related fields are discussed.
Virtual Reality and Augmented Reality in Plastic Surgery: A Review
Kim, Youngjun; Kim, Hannah
2017-01-01
Recently, virtual reality (VR) and augmented reality (AR) have received increasing attention, with the development of VR/AR devices such as head-mounted displays, haptic devices, and AR glasses. Medicine is considered to be one of the most effective applications of VR/AR. In this article, we describe a systematic literature review conducted to investigate the state-of-the-art VR/AR technology relevant to plastic surgery. The 35 studies that were ultimately selected were categorized into 3 representative topics: VR/AR-based preoperative planning, navigation, and training. In addition, future trends of VR/AR technology associated with plastic surgery and related fields are discussed. PMID:28573091
ERIC Educational Resources Information Center
Miller, Carmen
1992-01-01
The first of two articles discusses virtual reality (VR) and online databases; the second one reports on an interview with Thomas A. Furness III, who defines VR and explains work at the Human Interface Technology Laboratory (HIT). Sidebars contain a glossary of VR terms and a conversation with Toni Emerson, the HIT lab's librarian. (LRW)
Virtual Reality Job Interview Training in Adults with Autism Spectrum Disorder
ERIC Educational Resources Information Center
Smith, Matthew J.; Ginger, Emily J.; Wright, Katherine; Wright, Michael A.; Taylor, Julie Lounds; Humm, Laura Boteler; Olsen, Dale E.; Bell, Morris D.; Fleming, Michael F.
2014-01-01
The feasibility and efficacy of virtual reality job interview training (VR-JIT) was assessed in a single-blinded randomized controlled trial. Adults with autism spectrum disorder were randomized to VR-JIT (n = 16) or treatment-as-usual (TAU) (n = 10) groups. VR-JIT consisted of simulated job interviews with a virtual character and didactic…
Introduction to Virtual Reality in Education
ERIC Educational Resources Information Center
Dede, Chris
2009-01-01
As an emerging technology for learning, virtual reality (VR) dates back four decades, to early work by Ivan Sutherland in the late 1960s. At long last, interactive media are emerging that offer the promise of VR in everyday settings. Quasi-VR already is commonplace in 2-1/2-D virtual environments like Second Life and in massively multiplayer…
Sustained efficacy of virtual reality distraction.
Rutter, Charles E; Dahlquist, Lynnda M; Weiss, Karen E
2009-04-01
The current study tested whether the effectiveness of distraction using virtual reality (VR) technology in reducing cold pressor pain would maintain over the course of 8 weekly exposures. Twenty-eight adults, 18 to 23 years of age, underwent 1 baseline cold pressor trial and 1 VR distraction trial in randomized order each week. VR distraction led to significant increases in pain threshold and pain tolerance and significant decreases in pain intensity, time spent thinking about pain, and self-reported anxiety, relative to baseline. Repeated exposure did not appear to affect the benefits of VR. Implications for the long-term use of VR distraction as a nonpharmacological analgesic are discussed. This article addresses the concern that the efficacy of virtual reality-assisted distraction from pain could potentially decrease with repeated exposure. The current finding that efficacy did not diminish over several repeated exposures provides support for the use of virtual reality as an adjuvant treatment of pain.
Virtual reality helmet display quality influences the magnitude of virtual reality analgesia.
Hoffman, Hunter G; Seibel, Eric J; Richards, Todd L; Furness, Thomas A; Patterson, David R; Sharar, Sam R
2006-11-01
Immersive Virtual Reality (VR) distraction can be used in addition to traditional opioids to reduce procedural pain. The current study explored whether a High-Tech-VR helmet (ie, a 60-degree field-of-view head-mounted display) reduces pain more effectively than a Low-Tech-VR helmet (a 35-degree field-of-view head-mounted display). Using a double-blind between-groups design, 77 healthy volunteers (no patients) aged 18-23 were randomly assigned to 1 of 3 groups. Each subject received a brief baseline thermal pain stimulus, and the same stimulus again minutes later while in SnowWorld using a Low-Tech-VR helmet (Group 1), using a High-Tech-VR helmet (Group 2), or receiving no distraction (Group 3, control group). Each participant provided subjective 0-10 ratings of cognitive, sensory, and affective components of pain, and amount of fun during the pain stimulus. Compared to the Low-Tech-VR helmet group, subjects in the High-Tech-VR helmet group reported 34% more reduction in worst pain (P < .05), 46% more reduction in pain unpleasantness (P = .001), 29% more reduction in "time spent thinking about pain" (P < .05), and 32% more fun during the pain stimulus in VR (P < .05). Only 29% of participants in the Low-Tech helmet group, as opposed to 65% of participants in the High-Tech-VR helmet group, showed a clinically significant reduction in pain intensity during virtual reality. These results highlight the importance of using an appropriately designed VR helmet to achieve effective VR analgesia (see ). Pain during medical procedures (eg, burn wound care) is often excessive. Adjunctive virtual reality distraction can substantially reduce procedural pain. The results of the present study show that a higher quality VR helmet was more effective at reducing pain than a lower quality VR helmet.
Psychology Student Opinion of Virtual Reality as a Tool to Educate about Schizophrenia
ERIC Educational Resources Information Center
Tichon, Jennifer; Loh, Jennifer; King, Robert
2004-01-01
Virtual Reality (VR) techniques are increasingly being used in e-health education, training and in trial clinical programs in the treatment of certain types of mental illness. Undergraduate psychology student opinion of the use of Virtual Reality (VR) to teach them about schizophrenia at the University of Queensland, was determined with reference…
The Effects of Virtual Reality Learning Environment on Student Cognitive and Linguistic Development
ERIC Educational Resources Information Center
Chen, Yu-Li
2016-01-01
Virtual reality (VR) has brought about numerous alternative learning opportunities in the last decade, and with modern products such as Oculus Rift and other wearable Virtual Reality technologies being introduced into society, VR will promisingly continue to provide yet unseen opportunities in the next few decades and therefore is a technology…
Virtual Reality for Training and Lifelong Learning
ERIC Educational Resources Information Center
Mellet-d'Huart, Daniel
2009-01-01
This article covers the application of virtual reality (VR) to training and lifelong learning. A number of considerations concerning the design of VR applications are included. The introduction is dedicated to the more general aspects of applying VR to training. From multiple perspectives, we will provide an overview of existing applications with…
Virtual Reality Training Environments: Contexts and Concerns.
ERIC Educational Resources Information Center
Harmon, Stephen W.; Kenney, Patrick J.
1994-01-01
Discusses the contexts where virtual reality (VR) training environments might be appropriate; examines the advantages and disadvantages of VR as a training technology; and presents a case study of a VR training environment used at the NASA Johnson Space Center in preparation for the repair of the Hubble Space Telescope. (AEF)
ERIC Educational Resources Information Center
Schatz, Curt; Schaefer, Susan
1997-01-01
A finding that environmental educators are eager to accept Virtual Reality (VR) as a teaching tool prompts two responses: one claims that students cannot critically analyze VR information to determine what is relevant because the VR programmer has already done that; the other points out that corporate propaganda taints the technology and that…
Leveraging Virtual Reality for the Benefit of Lunar Exploration
NASA Astrophysics Data System (ADS)
McCandless, R. S.; Burke, E. D.; McGinley, V. T.
2017-10-01
Virtual reality (VR) and related technologies will assist scientists with lunar exploration and public engagement. We will present the future exponential impact of VR on lunar activities over the coming decades.
Assessment of individual hand performance in box trainers compared to virtual reality trainers.
Madan, Atul K; Frantzides, Constantine T; Shervin, Nina; Tebbit, Christopher L
2003-12-01
Training residents in laparoscopic skills is ideally initiated in an inanimate laboratory with both box trainers and virtual reality trainers. Virtual reality trainers have the ability to score individual hand performance although they are expensive. Here we compared the ability to assess dominant and nondominant hand performance in box trainers with virtual reality trainers. Medical students without laparoscopic experience were utilized in this study (n = 16). Each student performed tasks on the LTS 2000, an inanimate box trainer (placing pegs with both hands and transferring pegs from one hand to another), as well as a task on the MIST-VR, a virtual reality trainer (grasping a virtual object and placing it in a virtual receptable with alternating hands). A surgeon scored students for the inanimate box trainer exercises (time and errors) while the MIST-VR scored students (time, economy of movements, and errors for each hand). Statistical analysis included Pearson correlations. Errors and time for the one-handed tasks on the box trainer did not correlate with errors, time, or economy measured for each hand by the MIST-VR (r = 0.01 to 0.30; P = NS). Total errors on the virtual reality trainer did correlate with errors on transferring pege (r = 0.61; P < 0.05). Economy and time of both dominant and nondominant hand from the MIST-VR correlated with time of transferring pegs in the box trainer (r = 0.53 to 0.77; P < 0.05). While individual hand assessment by the box trainer during 2-handed tasks was related to assessment by the virtual reality trainer, individual hand assessment during 1-handed tasks did not correlate with the virtual reality trainer. Virtual reality trainers, such as the MIST-VR, allow assessment of individual hand skills which may lead to improved laparoscopic skill acquisition. It is difficult to assess individual hand performance with box trainers alone.
Virtual Reality: A New Learning Environment.
ERIC Educational Resources Information Center
Ferrington, Gary; Loge, Kenneth
1992-01-01
Discusses virtual reality (VR) technology and its possible uses in military training, medical education, industrial design and development, the media industry, and education. Three primary applications of VR in the learning process--visualization, simulation, and construction of virtual worlds--are described, and pedagogical and moral issues are…
Using Virtual Reality To Bring Your Instruction to Life.
ERIC Educational Resources Information Center
Gaddis, Tony
Prepared by the manager of a virtual reality (VR) laboratory at North Carolina's Haywood Community College, the three papers collected in this document are designed to help instructors incorporate VR into their classes. The first paper reviews the characteristics of VR, defining it as a computer-generated simulation of a three-dimensional…
Virtual Reality: An Experiential Tool for Clinical Psychology
ERIC Educational Resources Information Center
Riva, Giuseppe
2009-01-01
Several Virtual Reality (VR) applications for the understanding, assessment and treatment of mental health problems have been developed in the last 15 years. Typically, in VR the patient learns to manipulate problematic situations related to his/her problem. In fact, VR can be described as an advanced form of human-computer interface that is able…
Utilising Virtual Reality in Alcohol Studies: A Systematic Review
ERIC Educational Resources Information Center
Durl, James; Dietrich, Timo; Pang, Bo; Potter, Leigh-Ellen; Carter, Lewis
2018-01-01
Background: The resurgence of interest in virtual reality (VR) in recent years has been exciting for health educators and researchers, yet little is known about VR's effectiveness. This systematic literature review aims to provide an overview of the prevalence of VR in alcohol studies and assess its effectiveness. Methods: Peer-reviewed articles…
Enhancing an Instructional Design Model for Virtual Reality-Based Learning
ERIC Educational Resources Information Center
Chen, Chwen Jen; Teh, Chee Siong
2013-01-01
In order to effectively utilize the capabilities of virtual reality (VR) in supporting the desired learning outcomes, careful consideration in the design of instruction for VR learning is crucial. In line with this concern, previous work proposed an instructional design model that prescribes instructional methods to guide the design of VR-based…
The Potential Role of Virtual Reality in Environmental Education.
ERIC Educational Resources Information Center
Taylor, Gregory L.; Disinger, John F.
1997-01-01
Investigates the acceptability and possible role of virtual reality (VR) in environmental education. Among the principal findings were that the sample population of environmental educators indicated an acceptance of VR as a teaching tool. VR applications that allow students to have an experience not available in the physical world were perceived…
Are Learning Styles Relevant to Virtual Reality?
ERIC Educational Resources Information Center
Chen, Chwen Jen; Toh, Seong Chong; Ismail, Wan Mohd Fauzy Wan
2005-01-01
This study aims to investigate the effects of a virtual reality (VR)-based learning environment on learners with different learning styles. The findings of the aptitude-by-treatment interaction study have shown that learners benefit most from the VR (guided exploration) mode, irrespective of their learning styles. This shows that the VR-based…
Immersive Training Systems: Virtual Reality and Education and Training.
ERIC Educational Resources Information Center
Psotka, Joseph
1995-01-01
Describes virtual reality (VR) technology and VR research on education and training. Focuses on immersion as the key added value of VR, analyzes cognitive variables connected to immersion, how it is generated in synthetic environments and its benefits. Discusses value of tracked, immersive visual displays over nonimmersive simulations. Contains 78…
ERIC Educational Resources Information Center
Gavish, Nirit; Gutiérrez, Teresa; Webel, Sabine; Rodríguez, Jorge; Peveri, Matteo; Bockholt, Uli; Tecchia, Franco
2015-01-01
The current study evaluated the use of virtual reality (VR) and augmented reality (AR) platforms, developed within the scope of the SKILLS Integrated Project, for industrial maintenance and assembly (IMA) tasks training. VR and AR systems are now widely regarded as promising training platforms for complex and highly demanding IMA tasks. However,…
Optoelectronics technologies for Virtual Reality systems
NASA Astrophysics Data System (ADS)
Piszczek, Marek; Maciejewski, Marcin; Pomianek, Mateusz; Szustakowski, Mieczysław
2017-08-01
Solutions in the field of virtual reality are very strongly associated with optoelectronic technologies. This applies to both process design and operation of VR applications. Technologies such as 360 cameras and 3D scanners significantly improve the design work. What is more, HMD displays with high field of view or optoelectronic Motion Capture systems and 3D cameras guarantee an extraordinary experience in immersive VR applications. This article reviews selected technologies from the perspective of their use in a broadly defined process of creating and implementing solutions for virtual reality. There is also the ability to create, modify and adapt new approaches that show team own work (SteamVR tracker). Most of the introduced examples are effectively used by authors to create different VR applications. The use of optoelectronic technology in virtual reality is presented in terms of design and operation of the system as well as referring to specific applications. Designers and users of VR systems should take a close look on new optoelectronics solutions, as they can significantly contribute to increased work efficiency and offer completely new opportunities for virtual world reception.
ViRPET--combination of virtual reality and PET brain imaging
Majewski, Stanislaw; Brefczynski-Lewis, Julie
2017-05-23
Various methods, systems and apparatus are provided for brain imaging during virtual reality stimulation. In one example, among others, a system for virtual ambulatory environment brain imaging includes a mobile brain imager configured to obtain positron emission tomography (PET) scans of a subject in motion, and a virtual reality (VR) system configured to provide one or more stimuli to the subject during the PET scans. In another example, a method for virtual ambulatory environment brain imaging includes providing stimulation to a subject through a virtual reality (VR) system; and obtaining a positron emission tomography (PET) scan of the subject while moving in response to the stimulation from the VR system. The mobile brain imager can be positioned on the subject with an array of imaging photodetector modules distributed about the head of the subject.
The effectiveness of virtual reality distraction for pain reduction: a systematic review.
Malloy, Kevin M; Milling, Leonard S
2010-12-01
Virtual reality technology enables people to become immersed in a computer-simulated, three-dimensional environment. This article provides a comprehensive review of controlled research on the effectiveness of virtual reality (VR) distraction for reducing pain. To be included in the review, studies were required to use a between-subjects or mixed model design in which VR distraction was compared with a control condition or an alternative intervention in relieving pain. An exhaustive search identified 11 studies satisfying these criteria. VR distraction was shown to be effective for reducing experimental pain, as well as the discomfort associated with burn injury care. Studies of needle-related pain provided less consistent findings. Use of more sophisticated virtual reality technology capable of fully immersing the individual in a virtual environment was associated with greater relief. Overall, controlled research suggests that VR distraction may be a useful tool for clinicians who work with a variety of pain problems. Copyright © 2010 Elsevier Ltd. All rights reserved.
Assessing Google Cardboard Virtual Reality as a Content Delivery System in Business Classrooms
ERIC Educational Resources Information Center
Lee, Seung Hwan; Sergueeva, Ksenia; Catangui, Mathew; Kandaurova, Maria
2017-01-01
In the past, researchers have explored virtual reality (VR) as an educational tool primarily for training or therapeutic purposes. In this research, the authors examine the potential for using Google Cardboard VR in business classrooms as a content delivery platform. They specifically investigate how VR (viewing a 3-dimensional, 360° video)…
Improving Weight Maintenance Using Virtual Reality (Second Life)
ERIC Educational Resources Information Center
Sullivan, Debra K.; Goetz, Jeannine R.; Gibson, Cheryl A.; Washburn, Richard A.; Smith, Bryan K.; Lee, Jaehoon; Gerald, Stephanie; Fincham, Tennille; Donnelly, Joseph E.
2013-01-01
Objective: Compare weight loss and maintenance between a face-to-face (FTF) weight management clinic and a clinic delivered via virtual reality (VR). Methods: Participants were randomized to 3 months of weight loss with a weekly clinic delivered via FTF or VR and then 6 months' weight maintenance delivered with VR. Data were collected at baseline…
Design and Development of Virtual Reality: Analysis of Challenges Faced by Educators
ERIC Educational Resources Information Center
Hanson, Kami; Shelton, Brett E.
2008-01-01
There exists an increasingly attractive lure of using virtual reality applications for teaching in all areas of education, but perhaps the largest detriment to its use is the intimidating nature of VR technology for non-technical instructors. What are the challenges to using VR technology for the design and development of VR-based instructional…
[Use of virtual reality in forensic psychiatry. A new paradigm?].
Fromberger, P; Jordan, K; Müller, J L
2014-03-01
For more than 20 years virtual realities (VR) have been successfully used in the assessment and treatment of psychiatric disorders. The most important advantages of VR are the high ecological validity of virtual environments, the entire controllability of virtual stimuli in the virtual environment and the capability to induce the sensation of being in the virtual environment instead of the physical environment. VRs provide the opportunity to face the user with stimuli and situations which are not available or too risky in reality. Despite these advantages VR-based applications have not yet been applied in forensic psychiatry. On the basis of an overview of the recent state-of-the-art in VR-based applications in general psychiatry, the article demonstrates the advantages and possibilities of VR-based applications in forensic psychiatry. Up to now only preliminary studies regarding the VR-based assessment of pedophilic interests exist. These studies demonstrate the potential of ecologically valid VR-based applications for the assessment of forensically relevant disorders. One of the most important advantages is the possibility of VR to assess the behavior of forensic inpatients in crime-related situations without endangering others. This provides completely new possibilities not only regarding the assessment but also for the treatment of forensic inpatients. Before utilizing these possibilities in the clinical practice exhaustive research and development will be necessary. Given the high potential of VR-based applications, this effort would be worth it.
Truck driver fatigue assessment using a virtual reality system.
DOT National Transportation Integrated Search
2016-10-17
In this study, a fully immersive Virtual Reality (VR) based driving simulator was developed to serve : as a proof-of-concept that VR can be utilized to assess the level of fatigue (or drowsiness) truck : drivers typically experience during real...
ERIC Educational Resources Information Center
Newby, Gregory B.
1993-01-01
Discusses the current state of the art in virtual reality (VR), its historical background, and future possibilities. Highlights include applications in medicine, art and entertainment, science, business, and telerobotics; and VR for information science, including graphical display of bibliographic data, libraries and books, and cyberspace.…
Evaluating the Effects of Immersive Embodied Interaction on Cognition in Virtual Reality
NASA Astrophysics Data System (ADS)
Parmar, Dhaval
Virtual reality is on its advent of becoming mainstream household technology, as technologies such as head-mounted displays, trackers, and interaction devices are becoming affordable and easily available. Virtual reality (VR) has immense potential in enhancing the fields of education and training, and its power can be used to spark interest and enthusiasm among learners. It is, therefore, imperative to evaluate the risks and benefits that immersive virtual reality poses to the field of education. Research suggests that learning is an embodied process. Learning depends on grounded aspects of the body including action, perception, and interactions with the environment. This research aims to study if immersive embodiment through the means of virtual reality facilitates embodied cognition. A pedagogical VR solution which takes advantage of embodied cognition can lead to enhanced learning benefits. Towards achieving this goal, this research presents a linear continuum for immersive embodied interaction within virtual reality. This research evaluates the effects of three levels of immersive embodied interactions on cognitive thinking, presence, usability, and satisfaction among users in the fields of science, technology, engineering, and mathematics (STEM) education. Results from the presented experiments show that immersive virtual reality is greatly effective in knowledge acquisition and retention, and highly enhances user satisfaction, interest and enthusiasm. Users experience high levels of presence and are profoundly engaged in the learning activities within the immersive virtual environments. The studies presented in this research evaluate pedagogical VR software to train and motivate students in STEM education, and provide an empirical analysis comparing desktop VR (DVR), immersive VR (IVR), and immersive embodied VR (IEVR) conditions for learning. This research also proposes a fully immersive embodied interaction metaphor (IEIVR) for learning of computational concepts as a future direction, and presents the challenges faced in implementing the IEIVR metaphor due to extended periods of immersion. Results from the conducted studies help in formulating guidelines for virtual reality and education researchers working in STEM education and training, and for educators and curriculum developers seeking to improve student engagement in the STEM fields.
The Impact of Virtual Reality on Chronic Pain.
Jones, Ted; Moore, Todd; Choo, James
2016-01-01
The treatment of chronic pain could benefit from additional non-opioid interventions. Virtual reality (VR) has been shown to be effective in decreasing pain for procedural or acute pain but to date there have been few studies on its use in chronic pain. The present study was an investigation of the impact of a virtual reality application for chronic pain. Thirty (30) participants with various chronic pain conditions were offered a five-minute session using a virtual reality application called Cool! Participants were asked about their pain using a 0-10 visual analog scale rating before the VR session, during the session and immediately after the session. They were also asked about immersion into the VR world and about possible side effects. Pain was reduced from pre-session to post-session by 33%. Pain was reduced from pre-session during the VR session by 60%. These changes were both statistically significant at the p < .001 level. Three participants (10%) reported no change between pre and post pain ratings. Ten participants (33%) reported complete pain relief while doing the virtual reality session. All participants (100%) reported a decrease in pain to some degree between pre-session pain and during-session pain. The virtual reality experience was found here to provide a significant amount of pain relief. A head mounted display (HMD) was used with all subjects and no discomfort was experienced. Only one participant noted any side effects. VR seems to have promise as a non-opioid treatment for chronic pain and further investigation is warranted.
ERIC Educational Resources Information Center
Takala, Tuukka M.; Malmi, Lauri; Pugliese, Roberto; Takala, Tapio
2016-01-01
In this paper we present our experiences of teaching an annually organized virtual reality (VR) capstone course. We review three iterations of the course, during which a total of 45 students completed the course and 16 VR applications were implemented. Our comparative analysis describes the students' evaluation of the course, the applications…
A New Roman World: Using Virtual Reality Technology as a Critical Teaching Tool.
ERIC Educational Resources Information Center
Kuo, Elaine W.; Levis, Marc R.
The purpose of this study is to examine how technology, namely virtual reality (VR), can be developed as a critical pedagogical tool. More specifically, the study explores whether the use of VR can challenge the traditional lecture format and make the classroom a more student-centered environment. In this instance, VR is defined as a set of…
Bordnick, Patrick S; Carter, Brian L; Traylor, Amy C
2011-01-01
Virtual reality (VR), a system of human–computer interaction that allows researchers and clinicians to immerse people in virtual worlds, is gaining considerable traction as a research, education, and treatment tool. Virtual reality has been used successfully to treat anxiety disorders such as fear of flying and post-traumatic stress disorder, as an aid in stroke rehabilitation, and as a behavior modification aid in the treatment of attention deficit disorder. Virtual reality has also been employed in research on addictive disorders. Given the strong evidence that drug-dependent people are highly prone to use and relapse in the presence of environmental stimuli associated with drug use, VR is an ideal platform from which to study this relationship. Research using VR has shown that drug-dependent people react with strong craving to specific cues (e.g., cigarette packs, liquor bottles) as well as environments or settings (e.g., bar, party) associated with drug use. Virtual reality has also been used to enhance learning and generalization of relapse prevention skills in smokers by reinforcing these skills in lifelike environments. Obesity researchers and treatment professionals, building on the lessons learned from VR research in substance abuse, have the opportunity to adapt these methods for investigating their own research and treatment questions. Virtual reality is ideally suited to investigate the link between food cues and environmental settings with eating behaviors and self-report of hunger. In addition, VR can be used as a treatment tool for enhancing behavior modification goals to support healthy eating habits by reinforcing these goals in life–like situations. PMID:21527092
Kim, Hyun K; Park, Jaehyun; Choi, Yeongcheol; Choe, Mungyeong
2018-05-01
This study aims to develop a motion sickness measurement index in a virtual reality (VR) environment. The VR market is in an early stage of market formation and technological development, and thus, research on the side effects of VR devices such as simulator motion sickness is lacking. In this study, we used the simulator sickness questionnaire (SSQ), which has been traditionally used for simulator motion sickness measurement. To measure the motion sickness in a VR environment, 24 users performed target selection tasks using a VR device. The SSQ was administered immediately after each task, and the order of work was determined using the Latin square design. The existing SSQ was revised to develop a VR sickness questionnaire, which is used as the measurement index in a VR environment. In addition, the target selection method and button size were found to be significant factors that affect motion sickness in a VR environment. The results of this study are expected to be used for measuring and designing simulator sickness using VR devices in future studies. Copyright © 2018 Elsevier Ltd. All rights reserved.
Virtual reality applications to automated rendezvous and capture
NASA Technical Reports Server (NTRS)
Hale, Joseph; Oneil, Daniel
1991-01-01
Virtual Reality (VR) is a rapidly developing Human/Computer Interface (HCI) technology. The evolution of high-speed graphics processors and development of specialized anthropomorphic user interface devices, that more fully involve the human senses, have enabled VR technology. Recently, the maturity of this technology has reached a level where it can be used as a tool in a variety of applications. This paper provides an overview of: VR technology, VR activities at Marshall Space Flight Center (MSFC), applications of VR to Automated Rendezvous and Capture (AR&C), and identifies areas of VR technology that requires further development.
McLay, Robert N; Baird, Alicia; Murphy, Jennifer; Deal, William; Tran, Lily; Anson, Heather; Klam, Warren; Johnston, Scott
2015-01-01
Post Traumatic Stress Disorder (PTSD) can be a debilitating problem in service members who have served in Iraq or Afghanistan. Virtual Reality Exposure Therapy (VRET) is one of the few interventions demonstrated in randomized controlled trials to be effective for PTSD in this population. There are theoretical reasons to expect that Virtual Reality (VR) adds to the effectiveness of exposure therapy, but there is also added expense and difficulty in using VR. Described is a trial comparing outcomes from VRET and a control exposure therapy (CET) protocol in service members with PTSD.
Head Mounted Displays for Virtual Reality
1993-02-01
Produce an Image of Infinity 9 3 The Naval Ocean Systems Center HMD with Front-Mounted CRTs 10 4 The VR Group HMD with Side-Mounted CRTs. The Image is...Convergence Angles 34 vii SECTION 1 INTRODUCTION One of the goals in the development of Virtual Reality ( VR ) is to achieve "total immersion" where one...become transported out of the real world and into the virtual world. The developers of VR have utilized the head mounted display (HMD) as a means of
ERIC Educational Resources Information Center
Fadzil, Azman
2006-01-01
At present, the development of Virtual Reality (VR) technology is expanding due to the importance and needs to use the 3D elements and 360 degrees panorama in expressing a clearer picture to consumers in various fields such as education, military, medicine, entertainment and so on. The web based VR kiosk project in Darulaman's Teacher Training…
Chambers, Gloria T.; Meyer, Walter J.; Arceneaux, Lisa L.; Russell, William J.; Seibel, Eric J.; Richards, Todd L.; Sharar, Sam R.; Patterson, David R.
2015-01-01
Introduction Excessive pain during medical procedures is a widespread problem but is especially problematic during daily wound care of patients with severe burn injuries. Methods Burn patients report 35–50% reductions in procedural pain while in a distracting immersive virtual reality, and fMRI brain scans show associated reductions in pain-related brain activity during VR. VR distraction appears to be most effective for patients with the highest pain intensity levels. VR is thought to reduce pain by directing patients’ attention into the virtual world, leaving less attention available to process incoming neural signals from pain receptors. Conclusions We review evidence from clinical and laboratory research studies exploring Virtual Reality analgesia, concentrating primarily on the work ongoing within our group. We briefly describe how VR pain distraction systems have been tailored to the unique needs of burn patients to date, and speculate about how VR systems could be tailored to the needs of other patient populations in the future. PMID:21264690
NASA Technical Reports Server (NTRS)
Bejczy, Antal K.
1995-01-01
This presentation focuses on the application of computer graphics or 'virtual reality' (VR) techniques as a human-computer interface tool in the operation of telerobotic systems. VR techniques offer very valuable task realization aids for planning, previewing and predicting robotic actions, operator training, and for visual perception of non-visible events like contact forces in robotic tasks. The utility of computer graphics in telerobotic operation can be significantly enhanced by high-fidelity calibration of virtual reality images to actual TV camera images. This calibration will even permit the creation of artificial (synthetic) views of task scenes for which no TV camera views are available.
Influence of virtual reality on postural stability during movements of quiet stance.
Horlings, Corinne G C; Carpenter, Mark G; Küng, Ursula M; Honegger, Flurin; Wiederhold, Brenda; Allum, John H J
2009-02-27
Balance problems during virtual reality (VR) have been mentioned in the literature but seldom investigated despite the increased use of VR systems as a training or rehabilitation tool. We examined the influence of VR on body sway under different stance conditions. Seventeen young subjects performed four tasks (standing with feet close together or tandem stance on firm and foam surfaces for 60s) under three visual conditions: eyes open without VR, eyes closed, or while viewing a virtual reality scene which moved with body movements. Angular velocity transducers mounted on the shoulder provided measures of body sway in the roll and pitch plane. VR caused increased pitch and roll angles and angular velocities compared to EO. The effects of VR were, for the most part, indistinguishable from eyes closed conditions. Use of a foam surface increased sway compared to a firm surface under eyes closed and VR conditions. During the movements of quiet stance, VR causes an increase in postural sway in amplitude similar to that caused by closing the eyes. This increased sway was present irrespective of stance surface, but was greatest on foam.
Salvadori, Andrea; Del Frate, Gianluca; Pagliai, Marco; Mancini, Giordano; Barone, Vincenzo
2016-11-15
The role of Virtual Reality (VR) tools in molecular sciences is analyzed in this contribution through the presentation of the Caffeine software to the quantum chemistry community. Caffeine, developed at Scuola Normale Superiore, is specifically tailored for molecular representation and data visualization with VR systems, such as VR theaters and helmets. Usefulness and advantages that can be gained by exploiting VR are here reported, considering few examples specifically selected to illustrate different level of theory and molecular representation.
Transforming Clinical Imaging Data for Virtual Reality Learning Objects
ERIC Educational Resources Information Center
Trelease, Robert B.; Rosset, Antoine
2008-01-01
Advances in anatomical informatics, three-dimensional (3D) modeling, and virtual reality (VR) methods have made computer-based structural visualization a practical tool for education. In this article, the authors describe streamlined methods for producing VR "learning objects," standardized interactive software modules for anatomical sciences…
Virtual Reality: Directions in Research and Development.
ERIC Educational Resources Information Center
Stuart, Rory
1992-01-01
Discussion of virtual reality (VR) focuses on research and development being carried out at NYNEX to solve business problems. Component technologies are described; design decisions are considered, including interactivity, connectivity, and locus of control; potential perils of VR are discussed, including user dissociation; and areas of promise are…
PC-Based Virtual Reality for CAD Model Viewing
ERIC Educational Resources Information Center
Seth, Abhishek; Smith, Shana S.-F.
2004-01-01
Virtual reality (VR), as an emerging visualization technology, has introduced an unprecedented communication method for collaborative design. VR refers to an immersive, interactive, multisensory, viewer-centered, 3D computer-generated environment and the combination of technologies required to build such an environment. This article introduces the…
The Impact of Virtual Reality on Chronic Pain
Jones, Ted; Moore, Todd; Choo, James
2016-01-01
The treatment of chronic pain could benefit from additional non-opioid interventions. Virtual reality (VR) has been shown to be effective in decreasing pain for procedural or acute pain but to date there have been few studies on its use in chronic pain. The present study was an investigation of the impact of a virtual reality application for chronic pain. Thirty (30) participants with various chronic pain conditions were offered a five-minute session using a virtual reality application called Cool! Participants were asked about their pain using a 0–10 visual analog scale rating before the VR session, during the session and immediately after the session. They were also asked about immersion into the VR world and about possible side effects. Pain was reduced from pre-session to post-session by 33%. Pain was reduced from pre-session during the VR session by 60%. These changes were both statistically significant at the p < .001 level. Three participants (10%) reported no change between pre and post pain ratings. Ten participants (33%) reported complete pain relief while doing the virtual reality session. All participants (100%) reported a decrease in pain to some degree between pre-session pain and during-session pain. The virtual reality experience was found here to provide a significant amount of pain relief. A head mounted display (HMD) was used with all subjects and no discomfort was experienced. Only one participant noted any side effects. VR seems to have promise as a non-opioid treatment for chronic pain and further investigation is warranted. PMID:27997539
Polymer-based actuators for virtual reality devices
NASA Astrophysics Data System (ADS)
Bolzmacher, Christian; Hafez, Moustapha; Benali Khoudja, Mohamed; Bernardoni, Paul; Dubowsky, Steven
2004-07-01
Virtual Reality (VR) is gaining more importance in our society. For many years, VR has been limited to the entertainment applications. Today, practical applications such as training and prototyping find a promising future in VR. Therefore there is an increasing demand for low-cost, lightweight haptic devices in virtual reality (VR) environment. Electroactive polymers seem to be a potential actuation technology that could satisfy these requirements. Dielectric polymers developed the past few years have shown large displacements (more than 300%). This feature makes them quite interesting for integration in haptic devices due to their muscle-like behaviour. Polymer actuators are flexible and lightweight as compared to traditional actuators. Using stacks with several layers of elatomeric film increase the force without limiting the output displacement. The paper discusses some design methods for a linear dielectric polymer actuator for VR devices. Experimental results of the actuator performance is presented.
NASA Astrophysics Data System (ADS)
Dörner, Ralf; Lok, Benjamin; Broll, Wolfgang
Backed by a large consumer market, entertainment and education applications have spurred developments in the fields of real-time rendering and interactive computer graphics. Relying on Computer Graphics methodologies, Virtual Reality and Augmented Reality benefited indirectly from this; however, there is no large scale demand for VR and AR in gaming and learning. What are the shortcomings of current VR/AR technology that prevent a widespread use in these application areas? What advances in VR/AR will be necessary? And what might future “VR-enhanced” gaming and learning look like? Which role can and will Virtual Humans play? Concerning these questions, this article analyzes the current situation and provides an outlook on future developments. The focus is on social gaming and learning.
Navarro-Haro, María V; López-Del-Hoyo, Yolanda; Campos, Daniel; Linehan, Marsha M; Hoffman, Hunter G; García-Palacios, Azucena; Modrego-Alarcón, Marta; Borao, Luis; García-Campayo, Javier
2017-01-01
Regular mindfulness practice benefits people both mentally and physically, but many populations who could benefit do not practice mindfulness. Virtual Reality (VR) is a new technology that helps capture participants' attention and gives users the illusion of "being there" in the 3D computer generated environment, facilitating sense of presence. By limiting distractions from the real world, increasing sense of presence and giving people an interesting place to go to practice mindfulness, Virtual Reality may facilitate mindfulness practice. Traditional Dialectical Behavioral Therapy (DBT®) mindfulness skills training was specifically designed for clinical treatment of people who have trouble focusing attention, however severe patients often show difficulties or lack of motivation to practice mindfulness during the training. The present pilot study explored whether a sample of mindfulness experts would find useful and recommend a new VR Dialectical Behavioral Therapy (DBT®) mindfulness skills training technique and whether they would show any benefit. Forty four participants attending a mindfulness conference put on an Oculus Rift DK2 Virtual Reality helmet and floated down a calm 3D computer generated virtual river while listening to digitized DBT® mindfulness skills training instructions. On subjective questionnaires completed by the participants before and after the VR DBT® mindfulness skills training session, participants reported increases/improvements in state of mindfulness, and reductions in negative emotional states. After VR, participants reported significantly less sadness, anger, and anxiety, and reported being significantly more relaxed. Participants reported a moderate to strong illusion of going inside the 3D computer generated world (i.e., moderate to high "presence" in VR) and showed high acceptance of VR as a technique to practice mindfulness. These results show encouraging preliminary evidence of the feasibility and acceptability of using VR to practice mindfulness based on clinical expert feedback. VR is a technology with potential to increase computerized dissemination of DBT® skills training modules. Future research is warranted.
Navarro-Haro, María V.; López-del-Hoyo, Yolanda; Campos, Daniel; Linehan, Marsha M.; Hoffman, Hunter G.; García-Palacios, Azucena; Modrego-Alarcón, Marta; Borao, Luis; García-Campayo, Javier
2017-01-01
Regular mindfulness practice benefits people both mentally and physically, but many populations who could benefit do not practice mindfulness. Virtual Reality (VR) is a new technology that helps capture participants’ attention and gives users the illusion of “being there” in the 3D computer generated environment, facilitating sense of presence. By limiting distractions from the real world, increasing sense of presence and giving people an interesting place to go to practice mindfulness, Virtual Reality may facilitate mindfulness practice. Traditional Dialectical Behavioral Therapy (DBT®) mindfulness skills training was specifically designed for clinical treatment of people who have trouble focusing attention, however severe patients often show difficulties or lack of motivation to practice mindfulness during the training. The present pilot study explored whether a sample of mindfulness experts would find useful and recommend a new VR Dialectical Behavioral Therapy (DBT®) mindfulness skills training technique and whether they would show any benefit. Forty four participants attending a mindfulness conference put on an Oculus Rift DK2 Virtual Reality helmet and floated down a calm 3D computer generated virtual river while listening to digitized DBT® mindfulness skills training instructions. On subjective questionnaires completed by the participants before and after the VR DBT® mindfulness skills training session, participants reported increases/improvements in state of mindfulness, and reductions in negative emotional states. After VR, participants reported significantly less sadness, anger, and anxiety, and reported being significantly more relaxed. Participants reported a moderate to strong illusion of going inside the 3D computer generated world (i.e., moderate to high “presence” in VR) and showed high acceptance of VR as a technique to practice mindfulness. These results show encouraging preliminary evidence of the feasibility and acceptability of using VR to practice mindfulness based on clinical expert feedback. VR is a technology with potential to increase computerized dissemination of DBT® skills training modules. Future research is warranted. PMID:29166665
Virtual Reality Enhanced Instructional Learning
ERIC Educational Resources Information Center
Nachimuthu, K.; Vijayakumari, G.
2009-01-01
Virtual Reality (VR) is a creation of virtual 3D world in which one can feel and sense the world as if it is real. It is allowing engineers to design machines and Educationists to design AV [audiovisual] equipment in real time but in 3-dimensional hologram as if the actual material is being made and worked upon. VR allows a least-cost (energy…
Bordnick, Patrick S; Carter, Brian L; Traylor, Amy C
2011-03-01
Virtual reality (VR), a system of human-computer interaction that allows researchers and clinicians to immerse people in virtual worlds, is gaining considerable traction as a research, education, and treatment tool. Virtual reality has been used successfully to treat anxiety disorders such as fear of flying and post-traumatic stress disorder, as an aid in stroke rehabilitation, and as a behavior modification aid in the treatment of attention deficit disorder. Virtual reality has also been employed in research on addictive disorders. Given the strong evidence that drug-dependent people are highly prone to use and relapse in the presence of environmental stimuli associated with drug use, VR is an ideal platform from which to study this relationship. Research using VR has shown that drug-dependent people react with strong craving to specific cues (e.g., cigarette packs, liquor bottles) as well as environments or settings (e.g., bar, party) associated with drug use. Virtual reality has also been used to enhance learning and generalization of relapse prevention skills in smokers by reinforcing these skills in lifelike environments. Obesity researchers and treatment professionals, building on the lessons learned from VR research in substance abuse, have the opportunity to adapt these methods for investigating their own research and treatment questions. Virtual reality is ideally suited to investigate the link between food cues and environmental settings with eating behaviors and self-report of hunger. In addition, VR can be used as a treatment tool for enhancing behavior modification goals to support healthy eating habits by reinforcing these goals in life-like situations. © 2011 Diabetes Technology Society.
Measuring Reduction Methods for VR Sickness in Virtual Environments
ERIC Educational Resources Information Center
Magaki, Takurou; Vallance, Michael
2017-01-01
Recently, virtual reality (VR) technologies have developed remarkably. However, some users have negative symptoms during VR experiences or post-experiences. Consequently, alleviating VR sickness is a major challenge, but an effective reduction method has not yet been discovered. The purpose of this article is to compare and evaluate VR sickness in…
ERIC Educational Resources Information Center
Moro, Christian; Stromberga, Zane; Stirling, Allan
2017-01-01
Consumer-grade virtual reality has recently become available for both desktop and mobile platforms and may redefine the way that students learn. However, the decision regarding which device to utilise within a curriculum is unclear. Desktop-based VR has considerably higher setup costs involved, whereas mobile-based VR cannot produce the quality of…
ERIC Educational Resources Information Center
Azman, Fadzil
2004-01-01
At present the development of Virtual Reality (VR) technology is expanding due to the importance and needs to use the 3D elements and 360 degrees panorama. In expressing a clearer picture to consumers in various fields such as education, military, medicine, entertainment and so on. In live with the development the web based VR kiosk project in…
Visualizing Mars Using Virtual Reality: A State of the Art Mapping Technique Used on Mars Pathfinder
NASA Technical Reports Server (NTRS)
Stoker, C.; Zbinden, E.; Blackmon, T.; Nguyen, L.
1999-01-01
We describe an interactive terrain visualization system which rapidly generates and interactively displays photorealistic three-dimensional (3-D) models produced from stereo images. This product, first demonstrated in Mars Pathfinder, is interactive, 3-D, and can be viewed in an immersive display which qualifies it for the name Virtual Reality (VR). The use of this technology on Mars Pathfinder was the first use of VR for geologic analysis. A primary benefit of using VR to display geologic information is that it provides an improved perception of depth and spatial layout of the remote site. The VR aspect of the display allows an operator to move freely in the environment, unconstrained by the physical limitations of the perspective from which the data were acquired. Virtual Reality offers a way to archive and retrieve information in a way that is intuitively obvious. Combining VR models with stereo display systems can give the user a sense of presence at the remote location. The capability, to interactively perform measurements from within the VR model offers unprecedented ease in performing operations that are normally time consuming and difficult using other techniques. Thus, Virtual Reality can be a powerful a cartographic tool. Additional information is contained in the original extended abstract.
New Desktop Virtual Reality Technology in Technical Education
ERIC Educational Resources Information Center
Ausburn, Lynna J.; Ausburn, Floyd B.
2008-01-01
Virtual reality (VR) that immerses users in a 3D environment through use of headwear, body suits, and data gloves has demonstrated effectiveness in technical and professional education. Immersive VR is highly engaging and appealing to technically skilled young Net Generation learners. However, technical difficulty and very high costs have kept…
Are Spatial Visualization Abilities Relevant to Virtual Reality?
ERIC Educational Resources Information Center
Chen, Chwen Jen
2006-01-01
This study aims to investigate the effects of virtual reality (VR)-based learning environment on learners of different spatial visualization abilities. The findings of the aptitude-by-treatment interaction study have shown that learners benefit most from the Guided VR mode, irrespective of their spatial visualization abilities. This indicates that…
Virtual Reality and Cyberspace: From Science Fiction to Science Fact.
ERIC Educational Resources Information Center
Stone, Robert J.
1991-01-01
Traces the history of virtual reality (VR), or cyberspace, and describes some of the research and development efforts currently being carried out in the United Kingdom, Europe, and the United States. Applications of VR in interactive computer-aided design (CAD), the military, leisure activities, spaceflight, teleconferencing, and medicine are…
Evaluation of Virtual Reality Training Using Affect
ERIC Educational Resources Information Center
Tichon, Jennifer
2012-01-01
Training designed to support and strengthen higher-order mental abilities now often involves immersion in Virtual Reality (VR) where dangerous real world scenarios can be safely replicated. However, despite the growing popularity of VR to train cognitive skills such as decision-making and situation awareness, methods for evaluating their use rely…
Virtual reality and neuropsychology: upgrading the current tools.
Schultheis, Maria T; Himelstein, Jessica; Rizzo, Albert A
2002-10-01
Virtual reality (VR) is an evolving technology that has been applied in various aspects of medicine, including the treatment of phobia disorders, pain distraction interventions, surgical training, and medical education. These applications have served to demonstrate the various assets offered through the use of VR. To provide a background and rationale for the application of VR to neuropsychological assessment. A brief introduction to VR technology and a review of current ongoing neuropsychological research that integrates the use of this technology. VR offers numerous assets that may enhance current neuropsychological assessment protocols and address many of the limitations faced by our traditional methods.
Virtual reality in mental health : a review of the literature.
Gregg, Lynsey; Tarrier, Nicholas
2007-05-01
Several virtual reality (VR) applications for the understanding, assessment and treatment of mental health problems have been developed in the last 10 years. The purpose of this review is to outline the current state of virtual reality research in the treatment of mental health problems. PubMed and PsycINFO were searched for all articles containing the words "virtual reality". In addition a manual search of the references contained in the papers resulting from this search was conducted and relevant periodicals were searched. Studies reporting the results of treatment utilizing VR in the mental health field and involving at least one patient were identified. More than 50 studies using VR were identified, the majority of which were case studies. Seventeen employed a between groups design: 4 involved patients with fear of flying; 3 involved patients with fear of heights; 3 involved patients with social phobia/public speaking anxiety; 2 involved people with spider phobia; 2 involved patients with agoraphobia; 2 involved patients with body image disturbance and 1 involved obese patients. There are both advantages in terms of delivery and disadvantages in terms of side effects to using VR. Although virtual reality based therapy appears to be superior to no treatment the effectiveness of VR therapy over traditional therapeutic approaches is not supported by the research currently available. There is a lack of good quality research on the effectiveness of VR therapy. Before clinicians will be able to make effective use of this emerging technology greater emphasis must be placed on controlled trials with clinically identified populations.
Manipulating presence influences the magnitude of virtual reality analgesia.
Hoffman, Hunter G; Sharar, Sam R; Coda, Barbara; Everett, John J; Ciol, Marcia; Richards, Todd; Patterson, David R
2004-09-01
Excessive pain during medical procedures performed in unanesthetized patients is frequently reported, but can be reduced with virtual reality (VR) distraction. Increasing the person's illusion of going into the virtual world may increase how effectively VR distracts pain. Healthy volunteers aged 18-20 years participated in a double-blind between-groups design. Each subject received a brief baseline thermal pain stimulus, and the same stimulus again minutes later with either a Low Tech or a High Tech VR distraction. Each subject provided subjective 0-10 ratings of cognitive, sensory and affective components of pain, and rated their illusion of going inside the virtual world. Subjects in the High Tech VR group reported a stronger illusion of going into the virtual world (VR presence) than subjects in the Low Tech VR group, (4.2 vs. 2.5, respectively, P = 0.009) and more pain reduction (reduction of worst pain is 3.1 for High Tech VR vs. 0.7 for Low Tech VR, P < 0.001). Across groups, the amount of pain reduction was positively and significantly correlated with VR presence levels reported by subjects ( r = 0.48 for 'worst pain', P < 0.005).
ERIC Educational Resources Information Center
Taçgin, Zeynep; Arslan, Ahmet
2017-01-01
The purpose of this study is to determine perception of postgraduate Computer Education and Instructional Technologies (CEIT) students regarding the concepts of Augmented Reality (AR), Virtual Reality (VR), Mixed Reality (MR), Augmented Virtuality (AV) and Mirror Reality; and to offer a table that includes differences and similarities between…
Visualization of reservoir simulation data with an immersive virtual reality system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, B.K.
1996-10-01
This paper discusses an investigation into the use of an immersive virtual reality (VR) system to visualize reservoir simulation output data. The hardware and software configurations of the test-immersive VR system are described and compared to a nonimmersive VR system and to an existing workstation screen-based visualization system. The structure of 3D reservoir simulation data and the actions to be performed on the data within the VR system are discussed. The subjective results of the investigation are then presented, followed by a discussion of possible future work.
ERIC Educational Resources Information Center
Ausburn, Lynna J.; Ausburn, Floyd B.; Kroutter, Paul
2010-01-01
Virtual reality (VR) technology has demonstrated effectiveness in a variety of technical learning situations, yet little is known about its differential effects on learners with different levels of visual processing skill. This small-scale exploratory study tested VR through quasi-experimental methodology and a theoretical/conceptual framework…
Belle2VR: A Virtual-Reality Visualization of Subatomic Particle Physics in the Belle II Experiment.
Duer, Zach; Piilonen, Leo; Glasson, George
2018-05-01
Belle2VR is an interactive virtual-reality visualization of subatomic particle physics, designed by an interdisciplinary team as an educational tool for learning about and exploring subatomic particle collisions. This article describes the tool, discusses visualization design decisions, and outlines our process for collaborative development.
The Design, Development and Evaluation of a Virtual Reality Based Learning Environment
ERIC Educational Resources Information Center
Chen, Chwen Jen
2006-01-01
Many researchers and instructional designers increasingly recognise the benefits of utilising three dimensional virtual reality (VR) technology in instruction. In general, there are two types of VR system, the immersive system and the non-immersive system. This article focuses on the latter system that merely uses the conventional personal…
Use of Virtual Reality Technology to Enhance Undergraduate Learning in Abnormal Psychology
ERIC Educational Resources Information Center
Stark-Wroblewski, Kim; Kreiner, David S.; Boeding, Christopher M.; Lopata, Ashley N.; Ryan, Joseph J.; Church, Tina M.
2008-01-01
We examined whether using virtual reality (VR) technology to provide students with direct exposure to evidence-based psychological treatment approaches would enhance their understanding of and appreciation for such treatments. Students enrolled in an abnormal psychology course participated in a VR session designed to help clients overcome the fear…
When VR really hits the streets
NASA Astrophysics Data System (ADS)
Morie, Jacquelyn F.
2014-02-01
Immersive Virtual Reality (VR) technology, while popular in the late part of the 20th Century, seemed to disappear from public view as social media took its place and captured the attention of millions. Now that a new generation of entrepreneurs and crowd-sourced funding campaigns have arrived, perhaps virtual reality is poised for a resurgence.
A Feasibility Study of Virtual Reality-Based Coping Skills Training for Nicotine Dependence
ERIC Educational Resources Information Center
Bordnick, Patrick S.; Traylor, Amy C.; Carter, Brian L.; Graap, Ken M.
2012-01-01
Objective: Virtual reality (VR)-based cue reactivity has been successfully used for the assessment of drug craving. Going beyond assessment of cue reactivity, a novel VR-based treatment approach for smoking cessation was developed and tested for feasibility. Method: In a randomized experiment, 10-week treatment feasibility trial, 46…
Augmented Reality versus Virtual Reality for 3D Object Manipulation.
Krichenbauer, Max; Yamamoto, Goshiro; Taketom, Takafumi; Sandor, Christian; Kato, Hirokazu
2018-02-01
Virtual Reality (VR) Head-Mounted Displays (HMDs) are on the verge of becoming commodity hardware available to the average user and feasible to use as a tool for 3D work. Some HMDs include front-facing cameras, enabling Augmented Reality (AR) functionality. Apart from avoiding collisions with the environment, interaction with virtual objects may also be affected by seeing the real environment. However, whether these effects are positive or negative has not yet been studied extensively. For most tasks it is unknown whether AR has any advantage over VR. In this work we present the results of a user study in which we compared user performance measured in task completion time on a 9 degrees of freedom object selection and transformation task performed either in AR or VR, both with a 3D input device and a mouse. Our results show faster task completion time in AR over VR. When using a 3D input device, a purely VR environment increased task completion time by 22.5 percent on average compared to AR ( ). Surprisingly, a similar effect occurred when using a mouse: users were about 17.3 percent slower in VR than in AR ( ). Mouse and 3D input device produced similar task completion times in each condition (AR or VR) respectively. We further found no differences in reported comfort.
Virtual Reality Job Interview Training in Adults with Autism Spectrum Disorder
Smith, Matthew J.; Ginger, Emily; Wright, Katherine; Wright, Michael; Taylor, Julie Lounds; Humm, Laura Boteler; Olsen, Dale; Bell, Morris D.; Fleming, Michael F.
2014-01-01
The feasibility and efficacy of Virtual Reality Job Interview Training (VR-JIT) was assessed in a single-blinded randomized controlled trial. Adults with autism spectrum disorder were randomized to VR-JIT (n=16) or treatment as usual (TAU) (n=10) groups. VR-JIT consisted of simulated job interviews with a virtual character and didactic training. Participants attended 90% of lab-based training sessions and found VR-JIT easy-to-use, enjoyable, and they felt prepared for future interviews. VR-JIT participants had greater improvement during live standardized job interview role-play performances than TAU participants (p=0.046). A similar pattern was observed for self-reported self-confidence at a trend level (p=0.060). VR-JIT simulation performance scores increased over time (R-Squared=0.83). Results indicate preliminary support for the feasibility and efficacy of VR-JIT, which can be administered using computer software or via the internet. PMID:24803366
Virtual reality job interview training in adults with autism spectrum disorder.
Smith, Matthew J; Ginger, Emily J; Wright, Katherine; Wright, Michael A; Taylor, Julie Lounds; Humm, Laura Boteler; Olsen, Dale E; Bell, Morris D; Fleming, Michael F
2014-10-01
The feasibility and efficacy of virtual reality job interview training (VR-JIT) was assessed in a single-blinded randomized controlled trial. Adults with autism spectrum disorder were randomized to VR-JIT (n = 16) or treatment-as-usual (TAU) (n = 10) groups. VR-JIT consisted of simulated job interviews with a virtual character and didactic training. Participants attended 90 % of laboratory-based training sessions, found VR-JIT easy to use and enjoyable, and they felt prepared for future interviews. VR-JIT participants had greater improvement during live standardized job interview role-play performances than TAU participants (p = 0.046). A similar pattern was observed for self-reported self-confidence at a trend level (p = 0.060). VR-JIT simulation performance scores increased over time (R(2) = 0.83). Results indicate preliminary support for the feasibility and efficacy of VR-JIT, which can be administered using computer software or via the internet.
Magical Stories: Blending Virtual Reality and Artificial Intelligence.
ERIC Educational Resources Information Center
McLellan, Hilary
Artificial intelligence (AI) techniques and virtual reality (VR) make possible powerful interactive stories, and this paper focuses on examples of virtual characters in three dimensional (3-D) worlds. Waldern, a virtual reality game designer, has theorized about and implemented software design of virtual teammates and opponents that incorporate AI…
Model of Illusions and Virtual Reality
Gonzalez-Franco, Mar; Lanier, Jaron
2017-01-01
In Virtual Reality (VR) it is possible to induce illusions in which users report and behave as if they have entered into altered situations and identities. The effect can be robust enough for participants to respond “realistically,” meaning behaviors are altered as if subjects had been exposed to the scenarios in reality. The circumstances in which such VR illusions take place were first introduced in the 80's. Since then, rigorous empirical evidence has explored a wide set of illusory experiences in VR. Here, we compile this research and propose a neuroscientific model explaining the underlying perceptual and cognitive mechanisms that enable illusions in VR. Furthermore, we describe the minimum instrumentation requirements to support illusory experiences in VR, and discuss the importance and shortcomings of the generic model. PMID:28713323
Development of a low-cost virtual reality workstation for training and education
NASA Technical Reports Server (NTRS)
Phillips, James A.
1996-01-01
Virtual Reality (VR) is a set of breakthrough technologies that allow a human being to enter and fully experience a 3-dimensional, computer simulated environment. A true virtual reality experience meets three criteria: (1) it involves 3-dimensional computer graphics; (2) it includes real-time feedback and response to user actions; and (3) it must provide a sense of immersion. Good examples of a virtual reality simulator are the flight simulators used by all branches of the military to train pilots for combat in high performance jet fighters. The fidelity of such simulators is extremely high -- but so is the price tag, typically millions of dollars. Virtual reality teaching and training methods are manifestly effective, but the high cost of VR technology has limited its practical application to fields with big budgets, such as military combat simulation, commercial pilot training, and certain projects within the space program. However, in the last year there has been a revolution in the cost of VR technology. The speed of inexpensive personal computers has increased dramatically, especially with the introduction of the Pentium processor and the PCI bus for IBM-compatibles, and the cost of high-quality virtual reality peripherals has plummeted. The result is that many public schools, colleges, and universities can afford a PC-based workstation capable of running immersive virtual reality applications. My goal this summer was to assemble and evaluate such a system.
Fluet, Gerard G; Deutsch, Judith E
2013-03-01
Developments over the past 2 years in virtual reality (VR) augmented sensorimotor rehabilitation of upper limb use and gait post-stroke were reviewed. Studies were included if they evaluated comparative efficacy between VR and standard of care, and or differences in VR delivery methods; and were CEBM (center for evidence based medicine) level 2 or higher. Eight upper limb and two gait studies were included and described using the following categories hardware (input and output), software (virtual task and feedback and presentation) intervention (progression and dose), and outcomes. Trends in the field were commented on, gaps in knowledge identified, and areas of future research and translation of VR to practice were suggested.
Faber, Albertus W.; Patterson, David R.; Bremer, Marco
2012-01-01
Objective The current study explored whether immersive virtual reality continues to reduce pain (via distraction) during more than one wound care session per patient. Patients: Thirty six patients aged 8 to 57 years (mean age of 27.7 years), with an average of 8.4% total body surface area burned (range .25 to 25.5 TBSA) received bandage changes, and wound cleaning. Methods Each patient received one baseline wound cleaning/debridement session with no-VR (control condition) followed by one or more (up to seven) subsequent wound care sessions during VR. After each wound care session (one session per day), worst pain intensity was measured using a Visual Analogue Thermometer (VAT), the dependent variable. Using a within subjects design, worst pain intensity VAT during wound care with no-VR (baseline, Day 0) was compared to pain during wound care while using immersive virtual reality (up to seven days of wound care during VR). Results Compared to pain during no-VR Baseline (Day 0), pain ratings during wound debridement were statistically lower when patients were in virtual reality on Days 1, 2 and 3, and although not significant beyond day 3, the pattern of results from Days 4, 5, and 6 are consistent with the notion that VR continues to reduce pain when used repeatedly. Conclusions Results from the present study suggest that VR continues to be effective when used for three (or possibly more) treatments during severe burn wound debridement. PMID:23970314
ERIC Educational Resources Information Center
Jouriles, Ernest N.; McDonald, Renee; Kullowatz, Antje; Rosenfield, David; Gomez, Gabriella S.; Cuevas, Anthony
2009-01-01
The present study evaluated whether virtual reality (VR) can enhance the realism of role plays designed to help college women resist sexual attacks. Sixty-two female undergraduate students were randomly assigned to either the Role Play (RP) or Virtual Role Play (VRP) conditions, which were differentiated only by the use of VR technology in the VRP…
Augmented reality (AR) and virtual reality (VR) applied in dentistry.
Huang, Ta-Ko; Yang, Chi-Hsun; Hsieh, Yu-Hsin; Wang, Jen-Chyan; Hung, Chun-Cheng
2018-04-01
The OSCE is a reliable evaluation method to estimate the preclinical examination of dental students. The most ideal assessment for OSCE is used the augmented reality simulator to evaluate. This literature review investigated a recently developed in virtual reality (VR) and augmented reality (AR) starting of the dental history to the progress of the dental skill. As result of the lacking of technology, it needs to depend on other device increasing the success rate and decreasing the risk of the surgery. The development of tracking unit changed the surgical and educational way. Clinical surgery is based on mature education. VR and AR simultaneously affected the skill of the training lesson and navigation system. Widely, the VR and AR not only applied in the dental training lesson and surgery, but also improved all field in our life. Copyright © 2018. Published by Elsevier Taiwan.
NASA Astrophysics Data System (ADS)
Kersten, T. P.; Büyüksalih, G.; Tschirschwitz, F.; Kan, T.; Deggim, S.; Kaya, Y.; Baskaraca, A. P.
2017-05-01
Recent advances in contemporary Virtual Reality (VR) technologies are going to have a significant impact on veryday life. Through VR it is possible to virtually explore a computer-generated environment as a different reality, and to immerse oneself into the past or in a virtual museum without leaving the current real-life situation. For such the ultimate VR experience, the user should only see the virtual world. Currently, the user must wear a VR headset which fits around the head and over the eyes to visually separate themselves from the physical world. Via the headset images are fed to the eyes through two small lenses. Cultural heritage monuments are ideally suited both for thorough multi-dimensional geometric documentation and for realistic interactive visualisation in immersive VR applications. Additionally, the game industry offers tools for interactive visualisation of objects to motivate users to virtually visit objects and places. In this paper the generation of a virtual 3D model of the Selimiye mosque in the city of Edirne, Turkey and its processing for data integration into the game engine Unity is presented. The project has been carried out as a co-operation between BİMTAŞ, a company of the Greater Municipality of Istanbul, Turkey and the Photogrammetry & Laser Scanning Lab of the HafenCity University Hamburg, Germany to demonstrate an immersive and interactive visualisation using the new VR system HTC Vive. The workflow from data acquisition to VR visualisation, including the necessary programming for navigation, is described. Furthermore, the possible use (including simultaneous multiple users environments) of such a VR visualisation for a CH monument is discussed in this contribution.
Sustained Efficacy of Virtual Reality Distraction
Rutter, Charles E.; Dahlquist, Lynnda M.; Weiss, Karen E.
2011-01-01
The current study tested whether the effectiveness of distraction using virtual reality (VR) technology in reducing cold pressor pain would maintain over the course of eight weekly exposures. Twenty-eight adults, 18 to 23 years of age, underwent one baseline cold pressor trial and one VR distraction trial in randomized order each week. VR distraction led to significant increases in pain threshold and pain tolerance, and significant decreases in pain intensity, time spent thinking about pain, and self-reported anxiety, relative to baseline. Repeated exposure did not appear to affect the benefits of VR. Implications for the long-term use of VR distraction as a non-pharmacological analgesic are discussed. PMID:19231295
Clinical use of virtual reality distraction system to reduce anxiety and pain in dental procedures.
Wiederhold, Mark D; Gao, Kenneth; Wiederhold, Brenda K
2014-06-01
Virtual reality (VR) has been used by clinicians to manage pain in clinical populations. This study examines the use of VR as a form of distraction for dental patients using both subjective and objective measures to determine how a VR system affects patients' reported anxiety level, pain level, and physiological factors. As predicted, results of self-evaluation questionnaires showed that patients experienced less anxiety and pain after undergoing VR treatment. Physiological data reported similar trends in decreased anxiety. Overall, the favorable subjective and objective responses suggest that VR distraction systems can reduce discomfort and pain for patients with mild to moderate fear and anxiety.
Virtual reality applications in robotic simulations
NASA Technical Reports Server (NTRS)
Homan, David J.; Gott, Charles J.; Goza, S. Michael
1994-01-01
Virtual reality (VR) provides a means to practice integrated extravehicular activities (EVA)/remote manipulator system (RMS) operations in the on-orbit configuration with no discomfort or risk to crewmembers. VR afforded the STS-61 crew the luxury of practicing the integrated EVA/RMS operations in an on-orbit configuration prior to the actual flight. The VR simulation was developed by the Automation and Robotics Division's Telepresence/Virtual Reality Lab and Integrated Graphics, Operations, and Analysis Lab (IGOAL) at JSC. The RMS Part Task Trainer (PTT) was developed by the IGOAL for RMS training in 1988 as a fully functional, kinematic simulation of the shuttle RMS and served as the RMS portion of the integrated VR simulation. Because the EVA crewmember could get a realistic view of the shuttle and payload bay in the VR simulation, he/she could explore different positions and views to determine the best method for performing a specific task, thus greatly increasing the efficiency of use of the neutral buoyancy facilities.
Ma, Hui-Ing; Hwang, Wen-Juh; Wang, Ching-Yi; Fang, Jing-Jing; Leong, Iat-Fai; Wang, Tsui-Ying
2012-10-01
We used a trunk-assisted prehension task to examine the effect of task (reaching for stationary vs. moving targets) and environmental constraints (virtual reality [VR] vs. physical reality) on the temporal control of trunk and arm motions in people with Parkinson's disease (PD). Twenty-four participants with PD and 24 age-matched controls reached for and grasped a ball that was either stationary or moving along a ramp 120% of arm length away. In a similar VR task, participants reached for a virtual ball that was either stationary or moving. Movement speed was measured as trunk and arm movement times (MTs); trunk-arm coordination was measured as onset interval and offset interval between trunk and arm motions, as well as a summarized index-desynchrony score. In both VR and physical reality, the PD group had longer trunk and arm MTs than the control group when reaching for stationary balls (p<.001). When reaching for moving balls in VR and physical reality, however, the PD group had lower trunk and arm MTs, onset intervals, and desynchrony scores (p<.001). For the PD group, VR induced shorter trunk MTs, shorter offset intervals, and lower desynchrony scores than did physical reality when reaching for moving balls (p<.001). These findings suggest that using real moving targets in trunk-assisted prehension tasks improves the speed and synchronization of trunk and arm motions in people with PD, and that using virtual moving targets may induce a movement termination strategy different from that used in physical reality. Copyright © 2012 Elsevier B.V. All rights reserved.
Reactivity to Cannabis Cues in Virtual Reality Environments†
Bordnick, Patrick S.; Copp, Hilary L.; Traylor, Amy; Graap, Ken M.; Carter, Brian L.; Walton, Alicia; Ferrer, Mirtha
2014-01-01
Virtual reality (VR) cue environments have been developed and successfully tested in nicotine, cocaine, and alcohol abusers. Aims in the current article include the development and testing of a novel VR cannabis cue reactivity assessment system. It was hypothesized that subjective craving levels and attention to cannabis cues would be higher in VR environments merits with cannabis cues compared to VR neutral environments. Twenty nontreatment-seeking current cannabis smokers participated in the VR cue trial. During the VR cue trial, participants were exposed to four virtual environments that contained audio, visual, olfactory, and vibrotactile sensory stimuli. Two VR environments contained cannabis cues that consisted of a party room in which people were smoking cannabis and a room containing cannabis paraphernalia without people. Two VR neutral rooms without cannabis cues consisted of a digital art gallery with nature videos. Subjective craving and attention to cues were significantly higher in the VR cannabis environments compared to the VR neutral environments. These findings indicate that VR cannabis cue reactivity may offer a new technology-based method to advance addiction research and treatment. PMID:19705672
Neurofeedback training with virtual reality for inattention and impulsiveness.
Cho, Baek-Hwan; Kim, Saebyul; Shin, Dong Ik; Lee, Jang Han; Lee, Sang Min; Kim, In Young; Kim, Sun I
2004-10-01
In this research, the effectiveness of neurofeedback, along with virtual reality (VR), in reducing the level of inattention and impulsiveness was investigated. Twenty-eight male participants, aged 14-18, with social problems, took part in this study. They were separated into three groups: a control group, a VR group, and a non-VR group. The VR and non-VR groups underwent eight sessions of neurofeedback training over 2 weeks, while the control group just waited during the same period. The VR group used a head-mounted display (HMD) and a head tracker, which let them look around the virtual world. Conversely, the non-VR group used only a computer monitor with a fixed viewpoint. All participants performed a continuous performance task (CPT) before and after the complete training session. The results showed that both the VR and non-VR groups achieved better scores in the CPT after the training session, while the control group showed no significant difference. Compared with the other groups, the VR group presented a tendency to get better results, suggesting that immersive VR is applicable to neurofeedback for the rehabilitation of inattention and impulsiveness.
Applications of virtual reality in individuals with alcohol misuse: A systematic review.
Ghiţă, Alexandra; Gutiérrez-Maldonado, José
2018-06-01
Alcohol use and misuse have been intensively studied, due to their negative consequences in the general population. Evidence-based literature emphasizes that alcohol craving plays a crucial role in the development and maintenance of alcohol-drinking patterns. Many individuals develop Alcohol Use Disorders (AUD); significantly, after treatment many also experience relapses, in which alcohol craving has been repeatedly implicated. Cue-exposure therapy (CET) has been widely used in the treatment of alcohol misuse, but the results are inconsistent. Virtual reality (VR) can add effectiveness to cue-exposure techniques by providing multiple variables and inputs that enable personalized alcohol use assessment and treatment. The aim of this review was to examine the applications of virtual reality in individuals who misuse alcohol. We conducted an exhaustive literature search of the Web of Science, Scopus, Embase, Google Scholar, and PsycInfo databases, using as search items terms such as "alcohol" and its derivates, and virtual reality. We identified 13 studies on alcohol craving that implemented virtual reality as an assessment or treatment tool. The studies that incorporate VR present clear limitations. First, no clinical trials were conducted to explore the efficacy of the VR as a treatment tool; nor were there any studies of the generalization of craving responses in the real world, or of the long-term effects of VR treatment. Despite these limitations, the studies included showed consistent results as regards eliciting and reducing alcohol craving. We suggest that VR shows promise as a tool for the assessment and treatment of craving among individuals with alcohol misuse. Further studies implementing VR in the field of alcohol consumption are now required. Copyright © 2018 Elsevier Ltd. All rights reserved.
Ershow, Abby G; Peterson, Charles M; Riley, William T; Rizzo, Albert Skip; Wansink, Brian
2011-03-01
The rising rates, high prevalence, and adverse consequences of obesity and diabetes call for new approaches to the complex behaviors needed to prevent and manage these conditions. Virtual reality (VR) technologies, which provide controllable, multisensory, interactive three-dimensional (3D) stimulus environments, are a potentially valuable means of engaging patients in interventions that foster more healthful eating and physical activity patterns. Furthermore, the capacity of VR technologies to motivate, record, and measure human performance represents a novel and useful modality for conducting research. This article summarizes background information and discussions for a joint July 2010 National Institutes of Health - Department of Defense workshop entitled Virtual Reality Technologies for Research and Education in Obesity and Diabetes. The workshop explored the research potential of VR technologies as tools for behavioral and neuroscience studies in diabetes and obesity, and the practical potential of VR in fostering more effective utilization of diabetes- and obesity-related nutrition and lifestyle information. Virtual reality technologies were considered especially relevant for fostering desirable health-related behaviors through motivational reinforcement, personalized teaching approaches, and social networking. Virtual reality might also be a means of extending the availability and capacity of health care providers. Progress in the field will be enhanced by further developing available platforms and taking advantage of VR's capabilities as a research tool for well-designed hypothesis-testing behavioral science. Multidisciplinary collaborations are needed between the technology industry and academia, and among researchers in biomedical, behavioral, pedagogical, and computer science disciplines. Research priorities and funding opportunities for use of VR to improve prevention and management of obesity and diabetes can be found at agency websites (National Institutes of Health: http://grants.nih.gov/grants/guide/index.html; Department of Defense: www.tatrc.org). © 2011 Diabetes Technology Society.
ERIC Educational Resources Information Center
Johnston, Elizabeth; Olivas, Gerald; Steele, Patricia; Smith, Cassandra; Bailey, Liston
2018-01-01
New virtual reality (VR) applications for education appear frequently in the marketplace but rarely contain explicit pedagogies. The research objective of this study was to identify and categorize principles and practices of pedagogy that are evident but not articulated in selected VR applications for education. Analysis of public content for the…
Virtual Reality for Life Skills Education: Program Evaluation
ERIC Educational Resources Information Center
Vogel, Jennifer; Bowers, Clint; Meehan, Cricket; Hoeft, Raegan; Bradley, Kristy
2004-01-01
A program evaluation was completed for a Virtual Reality (VR) pilot project intended to aid deaf children in learning various life skills which they may be at risk of not adequately learning. Such skills include crossing the street safely, exiting a building during a fire drill, and avoiding situations in which strangers may harm them. The VR was…
ERIC Educational Resources Information Center
Ausburn, Lynna J.; Ausburn, Floyd B.
2004-01-01
Virtual Reality has been defined in many different ways and now means different things in various contexts. VR can range from simple environments presented on a desktop computer to fully immersive multisensory environments experienced through complex headgear and bodysuits. In all of its manifestations, VR is basically a way of simulating or…
Surgery, virtual reality, and the future.
Vosburgh, Kirby G; Golby, Alexandra; Pieper, Steven D
2013-01-01
MMVR has provided the leading forum for the multidisciplinary interaction and development of the use of Virtual Reality (VR) techniques in medicine, particularly in surgical practice. Here we look back at the foundations of our field, focusing on the use of VR in Surgery and similar interventional procedures, sum up the current status, and describe the challenges and opportunities going forward.
ERIC Educational Resources Information Center
Chuah, Kee Man; Chen, Chwen Jen; Teh, Chee Siong
2008-01-01
In recent years, the application of virtual reality (VR) technology in education is rapidly gaining momentum. The educational benefits offered by such technology have prompted many educators as well as instructional designers to investigate ways to create effective and engaging VR learning. Instructional designers have examined widely the…
Virtual Reality as a Clinical Tool for Pain Management.
Pourmand, Ali; Davis, Steven; Marchak, Alex; Whiteside, Tess; Sikka, Neal
2018-06-15
To evaluate the use of virtual reality (VR) therapies as a clinical tool for the management of acute and chronic pain. Recent articles support the hypothesis that VR therapies can effectively distract patients who suffer from chronic pain and from acute pain stimulated in trials. Clinical studies yield promising results in the application of VR therapies to a variety of acute and chronic pain conditions, including fibromyalgia, phantom limb pain, and regional specific pain from past injuries and illnesses. Current management techniques for acute and chronic pain, such as opioids and physical therapy, are often incomplete or ineffective. VR trials demonstrate a potential to redefine the approach to treating acute and chronic pain in the clinical setting. Patient immersion in interactive virtual reality provides distraction from painful stimuli and can decrease an individual's perception of the pain. In this review, we discuss the use of VR to provide patient distraction from acute pain induced from electrical, thermal, and pressure conditions. We also discuss the application of VR technologies to treat various chronic pain conditions in both outpatient and inpatient settings.
The effect of virtual reality training on unilateral spatial neglect in stroke patients.
Kim, Yong Mi; Chun, Min Ho; Yun, Gi Jeong; Song, Young Jin; Young, Han Eun
2011-06-01
To investigate the effect of virtual reality training on unilateral spatial neglect in stroke patients. Twenty-four stroke patients (14 males and 10 females, mean age=64.7) who had unilateral spatial neglect as a result of right hemisphere stroke were recruited. All patients were randomly assigned to either the virtual reality (VR) group (n=12) or the control group (n=12). The VR group received VR training, which stimulated the left side of their bodies. The control group received conventional neglect therapy such as visual scanning training. Both groups received therapy for 30 minutes a day, five days per week for three weeks. Outcome measurements included star cancellation test, line bisection test, Catherine Bergego scale (CBS), and the Korean version of modified Barthel index (K-MBI). These measurements were taken before and after treatment. There were no significant differences in the baseline characteristics and initial values between the two groups. The changes in star cancellation test results and CBS in the VR group were significantly higher than those of the control group after treatment. The changes in line bisection test score and the K-MBI in the VR group were not statistically significant. This study suggests that virtual reality training may be a beneficial therapeutic technique on unilateral spatial neglect in stroke patients.
Abstract to Action: Targeted Learning System Theory Applied to Adaptive Flight Training
2018-04-18
complete the VRLE trained task in the real world confirming a good transfer of spatial knowledge from VR to reality.39 A VRLE was also used in a...opportunities if the technology was customized to produce the necessary datasets for the required education or training outcomes. The TLST maximizes...the simulator staging area to confirm your Virtual Reality training times. Good Luck! ` 92 Pre-Virtual Reality (VR) Instructions You are
Laparoscopic baseline ability assessment by virtual reality.
Madan, Atul K; Frantzides, Constantine T; Sasso, Lisa M
2005-02-01
Assessment of any surgical skill is time-consuming and difficult. Currently, there are no accepted metrics for most surgical skills, especially laparoscopic skills. Virtual reality has been utilized for laparoscopic training of surgical residents. Our hypothesis is that this technology can be utilized for laparoscopic ability metrics. This study involved medical students with no previous laparoscopic experience. All students were taken into a porcine laboratory in order to assess two operative tasks (measuring a piece of bowel and placing a piece of bowel into a laparoscopic bag). Then they were taken into an inanimate lab with a Minimally Invasive Surgery Trainer-Virtual Reality (MIST-VR). Each student repeatedly performed one task (placing a virtual reality ball into a receptacle). The students' scores and times from the animate lab were compared with average economy of movement and times from the MIST-VR. The MIST-VR scored both hands individually. Thirty-two first- and second-year medical students were included in the study. There was statistically significant (P < 0.05) correlation between 11 of 16 possible relationships between the virtual reality trainer and operative tasks. While not all of the possible relationships demonstrated statistically significant correlation, the majority of the possible relationships demonstrated statistically significant correlation. Virtual reality may be an avenue for measuring laparoscopic surgical ability.
VIRTUAL REALITY CUE EXPOSURE THERAPY FOR THE TREATMENT OF TOBACCO DEPENDENCE
Culbertson, Christopher S.; Shulenberger, Stephanie; De La Garza, Richard; Newton, Thomas F.; Brody, Arthur L.
2012-01-01
Researchers and clinicians have recently begun using Virtual Reality (VR) to create immersive and interactive cue exposure paradigms. The current study aimed to assess the effectiveness of individual cue exposure therapy (CET), using smoking-related VR cues (smoking-VR) as a smoking cessation treatment compared to a placebo-VR (neutral cue) treatment. The sample consisted of healthy treatment-seeking cigarette smokers, who underwent bi-weekly cognitive behavioral group therapy (CBT) plus either smoking-VR CET or placebo-VR CET (random assignment). Smoking-VR CET participants had a higher quit rate than placebo-VR CET participants (P = 0.015). Smoking-VR CET treated participants also reported smoking significantly fewer cigarettes per day at the end of treatment than placebo-VR CET treated participants (P = 0.034). These data indicate that smoking-related VR CET may prove useful in enhancing the efficacy of CBT treatment for tobacco dependence. PMID:25342999
Khademi, Maryam; Hondori, Hossein Mousavi; Dodakian, Lucy; Cramer, Steve; Lopes, Cristina V
2013-01-01
Introducing computer games to the rehabilitation market led to development of numerous Virtual Reality (VR) training applications. Although VR has provided tremendous benefit to the patients and caregivers, it has inherent limitations, some of which might be solved by replacing it with Augmented Reality (AR). The task of pick-and-place, which is part of many activities of daily living (ADL's), is one of the major affected functions stroke patients mainly expect to recover. We developed an exercise consisting of moving an object between various points, following a flash light that indicates the next target. The results show superior performance of subjects in spatial AR versus non-immersive VR setting. This could be due to the extraneous hand-eye coordination which exists in VR whereas it is eliminated in spatial AR.
Grewe, P; Lahr, D; Kohsik, A; Dyck, E; Markowitsch, H J; Bien, C G; Botsch, M; Piefke, M
2014-02-01
Ecological assessment and training of real-life cognitive functions such as visual-spatial abilities in patients with epilepsy remain challenging. Some studies have applied virtual reality (VR) paradigms, but external validity of VR programs has not sufficiently been proven. Patients with focal epilepsy (EG, n=14) accomplished an 8-day program in a VR supermarket, which consisted of learning and buying items on a shopping list. Performance of the EG was compared with that of healthy controls (HCG, n=19). A comprehensive neuropsychological examination was administered. Real-life performance was investigated in a real supermarket. Learning in the VR supermarket was significantly impaired in the EG on different VR measures. Delayed free recall of products did not differ between the EG and the HCG. Virtual reality scores were correlated with neuropsychological measures of visual-spatial cognition, subjective estimates of memory, and performance in the real supermarket. The data indicate that our VR approach allows for the assessment of real-life visual-spatial memory and cognition in patients with focal epilepsy. The multimodal, active, and complex VR paradigm may particularly enhance visual-spatial cognitive resources. Copyright © 2013 Elsevier Inc. All rights reserved.
Virtual reality and planetary exploration
NASA Technical Reports Server (NTRS)
Mcgreevy, Michael W.
1992-01-01
NASA-Ames is intensively developing virtual-reality (VR) capabilities that can extend and augment computer-generated and remote spatial environments. VR is envisioned not only as a basis for improving human/machine interactions involved in planetary exploration, but also as a medium for the more widespread sharing of the experience of exploration, thereby broadening the support-base for the lunar and planetary-exploration endeavors. Imagery representative of Mars are being gathered for VR presentation at such terrestrial sites as Antarctica and Death Valley.
Virtual reality: A new track in psychological research.
de la Rosa, Stephan; Breidt, Martin
2018-05-10
One major challenge of social interaction research is to achieve high experimental control over social interactions to allow for rigorous scientific reasoning. Virtual reality (VR) promises this level of control. Pan and Hamilton guide us with a detailed review on existing and future possibilities and challenges of using VR for social interaction research. Here, we extend the discussion to methodological and practical implications when using VR. © 2018 The Authors. British Journal of Psychology published by John Wiley & Sons Ltd on behalf of British Psychological Society.
Virtual Reality in Pediatric Psychology.
Parsons, Thomas D; Riva, Giuseppe; Parsons, Sarah; Mantovani, Fabrizia; Newbutt, Nigel; Lin, Lin; Venturini, Eva; Hall, Trevor
2017-11-01
Virtual reality (VR) technologies allow for controlled simulations of affectively engaging background narratives. These virtual environments offer promise for enhancing emotionally relevant experiences and social interactions. Within this context, VR can allow instructors, therapists, neuropsychologists, and service providers to offer safe, repeatable, and diversifiable interventions that can benefit assessments and learning in both typically developing children and children with disabilities. Research has also pointed to VR's capacity to reduce children's experience of aversive stimuli and reduce anxiety levels. Although there are a number of purported advantages of VR technologies, challenges have emerged. One challenge for this field of study is the lack of consensus on how to do trials. A related issue is the need for establishing the psychometric properties of VR assessments and interventions. This review investigates the advantages and challenges inherent in the application of VR technologies to pediatric assessments and interventions. Copyright © 2017 by the American Academy of Pediatrics.
Application of virtual reality technology in clinical medicine
Li, Lan; Yu, Fei; Shi, Dongquan; Shi, Jianping; Tian, Zongjun; Yang, Jiquan; Wang, Xingsong; Jiang, Qing
2017-01-01
The present review discusses the application of virtual reality (VR) technology in clinical medicine, especially in surgical training, pain management and therapeutic treatment of mental illness. We introduce the common types of VR simulators and their operational principles in aforementioned fields. The clinical effects are also discussed. In almost every study that dealt with VR simulators, researchers have arrived at the same conclusion that both doctors and patients could benefit from this novel technology. Moreover, advantages and disadvantages of the utilization of VR technology in each field were discussed, and the future research directions were proposed. PMID:28979666
Application of virtual reality technology in clinical medicine.
Li, Lan; Yu, Fei; Shi, Dongquan; Shi, Jianping; Tian, Zongjun; Yang, Jiquan; Wang, Xingsong; Jiang, Qing
2017-01-01
The present review discusses the application of virtual reality (VR) technology in clinical medicine, especially in surgical training, pain management and therapeutic treatment of mental illness. We introduce the common types of VR simulators and their operational principles in aforementioned fields. The clinical effects are also discussed. In almost every study that dealt with VR simulators, researchers have arrived at the same conclusion that both doctors and patients could benefit from this novel technology. Moreover, advantages and disadvantages of the utilization of VR technology in each field were discussed, and the future research directions were proposed.
Super-resolution optics for virtual reality
NASA Astrophysics Data System (ADS)
Grabovičkić, Dejan; Benitez, Pablo; Miñano, Juan C.; Zamora, Pablo; Buljan, Marina; Narasimhan, Bharathwaj; Nikolic, Milena I.; Lopez, Jesus; Gorospe, Jorge; Sanchez, Eduardo; Lastres, Carmen; Mohedano, Ruben
2017-06-01
In present commercial Virtual Reality (VR) headsets the resolution perceived is still limited, since the VR pixel density (typically 10-15 pixels/deg) is well below what the human eye can resolve (60 pixels/deg). We present here novel advanced optical design approaches that dramatically increase the perceived resolution of the VR keeping the large FoV required in VR applications. This approach can be applied to a vast number of optical architectures, including some advanced configurations, as multichannel designs. All this is done at the optical design stage, and no eye tracker is needed in the headset.
HTC Vive MeVisLab integration via OpenVR for medical applications
Egger, Jan; Gall, Markus; Wallner, Jürgen; Boechat, Pedro; Hann, Alexander; Li, Xing; Chen, Xiaojun; Schmalstieg, Dieter
2017-01-01
Virtual Reality, an immersive technology that replicates an environment via computer-simulated reality, gets a lot of attention in the entertainment industry. However, VR has also great potential in other areas, like the medical domain, Examples are intervention planning, training and simulation. This is especially of use in medical operations, where an aesthetic outcome is important, like for facial surgeries. Alas, importing medical data into Virtual Reality devices is not necessarily trivial, in particular, when a direct connection to a proprietary application is desired. Moreover, most researcher do not build their medical applications from scratch, but rather leverage platforms like MeVisLab, MITK, OsiriX or 3D Slicer. These platforms have in common that they use libraries like ITK and VTK, and provide a convenient graphical interface. However, ITK and VTK do not support Virtual Reality directly. In this study, the usage of a Virtual Reality device for medical data under the MeVisLab platform is presented. The OpenVR library is integrated into the MeVisLab platform, allowing a direct and uncomplicated usage of the head mounted display HTC Vive inside the MeVisLab platform. Medical data coming from other MeVisLab modules can directly be connected per drag-and-drop to the Virtual Reality module, rendering the data inside the HTC Vive for immersive virtual reality inspection. PMID:28323840
HTC Vive MeVisLab integration via OpenVR for medical applications.
Egger, Jan; Gall, Markus; Wallner, Jürgen; Boechat, Pedro; Hann, Alexander; Li, Xing; Chen, Xiaojun; Schmalstieg, Dieter
2017-01-01
Virtual Reality, an immersive technology that replicates an environment via computer-simulated reality, gets a lot of attention in the entertainment industry. However, VR has also great potential in other areas, like the medical domain, Examples are intervention planning, training and simulation. This is especially of use in medical operations, where an aesthetic outcome is important, like for facial surgeries. Alas, importing medical data into Virtual Reality devices is not necessarily trivial, in particular, when a direct connection to a proprietary application is desired. Moreover, most researcher do not build their medical applications from scratch, but rather leverage platforms like MeVisLab, MITK, OsiriX or 3D Slicer. These platforms have in common that they use libraries like ITK and VTK, and provide a convenient graphical interface. However, ITK and VTK do not support Virtual Reality directly. In this study, the usage of a Virtual Reality device for medical data under the MeVisLab platform is presented. The OpenVR library is integrated into the MeVisLab platform, allowing a direct and uncomplicated usage of the head mounted display HTC Vive inside the MeVisLab platform. Medical data coming from other MeVisLab modules can directly be connected per drag-and-drop to the Virtual Reality module, rendering the data inside the HTC Vive for immersive virtual reality inspection.
The Use of Virtual Reality Technology in the Treatment of Anxiety and Other Psychiatric Disorders.
Maples-Keller, Jessica L; Bunnell, Brian E; Kim, Sae-Jin; Rothbaum, Barbara O
After participating in this activity, learners should be better able to:• Evaluate the literature regarding the effectiveness of incorporating virtual reality (VR) in the treatment of psychiatric disorders• Assess the use of exposure-based intervention for anxiety disorders ABSTRACT: Virtual reality (VR) allows users to experience a sense of presence in a computer-generated, three-dimensional environment. Sensory information is delivered through a head-mounted display and specialized interface devices. These devices track head movements so that the movements and images change in a natural way with head motion, allowing for a sense of immersion. VR, which allows for controlled delivery of sensory stimulation via the therapist, is a convenient and cost-effective treatment. This review focuses on the available literature regarding the effectiveness of incorporating VR within the treatment of various psychiatric disorders, with particular attention to exposure-based intervention for anxiety disorders. A systematic literature search was conducted in order to identify studies implementing VR-based treatment for anxiety or other psychiatric disorders. This article reviews the history of the development of VR-based technology and its use within psychiatric treatment, the empirical evidence for VR-based treatment, and the benefits for using VR for psychiatric research and treatment. It also presents recommendations for how to incorporate VR into psychiatric care and discusses future directions for VR-based treatment and clinical research.
Andersen, Steven Arild Wuyts; Foghsgaard, Søren; Konge, Lars; Cayé-Thomasen, Per; Sørensen, Mads Sølvsten
2016-08-01
To establish the effect of self-directed virtual reality (VR) simulation training on cadaveric dissection training performance in mastoidectomy and the transferability of skills acquired in VR simulation training to the cadaveric dissection training setting. Prospective study. Two cohorts of 20 novice otorhinolaryngology residents received either self-directed VR simulation training before cadaveric dissection training or vice versa. Cadaveric and VR simulation performances were assessed using final-product analysis with three blinded expert raters. The group receiving VR simulation training before cadaveric dissection had a mean final-product score of 14.9 (95 % confidence interval [CI] [12.9-16.9]) compared with 9.8 (95% CI [8.4-11.1]) in the group not receiving VR simulation training before cadaveric dissection. This 52% increase in performance was statistically significantly (P < 0.0001). A single dissection mastoidectomy did not increase VR simulation performance (P = 0.22). Two hours of self-directed VR simulation training was effective in increasing cadaveric dissection mastoidectomy performance and suggests that mastoidectomy skills are transferable from VR simulation to the traditional dissection setting. Virtual reality simulation training can therefore be employed to optimize training, and can spare the use of donated material and instructional resources for more advanced training after basic competencies have been acquired in the VR simulation environment. NA. Laryngoscope, 126:1883-1888, 2016. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.
Applied virtual reality in aerospace design
NASA Technical Reports Server (NTRS)
Hale, Joseph P.
1995-01-01
A virtual reality (VR) applications program has been under development at the Marshall Space Flight Center (MSFC) since 1989. The objectives of the MSFC VR Applications Program are to develop, assess, validate, and utilize VR in hardware development, operations development and support, mission operations training and science training. Before VR can be used with confidence in a particular application, VR must be validated for that class of applications. For that reason, specific validation studies for selected classes of applications have been proposed and are currently underway. These include macro-ergonomic 'control room class' design analysis, Spacelab stowage reconfiguration training, a full-body microgravity functional reach simulator, a gross anatomy teaching simulator, and micro-ergonomic design analysis. This paper describes the MSFC VR Applications Program and the validation studies.
Virtual reality for obsessive-compulsive disorder: past and the future.
Kim, Kwanguk; Kim, Chan-Hyung; Kim, So-Yeon; Roh, Daeyoung; Kim, Sun I
2009-09-01
The use of computers, especially for virtual reality (VR), to understand, assess, and treat various mental health problems has been developed for the last decade, including application for phobia, post-traumatic stress disorder, attention deficits, and schizophrenia. However, the number of VR tools addressing obsessive-compulsive disorder (OCD) is still lacking due to the heterogeneous symptoms of OCD and poor understanding of the relationship between VR and OCD. This article reviews the empirical literatures for VR tools in the future, which involve applications for both clinical work and experimental research in this area, including examining symptoms using VR according to OCD patients' individual symptoms, extending OCD research in the VR setting to also study behavioral and physiological correlations of the symptoms, and expanding the use of VR for OCD to cognitive-behavioral intervention.
Fluet, Gerard G.
2013-01-01
Developments over the past 2 years in virtual reality (VR) augmented sensorimotor rehabilitation of upper limb use and gait post-stroke were reviewed. Studies were included if they evaluated comparative efficacy between VR and standard of care, and or differences in VR delivery methods; and were CEBM (center for evidence based medicine) level 2 or higher. Eight upper limb and two gait studies were included and described using the following categories hardware (input and output), software (virtual task and feedback and presentation) intervention (progression and dose), and outcomes. Trends in the field were commented on, gaps in knowledge identified, and areas of future research and translation of VR to practice were suggested. PMID:24579058
State-of-the-Art of Virtual Reality Technologies for Children on the Autism Spectrum
ERIC Educational Resources Information Center
Parsons, Sarah; Cobb, Sue
2011-01-01
In the past decade there has been a rapid advance in the use of virtual reality (VR) technologies for leisure, training and education. VR is argued to offer particular benefits for children on the autism spectrum, chiefly because it can offer simulations of authentic real-world situations in a carefully controlled and safe environment. Given the…
ERIC Educational Resources Information Center
Strickland, Dorothy C.; McAllister, David; Coles, Claire D.; Osborne, Susan
2007-01-01
This article describes an evolution of training programs to use first-person interaction in virtual reality (VR) situations to teach safety skills to children with autism spectrum disorder (ASD) and fetal alcohol spectrum disorder (FASD). Multiple VR programs for children aged 2 to 9 were built and tested between 1992 and 2007. Based on these…
ERIC Educational Resources Information Center
Williams, M. Scott
2008-01-01
Virtual reality (VR) has been demonstrated to offer learning benefits over traditional instructional methods in many technical and occupational areas. However, in the framework of Rogers' innovation diffusion theory, adoption of VR in Career and Technical Education and occupational programs appears to be lagging. This study used experimental…
Riva, Giuseppe; Carelli, Laura; Gaggioli, Andrea; Gorini, Alessandra; Vigna, Cinzia; Corsi, Riccardo; Faletti, Gianluca; Vezzadini, Luca
2009-01-01
At MMVR 2007 we presented NeuroVR (http://www.neurovr.org) a free virtual reality platform based on open-source software. The software allows non-expert users to adapt the content of 14 pre-designed virtual environments to the specific needs of the clinical or experimental setting. Following the feedbacks of the 700 users who downloaded the first version, we developed a new version - NeuroVR 1.5 - that improves the possibility for the therapist to enhance the patient's feeling of familiarity and intimacy with the virtual scene, by using external sounds, photos or videos. Specifically, the new version now includes full sound support and the ability of triggering external sounds and videos using the keyboard. The outcomes of different trials made using NeuroVR will be presented and discussed.
Clinical Use of Virtual Reality Distraction System to Reduce Anxiety and Pain in Dental Procedures
Gao, Kenneth; Wiederhold, Brenda K.
2014-01-01
Abstract Virtual reality (VR) has been used by clinicians to manage pain in clinical populations. This study examines the use of VR as a form of distraction for dental patients using both subjective and objective measures to determine how a VR system affects patients' reported anxiety level, pain level, and physiological factors. As predicted, results of self-evaluation questionnaires showed that patients experienced less anxiety and pain after undergoing VR treatment. Physiological data reported similar trends in decreased anxiety. Overall, the favorable subjective and objective responses suggest that VR distraction systems can reduce discomfort and pain for patients with mild to moderate fear and anxiety. PMID:24892198
A Critical Review of the Use of Virtual Reality in Construction Engineering Education and Training.
Wang, Peng; Wu, Peng; Wang, Jun; Chi, Hung-Lin; Wang, Xiangyu
2018-06-08
Virtual Reality (VR) has been rapidly recognized and implemented in construction engineering education and training (CEET) in recent years due to its benefits of providing an engaging and immersive environment. The objective of this review is to critically collect and analyze the VR applications in CEET, aiming at all VR-related journal papers published from 1997 to 2017. The review follows a three-stage analysis on VR technologies, applications and future directions through a systematic analysis. It is found that the VR technologies adopted for CEET evolve over time, from desktop-based VR, immersive VR, 3D game-based VR, to Building Information Modelling (BIM)-enabled VR. A sibling technology, Augmented Reality (AR), for CEET adoptions has also emerged in recent years. These technologies have been applied in architecture and design visualization, construction health and safety training, equipment and operational task training, as well as structural analysis. Future research directions, including the integration of VR with emerging education paradigms and visualization technologies, have also been provided. The findings are useful for both researchers and educators to usefully integrate VR in their education and training programs to improve the training performance.
NASA Astrophysics Data System (ADS)
Nakagawa, M.; Akano, K.; Kobayashi, T.; Sekiguchi, Y.
2017-09-01
Image-based virtual reality (VR) is a virtual space generated with panoramic images projected onto a primitive model. In imagebased VR, realistic VR scenes can be generated with lower rendering cost, and network data can be described as relationships among VR scenes. The camera network data are generated manually or by an automated procedure using camera position and rotation data. When panoramic images are acquired in indoor environments, network data should be generated without Global Navigation Satellite Systems (GNSS) positioning data. Thus, we focused on image-based VR generation using a panoramic camera in indoor environments. We propose a methodology to automate network data generation using panoramic images for an image-based VR space. We verified and evaluated our methodology through five experiments in indoor environments, including a corridor, elevator hall, room, and stairs. We confirmed that our methodology can automatically reconstruct network data using panoramic images for image-based VR in indoor environments without GNSS position data.
Virtual reality and the new psychophysics.
de Gelder, Beatrice; Kätsyri, Jari; de Borst, Aline W
2018-05-28
Virtual reality (VR) promises methodological rigour with the extra benefit of allowing us to study the context-dependent behaviour of individuals in their natural environment. Pan and Hamilton (2018, Br. J. Psychol.) provide a useful overview of methodological recommendations for using VR. Here, we highlight some other aspects of the use of VR. Our first argument is that VR can be useful by virtue of its differences from the normal perceptual environment. That is, by virtue of its relative non-realism and poverty of its perceptual elements, it can actually offer increased clarity with respect to the features of interest for the researcher. Our second argument is that VR exerts its measurable influence more by eliciting an acceptance of the virtual world (i.e., 'suspension of disbelief') rather than by eliciting a true belief of the realism of the VR environment. We conclude by providing a novel suggestion for combining neuroimaging methods with embodied VR that relies on the suspension of disbelief. © 2018 The British Psychological Society.
NASA Astrophysics Data System (ADS)
Rengganis, Y. A.; Safrodin, M.; Sukaridhoto, S.
2018-01-01
Virtual Reality Laboratory (VR Lab) is an innovation for conventional learning media which show us whole learning process in laboratory. There are many tools and materials are needed by user for doing practical in it, so user could feel new learning atmosphere by using this innovation. Nowadays, technologies more sophisticated than before. So it would carry in education and it will be more effective, efficient. The Supported technologies are needed us for making VR Lab such as head mounted display device and hand motion gesture device. The integration among them will be used us for making this research. Head mounted display device for viewing 3D environment of virtual reality laboratory. Hand motion gesture device for catching user real hand and it will be visualized in virtual reality laboratory. Virtual Reality will show us, if using the newest technologies in learning process it could make more interesting and easy to understand.
Use of immersive virtual reality to assess episodic memory: A validation study in older adults.
Corriveau Lecavalier, Nick; Ouellet, Émilie; Boller, Benjamin; Belleville, Sylvie
2018-05-29
Virtual reality (VR) allows for the creation of ecological environments that could be used for cognitive assessment and intervention. This study comprises two parts that describe and assess an immersive VR task, the Virtual Shop, which can be used to measure episodic memory. Part 1 addresses its applicability in healthy older adults by measuring presence, motivation, and cybersickness symptoms. Part 2 addresses its construct validity by investigating correlations between performance in the VR task and on a traditional experimental memory task, and by measuring whether the VR task is sensitive to age-related memory differences. Fifty-seven older and 20 younger adults were assessed in the Virtual Shop, in which they memorised and fetched 12 familiar items. Part 1 showed high levels of presence, higher levels of motivation for the VR than for the traditional task, and negligible cybersickness symptoms. Part 2 indicates that memory performance in the VR task is positively correlated with performance on a traditional memory task for both age groups, and age-related differences were found on the VR and traditional memory tasks. Thus, the use of VR is feasible in older adults and the Virtual Shop is a valid task to assess and train episodic memory in this population.
The use of PC based VR in clinical medicine: the VREPAR projects.
Riva, G; Bacchetta, M; Baruffi, M; Borgomainerio, E; Defrance, C; Gatti, F; Galimberti, C; Fontaneto, S; Marchi, S; Molinari, E; Nugues, P; Rinaldi, S; Rovetta, A; Ferretti, G S; Tonci, A; Wann, J; Vincelli, F
1999-01-01
Virtual reality (VR) is an emerging technology that alters the way individuals interact with computers: a 3D computer-generated environment in which a person can move about and interact as if he actually was inside it. Given to the high computational power required to create virtual environments, these are usually developed on expensive high-end workstations. However, the significant advances in PC hardware that have been made over the last three years, are making PC-based VR a possible solution for clinical assessment and therapy. VREPAR - Virtual Reality Environments for Psychoneurophysiological Assessment and Rehabilitation - are two European Community funded projects (Telematics for health - HC 1053/HC 1055 - http://www.psicologia.net) that are trying to develop a modular PC-based virtual reality system for the medical market. The paper describes the rationale of the developed modules and the preliminary results obtained.
Recent Progress in Virtual Reality Exposure Therapy for Phobias: A Systematic Review.
Botella, Cristina; Fernández-Álvarez, Javier; Guillén, Verónica; García-Palacios, Azucena; Baños, Rosa
2017-07-01
This review is designed to systematically examine the available evidence about virtual reality exposure therapy's (VRET) efficacy for phobias, critically describe some of the most important challenges in the field and discuss possible directions. Evidence reveals that virtual reality (VR) is an effective treatment for phobias and useful for studying specific issues, such as pharmacological compounds and behavioral manipulations, that can enhance treatment outcomes. In addition, some variables, such as sense of presence in virtual environments, have a significant influence on outcomes, but further research is needed to better understand their role in therapeutic outcomes. We conclude that VR is a useful tool to improve exposure therapy and it can be a good option to analyze the processes and mechanisms involved in exposure therapy and the ways this strategy can be enhanced. In the coming years, there will be a significant expansion of VR in routine practice in clinical contexts.
Wood, Dennis Patrick; Wiederhold, Brenda K; Spira, James
2010-02-01
Virtual-reality (VR) therapy has been distinguished from other psychotherapy interventions through the use of computer-assisted interventions that rely on the concepts of "immersion," "presence," and "synchrony." In this work, these concepts are defined, and their uses, within the VR treatment architecture, are discussed. VR therapy's emphasis on the incorporation of biofeedback and meditation, as a component of the VR treatment architecture, is also reviewed. A growing body of research has documented VR therapy as a successful treatment for combat-related Posttraumatic Stress Disorder (PTSD). The VR treatment architecture, utilized to treat 30 warriors diagnosed with combat-related PTSD, is summarized. Lastly, case summaries of two warriors successfully treated with VR therapy are included to assist with the goal of better understanding a VR treatment architecture paradigm. Continued validation of the VR treatment model is encouraged.
Virtual reality: a reality for future military pilotage?
NASA Astrophysics Data System (ADS)
McIntire, John P.; Martinsen, Gary L.; Marasco, Peter L.; Havig, Paul R.
2009-05-01
Virtual reality (VR) systems provide exciting new ways to interact with information and with the world. The visual VR environment can be synthetic (computer generated) or be an indirect view of the real world using sensors and displays. With the potential opportunities of a VR system, the question arises about what benefits or detriments a military pilot might incur by operating in such an environment. Immersive and compelling VR displays could be accomplished with an HMD (e.g., imagery on the visor), large area collimated displays, or by putting the imagery on an opaque canopy. But what issues arise when, instead of viewing the world directly, a pilot views a "virtual" image of the world? Is 20/20 visual acuity in a VR system good enough? To deliver this acuity over the entire visual field would require over 43 megapixels (MP) of display surface for an HMD or about 150 MP for an immersive CAVE system, either of which presents a serious challenge with current technology. Additionally, the same number of sensor pixels would be required to drive the displays to this resolution (and formidable network architectures required to relay this information), or massive computer clusters are necessary to create an entirely computer-generated virtual reality with this resolution. Can we presently implement such a system? What other visual requirements or engineering issues should be considered? With the evolving technology, there are many technological issues and human factors considerations that need to be addressed before a pilot is placed within a virtual cockpit.
Virtual reality triage training provides a viable solution for disaster-preparedness.
Andreatta, Pamela B; Maslowski, Eric; Petty, Sean; Shim, Woojin; Marsh, Michael; Hall, Theodore; Stern, Susan; Frankel, Jen
2010-08-01
The objective of this study was to compare the relative impact of two simulation-based methods for training emergency medicine (EM) residents in disaster triage using the Simple Triage and Rapid Treatment (START) algorithm, full-immersion virtual reality (VR), and standardized patient (SP) drill. Specifically, are there differences between the triage performances and posttest results of the two groups, and do both methods differentiate between learners of variable experience levels? Fifteen Postgraduate Year 1 (PGY1) to PGY4 EM residents were randomly assigned to two groups: VR or SP. In the VR group, the learners were effectively surrounded by a virtual mass disaster environment projected on four walls, ceiling, and floor and performed triage by interacting with virtual patients in avatar form. The second group performed likewise in a live disaster drill using SP victims. Setting and patient presentations were identical between the two modalities. Resident performance of triage during the drills and knowledge of the START triage algorithm pre/post drill completion were assessed. Analyses included descriptive statistics and measures of association (effect size). The mean pretest scores were similar between the SP and VR groups. There were no significant differences between the triage performances of the VR and SP groups, but the data showed an effect in favor of the SP group performance on the posttest. Virtual reality can provide a feasible alternative for training EM personnel in mass disaster triage, comparing favorably to SP drills. Virtual reality provides flexible, consistent, on-demand training options, using a stable, repeatable platform essential for the development of assessment protocols and performance standards.
Wang, Ching-Yi; Hwang, Wen-Juh; Fang, Jing-Jing; Sheu, Ching-Fan; Leong, Iat-Fai; Ma, Hui-Ing
2011-08-01
To compare the performance of reaching for stationary and moving targets in virtual reality (VR) and physical reality in persons with Parkinson's disease (PD). A repeated-measures design in which all participants reached in physical reality and VR under 5 conditions: 1 stationary ball condition and 4 conditions with the ball moving at different speeds. University research laboratory. Persons with idiopathic PD (n=29) and age-matched controls (n=25). Not applicable. Success rates and kinematics of arm movement (movement time, amplitude of peak velocity, and percentage of movement time for acceleration phase). In both VR and physical reality, the PD group had longer movement time (P<.001) and lower peak velocity (P<.001) than the controls when reaching for stationary balls. When moving targets were provided, the PD group improved more than the controls did in movement time (P<.001) and peak velocity (P<.001), and reached a performance level similar to that of the controls. Except for the fastest moving ball condition (0.5-s target viewing time), which elicited worse performance in VR than in physical reality, most cueing conditions in VR elicited performance generally similar to those in physical reality. Although slower than the controls when reaching for stationary balls, persons with PD increased movement speed in response to fast moving balls in both VR and physical reality. This suggests that with an appropriate choice of cueing speed, VR is a promising tool for providing visual motion stimuli to improve movement speed in persons with PD. More research on the long-term effect of this type of VR training program is needed. Copyright © 2011 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Utilizing virtual and augmented reality for educational and clinical enhancements in neurosurgery.
Pelargos, Panayiotis E; Nagasawa, Daniel T; Lagman, Carlito; Tenn, Stephen; Demos, Joanna V; Lee, Seung J; Bui, Timothy T; Barnette, Natalie E; Bhatt, Nikhilesh S; Ung, Nolan; Bari, Ausaf; Martin, Neil A; Yang, Isaac
2017-01-01
Neurosurgery has undergone a technological revolution over the past several decades, from trephination to image-guided navigation. Advancements in virtual reality (VR) and augmented reality (AR) represent some of the newest modalities being integrated into neurosurgical practice and resident education. In this review, we present a historical perspective of the development of VR and AR technologies, analyze its current uses, and discuss its emerging applications in the field of neurosurgery. Copyright © 2016 Elsevier Ltd. All rights reserved.
The Effect of Virtual Reality Training on Unilateral Spatial Neglect in Stroke Patients
Kim, Yong Mi; Yun, Gi Jeong; Song, Young Jin; Young, Han Eun
2011-01-01
Objective To investigate the effect of virtual reality training on unilateral spatial neglect in stroke patients. Method Twenty-four stroke patients (14 males and 10 females, mean age=64.7) who had unilateral spatial neglect as a result of right hemisphere stroke were recruited. All patients were randomly assigned to either the virtual reality (VR) group (n=12) or the control group (n=12). The VR group received VR training, which stimulated the left side of their bodies. The control group received conventional neglect therapy such as visual scanning training. Both groups received therapy for 30 minutes a day, five days per week for three weeks. Outcome measurements included star cancellation test, line bisection test, Catherine Bergego scale (CBS), and the Korean version of modified Barthel index (K-MBI). These measurements were taken before and after treatment. Results There were no significant differences in the baseline characteristics and initial values between the two groups. The changes in star cancellation test results and CBS in the VR group were significantly higher than those of the control group after treatment. The changes in line bisection test score and the K-MBI in the VR group were not statistically significant. Conclusion This study suggests that virtual reality training may be a beneficial therapeutic technique on unilateral spatial neglect in stroke patients. PMID:22506138
Roberts, Amy Restorick; Schutter, Bob De; Franks, Kelley; Radina, M Elise
2018-02-21
This study explores how older adults respond to audiovisual virtual reality (VR) and perceive its usefulness to their lives. Focus groups were conducted with residents of a retirement community after they viewed two audiovisual VR simulations (n = 41). Thematic analysis was used to identify patterns in responses. Older adults described positive and negative emotional reactions to aspects of the VR experience, articulated content preferences, shared ideas to improve the usability of the equipment, and identified facilitators and barriers that influenced perceived usefulness. Recommendations for improving this technology include maximizing the positive aspects of VR through increasing interactivity, facilitating socializing with friends or family, and enhancing older adults' ease of use. Desired content of simulations involved travel, continuing education, reminiscence, and self-care/therapy. Virtual reality was reviewed positively, yet modifications are necessary to facilitate optimal user experience and potential benefit for this population. As older adults are interested in using VR, especially if poor health prevents the continuation of desirable activities or new experiences, it is important to respond to older adults' preferences and remove barriers that limit use and enjoyment.
The Future of Virtual Reality in Education: A Future Oriented Meta Analysis of the Literature
ERIC Educational Resources Information Center
Passig, David
2009-01-01
Many have elaborated on the potential of virtual reality (VR) in learning. This article attempts at organizing the literature in this issue in order to better identify indicators that can account for future valid trends, and seeks to bring to attention how authors who wrote about the future of VR in education confused futures' terms and produced…
Computer Vision Assisted Virtual Reality Calibration
NASA Technical Reports Server (NTRS)
Kim, W.
1999-01-01
A computer vision assisted semi-automatic virtual reality (VR) calibration technology has been developed that can accurately match a virtual environment of graphically simulated three-dimensional (3-D) models to the video images of the real task environment.
Virtual reality technology prevents accidents in extreme situations
NASA Astrophysics Data System (ADS)
Badihi, Y.; Reiff, M. N.; Beychok, S.
2012-03-01
This research is aimed at examining the added value of using Virtual Reality (VR) in a driving simulator to prevent road accidents, specifically by improving drivers' skills when confronted with extreme situations. In an experiment, subjects completed a driving scenario using two platforms: A 3-D Virtual Reality display system using an HMD (Head-Mounted Display), and a standard computerized display system based on a standard computer monitor. The results show that the average rate of errors (deviating from the driving path) in a VR environment is significantly lower than in the standard one. In addition, there was no compensation between speed and accuracy in completing the driving mission. On the contrary: The average speed was even slightly faster in the VR simulation than in the standard environment. Thus, generally, despite the lower rate of deviation in VR setting, it is not achieved by driving slower. When the subjects were asked about their personal experiences from the training session, most of the subjects responded that among other things, the VR session caused them to feel a higher sense of commitment to the task and their performance. Some of them even stated that the VR session gave them a real sensation of driving.
An applications-oriented approach to the development of virtual environments
NASA Technical Reports Server (NTRS)
Crowe, Michael X.
1994-01-01
The field of Virtual Reality (VR) is diverse, ranging in scope from research into fundamental enabling technologies to the building of full-scale entertainment facilities. However, the concept of virtual reality means many things to many people. Ideally, a definition of VR should derive from how it can provide solutions to existing challenges in building advanced human computer interfaces. The measure of success for VR lies in its ability to enhance the assimilation of complex information, whether to aid in difficult decision making processes, or to recreate real experiences in a compelling way. This philosophy is described using an example from a VR-based advertising project. The common and unique elements of this example are explained, though the fundamental development process is the same for all virtual environments that support information transfer. In short, this development approach is an applications oriented approach that begins by establishing and prioritizing user requirements and seeks to add value to the information transfer process through the appropriate use of VR technology.
Virtual reality treatment versus exposure in vivo: a comparative evaluation in acrophobia.
Emmelkamp, P M G; Krijn, M; Hulsbosch, A M; de Vries, S; Schuemie, M J; van der Mast, C A P G
2002-05-01
The aim of the present study was to evaluate the effectiveness of low-budget virtual reality (VR) exposure versus exposure in vivo in a between-group design in 33 patients suffering from acrophobia. The virtual environments used in treatment were exactly copied from the real environments used in the exposure in vivo program. VR exposure was found to be as effective as exposure in vivo on anxiety and avoidance as measured with the Acrophobia Questionnaire (AQ), the Attitude Towards Heights Questionnaire (ATHQ) and the Behavioral Avoidance Test (BAT). Results were maintained up to six months follow-up. The present study shows that VR exposure can be effective with relatively cheap hardware and software on stand-alone computers currently on the market. Further studies into the effectiveness of VR exposure are recommended in other clinical groups as agoraphobics and social phobics and studies in which VR exposure is compared with more emerging virtual worlds as presented in CAVE-type systems.
Applied virtual reality at the Research Triangle Institute
NASA Technical Reports Server (NTRS)
Montoya, R. Jorge
1994-01-01
Virtual Reality (VR) is a way for humans to use computers in visualizing, manipulating and interacting with large geometric data bases. This paper describes a VR infrastructure and its application to marketing, modeling, architectural walk through, and training problems. VR integration techniques used in these applications are based on a uniform approach which promotes portability and reusability of developed modules. For each problem, a 3D object data base is created using data captured by hand or electronically. The object's realism is enhanced through either procedural or photo textures. The virtual environment is created and populated with the data base using software tools which also support interactions with and immersivity in the environment. These capabilities are augmented by other sensory channels such as voice recognition, 3D sound, and tracking. Four applications are presented: a virtual furniture showroom, virtual reality models of the North Carolina Global TransPark, a walk through the Dresden Fraunenkirche, and the maintenance training simulator for the National Guard.
Virtual reality for freely moving animals.
Stowers, John R; Hofbauer, Maximilian; Bastien, Renaud; Griessner, Johannes; Higgins, Peter; Farooqui, Sarfarazhussain; Fischer, Ruth M; Nowikovsky, Karin; Haubensak, Wulf; Couzin, Iain D; Tessmar-Raible, Kristin; Straw, Andrew D
2017-10-01
Standard animal behavior paradigms incompletely mimic nature and thus limit our understanding of behavior and brain function. Virtual reality (VR) can help, but it poses challenges. Typical VR systems require movement restrictions but disrupt sensorimotor experience, causing neuronal and behavioral alterations. We report the development of FreemoVR, a VR system for freely moving animals. We validate immersive VR for mice, flies, and zebrafish. FreemoVR allows instant, disruption-free environmental reconfigurations and interactions between real organisms and computer-controlled agents. Using the FreemoVR platform, we established a height-aversion assay in mice and studied visuomotor effects in Drosophila and zebrafish. Furthermore, by photorealistically mimicking zebrafish we discovered that effective social influence depends on a prospective leader balancing its internally preferred directional choice with social interaction. FreemoVR technology facilitates detailed investigations into neural function and behavior through the precise manipulation of sensorimotor feedback loops in unrestrained animals.
The Ethics of Virtual Reality Technology: Social Hazards and Public Policy Recommendations.
Spiegel, James S
2017-09-23
This article explores four major areas of moral concern regarding virtual reality (VR) technologies. First, VR poses potential mental health risks, including Depersonalization/Derealization Disorder. Second, VR technology raises serious concerns related to personal neglect of users' own actual bodies and real physical environments. Third, VR technologies may be used to record personal data which could be deployed in ways that threaten personal privacy and present a danger related to manipulation of users' beliefs, emotions, and behaviors. Finally, there are other moral and social risks associated with the way VR blurs the distinction between the real and illusory. These concerns regarding VR naturally raise questions about public policy. The article makes several recommendations for legal regulations of VR that together address each of the above concerns. It is argued that these regulations would not seriously threaten personal liberty but rather would protect and enhance the autonomy of VR consumers.
Virtual reality applications for diagnosis, risk assessment and therapy of child abusers.
Fromberger, Peter; Jordan, Kirsten; Müller, Jürgen L
2018-03-01
Despite the successful application of virtual reality (VR) in a wide variety of mental disorders and the obvious potentials that VR provides, the use of VR in the context of criminology and forensic psychology is sparse. For forensic mental health professionals, VR provides some advantages that outrun general advantages of VR, e.g., ecological validity and controllability of social situations. Most important seems to be the unique possibility to expose offenders and to train coping skills in virtual situations, which are able to elicit disorder-relevant behavior-without endangering others. VR has already been used for the assessment of deviant sexual interests, for testing the ability to transfer learned coping skills communicated during treatment to behavior, and for risk assessment of child abusers. This article reviews and discusses these innovative research projects with regard to their impact on current clinical practice regarding risk assessment and treatment as well as other implementations of VR applications in forensic mental health. Finally, ethical guidelines for VR research in forensic mental health are provided. Copyright © 2018 John Wiley & Sons, Ltd.
Virtual reality in cognitive and motor rehabilitation: facts, fiction and fallacies.
Tieri, Gaetano; Morone, Giovanni; Paolucci, Stefano; Iosa, Marco
2018-02-01
Over recent decades many researchers and clinicians have started to use Virtual Reality (VR) as a new technology for implementing innovative rehabilitation treatments in cognitive and motor domains. However, the expression 'VR' has often also been improperly used to refer to video games. Further, VR efficacy, often confused with that of video-game exercises, is still debated. Areas covered: In this review, we provide the scientific rationale for the advantages of using VR systems in rehabilitation and investigate whether the VR could really be a promising technique for the future of rehabilitation of patients, or if it is just an entertainment for scientists. In addition, we describe some of the most used devices in VR with their potential advantages for research and provide an overview of the recent evidence and meta-analyses in rehabilitation. Expert commentary: We highlight the efficacy and fallacies of VR in neurorehabilitation and discuss the important factors emerging from the use of VR, including the sense of presence and the embodiment over a virtual avatar, in developing future applications in cognitive and motor rehabilitation.
Virtual Reality-Enhanced Extinction of Phobias and Post-Traumatic Stress.
Maples-Keller, Jessica L; Yasinski, Carly; Manjin, Nicole; Rothbaum, Barbara Olasov
2017-07-01
Virtual reality (VR) refers to an advanced technological communication interface in which the user is actively participating in a computer-generated 3-dimensional virtual world that includes computer sensory input devices used to simulate real-world interactive experiences. VR has been used within psychiatric treatment for anxiety disorders, particularly specific phobias and post-traumatic stress disorder, given several advantages that VR provides for use within treatment for these disorders. Exposure therapy for anxiety disorder is grounded in fear-conditioning models, in which extinction learning involves the process through which conditioned fear responses decrease or are inhibited. The present review will provide an overview of extinction training and anxiety disorder treatment, advantages for using VR within extinction training, a review of the literature regarding the effectiveness of VR within exposure therapy for specific phobias and post-traumatic stress disorder, and limitations and future directions of the extant empirical literature.
Highly immersive virtual reality laparoscopy simulation: development and future aspects.
Huber, Tobias; Wunderling, Tom; Paschold, Markus; Lang, Hauke; Kneist, Werner; Hansen, Christian
2018-02-01
Virtual reality (VR) applications with head-mounted displays (HMDs) have had an impact on information and multimedia technologies. The current work aimed to describe the process of developing a highly immersive VR simulation for laparoscopic surgery. We combined a VR laparoscopy simulator (LapSim) and a VR-HMD to create a user-friendly VR simulation scenario. Continuous clinical feedback was an essential aspect of the development process. We created an artificial VR (AVR) scenario by integrating the simulator video output with VR game components of figures and equipment in an operating room. We also created a highly immersive VR surrounding (IVR) by integrating the simulator video output with a [Formula: see text] video of a standard laparoscopy scenario in the department's operating room. Clinical feedback led to optimization of the visualization, synchronization, and resolution of the virtual operating rooms (in both the IVR and the AVR). Preliminary testing results revealed that individuals experienced a high degree of exhilaration and presence, with rare events of motion sickness. The technical performance showed no significant difference compared to that achieved with the standard LapSim. Our results provided a proof of concept for the technical feasibility of an custom highly immersive VR-HMD setup. Future technical research is needed to improve the visualization, immersion, and capability of interacting within the virtual scenario.
Immersive Earth Science: Data Visualization in Virtual Reality
NASA Astrophysics Data System (ADS)
Skolnik, S.; Ramirez-Linan, R.
2017-12-01
Utilizing next generation technology, Navteca's exploration of 3D and volumetric temporal data in Virtual Reality (VR) takes advantage of immersive user experiences where stakeholders are literally inside the data. No longer restricted by the edges of a screen, VR provides an innovative way of viewing spatially distributed 2D and 3D data that leverages a 360 field of view and positional-tracking input, allowing users to see and experience data differently. These concepts are relevant to many sectors, industries, and fields of study, as real-time collaboration in VR can enhance understanding and mission with VR visualizations that display temporally-aware 3D, meteorological, and other volumetric datasets. The ability to view data that is traditionally "difficult" to visualize, such as subsurface features or air columns, is a particularly compelling use of the technology. Various development iterations have resulted in Navteca's proof of concept that imports and renders volumetric point-cloud data in the virtual reality environment by interfacing PC-based VR hardware to a back-end server and popular GIS software. The integration of the geo-located data in VR and subsequent display of changeable basemaps, overlaid datasets, and the ability to zoom, navigate, and select specific areas show the potential for immersive VR to revolutionize the way Earth data is viewed, analyzed, and communicated.
Glegg, Stephanie M N; Holsti, Liisa; Stanton, Sue; Hanna, Steven; Velikonja, Diana; Ansley, Barbara; Sartor, Denise; Brum, Christine
2017-04-01
To evaluate the impact of knowledge translation (KT) on factors influencing virtual reality (VR) adoption and to identify support needs of therapists. Intervention will be associated with improvements in therapists' perceived ease of use and self-efficacy, and an associated increase in intentions to use VR. Single group mixed-methods pre-test-post-test evaluation of convenience sample of physical, occupational and rehabilitation therapists (n=37) from two brain injury rehabilitation centres. ADOPT-VR administered pre/post KT intervention, consisting of interactive education, clinical manual, technical and clinical support. Increases in perceived ease of use (p=0.000) and self-efficacy (p=0.001), but not behavioural intention to use VR (p=0.158) were found following KT, along with decreases in the frequency of perceived barriers. Post-test changes in the frequency and nature of perceived facilitators and barriers were evident, with increased emphasis on peer influence, organisational-level supports and client factors. Additional support needs were related to clinical reasoning, treatment programme development, technology selection and troubleshooting. KT strategies hold potential for targeting therapists' perceptions of low self-efficacy and ease of use of this technology. Changes in perceived barriers, facilitators and support needs at post-test demonstrated support for repeated evaluation and multi-phased training initiatives to address therapists' needs over time. Implications for Rehabilitation Therapists' learning and support needs in integrating virtual reality extend beyond technical proficiency to include clinical decision-making and application competencies spanning the entire rehabilitation process. Phased, multi-faceted strategies may be valuable in addressing therapists' changing needs as they progress from novice to experienced virtual reality users. The ADOPT-VR is a sensitive measure to re-evaluate the personal, social, environmental, technology-specific and system-level factors influencing virtual reality adoption over time.
Ershow, Abby G; Peterson, Charles M; Riley, William T; Rizzo, Albert “Skip”; Wansink, Brian
2011-01-01
The rising rates, high prevalence, and adverse consequences of obesity and diabetes call for new approaches to the complex behaviors needed to prevent and manage these conditions. Virtual reality (VR) technologies, which provide controllable, multisensory, interactive three-dimensional (3D) stimulus environments, are a potentially valuable means of engaging patients in interventions that foster more healthful eating and physical activity patterns. Furthermore, the capacity of VR technologies to motivate, record, and measure human performance represents a novel and useful modality for conducting research. This article summarizes background information and discussions for a joint July 2010 National Institutes of Health – Department of Defense workshop entitled Virtual Reality Technologies for Research and Education in Obesity and Diabetes. The workshop explored the research potential of VR technologies as tools for behavioral and neuroscience studies in diabetes and obesity, and the practical potential of VR in fostering more effective utilization of diabetes- and obesity-related nutrition and lifestyle information. Virtual reality technologies were considered especially relevant for fostering desirable health-related behaviors through motivational reinforcement, personalized teaching approaches, and social networking. Virtual reality might also be a means of extending the availability and capacity of health care providers. Progress in the field will be enhanced by further developing available platforms and taking advantage of VR’s capabilities as a research tool for well-designed hypothesis-testing behavioral science. Multidisciplinary collaborations are needed between the technology industry and academia, and among researchers in biomedical, behavioral, pedagogical, and computer science disciplines. Research priorities and funding opportunities for use of VR to improve prevention and management of obesity and diabetes can be found at agency websites (National Institutes of Health: http://grants.nih.gov/grants/guide/index.html; Department of Defense: www.tatrc.org). PMID:21527084
Virtual Reality Simulation for the Operating Room
Gallagher, Anthony G.; Ritter, E Matt; Champion, Howard; Higgins, Gerald; Fried, Marvin P.; Moses, Gerald; Smith, C Daniel; Satava, Richard M.
2005-01-01
Summary Background Data: To inform surgeons about the practical issues to be considered for successful integration of virtual reality simulation into a surgical training program. The learning and practice of minimally invasive surgery (MIS) makes unique demands on surgical training programs. A decade ago Satava proposed virtual reality (VR) surgical simulation as a solution for this problem. Only recently have robust scientific studies supported that vision Methods: A review of the surgical education, human-factor, and psychology literature to identify important factors which will impinge on the successful integration of VR training into a surgical training program. Results: VR is more likely to be successful if it is systematically integrated into a well-thought-out education and training program which objectively assesses technical skills improvement proximate to the learning experience. Validated performance metrics should be relevant to the surgical task being trained but in general will require trainees to reach an objectively determined proficiency criterion, based on tightly defined metrics and perform at this level consistently. VR training is more likely to be successful if the training schedule takes place on an interval basis rather than massed into a short period of extensive practice. High-fidelity VR simulations will confer the greatest skills transfer to the in vivo surgical situation, but less expensive VR trainers will also lead to considerably improved skills generalizations. Conclusions: VR for improved performance of MIS is now a reality. However, VR is only a training tool that must be thoughtfully introduced into a surgical training curriculum for it to successfully improve surgical technical skills. PMID:15650649
Future directions for the development of virtual reality within an automotive manufacturer.
Lawson, Glyn; Salanitri, Davide; Waterfield, Brian
2016-03-01
Virtual Reality (VR) can reduce time and costs, and lead to increases in quality, in the development of a product. Given the pressure on car companies to reduce time-to-market and to continually improve quality, the automotive industry has championed the use of VR across a number of applications, including design, manufacturing, and training. This paper describes interviews with 11 engineers and employees of allied disciplines from an automotive manufacturer about their current physical and virtual properties and processes. The results guided a review of research findings and scientific advances from the academic literature, which formed the basis of recommendations for future developments of VR technologies and applications. These include: develop a greater range of virtual contexts; use multi-sensory simulation; address perceived differences between virtual and real cars; improve motion capture capabilities; implement networked 3D technology; and use VR for market research. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Park, Yu-Hyung; Lee, Chi-Ho; Lee, Byoung-Hee
2013-01-01
This study is a single blind randomized controlled trial to determine the effect of virtual reality-based postural control training on the gait ability in patients with chronic stroke. Sixteen subjects were randomly assigned to either experimental group (VR, n= 8) or control group (CPT, n= 8). Subjects in both groups received conventional physical therapy for 60 min per day, five days per week during a period of four weeks. Subjects in the VR group received additional augmented reality-based training for 30 min per day, three days per week during a period of four weeks. The subjects were evaluated one week before and after participating in a four week training and follow-up at one month post-training. Data derived from the gait analyses included spatiotemporal gait parameters, 10 meters walking test (10 mWT). In the gait parameters, subjects in the VR group showed significant improvement, except for cadence at post-training and follow-up within the experimental group. However, no obvious significant improvement was observed within the control group. In between group comparisons, the experimental group (VR group) showed significantly greater improvement only in stride length compared with the control group (P< 0.05), however, no significant difference was observed in other gait parameters. In conclusion, we demonstrate significant improvement in gait ability in chronic stroke patients who received virtual reality based postural control training. These findings suggest that virtual reality (VR) postural control training using real-time information may be a useful approach for enhancement of gait ability in patients with chronic stroke.
ERIC Educational Resources Information Center
Morales, Teresa M.; Bang, EunJin; Andre, Thomas
2013-01-01
This paper presents a qualitative case analysis of a new and unique, high school, student-directed, project-based learning (PBL), virtual reality (VR) class. In order to create projects, students learned, on an independent basis, how to program an industrial-level VR machine. A constraint was that students were required to produce at least one…
A Planetarium Inside Your Office: Virtual Reality in the Dome Production Pipeline
NASA Astrophysics Data System (ADS)
Summers, Frank
2018-01-01
Producing astronomy visualization sequences for a planetarium without ready access to a dome is a distorted geometric challenge. Fortunately, one can now use virtual reality (VR) to simulate a dome environment without ever leaving one's office chair. The VR dome experience has proven to be a more than suitable pre-visualization method that requires only modest amounts of processing beyond the standard production pipeline. It also provides a crucial testbed for identifying, testing, and fixing the visual constraints and artifacts that arise in a spherical presentation environment. Topics adreesed here will include rendering, geometric projection, movie encoding, software playback, and hardware setup for a virtual dome using VR headsets.
Virtual reality for health care: the status of research.
Riva, Giuseppe
2002-06-01
As information technology has advanced and costs have declined over the past decade, there has been a steady growth in the use of virtual reality (VR) in health care. According to the data of the two leading clinical databases--MEDLINE and PSYCINFO--the research in the virtual reality field is moving fast: under the "virtual reality" keyword, there are 739 papers listed in MEDLINE and 569 in PSYCINFO (accessed 6 December 2001). Much of this growth, however, has been in the form of feasibility studies and pilot trials. In fact, many researchers tried to use VR, but only a few were able to deepen their study. According to MEDLINE, only 16 research groups published more than three papers related to health care applications of VR. This number lowers to 12 for papers included in PSYCLIT. Therefore, apart from surgical training and some behavioral treatments, there is little convincing evidence coming from controlled studies of the clinical and economical advantages of this approach. This paper discusses recent evidence and outlines some guidelines for future research in this area.
Marshall Engineers Use Virtual Reality
NASA Technical Reports Server (NTRS)
1993-01-01
Virtual Reality (VR) can provide cost effective methods to design and evaluate components and systems for maintenance and refurbishment operations. Marshall Spce Flight Center (MSFC) is begirning to utilize VR for design analysis in the X-34 experimental reusable space vehicle. Analysts at MSFC's Computer Applications and Virtual Environments (CAVE) used Head Mounted Displays (HMD) (pictured), spatial trackers and gesture inputs as a means to animate or inhabit a properly sized virtual human model. These models are used in a VR scenario as a way to determine functionality of space and maintenance requirements for the virtual X-34. The primary functions of the virtual X-34 mockup is to support operations development and design analysis for engine removal, the engine compartment and the aft fuselage. This capability provides general visualization support to engineers and designers at MSFC and to the System Design Freeze Review at Orbital Sciences Corporation (OSC).
ERIC Educational Resources Information Center
Huang, Hsiu-Mei; Liaw, Shu-Sheng; Lai, Chung-Min
2016-01-01
Advanced technologies have been widely applied in medical education, including human-patient simulators, immersive virtual reality Cave Automatic Virtual Environment systems, and video conferencing. Evaluating learner acceptance of such virtual reality (VR) learning environments is a critical issue for ensuring that such technologies are used to…
The NASA Augmented/Virtual Reality Lab: The State of the Art at KSC
NASA Technical Reports Server (NTRS)
Little, William
2017-01-01
The NASA Augmented Virtual Reality (AVR) Lab at Kennedy Space Center is dedicated to the investigation of Augmented Reality (AR) and Virtual Reality (VR) technologies, with the goal of determining potential uses of these technologies as human-computer interaction (HCI) devices in an aerospace engineering context. Begun in 2012, the AVR Lab has concentrated on commercially available AR and VR devices that are gaining in popularity and use in a number of fields such as gaming, training, and telepresence. We are working with such devices as the Microsoft Kinect, the Oculus Rift, the Leap Motion, the HTC Vive, motion capture systems, and the Microsoft Hololens. The focus of our work has been on human interaction with the virtual environment, which in turn acts as a communications bridge to remote physical devices and environments which the operator cannot or should not control or experience directly. Particularly in reference to dealing with spacecraft and the oftentimes hazardous environments they inhabit, it is our hope that AR and VR technologies can be utilized to increase human safety and mission success by physically removing humans from those hazardous environments while virtually putting them right in the middle of those environments.
Virtual surgery in a (tele-)radiology framework.
Glombitza, G; Evers, H; Hassfeld, S; Engelmann, U; Meinzer, H P
1999-09-01
This paper presents telemedicine as an extension of a teleradiology framework through tools for virtual surgery. To classify the described methods and applications, the research field of virtual reality (VR) is broadly reviewed. Differences with respect to technical equipment, methodological requirements and areas of application are pointed out. Desktop VR, augmented reality, and virtual reality are differentiated and discussed in some typical contexts of diagnostic support, surgical planning, therapeutic procedures, simulation and training. Visualization techniques are compared as a prerequisite for virtual reality and assigned to distinct levels of immersion. The advantage of a hybrid visualization kernel is emphasized with respect to the desktop VR applications that are subsequently shown. Moreover, software design aspects are considered by outlining functional openness in the architecture of the host system. Here, a teleradiology workstation was extended by dedicated tools for surgical planning through a plug-in mechanism. Examples of recent areas of application are introduced such as liver tumor resection planning, diagnostic support in heart surgery, and craniofacial surgery planning. In the future, surgical planning systems will become more important. They will benefit from improvements in image acquisition and communication, new image processing approaches, and techniques for data presentation. This will facilitate preoperative planning and intraoperative applications.
Yap, Hwa Jen; Taha, Zahari; Md Dawal, Siti Zawiah; Chang, Siow-Wee
2014-01-01
Traditional robotic work cell design and programming are considered inefficient and outdated in current industrial and market demands. In this research, virtual reality (VR) technology is used to improve human-robot interface, whereby complicated commands or programming knowledge is not required. The proposed solution, known as VR-based Programming of a Robotic Work Cell (VR-Rocell), consists of two sub-programmes, which are VR-Robotic Work Cell Layout (VR-RoWL) and VR-based Robot Teaching System (VR-RoT). VR-RoWL is developed to assign the layout design for an industrial robotic work cell, whereby VR-RoT is developed to overcome safety issues and lack of trained personnel in robot programming. Simple and user-friendly interfaces are designed for inexperienced users to generate robot commands without damaging the robot or interrupting the production line. The user is able to attempt numerous times to attain an optimum solution. A case study is conducted in the Robotics Laboratory to assemble an electronics casing and it is found that the output models are compatible with commercial software without loss of information. Furthermore, the generated KUKA commands are workable when loaded into a commercial simulator. The operation of the actual robotic work cell shows that the errors may be due to the dynamics of the KUKA robot rather than the accuracy of the generated programme. Therefore, it is concluded that the virtual reality based solution approach can be implemented in an industrial robotic work cell. PMID:25360663
Yap, Hwa Jen; Taha, Zahari; Dawal, Siti Zawiah Md; Chang, Siow-Wee
2014-01-01
Traditional robotic work cell design and programming are considered inefficient and outdated in current industrial and market demands. In this research, virtual reality (VR) technology is used to improve human-robot interface, whereby complicated commands or programming knowledge is not required. The proposed solution, known as VR-based Programming of a Robotic Work Cell (VR-Rocell), consists of two sub-programmes, which are VR-Robotic Work Cell Layout (VR-RoWL) and VR-based Robot Teaching System (VR-RoT). VR-RoWL is developed to assign the layout design for an industrial robotic work cell, whereby VR-RoT is developed to overcome safety issues and lack of trained personnel in robot programming. Simple and user-friendly interfaces are designed for inexperienced users to generate robot commands without damaging the robot or interrupting the production line. The user is able to attempt numerous times to attain an optimum solution. A case study is conducted in the Robotics Laboratory to assemble an electronics casing and it is found that the output models are compatible with commercial software without loss of information. Furthermore, the generated KUKA commands are workable when loaded into a commercial simulator. The operation of the actual robotic work cell shows that the errors may be due to the dynamics of the KUKA robot rather than the accuracy of the generated programme. Therefore, it is concluded that the virtual reality based solution approach can be implemented in an industrial robotic work cell.
Virtual Reality Job Interview Training for Individuals with Psychiatric Disabilities
Smith, Matthew J.; Ginger, Emily J.; Wright, Michael; Wright, Katherine; Humm, Laura Boteler; Olsen, Dale; Bell, Morris D.; Fleming, Michael F.
2014-01-01
Services are available to help support existing employment for individual with psychiatric disabilities; however, there is a gap in services targeting job interview skills that can help obtain employment. We assessed the feasibility and efficacy of Virtual Reality Job Interview Training (VR-JIT) in a randomized controlled trial. Participants were randomized to VR-JIT (n=25) or treatment as usual (TAU) (n=12) groups. VR-JIT consisted of 10 hours of simulated job interviews with a virtual character and didactic online training. Participants attended 95% of lab-based training sessions and found VR-JIT easy-to-use and felt prepared for future interviews. The VR-JIT group improved their job interview role-play performance (p<0.05) and self-confidence (p<0.05) between baseline and follow-up as compared to the TAU group. VR-JIT performance scores increased over time (R-Squared=0.65). VR-JIT demonstrated initial feasibility and efficacy at improving job interview skills and self-confidence. Future research may help clarify whether this intervention is efficacious in community-based settings. PMID:25099298
Virtual reality job interview training for individuals with psychiatric disabilities.
Smith, Matthew J; Ginger, Emily J; Wright, Michael; Wright, Katherine; Boteler Humm, Laura; Olsen, Dale; Bell, Morris D; Fleming, Michael F
2014-09-01
Services are available to help support existing employment for individuals with psychiatric disabilities; however, there is a gap in services targeting job interview skills that can help obtain employment. We assessed the feasibility and efficacy of Virtual Reality Job Interview Training (VR-JIT) in a randomized controlled trial. Participants were randomized to VR-JIT (n = 25) or treatment-as-usual (TAU) (n = 12) groups. VR-JIT consisted of 10 hours of simulated job interviews with a virtual character and didactic online training. The participants attended 95% of laboratory-based training sessions and found VR-JIT easy to use and felt prepared for future interviews. The VR-JIT group improved their job interview role-play performance (p ≤ 0.05) and self-confidence (p ≤ 0.05) between baseline and follow-up as compared with the TAU group. VR-JIT performance scores increased over time (R = 0.65). VR-JIT demonstrated initial feasibility and efficacy at improving job interview skills and self-confidence. Future research may help clarify whether this intervention is efficacious in community-based settings.
Virtual reality systems for rodents
Ayaz, Aslı
2017-01-01
Abstract Over the last decade virtual reality (VR) setups for rodents have been developed and utilized to investigate the neural foundations of behavior. Such VR systems became very popular since they allow the use of state-of-the-art techniques to measure neural activity in behaving rodents that cannot be easily used with classical behavior setups. Here, we provide an overview of rodent VR technologies and review recent results from related research. We discuss commonalities and differences as well as merits and issues of different approaches. A special focus is given to experimental (behavioral) paradigms in use. Finally we comment on possible use cases that may further exploit the potential of VR in rodent research and hence inspire future studies. PMID:29491968
Virtual reality based surgery simulation for endoscopic gynaecology.
Székely, G; Bajka, M; Brechbühler, C; Dual, J; Enzler, R; Haller, U; Hug, J; Hutter, R; Ironmonger, N; Kauer, M; Meier, V; Niederer, P; Rhomberg, A; Schmid, P; Schweitzer, G; Thaler, M; Vuskovic, V; Tröster, G
1999-01-01
Virtual reality (VR) based surgical simulator systems offer very elegant possibilities to both enrich and enhance traditional education in endoscopic surgery. However, while a wide range of VR simulator systems have been proposed and realized in the past few years, most of these systems are far from able to provide a reasonably realistic surgical environment. We explore the basic approaches to the current limits of realism and ultimately seek to extend these based on our description and analysis of the most important components of a VR-based endoscopic simulator. The feasibility of the proposed techniques is demonstrated on a first modular prototype system implementing the basic algorithms for VR-training in gynaecologic laparoscopy.
Skill training in multimodal virtual environments.
Gopher, Daniel
2012-01-01
Multimodal, immersive, virtual reality (VR) techniques open new perspectives for perceptual-motor skill trainers. They also introduce new risks and dangers. This paper describes the benefits and pitfalls of multimodal training and the cognitive building blocks of a multimodal, VR training simulators.
A virtual reality assessment and training system for unilateral neglect.
Kim, Kwanguk; Kim, Jaehun; Ku, Jeonghun; Kim, Deog Young; Chang, Won Hyek; Shin, Dong Ik; Lee, Jang Han; Kim, In Young; Kim, Sun I
2004-12-01
Patients with unilateral neglect have problems reporting, responding, or orienting to novel or meaningful stimuli that is presented to the side opposite to that of a brain lesion. This creates a serous problem in regards to daily living activities. However, the established methods for assessing and training of unilateral neglect patients have several deficits. Recently, virtual reality (VR) technologies have been used as an assessment and treatment tool for rehabilitation. Hence, this study designed a VR system to assess and train unilateral neglect patients. In addition, the suitability and feasibility of our VR system for unilateral neglect patients was verified.
Virtual reality-based cognitive training for drug abusers: A randomised controlled trial.
Man, David W K
2018-05-08
Non-pharmacological means are being developed to enhance cognitive abilities in drug abusers. This study evaluated virtual reality (VR) as an intervention tool for enhancing cognitive and vocational outcomes in 90 young ketamine users (KU) randomly assigned to a treatment group (virtual reality group, VRG; tutor-administered group, TAG) or wait-listed control group (CG). Two training programmes with similar content but different delivery modes (VR-based and manual-based) were applied using a virtual boutique as a training scenario. Outcome assessments comprised the Digit Vigilance Test, Rivermead Behavioural Memory Test, Wisconsin Cart Sorting Test, work-site test and self-efficacy pre- and post-test and during 3- and 6-month follow-ups. The VRG exhibited significant improvements in attention and improvements in memory that were maintained after 3 months. Both the VRG and TAG exhibited significantly improved vocational skills after training which were maintained during follow-up, and improved self-efficacy. VR-based cognitive training might target cognitive problems in KU.
Declarative Knowledge Acquisition in Immersive Virtual Learning Environments
ERIC Educational Resources Information Center
Webster, Rustin
2016-01-01
The author investigated the interaction effect of immersive virtual reality (VR) in the classroom. The objective of the project was to develop and provide a low-cost, scalable, and portable VR system containing purposely designed and developed immersive virtual learning environments for the US Army. The purpose of the mixed design experiment was…
Active Learning through the Use of Virtual Environments
ERIC Educational Resources Information Center
Mayrose, James
2012-01-01
Immersive Virtual Reality (VR) has seen explosive growth over the last decade. Immersive VR attempts to give users the sensation of being fully immersed in a synthetic environment by providing them with 3D hardware, and allowing them to interact with objects in virtual worlds. The technology is extremely effective for learning and exploration, and…
Improving Balance in TBI Using a Low-Cost Customized Virtual Reality Rehabilitation Tool
2016-10-01
AWARD NUMBER: W81XWH-14-2-0150 TITLE: Improving Balance in TBI Using a Low-Cost Customized Virtual Reality Rehabilitation Tool PRINCIPAL...AND SUBTITLE Improving Balance in TBI Using a Low-Cost Customized Virtual Reality Rehabilitation Tool 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH...Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The proposed study will implement and evaluate a novel, low-cost, Virtual Reality (VR
Virtual reality for pain and anxiety management in children
Arane, Karen; Behboudi, Amir; Goldman, Ran D.
2017-01-01
Abstract Question Pain and anxiety are common in children who need procedures such as administering vaccines or drawing blood. Recent reports have described the use of virtual reality (VR) as a method of distraction during such procedures. How does VR work in reducing pain and anxiety in pediatric patients and what are the potential uses for it? Answer Recent studies explored using VR with pediatric patients undergoing procedures ranging from vaccinations and intravenous injections to laceration repair and dressing changes for burn wounds. Interacting with immersive VR might divert attention, leading to a slower response to incoming pain signals. Preliminary results have shown that VR is effective, either alone or in combination with standard care, in reducing the pain and anxiety patients experience compared with standard care or other distraction methods. PMID:29237632
A Study on the System for Treatment of ADHD Using Virtual Reality
2001-10-25
following disadvantages; side - effects ( Ritalin can cause a cancer of liver[4]), needs of much time and efforts from many persons concerned. To...Unlike the existing treatment methods, VR Therapy system does not have any side effects and can present many situations to a subject without...system for treatment of ADHD using Virtual Reality technology. Psychotherapy using VR has some advantages that it is safer and more effective than
Virtual Reality for Traumatic Brain Injury.
Zanier, Elisa R; Zoerle, Tommaso; Di Lernia, Daniele; Riva, Giuseppe
2018-01-01
In this perspective, we discuss the potential of virtual reality (VR) in the assessment and rehabilitation of traumatic brain injury, a silent epidemic of extremely high burden and no pharmacological therapy available. VR, endorsed by the mobile and gaming industries, is now available in more usable and cheaper tools allowing its therapeutic engagement both at the bedside and during the daily life at chronic stages after injury with terrific potential for a longitudinal disease modifying effect.
Emerging Utility of Virtual Reality as a Multidisciplinary Tool in Clinical Medicine.
Pourmand, Ali; Davis, Steven; Lee, Danny; Barber, Scott; Sikka, Neal
2017-10-01
Among the more recent products borne of the evolution of digital technology, virtual reality (VR) is gaining a foothold in clinical medicine as an adjunct to traditional therapies. Early studies suggest a growing role for VR applications in pain management, clinical skills training, cognitive assessment and cognitive therapy, and physical rehabilitation. To complete a review of the literature, we searched PubMed and MEDLINE databases with the following search terms: "virtual reality," "procedural medicine," "oncology," "physical therapy," and "burn." We further limited our search to publications in the English language. Boolean operators were used to combine search terms. The included search terms yielded 97 potential articles, of which 45 were identified as meeting study criteria, and are included in this review. These articles provide data, which strongly support the hypothesis that VR simulations can enhance pain management (by reducing patient perception of pain and anxiety), can augment clinical training curricula and physical rehabilitation protocols (through immersive audiovisual environments), and can improve clinical assessment of cognitive function (through improved ecological validity). Through computer-generated, life-like digital landscapes, VR stands to change the current approach to pain management, medical training, neurocognitive diagnosis, and physical rehabilitation. Additional studies are needed to help define best practices in VR utilization, and to explore new therapeutic uses for VR in clinical practice.
Effect of virtual reality on cognition in stroke patients.
Kim, Bo Ryun; Chun, Min Ho; Kim, Lee Suk; Park, Ji Young
2011-08-01
To investigate the effect of virtual reality on the recovery of cognitive impairment in stroke patients. Twenty-eight patients (11 males and 17 females, mean age 64.2) with cognitive impairment following stroke were recruited for this study. All patients were randomly assigned to one of two groups, the virtual reality (VR) group (n=15) or the control group (n=13). The VR group received both virtual reality training and computer-based cognitive rehabilitation, whereas the control group received only computer-based cognitive rehabilitation. To measure, activity of daily living cognitive and motor functions, the following assessment tools were used: computerized neuropsychological test and the Tower of London (TOL) test for cognitive function assessment, Korean-Modified Barthel index (K-MBI) for functional status evaluation, and the motricity index (MI) for motor function assessment. All recruited patients underwent these evaluations before rehabilitation and four weeks after rehabilitation. The VR group showed significant improvement in the K-MMSE, visual and auditory continuous performance tests (CPT), forward digit span test (DST), forward and backward visual span tests (VST), visual and verbal learning tests, TOL, K-MBI, and MI scores, while the control group showed significant improvement in the K-MMSE, forward DST, visual and verbal learning tests, trail-making test-type A, TOL, K-MBI, and MI scores after rehabilitation. The changes in the visual CPT and backward VST in the VR group after rehabilitation were significantly higher than those in the control group. Our findings suggest that virtual reality training combined with computer-based cognitive rehabilitation may be of additional benefit for treating cognitive impairment in stroke patients.
Virtual Reality in Neurointervention.
Ong, Chin Siang; Deib, Gerard; Yesantharao, Pooja; Qiao, Ye; Pakpoor, Jina; Hibino, Narutoshi; Hui, Ferdinand; Garcia, Juan R
2018-06-01
Virtual reality (VR) allows users to experience realistic, immersive 3D virtual environments with the depth perception and binocular field of view of real 3D settings. Newer VR technology has now allowed for interaction with 3D objects within these virtual environments through the use of VR controllers. This technical note describes our preliminary experience with VR as an adjunct tool to traditional angiographic imaging in the preprocedural workup of a patient with a complex pseudoaneurysm. Angiographic MRI data was imported and segmented to create 3D meshes of bilateral carotid vasculature. The 3D meshes were then projected into VR space, allowing the operator to inspect the carotid vasculature using a 3D VR headset as well as interact with the pseudoaneurysm (handling, rotation, magnification, and sectioning) using two VR controllers. 3D segmentation of a complex pseudoaneurysm in the distal cervical segment of the right internal carotid artery was successfully performed and projected into VR. Conventional and VR visualization modes were equally effective in identifying and classifying the pathology. VR visualization allowed the operators to manipulate the dataset to achieve a greater understanding of the anatomy of the parent vessel, the angioarchitecture of the pseudoaneurysm, and the surface contours of all visualized structures. This preliminary study demonstrates the feasibility of utilizing VR for preprocedural evaluation in patients with anatomically complex neurovascular disorders. This novel visualization approach may serve as a valuable adjunct tool in deciding patient-specific treatment plans and selection of devices prior to intervention.
An innovative virtual reality training tool for orthognathic surgery.
Pulijala, Y; Ma, M; Pears, M; Peebles, D; Ayoub, A
2018-02-01
Virtual reality (VR) surgery using Oculus Rift and Leap Motion devices is a multi-sensory, holistic surgical training experience. A multimedia combination including 360° videos, three-dimensional interaction, and stereoscopic videos in VR has been developed to enable trainees to experience a realistic surgery environment. The innovation allows trainees to interact with the individual components of the maxillofacial anatomy and apply surgical instruments while watching close-up stereoscopic three-dimensional videos of the surgery. In this study, a novel training tool for Le Fort I osteotomy based on immersive virtual reality (iVR) was developed and validated. Seven consultant oral and maxillofacial surgeons evaluated the application for face and content validity. Using a structured assessment process, the surgeons commented on the content of the developed training tool, its realism and usability, and the applicability of VR surgery for orthognathic surgical training. The results confirmed the clinical applicability of VR for delivering training in orthognathic surgery. Modifications were suggested to improve the user experience and interactions with the surgical instruments. This training tool is ready for testing with surgical trainees. Copyright © 2018 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
The Real World and Virtual Worlds.
ERIC Educational Resources Information Center
Glaser, Stan
1997-01-01
Discusses some of the limitations of virtual reality (VR) with reference to socio-technical systems, i.e., the interaction of people with technology. Points to a significant opportunity for VR technology to be used in strategic partnership marketing and supply chain management. (Author/LRW)
2014-01-01
Presentation of social situations via immersive virtual reality (VR) has the potential to be an ecologically valid way of assessing psychiatric symptoms. In this study we assess the occurrence of paranoid thinking and of symptoms of posttraumatic stress disorder (PTSD) in response to a single neutral VR social environment as predictors of later psychiatric symptoms assessed by standard methods. One hundred six people entered an immersive VR social environment (a train ride), presented via a head-mounted display, 4 weeks after having attended hospital because of a physical assault. Paranoid thinking about the neutral computer-generated characters and the occurrence of PTSD symptoms in VR were assessed. Reactions in VR were then used to predict the occurrence 6 months later of symptoms of paranoia and PTSD, as assessed by standard interviewer and self-report methods. Responses to VR predicted the severity of paranoia and PTSD symptoms as assessed by standard measures 6 months later. The VR assessments also added predictive value to the baseline interviewer methods, especially for paranoia. Brief exposure to environments presented via virtual reality provides a symptom assessment with predictive ability over many months. VR assessment may be of particular benefit for difficult to assess problems, such as paranoia, that have no gold standard assessment method. In the future, VR environments may be used in the clinic to complement standard self-report and clinical interview methods. PMID:24708073
Freeman, Daniel; Antley, Angus; Ehlers, Anke; Dunn, Graham; Thompson, Claire; Vorontsova, Natasha; Garety, Philippa; Kuipers, Elizabeth; Glucksman, Edward; Slater, Mel
2014-09-01
Presentation of social situations via immersive virtual reality (VR) has the potential to be an ecologically valid way of assessing psychiatric symptoms. In this study we assess the occurrence of paranoid thinking and of symptoms of posttraumatic stress disorder (PTSD) in response to a single neutral VR social environment as predictors of later psychiatric symptoms assessed by standard methods. One hundred six people entered an immersive VR social environment (a train ride), presented via a head-mounted display, 4 weeks after having attended hospital because of a physical assault. Paranoid thinking about the neutral computer-generated characters and the occurrence of PTSD symptoms in VR were assessed. Reactions in VR were then used to predict the occurrence 6 months later of symptoms of paranoia and PTSD, as assessed by standard interviewer and self-report methods. Responses to VR predicted the severity of paranoia and PTSD symptoms as assessed by standard measures 6 months later. The VR assessments also added predictive value to the baseline interviewer methods, especially for paranoia. Brief exposure to environments presented via virtual reality provides a symptom assessment with predictive ability over many months. VR assessment may be of particular benefit for difficult to assess problems, such as paranoia, that have no gold standard assessment method. In the future, VR environments may be used in the clinic to complement standard self-report and clinical interview methods. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Using a virtual reality temporal bone simulator to assess otolaryngology trainees.
Zirkle, Molly; Roberson, David W; Leuwer, Rudolf; Dubrowski, Adam
2007-02-01
The objective of this study is to determine the feasibility of computerized evaluation of resident performance using hand motion analysis on a virtual reality temporal bone (VR TB) simulator. We hypothesized that both computerized analysis and expert ratings would discriminate the performance of novices from experienced trainees. We also hypothesized that performance on the virtual reality temporal bone simulator (VR TB) would differentiate based on previous drilling experience. The authors conducted a randomized, blind assessment study. Nineteen volunteers from the Otolaryngology-Head and Neck Surgery training program at the University of Toronto drilled both a cadaveric TB and a simulated VR TB. Expert reviewers were asked to assess operative readiness of the trainee based on a blind video review of their performance. Computerized hand motion analysis of each participant's performance was conducted. Expert raters were able to discriminate novices from experienced trainees (P < .05) on cadaveric temporal bones, and there was a trend toward discrimination on VR TB performance. Hand motion analysis showed that experienced trainees had better movement economy than novices (P < .05) on the VR TB. Performance, as measured by hand motion analysis on the VR TB simulator, reflects trainees' previous drilling experience. This study suggests that otolaryngology trainees could accomplish initial temporal bone training on a VR TB simulator, which can provide feedback to the trainee, and may reduce the need for constant faculty supervision and evaluation.
Randomized clinical trial of virtual reality simulation for laparoscopic skills training.
Grantcharov, T P; Kristiansen, V B; Bendix, J; Bardram, L; Rosenberg, J; Funch-Jensen, P
2004-02-01
This study examined the impact of virtual reality (VR) surgical simulation on improvement of psychomotor skills relevant to the performance of laparoscopic cholecystectomy. Sixteen surgical trainees performed a laparoscopic cholecystectomy on patients in the operating room (OR). The participants were then randomized to receive VR training (ten repetitions of all six tasks on the Minimally Invasive Surgical Trainer-Virtual Reality (MIST-VR)) or no training. Subsequently, all subjects performed a further laparoscopic cholecystectomy in the OR. Both operative procedures were recorded on videotape, and assessed by two independent and blinded observers using predefined objective criteria. Time to complete the procedure, error score and economy of movement score were assessed during the laparoscopic procedure in the OR. No differences in baseline variables were found between the two groups. Surgeons who received VR training performed laparoscopic cholecystectomy significantly faster than the control group (P=0.021). Furthermore, those who had VR training showed significantly greater improvement in error (P=0.003) and economy of movement (P=0.003) scores. Surgeons who received VR simulator training showed significantly greater improvement in performance in the OR than those in the control group. VR surgical simulation is therefore a valid tool for training of laparoscopic psychomotor skills and could be incorporated into surgical training programmes. Copyright 2003 British Journal of Surgery Society Ltd. Published by John Wiley & Sons, Ltd.
de Carvalho, Marcele Regine; Dias, Thiago Rodrigues de Santana; Duchesne, Monica; Nardi, Antonio Egidio; Appolinario, Jose Carlos
2017-07-09
Several lines of evidence suggest that Virtual Reality (VR) has a potential utility in eating disorders. The objective of this study is to review the literature on the use of VR in bulimia nervosa (BN) and binge eating disorder (BED). Using PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) statement for reporting systematic reviews, we performed a PubMed, Web of Knowledge and SCOPUS search to identify studies employing VR in the assessment and treatment of BN and BED. The following search terms were used: "virtual reality", "eating disorders", "binge eating", and "bulimia nervosa". From the 420 articles identified, 19 were selected, nine investigated VR in assessment and 10 were treatment studies (one case-report, two non-controlled and six randomized controlled trials). The studies using VR in BN and BED are at an early stage. However, considering the available evidence, the use of VR in the assessment of those conditions showed some promise in identifying: (1) how those patients experienced their body image; and (2) environments or specific kinds of foods that may trigger binge-purging cycle. Some studies using VR-based environments associated to cognitive behavioral techniques showed their potential utility in improving motivation for change, self-esteem, body image disturbances and in reducing binge eating and purging behavior.
The challenge of using virtual reality in telerehabilitation.
Rizzo, Albert A; Strickland, Dorothy; Bouchard, Stéphane
2004-01-01
Continuing advances in virtual reality (VR) technology along with concomitant system cost reductions have supported the development of more useful and accessible VR systems that can uniquely target a wide range of physical, psychological, and cognitive rehabilitation concerns and research questions. VR offers the potential to deliver systematic human testing, training, and treatment environments that allow for the precise control of complex dynamic three-dimensional stimulus presentations, within which sophisticated interaction, behavioral tracking, and performance recording is possible. The next step in this evolution will allow for Internet accessibility to libraries of VR scenarios as a likely form of distribution and use. VR applications that are Internet deliverable could open up new possibilities for home-based therapy and rehabilitation. If executed thoughtfully, they could increase client involvement, enhance outcomes and reduce costs. However, before this vision can be achieved, a number of significant challenges will need to be addressed and solved. This article will first present three fictional case vignettes that illustrate the ways that VR telerehabilitation might be implemented with varying degrees of success in the future. We then describe a system that is currently being used to deliver virtual worlds over the Internet for training safety skills to children with learning disabilities. From these illustrative fictional and reality-based applications, we will then briefly discuss the technical, practical, and user-based challenges for implementing VR telerehabilitation, along with views regarding the future of this emerging clinical application.
Sensor supervision and multiagent commanding by means of projective virtual reality
NASA Astrophysics Data System (ADS)
Rossmann, Juergen
1998-10-01
When autonomous systems with multiple agents are considered, conventional control- and supervision technologies are often inadequate because the amount of information available is often presented in a way that the user is effectively overwhelmed by the displayed data. New virtual reality (VR) techniques can help to cope with this problem, because VR offers the chance to convey information in an intuitive manner and can combine supervision capabilities and new, intuitive approaches to the control of autonomous systems. In the approach taken, control and supervision issues were equally stressed and finally led to the new ideas and the general framework for Projective Virtual Reality. The key idea of this new approach for an intuitively operable man machine interface for decentrally controlled multi-agent systems is to let the user act in the virtual world, detect the changes and have an action planning component automatically generate task descriptions for the agents involved to project actions that have been carried out by users in the virtual world into the physical world, e.g. with the help of robots. Thus the Projective Virtual Reality approach is to split the job between the task deduction in the VR and the task `projection' onto the physical automation components by the automatic action planning component. Besides describing the realized projective virtual reality system, the paper will also describe in detail the metaphors and visualization aids used to present different types of (e.g. sensor-) information in an intuitively comprehensible manner.
Brave new worlds--review and update on virtual reality assessment and treatment in psychosis.
Veling, Wim; Moritz, Steffen; van der Gaag, Mark
2014-11-01
In recent years, virtual reality (VR) research on psychotic disorders has been initiated. Several studies showed that VR can elicit paranoid thoughts about virtual characters (avatars), both in patients with psychotic disorders and healthy individuals. Real life symptoms and VR experiences were correlated, lending further support to its validity. Neurocognitive deficits and difficulties in social behavior were found in schizophrenia patients, not only in abstract tasks but also using naturalistic virtual environments that are more relevant to daily life, such as a city or encounters with avatars. VR treatments are conceivable for most dimensions of psychotic disorders. There is a small but expanding literature on interventions for delusions, hallucinations, neurocognition, social cognition, and social skills; preliminary results are promising. VR applications for assessment and treatment of psychotic disorders are in their infancy, but appear to have a great potential for increasing our understanding of psychosis and expanding the therapeutic toolbox. © The Author 2014. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Borrel, Alexandre; Fourches, Denis
2017-12-01
There is a growing interest for the broad use of Augmented Reality (AR) and Virtual Reality (VR) in the fields of bioinformatics and cheminformatics to visualize complex biological and chemical structures. AR and VR technologies allow for stunning and immersive experiences, offering untapped opportunities for both research and education purposes. However, preparing 3D models ready to use for AR and VR is time-consuming and requires a technical expertise that severely limits the development of new contents of potential interest for structural biologists, medicinal chemists, molecular modellers and teachers. Herein we present the RealityConvert software tool and associated website, which allow users to easily convert molecular objects to high quality 3D models directly compatible for AR and VR applications. For chemical structures, in addition to the 3D model generation, RealityConvert also generates image trackers, useful to universally call and anchor that particular 3D model when used in AR applications. The ultimate goal of RealityConvert is to facilitate and boost the development and accessibility of AR and VR contents for bioinformatics and cheminformatics applications. http://www.realityconvert.com. dfourch@ncsu.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Birnie, Kathryn A; Kulandaivelu, Yalinie; Jibb, Lindsay; Hroch, Petra; Positano, Karyn; Robertson, Simon; Campbell, Fiona; Abla, Oussama; Stinson, Jennifer
2018-06-01
Needle procedures are among the most distressing aspects of pediatric cancer-related treatment. Virtual reality (VR) distraction offers promise for needle-related pain and distress given its highly immersive and interactive virtual environment. This study assessed the usability (ease of use and understanding, acceptability) of a custom VR intervention for children with cancer undergoing implantable venous access device (IVAD) needle insertion. Three iterative cycles of mixed-method usability testing with semistructured interviews were undertaken to refine the VR. Participants included 17 children and adolescents (8-18 years old) with cancer who used the VR intervention prior to or during IVAD access. Most participants reported the VR as easy to use (82%) and understand (94%), and would like to use it during subsequent needle procedures (94%). Based on usability testing, refinements were made to VR hardware, software, and clinical implementation. Refinements focused on increasing responsiveness, interaction, and immersion of the VR program, reducing head movement for VR interaction, and enabling participant alerts to steps of the procedure by clinical staff. No adverse events of nausea or dizziness were reported. The VR intervention was deemed acceptable and safe. Next steps include assessing feasibility and effectiveness of the VR intervention for pain and distress.
a Methodology to Adapt Photogrammetric Models to Virtual Reality for Oculus Gear VR
NASA Astrophysics Data System (ADS)
Colmenero Fdez, A.
2017-11-01
In this paper, we will expose the process of adapting a high resolution model (laser and photogrammetry) into a virtual reality application for mobile phones. It is a virtual archeology project carried out on the site of Lugo's Mitreo, Spain.
NASA Technical Reports Server (NTRS)
Hale, Joseph P.
1994-01-01
A virtual reality (VR) Applications Program has been under development at MSFC since 1989. Its objectives are to develop, assess, validate, and utilize VR in hardware development, operations development and support, missions operations training, and science training. A variety of activities are under way within many of these areas. One ongoing macro-ergonomic application of VR relates to the design of the Space Station Freedom Payload Control Area (PCA), the control room from which onboard payload operations are managed. Several preliminary conceptual PCA layouts have been developed and modeled in VR. Various managers and potential end users have virtually 'entered' these rooms and provided valuable feedback. Before VR can be used with confidence in a particular application, it must be validated, or calibrated, for that class of applications. Two associated validation studies for macro-ergonomic applications are under way to help characterize possible distortions of filtering of relevant perceptions in a virtual world. In both studies, existing control rooms and their 'virtual counterparts will be empirically compared using distance and heading estimations to objects and subjective assessments. Approaches and findings of the PCA activities and details of the studies are presented.
Huber, Tobias; Paschold, Markus; Hansen, Christian; Lang, Hauke; Kneist, Werner
2018-06-01
Immersive virtual reality (VR) laparoscopy simulation connects VR simulation with head-mounted displays to increase presence during VR training. The goal of the present study was the comparison of 2 different surroundings according to performance and users' preference. With a custom immersive virtual reality laparoscopy simulator, an artificially created VR operating room (AVR) and a highly immersive VR operating room (IVR) were compared. Participants (n = 30) performed 3 tasks (peg transfer, fine dissection, and cholecystectomy) in AVR and IVR in a crossover study design. No overall difference in virtual laparoscopic performance was obtained when comparing results from AVR with IVR. Most participants preferred the IVR surrounding (n = 24). Experienced participants (n = 10) performed significantly better than novices (n = 10) in all tasks regardless of the surrounding ( P < .05). Participants with limited experience (n = 10) showed differing results. Presence, immersion, and exhilaration were significantly higher in IVR. Two thirds assumed that IVR would have a positive influence on their laparoscopic simulator use. This first study comparing AVR and IVR did not reveal differences in virtual laparoscopic performance. IVR is considered the more realistic surrounding and is therefore preferred by the participants.
Gupta, Anita; Scott, Kevin; Dukewich, Matthew
2018-01-01
Virtual reality (VR) is an exciting new technology with almost endless possible uses in medicine. One area it has shown promise is pain management. This selective review focused on studies that gave evidence to the distraction or nondistraction mechanisms by which VR leads to the treatment of pain. The review looked at articles from 2000 to July 29, 2016, focusing on studies concerning mechanisms by which virtual reality can augment pain relief. The data was collected through a search of MEDLINE and Web of Science using the key words of "virtual reality" and "pain" or "distraction." Six studies were identified: four small randomized controlled studies and two prospective/pilot studies. The search results provided evidence that distraction is a technique by which VR can have benefits in the treatment of pain. Both adult and pediatric populations were included in these studies. In addition to acute pain, several studies looked at chronic pain states such as headaches or fibromyalgia. These studies also combined VR with other treatment modalities such as biofeedback mechanisms and cognitive behavioral therapy. These results demonstrate that in addition to distraction, there are novel mechanisms for VR treatment in pain, such as producing neurophysiologic changes related to conditioning and exposure therapies. If these new mechanisms can lead to new treatment options for patients with chronic pain, VR may have the ability to help reduce opioid use and misuse among chronic pain patients. More studies are needed to reproduce results from prospective/pilot studies in large randomized control studies. © 2017 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
Gomez, Jocelyn; Hoffman, Hunter G; Bistricky, Steven L; Gonzalez, Miriam; Rosenberg, Laura; Sampaio, Mariana; Garcia-Palacios, Azucena; Navarro-Haro, Maria V; Alhalabi, Wadee; Rosenberg, Marta; Meyer, Walter J; Linehan, Marsha M
2017-01-01
Sustaining a burn injury increases an individual's risk of developing psychological problems such as generalized anxiety, negative emotions, depression, acute stress disorder, or post-traumatic stress disorder. Despite the growing use of Dialectical Behavioral Therapy® (DBT®) by clinical psychologists, to date, there are no published studies using standard DBT® or DBT® skills learning for severe burn patients. The current study explored the feasibility and clinical potential of using Immersive Virtual Reality (VR) enhanced DBT® mindfulness skills training to reduce negative emotions and increase positive emotions of a patient with severe burn injuries. The participant was a hospitalized (in house) 21-year-old Spanish speaking Latino male patient being treated for a large (>35% TBSA) severe flame burn injury. Methods: The patient looked into a pair of Oculus Rift DK2 virtual reality goggles to perceive the computer-generated virtual reality illusion of floating down a river, with rocks, boulders, trees, mountains, and clouds, while listening to DBT® mindfulness training audios during 4 VR sessions over a 1 month period. Study measures were administered before and after each VR session. Results: As predicted, the patient reported increased positive emotions and decreased negative emotions. The patient also accepted the VR mindfulness treatment technique. He reported the sessions helped him become more comfortable with his emotions and he wanted to keep using mindfulness after returning home. Conclusions: Dialectical Behavioral Therapy is an empirically validated treatment approach that has proved effective with non-burn patient populations for treating many of the psychological problems experienced by severe burn patients. The current case study explored for the first time, the use of immersive virtual reality enhanced DBT® mindfulness skills training with a burn patient. The patient reported reductions in negative emotions and increases in positive emotions, after VR DBT® mindfulness skills training. Immersive Virtual Reality is becoming widely available to mainstream consumers, and thus has the potential to make this treatment available to a much wider number of patient populations, including severe burn patients. Additional development, and controlled studies are needed.
Gomez, Jocelyn; Hoffman, Hunter G.; Bistricky, Steven L.; Gonzalez, Miriam; Rosenberg, Laura; Sampaio, Mariana; Garcia-Palacios, Azucena; Navarro-Haro, Maria V.; Alhalabi, Wadee; Rosenberg, Marta; Meyer, Walter J.; Linehan, Marsha M.
2017-01-01
Sustaining a burn injury increases an individual's risk of developing psychological problems such as generalized anxiety, negative emotions, depression, acute stress disorder, or post-traumatic stress disorder. Despite the growing use of Dialectical Behavioral Therapy® (DBT®) by clinical psychologists, to date, there are no published studies using standard DBT® or DBT® skills learning for severe burn patients. The current study explored the feasibility and clinical potential of using Immersive Virtual Reality (VR) enhanced DBT® mindfulness skills training to reduce negative emotions and increase positive emotions of a patient with severe burn injuries. The participant was a hospitalized (in house) 21-year-old Spanish speaking Latino male patient being treated for a large (>35% TBSA) severe flame burn injury. Methods: The patient looked into a pair of Oculus Rift DK2 virtual reality goggles to perceive the computer-generated virtual reality illusion of floating down a river, with rocks, boulders, trees, mountains, and clouds, while listening to DBT® mindfulness training audios during 4 VR sessions over a 1 month period. Study measures were administered before and after each VR session. Results: As predicted, the patient reported increased positive emotions and decreased negative emotions. The patient also accepted the VR mindfulness treatment technique. He reported the sessions helped him become more comfortable with his emotions and he wanted to keep using mindfulness after returning home. Conclusions: Dialectical Behavioral Therapy is an empirically validated treatment approach that has proved effective with non-burn patient populations for treating many of the psychological problems experienced by severe burn patients. The current case study explored for the first time, the use of immersive virtual reality enhanced DBT® mindfulness skills training with a burn patient. The patient reported reductions in negative emotions and increases in positive emotions, after VR DBT® mindfulness skills training. Immersive Virtual Reality is becoming widely available to mainstream consumers, and thus has the potential to make this treatment available to a much wider number of patient populations, including severe burn patients. Additional development, and controlled studies are needed. PMID:28993747
Weiss, Karen E.; Law, Emily F.; Sil, Soumitri; Herbert, Linda Jones; Horn, Susan Berrin; Wohlheiter, Karen; Ackerman, Claire Sonntag
2010-01-01
Objective This study examined the effects of videogame distraction and a virtual reality (VR) type head-mounted display helmet for children undergoing cold pressor pain. Methods Fifty children between the ages of 6 and 10 years underwent a baseline cold pressor trial followed by two cold pressor trials in which interactive videogame distraction was delivered via a VR helmet or without a VR helmet in counterbalanced order. Results As expected, children demonstrated significant improvements in pain threshold and pain tolerance during both distraction conditions. However, the two distraction conditions did not differ in effectiveness. Conclusions Using the VR helmet did not result in improved pain tolerance over and above the effects of interactive videogame distraction without VR technology. Clinical implications and possible developmental differences in elementary school-aged children's ability to use VR technology are discussed. PMID:19786489
Immersion of virtual reality for rehabilitation - Review.
Rose, Tyler; Nam, Chang S; Chen, Karen B
2018-05-01
Virtual reality (VR) shows promise in the application of healthcare and because it presents patients an immersive, often entertaining, approach to accomplish the goal of improvement in performance. Eighteen studies were reviewed to understand human performance and health outcomes after utilizing VR rehabilitation systems. We aimed to understand: (1) the influence of immersion in VR performance and health outcomes; (2) the relationship between enjoyment and potential patient adherence to VR rehabilitation routine; and (3) the influence of haptic feedback on performance in VR. Performance measures including postural stability, navigation task performance, and joint mobility showed varying relations to immersion. Limited data did not allow a solid conclusion between enjoyment and adherence, but patient enjoyment and willingness to participate were reported in care plans that incorporates VR. Finally, different haptic devices such as gloves and controllers provided both strengths and weakness in areas such movement velocity, movement accuracy, and path efficiency. Copyright © 2018 Elsevier Ltd. All rights reserved.
Cornwell, Brian R; Johnson, Linda; Berardi, Luciano; Grillon, Christian
2006-04-01
Startle reflex modification has become valuable to the study of fear and anxiety, but few studies have explored startle reactivity in socially threatening situations. Healthy participants ranging in trait social anxiety entered virtual reality (VR) that simulates standing center-stage in front of an audience to anticipate giving a speech and count backward. We measured startle and autonomic reactivity during anticipation of both tasks inside VR after a single baseline recording outside VR. Trait social anxiety, but not general trait anxiety, was positively correlated with startle before entering VR and most clearly during speech anticipation inside VR. Speech anticipation inside VR also elicited stronger physiologic responses relative to anticipation of counting. Under social-evaluative threat, startle reactivity showed robust relationships with fear of negative evaluation, a central aspect of social anxiety and clinical social phobia. Context-specific startle modification may be an endophenotype for subtypes of pathological anxiety.
Dahlquist, Lynnda M; Weiss, Karen E; Law, Emily F; Sil, Soumitri; Herbert, Linda Jones; Horn, Susan Berrin; Wohlheiter, Karen; Ackerman, Claire Sonntag
2010-07-01
This study examined the effects of videogame distraction and a virtual reality (VR) type head-mounted display helmet for children undergoing cold pressor pain. Fifty children between the ages of 6 and 10 years underwent a baseline cold pressor trial followed by two cold pressor trials in which interactive videogame distraction was delivered via a VR helmet or without a VR helmet in counterbalanced order. As expected, children demonstrated significant improvements in pain threshold and pain tolerance during both distraction conditions. However, the two distraction conditions did not differ in effectiveness. Using the VR helmet did not result in improved pain tolerance over and above the effects of interactive videogame distraction without VR technology. Clinical implications and possible developmental differences in elementary school-aged children's ability to use VR technology are discussed.
Engagement of neural circuits underlying 2D spatial navigation in a rodent virtual reality system.
Aronov, Dmitriy; Tank, David W
2014-10-22
Virtual reality (VR) enables precise control of an animal's environment and otherwise impossible experimental manipulations. Neural activity in rodents has been studied on virtual 1D tracks. However, 2D navigation imposes additional requirements, such as the processing of head direction and environment boundaries, and it is unknown whether the neural circuits underlying 2D representations can be sufficiently engaged in VR. We implemented a VR setup for rats, including software and large-scale electrophysiology, that supports 2D navigation by allowing rotation and walking in any direction. The entorhinal-hippocampal circuit, including place, head direction, and grid cells, showed 2D activity patterns similar to those in the real world. Furthermore, border cells were observed, and hippocampal remapping was driven by environment shape, suggesting functional processing of virtual boundaries. These results illustrate that 2D spatial representations can be engaged by visual and rotational vestibular stimuli alone and suggest a novel VR tool for studying rat navigation.
Engagement of neural circuits underlying 2D spatial navigation in a rodent virtual reality system
Aronov, Dmitriy; Tank, David W.
2015-01-01
SUMMARY Virtual reality (VR) enables precise control of an animal’s environment and otherwise impossible experimental manipulations. Neural activity in navigating rodents has been studied on virtual linear tracks. However, the spatial navigation system’s engagement in complete two-dimensional environments has not been shown. We describe a VR setup for rats, including control software and a large-scale electrophysiology system, which supports 2D navigation by allowing animals to rotate and walk in any direction. The entorhinal-hippocampal circuit, including place cells, grid cells, head direction cells and border cells, showed 2D activity patterns in VR similar to those in the real world. Hippocampal neurons exhibited various remapping responses to changes in the appearance or the shape of the virtual environment, including a novel form in which a VR-induced cue conflict caused remapping to lock to geometry rather than salient cues. These results suggest a general-purpose tool for novel types of experimental manipulations in navigating rats. PMID:25374363
Virtual rehabilitation--benefits and challenges.
Burdea, G C
2003-01-01
To discuss the advantages and disadvantages of rehabilitation applications of virtual reality. VR can be used as an enhancement to conventional therapy for patients with conditions ranging from musculoskeletal problems, to stroke-induced paralysis, to cognitive deficits. This approach is called "VR-augmented rehabilitation." Alternately, VR can replace conventional interventions altogether, in which case the rehabilitation is "VR-based." If the intervention is done at a distance, then it is called "telerehabilitation." Simulation exercises for post-stroke patients have been developed using a "teacher object" approach or a video game approach. Simulations for musculo-skeletal patients use virtual replicas of rehabilitation devices (such as rubber ball, power putty, peg board). Phobia-inducing virtual environments are prescribed for patients with cognitive deficits. VR-augmented rehabilitation has been shown effective for stroke patients in the chronic phase of the disease. VR-based rehabilitation has been improving patients with fear of flying, Vietnam syndrome, fear of heights, and chronic stroke patients. Telerehabilitation interventions using VR have improved musculo-skeletal and post-stroke patients, however less data is available at this time. Virtual reality presents significant advantages when applied to rehabilitation of patients with varied conditions. These advantages include patient motivation, adaptability and variability based on patient baseline, transparent data storage, online remote data access, economy of scale, reduced medical costs. Challenges in VR use for rehabilitation relate to lack of computer skills on the part of therapists, lack of support infrastructure, expensive equipment (initially), inadequate communication infrastructure (for telerehabilitation in rural areas), and patient safety concerns.
Levac, Danielle; Glegg, Stephanie; Colquhoun, Heather; Miller, Patricia; Noubary, Farzad
2017-08-01
Describe the clinical use of virtual reality (VR)/active videogaming (AVG) by physical therapists (PTs) and occupational therapists (OTs) in Canada, identify usage barriers and facilitators, evaluate factors that predict intention to use VR/AVGs, and determine therapists' learning needs. Cross-sectional survey. Online survey of therapists in Canada who were members of 1 of 26 professional PT or OT colleges or associations using the Assessing Determinants Of Prospective Take-up of Virtual Reality (ADOPT-VR2) Instrument. We received 1071 (506 PTs, 562 OTs, 3 dual-trained) responses. Forty-six percent had clinical VR/AVG experience; only 12% reported current use, with the Wii being the most clinically accessible (41%) system. Therapists used VR/AVGs primarily in rehabilitation (32%) and hospital (29%) settings, preferentially targeting balance (39.3%) and physical activity (19.8%) outcomes. Stroke (25.8%), brain injury (15.3%), musculoskeletal (14.9%), and cerebral palsy (10.5%) populations were most frequently treated. Therapists with VR/AVG experience rated all ADOPT-VR2 constructs more highly than did those without experience (P < 0.001). Factors predictive of intention to use VR included the technology's perceived usefulness and therapist self-efficacy in VR/AVG use (P < 0.001). Highest-rated barriers to VR/AVG use were lack of funds, space, time, support staff, and appropriate clients, whereas facilitators included client motivation, therapist knowledge, and management support. Most (76%) respondents were interested in learning more. Understanding use, predictors of use, and learning needs is essential for developing knowledge translation initiatives to support clinical integration of VR/AVGs. Results of this first national survey will inform the creation of resources to support therapists in this field.
Alwadani, Fahad; Morsi, Mohammed Saad
2012-01-01
To compare the surgical proficiency of medical students who underwent traditional training or virtual reality training for argon laser trabeculoplasty with the PixEye simulator. The cohort comprised of 47 fifth year male medical students from the College of Medicine, King Faisal University, Saudi Arabia. The cohort was divided into two groups: students (n = 24), who received virtual reality training (VR Group) and students (n = 23), who underwent traditional training (Control Group). After training, the students performed the trabeculoplasty procedure. All trainings were included concurrent power point presentations describing the details of the procedure. Evaluation of surgical performance was based on the following variables: missing the exact location with the laser, overtreatment, undertreatment and inadvertent laser shots to iris and cornea. The target was missed by 8% of the VR Group compared to 55% in the Control Group. Overtreatment and undertreatment was observed in 7% of the VR Group compared to 46% of the Control Group. Inadvertent laser application to the cornea or iris was performed by 4.5% of the VR Group compared to 34% of the Control Group. Virtual reality training on PixEye simulator may enhance the proficiency of medical students and limit possible surgical errors during laser trabeculoplasty. The authors have no financial interest in the material mentioned in this study.
Virtual reality, immersion, and the unforgettable experience
NASA Astrophysics Data System (ADS)
Morie, Jacquelyn F.
2006-02-01
Virtual reality has been in the public eye for nearly forty years. Its early promise was vast: worlds we could visit and live in, if we could bend the technology to our desires. Progress was made, but along the way the original directions and challenges of fully immersive VR took a back seat to more ubiquitous technology such as games that provided many of the same functions. What was lost in this transition was the potential for VR to become a stage for encounters that are meaningful, those experiences that tap into what it means to be human. This paper describes examples of such experiences using VR technology and puts forward several avenues of thought concerning how we might reinvigorate these types of VR explorations.
Combining virtual reality and multimedia techniques for effective maintenance training
NASA Astrophysics Data System (ADS)
McLin, David M.; Chung, James C.
1996-02-01
This paper describes a virtual reality (VR) system developed for use as part of an integrated, low-cost, stand-alone, multimedia trainer. The trainer is used to train National Guard personnel in maintenance and trouble-shooting tasks for the M1A1 Abrams tank, the M2A2 Bradley fighting vehicle and the TOW II missile system. The VR system features a modular, extensible, object-oriented design which consists of a training monitor component, a VR run time component, a model loader component, and a set of domain-specific object behaviors which mimic the behavior of objects encountered in the actual vehicles. The VR system is built from a combination of off-the-shelf commercial software and custom software developed at RTI.
Effect of virtual reality headset for pediatric fear and pain distraction during immunization.
Chad, Rudnick; Emaan, Sulaiman; Jillian, Orden
2018-05-03
Fear of needles is a well-known phobia among children and adults. This study presents the rationale, feasibility and results of a pilot study applying a virtual reality (VR) headset as a fear reduction and pain distraction during immunizations. 17 subjects and 17 parents rated their fear and pain level pre- and postimmunization using Wong-Baker pain scale and McMurtry children's fear scale. Immunization was provided, while subject was wearing a VR headset. Ratings of anticipated versus actual fear and pain due to immunizations improved following use of the VR headset in 94.1% of pediatric subjects. The use of a VR headset was well received and reduced overall fear and pain in children receiving immunizations.
The Use of Virtual Reality in Psychology: A Case Study in Visual Perception
Wilson, Christopher J.; Soranzo, Alessandro
2015-01-01
Recent proliferation of available virtual reality (VR) tools has seen increased use in psychological research. This is due to a number of advantages afforded over traditional experimental apparatus such as tighter control of the environment and the possibility of creating more ecologically valid stimulus presentation and response protocols. At the same time, higher levels of immersion and visual fidelity afforded by VR do not necessarily evoke presence or elicit a “realistic” psychological response. The current paper reviews some current uses for VR environments in psychological research and discusses some ongoing questions for researchers. Finally, we focus on the area of visual perception, where both the advantages and challenges of VR are particularly salient. PMID:26339281
Virtual reality implementation in neurosurgical practice: the "can't take my eyes off you" effect.
Matis, Georgios K; Silva, Danilo O de A; Chrysou, Olga I; Karanikas, Michail; Pelidou, Sygkliti-Henrietta; Birbilis, Theodossios A; Bernardo, Antonio; Stieg, Philip
2013-01-01
During the last few years, virtual reality (VR) has been increasingly implemented in the neurosurgical practice. The scope of this paper is to briefly outline the educational role of this novel technology in training surgeons. At the same time, the ability of VR workstations such as the Dextroscope® to consistently simulate the surgical trajectory to the lesion-target is highlighted. The authors shed light to the current applications of VR systems in the neurosurgical field by describing not only the advantages of those systems, but their principal drawbacks as well. It seems that VR has come to stay and it is already the new best friend of residents due to its "Can't take my eyes off you effect".
Virtual reality and pain management: current trends and future directions.
Li, Angela; Montaño, Zorash; Chen, Vincent J; Gold, Jeffrey I
2011-03-01
Virtual reality (VR) has been used to manage pain and distress associated with a wide variety of known painful medical procedures. In clinical settings and experimental studies, participants immersed in VR experience reduced levels of pain, general distress/unpleasantness and report a desire to use VR again during painful medical procedures. Investigators hypothesize that VR acts as a nonpharmacologic form of analgesia by exerting an array of emotional affective, emotion-based cognitive and attentional processes on the body's intricate pain modulation system. While the exact neurobiological mechanisms behind VR's action remain unclear, investigations are currently underway to examine the complex interplay of cortical activity associated with immersive VR. Recently, new applications, including VR, have been developed to augment evidenced-based interventions, such as hypnosis and biofeedback, for the treatment of chronic pain. This article provides a comprehensive review of the literature, exploring clinical and experimental applications of VR for acute and chronic pain management, focusing specifically on current trends and recent developments. In addition, we propose mechanistic theories highlighting VR distraction and neurobiological explanations, and conclude with new directions in VR research, implications and clinical significance.
Kim, Kwanguk; Kim, Chan-Hyung; Cha, Kyung Ryeol; Park, Junyoung; Han, Kiwan; Kim, Yun Ki; Kim, Jae-Jin; Kim, In Young; Kim, Sun I
2008-12-01
The current study is a preliminary test of a virtual reality (VR) anxiety-provoking tool using a sample of participants with obsessive-compulsive disorder (OCD). The tasks were administrated to 33 participants with OCD and 30 healthy control participants. In the VR task, participants navigated through a virtual environment using a joystick and head-mounted display. The virtual environment consisted of three phases: training, distraction, and the main task. After the training and distraction phases, participants were allowed to check (a common OCD behavior) freely, as they would in the real world, and a visual analogy scale of anxiety was recorded during VR. Participants' anxiety in the virtual environment was measured with a validated measure of psychiatric symptoms and functions and analyzed with a VR questionnaire. Results revealed that those with OCD had significantly higher anxiety in the virtual environment than did healthy controls, and the decreased ratio of anxiety in participants with OCD was also higher than that of healthy controls. Moreover, the degree of anxiety of an individual with OCD was positively correlated with a his or her symptom score and immersive tendency score. These results suggest the possibility that VR technology has a value as an anxiety-provoking or treatment tool for OCD.
Augmenting the Thermal Flux Experiment: A Mixed Reality Approach with the HoloLens
ERIC Educational Resources Information Center
Strzys, M. P.; Kapp, S.; Thees, M.; Kuhn, J.; Lukowicz, P.; Knierim, P.; Schmidt, A.
2017-01-01
In the field of Virtual Reality (VR) and Augmented Reality (AR), technologies have made huge progress during the last years and also reached the field of education. The virtuality continuum, ranging from pure virtuality on one side to the real world on the other, has been successfully covered by the use of immersive technologies like head-mounted…
Gold, Jeffrey I; Mahrer, Nicole E
2018-04-01
To conduct a randomized control trial to evaluate the feasibility and efficacy of virtual reality (VR) compared with standard of care (SOC) for reducing pain, anxiety, and improving satisfaction associated with blood draw in children ages 10-21 years. In total, 143 triads (patients, their caregiver, and the phlebotomist) were recruited in outpatient phlebotomy at a pediatric hospital and randomized to receive either VR or SOC when undergoing routine blood draw. Patients and caregivers completed preprocedural and postprocedural standardized measures of pain, anxiety, and satisfaction, and phlebotomists reported about the patient's experience during the procedure. Findings showed that VR significantly reduced acute procedural pain and anxiety compared with SOC. A significant interaction between patient-reported anxiety sensitivity and treatment condition indicated that patients undergoing routine blood draw benefit more from VR intervention when they are more fearful of physiological sensations related to anxiety. Patients and caregivers in the VR condition reported high levels of satisfaction with the procedure. VR is feasible, tolerated, and well-liked by patients, caregivers, and phlebotomists alike for routine blood draw. Given the immersive and engaging nature of the VR experience, VR has the capacity to act as a preventive intervention transforming the blood draw experience into a less distressing, potentially pain-free routine medical procedure, particularly for pediatric patients with high anxiety sensitivity. VR holds promise to reduce negative health outcomes for children and reduce distress in caregivers, while facilitating increased satisfaction and throughput in hectic outpatient phlebotomy clinics.
Virtual reality for pain and anxiety management in children.
Arane, Karen; Behboudi, Amir; Goldman, Ran D
2017-12-01
Question Pain and anxiety are common in children who need procedures such as administering vaccines or drawing blood. Recent reports have described the use of virtual reality (VR) as a method of distraction during such procedures. How does VR work in reducing pain and anxiety in pediatric patients and what are the potential uses for it? Answer Recent studies explored using VR with pediatric patients undergoing procedures ranging from vaccinations and intravenous injections to laceration repair and dressing changes for burn wounds. Interacting with immersive VR might divert attention, leading to a slower response to incoming pain signals. Preliminary results have shown that VR is effective, either alone or in combination with standard care, in reducing the pain and anxiety patients experience compared with standard care or other distraction methods. Copyright© the College of Family Physicians of Canada.
The Virtual Tablet: Virtual Reality as a Control System
NASA Technical Reports Server (NTRS)
Chronister, Andrew
2016-01-01
In the field of human-computer interaction, Augmented Reality (AR) and Virtual Reality (VR) have been rapidly growing areas of interest and concerted development effort thanks to both private and public research. At NASA, a number of groups have explored the possibilities afforded by AR and VR technology, among which is the IT Advanced Concepts Lab (ITACL). Within ITACL, the AVR (Augmented/Virtual Reality) Lab focuses on VR technology specifically for its use in command and control. Previous work in the AVR lab includes the Natural User Interface (NUI) project and the Virtual Control Panel (VCP) project, which created virtual three-dimensional interfaces that users could interact with while wearing a VR headset thanks to body- and hand-tracking technology. The Virtual Tablet (VT) project attempts to improve on these previous efforts by incorporating a physical surrogate which is mirrored in the virtual environment, mitigating issues with difficulty of visually determining the interface location and lack of tactile feedback discovered in the development of previous efforts. The physical surrogate takes the form of a handheld sheet of acrylic glass with several infrared-range reflective markers and a sensor package attached. Using the sensor package to track orientation and a motion-capture system to track the marker positions, a model of the surrogate is placed in the virtual environment at a position which corresponds with the real-world location relative to the user's VR Head Mounted Display (HMD). A set of control mechanisms is then projected onto the surface of the surrogate such that to the user, immersed in VR, the control interface appears to be attached to the object they are holding. The VT project was taken from an early stage where the sensor package, motion-capture system, and physical surrogate had been constructed or tested individually but not yet combined or incorporated into the virtual environment. My contribution was to combine the pieces of hardware, write software to incorporate each piece of position or orientation data into a coherent description of the object's location in space, place the virtual analogue accordingly, and project the control interface onto it, resulting in a functioning object which has both a physical and a virtual presence. Additionally, the virtual environment was enhanced with two live video feeds from cameras mounted on the robotic device being used as an example target of the virtual interface. The working VT allows users to naturally interact with a control interface with little to no training and without the issues found in previous efforts.
The Influences of the 2D Image-Based Augmented Reality and Virtual Reality on Student Learning
ERIC Educational Resources Information Center
Liou, Hsin-Hun; Yang, Stephen J. H.; Chen, Sherry Y.; Tarng, Wernhuar
2017-01-01
Virtual reality (VR) learning environments can provide students with concepts of the simulated phenomena, but users are not allowed to interact with real elements. Conversely, augmented reality (AR) learning environments blend real-world environments so AR could enhance the effects of computer simulation and promote students' realistic experience.…
Virtual and augmented reality in the treatment of phantom limb pain: A literature review.
Dunn, Justin; Yeo, Elizabeth; Moghaddampour, Parisah; Chau, Brian; Humbert, Sarah
2017-01-01
Phantom limb pain (PLP), the perception of discomfort in a limb no longer present, commonly occurs following amputation. A variety of interventions have been employed for PLP, including mirror therapy. Virtual Reality (VR) and augmented reality (AR) mirror therapy treatments have also been utilized and have the potential to provide an even greater immersive experience for the amputee. However, there is not currently a consensus on the efficacy of VR and AR therapy. The aim of this review is to evaluate and summarize the current research on the effect of immersive VR and AR in the treatment of PLP. A comprehensive literature search was conducted utilizing PubMed and Google Scholar in order to collect all available studies concerning the use of VR and/or AR in the treatment of PLP using the search terms "virtual reality," "augmented reality," and "phantom limb pain." Eight studies in total were evaluated, with six of those reporting quantitative data and the other two reporting qualitative findings. All studies located were of low-level evidence. Each noted improved pain with VR and AR treatment for phantom limb pain, through quantitative or qualitative reporting. Additionally, adverse effects were limited only to simulator sickness occurring in one trial for one patient. Despite the positive findings, all of the studies were confined purely to case studies and case report series. No studies of higher evidence have been conducted, thus considerably limiting the strength of the findings. As such, the current use of VR and AR for PLP management, while attractive due to the increasing levels of immersion, customizable environments, and decreasing cost, is yet to be fully proven and continues to need further research with higher quality studies to fully explore its benefits.
Trier Social Stress Test in vivo and in virtual reality: Dissociation of response domains.
Shiban, Youssef; Diemer, Julia; Brandl, Simone; Zack, Rebecca; Mühlberger, Andreas; Wüst, Stefan
2016-12-01
The Trier Social Stress Test (TSST) is considered a reliable paradigm for inducing psychosocial stress. Virtual reality (VR) has successfully been applied to ensure a greater degree of efficiency and standardization in the TSST. Studies using the TSST in VR (VR-TSST) have reported significant stress reactions, with subjective and peripheral physiological reactions comparable to those in response to the in vivo TSST and with lower cortisol reactions. The current study examined whether an additional virtual competitive factor triggers larger stress responses than a standard VR-TSST. Forty-five male participants were randomly assigned to either in vivo TSST, VR-TSST (VR) or VR-TSST with a virtual competitor (VR+). A significant increase of self-reported stress, electrodermal activity, and heart rate indicated a pronounced stress reaction with no differences between groups. For salivary cortisol, however, responder rates differed significantly between groups, with in vivo participants showing overall higher response rates (86%) than participants of both VR groups (VR: 33%, VR+: 47%). In contrast, participants of both VR groups judged the task significantly more challenging than did in vivo TSST participants. In sum, our results indicate successful stress induction in all experimental conditions, and a marked dissociation of salivary cortisol levels on the one hand, and the physiological and psychological stress reactions on the other hand. The competitive scenario did not significantly enhance stress reactions. VR technology may serve as a standardized tool for inducing social stress in experimental settings, but further research is needed to clarify why the stress reaction as assessed by cortisol differs from peripheral and subjective stress reactions in VR. Copyright © 2016 Elsevier B.V. All rights reserved.
Nararro-Haro, Maria V.; Hoffman, Hunter G.; Garcia-Palacios, Azucena; Sampaio, Mariana; Alhalabi, Wadee; Hall, Karyn; Linehan, Marsha
2016-01-01
Borderline personality disorder (BPD) is a severe mental disorder characterized by a dysfunctional pattern of affective instability, impulsivity, and disturbed interpersonal relationships. Dialectical Behavior Therapy (DBT®) is the most effective treatment for Borderline Personality Disorder, but demand for DBT® far exceeds existing clinical resources. Most patients with BPD never receive DBT®. Incorporating computer technology into the DBT® could help increase dissemination. Immersive Virtual Reality technology (VR) is becoming widely available to mainstream consumers. This case study explored the feasibility/clinical potential of using immersive virtual reality technology to enhance DBT® mindfulness skills training of a 32 year old female diagnosed with BPD. Prior to using VR, the patient experienced difficulty practicing DBT® mindfulness due to her emotional reactivity, and difficulty concentrating. To help the patient focus her attention, and to facilitate DBT® mindfulness skills learning, the patient looked into virtual reality goggles, and had the illusion of slowly “floating down” a 3D computer-generated river while listening to DBT® mindfulness training audios. Urges to commit suicide, urges to self harm, urges to quit therapy, urges to use substances, and negative emotions were all reduced after each VR mindfulness session and VR mindfulness was well accepted/liked by the patient. Although case studies are scientifically inconclusive by nature, results from this feasibility study were encouraging. Future controlled studies are needed to quantify whether VR-enhanced mindfulness training has long term benefits e.g., increasing patient acceptance and/or improving therapeutic outcome. Computerizing some of the DBT® skills treatment modules would reduce cost and increase dissemination. PMID:27853437
Nararro-Haro, Maria V; Hoffman, Hunter G; Garcia-Palacios, Azucena; Sampaio, Mariana; Alhalabi, Wadee; Hall, Karyn; Linehan, Marsha
2016-01-01
Borderline personality disorder (BPD) is a severe mental disorder characterized by a dysfunctional pattern of affective instability, impulsivity, and disturbed interpersonal relationships. Dialectical Behavior Therapy (DBT®) is the most effective treatment for Borderline Personality Disorder, but demand for DBT® far exceeds existing clinical resources. Most patients with BPD never receive DBT®. Incorporating computer technology into the DBT® could help increase dissemination. Immersive Virtual Reality technology (VR) is becoming widely available to mainstream consumers. This case study explored the feasibility/clinical potential of using immersive virtual reality technology to enhance DBT® mindfulness skills training of a 32 year old female diagnosed with BPD. Prior to using VR, the patient experienced difficulty practicing DBT® mindfulness due to her emotional reactivity, and difficulty concentrating. To help the patient focus her attention, and to facilitate DBT® mindfulness skills learning, the patient looked into virtual reality goggles, and had the illusion of slowly "floating down" a 3D computer-generated river while listening to DBT® mindfulness training audios. Urges to commit suicide, urges to self harm, urges to quit therapy, urges to use substances, and negative emotions were all reduced after each VR mindfulness session and VR mindfulness was well accepted/liked by the patient. Although case studies are scientifically inconclusive by nature, results from this feasibility study were encouraging. Future controlled studies are needed to quantify whether VR-enhanced mindfulness training has long term benefits e.g., increasing patient acceptance and/or improving therapeutic outcome. Computerizing some of the DBT® skills treatment modules would reduce cost and increase dissemination.
Virtual reality-assisted robotic surgery simulation.
Albani, Justin M; Lee, David I
2007-03-01
For more than a decade, advancing computer technologies have allowed incorporation of virtual reality (VR) into surgical training. This has become especially important in training for laparoscopic procedures, which often are complex and leave little room for error. With the advent of robotic surgery and the development and prevalence of a commercial surgical system (da Vinci robot; Intuitive Surgical, Sunnyvale, CA), a valid VR-assisted robotic surgery simulator could minimize the steep learning curve associated with many of these complex procedures and thus enable better outcomes. To date, such simulation does not exist; however, several agencies and corporations are involved in making this dream a reality. We review the history and progress of VR simulation in surgical training, its promising applications in robotic-assisted surgery, and the remaining challenges to implementation.
Griswold, David; Rockwell, Kyle; Killa, Carri; Maurer, Michael; Landgraff, Nancy; Learman, Ken
2015-01-01
The aim of this study was to determine the reliability and concurrent validity of commonly used physical performance tests using the OmniVR Virtual Rehabilitation System for healthy community-dwelling elders. Participants (N = 40) were recruited by the authors and were screened for eligibility. The initial method of measurement was randomized to either virtual reality (VR) or clinically based measures (CM). Physical performance tests included the five times sit to stand, Timed Up and Go (TUG), Forward Functional Reach (FFR) and 30-s stand test. A random number generator determined the testing order. The test-re-test reliability for the VR and CM was determined. Furthermore, concurrent validity was determined using a Pearson product moment correlation (Pearson r). The VR demonstrated excellent reliability for 5 × STS intraclass correlation coefficient (ICC) = 0.931(3,1), FFR ICC = 0.846(3,1) and the TUG ICC = 0.944(3,1). The concurrent validity data for the VR and CM (ICC 3, k) were moderate for FFR ICC = 0.682, excellent 5 × STS ICC = 0.889 and excellent for the TUG ICC = 0.878. The concurrent validity of the 30-s stand test was good ICC = 0.735(3,1). This study supports the use of VR equipment for measuring physical performance tests in the clinic for healthy community-dwelling elders. Virtual reality equipment is not only used to treat balance impairments but it is also used to measure and determine physical impairments through the use of physical performance tests. Virtual reality equipment is a reliable and valid tool for collecting physical performance data for the 5 × STS, FFR, TUG and 30-s stand test for healthy community-dwelling elders.
Review of Virtual Reality Treatment in Psychiatry: Evidence Versus Current Diffusion and Use.
Mishkind, Matthew C; Norr, Aaron M; Katz, Andrea C; Reger, Greg M
2017-09-18
This review provides an overview of the current evidence base for and clinical applications of the use of virtual reality (VR) in psychiatric practice, in context of recent technological developments. The use of VR in psychiatric practice shows promise with much of the research demonstrating clinical effectiveness for conditions including post-traumatic stress disorder, anxiety and phobias, chronic pain, rehabilitation, and addictions. However, more research is needed before the use of VR is considered a clinical standard of practice in some areas. The recent release of first generation consumer VR products signals a change in the viability of further developing VR systems and applications. As applications increase so will the need for good quality research to best understand what makes VR effective, and when VR is not appropriate for clinical services. As the field progresses, it is hopeful that the flexibility afforded by this technology will yield superior outcomes and a better understanding of the underlying mechanisms impacting those outcomes.
Effect of Virtual Reality on Cognition in Stroke Patients
Kim, Bo Ryun; Kim, Lee Suk; Park, Ji Young
2011-01-01
Objective To investigate the effect of virtual reality on the recovery of cognitive impairment in stroke patients. Method Twenty-eight patients (11 males and 17 females, mean age 64.2) with cognitive impairment following stroke were recruited for this study. All patients were randomly assigned to one of two groups, the virtual reality (VR) group (n=15) or the control group (n=13). The VR group received both virtual reality training and computer-based cognitive rehabilitation, whereas the control group received only computer-based cognitive rehabilitation. To measure, activity of daily living cognitive and motor functions, the following assessment tools were used: computerized neuropsychological test and the Tower of London (TOL) test for cognitive function assessment, Korean-Modified Barthel index (K-MBI) for functional status evaluation, and the motricity index (MI) for motor function assessment. All recruited patients underwent these evaluations before rehabilitation and four weeks after rehabilitation. Results The VR group showed significant improvement in the K-MMSE, visual and auditory continuous performance tests (CPT), forward digit span test (DST), forward and backward visual span tests (VST), visual and verbal learning tests, TOL, K-MBI, and MI scores, while the control group showed significant improvement in the K-MMSE, forward DST, visual and verbal learning tests, trail-making test-type A, TOL, K-MBI, and MI scores after rehabilitation. The changes in the visual CPT and backward VST in the VR group after rehabilitation were significantly higher than those in the control group. Conclusion Our findings suggest that virtual reality training combined with computer-based cognitive rehabilitation may be of additional benefit for treating cognitive impairment in stroke patients. PMID:22506159
Virtual reality-based simulators for spine surgery: a systematic review.
Pfandler, Michael; Lazarovici, Marc; Stefan, Philipp; Wucherer, Patrick; Weigl, Matthias
2017-09-01
Virtual reality (VR)-based simulators offer numerous benefits and are very useful in assessing and training surgical skills. Virtual reality-based simulators are standard in some surgical subspecialties, but their actual use in spinal surgery remains unclear. Currently, only technical reviews of VR-based simulators are available for spinal surgery. Thus, we performed a systematic review that examined the existing research on VR-based simulators in spinal procedures. We also assessed the quality of current studies evaluating VR-based training in spinal surgery. Moreover, we wanted to provide a guide for future studies evaluating VR-based simulators in this field. This is a systematic review of the current scientific literature regarding VR-based simulation in spinal surgery. Five data sources were systematically searched to identify relevant peer-reviewed articles regarding virtual, mixed, or augmented reality-based simulators in spinal surgery. A qualitative data synthesis was performed with particular attention to evaluation approaches and outcomes. Additionally, all included studies were appraised for their quality using the Medical Education Research Study Quality Instrument (MERSQI) tool. The initial review identified 476 abstracts and 63 full texts were then assessed by two reviewers. Finally, 19 studies that examined simulators for the following procedures were selected: pedicle screw placement, vertebroplasty, posterior cervical laminectomy and foraminotomy, lumbar puncture, facet joint injection, and spinal needle insertion and placement. These studies had a low-to-medium methodological quality with a MERSQI mean score of 11.47 out of 18 (standard deviation=1.81). This review described the current state and applications of VR-based simulator training and assessment approaches in spinal procedures. Limitations, strengths, and future advancements of VR-based simulators for training and assessment in spinal surgery were explored. Higher-quality studies with patient-related outcome measures are needed. To establish further adaptation of VR-based simulators in spinal surgery, future evaluations need to improve the study quality, apply long-term study designs, and examine non-technical skills, as well as multidisciplinary team training. Copyright © 2017 Elsevier Inc. All rights reserved.
Virtual reality in laparoscopic surgery.
Uranüs, Selman; Yanik, Mustafa; Bretthauer, Georg
2004-01-01
Although the many advantages of laparoscopic surgery have made it an established technique, training in laparoscopic surgery posed problems not encountered in conventional surgical training. Virtual reality simulators open up new perspectives for training in laparoscopic surgery. Under realistic conditions in real time, trainees can tailor their sessions with the VR simulator to suit their needs and goals, and can repeat exercises as often as they wish. VR simulators reduce the number of experimental animals needed for training purposes and are suited to the pursuit of research in laparoscopic surgery.
ERIC Educational Resources Information Center
Kim, Heesung; Ke, Fengfeng
2016-01-01
The pedagogical and design considerations for the use of a virtual reality (VR) learning environment are important for prospective and current teachers. However, empirical research investigating how preservice teachers interact with transformative content representation, facilitation, and learning activities in a VR educational simulation is still…
ERIC Educational Resources Information Center
Kartiko, Iwan; Kavakli, Manolya; Cheng, Ken
2010-01-01
As the technology in computer graphics advances, Animated-Virtual Actors (AVAs) in Virtual Reality (VR) applications become increasingly rich and complex. Cognitive Theory of Multimedia Learning (CTML) suggests that complex visual materials could hinder novice learners from attending to the lesson properly. On the other hand, previous studies have…
Teel, Elizabeth F; Gay, Michael R; Arnett, Peter A; Slobounov, Semyon M
2016-03-01
Balance assessments are part of the recommended clinical concussion evaluation, along with computerized neuropsychological testing and self-reported symptoms checklists. New technology has allowed for the creation of virtual reality (VR) balance assessments to be used in concussion care, but there is little information on the sensitivity and specificity of these evaluations. The purpose of this study is to establish the sensitivity and specificity of a VR balance module for detecting lingering balance deficits clinical concussion care. Retrospective case-control study. Institutional research laboratory. Normal controls (n = 94) and concussed participants (n = 27). All participants completed a VR balance assessment paradigm. Concussed participants were diagnosed by a Certified Athletic Trainer or physician (with 48 hours postinjury) and tested in the laboratory between 7 and 10 days postinjury. Receiver operating characteristic curves were performed to establish the VR module's sensitivity and specificity for detecting lingering balance deficits. Final balance score. For the VR balance module, a cutoff score of 8.25 was established to maximize sensitivity at 85.7% and specificity at 87.8%. The VR balance module has high sensitivity and specificity for detecting subacute balance deficits after concussive injury. The VR balance has a high subacute sensitivity and specificity as a stand-alone balance assessment tool and may detect ongoing balance deficits not readily detectable by the Balance Error Scoring System or Sensory Organization Test. Virtual reality balance modules may be a beneficial addition to the current clinical concussion diagnostic battery.
Application of Virtual, Augmented, and Mixed Reality to Urology.
Hamacher, Alaric; Kim, Su Jin; Cho, Sung Tae; Pardeshi, Sunil; Lee, Seung Hyun; Eun, Sung-Jong; Whangbo, Taeg Keun
2016-09-01
Recent developments in virtual, augmented, and mixed reality have introduced a considerable number of new devices into the consumer market. This momentum is also affecting the medical and health care sector. Although many of the theoretical and practical foundations of virtual reality (VR) were already researched and experienced in the 1980s, the vastly improved features of displays, sensors, interactivity, and computing power currently available in devices offer a new field of applications to the medical sector and also to urology in particular. The purpose of this review article is to review the extent to which VR technology has already influenced certain aspects of medicine, the applications that are currently in use in urology, and the future development trends that could be expected.
Application of Virtual, Augmented, and Mixed Reality to Urology
2016-01-01
Recent developments in virtual, augmented, and mixed reality have introduced a considerable number of new devices into the consumer market. This momentum is also affecting the medical and health care sector. Although many of the theoretical and practical foundations of virtual reality (VR) were already researched and experienced in the 1980s, the vastly improved features of displays, sensors, interactivity, and computing power currently available in devices offer a new field of applications to the medical sector and also to urology in particular. The purpose of this review article is to review the extent to which VR technology has already influenced certain aspects of medicine, the applications that are currently in use in urology, and the future development trends that could be expected. PMID:27706017
ERIC Educational Resources Information Center
Bricken, Meredith; Byrne, Chris M.
The goal of this study was to take a first step in evaluating the potential of virtual reality (VR) as a learning environment. The context of the study was The Technology Academy, a technology-oriented summer day camp for students ages 5-18, where student activities center around hands-on exploration of new technology (e.g., robotics, MIDI digital…
Galvin, Jane; McDonald, Rachael; Catroppa, Cathy; Anderson, Vicki
2011-01-01
Virtual reality (VR) is an emerging area of paediatric clinical and research practice, however the majority of research to date has focused on outcomes for adults following stroke. This paper appraises and describes current evidence for use of virtual reality interventions to improve upper limb function of children with neurological impairment. A comprehensive database search was undertaken to explore literature on the use of VR systems for rehabilitation of upper limb skills of children with neurological impairment. Studies investigating the use of robotics or other mechanical devices were excluded. Five studies were found and were critiqued using the Downs and Black scale for measuring study quality. One randomized control trial and four case studies were found. No study scored over 50% on the Downs and Black scale, indicating methodological limitations that limit generalizability. Current evidence for the use of VR to improve hand and arm skills is at an emerging stage. Small sample sizes and inconsistencies in outcome measurement limit the ability to generalize findings. Further studies are required to investigate the ability to maintain gains made in VR over time and to determine whether gains transfer from the VR to real life tasks and activities.
Calabrò, Rocco Salvatore; Russo, Margherita; Naro, Antonino; De Luca, Rosaria; Leo, Antonino; Tomasello, Provvidenza; Molonia, Francesco; Dattola, Vincenzo; Bramanti, Alessia; Bramanti, Placido
2017-06-15
Gait, coordination, and balance may be severely compromised in patients with multiple sclerosis (MS), with considerable consequences on the patient's daily living activities, psychological status and quality of life. For this reason, MS patients may benefit from robotic-rehabilitation and virtual reality training sessions. Aim of the present study was to assess the efficacy of robot-assisted gait training (RAGT) equipped with virtual reality (VR) system in MS patients with walking disabilities (EDSS 4.0 to 5.5) as compared to RAGT without VR. We enrolled 40 patients (randomized into two groups) undergoing forty RAGT±VR sessions over eight weeks. All the patients were assessed at baseline and at the end of the treatment by using specific scales. Effect sizes were very small and non-significant between the groups for Berg Balance Scale (-0.019, CI95% -2.403 to 2.365) and TUG (-0.064, 95%CI -0.408 to 0.536) favoring RAGT+VR. Effects were moderate-to-large and significant for positive attitude (-0.505, 95%CI -3.615 to 2.604) and problem-solving (-0.905, 95%CI -2.113 to 0.302) sub-items of Coping Orientation to Problem Experienced, thus largely favoring RAGT+VR. Our findings show that RAGT combined with VR is an effective therapeutic option in MS patients with walking disability as compared to RAGT without VR. We may hypothesize that VR may strengthen RAGT thanks to the entrainment of different brain areas involved in motor panning and learning. Copyright © 2017 Elsevier B.V. All rights reserved.
Virtual reality simulators: valuable surgical skills trainers or video games?
Willis, Ross E; Gomez, Pedro Pablo; Ivatury, Srinivas J; Mitra, Hari S; Van Sickle, Kent R
2014-01-01
Virtual reality (VR) and physical model (PM) simulators differ in terms of whether the trainee is manipulating actual 3-dimensional objects (PM) or computer-generated 3-dimensional objects (VR). Much like video games (VG), VR simulators utilize computer-generated graphics. These differences may have profound effects on the utility of VR and PM training platforms. In this study, we aimed to determine whether a relationship exists between VR, PM, and VG platforms. VR and PM simulators for laparoscopic camera navigation ([LCN], experiment 1) and flexible endoscopy ([FE] experiment 2) were used in this study. In experiment 1, 20 laparoscopic novices played VG and performed 0° and 30° LCN exercises on VR and PM simulators. In experiment 2, 20 FE novices played VG and performed colonoscopy exercises on VR and PM simulators. In both experiments, VG performance was correlated with VR performance but not with PM performance. Performance on VR simulators did not correlate with performance on respective PM models. VR environments may be more like VG than previously thought. © 2013 Published by Association of Program Directors in Surgery on behalf of Association of Program Directors in Surgery.
The use of virtual reality in memory rehabilitation: current findings and future directions.
Brooks, B M; Rose, F D
2003-01-01
There is considerable potential for using virtual reality (VR) in memory rehabilitation which is only just beginning to be realized. PC-based virtual environments are probably better suited for this purpose than more immersive virtual environments because they are relatively inexpensive and portable, and less frightening to patients. Those exploratory studies that have so far been performed indicate that VR involvement would be usefully directed towards improving assessments of memory impairments and in memory remediation using reorganization techniques. In memory assessment, the use of VR could provide more comprehensive, ecologically-valid, and controlled evaluations of prospective, incidental, and spatial memory in a rehabilitation setting than is possible using standardized assessment tests. The additional knowledge gained from these assessments could more effectively direct rehabilitation towards specific impairments of individual patients. In memory remediation, VR training has been found to promote procedural learning in people with memory impairments, and this learning has been found to transfer to improved real-world performance. Future research should investigate ways in which the procedural knowledge gained during VR interaction can be adapted to offset the many disabilities which result from different forms of memory impairment.
NASA Technical Reports Server (NTRS)
Dumas, Joseph D., II
1998-01-01
Several virtual reality I/O peripherals were successfully configured and integrated as part of the author's 1997 Summer Faculty Fellowship work. These devices, which were not supported by the developers of VR software packages, use new software drivers and configuration files developed by the author to allow them to be used with simulations developed using those software packages. The successful integration of these devices has added significant capability to the ANVIL lab at MSFC. In addition, the author was able to complete the integration of a networked virtual reality simulation of the Space Shuttle Remote Manipulator System docking Space Station modules which was begun as part of his 1996 Fellowship. The successful integration of this simulation demonstrates the feasibility of using VR technology for ground-based training as well as on-orbit operations.
The Potential of Virtual Reality for the Investigation of Awe
Chirico, Alice; Yaden, David B.; Riva, Giuseppe; Gaggioli, Andrea
2016-01-01
The emotion of awe is characterized by the perception of vastness and a need for accommodation, which can include a positive and/or negative valence. While a number of studies have successfully manipulated this emotion, the issue of how to elicit particularly intense awe experiences in laboratory settings remains. We suggest that virtual reality (VR) is a particularly effective mood induction tool for eliciting awe. VR provides three key assets for improving awe. First, VR provides users with immersive and ecological yet controlled environments that can elicit a sense of “presence,” the subjective experience of “being there” in a simulated reality. Further, VR can be used to generate complex, vast stimuli, which can target specific theoretical facets of awe. Finally, VR allows for convenient tracking of participants’ behavior and physiological responses, allowing for more integrated assessment of emotional experience. We discussed the potential and challenges of the proposed approach with an emphasis on VR’s capacity to raise the signal of reactions to emotions such as awe in laboratory settings. PMID:27881970
ConfocalVR: Immersive Visualization Applied to Confocal Microscopy.
Stefani, Caroline; Lacy-Hulbert, Adam; Skillman, Thomas
2018-06-24
ConfocalVR is a virtual reality (VR) application created to improve the ability of researchers to study the complexity of cell architecture. Confocal microscopes take pictures of fluorescently labeled proteins or molecules at different focal planes to create a stack of 2D images throughout the specimen. Current software applications reconstruct the 3D image and render it as a 2D projection onto a computer screen where users need to rotate the image to expose the full 3D structure. This process is mentally taxing, breaks down if you stop the rotation, and does not take advantage of the eye's full field of view. ConfocalVR exploits consumer-grade virtual reality (VR) systems to fully immerse the user in the 3D cellular image. In this virtual environment the user can: 1) adjust image viewing parameters without leaving the virtual space, 2) reach out and grab the image to quickly rotate and scale the image to focus on key features, and 3) interact with other users in a shared virtual space enabling real-time collaborative exploration and discussion. We found that immersive VR technology allows the user to rapidly understand cellular architecture and protein or molecule distribution. We note that it is impossible to understand the value of immersive visualization without experiencing it first hand, so we encourage readers to get access to a VR system, download this software, and evaluate it for yourself. The ConfocalVR software is available for download at http://www.confocalvr.com, and is free for nonprofits. Copyright © 2018. Published by Elsevier Ltd.
Application of virtual reality graphics in assessment of concussion.
Slobounov, Semyon; Slobounov, Elena; Newell, Karl
2006-04-01
Abnormal balance in individuals suffering from traumatic brain injury (TBI) has been documented in numerous recent studies. However, specific mechanisms causing balance deficits have not been systematically examined. This paper demonstrated the destabilizing effect of visual field motion, induced by virtual reality graphics in concussed individuals but not in normal controls. Fifty five student-athletes at risk for concussion participated in this study prior to injury and 10 of these subjects who suffered MTBI were tested again on day 3, day 10, and day 30 after the incident. Postural responses to visual field motion were recorded using a virtual reality (VR) environment in conjunction with balance (AMTI force plate) and motion tracking (Flock of Birds) technologies. Two experimental conditions were introduced where subjects passively viewed VR scenes or actively manipulated the visual field motion. Long-lasting destabilizing effects of visual field motion were revealed, although subjects were asymptomatic when standard balance tests were introduced. The findings demonstrate that advanced VR technology may detect residual symptoms of concussion at least 30 days post-injury.
Chan, Christopher L F; Ngai, Elena K Y; Leung, Paul K H; Wong, Stephen
2010-06-01
To examine the effect of the adapted virtual reality cognitive training program in older adults with chronic schizophrenia. Older adults with chronic schizophrenia were recruited from a long-stay care setting and were randomly assigned into intervention (n = 12) and control group (n = 15). The intervention group received 10-session of VR program that consisted of 2 VR activities using IREX. The control group attended the usual programs in the setting. After the 10-session intervention, older adults with chronic schizophrenia preformed significantly better than control in overall cognitive function (p .000), and in two cognitive subscales: repetition (p .001) and memory (p .040). These participants engaged in the VR activities volitionally. No problem of cybersickness was observed. The results of the current study indicate that engaging in the adapted virtual reality cognitive training program offers the potential for significant gains in cognitive function of the older adults with chronic schizophrenia.
Gallagher, A G; Satava, R M
2002-12-01
The objective assessment of the psychomotor skills of surgeons is now a priority; however, this is a difficult task because of measurement difficulties associated with the assessment of surgery in vivo. In this study, virtual reality (VR) was used to overcome these problems. Twelve experienced (>50 minimal-access procedures), 12 inexperienced laparoscopic surgeons (<10 minimal-access procedures), and 12 laparoscopic novices participated in the study. Each subject completed 10 trials on the Minimally Invasive Surgical Trainer; Virtual Reality (MIST VR). Experienced laparoscopic surgeons performed the tasks significantly (p < 0.01) faster, with less error, more economy in the movement of instruments and the use of diathermy, and with greater consistency in performance. The standardized coefficient alpha for performance measures ranged from a = 0.89 to 0.98, showing high internal measurement consistency. Test-retest reliability ranged from r = 0.96 to r = 0.5. VR is a useful tool for evaluating the psychomotor skills needed to perform laparoscopic surgery.
Juvrud, Joshua; Gredebäck, Gustaf; Åhs, Fredrik; Lerin, Nils; Nyström, Pär; Kastrati, Granit; Rosén, Jörgen
2018-01-01
There is a need for large-scale remote data collection in a controlled environment, and the in-home availability of virtual reality (VR) and the commercial availability of eye tracking for VR present unique and exciting opportunities for researchers. We propose and provide a proof-of-concept assessment of a robust system for large-scale in-home testing using consumer products that combines psychophysiological measures and VR, here referred to as a Virtual Lab. For the first time, this method is validated by correlating autonomic responses, skin conductance response (SCR), and pupillary dilation, in response to a spider, a beetle, and a ball using commercially available VR. Participants demonstrated greater SCR and pupillary responses to the spider, and the effect was dependent on the proximity of the stimuli to the participant, with a stronger response when the spider was close to the virtual self. We replicated these effects across two experiments and in separate physical room contexts to mimic variability in home environment. Together, these findings demonstrate the utility of pupil dilation as a marker of autonomic arousal and the feasibility to assess this in commercially available VR hardware and support a robust Virtual Lab tool for massive remote testing.
Juvrud, Joshua; Gredebäck, Gustaf; Åhs, Fredrik; Lerin, Nils; Nyström, Pär; Kastrati, Granit; Rosén, Jörgen
2018-01-01
There is a need for large-scale remote data collection in a controlled environment, and the in-home availability of virtual reality (VR) and the commercial availability of eye tracking for VR present unique and exciting opportunities for researchers. We propose and provide a proof-of-concept assessment of a robust system for large-scale in-home testing using consumer products that combines psychophysiological measures and VR, here referred to as a Virtual Lab. For the first time, this method is validated by correlating autonomic responses, skin conductance response (SCR), and pupillary dilation, in response to a spider, a beetle, and a ball using commercially available VR. Participants demonstrated greater SCR and pupillary responses to the spider, and the effect was dependent on the proximity of the stimuli to the participant, with a stronger response when the spider was close to the virtual self. We replicated these effects across two experiments and in separate physical room contexts to mimic variability in home environment. Together, these findings demonstrate the utility of pupil dilation as a marker of autonomic arousal and the feasibility to assess this in commercially available VR hardware and support a robust Virtual Lab tool for massive remote testing. PMID:29867318
Virtual reality in the assessment, understanding, and treatment of mental health disorders.
Freeman, D; Reeve, S; Robinson, A; Ehlers, A; Clark, D; Spanlang, B; Slater, M
2017-10-01
Mental health problems are inseparable from the environment. With virtual reality (VR), computer-generated interactive environments, individuals can repeatedly experience their problematic situations and be taught, via evidence-based psychological treatments, how to overcome difficulties. VR is moving out of specialist laboratories. Our central aim was to describe the potential of VR in mental health, including a consideration of the first 20 years of applications. A systematic review of empirical studies was conducted. In all, 285 studies were identified, with 86 concerning assessment, 45 theory development, and 154 treatment. The main disorders researched were anxiety (n = 192), schizophrenia (n = 44), substance-related disorders (n = 22) and eating disorders (n = 18). There are pioneering early studies, but the methodological quality of studies was generally low. The gaps in meaningful applications to mental health are extensive. The most established finding is that VR exposure-based treatments can reduce anxiety disorders, but there are numerous research and treatment avenues of promise. VR was found to be a much-misused term, often applied to non-interactive and non-immersive technologies. We conclude that VR has the potential to transform the assessment, understanding and treatment of mental health problems. The treatment possibilities will only be realized if - with the user experience at the heart of design - the best immersive VR technology is combined with targeted translational interventions. The capability of VR to simulate reality could greatly increase access to psychological therapies, while treatment outcomes could be enhanced by the technology's ability to create new realities. VR may merit the level of attention given to neuroimaging.
Sil, Soumitri; Dahlquist, Lynnda M; Thompson, Caitlin; Hahn, Amy; Herbert, Linda; Wohlheiter, Karen; Horn, Susan
2014-02-01
This study sought to evaluate the effectiveness of virtual reality (VR) enhanced interactive videogame distraction for children undergoing experimentally induced cold pressor pain and examined the role of avoidant and approach coping style as a moderator of VR distraction effectiveness. Sixty-two children (6-13 years old) underwent a baseline cold pressor trial followed by two cold pressor trials in which interactive videogame distraction was delivered both with and without a VR helmet in counterbalanced order. As predicted, children demonstrated significant improvement in pain tolerance during both interactive videogame distraction conditions. However, a differential response to videogame distraction with or without the enhancement of VR technology was not found. Children's coping style did not moderate their response to distraction. Rather, interactive videogame distraction with and without VR technology was equally effective for children who utilized avoidant or approach coping styles.
Virtual reality rehabilitation for stroke patients: Recent review and research issues
NASA Astrophysics Data System (ADS)
Arip, Eza Surya Mohd; Ismail, Waidah; Nordin, Md Jan; Radman, Abduljalil
2017-11-01
Stroke is one of the main causes of disability in the world. In order for stroke survivors to reduce their disability, they need to go through a rehabilitation process to regain back their independence and improve their quality of life. To guide patients in their rehabilitation process and improve their receptiveness in performing repetitive exercises, a new rehabilitation training program using Virtual Reality (VR) technology has been introduced. This has attracted many researchers to explore more on VR technology as a new tool for stroke patient's rehabilitation. This paper presents a review on existing VR systems that have been developed for stroke rehabilitation. First, recent VR systems utilized for rehabilitation after stroke are delineated and categorized. Each of these categories concludes with a discussion on limitations and any issues that arise from it. Finally, a concise summary with significant findings and future possibilities in VR rehabilitation research is presented in table format.
Deutsch, Judith E; Westcott McCoy, Sarah
2017-07-01
Use of virtual reality (VR) and serious games (SGs) interventions within rehabilitation as motivating tools for task specific training for individuals with neurological conditions are fast-developing. Within this perspective paper we use the framework of the IV STEP conference to summarize the literature on VR and SG for children and adults by three topics: Prevention; Outcomes: Body-Function-Structure, Activity and Participation; and Plasticity. Overall the literature in this area offers support for use of VR and SGs to improve body functions and to some extent activity domain outcomes. Critical analysis of clients' goals and selective evaluation of VR and SGs are necessary to appropriately take advantage of these tools within intervention. Further research on prevention, participation, and plasticity is warranted. We offer suggestions for bridging the gap between research and practice integrating VR and SGs into physical therapist education and practice.
Movement visualisation in virtual reality rehabilitation of the lower limb: a systematic review.
Ferreira Dos Santos, Luara; Christ, Oliver; Mate, Kedar; Schmidt, Henning; Krüger, Jörg; Dohle, Christian
2016-12-19
Virtual reality (VR) based applications play an increasing role in motor rehabilitation. They provide an interactive and individualized environment in addition to increased motivation during motor tasks as well as facilitating motor learning through multimodal sensory information. Several previous studies have shown positive effect of VR-based treatments for lower extremity motor rehabilitation in neurological conditions, but the characteristics of these VR applications have not been systematically investigated. The visual information on the user's movement in the virtual environment, also called movement visualisation (MV), is a key element of VR-based rehabilitation interventions. The present review proposes categorization of Movement Visualisations of VR-based rehabilitation therapy for neurological conditions and also summarises current research in lower limb application. A systematic search of literature on VR-based intervention for gait and balance rehabilitation in neurological conditions was performed in the databases namely; MEDLINE (Ovid), AMED, EMBASE, CINAHL, and PsycInfo. Studies using non-virtual environments or applications to improve cognitive function, activities of daily living, or psychotherapy were excluded. The VR interventions of the included studies were analysed on their MV. In total 43 publications were selected based on the inclusion criteria. Seven distinct MV groups could be differentiated: indirect MV (N = 13), abstract MV (N = 11), augmented reality MV (N = 9), avatar MV (N = 5), tracking MV (N = 4), combined MV (N = 1), and no MV (N = 2). In two included articles the visualisation conditions included different MV groups within the same study. Additionally, differences in motor performance could not be analysed because of the differences in the study design. Three studies investigated different visualisations within the same MV group and hence limited information can be extracted from one study. The review demonstrates that individuals' movements during VR-based motor training can be displayed in different ways. Future studies are necessary to fundamentally explore the nature of this VR information and its effect on motor outcome.
Towards Gesture-Based Multi-User Interactions in Collaborative Virtual Environments
NASA Astrophysics Data System (ADS)
Pretto, N.; Poiesi, F.
2017-11-01
We present a virtual reality (VR) setup that enables multiple users to participate in collaborative virtual environments and interact via gestures. A collaborative VR session is established through a network of users that is composed of a server and a set of clients. The server manages the communication amongst clients and is created by one of the users. Each user's VR setup consists of a Head Mounted Display (HMD) for immersive visualisation, a hand tracking system to interact with virtual objects and a single-hand joypad to move in the virtual environment. We use Google Cardboard as a HMD for the VR experience and a Leap Motion for hand tracking, thus making our solution low cost. We evaluate our VR setup though a forensics use case, where real-world objects pertaining to a simulated crime scene are included in a VR environment, acquired using a smartphone-based 3D reconstruction pipeline. Users can interact using virtual gesture-based tools such as pointers and rulers.
ERIC Educational Resources Information Center
Quero, Soledad; Pérez-Ara, M. Ángeles; Bretón-López, Juana; García-Palacios, Azucena; Baños, Rosa M.; Botella, Cristina
2014-01-01
Interoceptive exposure (IE) is a standard component of cognitive-behavioural therapy (CBT) for panic disorder and agoraphobia. The virtual reality (VR) program "Panic-Agoraphobia" has several virtual scenarios designed for applying exposure to agoraphobic situations; it can also simulate physical sensations. This work examines patients'…
Innovation Education Enabled through a Collaborative Virtual Reality Learning Environment
ERIC Educational Resources Information Center
Thorsteinsson, Gisli; Page, Tom; Lehtonen, Miika; Ha, Joong Gyu
2006-01-01
This article provides a descriptive account of the development of an approach to the support of design and technology education with 3D Virtual Reality (VR) technologies on an open and distance learning basis. This work promotes an understanding of the implications and possibilities of advanced virtual learning technologies in education for…
de Rooij, Ilona J M; van de Port, Ingrid G L; Meijer, Jan-Willem G
2016-12-01
Virtual reality (VR) training is considered to be a promising novel therapy for balance and gait recovery in patients with stroke. The aim of this study was to conduct a systematic literature review with meta-analysis to investigate whether balance or gait training using VR is more effective than conventional balance or gait training in patients with stroke. A literature search was carried out in the databases PubMed, Embase, MEDLINE, and Cochrane Library up to December 1, 2015. Randomized controlled trials that compared the effect of balance or gait training with and without VR on balance and gait ability in patients with stroke were included. Twenty-one studies with a median PEDro score of 6.0 were included. The included studies demonstrated a significant greater effect of VR training on balance and gait recovery after stroke compared with conventional therapy as indicated with the most frequently used measures: gait speed, Berg Balance Scale, and Timed "Up & Go" Test. Virtual reality was more effective to train gait and balance than conventional training when VR interventions were added to conventional therapy and when time dose was matched. The presence of publication bias and diversity in included studies were limitations of the study. The results suggest that VR training is more effective than balance or gait training without VR for improving balance or gait ability in patients with stroke. Future studies are recommended to investigate the effect of VR on participation level with an adequate follow-up period. Overall, a positive and promising effect of VR training on balance and gait ability is expected. © 2016 American Physical Therapy Association.
The effectiveness of virtual and augmented reality in health sciences and medical anatomy.
Moro, Christian; Štromberga, Zane; Raikos, Athanasios; Stirling, Allan
2017-11-01
Although cadavers constitute the gold standard for teaching anatomy to medical and health science students, there are substantial financial, ethical, and supervisory constraints on their use. In addition, although anatomy remains one of the fundamental areas of medical education, universities have decreased the hours allocated to teaching gross anatomy in favor of applied clinical work. The release of virtual (VR) and augmented reality (AR) devices allows learning to occur through hands-on immersive experiences. The aim of this research was to assess whether learning structural anatomy utilizing VR or AR is as effective as tablet-based (TB) applications, and whether these modes allowed enhanced student learning, engagement and performance. Participants (n = 59) were randomly allocated to one of the three learning modes: VR, AR, or TB and completed a lesson on skull anatomy, after which they completed an anatomical knowledge assessment. Student perceptions of each learning mode and any adverse effects experienced were recorded. No significant differences were found between mean assessment scores in VR, AR, or TB. During the lessons however, VR participants were more likely to exhibit adverse effects such as headaches (25% in VR P < 0.05), dizziness (40% in VR, P < 0.001), or blurred vision (35% in VR, P < 0.01). Both VR and AR are as valuable for teaching anatomy as tablet devices, but also promote intrinsic benefits such as increased learner immersion and engagement. These outcomes show great promise for the effective use of virtual and augmented reality as means to supplement lesson content in anatomical education. Anat Sci Educ 10: 549-559. © 2017 American Association of Anatomists. © 2017 American Association of Anatomists.
Validity of assessing child feeding with virtual reality.
Persky, Susan; Goldring, Megan R; Turner, Sara A; Cohen, Rachel W; Kistler, William D
2018-04-01
Assessment of parents' child feeding behavior is challenging, and there is need for additional methodological approaches. Virtual reality technology allows for the creation of behavioral measures, and its implementation overcomes several limitations of existing methods. This report evaluates the validity and usability of the Virtual Reality (VR) Buffet among a sample of 52 parents of children aged 3-7. Participants served a meal of pasta and apple juice in both a virtual setting and real-world setting (counterbalanced and separated by a distractor task). They then created another meal for their child, this time choosing from the full set of food options in the VR Buffet. Finally, participants completed a food estimation task followed by a questionnaire, which assessed their perceptions of the VR Buffet. Results revealed that the amount of virtual pasta served by parents correlated significantly with the amount of real pasta they served, r s = 0.613, p < .0001, as did served amounts of virtual and real apple juice, r s = 0.822, p < .0001. Furthermore, parents' perception of the calorie content of chosen foods was significantly correlated with observed calorie content (r s = 0.438, p = .002), and parents agreed that they would feed the meal they created to their child (M = 4.43, SD = 0.82 on a 1-5 scale). The data presented here demonstrate that parent behavior in the VR Buffet is highly related to real-world behavior, and that the tool is well-rated by parents. Given the data presented and the potential benefits of the abundant behavioral data the VR Buffet can provide, we conclude that it is a valid and needed addition to the array of tools for assessing feeding behavior. Published by Elsevier Ltd.
ERIC Educational Resources Information Center
Jiman, Juhanita
This paper discusses the use of Virtual Reality (VR) in e-learning environments where an intelligent three-dimensional (3D) virtual person plays the role of an instructor. With the existence of this virtual instructor, it is hoped that the teaching and learning in the e-environment will be more effective and productive. This virtual 3D animated…
A telescope with augmented reality functions
NASA Astrophysics Data System (ADS)
Hou, Qichao; Cheng, Dewen; Wang, Qiwei; Wang, Yongtian
2016-10-01
This study introduces a telescope with virtual reality (VR) and augmented reality (AR) functions. In this telescope, information on the micro-display screen is integrated to the reticule of telescope through a beam splitter and is then received by the observer. The design and analysis of telescope optical system with AR and VR ability is accomplished and the opto-mechanical structure is designed. Finally, a proof-of-concept prototype is fabricated and demonstrated. The telescope has an exit pupil diameter of 6 mm at an eye relief of 19 mm, 6° field of view, 5 to 8 times visual magnification , and a 30° field of view of the virtual image.
Virtual reality in neurologic rehabilitation of spatial disorientation
2013-01-01
Background Topographical disorientation (TD) is a severe and persistent impairment of spatial orientation and navigation in familiar as well as new environments and a common consequence of brain damage. Virtual reality (VR) provides a new tool for the assessment and rehabilitation of TD. In VR training programs different degrees of active motor control over navigation may be implemented (i.e. more passive spatial navigation vs. more active). Increasing demands of active motor control may overload those visuo-spatial resources necessary for learning spatial orientation and navigation. In the present study we used a VR-based verbally-guided passive navigation training program to improve general spatial abilities in neurologic patients with spatial disorientation. Methods Eleven neurologic patients with focal brain lesions, which showed deficits in spatial orientation, as well as 11 neurologic healthy controls performed a route finding training in a virtual environment. Participants learned and recalled different routes for navigation in a virtual city over five training sessions. Before and after VR training, general spatial abilities were assessed with standardized neuropsychological tests. Results Route finding ability in the VR task increased over the five training sessions. Moreover, both groups improved different aspects of spatial abilities after VR training in comparison to the spatial performance before VR training. Conclusions Verbally-guided passive navigation training in VR enhances general spatial cognition in neurologic patients with spatial disorientation as well as in healthy controls and can therefore be useful in the rehabilitation of spatial deficits associated with TD. PMID:23394289
Virtual Reality in the Assessment and Treatment of Weight-Related Disorders.
Wiederhold, Brenda K; Riva, Giuseppe; Gutiérrez-Maldonado, José
2016-02-01
Virtual Reality (VR) has, for the past two decades, proven to be a useful adjunctive tool for both assessment and treatment of patients with eating disorders and obesity. VR allows an individual to enter scenarios that simulate real-life situations and to encounter food cues known to trigger his/her disordered eating behavior. As well, VR enables three-dimensional figures of the patient's body to be presented, helping him/her to reach an awareness of body image distortion and then providing the opportunity to confront and correct distortions, resulting in a more realistic body image and a decrease in body image dissatisfaction. In this paper, we describe seminal studies in this research area.
NASA's Hybrid Reality Lab: One Giant Leap for Full Dive
NASA Technical Reports Server (NTRS)
Delgado, Francisco J.; Noyes, Matthew
2017-01-01
This presentation demonstrates how NASA is using consumer VR headsets, game engine technology and NVIDIA's GPUs to create highly immersive future training systems augmented with extremely realistic haptic feedback, sound, additional sensory information, and how these can be used to improve the engineering workflow. Include in this presentation is an environment simulation of the ISS, where users can interact with virtual objects, handrails, and tracked physical objects while inside VR, integration of consumer VR headsets with the Active Response Gravity Offload System, and a space habitat architectural evaluation tool. Attendees will learn how the best elements of real and virtual worlds can be combined into a hybrid reality environment with tangible engineering and scientific applications.
Immersive Virtual Reality for Pediatric Pain.
Won, Andrea Stevenson; Bailey, Jakki; Bailenson, Jeremy; Tataru, Christine; Yoon, Isabel A; Golianu, Brenda
2017-06-23
Children must often endure painful procedures as part of their treatment for various medical conditions. Those with chronic pain endure frequent or constant discomfort in their daily lives, sometimes severely limiting their physical capacities. With the advent of affordable consumer-grade equipment, clinicians have access to a promising and engaging intervention for pediatric pain, both acute and chronic. In addition to providing relief from acute and procedural pain, virtual reality (VR) may also help to provide a corrective psychological and physiological environment to facilitate rehabilitation for pediatric patients suffering from chronic pain. The special qualities of VR such as presence, interactivity, customization, social interaction, and embodiment allow it to be accepted by children and adolescents and incorporated successfully into their existing medical therapies. However, the powerful and transformative nature of many VR experiences may also pose some risks and should be utilized with caution. In this paper, we review recent literature in pediatric virtual reality for procedural pain and anxiety, acute and chronic pain, and some rehabilitation applications. We also discuss the practical considerations of using VR in pediatric care, and offer specific suggestions and information for clinicians wishing to adopt these engaging therapies into their daily clinical practice.
Immersive Virtual Reality for Pediatric Pain
Won, Andrea Stevenson; Bailey, Jakki; Bailenson, Jeremy; Tataru, Christine; Yoon, Isabel A.; Golianu, Brenda
2017-01-01
Children must often endure painful procedures as part of their treatment for various medical conditions. Those with chronic pain endure frequent or constant discomfort in their daily lives, sometimes severely limiting their physical capacities. With the advent of affordable consumer-grade equipment, clinicians have access to a promising and engaging intervention for pediatric pain, both acute and chronic. In addition to providing relief from acute and procedural pain, virtual reality (VR) may also help to provide a corrective psychological and physiological environment to facilitate rehabilitation for pediatric patients suffering from chronic pain. The special qualities of VR such as presence, interactivity, customization, social interaction, and embodiment allow it to be accepted by children and adolescents and incorporated successfully into their existing medical therapies. However, the powerful and transformative nature of many VR experiences may also pose some risks and should be utilized with caution. In this paper, we review recent literature in pediatric virtual reality for procedural pain and anxiety, acute and chronic pain, and some rehabilitation applications. We also discuss the practical considerations of using VR in pediatric care, and offer specific suggestions and information for clinicians wishing to adopt these engaging therapies into their daily clinical practice. PMID:28644422
The stress and workload of virtual reality training: the effects of presence, immersion and flow.
Lackey, S J; Salcedo, J N; Szalma, J L; Hancock, P A
2016-08-01
The present investigation evaluated the effects of virtual reality (VR) training on the performance, perceived workload and stress response to a live training exercise in a sample of Soldiers. We also examined the relationship between the perceptions of that same VR as measured by engagement, immersion, presence, flow, perceived utility and ease of use with the performance, workload and stress reported on the live training task. To a degree, these latter relationships were moderated by task performance, as measured by binary (Go/No-Go) ratings. Participants who reported positive VR experiences also tended to experience lower stress and lower workload when performing the live version of the task. Thus, VR training regimens may be efficacious for mitigating the stress and workload associated with criterion tasks, thereby reducing the ultimate likelihood of real-world performance failure. Practitioner Summary: VR provides opportunities for training in artificial worlds comprised of highly realistic features. Our virtual room clearing scenario facilitated the integration of Training and Readiness objectives and satisfied training doctrine obligations in a compelling engaging experience for both novice and experienced trainees.
A Web-based cost-effective training tool with possible application to brain injury rehabilitation.
Wang, Peijun; Kreutzer, Ina Anna; Bjärnemo, Robert; Davies, Roy C
2004-06-01
Virtual reality (VR) has provoked enormous interest in the medical community. In particular, VR offers therapists new approaches for improving rehabilitation effects. However, most of these VR assistant tools are not very portable, extensible or economical. Due to the vast amount of 3D data, they are not suitable for Internet transfer. Furthermore, in order to run these VR systems smoothly, special hardware devices are needed. As a result, existing VR assistant tools tend to be available in hospitals but not in patients' homes. To overcome these disadvantages, as a case study, this paper proposes a Web-based Virtual Ticket Machine, called WBVTM, using VRML [VRML Consortium, The Virtual Reality Modeling Language: International Standard ISO/IEC DIS 14772-1, 1997, available at ], Java and EAI (External Authoring Interface) [Silicon Graphics, Inc., The External Authoring Interface (EAI), available at ], to help people with acquired brain injury (ABI) to relearn basic living skills at home at a low cost. As these technologies are open standard and feature usability on the Internet, WBVTM achieves the goals of portability, easy accessibility and cost-effectiveness.
Pan, Xueni; Hamilton, Antonia F de C
2018-03-05
As virtual reality (VR) technology and systems become more commercially available and accessible, more and more psychologists are starting to integrate VR as part of their methods. This approach offers major advantages in experimental control, reproducibility, and ecological validity, but also has limitations and hidden pitfalls which may distract the novice user. This study aimed to guide the psychologist into the novel world of VR, reviewing available instrumentation and mapping the landscape of possible systems. We use examples of state-of-the-art research to describe challenges which research is now solving, including embodiment, uncanny valley, simulation sickness, presence, ethics, and experimental design. Finally, we propose that the biggest challenge for the field would be to build a fully interactive virtual human who can pass a VR Turing test - and that this could only be achieved if psychologists, VR technologists, and AI researchers work together. © 2018 The Authors British Journal of Psychology published by John Wiley & Sons Ltd on behalf of British Psychological Society.
Virtual reality, augmented reality…I call it i-Reality.
Grossmann, Rafael J
2015-01-01
The new term improved reality (i-Reality) is suggested to include virtual reality (VR) and augmented reality (AR). It refers to a real world that includes improved, enhanced and digitally created features that would offer an advantage on a particular occasion (i.e., a medical act). I-Reality may help us bridge the gap between the high demand for medical providers and the low supply of them by improving the interaction between providers and patients.
Designing Virtual Worlds for Use in Mathematics Education.
ERIC Educational Resources Information Center
Winn, William; Bricken, William
Virtual Reality (VR) is a computer generated, multi-dimensional, inclusive environment that can build axioms of algebra into the behavior of the world. This paper discusses the use of VR to represent part of the algebra curriculum in order to improve students' classroom experiences in learning algebra. Students learn to construct their knowledge…
Designing Virtual Worlds for Use in Mathematics Education: The Example of Experiential Algebra.
ERIC Educational Resources Information Center
Winn, William; Bricken, William
1992-01-01
Discussion of the use of virtual reality (VR) to help students learn highlights the use of VR with elementary algebra. Learning theory is examined, including knowledge construction; knowledge representation is discussed, including the symbol systems of algebra; and spatial algebra is described and illustrated. (34 references) (LRW)
A Virtual Approach to Teaching Safety Skills to Children with Autism Spectrum Disorder
ERIC Educational Resources Information Center
Self, Trisha; Scudder, Rosalind R.; Weheba, Gamal; Crumrine, Daiquirie
2007-01-01
Recent advancements in the development of hardware/software configurations for delivering virtual reality (VR) environments to individuals with disabilities have included approaches for children with autism spectrum disorder (ASD). This article describes a study comparing benefits of using VR to benefits of an integrated/visual treatment model…
Seeing Is Believing: Using Virtual Reality to Connect the Dots Between Climate Data and Reality
NASA Astrophysics Data System (ADS)
Skolnik, S.
2016-12-01
Companies like Sony, Samsung, Google, and Facebook are heavily investing in virtual reality (VR) for gaming and entertainment, and 2016 marks an important year as many affordable VR headsets are now commercially available. As VR becomes more widely adopted, one question for the science and research community is how VR can be leveraged for practical use. One answer is found in the use of VR for science storytelling and communication. VR has the potential to allow people to experience scientific content in new and engaging ways, including interacting with GIS data. By adapting data sets to create stunning, immersive visualizations and combining them with 360 video, voiceover, music and other video production techniques, we are creating a new paradigm for science communication. 360 VR content is very compelling when viewed in a VR headset and can also be accessed and viewed in a panoramic manner on the internet via websites and social media. We will discuss the proof of concept use case of a short VR 360 video which combines climate data from NASA with 360 video filmed during an extreme weather event (a blizzard). By connecting GIS data with real video footage, the viewer can gain deeper understanding of climate patterns and better comprehend the correlation between data and reality. The positive reaction this VR climate story garnered at events and conferences, such as ESIP, demonstrates the potential for scientists and researchers to communicate results, findings, and data in an engaging format. By combining GIS data and 360 video, this is a significant new approach to enhance the way that science stories are told.
Virtual reality as a leisure activity for young adults with physical and intellectual disabilities.
Yalon-Chamovitz, Shira; Weiss, Patrice L Tamar
2008-01-01
Participation in leisure activities is a fundamental human right and an important factor of quality of life. Adults with intellectual disabilities (ID) and physical disabilities often experience limited opportunities to participate in leisure activities, virtual reality (VR) technologies may serve to broaden their repertoire of accessible leisure activities. Although the use of VR in rehabilitation has grown over the past decade, few applications have been reported for people with ID. Thirty-three men and women with moderate ID and severe cerebral palsy participated in the study. Each participant in the experimental group (n=17) took part in VR activity two to three times weekly for 12 weeks. Virtual games were provided via GestureTek's Gesture Xtreme video capture VR system. The VR-based activities were perceived by the participants to be enjoyable and successful. Moreover, participants demonstrated clear preferences, initiation and learning. They performed consistently and maintained a high level of interest throughout the intervention period. VR appears to provide varied and motivating opportunities for leisure activities among young adults with intellectual and physical disabilities. Its ease of use and adaptability make it a feasible option for this population.
NASA Technical Reports Server (NTRS)
Regian, J. Wesley; Shebilske, Wayne; Monk, John M.
1993-01-01
We explored the training potential of Virtual Reality (VR) technology. Thirty-one adults were trained and tested on spatial skills in a VR. They learned a sequence of button and knob responses on a VR console and performed flawlessly on the same console. Half were trained with a rote strategy; the rest used a meaningful strategy. Response times were equivalent for both groups and decreased significantly over five test trials indicating that learning continued on VR tests. The same subjects practiced navigating through a VR building, which had three floors with four rooms on each floor. The dependent measure was the number of rooms traversed on routes that differed from training routes. Many subjects completed tests in the fewest rooms possible. All subjects learned configurational knowledge according to the criterion of taking paths that were significantly shorter than those predicted by a random walk as determined by a Monte Carlo analysis. The results were discussed as a departure point for empirically testing the training potential of VR technology.
A High-Fidelity Virtual Environment for the Study of Paranoia
Broome, Matthew R.; Zányi, Eva; Selmanovic, Elmedin; Czanner, Silvester; Birchwood, Max; Chalmers, Alan; Singh, Swaran P.
2013-01-01
Psychotic disorders carry social and economic costs for sufferers and society. Recent evidence highlights the risk posed by urban upbringing and social deprivation in the genesis of paranoia and psychosis. Evidence based psychological interventions are often not offered because of a lack of therapists. Virtual reality (VR) environments have been used to treat mental health problems. VR may be a way of understanding the aetiological processes in psychosis and increasing psychotherapeutic resources for its treatment. We developed a high-fidelity virtual reality scenario of an urban street scene to test the hypothesis that virtual urban exposure is able to generate paranoia to a comparable or greater extent than scenarios using indoor scenes. Participants (n = 32) entered the VR scenario for four minutes, after which time their degree of paranoid ideation was assessed. We demonstrated that the virtual reality scenario was able to elicit paranoia in a nonclinical, healthy group and that an urban scene was more likely to lead to higher levels of paranoia than a virtual indoor environment. We suggest that this study offers evidence to support the role of exposure to factors in the urban environment in the genesis and maintenance of psychotic experiences and symptoms. The realistic high-fidelity street scene scenario may offer a useful tool for therapists. PMID:24455255
DOE Office of Scientific and Technical Information (OSTI.GOV)
Markidis, S.; Rizwan, U.
The use of virtual nuclear control room can be an effective and powerful tool for training personnel working in the nuclear power plants. Operators could experience and simulate the functioning of the plant, even in critical situations, without being in a real power plant or running any risk. 3D models can be exported to Virtual Reality formats and then displayed in the Virtual Reality environment providing an immersive 3D experience. However, two major limitations of this approach are that 3D models exhibit static textures, and they are not fully interactive and therefore cannot be used effectively in training personnel. Inmore » this paper we first describe a possible solution for embedding the output of a computer application in a 3D virtual scene, coupling real-world applications and VR systems. The VR system reported here grabs the output of an application running on an X server; creates a texture with the output and then displays it on a screen or a wall in the virtual reality environment. We then propose a simple model for providing interaction between the user in the VR system and the running simulator. This approach is based on the use of internet-based application that can be commanded by a laptop or tablet-pc added to the virtual environment. (authors)« less
A high-fidelity virtual environment for the study of paranoia.
Broome, Matthew R; Zányi, Eva; Hamborg, Thomas; Selmanovic, Elmedin; Czanner, Silvester; Birchwood, Max; Chalmers, Alan; Singh, Swaran P
2013-01-01
Psychotic disorders carry social and economic costs for sufferers and society. Recent evidence highlights the risk posed by urban upbringing and social deprivation in the genesis of paranoia and psychosis. Evidence based psychological interventions are often not offered because of a lack of therapists. Virtual reality (VR) environments have been used to treat mental health problems. VR may be a way of understanding the aetiological processes in psychosis and increasing psychotherapeutic resources for its treatment. We developed a high-fidelity virtual reality scenario of an urban street scene to test the hypothesis that virtual urban exposure is able to generate paranoia to a comparable or greater extent than scenarios using indoor scenes. Participants (n = 32) entered the VR scenario for four minutes, after which time their degree of paranoid ideation was assessed. We demonstrated that the virtual reality scenario was able to elicit paranoia in a nonclinical, healthy group and that an urban scene was more likely to lead to higher levels of paranoia than a virtual indoor environment. We suggest that this study offers evidence to support the role of exposure to factors in the urban environment in the genesis and maintenance of psychotic experiences and symptoms. The realistic high-fidelity street scene scenario may offer a useful tool for therapists.
Seraglia, Bruno; Gamberini, Luciano; Priftis, Konstantinos; Scatturin, Pietro; Martinelli, Massimiliano; Cutini, Simone
2011-01-01
For over two decades Virtual Reality (VR) has been used as a useful tool in several fields, from medical and psychological treatments, to industrial and military applications. Only in recent years researchers have begun to study the neural correlates that subtend VR experiences. Even if the functional Magnetic Resonance Imaging (fMRI) is the most common and used technique, it suffers several limitations and problems. Here we present a methodology that involves the use of a new and growing brain imaging technique, functional Near-infrared Spectroscopy (fNIRS), while participants experience immersive VR. In order to allow a proper fNIRS probe application, a custom-made VR helmet was created. To test the adapted helmet, a virtual version of the line bisection task was used. Participants could bisect the lines in a virtual peripersonal or extrapersonal space, through the manipulation of a Nintendo Wiimote ® controller in order for the participants to move a virtual laser pointer. Although no neural correlates of the dissociation between peripersonal and extrapersonal space were found, a significant hemodynamic activity with respect to the baseline was present in the right parietal and occipital areas. Both advantages and disadvantages of the presented methodology are discussed.
Interfacing modeling suite Physics Of Eclipsing Binaries 2.0 with a Virtual Reality Platform
NASA Astrophysics Data System (ADS)
Harriett, Edward; Conroy, Kyle; Prša, Andrej; Klassner, Frank
2018-01-01
To explore alternate methods for modeling eclipsing binary stars, we extrapolate upon PHOEBE’s (PHysics Of Eclipsing BinariEs) capabilities in a virtual reality (VR) environment to create an immersive and interactive experience for users. The application used is Vizard, a python-scripted VR development platform for environments such as Cave Automatic Virtual Environment (CAVE) and other off-the-shelf VR headsets. Vizard allows the freedom for all modeling to be precompiled without compromising functionality or usage on its part. The system requires five arguments to be precomputed using PHOEBE’s python front-end: the effective temperature, flux, relative intensity, vertex coordinates, and orbits; the user can opt to implement other features from PHOEBE to be accessed within the simulation as well. Here we present the method for making the data observables accessible in real time. An Occulus Rift will be available for a live showcase of various cases of VR rendering of PHOEBE binary systems including detached and contact binary stars.
NASA employee utilizes Virtual Reality (VR) equipment
NASA Technical Reports Server (NTRS)
1991-01-01
Bebe Ly of the Information Systems Directorate's Software Technology Branch at JSC gives virtual reality a try. The stero video goggles and headphones allow her to see and hear in a computer-generated world and the gloves allow her to move around and grasp objects.
Expedition 15 Crew Members training in the Virtual Reality (VR) Laboratory
2006-09-25
JSC2006-E-41640 (25 Sept. 2006) --- Cosmonaut Fyodor N. Yurchikhin, Expedition 15 commander representing Russia's Federal Space Agency, participates in a camera review training session in the virtual reality lab in the Space Vehicle Mockup Facility at Johnson Space Center.
Expedition 15 Crew Members training in the Virtual Reality (VR) Laboratory
2006-09-25
JSC2006-E-41641 (25 Sept. 2006) --- Cosmonaut Oleg V. Kotov, Expedition 15 flight engineer representing Russia's Federal Space Agency, participates in a camera review training session in the virtual reality lab in the Space Vehicle Mockup Facility at Johnson Space Center.
Using virtual reality to assess user experience.
Rebelo, Francisco; Noriega, Paulo; Duarte, Emília; Soares, Marcelo
2012-12-01
The aim of this article is to discuss how user experience (UX) evaluation can benefit from the use of virtual reality (VR). UX is usually evaluated in laboratory settings. However, considering that UX occurs as a consequence of the interaction between the product, the user, and the context of use, the assessment of UX can benefit from a more ecological test setting. VR provides the means to develop realistic-looking virtual environments with the advantage of allowing greater control of the experimental conditions while granting good ecological validity. The methods used to evaluate UX, as well as their main limitations, are identified.The currentVR equipment and its potential applications (as well as its limitations and drawbacks) to overcome some of the limitations in the assessment of UX are highlighted. The relevance of VR for UX studies is discussed, and a VR-based framework for evaluating UX is presented. UX research may benefit from a VR-based methodology in the scopes of user research (e.g., assessment of users' expectations derived from their lifestyles) and human-product interaction (e.g., assessment of users' emotions since the first moment of contact with the product and then during the interaction). This article provides knowledge to researchers and professionals engaged in the design of technological interfaces about the usefulness of VR in the evaluation of UX.
Hoffman, Hunter G; Meyer, Walter J; Ramirez, Maribel; Roberts, Linda; Seibel, Eric J; Atzori, Barbara; Sharar, Sam R; Patterson, David R
2014-06-01
For daily burn wound care and therapeutic physical therapy skin stretching procedures, powerful pain medications alone are often inadequate. This feasibility study provides the first evidence that entering an immersive virtual environment using very inexpensive (∼$400) wide field of view Oculus Rift Virtual Reality (VR) goggles can elicit a strong illusion of presence and reduce pain during VR. The patient was an 11-year-old male with severe electrical and flash burns on his head, shoulders, arms, and feet (36 percent total body surface area (TBSA), 27 percent TBSA were third-degree burns). He spent one 20-minute occupational therapy session with no VR, one with VR on day 2, and a final session with no VR on day 3. His rating of pain intensity during therapy dropped from severely painful during no VR to moderately painful during VR. Pain unpleasantness dropped from moderately unpleasant during no VR to mildly unpleasant during VR. He reported going "completely inside the computer generated world", and had more fun during VR. Results are consistent with a growing literature showing reductions in pain during VR. Although case studies are scientifically inconclusive by nature, these preliminary results suggest that the Oculus Rift VR goggles merit more attention as a potential treatment for acute procedural pain of burn patients. Availability of inexpensive but highly immersive VR goggles would significantly improve cost effectiveness and increase dissemination of VR pain distraction, making VR available to many more patients, potentially even at home, for pain control as well as a wide range of other VR therapy applications. This is the first clinical data on PubMed to show the use of Oculus Rift for any medical application.
Meyer, Walter J.; Ramirez, Maribel; Roberts, Linda; Seibel, Eric J.; Atzori, Barbara; Sharar, Sam R.; Patterson, David R.
2014-01-01
Abstract For daily burn wound care and therapeutic physical therapy skin stretching procedures, powerful pain medications alone are often inadequate. This feasibility study provides the first evidence that entering an immersive virtual environment using very inexpensive (∼$400) wide field of view Oculus Rift Virtual Reality (VR) goggles can elicit a strong illusion of presence and reduce pain during VR. The patient was an 11-year-old male with severe electrical and flash burns on his head, shoulders, arms, and feet (36 percent total body surface area (TBSA), 27 percent TBSA were third-degree burns). He spent one 20-minute occupational therapy session with no VR, one with VR on day 2, and a final session with no VR on day 3. His rating of pain intensity during therapy dropped from severely painful during no VR to moderately painful during VR. Pain unpleasantness dropped from moderately unpleasant during no VR to mildly unpleasant during VR. He reported going “completely inside the computer generated world”, and had more fun during VR. Results are consistent with a growing literature showing reductions in pain during VR. Although case studies are scientifically inconclusive by nature, these preliminary results suggest that the Oculus Rift VR goggles merit more attention as a potential treatment for acute procedural pain of burn patients. Availability of inexpensive but highly immersive VR goggles would significantly improve cost effectiveness and increase dissemination of VR pain distraction, making VR available to many more patients, potentially even at home, for pain control as well as a wide range of other VR therapy applications. This is the first clinical data on PubMed to show the use of Oculus Rift for any medical application. PMID:24892204
Virtual reality in autism: state of the art.
Bellani, M; Fornasari, L; Chittaro, L; Brambilla, P
2011-09-01
Autism spectrum disorders are characterized by core deficits with regard to three domains, i.e. social interaction, communication and repetitive or stereotypic behaviour. It is crucial to develop intervention strategies helping individuals with autism, their caregivers and educators in daily life. For this purpose, virtual reality (VR), i.e. a simulation of the real world based on computer graphics, can be useful as it allows instructors and therapists to offer a safe, repeatable and diversifiable environment during learning. This mini review examines studies that have investigated the use of VR in autism.
Gutiérrez-Maldonado, José; Wiederhold, Brenda K; Riva, Giuseppe
2016-02-01
Transdisciplinary efforts for further elucidating the etiology of eating and weight disorders and improving the effectiveness of the available evidence-based interventions are imperative at this time. Recent studies indicate that computer-generated graphic environments-virtual reality (VR)-can integrate and extend existing treatments for eating and weight disorders (EWDs). Future possibilities for VR to improve actual approaches include its use for altering in real time the experience of the body (embodiment) and as a cue exposure tool for reducing food craving.
ERIC Educational Resources Information Center
Keskitalo, Tuulikki
2011-01-01
This research article focuses on virtual reality (VR) and simulation-based training, with a special focus on the pedagogical use of the Virtual Centre of Wellness Campus known as ENVI (Rovaniemi, Finland). In order to clearly understand how teachers perceive teaching and learning in such environments, this research examines the concepts of…
Teel, Elizabeth F; Slobounov, Semyon M
2015-03-01
To determine the criterion and content validity of a virtual reality (VR) balance module for use in clinical practice. Retrospective, VR balance module completed by participants during concussion baseline or assessment testing session. A Pennsylvania State University research laboratory. A total of 60 control and 28 concussed students and athletes from the Pennsylvania State University. None. This study examined: (1) the relationship between VR composite balance scores (final, stationary, yaw, pitch, and roll) and area of the center-of-pressure (eyes open and closed) scores and (2) group differences (normal volunteers and concussed student-athletes) on VR composite balance scores. With the exception of the stationary composite score, all other VR balance composite scores were significantly correlated with the center of pressure data obtained from a force platform. Significant correlations ranged from r = -0.273 to -0.704 for the eyes open conditions and from r = -0.353 to -0.876 for the eyes closed condition. When examining group differences on the VR balance composite modules, the concussed group did significantly (P < 0.01) worse on all measures compared with the control group. The VR balance module met or exceeded the criterion and content validity standard set by the current balance tools and may be appropriate for use in a clinical concussion setting. Virtual reality balance module is a valid tool for concussion assessment in clinical settings. This novel type of balance assessment may be more sensitive to concussion diagnoses, especially later (7-10 days) in the recovery phase than current clinical balance tools.
Current state of virtual reality simulation in robotic surgery training: a review.
Bric, Justin D; Lumbard, Derek C; Frelich, Matthew J; Gould, Jon C
2016-06-01
Worldwide, the annual number of robotic surgical procedures continues to increase. Robotic surgical skills are unique from those used in either open or laparoscopic surgery. The acquisition of a basic robotic surgical skill set may be best accomplished in the simulation laboratory. We sought to review the current literature pertaining to the use of virtual reality (VR) simulation in the acquisition of robotic surgical skills on the da Vinci Surgical System. A PubMed search was conducted between December 2014 and January 2015 utilizing the following keywords: virtual reality, robotic surgery, da Vinci, da Vinci skills simulator, SimSurgery Educational Platform, Mimic dV-Trainer, and Robotic Surgery Simulator. Articles were included if they were published between 2007 and 2015, utilized VR simulation for the da Vinci Surgical System, and utilized a commercially available VR platform. The initial search criteria returned 227 published articles. After all inclusion and exclusion criteria were applied, a total of 47 peer-reviewed manuscripts were included in the final review. There are many benefits to utilizing VR simulation for robotic skills acquisition. Four commercially available simulators have been demonstrated to be capable of assessing robotic skill. Three of the four simulators demonstrate the ability of a VR training curriculum to improve basic robotic skills, with proficiency-based training being the most effective training style. The skills obtained on a VR training curriculum are comparable with those obtained on dry laboratory simulation. The future of VR simulation includes utilization in assessment for re-credentialing purposes, advanced procedural-based training, and as a warm-up tool prior to surgery.
Indovina, Paola; Barone, Daniela; Gallo, Luigi; Chirico, Andrea; De Pietro, Giuseppe; Antonio, Giordano
2018-02-26
This review aims to provide a framework for evaluating the utility of virtual reality (VR) as a distraction intervention to alleviate pain and distress during medical procedures. We firstly describe the theoretical bases underlying the VR analgesic and anxiolytic effects and define the main factors contributing to its efficacy, which largely emerged from studies on healthy volunteers. Then, we provide a comprehensive overview of the clinical trials using VR distraction during different medical procedures, such as burn injury treatments, chemotherapy, surgery, dental treatment, and other diagnostic and therapeutic procedures. A broad literature search was performed using as main terms "virtual reality", "distraction" and "pain". No date limit was applied and all the retrieved studies on immersive VR distraction during medical procedures were selected. VR has proven to be effective in reducing procedural pain, as almost invariably observed even in patients subjected to extremely painful procedures, such as patients with burn injuries undergoing wound care and physical therapy. Moreover, VR seemed to decrease cancer-related symptoms in different settings, including during chemotherapy. Only mild and infrequent side effects were observed. Despite these promising results, future long-term randomized controlled trials with larger sample sizes and evaluating not only self-report measures but also physiological variables are needed. Further studies are also required both to establish predictive factors to select patients who can benefit from VR distraction and to design hardware/software systems tailored to the specific needs of different patients and able to provide the greatest distraction at the lowest cost.
NASA Astrophysics Data System (ADS)
Gamor, Keysha Ingram
This paper contains a research study that investigated the relative efficacy of using both a traditional paper-and-pencil assessment instrument and an alternative, virtual reality (VR) assessment instrument to assist educators and/or instructional designers in measuring learning in a virtual reality learning environment. To this end, this research study investigated assessment in VR, with the goal of analyzing aspects of student learning in VR that are feasible to access or capture by traditional assessments and alternative assessments. The researcher also examined what additional types of learning alternative assessments may offer. More specifically, this study compared the effectiveness of a traditional method with an alternative (performance-based) method of assessment that was used to examine the ability of the tools to accurately evidence the levels of students' understanding and learning. The domain area was electrostatics, a complex, abstract multidimensional concept, with which students often experience difficulty. Outcomes of the study suggest that, in the evaluation of learning in an immersive VR learning environment, assessments would most accurately manifest student learning if the assessment measure matched the learning environment itself. In this study, learning and assessing in the VR environment yielded higher final test scores than learning in VR and testing with traditional paper-and-pencil. Being able to transfer knowledge from a VR environment to other situations is critical in demonstrating the overall level of understanding of a concept. For this reason, the researcher recommends a combination of testing measures to enhance understanding of complex, abstract concepts.
Virtual reality in stroke rehabilitation: a meta-analysis and implications for clinicians.
Saposnik, Gustavo; Levin, Mindy
2011-05-01
Approximately two thirds of stroke survivors continue to experience motor deficits of the arm resulting in diminished quality of life. Conventional rehabilitation provides modest and sometimes delayed effects. Virtual reality (VR) technology is a novel adjunctive therapy that could be applied in neurorehabilitation. We performed a meta-analysis to determine the added benefit of VR technology on arm motor recovery after stroke. We searched Medline, EMBASE, and Cochrane literature from 1966 to July 2010 with the terms "stroke," "virtual reality," and "upper arm/extremity." We evaluated the effect of VR on motor function improvement after stroke. From the 35 studies identified, 12 met the inclusion/exclusion criteria totaling 195 participants. Among them, there were 5 randomized clinical trials and 7 observational studies with a pre-/postintervention design. Interventions were delivered within 4 to 6 weeks in 9 of the studies and within 2 to 3 weeks in the remaining 3. Eleven of 12 studies showed a significant benefit toward VR for the selected outcomes. In the pooled analysis of all 5 randomized controlled trials, the effect of VR on motor impairment (Fugl-Meyer) was OR=4.89 (95% CI, 1.31 to 18.3). No significant difference was observed for Box and Block Test or motor function. Among observational studies, there was a 14.7% (95% CI, 8.7%-23.6%) improvement in motor impairment and a 20.1% (95% CI, 11.0%-33.8%) improvement in motor function after VR. VR and video game applications are novel and potentially useful technologies that can be combined with conventional rehabilitation for upper arm improvement after stroke.
Assessment and rehabilitation of neglect using virtual reality: a systematic review
Pedroli, Elisa; Serino, Silvia; Cipresso, Pietro; Pallavicini, Federica; Riva, Giuseppe
2015-01-01
After experiencing a stroke in the right hemisphere, almost 50% of patients showed Unilateral Spatial Neglect (USN). In recent decades, Virtual Reality (VR) has been used as an effective tool both for the assessment and rehabilitation of USN. Indeed, this advanced technology allows post-stroke patients to interact with ecological and engaging environments similar to real ones, but in a safe and controlled way. To provide an overview of the most recent VR applications for the assessment and rehabilitation of USN, a systematic review has been carried out. Since 2010, 13 studies have proposed and tested innovative VR tools for USN. After a wide description of the selected studies, we discuss the main features of these VR tools in order to provide crucial indications for future studies, neurorehabilitation interventions, and clinical practice. PMID:26379519
Virtual reality as a tool for improving spatial rotation among deaf and hard-of-hearing children.
Passig, D; Eden, S
2001-12-01
The aim of this study was to investigate whether the practice of rotating Virtual Reality (VR) three-dimensional (3D) objects will enhance the spatial rotation thinking of deaf and hard-of-hearing children compared to the practice of rotating two-dimensional (2D) objects. Two groups were involved in this study: an experimental group, which included 21 deaf and hardof-hearing children, who played a VR 3D game, and a control group of 23 deaf and hard-of-hearing children, who played a similar 2D (not VR) game. The results clearly indicate that practicing with VR 3D spatial rotations significantly improved the children's performance of spatial rotation, which enhanced their ability to perform better in other intellectual skills as well as in their sign language skills.
Design and Application of a Novel Virtual Reality Navigational Technology (VRNChair).
Byagowi, Ahmad; Mohaddes, Danyal; Moussavi, Zahra
2014-01-01
This paper presents a novel virtual reality navigation (VRN) input device, called the VRNChair, offering an intuitive and natural way to interact with virtual reality (VR) environments. Traditionally, VR navigation tests are performed using stationary input devices such as keyboards or joysticks. However, in case of immersive VR environment experiments, such as our recent VRN assessment, the user may feel kinetosis (motion sickness) as a result of the disagreement between vestibular response and the optical flow. In addition, experience in using a joystick or any of the existing computer input devices may cause a bias in the accuracy of participant performance in VR environment experiments. Therefore, we have designed a VR navigational environment that is operated using a wheelchair (VRNChair). The VRNChair translates the movement of a manual wheelchair to feed any VR environment. We evaluated the VRNChair by testing on 34 young individuals in two groups performing the same navigational task with either the VRNChair or a joystick; also one older individual (55 years) performed the same experiment with both a joystick and the VRNChair. The results indicate that the VRNChair does not change the accuracy of the performance; thus removing the plausible bias of having experience using a joystick. More importantly, it significantly reduces the effect of kinetosis. While we developed VRNChair for our spatial cognition study, its application can be in many other studies involving neuroscience, neurorehabilitation, physiotherapy, and/or simply the gaming industry.
Perceiving interpersonally-mediated risk in virtual environments
Portnoy, David B.; Smoak, Natalie D.; Marsh, Kerry L.
2009-01-01
Using virtual reality (VR) to examine risky behavior that is mediated by interpersonal contact, such as agreeing to have sex, drink, or smoke with someone, offers particular promise and challenges. Social contextual stimuli that might trigger impulsive responses can be carefully controlled in virtual environments (VE), and yet manipulations of risk might be implausible to participants if they do not feel sufficiently immersed in the environment. The current study examined whether individuals can display adequate evidence of presence in a VE that involved potential interpersonally-induced risk: meeting a potential dating partner. Results offered some evidence for the potential of VR for the study of such interpersonal risk situations. Participants’ reaction to the scenario and risk-associated responses to the situation suggested that the embodied nature of virtual reality override the reality of the risk’s impossibility, allowing participants to experience adequate situational embedding, or presence. PMID:20228871
Perceiving interpersonally-mediated risk in virtual environments.
Portnoy, David B; Smoak, Natalie D; Marsh, Kerry L
2010-03-01
Using virtual reality (VR) to examine risky behavior that is mediated by interpersonal contact, such as agreeing to have sex, drink, or smoke with someone, offers particular promise and challenges. Social contextual stimuli that might trigger impulsive responses can be carefully controlled in virtual environments (VE), and yet manipulations of risk might be implausible to participants if they do not feel sufficiently immersed in the environment. The current study examined whether individuals can display adequate evidence of presence in a VE that involved potential interpersonally-induced risk: meeting a potential dating partner. Results offered some evidence for the potential of VR for the study of such interpersonal risk situations. Participants' reaction to the scenario and risk-associated responses to the situation suggested that the embodied nature of virtual reality override the reality of the risk's impossibility, allowing participants to experience adequate situational embedding, or presence.
Spatial cognition in a virtual reality home-cage extension for freely moving rodents
Kaupert, Ursula; Frei, Katja; Bagorda, Francesco; Schatz, Alexej; Tocker, Gilad; Rapoport, Sophie; Derdikman, Dori
2017-01-01
Virtual reality (VR) environments are a powerful tool to investigate brain mechanisms involved in the behavior of animals. With this technique, animals are usually head fixed or secured in a harness, and training for cognitively more complex VR paradigms is time consuming. A VR apparatus allowing free animal movement and the constant operator-independent training of tasks would enable many new applications. Key prospective usages include brain imaging of animal behavior when carrying a miniaturized mobile device such as a fluorescence microscope or an optetrode. Here, we introduce the Servoball, a spherical VR treadmill based on the closed-loop tracking of a freely moving animal and feedback counterrotation of the ball. Furthermore, we present the complete integration of this experimental system with the animals’ group home cage, from which single individuals can voluntarily enter through a tunnel with radio-frequency identification (RFID)-automated access control and commence experiments. This automated animal sorter functions as a mechanical replacement of the experimenter. We automatically trained rats using visual or acoustic cues to solve spatial cognitive tasks and recorded spatially modulated entorhinal cells. When electrophysiological extracellular recordings from awake behaving rats were performed, head fixation can dramatically alter results, so that any complex behavior that requires head movement is impossible to achieve. We circumvented this problem with the use of the Servoball in open-field scenarios, as it allows the combination of open-field behavior with the recording of nerve cells, along with all the flexibility that a virtual environment brings. This integrated home cage with a VR arena experimental system permits highly efficient experimentation for complex cognitive experiments. NEW & NOTEWORTHY Virtual reality (VR) environments are a powerful tool for the investigation of brain mechanisms. We introduce the Servoball, a VR treadmill for freely moving rodents. The Servoball is integrated with the animals’ group home cage. Single individuals voluntarily enter using automated access control. Training is highly time-efficient, even for cognitively complex VR paradigms. PMID:28077665
Virtual reality and pain management: current trends and future directions
Li, Angela; Montaño, Zorash; Chen, Vincent J; Gold, Jeffrey I
2011-01-01
SUMMARY Virtual reality (VR) has been used to manage pain and distress associated with a wide variety of known painful medical procedures. In clinical settings and experimental studies, participants immersed in VR experience reduced levels of pain, general distress/unpleasantness and report a desire to use VR again during painful medical procedures. Investigators hypothesize that VR acts as a nonpharmacologic form of analgesia by exerting an array of emotional affective, emotion-based cognitive and attentional processes on the body’s intricate pain modulation system. While the exact neurobiological mechanisms behind VR’s action remain unclear, investigations are currently underway to examine the complex interplay of cortical activity associated with immersive VR. Recently, new applications, including VR, have been developed to augment evidenced-based interventions, such as hypnosis and biofeedback, for the treatment of chronic pain. This article provides a comprehensive review of the literature, exploring clinical and experimental applications of VR for acute and chronic pain management, focusing specifically on current trends and recent developments. In addition, we propose mechanistic theories highlighting VR distraction and neurobiological explanations, and conclude with new directions in VR research, implications and clinical significance. PMID:21779307
Chen, Yuping; Garcia-Vergara, Sergio; Howard, Ayanna M
2015-01-01
Objective. The purpose of this pilot study was to determine whether Super Pop VR, a low-cost virtual reality (VR) system, was a feasible system for documenting improvement in children with cerebral palsy (CP) and whether a home-based VR intervention was effective. Methods. Three children with CP participated in this study and received an 8-week VR intervention (30 minutes × 5 sessions/week) using the commercial EyeToy Play VR system. Reaching kinematics measured by Super Pop VR and two fine motor tools (Bruininks-Oseretsky Test of Motor Proficiency second edition, BOT-2, and Pediatric Motor Activity Log, PMAL) were tested before, mid, and after intervention. Results. All children successfully completed the evaluations using the Super Pop VR system at home where 85% of the reaches collected were used to compute reaching kinematics, which is compatible with literature using expensive motion analysis systems. Only the child with hemiplegic CP and more impaired arm function improved the reaching kinematics and functional use of the affected hand after intervention. Conclusion. Super Pop VR proved to be a feasible evaluation tool in children with CP.
The use of virtual reality technology in the treatment of anxiety and other psychiatric disorders
Maples-Keller, Jessica L.; Bunnell, Brian E.; Kim, Sae-Jin; Rothbaum, Barbara O.
2016-01-01
Virtual reality, or VR, allows users to experience a sense of presence in a computer-generated three-dimensional environment. Sensory information is delivered through a head mounted display and specialized interface devices. These devices track head movements so that the movements and images change in a natural way with head motion, allowing for a sense of immersion. VR allows for controlled delivery of sensory stimulation via the therapist and is a convenient and cost-effective treatment. The primary focus of this article is to review the available literature regarding the effectiveness of incorporating VR within the psychiatric treatment of a wide range of psychiatric disorders, with a specific focus on exposure-based intervention for anxiety disorders. A systematic literature search was conducted in order to identify studies implementing VR based treatment for anxiety or other psychiatric disorders. This review will provide an overview of the history of the development of VR based technology and its use within psychiatric treatment, an overview of the empirical evidence for VR based treatment, the benefits for using VR for psychiatric research and treatment, recommendations for how to incorporate VR into psychiatric care, and future directions for VR based treatment and clinical research. PMID:28475502
Chen, Yuping; Garcia-Vergara, Sergio; Howard, Ayanna M.
2015-01-01
Objective. The purpose of this pilot study was to determine whether Super Pop VR, a low-cost virtual reality (VR) system, was a feasible system for documenting improvement in children with cerebral palsy (CP) and whether a home-based VR intervention was effective. Methods. Three children with CP participated in this study and received an 8-week VR intervention (30 minutes × 5 sessions/week) using the commercial EyeToy Play VR system. Reaching kinematics measured by Super Pop VR and two fine motor tools (Bruininks-Oseretsky Test of Motor Proficiency second edition, BOT-2, and Pediatric Motor Activity Log, PMAL) were tested before, mid, and after intervention. Results. All children successfully completed the evaluations using the Super Pop VR system at home where 85% of the reaches collected were used to compute reaching kinematics, which is compatible with literature using expensive motion analysis systems. Only the child with hemiplegic CP and more impaired arm function improved the reaching kinematics and functional use of the affected hand after intervention. Conclusion. Super Pop VR proved to be a feasible evaluation tool in children with CP. PMID:26457202
Virtual Reality: A Distraction Intervention for Chemotherapy
Schneider, Susan M.; Hood, Linda E.
2007-01-01
Purpose/Objectives To explore virtual reality (VR) as a distraction intervention to relieve symptom distress in adults receiving chemotherapy treatments for breast, colon, and lung cancer. Design Crossover design in which participants served as their own control. Setting Outpatient clinic at a comprehensive cancer center in the southeastern United States. Sample 123 adults receiving initial chemotherapy treatments. Methods Participants were randomly assigned to receive the VR distraction intervention during one chemotherapy treatment and then received no intervention (control) during an alternate matched chemotherapy treatment. The Adapted Symptom Distress Scale–2, Revised Piper Fatigue Scale, and State Anxiety Inventory were used to measure symptom distress. The Presence Questionnaire and an open-ended questionnaire were used to evaluate the subjects’ VR experience. The influence of type of cancer, age, and gender on symptom outcomes was explored. Mixed models were used to test for differences in levels of symptom distress. Main Research Variables Virtual reality and symptom distress. Findings Patients had an altered perception of time (p < 0.001) when using VR, which validates the distracting capacity of the intervention. Evaluation of the intervention indicated that patients believed the head-mounted device was easy to use, they experienced no cybersickness, and 82% would use VR again. However, analysis demonstrated no significant differences in symptom distress immediately or two days following chemotherapy treatments. Conclusions Patients stated that using VR made the treatment seem shorter and that chemotherapy treatments with VR were better than treatments without the distraction intervention. However, positive experiences did not result in a decrease in symptom distress. The findings support the idea that using VR can help to make chemotherapy treatments more tolerable, but clinicians should not assume that use of VR will improve chemotherapy-related symptoms. Implications for Nursing Patients found using VR during chemotherapy treatments to be enjoyable. VR is a feasible and cost-effective distraction intervention to implement in the clinical setting. PMID:17562631
Design and development of a virtual reality simulator for advanced cardiac life support training.
Vankipuram, Akshay; Khanal, Prabal; Ashby, Aaron; Vankipuram, Mithra; Gupta, Ashish; DrummGurnee, Denise; Josey, Karen; Smith, Marshall
2014-07-01
The use of virtual reality (VR) training tools for medical education could lead to improvements in the skills of clinicians while providing economic incentives for healthcare institutions. The use of VR tools can also mitigate some of the drawbacks currently associated with providing medical training in a traditional clinical environment such as scheduling conflicts and the need for specialized equipment (e.g., high-fidelity manikins). This paper presents the details of the framework and the development methodology associated with a VR-based training simulator for advanced cardiac life support, a time critical, team-based medical scenario. In addition, we also report the key findings of a usability study conducted to assess the efficacy of various features of this VR simulator through a postuse questionnaire administered to various care providers. The usability questionnaires were completed by two groups that used two different versions of the VR simulator. One version consisted of the VR trainer with it all its features and a minified version with certain immersive features disabled. We found an increase in usability scores from the minified group to the full VR group.
Rosenthal, Rachel; Geuss, Steffen; Dell-Kuster, Salome; Schäfer, Juliane; Hahnloser, Dieter; Demartines, Nicolas
2011-06-01
In children, video game experience improves spatial performance, a predictor of surgical performance. This study aims at comparing laparoscopic virtual reality (VR) task performance of children with different levels of experience in video games and residents. A total of 32 children (8.4 to 12.1 years), 20 residents, and 14 board-certified surgeons (total n = 66) performed several VR and 2 conventional tasks (cube/spatial and pegboard/fine motor). Performance between the groups was compared (primary outcome). VR performance was correlated with conventional task performance (secondary outcome). Lowest VR performance was found in children with low video game experience, followed by those with high video game experience, residents, and board-certified surgeons. VR performance correlated well with the spatial test and moderately with the fine motor test. The use of computer games can be considered not only as pure entertainment but may also contribute to the development of skills relevant for adequate performance in VR laparoscopic tasks. Spatial skills are relevant for VR laparoscopic task performance.
[Subjective sensations indicating simulator sickness and fatigue after exposure to virtual reality].
Malińska, Marzena; Zuzewicz, Krystyna; Bugajska, Joanna; Grabowski, Andrzej
2014-01-01
The study assessed the incidence and intensity of subjective symptoms indicating simulator sickness among the persons with no inclination to motion sickness, immersed in virtual reality (VR) by watching an hour long movie in the stereoscopic (three-dimensional - 3D) and non-stereoscopic (two-dimensional - 2D) versions and after an hour long training using virtual reality, called sVR. The sample comprised 20 healthy young men with no inclination to motion sickness. The participants' subjective sensations, indicating symptoms of simulator sickness were assessed using the questionnaire completed by the participants immediately, 20 min and 24 h following the test. Grandjean's scale was used to assess fatigue and mood. The symptoms were observed immediately after the exposure to sVR. Their intensity was higher than after watching the 2D and 3D movies. A significant relationship was found between the eye pain and the type of exposure (2D, 3D and sVR) (Chi2)(2) = 6.225, p < or = 0.05); the relationship between excessive perspiration and the exposure to 31) movie and sVR was also noted (Chi2(1) = 9.173, p < or = 0.01). Some symptoms were still observed 20 min after exposure to sVR. The comparison of Grandjean's scale results before and after the training in sVR handing showed significant differences in 11 out of 14 subscales. Before and after exposure to 3D movie, the differences were significant only for the "tired-fatigued" subscale (Z = 2.501, p < or = 0.012) in favor of "fatigued". Based on the subjective sensation of discomfort after watching 2D and 3D movies it is impossible to predict symptoms of simulator sickness after training using sVR.
A Novel Integrating Virtual Reality Approach for the Assessment of the Attachment Behavioral System.
Chicchi Giglioli, Irene Alice; Pravettoni, Gabriella; Sutil Martín, Dolores Lucia; Parra, Elena; Raya, Mariano A
2017-01-01
Virtual reality (VR) technology represents a novel and powerful tool for behavioral research in psychological assessment. VR provides simulated experiences able to create the sensation of undergoing real situations. Users become active participants in the virtual environment seeing, hearing, feeling, and actuating as if they were in the real world. Currently, the most psychological VR applications concern the treatment of various mental disorders but not the assessment, that it is mainly based on paper and pencil tests. The observation of behaviors is costly, labor-intensive, and it is hard to create social situations in laboratory settings, even if the observation of actual behaviors could be particularly informative. In this framework, social stressful experiences can activate various behaviors of attachment for a significant person that can help to control and soothe them to promote individual's well-being. Social support seeking, physical proximity, and positive and negative behaviors represent the main attachment behaviors that people can carry out during experiences of distress. We proposed VR as a novel integrating approach to measure real attachment behaviors. The first studies on attachment behavioral system by VR showed the potentiality of this approach. To improve the assessment during the VR experience, we proposed virtual stealth assessment (VSA) as a new method. VSA could represent a valid and novel technique to measure various psychological attributes in real-time during the virtual experience. The possible use of this method in psychology could be to generate a more complete, exhaustive, and accurate individual's psychological evaluation.
Poeschl, Sandra; Doering, Nicola
2013-01-01
Virtual training applications with high levels of immersion or fidelity (for example for social phobia treatment) produce high levels of presence and therefore belong to the most successful Virtual Reality developments. Whereas display and interaction fidelity (as sub-dimensions of immersion) and their influence on presence are well researched, realism of the displayed simulation depends on the specific application and is therefore difficult to measure. We propose to measure simulation realism by using a self-report questionnaire. The German VR Simulation Realism Scale for VR training applications was developed based on a translation of scene realism items from the Witmer-Singer-Presence Questionnaire. Items for realism of virtual humans (for example for social phobia training applications) were supplemented. A sample of N = 151 students rated simulation realism of a Fear of Public Speaking application. Four factors were derived by item- and principle component analysis (Varimax rotation), representing Scene Realism, Audience Behavior, Audience Appearance and Sound Realism. The scale developed can be used as a starting point for future research and measurement of simulation realism for applications including virtual humans.
Sensorimotor Training in Virtual Reality: A Review
Adamovich, Sergei V.; Fluet, Gerard G.; Tunik, Eugene; Merians, Alma S.
2010-01-01
Recent experimental evidence suggests that rapid advancement of virtual reality (VR) technologies has great potential for the development of novel strategies for sensorimotor training in neurorehabilitation. We discuss what the adaptive and engaging virtual environments can provide for massive and intensive sensorimotor stimulation needed to induce brain reorganization. Second, discrepancies between the veridical and virtual feedback can be introduced in VR to facilitate activation of targeted brain networks, which in turn can potentially speed up the recovery process. Here we review the existing experimental evidence regarding the beneficial effects of training in virtual environments on the recovery of function in the areas of gait, upper extremity function and balance, in various patient populations. We also discuss possible mechanisms underlying these effects. We feel that future research in the area of virtual rehabilitation should follow several important paths. Imaging studies to evaluate the effects of sensory manipulation on brain activation patterns and the effect of various training parameters on long term changes in brain function are needed to guide future clinical inquiry. Larger clinical studies are also needed to establish the efficacy of sensorimotor rehabilitation using VR approaches in various clinical populations and most importantly, to identify VR training parameters that are associated with optimal transfer into real-world functional improvements. PMID:19713617
Osumi, M; Ichinose, A; Sumitani, M; Wake, N; Sano, Y; Yozu, A; Kumagaya, S; Kuniyoshi, Y; Morioka, S
2017-01-01
We developed a quantitative method to measure movement representations of a phantom upper limb using a bimanual circle-line coordination task (BCT). We investigated whether short-term neurorehabilitation with a virtual reality (VR) system would restore voluntary movement representations and alleviate phantom limb pain (PLP). Eight PLP patients were enrolled. In the BCT, they repeatedly drew vertical lines using the intact hand and intended to draw circles using the phantom limb. Drawing circles mentally using the phantom limb led to the emergence of an oval transfiguration of the vertical lines ('bimanual-coupling' effect). We quantitatively measured the degree of this bimanual-coupling effect as movement representations of the phantom limb before and immediately after short-term VR neurorehabilitation. This was achieved using an 11-point numerical rating scale (NRS) for PLP intensity and the Short-Form McGill Pain Questionnaire (SF-MPQ). During VR neurorehabilitation, patients wore a head-mounted display that showed a mirror-reversed computer graphic image of an intact arm (the virtual phantom limb). By intending to move both limbs simultaneously and similarly, the patients perceived voluntary execution of movement in their phantom limb. Short-term VR neurorehabilitation promptly restored voluntary movement representations in the BCT and alleviated PLP (NRS: p = 0.015; 39.1 ± 28.4% relief, SF-MPQ: p = 0.015; 61.5 ± 48.5% relief). Restoration of phantom limb movement representations and reduced PLP intensity were linearly correlated (p < 0.05). VR rehabilitation may encourage patient's motivation and multimodal sensorimotor re-integration of a phantom limb and subsequently have a potent analgesic effect. There was no objective evidence that restoring movement representation by neurorehabilitation with virtual reality alleviated phantom limb pain. This study revealed quantitatively that restoring movement representation with virtual reality rehabilitation using a bimanual coordination task correlated with alleviation of phantom limb pain. © 2016 European Pain Federation - EFIC®.
2009-09-01
Environmental Medicine USN United States Navy VAE Virtual Air Environment VACP Visual, Auditory, Cognitive, Psychomotor (demand) VR Virtual Reality ...0 .5 m/s. Another useful approach to capturing leg, trunk, whole body, or movement tasks comes from virtual reality - based training research and...referred to as semi-automated forces (SAF). From: http://www.sedris.org/glossary.htm#C_grp. Constructive Models Abstractions from the reality to
Oliveira, Camila R; Lopes Filho, Brandel José P; Sugarman, Michael A; Esteves, Cristiane S; Lima, Margarida Maria B M P; Moret-Tatay, Carmen; Irigaray, Tatiana Q; Argimon, Irani Iracema L
2016-12-13
Cognitive assessment with virtual reality (VR) may have superior ecological validity for older adults compared to traditional pencil-and-paper cognitive assessment. However, few studies have reported the development of VR tasks. The aim of this study was to present the development, feasibility, content validity, and preliminary evidence of construct validity of an ecological task of cognitive assessment for older adults in VR (ECO-VR). The tasks were prepared based on theoretical and clinical backgrounds. We had 29 non-expert judges identify virtual visual stimuli and three-dimensional scenarios, and five expert judges assisted with content analysis and developing instructions. Finally, six older persons participated in three pilot studies and thirty older persons participated in the preliminary study to identify construct validity evidence. Data were analyzed by descriptive statistics and partial correlation. Target stimuli and three-dimensional scenarios were judged adequate and the content analysis demonstrated that ECO-VR evaluates temporo-spatial orientation, memory, language and executive functioning. We made significant changes to the instructions after the pilot studies to increase comprehensibility and reduce the completion time. The total score of ECO-VR was positively correlated mainly with performance in executive function (r = .172, p < .05) and memory tests (r = .488, p ≤ .01). The ECO-VR demonstrated feasibility for cognitive assessment in older adults, as well as content and construct validity evidences.
Yasuda, Kazuhiro; Muroi, Daisuke; Ohira, Masahiro; Iwata, Hiroyasu
2017-10-01
Unilateral spatial neglect (USN) is defined as impaired ability to attend and see on one side, and when present, it interferes seriously with daily life. These symptoms can exist for near and far spaces combined or independently, and it is important to provide effective intervention for near and far space neglect. The purpose of this pilot study was to propose an immersive virtual reality (VR) rehabilitation program using a head-mounted display that is able to train both near and far space neglect, and to validate the immediate effect of the VR program in both near and far space neglect. Ten USN patients underwent the VR program with a pre-post design and no control. In the virtual environment, we developed visual searching and reaching tasks using an immersive VR system. Behavioral inattention test (BIT) scores obtained pre- and immediate post-VR program were compared. BIT scores obtained pre- and post-VR program revealed that far space neglect but not near space neglect improved promptly after the VR program. This effect for far space neglect was observed in the cancelation task, but not in the line bisection task. Positive effects of the immersive VR program for far space neglect are suggested by the results of the present pilot study. However, further studies with rigorous designs are needed to validate its clinical effectiveness.
New Dimensions of GIS Data: Exploring Virtual Reality (VR) Technology for Earth Science
NASA Astrophysics Data System (ADS)
Skolnik, S.; Ramirez-Linan, R.
2016-12-01
NASA's Science Mission Directorate (SMD) Earth Science Division (ESD) Earth Science Technology Office (ESTO) and Navteca are exploring virtual reality (VR) technology as an approach and technique related to the next generation of Earth science technology information systems. Having demonstrated the value of VR in viewing pre-visualized science data encapsulated in a movie representation of a time series, further investigation has led to the additional capability of permitting the observer to interact with the data, make selections, and view volumetric data in an innovative way. The primary objective of this project has been to investigate the use of commercially available VR hardware, the Oculus Rift and the Samsung Gear VR, for scientific analysis through an interface to ArcGIS to enable the end user to order and view data from the NASA Discover-AQ mission. A virtual console is presented through the VR interface that allows the user to select various layers of data from the server in both 2D, 3D, and full 4pi steradian views. By demonstrating the utility of VR in interacting with Discover-AQ flight mission measurements, and building on previous work done at the Atmospheric Science Data Center (ASDC) at NASA Langley supporting analysis of sources of CO2 during the Discover-AQ mission, the investigation team has shown the potential for VR as a science tool beyond simple visualization.
Educational Virtual Environments: A Ten-Year Review of Empirical Research (1999-2009)
ERIC Educational Resources Information Center
Mikropoulos, Tassos A.; Natsis, Antonis
2011-01-01
This study is a ten-year critical review of empirical research on the educational applications of Virtual Reality (VR). Results show that although the majority of the 53 reviewed articles refer to science and mathematics, researchers from social sciences also seem to appreciate the educational value of VR and incorporate their learning goals in…
Postural Control Disturbances Produced By Exposure to HMD and Dome Vr Systems
NASA Technical Reports Server (NTRS)
Harm, D. L.; Taylor, L. C.
2005-01-01
Two critical and unresolved human factors issues in VR systems are: 1) potential "cybersickness", a form of motion sickness which is experienced in virtual worlds, and 2) maladaptive sensorimotor performance following exposure to VR systems. Interestingly, these aftereffects are often quite similar to adaptive sensorimotor responses observed in astronauts during and/or following space flight. Most astronauts and cosmonauts experience perceptual and sensorimotor disturbances during and following space flight. All astronauts exhibit decrements in postural control following space flight. It has been suggested that training in virtual reality (VR) may be an effective countermeasure for minimizing perceptual and/or sensorimotor disturbances. People adapt to consistent, sustained alterations of sensory input such as those produced by microgravity, and experimentally-produced stimulus rearrangements (e.g., reversing prisms, magnifying lenses, flight simulators, and VR systems). Adaptation is revealed by aftereffects including perceptual disturbances and sensorimotor control disturbances. The purpose of the current study was to compare disturbances in postural control produced by dome and head-mounted virtual environment displays. Individuals recovered from motion sickness and the detrimental effects of exposure to virtual reality on postural control within one hour. Sickness severity and initial decrements in postural equilibrium decreases over days, which suggests that subjects become dual-adapted over time. These findings provide some direction for developing training schedules for VR users that facilitate adaptation, and address safety concerns about aftereffects.
Sloot, Lizeth H; Harlaar, Jaap; van der Krogt, Marjolein M
2015-10-01
While feedback-controlled treadmills with a virtual reality could potentially offer advantages for clinical gait analysis and training, the effect of self-paced walking and the virtual environment on the gait pattern of children and different patient groups remains unknown. This study examined the effect of self-paced (SP) versus fixed speed (FS) walking and of walking with and without a virtual reality (VR) in 11 typically developing (TD) children and nine children with cerebral palsy (CP). We found that subjects walked in SP mode with twice as much between-stride walking speed variability (p<0.01), fluctuating over multiple strides. There was no main effect of SP on kinematics or kinetics, but small interaction effects between SP and group (TD versus CP) were found for five out of 33 parameters. This suggests that children with CP might need more time to familiarize to SP walking, however, these differences were generally too small to be clinically relevant. The VR environment did not affect the kinematic or kinetic parameters, but walking with VR was rated as more similar to overground walking by both groups (p=0.02). The results of this study indicate that both SP and FS walking, with and without VR, can be used interchangeably for treadmill-based clinical gait analysis in children with and without CP. Copyright © 2015 Elsevier B.V. All rights reserved.
Change Blindness Phenomena for Virtual Reality Display Systems.
Steinicke, Frank; Bruder, Gerd; Hinrichs, Klaus; Willemsen, Pete
2011-09-01
In visual perception, change blindness describes the phenomenon that persons viewing a visual scene may apparently fail to detect significant changes in that scene. These phenomena have been observed in both computer-generated imagery and real-world scenes. Several studies have demonstrated that change blindness effects occur primarily during visual disruptions such as blinks or saccadic eye movements. However, until now the influence of stereoscopic vision on change blindness has not been studied thoroughly in the context of visual perception research. In this paper, we introduce change blindness techniques for stereoscopic virtual reality (VR) systems, providing the ability to substantially modify a virtual scene in a manner that is difficult for observers to perceive. We evaluate techniques for semiimmersive VR systems, i.e., a passive and active stereoscopic projection system as well as an immersive VR system, i.e., a head-mounted display, and compare the results to those of monoscopic viewing conditions. For stereoscopic viewing conditions, we found that change blindness phenomena occur with the same magnitude as in monoscopic viewing conditions. Furthermore, we have evaluated the potential of the presented techniques for allowing abrupt, and yet significant, changes of a stereoscopically displayed virtual reality environment.
Stress inoculation training supported by physiology-driven adaptive virtual reality stimulation.
Popović, Sinisa; Horvat, Marko; Kukolja, Davor; Dropuljić, Branimir; Cosić, Kresimir
2009-01-01
Significant proportion of psychological problems related to combat stress in recent large peacekeeping operations underscores importance of effective methods for strengthening the stress resistance of military personnel. Adaptive control of virtual reality (VR) stimulation, based on estimation of the subject's emotional state from physiological signals, may enhance existing stress inoculation training (SIT). Physiology-driven adaptive VR stimulation can tailor the progress of stressful stimuli delivery to the physiological characteristics of each individual, which is indicated for improvement in stress resistance. Therefore, following an overview of SIT and its applications in the military setting, generic concept of physiology-driven adaptive VR stimulation is presented in the paper. Toward the end of the paper, closed-loop adaptive control strategy applicable to SIT is outlined.
Cosić, Kresimir; Popović, Sinisa; Kukolja, Davor; Horvat, Marko; Dropuljić, Branimir
2010-02-01
The significant proportion of severe psychological problems related to intensive stress in recent large peacekeeping operations underscores the importance of effective methods for strengthening the prevention and treatment of stress-related disorders. Adaptive control of virtual reality (VR) stimulation presented in this work, based on estimation of the person's emotional state from physiological signals, may enhance existing stress inoculation training (SIT). Physiology-driven adaptive VR stimulation can tailor the progress of stressful stimuli delivery to the physiological characteristics of each individual, which is indicated for improvement in stress resistance. Following an overview of physiology-driven adaptive VR stimulation, its major functional subsystems are described in more detail. A specific algorithm of stimuli delivery applicable to SIT is outlined.
Virtual reality in multiple sclerosis - A systematic review.
Massetti, Thais; Trevizan, Isabela Lopes; Arab, Claudia; Favero, Francis Meire; Ribeiro-Papa, Denise Cardoso; de Mello Monteiro, Carlos Bandeira
2016-07-01
Multiple sclerosis (MS) is an inflammatory disease in which the insulating cover of nerve cells in the brain and spinal cord are damaged. The methods used for motor rehabilitation of patients with neurological problems require the performance of several rehabilitation exercises. Recently, studies related to the use of video game consoles have proliferated in the field of motor rehabilitation. Virtual reality (VR) has been proposed as a potentially useful tool for motoring assessment and rehabilitation. The purpose of this study was to investigate the results shown in previous studies on "Multiple Sclerosis" and "Virtual Reality". A bibliographic review was performed without time limitations. The research was carried out using PubMed and BVS databases. Considering keywords, we included articles that showed the terms "Multiple Sclerosis" and "Virtual Reality". The review was according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines The initial search yielded 41 articles. After the duplicates were removed, two authors independently evaluated the title and abstract of each of the articles with the study inclusion criteria. From these, 31 articles were excluded based on the title and abstract. Finally, 10 articles were isolated that met the inclusion criteria. VR represents a motivational and effective alternative to traditional motor rehabilitation for MS patients. The results showed that VR programs could be an effective method of patients with MS rehabilitation in multiple cognitive and / or motor deficits. Additional research is needed to support the rehabilitation protocols with VR and increase the effects of treatment. Copyright © 2016 Elsevier B.V. All rights reserved.
Can we use virtual reality tools in the planning of an experiment?
NASA Astrophysics Data System (ADS)
Kucaba-Pietal, Anna; Szumski, Marek; Szczerba, Piotr
2015-03-01
Virtual reality (VR) has proved to be a particularly useful tool in engineering and design. A related area of aviation in which VR is particularly significant is a flight training, as it requires many hours of practice and using real planes for all training is both expensive and more dangerous. Research conducted at the Rzeszow University of Technology (RUT) showed that virtual reality can be successfully used for planning experiment during a flight tests. Motivation to the study were a wing deformation measurements of PW-6 glider in flight by use Image Pattern Correlation Technique (IPCT) planned within the frame of AIM2 project. The tool VirlIPCT was constructed, which permits to perform virtual IPCT setup on an airplane. Using it, we can test a camera position, camera resolution, pattern application. Moreover performed tests on RUT indicate, that VirlIPCT can be used as a virtual IPCT image generator. This paper presents results of the research on VirlIPCT.
BIM based virtual environment for fire emergency evacuation.
Wang, Bin; Li, Haijiang; Rezgui, Yacine; Bradley, Alex; Ong, Hoang N
2014-01-01
Recent building emergency management research has highlighted the need for the effective utilization of dynamically changing building information. BIM (building information modelling) can play a significant role in this process due to its comprehensive and standardized data format and integrated process. This paper introduces a BIM based virtual environment supported by virtual reality (VR) and a serious game engine to address several key issues for building emergency management, for example, timely two-way information updating and better emergency awareness training. The focus of this paper lies on how to utilize BIM as a comprehensive building information provider to work with virtual reality technologies to build an adaptable immersive serious game environment to provide real-time fire evacuation guidance. The innovation lies on the seamless integration between BIM and a serious game based virtual reality (VR) environment aiming at practical problem solving by leveraging state-of-the-art computing technologies. The system has been tested for its robustness and functionality against the development requirements, and the results showed promising potential to support more effective emergency management.
In this chapter we review the literature on scanning probe microscopy (SPM), virtual reality (VR), and computational chemistry and our earlier work dealing with modeling lignin, lignin-carbohydrate complexes (LCC), humic substances (HSs) and non-bonded organo-mineral interactions...
Issues Surrounding the Use of Virtual Reality in Geographic Education
ERIC Educational Resources Information Center
Lisichenko, Richard
2015-01-01
As with all classroom innovations intended to improve geographic education, the adoption of virtual reality (VR) poses issues for consideration prior to endorsing its use. Of these, effectiveness, implementation, and safe use need to be addressed. Traditionally, sense of place, geographic knowledge, and firsthand experiences provided by field…
Neglect assessment as an application of virtual reality.
Broeren, J; Samuelsson, H; Stibrant-Sunnerhagen, K; Blomstrand, C; Rydmark, M
2007-09-01
In this study a cancellation task in a virtual environment was applied to describe the pattern of search and the kinematics of hand movements in eight patients with right hemisphere stroke. Four of these patients had visual neglect and four had recovered clinically from initial symptoms of neglect. The performance of the patients was compared with that of a control group consisting of eight subjects with no history of neurological deficits. Patients with neglect as well as patients clinically recovered from neglect showed aberrant search performance in the virtual reality (VR) task, such as mixed search pattern, repeated target pressures and deviating hand movements. The results indicate that in patients with a right hemispheric stroke, this VR application can provide an additional tool for assessment that can identify small variations otherwise not detectable with standard paper-and-pencil tests. VR technology seems to be well suited for the assessment of visually guided manual exploration in space.
Mechanism of Action for Obtaining Job Offers With Virtual Reality Job Interview Training.
Smith, Matthew J; Smith, Justin D; Fleming, Michael F; Jordan, Neil; Brown, C Hendricks; Humm, Laura; Olsen, Dale; Bell, Morris D
2017-07-01
Four randomized controlled trials revealed that virtual-reality job interview training (VR-JIT) improved interviewing skills and the odds of obtaining a job offer among trainees with severe mental illness or autism spectrum disorder. This study assessed whether postintervention interviewing skills mediated the relationship between completion of virtual interviews and receiving job offers by six-month follow-up. VR-JIT trainees (N=79) completed pre- and posttest mock interviews and a brief survey approximately six months later to assess whether they received a job offer. As hypothesized, analyses indicated that the number of completed virtual interviews predicted greater posttest interviewing skills (β=.20, 95% posterior credible interval [PCI]=.08-.33), which in turn predicted trainees' obtaining a job offer (β=.28, 95% PCI=.01-.53). VR-JIT may provide a mechanism of action that helps trainees with various psychiatric diagnoses obtain job offers in the community. Future research can evaluate the community-based effectiveness of this novel intervention.
Pla-Sanjuanelo, Joana; Ferrer-García, Marta; Vilalta-Abella, Ferran; Riva, Giuseppe; Dakanalis, Antonios; Ribas-Sabaté, Joan; Andreu-Gracia, Alexis; Fernandez-Aranda, Fernando; Sanchez-Diaz, Isabel; Escandón-Nagel, Neli; Gomez-Tricio, Osane; Tena, Virgínia; Gutiérrez-Maldonado, José
2017-07-27
Virtual reality (VR) technologies have been proposed as a new tool able to improve on in vivo exposure in patients with eating disorders. This study assessed the validity of a VR-based software for cue exposure therapy (CET) in people with bulimia nervosa (BN) and binge eating disorder (BED). Fifty eight outpatients (33 BN and 25 BED) and 135 healthy participants were exposed to 10 craved virtual foods and a neutral cue in four experimental virtual environments (kitchen, dining room, bedroom, and cafeteria). After exposure to each VR scenario, food craving and anxiety were assessed. The frequency/severity of episodes of uncontrollable overeating was also assessed and body mass index was measured prior to the exposure. In both groups, craving and anxiety responses when exposed to the food-related virtual environments were significantly higher than in the neutral-cue virtual environment. However, craving and anxiety levels were higher in the clinical group. Furthermore, cue-elicited anxiety was better at discriminating between clinical and healthy groups than cue-elicited craving. This study provides evidence of the ability of food-related VR environments to provoke food craving and anxiety responses in BN and BED patients and highlights the need to consider both responses during treatment. The results support the use of VR-CET in the treatment of eating disorder patients characterized by binge-eating and people with high bulimic symptoms.
3D Virtual Reality Check: Learner Engagement and Constructivist Theory
ERIC Educational Resources Information Center
Bair, Richard A.
2013-01-01
The inclusion of three-dimensional (3D) virtual tools has created a need to communicate the engagement of 3D tools and specify learning gains that educators and the institutions, which are funding 3D tools, can expect. A review of literature demonstrates that specific models and theories for 3D Virtual Reality (VR) learning do not exist "per…
Virtual reality exposure in anxiety disorders: impact on psychophysiological reactivity.
Diemer, Julia; Mühlberger, Andreas; Pauli, Paul; Zwanzger, Peter
2014-08-01
Anxiety disorders are among the most frequently encountered psychiatric disorders. Recommended treatments include cognitive behavioural therapy (CBT) and/or medication. In recent years, beneficial effects of virtual reality (VR) exposure therapy have been shown, making this technique a promising addition to CBT. However, the ability of VR to mimic threatening stimuli in a way comparable to in vivo cues has been discussed. In particular, it has been questioned whether VR is capable of provoking psychophysiological symptoms of anxiety. Since psychophysiological arousal is considered a prerequisite for effective exposure treatment, this systematic review aims to evaluate the evidence for the potential of VR exposure to evoke and modulate psychophysiological fear reactions. PubMed and PsycINFO/Academic Search Premier databases were searched. Thirty-eight studies investigating challenge or habituation effects were included. VR exposure does provoke psychophysiological arousal, especially in terms of electrodermal activity. Results on psychophysiological habituation in VR are inconclusive. Study design and methodological rigour vary widely. Despite several limitations, this review provides evidence that VR exposure elicits psychophysiological fear reactions in patients and healthy subjects, rendering VR a promising treatment for anxiety disorders, and a potent research tool for future investigations of psychophysiological processes and their significance during exposure treatment.
Virtual reality-based prospective memory training program for people with acquired brain injury.
Yip, Ben C B; Man, David W K
2013-01-01
Acquired brain injuries (ABI) may display cognitive impairments and lead to long-term disabilities including prospective memory (PM) failure. Prospective memory serves to remember to execute an intended action in the future. PM problems would be a challenge to an ABI patient's successful community reintegration. While retrospective memory (RM) has been extensively studied, treatment programs for prospective memory are rarely reported. The development of a treatment program for PM, which is considered timely, can be cost-effective and appropriate to the patient's environment. A 12-session virtual reality (VR)-based cognitive rehabilitation program was developed using everyday PM activities as training content. 37 subjects were recruited to participate in a pretest-posttest control experimental study to evaluate its treatment effectiveness. Results suggest that significantly better changes were seen in both VR-based and real-life PM outcome measures, related cognitive attributes such as frontal lobe functions and semantic fluency. VR-based training may be well accepted by ABI patients as encouraging improvement has been shown. Large-scale studies of a virtual reality-based prospective memory (VRPM) training program are indicated.
Herrero, Rocio; García-Palacios, Azucena; Castilla, Diana; Molinari, Guadalupe; Botella, Cristina
2014-06-01
One of the most important aspects of fibromyalgia syndrome (FMS) is its impact on quality of life, increasing negative emotions and dysfunctional coping strategies. One of these strategies is to avoid activities, especially meaningful activities, which reduces positive reinforcement. Commencing significant daily activities could enable chronic patients to experience a more fulfilling life. However, the main difficulty found in FMS patients is their willingness to start those activities. Promoting positive emotions could enhance activity management. The aim of this paper is to present a description of a system along with data regarding the acceptability, satisfaction, and preliminary efficacy of a virtual reality (VR) environment for the promotion of positive emotions. The VR environment was especially designed for chronic pain patients. Results showed significant increases in general mood state, positive emotions, motivation, and self-efficacy. These preliminary findings show the potential of VR as an adjunct to the psychological treatment of such an important health problem as chronic pain.
Virtual Reality Simulation of the International Space Welding Experiment
NASA Technical Reports Server (NTRS)
Phillips, James A.
1996-01-01
Virtual Reality (VR) is a set of breakthrough technologies that allow a human being to enter and fully experience a 3-dimensional, computer simulated environment. A true virtual reality experience meets three criteria: (1) It involves 3-dimensional computer graphics; (2) It includes real-time feedback and response to user actions; and (3) It must provide a sense of immersion. Good examples of a virtual reality simulator are the flight simulators used by all branches of the military to train pilots for combat in high performance jet fighters. The fidelity of such simulators is extremely high -- but so is the price tag, typically millions of dollars. Virtual reality teaching and training methods are manifestly effective, and we have therefore implemented a VR trainer for the International Space Welding Experiment. My role in the development of the ISWE trainer consisted of the following: (1) created texture-mapped models of the ISWE's rotating sample drum, technology block, tool stowage assembly, sliding foot restraint, and control panel; (2) developed C code for control panel button selection and rotation of the sample drum; (3) In collaboration with Tim Clark (Antares Virtual Reality Systems), developed a serial interface box for the PC and the SGI Indigo so that external control devices, similar to ones actually used on the ISWE, could be used to control virtual objects in the ISWE simulation; (4) In collaboration with Peter Wang (SFFP) and Mark Blasingame (Boeing), established the interference characteristics of the VIM 1000 head-mounted-display and tested software filters to correct the problem; (5) In collaboration with Peter Wang and Mark Blasingame, established software and procedures for interfacing the VPL DataGlove and the Polhemus 6DOF position sensors to the SGI Indigo serial ports. The majority of the ISWE modeling effort was conducted on a PC-based VR Workstation, described below.
Šendula-Jengić, Vesna; Šendula-Pavelić, Martina; Hodak, Jelena
2016-06-01
In terms of health and healthcare cyberspace and virtual reality can be used differently and for different purposes and consequently create different outcomes. The three main areas which we shall discuss here are: 1) cyberspace as provider of health information and self-help resources, since the anonymity cyberspace provides is particularly important in the highly stigmatized field of psychiatry where a large number of people never seek professional help, which in turn negatively affects not only the person in question, but the family and ultimately the society (work efficiency, disability-adjusted life year - DALY, etc.), 2) cyberspace and virtual reality (VR) as cause of psychopathology, starting from violent behaviour, to addictive behaviour and other, 3) and finally cyberspace and VR as providers of efficient professional therapy in the field of psychiatry.
Schmid, Ludwig; Glässel, Andrea; Schuster-Amft, Corina
2016-01-01
Background . During the past decade, virtual reality (VR) has become a new component in the treatment of patients after stroke. Therefore aims of the study were (a) to get an insight into experiences and expectations of physiotherapists and occupational therapists in using a VR training system and (b) to investigate relevant facilitators, barriers, and risks for implementing VR training in clinical practice. Methods . Three focus groups were conducted with occupational therapists and physiotherapists, specialised in rehabilitation of patients after stroke. All data were audio-recorded and transcribed verbatim. The study was analysed based on a phenomenological approach using qualitative content analysis. Results . After code refinements, a total number of 1289 codes emerged out of 1626 statements. Intercoder reliability increased from 53% to 91% until the last focus group. The final coding scheme included categories on a four-level hierarchy: first-level categories are (a) therapists and VR, (b) VR device, (c) patients and VR, and (d) future prospects and potential of VR developments. Conclusions . Results indicate that interprofessional collaboration is needed to develop future VR technology and to devise VR implementation strategies in clinical practice. In principal, VR technology devices were seen as supportive for a general health service model.
Schmid, Ludwig; Glässel, Andrea
2016-01-01
Background. During the past decade, virtual reality (VR) has become a new component in the treatment of patients after stroke. Therefore aims of the study were (a) to get an insight into experiences and expectations of physiotherapists and occupational therapists in using a VR training system and (b) to investigate relevant facilitators, barriers, and risks for implementing VR training in clinical practice. Methods. Three focus groups were conducted with occupational therapists and physiotherapists, specialised in rehabilitation of patients after stroke. All data were audio-recorded and transcribed verbatim. The study was analysed based on a phenomenological approach using qualitative content analysis. Results. After code refinements, a total number of 1289 codes emerged out of 1626 statements. Intercoder reliability increased from 53% to 91% until the last focus group. The final coding scheme included categories on a four-level hierarchy: first-level categories are (a) therapists and VR, (b) VR device, (c) patients and VR, and (d) future prospects and potential of VR developments. Conclusions. Results indicate that interprofessional collaboration is needed to develop future VR technology and to devise VR implementation strategies in clinical practice. In principal, VR technology devices were seen as supportive for a general health service model. PMID:28058130
[Virtual reality and rehabilitation: why or why not? A systematic literature review].
Dores, Artemisa R; Barbosa, Fernando; Marques, António; Carvalho, Irene P; De Sousa, Liliana; Castro-Caldas, Alexandre
2012-01-01
Regardless of the health domain involved, the process of rehabilitation remains a challenge for professionals, patients and their families. In an attempt to overcome the limitations of traditional interventions, the technology of Virtual Reality (VR) has been increasingly applied to rehabilitation and begins to provide important tools which, however, generate debate and divergent positions. In order to examine VR's contributions to the field of rehabilitation in terms of its advantages and limitations, this study presents a systematic review of scientific literature in this area and provides a hierarchical model describing and systematizing the nature of the studies reviewed and their main subjects. The literature review focused on scientific papers indexed, until November 2010, in the ISI Web of Knowledge databases. Two independent researchers analyzed the included papers in NVivo 9 and the developed model was applied to the recoding of the material. A total of 963 articles were identified, of which 288 titles and abstracts were reviewed, after application of the exclusion criteria. The model indicates, as central categories in the literature: Type of Article (Empirical, Theoretical); Project Background; Type of Approach (Assistive Technology; Augmented Reality; Traditional Approaches; Virtual Reality). This last category (VR) was exhaustively decomposed so that its applicability, effects and future trends could be documented. Results suggest that VR's advantages include: its possible application to a variety of fields, cognitive functions, behaviors, neurological disorders and physical disabilities; its characteristics and respective consequences; and its potential to overcome limitations of traditional interventions. On the side of the limitations, papers address: VR's side effects, causes for the limitations, and suggested precautions. The results show promising trends in the use of VR technology in the field of rehabilitation, with implications for its future implementation. Results further indicate the need for continuing research that evaluates VR's applicability to rehabilitation in general and (neuro)cognitive rehabilitation in particular.
Two-week virtual reality training for dementia: Single case feasibility study.
McEwen, Daniel; Taillon-Hobson, Anne; Bilodeau, Martin; Sveistrup, Heidi; Finestone, Hillel
2014-01-01
Persons with dementia (PWD) are known to have difficulty with participation and focus during physical activity. Virtual reality (VR) offers a unique medium for motor learning but has only been used previously for cognitive assessment for PWD. Our study had two objectives: (1) investigate the feasibility and safety of an exercise-based VR training program in PWD, and (2) investigate its effects on balance and mobility. The intervention consisted of daily (5 d/wk, 1 h each) VR training sessions for 2 wk for a single research participant. Clinical balance and mobility measures were assessed 1 wk prior to, during, 1 wk following, and 1 mo after the intervention. Postintervention interviews provided qualitative feedback from the participant and his caregivers. Results indicate that VR training is feasible, safe, and enjoyable for PWD. However, balance and mobility measures were unaffected. VR training is well tolerated in a single research participant with dementia and is an engaging medium for participation in exercise.
Sinitsky, Daniel M; Fernando, Bimbi; Berlingieri, Pasquale
2012-09-01
The unique psychomotor skills required in laparoscopy result in reduced patient safety during the early part of the learning curve. Evidence suggests that these may be safely acquired in the virtual reality (VR) environment. Several VR simulators are available, each preloaded with several psychomotor skills tasks that provide users with computer-generated performance metrics. This review aimed to evaluate the usefulness of specific psychomotor skills tasks and metrics, and how trainers might build an effective training curriculum. We performed a comprehensive literature search. The vast majority of VR psychomotor skills tasks show construct validity for one or more metrics. These are commonly for time and motion parameters. Regarding training schedules, distributed practice is preferred over massed practice. However, a degree of supervision may be needed to counter the limitations of VR training. In the future, standardized proficiency scores should facilitate local institutions in establishing VR laparoscopic psychomotor skills curricula. Copyright © 2012 Elsevier Inc. All rights reserved.
Virtual Reality to Train Diagnostic Skills in Eating Disorders. Comparison of two Low Cost Systems.
Gutiérrez-Maldonado, José; Ferrer-García, Marta; Plasanjuanelo, Joana; Andrés-Pueyo, Antonio; Talarn-Caparrós, Antoni
2015-01-01
Enhancing the ability to perform differential diagnosis and psychopathological exploration is important for students who wish to work in the clinical field, as well as for professionals already working in this area. Virtual reality (VR) simulations can immerse students totally in educational experiences in a way that is not possible using other methods. Learning in a VR environment can also be more effective and motivating than usual classroom practices. Traditionally, immersion has been considered central to the quality of a VR system; immersive VR is considered a special and unique experience that cannot achieved by three-dimensional (3D) interactions on desktop PCs. However, some authors have suggested that if the content design is emotionally engaging, immersive systems are not always necessary. The main purpose of this study is to compare the efficacy and usability of two low-cost VR systems, offering different levels of immersion, in order to develop the ability to perform diagnostic interviews in eating disorders by means of simulations of psychopathological explorations.
Singh, D K A; Rahman, N N A; Seffiyah, R; Chang, S Y; Zainura, A K; Aida, S R; Rajwinder, K H S
2017-04-01
There is limited information regarding the effects of interactive virtual reality (VR) games on psychological and physical well-being among adults with physical disabilities. We aimed to examine the impact of VR games on psychological well-being, upper limb motor function and reaction time in adults with physical disabilities. Fifteen participants completed the intervention using Wii VR games in this pilot study. Depressive, Anxiety and Stress Scales (DASS) and Capabilities of Upper Extremity (CUE) questionnaires were used to measure psychological well-being and upper limb motor function respectively. Upper limb reaction time was measured using reaction time test. Results showed that there was a significant difference (p<0.05) in DASS questionnaire and average reaction time score after intervention. There is a potential for using interactive VR games as an exercise tool to improve psychological wellbeing and upper limb reaction time among adults with disabilities.
Takalo, Jouni; Piironen, Arto; Honkanen, Anna; Lempeä, Mikko; Aikio, Mika; Tuukkanen, Tuomas; Vähäsöyrinki, Mikko
2012-01-01
Ideally, neuronal functions would be studied by performing experiments with unconstrained animals whilst they behave in their natural environment. Although this is not feasible currently for most animal models, one can mimic the natural environment in the laboratory by using a virtual reality (VR) environment. Here we present a novel VR system based upon a spherical projection of computer generated images using a modified commercial data projector with an add-on fish-eye lens. This system provides equidistant visual stimulation with extensive coverage of the visual field, high spatio-temporal resolution and flexible stimulus generation using a standard computer. It also includes a track-ball system for closed-loop behavioural experiments with walking animals. We present a detailed description of the system and characterize it thoroughly. Finally, we demonstrate the VR system's performance whilst operating in closed-loop conditions by showing the movement trajectories of the cockroaches during exploratory behaviour in a VR forest.
Virtual reality in anxiety disorders: the past and the future.
Gorini, Alessandra; Riva, Giuseppe
2008-02-01
One of the most effective treatments of anxiety is exposure therapy: a person is exposed to specific feared situations or objects that trigger anxiety. This exposure process may be done through actual exposure, with visualization, by imagination or using virtual reality (VR), that provides users with computer simulated environments with and within which they can interact. VR is made possible by the capability of computers to synthesize a 3D graphical environment from numerical data. Furthermore, because input devices sense the subject's reactions and motions, the computer can modify the synthetic environment accordingly, creating the illusion of interacting with, and thus being immersed within the environment. Starting from 1995, different experimental studies have been conducted in order to investigate the effect of VR exposure in the treatment of subclinical fears and anxiety disorders. This review will discuss their outcome and provide guidelines for the use of VR exposure for the treatment of anxious patients.
Thompson, Trevor; Steffert, Tony; Steed, Anthony; Gruzelier, John
2011-01-01
Case studies suggest hypnosis with a virtual reality (VR) component may be an effective intervention; although few follow-up randomized, controlled trials have been performed comparing such interventions with standard hypnotic treatments. Thirty-five healthy participants were randomized to self-hypnosis with VR imagery, standard self-hypnosis, or relaxation interventions. Changes in sleep, cortisol levels, and mood were examined. Self-hypnosis involved 10- to 20-min. sessions visualizing a healthy immune scenario. Trait absorption was also recorded as a possible moderator. Moderated regression indicated that both hypnosis interventions produced significantly lower tiredness ratings than relaxation when trait absorption was high. When trait absorption was low, VR resulted in significantly higher engagement ratings, although this did not translate to demonstrable improvement in outcome. Results suggest that VR imagery may increase engagement relative to traditional methods, but further investigation into its potential to enhance therapeutic efficacy is required.
Virtual reality for the assessment of frontotemporal dementia, a feasibility study.
Mendez, Mario F; Joshi, Aditi; Jimenez, Elvira
2015-03-01
Behavioral variant frontotemporal dementia (bvFTD) is a non-Alzheimer dementia characterized by difficulty in documenting social-emotional changes. Few investigations have used virtual reality (VR) for documentation and rehabilitation of non-Alzheimer dementias. Five bvFTD patients underwent insight interviews while immersed in a virtual environment. They were interviewed by avatars, their answers were recorded, and their heart rates were monitored. They were asked to give ratings of their stress immediately at the beginning and at the end of the session. The patients tolerated the head-mounted display and VR without nausea or disorientation, heart rate changes, or worsening stress ratings. Their insight responses were comparable to real world interviews. All bvFTD patients showed their presence in the VR environment as they moved their heads to face and respond to each avatar's questions. The bvFTD patients tended to greater verbal elaboration of answers with larger mean length of utterances compared to their real world interviews. VR is feasible and well-tolerated in bvFTD. These patients may have VR responses comparable to real world performance and they may display a presence in the virtual environment which could even facilitate assessment. Further research can explore the promise of VR for the evaluation and rehabilitation of dementias beyond Alzheimer's disease. Implications for Rehabilitation Clinicians need effective evaluation and rehabilitation strategies for dementia, a neurological syndrome of epidemic proportions and a leading cause of disability. Memory and cognitive deficits are the major disabilities and targets for rehabilitation in Alzheimer's disease, the most common dementia. In contrast, social and emotional disturbances are the major disabilities and targets for rehabilitation in behavioral variant frontotemporal dementia (bvFTD), an incompletely understood non-Alzheimer dementia. Virtual reality is a technology that holds great promise for the evaluation and rehabilitation of patients with bvFTD and other non-Alzheimer dementias, and preliminary evidence suggests that this technology is feasible in patients with bvFTD.
Luque-Moreno, Carlos; Ferragut-Garcías, Alejandro; Rodríguez-Blanco, Cleofás; Heredia-Rizo, Alberto Marcos; Oliva-Pascual-Vaca, Jesús; Kiper, Pawel; Oliva-Pascual-Vaca, Ángel
2015-01-01
To develop a systematic review of the literature, to describe the different virtual reality (VR) interventions and interactive videogames applied to the lower extremity (LE) of stroke patients, and to analyse the results according to the most frequently used outcome measures. An electronic search of randomized trials between January 2004 and January 2014 in different databases (Medline, Cinahl, Web of Science, PEDro, and Cochrane) was carried out. Several terms (virtual reality, feedback, stroke, hemiplegia, brain injury, cerebrovascular accident, lower limb, leg, and gait) were combined, and finally 11 articles were included according to the established inclusion and exclusion criteria. The reviewed trials showed a high heterogeneity in terms of study design and assessment tools, which makes it difficult to compare and analyze the different types of interventions. However, most of them found a significant improvement on gait speed, balance and motor function, due to VR intervention. Although evidence is limited, it suggests that VR intervention (more than 10 sessions) in stroke patients may have a positive impact on balance, and gait recovery. Better results were obtained when a multimodal approach, combining VR and conventional physiotherapy, was used. Flexible software seems to adapt better to patients' requirements, allowing more specific and individual treatments.
Real-Time Motion Tracking for Mobile Augmented/Virtual Reality Using Adaptive Visual-Inertial Fusion
Fang, Wei; Zheng, Lianyu; Deng, Huanjun; Zhang, Hongbo
2017-01-01
In mobile augmented/virtual reality (AR/VR), real-time 6-Degree of Freedom (DoF) motion tracking is essential for the registration between virtual scenes and the real world. However, due to the limited computational capacity of mobile terminals today, the latency between consecutive arriving poses would damage the user experience in mobile AR/VR. Thus, a visual-inertial based real-time motion tracking for mobile AR/VR is proposed in this paper. By means of high frequency and passive outputs from the inertial sensor, the real-time performance of arriving poses for mobile AR/VR is achieved. In addition, to alleviate the jitter phenomenon during the visual-inertial fusion, an adaptive filter framework is established to cope with different motion situations automatically, enabling the real-time 6-DoF motion tracking by balancing the jitter and latency. Besides, the robustness of the traditional visual-only based motion tracking is enhanced, giving rise to a better mobile AR/VR performance when motion blur is encountered. Finally, experiments are carried out to demonstrate the proposed method, and the results show that this work is capable of providing a smooth and robust 6-DoF motion tracking for mobile AR/VR in real-time. PMID:28475145
Application of virtual reality methods to obesity prevention and management research.
Persky, Susan
2011-03-01
There is a great need for empirical evidence to inform clinical prevention and management of overweight and obesity. Application of virtual reality (VR) methods to this research agenda could present considerable advantages. Use of VR methods in basic and applied obesity prevention and treatment research is currently extremely limited. However, VR has been employed for social and behavioral research in many other domains where it has demonstrated validity and utility. Advantages of VR technologies as research tools include the ability to situate hypothetical research scenarios in realistic settings, tight experimental control inherent in virtual environments, the ability to manipulate and control any and all scenario elements, and enhanced behavioral measurement opportunities. The means by which each of these features could enhance obesity prevention and management research is discussed and illustrated in the context of an example research study. Challenges associated with the application of VR methods, such as technological limitations and cost, are also considered. By employing experimental VR methods to interrogate clinical encounters and other health-related situations, researchers may be able to elucidate causal relationships, strengthen theoretical models, and identify potential targets for intervention. In so doing, researchers stand to make important contributions to evidence-based practice innovation in weight management and obesity prevention. © 2011 Diabetes Technology Society.
Application of Virtual Reality Methods to Obesity Prevention and Management Research
Persky, Susan
2011-01-01
There is a great need for empirical evidence to inform clinical prevention and management of overweight and obesity. Application of virtual reality (VR) methods to this research agenda could present considerable advantages. Use of VR methods in basic and applied obesity prevention and treatment research is currently extremely limited. However, VR has been employed for social and behavioral research in many other domains where it has demonstrated validity and utility. Advantages of VR technologies as research tools include the ability to situate hypothetical research scenarios in realistic settings, tight experimental control inherent in virtual environments, the ability to manipulate and control any and all scenario elements, and enhanced behavioral measurement opportunities. The means by which each of these features could enhance obesity prevention and management research is discussed and illustrated in the context of an example research study. Challenges associated with the application of VR methods, such as technological limitations and cost, are also considered. By employing experimental VR methods to interrogate clinical encounters and other health-related situations, researchers may be able to elucidate causal relationships, strengthen theoretical models, and identify potential targets for intervention. In so doing, researchers stand to make important contributions to evidence-based practice innovation in weight management and obesity prevention. PMID:21527102
Fang, Wei; Zheng, Lianyu; Deng, Huanjun; Zhang, Hongbo
2017-05-05
In mobile augmented/virtual reality (AR/VR), real-time 6-Degree of Freedom (DoF) motion tracking is essential for the registration between virtual scenes and the real world. However, due to the limited computational capacity of mobile terminals today, the latency between consecutive arriving poses would damage the user experience in mobile AR/VR. Thus, a visual-inertial based real-time motion tracking for mobile AR/VR is proposed in this paper. By means of high frequency and passive outputs from the inertial sensor, the real-time performance of arriving poses for mobile AR/VR is achieved. In addition, to alleviate the jitter phenomenon during the visual-inertial fusion, an adaptive filter framework is established to cope with different motion situations automatically, enabling the real-time 6-DoF motion tracking by balancing the jitter and latency. Besides, the robustness of the traditional visual-only based motion tracking is enhanced, giving rise to a better mobile AR/VR performance when motion blur is encountered. Finally, experiments are carried out to demonstrate the proposed method, and the results show that this work is capable of providing a smooth and robust 6-DoF motion tracking for mobile AR/VR in real-time.
Designing informed game-based rehabilitation tasks leveraging advances in virtual reality.
Lange, Belinda; Koenig, Sebastian; Chang, Chien-Yen; McConnell, Eric; Suma, Evan; Bolas, Mark; Rizzo, Albert
2012-01-01
This paper details a brief history and rationale for the use of virtual reality (VR) technology for clinical research and intervention, and then focuses on game-based VR applications in the area of rehabilitation. An analysis of the match between rehabilitation task requirements and the assets available with VR technology is presented. Low-cost camera-based systems capable of tracking user behavior at sufficient levels for game-based virtual rehabilitation activities are currently available for in-home use. Authoring software is now being developed that aims to provide clinicians with a usable toolkit for leveraging this technology. This will facilitate informed professional input on software design, development and application to ensure safe and effective use in the rehabilitation context. The field of rehabilitation generally stands to benefit from the continual advances in VR technology, concomitant system cost reductions and an expanding clinical research literature and knowledge base. Home-based activity within VR systems that are low-cost, easy to deploy and maintain, and meet the requirements for "good" interactive rehabilitation tasks could radically improve users' access to care, adherence to prescribed training and subsequently enhance functional activity in everyday life in clinical populations.
Virtual Reality: Developing a VR space for Academic activities
NASA Astrophysics Data System (ADS)
Kaimaris, D.; Stylianidis, E.; Karanikolas, N.
2014-05-01
Virtual reality (VR) is extensively used in various applications; in industry, in academia, in business, and is becoming more and more affordable for end users from the financial point of view. At the same time, in academia and higher education more and more applications are developed, like in medicine, engineering, etc. and students are inquiring to be well-prepared for their professional life after their educational life cycle. Moreover, VR is providing the benefits having the possibility to improve skills but also to understand space as well. This paper presents the methodology used during a course, namely "Geoinformatics applications" at the School of Spatial Planning and Development (Eng.), Aristotle University of Thessaloniki, to create a virtual School space. The course design focuses on the methods and techniques to be used in order to develop the virtual environment. In addition the project aspires to become more and more effective for the students and provide a real virtual environment with useful information not only for the students but also for any citizen interested in the academic life at the School.
Kim, Kijong; Choi, Bongsam; Lim, Wootaek
2018-01-31
Virtual reality (VR) training, a virtual environment commonly generated by computer systems, may enhance the therapeutic efficacy of functional rehabilitation programmes. The aim of this study was to investigate the efficacy of a VR assisted intervention (VRAI) versus traditional rehabilitation intervention (TRI) on functional ankle instability (FAI). A single-blind randomized controlled study was conducted with 10 subjects for each group. The VRAI was conducted with the Nintendo Wii Fit Plus, whilst the TRI was conducted with a series of exercises with theraband. The muscle strength change of the two groups and the difference between pre and post interventions for each group were compared. The VRAI group had less improvement in the muscle strength of all ankle motions than did the TRI group (p > .05). The VRAI group had a greater improvement in muscle strength of plantar flexion than other motions, whilst the TRI group had an improvement in muscle strength of all ankle motions (p < .05). The effects of VR training for the condition of FAI were not comparable to conventional training. However, VR training may be added to the conventional training programme as an optional for the condition of FAI. Implications for Rehabilitation Functional ankle instability (FAI) is subjective feelings of ankle instability resulting from proprioceptive and neuromuscular deficits in which individuals may experience "giving way" condition of the ankle. Therapeutic applications of virtual reality (VR) may be comparable to traditional rehabilitation interventions (TRI) in the rehabilitation of individuals with FAI. However, there is no definitive evidence for the issue. Integrating low-cost VR into functional rehabilitation programme can provide insight into an issue of whether it can be replaced with traditional therapeutic approaches. Although, the efficacy of VR application on strengthening muscles is unable to compare to traditional strengthening programmes, it may be considered an optional treatment based on the proprioceptive improvements.
Thomas, J Graham; Spitalnick, Josh S; Hadley, Wendy; Bond, Dale S; Wing, Rena R
2015-01-01
Virtual reality (VR) technology can provide a safe environment for observing, learning, and practicing use of behavioral weight management skills, which could be particularly useful in enhancing minimal contact online weight management programs. The Experience Success (ES) project developed a system for creating and deploying VR scenarios for online weight management skills training. Virtual environments populated with virtual actors allow users to experiment with implementing behavioral skills via a PC-based point and click interface. A culturally sensitive virtual coach guides the experience, including planning for real-world skill use. Thirty-seven overweight/obese women provided feedback on a test scenario focused on social eating situations. They reported that the scenario gave them greater skills, confidence, and commitment for controlling eating in social situations. © 2014 Diabetes Technology Society.
Spitalnick, Josh S.; Hadley, Wendy; Bond, Dale S.; Wing, Rena R.
2014-01-01
Virtual reality (VR) technology can provide a safe environment for observing, learning, and practicing use of behavioral weight management skills, which could be particularly useful in enhancing minimal contact online weight management programs. The Experience Success (ES) project developed a system for creating and deploying VR scenarios for online weight management skills training. Virtual environments populated with virtual actors allow users to experiment with implementing behavioral skills via a PC-based point and click interface. A culturally sensitive virtual coach guides the experience, including planning for real-world skill use. Thirty-seven overweight/obese women provided feedback on a test scenario focused on social eating situations. They reported that the scenario gave them greater skills, confidence, and commitment for controlling eating in social situations. PMID:25367014
Randell, Rebecca; Ruddle, Roy A; Mello-Thoms, Claudia; Thomas, Rhys G; Quirke, Phil; Treanor, Darren
2013-01-01
To create and evaluate a virtual reality (VR) microscope that is as efficient as the conventional microscope, seeking to support the introduction of digital slides into routine practice. A VR microscope was designed and implemented by combining ultra-high-resolution displays with VR technology, techniques for fast interaction, and high usability. It was evaluated using a mixed factorial experimental design with technology and task as within-participant variables and grade of histopathologist as a between-participant variable. Time to diagnosis was similar for the conventional and VR microscopes. However, there was a significant difference in the mean magnification used between the two technologies, with participants working at a higher level of magnification on the VR microscope. The results suggest that, with the right technology, efficient use of digital pathology for routine practice is a realistic possibility. Further work is required to explore what magnification is required on the VR microscope for histopathologists to identify diagnostic features, and the effect on this of the digital slide production process. © 2012 Blackwell Publishing Limited.
An exploratory fNIRS study with immersive virtual reality: a new method for technical implementation
Seraglia, Bruno; Gamberini, Luciano; Priftis, Konstantinos; Scatturin, Pietro; Martinelli, Massimiliano; Cutini, Simone
2011-01-01
For over two decades Virtual Reality (VR) has been used as a useful tool in several fields, from medical and psychological treatments, to industrial and military applications. Only in recent years researchers have begun to study the neural correlates that subtend VR experiences. Even if the functional Magnetic Resonance Imaging (fMRI) is the most common and used technique, it suffers several limitations and problems. Here we present a methodology that involves the use of a new and growing brain imaging technique, functional Near-infrared Spectroscopy (fNIRS), while participants experience immersive VR. In order to allow a proper fNIRS probe application, a custom-made VR helmet was created. To test the adapted helmet, a virtual version of the line bisection task was used. Participants could bisect the lines in a virtual peripersonal or extrapersonal space, through the manipulation of a Nintendo Wiimote ® controller in order for the participants to move a virtual laser pointer. Although no neural correlates of the dissociation between peripersonal and extrapersonal space were found, a significant hemodynamic activity with respect to the baseline was present in the right parietal and occipital areas. Both advantages and disadvantages of the presented methodology are discussed. PMID:22207843
Methamphetamine craving induced in an online virtual reality environment.
Culbertson, Christopher; Nicolas, Sam; Zaharovits, Itay; London, Edythe D; De La Garza, Richard; Brody, Arthur L; Newton, Thomas F
2010-10-01
The main aim of this study was to assess self-reported craving and physiological reactivity in a methamphetamine virtual reality (METH-VR) cue model created using Second Life, a freely available online gaming platform. Seventeen, non-treatment seeking, individuals that abuse methamphetamine (METH) completed this 1-day, outpatient, within-subjects study. Participants completed four test sessions: 1) METH-VR, 2) neutral-VR, 3) METH-video, and 4) neutral-video in a counterbalanced (Latin square) fashion. The participants provided subjective ratings of urges to use METH, mood, and physical state throughout each cue presentation. Measures of physiological reactivity (heart rate variability) were also collected during each cue presentation and at rest. The METH-VR condition elicited the greatest change in subjective reports of "crave METH", "desire METH", and "want METH" at all time points. The "high craving" participants displayed more high frequency cardiovascular activity while the "low craving" participants displayed more low frequency cardiovascular activity during the cue conditions, with the greatest difference seen during the METH-VR and METH-video cues. These findings reveal a physiological divergence between high and low craving METH abusers using heart rate variability, and demonstrate the usefulness of VR cues for eliciting subjective craving in METH abusers, as well as the effectiveness of a novel VR drug cue model created within an online virtual world. (c) 2010 Elsevier Inc. All rights reserved.
Methamphetamine Craving Induced in an Online Virtual Reality Environment
Culbertson, Christopher; Nicolas, Sam; Zaharovits, Itay; London, Edythe D.; De La Garza, Richard; Brody, Arthur L.; Newton, Thomas F.
2010-01-01
The main aim of this study was to assess self-reported craving and physiological reactivity in a methamphetamine virtual reality (METH-VR) cue model created using Second Life, a freely available online gaming platform. Seventeen, non-treatment seeking, individuals that abuse methamphetamine (METH) completed this one-day, outpatient, within-subjects study. Participants completed four test sessions: 1) METH-VR 2) neutral-VR 3) METH-video 4) neutral-video in a counterbalanced (latin square) fashion. The participants provided subjective ratings of urges to use METH, mood, and physical state throughout each cue presentation. Measures of physiological reactivity (heart rate variability) were also collected during each cue presentation and at rest. The METH-VR condition elicited the greatest change in subjective reports of “crave METH”, “desire METH”, and “want METH” at all time points. The “high craving” participants displayed more high frequency cardiovascular activity while the “low craving” participants displayed more low frequency cardiovascular activity during the cue conditions, with the greatest difference seen during the METH-VR and METH-video cues. These findings reveal a physiological divergence between high and low craving METH abusers using heart rate variability, and demonstrate the usefulness of VR cues for eliciting subjective craving in METH abusers, as well as the effectiveness of a novel VR drug cue model created within an online virtual world. PMID:20643158
Dias, Thiago Rodrigues de Santana; Duchesne, Monica; Appolinario, Jose Carlos
2017-01-01
Several lines of evidence suggest that Virtual Reality (VR) has a potential utility in eating disorders. The objective of this study is to review the literature on the use of VR in bulimia nervosa (BN) and binge eating disorder (BED). Using PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) statement for reporting systematic reviews, we performed a PubMed, Web of Knowledge and SCOPUS search to identify studies employing VR in the assessment and treatment of BN and BED. The following search terms were used: “virtual reality”, “eating disorders”, “binge eating”, and “bulimia nervosa”. From the 420 articles identified, 19 were selected, nine investigated VR in assessment and 10 were treatment studies (one case-report, two non-controlled and six randomized controlled trials). The studies using VR in BN and BED are at an early stage. However, considering the available evidence, the use of VR in the assessment of those conditions showed some promise in identifying: (1) how those patients experienced their body image; and (2) environments or specific kinds of foods that may trigger binge–purging cycle. Some studies using VR-based environments associated to cognitive behavioral techniques showed their potential utility in improving motivation for change, self-esteem, body image disturbances and in reducing binge eating and purging behavior. PMID:28698483
Virtual reality applications for motor rehabilitation after stroke.
Sisto, Sue Ann; Forrest, Gail F; Glendinning, Diana
2002-01-01
Hemiparesis is the primary physical impairment underlying functional disability after stroke. A goal of rehabilitation is to enhance motor skill acquisition, which is a direct result of practice. However, frequency and duration of practice are limited in rehabilitation. Virtual reality (VR) is a computer technology that simulates real-life learning while providing augmented feedback and increased frequency, duration, and intensity of practiced tasks. The rate and extent of relearning of motor tasks could affect the duration, effectiveness, and cost of patient care. The purpose of this article is to review the use of VR training for motor rehabilitation after stroke.
Homeland security and virtual reality: building a Strategic Adaptive Response System (STARS).
Swift, Christopher; Rosen, Joseph M; Boezer, Gordon; Lanier, Jaron; Henderson, Joseph V; Liu, Alan; Merrell, Ronald C; Nguyen, Sinh; Demas, Alex; Grigg, Elliot B; McKnight, Matthew F; Chang, Janelle; Koop, C Everett
2005-01-01
The advent of the Global War on Terrorism (GWOT) underscored the need to improve the U.S. disaster response paradigm. Existing systems involve numerous agencies spread across disparate functional and geographic jurisdictions. The current architecture remains vulnerable to sophisticated terrorist strikes. To address these vulnerabilities, we must continuously adapt and improve our Homeland Security architecture. Virtual Reality (VR) technologies will help model those changes and integrate technologies. This paper provides a broad overview of the strategic threats, together with a detailed examination of how specific VR technologies could be used to ensure successful disaster responses.
Modulation of Excitability in the Temporoparietal Junction Relieves Virtual Reality Sickness.
Takeuchi, Naoyuki; Mori, Takayuki; Suzukamo, Yoshimi; Izumi, Shin-Ichi
2018-06-01
Virtual reality (VR) immersion often provokes subjective discomfort and postural instability, so called VR sickness. The neural mechanism of VR sickness is speculated to be related to visual-vestibular information mismatch and/or postural instability. However, the approaches proposed to relieve VR sickness through modulation of brain activity are poorly understood. Using transcranial direct current stimulation (tDCS), we aimed to investigate whether VR sickness could be relieved by the modulation of cortical excitability in the temporoparietal junction (TPJ), which is known to be involved in processing of both vestibular and visual information. Twenty healthy subjects received tDCS over right TPJ before VR immersion. The order of the three types of tDCS (anodal, cathodal, and sham) was counterbalanced across subjects. We evaluated the subjective symptoms, heart rate, and center of pressure at baseline, after tDCS, and after VR immersion. VR immersion using head-mounted displays provoked subjective discomfort and postural instability. However, anodal tDCS over right TPJ ameliorated subjective disorientation symptoms and postural instability induced by VR immersion compared with sham condition. The amelioration of VR sickness by anodal tDCS over the right TPJ might result from relief of the sensory conflict and/or facilitation of vestibular function. Our result not only has potential clinical implications for the neuromodulation approach of VR sickness but also implies a causal role of the TPJ in VR sickness.
Cognitive training on stroke patients via virtual reality-based serious games.
Gamito, Pedro; Oliveira, Jorge; Coelho, Carla; Morais, Diogo; Lopes, Paulo; Pacheco, José; Brito, Rodrigo; Soares, Fabio; Santos, Nuno; Barata, Ana Filipa
2017-02-01
Use of virtual reality environments in cognitive rehabilitation offers cost benefits and other advantages. In order to test the effectiveness of a virtual reality application for neuropsychological rehabilitation, a cognitive training program using virtual reality was applied to stroke patients. A virtual reality-based serious games application for cognitive training was developed, with attention and memory tasks consisting of daily life activities. Twenty stroke patients were randomly assigned to two conditions: exposure to the intervention, and waiting list control. The results showed significant improvements in attention and memory functions in the intervention group, but not in the controls. Overall findings provide further support for the use of VR cognitive training applications in neuropsychological rehabilitation. Implications for Rehabilitation Improvements in memory and attention functions following a virtual reality-based serious games intervention. Training of daily-life activities using a virtual reality application. Accessibility to training contents.
Virtual reality and physical rehabilitation: a new toy or a new research and rehabilitation tool?
Keshner, Emily A
2004-01-01
Virtual reality (VR) technology is rapidly becoming a popular application for physical rehabilitation and motor control research. But questions remain about whether this technology really extends our ability to influence the nervous system or whether moving within a virtual environment just motivates the individual to perform. I served as guest editor of this month's issue of the Journal of NeuroEngineering and Rehabilitation (JNER) for a group of papers on augmented and virtual reality in rehabilitation. These papers demonstrate a variety of approaches taken for applying VR technology to physical rehabilitation. The papers by Kenyon et al. and Sparto et al. address critical questions about how this technology can be applied to physical rehabilitation and research. The papers by Sveistrup and Viau et al. explore whether action within a virtual environment is equivalent to motor performance within the physical environment. Finally, papers by Riva et al. and Weiss et al. discuss the important characteristics of a virtual environment that will be most effective for obtaining changes in the motor system. PMID:15679943
A Novel Integrating Virtual Reality Approach for the Assessment of the Attachment Behavioral System
Chicchi Giglioli, Irene Alice; Pravettoni, Gabriella; Sutil Martín, Dolores Lucia; Parra, Elena; Raya, Mariano A.
2017-01-01
Virtual reality (VR) technology represents a novel and powerful tool for behavioral research in psychological assessment. VR provides simulated experiences able to create the sensation of undergoing real situations. Users become active participants in the virtual environment seeing, hearing, feeling, and actuating as if they were in the real world. Currently, the most psychological VR applications concern the treatment of various mental disorders but not the assessment, that it is mainly based on paper and pencil tests. The observation of behaviors is costly, labor-intensive, and it is hard to create social situations in laboratory settings, even if the observation of actual behaviors could be particularly informative. In this framework, social stressful experiences can activate various behaviors of attachment for a significant person that can help to control and soothe them to promote individual’s well-being. Social support seeking, physical proximity, and positive and negative behaviors represent the main attachment behaviors that people can carry out during experiences of distress. We proposed VR as a novel integrating approach to measure real attachment behaviors. The first studies on attachment behavioral system by VR showed the potentiality of this approach. To improve the assessment during the VR experience, we proposed virtual stealth assessment (VSA) as a new method. VSA could represent a valid and novel technique to measure various psychological attributes in real-time during the virtual experience. The possible use of this method in psychology could be to generate a more complete, exhaustive, and accurate individual’s psychological evaluation. PMID:28701967
a Low-Cost and Lightweight 3d Interactive Real Estate-Purposed Indoor Virtual Reality Application
NASA Astrophysics Data System (ADS)
Ozacar, K.; Ortakci, Y.; Kahraman, I.; Durgut, R.; Karas, I. R.
2017-11-01
Interactive 3D architectural indoor design have been more popular after it benefited from Virtual Reality (VR) technologies. VR brings computer-generated 3D content to real life scale and enable users to observe immersive indoor environments so that users can directly modify it. This opportunity enables buyers to purchase a property off-the-plan cheaper through virtual models. Instead of showing property through 2D plan or renders, this visualized interior architecture of an on-sale unbuilt property is demonstrated beforehand so that the investors have an impression as if they were in the physical building. However, current applications either use highly resource consuming software, or are non-interactive, or requires specialist to create such environments. In this study, we have created a real-estate purposed low-cost high quality fully interactive VR application that provides a realistic interior architecture of the property by using free and lightweight software: Sweet Home 3D and Unity. A preliminary study showed that participants generally liked proposed real estate-purposed VR application, and it satisfied the expectation of the property buyers.
A succinct overview of virtual reality technology use in Alzheimer's disease.
García-Betances, Rebeca I; Arredondo Waldmeyer, María Teresa; Fico, Giuseppe; Cabrera-Umpiérrez, María Fernanda
2015-01-01
We provide a brief review and appraisal of recent and current virtual reality (VR) technology for Alzheimer's disease (AD) applications. We categorize them according to their intended purpose (e.g., diagnosis, patient cognitive training, caregivers' education, etc.), focus feature (e.g., spatial impairment, memory deficit, etc.), methodology employed (e.g., tasks, games, etc.), immersion level, and passive or active interaction. Critical assessment indicates that most of them do not yet take full advantage of virtual environments with high levels of immersion and interaction. Many still rely on conventional 2D graphic displays to create non-immersive or semi-immersive VR scenarios. Important improvements are needed to make VR a better and more versatile assessment and training tool for AD. The use of the latest display technologies available, such as emerging head-mounted displays and 3D smart TV technologies, together with realistic multi-sensorial interaction devices, and neuro-physiological feedback capacity, are some of the most beneficial improvements this mini-review suggests. Additionally, it would be desirable that such VR applications for AD be easily and affordably transferable to in-home and nursing home environments.
ERIC Educational Resources Information Center
Keskitalo, Tuulikki
2012-01-01
Expectations for simulations in healthcare education are high; however, little is known about healthcare students' expectations of the learning process in virtual reality (VR) and simulation-based learning environments (SBLEs). This research aims to describe first-year healthcare students' (N=97) expectations regarding teaching, studying, and…
The Potential of Virtual Reality to Assess Functional Communication in Aphasia
ERIC Educational Resources Information Center
Garcia, Linda J.; Rebolledo, Mercedes; Metthe, Lynn; Lefebvre, Renee
2007-01-01
Speech-language pathologists (SLPs) who work with adults with cognitive-linguistic impairments, including aphasia, have long needed an assessment tool that predicts ability to function in the real world. In this article, it is argued that virtual reality (VR)-supported approaches can address this need. Using models of disability such as the…
ERIC Educational Resources Information Center
Levac, Danielle; Miller, Patricia; Missiuna, Cheryl
2012-01-01
Little is known about how therapists promote learning of functional motor skills for children with acquired brain injuries. This study explores physiotherapists' description of these interventions in comparison to virtual reality (VR) video game-based therapy. Six physiotherapists employed at a children's rehabilitation center participated in…
ERIC Educational Resources Information Center
Gunn, Therese; Jones, Lee; Bridge, Pete; Rowntree, Pam; Nissen, Lisa
2018-01-01
In recent years, simulation has increasingly underpinned the acquisition of pre-clinical skills by undergraduate medical imaging (diagnostic radiography) students. This project aimed to evaluate the impact of an innovative virtual reality (VR) learning environment on the development of technical proficiency by students. The study assessed the…
ERIC Educational Resources Information Center
Bordnick, Patrick S.; Yoon, Jin H.; Kaganoff, Eili; Carter, Brian
2013-01-01
Objectives: The cue-reactivity paradigm has been widely used to assess craving among cigarette smokers. Seeking to replicate and expand on previous virtual reality (VR) nicotine cue-reactivity research on nontreatment-seeking smokers, the current study compared subjective reports of craving for cigarettes when exposed to smoking (proximal and…
Feasibility of Virtual Reality Environments for Adolescent Social Anxiety Disorder
ERIC Educational Resources Information Center
Parrish, Danielle E.; Oxhandler, Holly K.; Duron, Jacuelynn F.; Swank, Paul; Bordnick, Patrick
2016-01-01
Purpose: This study assessed the feasibility of virtual reality (VR) exposure as an assessment and treatment modality for youth with social anxiety disorder (SAD). Methods: Forty-one adolescents, 20 of which were identified as having SAD, were recruited from a community sample. Youth with and without SAD were exposed to two social virtual…
Virtual Reality as a Leisure Activity for Young Adults with Physical and Intellectual Disabilities
ERIC Educational Resources Information Center
Yalon-Chamovitz, Shira; Weiss, Patrice L.
2008-01-01
Participation in leisure activities is a fundamental human right and an important factor of quality of life. Adults with intellectual disabilities (ID) and physical disabilities often experience limited opportunities to participate in leisure activities, virtual reality (VR) technologies may serve to broaden their repertoire of accessible leisure…
Embedding speech into virtual realities
NASA Technical Reports Server (NTRS)
Bohn, Christian-Arved; Krueger, Wolfgang
1993-01-01
In this work a speaker-independent speech recognition system is presented, which is suitable for implementation in Virtual Reality applications. The use of an artificial neural network in connection with a special compression of the acoustic input leads to a system, which is robust, fast, easy to use and needs no additional hardware, beside a common VR-equipment.
ERIC Educational Resources Information Center
Górski, Filip; Bun, Pawel; Wichniarek, Radoslaw; Zawadzki, Przemyslaw; Hamrol, Adam
2017-01-01
Effective medical and biomedical engineering education is an important problem. Traditional methods are difficult and costly. That is why Virtual Reality is often used for that purpose. Educational medical VR is a well-developed IT field, with many available hardware and software solutions. Current solutions are prepared without methodological…
Physics Education in Virtual Reality: An Example
ERIC Educational Resources Information Center
Kaufmann, Hannes; Meyer, Bernd
2009-01-01
We present an immersive virtual reality (VR) application for physics education. It utilizes a recent physics engine developed for the PC gaming market to simulate physical experiments correctly and accurately. Students are enabled to actively build their own experiments and study them. A variety of tools are provided to analyze forces, mass, paths…
The Future of Virtual Reality in the Classroom
ERIC Educational Resources Information Center
Vance, Amelia
2016-01-01
As state boards of education and other state policymakers consider the future of schools, sorting fad technology from technology that accelerates learning is key. Virtual reality (VR) is one such technology with promise that seems unlikely to fizzle. Hailed as potentially transformative for education and still in the early stages of application,…
Effects of virtual reality training on mobility in individuals with Parkinson's disease.
Melo, G; Kleiner, A F R; Lopes, J; Zen, G Z D; Marson, N; Santos, T; Dumont, A; Galli, M; Oliveira, C
2018-06-19
The aim of the present study was to evaluate the effects of gait training with virtual reality (VR) on mobility in patients with Parkinson's disease (PD). Thirty-seven individuals with PD were allocated to three groups (control = 12, VR = 12 and treadmill = 13) submitted to 12 twenty-minute training sessions. Evaluations involved the Timed Up and Go (TUG) test before the intervention, after one session, after all 12 sessions and 30 days after the end of the intervention. The groups submitted to VR and treadmill training took less time to execute the TUG test than the control group. Individuals with PD submitted to VR and treadmill gait training presented mobility improvements in comparison to traditional physiotherapeutic training. Copyright © 2018. Published by Elsevier B.V.
Generating Contextual Descriptions of Virtual Reality (VR) Spaces
NASA Astrophysics Data System (ADS)
Olson, D. M.; Zaman, C. H.; Sutherland, A.
2017-12-01
Virtual reality holds great potential for science communication, education, and research. However, interfaces for manipulating data and environments in virtual worlds are limited and idiosyncratic. Furthermore, speech and vision are the primary modalities by which humans collect information about the world, but the linking of visual and natural language domains is a relatively new pursuit in computer vision. Machine learning techniques have been shown to be effective at image and speech classification, as well as at describing images with language (Karpathy 2016), but have not yet been used to describe potential actions. We propose a technique for creating a library of possible context-specific actions associated with 3D objects in immersive virtual worlds based on a novel dataset generated natively in virtual reality containing speech, image, gaze, and acceleration data. We will discuss the design and execution of a user study in virtual reality that enabled the collection and the development of this dataset. We will also discuss the development of a hybrid machine learning algorithm linking vision data with environmental affordances in natural language. Our findings demonstrate that it is possible to develop a model which can generate interpretable verbal descriptions of possible actions associated with recognized 3D objects within immersive VR environments. This suggests promising applications for more intuitive user interfaces through voice interaction within 3D environments. It also demonstrates the potential to apply vast bodies of embodied and semantic knowledge to enrich user interaction within VR environments. This technology would allow for applications such as expert knowledge annotation of 3D environments, complex verbal data querying and object manipulation in virtual spaces, and computer-generated, dynamic 3D object affordances and functionality during simulations.
Shiban, Youssef; Brütting, Johanna; Pauli, Paul; Mühlberger, Andreas
2015-03-01
The current study is the first to examine whether reactivation of fear memory prior to exposure therapy reduces relapse in a randomized clinical sample. In a standardized treatment protocol combining virtual reality and in-vivo exposure, patients underwent a fear reactivation procedure using a virtual spider 10 min prior to a virtual reality (VR) exposure (reactivation group: RG, n = 15). A control group (CG, n = 17) was exposed to a virtual plant 10 min prior to the VR exposure. Outcome measures were a VR spontaneous recovery test (SRT) and in-vivo a behavioral avoidance test assessed 24 h after VR exposure. One week later an in-vivo exposure session followed. Additionally, a follow-up using psychometric assessment was conducted six months after the first session. Both groups benefitted significantly and equally from the combined treatment, and importantly, the SRT revealed no return of fear in both groups. Furthermore, follow-up tests showed long-term treatment effects with no group differences. Due to different study components (VR treatment and in-vivo), we were not able to determine which treatment module was mainly responsible for the long-term treatment effect. Furthermore, no direct measure of memory destabilization was possible in this study. Our treatment package was highly effective in reducing phobic fear up to 6 months following treatment. Explicit fear reactivation prior to exposure was not beneficial in VR exposure treatment, possibly due to a failure to induce a memory destabilization or due to an implicit fear reactivation prior to treatment in both groups.
Effects of Systematic Cue Exposure Through Virtual Reality on Cigarette Craving
Pericot-Valverde, Irene; Secades-Villa, Roberto; Gutiérrez-Maldonado, José
2014-01-01
Introduction: Cigarette cravings have been associated with less successful attempts to quit smoking and a greater likelihood of relapse after smoking cessation. Background craving refers to a relatively steady and continuous experience of craving, while cue-induced craving refers to phases of intense craving triggered by cues associated with smoking. Cue exposure treatment (CET) involves repeated exposure to stimuli associated with substance use in order to reduce craving responses. However, mixed results have been found regarding the effect of CET on both types of craving. The aim of this study was to assess the effect of systematic virtual reality cue exposure treatment (VR-CET) on background and cue-induced cravings. Methods: Participants were 48 treatment-seeking smokers. The VR-CET consisted of prolonged exposure sessions to several interactive virtual environments. The VR-CET was applied once a week over 5 weeks. An individualized hierarchy of exposure was drawn up for each patient starting from the easiest virtual environment. Background and cue-induced cravings were recorded in each session. Results: Cue-induced craving decreased over each session as a result of prolonged exposure. VR-CET also reduced cue-induced and background cravings across the 5 sessions, showing a cumulative effect across the exposure sessions. Conclusions: Our results evidenced the utility of VR-CET in reducing both types of cigarette craving. A combination of CET through VR with psychological treatments may improve current treatments for smoking cessation. PMID:24962558
Virtual reality for intelligent and interactive operating, training, and visualization systems
NASA Astrophysics Data System (ADS)
Freund, Eckhard; Rossmann, Juergen; Schluse, Michael
2000-10-01
Virtual Reality Methods allow a new and intuitive way of communication between man and machine. The basic idea of Virtual Reality (VR) is the generation of artificial computer simulated worlds, which the user not only can look at but also can interact with actively using data glove and data helmet. The main emphasis for the use of such techniques at the IRF is the development of a new generation of operator interfaces for the control of robots and other automation components and for intelligent training systems for complex tasks. The basic idea of the methods developed at the IRF for the realization of Projective Virtual Reality is to let the user work in the virtual world as he would act in reality. The user actions are recognized by the Virtual reality System and by means of new and intelligent control software projected onto the automation components like robots which afterwards perform the necessary actions in reality to execute the users task. In this operation mode the user no longer has to be a robot expert to generate tasks for robots or to program them, because intelligent control software recognizes the users intention and generated automatically the commands for nearly every automation component. Now, Virtual Reality Methods are ideally suited for universal man-machine-interfaces for the control and supervision of a big class of automation components, interactive training and visualization systems. The Virtual Reality System of the IRF-COSIMIR/VR- forms the basis for different projects starting with the control of space automation systems in the projects CIROS, VITAL and GETEX, the realization of a comprehensive development tool for the International Space Station and last but not least with the realistic simulation fire extinguishing, forest machines and excavators which will be presented in the final paper in addition to the key ideas of this Virtual Reality System.
Semi-Immersive Virtual Turbine Engine Simulation System
NASA Astrophysics Data System (ADS)
Abidi, Mustufa H.; Al-Ahmari, Abdulrahman M.; Ahmad, Ali; Darmoul, Saber; Ameen, Wadea
2018-05-01
The design and verification of assembly operations is essential for planning product production operations. Recently, virtual prototyping has witnessed tremendous progress, and has reached a stage where current environments enable rich and multi-modal interaction between designers and models through stereoscopic visuals, surround sound, and haptic feedback. The benefits of building and using Virtual Reality (VR) models in assembly process verification are discussed in this paper. In this paper, we present the virtual assembly (VA) of an aircraft turbine engine. The assembly parts and sequences are explained using a virtual reality design system. The system enables stereoscopic visuals, surround sounds, and ample and intuitive interaction with developed models. A special software architecture is suggested to describe the assembly parts and assembly sequence in VR. A collision detection mechanism is employed that provides visual feedback to check the interference between components. The system is tested for virtual prototype and assembly sequencing of a turbine engine. We show that the developed system is comprehensive in terms of VR feedback mechanisms, which include visual, auditory, tactile, as well as force feedback. The system is shown to be effective and efficient for validating the design of assembly, part design, and operations planning.
Vora, Jeenal; Nair, Santosh; Gramopadhye, Anand K; Duchowski, Andrew T; Melloy, Brian J; Kanki, Barbara
2002-11-01
The aircraft maintenance industry is a complex system consisting of several interrelated human and machine components. Recognizing this, the Federal Aviation Administration (FAA) has pursued human factors related research. In the maintenance arena the research has focused on the aircraft inspection process and the aircraft inspector. Training has been identified as the primary intervention strategy to improve the quality and reliability of aircraft inspection. If training is to be successful, it is critical that we provide aircraft inspectors with appropriate training tools and environment. In response to this need, the paper outlines the development of a virtual reality (VR) system for aircraft inspection training. VR has generated much excitement but little formal proof that it is useful. However, since VR interfaces are difficult and expensive to build, the computer graphics community needs to be able to predict which applications will benefit from VR. To address this important issue, this research measured the degree of immersion and presence felt by subjects in a virtual environment simulator. Specifically, it conducted two controlled studies using the VR system developed for visual inspection task of an aft-cargo bay at the VR Lab of Clemson University. Beyond assembling the visual inspection virtual environment, a significant goal of this project was to explore subjective presence as it affects task performance. The results of this study indicated that the system scored high on the issues related to the degree of presence felt by the subjects. As a next logical step, this study, then, compared VR to an existing PC-based aircraft inspection simulator. The results showed that the VR system was better and preferred over the PC-based training tool.
VIRTUAL REALITY HYPNOSIS FOR PAIN ASSOCIATED WITH RECOVERY FROM PHYSICAL TRAUMA1,2
Patterson, David R.; Jensen, Mark P.; Wiechman, Shelley A.; Sharar, Sam R.
2010-01-01
Pain following traumatic injuries is common, can impair injury recovery and is often inadequately treated. In particular, the role of adjunctive nonpharmacologic analgesic techniques is unclear. The authors report a randomized, controlled study of 21 hospitalized trauma patients to assess the analgesic efficacy of virtual reality hypnosis (VRH)—hypnotic induction and analgesic suggestion delivered by customized virtual reality (VR) hardware/software. Subjective pain ratings were obtained immediately and 8 hours after VRH (used as an adjunct to standard analgesic care) and compared to both adjunctive VR without hypnosis and standard care alone. VRH patients reported less pain intensity and less pain unpleasantness compared to control groups. These preliminary findings suggest that VRH analgesia is a novel technology worthy of further study, both to improve pain management and to increase availability of hypnotic analgesia to populations without access to therapist-provided hypnosis and suggestion. PMID:20509069
ERIC Educational Resources Information Center
Granshaw, Frank Douglas
2011-01-01
Virtual reality (VR) is increasingly used to acquaint geoscience novices with some of the observation, data gathering, and problem solving done in actual field situations by geoscientists. VR environments in a variety of forms are used to prepare students for doing geologic fieldwork, as well as to provide proxies for such experience when…
Initial validation of a virtual-reality robotic simulator.
Lendvay, Thomas S; Casale, Pasquale; Sweet, Robert; Peters, Craig
2008-09-01
Robotic surgery is an accepted adjunct to minimally invasive surgery, but training is restricted to console time. Virtual-reality (VR) simulation has been shown to be effective for laparoscopic training and so we seek to validate a novel VR robotic simulator. The American Urological Association (AUA) Office of Education approved this study. Subjects enrolled in a robotics training course at the 2007 AUA annual meeting underwent skills training in a da Vinci dry-lab module and a virtual-reality robotics module which included a three-dimensional (3D) VR robotic simulator. Demographic and acceptability data were obtained, and performance metrics from the simulator were compared between experienced and nonexperienced roboticists for a ring transfer task. Fifteen subjects-four with previous robotic surgery experience and 11 without-participated. Nine subjects were still in urology training and nearly half of the group had reported playing video games. Overall performance of the da Vinci system and the simulator were deemed acceptable by a Likert scale (0-6) rating of 5.23 versus 4.69, respectively. Experienced subjects outperformed nonexperienced subjects on the simulator on three metrics: total task time (96 s versus 159 s, P < 0.02), economy of motion (1,301 mm versus 2,095 mm, P < 0.04), and time the telemanipulators spent outside of the center of the platform's workspace (4 s versus 35 s, P < 0.02). This is the first demonstration of face and construct validity of a virtual-reality robotic simulator. Further studies assessing predictive validity are ultimately required to support incorporation of VR robotic simulation into training curricula.
Tong, Xin; Gromala, Diane; Gupta, Dimple; Squire, Pam
2016-01-01
Researchers have shown that immersive Virtual Reality (VR) can serve as an unusually powerful pain control technique. However, research assessing the reported symptoms and negative effects of VR systems indicate that it is important to ascertain if these symptoms arise from the use of particular VR display devices, particularly for users who are deemed "at risk," such as chronic pain patients Moreover, these patients have specific and often complex needs and requirements, and because basic issues such as 'comfort' may trigger anxiety or panic attacks, it is important to examine basic questions of the feasibility of using VR displays. Therefore, this repeated-measured experiment was conducted with two VR displays: the Oculus Rift's head-mounted display (HMD) and Firsthand Technologies' immersive desktop display, DeepStream3D. The characteristics of these immersive desktop displays differ: one is worn, enabling patients to move their heads, while the other is peered into, allowing less head movement. To assess the severity of physical discomforts, 20 chronic pain patients tried both displays while watching a VR pain management demo in clinical settings. Results indicated that participants experienced higher levels of Simulator Sickness using the Oculus Rift HMD. However, results also indicated other preferences of the two VR displays among patients, including physical comfort levels and a sense of immersion. Few studies have been conducted that compare usability of specific VR devices specifically with chronic pain patients using a therapeutic virtual environment in pain clinics. Thus, the results may help clinicians and researchers to choose the most appropriate VR displays for chronic pain patients and guide VR designers to enhance the usability of VR displays for long-term pain management interventions.
NASA Astrophysics Data System (ADS)
Chuah, Kee Man; Chen, Chwen Jen; Teh, Chee Siong
Virtual reality (VR) has been prevalently used as a tool to help students learn and to simulate situations that are too hazardous to practice in real life. The present study aims to explore the capability of VR to achieve these two purposes and demonstrate a novel application of the result, using VR to help school students learn about road safety skills, which are impractical to be carried out in real-life situations. This paper describes the system design of the VR-based learning environment known as Virtual Simulated Traffics for Road Safety Education (ViSTREET) and its various features. An overview of the technical procedures for its development is also included. Ultimately, this paper highlights the potential use of VR in addressing the learning problem concerning road safety education programme in Malaysia.
Using voice input and audio feedback to enhance the reality of a virtual experience
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miner, N.E.
1994-04-01
Virtual Reality (VR) is a rapidly emerging technology which allows participants to experience a virtual environment through stimulation of the participant`s senses. Intuitive and natural interactions with the virtual world help to create a realistic experience. Typically, a participant is immersed in a virtual environment through the use of a 3-D viewer. Realistic, computer-generated environment models and accurate tracking of a participant`s view are important factors for adding realism to a virtual experience. Stimulating a participant`s sense of sound and providing a natural form of communication for interacting with the virtual world are equally important. This paper discusses the advantagesmore » and importance of incorporating voice recognition and audio feedback capabilities into a virtual world experience. Various approaches and levels of complexity are discussed. Examples of the use of voice and sound are presented through the description of a research application developed in the VR laboratory at Sandia National Laboratories.« less
Mobile VR in Education: From the Fringe to the Mainstream
ERIC Educational Resources Information Center
Cochrane, Thomas
2016-01-01
This paper explores the development of virtual reality (VR) use in education and the emergence of mobile VR based content creation and sharing as a platform for enabling learner-generated content and learner-generated contexts. The author argues that an ecology of resources that maps the user content creation and sharing affordances of mobile…
Virtual Reality (VR) as a Source for Self-Efficacy in Teacher Training
ERIC Educational Resources Information Center
Nissim, Yonit; Weissblueth, Eyal
2017-01-01
The current study sought to explore the experiences of pre-service student teachers in a teaching unit in VR within a special course framework which was intended to enhance student-teacher's 21st century skills and growth processes. In particular, how their experiences working with VR affected their self-efficacy. The research population comprised…
Levac, Danielle; Glegg, Stephanie M N; Sveistrup, Heidi; Colquhoun, Heather; Miller, Patricia A; Finestone, Hillel; DePaul, Vincent; Harris, Jocelyn E; Velikonja, Diana
2016-10-06
Despite increasing evidence for the effectiveness of virtual reality (VR)-based therapy in stroke rehabilitation, few knowledge translation (KT) resources exist to support clinical integration. KT interventions addressing known barriers and facilitators to VR use are required. When environmental barriers to VR integration are less amenable to change, KT interventions can target modifiable barriers related to therapist knowledge and skills. A multi-faceted KT intervention was designed and implemented to support physical and occupational therapists in two stroke rehabilitation units in acquiring proficiency with use of the Interactive Exercise Rehabilitation System (IREX; GestureTek). The KT intervention consisted of interactive e-learning modules, hands-on workshops and experiential practice. Evaluation included the Assessing Determinants of Prospective Take Up of Virtual Reality (ADOPT-VR) Instrument and self-report confidence ratings of knowledge and skills pre- and post-study. Usability of the IREX was measured with the System Usability Scale (SUS). A focus group gathered therapist experiences. Frequency of IREX use was recorded for 6 months post-study. Eleven therapists delivered a total of 107 sessions of VR-based therapy to 34 clients with stroke. On the ADOPT-VR, significant pre-post improvements in therapist perceived behavioral control (p = 0.003), self-efficacy (p = 0.005) and facilitating conditions (p =0.019) related to VR use were observed. Therapist intention to use VR did not change. Knowledge and skills improved significantly following e-learning completion (p = 0.001) and was sustained 6 months post-study. Below average perceived usability of the IREX (19 th percentile) was reported. Lack of time was the most frequently reported barrier to VR use. A decrease in frequency of perceived barriers to VR use was not significant (p = 0.159). Two therapists used the IREX sparingly in the 6 months following the study. Therapists reported that client motivation to engage with VR facilitated IREX use in practice but that environmental and IREX-specific barriers limited use. Despite increased knowledge and skills in VR use, the KT intervention did not alter the number of perceived barriers to VR use, intention to use or actual use of VR. Poor perceived system usability had an impact on integration of this particular VR system into clinical practice.
Smith, Matthew J; Fleming, Michael F; Wright, Michael A; Roberts, Andrea G; Humm, Laura Boteler; Olsen, Dale; Bell, Morris D
2015-08-01
Individuals with schizophrenia have low employment rates and the job interview presents a critical barrier for them to obtain employment. Virtual reality training has demonstrated efficacy at improving interview skills and employment outcomes among multiple clinical populations. However, the effects of this training on individuals with schizophrenia are unknown. This study evaluated the efficacy of virtual reality job interview training (VR-JIT) at improving job interview skills and employment outcomes among individuals with schizophrenia in a small randomized controlled trial (n=21 VR-JIT trainees, n=11 waitlist controls). Trainees completed up to 10h of virtual interviews using VR-JIT, while controls received services as usual. Primary outcome measures included two pre-test and two post-test video-recorded role-play interviews scored by blinded raters with expertise in human resources and self-reported interviewing self-confidence. Six-month follow-up data on employment outcomes were collected. Trainees reported that the intervention was easy-to-use, helpful, and prepared them for future interviews. Trainees demonstrated increased role-play scores between pre-test and post-test while controls did not (p=0.001). After accounting for neurocognition and months since prior employment, trainees had greater odds of receiving a job offer by 6month follow-up compared to controls (OR: 8.73, p=0.04) and more training was associated with fewer weeks until receiving a job offer (r=-0.63, p<0.001). Results suggest that VR-JIT is acceptable to trainees and may be efficacious for improving job interview skills in individuals with schizophrenia. Moreover, trainees had greater odds of receiving a job offer by 6-month follow-up. Future studies could evaluate the effectiveness of VR-JIT within community-based services. Copyright © 2015 Elsevier B.V. All rights reserved.
Miragall, Marta; Baños, Rosa M.; Cebolla, Ausiàs; Botella, Cristina
2015-01-01
This study examines the psychometric properties of the Working Alliance Inventory-Short (WAI-S) adaptation to Virtual Reality (VR) and Augmented Reality (AR) therapies (WAI-VAR). The relationship between the therapeutic alliance (TA) with VR and AR and clinically significant change (CSC) is also explored. Seventy-five patients took part in this study (74.7% women, Mage = 34.41). Fear of flying and adjustment disorder patients received VR therapy, and cockroach phobia patients received AR therapy. Psychometric properties, CSC, one-way ANOVA, Spearman’s Correlations and Multiple Regression were calculated. The WAI-VAR showed a unidimensional structure, high internal consistency and adequate convergent validity. “Not changed” patients scored lower on the WAI-VAR than “improved” and “recovered” patients. Correlation between the WAI-VAR and CSC was moderate. The best fitting model for predicting CSC was a linear combination of the TA with therapist (WAI-S) and the TA with VR and AR (WAI-VAR), due to the latter variable slightly increased the percentage of variability accounted for in CSC. The WAI-VAR is the first validated instrument to measure the TA with VR and AR in research and clinical practice. This study reveals the importance of the quality of the TA with technologies in achieving positive outcomes in the therapy. PMID:26500589
Miragall, Marta; Baños, Rosa M; Cebolla, Ausiàs; Botella, Cristina
2015-01-01
This study examines the psychometric properties of the Working Alliance Inventory-Short (WAI-S) adaptation to Virtual Reality (VR) and Augmented Reality (AR) therapies (WAI-VAR). The relationship between the therapeutic alliance (TA) with VR and AR and clinically significant change (CSC) is also explored. Seventy-five patients took part in this study (74.7% women, M age = 34.41). Fear of flying and adjustment disorder patients received VR therapy, and cockroach phobia patients received AR therapy. Psychometric properties, CSC, one-way ANOVA, Spearman's Correlations and Multiple Regression were calculated. The WAI-VAR showed a unidimensional structure, high internal consistency and adequate convergent validity. "Not changed" patients scored lower on the WAI-VAR than "improved" and "recovered" patients. Correlation between the WAI-VAR and CSC was moderate. The best fitting model for predicting CSC was a linear combination of the TA with therapist (WAI-S) and the TA with VR and AR (WAI-VAR), due to the latter variable slightly increased the percentage of variability accounted for in CSC. The WAI-VAR is the first validated instrument to measure the TA with VR and AR in research and clinical practice. This study reveals the importance of the quality of the TA with technologies in achieving positive outcomes in the therapy.
Chen, Karen B; Ponto, Kevin; Tredinnick, Ross D; Radwin, Robert G
2015-06-01
This study was a proof of concept for virtual exertions, a novel method that involves the use of body tracking and electromyography for grasping and moving projections of objects in virtual reality (VR). The user views objects in his or her hands during rehearsed co-contractions of the same agonist-antagonist muscles normally used for the desired activities to suggest exerting forces. Unlike physical objects, virtual objects are images and lack mass. There is currently no practical physically demanding way to interact with virtual objects to simulate strenuous activities. Eleven participants grasped and lifted similar physical and virtual objects of various weights in an immersive 3-D Cave Automatic Virtual Environment. Muscle activity, localized muscle fatigue, ratings of perceived exertions, and NASA Task Load Index were measured. Additionally, the relationship between levels of immersion (2-D vs. 3-D) was studied. Although the overall magnitude of biceps activity and workload were greater in VR, muscle activity trends and fatigue patterns for varying weights within VR and physical conditions were the same. Perceived exertions for varying weights were not significantly different between VR and physical conditions. Perceived exertion levels and muscle activity patterns corresponded to the assigned virtual loads, which supported the hypothesis that the method evoked the perception of physical exertions and showed that the method was promising. Ultimately this approach may offer opportunities for research and training individuals to perform strenuous activities under potentially safer conditions that mimic situations while seeing their own body and hands relative to the scene. © 2014, Human Factors and Ergonomics Society.
The Soothing Sea: A Virtual Coastal Walk Can Reduce Experienced and Recollected Pain
Tanja-Dijkstra, Karin; Pahl, Sabine; White, Mathew P.; Auvray, Melissa; Stone, Robert J.; Andrade, Jackie; May, Jon; Mills, Ian; Moles, David R.
2017-01-01
Virtual reality (VR) distraction has become increasingly available in health care contexts and is used in acute pain management. However, there has been no systematic exploration of the importance of the content of VR environments. Two studies tested how interacting with nature VR influenced experienced and recollected pain after 1 week. Study 1 (n = 85) used a laboratory pain task (cold pressor), whereas Study 2 (n = 70) was a randomized controlled trial with patients undergoing dental treatment. In Study 1, nature (coastal) VR reduced both experienced and recollected pain compared with no VR. In Study 2, nature (coastal) VR reduced experienced and recalled pain in dental patients, compared with urban VR and standard care. Together, these data show that nature can improve experience of health care procedures through the use of VR, and that the content of the VR matters: Coastal nature is better than urban. PMID:29899576
Walker, Marc R; Kallingal, George J S; Musser, John E; Folen, Raymond; Stetz, Melba C; Clark, Joseph Y
2014-08-01
Assessment of virtual reality (VR) distraction for alleviating pain and anxiety during flexible cystoscopy. Cystoscopy is a common ambulatory procedure performed in Urology and can be associated with moderate pain and anxiety. Sophisticated distraction techniques are not used with cystoscopy and VR has not been studied for this procedure. We designed a prospective, randomized, controlled trial assessing the efficacy of VR for alleviating pain and anxiety during flexible cystoscopy. Adult men referred for cystoscopy were randomized into a control or VR group. Subjects were given preprocedure and postprocedure questionnaires addressing anxiety, pain, and time spent thinking about pain. Vitals signs and galvanic skin monitors were used as objective measures. The control group underwent routine cystoscopy and the VR group underwent cystoscopy with VR. Physicians answered a postprocedure questionnaire assessing the difficulty of the exam. All questionnaires used a visual analog score for assessment. 23 patients enrolled in the control group and 22 in the VR group. Mean scores and Student's t-test were employed to analyze the data. No data endpoints showed a statistically significant difference between the 2 groups. We concluded no benefit to VR distraction mitigating pain in male patients during cystoscopy. Reprint & Copyright © 2014 Association of Military Surgeons of the U.S.
Teo, Wei-Peng; Muthalib, Makii; Yamin, Sami; Hendy, Ashlee M; Bramstedt, Kelly; Kotsopoulos, Eleftheria; Perrey, Stephane; Ayaz, Hasan
2016-01-01
In the last decade, virtual reality (VR) training has been used extensively in video games and military training to provide a sense of realism and environmental interaction to its users. More recently, VR training has been explored as a possible adjunct therapy for people with motor and mental health dysfunctions. The concept underlying VR therapy as a treatment for motor and cognitive dysfunction is to improve neuroplasticity of the brain by engaging users in multisensory training. In this review, we discuss the theoretical framework underlying the use of VR as a therapeutic intervention for neurorehabilitation and provide evidence for its use in treating motor and mental disorders such as cerebral palsy, Parkinson's disease, stroke, schizophrenia, anxiety disorders, and other related clinical areas. While this review provides some insights into the efficacy of VR in clinical rehabilitation and its complimentary use with neuroimaging (e.g., fNIRS and EEG) and neuromodulation (e.g., tDCS and rTMS), more research is needed to understand how different clinical conditions are affected by VR therapies (e.g., stimulus presentation, interactivity, control and types of VR). Future studies should consider large, longitudinal randomized controlled trials to determine the true potential of VR therapies in various clinical populations.
Teo, Wei-Peng; Muthalib, Makii; Yamin, Sami; Hendy, Ashlee M.; Bramstedt, Kelly; Kotsopoulos, Eleftheria; Perrey, Stephane; Ayaz, Hasan
2016-01-01
In the last decade, virtual reality (VR) training has been used extensively in video games and military training to provide a sense of realism and environmental interaction to its users. More recently, VR training has been explored as a possible adjunct therapy for people with motor and mental health dysfunctions. The concept underlying VR therapy as a treatment for motor and cognitive dysfunction is to improve neuroplasticity of the brain by engaging users in multisensory training. In this review, we discuss the theoretical framework underlying the use of VR as a therapeutic intervention for neurorehabilitation and provide evidence for its use in treating motor and mental disorders such as cerebral palsy, Parkinson’s disease, stroke, schizophrenia, anxiety disorders, and other related clinical areas. While this review provides some insights into the efficacy of VR in clinical rehabilitation and its complimentary use with neuroimaging (e.g., fNIRS and EEG) and neuromodulation (e.g., tDCS and rTMS), more research is needed to understand how different clinical conditions are affected by VR therapies (e.g., stimulus presentation, interactivity, control and types of VR). Future studies should consider large, longitudinal randomized controlled trials to determine the true potential of VR therapies in various clinical populations. PMID:27445739
Visuomotor adaptation in head-mounted virtual reality versus conventional training
Anglin, J. M.; Sugiyama, T.; Liew, S.-L.
2017-01-01
Immersive, head-mounted virtual reality (HMD-VR) provides a unique opportunity to understand how changes in sensory environments affect motor learning. However, potential differences in mechanisms of motor learning and adaptation in HMD-VR versus a conventional training (CT) environment have not been extensively explored. Here, we investigated whether adaptation on a visuomotor rotation task in HMD-VR yields similar adaptation effects in CT and whether these effects are achieved through similar mechanisms. Specifically, recent work has shown that visuomotor adaptation may occur via both an implicit, error-based internal model and a more cognitive, explicit strategic component. We sought to measure both overall adaptation and balance between implicit and explicit mechanisms in HMD-VR versus CT. Twenty-four healthy individuals were placed in either HMD-VR or CT and trained on an identical visuomotor adaptation task that measured both implicit and explicit components. Our results showed that the overall timecourse of adaption was similar in both HMD-VR and CT. However, HMD-VR participants utilized a greater cognitive strategy than CT, while CT participants engaged in greater implicit learning. These results suggest that while both conditions produce similar results in overall adaptation, the mechanisms by which visuomotor adaption occurs in HMD-VR appear to be more reliant on cognitive strategies. PMID:28374808
Liu, Xiujuan; Tao, Haiquan; Xiao, Xigang; Guo, Binbin; Xu, Shangcai; Sun, Na; Li, Maotong; Xie, Li; Wu, Changjun
2018-07-01
This study aimed to compare the diagnostic performance of the stereoscopic virtual reality display system with the conventional computed tomography (CT) workstation and three-dimensional rotational angiography (3DRA) for intracranial aneurysm detection and characterization, with a focus on small aneurysms and those near the bone. First, 42 patients with suspected intracranial aneurysms underwent both 256-row CT angiography (CTA) and 3DRA. Volume rendering (VR) images were captured using the conventional CT workstation. Next, VR images were transferred to the stereoscopic virtual reality display system. Two radiologists independently assessed the results that were obtained using the conventional CT workstation and stereoscopic virtual reality display system. The 3DRA results were considered as the ultimate reference standard. Based on 3DRA images, 38 aneurysms were confirmed in 42 patients. Two cases were misdiagnosed and 1 was missed when the traditional CT workstation was used. The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy of the conventional CT workstation were 94.7%, 85.7%, 97.3%, 75%, and99.3%, respectively, on a per-aneurysm basis. The stereoscopic virtual reality display system missed a case. The sensitivity, specificity, PPV, NPV, and accuracy of the stereoscopic virtual reality display system were 100%, 85.7%, 97.4%, 100%, and 97.8%, respectively. No difference was observed in the accuracy of the traditional CT workstation, stereoscopic virtual reality display system, and 3DRA in detecting aneurysms. The stereoscopic virtual reality display system has some advantages in detecting small aneurysms and those near the bone. The virtual reality stereoscopic vision obtained through the system was found as a useful tool in intracranial aneurysm diagnosis and pre-operative 3D imaging. Copyright © 2018 Elsevier B.V. All rights reserved.
The role of presence in virtual reality exposure therapy
Price, Matthew; Anderson, Page
2013-01-01
A growing body of literature suggests that virtual reality is a successful tool for exposure therapy in the treatment of anxiety disorders. Virtual reality (VR) researchers posit the construct of presence, defined as the interpretation of an artificial stimulus as if it were real, to be a presumed factor that enables anxiety to be felt during virtual reality exposure therapy (VRE). However, a handful of empirical studies on the relation between presence and anxiety in VRE have yielded mixed findings. The current study tested the following hypotheses about the relation between presence and anxiety in VRE with a clinical sample of fearful flyers: (1) presence is related to in-session anxiety; (2) presence mediates the extent that pre-existing (pre-treatment) anxiety is experienced during exposure with VR; (3) presence is positively related to the amount of phobic elements included within the virtual environment; (4) presence is related to treatment outcome. Results supported presence as a factor that contributes to the experience of anxiety in the virtual environment as well as a relation between presence and the phobic elements, but did not support a relation between presence and treatment outcome. The study suggests that presence may be a necessary but insufficient requirement for successful VRE. PMID:17145164
Visuospatial Orientation Learning through Virtual Reality for People with Severe Disability
ERIC Educational Resources Information Center
de la Torre-Luque, Alejandro; Valero-Aguayo, Luis; de la Rubia-Cuestas, Ernesto J.
2017-01-01
This study aims to test how an intervention based on virtual reality (VR) may enhance visuospatial skills amongst people with disability. A quasi-experimental intra-group study was therefore conducted. Participants were 20 people with severe disability (65% males; 34.35 years, on average, and 84.95% of disability rate according to the Andalusian…
Revolutionizing Education: The Promise of Virtual Reality
ERIC Educational Resources Information Center
Gadelha, Rene
2018-01-01
Virtual reality (VR) has the potential to revolutionize education, as it immerses students in their learning more than any other available medium. By blocking out visual and auditory distractions in the classroom, it has the potential to help students deeply connect with the material they are learning in a way that has never been possible before.…
ERIC Educational Resources Information Center
Huang, Hsiu-Mei; Rauch, Ulrich; Liaw, Shu-Sheng
2010-01-01
The use of animation and multimedia for learning is now further extended by the provision of entire Virtual Reality Learning Environments (VRLE). This highlights a shift in Web-based learning from a conventional multimedia to a more immersive, interactive, intuitive and exciting VR learning environment. VRLEs simulate the real world through the…
From Vesalius to Virtual Reality: How Embodied Cognition Facilitates the Visualization of Anatomy
ERIC Educational Resources Information Center
Jang, Susan
2010-01-01
This study examines the facilitative effects of embodiment of a complex internal anatomical structure through three-dimensional ("3-D") interactivity in a virtual reality ("VR") program. Since Shepard and Metzler's influential 1971 study, it has been known that 3-D objects (e.g., multiple-armed cube or external body parts) are visually and…
A Virtual Reality Dance Training System Using Motion Capture Technology
ERIC Educational Resources Information Center
Chan, J. C. P.; Leung, H.; Tang, J. K. T.; Komura, T.
2011-01-01
In this paper, a new dance training system based on the motion capture and virtual reality (VR) technologies is proposed. Our system is inspired by the traditional way to learn new movements-imitating the teacher's movements and listening to the teacher's feedback. A prototype of our proposed system is implemented, in which a student can imitate…
2010-01-01
Background Many researchers and clinicians have proposed using virtual reality (VR) in adjunct to in vivo exposure therapy to provide an innovative form of exposure to patients suffering from different psychological disorders. The rationale behind the 'virtual approach' is that real and virtual exposures elicit a comparable emotional reaction in subjects, even if, to date, there are no experimental data that directly compare these two conditions. To test whether virtual stimuli are as effective as real stimuli, and more effective than photographs in the anxiety induction process, we tested the emotional reactions to real food (RF), virtual reality (VR) food and photographs (PH) of food in two samples of patients affected, respectively, by anorexia (AN) and bulimia nervosa (BN) compared to a group of healthy subjects. The two main hypotheses were the following: (a) the virtual exposure elicits emotional responses comparable to those produced by the real exposure; (b) the sense of presence induced by the VR immersion makes the virtual experience more ecological, and consequently more effective than static pictures in producing emotional responses in humans. Methods In total, 10 AN, 10 BN and 10 healthy control subjects (CTR) were randomly exposed to three experimental conditions: RF, PH, and VR while their psychological (Stait Anxiety Inventory (STAI-S) and visual analogue scale for anxiety (VAS-A)) and physiological (heart rate, respiration rate, and skin conductance) responses were recorded. Results RF and VR induced a comparable emotional reaction in patients higher than the one elicited by the PH condition. We also found a significant effect in the subjects' degree of presence experienced in the VR condition about their level of perceived anxiety (STAI-S and VAS-A): the higher the sense of presence, the stronger the level of anxiety. Conclusions Even though preliminary, the present data show that VR is more effective than PH in eliciting emotional responses similar to those expected in real life situations. More generally, the present study suggests the potential of VR in a variety of experimental, training and clinical contexts, being its range of possibilities extremely wide and customizable. In particular, in a psychological perspective based on a cognitive behavioral approach, the use of VR enables the provision of specific contexts to help patients to cope with their diseases thanks to an easily controlled stimulation. PMID:20602749
BIM Based Virtual Environment for Fire Emergency Evacuation
Rezgui, Yacine; Ong, Hoang N.
2014-01-01
Recent building emergency management research has highlighted the need for the effective utilization of dynamically changing building information. BIM (building information modelling) can play a significant role in this process due to its comprehensive and standardized data format and integrated process. This paper introduces a BIM based virtual environment supported by virtual reality (VR) and a serious game engine to address several key issues for building emergency management, for example, timely two-way information updating and better emergency awareness training. The focus of this paper lies on how to utilize BIM as a comprehensive building information provider to work with virtual reality technologies to build an adaptable immersive serious game environment to provide real-time fire evacuation guidance. The innovation lies on the seamless integration between BIM and a serious game based virtual reality (VR) environment aiming at practical problem solving by leveraging state-of-the-art computing technologies. The system has been tested for its robustness and functionality against the development requirements, and the results showed promising potential to support more effective emergency management. PMID:25197704
An efficient and scalable deformable model for virtual reality-based medical applications.
Choi, Kup-Sze; Sun, Hanqiu; Heng, Pheng-Ann
2004-09-01
Modeling of tissue deformation is of great importance to virtual reality (VR)-based medical simulations. Considerable effort has been dedicated to the development of interactively deformable virtual tissues. In this paper, an efficient and scalable deformable model is presented for virtual-reality-based medical applications. It considers deformation as a localized force transmittal process which is governed by algorithms based on breadth-first search (BFS). The computational speed is scalable to facilitate real-time interaction by adjusting the penetration depth. Simulated annealing (SA) algorithms are developed to optimize the model parameters by using the reference data generated with the linear static finite element method (FEM). The mechanical behavior and timing performance of the model have been evaluated. The model has been applied to simulate the typical behavior of living tissues and anisotropic materials. Integration with a haptic device has also been achieved on a generic personal computer (PC) platform. The proposed technique provides a feasible solution for VR-based medical simulations and has the potential for multi-user collaborative work in virtual environment.
Virtual Education: Guidelines for Using Games Technology
ERIC Educational Resources Information Center
Schofield, Damian
2014-01-01
Advanced three-dimensional virtual environment technology, similar to that used by the film and computer games industry, can allow educational developers to rapidly create realistic online virtual environments. This technology has been used to generate a range of interactive Virtual Reality (VR) learning environments across a spectrum of…
Studying and Treating Schizophrenia Using Virtual Reality: A New Paradigm
Freeman, Daniel
2008-01-01
Understanding schizophrenia requires consideration of patients’ interactions in the social world. Misinterpretation of other peoples’ behavior is a key feature of persecutory ideation. The occurrence and intensity of hallucinations is affected by the social context. Negative symptoms such as anhedonia, asociality, and blunted affect reflect difficulties in social interactions. Withdrawal and avoidance of other people is frequent in schizophrenia, leading to isolation and rumination. The use of virtual reality (VR)—interactive immersive computer environments—allows one of the key variables in understanding psychosis, social environments, to be controlled, providing exciting applications to research and treatment. Seven applications of virtual social environments to schizophrenia are set out: symptom assessment, identification of symptom markers, establishment of predictive factors, tests of putative causal factors, investigation of the differential prediction of symptoms, determination of toxic elements in the environment, and development of treatment. The initial VR studies of persecutory ideation, which illustrate the ascription of personalities and mental states to virtual people, are highlighted. VR, suitably applied, holds great promise in furthering the understanding and treatment of psychosis. PMID:18375568
Feasibility of training athletes for high-pressure situations using virtual reality.
Stinson, Cheryl; Bowman, Doug A
2014-04-01
Virtual reality (VR) has been successfully applied to a broad range of training domains; however, to date there is little research investigating its benefits for sport psychology training. We hypothesized that using high-fidelity VR systems to display realistic 3D sport environments could trigger anxiety, allowing resilience-training systems to prepare athletes for real-world, highpressure situations. In this work we investigated the feasibility and usefulness of using VR for sport psychology training. We developed a virtual soccer goalkeeping application for the Virginia Tech Visionarium VisCube (a CAVE-like display system), in which users defend against simulated penalty kicks using their own bodies. Using the application, we ran a controlled, within-subjects experiment with three independent variables: known anxiety triggers, field of regard, and simulation fidelity. The results demonstrate that a VR sport-oriented system can induce increased anxiety (physiological and subjective measures) compared to a baseline condition. There were a number of main effects and interaction effects for all three independent variables in terms of the subjective measures of anxiety. Both known anxiety triggers and simulation fidelity had a direct relationship to anxiety, while field of regard had an inverse relationship. Overall, the results demonstrate great potential for VR sport psychology training systems; however, further research is needed to determine if training in a VR environment can lead to long-term reduction in sport-induced anxiety.
Applied Virtual Reality Research and Applications at NASA/Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Hale, Joseph P.
1995-01-01
A Virtual Reality (VR) applications program has been under development at NASA/Marshall Space Flight Center (MSFC) since 1989. The objectives of the MSFC VR Applications Program are to develop, assess, validate, and utilize VR in hardware development, operations development and support, mission operations training and science training. Before this technology can be utilized with confidence in these applications, it must be validated for each particular class of application. That is, the precision and reliability with which it maps onto real settings and scenarios, representative of a class, must be calculated and assessed. The approach of the MSFC VR Applications Program is to develop and validate appropriate virtual environments and associated object kinematic and behavior attributes for specific classes of applications. These application-specific environments and associated simulations will be validated, where possible, through empirical comparisons with existing, accepted tools and methodologies. These validated VR analytical tools will then be available for use in the design and development of space systems and operations and in training and mission support systems. Specific validation studies for selected classes of applications have been completed or are currently underway. These include macro-ergonomic "control-room class" design analysis, Spacelab stowage reconfiguration training, a full-body micro-gravity functional reach simulator, and a gross anatomy teaching simulator. This paper describes the MSFC VR Applications Program and the validation studies.
Gallagher, A G; Lederman, A B; McGlade, K; Satava, R M; Smith, C D
2004-04-01
Increasing constraints on the time and resources needed to train surgeons have led to a new emphasis on finding innovative ways to teach surgical skills outside the operating room. Virtual reality training has been proposed as a method to both instruct surgical students and evaluate the psychomotor components of minimally invasive surgery ex vivo. The performance of 100 laparoscopic novices was compared to that of 12 experienced (>50 minimally invasive procedures) and 12 inexperienced (<10 minimally invasive procedures) laparoscopic surgeons. The values of the experienced surgeons' performance were used as benchmark comparators (or criterion measures). Each subject completed six tasks on the Minimally Invasive Surgical Trainer-Virtual Reality (MIST-VR) three times. The outcome measures were time to complete the task, number of errors, economy of instrument movement, and economy of diathermy. After three trials, the mean performance of the medical students approached that of the experienced surgeons. However, 7-27% of the scores of the students fell more than two SD below the mean scores of the experienced surgeons (the criterion level). The MIST-VR system is capable of evaluating the psychomotor skills necessary in laparoscopic surgery and discriminating between experts and novices. Furthermore, although some novices improved their skills quickly, a subset had difficulty acquiring the psychomotor skills. The MIST-VR may be useful in identifying that subset of novices.
Aggarwal, Rajesh; Balasundaram, Indran; Darzi, Ara
2008-03-01
Within the past decade, there has been increasing interest in simulation-based devices for training and assessment of technical skills, especially for minimally invasive techniques such as laparoscopy. The aim of this study was to investigate the perceptions of senior and junior surgeons to virtual reality simulation within the context of current training opportunities for basic laparoscopic procedures. A postal questionnaire was sent to 245 consultants and their corresponding specialist registrar (SpR), detailing laparoscopic surgical practice and their knowledge and use of virtual reality (VR) surgical simulators. One hundred ninety-one (78%) consultants and 103(42%) SpRs returned questionnaires; 16%(10/61) of junior SpRs (year 1-4) had performed more than 50 laparoscopic cholecystectomies to date compared with 76% (32/42) of senior SpRs (year 5-6) (P < 0.001); 90% (55/61) of junior SpRs and 67% (28/42) of senior SpRs were keen to augment their training with VR (P = 0.007); 81% (238/294) of all surgeons agreed that VR has a useful role in the laparoscopic surgical training curriculum. There is a lack of experience in index laparoscopic cases of junior SpRs, and laparoscopic VR simulation is recognized as a useful mode of practice to acquire technical skills. This should encourage surgical program directors to drive the integration of simulation-based training into the surgical curriculum.
Use of Virtual Reality for Space Flight
NASA Technical Reports Server (NTRS)
Harm, Deborah; Taylor, L. C.; Reschke, M. F.
2011-01-01
Virtual environments offer unique training opportunities, particularly for training astronauts and preadapting them to the novel sensory conditions of microgravity. Two unresolved human factors issues in virtual reality (VR) systems are: 1) potential "cybersickness", and 2) maladaptive sensorimotor performance following exposure to VR systems. Interestingly, these aftereffects are often quite similar to adaptive sensorimotor responses observed in astronauts during and/or following space flight. Active exploratory behavior in a new environment, with resulting feedback and the formation of new associations between sensory inputs and response outputs, promotes appropriate perception and motor control in the new environment. Thus, people adapt to consistent, sustained alterations of sensory input such as those produced by microgravity. Our research examining the effects of repeated exposures to a full field of view dome VR system showed that motion sickness and initial decrements in eye movement and postural control were greatly diminished following three exposures. These results suggest that repeated transitions between VR and the normal environment preflight might be a useful countermeasure for neurosensory and sensorimotor effects of space flight. The range of VR applications is enormous, extending from ground-based VR training for extravehicular activities at NASA, to medical and educational uses. It seems reasonable to suggest that other space related uses of VR should be investigated. For example, 1) use of head-mounted VR on orbit to rehearse/practice upcoming operational activities, and 2) ground-based VR training for emergency egress procedures. We propose that by combining VR designed for operational activities preflight, along with an appropriate schedule to facilitate sensorimotor adaptation and improve spatial orientation would potentially accomplish two important goals for astronauts and cosmonauts, preflight sensorimotor adaption and enhanced operational training at the same time. Such efforts could support both improved health and performance on orbit and improved operational training in the most efficient manner.
Chirico, Andrea; Lucidi, Fabio; De Laurentiis, Michele; Milanese, Carla; Napoli, Alessandro; Giordano, Antonio
2016-02-01
Virtual reality (VR), a computer-generated virtual environment, has been increasingly used in the entertainment world becoming a very new evolving field, but VR technology has also found a variety of applications in the biomedical field. VR can offer to subjects a safe environment within which to carry on different interventions ranging from the rehabilitation of discharged patients directly at home, to the support of hospitalized patients during different procedures and also of oncological inpatient subjects. VR appears as a promising tool for support and monitoring treatments in cancer patients influencing psychological and physiological functions. The aim of this systematic review is to provide an overview of all the studies that used VR intervention on cancer patients and analyze their main findings. Nineteen studies across nearly a thousand articles were identified that explored effects of VR interventions on cancer patients. Although these studies varied greatly in setting and design, this review identified some overarching themes. Results found that VR improved patients' emotional well-being, and diminished cancer-related psychological symptoms. The studies explored various relevant variables including different types of settings (i.e., during chemotherapy, during pain procedures, during hospitalization). Here, we point to the need of a global and multi-disciplinary approach aimed at analyzing the effects of VR taking advantage of the new technology systems like biosensors as well as electroencephalogram monitoring pre, during, and after intervention. Devoting more attention to bio-physiological variables, standardized procedures, extending duration to longitudinal studies and adjusting for motion sickness related to VR treatment need to become standard of this research field. © 2015 Wiley Periodicals, Inc.
Applied Virtual Reality in Reusable Launch Vehicle Design, Operations Development, and Training
NASA Technical Reports Server (NTRS)
Hale, Joseph P.
1997-01-01
Application of Virtual Reality (VR) technology offers much promise to enhance and accelerate the development of Reusable Launch Vehicle (RLV) infrastructure and operations while simultaneously reducing developmental and operational costs. One of the primary cost areas in the RLV concept that is receiving special attention is maintenance and refurbishment operations. To produce and operate a cost effective RLV, turnaround cost must be minimized. Designing for maintainability is a necessary requirement in developing RLVs. VR can provide cost effective methods to design and evaluate components and systems for maintenance and refurbishment operations. The National Aeronautics and Space Administration (NASA)/Marshall Space Flight Center (MSFC) is beginning to utilize VR for design, operations development, and design analysis for RLVs. A VR applications program has been under development at NASA/MSFC since 1989. The objectives of the MSFC VR Applications Program are to develop, assess, validate, and utilize VR in hardware development, operations development and support, mission operations training and science training. The NASA/MSFC VR capability has also been utilized in several applications. These include: 1) the assessment of the design of the late Space Station Freedom Payload Control Area (PCA), the control room from which onboard payload operations are managed; 2) a viewing analysis of the Tethered Satellite System's (TSS) "end-of-reel" tether marking options; 3) development of a virtual mockup of the International Space Welding Experiment for science viewing analyses from the Shuttle Remote Manipulator System elbow camera and as a trainer for ground controllers; and 4) teleoperations using VR. This presentation will give a general overview of the MSFC VR Applications Program and describe the use of VR in design analyses, operations development, and training for RLVs.
Using virtual reality to analyze sports performance.
Bideau, Benoit; Kulpa, Richard; Vignais, Nicolas; Brault, Sébastien; Multon, Franck; Craig, Cathy
2010-01-01
Improving performance in sports can be difficult because many biomechanical, physiological, and psychological factors come into play during competition. A better understanding of the perception-action loop employed by athletes is necessary. This requires isolating contributing factors to determine their role in player performance. Because of its inherent limitations, video playback doesn't permit such in-depth analysis. Interactive, immersive virtual reality (VR) can overcome these limitations and foster a better understanding of sports performance from a behavioral-neuroscience perspective. Two case studies using VR technology and a sophisticated animation engine demonstrate how to use information from visual displays to inform a player's future course of action.
Divided attention and driving: a pilot study using virtual reality technology.
Lengenfelder, Jean; Schultheis, Maria T; Al-Shihabi, Talal; Mourant, Ronald; DeLuca, John
2002-02-01
Virtual reality (VR) was used to investigate the influence of divided attention (simple versus complex) on driving performance (speed control). Three individuals with traumatic brain injury (TBI) and three healthy controls (HC), matched for age, education, and gender, were examined. Preliminary results revealed no differences on driving speed between TBI and HC. In contrast, TBI subjects demonstrated a greater number of errors on a secondary task performed while driving. The findings suggest that VR may provide an innovative medium for direct evaluation of basic cognitive functions (ie, divided attention) and its impact on everyday tasks (ie, driving) not previously available through traditional neuropsychological measures.
Valmaggia, Lucia R; Day, Fern; Rus-Calafell, Mar
2016-07-01
In the last decade researchers have embraced virtual reality to explore the psychological processes and mechanisms that are involved in the onset and maintenance of psychosis. A systematic review was conducted to synthesise the evidence of using virtual reality to investigate these mechanisms. Web of Science, PsycINFO, Embase, and Medline were searched. Reference lists of collected papers were also visually inspected to locate any relevant cited journal articles. In total 6001 articles were potentially eligible for inclusion; of these, 16 studies were included in the review. The review identified studies investigating the effect of interpersonal sensitivity, childhood bullying victimisation, physical assault, perceived ethnic discrimination, social defeat, population density and ethnic density on the real-time appraisal of VR social situations. Further studies demonstrated the potential of VR to investigate paranoid ideation, anomalous experiences, self-confidence, self-comparison, physiological activation and behavioural response. The reviewed studies suggest that VR can be used to investigate psychological processes and mechanisms associated with psychosis. Implications for further experimental research, as well as for assessment and clinical practise are discussed. The present review has been registered in the PROSPERO register: CRD42016038085.
Virtual Reality-Based Simulators for Cranial Tumor Surgery: A Systematic Review.
Mazur, Travis; Mansour, Tarek R; Mugge, Luke; Medhkour, Azedine
2018-02-01
Virtual reality (VR) simulators have become useful tools in various fields of medicine. Prominent uses of VR technologies include assessment of physician skills and presurgical planning. VR has shown effectiveness in multiple surgical specialties, yet its use in neurosurgery remains limited. To examine all current literature on VR-based simulation for presurgical planning and training in cranial tumor surgeries and to assess the quality of these studies. PubMed and Embase were systematically searched to identify studies that used VR for presurgical planning and/or studies that investigated the use of VR as a training tool from inception to May 25, 2017. The initial search identified 1662 articles. Thirty-seven full-text articles were assessed for inclusion. Nine studies were included. These studies were subdivided into presurgical planning and training using VR. Prospects for VR are bright when surgical planning and skills training are considered. In terms of surgical planning, VR has noted and documented usefulness in the planning of cranial surgeries. Further, VR has been central to establishing reproducible benchmarks of performance in relation to cranial tumor resection, which are helpful not only in showing face and construct validity but also in enhancing neurosurgical training in a way not previously examined. Although additional studies are needed to better delineate the precise role of VR in each of these capacities, these studies stand to show the usefulness of VR in the neurosurgery and highlight the need for further investigation. Published by Elsevier Inc.
Assessment of construct validity of a virtual reality laparoscopy simulator.
Rosenthal, Rachel; Gantert, Walter A; Hamel, Christian; Hahnloser, Dieter; Metzger, Juerg; Kocher, Thomas; Vogelbach, Peter; Scheidegger, Daniel; Oertli, Daniel; Clavien, Pierre-Alain
2007-08-01
The aim of this study was to assess whether virtual reality (VR) can discriminate between the skills of novices and intermediate-level laparoscopic surgical trainees (construct validity), and whether the simulator assessment correlates with an expert's evaluation of performance. Three hundred and seven (307) participants of the 19th-22nd Davos International Gastrointestinal Surgery Workshops performed the clip-and-cut task on the Xitact LS 500 VR simulator (Xitact S.A., Morges, Switzerland). According to their previous experience in laparoscopic surgery, participants were assigned to the basic course (BC) or the intermediate course (IC). Objective performance parameters recorded by the simulator were compared to the standardized assessment by the course instructors during laparoscopic pelvitrainer and conventional surgery exercises. IC participants performed significantly better on the VR simulator than BC participants for the task completion time as well as the economy of movement of the right instrument, not the left instrument. Participants with maximum scores in the pelvitrainer cholecystectomy task performed the VR trial significantly faster, compared to those who scored less. In the conventional surgery task, a significant difference between those who scored the maximum and those who scored less was found not only for task completion time, but also for economy of movement of the right instrument. VR simulation provides a valid assessment of psychomotor skills and some basic aspects of spatial skills in laparoscopic surgery. Furthermore, VR allows discrimination between trainees with different levels of experience in laparoscopic surgery establishing construct validity for the Xitact LS 500 clip-and-cut task. Virtual reality may become the gold standard to assess and monitor surgical skills in laparoscopic surgery.
Baus, Oliver; Bouchard, Stéphane
2014-01-01
This paper reviews the move from virtual reality exposure-based therapy to augmented reality exposure-based therapy (ARET). Unlike virtual reality (VR), which entails a complete virtual environment (VE), augmented reality (AR) limits itself to producing certain virtual elements to then merge them into the view of the physical world. Although, the general public may only have become aware of AR in the last few years, AR type applications have been around since beginning of the twentieth century. Since, then, technological developments have enabled an ever increasing level of seamless integration of virtual and physical elements into one view. Like VR, AR allows the exposure to stimuli which, due to various reasons, may not be suitable for real-life scenarios. As such, AR has proven itself to be a medium through which individuals suffering from specific phobia can be exposed “safely” to the object(s) of their fear, without the costs associated with programing complete VEs. Thus, ARET can offer an efficacious alternative to some less advantageous exposure-based therapies. Above and beyond presenting what has been accomplished in ARET, this paper covers some less well-known aspects of the history of AR, raises some ARET related issues, and proposes potential avenues to be followed. These include the type of measures to be used to qualify the user’s experience in an augmented reality environment, the exclusion of certain AR-type functionalities from the definition of AR, as well as the potential use of ARET to treat non-small animal phobias, such as social phobia. PMID:24624073
Baus, Oliver; Bouchard, Stéphane
2014-01-01
This paper reviews the move from virtual reality exposure-based therapy to augmented reality exposure-based therapy (ARET). Unlike virtual reality (VR), which entails a complete virtual environment (VE), augmented reality (AR) limits itself to producing certain virtual elements to then merge them into the view of the physical world. Although, the general public may only have become aware of AR in the last few years, AR type applications have been around since beginning of the twentieth century. Since, then, technological developments have enabled an ever increasing level of seamless integration of virtual and physical elements into one view. Like VR, AR allows the exposure to stimuli which, due to various reasons, may not be suitable for real-life scenarios. As such, AR has proven itself to be a medium through which individuals suffering from specific phobia can be exposed "safely" to the object(s) of their fear, without the costs associated with programing complete VEs. Thus, ARET can offer an efficacious alternative to some less advantageous exposure-based therapies. Above and beyond presenting what has been accomplished in ARET, this paper covers some less well-known aspects of the history of AR, raises some ARET related issues, and proposes potential avenues to be followed. These include the type of measures to be used to qualify the user's experience in an augmented reality environment, the exclusion of certain AR-type functionalities from the definition of AR, as well as the potential use of ARET to treat non-small animal phobias, such as social phobia.
Virtual reality in medical education and assessment
NASA Technical Reports Server (NTRS)
Sprague, Laurie A.; Bell, Brad; Sullivan, Tim; Voss, Mark; Payer, Andrew F.; Goza, Stewart Michael
1994-01-01
The NASA Johnson Space Center (JSC)/LinCom Corporation, the University of Texas Medical Branch at Galveston (UTMB), and the Galveston Independent School District (GISD) have teamed up to develop a virtual visual environment display (VIVED) that provides a unique educational experience using virtual reality (VR) technologies. The VIVED end product will be a self-contained educational experience allowing students a new method of learning as they interact with the subject matter through VR. This type of interface is intuitive and utilizes spatial and psychomotor abilities which are now constrained or reduced by the current two dimensional terminals and keyboards. The perpetual challenge to educators remains the identification and development of methodologies which conform the learners abilities and preferences. The unique aspects of VR provide an opportunity to explore a new educational experience. Endowing medical students with an understanding of the human body poses some difficulty challenges. One of the most difficult is to convey the three dimensional nature of anatomical structures. The ideal environment for addressing this problem would be one that allows students to become small enough to enter the body and travel through it - much like a person walks through a building. By using VR technology, this effect can be achieved; when VR is combined with multimedia technologies, the effect can be spectacular.
Virtual reality intervention for older women with breast cancer.
Schneider, Susan M; Ellis, Mathew; Coombs, William T; Shonkwiler, Erin L; Folsom, Linda C
2003-06-01
This study examined the effects of a virtual reality distraction intervention on chemotherapy-related symptom distress levels in 16 women aged 50 and older. A cross-over design was used to answer the following research questions: (1) Is virtual reality an effective distraction intervention for reducing chemotherapy-related symptom distress levels in older women with breast cancer? (2) Does virtual reality have a lasting effect? Chemotherapy treatments are intensive and difficult to endure. One way to cope with chemotherapy-related symptom distress is through the use of distraction. For this study, a head-mounted display (Sony PC Glasstron PLM - S700) was used to display encompassing images and block competing stimuli during chemotherapy infusions. The Symptom Distress Scale (SDS), Revised Piper Fatigue Scale (PFS), and the State Anxiety Inventory (SAI) were used to measure symptom distress. For two matched chemotherapy treatments, one pre-test and two post-test measures were employed. Participants were randomly assigned to receive the VR distraction intervention during one chemotherapy treatment and received no distraction intervention (control condition) during an alternate chemotherapy treatment. Analysis using paired t-tests demonstrated a significant decrease in the SAI (p = 0.10) scores immediately following chemotherapy treatments when participants used VR. No significant changes were found in SDS or PFS values. There was a consistent trend toward improved symptoms on all measures 48 h following completion of chemotherapy. Evaluation of the intervention indicated that women thought the head mounted device was easy to use, they experienced no cybersickness, and 100% would use VR again.
Virtual reality exposure in the treatment of social phobia.
Klinger, Evelyne; Légeron, Patrick; Roy, Stéphane; Chemin, Isabelle; Lauer, Françoise; Nugues, Pierre
2004-01-01
Social phobia is one of the most frequent psychiatric disorders and is accessible to two forms of scientifically validated treatments: anti-depressant drugs and cognitive-behavioral therapies. Graded exposure to feared social situations (either in vivo or by imagining the situations) is fundamental to obtain an improvement of the anxious symptoms. Virtual reality (VR) may be an alternative to these standard exposure techniques and seems to bring significant advantages by allowing exposures to numerous and varied situations. Moreover studies have shown that human subjects are appropriately sensitive to virtual environments. This chapter reports the definition of a VR-based clinical protocol and a study to treat social phobia using virtual reality techniques. The virtual environments used in the treatment reproduce four situations that social phobics feel the most threatening: performance, intimacy, scrutiny and assertiveness. With the help of the therapist, the patient learns adapted cognitions and behaviors when coping with social situations, with the aim of reducing her or his anxiety in the corresponding real life situations. Some studies have been carried out using virtual reality in the treatment of fear of public speaking, which is only a small part of the symptomatology of most of social phobic patients. The novelty of our work is to address a larger group of situations that the phobic patients experience with high anxiety. In our protocol, the efficacy of the virtual reality treatment is compared to well established and well validated group cognitive-behavioral treatment.
Using Virtual Reality to Distract Overweight Children from Bodily Sensations During Exercise.
Baños, Rosa M; Escobar, Patricia; Cebolla, Ausias; Guixeres, Jaime; Alvarez Pitti, Julio; Lisón, Juan Francisco; Botella, Cristina
2016-02-01
This study analyzes the potential of virtual reality (VR) to enhance attentional distraction in overweight children as they experience bodily sensations during exercise. It has been suggested that one reason why obese children stop exercising is the perception of bodily sensations. In a counterbalanced design, a total of 109 children (33 overweight, 10-15 years old) were asked to walk twice for 6 minutes on a treadmill under one of two conditions: (a) traditional condition (TC)-focusing their attention on their physical feelings and sensations or (b) distraction condition (DC)-focusing their attention on a virtual environment. Attentional focus during exercise, bad-good feeling states (pre- and postexperimental), perceived exertion (3 minutes and post), heart rate, and enjoyment were assessed. Results indicated that overweight children focused on internal information under the TC, but they significantly shifted their attention to regard the external environment in the DC. This attentional distraction effect of VR was more intense in overweight than in normal-weight children. No differences between groups were found when examining changes in feeling states and perceived exertion. VR increased enjoyment during exercise, and children preferred exercise using virtual environments. VR is useful to promote distraction and may help overweight and obese children to enjoy exercise.
PROJECT HEAVEN: Preoperative Training in Virtual Reality
Iamsakul, Kiratipath; Pavlovcik, Alexander V.; Calderon, Jesus I.; Sanderson, Lance M.
2017-01-01
A cephalosomatic anastomosis (CSA; also called HEAVEN: head anastomosis venture) has been proposed as an option for patients with neurological impairments, such as spinal cord injury (SCI), and terminal medical illnesses, for which medicine is currently powerless. Protocols to prepare a patient for life after CSA do not currently exist. However, methods used in conventional neurorehabilitation can be used as a reference for developing preparatory training. Studies on virtual reality (VR) technologies have documented VR's ability to enhance rehabilitation and improve the quality of recovery in patients with neurological disabilities. VR-augmented rehabilitation resulted in increased motivation towards performing functional training and improved the biopsychosocial state of patients. In addition, VR experiences coupled with haptic feedback promote neuroplasticity, resulting in the recovery of motor functions in neurologically-impaired individuals. To prepare the recipient psychologically for life after CSA, the development of VR experiences paired with haptic feedback is proposed. This proposal aims to innovate techniques in conventional neurorehabilitation to implement preoperative psychological training for the recipient of HEAVEN. Recipient's familiarity to body movements will prevent unexpected psychological reactions from occurring after the HEAVEN procedure. PMID:28540125
Debes, Anders J; Aggarwal, Rajesh; Balasundaram, Indran; Jacobsen, Morten B
2010-06-01
This study aimed to assess the transferability of basic laparoscopic skills between a virtual reality simulator (MIST-VR) and a video trainer box (D-Box). Forty-six medical students were randomized into 2 groups, training on MIST-VR or D-Box. After training with one modality, a crossover assessment on the other was performed. When tested on MIST-VR, the MIST-VR group showed significantly shorter time (90.3 seconds vs 188.6 seconds, P <.001), better economy of movements (4.40 vs 7.50, P <.001), and lower score (224.7 vs 527.0, P <.001). However, when assessed on the D-Box, there was no difference between the groups for time (402.0 seconds vs 325.6 seconds, P = .152), total hand movements (THC) (289 vs 262, P = .792), or total path length (TPL) (34.9 m vs 34.6 m, P = .388). Both simulators provide significant improvement in performance. Our results indicate that skills learned on the MIST-VR are transferable to the D-Box, but the opposite cannot be demonstrated. Copyright 2010 Elsevier Inc. All rights reserved.
PROJECT HEAVEN: Preoperative Training in Virtual Reality.
Iamsakul, Kiratipath; Pavlovcik, Alexander V; Calderon, Jesus I; Sanderson, Lance M
2017-01-01
A cephalosomatic anastomosis (CSA; also called HEAVEN: head anastomosis venture) has been proposed as an option for patients with neurological impairments, such as spinal cord injury (SCI), and terminal medical illnesses, for which medicine is currently powerless. Protocols to prepare a patient for life after CSA do not currently exist. However, methods used in conventional neurorehabilitation can be used as a reference for developing preparatory training. Studies on virtual reality (VR) technologies have documented VR's ability to enhance rehabilitation and improve the quality of recovery in patients with neurological disabilities. VR-augmented rehabilitation resulted in increased motivation towards performing functional training and improved the biopsychosocial state of patients. In addition, VR experiences coupled with haptic feedback promote neuroplasticity, resulting in the recovery of motor functions in neurologically-impaired individuals. To prepare the recipient psychologically for life after CSA, the development of VR experiences paired with haptic feedback is proposed. This proposal aims to innovate techniques in conventional neurorehabilitation to implement preoperative psychological training for the recipient of HEAVEN. Recipient's familiarity to body movements will prevent unexpected psychological reactions from occurring after the HEAVEN procedure.
Progress in virtual reality simulators for surgical training and certification.
de Visser, Hans; Watson, Marcus O; Salvado, Olivier; Passenger, Joshua D
2011-02-21
There is increasing evidence that educating trainee surgeons by simulation is preferable to traditional operating-room training methods with actual patients. Apart from reducing costs and risks to patients, training by simulation can provide some unique benefits, such as greater control over the training procedure and more easily defined metrics for assessing proficiency. Virtual reality (VR) simulators are now playing an increasing role in surgical training. However, currently available VR simulators lack the fidelity to teach trainees past the novice-to-intermediate skills level. Recent technological developments in other industries using simulation, such as the games and entertainment and aviation industries, suggest that the next generation of VR simulators should be suitable for training, maintenance and certification of advanced surgical skills. To be effective as an advanced surgical training and assessment tool, VR simulation needs to provide adequate and relevant levels of physical realism, case complexity and performance assessment. Proper validation of VR simulators and an increased appreciation of their value by the medical profession are crucial for them to be accepted into surgical training curricula.
Virtual-Reality Distraction and Cold-Pressor Pain Tolerance: Does Avatar Point of View Matter?
Herbert, Linda J.; Weiss, Karen E.; Jimeno, Monica
2010-01-01
Abstract This study tested the effects of distraction using virtual-reality (VR) technology on acute pain tolerance in young adults. Forty-one undergraduate students, aged 18–23 years, used a VR head-mounted display helmet, steering wheel, and foot pedal to play an auto racing video game while undergoing exposure to very cold water (cold pressor set at 1°C). Two different game views were tested that were hypothesized to affect the degree to which participants felt “present” in the virtual environment: a first-person view, in which the participant saw the virtual environment through the eyes of the game character being manipulated; and a third-person view, in which the participant viewed the game character from a distance. The length of time participants tolerated the cold-water exposure (pain tolerance) under each distraction condition was compared to a baseline (no distraction) trial. Subjects also rated the degree to which they felt “present” in the virtual environment after each distraction trial. Results demonstrated that participants had significantly higher pain tolerance during both VR-distraction conditions relative to baseline (no distraction) trials. Although participants reported a greater sense of presence during the first-person condition than the third-person condition, pain-tolerance scores associated with the two distraction conditions did not differ. The types of VR applications in which presence may be more or less important are discussed. PMID:20950186
Virtual-reality distraction and cold-pressor pain tolerance: does avatar point of view matter?
Dahlquist, Lynnda M; Herbert, Linda J; Weiss, Karen E; Jimeno, Monica
2010-10-01
This study tested the effects of distraction using virtual-reality (VR) technology on acute pain tolerance in young adults. Forty-one undergraduate students, aged 18-23 years, used a VR head-mounted display helmet, steering wheel, and foot pedal to play an auto racing video game while undergoing exposure to very cold water (cold pressor set at 1 °C). Two different game views were tested that were hypothesized to affect the degree to which participants felt "present" in the virtual environment: a first-person view, in which the participant saw the virtual environment through the eyes of the game character being manipulated; and a third-person view, in which the participant viewed the game character from a distance. The length of time participants tolerated the cold-water exposure (pain tolerance) under each distraction condition was compared to a baseline (no distraction) trial. Subjects also rated the degree to which they felt "present" in the virtual environment after each distraction trial. Results demonstrated that participants had significantly higher pain tolerance during both VR-distraction conditions relative to baseline (no distraction) trials. Although participants reported a greater sense of presence during the first-person condition than the third-person condition, pain-tolerance scores associated with the two distraction conditions did not differ. The types of VR applications in which presence may be more or less important are discussed.
Hippocampus-Dependent Goal Localization by Head-Fixed Mice in Virtual Reality.
Sato, Masaaki; Kawano, Masako; Mizuta, Kotaro; Islam, Tanvir; Lee, Min Goo; Hayashi, Yasunori
2017-01-01
The demonstration of the ability of rodents to navigate in virtual reality (VR) has made it an important behavioral paradigm for studying spatially modulated neuronal activity in these animals. However, their behavior in such simulated environments remains poorly understood. Here, we show that encoding and retrieval of goal location memory in mice head-fixed in VR depends on the postsynaptic scaffolding protein Shank2 and the dorsal hippocampus. In our newly developed virtual cued goal location task, a head-fixed mouse moves from one end of a virtual linear track to seek rewards given at a target location along the track. The mouse needs to visually recognize the target location and stay there for a short period of time to receive the reward. Transient pharmacological blockade of fast glutamatergic synaptic transmission in the dorsal hippocampus dramatically and reversibly impaired performance of this task. Encoding and updating of virtual cued goal location memory was impaired in mice deficient in the postsynaptic scaffolding protein Shank2, a mouse model of autism that exhibits impaired spatial learning in a real environment. These results highlight the crucial roles of the dorsal hippocampus and postsynaptic protein complexes in spatial learning and navigation in VR.
Hippocampus-Dependent Goal Localization by Head-Fixed Mice in Virtual Reality
Kawano, Masako; Mizuta, Kotaro; Islam, Tanvir; Lee, Min Goo; Hayashi, Yasunori
2017-01-01
Abstract The demonstration of the ability of rodents to navigate in virtual reality (VR) has made it an important behavioral paradigm for studying spatially modulated neuronal activity in these animals. However, their behavior in such simulated environments remains poorly understood. Here, we show that encoding and retrieval of goal location memory in mice head-fixed in VR depends on the postsynaptic scaffolding protein Shank2 and the dorsal hippocampus. In our newly developed virtual cued goal location task, a head-fixed mouse moves from one end of a virtual linear track to seek rewards given at a target location along the track. The mouse needs to visually recognize the target location and stay there for a short period of time to receive the reward. Transient pharmacological blockade of fast glutamatergic synaptic transmission in the dorsal hippocampus dramatically and reversibly impaired performance of this task. Encoding and updating of virtual cued goal location memory was impaired in mice deficient in the postsynaptic scaffolding protein Shank2, a mouse model of autism that exhibits impaired spatial learning in a real environment. These results highlight the crucial roles of the dorsal hippocampus and postsynaptic protein complexes in spatial learning and navigation in VR. PMID:28484738
NASA Astrophysics Data System (ADS)
Lin, Chien-Liang; Su, Yu-Zheng; Hung, Min-Wei; Huang, Kuo-Cheng
2010-08-01
In recent years, Augmented Reality (AR)[1][2][3] is very popular in universities and research organizations. The AR technology has been widely used in Virtual Reality (VR) fields, such as sophisticated weapons, flight vehicle development, data model visualization, virtual training, entertainment and arts. AR has characteristics to enhance the display output as a real environment with specific user interactive functions or specific object recognitions. It can be use in medical treatment, anatomy training, precision instrument casting, warplane guidance, engineering and distance robot control. AR has a lot of vantages than VR. This system developed combines sensors, software and imaging algorithms to make users feel real, actual and existing. Imaging algorithms include gray level method, image binarization method, and white balance method in order to make accurate image recognition and overcome the effects of light.
Application of Virtual and Augmented reality to geoscientific teaching and research.
NASA Astrophysics Data System (ADS)
Hodgetts, David
2017-04-01
The geological sciences are the ideal candidate for the application of Virtual Reality (VR) and Augmented Reality (AR). Digital data collection techniques such as laser scanning, digital photogrammetry and the increasing use of Unmanned Aerial Vehicles (UAV) or Small Unmanned Aircraft (SUA) technology allow us to collect large datasets efficiently and evermore affordably. This linked with the recent resurgence in VR and AR technologies make these 3D digital datasets even more valuable. These advances in VR and AR have been further supported by rapid improvements in graphics card technologies, and by development of high performance software applications to support them. Visualising data in VR is more complex than normal 3D rendering, consideration needs to be given to latency, frame-rate and the comfort of the viewer to enable reasonably long immersion time. Each frame has to be rendered from 2 viewpoints (one for each eye) requiring twice the rendering than for normal monoscopic views. Any unnatural effects (e.g. incorrect lighting) can lead to an uncomfortable VR experience so these have to be minimised. With large digital outcrop datasets comprising 10's-100's of millions of triangles this is challenging but achievable. Apart from the obvious "wow factor" of VR there are some serious applications. It is often the case that users of digital outcrop data do not appreciate the size of features they are dealing with. This is not the case when using correctly scaled VR, and a true sense of scale can be achieved. In addition VR provides an excellent way of performing quality control on 3D models and interpretations and errors are much more easily visible. VR models can then be used to create content that can then be used in AR applications closing the loop and taking interpretations back into the field.
Diemer, Julia; Alpers, Georg W.; Peperkorn, Henrik M.; Shiban, Youssef; Mühlberger, Andreas
2015-01-01
Virtual reality (VR) has made its way into mainstream psychological research in the last two decades. This technology, with its unique ability to simulate complex, real situations and contexts, offers researchers unprecedented opportunities to investigate human behavior in well controlled designs in the laboratory. One important application of VR is the investigation of pathological processes in mental disorders, especially anxiety disorders. Research on the processes underlying threat perception, fear, and exposure therapy has shed light on more general aspects of the relation between perception and emotion. Being by its nature virtual, i.e., simulation of reality, VR strongly relies on the adequate selection of specific perceptual cues to activate emotions. Emotional experiences in turn are related to presence, another important concept in VR, which describes the user’s sense of being in a VR environment. This paper summarizes current research into perception of fear cues, emotion, and presence, aiming at the identification of the most relevant aspects of emotional experience in VR and their mutual relations. A special focus lies on a series of recent experiments designed to test the relative contribution of perception and conceptual information on fear in VR. This strand of research capitalizes on the dissociation between perception (bottom–up input) and conceptual information (top-down input) that is possible in VR. Further, we review the factors that have so far been recognized to influence presence, with emotions (e.g., fear) being the most relevant in the context of clinical psychology. Recent research has highlighted the mutual influence of presence and fear in VR, but has also traced the limits of our current understanding of this relationship. In this paper, the crucial role of perception on eliciting emotional reactions is highlighted, and the role of arousal as a basic dimension of emotional experience is discussed. An interoceptive attribution model of presence is suggested as a first step toward an integrative framework for emotion research in VR. Gaps in the current literature and future directions are outlined. PMID:25688218
Diemer, Julia; Alpers, Georg W; Peperkorn, Henrik M; Shiban, Youssef; Mühlberger, Andreas
2015-01-01
Virtual reality (VR) has made its way into mainstream psychological research in the last two decades. This technology, with its unique ability to simulate complex, real situations and contexts, offers researchers unprecedented opportunities to investigate human behavior in well controlled designs in the laboratory. One important application of VR is the investigation of pathological processes in mental disorders, especially anxiety disorders. Research on the processes underlying threat perception, fear, and exposure therapy has shed light on more general aspects of the relation between perception and emotion. Being by its nature virtual, i.e., simulation of reality, VR strongly relies on the adequate selection of specific perceptual cues to activate emotions. Emotional experiences in turn are related to presence, another important concept in VR, which describes the user's sense of being in a VR environment. This paper summarizes current research into perception of fear cues, emotion, and presence, aiming at the identification of the most relevant aspects of emotional experience in VR and their mutual relations. A special focus lies on a series of recent experiments designed to test the relative contribution of perception and conceptual information on fear in VR. This strand of research capitalizes on the dissociation between perception (bottom-up input) and conceptual information (top-down input) that is possible in VR. Further, we review the factors that have so far been recognized to influence presence, with emotions (e.g., fear) being the most relevant in the context of clinical psychology. Recent research has highlighted the mutual influence of presence and fear in VR, but has also traced the limits of our current understanding of this relationship. In this paper, the crucial role of perception on eliciting emotional reactions is highlighted, and the role of arousal as a basic dimension of emotional experience is discussed. An interoceptive attribution model of presence is suggested as a first step toward an integrative framework for emotion research in VR. Gaps in the current literature and future directions are outlined.
ERIC Educational Resources Information Center
Liang, Yo-Wen; Lee, An-Sheng; Liu, Shuo-Fang
2016-01-01
The difficulty of Virtual Reality application in industrial design education and learning is VR engineers cannot comprehend what the important functions or elements are for students. In addition, a general-purpose VR usually confuses the students and provides neither good manipulation means nor useful toolkits. To solve these problems, the…
Manually locating physical and virtual reality objects.
Chen, Karen B; Kimmel, Ryan A; Bartholomew, Aaron; Ponto, Kevin; Gleicher, Michael L; Radwin, Robert G
2014-09-01
In this study, we compared how users locate physical and equivalent three-dimensional images of virtual objects in a cave automatic virtual environment (CAVE) using the hand to examine how human performance (accuracy, time, and approach) is affected by object size, location, and distance. Virtual reality (VR) offers the promise to flexibly simulate arbitrary environments for studying human performance. Previously, VR researchers primarily considered differences between virtual and physical distance estimation rather than reaching for close-up objects. Fourteen participants completed manual targeting tasks that involved reaching for corners on equivalent physical and virtual boxes of three different sizes. Predicted errors were calculated from a geometric model based on user interpupillary distance, eye location, distance from the eyes to the projector screen, and object. Users were 1.64 times less accurate (p < .001) and spent 1.49 times more time (p = .01) targeting virtual versus physical box corners using the hands. Predicted virtual targeting errors were on average 1.53 times (p < .05) greater than the observed errors for farther virtual targets but not significantly different for close-up virtual targets. Target size, location, and distance, in addition to binocular disparity, affected virtual object targeting inaccuracy. Observed virtual box inaccuracy was less than predicted for farther locations, suggesting possible influence of cues other than binocular vision. Human physical interaction with objects in VR for simulation, training, and prototyping involving reaching and manually handling virtual objects in a CAVE are more accurate than predicted when locating farther objects.
Trelease, Robert B; Nieder, Gary L
2013-01-01
Web deployable anatomical simulations or "virtual reality learning objects" can easily be produced with QuickTime VR software, but their use for online and mobile learning is being limited by the declining support for web browser plug-ins for personal computers and unavailability on popular mobile devices like Apple iPad and Android tablets. This article describes complementary methods for creating comparable, multiplatform VR learning objects in the new HTML5 standard format, circumventing platform-specific limitations imposed by the QuickTime VR multimedia file format. Multiple types or "dimensions" of anatomical information can be embedded in such learning objects, supporting different kinds of online learning applications, including interactive atlases, examination questions, and complex, multi-structure presentations. Such HTML5 VR learning objects are usable on new mobile devices that do not support QuickTime VR, as well as on personal computers. Furthermore, HTML5 VR learning objects can be embedded in "ebook" document files, supporting the development of new types of electronic textbooks on mobile devices that are increasingly popular and self-adopted for mobile learning. © 2012 American Association of Anatomists.
Manera, Valeria; Chapoulie, Emmanuelle; Bourgeois, Jérémy; Guerchouche, Rachid; David, Renaud; Ondrej, Jan; Drettakis, George; Robert, Philippe
2016-01-01
Virtual Reality (VR) has emerged as a promising tool in many domains of therapy and rehabilitation, and has recently attracted the attention of researchers and clinicians working with elderly people with MCI, Alzheimer’s disease and related disorders. Here we present a study testing the feasibility of using highly realistic image-based rendered VR with patients with MCI and dementia. We designed an attentional task to train selective and sustained attention, and we tested a VR and a paper version of this task in a single-session within-subjects design. Results showed that participants with MCI and dementia reported to be highly satisfied and interested in the task, and they reported high feelings of security, low discomfort, anxiety and fatigue. In addition, participants reported a preference for the VR condition compared to the paper condition, even if the task was more difficult. Interestingly, apathetic participants showed a preference for the VR condition stronger than that of non-apathetic participants. These findings suggest that VR-based training can be considered as an interesting tool to improve adherence to cognitive training in elderly people with cognitive impairment. PMID:26990298
Gutiérrez, Fátima; Pierce, Jennifer; Vergara, Víctor M; Coulter, Robert; Saland, Linda; Caudell, Thomas P; Goldsmith, Timothy E; Alverson, Dale C
2007-01-01
Simulations are being used in education and training to enhance understanding, improve performance, and assess competence. However, it is important to measure the performance of these simulations as learning and training tools. This study examined and compared knowledge acquisition using a knowledge structure design. The subjects were first-year medical students at The University of New Mexico School of Medicine. One group used a fully immersed virtual reality (VR) environment using a head mounted display (HMD) and another group used a partially immersed (computer screen) VR environment. The study aims were to determine whether there were significant differences between the two groups as measured by changes in knowledge structure before and after the VR simulation experience. The results showed that both groups benefited from the VR simulation training as measured by the significant increased similarity to the expert knowledge network after the training experience. However, the immersed group showed a significantly higher gain than the partially immersed group. This study demonstrated a positive effect of VR simulation on learning as reflected by improvements in knowledge structure but an enhanced effect of full-immersion using a HMD vs. a screen-based VR system.
Cherniack, E Paul
2011-01-01
To outline the evidence in the published medical literature suggesting the potential applications of virtual reality (VR) for the identification and rehabilitation of cognitive disorders of the elderly. Non-systematic literature review. VR, despite its more common usage by younger persons, is a potentially promising source of techniques useful in the identification and rehabilitation of cognitive disorders of the elderly. Systems employing VR can include desktop and head-mounted visual displays among other devices. Thus far, published studies have described VR-based applications in the identification and treatment of deficits in navigational skills in ambulation and driving. In addition, VR has been utilised to enhance the ability to perform activities of daily living in patients with dementia, stroke, and Parkinson's Disease. Such investigations have thus far been small, and unblinded. VR-based applications can potentially offer more versatile, comprehensive, and safer assessments of function. However, they also might be more expensive, complex and more difficult to use by elderly patients. Side effects of head-mounted visual displays include nausea and disorientation, but, have not been reported specifically in older subjects.
A Virtual Education: Guidelines for Using Games Technology
ERIC Educational Resources Information Center
Schofield, Damian
2014-01-01
Advanced three-dimensional virtual environment technology, similar to that used by the film and computer games industry, can allow educational developers to rapidly create realistic online vir-tual environments. This technology has been used to generate a range of interactive Virtual Real-ity (VR) learning environments across a spectrum of…
Input Devices and Interaction Techniques for VR-Enhanced Medicine
NASA Astrophysics Data System (ADS)
Gallo, Luigi; Pietro, Giuseppe De
Virtual Reality (VR) technologies make it possible to reproduce faithfully real life events in computer-generated scenarios. This approach has the potential to simplify the way people solve problems, since they can take advantage of their real life experiences while interacting in synthetic worlds.
Pourazar, Morteza; Mirakhori, Fatemeh; Hemayattalab, Rasool; Bagherzadeh, Fazlolah
2017-09-21
The purpose of this study was to investigate the training effects of Virtual Reality (VR) intervention program on reaction time in children with cerebral palsy. Thirty boys ranging from 7 to 12 years (mean = 11.20; SD = .76) were selected by available sampling method and randomly divided into the experimental and control groups. Simple Reaction Time (SRT) and Discriminative Reaction Time (DRT) were measured at baseline and 1 day after completion of VR intervention. Multivariate analysis of variance (MANOVA) and paired sample t-test were performed to analyze the results. MANOVA test revealed significant effects for group in posttest phase, with lower reaction time in both measures for the experimental group. Based on paired sample t-test results, both RT measures significantly improved in experimental group following the VR intervention program. This paper proposes VR as a promising tool into the rehabilitation process for improving reaction time in children with cerebral palsy.
A Virtual Reality Visualization Tool for Neuron Tracing
Usher, Will; Klacansky, Pavol; Federer, Frederick; Bremer, Peer-Timo; Knoll, Aaron; Angelucci, Alessandra; Pascucci, Valerio
2017-01-01
Tracing neurons in large-scale microscopy data is crucial to establishing a wiring diagram of the brain, which is needed to understand how neural circuits in the brain process information and generate behavior. Automatic techniques often fail for large and complex datasets, and connectomics researchers may spend weeks or months manually tracing neurons using 2D image stacks. We present a design study of a new virtual reality (VR) system, developed in collaboration with trained neuroanatomists, to trace neurons in microscope scans of the visual cortex of primates. We hypothesize that using consumer-grade VR technology to interact with neurons directly in 3D will help neuroscientists better resolve complex cases and enable them to trace neurons faster and with less physical and mental strain. We discuss both the design process and technical challenges in developing an interactive system to navigate and manipulate terabyte-sized image volumes in VR. Using a number of different datasets, we demonstrate that, compared to widely used commercial software, consumer-grade VR presents a promising alternative for scientists. PMID:28866520
Trait and State Craving as Indicators of Validity of VR-based Software for Binge Eating Treatment.
Pla-Sanjuanelo, Joana; Ferrer-Garcia, Marta; Gutiérrez-Maldonado, José; Vilalta-Abella, Ferran; Andreu-Gracia, Alexis; Dakanalis, Antonios; Fernandez-Aranda, Fernando; Fusté-Escolano, Adela; Ribas-Sabaté, Joan; Riva, Giuseppe; Saldaña, Carmina; Sánchez, Isabel
2015-01-01
The aim of this study was to establish whether virtual reality (VR) exposure to food cues is able to produce craving levels consistent with state-craving and trait-craving as assessed by the Spanish and Italian versions of the State and Trait Food Craving Questionnaires (FCQ-T/S). The results were compared in 40 patients with eating disorders (17 with binge eating disorder, 23 with bulimia nervosa) and 78 healthy control subjects without eating disorders. Controls and patients with higher levels of trait-craving and state-craving both showed a greater desire to eat during VR exposure. Results also showed that trait and state craving assessed by FCQ-T/S were able to predict the total mean craving experienced during exposure to the VR software in both clinical and control samples. These findings present preliminary evidence about the validity of a new virtual reality-based application for cue-exposure treatment in patients with eating disorders.
NASA Technical Reports Server (NTRS)
Wang, Peter Hor-Ching
1996-01-01
This study is a continuation of the summer research of 1995 NASA/ASEE Summer Faculty Fellowship Program. This effort is to provide the infrastructure of an integrated Virtual Reality (VR) environment for the International Space Welding Experiment (ISWE) Analytical Tool and Trainer and the Microgravity Science Glovebox (MSG) Analytical Tool study. Due to the unavailability of the MSG CAD files and the 3D-CAD converter, little was done to the MSG study. However, the infrastructure of the integrated VR environment for ISWE is capable of performing the MSG study when the CAD files become available. Two primary goals are established for this research. First, the essential peripheral devices for an integrated VR environment will be studied and developed for the ISWE and MSG studies. Secondly, the training of the flight crew (astronaut) in general orientation, procedures, and location, orientation, and sequencing of the welding samples and tools are built into the VR system for studying the welding process and training the astronaut.
Innovative simulation strategies in education.
Aebersold, Michelle; Tschannen, Dana; Bathish, Melissa
2012-01-01
The use of simulation in the undergraduate nursing curriculum is gaining popularity and is becoming a foundation of many nursing programs. The purpose of this paper is to highlight a new simulation teaching strategy, virtual reality (VR) simulation, which capitalizes on the technological skills of the new generation student. This small-scale pilot study focused on improving interpersonal skills in senior level nursing students using VR simulation. In this study, a repeated-measure design was used to evaluate the effectiveness of VR simulation on improving student's performance over a series of two VR scenarios. Using the Emergency Medicine Crisis Resource Management (EMCRM) tool, student performance was evaluated. Overall, the total EMCRM score improved but not significantly. The subscale areas of communication (P = .047, 95% CI: - 1.06, -.007) and professional behavior (P = .003, 95% CI: - 1.12, -.303) did show a significant improvement between the two scenario exposures. Findings from this study show the potential for virtual reality simulations to have an impact on nursing student performance.
The potential of virtual reality and gaming to assist successful aging with disability.
Lange, B S; Requejo, P; Flynn, S M; Rizzo, A A; Valero-Cuevas, F J; Baker, L; Winstein, C
2010-05-01
Using the advances in computing power, software and hardware technologies, virtual reality (VR), and gaming applications have the potential to address clinical challenges for a range of disabilities. VR-based games can potentially provide the ability to assess and augment cognitive and motor rehabilitation under a range of stimulus conditions that are not easily controllable and quantifiable in the real world. This article discusses an approach for maximizing function and participation for those aging with and into a disability by combining task-specific training with advances in VR and gaming technologies to enable positive behavioral modifications for independence in the home and community. There is potential for the use of VR and game applications for rehabilitating, maintaining, and enhancing those processes that are affected by aging with and into disability, particularly the need to attain a balance in the interplay between sensorimotor function and cognitive demands and to reap the benefits of task-specific training and regular physical activity and exercise.
Virtual reality adaptive stimulation of limbic networks in the mental readiness training.
Cosić, Kresimir; Popović, Sinisa; Kostović, Ivica; Judas, Milos
2010-01-01
A significant proportion of severe psychological problems in recent large-scale peacekeeping operations underscores the importance of effective methods for strengthening the stress resilience. Virtual reality (VR) adaptive stimulation, based on the estimation of the participant's emotional state from physiological signals, may enhance the mental readiness training (MRT). Understanding neurobiological mechanisms by which the MRT based on VR adaptive stimulation can affect the resilience to stress is important for practical application in the stress resilience management. After the delivery of a traumatic audio-visual stimulus in the VR, the cascade of events occurs in the brain, which evokes various physiological manifestations. In addition to the "limbic" emotional and visceral brain circuitry, other large-scale sensory, cognitive, and memory brain networks participate with less known impact in this physiological response. The MRT based on VR adaptive stimulation may strengthen the stress resilience through targeted brain-body interactions. Integrated interdisciplinary efforts, which would integrate the brain imaging and the proposed approach, may contribute to clarifying the neurobiological foundation of the resilience to stress.
Integration of laparoscopic virtual-reality simulation into gynaecology training.
Burden, C; Oestergaard, J; Larsen, C R
2011-11-01
Surgery carries the risk of serious harm, as well as benefit, to patients. For healthcare organisations, theatre time is an expensive commodity and litigation costs for surgical specialities are very high. Advanced laparoscopic surgery, now widely used in gynaecology for improved outcomes and reduced length of stay, involves longer operation times and a higher rate of complications for surgeons in training. Virtual-reality (VR) simulation is a relatively new training method that has the potential to promote surgical skill development before advancing to surgery on patients themselves. VR simulators have now been on the market for more than 10 years and, yet, few countries in the world have fully integrated VR simulation training into their gynaecology surgical training programmes. In this review, we aim to summarise the VR simulators currently available together with evidence of their effectiveness in gynaecology, to understand their limitations and to discuss their incorporation into national training curricula. © 2011 The Authors BJOG An International Journal of Obstetrics and Gynaecology © 2011 RCOG.
A Virtual Reality Visualization Tool for Neuron Tracing.
Usher, Will; Klacansky, Pavol; Federer, Frederick; Bremer, Peer-Timo; Knoll, Aaron; Yarch, Jeff; Angelucci, Alessandra; Pascucci, Valerio
2018-01-01
Tracing neurons in large-scale microscopy data is crucial to establishing a wiring diagram of the brain, which is needed to understand how neural circuits in the brain process information and generate behavior. Automatic techniques often fail for large and complex datasets, and connectomics researchers may spend weeks or months manually tracing neurons using 2D image stacks. We present a design study of a new virtual reality (VR) system, developed in collaboration with trained neuroanatomists, to trace neurons in microscope scans of the visual cortex of primates. We hypothesize that using consumer-grade VR technology to interact with neurons directly in 3D will help neuroscientists better resolve complex cases and enable them to trace neurons faster and with less physical and mental strain. We discuss both the design process and technical challenges in developing an interactive system to navigate and manipulate terabyte-sized image volumes in VR. Using a number of different datasets, we demonstrate that, compared to widely used commercial software, consumer-grade VR presents a promising alternative for scientists.
Flores, Araceli; Linehan, Marsha M; Todd, S Rob; Hoffman, Hunter G
2018-01-01
Introduction: Paralysis from a spinal cord injury (SCI) increases risk of psychological problems including suicide attempts, substance use disorder, negative emotions (e.g., anger), depression, anxiety, ASD/PTSD. Dialectical Behavioral Therapy® (DBT®) has been shown to be effective for treating similar psychological symptoms in non-SCI patient populations. The current study explored for the first time, the feasibility and clinical potential of using Immersive Virtual Reality (VR) enhanced DBT® Mindfulness skills training to help reduce psychological symptoms (negative emotions and anxiety, ASD/PTSD) of two patients with SCI. Patient 1 was a 39-year-old male patient suffering multiple spinal cord injuries, resulting in quadriplegia, after falling out of a four story building. Patient 1 had severe depression, and anxiety symptoms. Patient 2, was a 31 year old male with a C7 vertebral body fracture, leading to paresis, after suffering a blunt force trauma injury during an attempted suicide, jumping from a moving vehicle. Patient 2 had mild depression, and anxiety symptoms. Methods: Each patient looked into VR goggles, and had the illusion of slowly "floating down" a river in virtual reality while listening to DBT® Mindfulness Skills training instructions. Each patient filled out brief psychological ratings before and after each VR session, four VR DBT® sessions for patient 1, and two VR DBT® sessions for patient 2. Results: As predicted, patient 1 reported reductions in negative emotions after each VR DBT® Mindfulness session. Patient 2 had mixed results on some of the measures of negative emotions. And both patients reported feeling less depressed, less anxious, and less emotionally upset, after VR DBT® Mindfulness Skills learning. Patient 2 reported large reductions in short term ASD/PTSD symptoms after his first VR DBT® mindfulness skills training session. Conclusion: This study explored the feasibility of using VR DBT® with quadriplegic or paresis SCI patients. Both SCI patients accepted VR, the patients liked using VR, and, with assistance from the therapist, the patients were able to use the VR equipment, despite being paralyzed. Additional research and development will be needed to determine whether VR DBT® Mindfulness Skills training leads to any long term improvements in outcome.
Flores, Araceli; Linehan, Marsha M.; Todd, S. Rob; Hoffman, Hunter G.
2018-01-01
Introduction: Paralysis from a spinal cord injury (SCI) increases risk of psychological problems including suicide attempts, substance use disorder, negative emotions (e.g., anger), depression, anxiety, ASD/PTSD. Dialectical Behavioral Therapy® (DBT®) has been shown to be effective for treating similar psychological symptoms in non-SCI patient populations. The current study explored for the first time, the feasibility and clinical potential of using Immersive Virtual Reality (VR) enhanced DBT® Mindfulness skills training to help reduce psychological symptoms (negative emotions and anxiety, ASD/PTSD) of two patients with SCI. Patient 1 was a 39-year-old male patient suffering multiple spinal cord injuries, resulting in quadriplegia, after falling out of a four story building. Patient 1 had severe depression, and anxiety symptoms. Patient 2, was a 31 year old male with a C7 vertebral body fracture, leading to paresis, after suffering a blunt force trauma injury during an attempted suicide, jumping from a moving vehicle. Patient 2 had mild depression, and anxiety symptoms. Methods: Each patient looked into VR goggles, and had the illusion of slowly “floating down” a river in virtual reality while listening to DBT® Mindfulness Skills training instructions. Each patient filled out brief psychological ratings before and after each VR session, four VR DBT® sessions for patient 1, and two VR DBT® sessions for patient 2. Results: As predicted, patient 1 reported reductions in negative emotions after each VR DBT® Mindfulness session. Patient 2 had mixed results on some of the measures of negative emotions. And both patients reported feeling less depressed, less anxious, and less emotionally upset, after VR DBT® Mindfulness Skills learning. Patient 2 reported large reductions in short term ASD/PTSD symptoms after his first VR DBT® mindfulness skills training session. Conclusion: This study explored the feasibility of using VR DBT® with quadriplegic or paresis SCI patients. Both SCI patients accepted VR, the patients liked using VR, and, with assistance from the therapist, the patients were able to use the VR equipment, despite being paralyzed. Additional research and development will be needed to determine whether VR DBT® Mindfulness Skills training leads to any long term improvements in outcome. PMID:29740365
Trost, Zina; Zielke, Marjorie; Guck, Adam; Nowlin, Liza; Zakhidov, Djanhangir; France, Christopher R; Keefe, Francis
2015-01-01
Virtual reality (VR) technologies have been successfully applied to acute pain interventions and recent reviews have suggested their potential utility in chronic pain. The current review highlights the specific relevance of VR interactive gaming technologies for pain-specific intervention, including their current use across a variety of physical conditions. Using the example of graded-exposure treatment for pain-related fear and disability in chronic low back pain, we discuss ways that VR gaming can be harnessed to optimize existing chronic pain therapies and examine the potential limitations of traditional VR interfaces in the context of chronic pain. We conclude by discussing directions for future research on VR-mediated applications in chronic pain.
Multi-threaded integration of HTC-Vive and MeVisLab
NASA Astrophysics Data System (ADS)
Gunacker, Simon; Gall, Markus; Schmalstieg, Dieter; Egger, Jan
2018-03-01
This work presents how Virtual Reality (VR) can easily be integrated into medical applications via a plugin for a medical image processing framework called MeVisLab. A multi-threaded plugin has been developed using OpenVR, a VR library that can be used for developing vendor and platform independent VR applications. The plugin is tested using the HTC Vive, a head-mounted display developed by HTC and Valve Corporation.
Toward natural selection in virtual reality.
Sherstyuk, Andrei; Vincent, Dale; Treskunov, Anton
2010-01-01
Here we describe a vision of VR games that combine the best features of gaming and VR: large, persistent worlds experienced in photorealistic settings with full immersion. For example, Figure 1 illustrates a hypothetical immersive VR game that could be developed using current technologies, including real-time, cinematic-quality graphics; a panoramic head-mounted display (HMD); and wide-area tracking. We also examine the gap between available VR and gaming technologies, and offer solutions for bridging it.
Effects of systematic cue exposure through virtual reality on cigarette craving.
Pericot-Valverde, Irene; Secades-Villa, Roberto; Gutiérrez-Maldonado, José; García-Rodríguez, Olaya
2014-11-01
Cigarette cravings have been associated with less successful attempts to quit smoking and a greater likelihood of relapse after smoking cessation. Background craving refers to a relatively steady and continuous experience of craving, while cue-induced craving refers to phases of intense craving triggered by cues associated with smoking. Cue exposure treatment (CET) involves repeated exposure to stimuli associated with substance use in order to reduce craving responses. However, mixed results have been found regarding the effect of CET on both types of craving. The aim of this study was to assess the effect of systematic virtual reality cue exposure treatment (VR-CET) on background and cue-induced cravings. Participants were 48 treatment-seeking smokers. The VR-CET consisted of prolonged exposure sessions to several interactive virtual environments. The VR-CET was applied once a week over 5 weeks. An individualized hierarchy of exposure was drawn up for each patient starting from the easiest virtual environment. Background and cue-induced cravings were recorded in each session. Cue-induced craving decreased over each session as a result of prolonged exposure. VR-CET also reduced cue-induced and background cravings across the 5 sessions, showing a cumulative effect across the exposure sessions. Our results evidenced the utility of VR-CET in reducing both types of cigarette craving. A combination of CET through VR with psychological treatments may improve current treatments for smoking cessation. © The Author 2014. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Peperkorn, Henrik M.; Diemer, Julia E.; Alpers, Georg W.; Mühlberger, Andreas
2016-01-01
Embodiment (i.e., the involvement of a bodily representation) is thought to be relevant in emotional experiences. Virtual reality (VR) is a capable means of activating phobic fear in patients. The representation of the patient’s body (e.g., the right hand) in VR enhances immersion and increases presence, but its effect on phobic fear is still unknown. We analyzed the influence of the presentation of the participant’s hand in VR on presence and fear responses in 32 women with spider phobia and 32 matched controls. Participants sat in front of a table with an acrylic glass container within reaching distance. During the experiment this setup was concealed by a head-mounted display (HMD). The VR scenario presented via HMD showed the same setup, i.e., a table with an acrylic glass container. Participants were randomly assigned to one of two experimental groups. In one group, fear responses were triggered by fear-relevant visual input in VR (virtual spider in the virtual acrylic glass container), while information about a real but unseen neutral control animal (living snake in the acrylic glass container) was given. The second group received fear-relevant information of the real but unseen situation (living spider in the acrylic glass container), but visual input was kept neutral VR (virtual snake in the virtual acrylic glass container). Participants were instructed to touch the acrylic glass container with their right hand in 20 consecutive trials. Visibility of the hand was varied randomly in a within-subjects design. We found for all participants that visibility of the participant’s hand increased presence independently of the fear trigger. However, in patients, the influence of the virtual hand on fear depended on the fear trigger. When fear was triggered perceptually, i.e., by a virtual spider, the virtual hand increased fear. When fear was triggered by information about a real spider, the virtual hand had no effect on fear. Our results shed light on the significance of different fear triggers (visual, conceptual) in interaction with body representations. PMID:26973566
Peperkorn, Henrik M; Diemer, Julia E; Alpers, Georg W; Mühlberger, Andreas
2016-01-01
Embodiment (i.e., the involvement of a bodily representation) is thought to be relevant in emotional experiences. Virtual reality (VR) is a capable means of activating phobic fear in patients. The representation of the patient's body (e.g., the right hand) in VR enhances immersion and increases presence, but its effect on phobic fear is still unknown. We analyzed the influence of the presentation of the participant's hand in VR on presence and fear responses in 32 women with spider phobia and 32 matched controls. Participants sat in front of a table with an acrylic glass container within reaching distance. During the experiment this setup was concealed by a head-mounted display (HMD). The VR scenario presented via HMD showed the same setup, i.e., a table with an acrylic glass container. Participants were randomly assigned to one of two experimental groups. In one group, fear responses were triggered by fear-relevant visual input in VR (virtual spider in the virtual acrylic glass container), while information about a real but unseen neutral control animal (living snake in the acrylic glass container) was given. The second group received fear-relevant information of the real but unseen situation (living spider in the acrylic glass container), but visual input was kept neutral VR (virtual snake in the virtual acrylic glass container). Participants were instructed to touch the acrylic glass container with their right hand in 20 consecutive trials. Visibility of the hand was varied randomly in a within-subjects design. We found for all participants that visibility of the participant's hand increased presence independently of the fear trigger. However, in patients, the influence of the virtual hand on fear depended on the fear trigger. When fear was triggered perceptually, i.e., by a virtual spider, the virtual hand increased fear. When fear was triggered by information about a real spider, the virtual hand had no effect on fear. Our results shed light on the significance of different fear triggers (visual, conceptual) in interaction with body representations.
Parsons, Thomas D; Courtney, Christopher G
2014-01-30
Numerous studies have demonstrated that the Paced Auditory Serial Addition Test (PASAT) has utility for the detection of cognitive processing deficits. While the PASAT has demonstrated high levels of internal consistency and test-retest reliability, administration of the PASAT has been known to create undue anxiety and frustration in participants. As a result, degradation of performance may be found on the PASAT. The difficult nature of the PASAT may subsequently decrease the probability of their return for follow up testing. This study is a preliminary attempt at assessing the potential of a PASAT embedded in a virtual reality environment. The Virtual Reality PASAT (VR-PASAT) was compared with a paper-and-pencil version of the PASAT as well as other standardized neuropsychological measures. The two modalities of the PASAT were conducted with a sample of 50 healthy university students, between the ages of 19 and 34 years. Equivalent distributions were found for age, gender, education, and computer familiarity. Moderate relationships were found between VR-PASAT and other putative attentional processing measures. The VR-PASAT was unrelated to indices of learning, memory, or visuospatial processing. Comparison of the VR-PASAT with the traditional paper-and-pencil PASAT indicated that both versions require the examinee to sustain attention at an increasingly demanding, externally determined rate. Results offer preliminary support for the construct validity (in a college sample) of the VR-PASAT as an attentional processing measure and suggest that this task may provide some unique information not tapped by traditional attentional processing tasks. Copyright © 2013 Elsevier B.V. All rights reserved.
Huber, Tobias; Paschold, Markus; Hansen, Christian; Wunderling, Tom; Lang, Hauke; Kneist, Werner
2017-11-01
Virtual reality (VR) and head mount displays (HMDs) have been advanced for multimedia and information technologies but have scarcely been used in surgical training. Motion sickness and individual psychological changes have been associated with VR. The goal was to observe first experiences and performance scores using a new combined highly immersive virtual reality (IVR) laparoscopy setup. During the study, 10 members of the surgical department performed three tasks (fine dissection, peg transfer, and cholecystectomy) on a VR simulator. We then combined a VR HMD with the VR laparoscopic simulator and displayed the simulation on a 360° video of a laparoscopic operation to create an IVR laparoscopic simulation. The tasks were then repeated. Validated questionnaires on immersion and motion sickness were used for the study. Participants' times for fine dissection were significantly longer during the IVR session (regular: 86.51 s [62.57 s; 119.62 s] vs. IVR: 112.35 s [82.08 s; 179.40 s]; p = 0.022). The cholecystectomy task had higher error rates during IVR. Motion sickness did not occur at any time for any participant. Participants experienced a high level of exhilaration, rarely thought about others in the room, and had a high impression of presence in the generated IVR world. This is the first clinical and technical feasibility study using the full IVR laparoscopy setup combined with the latest laparoscopic simulator in a 360° surrounding. Participants were exhilarated by the high level of immersion. The setup enables a completely new generation of surgical training.
Use of virtual reality in gait recovery among post stroke patients--a systematic literature review.
Moreira, Marcela Cavalcanti; de Amorim Lima, Anne Michelle; Ferraz, Karla Monica; Benedetti Rodrigues, Marco Aurélio
2013-09-01
To conduct a systematic literature review focusing on the use of virtual reality (VR) for the improvement of gait in post-stroke patients. We performed a search of Randomized-controlled trials published from 1966 to 2011 in the databases: Medline, Lilacs, CINAHL, Cochrane and SciELO. Keywords used in the selection were: Virtual reality in combination with (AND) "Nervous System Diseases", (OR) "Motor Skill Disorders" (OR) "neurologic impairments" (OR) "motor function" (OR) function* (OR) locomotion (OR) ambulation (OR) gait (OR) "motor activity" (OR) Stroke. Selected articles were evaluated using the individual's components of methodological quality assessment and analysis of outcomes of each study was based on the domains of the International Classification of Functioning, Disability and Health (ICF). A total of 6520 references were found, however, based on the inclusion and exclusion criteria only four studies were considered and analyzed. These articles demonstrated that the use of VR promotes changes in gait parameters, despite the diversity of protocols, participants' characteristics, as well as the number of participants included in each study. The research studies analyses suggest that VR is a promising method to improve the gait of patients with stroke. Nevertheless, some questions still need to be answered. Some aspects should be investigated to confirm the true benefits and application of VR in this population. Stroke is the second cause of death and the leading cause of disability worldwide. The loss or impairment of ambulation is one of the most devasting sequelae of stroke. Restoration of gait can be considered the main goal of rehabilitation after stroke. Conventional interventions tend to be tedious, providing few opportunities to increase the difficulty level of the proposed tasks and do not encourage adaptive postural reactions. There is evidence to support the use of virtual reality for the promotion of walking in people with sequelae of stroke. Virtual reality is a feature that has been used in clinical practice, however, the details on how to use this instrument must be set according to the therapeutic goals.
Virtual reality and cognitive rehabilitation: a review of current outcome research.
Larson, Eric B; Feigon, Maia; Gagliardo, Pablo; Dvorkin, Assaf Y
2014-01-01
Recent advancement in the technology of virtual reality (VR) has allowed improved applications for cognitive rehabilitation. The aim of this review is to facilitate comparisons of therapeutic efficacy of different VR interventions. A systematic approach for the review of VR cognitive rehabilitation outcome research addressed the nature of each sample, treatment apparatus, experimental treatment protocol, control treatment protocol, statistical analysis and results. Using this approach, studies that provide valid evidence of efficacy of VR applications are summarized. Applications that have not yet undergone controlled outcome study but which have promise are introduced. Seventeen studies conducted over the past eight years are reviewed. The few randomized controlled trials that have been completed show that some applications are effective in treating cognitive deficits in people with neurological diagnoses although further study is needed. Innovations requiring further study include the use of enriched virtual environments that provide haptic sensory input in addition to visual and auditory inputs and the use of commercially available gaming systems to provide tele-rehabilitation services. Recommendations are offered to improve efficacy of rehabilitation, to improve scientific rigor of rehabilitation research and to broaden access to the evidence-based treatments that this research has identified.
A Succinct Overview of Virtual Reality Technology Use in Alzheimer’s Disease
García-Betances, Rebeca I.; Arredondo Waldmeyer, María Teresa; Fico, Giuseppe; Cabrera-Umpiérrez, María Fernanda
2015-01-01
We provide a brief review and appraisal of recent and current virtual reality (VR) technology for Alzheimer’s disease (AD) applications. We categorize them according to their intended purpose (e.g., diagnosis, patient cognitive training, caregivers’ education, etc.), focus feature (e.g., spatial impairment, memory deficit, etc.), methodology employed (e.g., tasks, games, etc.), immersion level, and passive or active interaction. Critical assessment indicates that most of them do not yet take full advantage of virtual environments with high levels of immersion and interaction. Many still rely on conventional 2D graphic displays to create non-immersive or semi-immersive VR scenarios. Important improvements are needed to make VR a better and more versatile assessment and training tool for AD. The use of the latest display technologies available, such as emerging head-mounted displays and 3D smart TV technologies, together with realistic multi-sensorial interaction devices, and neuro-physiological feedback capacity, are some of the most beneficial improvements this mini-review suggests. Additionally, it would be desirable that such VR applications for AD be easily and affordably transferable to in-home and nursing home environments. PMID:26029101
Ocular effects of virtual reality headset wear in young adults.
Turnbull, Philip R K; Phillips, John R
2017-11-23
Virtual Reality (VR) headsets create immersion by displaying images on screens placed very close to the eyes, which are viewed through high powered lenses. Here we investigate whether this viewing arrangement alters the binocular status of the eyes, and whether it is likely to provide a stimulus for myopia development. We compared binocular status after 40-minute trials in indoor and outdoor environments, in both real and virtual worlds. We also measured the change in thickness of the ocular choroid, to assess the likely presence of signals for ocular growth and myopia development. We found that changes in binocular posture at distance and near, gaze stability, amplitude of accommodation and stereopsis were not different after exposure to each of the 4 environments. Thus, we found no evidence that the VR optical arrangement had an adverse effect on the binocular status of the eyes in the short term. Choroidal thickness did not change after either real world trial, but there was a significant thickening (≈10 microns) after each VR trial (p < 0.001). The choroidal thickening which we observed suggest that a VR headset may not be a myopiagenic stimulus, despite the very close viewing distances involved.
Clinical Virtual Reality tools to advance the prevention, assessment, and treatment of PTSD.
Rizzo, Albert 'Skip'; Shilling, Russell
2017-01-01
Numerous reports indicate that the incidence of posttraumatic stress disorder (PTSD) in Operation Enduring Freedom/Operation Iraqi Freedom/Operation New Dawn (OEF/OIF/OND) military personnel has created a significant behavioural healthcare challenge. These findings have served to motivate research on how to better develop and disseminate evidence-based treatments for PTSD. The current article presents the use of Virtual Reality (VR) as a clinical tool to address the assessment, prevention, and treatment of PTSD, based on the VR projects that were evolved at the University of Southern California Institute for Creative Technologies since 2004. A brief discussion of the definition and rationale for the clinical use of VR is followed by a description of a VR application designed for the delivery of prolonged exposure (PE) for treating Service Members (SMs) and Veterans with combat- and sexual assault-related PTSD. The expansion of the virtual treatment simulations of Iraq and Afghanistan for PTSD assessment and prevention is then presented. This is followed by a forward-looking discussion that details early efforts to develop virtual human agent systems that serve the role of virtual patients for training the next generation of clinical providers, as healthcare guides that can be used to support anonymous access to trauma-relevant behavioural healthcare information, and as clinical interviewers capable of automated behaviour analysis of users to infer psychological state. The paper will conclude with a discussion of VR as a tool for breaking down barriers to care in addition to its direct application in assessment and intervention.
Clinical Virtual Reality tools to advance the prevention, assessment, and treatment of PTSD
Rizzo, Albert ‘Skip’; Shilling, Russell
2017-01-01
ABSTRACT Numerous reports indicate that the incidence of posttraumatic stress disorder (PTSD) in Operation Enduring Freedom/Operation Iraqi Freedom/Operation New Dawn (OEF/OIF/OND) military personnel has created a significant behavioural healthcare challenge. These findings have served to motivate research on how to better develop and disseminate evidence-based treatments for PTSD. The current article presents the use of Virtual Reality (VR) as a clinical tool to address the assessment, prevention, and treatment of PTSD, based on the VR projects that were evolved at the University of Southern California Institute for Creative Technologies since 2004. A brief discussion of the definition and rationale for the clinical use of VR is followed by a description of a VR application designed for the delivery of prolonged exposure (PE) for treating Service Members (SMs) and Veterans with combat- and sexual assault-related PTSD. The expansion of the virtual treatment simulations of Iraq and Afghanistan for PTSD assessment and prevention is then presented. This is followed by a forward-looking discussion that details early efforts to develop virtual human agent systems that serve the role of virtual patients for training the next generation of clinical providers, as healthcare guides that can be used to support anonymous access to trauma-relevant behavioural healthcare information, and as clinical interviewers capable of automated behaviour analysis of users to infer psychological state. The paper will conclude with a discussion of VR as a tool for breaking down barriers to care in addition to its direct application in assessment and intervention. PMID:29372007
ERIC Educational Resources Information Center
Trelease, Robert B.; Nieder, Gary L.
2013-01-01
Web deployable anatomical simulations or "virtual reality learning objects" can easily be produced with QuickTime VR software, but their use for online and mobile learning is being limited by the declining support for web browser plug-ins for personal computers and unavailability on popular mobile devices like Apple iPad and Android…
ERIC Educational Resources Information Center
Smith, Matthew J.; Fleming, Michael F.; Wright, Michael A.; Losh, Molly; Humm, Laura Boteler; Olsen, Dale; Bell, Morris D.
2015-01-01
Young adults with high-functioning autism spectrum disorder (ASD) have low employment rates and job interviewing presents a critical barrier to employment for them. Results from a prior randomized controlled efficacy trial suggested virtual reality job interview training (VR-JIT) improved interviewing skills among trainees with ASD, but not…
Virtual Reality Exposure and Imaginal Exposure in the Treatment of Fear of Flying: A Pilot Study
ERIC Educational Resources Information Center
Rus-Calafell, Mar; Gutierrez-Maldonado, Jose; Botella, Cristina; Banos, Rosa M.
2013-01-01
Fear of flying (FF) is an impairing psychological disorder that is extremely common in developed countries. The most effective treatment for this particular type of phobia is exposure therapy. However, there are few studies comparing imaginal exposure (IE) and virtual reality (VR) exposure for the treatment of FF. The present study compared the…
ERIC Educational Resources Information Center
Ke, Fengfeng; Lee, Sungwoong
2016-01-01
This exploratory case study examined the process and potential impact of collaborative architectural design and construction in an OpenSimulator-based virtual reality (VR) on the social skills development of children with high-functioning autism (HFA). Two children with a formal medical diagnosis of HFA and one typically developing peer, aged…
A 3-D Virtual Reality Model of the Sun and the Moon for E-Learning at Elementary Schools
ERIC Educational Resources Information Center
Sun, Koun-Tem; Lin, Ching-Ling; Wang, Sheng-Min
2010-01-01
The relative positions of the sun, moon, and earth, their movements, and their relationships are abstract and difficult to understand astronomical concepts in elementary school science. This study proposes a three-dimensional (3-D) virtual reality (VR) model named the "Sun and Moon System." This e-learning resource was designed by…
STS-105 Crew Training in VR Lab
2001-03-15
JSC2001-00751 (15 March 2001) --- Astronaut Scott J. Horowitz, STS-105 mission commander, uses the virtual reality lab at the Johnson Space Center (JSC) to train for his duties aboard the Space Shuttle Discovery. This type of computer interface paired with virtual reality training hardware and software helps to prepare the entire team for dealing with International Space Station (ISS) elements.