Nonsynaptic glycine release is involved in the early KCC2 expression.
Allain, Anne-Emilie; Cazenave, William; Delpy, Alain; Exertier, Prisca; Barthe, Christophe; Meyrand, Pierre; Cattaert, Daniel; Branchereau, Pascal
2016-07-01
The cation-chloride co-transporters are important regulators of the cellular Cl(-) homeostasis. Among them the Na(+) -K(+) -2Cl(-) co-transporter (NKCC1) is responsible for intracellular chloride accumulation in most immature brain structures, whereas the K(+) -Cl(-) co-transporter (KCC2) extrudes chloride from mature neurons, ensuring chloride-mediated inhibitory effects of GABA/glycine. We have shown that both KCC2 and NKCC1 are expressed at early embryonic stages (E11.5) in the ventral spinal cord (SC). The mechanisms by which KCC2 is prematurely expressed are unknown. In this study, we found that chronically blocking glycine receptors (GlyR) by strychnine led to a loss of KCC2 expression, without affecting NKCC1 level. This effect was not dependent on the firing of Na(+) action potentials but was mimicked by a Ca(2+) -dependent PKC blocker. Blocking the vesicular release of neurotransmitters did not impinge on strychnine effect whereas blocking volume-sensitive outwardly rectifying (VSOR) chloride channels reproduced the GlyR blockade, suggesting that KCC2 is controlled by a glycine release from progenitor radial cells in immature ventral spinal networks. Finally, we showed that the strychnine treatment prevented the maturation of rhythmic spontaneous activity. Thereby, the GlyR-activation is a necessary developmental process for the expression of functional spinal motor networks. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 764-779, 2016. © 2015 Wiley Periodicals, Inc.
Learning Difficulties with Solids of Revolution: Classroom Observations
ERIC Educational Resources Information Center
Mofolo-Mbokane, Batseba; Engelbrecht, Johann; Harding, Ansie
2013-01-01
The study aims to identify areas of difficulty in learning about volumes of solids of revolution (VSOR) at a Further Education and Training college in South Africa. Students' competency is evaluated along five skill factors which refer to knowledge skills required to succeed in performing tasks relating to applications of the definite integral, in…
Cuppoletti, John; Chakrabarti, Jayati; Tewari, Kirti; Malinowska, Danuta H
2013-05-01
In clinical trials, methadone, but not morphine, appeared to prevent beneficial effects of lubiprostone, a ClC-2 Cl(-) channel activator, on opioid-induced constipation. Effects of methadone and morphine on lubiprostone-stimulated Cl(-) currents were measured by short circuit current (Isc) across T84 cells. Whole cell patch clamp of human ClC-2 (hClC-2) stably expressed in HEK293 cells and in a high expression cell line (HEK293EBNA) as well as human CFTR (hCFTR) stably expressed in HEK293 cells was used to study methadone and morphine effects on recombinant hClC-2 and hCFTR Cl(-) currents. Methadone but not morphine inhibited lubiprostone-stimulated Isc in T84 cells with half-maximal inhibition at 100 nM. Naloxone did not affect lubiprostone stimulation or methadone inhibition of Isc. Lubiprostone-stimulated Cl(-) currents in hClC-2/HEK293 cells, but not forskolin/IBMX-stimulated Cl(-) currents in hCFTR/HEK293 cells, were inhibited by methadone, but not morphine. HEK293EBNA cells expressing hClC-2 showed time-dependent, voltage-activated, CdCl2-inhibited Cl(-) currents in the absence (control) and the presence of lubiprostone. Methadone, but not morphine, inhibited control and lubiprostone-stimulated hClC-2 Cl(-) currents with half-maximal inhibition at 100 and 200-230 nM, respectively. Forskolin/IBMX-stimulated hClC-2 Cl(-) currents were also inhibited by methadone. Myristoylated protein kinase inhibitor (a specific PKA inhibitor) inhibited forskolin/IBMX- but not lubiprostone-stimulated hClC-2 Cl(-) currents. Methadone caused greater inhibition of lubiprostone-stimulated currents added before patching (66.1 %) compared with after patching (28.7 %). Methadone caused inhibition of lubiprostone-stimulated Cl(-) currents in T84 cells and control; lubiprostone- and forskolin/IBMX-stimulated recombinant hClC-2 Cl(-) currents may be the basis for reduced efficacy of lubiprostone in methadone-treated patients.
Separate Cl^- Conductances Activated by cAMP and Ca2+ in Cl^--Secreting Epithelial Cells
NASA Astrophysics Data System (ADS)
Cliff, William H.; Frizzell, Raymond A.
1990-07-01
We studied the cAMP- and Ca2+-activated secretory Cl^- conductances in the Cl^--secreting colonic epithelial cell line T84 using the whole-cell patch-clamp technique. Cl^- and K^+ currents were measured under voltage clamp. Forskolin or cAMP increased Cl^- current 2-15 times with no change in K^+ current. The current-voltage relation for cAMP-activated Cl^- current was linear from -100 to +100 mV and showed no time-dependent changes in current during voltage pulses. Ca2+ ionophores or increased pipette Ca2+ increased both Cl^- and K^+ currents 2-30 times. The Ca2+-activated Cl^- current was outwardly rectified, activated during depolarizing voltage pulses, and inactivated during hyperpolarizing voltage pulses. Addition of ionophore after forskolin further increased Cl^- conductance 1.5-5 times, and the current took on the time-dependent characteristics of that stimulated by Ca2+. Thus, cAMP and Ca2+ activate Cl^- conductances with different properties, implying that these second messengers activate different Cl^- channels or that they induce different conductive and kinetic states in the same Cl^- channel.
Valinsky, William C; Touyz, Rhian M; Shrier, Alvin
2017-08-01
Thiazides block Na + reabsorption while enhancing Ca 2+ reabsorption in the kidney. As previously demonstrated in immortalized mouse distal convoluted tubule (MDCT) cells, chlorothiazide application induced a robust plasma membrane hyperpolarization, which increased Ca 2+ uptake. This essential thiazide-induced hyperpolarization was prevented by the Cl - channel inhibitor 5-Nitro-2-(3-phenylpropylamino) benzoic acid (NPPB), implicating NPPB-sensitive Cl - channels, however the nature of these Cl - channels has been rarely described in the literature. Here we show that MDCT cells express a dominant, outwardly rectifying Cl - current at extracellular pH7.4. This constitutive Cl - current was more permeable to larger anions (Eisenman sequence I; I - >Br - ≥Cl - ) and was substantially inhibited by >100mM [Ca 2+ ] o , which distinguished it from ClC-K2/barttin. Moreover, the constitutive Cl - current was blocked by NPPB, along with other Cl - channel inhibitors (4,4'-diisothiocyanatostilbene-2,2'-disulfonate, DIDS; flufenamic acid, FFA). Subjecting the MDCT cells to an acidic extracellular solution (pH<5.5) induced a substantially larger outwardly rectifying NPPB-sensitive Cl - current. This acid-induced Cl - current was also anion permeable (I - >Br - >Cl - ), but was distinguished from the constitutive Cl - current by its rectification characteristics, ion sensitivities, and response to FFA. In addition, we have identified similar outwardly rectifying and acid-sensitive currents in immortalized cells from the inner medullary collecting duct (mIMCD-3 cells). Expression of an acid-induced Cl - current would be particularly relevant in the acidic IMCD (pH<5.5). To our knowledge, the properties of these Cl - currents are unique and provide the mechanisms to account for the Cl - efflux previously speculated to be present in MDCT cells. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Schwiebert, Erik M.; Kizer, Neil; Gruenert, Dieter C.; Stanton, Bruce A.
1992-11-01
Cystic fibrosis (CF) is a genetic disease characterized, in part, by defective regulation of Cl^- secretion by airway epithelial cells. In CF, cAMP does not activate Cl^- channels in the apical membrane of airway epithelial cells. We report here whole-cell patch-clamp studies demonstrating that pertussis toxin, which uncouples heterotrimeric GTP-binding proteins (G proteins) from their receptors, and guanosine 5'-[β-thio]diphosphate, which prevents G proteins from interacting with their effectors, increase Cl^- currents and restore cAMP-activated Cl^- currents in airway epithelial cells isolated from CF patients. In contrast, the G protein activators guanosine 5'-[γ-thio]triphosphate and AlF^-_4 reduce Cl^- currents and inhibit cAMP from activating Cl^- currents in normal airway epithelial cells. In CF cells treated with pertussis toxin or guanosine 5'-[β-thio]diphosphate and in normal cells, cAMP activates a Cl^- conductance that has properties similar to CF transmembrane-conductance regulator Cl^- channels. We conclude that heterotrimeric G proteins inhibit cAMP-activated Cl^- currents in airway epithelial cells and that modulation of the inhibitory G protein signaling pathway may have the therapeutic potential for improving cAMP-activated Cl^- secretion in CF.
Tang, Lieqi; Fang, Xiefan; Winesett, Steven P; Cheng, Catherine Y; Binder, Henry J; Rivkees, Scott A; Cheng, Sam X
2017-01-01
Mammalian colonic epithelia consist of cells that are capable of both absorbing and secreting Cl-. The present studies employing Ussing chamber technique identified two opposing short-circuit current (Isc) responses to basolateral bumetanide in rat distal colon. Apart from the transepithelial Cl--secretory Isc in early distal colon that was inhibited by bumetanide, bumetanide also stimulated Isc in late distal colon that had not previously been identified. Since bumetanide inhibits basolateral Na+-K+-2Cl- cotransporter (NKCC) in crypt cells and basolateral K+-Cl- cotransporter (KCC) in surface epithelium, we proposed this stimulatory Isc could represent a KCC-mediated Cl- absorptive current. In support of this hypothesis, ion substitution experiments established Cl- dependency of this absorptive Isc and transport inhibitor studies demonstrated the involvement of an apical Cl- conductance. Current distribution and RNA sequencing analyses revealed that this Cl- absorptive Isc is closely associated with epithelial Na+ channel (ENaC) but is not dependent on ENaC activity. Thus, inhibition of ENaC by 10 μM amiloride or benzamil neither altered the direction nor its activity. Physiological studies suggested that this Cl- absorptive Isc senses dietary Cl- content; thus when dietary Cl- was low, Cl- absorptive Isc was up-regulated. In contrast, when dietary Cl- was increased, Cl- absorptive Isc was down-regulated. We conclude that an active Cl- extrusion mechanism exists in ENaC-expressing late distal colon and likely operates in parallel with ENaC to facilitate NaCl absorption.
The aluminum electrode in AlCl3-alkali-halide melts.
NASA Technical Reports Server (NTRS)
Holleck, G. L.; Giner, J.
1972-01-01
Passivation phenomena have been observed upon cathodic and anodic polarization of the Al electrode in AlCl3-KCl-NaCl melts between 100 and 160 C. They are caused by formation of a solid salt layer at the electrode surface resulting from concentration changes upon current flow. The anodic limiting currents increased with temperature and with decreasing AlCl3 content of the melt. Current voltage curves obtained on a rotating aluminum disk showed a linear relationship between the anodic limiting current and omega to the minus 1/2 power. Upon cathodic polarization, dendrite formation occurs at the Al electrode. The activation overvoltage in AlCl3-KCl-NaCl was determined by galvanostatic current step methods. An apparent exchange current density of 270 mA/sq cm at 130 C and a double layer capacity of 40 plus or minus 10 microfarad/sq cm were measured.
Marcionilio, Suzana M L de Oliveira; Alves, Gisele M; E Silva, Rachel B Góes; Marques, Pablo J Lima; Maia, Poliana D; Neto, Brenno A D; Linares, José J
2016-10-01
This paper focuses on the influence of the current density treatment of a concentrated 1-butyl-3-methylimidazolium chloride (BMImCl) solution on an electrochemical reactor with a boron-doped diamond (BDD) anode. The decrease in the total organic carbon (TOC) and the BMImCl concentration demonstrate the capability of BDD in oxidizing ionic liquids (ILs) and further mineralizing (to CO2 and NO3 (-)) more rapidly at higher current densities in spite of the reduced current efficiency of the process. Moreover, the presence of Cl(-) led to the formation of oxychlorinated anions (mostly ClO3 (-) and ClO4 (-)) and, in combination with the ammonia generated in the cathode from the nitrate reduction, chloramines, more intensely at higher current density. Finally, the analysis of the intermediates formed revealed no apparent influence of the current density on the BMImCl degradation mechanism. The current density presents therefore a complex influence on the IL treatment process that is discussed throughout this paper.
Li, Rong-Chang; Ben-Chaim, Yair; Yau, King-Wai; Lin, Chih-Chun
2016-01-01
Olfactory transduction in vertebrate olfactory receptor neurons (ORNs) involves primarily a cAMP-signaling cascade that leads to the opening of cyclic-nucleotide–gated (CNG), nonselective cation channels. The consequent Ca2+ influx triggers adaptation but also signal amplification, the latter by opening a Ca2+-activated Cl channel (ANO2) to elicit, unusually, an inward Cl current. Hence the olfactory response has inward CNG and Cl components that are in rapid succession and not easily separable. We report here success in quantitatively separating these two currents with respect to amplitude and time course over a broad range of odorant strengths. Importantly, we found that the Cl current is the predominant component throughout the olfactory dose–response relation, down to the threshold of signaling to the brain. This observation is very surprising given a recent report by others that the olfactory-signal amplification effected by the Ca2+-activated Cl current does not influence the behavioral olfactory threshold in mice. PMID:27647918
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-27
... effective date of this AD: Perform an in situ eddy current inspection for cracks on the forward lug of the...-6B11 (CL-415 Variant) airplanes). Thereafter, repeat the in situ eddy current inspection at intervals not to exceed 165 land landings. (2) If no crack is found: Repeat the in situ eddy current inspection...
Qin, Kai-Rong; Xiang, Cheng; Cao, Ling-Ling
2011-10-01
In this paper, a dynamic model is proposed to quantify the relationship between fluid flow and Cl(-)-selective membrane current in vascular endothelial cells (VECs). It is assumed that the external shear stress would first induce channel deformation in VECs. This deformation could activate the Cl(-) channels on the membrane, thus allowing Cl(-) transport across the membrane. A modified Hodgkin-Huxley model is embedded into our dynamic system to describe the electrophysiological properties of the membrane, such as the Cl(-)-selective membrane current (I), voltage (V) and conductance. Three flow patterns, i. e., steady flow, oscillatory flow, and pulsatile flow, are applied in our simulation studies. When the extracellular Cl(-) concentration is constant, the I-V characteristics predicted by our dynamic model shows strong consistency with the experimental observations. It is also interesting to note that the Cl(-) currents under different flow patterns show some differences, indicating that VECs distinguish among and respond differently to different types of flows. When the extracellular Cl(-) concentration keeps constant or varies slowly with time (i.e. oscillates at 0.02 Hz), the convection and diffusion of Cl(-) in extracellular space can be ignored and the Cl(-) current is well captured by the modified Hodgkin-Huxley model alone. However, when the extracellular Cl(-) varies fast (i.e., oscillates at 0.2 Hz), the convection and diffusion effect should be considered because the Cl(-) current dynamics is different from the case where the convection-diffusion effect is simply ignored. The proposed dynamic model along with the simulation results could not only provide more insights into the flow-regulated electrophysiological behavior of the cell membrane but also help to reveal new findings in the electrophysiological experimental investigations of VECs in response to dynamic flow and biochemical stimuli.
Ishikawa, T
1996-09-01
A Ca(2+)-activated Cl- conductance in rat submandibular acinar cells was identified and characterized using whole-cell patch-clamp technique. When the cells were dialyzed with Cs-glutamate-rich pipette solutions containing 2 mM ATP and 1 microM free Ca2+ and bathed in N-methyl-D-glucamine chloride (NMDG-Cl) or Choline-Cl-rich solutions, they mainly exhibited slowly activating currents. Dialysis of the cells with pipette solutions containing 300 nM or less than 1 nM free Ca2+ strongly reduced the Cl- currents, indicating the currents were Ca(2+)-dependent. Relaxation analysis of the "on" currents of slowly activating currents suggested that the channels were voltage-dependent. The anion permeability sequence of the Cl- channels was: NO3- (2.00) > I- (1.85) > or = Br- (1.69) > Cl- (1.00) > bicarbonate (0.77) > or = acetate (0.70) > propionate (0.41) > > glutamate (0.09). When the ATP concentration in the pipette solutions was increased from 0 to 10 mM, the Ca(2+)-dependency of the Cl- current amplitude shifted to lower free Ca2+ concentrations by about two orders of magnitude. Cells dialyzed with a pipette solution (pCa = 6) containing ATP-gamma S (2 mM) exhibited currents of similar magnitude to those observed with the solution containing ATP (2 mM). The addition of the calmodulin inhibitors trifluoperazine (100 microM) or calmidazolium (25 microM) to the bath solution and the inclusion of KN-62 (1 microM), a specific inhibitor of calmodulin kinase, or staurosporin (10 nM), an inhibitor of protein kinase C to the pipette solution had little, if any, effect on the Ca(2+)-activated Cl- currents. This suggests that Ca2+/Calmodulin or calmodulin kinase II and protein kinase C are not involved in Ca(2+)-activated Cl- currents. The outward Cl- currents at +69 mV were inhibited by NPPB (100 microM), IAA-94 (100 microM), DIDS (0.03-1 mM), 9-AC (300 microM and 1 mM) and DPC (1 mM), whereas the inward currents at -101 mV were not. These results demonstrate the presence of a bicarbonate- and weak acid-permeable Cl- conductance controlled by cytosolic Ca2+ and ATP levels in rat submandibular acinar cells.
Yelhekar, Tushar D; Druzin, Michael; Johansson, Staffan
2017-01-01
Maintenance of a low intraneuronal Cl - concentration, [Cl - ] i , is critical for inhibition in the CNS. Here, the contribution of passive, conductive Cl - flux to recovery of [Cl - ] i after a high load was analyzed in mature central neurons from rat. A novel method for quantifying the resting Cl - conductance, important for [Cl - ] i recovery, was developed and the possible contribution of GABA A and glycine receptors and of ClC-2 channels to this conductance was analyzed. The hypothesis that spontaneous, action potential-independent release of GABA is important for [Cl - ] i recovery was tested. [Cl - ] i was examined by gramicidin-perforated patch recordings in medial preoptic neurons. Cells were loaded with Cl - by combining GABA or glycine application with a depolarized voltage, and the time course of [Cl - ] i was followed by measurements of the Cl - equilibrium potential , as obtained from the current recorded during voltage ramps combined with GABA or glycine application. The results show that passive Cl - flux contributes significantly, in the same order of magnitude as does K + -Cl - cotransporter 2 (KCC2), to [Cl - ] i recovery and that Cl - conductance accounts for ∼ 6% of the total resting conductance. A major fraction of this resting Cl - conductance is picrotoxin (PTX)-sensitive and likely due to open GABA A receptors, but ClC-2 channels do not contribute. The results also show that when the decay of GABA A receptor-mediated miniature postsynaptic currents (minis) is slowed by the neurosteroid allopregnanolone, such minis may significantly quicken [Cl - ] i recovery, suggesting a possible steroid-regulated role for minis in the control of Cl - homeostasis.
Mycoplasma orale infection affects K+ and Cl- currents in the HSG salivary gland cell line.
Izutsu, K T; Fatherazi, S; Belton, C M; Oda, D; Cartwright, F D; Kenny, G E
1996-06-01
The relations between K+ channel and Cl- channel currents and mycoplasma infection status were studied longitudinally in HSG cells, a human submandibular gland cell line. The K+ channel currents were disrupted by the occurrence of mycoplasma infection: muscarinic activation of K+ channels and K+ channel expression as estimated by ionomycin- or hypotonically induced K+ current responses were all decreased. Similar decreases in ionomycin- and hypotonically induced responses were observed for Cl- channels, but only the latter decrease was statistically significant. Also, Cl- currents could be elicited more frequently than K+ currents (63% of cases versus 0%) in infected cells when tested by exposure to hypotonic media, indicating that mycoplasma infection affects K+ channels relatively more than Cl- channels. These changes occurred in the originally infected cells, were ameliorated when the infection was cleared with sparfloxacin, and recurred when the cells were reinfected. Such changes would be expected to result in hyposecretion of salivary fluid if they occurred in vivo.
Sutton, K G; Stapleton, S R; Scott, R H
1998-07-24
The whole cell variant of the patch clamp technique was used to investigate the actions of polyamine spider toxins and their analogues on high voltage-activated Ca2+ currents and Ca2+-activated Cl- currents (I(Cl(Ca))). The actions of synthesised FTX (putative natural toxin from the American funnel web spider), sFTX-3.3, Orn-FTX-3.3, Lys-FTX-3.3, and argiotoxin-636 on cultured dorsal root ganglion neurones from neonatal rats were investigated. Synthesised FTX (1 microM) inhibited I(Cl(Ca)) but did not inhibit high voltage-activated Ca2+ currents. In contrast, sFTX-3.3 (10 microM) inhibited both high voltage-activated Ca2+ currents and the associated I(Cl(Ca)) in near equal proportions. Argiotoxin-636 (1-10 microM) inhibited I(Cl(Ca)) evoked by Ca2+ entry through voltage-activated channels and by intracellular photorelease of Ca2+ from a caged precursor DM-nitrophen. This data indicates that synthesised FTX and argiotoxin-636 directly inhibit Ca2+-activated Cl- channels. In conclusion, the potency of polyamines as non-selective inhibitors of Ca2+ channels and Ca2+-activated Cl- channels is in part determined by the presence of a terminal arginine and this may involve an interaction between terminal guanidino groups and Ca2+ binding sites.
NASA Astrophysics Data System (ADS)
Krotov, V. E.; Filatov, E. C.
2014-08-01
A method is proposed for calculating the ZrO2 content in the (NaCl-KCl)eqiv-UO2Cl2-ZrCl4 melt. Based on the known composition of a UO2-ZrO2 cathode deposit, the content is calculated at current densities of 0.08-0.63 A/cm2 and ZrCl4 concentrations of 0-12.3 wt %. The calculated and experimental ZrO2 contents in UO2-ZrO2 cathode deposits are in qualitative and adequate quantitative agreement.
Maximum time-dependent space-charge limited diode currents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griswold, M. E.; Fisch, N. J.
Recent papers claim that a one dimensional (1D) diode with a time-varying voltage drop can transmit current densities that exceed the Child-Langmuir (CL) limit on average, apparently contradicting a previous conjecture that there is a hard limit on the average current density across any 1D diode, as t → ∞, that is equal to the CL limit. However, these claims rest on a different definition of the CL limit, namely, a comparison between the time-averaged diode current and the adiabatic average of the expression for the stationary CL limit. If the current were considered as a function of the maximummore » applied voltage, rather than the average applied voltage, then the original conjecture would not have been refuted.« less
Tatur, Sabina; Brochiero, Emmanuelle; Grygorczyk, Ryszard; Berthiaume, Yves
2013-01-01
Alveolar epithelial cells are involved in Na+ absorption via the epithelial Na+ channel (ENaC), an important process for maintaining an appropriate volume of liquid lining the respiratory epithelium and for lung oedema clearance. Here, we investigated how a 20% hypotonic shock modulates the ionic current in these cells. Polarized alveolar epithelial cells isolated from rat lungs were cultured on permeant filters and their electrophysiological properties recorded. A 20% bilateral hypotonic shock induced an immediate, but transient 52% rise in total transepithelial current and a 67% increase in the amiloride-sensitive current mediated by ENaC. Amiloride pre-treatment decreased the current rise after hypotonic shock, showing that ENaC current is involved in this response. Since Cl- transport is modulated by hypotonic shock, its contribution to the basal and hypotonic-induced transepithelial current was also assessed. Apical NPPB, a broad Cl- channel inhibitor and basolateral DIOA a potassium chloride co-transporter (KCC) inhibitor reduced the total and ENaC currents, showing that transcellular Cl- transport plays a major role in that process. During hypotonic shock, a basolateral Cl- influx, partly inhibited by NPPB is essential for the hypotonic-induced current rise. Hypotonic shock promoted apical ATP secretion and increased intracellular Ca2+. While apyrase, an ATP scavenger, did not inhibit the hypotonic shock current response, W7 a calmodulin antagonist completely prevented the hypotonic current rise. These results indicate that a basolateral Cl- influx as well as Ca2+/calmodulin, but not ATP, are involved in the acute transepithelial current rise elicited by hypotonic shock. PMID:24019969
Identification of the fatty acid activation site on human ClC-2.
Cuppoletti, John; Tewari, Kirti P; Chakrabarti, Jayati; Malinowska, Danuta H
2017-06-01
Fatty acids (including lubiprostone and cobiprostone) are human ClC-2 (hClC-2) Cl - channel activators. Molecular and cellular mechanisms underlying this activation were examined. Role of a four-amino acid PKA activation site, RGET 691 , of hClC-2 was investigated using wild-type (WT) and mutant (AGET, RGEA, and AGAA) hClC-2 expressed in 293EBNA cells as well as involvement of PKA, intracellular cAMP concentration ([cAMP] i ), EP 2 , or EP 4 receptor agonist activity. All fatty acids [lubiprostone, cobiprostone, eicosatetraynoic acid (ETYA), oleic acid, and elaidic acid] caused significant rightward shifts in concentration-dependent Cl - current activation (increasing EC 50 s) with mutant compared with WT hClC-2 channels, without changing time and voltage dependence, current-voltage rectification, or methadone inhibition of the channel. As with lubiprostone, cobiprostone activation of hClC-2 occurred with PKA inhibitor (myristoylated protein kinase inhibitor) present or when using double PKA activation site (RRAA 655 /RGEA 691 ) mutant. Cobiprostone did not activate human CFTR. Fatty acids did not increase [cAMP] i in hClC-2/293EBNA or T84 cells. Using T84 CFTR knockdown cells, cobiprostone increased hClC-2 Cl - currents without increasing [cAMP] i, while PGE 2 and forskolin-IBMX increased both. Fatty acids were not agonists of EP 2 or EP 4 receptors. L-161,982, a supposed EP 4 -selective inhibitor, had no effect on lubiprostone-activated hClC-2 Cl - currents but significantly decreased T84 cell barrier function measured by transepithelial resistance and fluorescent dextran transepithelial movement. The present findings show that RGET 691 of hClC-2 (possible binding site) plays an important functional role in fatty acid activation of hClC-2. PKA, [cAMP] i , and EP 2 or EP 4 receptors are not involved. These studies provide the molecular basis for fatty acid regulation of hClC-2. Copyright © 2017 the American Physiological Society.
Bukanova, Julia V; Solntseva, Elena I; Skrebitsky, Vladimir G
2005-12-01
1. Literature data indicate that serotonin induces the long-term potentiation of glutamate (Glu) response in molluscan neurons. The aim of present work was to elucidate whether cyclic nucleotides can cause the same effect. 2. Experiments were carried out on isolated neurons of the edible snail (Helix pomatia) using a two-microelectrode voltage-clamp method. 3. In the majority of the cells examined, the application of Glu elicited a Cl- -current. The reversal potential (Er) of this current lied between -35 and -55 mV in different cells. 4. Picrotoxin, a blocker of Cl- -channels, suppressed this current equally on both sides of Er. Furosemide, an antagonist of both Cl- -channels and the Na+/K+/Cl- -cotransporter, had a dual effect on Glu-response: decrease in conductance, and shift of Er to negative potentials. 5. A short-term (2 min) cell treatment with 8-Br-cAMP or 8-Br-cGMP caused long-term (up to 30 min) change in Glu-response. At a holding potential of -60 mV, which was close to the resting level, an increase in Glu-activated inward current was observed. This potentiation seems to be related to the right shift of Er of Glu-activated Cl- -current rather than to the increase in conductance of Cl- -channels. The blocking effect of picrotoxin rested after 8-Br-cAMP treatment. 6. The change in the Cl- -homeostasis as a possible mechanism for the observed effect of cyclic nucleotides is discussed.
Physiological basis of a steady endogenous current in rat lumbrical muscle
1984-01-01
In an attempt to determine the mechanism by which rat skeletal muscle endplates generate a steady outward current, we measured the effects of several drugs (furosemide, bumetanide, 9-anthracene carboxylic acid [9- AC]) and changes in external ion concentration (Na+, K+, Cl-, Ba++) on resting membrane potential (Vm) and on the steady outward current. Each of the following treatments caused a 10-15-mV hyperpolarization of the membrane: replacement of extracellular Cl- with isethionate, addition of furosemide or bumetanide, and addition of 9-AC. These results suggest that Cl- is actively accumulated by the muscle fibers and that the equilibrium potential of Cl- is more positive than the membrane potential. Removal of external Na+ also caused a large hyperpolarization and is consistent with evidence in other tissues that active Cl- accumulation requires external Na+. The same treatments greatly reduced or abolished the steady outward current, with a time course that paralleled the changes in Vm. These results cannot be explained by a model in which the steady outward current is assumed to arise as a result of a nonuniform distribution of Na+ conductance, but they are consistent with models in which the steady current is produced by a nonuniform distribution of GCl or GK. Other treatments (Na+-free and K+-free solutions, and 50 microM BaCl2) caused a temporary reversal of the steady current. Parallel measurements of Vm suggested that in none of these cases did the electrochemical driving force for K+ change sign, which makes it unlikely that the steady current arises as a result of a nonuniform distribution of GK. All of the results, however, are consistent with a model in which the steady outward current arises as a result of a nonuniform distribution of Cl- conductance, with GCl lower near the endplate than in extrajunctional regions. PMID:6325581
NASA Astrophysics Data System (ADS)
Hoegg-Beiler, Maja B.; Sirisi, Sònia; Orozco, Ian J.; Ferrer, Isidre; Hohensee, Svea; Auberson, Muriel; Gödde, Kathrin; Vilches, Clara; de Heredia, Miguel López; Nunes, Virginia; Estévez, Raúl; Jentsch, Thomas J.
2014-03-01
Defects in the astrocytic membrane protein MLC1, the adhesion molecule GlialCAM or the chloride channel ClC-2 underlie human leukoencephalopathies. Whereas GlialCAM binds ClC-2 and MLC1, and modifies ClC-2 currents in vitro, no functional connections between MLC1 and ClC-2 are known. Here we investigate this by generating loss-of-function Glialcam and Mlc1 mouse models manifesting myelin vacuolization. We find that ClC-2 is unnecessary for MLC1 and GlialCAM localization in brain, whereas GlialCAM is important for targeting MLC1 and ClC-2 to specialized glial domains in vivo and for modifying ClC-2’s biophysical properties specifically in oligodendrocytes (OLs), the cells chiefly affected by vacuolization. Unexpectedly, MLC1 is crucial for proper localization of GlialCAM and ClC-2, and for changing ClC-2 currents. Our data unmask an unforeseen functional relationship between MLC1 and ClC-2 in vivo, which is probably mediated by GlialCAM, and suggest that ClC-2 participates in the pathogenesis of megalencephalic leukoencephalopathy with subcortical cysts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrington, Timothy D.; Babauta, Jerome T.; Davenport, Emily K.
We investigated ion transport limitations on 3D graphite felt electrodes by growing Geobacter sulfurreducens biofilms with advection to eliminate external mass transfer limitations. We characterized ion transport limitations by: (i) showing that serially increasing NaCl concentration up to 200mM increased current linearly up to a total of þ273% vs. 0mM NaCl under advective conditions; (ii) growing the biofilm with a starting concentration of 200mM NaCl, which led to a maximum current increase of 400% vs. current generation without NaCl, and (iii) showing that un-colonized surface area remained even after steadystate current was reached. After accounting for iR effects, we confirmedmore » that the excess surface area existed despite a non-zero overpotential. The fact that the biofilm was constrained from colonizing and producing further current under these conditions confirmed the biofilms under study here were ion transport-limited. Our work demonstrates that the use of high surface area electrodes may not increase current density when the system design allows ion transport limitations to become dominant.« less
Münch, Jonas; Billig, Gwendolyn; Huebner, Christian A; Leinders-Zufall, Trese; Zufall, Frank; Jentsch, Thomas J
2018-05-16
Ca2+-activated Cl- currents have been observed in many physiological processes, including sensory transduction in mammalian olfaction. The olfactory vomeronasal (or Jacobson's) organ (VNO) detects molecular cues originating from animals of the same species or from predators. It then triggers innate behaviors such as aggression, mating, or flight. In the VNO, Ca2+-activated Cl- channels (CaCCs) are thought to amplify the initial pheromone-evoked receptor potential by mediating a depolarizing Cl- efflux. Here, we confirmed the co-localization of the Ca2+-activated Cl- channels anoctamin 1 (Ano1, also called TMEM16A) and Ano2 (TMEM16B) in microvilli of apically and basally located vomeronasal sensory neurons (VSNs) and their absence in supporting cells of the VNO. Both channels were expressed as functional isoforms capable of giving rise to Ca2+-activated Cl- currents. While these currents persisted in the VNOs of mice lacking Ano2, they were undetectable in olfactory neuron-specific Ano1 knock-out mice irrespective of the presence of Ano2. The loss of Ca2+-activated Cl- currents resulted in diminished spontaneous and drastically reduced pheromone-evoked spiking of VSNs. Although this indicated an important role of anoctamin channels in VNO signal amplification, the lack of this amplification did not alter VNO-dependent male-male territorial aggression in olfactory Ano1/Ano2 double knock-out mice. We conclude that Ano1 mediates the bulk of Ca2+-activated Cl- currents in the VNO and that Ano2 plays only a minor role. Furthermore, vomeronasal signal amplification by CaCCs appears to be dispensable for the detection of male-specific pheromones and for near-normal aggressive behavior in mice. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.
NASA Astrophysics Data System (ADS)
Jin, Chuanyu; Zhou, Lingping; Fu, Licai; Zhu, Jiajun; Li, Deyi
2017-04-01
The high solubility in molten salt and low conductivity of NiCl2, compared with traditional FeS2 and CoS2, have become the restrictions for its extensive application in cathode materials of thermal batteries. In this study, carbon coated NiCl2 cathode is successfully fabricated by the carbonization of stearic acid. The high specific energy of 641 Wh kg-1 at current densities of 0.5 A cm-2 are observed for the carbon coated NiCl2 thermal batteries, which is higher than the pure NiCl2 with 475 Wh kg-1. The high specific energies and high-current discharge ability are attribute to the graphite and amorphous carbon layers on the surface of NiCl2 crystalline, which were detected by TEM after carbonization. The graphite layers can improve the conductivity of NiCl2. Meanwhile the coated carbon structure could reduce the solubility of NiCl2 in molten salt.
Chloride channel blockers activate an endogenous cationic current in oocytes of Bufo arenarum.
Cavarra, M S; del Mónaco, S M; Kotsias, B A
2004-07-01
A two-electrode, voltage-clamp technique was used to measure the effect of the Cl(-) channel blockers, 9-anthracene carboxylic acid and niflumic acid, upon the ionic currents of oocytes of the South American toad Bufo arenarum. The main results were: (1) both blockers produced a reversible increase of the outward currents on a dose-dependent manner; (2) the activated outward current was voltage dependent; (3) the 9-anthracene carboxylic acid-sensitive current was blocked with barium; and (4) the effect of 9-anthracene carboxylic acid was more pronounced in a zero-K(+) solution than in standard (2 mmol l(-1)) or high (20 mmol l(-1)) K(+) solutions, indicating that a K(+) conductance is activated. The effect of the Cl(-) channel blockers could be due to a direct interaction with endogenous cationic channels. Another possible explanation is that Cl(-) that enter the cell during depolarizing steps in control solution inhibit this cationic conductance; thus, the blockade of Cl(-) channels by 9-anthracene carboxylic acid and niflumic acid would remove this inhibition, allowing the cationic current to flow freely.
Excess surface area in bioelectrochemical systems causes ion transport limitations.
Harrington, Timothy D; Babauta, Jerome T; Davenport, Emily K; Renslow, Ryan S; Beyenal, Haluk
2015-05-01
We investigated ion transport limitations on 3D graphite felt electrodes by growing Geobacter sulfurreducens biofilms with advection to eliminate external mass transfer limitations. We characterized ion transport limitations by: (i) showing that serially increasing NaCl concentration up to 200 mM increased current linearly up to a total of +273% vs. 0 mM NaCl under advective conditions; (ii) growing the biofilm with a starting concentration of 200 mM NaCl, which led to a maximum current increase of 400% vs. current generation without NaCl, and (iii) showing that un-colonized surface area remained even after steady-state current was reached. After accounting for iR effects, we confirmed that the excess surface area existed despite a non-zero overpotential. The fact that the biofilm was constrained from colonizing and producing further current under these conditions confirmed the biofilms under study here were ion transport-limited. Our work demonstrates that the use of high surface area electrodes may not increase current density when the system design allows ion transport limitations to become dominant. © 2014 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Avtaeva, Svetlana
2014-04-01
Time-dependent characteristics of the dielectric barrier discharge in Xe-Cl2 mixture at chlorine concentration of 0.5% and kinetic processes governing the generation of XeCl∗ molecules are studied using the 1D fluid model. It is shown that at low voltage amplitude (5 kV) a one-peak mode of the discharge is observed and at high voltage amplitude (7 kV) a two-peak mode of the discharge appears. The radiation power of the XeCl∗ band increases with amplitude of the supply voltage. It is demonstrated that the harpoon reaction Xe∗ + Cl2 → XeCl∗ + Cl provides the greatest contribution into generation of XeCl∗ exciplex molecules during short current pulses and the ion-ion recombination Xe+ 2 + Cl- → XeCl* + Xe provides the greatest contribution during afterglow. Quenching of XeCl∗ molecules is a result of the radiative decay XeCl∗ → Xe + Cl + hv (308 nm). During current spike the great contribution into quenching of XeCl∗ provides also the dissociative ionization e + XeCl∗ → Xe+ + Cl + 2e.
Superstatistics analysis of the ion current distribution function: Met3PbCl influence study.
Miśkiewicz, Janusz; Trela, Zenon; Przestalski, Stanisław; Karcz, Waldemar
2010-09-01
A novel analysis of ion current time series is proposed. It is shown that higher (second, third and fourth) statistical moments of the ion current probability distribution function (PDF) can yield new information about ion channel properties. The method is illustrated on a two-state model where the PDF of the compound states are given by normal distributions. The proposed method was applied to the analysis of the SV cation channels of vacuolar membrane of Beta vulgaris and the influence of trimethyllead chloride (Met(3)PbCl) on the ion current probability distribution. Ion currents were measured by patch-clamp technique. It was shown that Met(3)PbCl influences the variance of the open-state ion current but does not alter the PDF of the closed-state ion current. Incorporation of higher statistical moments into the standard investigation of ion channel properties is proposed.
Miranda, Daniel R; Wong, Monica; Romer, Shannon H; McKee, Cynthia; Garza-Vasquez, Gabriela; Medina, Alyssa C; Bahn, Volker; Steele, Andrew D; Talmadge, Robert J; Voss, Andrew A
2017-01-01
Huntington's disease (HD) patients suffer from progressive and debilitating motor dysfunction. Previously, we discovered reduced skeletal muscle chloride channel (ClC-1) currents, inwardly rectifying potassium (Kir) channel currents, and membrane capacitance in R6/2 transgenic HD mice. The ClC-1 loss-of-function correlated with increased aberrant mRNA processing and decreased levels of full-length ClC-1 mRNA (Clcn1 gene). Physiologically, the resulting muscle hyperexcitability may help explain involuntary contractions of HD. In this study, the onset and progression of these defects are investigated in R6/2 mice, ranging from 3 wk old (presymptomatic) to 9-13 wk old (late-stage disease), and compared with age-matched wild-type (WT) siblings. The R6/2 ClC-1 current density and level of aberrantly spliced Clcn1 mRNA remain constant with age. In contrast, the ClC-1 current density increases, and the level of aberrantly spliced Clcn1 mRNA decreases with age in WT mice. The R6/2 ClC-1 properties diverge from WT before the onset of motor symptoms, which occurs at 5 wk of age. The relative decrease in R6/2 muscle capacitance also begins in 5-wk-old mice and is independent of fiber atrophy. Kir current density is consistently lower in R6/2 compared with WT muscle. The invariable R6/2 ClC-1 properties suggest a disruption in muscle maturation, which we confirm by measuring elevated levels of neonatal myosin heavy chain (MyHC) in late-stage R6/2 skeletal muscle. Similar changes in ClC-1 and MyHC isoforms in the more slowly developing Q175 HD mice suggest an altered maturational state is relevant to adult-onset HD. Finally, we find nuclear aggregates of muscleblind-like protein 1 without predominant CAG repeat colocalization in R6/2 muscle. This is unlike myotonic dystrophy, another trinucleotide repeat disorder with similar ClC-1 defects, and suggests a novel mechanism of aberrant mRNA splicing in HD. These early and progressive skeletal muscle defects reveal much needed peripheral biomarkers of disease progression and better elucidate the mechanism underlying HD myopathy. © 2017 Miranda et al.
80 A/cm2 electron beams from metal targets irradiated by KrCl and XeCl excimer lasers
NASA Astrophysics Data System (ADS)
Beloglazov, A.; Martino, M.; Nassisi, V.
1996-05-01
Due to the growing demand for high-current and long-duration electron-beam devices, laser electron sources were investigated in our laboratory. Experiments on electron-beam generation and propagation from aluminium and copper targets illuminated by XeCl (308 nm) and KrCl (222 nm) excimer lasers, were carried out under plasma ignition due to laser irradiation. This plasma supplied a spontaneous accelerating electric field of about 370 kV/m without an external accelerating voltage. By applying the modified one-dimensional Poisson equation, we computed the expected current and we also estimated the plasma concentration during the accelerating process. At 40 kV of accelerating voltage, an output current pulse of about 80 A/cm2 was detected from an Al target irradiated by the shorter wavelength laser.
The Mineralogy of Microbiologically Influenced Corrosion
2015-01-01
cathodically active). The biomineralization rate and the corrosion current control oxide accumulation. Localized corrosion current that exceeds the... phosphate ). Localized corrosion would not readily occur unless Cl- was the predominant anion in the medium. They concluded that the Cl- concentration...transforms into goethite and/or hematite over time. For mild steel corrosion under anodic control , manganese oxides elevate con-osion current, but will
Guzmán-Duque, Fernando L; Palma-Goyes, Ricardo E; González, Ignacio; Peñuela, Gustavo; Torres-Palma, Ricardo A
2014-08-15
Taking crystal violet (CV) dye as pollutant model, the electrode, electrolyte and current density (i) relationship for electro-degrading organic molecules is discussed. Boron-doped diamond (BDD) or Iridium dioxide (IrO2) used as anode materials were tested with Na2SO4 or NaCl as electrolytes. CV degradation and generated oxidants showed that degradation pathways and efficiency are strongly linked to the current density-electrode-electrolyte interaction. With BDD, the degradation pathway depends on i: If i
Inhibition of GABA-gated chloride channels by 12,14-dichlorodehydroabietic acid in mammalian brain
Nicholson, Russell A; Lees, George; Zheng, Jian; Verdon, Bernard
1999-01-01
12,14-dichlorodehydroabietic acid (12,14-Cl2DHA) reduced GABA-stimulated uptake of 36Cl− into mouse brain synaptoneurosomes suggesting inhibition of mammalian GABAA receptor function. 12,14-Cl2DHA did not affect the binding of [3H]-muscimol to brain membranes but displaced specifically bound [3H]-EBOB. The inhibitory effect on [3H]-EBOB binding was not reversible. 12,14-Cl2DHA reduced the availability of [3H]-EBOB binding sites (Bmax) without changing the KD of the radioligand for remaining sites. 12,14-Cl2DHA did not affect the rate of association of [3H]-EBOB with its chloride channel receptor, but increased the initial rate of [3H]-EBOB dissociation. 12,14-Cl2DHA enhanced the incidence of EPSCs when rapidly applied to cultured rat cortical neurones. Longer exposures produced block of IPSCs with marked increases in the frequency of EPSCs and min EPSCs. 12,14-Cl2DHA also irreversibly suppressed chloride currents evoked by pulses of exogenous GABA in these cells. Ultimately, 12,14-Cl2DHA inhibited all synaptic traffic and action currents in current clamped cells indicating that, in contrast to picrotoxinin (which causes paroxysmal bursting), it is not fully selective for the GABAA receptor-chloride channel complex. The depolarizing block seen with 12,14-Cl2DHA in amphotericin-perforated preparations implicates loss of Ca2+ buffering in the polarity change and this may account for inhibition of spontaneous action potentials. Our investigation demonstrates that 12,14-Cl2DHA blocks GABA-dependent chloride entry in mammalian brain and operates as a non-competitive insurmountable GABAA antagonist. The mechanism likely involves either irreversible binding of 12,14-Cl2DHA to the trioxabicyclooctane recognition site or a site that is allosterically coupled to it. We cannot exclude, however, the possibility that 12,14-Cl2DHA causes localized proteolysis or more extensive conformational change within a critical subunit of the chloride channel. PMID:10204999
Test results of a 20 kA high temperature superconductor current lead using REBCO tapes
NASA Astrophysics Data System (ADS)
Heller, R.; Fietz, W. H.; Gröner, F.; Heiduk, M.; Hollik, M.; Lange, C.; Lietzow, R.
2018-05-01
The Karlsruhe Institute of Technology has developed a 20 kA high temperature superconductor (HTS) current lead (CL) using the second generation material REBCO, as industry worldwide concentrate on the production of this material. The aim was to demonstrate the possibility of replacing the Bi-2223/AgAu tapes by REBCO tapes, while for easy comparison of results, all other components are copies of the 20 kA HTS CL manufactured for the satellite tokamak JT-60SA. After the manufacture of all CL components including the newly developed REBCO module, the assembly of the CL has been executed at KIT and an experiment has been carried out in the CuLTKa test facility where the REBCO CL was installed and connected to a JT-60SA CL via a superconducting bus bar. The experiment covers steady state operation up to 20 kA, pulsed operation, measurement of the heat load at 4.5 K end, loss-of-flow-accident simulations, and quench performance studies. Here the results of these tests are reported and directly compared to those of the JT-60SA CL.
Novel CLCNKB mutations causing Bartter syndrome affect channel surface expression.
Keck, Mathilde; Andrini, Olga; Lahuna, Olivier; Burgos, Johanna; Cid, L Pablo; Sepúlveda, Francisco V; L'hoste, Sébastien; Blanchard, Anne; Vargas-Poussou, Rosa; Lourdel, Stéphane; Teulon, Jacques
2013-09-01
Mutations in the CLCNKB gene encoding the ClC-Kb Cl(-) channel cause Bartter syndrome, which is a salt-losing renal tubulopathy. Here, we investigate the functional consequences of seven mutations. When expressed in Xenopus laevis oocytes, four mutants carried no current (c.736G>C, p.Gly246Arg; c.1271G>A, p.Gly424Glu; c.1313G>A, p.Arg438His; c.1316T>C, p.Leu439Pro), whereas others displayed a 30%-60% reduction in conductance as compared with wild-type ClC-Kb (c.242T>C, p.Leu81Pro; c.274C>T, p.Arg92Trp; c.1052G>C, p.Arg351Pro). Anion selectivity and sensitivity to external Ca(2+) and H(+), typical of the ClC-Kb channel, were not modified in the partially active mutants. In oocytes, we found that all the mutations reduced surface expression with a profile similar to that observed for currents. In HEK293 cells, the currents in the mutants had similar profiles to those obtained in oocytes, except for p.Leu81Pro, which produced no current. Furthermore, p.Arg92Trp and p.Arg351Pro mutations did not modify the unit-conductance of closely related ClC-K1. Western blot analysis in HEK293 cells showed that ClC-Kb protein abundance was lower for the nonconducting mutants but similar to wild-type for other mutants. Overall, two classes of mutants can be distinguished: nonconducting mutants associated with low total protein expression, and partially conducting mutants with unaltered channel properties and ClC-Kb protein abundance. © 2013 WILEY PERIODICALS, INC.
Minhas, Preet; Bansal, Varun; Patel, Jinal; Ho, Johnson S; Diaz, Julian; Datta, Abhishek; Bikson, Marom
2010-07-15
Transcutaneous electrical stimulation is applied in a range of biomedical applications including transcranial direct current stimulation (tDCS). tDCS is a non-invasive procedure where a weak direct current (<2 mA) is applied across the scalp to modulate brain function. High-definition tDCS (HD-tDCS) is a technique used to increase the spatial focality of tDCS by passing current across the scalp using <12 mm diameter electrodes. The purpose of this study was to design and optimize "high-definition" electrode-gel parameters for electrode durability, skin safety and subjective pain. Anode and cathode electrode potential, temperature, pH and subjective sensation over time were assessed during application of 2 mA direct current, for up to 22 min on agar gel or subject forearms. A selection of five types of solid-conductors (Ag pellet, Ag/AgCl pellet, rubber pellet, Ag/AgCl ring and Ag/AgCl disc) and seven conductive gels (Signa, Spectra, Tensive, Redux, BioGel, Lectron and CCNY-4) were investigated. The Ag/AgCl ring in combination with CCNY-4 gel resulted in the most favorable outcomes. Under anode stimulations, electrode potential and temperature rises were generally observed in all electrode-gel combinations except for Ag/AgCl ring and disc electrodes. pH remained constant for all solid-conductors except for both Ag and rubber pellet electrodes with Signa and CCNY-4 gels. Sensation ratings were independent of stimulation polarity. Ag/AgCl ring electrodes were found to be the most comfortable followed by Ag, rubber and Ag/AgCl pellet electrodes across all gels. Copyright 2010 Elsevier B.V. All rights reserved.
Minhas, Preet; Bansal, Varun; Patel, Jinal; Ho, Johnson S.; Diaz, Julian; Datta, Abhishek; Bikson, Marom
2010-01-01
Transcutaneous electrical stimulation is applied in a range of biomedical applications including Transcranial Direct Current Stimulation (tDCS). tDCS is a non-invasive procedure where a weak direct current (<2 mA) is applied across the scalp to modulate brain function. High-Definition tDCS (HD-tDCS) is a technique used to increase the spatial focality of tDCS by passing current across the scalp using <12 mm diameter electrodes. The purpose of this study was to design and optimize “high-definition” electrode-gel parameters for electrode durability, skin safety, and subjective pain. Anode and cathode electrode potential, temperature, pH, and subjective sensation over time were assessed during application of 2 mA direct current, for up to 22 minutes on agar gel or subject forearms. A selection of 5 types of solid-conductors (Ag pellet, Ag/AgCl pellet, Rubber pellet, Ag/AgCl ring, and Ag/AgCl disc) and 7 conductive gels (Signa, Spectra, Tensive, Redux, BioGel, Lectron, and CCNY-4) were investigated. The Ag/AgCl ring in combination with CCNY-4 gel resulted in the most favorable outcomes. Under anode stimulations, electrode potential and temperature rises were generally observed in all electrode-gel combinations except for Ag/AgCl ring and disc electrodes. pH remained constant for all solid-conductors except for both Ag and Rubber pellet electrodes with Signa and CCNY-4 gels. Sensation ratings were independent of stimulation polarity. Ag/AgCl ring electrodes were found to be the most comfortable followed by Ag, Rubber, and Ag/AgCl pellet electrodes across all gels. PMID:20488204
Miranda, Daniel R.; Wong, Monica; Romer, Shannon H.; McKee, Cynthia; Garza-Vasquez, Gabriela; Medina, Alyssa C.; Bahn, Volker; Steele, Andrew D.; Talmadge, Robert J.
2017-01-01
Huntington’s disease (HD) patients suffer from progressive and debilitating motor dysfunction. Previously, we discovered reduced skeletal muscle chloride channel (ClC-1) currents, inwardly rectifying potassium (Kir) channel currents, and membrane capacitance in R6/2 transgenic HD mice. The ClC-1 loss-of-function correlated with increased aberrant mRNA processing and decreased levels of full-length ClC-1 mRNA (Clcn1 gene). Physiologically, the resulting muscle hyperexcitability may help explain involuntary contractions of HD. In this study, the onset and progression of these defects are investigated in R6/2 mice, ranging from 3 wk old (presymptomatic) to 9–13 wk old (late-stage disease), and compared with age-matched wild-type (WT) siblings. The R6/2 ClC-1 current density and level of aberrantly spliced Clcn1 mRNA remain constant with age. In contrast, the ClC-1 current density increases, and the level of aberrantly spliced Clcn1 mRNA decreases with age in WT mice. The R6/2 ClC-1 properties diverge from WT before the onset of motor symptoms, which occurs at 5 wk of age. The relative decrease in R6/2 muscle capacitance also begins in 5-wk-old mice and is independent of fiber atrophy. Kir current density is consistently lower in R6/2 compared with WT muscle. The invariable R6/2 ClC-1 properties suggest a disruption in muscle maturation, which we confirm by measuring elevated levels of neonatal myosin heavy chain (MyHC) in late-stage R6/2 skeletal muscle. Similar changes in ClC-1 and MyHC isoforms in the more slowly developing Q175 HD mice suggest an altered maturational state is relevant to adult-onset HD. Finally, we find nuclear aggregates of muscleblind-like protein 1 without predominant CAG repeat colocalization in R6/2 muscle. This is unlike myotonic dystrophy, another trinucleotide repeat disorder with similar ClC-1 defects, and suggests a novel mechanism of aberrant mRNA splicing in HD. These early and progressive skeletal muscle defects reveal much needed peripheral biomarkers of disease progression and better elucidate the mechanism underlying HD myopathy. PMID:27899419
Inhibition of GABA-gated chloride channels by 12,14-dichlorodehydroabietic acid in mammalian brain.
Nicholson, R A; Lees, G; Zheng, J; Verdon, B
1999-03-01
1. 12,14-dichlorodehydroabietic acid (12,14-Cl2DHA) reduced GABA-stimulated uptake of 36Cl- into mouse brain synaptoneurosomes suggesting inhibition of mammalian GABA(A) receptor function. 2. 12,14-Cl2DHA did not affect the binding of [3H]-muscimol to brain membranes but displaced specifically bound [3H]-EBOB. The inhibitory effect on [3H]-EBOB binding was not reversible. 12,14-Cl2DHA reduced the availability of [3H]-EBOB binding sites (Bmax) without changing the KD of the radioligand for remaining sites. 12,14-Cl2DHA did not affect the rate of association of [3H]-EBOB with its chloride channel receptor, but increased the initial rate of [3H]-EBOB dissociation. 3. 12,14-Cl2DHA enhanced the incidence of EPSCs when rapidly applied to cultured rat cortical neurones. Longer exposures produced block of IPSCs with marked increases in the frequency of EPSCs and min EPSCs. 12,14-Cl2DHA also irreversibly suppressed chloride currents evoked by pulses of exogenous GABA in these cells. 4. Ultimately, 12,14-Cl2DHA inhibited all synaptic traffic and action currents in current clamped cells indicating that, in contrast to picrotoxinin (which causes paroxysmal bursting), it is not fully selective for the GABA(A) receptor-chloride channel complex. 5. The depolarizing block seen with 12,14-Cl2DHA in amphotericin-perforated preparations implicates loss of Ca2+ buffering in the polarity change and this may account for inhibition of spontaneous action potentials. 6. Our investigation demonstrates that 12,14-Cl2DHA blocks GABA-dependent chloride entry in mammalian brain and operates as a non-competitive insurmountable GABA(A) antagonist. The mechanism likely involves either irreversible binding of 12,14-Cl2DHA to the trioxabicyclooctane recognition site or a site that is allosterically coupled to it. We cannot exclude, however, the possibility that 12,14-Cl2DHA causes localized proteolysis or more extensive conformational change within a critical subunit of the chloride channel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaltry, Michael R.; Yoo, Tae-Sic; Fredrickson, Guy L.
2017-09-12
Cyclic voltammetry and chronopotentiometry tests were applied to molten LiCl-KCl eutectic at 500 °C including amounts of ScCl 3 and YCl 3. The purpose of the testing was to observe the effect of applied electrical current on the codeposition of scandium and yttrium, which were chosen as surrogate elements for uranium and plutonium, respectively. Features of the work were to vary the concentration of ScCl 3 (at relatively low concentrations) as well as varying the applied current, all with a fixed concentration of YCl 3. Results of the experiments could provide insight of uranium electrorefining and may provide evidence, whichmore » suggests the electrorefiner could be operated at lower UCl 3 concentration whereby codeposition (U and Pu) could be more effectively controlled.« less
FIB-SEM cathodoluminescence tomography: practical and theoretical considerations.
De Winter, D A M; Lebbink, M N; Wiggers De Vries, D F; Post, J A; Drury, M R
2011-09-01
Focused ion beam-scanning electron microscope (FIB-SEM) tomography is a powerful application in obtaining three-dimensional (3D) information. The FIB creates a cross section and subsequently removes thin slices. The SEM takes images using secondary or backscattered electrons, or maps every slice using X-rays and/or electron backscatter diffraction patterns. The objective of this study is to assess the possibilities of combining FIB-SEM tomography with cathodoluminescence (CL) imaging. The intensity of CL emission is related to variations in defect or impurity concentrations. A potential problem with FIB-SEM CL tomography is that ion milling may change the defect state of the material and the CL emission. In addition the conventional tilted sample geometry used in FIB-SEM tomography is not compatible with conventional CL detectors. Here we examine the influence of the FIB on CL emission in natural diamond and the feasibility of FIB-SEM CL tomography. A systematic investigation establishes that the ion beam influences CL emission of diamond, with a dependency on both the ion beam and electron beam acceleration voltage. CL emission in natural diamond is enhanced particularly at low ion beam and electron beam voltages. This enhancement of the CL emission can be partly explained by an increase in surface defects induced by ion milling. CL emission enhancement could be used to improve the CL image quality. To conduct FIB-SEM CL tomography, a recently developed novel specimen geometry is adopted to enable sequential ion milling and CL imaging on an untilted sample. We show that CL imaging can be manually combined with FIB-SEM tomography with a modified protocol for 3D microstructure reconstruction. In principle, automated FIB-SEM CL tomography should be feasible, provided that dedicated CL detectors are developed that allow subsequent milling and CL imaging without manual intervention, as the current CL detector needs to be manually retracted before a slice can be milled. Due to the required high electron beam acceleration voltage for CL emission, the resolution for FIB-SEM CL tomography is currently limited to several hundreds of nm in XY and up to 650 nm in Z for diamonds. Opaque materials are likely to have an improved Z resolution, as CL emission generated deeper in the material is not able to escape from it. © 2011 The Authors Journal of Microscopy © 2011 Royal Microscopical Society.
Inhibition of ATP Synthase by Chlorinated Adenosine Analogue
Chen, Lisa S.; Nowak, Billie J.; Ayres, Mary L.; Krett, Nancy L.; Rosen, Steven T.; Zhang, Shuxing; Gandhi, Varsha
2009-01-01
8-Chloroadenosine (8-Cl-Ado) is a ribonucleoside analogue that is currently in clinical trial for chronic lymphocytic leukemia. Based on the decline in cellular ATP pool following 8-Cl-Ado treatment, we hypothesized that 8-Cl-ADP and 8-Cl-ATP may interfere with ATP synthase, a key enzyme in ATP production. Mitochondrial ATP synthase is composed of two major parts; FO intermembrane base and F1 domain, containing α and β subunits. Crystal structures of both α and β subunits that bind to the substrate, ADP, are known in tight binding (αdpβdp) and loose binding (αtpβtp) states. Molecular docking demonstrated that 8-Cl-ADP/8-Cl-ATP occupied similar binding modes as ADP/ATP in the tight and loose binding sites of ATP synthase, respectively, suggesting that the chlorinated nucleotide metabolites may be functional substrates and inhibitors of the enzyme. The computational predictions were consistent with our whole cell biochemical results. Oligomycin, an established pharmacological inhibitor of ATP synthase, decreased both ATP and 8-Cl-ATP formation from exogenous substrates, however, did not affect pyrimidine nucleoside analogue triphosphate accumulation. Synthesis of ATP from ADP was inhibited in cells loaded with 8-Cl-ATP. These biochemical studies are in consent with the computational modeling; in the αtpβtp state 8-Cl-ATP occupies similar binding as ANP, a non-hydrolyzable ATP mimic that is a known inhibitor. Similarly, in the substrate binding site (αdpβdp) 8-Cl-ATP occupies a similar position as ATP mimic ADP-BeF3 −. Collectively, our current work suggests that 8-Cl-ADP may serve as a substrate and the 8-Cl-ATP may be an inhibitor of ATP synthase. PMID:19477165
Removal of lindane wastes by advanced electrochemical oxidation.
Dominguez, Carmen M; Oturan, Nihal; Romero, Arturo; Santos, Aurora; Oturan, Mehmet A
2018-07-01
The effective removal of recalcitrant organochlorine pesticides including hexachlorocyclohexane (HCH) present in a real groundwater coming from a landfill of an old lindane (γ-HCH) factory was performed by electrochemical oxidation using a BDD anode and a carbon felt cathode. Groundwater (ΣHCHs = 0.42 mg L -1 , TOC 0 = 9 mg L -1 , pH 0 = 7, conductivity = 3.7 mS cm -1 ) was treated as received, achieving the complete depletion of the HCH isomers and a mineralization degree of 90% at 4 h electrolysis at constant current of 400 mA. Initial groundwater contains high chloride concentration (Cl 0 - = 630 mg L -1 ) that is progressively decreased due to its oxidation to different oxychlorine species: Cl 2 , HClO, ClO - , ClO 2 - ClO 3 - and ClO 4 - some of them (Cl 2 , HClO, ClO - ) playing an important role in the oxidation of organic pollutants. The oxidation rate of chloride (and its oxidized intermediates) depends on the applied current value. Although some of the species generated from them are active oxidants, the presence of inorganic salts is detrimental to the efficiency of the electrochemical process when working at current densities above 100 mA due to the high consumption of hydroxyl radicals in wasting reactions. The initial organic carbon content is not crucial for the extension of the process but high organic loads are more profitable for cost effectiveness. The addition of a supporting electrolyte to the solution could be interesting since it increases the conductivity, reducing the cell potential and therefore, decreasing the energy consumption. Copyright © 2018 Elsevier Ltd. All rights reserved.
A high performance hybrid battery based on aluminum anode and LiFePO4 cathode.
Sun, Xiao-Guang; Bi, Zhonghe; Liu, Hansan; Fang, Youxing; Bridges, Craig A; Paranthaman, M Parans; Dai, Sheng; Brown, Gilbert M
2016-01-28
A novel hybrid battery utilizing an aluminum anode, a LiFePO4 cathode and an acidic ionic liquid electrolyte based on 1-ethyl-3-methylimidazolium chloride (EMImCl) and aluminum trichloride (AlCl3) (EMImCl-AlCl3, 1-1.1 in molar ratio) with or without LiAlCl4 is proposed. The hybrid ion battery delivers an initial high capacity of 160 mA h g(-1) at a current rate of C/5. It also shows good rate capability and cycling performance.
A high performance hybrid battery based on aluminum anode and LiFePO 4 cathode
Sun, Xiao-Guang; Bi, Zhonghe; Liu, Hansan; ...
2015-12-07
A unique battery hybrid utilizes an aluminum anode, a LiFePO 4 cathode and an acidic ionic liquid electrolyte based on 1-ethyl-3-methylimidazolium chloride (EMImCl) and aluminum trichloride (AlCl 3) (EMImCl-AlCl 3, 1-1.1 in molar ratio) with or without LiAlCl 4 is proposed. This hybrid ion battery delivers an initial high capacity of 160 mAh g -1 at a current rate of C/5. It also shows good rate capability and cycling performance.
NASA Astrophysics Data System (ADS)
Wu, Z.; Wang, A.; Ling, Z.; Li, B.; Zhang, J.; Xu, W.
2015-12-01
The directly measured high ClO4-/Cl- ratio (4.3-8.75) at Phoenix site and the implied ClO4- existences at Curiosity and Viking sites reminded Mars science community on the importance of (1) the global distribution of ClO4-/Cl- ratio; (2) the mechanisms that are responsible for Cl- to ClOy- (y=1,2,3,4) transformation; and (3) the current and historical Cl- cycle on Mars. Our goal is to study electrostatic discharge (ESD) in a Mars Chamber, as one of the four proposed mechanisms for the formation of Martian perchlorate. ESD was anticipated during dust storm/devil on Mars. A model estimated that ESD generated oxidants can be 200 times of those produced by photochemistry. Our study is conducted in three steps. Firstly, oxychlorine salts, NaClOy, Mg(ClO4)2.xH2O (x=0,6), and Ca(ClO4)2.xH2O (x=0,4), were analyzed at ambient conditions using MIR, NIR (1.4-2.6 µm), Raman spectroscopy, and in a Mars Chamber using in-situ NIR and Raman spectroscopy. Our purpose is to understand their phase transition and spectral change at Mars pressure (P) and temperature (T) conditions. We have found: (1) Under current surface/subsurface P-T conditions in mid-latitudes/equatorial regions on Mars, Mg(ClO4)2.6H2O and Ca(ClO4)2.4H2O are stable, while the hydration degree of NaClO4.H2O would increase at T<-30℃ and decrease in 5
ClC-7 is a slowly voltage-gated 2Cl−/1H+-exchanger and requires Ostm1 for transport activity
Leisle, Lilia; Ludwig, Carmen F; Wagner, Florian A; Jentsch, Thomas J; Stauber, Tobias
2011-01-01
Mutations in the ClC-7/Ostm1 ion transporter lead to osteopetrosis and lysosomal storage disease. Its lysosomal localization hitherto precluded detailed functional characterization. Using a mutated ClC-7 that reaches the plasma membrane, we now show that both the aminoterminus and transmembrane span of the Ostm1 β-subunit are required for ClC-7 Cl−/H+-exchange, whereas the Ostm1 transmembrane domain suffices for its ClC-7-dependent trafficking to lysosomes. ClC-7/Ostm1 currents were strongly outwardly rectifying owing to slow gating of ion exchange, which itself displays an intrinsically almost linear voltage dependence. Reversal potentials of tail currents revealed a 2Cl−/1H+-exchange stoichiometry. Several disease-causing CLCN7 mutations accelerated gating. Such mutations cluster to the second cytosolic cystathionine-β-synthase domain and potential contact sites at the transmembrane segment. Our work suggests that gating underlies the rectification of all endosomal/lysosomal CLCs and extends the concept of voltage gating beyond channels to ion exchangers. PMID:21527911
Wojciechowski, Daniel; Thiemann, Stefan; Schaal, Christina; Rahtz, Alina; de la Roche, Jeanne; Begemann, Birgit; Becher, Toni; Fischer, Martin
2018-06-01
ClC-K channels belong to the CLC family of chloride channels and chloride/proton antiporters. They contribute to sodium chloride reabsorption in Henle's loop of the kidney and to potassium secretion into the endolymph by the stria vascularis of the inner ear. Their accessory subunit barttin stabilizes the ClC-K/barttin complex, promotes its insertion into the surface membrane, and turns the pore-forming subunits into a conductive state. Barttin mutations cause Bartter syndrome type IV, a salt-wasting nephropathy with sensorineural deafness. Here, studying ClC-K/barttin channels heterologously expressed in MDCK-II and HEK293T cells with confocal imaging and patch-clamp recordings, we demonstrate that the eight-amino-acids-long barttin N terminus is required for channel trafficking and activation. Deletion of the complete N terminus (Δ2-8 barttin) retained barttin and human hClC-Ka channels in intracellular compartments. Partial N-terminal deletions did not compromise subcellular hClC-Ka trafficking but drastically reduced current amplitudes. Sequence deletions encompassing Thr-6, Phe-7, or Arg-8 in barttin completely failed to activate hClC-Ka. Analyses of protein expression and whole-cell current noise revealed that inactive channels reside in the plasma membrane. Substituting the deleted N terminus with a polyalanine sequence was insufficient for recovering chloride currents, and single amino acid substitutions highlighted that the correct sequence is required for proper function. Fast and slow gate activation curves obtained from rat V166E rClC-K1/barttin channels indicated that mutant barttin fails to constitutively open the slow gate. Increasing expression of barttin over that of ClC-K partially recovered this insufficiency, indicating that N-terminal modifications of barttin alter both binding affinities and gating properties. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
Inward current activated by carbachol in rat intestinal smooth muscle cells.
Ito, S; Ohta, T; Nakazato, Y
1993-01-01
1. Carbachol (0.1 mM or 10 microM)-evoked inward currents were studied with standard and perforated whole-cell patch clamp techniques in smooth muscle cells isolated from rat small intestine. The intracellular free Ca2+ concentration was monitored simultaneously with the fura-2 method. 2. With a K(+)-containing pipette solution, carbachol produced an inward current at -60 mV and a large outward current at -20 mV. 3. When NaCl was substituted for KCl in the external and pipette solutions, carbachol elicited inward currents at holding potentials more inside-negative than 0 mV. The reversal potential of the carbachol-induced current altered when external chloride (-0.9 mV) was replaced by iodide (-21.2 mV), thiocyanate (-27.0 mV) and glutamate (18.2 mV). The carbachol-induced current at -60 mV was slightly decreased by the replacement of external NaCl with Tris-Cl. 4. The carbachol-induced inward current at -60 mV was accompanied by an increase in the intracellular concentration of free Ca2+. Both responses to carbachol were observed 2 min after exposure of the cells to a Ca(2+)-free solution containing 2 mM EGTA. 5. Intracellular application of heparin inhibited the inward current and Ca2+ transient responses to carbachol but not those to caffeine (10 mM). An inward current and Ca2+ transient were elicited after the patch membrane was ruptured at -60 mV, using a patch pipette containing inositol 1,4,5-trisphosphate (InsP3). 6. It is concluded that the carbachol-induced inward current is due to increases in membrane Cl- and Na+ conductances. Ca2+ released from InsP3-sensitive stores may play a role in increasing both conductances. PMID:7508506
LIU, LI; CAI, SIYI; QIU, GUIXING; LIN, JIN
2016-01-01
ClC-3 is a volume-sensitive chloride channel that is responsible for cell volume adjustment and regulatory cell volume decrease (RVD). In order to evaluate the effects of fluid shear stress (FSS) stimulation on the osteoblast ClC-3 chloride channel, MC3T3-E1 cells were stimulated by FSS in the experimental group. Fluorescence quantitative polymerase chain reaction was used to detect changes in ClC-3 mRNA expression, the chloride ion fluorescent probe N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide (MQAE) was used to detect the chloride channel activity, and whole-cell patch clamping was used to monitor the changes in the volume-sensitive chloride current activated by a hypotonic environment following mechanical stimulation. The results show that the expression of the osteoblast chloride channel ClC-3 was significantly higher in the FSS group compared with the control group. MQAE fluorescence intensity was significantly reduced in the FSS group compared to the control group, suggesting that mechanical stimulation increased chloride channel activity and increased the efflux of intracellular chloride ions. Image analysis of osteoblast volume changes showed that osteoblast RVD was enhanced by mechanical stimulation. Whole-cell patch clamping showed that the osteoblast volume-sensitive chloride current was larger in the stimulated group compared to the control group, suggesting that elevated ClC-3 chloride channel expression results in an increased volume-sensitive chloride current. In conclusion, FSS stimulation enhances the RVD of osteoblast cell by increasing the expression of the ClC-3 and enhancing the chloride channel activity. PMID:27073622
NASA Astrophysics Data System (ADS)
Shirahata, Yasuhiro; Oku, Takeo
2018-05-01
Microstructures, optical and photovoltaic properties of CH3NH3PbI3(1‑x)Cl x perovskite films with copper(I) thiocyanate (CuSCN) additive were investigated. The CuSCN-added CH3NH3PbI3(1‑x)Cl x films were prepared by a hot air blow-assisted spin-coating method. Current density–voltage characteristics of the photovoltaic device using the CuSCN-added CH3NH3PbI3(1‑x)Cl x light-absorbing layer showed increases in short-circuit current density, open-circuit voltage, which resulted in increase in the conversion efficiency. Microstructure analysis showed that the crystal structure of the CuSCN-added CH3NH3PbI3(1‑x)Cl x was a pseudocubic system. From these results, partial substitutions of Pb2+ and anions (I‑ and Cl‑) by Cu ions (Cu+ and Cu2+) and SCN‑, respectively, are considered to occur in the CuSCN-added CH3NH3PbI3(1‑x)Cl x films. Based on the obtained results, reaction mechanisms of the CH3NH3PbI3(1‑x)Cl x films with and without CuSCN additive were discussed.
ZnCl 2- and NH 4Cl-hydroponics gel electrolytes for zinc-carbon batteries
NASA Astrophysics Data System (ADS)
Khalid, N. H.; Ismail, Y. M. Baba; Mohamad, A. A.
Absorbency testing is used to determine the percentage of ZnCl 2 or NH 4Cl solution absorbed by a hydroponics gel (HPG). It is found that the absorbency of ZnCl 2 or NH 4Cl solution decreases with increasing solution concentration. The conductivity of ZnCl 2- and NH 4Cl-HPG electrolytes is dependent on the solution concentration. A mixture of salt solution with HPG yields excellent gel polymer electrolytes with conductivities of 0.026 and 0.104 S cm -1 at 3 M ZnCl 2 and 7 M NH 4Cl, respectively. These gel electrolytes are then used to produce zinc-carbon cells. The fabricated cells give capacities of 8.8 and 10.0 mAh, have an internal resistance of 25.4 and 19.8 Ω, a maximum power density of 12.7 and 12.2 mW cm -2, and a short-circuit current density of 29.1 and 33.9 mA cm -2 for ZnCl 2- and NH 4Cl-HPG electrolytes, respectively.
100 years of the physics of diodes
NASA Astrophysics Data System (ADS)
Zhang, Peng; Valfells, Ágúst; Ang, L. K.; Luginsland, J. W.; Lau, Y. Y.
2017-03-01
The Child-Langmuir Law (CL), discovered a century ago, gives the maximum current that can be transported across a planar diode in the steady state. As a quintessential example of the impact of space charge shielding near a charged surface, it is central to the studies of high current diodes, such as high power microwave sources, vacuum microelectronics, electron and ion sources, and high current drivers used in high energy density physics experiments. CL remains a touchstone of fundamental sheath physics, including contemporary studies of nanoscale quantum diodes and nano gap based plasmonic devices. Its solid state analog is the Mott-Gurney law, governing the maximum charge injection in solids, such as organic materials and other dielectrics, which is important to energy devices, such as solar cells and light emitting diodes. This paper reviews the important advances in the physics of diodes since the discovery of CL, including virtual cathode formation and extension of CL to multiple dimensions, to the quantum regime, and to ultrafast processes. We review the influence of magnetic fields, multiple species in bipolar flow, electromagnetic and time dependent effects in both short pulse and high frequency THz limits, and single electron regimes. Transitions from various emission mechanisms (thermionic-, field-, and photoemission) to the space charge limited state (CL) will be addressed, especially highlighting the important simulation and experimental developments in selected contemporary areas of study. We stress the fundamental physical links between the physics of beams to limiting currents in other areas, such as low temperature plasmas, laser plasmas, and space propulsion.
Li, Ya; Shi, Shaoyuan; Cao, Hongbin; Wu, Xinmin; Zhao, Zhijuan; Wang, Liying
2016-02-01
Simulated ammonium chloride wastewater was treated by a lab-scale bipolar membrane electrodialysis for the generation of HCl and NH3·H2O and desalination. The influence of initial concentration of NH4Cl, current density, salt solution volume, initial concentration of acid and base and membrane stack structure on the yields of HCl and NH3·H2O was investigated. The current efficiency and energy consumption were also examined under different conditions. The results showed that, at the current density of 48 mA/cm(2), the highest concentration of HCl and NH3·H2O with initial concentration of 110 g/L NH4Cl was 57.67 g/L and 45.85 g/L, respectively. Higher initial concentration of NH4Cl was favor to reduce unit energy consumption and increase current efficiency of the BMED system. The membrane stack voltage of BMED increased quickly under constant current when the concentration of NH4Cl contained in the solution of salt compartment was depleted below the "inflection point concentration" about 8000 mg/L. It means that the concentration of NH4Cl below 8000 mg/L was no longer suitable for BMED because of higher energy consumption. The HCl and NH3·H2O concentration increased more quickly following the increase of current density. When increasing the volume of NH4Cl, the concentration of HCl and NH3·H2O also increased. The high initial concentration of acid and base could improve the final concentration of them, while the growth rate was decreased. Compared with the BMED system with three compartments, the growth rate of HCl concentration with the two compartments was higher and its unit energy consumption was lower. It meant that the performance of the BMED system could be improved by optimizing operation conditions. The application feasibility of the generation of HCl and NH3·H2O and desalination of ammonium chloride wastewater by BMED was proved. Copyright © 2015 Elsevier Ltd. All rights reserved.
Keenan, Katherine; Avolio, Julie; Rueckes-Nilges, Claudia; Tullis, Elizabeth; Gonska, Tanja; Naehrlich, Lutz
2015-05-01
The current practice of averaging the nasal potential difference (NPD) results of right and left nostril measurements reduce inter-individual variability but may underestimate individual CFTR function. Best NPD response to Cl(-)-free and isoproterenol perfusion (=largest ΔPD(0Cl/Iso)) from the right and left nostril was compared to the average result in 13 cystic fibrosis (CF), 78 query-CF patients and 22 healthy controls from 2 cohorts. Despite moderate to good correlation (p<0.001) between right and left measured ΔPD(0Cl/Iso), we observed large differences in some individuals. A comparison of average versus best ΔPD(0Cl/Iso) showed only moderate agreement (Giessen κ=0.538; Toronto κ=0.607). Averaging ΔPD(0Cl/Iso) showed a lower composite chloride response compared to best ΔPD(0Cl/Iso) and altered diagnostic NPD interpretation in 30 of 113 (27%) subjects. The current practice of averaging the NPD results of right and left nostril measurements leads to an underestimation of the individual CFTR function and should be reconsidered. Copyright © 2014 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Rappleye, Devin; Simpson, Michael F.
2017-04-01
The application of the rotating cylinder electrode (RCE) to molten LiCl-KCl eutectic mixtures for electroanalytical measurements is presented. This enabled the measurement of the limiting current which was observed to follow a linear trend with the rotational rate raised to 0.64-0.65 power on average, which closely agrees with existing RCE mass-transfer correlations. This is the first publication of electroanalytical RCE measurements in LiCl-KCl eutectic based molten salt mixtures, to our knowledge. These measurements were made in mixtures of molten LiCl-KCl eutectic containing UCl3 and MgCl2. Kinetic parameters were calculated for Mg2+ in LiCl-KCl eutectic. The exchange current density (io) of Mg2+ deposition varied with mole fraction (x) according to io(A cm-2) = 1.64x0.689. The parameters from RCE measurements were also applied in an electrochemical co-deposition model entitled DREP to detect and predict the deposition rate of U and Mg. DREP succeeded in detecting the co-deposition of U and Mg, even when Mg constituted less than 0.5 wt% of the deposit.
NASA Astrophysics Data System (ADS)
Ravinder, T.; Ali, U. F. M.; Ridwan, F. M.; Ibrahim, N.; Azmi, N. H.
2017-06-01
The utilization of electrochemical process recovery involving low reactant concentrations of metal requires electrodes with high mass transport rates and specific surface areas. This is essential to increase cross-sectional current densities whilst optimizing the capital and operating costs. Experimental results demonstrated that Circulating Particulate Bed Reactor (CPBE) is suitable for the recovery of low concentrations of gold from aqueous chloride solution containing {{AuCl}}4- and {{AuCl}}2- of less than 0.5 mol m-3(< 102 g m-3). Elemental gold was successfully obtained on 0.5-1 mm gr particles in an electrochemical reactor incorporating a cation- permeable membrane and operated in bath recycle mode. Depletion to concentration < 5 × 10-3 mol m-3 (< 1 g m-3) appeared to be mass transport controlled at an applied potential of +0.20 V (SCE), specific electrical energy consumption (SEEC) of ca. 800-1300 kWh h (tonne Au)-1 for cell voltages (U) of 2.0-3.0 V, and fractional current efficiencies of ca. 0.95. However, atomic absorption and UV spectrophotometry established that as the ([{{AuCl}}4-+[{{AuCl}}2-]) concentration decayed, the [{{AuCl}}4-]:[{{AuCl}}2-] molar ratio changed. A multi-step mechanism for reduction of {{AuCl}}4- ions explained this behavior in terms of changing overpotentials for {{AuCl}}4- and {{AuCl}}2- reduction as total dissolved gold concentration decreased. In addition, SEM images confirmed that adherent and coherent Au deposits were achieved with CPBE for Au deposition under mass transport control at 0.20 V (SCE).
NASA Astrophysics Data System (ADS)
Conseil-Gudla, Hélène; Jellesen, Morten S.; Ambat, Rajan
2017-02-01
Corrosion reliability is a serious issue today for electronic devices, components, and printed circuit boards (PCBs) due to factors such as miniaturization, globalized manufacturing practices which can lead to process-related residues, and global usage effects such as bias voltage and unpredictable user environments. The investigation reported in this paper focuses on understanding the synergistic effect of such parameters, namely contamination, humidity, PCB surface finish, pitch distance, and potential bias on leakage current under different humidity levels, and electrochemical migration probability under condensing conditions. Leakage currents were measured on interdigitated comb test patterns with three different types of surface finish typically used in the electronics industry, namely gold, copper, and tin. Susceptibility to electrochemical migration was studied under droplet conditions. The level of base leakage current (BLC) was similar for the different surface finishes and NaCl contamination levels up to relative humidity (RH) of 65%. A significant increase in leakage current was found for comb patterns contaminated with NaCl above 70% to 75% RH, close to the deliquescent RH of NaCl. Droplet tests on Cu comb patterns with varying pitch size showed that the initial BLC before dendrite formation increased with increasing NaCl contamination level, whereas electrochemical migration and the frequency of dendrite formation increased with bias voltage. The effect of different surface finishes on leakage current under humid conditions was not very prominent.
Strigul, Nikolay; Braida, Washington; Christodoulatos, Christos; Balas, Wendy; Nicolich, Steven
2006-01-01
CL-20 is a relatively new energetic compound with applications in explosive and propellant formulations. Currently, information about the fate of CL-20 in ecological systems is scarce. The aim of this study is to evaluate the biodegradability of CL-20 in soil environments. Four soils were used where initial CL-20 concentrations (above water solubility) ranged from 125 to 1500 mg of CL-20 per kg dry soil (corresponding to the concentrations derived from unexploded ordnance, low order detonation, or manufacturing spills). CL-20 appears to be biodegradable in soil under anaerobic conditions, and additions of organic substrates can substantially accelerate this process. However, CL-20 is not degraded in soil under aerobic conditions kept in the dark at temperatures up to 30 degrees C without organic amendments. Additions of starch or cellulose promote the biodegradation of CL-20 under aerobic conditions. Soil microbial community mediated biodegradation and plant uptake appears to enhance CL-20 biodegradation, the latter suggesting a possible route for CL-20 to entry in the food chain.
Simultaneous specimen current and time-dependent cathodoluminescence measurements on gallium nitride
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campo, E. M., E-mail: e.campo@bangor.ac.uk; Hopkins, L.; Pophristic, M.
2016-06-28
Time-dependent cathodoluminescence (CL) and specimen current (SC) are monitored to evaluate trapping behavior and evolution of charge storage. Examination of CL and SC suggests that the near band edge emission in GaN is reduced primarily by the activation of traps upon irradiation, and Gallium vacancies are prime candidates. At the steady state, measurement of the stored charge by empiric-analytical methods suggests that all available traps within the interaction volume have been filled, and that additional charge is being stored interstitially, necessarily beyond the interaction volume. Once established, the space charge region is responsible for the steady state CL emission and,more » prior to build up, it is responsible for the generation of diffusion currents. Since the non-recombination effects resulting from diffusion currents that develop early on are analogous to those leading to device failure upon aging, this study is fundamental toward a holistic insight into optical properties in GaN.« less
Swelling-induced chloride current in glioblastoma proliferation, migration, and invasion.
Wong, Raymond; Chen, Wenliang; Zhong, Xiao; Rutka, James T; Feng, Zhong-Ping; Sun, Hong-Shuo
2018-01-01
Glioblastoma (GBM) remains as the most common and aggressive brain tumor. The survival of GBM has been linked to the aberrant activation of swelling-induced chloride current I Cl,swell . In this study, we investigated the effects of I Cl,swell on cell viability, proliferation, and migration in the human GBM cell lines, U251 and U87, using a combination of patch clamp electrophysiology, MTT, colony formation, wound healing assays and Western immunoblotting. First, we showed that the specific inhibitor of I Cl,swell , DCPIB, potently reduced the I Cl,swell in U87 cells. Next, in both U87 and U251 cells, we found that DCPIB reduced GBM viability, proliferation, colony formation, migration, and invasion. In addition, our Western immunoblot assay showed that DCPIB-treated U251 cells had a reduction in JAK2, STAT3, and Akt phosphorylation, thus, suggesting that DCPIB potentially suppresses GBM functions through inhibition of the JAK2/STAT3 and PI3K/Akt signaling pathways. Therefore, the I Cl,swell may be a potential drug target for GBM. © 2017 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Moore, H. J.
1991-01-01
Three distinct soillike materials sampled by the Viking landers (VL) on Mars are (in order of increasing strength): (1) drift; (2) crusty to cloddy; and (3) blocky. Relative strengths of these materials are manifested by footpad penetrations during landing (VL 1), depths of deep holes, motor currents during sampling, sampler backhoe penetrations, comminutor motor currents, impact pits, trench tailings, and successful acquisitions of the coarse fraction (only blocky material). Cementation by S Cl compounds probably contributes to the relative strengths. This is shown where the weight pct. of SO3 + Cl of each material is plotted against their relative strengths. A similar result is obtained using SO3 alone, but not with Cl which is deficient in VL 2 samples.
Revisiting the SOLVE ClOOCl and ClO measurements in consideration of the Pope et al., 2007 results.
NASA Astrophysics Data System (ADS)
Stimpfle, R. M.; Wilmouth, D. M.; Anderson, J. G.
2008-12-01
The interpretation of the SOLVE measurements of ClOOCl and ClO has recently acquired renewed interest with the publication of new ClOOCl cross section measurements (Pope et al, 2007) that are significantly smaller than expected. The SOLVE analysis showed agreement with J values based upon the JPL 2002 or Burkholder 1990 cross sections, dependent upon various values for the rate constant for dimer production. J values based upon Pope are currently not in agreement with the SOLVE observations and/or their analysis. As various hypotheses emerge to possibly rationalize the Pope results, it is worthwhile to consider two critical constraints that the SOLVE halogen data place on any newly considered Clx photochemistry. The first constraint is the lack of a detectable Cl atom signal in the observed background signal at the temperature used for thermal dissociation of ClOOCl. The second constraint is the observed SZA dependence of the partitioning of ClO and ClOOCl. Here we present evidence of the Cl atom constraint.
Molten Salt Electrolysis of MgCl2 in a Cell with Rapid Chlorine Removal Feature
NASA Astrophysics Data System (ADS)
Demirci, Gökhan; Karakaya, İshak
An experimental electrolytic magnesium production cell was designed to remove chlorine gas from the electrolyte rapidly and demonstrate the beneficial effects of reduced chlorine dissolution into the molten salt electrolyte. The back reaction that is the main cause of current losses in electrolytic magnesium production was reduced as a result of effective separation of electrode products and decreased contact time of chlorine gas with the electrolyte. Moreover, smaller inter electrode distances employed and lower chlorine gas present on the anode surface made it possible to work at low cell voltages. Electrolytic cell was tested at different current densities. Energy consumption of 7.0 kWh kg-1 Mg that is slightly above the theoretical minimum, 6.2 kWh kg-1 Mg, at 0.68 Acm-2 anodic current density was achieved for a MgCl2/NaCl/KCl electrolyte.
Wong, Raymond; Abussaud, Ahmed; Leung, Joseph Wh; Xu, Bao-Feng; Li, Fei-Ya; Huang, Sammen; Chen, Nai-Hong; Wang, Guan-Lei; Feng, Zhong-Ping; Sun, Hong-Shuo
2018-05-01
Activation of swelling-induced Cl - current (I Cl,swell ) during neonatal hypoxia-ischemia (HI) may induce brain damage. Hypoxic-ischemic brain injury causes chronic neurological morbidity in neonates as well as acute mortality. In this study, we investigated the role of I Cl,swell in hypoxic-ischemic brain injury using a selective blocker, 4-(2-butyl-6,7-dichloro-2-cyclopentylindan-1-on-5-yl) oxybutyric acid (DCPIB). In primary cultured cortical neurons perfusion of a 30% hypotonic solution activated I Cl,swell , which was completely blocked by the application of DCPIB (10 μmol/L). The role of I Cl,swell in neonatal hypoxic-ischemic brain injury in vivo was evaluated in a modified neonatal hypoxic-ischemic brain injury model. Before receiving the ischemic insult, the mouse pups were injected with DCPIB (10 mg/kg, ip). We found that pretreatment with DCPIB significantly reduced the brain damage assessed using TTC staining, Nissl staining and whole brain imaging, and improved the sensorimotor and vestibular recovery outcomes evaluated in neurobehavioural tests (i.e. geotaxis reflex, and cliff avoidance reflex). These results show that DCPIB has neuroprotective effects on neonatal hypoxic-ischemic brain injury, and that the I Cl,swell may serve as a therapeutic target for treatment of hypoxic-ischemic encephalopathy.
Fieber, L A; Adams, D J
1991-01-01
1. The properties of acetylcholine (ACh)-activated ion channels of parasympathetic neurones from neonatal rat cardiac ganglia grown in tissue culture were examined using patch clamp recording techniques. Membrane currents evoked by ACh were mimicked by nicotine, attenuated by neuronal bungarotoxin, and unaffected by atropine, suggesting that the ACh-induced currents are mediated by nicotinic receptor activation. 2. The current-voltage (I-V) relationship for whole-cell ACh-evoked currents exhibited strong inward rectification and a reversal (zero current) potential of -3 mV (NaCl outside, CsCl inside). The rectification was not alleviated by changing the main permeant cation or by removal of divalent cations from the intracellular or extracellular solutions. Unitary ACh-activated currents exhibited a linear I-V relationship with slope conductances of 32 pS in cell-attached membrane patches and 38 pS in excised membrane patches with symmetrical CsCl solutions. 3. Acetylcholine-induced currents were reversibly inhibited in a dose-dependent manner by the ganglionic antagonists, mecamylamine (Kd = 37 nM) and hexamethonium (IC50 approximately 1 microM), as well as by the neuromuscular relaxant, d-tubocurarine (Kd = 3 microM). Inhibition of ACh-evoked currents by hexamethonium could not be described by a simple blocking model for drug-receptor interaction. 4. The amplitude of the ionic current through the open channel was dependent on the extracellular Na+ concentration. The direction of the shift in reversal potential upon replacement of NaCl by mannitol indicates that the neuronal nicotinic receptor channel is cation selective and the magnitude suggests a high cation to anion permeability ratio. The cation permeability (PX/PNa) followed the ionic selectivity sequence Cs+ (1.06) greater than Na+ (1.0) greater than Ca2+ (0.93). Anion substitution experiments showed a relative anion permeability, PCl/PNa less than or equal to 0.05. 5. The nicotinic ACh-activated channels described mediate the responses of postganglionic parasympathetic neurones of the mammalian heart to vagal stimulation. PMID:1708819
Zakon, Yevgeni; Ronen, Zeev; Halicz, Ludwik; Gelman, Faina
2017-10-01
In the present study we propose a new analytical method for 37 Cl/ 35 Cl analysis in perchlorate by Ion Chromatography(IC) coupled to Multicollector Inductively Coupled Plasma Mass Spectrometry (MC-ICPMS). The accuracy of the analytical method was validated by analysis of international perchlorate standard materials USGS-37 and USGS -38; analytical precision better than ±0.4‰ was achieved. 37 Cl/ 35 Cl isotope ratio analysis in perchlorate during laboratory biodegradation experiment with microbial cultures enriched from the contaminated soil in Israel resulted in isotope enrichment factor ε 37 Cl = -13.3 ± 1‰, which falls in the range reported previously for perchlorate biodegradation by pure microbial cultures. The proposed analytical method may significantly simplify the procedure for isotope analysis of perchlorate which is currently applied in environmental studies. Copyright © 2017. Published by Elsevier Ltd.
Aoun, Joydeep; Hayashi, Mikio; Sheikh, Irshad Ali; Sarkar, Paramita; Saha, Tultul; Ghosh, Priyanka; Bhowmick, Rajsekhar; Ghosh, Dipanjan; Chatterjee, Tanaya; Chakrabarti, Pinak; Chakrabarti, Manoj K; Hoque, Kazi Mirajul
2016-12-23
Accessory cholera enterotoxin (Ace) of Vibrio cholerae has been shown to contribute to diarrhea. However, the signaling mechanism and specific type of Cl - channel activated by Ace are still unknown. We have shown here that the recombinant Ace protein induced I Cl of apical plasma membrane, which was inhibited by classical CaCC blockers. Surprisingly, an Ace-elicited rise of current was neither affected by ANO1 (TMEM16A)-specific inhibitor T16A (inh) -AO1(TAO1) nor by the cystic fibrosis transmembrane conductance regulator (CFTR) blocker, CFTR inh-172. Ace stimulated whole-cell current in Caco-2 cells. However, the apical I Cl was attenuated by knockdown of ANO6 (TMEM16F). This impaired phenotype was restored by re-expression of ANO6 in Caco-2 cells. Whole-cell patch clamp recordings of ANO currents in HEK293 cells transiently expressing mouse ANO1-mCherry or ANO6-GFP confirmed that Ace induced Cl - secretion. Application of Ace produced ANO6 but not the ANO1 currents. Ace was not able to induce a [Ca 2+ ] i rise in Caco-2 cells, but cellular abundance of phosphatidylinositol 4,5-bisphosphate (PIP 2 ) increased. Identification of the PIP 2 -binding motif at the N-terminal sequence among human and mouse ANO6 variants along with binding of PIP 2 directly to ANO6 in HEK293 cells indicate likely PIP 2 regulation of ANO6. The biophysical and pharmacological properties of Ace stimulated Cl - current along with intestinal fluid accumulation, and binding of PIP 2 to the proximal KR motif of channel proteins, whose mutagenesis correlates with altered binding of PIP 2 , is comparable with ANO6 stimulation. We conclude that ANO6 is predominantly expressed in intestinal epithelia, where it contributes secretory diarrhea by Ace stimulation in a calcium-independent mechanism of RhoA-ROCK-PIP 2 signaling. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
High (36)Cl/Cl ratios in Chernobyl groundwater.
Roux, Céline; Le Gal La Salle, Corinne; Simonucci, Caroline; Van Meir, Nathalie; Fifield, L Keith; Diez, Olivier; Bassot, Sylvain; Simler, Roland; Bugai, Dmitri; Kashparov, Valery; Lancelot, Joël
2014-12-01
After the explosion of the Chernobyl Nuclear Power Plant in April 1986, contaminated material was buried in shallow trenches within the exclusion zone. A (90)Sr plume was evidenced downgradient of one of these trenches, trench T22. Due to its conservative properties, (36)Cl is investigated here as a potential tracer to determine the maximal extent of the contamination plume from the trench in groundwater. (36)Cl/Cl ratios measured in groundwater, trench soil water and leaf leachates are 1-5 orders of magnitude higher than the theoretical natural (36)Cl/Cl ratio. This contamination occurred after the Chernobyl explosion and currently persists. Trench T22 acts as an obvious modern point source of (36)Cl, however other sources have to be involved to explain such contamination. (36)Cl contamination of groundwater can be explained by dilution of trench soil water by uncontaminated water (rainwater or deep groundwater). With a plume extending further than that of (90)Sr, radionuclide which is impacted by retention and decay processes, (36)Cl can be considered as a suitable tracer of contamination from the trench in groundwater provided that modern release processes of (36)Cl from trench soil are better characterized. Copyright © 2014 Elsevier Ltd. All rights reserved.
Cloning, functional expression, and characterization of a PKA-activated gastric Cl- channel.
Malinowska, D H; Kupert, E Y; Bahinski, A; Sherry, A M; Cuppoletti, J
1995-01-01
cDNA encoding a Cl- channel was isolated from a rabbit gastric library, sequenced, and expressed in Xenopus oocytes. The predicted protein (898 amino acids, relative molecular mass 98,433 Da) was overall 93% similar to the rat brain ClC-2 Cl- channel. However, a 151-amino acid stretch toward the COOH-terminus was 74% similar to ClC-2 with six amino acids deleted. Two new potential protein kinase A (PKA) phosphorylation sites (also protein kinase C phosphorylation sites) were introduced. cRNA-injected Xenopus oocytes expressed a Cl- channel that was active at pHtrans 3 and had a linear current-voltage (I-V) curve and a slope conductance of 29 +/- 1 pS at 800 mM CsCl. A fivefold Cl- gradient caused a rightward shift in the I-V curve with a reversal potential of +30 +/- 3 mV, indicating anion selectivity. The selectivity was I- > Cl- > NO3-. The native and recombinant Cl- channel were both activated in vitro by PKA catalytic subunit and ATP. The electrophysiological and regulatory properties of the cloned and the native channel were similar. The cloned protein may be the Cl- channel involved in gastric HCl secretion.
Rechargeable Al/Cl2 battery with molten AlCl4/-/ electrolyte.
NASA Technical Reports Server (NTRS)
Holleck, G. L.; Giner, J.; Burrows, B.
1972-01-01
A molten salt system based on Al- and Cl2 carbon electrodes, with an AlCl3 alkali chloride eutectic as electrolyte, offers promise as a rechargeable, high energy density battery which can operate at a relatively low temperature. Electrode kinetic studies showed that the electrode reactions at the Al anode were rapid and that the observed passivation phenomena were due to the formation at the electrode surface of a solid salt layer resulting from concentration changes on anodic or cathodic current flow. It was established that carbon electrodes were intrinsically active for chlorine reduction in AlCl3-alkali chloride melts. By means of a rotating vitreous carbon disk electrode, the kinetic parameters were determined.
Histamine stimulates chloride secretion in omeprazole-inhibited frog gastric mucosa
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGreevy, J.; Barton, R.; Housinger, T.
1986-03-05
Omeprazole (OME) stops hydrogen ion (H) secretion in the histamine (HIST)-stimulated gastric mucosa while the chloride (Cl) which had accompanied the H continues to be pumped into the lumen. This finding suggests that the Cl pump is independent of the H/K ATP-ase driven H pump. To test this hypothesis, 16 Ussing-chambered frog mucosas were exposed to OME prior to HIST stimulation. If the Cl pump is independent, HIST should stimulate Cl secretion in the OME-inhibited mucosa. A 1 hr control (CON) interval preceded exposure to OME (10/sup -4/M) in the nutrient solution. Potential difference (PD), short-circuit current (Isc), resistance (R),more » H flux (J/sup H/) and Cl flux (J/sup Cl/ with /sup 36/Cl) were measured every 15 min. After 1 hr of OME exposure, HIST (10/sup -5/M) was added to the nutrient solution. The findings demonstrate that HIST stimulates Cl secretion in the OME-inhibited bullfrog gastric mucosa.« less
The Electrochemical Co-reduction of Mg-Al-Y Alloys in the LiCl-NaCl-MgCl2-AlF3-YCl3 Melts
NASA Astrophysics Data System (ADS)
Li, Mei; Liu, Yaochen; Han, Wei; Wang, Shanshan; Zhang, Milin; Yan, Yongde; Shi, Weiqun
2015-04-01
The electrochemical formation of Mg-Al-Y alloys was studied in the LiCl-NaCl-MgCl2 melts by the addition of AlF3 and YCl3 on a molybdenum electrode at 973 K (700 °C). In order to reduce the volatilization of salt solvent in the electrolysis process, the volatile loss of LiCl-NaCl-MgCl2 and LiCl-KCl-MgCl2 melts was first measured in the temperature range from 873 K to 1023 K (600 °C to 750 °C). Then, the electrochemical behaviors of Mg(II), Al(III), Y(III) ions and alloy formation processes were investigated by cyclic voltammetry, chronopotentiometry, and open circuit chronopotentiometry. The cyclic voltammograms indicate that the under-potential deposition of magnesium and yttrium on pre-deposited Al leads to formation of Mg-Al and Al-Y intermetallic compounds. The Mg-Al-Y alloys were prepared by galvanostatic electrolysis in the LiCl-NaCl-MgCl2-AlF3-YCl3 melts and characterized by X-ray diffraction and scanning electron microscopy with energy dispersive spectrometry. Composition of the alloys was analyzed by inductively coupled plasma-atomic emission spectrometer, and current efficiency was also determined by the alloy composition.
PERFORMANCE OF OZONE AS A DISINFECTANT FOR COMBINED SEWER OVERFLOW
Disinfection of combined sewer overflow (CSO) minimizes the amount of disease-causing microorganisms (pathogens) released into receiving waters. Currently, the primary disinfecting agent used in the US for wastewater treatment is chlorine (Cl2); however, Cl2 produces problems in ...
Ludwig, Carmen F.; Ullrich, Florian; Leisle, Lilia; Stauber, Tobias; Jentsch, Thomas J.
2013-01-01
CLC anion transporters form dimers that function either as Cl− channels or as electrogenic Cl−/H+ exchangers. CLC channels display two different types of “gates,” “protopore” gates that open and close the two pores of a CLC dimer independently of each other and common gates that act on both pores simultaneously. ClC-7/Ostm1 is a lysosomal 2Cl−/1H+ exchanger that is slowly activated by depolarization. This gating process is drastically accelerated by many CLCN7 mutations underlying human osteopetrosis. Making use of some of these mutants, we now investigate whether slow voltage activation of plasma membrane-targeted ClC-7/Ostm1 involves protopore or common gates. Voltage activation of wild-type ClC-7 subunits was accelerated by co-expressing an excess of ClC-7 subunits carrying an accelerating mutation together with a point mutation rendering these subunits transport-deficient. Conversely, voltage activation of a fast ClC-7 mutant could be slowed by co-expressing an excess of a transport-deficient mutant. These effects did not depend on whether the accelerating mutation localized to the transmembrane part or to cytoplasmic cystathionine-β-synthase (CBS) domains of ClC-7. Combining accelerating mutations in the same subunit did not speed up gating further. No currents were observed when ClC-7 was truncated after the last intramembrane helix. Currents and slow gating were restored when the C terminus was co-expressed by itself or fused to the C terminus of the β-subunit Ostm1. We conclude that common gating underlies the slow voltage activation of ClC-7. It depends on the CBS domain-containing C terminus that does not require covalent binding to the membrane domain of ClC-7. PMID:23983121
Investigation of residual anode material after electrorefining uranium in molten chloride salt
NASA Astrophysics Data System (ADS)
Rose, M. A.; Williamson, M. A.; Willit, J.
2015-12-01
A buildup of material at uranium anodes during uranium electrorefining in molten chloride salts has been observed. Potentiodynamic testing has been conducted using a three electrode cell, with a uranium working electrode in both LiCl/KCl eutectic and LiCl each containing ∼5 mol% UCl3. The anodic current response was observed at 50° intervals between 450 °C and 650 °C in the eutectic salt. These tests revealed a buildup of material at the anode in LiCl/KCl salt, which was sampled at room temperature, and analyzed using ICP-MS, XRD and SEM techniques. Examination of the analytical data, current response curves and published phase diagrams has established that as the uranium anode dissolves, the U3+ ion concentration in the diffusion layer surrounding the electrode rises precipitously to levels, which may at low temperatures exceed the solubility limit for UCl3 or in the case of the eutectic salt for K2UCl5. The reduction in current response observed at low temperature in eutectic salt is eliminated at 650 °C, where K2UCl5 is absent due to its congruent melting and only simple concentration polarization effects are seen. In LiCl similar concentration effects are seen though significantly longer time at applied potential is required to effect a reduction in the current response as compared to the eutectic salt.
Liu, Yintao; Jia, Renxu; Wang, Yucheng; Hu, Ziyang; Zhang, Yuming; Pang, Tiqiang; Zhu, Yuejin; Luan, Suzhen
2017-05-10
Zero drift can severely deteriorate the stability of the light-dark current ratio, detectivity, and responsivity of photodetectors. In this paper, the effects of a [6,6]-phenyl-C61-butyric acid methyl ester (PCBM)-doped perovskite-based photodetector device on the inhibition of zero drift under dark state are discussed. Two kinds of photodetectors (Au/CH 3 NH 3 PbI x Cl 3-x /Au and Au/CH 3 NH 3 PbI x Cl 3-x :PCBM/Au) were prepared, and the materials and photodetector devices were measured by scanning electron microscopy, X-ray diffraction, photoluminescence, ultraviolet absorption spectra, and current-voltage and current-time measurements. It was found that similar merit parameters, including light-dark current ratio (∼10 2 ), detectivity (∼10 11 Jones), and responsivity were obtained for these two kinds of photodetectors. However, the drift of Au/CH 3 NH 3 PbI x Cl 3-x :PCBM/Au devices is negligible, while a drift of ∼0.2 V exists in Au/CH 3 NH 3 PbI x Cl 3-x /Au devices. A new model is proposed based on the hindering theory of ion (vacancy) migration, and it is believed that the dopant PCBM can hinder the ion (vacancy) migration of perovskite materials to suppress the phenomenon of zero drift in perovskite-based photodetectors.
Explorations in Cooperative Systems: Thinking Collectively to Learn, Learning Individually to Think
1989-12-01
indicates that the CL research lacks sufficient experimental controls, as well as, fails to use current theories associated with cognitiv-e approaches...comparing/contrasting some of the differences between CL and GPS. Finally, examples of successful CL are given to show the transition from theory to...Schmuck, 1985). For example, Stodolsky (1984) differentiates peer-work groups from teacher- led groups. She suggests that there are five types of
NASA Astrophysics Data System (ADS)
Keeley, N.; Mackintosh, R. S.
2018-01-01
Background: Precise fitting of scattering observables suggests that the nucleon-nucleus interaction is l dependent. Such l dependence has been shown to be S -matrix equivalent to an undulatory l -independent potential. The undulations include radial regions where the imaginary term is emissive. Purpose: To study the dynamical polarization potential (DPP) generated in proton-16O and neutron-16O interaction potentials by coupling to pickup channels. Undulatory features occurring in these DPPs can be compared with corresponding features of empirical optical model potentials (OMPs). Furthermore, the additional inclusion of coupling to vibrational states of the target will provide evidence for dynamically generated nonlocality. Methods: The fresco code provides the elastic channel S -matrix Sl j for chosen channel couplings. Inversion, Sl j→V (r ) +l .s VSO(r ) , followed by subtraction of the bare potential, yields an l -independent and local representation of the DPP due to the chosen couplings. Results: The DPPs have strongly undulatory features, including radial regions of emissivity. Certain features of empirical DPPs appear, e.g., the full inverted potential has emissive regions. The DPPs for different collective states are additive except near the nuclear center, whereas the collective and reaction channel DPPs are distinctly nonadditive over a considerable radial range, indicating dynamical nonlocality. Substantial differences between the DPPs due to pickup coupling for protons and neutrons occur; these imply a greater difference between proton and neutron OMPs than the standard phenomenological prescription. Conclusions: The onus is on those who object to undularity in the local and l -independent representation of nucleon elastic scattering to show why such undulations do not occur. This work suggests that it is not legitimate to halt model-independent fits to high-quality data at the appearance of undularity.
Chloride Transport in Porous Lipid Bilayer Membranes
Andreoli, Thomas E.; Watkins, Mary L.
1973-01-01
This paper describes dissipative Cl- transport in "porous" lipid bilayer membranes, i.e., cholesterol-containing membranes exposed to 1–3 x 10-7 M amphotericin B. P DCl (cm·s-1), the diffusional permeability coefficient for Cl-, estimated from unidirectional 36Cl- fluxes at zero volume flow, varied linearly with the membrane conductance (Gm, Ω-1·cm-2) when the contributions of unstirred layers to the resistance to tracer diffusion were relatively small with respect to the membranes; in 0.05 M NaCl, P DCl was 1.36 x 10-4 cm·s-1 when Gm was 0.02 Ω-1·cm-2. Net chloride fluxes were measured either in the presence of imposed concentration gradients or electrical potential differences. Under both sets of conditions: the values of P DCl computed from zero volume flow experiments described net chloride fluxes; the net chloride fluxes accounted for ∼90–95% of the membrane current density; and, the chloride flux ratio conformed to the Ussing independence relationship. Thus, it is likely that Cl- traversed aqueous pores in these anion-permselective membranes via a simple diffusion process. The zero current membrane potentials measured when the aqueous phases contained asymmetrical NaCl solutions could be expressed in terms of the Goldman-Hodgkin-Katz constant field equation, assuming that the P DNa/P DCl ratio was 0.05. In symmetrical salt solutions, the current-voltage properties of these membranes were linear; in asymmetrical NaCl solutions, the membranes exhibited electrical rectification consistent with constant-field theory. It seems likely that the space charge density in these porous membranes is sufficiently low that the potential gradient within the membranes is approximately linear; and, that the pores are not electrically neutral, presumably because the Debye length within the membrane phase approximates the membrane thickness. PMID:4708408
Clinical requirements for closed-loop control systems.
Clarke, William L; Renard, Eric
2012-03-01
Closed-loop (CL) therapy systems should be safe, efficacious, and easily manageable for type 1 diabetes mellitus patient use. For the first two clinical requirements, noninferiority and superiority criteria must be determined based on current conventional and intensive therapy outcomes. Current frequencies of hypoglycemia and diabetic ketoacidosis are reviewed and safety expectations for CL therapy systems are proposed. Glycosylated hemoglobin levels lower than current American Diabetes Association recommendations for different age groups are proposed as superiority criteria. Measures of glycemic variability are described and the recording of blood glucose levels as percentages within, above, and below a target range are suggested as reasonable alternatives to sophisticated statistical analyses. It is also suggested that Diabetes Quality of Life and Fear of Hypoglycemia surveys should be used to track psychobehavioral outcomes. Manageability requirements for safe and effective clinical management of CL systems are worth being underscored. The weakest part of the infusion system remains the catheter, which is exposed to variable and under-delivery incidents. Detection methods are needed to warn both the system and the patient about altered insulin delivery, including internal pressure and flow alarms. Glucose monitor sensor accuracy is another requirement; it includes the definition of conditions that lead to capillary glucose measurement, eventually followed by sensor recalibration or replacement. The crucial clinical requirement will be a thorough definition of the situations when the patient needs to move from CL to manual management of insulin delivery, or inversely can switch back to CL after a requested interruption. Instructions about these actions will constitute a major part of the education process of the patients before using CL systems and contribute to the manageability of these systems. © 2012 Diabetes Technology Society.
100 Years of the Physics of Diodes
NASA Astrophysics Data System (ADS)
Luginsland, John
2013-10-01
The Child-Langmuir Law (CL), discovered 100 years ago, gives the maximum current that can be transported across a planar diode in the steady state. As a quintessential example of the impact of space-charge shielding near a charged surface, it is central to the studies of high current diodes, such as high power microwave sources, vacuum microelectronics, electron and ion sources, and high current drivers used in high-energy density physics experiments. CL remains a touchstone of fundamental sheath physics, including contemporary studies of nano-scale quantum diodes and plasmonic devices. Its solid state analog is the Mott-Gurney law, governing the maximum charge injection in solids, such as organic materials and other dielectrics, which is important to energy devices, such as solar cells and light-emitting diodes. This paper reviews the important advances in the physics of diodes since the discovery of CL, including virtual cathode formation and extension of CL to multiple dimensions, to the quantum regime, and to ultrafast processes. We will review the influence of magnetic fields, multiple species in bipolar flow, electromagnetic and time dependent effects in both short pulse and high frequency THz limits, and single electron regimes. Transitions from various emission mechanisms (thermionic, field, and photo-emission) to the space charge limited state (CL) will be addressed, especially highlighting important simulation and experimental developments in selected contemporary areas of study. This talk will stress the fundamental physical links between the physics of beams to limiting currents in other areas, such as low temperature plasmas, laser plasmas, and space propulsion. Also emphasized is the role of non-equilibrium phenomena associated with materials and plasmas in close contact. Work supported by the Air Force Office of Scientific Research.
In-Plane Channel-Structured Catalyst Layer for Polymer Electrolyte Membrane Fuel Cells.
Lee, Dong-Hyun; Jo, Wonhee; Yuk, Seongmin; Choi, Jaeho; Choi, Sungyu; Doo, Gisu; Lee, Dong Wook; Kim, Hee-Tak
2018-02-07
In this study, we present a novel catalyst layer (CL) with in-plane flow channels to enhance the mass transports in polymer electrolyte membrane fuel cells. The CL with in-plane channels on its surface is fabricated by coating a CL slurry onto a surface-treated substrate with the inverse line pattern and transferring the dried CL from the substrate to a membrane. The membrane electrode assembly with the in-plane channel-patterned CL has superior power performances in high current densities compared with an unpatterned, flat CL, demonstrating a significant enhancement of the mass-transport property by the in-plane channels carved in the CL. The performance gain is more pronounced when the channel direction is perpendicular to the flow field direction, indicating that the in-plane channels increase the utilization of the CL under the rib area. An oxygen-transport resistance analysis shows that both molecular and Knudsen diffusion can be facilitated with the introduction of the in-plane channels. The direct CL patterning technique provides a platform for the fabrication of advanced CL structures with a high structural fidelity and design flexibility and a rational guideline for designing high-performance CLs.
Bastviken, David; Sandén, Per; Svensson, Teresia; Ståhlberg, A Carina; Magounakis, Malin; Oberg, Gunilla
2006-05-01
The common assumption that chloride (Cl-) is conservative in soils and can be used as a groundwater tracer is currently being questioned, and an increasing number of studies indicate that Cl- can be retained in soils. We performed lysimeter experiments with soil from a coniferous forest in southeast Sweden to determine whether pore water residence time and nitrogen and Cl- loads affected Cl- retention. Over the first 42 days there was a net retention of Cl- with retention rates averaging 3.1 mg CI- m(-2) d(-1) (68% of the added Cl- retained over 42 days). Thereafter, a net release of Cl- at similar rates was observed for the remaining experimental period (85 d). Longer soil water residence time and higher Cl- load gave higher initial retention and subsequent release rates than shorter residence time and lower Cl- load did. Nitrogen load did not affect Cl transformation rates. This study indicates that simultaneous retention and release of Cl- can occur in soils, and that rates may be considerable relative to the load. The retention of Cl- observed was probably due to chlorination of soil organic matter or ion exchange. The cause of the shift between net retention and net release is unclear, but we hypothesize that the presence of O2 or the presence of microbially available organic matter regulates Cl- retention and release rates.
Differential roles of WNK4 in regulation of NCC in vivo.
Yang, Yih-Sheng; Xie, Jian; Yang, Sung-Sen; Lin, Shih-Hua; Huang, Chou-Long
2018-05-01
The Na + -Cl - cotransporter (NCC) in distal convoluted tubule (DCT) plays important roles in renal NaCl reabsorption. The current hypothesis for the mechanism of regulation of NCC focuses on WNK4 and intracellular Cl - concentration ([Cl - ] i ). WNK kinases bind Cl - , and Cl - binding decreases the catalytic activity. It is believed that hypokalemia under low K + intake decreases [Cl - ] i to activate WNK4, which thereby phosphorylates and stimulates NCC through activation of SPAK. However, increased NCC activity and apical NaCl entry would mitigate the fall in [Cl - ] i. Whether [Cl - ] i in DCT under low-K + diet is sufficiently low to activate WNK4 is unknown. Furthermore, increased luminal NaCl delivery also stimulates NCC and causes upregulation of the transporter. Unlike low K + intake, increased luminal NaCl delivery would tend to increase [Cl - ] i . Thus we investigated the role of WNK4 and [Cl - ] i in regulating NCC. We generated Wnk4-knockout mice and examined regulation of NCC by low K + intake and by increased luminal NaCl delivery in knockout (KO) and wild-type mice. Wnk4-KO mice have marked reduction in the abundance, phosphorylation, and functional activity of NCC vs. wild type. Low K + intake increases NCC phosphorylation and functional activity in wild-type mice, but not in Wnk4-KO mice. Increased luminal NaCl delivery similarly upregulates NCC, which, contrary to low K + intake, is not abolished in Wnk4-KO mice. The results reveal that modulation of WNK4 activity by [Cl - ] i is not the sole mechanism for regulating NCC. Increased luminal NaCl delivery upregulates NCC via yet unknown mechanism(s) that may override inhibition of WNK4 by high [Cl - ] i .
Theory of Space Charge Limited Current in Fractional Dimensional Space
NASA Astrophysics Data System (ADS)
Zubair, Muhammad; Ang, L. K.
The concept of fractional dimensional space has been effectively applied in many areas of physics to describe the fractional effects on the physical systems. We will present some recent developments of space charge limited (SCL) current in free space and solid in the framework of fractional dimensional space which may account for the effect of imperfectness or roughness of the electrode surface. For SCL current in free space, the governing law is known as the Child-Langmuir (CL) law. Its analogy in a trap-free solid (or dielectric) is known as Mott-Gurney (MG) law. This work extends the one-dimensional CL Law and MG Law for the case of a D-dimensional fractional space with 0 < D <= 1 where parameter D defines the degree of roughness of the electrode surface. Such a fractional dimensional space generalization of SCL current theory can be used to characterize the charge injection by the imperfectness or roughness of the surface in applications related to high current cathode (CL law), and organic electronics (MG law). In terms of operating regime, the model has included the quantum effects when the spacing between the electrodes is small.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ewert, K.K.; Zidovska, A.; Ahmad, A.
2012-07-17
Motivated by the promises of gene therapy, there is great interest in developing non-viral lipid-based vectors for therapeutic applications due to their low immunogenicity, low toxicity, ease of production, and the potential of transferring large pieces of DNA into cells. In fact, cationic liposome (CL) based vectors are among the prevalent synthetic carriers of nucleic acids (NAs) currently used in gene therapy clinical trials worldwide. These vectors are studied both for gene delivery with CL-DNA complexes and gene silencing with CL-siRNA (short interfering RNA) complexes. However, their transfection efficiencies and silencing efficiencies remain low compared to those of engineered viralmore » vectors. This reflects the currently poor understanding of transfection-related mechanisms at the molecular and self-assembled levels, including a lack of knowledge about interactions between membranes and double stranded NAs and between CL-NA complexes and cellular components. In this review we describe our recent efforts to improve the mechanistic understanding of transfection by CL-NA complexes, which will help to design optimal lipid-based carriers of DNA and siRNA for therapeutic gene delivery and gene silencing.« less
Cutaneous leishmaniasis in Syria: clinical features, current status and the effects of war.
Hayani, Kinan; Dandashli, Anwar; Weisshaar, Elke
2015-01-01
Cutaneous leishmaniasis (CL) is a worldwide disease caused by an infection with the protozoan parasite Leishmania transmitted via sand flies. It is endemic in many of the poorest countries of all continents. "Aleppo boil" is one of the recognised names given to this disease in the medical literature. Although CL used to be well-controlled and well-documented in Syria, its incidence has dramatically increased since the beginning of the war; however, there is lack of documentation. Here, we present the past and current epidemiological situation of the disease in Syria. We also draw attention to gross and highly unusual clinical variants of CL presented to the Department of Dermatology in Aleppo covering the important differential clinical diagnoses, since this disease is already known to mimic other conditions. Diagnostic procedures and treatment as well as prevention are summarised. Due to the increased ability to travel, and especially the flight of Syrians to neighbouring countries, as well as to Europe, CL may become a new threat in formerly unaffected regions. Through this account, we hope to give weight to the aspiration that CL does not remain a neglected and often clinically overlooked tropical dermatosis.
Crothers, James M; Forte, John G; Machen, Terry E
2016-05-01
A computer model, constructed for evaluation of integrated functioning of cellular components involved in acid secretion by the gastric parietal cell, has provided new interpretations of older experimental evidence, showing the functional significance of a canalicular space separated from a mucosal bath by a gland lumen and also shedding light on basolateral Cl(-) transport. The model shows 1) changes in levels of parietal cell secretion (with stimulation or H-K-ATPase inhibitors) result mainly from changes in electrochemical driving forces for apical K(+) and Cl(-) efflux, as canalicular [K(+)] ([K(+)]can) increases or decreases with changes in apical H(+)/K(+) exchange rate; 2) H-K-ATPase inhibition in frog gastric mucosa would increase [K(+)]can similarly with low or high mucosal [K(+)], depolarizing apical membrane voltage similarly, so electrogenic H(+) pumping is not indicated by inhibition causing similar increase in transepithelial potential difference (Vt) with 4 and 80 mM mucosal K(+); 3) decreased H(+) secretion during strongly mucosal-positive voltage clamping is consistent with an electroneutral H-K-ATPase being inhibited by greatly decreased [K(+)]can (Michaelis-Menten mechanism); 4) slow initial change ("long time-constant transient") in current or Vt with clamping of Vt or current involves slow change in [K(+)]can; 5) the Na(+)-K(+)-2Cl(-) symporter (NKCC) is likely to have a significant role in Cl(-) influx, despite evidence that it is not necessary for acid secretion; and 6) relative contributions of Cl(-)/HCO3 (-) exchanger (AE2) and NKCC to Cl(-) influx would differ greatly between resting and stimulated states, possibly explaining reported differences in physiological characteristics of stimulated open-circuit Cl(-) secretion (≈H(+)) and resting short-circuit Cl(-) secretion (>H(+)). Copyright © 2016 the American Physiological Society.
Ionic components of electric current at rat corneal wounds.
Vieira, Ana Carolina; Reid, Brian; Cao, Lin; Mannis, Mark J; Schwab, Ivan R; Zhao, Min
2011-02-25
Endogenous electric fields and currents occur naturally at wounds and are a strong signal guiding cell migration into the wound to promote healing. Many cells involved in wound healing respond to small physiological electric fields in vitro. It has long been assumed that wound electric fields are produced by passive ion leakage from damaged tissue. Could these fields be actively maintained and regulated as an active wound response? What are the molecular, ionic and cellular mechanisms underlying the wound electric currents? Using rat cornea wounds as a model, we measured the dynamic timecourses of individual ion fluxes with ion-selective probes. We also examined chloride channel expression before and after wounding. After wounding, Ca(2+) efflux increased steadily whereas K(+) showed an initial large efflux which rapidly decreased. Surprisingly, Na(+) flux at wounds was inward. A most significant observation was a persistent large influx of Cl(-), which had a time course similar to the net wound electric currents we have measured previously. Fixation of the tissues abolished ion fluxes. Pharmacological agents which stimulate ion transport significantly increased flux of Cl(-), Na(+) and K(+). Injury to the cornea caused significant changes in distribution and expression of Cl(-) channel CLC2. These data suggest that the outward electric currents occurring naturally at corneal wounds are carried mainly by a large influx of chloride ions, and in part by effluxes of calcium and potassium ions. Ca(2+) and Cl(-) fluxes appear to be mainly actively regulated, while K(+) flux appears to be largely due to leakage. The dynamic changes of electric currents and specific ion fluxes after wounding suggest that electrical signaling is an active response to injury and offers potential novel approaches to modulate wound healing, for example eye-drops targeting ion transport to aid in the challenging management of non-healing corneal ulcers.
Zeyner, Annette; Romanowski, Kristin; Vernunft, Andreas; Harris, Patricia; Müller, Ann-Marie; Wolf, Carola; Kienzle, Ellen
2017-01-01
The provision of NaCl, according to current recommendations, to horses in moderate work has been shown to induce immediate postprandial acidosis. The present study aimed to clarify whether this NaCl induced acidosis i) persists beyond the immediate postprandial period, and ii) is still present after a 2 week adaptation period. Six adult warmblood mares in moderate work received daily 1.00 kg hay per 100 kg body weight (bwt) only together with 0.64 kg unprocessed cereal grains/100 kg bwt.d as fed basis. Using a 3x3 Latin Square, either 0 (NaCl-0), 50 (NaCl-50) or 100 (NaCl-100) g NaCl/d were fed together with the concentrates in two equal doses for 3 weeks. During the final week, a mineral digestibility trial was undertaken. The middle sodium and chloride intake (NaCl-50) at least met the most common recommendations for moderate work. Morning (7:00 AM) urine and venous blood samples were collected on days 0, 1-4, 8, and 15, and analysed for pH, acid-base status, creatinine and electrolyte concentrations. Fractional electrolyte clearances (FC) were determined. Mean apparent sodium digestibility ranged between 60-62% whereas chloride digestibility was consistently above 94%. Supplementing 100 g but not 50 g of NaCl resulted in significant reduction of blood pH and base excess as well as urinary pH and urine acid excretion. Both 50 g and 100 g NaCl supplementation caused a significant reduction in base and net acid-base excretion, urine density and potassium concentration, but increased urine sodium concentration and the FC of sodium and chloride (P < 0.05). This suggests that a high proportion of the recommended salt doses is excreted renally. The above effects of NaCl supplementation persisted over the 2 week measurement period. Results suggest that feeding 100 g NaCl to moderately exercising horses results in mild metabolic acidosis, whereas feeding 50 g according to current recommendations resulted in compensated acidosis.
Zeyner, Annette; Romanowski, Kristin; Vernunft, Andreas; Harris, Patricia; Müller, Ann-Marie; Wolf, Carola; Kienzle, Ellen
2017-01-01
The provision of NaCl, according to current recommendations, to horses in moderate work has been shown to induce immediate postprandial acidosis. The present study aimed to clarify whether this NaCl induced acidosis i) persists beyond the immediate postprandial period, and ii) is still present after a 2 week adaptation period. Six adult warmblood mares in moderate work received daily 1.00 kg hay per 100 kg body weight (bwt) only together with 0.64 kg unprocessed cereal grains/100 kg bwt.d as fed basis. Using a 3x3 Latin Square, either 0 (NaCl-0), 50 (NaCl-50) or 100 (NaCl-100) g NaCl/d were fed together with the concentrates in two equal doses for 3 weeks. During the final week, a mineral digestibility trial was undertaken. The middle sodium and chloride intake (NaCl-50) at least met the most common recommendations for moderate work. Morning (7:00 AM) urine and venous blood samples were collected on days 0, 1–4, 8, and 15, and analysed for pH, acid-base status, creatinine and electrolyte concentrations. Fractional electrolyte clearances (FC) were determined. Mean apparent sodium digestibility ranged between 60–62% whereas chloride digestibility was consistently above 94%. Supplementing 100 g but not 50 g of NaCl resulted in significant reduction of blood pH and base excess as well as urinary pH and urine acid excretion. Both 50 g and 100 g NaCl supplementation caused a significant reduction in base and net acid-base excretion, urine density and potassium concentration, but increased urine sodium concentration and the FC of sodium and chloride (P < 0.05). This suggests that a high proportion of the recommended salt doses is excreted renally. The above effects of NaCl supplementation persisted over the 2 week measurement period. Results suggest that feeding 100 g NaCl to moderately exercising horses results in mild metabolic acidosis, whereas feeding 50 g according to current recommendations resulted in compensated acidosis. PMID:28045916
Rate dependency of delayed rectifier currents during the guinea-pig ventricular action potential
Rocchetti, Marcella; Besana, Alessandra; Gurrola, Georgina B; Possani, Lourival D; Zaza, Antonio
2001-01-01
The action potential clamp technique was exploited to evaluate the rate dependency of delayed rectifier currents (IKr and IKs) during physiological electrical activity. IKr and IKs were measured in guinea-pig ventricular myocytes at pacing cycle lengths (CL) of 1000 and 250 ms.A shorter CL, with the attendant changes in action potential shape, was associated with earlier activation and increased magnitude of both IKr and IKs. Nonetheless, the relative contributions of IKr and IKs to total transmembrane current were independent of CL.Shortening of diastolic interval only (constant action potential shape) enhanced IKs, but not IKr.IKr was increased by a change in the action potential shape only (constant diastolic interval).In ramp clamp experiments, IKr amplitude was directly proportional to repolarization rate at values within the low physiological range (< 1.0 V s−1); at higher repolarization rates proportionality became shallower and finally reversed.When action potential duration (APD) was modulated by constant current injection (I-clamp), repolarization rates > 1.0 V s−1 were associated with a reduced effect of IKr block on APD. The effect of changes in repolarization rate was independent of CL and occurred in the presence of IKs blockade.In spite of its complexity, the behaviour of IKr was accurately predicted by a numerical model based entirely on known kinetic properties of the current.Both IKr and IKs may be increased at fast heart rates, but this may occur through completely different mechanisms. The mechanisms identified are such as to contribute to abnormal rate dependency of repolarization in prolonged repolarization syndromes. PMID:11483703
Increase in atmospheric CHF2Cl (HCFC-22) over southern California from 1985 to 1990
NASA Technical Reports Server (NTRS)
Irion, Fredrick W.; Brown, Margaret; Toon, Geoffrey C.; Gunson, Michael R.
1994-01-01
Column densities of CHF2Cl (HCFC-22) have been measured over Table Mountain Facility (TMF), Wrightwood, California (34.4 deg N) using the Atmospheric Trace Molecule Spectroscopy (ATMOS) Fourier-transform infrared (FTIR) spectrometer. Between October 1985 and July 1990, the exponential column increase rate was (6.7 +/- 0.5)%/yr. Additionally, column measurements of CHF2Cl over McMurdo Sound, Antarctica (78 deg S) in September and October 1986 by the MarkIV FTIR spectrometer were used to derive a south-north interhemispheric ratio of (0.86 +/- 0.08). Model calculations investigated the feasibility of using CHF2Cl column measurements with a predicted global OH field to determine a globally averaged chemical lifetime for CHF2Cl, or equivalently, an estimate of the OH field using a predicted lifetime. The current uncertainty in historical CHF2Cl emissions is too large for CHF2Cl to be used to infer adequately either the lifetime or the OH field.
Investigation of Fission Product Transport into Zeolite-A for Pyroprocessing Waste Minimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
James R. Allensworth; Michael F. Simpson; Man-Sung Yim
Methods to improve fission product salt sorption into zeolite-A have been investigated in an effort to reduce waste associated with the electrochemical treatment of spent nuclear fuel. It was demonstrated that individual fission product chloride salts were absorbed by zeolite-A in a solid-state process. As a result, recycling of LiCl-KCl appears feasible via adding a zone-freezing technique to the current treatment process. Ternary salt molten-state experiments showed the limiting kinetics of CsCl and SrCl2 sorption into the zeolite. CsCl sorption occurred rapidly relative to SrCl2 with no observed dependence on zeolite particle size, while SrCl2 sorption was highly dependent onmore » particle size. The application of experimental data to a developed reaction-diffusion-based sorption model yielded diffusivities of 8.04 × 10-6 and 4.04 × 10-7 cm2 /s for CsCl and SrCl2, respectively. Additionally, the chemical reaction term in the developed model was found to be insignificant compared to the diffusion term.« less
Hg0 and HgCl2 Reference Gas Standards: ?NIST Traceability ...
EPA and NIST have collaborated to establish the necessary procedures for establishing the required NIST traceability of commercially-provided Hg0 and HgCl2 reference generators. This presentation will discuss the approach of a joint EPA/NIST study to accurately quantify the true concentrations of Hg0 and HgCl2 reference gases produced from high quality, NIST-traceable, commercial Hg0 and HgCl2 generators. This presentation will also discuss the availability of HCl and Hg0 compressed reference gas standards as a result of EPA's recently approved Alternative Methods 114 and 118. Gaseous elemental mercury (Hg0) and oxidized mercury (HgCl2) reference standards are integral to the use of mercury continuous emissions monitoring systems (Hg CEMS) for regulatory compliance emissions monitoring. However, a quantitative disparity of approximately 7-10% has been observed between commercial Hg0 and HgCl2 reference gases which currently limits the use of (HgCl2) reference gas standards. Resolving this disparity would enable the expanded use of (HgCl2) reference gas standards for regulatory compliance purposes.
Reithinger, Richard; Coleman, Paul G
2007-01-01
Background Although Kabul city, Afghanistan, is currently the worldwide largest focus of cutaneous leishmaniasis (CL) with an estimated 67,500 cases, donor interest in CL has been comparatively poor because the disease is non-fatal. Since 1998 HealthNet TPO (HNTPO) has implemented leishmaniasis diagnosis and treatment services in Kabul and in 2003 alone 16,390 were treated patients in six health clinics in and around the city. The aim of our study was to calculate the cost-effectiveness for the implemented treatment regimen of CL patients attending HNTPO clinics in the Afghan complex emergency setting. Methods Using clinical and cost data from the on-going operational HNTPO program in Kabul, published and unpublished sources, and discussions with researchers, we developed models that included probabilistic sensitivity analysis to calculate ranges for the cost per disability adjusted life year (DALY) averted for implemented CL treatment regimen. We calculated the cost-effectiveness of intralesional and intramuscular administration of the pentavalent antimonial drug sodium stibogluconate, HNTPO's current CL 'standard treatment'. Results The cost of the standard treatment was calculated to be US$ 27 (95% C.I. 20 – 36) per patient treated and cured. The cost per DALY averted per patient cured with the standard treatment was estimated to be approximately US$ 1,200 (761 – 1,827). Conclusion According to WHO-CHOICE criteria, treatment of CL in Kabul, Afghanistan, is not a cost-effective health intervention. The rationale for treating CL patients in Afghanistan and elsewhere is discussed. PMID:17263879
Antonelli, Raissa; de Araújo, Karla Santos; Pires, Ricardo Francisco; Fornazari, Ana Luiza de Toledo; Granato, Ana Claudia; Malpass, Geoffroy Roger Pointer
2017-10-28
The present paper presents the study of (1) the optimization of electrochemical-free chlorine production using an experimental design approach, and (2) the application of the optimum conditions obtained for the application in photo-assisted electrochemical degradation of simulated textile effluent. In the experimental design the influence of inter-electrode gap, pH, NaCl concentration and current was considered. It was observed that the four variables studied are significant for the process, with NaCl concentration and current being the most significant variables for free chlorine production. The maximum free chlorine production was obtained at a current of 2.33 A and NaCl concentrations in 0.96 mol dm -3 . The application of the optimized conditions with simultaneous UV irradiation resulted in up to 83.1% Total Organic Carbon removal and 100% of colour removal over 180 min of electrolysis. The results indicate that a systematic (statistical) approach to the electrochemical treatment of pollutants can save time and reagents.
Electron-beam-induced current at absorber back surfaces of Cu(In,Ga)Se{sub 2} thin-film solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kavalakkatt, J.; Abou-Ras, D., E-mail: daniel.abou-ras@helmholtz-berlin.de; Nichterwitz, M.
2014-01-07
The present work reports on investigations of the influence of the microstructure on electronic properties of Cu(In,Ga)Se{sub 2} (CIGSe) thin-film solar cells. For this purpose, ZnO/CdS/CIGSe stacks of these solar cells were lifted off the Mo-coated glass substrates. The exposed CIGSe backsides of these stacks were investigated by means of electron-beam-induced current (EBIC) and cathodoluminescence (CL) measurements as well as by electron backscattered diffraction (EBSD). EBIC and CL profiles across grain boundaries (GBs), which were identified by EBSD, do not show any significant changes at Σ3 GBs. Across non-Σ3 GBs, on the other hand, the CL signals exhibit local minimamore » with varying peak values, while by means of EBIC, decreased and also increased short-circuit current values are measured. Overall, EBIC and CL signals change across non-Σ3 GBs always differently. This complex situation was found in various CIGSe thin films with different [Ga]/([In]+[Ga]) and [Cu]/([In]+[Ga]) ratios. A part of the EBIC profiles exhibiting reduced signals across non-Σ3 GBs can be approximated by a simple model based on diffusion of generated charge carriers to the GBs.« less
Matossian, Margarite D; Burks, Hope E; Elliott, Steven; Hoang, Van T; Bowles, Annie C; Sabol, Rachel A; Bunnell, Bruce A; Martin, Elizabeth C; Burow, Matthew E; Collins-Burow, Bridgette M
2018-03-01
Claudin-low triple negative breast cancer (CL-TNBC) is a clinically aggressive molecular TNBC subtype characterized by a propensity to metastasize, recur and acquire chemoresistance. CL-TNBC has a diverse intra- and extracellular composition and microenvironment, and currently there are no clinically approved targeted therapies. Histone deacetylase inhibitors (HDACi) have been investigated as therapeutic agents targeting invasive TNBC phenotypes. However, further studies are required to evaluate HDAC inhibition in CL-TNBC. Here, we utilize a novel CL- TNBC patient-derived xenograft model to study the various and diverse therapeutic potential targets within CL-TNBC tumors. To evaluate effects of the pan-HDACi panobinostat on metastasis and the mesenchymal phenotype of CL-TNBC, we utilize immunohistochemistry staining and qRT-PCR in in vitro , ex vivo and in vivo studies. Further, we evaluate pan-HDAC inhibition on stem-like subpopulations using 3D mammosphere culture techniques and quantification. Finally, we show that pan- HDACi suppresses collagen expression in CL-TNBC. In this study, we provide evidence that pan-HDAC inhibition has effects on various components of the CL-TNBC subtype, and we demonstrate the potential of our novel CL-TNBC PDX model in therapeutic discovery research.
Community Leadership Development: Implications for Extension.
ERIC Educational Resources Information Center
Northeast Regional Center for Rural Development, University Park, PA.
Designed for extension personnel who are involved in community leadership (CL) programs, this publication summarizes recent national efforts that could be useful in developing and conducting CL programs, and current leadership theory and literature. Part 1 reports the results of the national survey, initiated in April 1985, of extension staff…
Polysilicon Prepared from SiCl4 by Atmospheric-Pressure Non-Thermal Plasma
NASA Astrophysics Data System (ADS)
Li, Xiaosong; Wang, Nan; Yang, Jinhua; Wang, Younian; Zhu, Aimin
2011-10-01
Non-thermal plasma at atmospheric pressure was explored for the preparation of polysilicon from SiCl4. The power supply sources of positive pulse and alternating current (8 kHz and 100 kHz) were compared for polysilicon preparation. The samples prepared by using the 100 kHz power source were crystalline silicon. The effects of H2 and SiCl4 volume fractions were investigated. The optical emission spectra showed that silicon species played an important role in polysilicon deposition
Dissociative recombination of HCl+, H2Cl+, DCl+, and D2Cl+ in a flowing afterglow
NASA Astrophysics Data System (ADS)
Wiens, Justin P.; Miller, Thomas M.; Shuman, Nicholas S.; Viggiano, Albert A.
2016-12-01
Dissociative recombination of electrons with HCl+, H2Cl+, DCl+, and D2Cl+ has been measured under thermal conditions at 300, 400, and 500 K using a flowing afterglow-Langmuir probe apparatus. Measurements for HCl+ and DCl+ employed the variable electron and neutral density attachment mass spectrometry (VENDAMS) method, while those for H2Cl+ and D2Cl+ employed both VENDAMS and the more traditional technique of monitoring electron density as a function of reaction time. At 300 K, HCl+ and H2Cl+ recombine with kDR = 7.7±2.14.5 × 10-8 cm3 s-1 and 2.6 ± 0.8 × 10-7 cm3 s-1, respectively, whereas D2Cl+ is roughly half as fast as H2Cl+ with kDR = 1.1 ± 0.3 × 10-7 cm3 s-1 (2 σ confidence intervals). DCl+ recombines with a rate coefficient below the approximate detection limit of the method (≲5 × 10-8 cm3 s-1) at all temperatures. Relatively slow dissociative recombination rates have been speculated to be responsible for the large HCl+ and H2Cl+ abundances in interstellar clouds compared to current astrochemical models, but our results imply that the discrepancy must originate elsewhere.
Anderson, John D.
1951-01-01
The plasmodium of Physarum polycephalum reacts to direct current by migration toward the cathode. Cathodal migration was obtained upon a variety of substrata such as baked clay, paper, cellophane, and agar with a current density in the substratum of 1.0 µa./mm.2 Injury was produced by current densities of 8.0 to 12.0 µa./mm.2 The negative galvanotactic response was not due to electrode products. Attempts to demonstrate that the response was due to gradients or orientation in the substratum, pH changes in the mold, cataphoresis, electroosmosis, or endosmosis were not successful. The addition of salts (CaCl2, LiCl, NaCl, Na2SO4, NaHCO3, KCl, MgSO4, sodium citrate, and sea water) to agar indicated that change of cations had more effect than anions upon galvanotaxis and that the effect was upon threshold values. K ion (0.01 M KCl) increased the lower threshold value to 8.0 µa./mm.2 and the upper threshold value to 32.0 µa./mm.2, whereas the Li ion (0.01 M LiCl) increased the lower threshold to only 4.0 µa./mm.2 and the upper threshold to only 16.0 µa./mm.2 The passage of electric current produced no increase in the rate of cathodal migration; neither was there a decrease until injurious current densities were reached. With increase of subthreshold current densities there was a progressive decrease in rate of migration toward the anode until complete anodal inhibition occurred. There was orientation at right angles to the electrodes in alternating current (60 cycle) with current density of 4.0 µa./mm.2 and in direct current of 5.0 µa./mm.2 when polarity of current was reversed every minute. It is concluded that the negative galvanotactic response of P. polycephalum is due to inhibition of migration on the anodal side of the plasmodium and that this inhibition results in the limitation of the normal migration of the mold to a cathodal direction. The mechanism of the anodal inhibition has not been elucidated. PMID:14873916
Molecular beam studies of stratospheric photochemistry
NASA Astrophysics Data System (ADS)
Moore, Teresa Anne
1998-12-01
Photochemistry of chlorine oxide containing species plays a major role in stratospheric ozone depletion. This thesis discusses two photodissociation studies of the key molecules ClONO2 and ClOOCl which were previously thought to only produce Cl-atom (ozone depleting) products at wavelengths relevant to the stratosphere. The development of a molecular beam source of ClOOCl and the photodissociation dynamics of the model system Cl2O are also discussed. In the first chapter, the photochemistry of ClONO2 is examined at 308 nm using the technique of photofragment translational spectroscopy. Two primary decomposition pathways, leading to Cl + NO3 and ClO + NO2, were observed, with a lower limit of 0.33 for the relative yield of ClO. The angular distributions for both channels were anisotropic, indicating that the dissociation occurs within a rotational period. Chapter two revisits the photodissociation dynamics of Cl2O at 248 and 308 nm, on which we had previously reported preliminary findings. At 248 nm, three distinct dissociation pathways leading to Cl + ClO products were resolved. At 308 nm, the angular distribution was slightly more isotropic that previously reported, leaving open the possibility that Cl2O excited at 308 nm lives longer than a rotational period. Chapter three describes the development and optimization of a molecular beam source of ClOOCl. We utilized pulsed laser photolysis of ClA2O to generate ClO radicals, and cooled the cell to promote three body recombination to form ClOOCl. The principal components in the beam were Cl2, Cl2O, and ClOOCl. In the fourth chapter, the photodissociation dynamics of ClOOCl are investigated at 248 and 308 nm. We observed multiple dissociation pathways which produced ClO + ClO and 2Cl + O2 products. The relative Cl:ClO product yields are 1.0:0.13 and 1.0:0.20 for ClOOCl photolysis at 248 and 308 nm, respectively. The upper limit for the relative yield of the ClO + ClO channel was 0.19 at 248 nm and 0.31 at 308 nm. These results substantially confirm the current assumption but decrease somewhat the efficiency of the ClOOCl ozone-depleting catalytic cycle. At 248 nm, ClOOCl photolysis exhibited novel dissociation dynamics which appeared to depend on the symmetry of the excited state.
Factors affecting the appearance of the hump charge movement component in frog cut twitch fibers.
Hui, C S
1991-08-01
Charge movement was measured in frog cut twitch fibers with the double Vaseline gap technique. Five manipulations listed below were applied to investigate their effects on the hump component (I gamma) in the ON segments of TEST minus CONTROL current traces. When external Cl-1 was replaced by MeSO3- to eliminate Cl current, I gamma peaked earlier due to a few millivolts shift of the voltage dependence of I gamma kinetics in the negative direction. The Q-V plots in the TEA.Cl and TEA.MeSO3 solutions were well fitted by a sum of two Boltzmann distribution functions. The more steeply voltage-dependent component (Q gamma) had a V approximately 6 mV more negative in the TEA.MeSO3 solution than in the TEA.Cl solution. These voltage shifts were partially reversible. When creatine phosphate in the end pool solution was removed, the I gamma hump disappeared slowly over the course of 20-30 min, partly due to a suppression of Q gamma. The hump reappeared when creatine phosphate was restored. When 0.2-1.0 mM Cd2+ was added to the center pool solution to block inward Ca current, the I gamma hump became less prominent due to a prolongation in the time course of I gamma but not to a suppression of Q gamma. When the holding potential was changed from -90 to -120 mV, the amplitude of I beta was increased, thereby obscuring the I gamma hump. Finally, when a cut fiber was stimulated repetitively, I gamma lost its hump appearance because its time course was prolonged. In an extreme case, a 5-min resting interval was insufficient for a complete recovery of the waveform. In general, a stimulation rate of once per minute had a negligible effect on the shape of I gamma. Of the five manipulations, MeSO3- has the least perturbation on the appearance of I gamma and is potentially a better substitute for Cl- than SO2-(4) in eliminating Cl current if the appearance of the I gamma hump is to be preserved.
NASA Astrophysics Data System (ADS)
Burkholder, J. B.; Feierabend, K.
2010-12-01
Halogen chemistry plays an important role in polar stratospheric ozone loss. The ClO dimer (Cl2O2) catalytic ozone destruction cycle accounts for the vast majority of winter/spring polar stratospheric ozone loss. A key step in the dimer catalytic cycle is the pressure and temperature dependent self-reaction of the ClO radical. The rate coefficient for the ClO self-reaction has been measured in previous laboratory studies but uncertainties persist, particularly at atmospherically relevant temperatures and pressures. In this laboratory study, rate coefficients for the ClO self-reaction were measured over a range of temperature (200 - 296 K) and pressure (50 - 600 Torr, He and N2 bath gases). ClO radicals were produced by pulsed laser photolysis of Cl2O at 248 nm. The ClO radical temporal profile was measured using dual wavelength cavity ring-down spectroscopy (CRDS) near 280 nm. The absolute ClO radical concentration was determined using the ClO UV absorption cross sections and their temperature dependence measured as part of this work. The results from this work will be compared with previous studies and the discrepancies discussed. Possible explanations for deviations of the reaction rate coefficient from the simple Falloff kinetic behavior currently recommended for use in atmospheric model calculations will be discussed.
Iqbal, Javed; Tonta, Mary A; Mitsui, Retsu; Li, Qun; Kett, Michelle; Li, Jinhua; Parkington, Helena C; Hashitani, Hikaru; Lang, Richard J
2012-01-01
BACKGROUND AND PURPOSE Although atypical smooth muscle cells (SMCs) in the proximal renal pelvis are thought to generate the pacemaker signals that drive pyeloureteric peristalsis, their location and electrical properties remain obscure. EXPERIMENTAL APPROACH Standard patch clamp, intracellular microelectrode and immunohistochemistry techniques were used. To unequivocally identify SMCs, transgenic mice with enhanced yellow fluorescent protein (eYFP) expressed in cells containing α-smooth muscle actin (α-SMA) were sometimes used. KEY RESULTS Atypical SMCs were distinguished from typical SMCs by the absence of both a transient 4-aminopyridine-sensitive K+ current (IKA) and spontaneous transient outward currents (STOCs) upon the opening of large-conductance Ca2+-activated K+ (BK) channels. Many typical SMCs displayed a slowly activating, slowly decaying Cl- current blocked by niflumic acid (NFA). Immunostaining for KV4.3 and ANO1/ TMEM16A Cl- channel subunits co-localized with α-SMA immunoreactive product predominately in the distal renal pelvis. Atypical SMCs fired spontaneous inward currents that were either selective for Cl- and blocked by NFA, or cation-selective and blocked by La3+. α-SMA- interstitial cells (ICs) were distinguished by the presence of a Xe991-sensitive KV7 current, BK channel STOCs and Cl- selective, NFA-sensitive spontaneous transient inward currents (STICs). Intense ANO1/ TMEM16A and KV7.5 immunostaining was present in Kit-α-SMA- ICs in the suburothelial and adventitial regions of the renal pelvis. CONCLUSIONS AND IMPLICATIONS We conclude that KV4.3+α-SMA+ SMCs are typical SMCs that facilitate muscle wall contraction, that ANO1/ TMEM16A and KV7.5 immunoreactivity may be selective markers of Kit- ICs and that atypical SMCs which discharge spontaneous inward currents are the pelviureteric pacemakers. PMID:22014103
Understanding the kinetics of the ClO dimer cycle
NASA Astrophysics Data System (ADS)
von Hobe, M.; Salawitch, R. J.; Canty, T.; Keller-Rudek, H.; Moortgat, G. K.; Grooß, J.-U.; Müller, R.; Stroh, F.
2007-06-01
Among the major factors controlling ozone loss in the polar vortices in winter/spring is the kinetics of the ClO dimer catalytic cycle. Here, we propose a strategy to test and improve our understanding of these kinetics by comparing and combining information on the thermal equilibrium between ClO and Cl2O2, the rate of Cl2O2 formation, and the Cl2O2 photolysis rate from laboratory experiments, theoretical studies and field observations. Concordant with a number of earlier studies, we find considerable inconsistencies of some recent laboratory results with rate theory calculations and stratospheric observations of ClO and Cl2O2. The set of parameters for which we find the best overall consistency - namely the ClO/Cl2O2 equilibrium constant suggested by Plenge et al. (2005), the Cl2O2 recombination rate constant reported by Nickolaisen et al. (1994) and Cl2O2 photolysis rates based on absorption cross sections in the range between the JPL 2006 assessment and the laboratory study by Burkholder et al. (1990) - is not congruent with the latest recommendations given by the JPL and IUPAC panels and does not represent the laboratory studies currently regarded as the most reliable experimental values. We show that the incorporation of new Pope et al. (2007) Cl2O2 absorption cross sections into several models, combined with best estimates for other key parameters (based on either JPL and IUPAC evaluations or on our study), results in severe model underestimates of observed ClO and observed ozone loss rates. This finding suggests either the existence of an unknown process that drives the partitioning of ClO and Cl2O2, or else some unidentified problem with either the laboratory study or numerous measurements of atmospheric ClO. Our mechanistic understanding of the ClO/Cl2O2 system is grossly lacking, with severe implications for our ability to simulate both present and future polar ozone depletion.
Sandvik, Elizabeth L.; McLeod, Bruce R.; Parker, Albert E.; Stewart, Philip S.
2013-01-01
The purpose of this study was to investigate the mechanism by which a direct electrical current reduced the viability of Staphylococcus epidermidis biofilms in conjunction with ciprofloxacin at physiologic saline conditions meant to approximate those in an infected artificial joint. Biofilms grown in CDC biofilm reactors were exposed to current for 24 hours in 1/10th strength tryptic soy broth containing 9 g/L total NaCl. Dose-dependent log reductions up to 6.7 log10 CFU/cm2 were observed with the application of direct current at all four levels (0.7 to 1.8 mA/cm2) both in the presence and absence of ciprofloxacin. There were no significant differences in log reductions for wells with ciprofloxacin compared to those without at the same current levels. When current exposures were repeated without biofilm or organics in the medium, significant generation of free chlorine was measured. Free chlorine doses equivalent to the 24 hour endpoint concentration for each current level were shown to mimic killing achieved by current application. Current exposure (1.8 mA/cm2) in medium lacking chloride and amended with sulfate, nitrate, or phosphate as alternative electrolytes produced diminished kills of 3, 2, and 0 log reduction, respectively. Direct current also killed Pseudomonas aeruginosa biofilms when NaCl was present. Together these results indicate that electrolysis reactions generating hypochlorous acid from chloride are likely a main contributor to the efficacy of direct current application. A physiologically relevant NaCl concentration is thus a critical parameter in experimental design if direct current is to be investigated for in vivo medical applications. PMID:23390518
Sandvik, Elizabeth L; McLeod, Bruce R; Parker, Albert E; Stewart, Philip S
2013-01-01
The purpose of this study was to investigate the mechanism by which a direct electrical current reduced the viability of Staphylococcus epidermidis biofilms in conjunction with ciprofloxacin at physiologic saline conditions meant to approximate those in an infected artificial joint. Biofilms grown in CDC biofilm reactors were exposed to current for 24 hours in 1/10(th) strength tryptic soy broth containing 9 g/L total NaCl. Dose-dependent log reductions up to 6.7 log(10) CFU/cm(2) were observed with the application of direct current at all four levels (0.7 to 1.8 mA/cm(2)) both in the presence and absence of ciprofloxacin. There were no significant differences in log reductions for wells with ciprofloxacin compared to those without at the same current levels. When current exposures were repeated without biofilm or organics in the medium, significant generation of free chlorine was measured. Free chlorine doses equivalent to the 24 hour endpoint concentration for each current level were shown to mimic killing achieved by current application. Current exposure (1.8 mA/cm(2)) in medium lacking chloride and amended with sulfate, nitrate, or phosphate as alternative electrolytes produced diminished kills of 3, 2, and 0 log reduction, respectively. Direct current also killed Pseudomonas aeruginosa biofilms when NaCl was present. Together these results indicate that electrolysis reactions generating hypochlorous acid from chloride are likely a main contributor to the efficacy of direct current application. A physiologically relevant NaCl concentration is thus a critical parameter in experimental design if direct current is to be investigated for in vivo medical applications.
Hock, M; Soták, M; Kment, M; Pácha, J
2011-01-01
Increased colonic Cl(-) secretion was supposed to be a causative factor of diarrhea in inflammatory bowel diseases. Surprisingly, hyporesponsiveness to Cl(-) secretagogues was later described in inflamed colon. Our aim was to evaluate changes in secretory responses to cholinergic agonist carbachol in distal and proximal colon during colitis development, regarding secretory activity of enteric nervous system (ENS) and prostaglandins. Increased responsiveness to carbachol was observed in both distal and proximal colon after 3 days of 2 % dextran sodium sulfate (DSS) administration. It was measured in the presence of mucosal Ba(2+) to emphasize Cl(-) secretion. The described increase was abolished by combined inhibitory effect of tetrodotoxin (TTX) and indomethacin. Indomethacin also significantly reduced TTX-sensitive current. On the 7th day of colitis development responsiveness to carbachol decreased in distal colon (compared to untreated mice), but did not change in proximal colon. TTX-sensitive current did not change during colitis development, but indomethacin-sensitive current was significantly increased the 7th day. Decreased and deformed current responses to serosal Ba(2+) were observed during colitis induction, but only in proximal colon. We conclude that besides inhibitory effect of DSS on distal colon responsiveness, there is an early stimulatory effect that manifests in both distal and proximal colon.
Linder, Greg L.; Brumbaugh, William G.; Neitlich, Peter; Little, Edward
2013-01-01
To protect important resources under their bureau’s purview, the United States National Park Service’s (NPS) Arctic Network (ARCN) has developed a series of “vital signs” that are to be periodically monitored. One of these vital signs focuses on wet and dry deposition of atmospheric chemicals and further, the establishment of critical load (CL) values (thresholds for ecological effects based on cumulative depositional loadings) for nitrogen (N), sulfur, and metals. As part of the ARCN terrestrial monitoring programs, samples of the feather moss Hylocomium splendens are being col- lected and analyzed as a cost-effective means to monitor atmospheric pollutant deposition in this region. Ultimately, moss data combined with refined CL values might be used to help guide future regulation of atmospheric contaminant sources potentially impacting Arctic Alaska. But first, additional long-term studies are needed to determine patterns of contaminant deposition as measured by moss biomonitors and to quantify ecosystem responses at particular loadings/ ranges of contaminants within Arctic Alaska. Herein we briefly summarize 1) current regulatory guidance related to CL values 2) derivation of CL models for N and metals, 3) use of mosses as biomonitors of atmospheric deposition and loadings, 4) preliminary analysis of vulnerabilities and risks associated with CL estimates for N, 5) preliminary analysis of existing data for characterization of CL values for N for interior Alaska and 6) implications for managers and future research needs.
Herczegh, Anna; Gyurkovics, Milán; Agababyan, Hayk; Ghidán, Agoston; Lohinai, Zsolt
2013-09-01
This study examines the antibacterial properties of sodium hypochlorite (NaOCl), chlorhexidine gluconate (CHX), Listerine®, and high purity chlorine dioxide (Solumium, ClO2) on selected common oral pathogen microorganisms and on dental biofilm in vitro. Antimicrobial activity of oral antiseptics was compared to the gold standard phenol. We investigated Streptococcus mutans, Lactobacillus acidophilus, Enterococcus faecalis, Veillonella alcalescens, Eikenella corrodens, Actinobacillus actinomycetemcomitans and Candida albicans as some important representatives of the oral pathogens. Furthermore, we collected dental plaque from the upper first molars of healthy young students. Massive biofilm was formed in vitro and its reduction was measured after treating it with mouthrinses: CHX, Listerine® or hyper pure ClO2. Their biofilm disrupting effect was measured after dissolving the crystal violet stain from biofilm by photometer. The results have showed that hyper pure ClO2 solution is more effective than other currently used disinfectants in case of aerobic bacteria and Candida yeast. In case of anaerobes its efficiency is similar to CHX solution. The biofilm dissolving effect of hyper pure ClO2 is significantly stronger compared to CHX and Listerine® after 5 min treatment. In conclusion, hyper pure ClO2 has a potent disinfectant efficacy on oral pathogenic microorganisms and a powerful biofilm dissolving effect compared to the current antiseptics, therefore high purity ClO2 may be a new promising preventive and therapeutic adjuvant in home oral care and in dental or oral surgery practice.
Ritzert, Nicole L; Moffat, Thomas P
2016-12-08
The interaction between electrodeposition of Ni and electrolyte breakdown, namely the hydrogen evolution reaction (HER) via H 3 O + and H 2 O reduction, was investigated under well-defined mass transport conditions using ultramicroelectrodes (UME's) coupled with optical imaging, generation/collection scanning electrochemical microscopy (G/C-SECM), and preliminary microscale pH measurements. For 5 mmol/L NiCl 2 + 0.1 mol/L NaCl, pH 3.0, electrolytes, the voltammetric current at modest overpotentials, i.e. , between -0.6 V and -1.4 V vs. Ag/AgCl, was distributed between metal deposition and H 3 O + reduction, with both reactions reaching mass transport limited current values. At more negative potentials, an unusual sharp current spike appeared upon the onset of H 2 O reduction that was accompanied by a transient increase in H 2 production. The peak potential of the current spike was a function of both [Ni(H 2 O) 6 ] 2+ (aq) concentration and pH. The sharp rise in current was ascribed to the onset of autocatalytic H 2 O reduction, where electrochemically generated OH - species induce heterogeneous nucleation of Ni(OH) 2(ads) islands, the perimeter of which is reportedly active for H 2 O reduction. As the layer coalesces, further metal deposition is quenched while H 2 O reduction continues albeit at a decreased rate as fewer of the most reactive sites, e.g. , Ni/Ni(OH) 2 island edges, are available. At potentials below -1.5 V vs. Ag/AgCl, H 2 O reduction is accelerated, leading to homogeneous precipitation of bulk Ni(OH) 2 · x H 2 O within the nearly hemispherical diffusion layer of the UME.
Evaluating Corrosion in SAVY Containers using Non-Destructive Techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davenport, Matthew Nicholas; Vaidya, Rajendra U.; Abeyta, Adrian Anthony
Powerpoint presentation on Ultrasonic and Eddy Current NDT; UT Theory; Eddy current (ECA): How it works; Controlled Corrosion at NM Tech; Results – HCl Corrosion; Waveform Data for 10M HCl; Accuracy Statistics; Results – FeCl 3 Pitting; Waveforms for Anhydrous FeCl 3; Analyzing Corroded Stainless Steel 316L Plates; 316L Plate to Imitate Pitting; ECA Pit Depth Calibration Curve; C Scan Imaging; UT Pit Detection; SST Containers: Ultrasonic (UT) vs. CMM; UT Data Analysis; UT Conclusions and Observations; ECA Conclusions; Automated System Vision.
Cooperative Learning a Current Snapshot: Before, during and after Implementation
ERIC Educational Resources Information Center
Pérez-Jiménez, Paul
2018-01-01
Cooperative Learning's (CL) implementation has received an incredible amount of research attention from academics held in high esteem. However, the researcher claims that it is up to every new generation of educators to formulate their conclusions regarding CL's effectiveness in a contemporary classroom. Although the author begins by situating CL…
Groundwater and surface water dynamics of Na and Cl in an urban stream: effects of road salts
AbstractRoad salts are a growing environmental and health concern in urban watersheds. We examined groundwater (GW) and surface water (SW) dynamics of Na and Cl in an urban stream, Minebank Run (MBR), MD. We observed an increasing salinity trend in this restored stream. Current b...
NASA Astrophysics Data System (ADS)
Cai, Zhuo-fei; Zhang, Zhi-mei; Guo, Zhan-cheng; Tang, Hui-qing
2012-06-01
V2O5 sintered pellets and graphite rods were employed as the cathode and the anode, respectively; a molten CaCl2-NaCl salt was used as the electrolyte. Then, V2O5 was directly reduced to metal vanadium by the Fray-Farthing-Chen (FFC) method at 873 K to realize low-temperature electrolysis. Two typical experimental conditions, electrolysis time and voltage, were taken into account to investigate the current efficiency and remaining oxygen content in electrolyzed products. The composition and microstructure of the products were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). SEM observations show that a higher voltage (1.8-3.4 V) and a longer electrolysis time (2-5 h) can improve the product quality separately, that is, a lower remaining oxygen content and a more uniform microstructure. The products with an oxygen content of 0.205wt% are successfully obtained below 3.4 V for 10 h. However, the current efficiency is low, and further work is required.
A slow calcium-dependent component of charge movement in Rana temporaria cut twitch fibres.
Hui, C S
1998-06-15
1. Charge movement was studied in highly stretched frog cut twitch fibres in a double Vaseline-gap voltage-clamp chamber, with the internal solution containing either 0.1 mM EGTA or 20 mM EGTA plus 1. 8 mM total Ca2+. 2. Fibres were stimulated with TEST pulses lasting 100-400 ms. Replacement of the external Cl- with an 'impermeant' anion, such as SO42-, CH3SO3-, gluconate or glutamate, greatly reduced the calcium-dependent Cl- current in the ON segment and generated a slowly decaying inward OFF current in charge movement traces. 3. Application of 20 mM EGTA to the internal solution abolished the slow inward OFF current, implying that the activation of the current depended on the presence of Ca2+ in the myoplasm. The possibility that the slow inward OFF current was carried by cations flowing inwards or anions flowing outwards was studied and determined to be unlikely. 4. During a long (2000 ms) TEST pulse, a slowly decaying ON current was also observed. When the slow ON and OFF currents were included as parts of the total charge movement, ON-OFF charge equality was preserved. This slow capacitive current is named Idelta. 5. When Cl- was the major anion in the external solution, the OFF Idelta was mostly cancelled by a slow outward current carried by the inflow of Cl-. 6. The OFF Idelta component showed a rising phase. The average values of the rising time constants in CH3SO3- and SO42- were similar and about half of that in gluconate. 7. The OFF Idelta component in CH3SO3- had a larger magnitude and longer time course than that in SO42-. The maximum amount of Qdelta in CH3SO3- was about three times as much as that in SO42-, whereas the voltage dependence of Qdelta was similar in the two solutions. 8. Since the existence of Qdelta depends on the presence of Ca2+ in the myoplasm, it is speculated that Qdelta could be a function of intracellular calcium release.
Surface chemical properties of eutectic and frozen NaCl solutions probed by XPS and NEXAFS.
Křepelová, Adéla; Huthwelker, Thomas; Bluhm, Hendrik; Ammann, Markus
2010-12-17
We study the surface of sodium chloride-water mixtures above, at, and below the eutectic temperature using X-ray photoelectron spectroscopy (XPS) and electron-yield near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. The NaCl frozen solutions are mimicking sea-salt deposits in ice or snow. Sea-salt particles emitted from the oceans are a major contributor to the global aerosol burden and can act as a catalyst for heterogeneous chemistry or as cloud condensation nuclei. The nature of halogen ions at ice surfaces and their influence on surface melting of ice are of significant current interest. We found that the surface of the frozen solution, depending on the temperature, consists of ice and different NaCl phases, that is, NaCl, NaCl·2H(2)O, and surface-adsorbed water.
Fischer, Horst; Machen, Terry E; Widdicombe, Jonathan H; Carlson, Thomas J S; King, Steven R; Chow, John W S; Illek, Beate
2004-08-01
An oligomeric proanthocyanidin (SP-303) extracted from the bark latex of the tree Croton lechleri (family Euphorbiaceae) is a potent inhibitor of cholera toxin-induced fluid accumulation and chloride secretion. The manufacturing process for SP-303 was optimized and simplified to produce an increased yield of the herbal extract. The novel extract (named SB-300) contained on average 70.6+/-7.2% SP-303 by weight (mean +/- S.D.; n=56 lots). Here, we describe the effectiveness of SB-300 on cAMP-regulated chloride secretion, which is mediated by the cystic fibrosis transmembrane conductance regulator Cl- channel (CFTR) in human colonic T84 cells. Exposure of the apical surface to SB-300 blocked forskolin-stimulated Cl- secretion by 92.2+/-3.0% with a half-maximal inhibition constant (KB) of 4.8+/-0.8 microM. For SP-303, stimulated Cl- currents were decreased by 98.0+/-7.2 % and KB averaged 4.1+/-1.3 microM. There was no significant difference between the blocking kinetics of SP-303 and SB-300. Forskolin-stimulated whole cell Cl- currents were effectively blocked by extracellular addition of SB-300 (63+/-8.5%; n=3) and to a similar extent by SP-303 (83 +/- 0.6%; n=2; at 50 microM each). Both extracts inhibited a time- and voltage-independent Cl- conductance, which indicated the involvement of CFTR Cl- channels. We conclude that both SP-303 (used in Provir) and SB-300 (used in NSF Normal Stool Formula) are novel natural products that target the CFTR Cl- channel. SB-300 is a low cost herbal extract and may present a complementary and alternative medicine approach for the treatment of fluid loss in watery diarrhea.
Stable Chlorine Isotope Study: Application to Early Solar System Materials
NASA Technical Reports Server (NTRS)
Mala,ira. M/; Nyquist, L. E.; Reese, Y.; Shih, C-Y; Fujitani, T.; Okano, O.
2010-01-01
A significantly large mass fractionation between two stable chlorine isotopes is expected during planetary processes In addition, in view of the isotopic heterogeneity of other light elements, the chlorine isotopes can potentially be used as a tracer for the origins and evolutionary processes of early solar system materials. Due to analytical difficulties, however, current chlorine isotope studies on planetary materials are quite controversial among IRMS (gas source mass spectrometry) and/or TIMS (Thermal Ionization Mass Spectrometry) groups [i.e. 1-3]. Although a cross-calibration of IRMS and TIMS indicates that both techniques are sufficiently consistent with each other [4], some authors have claimed that the Cl-37/Cl-35 ratio of geological samples obtained by TIMS technique are, in general, misleadingly too high and variable compared to those of IRMS [3]. For example, almost no differences of Cl isotope composition were observed among mantle materials and carbonaceous meteorites by [3]. On the other hand, according to more recent IRMS work [2], significant Cl isotope variations are confirmed for mantle materials. Therefore, additional careful investigation of Cl isotope analyses are now required to confirm real chlorine isotope variations for planetary materials including carbonaceous chondrites [5]. A significantly large mass fractionation between two stable chlorine isotopes is expected during planetary processes In addition, in view of the isotopic heterogeneity of other light elements, the chlorine isotopes can potentially be used as a tracer for the origins and evolutionary processes of early solar system materials. Due to analytical difficulties, however, current chlorine isotope studies on planetary materials are quite controversial among IRMS (gas source mass spectrometry) and/or TIMS (Thermal Ionization Mass Spectrometry) groups [i.e. 1-3]. Although a cross-calibration of IRMS and TIMS indicates that both techniques are sufficiently consistent with each other [4], some authors have claimed that the 37Cl/35Cl ratio of geological samples obtained by TIMS technique are, in general, misleadingly too high and variable compared to those of IRMS [3]. For eample, almost no differences of Cl isotope composition were observed among mantle materials and carbonaceous meteorites by [3]. On the other hand, according to more recent IRMS work [2], significant Cl isotope variations are confirmed for mantle materials. Therefore, additional careful investigation of Cl isotope analyses are now required to confirm real chlorine isotope variations for planetary materials including carbonaceous chondrites [5]. In order to clarify the stable chlorine isotope features of early solar system materials, we have initiated development of the TIMS technique at NASA JSC applicable to analysis of small amounts of meteoritic and planetary materials. We report here the current status of chlorine isotope analysis at NASA JSC.
Meng, Xin; Wang, Yiting; Wang, Xiaomeng; Wrennall, Joe A; Rimington, Tracy L; Li, Hongyu; Cai, Zhiwei; Ford, Robert C; Sheppard, David N
2017-03-03
Cystic fibrosis (CF) is caused by mutations that disrupt the plasma membrane expression, stability, and function of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl - channel. Two small molecules, the CFTR corrector lumacaftor and the potentiator ivacaftor, are now used clinically to treat CF, although some studies suggest that they have counteracting effects on CFTR stability. Here, we investigated the impact of these compounds on the instability of F508del-CFTR, the most common CF mutation. To study individual CFTR Cl - channels, we performed single-channel recording, whereas to assess entire CFTR populations, we used purified CFTR proteins and macroscopic CFTR Cl - currents. At 37 °C, low temperature-rescued F508del-CFTR more rapidly lost function in cell-free membrane patches and showed altered channel gating and current flow through open channels. Compared with purified wild-type CFTR, the full-length F508del-CFTR was about 10 °C less thermostable. Lumacaftor partially stabilized purified full-length F508del-CFTR and slightly delayed deactivation of individual F508del-CFTR Cl - channels. By contrast, ivacaftor further destabilized full-length F508del-CFTR and accelerated channel deactivation. Chronic (prolonged) co-incubation of F508del-CFTR-expressing cells with lumacaftor and ivacaftor deactivated macroscopic F508del-CFTR Cl - currents. However, at the single-channel level, chronic co-incubation greatly increased F508del-CFTR channel activity and temporal stability in most, but not all, cell-free membrane patches. We conclude that chronic lumacaftor and ivacaftor co-treatment restores stability in a small subpopulation of F508del-CFTR Cl - channels but that the majority remain destabilized. A fuller understanding of these effects and the characterization of the small F508del-CFTR subpopulation might be crucial for CF therapy development. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Basolateral membrane chloride permeability of A6 cells: implication in cell volume regulation.
Brochiero, E; Banderali, U; Lindenthal, S; Raschi, C; Ehrenfeld, J
1995-11-01
The permeability to Cl- of the basolateral membrane (blm) was investigated in renal (A6) epithelial cells, assessing their role in transepithelial ion transport under steady-state conditions (isoosmotic) and following a hypoosmotic shock (i.e. in a regulatory volume decrease, RVD). Three different complementary studies were made by measuring: (1) the Cl- transport rates (delta F/Fo s-1 (x10(-3))), where F is the fluorescence of N-(6-methoxyquinoyl) acetoethyl ester, MQAE, and Fo the maximal fluorescence (x10(-3)) of both membranes by following the intracellular Cl- activities (ai Cl-, measured with MQAE) after extracellular Cl- substitution (2) the blm 86Rb and 36Cl uptakes and (3) the cellular potential and Cl- current using the whole-cell patch-clamp technique to differentiate between the different Cl- transport mechanisms. The permeability of the blm to Cl- was found to be much greater than that of the apical membranes under resting conditions: aiCl- changes were 5.3 +/- 0.7 mM and 25.5 +/- 1.05 mM (n = 79) when Cl- was substituted by NO3(-) in the media bathing apical and basolateral membranes. The Cl- transport rate of the blm was blocked by bumetanide (100 microM) and 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB, 50 microM) but not by N-phenylanthranilic acid (DPC, 100 microM). 86Rb and 36Cl uptake experiments confirmed the presence of a bumetanide- and a NPPB-sensitive Cl- pathway, the latter being approximately three times more important than the former (Na/K/2Cl cotransporter). Appli-cation of a hypoosmotic medium to the serosal side of the cell increased delta F/Fo s-1 (x10(-3)) after extracellular Cl- substitution (1.03 +/- 0.10 and 2.45 +/- 0.17 arbitrary fluorescent units s-1 for isoosmotic and hypoosmotic conditions respectively, n = 11); this delta F/Fo s-1 (x10(-3)) increase was totally blocked by serosal NPPB application; on the other hand, cotransporter activity was decreased by the hypoosmotic shock. Cellular Ca2+ depletion had no effect on delta F/Fo s-1 (x10(-3)) under isoosmotic conditions, but blocked the delta F/Fo s-1 (x10(-3)) increase induced by a hypoosmotic stress. Under isotonic conditions the measured cellular potential at rest was -37.2 +/- 4.0 mV but reached a maximal and transient depolarization of -25.1 +/- 3.7 mV (n = 9) under hypoosmotic conditions. The cellular current at a patch-clamping cellular potential of -85 mV (close to the Nernst equilibrium potential for K+) was blocked by NPPB and transiently increased by hypoosmotic shock (≈50% maximum increase). This study demonstrates that the major component of Cl- transport through the blm of the A6 monolayer is a conductive pathway (NPPB-sensitive Cl- channels) and not a Na/K/2Cl cotransporter. These channels could play a role in transepithelial Cl- absorption and cell volume regulation. The increase in the blm Cl- conductance, inducing a depolarization of these membranes, is proposed as one of the early events responsible for the stimulation of the 86Rb efflux involved in cell volume regulation.
Is there any chlorine monoxide in the stratosphere?
NASA Technical Reports Server (NTRS)
Rogers, J. D.; Mumma, M. J.; Kostiuk, T.; Deming, D.; Hillman, J. J.; Faris, J.; Zipoy, D.
1982-01-01
A ground based search for the 856.50137/cm R(9.5) and for the 859.76765 R(12.5) transitions of stratospheric (Cl-35)O was made in the solar absorption mode using an infrared heterodyne spectrometer. Lines due to stratospheric HNO3 and tropospheric OCS were detected, at about 0.3% absorption levels. The expected lines of ClO in this same region were not detected, even though the optical depth of the ClO lines should be on the order of 0.2% using currently accepted ClO abundances. These infrared measurements suggest that stratospheric ClO is at least a factor of 7 less abundant than is indicated by indirect in situ fluorescence measurements, and the upper limit of 2.4x10 to the 13th power molecules/sq cm to the integrated column density of ClO is a factor of over 4 less than is indicted by microwave measurements. Results imply that the release of fluorocarbon precursors of ClO may be significantly less important for the destruction of stratospheric ozone than was previously thought.
Zhu, Mingshan; Chen, Penglei; Ma, Wanhong; Lei, Bin; Liu, Minghua
2012-11-01
In this paper, we report that cube-like Ag/AgCl nanostructures could be facilely fabricated in a one-pot manner through a direct-precipitation protocol under ambient conditions, wherein no additional issues such as external energy (e.g., high temperature or high pressure), surfactants, or reducing agents are required. In terms of using sodium chloride (NaCl) as chlorine source and silver acetate (CH₃COOAg) as silver source, it is disclosed that simply by adding an aqueous solution of NaCl into an aqueous solution of CH₃COOAg, Ag/AgCl nanostructures with a cube-like geometry, could be successfully formulated. We show that thus-formulated cube-like Ag/AgCl nanospecies could be used as high-performance yet durable visible-light-driven or sunlight-driven plasmonic photocatalysts for the photodegradation of methyl orange (MO) and 4-chlorophenol (4-CP) pollutants. Compared with the commercially available P25-TiO₂, and the Ag/AgCl nanospheres previously fabricated via a surfactant-assisted method, our current cube-like Ag/AgCl nanostructures could exhibit much higher photocatalytic performance. Our template free protocol might open up new and varied opportunities for an easy synthesis of cube-like Ag/AgCl-based high-performance sunlight-driven plasmonic photocatalysts for organic pollutant elimination.
NASA Astrophysics Data System (ADS)
Avallone, Linnea M.; Toohey, Darin W.
2001-05-01
In situ observations of the halogen oxides ClO and BrO made from the NASA ER-2 during the Airborne Arctic Stratospheric Expedition (AASE) I and II missions are used to test current understanding of photochemical parameters. Measurements of ClO obtained during AASE I in the dark perturbed polar vortex are analyzed with respect to temperature to derive the equilibrium expression for the ClO/Cl2O2 system. Assuming photochemical steady state and complete activation of chlorine (ClO + 2Cl2O2 = Cly), observations of ClO made during AASE II are used to derive the photolysis rate of Cl2O2. The photolysis rate derived from atmospheric observations is compared to J values calculated with a photochemical model and various values for the absorption cross section of Cl2O2. The photolysis rate calculated with the cross section of Huder and DeMore [1995] is shown to be systematically too small, while those of Burkholder et al. [1990] and Cox and Hayman [1988] are too large to be consistent with atmospheric observations. Observations of BrO made during AASE II indicate that our understanding of the inorganic bromine budget in the polar regions is incomplete. A possible role for the adduct BrOOCl is investigated.
Direct imaging of Cl- and Cu-induced short-circuit efficiency changes in CdTe solar cells
Poplawsky, Jonathan D.; Parish, Chad M.; Leonard, Donovan N.; ...
2014-05-30
To achieve high-efficiency polycrystalline CdTe-based thin-film solar cells, the CdTe absorbers must go through a post-deposition CdCl 2 heat treatment followed by a Cu diffusion step. To better understand the roles of each treatment with regard to improving grains, grain boundaries, and interfaces, CdTe solar cells with and without Cu diffusion and CdCl 2 heat treatments are investigated using cross-sectional electron beam induced current, electron backscatter diffraction, and scanning transmission electron microscope techniques. The evolution of the cross-sectional carrier collection profile due to these treatments that cause an increase in short-circuit current and higher open-circuit voltage are identified. Additionally, anmore » increased carrier collection in grain boundaries after either/both of these treatments is revealed. The increased current at the grain boundaries is shown to be due to the presence of a space charge region with an intrinsic carrier collection profile width of ≈350 nm. Scanning transmission electron microscope electron-energy loss spectroscopy shows a decreased Te and increased Cl concentration in grain boundaries after treatment, which causes the inversion. Furthermore, each treatment improves the overall carrier collection efficiency of the cell separately, and, therefore, the benefits realized by each treatment are shown to be independent of each other.« less
Chloride equilibrium potential in salamander cones
Thoreson, Wallace B; Bryson, Eric J
2004-01-01
Background GABAergic inhibition and effects of intracellular chloride ions on calcium channel activity have been proposed to regulate neurotransmission from photoreceptors. To assess the impact of these and other chloride-dependent mechanisms on release from cones, the chloride equilibrium potential (ECl) was determined in red-sensitive, large single cones from the tiger salamander retinal slice. Results Whole cell recordings were done using gramicidin perforated patch techniques to maintain endogenous Cl- levels. Membrane potentials were corrected for liquid junction potentials. Cone resting potentials were found to average -46 mV. To measure ECl, we applied long depolarizing steps to activate the calcium-activated chloride current (ICl(Ca)) and then determined the reversal potential for the current component that was inhibited by the Cl- channel blocker, niflumic acid. With this method, ECl was found to average -46 mV. In a complementary approach, we used a Cl-sensitive dye, MEQ, to measure the Cl- flux produced by depolarization with elevated concentrations of K+. The membrane potentials produced by the various high K+ solutions were measured in separate current clamp experiments. Consistent with electrophysiological experiments, MEQ fluorescence measurements indicated that ECl was below -36 mV. Conclusions The results of this study indicate that ECl is close to the dark resting potential. This will minimize the impact of chloride-dependent presynaptic mechanisms in cone terminals involving GABAa receptors, glutamate transporters and ICl(Ca). PMID:15579212
Warth, R; Garcia Alzamora, M; Kim, J K; Zdebik, A; Nitschke, R; Bleich, M; Gerlach, U; Barhanin, J; Kim, S J
2002-03-01
KCNE1 (IsK, minK) co-assembles with KCNQ1 (KvLQT1) to form voltage-dependent K(+) channels. Both KCNQ1 and KCNE1 are expressed in epithelial cells of gut and exocrine pancreas. We examined the role of KCNQ1/KCNE1 in Cl(-) secretion in small and large intestine and exocrine pancreas using the KCNE1 knockout mouse. Immunofluorescence revealed a similar basolateral localization of KCNQ1 in jejunum and colon of KCNE1 wild-type and knockout mice. Electrogenic Cl(-) secretion in the colon was not affected by gene disruption of KCNE1; in jejunum forskolin-induced short-circuit current was some 40% smaller but without being significantly different. Inhibition of KCNQ1 channels by 293B (IC(50) 1 micromol l(-1)) and by IKS224 (IC(50) 14 nmol l(-1)) strongly diminished intestinal Cl(-) secretion. In exocrine pancreas of wild-type mice, KCNQ1 was predominantly located at the basolateral membrane. In KCNE1 knockout mice, however, the basolateral staining was less pronounced and the distribution of secretory granules was irregular. A slowly activating and 293B-sensitive K(+) current was activated via cholinergic stimulation in pancreatic acinar cells of wild-type mice. In KCNE1 knockout mice this K(+) current was strongly reduced. In conclusion intestinal Cl(-) secretion is independent from KCNE1 but requires KCNQ1. In mouse pancreatic acini KCNQ1 probably co-assembled with KCNE1 leads to a voltage-dependent K(+) current that might be of importance for electrolyte and enzyme secretion.
Electrochemical reduction of UO2 in LiCl-Li2O molten salt using porous and nonporous anode shrouds
NASA Astrophysics Data System (ADS)
Choi, Eun-Young; Won, Chan Yeon; Cha, Ju-Sun; Park, Wooshin; Im, Hun Suk; Hong, Sun-Seok; Hur, Jin-Mok
2014-01-01
Electrochemical reductions of uranium oxide in a molten LiCl-Li2O electrolyte were carried out using porous and nonporous anode shrouds. The study focused on the effect of the type of anode shroud on the current density by running experiments with six anode shrouds. Dense ceramics, MgO, and MgO (3 wt%) stabilized ZrO2 (ZrO2-MgO) were used as nonporous shrouds. STS 20, 100, and 300 meshes and ZrO2-MgO coated STS 40 mesh were used as porous shrouds. The current densities (0.34-0.40 A cm-2) of the electrolysis runs using the nonporous anode shrouds were much lower than those (0.76-0.79 A cm-2) of the runs using the porous shrouds. The ZrO2-MgO shroud (600-700 MPa at 25 °C) showed better bending strength than that of MgO (170 MPa at 25 °C). The high current densities achieved in the electrolysis runs using the porous anode shrouds were attributed to the transport of O2- ions through the pores in meshes of the shroud wall. ZrO2-MgO coating on STS mesh was chemically unstable in a molten LiCl-Li2O electrolyte containing Li metal. The electrochemical reduction runs using STS 20, 100, and 300 meshes showed similar current densities in spite of their different opening sizes. The STS mesh shrouds which were immersed in a LiCl-Li2O electrolyte were stable without any damage or corrosion.
El Alem, Mohamed Mahmoud Mohamed; Hakkour, Maryam; Hmamouch, Asmae; Halhali, Meryem; Delouane, Bouchra; Habbari, Khalid; Fellah, Hajiba; Sadak, Abderrahim; Sebti, Faiza
2018-07-01
Cutaneous leishmaniasis is currently a serious public health problem in northern Africa, especially in Morocco. The causative parasite is transmitted to a human host through the bite of infected female sandflies of the genus Phlebotomus. The objective of the present study is to characterize the causative organisms and to predict the risk of cutaneous leishmaniasis (CL) cases in six provinces in southwestern Morocco, based on the spatial distribution of cases in relation to environmental factors and other risk factors such as socio-economic status and demographics. A molecular study was carried out using ITS1 PCR-RFLP method of the ribosomal DNA of Leishmania. An epidemiological study on CL cases was reported between 2000 and 2016 in this current investigation in six provinces in southwestern Morocco. Statistical analysis was performed using a linear regression model to identify the impact as well as the interaction between all predictor variables on the distribution of CL in the studied provinces. The forecast Holt-Winters (HW) method was used to describe the trend and seasonality of CL cases. The ITS1-PCR- RFLP analysis revealed the presence of Leishmania tropica in all studied provinces. The spatial distribution of CL cases documented in all studied provinces during the sixteen years showed a heterogeneous pattern and fluctuation trend with an average prevalence of 9.92 per 100,000 inhabitants. In addition, the forecast HW model predicts continued variability of trend and seasonality of CL cases in the upcoming years. This study confirmed the importance of socioeconomic factors, in particular poverty and the vulnerability rate, on distribution and emergence of CL. This study revealed a relationship between increasing risk of CL occurrence due to Leishmania tropica, as well as the distribution and emergence thereof, and socioeconomic factors in the investigated area. Copyright © 2018 Elsevier B.V. All rights reserved.
Towards a 20 kA high temperature superconductor current lead module using REBCO tapes
NASA Astrophysics Data System (ADS)
Heller, R.; Bagrets, N.; Fietz, W. H.; Gröner, F.; Kienzler, A.; Lange, C.; Wolf, M. J.
2018-01-01
Most of the large fusion devices presently under construction or in operation consisting of superconducting magnets like EAST, Wendelstein 7-X (W7-X), JT-60SA, and ITER, use high temperature superconductor (HTS) current leads (CL) to reduce the cryogenic load and operational cost. In all cases, the 1st generation HTS material Bi-2223 is used which is embedded in a low-conductivity matrix of AgAu. In the meantime, industry worldwide concentrates on the production of the 2nd generation HTS REBCO material because of the better field performance in particular at higher temperature. As the new material can only be produced in a multilayer thin-film structure rather than as a multi-filamentary tape, the technology developed for Bi-2223-based current leads cannot be transferred directly to REBCO. Therefore, several laboratories are presently investigating the design of high current HTS current leads made of REBCO. Karlsruhe Institute of Technology is developing a 20 kA HTS current lead using brass-stabilized REBCO tapes—as a further development to the Bi-2223 design used in the JT-60SA current leads. The same copper heat exchanger module as in the 20 kA JT-60SA current lead will be used for simplicity, which will allow a comparison of the newly developed REBCO CL with the earlier produced and investigated CL for JT-60SA. The present paper discusses the design and accompanying test of single tape and stack REBCO mock-ups. Finally, the fabrication of the HTS module using REBCO stacks is described.
NASA Astrophysics Data System (ADS)
Guo, Jiacheng; Guo, Xingwu; Wang, Shaohua; Zhang, Zhicheng; Dong, Jie; Peng, Liming; Ding, Wenjiang
2016-03-01
The effects of glycine on the mechanism of electrodeposition of Ni-Mn alloy film prepared in ChCl-urea ionic liquid were studied in order to control the composition, microstructure and properties of the film. The cyclic voltammograms revealed that the presence of glycine in the ionic liquid can inhibit the reduction of Ni2+ ions but promote the reduction of Mn2+ ions in the cathodic scan. However, it promoted the dissolution of both Ni and Mn deposits in the ChCl-urea ionic liquids during the reverse scan. Glycine changed the mode of Ni-Mn film growth from Volmer-Weber mode into Stranski-Krastanov mode. The Mn content in the Ni-Mn film increased with the increase of concentration of glycine and current density. The Ni-Mn alloy film with 3.1 at.% Mn exhibited the lowest corrosion current density of 3 × 10-7 A/cm2 compared with other films prepared and exhibited better corrosion resistance than pure Ni film in 3.5 wt.% NaCl solution.
USDA-ARS?s Scientific Manuscript database
The differences between lipopolysaccharide (LPS) and phorbol 12-myristate 13-acetate (PMA) on whole blood oxidative response using luminol-amplified chemiluminescence (CL) are currently unknown in cattle. Luminol-dependent CL measures the amount of reactive oxygen species released from leukocytes a...
A Study on the Corrosion Behavior of Carbon Steel Exposed to a H2S-Containing NH4Cl Medium
NASA Astrophysics Data System (ADS)
Wang, Hai-bo; Li, Yun; Cheng, Guang-xu; Wu, Wei; Zhang, Yao-heng
2018-05-01
NH4Cl corrosion failure often occurs in the overhead systems of hydrotreaters, and this failure is always accompanied by the appearance of H2S. A combination of electrochemical and surface spectroscopic (SEM/EDS, AFM, XRD) techniques was used to investigate the effect of different factors, including the surface roughness, temperature, dissolved oxygen, pH and H2S concentration, on the corrosion behavior of carbon steel in an NH4Cl environment with the presence of H2S. The effect of H2S concentrations (at the ppm level) on the corrosion behavior of carbon steel was systematically revealed. The experimental results clearly indicated that the corrosion rate reached a minimum value at 10 ppm H2S. The steel surface was covered by a uniform corrosion product film in a 10 ppm H2S environment, and the corrosion product film was tight and protective. The ammonia from NH4Cl helped maintaining the protectiveness of the corrosion films in this environment. Dissolved oxygen mainly accelerated the cathodic reaction. The cathodic limiting current density increased with increasing temperature, and the anodic branch polarization curves were similar at different temperatures. The anodic current density decreased as the pH decreased, and the cathodic current density increased as the pH decreased. The absolute surface roughness ( R a) of carbon steel increased from 132.856 nm at 72 h to 153.973 nm at 144 h, and the rougher surface resulted in a higher corrosion rate. The critical innovation in this research was that multiple influential factors were revealed in the NH4Cl environment with the presence of H2S.
A Study on the Corrosion Behavior of Carbon Steel Exposed to a H2S-Containing NH4Cl Medium
NASA Astrophysics Data System (ADS)
Wang, Hai-bo; Li, Yun; Cheng, Guang-xu; Wu, Wei; Zhang, Yao-heng
2018-04-01
NH4Cl corrosion failure often occurs in the overhead systems of hydrotreaters, and this failure is always accompanied by the appearance of H2S. A combination of electrochemical and surface spectroscopic (SEM/EDS, AFM, XRD) techniques was used to investigate the effect of different factors, including the surface roughness, temperature, dissolved oxygen, pH and H2S concentration, on the corrosion behavior of carbon steel in an NH4Cl environment with the presence of H2S. The effect of H2S concentrations (at the ppm level) on the corrosion behavior of carbon steel was systematically revealed. The experimental results clearly indicated that the corrosion rate reached a minimum value at 10 ppm H2S. The steel surface was covered by a uniform corrosion product film in a 10 ppm H2S environment, and the corrosion product film was tight and protective. The ammonia from NH4Cl helped maintaining the protectiveness of the corrosion films in this environment. Dissolved oxygen mainly accelerated the cathodic reaction. The cathodic limiting current density increased with increasing temperature, and the anodic branch polarization curves were similar at different temperatures. The anodic current density decreased as the pH decreased, and the cathodic current density increased as the pH decreased. The absolute surface roughness (R a) of carbon steel increased from 132.856 nm at 72 h to 153.973 nm at 144 h, and the rougher surface resulted in a higher corrosion rate. The critical innovation in this research was that multiple influential factors were revealed in the NH4Cl environment with the presence of H2S.
Vargas, Roger I; Stark, John D; Hertlein, Mark; Neto, Agenor Mafra; Coler, Reginald; Piñero, Jaime C
2008-06-01
Specialized Pheromone and Lure Application Technology (SPLAT) methyl eugenol (ME) and cue-lure (C-L) "attract-and-kill" sprayable formulations containing spinosad were compared with other formulations under Hawaiian weather conditions against oriental fruit fly, Bactrocera dorsalis (Hendel), and melon fly, Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae), respectively. Field tests were conducted with three different dispensers (Min-U-Gel, Acti-Gel, and SPLAT) and two different insecticides (naled and spinosad). SPLAT ME with spinosad was equal in performance to the standard Min-U-Gel ME with naled formulation up to 12 wk. SPLAT C-L with spinosad was equal in performance to the standard Min-U-Gel C-L with naled formulation during weeks 7 to12, but not during weeks 1-6. In subsequent comparative trials, SPLAT ME + spinosad compared favorably with the current standard of Min-U-Gel ME + naled for up to 6 wk, and it was superior from weeks 7 to 12 in two separate tests conducted in a papaya (Carica papaya L.) orchard and a guava (Psidium guajava L.) orchard, respectively. In outdoor paired weathering tests (fresh versus weathered), C-L dispensers (SPLAT + spinosad, SPLAT + naled, and Min-U-Gel + naled) were effective up to 70 d. Weathered ME dispensers with SPLAT + spinosad compared favorably with SPLAT + naled and Min-U-Gel + naled, and they were equal to fresh dispensers for 21-28 d, depending on location. Our current studies indicate that SPLAT ME and SPLAT C-L sprayable attract-and-kill dispensers containing spinosad are a promising substitute for current liquid organophosphate insecticide formulations used for areawide suppression of B. dorsalis and B. cucurbitae in Hawaii.
Ambient temperature secondary lithium cells containing inorganic electrolyte
NASA Astrophysics Data System (ADS)
Schlaikjer, Carl R.
The history and current status of rechargeable lithium cells using electrolytes based on liquid sulfur dioxide are reviewed. Three separate approaches currently under development include lithium/lithium dithionite/carbon cells with a supporting electrolyte salt; lithium/cupric chloride cells using sulfur dioxide/lithium tetrachloroaluminate; and several adaptations of a lithium/carbon cell using sulfur dioxide/lithium tetrachloroaluminate in which the discharge reaction involves the incorporation of aluminum into the positive electrode. The latter two chemistries have been studied in prototype hardware. For AA size cells with cupric chloride, 157 Whr/1 at 24 W/1 for 230 cycles was reported. For AA size cells containing 2LiCl-CaCl2-4AlCl3-12SO2, energy densities as high as 265 Whr/liter and 100 Whr/kg have been observed, but, at 26 W/1, for only 10 cycles. The advantages and remaining problems are discussed.
Methodology of Clinical Trials Aimed at Assessing Interventions for Cutaneous Leishmaniasis
Olliaro, Piero; Vaillant, Michel; Arana, Byron; Grogl, Max; Modabber, Farrokh; Magill, Alan; Lapujade, Olivier; Buffet, Pierre; Alvar, Jorge
2013-01-01
The current evidence-base for recommendations on the treatment of cutaneous leishmaniasis (CL) is generally weak. Systematic reviews have pointed to a general lack of standardization of methods for the conduct and analysis of clinical trials of CL, compounded with poor overall quality of several trials. For CL, there is a specific need for methodologies which can be applied generally, while allowing the flexibility needed to cover the diverse forms of the disease. This paper intends to provide clinical investigators with guidance for the design, conduct, analysis and report of clinical trials of treatments for CL, including the definition of measurable, reproducible and clinically-meaningful outcomes. Having unified criteria will help strengthen evidence, optimize investments, and enhance the capacity for high-quality trials. The limited resources available for CL have to be concentrated in clinical studies of excellence that meet international quality standards. PMID:23556016
Growth of Aeromonas species on increasing concentrations of sodium chloride.
Delamare, A P; Costa, S O; Da Silveira, M M; Echeverrigaray, S
2000-01-01
The growth of 16 strains of Aeromonas, representing 12 species of the genera, were examined at different salt levels (0-1.71 M NaCl). All the strains grew on media with 0.34 M NaCl, and nine on media with 0.68 M. Two strains, Aer. enteropelogenes and Aer. trota, were able to grow on media with 0.85 M and 1.02 M NaCl, respectively. Comparison of the growth curves of Aer. hydrophila ATCC7966 and Aer. trota ATCC 49657 on four concentrations of NaCl (0.08, 0.34, 0.68 and 1.02 M) confirm the high tolerance of Aer. trota, and indicate that high concentrations of salt increase the lag time and decrease the maximum growth rate. However, both strains were able to grow, slowly, in at least 0.68 M NaCl, a sodium chloride concentration currently used as food preservative.
NASA Astrophysics Data System (ADS)
Jeong, Ji-Ho; Noh, Yong-Jin; Kim, Seok-Soon; Kwon, Sung-Nam; Na, Seok-In
2018-03-01
We introduce a high efficiency polymeric photovoltaic cell (PPV) to be obtained by polyacrylonitrile (PAN) hole extraction layer (HEL) modification with gold chloride (AuCl3). The role of PAN HELs with AuCl3 and their effects on solar cell performances were studied with ultraviolet photoemission spectroscopy, atomic force microscopy, internal resistances in PPVs, and current-voltage power curves. The resultant PPVs with AuCl3-treated PAN HELs showed improved cell efficiency compared to PSCs with no interlayer and PAN without AuCl3. Furthermore, with AuCl3-treated PAN, we finally achieved a high efficiency of 6.91%, and a desirable PPV-stability in poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b‧]dithiophe-ne-2,6-diyl][3-fluoro-2-[(2-thylhexyl)carbonyl]-thieno[3,4-b]thiophenediyl
McCloskey, Diana T; Doherty, Lynda; Dai, Yan-Ping; Miller, Lisa; Hume, Joseph R; Yamboliev, Ilia A
2007-06-08
Short ClC3 isoform (sClC3) functions as a volume-sensitive outwardly rectifying anion channel (VSOAC) in some cell types. In previous studies, we have shown that the hypotonic activation of sClC3 is linked to cell swelling-mediated remodeling of the actin cytoskeleton. In the present study, we have tested the hypothesis that the cytosolic tails of sClC3 bind to actin directly and that binding modulates the hypotonic activation of the channel. Co-sedimentation assays in vitro demonstrated a strong binding between the glutathione S-transferase-fused cytosolic C terminus of sClC3 (GST-sClC3-CT) to filamentous actin (F-actin) but not to globular monomeric actin (G-actin). The GST-fused N terminus (GST-sClC3-NT) exhibited low binding affinity to both G- and F-actin. Co-sedimentation experiments with progressively truncated GST-sClC3-CT indicated that the F-actin binding region is located between amino acids 690 and 760 of sClC3. Two synthetic peptides mapping basic clusters of the cytosolic sClC3-CT (CTP2, isoleucine 716 to leucine 734; and CTP3, proline 688 to proline 709) prevented binding of GST-sClC3-CT to F-actin in vitro. Dialysis into NIH/3T3 cells of these two peptides (but not of synthetic peptide CTP1 (isoleucine 737 to glutamine 748)) reduced the maximal current density by 60 and 38%, respectively. Based on these results, we have concluded that, by direct interaction with subcortical actin filaments, sClC3 contributes to the hypotonic stress-induced VSOACs in NIH/3T3 cells.
Corrosion Properties of SAC305 Solder in Different Solution of HCl and NaCl
NASA Astrophysics Data System (ADS)
Nurwahida, M. Z.; Mukridz, M. M.; Ahmad, A. M.; Muhammad, F. M. N.
2018-03-01
Potentiodynamic polarization was used to studied the corrosion properties of SAC305 solder in different solution of 1.0 M HCl and 3.5 wt.% NaCl using the same scanning rate of 1.0 mV/s. The polarization curves indicated that corrosion in NaCl was less severe than in HCl solution based on corrosion current and passivation behavior obtained. Morphology and phases obtained after corrosion using SEM and XRD were analyzed. Microstructure analysis shows the present of compact corrosion product with presence of larger flake for polarization in NaCl compared to HCl. Phases present in XRD analysis confirmed the present of SnO and SnO2 corrosion product for sample from both solutions.
Bacon, Kristina M.; Hotez, Peter J.; Kruchten, Stephanie D.; Kamhawi, Shaden; Bottazzi, Maria Elena; Valenzuela, Jesus G.; Lee, Bruce Y.
2013-01-01
Cutaneous leishmaniasis (CL) and its associated complications, including mucocutaneous leishmaniasis (MCL) and diffuse CL (DCL) have emerged as important neglected tropical diseases in Latin America, especially in areas associated with human migration, conflict, and recent deforestation. Because of the limitations of current chemotherapeutic approaches to CL, MCL, and DCL, several prototype vaccines are in different states of product and clinical development. We constructed and utilized a Markov decision analytic computer model to evaluate the potential economic value of a preventative CL vaccine in seven countries in Latin America: Bolivia, Brazil, Colombia, Ecuador, Mexico, Peru, and Venezuela. The results indicated that even a vaccine with a relative short duration of protection and modest efficacy could be recommended for use in targeted locations, as it could prevent a substantial number of cases at low-cost and potentially even result in cost savings. If the population in the seven countries were vaccinated using a vaccine that provides at least 10 years of protection, an estimated 41,000-144,784 CL cases could be averted, each at a cost less than the cost of current recommended treatments. Further, even a vaccine providing as little as five years duration of protection with as little as 50% efficacy remains cost-effective compared with chemotherapy; additional scenarios resembling epidemic settings such as the one that occurred in Chaparral, Colombia in 2004 demonstrates important economic benefits. PMID:23176979
Hydrogen peroxide stimulates rat colonic prostaglandin production and alters electrolyte transport.
Karayalcin, S S; Sturbaum, C W; Wachsman, J T; Cha, J H; Powell, D W
1990-01-01
The changes in short circuit current (electrogenic Cl- secretion) of rat colon brought about by xanthine/xanthine oxidase in the Ussing chamber were inhibited by catalase and diethyldithiocarbamate, but not by superoxide dismutase. These results, the reproduction of the response with glucose/glucose oxidase and with exogenous H2O2, and the lack of effect of preincubation with deferoxamine or thiourea implicate H2O2, and not O2- or OH., as the important reactive oxygen metabolite altering intestinal electrolyte transport. 1 mM H2O2 stimulated colonic PGE2 and PGI2 production 8- and 15-fold, respectively, inhibited neutral NaCl absorption, and stimulated biphasic electrogenic Cl secretion with little effect on enterocyte lactic dehydrogenase release, epithelial conductance, or histology. Cl- secretion was reduced by cyclooxygenase inhibition. Also, the Cl- secretion, but not the increase in prostaglandin production, was reduced by enteric nervous system blockade with tetrodotoxin, hexamethonium, or atropine. Thus, H2O2 appears to alter electrolyte transport by releasing prostaglandins that activate the enteric nervous system. The change in short circuit current in response to Iloprost, but not PGE2, was blocked by tetrodotoxin. Therefore, PGI2 may be the mediator of the H2O2 response. H2O2 produced in nontoxic concentrations in the inflamed gut could have significant physiologic effects on intestinal water and electrolyte transport. Images PMID:2164049
NASA Astrophysics Data System (ADS)
Onyeji, Lawrence; Kale, Girish
2017-12-01
The corrosion performance of fairly new generation of micro-alloyed steels was compared in different concentrations of aerated and deaerated brines. Electrochemical polarization, weight loss and surface analyses techniques were employed. The results showed a threshold of corrosion rate at 3.5 wt.% NaCl in both aerated and deaerated solutions. The average corrosion current density for steel B, for example, increased from 1.3 µA cm-2 in 1 wt.% NaCl to 1.5 µA cm-2 in 3.5 wt.% NaCl, but decreased to 1.4 µA cm-2 in 10 wt.% deaerated NaCl solutions. The aerated solutions exhibited an average of over 80% increase in corrosion current density in the respective concentrations when compared with the deaerated solution. These results can be attributed to the effects of dissolved oxygen (DO) which has a maximum solubility in 3.5 wt.% NaCl. DO as a depolarizer and electron acceptor in cathodic reactions accelerates anodic metal dissolution. The difference in carbon content and microstructures occasioned by thermo-mechanical treatment contributed to the witnessed variation in corrosion performance of the steels. Specifically, the results of the various corrosion techniques corroborated each other and showed that the corrosion rate of the micro-alloyed steels can be ranked as CRSteel A < CRX65 < CRSteel B < CRSteel C.
UV absorption spectrum of the ClO dimer (Cl2O2) between 200 and 420 nm.
Papanastasiou, Dimitrios K; Papadimitriou, Vassileios C; Fahey, David W; Burkholder, James B
2009-12-10
The UV photolysis of Cl(2)O(2) (dichlorine peroxide) is a key step in the catalytic destruction of polar stratospheric ozone. In this study, the gas-phase UV absorption spectrum of Cl(2)O(2) was measured using diode array spectroscopy and absolute cross sections, sigma, are reported for the wavelength range 200-420 nm. Pulsed laser photolysis of Cl(2)O at 248 nm or Cl(2)/Cl(2)O mixtures at 351 nm at low temperature (200-228 K) and high pressure (approximately 700 Torr, He) was used to produce ClO radicals and subsequently Cl(2)O(2) via the termolecular ClO self-reaction. The Cl(2)O(2) spectrum was obtained from spectra recorded following the completion of the gas-phase ClO radical chemistry. The spectral analysis used observed isosbestic points at 271, 312.9, and 408.5 nm combined with reaction stoichiometry and chlorine mass balance to determine the Cl(2)O(2) spectrum. The Cl(2)O(2) UV absorption spectrum peaks at 244.5 nm with a cross section of 7.6(-0.5)(+0.8) x 10(-18) cm(2) molecule(-1) where the quoted error limits are 2sigma and include estimated systematic errors. The Cl(2)O(2) absorption cross sections obtained for wavelengths in the range 300-420 nm are in good agreement with the Cl(2)O(2) spectrum reported previously by Burkholder et al. (J. Phys. Chem. A 1990, 94, 687) and significantly higher than the values reported by Pope et al. (J. Phys. Chem. A 2007, 111, 4322). A possible explanation for the discrepancy in the Cl(2)O(2) cross section values with the Pope et al. study is discussed. Representative, atmospheric photolysis rate coefficients are calculated and a range of uncertainty estimated based on the determination of sigma(Cl(2)O(2))(lambda) in this work. Although improvements in our fundamental understanding of the photochemistry of Cl(2)O(2) are still desired, this work indicates that major revisions in current atmospheric chemical mechanisms are not required to simulate observed polar ozone depletion.
UV Absorption Spectrum of the ClO Dimer (Cl2O2) between 200 and 420 nm
NASA Astrophysics Data System (ADS)
Papanastasiou, Dimitrios K.; Papadimitriou, Vassileios C.; Fahey, David W.; Burkholder, James B.
2009-11-01
The UV photolysis of Cl2O2 (dichlorine peroxide) is a key step in the catalytic destruction of polar stratospheric ozone. In this study, the gas-phase UV absorption spectrum of Cl2O2 was measured using diode array spectroscopy and absolute cross sections, σ, are reported for the wavelength range 200-420 nm. Pulsed laser photolysis of Cl2O at 248 nm or Cl2/Cl2O mixtures at 351 nm at low temperature (200-228 K) and high pressure (˜700 Torr, He) was used to produce ClO radicals and subsequently Cl2O2 via the termolecular ClO self-reaction. The Cl2O2 spectrum was obtained from spectra recorded following the completion of the gas-phase ClO radical chemistry. The spectral analysis used observed isosbestic points at 271, 312.9, and 408.5 nm combined with reaction stoichiometry and chlorine mass balance to determine the Cl2O2 spectrum. The Cl2O2 UV absorption spectrum peaks at 244.5 nm with a cross section of 7.6-0.5+0.8 × 10-18 cm2 molecule-1 where the quoted error limits are 2σ and include estimated systematic errors. The Cl2O2 absorption cross sections obtained for wavelengths in the range 300-420 nm are in good agreement with the Cl2O2 spectrum reported previously by Burkholder et al. (J. Phys. Chem. A 1990, 94, 687) and significantly higher than the values reported by Pope et al. (J. Phys. Chem. A 2007, 111, 4322). A possible explanation for the discrepancy in the Cl2O2 cross section values with the Pope et al. study is discussed. Representative, atmospheric photolysis rate coefficients are calculated and a range of uncertainty estimated based on the determination of σCl2O2(λ) in this work. Although improvements in our fundamental understanding of the photochemistry of Cl2O2 are still desired, this work indicates that major revisions in current atmospheric chemical mechanisms are not required to simulate observed polar ozone depletion.
Study on the performance of 2.6 μm In0.83Ga0.17As detector with different etch gases
NASA Astrophysics Data System (ADS)
Li, Ping; Tang, Hengjing; Li, Tao; Li, Xue; Shao, Xiumei; Ma, Yingjie; Gong, Haimei
2017-09-01
In order to obtain a low-damage recipe in the ICP processing, ICP-induced damage using Cl2/CH4 etch gases in extended wavelength In0.83Ga0.17As detector materials was studied in this paper. The effect of ICP etching on In0.83Ga0.17As samples was characterized qualitatively by the photoluminescence (PL) technology. The etch damage of In0.83Ga0.17As samples was characterized quantitatively by the Transmission Line Model (TLM), current voltage (IV) measurement, signal and noise testing and the Fourier Transform Infrared Spectroscopy (FTIR) technologies. The results showed that the Cl2/CH4 etching processing could lead better detector performance than that Cl2/N2, such as a larger square resistance, a lower dark current, a lower noise voltage and a higher peak detectivity. The lower PL signal intensity and lower dark current could be attributed to the hydrogen decomposed by the CH4 etch gases in the plasma etching process. These hydrogen particles generated non-radiative recombination centers in inner materials to weaken the PL intensity and passivated dangling bond at the surface to reduce the dark current. The larger square resistance resulted from the lower etch damage. The lower dark current meant that the detectors have less dangling bonds and leakage channels.
Rule of formation of aluminum electroplating layer on Q235 steel.
Ding, Zhimin; Feng, Qiuyuan; Shen, Changbin; Gao, Hong
2011-06-01
Aluminum electroplating layer on Q235 steel in AlCl3-NaCl-KCl molten salt was obtained, and the rule of its nucleation and growth were investigated. The results showed that aluminum electroplating layer formed through nucleating and growing of aluminum particles, and thickened by delaminating growth pattern. At low current density, the morphology of aluminum particles took on flake-like, while at high current density they changed to spherical. The thickness of plating layer increases with increasing current density and electroplating time. The relationship between the plating thickness (δ) and electroplating time (t) or current density (i) can be expressed as δ = 0.28f(137), and δ = 1.1i(1-39). Copyright © 2011 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
Aaronson, Barak D B; Wigmore, David; Johns, Marcus A; Scott, Janet L; Polikarpov, Igor; Marken, Frank
2017-09-25
Cellulose films as well as chitosan-modified cellulose films of approximately 5 μm thickness, reconstituted from ionic liquid media onto a poly(ethylene-terephthalate) (PET, 6 μm thickness) film with a 5, 10, 20, or 40 μm diameter laser-drilled microhole, show significant current rectification in aqueous NaCl. Reconstituted α-cellulose films provide "cationic diodes" (due to predominant cation conductivity) whereas chitosan-doped cellulose shows "anionic diode" effects (due to predominant anion conductivity). The current rectification, or "ionic diode" behaviour, is investigated as a function of NaCl concentration, pH, microhole diameter, and molecular weight of the chitosan dopant. Future applications are envisaged exploiting the surface charge induced switching of diode currents for signal amplification in sensing.
NASA Technical Reports Server (NTRS)
Voss, P. B.; Stimpfle, R. M.; Cohen, R. C.; Hanisco, T. F.; Bonne, G. P.; Perkins, K. K.; Lanzendorf, E. J.; Anderson, J. G.; Salawitch, R. J.
2001-01-01
We examine inorganic chlorine (Cly) partitioning in the summer lower stratosphere using in situ ER-2 aircraft observations made during the Photochemistry of Ozone Loss in the Arctic Region in Summer (POLARIS) campaign. New steady state and numerical models estimate [ClONO2]/[HCl] using currently accepted photochemistry. These models are tightly constrained by observations with OH (parameterized as a function of solar zenith angle) substituting for modeled HO2 chemistry. We find that inorganic chlorine photochemistry alone overestimates observed [ClONO2]/[HCl] by approximately 55-60% at mid and high latitudes. On the basis of POLARIS studies of the inorganic chlorine budget, [ClO]/[ClONO2], and an intercomparison with balloon observations, the most direct explanation for the model-measurement discrepancy in Cly partitioning is an error in the reactions, rate constants, and measured species concentrations linking HCl and ClO (simulated [ClO]/[HCl] too high) in combination with a possible systematic error in the ER-2 ClONO2 measurement (too low). The high precision of our simulation (+/-15% 1-sigma for [ClONO2]/[HCl], which is compared with observations) increases confidence in the observations, photolysis calculations, and laboratory rate constants. These results, along with other findings, should lead to improvements in both the accuracy and precision of stratospheric photochemical models.
Spatiotemporal and molecular epidemiology of cutaneous leishmaniasis in Libya.
Amro, Ahmad; Al-Dwibe, Hamida; Gashout, Aisha; Moskalenko, Olga; Galafin, Marlena; Hamarsheh, Omar; Frohme, Marcus; Jaeschke, Anja; Schönian, Gabriele; Kuhls, Katrin
2017-09-01
Cutaneous leishmaniasis (CL) is a major public health problem in Libya. In this paper, we describe the eco-epidemiological parameters of CL during the armed conflict period from January 2011 till December 2012. Current spatiotemporal distributions of CL cases were explored and projected to the future using a correlative modelling approach. In addition the present results were compared with our previous data obtained for the time period 1995-2008. We investigated 312 CL patients who presented to the Dermatology Department at the Tripoli Central Hospital and came from 81 endemic areas distributed in 10 districts. The patients presented with typical localized lesions which appeared commonly on the face, arms and legs. Molecular identification of parasites by a PCR-RFLP approach targeting the ITS1 region of the rDNA was successful for 81 patients with two causative species identified: L. major and L. tropica comprised 59 (72.8%) and 22 (27.2%) cases, respectively. Around 77.3% of L. tropica CL and 57.7% of L. major CL caused single lesions. Five CL patients among our data set were seropositive for HIV. L. tropica was found mainly in three districts, Murqub (27.3%), Jabal al Gharbi (27.3%) and Misrata (13.7%) while L. major was found in two districts, in Jabal al Gharbi (61%) and Jafara (20.3%). Seasonal occurrence of CL cases showed that most cases (74.2%) admitted to the hospital between November and March, L. major cases from November till January (69.4%), and L. tropica cases mainly in January and February (41%). Two risk factors were identified for the two species; the presence of previously infected household members, and the presence of rodents and sandflies in patient's neighborhoods. Spatiotemporal projections using correlative distribution models based on current case data and climatic conditions showed that coastal regions have a higher level of risk due to more favourable conditions for the transmitting vectors. Future projection of CL until 2060 showed a trend of increasing incidence of CL in the north-western part of Libya, a spread along the coastal region and a possible emergence of new endemics in the north-eastern districts of Libya. These results should be considered for control programs to prevent the emergence of new endemic areas taking also into consideration changes in socio-economical factors such as migration, conflicts, urbanization, land use and access to health care.
Electrochemical Formation of Mg-Li-Sm Alloys by Codeposition from LiCl-KCl-MgCl2-SmCl3 Molten Salts
NASA Astrophysics Data System (ADS)
Han, Wei; Wang, Fengli; Tian, Yang; Zhang, Milin; Yan, Yongde
2011-12-01
In this article, the electrochemical method of preparing Mg-Li-Sm alloys by codeposition in LiCl-KCl-MgCl2-SmCl3 melts was investigated. Transient electrochemical techniques, such as cyclic voltammetry, chronopotentiometry, and chronoamperometry were used to explore the electrochemical formation of Mg-Li-Sm alloys. Chronopotentiograms demonstrated that the codepositon of Mg, Li, and Sm occurred when current densities were more negative than -0.31 A cm-2. Chronoamperograms indicated that the onset potential for the codeposition of Mg, Li, and Sm was -2.40 V, and the codeposition of Mg, Li, and Sm was formed when the applied potentials were more negative than -2.40 V. The different phases of Mg-Li-Sm alloys were prepared by galvanostatic electrolysis and characterized by X-ray diffraction (XRD), optical microscope (OM), and scanning electron microscopy (SEM). An inductively coupled plasma (ICP) analysis showed that the lithium and samarium contents in Mg-Li-Sm alloys could be controlled by the concentrations of MgCl2 and SmCl3. The results demonstrated that Sm could refine the grains dramatically. When the Sm content was 0.8 wt pct, the grain size was the finest.
An Efficient, Solvent-Free Process for Synthesizing Anhydrous MgCl 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Motkuri, Radha K.; Vemuri, Venkata Rama S.; Barpaga, Dushyant
A new efficient and solvent-free method for the synthesis of anhydrous MgCl2 from its hexahydrate is proposed. Fluidized dehydration of MgCl 2·6H 2O feedstock at 200 °C in a porous bed reactor yields MgCl2·nH2O (0 < n < 1), which has a similar diffraction pattern as activated MgCl2. The MgCl 2·nH 2O is then ammoniated directly using liquefied NH 3 in the absence of solvent to form MgCl 2·6NH 3. Calcination of the hexammoniate complex at 300 °C then yields anhydrous MgCl 2. Both dehydration and deammoniation were thoroughly studied using in situ as well as ex situ characterization techniques.more » Specifically, a detailed understanding of the dehydration process was monitored by in situ PXRD and in situ FTIR techniques where formation of salt with nH 2O (n = 4, 2, 1, <1) was characterized. Given the reduction in thermal energy required to produce dehydrated feedstock with this method compared with current strategies, significant cost benefits are expected. Overall, the combined effect of activation, macroporosity, and coordinated water depletion allows the formation of hexammoniate without using solvent, thus minimizing waste formation.« less
NASA Astrophysics Data System (ADS)
Wang, Shunzhong; Li, Xiaohui; Wan, Zhaohui; Chen, Yanan; Tan, Jinting; Pan, Mu
2018-03-01
Oxygen transport resistance (OTR) is a critical factor influencing the performance of proton exchange membrane fuel cells (PEMFCs). In this paper, an effective method to reduce the OTR of catalyst layers (CLs) by introducing a hydrophobic additive into traditional CLs is proposed. A low-molecular-weight polytetrafluoroethylene (PTFE) is selected for its feasibility to prepare an emulsion, which is mixed with a traditional catalyst ink to successfully fabricate the CL with PTFE of 10 wt%. The PTFE film exists in the mesopores between the carbon particles. The limiting current of the hydrophobic CL was almost 4000 mA/cm2, which is 500 mA/cm2 higher than that of the traditional CL. PTFE reduces the OTR of the CL in the dry region by as much as 24 s/m compared to the traditional CL and expands the dry region from 2000 mA/cm2 in the traditional CL to 2500 mA/cm2. Furthermore, the CL with the hydrophobic agent can improve the oxygen transport in the wet region (>2000 mA/cm2) more effectively than that in the dry region. All these results indicate that the CL with the hydrophobic agent shows a superior performance in terms of optimizing water management and effectively reduces the OTR in PEMFCs.
Pierno, S; Camerino, GM; Cippone, V; Rolland, J-F; Desaphy, J-F; De Luca, A; Liantonio, A; Bianco, G; Kunic, JD; George, AL; Camerino, D Conte
2009-01-01
Background and purpose: Statins and fibrates can produce mild to life-threatening skeletal muscle damage. Resting chloride channel conductance (gCl), carried by the ClC-1 channel, is reduced in muscles of rats chronically treated with fluvastatin, atorvastatin or fenofibrate, along with increased resting cytosolic calcium in statin-treated rats. A high gCl, controlled by the Ca2+-dependent protein kinase C (PKC), maintains sarcolemma electrical stability and its reduction alters muscle function. Here, we investigated how statins and fenofibrate impaired gCl. Experimental approach: In rats treated with fluvastatin, atorvastatin or fenofibrate, we examined the involvement of PKC in gCl reduction by the two intracellular microelectrodes technique and ClC-1 mRNA level by quantitative real time-polymerase chain reaction. Direct drug effects were tested by patch clamp analysis on human ClC-1 channels expressed in human embryonic kidney (HEK) 293 cells. Key results: Chelerythrine, a PKC inhibitor, applied in vitro on muscle dissected from atorvastatin-treated rats fully restored gCl, suggesting the involvement of this enzyme in statin action. Chelerythrine partially restored gCl in muscles from fluvastatin-treated rats but not in those from fenofibrate-treated rats, implying additional mechanisms for gCl impairment. Accordingly, a decrease of ClC-1 channel mRNA was found in both fluvastatin-and fenofibrate-treated rat muscles. Fenofibric acid, the in vivo metabolite of fenofibrate, but not fluvastatin, rapidly reduced chloride currents in HEK 293 cells. Conclusions and implications: Our data suggest multiple mechanisms underlie the effect of statins and fenofibrate on ClC-1 channel conductance. While statins promote Ca2+-mediated PKC activation, fenofibrate directly inhibits ClC-1 channels and both fluvastatin and fenofibrate impair expression of mRNA for ClC-1. PMID:19220292
Wilson, Emily M; Johanningsmeier, Suzanne D; Osborne, Jason A
2015-06-01
Fermentation of cucumbers in calcium chloride (CaCl2 ) brine has been proposed as an alternative process to reduce the environmental impact of traditional, high salt fermentations. The objective of this research was to determine whether consumer acceptability of pickle products would be impacted by fermentation and storage of cucumbers in CaCl2 brine. Cucumbers were fermented and stored with 0.1M CaCl2 or 1M sodium chloride (NaCl) in open-air, 3000 gal tanks at a commercial facility and processed into hamburger dill chips containing 0.38M NaCl. Cucumbers fermented in CaCl2 required additional desalting to reduce CaCl2 concentrations to that of current products. Consumers (n = 101) showed no significant preference for pickles from different fermentation treatments, whether stored for 2 mo (P = 0.75) or 8 mo (P = 0.68) prior to processing. In contrast, NaCl fermented pickles were preferred over CaCl2 fermented pickles stored for 10 mo and desalted only once (P < 0.01). A series of preference tests indicated that the taste of CaCl2 was not the factor affecting consumer preference, and the 50% detection threshold of CaCl2 in dill pickle chips was found to be 61.8 ± 7.6 mM, indicating that processors could potentially use CaCl2 fermentations with a single desalting step. Consumer liking of flavor (n = 73) was not influenced by fermentation in CaCl2 or by 23 or 35 mM CaCl2 in finished products (P > 0.05), but variability in texture decreased consumer liking (P < 0.05). Although promising, individual fermentation variability and texture quality of CaCl2 fermented products should be further evaluated prior to broad implementation of this process. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
Cutaneous leishmaniasis (Leishmania tropica) in a German tourist after travel to Greece.
Berens-Riha, Nicole; Fleischmann, Erna; Pratlong, Francine; Bretzel, Gisela; von Sonnenburg, Frank; Löscher, Thomas
2009-01-01
We report on a German tourist returning from vacations in Southern Greece with cutaneous leishmaniasis (CL) presenting as multiple erythematosquamous lesions caused by Leishmania tropica (zymodeme MON-57). In spite of its endemicity, only few data are available on the incidence and current distribution of CL in Greece, which may allow for an assessment of the risk for travelers.
CO2 decomposition using electrochemical process in molten salts
NASA Astrophysics Data System (ADS)
Otake, Koya; Kinoshita, Hiroshi; Kikuchi, Tatsuya; Suzuki, Ryosuke O.
2012-08-01
The electrochemical decomposition of CO2 gas to carbon and oxygen gas in LiCl-Li2O and CaCl2-CaO molten salts was studied. This process consists of electrochemical reduction of Li2O and CaO, as well as the thermal reduction of CO2 gas by the respective metallic Li and Ca. Two kinds of ZrO2 solid electrolytes were tested as an oxygen ion conductor, and the electrolytes removed oxygen ions from the molten salts to the outside of the reactor. After electrolysis in both salts, the aggregations of nanometer-scale amorphous carbon and rod-like graphite crystals were observed by transmission electron microscopy. When 9.7 %CO2-Ar mixed gas was blown into LiCl-Li2O and CaCl2-CaO molten salts, the current efficiency was evaluated to be 89.7 % and 78.5 %, respectively, by the exhaust gas analysis and the supplied charge. When a solid electrolyte with higher ionic conductivity was used, the current and carbon production became larger. It was found that the rate determining step is the diffusion of oxygen ions into the ZrO2 solid electrolyte.
Hecht, G; Koutsouris, A
1999-03-01
Enteric bacterial pathogens often increase intestinal Cl- secretion. Enteropathogenic Escherichia coli (EPEC) does not stimulate active ion secretion. In fact, EPEC infection decreases net ion transport in response to classic secretagogues. This has been presumed to reflect diminished Cl- secretion. The aim of this study was to investigate the influence of EPEC infection on specific intestinal epithelial ion transport processes. T84 cell monolayers infected with EPEC were used for these studies. EPEC infection significantly decreased short-circuit current (Isc) in response to carbachol and forskolin, yet 125I efflux studies revealed no difference in Cl- channel activity. There was also no alteration in basolateral K+ channel or Na+-K+-2Cl- cotransport activity. Furthermore, net 36Cl- flux was not decreased by EPEC. No alterations in either K+ or Na+ transport could be demonstrated. Instead, removal of basolateral bicarbonate from uninfected monolayers yielded an Isc response approximating that observed with EPEC infection, whereas bicarbonate removal from EPEC-infected monolayers further diminished Isc. These studies suggest that the reduction in stimulated Isc is not secondary to diminished Cl- secretion. Alternatively, bicarbonate-dependent transport processes appear to be perturbed.
Pre-treatment for ultrafiltration: effect of pre-chlorination on membrane fouling
Yu, Wenzheng; Xu, Lei; Graham, Nigel; Qu, Jiuhui
2014-01-01
Microbial effects are believed to be a major contributor to membrane fouling in drinking water treatment. Sodium hypochlorite (NaClO) is commonly applied in membrane cleaning, but its potential use as a pretreatment for controlling operational fouling has received little attention. In this study, the effect of adding a continuous low dose of NaClO (1 mg/l as active Cl) in combination with alum, before ultrafiltration, was compared with only alum as pretreatment. The results showed that the addition of NaClO substantially reduced membrane fouling both in terms of the rate of TMP development and the properties of the membrane cake layer. Although the size of nano-scale primary coagulant flocs changed little by the addition of NaClO, the cake layer on the membrane had a greater porosity and a substantially reduced thickness. NaClO was found to inactivate bacteria in the influent flow, which reduced both microbial proliferation and the production of proteins and polysaccharides in the cake layer and contributed significantly to improving the overall ultrafiltration performance. NaClO dosing had no adverse impact on the formation of currently regulated disinfection by-product compounds (THMs and HAAs). PMID:25269375
NASA Astrophysics Data System (ADS)
Wagner, John A.; Cozens, Alison L.; Schulman, Howard; Gruenert, Dieter C.; Stryer, Lubert; Gardner, Phyllis
1991-02-01
CYSTIC fibrosis is associated with defective regulation of apical membrane chloride channels in airway epithelial cells. These channels in normal cells are activated by cyclic AMP-dependent protein kinase1,2 and protein kinase C3,4. In cystic fibrosis these kinases fail to activate otherwise normal Cl- channels1-4. But Cl- flux in cystic fibrosis cells, as in normal cells, can be activated by raising intracellular Ca2+ (refs 5-10). We report here whole-cell patch clamp studies of normal and cystic fibrosis-derived airway epithelial cells showing that Cl- channel activation by Ca2+ is mediated by multifunctional Ca2+/calmodulin-dependent protein kinase. We find that intracellular application of activated kinase and ATP activates a Cl- current similar to that activated by a Ca2+ ionophore, that peptide inhibitors of either the kinase or calmodulin block Ca2+-dependent activation of Cl- channels, and that a peptide inhibitor of protein kinase C does not block Ca2+-dependent activation. Ca2+/calmodulin activation of Cl- channels presents a pathway with therapeutic potential for circumventing defective regulation of Cl- channels in cystic fibrosis.
Dechlorination Mechanism of CuCl Residue from Zinc Hydrometallurgy by Microwave Roasting
NASA Astrophysics Data System (ADS)
Lu, Shuaidan; Ju, Shaohua; Peng, Jinhui; Zhu, Xiaoping; Srinivasakannan, C.; Zhang, Libo; Tu, Ganfeng
2015-04-01
Removal of chlorine (Cl) from the CuCl residue in the process of zinc hydrometallurgy is of great importance to improve the process economics. The current processing methods result in generation of large quantities of polluted discharge necessitating waste treatment systems. The present work attempts to de-chlorinate the CuCl residue through thermal treatment with application of microwave, towards which the effect of the major experimental factors such as roasting temperature, heating duration and particle size of samples on the process has been investigated. And the changes of Gibbs free energy (ΔG) of the dechlorination reactions are calculated which show that: 1) CuCl can react with H2O and air to produce CuO and HCl(g); 2) CuCl can be oxidized by air into CuO and Cl2 would be released. The tail gas chromatography, XRD and SEM-EDS analysis results of samples before and after microwave roasting verified the thermodynamics study results. Thus, the process of dechlorination by microwave roasting technology is feasible, and the tail gas can be mainly HCl(g) and air which can be absorbed with water and produce hydrochloride easily.
Pre-treatment for ultrafiltration: effect of pre-chlorination on membrane fouling
NASA Astrophysics Data System (ADS)
Yu, Wenzheng; Xu, Lei; Graham, Nigel; Qu, Jiuhui
2014-10-01
Microbial effects are believed to be a major contributor to membrane fouling in drinking water treatment. Sodium hypochlorite (NaClO) is commonly applied in membrane cleaning, but its potential use as a pretreatment for controlling operational fouling has received little attention. In this study, the effect of adding a continuous low dose of NaClO (1 mg/l as active Cl) in combination with alum, before ultrafiltration, was compared with only alum as pretreatment. The results showed that the addition of NaClO substantially reduced membrane fouling both in terms of the rate of TMP development and the properties of the membrane cake layer. Although the size of nano-scale primary coagulant flocs changed little by the addition of NaClO, the cake layer on the membrane had a greater porosity and a substantially reduced thickness. NaClO was found to inactivate bacteria in the influent flow, which reduced both microbial proliferation and the production of proteins and polysaccharides in the cake layer and contributed significantly to improving the overall ultrafiltration performance. NaClO dosing had no adverse impact on the formation of currently regulated disinfection by-product compounds (THMs and HAAs).
Environmentally Safe Control of Zebra Mussel Fouling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel Molloy
2008-02-29
The two primary objectives of this USDOE-NETL contract were successfully achieved during the project: (1) to accelerate research on the development of the bacterium Pseudomonas fluorescens strain CL145A (Pf-CL145A) as a biocontrol agent for zebra mussels (Dreissena polymorpha) and quagga mussels (Dreissena rostriformis bugensis)--two invasive freshwater bivalve species that are infesting water pipes in power plants; and (2) to identify a private-sector company that would move forward to commercialize Pf-CL145A as a substitute for the current polluting use of biocide chemicals for control of these dreissenid mussels in power plant pipes.
Ye, Dong; Luo, Hai; Lai, Zhouyi; Zou, Lili; Zhu, Linyan; Mao, Jianwen; Jacob, Tim; Ye, Wencai; Wang, Liwei; Chen, Lixin
2016-01-01
It was shown in this study that knockdown of ClC-3 expression by ClC-3 siRNA prevented the activation of hypotonicity-induced chloride currents, and arrested cells at the G0/G1 phase in nasopharyngeal carcinoma CNE-2Z cells. Reconstitution of ClC-3 expression with ClC-3 expression plasmids could rescue the cells from the cell cycle arrest caused by ClC-3 siRNA treatments. Transfection of cells with ClC-3 siRNA decreased the expression of cyclin D1, cyclin dependent kinase 4 and 6, and increased the expression of cyclin dependent kinase inhibitors (CDKIs), p21 and p27. Pretreatments of cells with p21 and p27 siRNAs depleted the inhibitory effects of ClC-3 siRNA on the expression of CDK4 and CDK6, but not on that of cyclin D1, indicating the requirement of p21 and p27 for the inhibitory effects of ClC-3 siRNA on CDK4 and CDK6 expression. ClC-3 siRNA inhibited cells to progress from the G1 phase to the S phase, but pretreatments of cells with p21 and p27 siRNAs abolished the inhibitory effects of ClC-3 siRNA on the cell cycle progress. Our data suggest that ClC-3 may regulate cell cycle transition between G0/G1 and S phases by up-regulation of the expression of CDK4 and CDK6 through suppression of p21 and p27 expression. PMID:27451945
γ spectroscopy of states in Cl 32 relevant for the S 31 ( p , γ ) Cl 32 reaction rate
Afanasieva, L.; Blackmon, J. C.; Deibel, C. M.; ...
2017-09-01
Background: The 31S(p,gamma) 32Cl reaction becomes important for sulfur production in novae if the P-31(p, alpha)Si-28 reaction rate is somewhat greater than currently accepted. The rate of the S-31(p,gamma) Cl-32 reaction is uncertain, primarily due to the properties of resonances at E-c.m. = 156 and 549 keV. Purpose: We precisely determined the excitation energies of states in Cl-32 through high-resolution. spectroscopy including the two states most important for the S-31(p,gamma) Cl-32 reaction at nova temperatures. Method: Excited states in Cl-32 were populated using the B-10(Mg-24, 2n) Cl-32 reaction with a Mg-24 beam from the ATLAS facility at Argonne National Laboratory.more » The reaction channel of interest was selected using recoils in the Fragment Mass Analyzer, and we determined precise level energies by detecting. rays with Gammasphere. Results: We also observed. rays from the decay of six excited states in Cl-32. The excitation energies for two unbound levels at E-x = 1738.1 (6) keV and 2130.5 (10) keV were determined and found to be in agreement with a previous high-precision measurement of the S-32(He-3, t) Cl-32 reaction [1]. Conclusions: An updated 31S(p,gamma) Cl-32 reaction rate is presented. With the excitation energies of important levels firmly established, the dominant uncertainty in the reaction rate at nova temperatures is due to the strength of the resonance corresponding to the 2131-keV state in Cl-32.« less
Moo-Llanes, David A
2016-09-01
The leishmaniasis is a complex disease system, caused by the protozoan parasite Leishmania and transmitted to humans by the vector Lutzomyia spp. Since it is listed as a neglected disease according to the World Health Organization, the aim of this study was to determine the current and future niche of cutaneous and visceral leishmaniasis in the Neotropical region. We built the ecological niche model (ENM) of cutaneous (N= 2 910 occurrences) and visceral (N= 851 occurrences) leishmaniasis using MaxEnt algorithm. Nine bioclimatic variables (BIO1, BIO4, BIO5, BIO6, BIO7, BIO12, BIO13, BIO14, BIO15 (downloaded from the Worldclim) and disease occurrences data were used for the construction of ENM for three periods (current, 2050 and 2070) and four climate change scenarios (RCP 2.6, 4.5, 6.0 y 8.5). We analyzed the number of pixels occupied, identity niche, modified niche (stable, loss, and gain) and seasonality. Our analyses indicated the expansion for cutaneous leishmaniasis (CL), a comparison for visceral leishmaniasis (VL). We rejected the null hypothesis of niche identity between CL and VL with Hellinger’s index = 0.91 (0.92-0.98) and Schoener’s Index = 0.67 (0.85-1.00) but with an overlap niche of 56.3 %. The differences between the two leishmaniasis types were detected in relation to RCP scenarios and niche shifts (area gained / loss). Seasonality was more important for CL. We provided a current picture of CL and VL distributions and the predicted distributional changes associated to different climate change scenarios for the Neotropical region. We can anticipate that increasing range is likely although it will depend locally on the future trends in weather seasonality.
Sasidharan Pillai, Indu M; Gupta, Ashok K
2016-07-01
Anodic oxidation of industrial wastewater from a coke oven plant having cyanide including thiocyanate (280 mg L(-1)), chemical oxygen demand (COD - 1520 mg L(-1)) and phenol (900 mg L(-1)) was carried out using a novel PbO2 anode. From univariate optimization study, low NaCl concentration, acidic pH, high current density and temperature were found beneficial for the oxidation. Multivariate optimization was performed with cyanide including thiocyanate, COD and phenol removal efficiencies as a function of changes in initial pH, NaCl concentration and current density using Box-Behnken experimental design. Optimization was performed for maximizing the removal efficiencies of these three parameters simultaneously. The optimum condition was obtained as initial pH 3.95, NaCl as 1 g L(-1) and current density of 6.7 mA cm(-2), for which the predicted removal efficiencies were 99.6%, 86.7% and 99.7% for cyanide including thiocyanate, COD and phenol respectively. It was in agreement with the values obtained experimentally as 99.1%, 85.2% and 99.7% respectively for these parameters. The optimum conditions with initial pH constrained to a range of 6-8 was initial pH 6, NaCl as 1.31 g L(-1) and current density as 6.7 mA cm(-2). The predicted removal efficiencies were 99%, 86.7% and 99.6% for the three parameters. The efficiencies obtained experimentally were in agreement at 99%, 87.8% and 99.6% respectively. The cost of operation for degradation at optimum conditions was calculated as 21.4 USD m(-3). Copyright © 2016 Elsevier Ltd. All rights reserved.
ffrench-Mullen, J M
1999-01-01
A comparison of the interaction of 3beta, 5alpha-tetrahydrodeoxycorticosterone (TDOC) on voltage-gated Ca2+ -and the gamma-aminobutyric receptor (GABA(A)) gated-Cl- -channels was examined in freshly dissociated guinea-pig (GP) and rat hippocampal CA1 neurons and rat hypothalamic ventromedial nucleus (VMN) neurons. The steady-state inhibition of the peak Ca2+ channel current evoked by depolarized steps from -80 to -10 mV by TDOC increased in concentration-dependent manner with IC50 values of 1 and 6 pM for rat and GP CA1 neurons, respectively and 3 nM for rat VMN neurons. TDOC rapidly and reversibly inhibited a fraction (up to 26%) of the total Ca2+ channel current in all neurons. Intracellular dialysis with GDP-beta-S (500 microM) significantly diminished the TDOC inhibition of the Ca2+ channel current, suggesting a G-protein involvement. In neurons isolated from pertussis-toxin-treated animals by chronic intracerebroventricular (1000 ng/24/48 h) infusion, the TDOC inhibition was also significantly diminished, suggesting modulation by the Galphai and/or Galphao G-protein subunits. The peak GABA-gated inward Cl- current was enhanced in both species from 0.1 to 10 microM with the greatest increase (48% at 10 microM) seen in the VMN. There was no difference in the enhancement of the GABA current in the CA1 region of both species. The results show that in contrast to the 3a-series, the 3beta-series weakly enhance the GABA-evoked Cl- current but potently inhibit the Ca2+ channel current. In addition, these results also suggest a common mode of action and a lack of interspecies difference for this steroid.
Fate of CL-20 in sandy soils: degradation products as potential markers of natural attenuation.
Monteil-Rivera, Fanny; Halasz, Annamaria; Manno, Dominic; Kuperman, Roman G; Thiboutot, Sonia; Ampleman, Guy; Hawari, Jalal
2009-01-01
Hexanitrohexaazaisowurtzitane (CL-20) is an emerging explosive that may replace the currently used explosives such as RDX and HMX, but little is known about its fate in soil. The present study was conducted to determine degradation products of CL-20 in two sandy soils under abiotic and biotic anaerobic conditions. Biotic degradation was prevalent in the slightly acidic VT soil, which contained a greater organic C content, while the slightly alkaline SAC soil favored hydrolysis. CL-20 degradation was accompanied by the formation of formate, glyoxal, nitrite, ammonium, and nitrous oxide. Biotic degradation of CL-20 occurred through the formation of its denitrohydrogenated derivative (m/z 393 Da) while hydrolysis occurred through the formation of a ring cleavage product (m/z 156 Da) that was tentatively identified as CH(2)=N-C(=N-NO(2))-CH=N-CHO or its isomer N(NO(2))=CH-CH=N-CO-CH=NH. Due to their chemical specificity, these two intermediates may be considered as markers of in situ attenuation of CL-20 in soil.
NASA Astrophysics Data System (ADS)
Hayashi, Yui; Takada, Noriharu; Wahyudiono, Kanda, Hideki; Goto, Motonobu
2017-05-01
Active chlorine species such as chlorine molecules and hypochlorous acid have been known as high performance sanitizers. They would act more reactive on chemical and biological substances when an electrical discharge was introduced in water containing an electrolyte substance. Here, the reaction of chloride (Cl-) ions were examined by introducing of a pulsed discharge plasma in sodium chloride (NaCl) solution as an electrolyte solution at room temperature. The results show that a large electrical current generated by the pulsed discharge plasma affected the reaction of Cl- ions to result available chlorine. The reaction pathway for available chlorine production was assumed similar with the reaction pathway as electrolysis. A pulsed discharge plasma in NaCl solution in the presence of argon (Ar) fine bubbles exhibited intense emissions and high electron density compared to when no Ar fine bubbles were introduced. At these conditions, the dissociation reaction rate of water increased drastically leads to the formation of 0 atoms. As a result, the reaction of Cl- ions and the available chlorine generation were also increased.
Is there any chlorine monoxide in the stratosphere?
NASA Technical Reports Server (NTRS)
Mumma, M. J.; Rogers, J. D.; Kostiuk, T.; Deming, D.; Hillman, J. J.; Zipoy, D.
1983-01-01
A ground-based search for stratospheric 35-ClO was carried out using an infrared heterodyne spectrometer in the solar absorption mode. Lines due to stratospheric HNO3 and tropospheric OCS were detected at about 0.2% absorptance levels, but the expected 0.1% lines of ClO in this same region were not seen. We find that stratospheric ClO is at least a factor of seven less abundant than is indicated by in situ measurements, and we set an upper limit of 2.3x10 to the 13th molecules/sq cm at the 95% confidence level for the integrated vertical column density of ClO. Our results imply that the release of chlorofluorocarbons may be significantly less important for the destruction of stratospheric ozone (O3) than is currently thought.
Bardai, Ghalib K; Halasz, Annamaria; Sunahara, Geoffrey I; Dodard, Sabine; Spear, Philip A; Grosse, Stephan; Hoang, Johnston; Hawari, Jalal
2006-12-01
Hexanitrohexaazaisowurtzitane (CL-20) is a polycyclic nitramine explosive and propellant, currently being considered as a potential replacement for existing cyclic nitramine explosives. Earlier studies have provided evidence suggestive of adverse liver effects in adult Coturnix spp. exposed to CL-20, yet analysis of tissue samples (plasma, liver, brain, heart, or spleen) indicated that CL-20 was not detectable in these treated animals. The present study was conducted to identify and purify the enzymes capable of CL-20 biotransformation. Results indicate that the hepatic biotransformation of CL-20 in vitro was inhibited by ethacrynic acid (93%) and by the glutathione (GSH) analogue S-octylglutathione (80%), suggesting the involvement of glutathione-S-transferase (GST). Partially purified cytosolic alpha- and mu-type GST (requiring presence of GSH as a cofactor) from quail and rabbit liver was capable of CL-20 biotransformation. The degradation of CL-20 (0.30 +/- 0.05 and 0.40 +/- 0.02 nmol/min/mg protein for quail and rabbit, respectively) was accompanied with the formation of nitrite and consumption of GSH. Using liquid chromatography/mass spectrometry, we detected two intermediates, that is, open-ring, monodenitrated GSH-conjugated CL-20 biotransformation product with the same deprotonated molecular mass ion at 699 Da, suggesting isomeric forms of the intermediate metabolites. Identity of the conjugated metabolites was confirmed by using ring-labeled [15N]CL-20 and the nitro group-labeled [15NO2]CL-20. These data suggest that the in vitro biotransformation of CL-20 by GST under the conditions tested may be a key initial step in the in vivo degradation of CL-20 in the quail and resulted in the formation of more biologically reactive intermediates than the parent compound. These data will aid in our understanding of the biotransformation processes of CL-20 in vivo.
The Caudate Lobe: The Blind Spot in Radioembolization or an Overlooked Opportunity?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braat, Manon N. G. J. A., E-mail: M.N.G.Braat-3@umcutrecht.nl; Hoven, Andor F. van den, E-mail: a.f.vandenhoven@umcutrecht.nl; Doormaal, Pieter J. van, E-mail: P.J.vanDoormaal-4@umcutrecht.nl
2016-06-15
PurposeThe caudate lobe (CL) is impartial to the functional left and right hemi-liver and has outspoken inter-individual differences in arterial vascularization. Unfortunately, this complexity is not specifically taken into account during radioembolization treatment (RE), potentially resulting in under- or overtreatment of the CL. The objective of this study was to evaluate the CL coverage in RE and determine the detection rate of the CL arteries on CT angiography during work-up.MethodsIn all consecutive patients who underwent RE treatment between May 2012–January 2015, {sup 99m}Tc-MAA SPECT/CT and posttreatment scans ({sup 90}Y-bremsstrahlung SPECT/CT, {sup 90}Y-PET/CT, or {sup 166}Ho-SPECT/CT) were reviewed for activity inmore » the CL. Pretreatment CT angiographies were reviewed for the visibility of the CL arteries.ResultsEighty-two patients were treated. In 32/82 (39 %) the CL was involved. In 6/32 (19 %) patients, no activity was seen on the posttreatment scan in the CL, whereas in 40/50 (80 %) patients without CL tumor involvement, the CL was treated. {sup 99m}Tc-MAA SPECT/CT and final posttreatment scans were discordant in 16/78 (21 %). {sup 99m}Tc-MAA SPECT/CT had a positive and negative predictive value of 94 % and 46 %, respectively, for activity in the CL after RE. In untreated CLs, significant hypertrophy was observed with a median volume increase of 33 % (p = 0.02). CL arteries were seldom visible on the pretreatment CT; the identification rate was 12–17 %.ConclusionCurrently in RE treatments, targeting or sparing of the CL is highly erratic and independent of tumor involvement. Intentional treatment or bypassing of the CL seems worthwhile to either improve tumor coverage or enhance the functional liver remnant.« less
NASA Astrophysics Data System (ADS)
Brundrett, M.; Yan, W.; Jackson, W. A.
2017-12-01
Studies have confirmed the presence of chlorate (ClO3-) and perchlorate (ClO4-) in terrestrial systems, lunar regolith, Martian surface soils, and meteorites [1, 2, 4]. A roughly equimolar ratio of ClO3- : ClO4- has been observed for most systems with the only major exceptions the Antarctica dry valley soils (MDV) and Martian surface material, where the ClO3- : ClO4- ratios are significantly less than 1 [3, 4]. All known ClO4- production mechanisms produce molar ratios of ClO3-: ClO4- equal to or greater than 1 [5]. Post depositional processes may explain the potential reduction of ClO3-. The objective of this study was to determine the potential abiotic transformation of ClO3- by Fe (II)-bearing minerals, similar to known reactions between NO3- and Fe (II) minerals. The presence of iron-derived minerals has been established in the MDV, Martian soils, and chondrite meteorites. Batch experiments were conducted by reacting four Fe (II)-bearing minerals (wustite, siderite, magnetite, and green rust) with ClO3- at various pH (4.5, 6.5, 8.9). Chlorate reduction was rapid (half-life on the order of hours to days) and generally ClO3- was quantitatively converted to Cl-. Results of this study will increase our understanding of surface reactions that produced and transformed oxy-chlorine compounds on Mars elucidating past and present Martian surface conditions. The study also has implications into the understanding of the evolutionary processes that previously or currently dictate the abiotic geochemical processing of oxy-chlorine anions through terrestrial systems. [1] Jackson et al. (2015) EPSL 430, 470-476. [2] Rao et al. (2010) ES&T 44, 8429-8434. [3] Jackson et al. (2010) ES&T 44, 4869-4876. [4] Hecht et al. (2009) SCI 325, 64-67. [5] Rao et al. (2010) ES&T 44, 2961-2967.
Neuropathic pain and use of PainDETECT in patients with fibromyalgia: a cohort study.
Gauffin, Jarno; Hankama, Tiina; Kautiainen, Hannu; Hannonen, Pekka; Haanpää, Maija
2013-02-14
Fibromyalgia has a plethorae of symptoms, which can be confusing and even misleading. Accurate evaluation is necessary when patients with fibromyalgia are treated. Different types of instruments are available for the clinicians to supplement evaluation. Our objective was to study the applicability of the PainDETECT instrument to screen neuropathic pain in patients with fibromyalgia. 158 patients with primary fibromyalgia underwent a neurological examination including bedside sensory testing. They also fulfilled four questionnaires: PainDETECT, Beck depression inventory IA (BDI IA), Fibromyalgia Impact Questionnaire (FIQ) and a self-made questionnaire regarding present pain and pain relieving methods of the patients. The results of the clinical evaluation and questionnaires were then compared. Clinically verified neuropathic pain was diagnosed in 53/158 [34% (95% Cl: 26 to 41)] patients. The ROC curve achieved a maximum Youden´s index at score of 17 when sensitivity was 0.79 (95% Cl: 0.66 to 0.89) and specificity 0.53 (95% Cl: 0.43 to 0.63). The PainDETECT total score (OR: 1.14 95% Cl: 1.06 to 1.22), FM as the worst current pain (OR: 0.31; 95% 0.16 to 0.62), body mass index (BMI) (OR: 1.05; 95% Cl: 1.00 to 1.11) and the intensity of current pain (OR: 1.20; 95% Cl: 1.01 to 1.41) were significantly associated with the presence of neuropathic pain in univariate analyses. This study highlights the importance of thorough clinical examination. The Neuropathic pain screening tool PainDETECT is not as useful in patients with fibromyalgia as in patients with uncompromised central pain control.
Wang, Liang; Gao, Hong; Yang, Xiaoya; Liang, Xiechou; Tan, Qiuchan; Chen, Zhanru; Zhao, Chan; Gu, Zhuoyu; Yu, Meisheng; Zheng, Yanfang; Huang, Yanqing; Zhu, Linyan; Jacob, Tim J C; Wang, Liwei; Chen, Lixin
2018-06-08
Zoledronic acid (ZA), a third-generation bisphosphonate, has been applied for treatment of bone metastases caused by malignant tumors. Recent studies have found its anti-cancer effects on various tumor cells. One of the mechanisms of anti-cancer effects of ZA is induction of apoptosis. However, the mechanisms of ZA-induced apoptosis in tumor cells have not been clarified clearly. In this study, we investigated the roles of chloride channels in ZA-induced apoptosis in nasopharyngeal carcinoma CNE-2Z cells. Apoptosis and chloride current were induced by ZA and suppressed by chloride channel blockers. After the knockdown of ClC-3 expression by ClC-3 siRNA, ZA-induced chloride current and apoptosis were significantly suppressed, indicating that the chloride channel participated in ZA-induced apoptosis may be ClC-3. When reactive oxygen species (ROS) generation was inhibited by the antioxidant N-acetyl-L-cysteine (L-NAC), ZA-induced apoptosis and chloride current were blocked accordingly, suggesting that ZA induces apoptosis through promoting ROS production and subsequently activating chloride channel. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Sensor-actuator system for dynamic chloride ion determination.
de Graaf, Derk Balthazar; Abbas, Yawar; Gerrit Bomer, Johan; Olthuis, Wouter; van den Berg, Albert
2015-08-12
Chloride is a crucial anion for various analytical applications from biological to environmental applications. In order to measure the chloride ion concentration, a measurement system is needed which can detect this concentration for prolonged times reliably. Chronopotentiometry is a technique which does not need a long term stable reference electrode and is therefore very suitable for prolonged ion concentration measurements. As the used electrode might be fouled by reaction products, this work focuses on a chronopotentiometric approach with a separated sensing electrode (sensor) and actuating electrode (actuator). Both actuation and sensor electrode are made of Ag/AgCl. A constant current is applied to the actuator and will start the reaction between Ag and Cl-, while the resulting Cl- ion concentration change is observed through the sensor, which is placed close to the actuator. The time it takes to locally deplete the Cl- ions is called transition time. Experiments were performed to verify the feasibility of this approach. The performed experiments show that the sensor detects the local concentration changes resulting from the current applied to the actuator. A linear relation between the Cl- ion concentration and the square root of the transition time was observed, just as was predicted by theory. The calibration curves for different chips showed that both a larger sensor and a larger distance between sensor and actuator resulted in a larger time delay between the transition time detected at the actuator and the sensor. Copyright © 2015 Elsevier B.V. All rights reserved.
Coulometric sodium chloride removal system with Nafion membrane for seawater sample treatment.
Grygolowicz-Pawlak, Ewa; Sohail, Manzar; Pawlak, Marcin; Neel, Bastien; Shvarev, Alexey; de Marco, Roland; Bakker, Eric
2012-07-17
Seawater analysis is one of the most challenging in the field of environmental monitoring, mainly due to disparate concentration levels between the analyte and the salt matrix causing interferences in a variety of analytical techniques. We propose here a miniature electrochemical sample pretreatment system for a rapid removal of NaCl utilizing the coaxial arrangement of an electrode and a tubular Nafion membrane. Upon electrolysis, chloride is deposited at the Ag electrode as AgCl and the sodium counterions are transported across the membrane. This cell was found to work efficiently at potentials higher than 400 mV in both stationary and flow injection mode. Substantial residual currents observed during electrolysis were found to be a result of NaCl back diffusion from the outer side of the membrane due to insufficient permselectivity of the Nafion membrane. It was demonstrated that the residual current can be significantly reduced by adjusting the concentration of the outer solution. On the basis of ion chromatography results, it was found that the designed cell used in flow injection electrolysis mode reduced the NaCl concentration from 0.6 M to 3 mM. This attempt is very important in view of nutrient analysis in seawater where NaCl is a major interfering agent. We demonstrate that the pretreatment of artificial seawater samples does not reduce the content of nitrite or nitrate ions upon electrolysis. A simple diffusion/extraction steady state model is proposed for the optimization of the electrolysis cell characteristics.
Bacon, Kristina M; Hotez, Peter J; Kruchten, Stephanie D; Kamhawi, Shaden; Bottazzi, Maria Elena; Valenzuela, Jesus G; Lee, Bruce Y
2013-01-07
Cutaneous leishmaniasis (CL) and its associated complications, including mucocutaneous leishmaniasis (MCL) and diffuse CL (DCL) have emerged as important neglected tropical diseases in Latin America, especially in areas associated with human migration, conflict, and recent deforestation. Because of the limitations of current chemotherapeutic approaches to CL, MCL, and DCL, several prototype vaccines are in different states of product and clinical development. We constructed and utilized a Markov decision analytic computer model to evaluate the potential economic value of a preventative CL vaccine in seven countries in Latin America: Bolivia, Brazil, Colombia, Ecuador, Mexico, Peru, and Venezuela. The results indicated that even a vaccine with a relatively short duration of protection and modest efficacy could be recommended for use in targeted locations, as it could prevent a substantial number of cases at low-cost and potentially even result in cost savings. If the population in the seven countries were vaccinated using a vaccine that provides at least 10 years of protection, an estimated 41,000-144,784 CL cases could be averted, each at a cost less than the cost of current recommended treatments. Further, even a vaccine providing as little as five years duration of protection with as little as 50% efficacy remains cost-effective compared with chemotherapy; additional scenarios resembling epidemic settings such as the one that occurred in Chaparral, Colombia in 2004 demonstrate important economic benefits. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mejías Borrero, A.; Andújar Márquez, J. M.
2012-10-01
Lab practices are an essential part of teaching in Engineering. However, traditional laboratory lessons developed in classroom labs (CL) must be adapted to teaching and learning strategies that go far beyond the common concept of e-learning, in the sense that completely virtualized distance education disconnects teachers and students from the real world, which can generate specific problems in laboratory classes. Current proposals of virtual labs (VL) and remote labs (RL) do not either cover new needs properly or contribute remarkable improvement to traditional labs—except that they favor distance training. Therefore, online teaching and learning in lab practices demand a further step beyond current VL and RL. This paper poses a new reality and new teaching/learning concepts in the field of lab practices in engineering. The developed augmented reality-based lab system (augmented remote lab, ARL) enables teachers and students to work remotely (Internet/intranet) in current CL, including virtual elements which interact with real ones. An educational experience was conducted to assess the developed ARL with the participation of a group of 10 teachers and another group of 20 students. Both groups have completed lab practices of the contents in the subjects Digital Systems and Robotics and Industrial Automation, which belong to the second year of the new degree in Electronic Engineering (adapted to the European Space for Higher Education). The labs were carried out by means of three different possibilities: CL, VL and ARL. After completion, both groups were asked to fill in some questionnaires aimed at measuring the improvement contributed by ARL relative to CL and VL. Except in some specific questions, the opinion of teachers and students was rather similar and positive regarding the use and possibilities of ARL. Although the results are still preliminary and need further study, seems to conclude that ARL remarkably improves the possibilities of current VL and RL. Furthermore, ARL can be concluded to allow further possibilities when used online than traditional laboratory lessons completed in CL.
Cathodoluminescence for the 21st century: Learning more from light
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coenen, T.; Haegel, N. M.
Cathodoluminescence (CL) is the emission of light from a material in response to excitation by incident electrons. The technique has had significant impact in the characterization of semiconductors, minerals, ceramics, and many nanostructured materials. Since 2010, there have been a number of innovative developments that have revolutionized and expanded the information that can be gained from CL and broadened the areas of application. While the primary historical application of CL was for spatial mapping of luminescence variations (e.g., imaging dark line defects in semiconductor lasers or providing high resolution imaging of compositional variations in geological materials), new ways to collectmore » and analyze the emitted light have expanded the science impact of CL, particularly at the intersection of materials science and nanotechnology. Current developments include (1) angular and polarized CL, (2) advances in time resolved CL, (3) far-field and near-field transport imaging that enable drift and diffusion information to be obtained through real space imaging, (4) increasing use of statistical analyses for the study of grain boundaries and interfaces, (5) 3D CL including tomography and combined work utilizing dual beam systems with CL, and (6) combined STEM/CL measurements that are reaching new levels of resolution and advancing single photon spectroscopy. This focused review will first summarize the fundamentals and then briefly describe the state-of-the-art in conventional CL imaging and spectroscopy. We also review these recent novel experimental approaches that enable added insight and information, providing a range of examples from nanophotonics, photovoltaics, plasmonics, and studies of individual defects and grain boundaries.« less
Cathodoluminescence for the 21st century: Learning more from light
Coenen, T.; Haegel, N. M.
2017-09-08
Cathodoluminescence (CL) is the emission of light from a material in response to excitation by incident electrons. The technique has had significant impact in the characterization of semiconductors, minerals, ceramics, and many nanostructured materials. Since 2010, there have been a number of innovative developments that have revolutionized and expanded the information that can be gained from CL and broadened the areas of application. While the primary historical application of CL was for spatial mapping of luminescence variations (e.g., imaging dark line defects in semiconductor lasers or providing high resolution imaging of compositional variations in geological materials), new ways to collectmore » and analyze the emitted light have expanded the science impact of CL, particularly at the intersection of materials science and nanotechnology. Current developments include (1) angular and polarized CL, (2) advances in time resolved CL, (3) far-field and near-field transport imaging that enable drift and diffusion information to be obtained through real space imaging, (4) increasing use of statistical analyses for the study of grain boundaries and interfaces, (5) 3D CL including tomography and combined work utilizing dual beam systems with CL, and (6) combined STEM/CL measurements that are reaching new levels of resolution and advancing single photon spectroscopy. This focused review will first summarize the fundamentals and then briefly describe the state-of-the-art in conventional CL imaging and spectroscopy. We also review these recent novel experimental approaches that enable added insight and information, providing a range of examples from nanophotonics, photovoltaics, plasmonics, and studies of individual defects and grain boundaries.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Afanasieva, L.; Blackmon, J. C.; Deibel, C. M.
Background: The 31S(p,gamma) 32Cl reaction becomes important for sulfur production in novae if the P-31(p, alpha)Si-28 reaction rate is somewhat greater than currently accepted. The rate of the S-31(p,gamma) Cl-32 reaction is uncertain, primarily due to the properties of resonances at E-c.m. = 156 and 549 keV. Purpose: We precisely determined the excitation energies of states in Cl-32 through high-resolution. spectroscopy including the two states most important for the S-31(p,gamma) Cl-32 reaction at nova temperatures. Method: Excited states in Cl-32 were populated using the B-10(Mg-24, 2n) Cl-32 reaction with a Mg-24 beam from the ATLAS facility at Argonne National Laboratory.more » The reaction channel of interest was selected using recoils in the Fragment Mass Analyzer, and we determined precise level energies by detecting. rays with Gammasphere. Results: We also observed. rays from the decay of six excited states in Cl-32. The excitation energies for two unbound levels at E-x = 1738.1 (6) keV and 2130.5 (10) keV were determined and found to be in agreement with a previous high-precision measurement of the S-32(He-3, t) Cl-32 reaction [1]. Conclusions: An updated 31S(p,gamma) Cl-32 reaction rate is presented. With the excitation energies of important levels firmly established, the dominant uncertainty in the reaction rate at nova temperatures is due to the strength of the resonance corresponding to the 2131-keV state in Cl-32.« less
Illek, Beate; Lei, Dachuan; Fischer, Horst; Gruenert, Dieter C
2010-01-01
While the Cl(-) efflux assays are relatively straightforward, their ability to assess the efficacy of phenotypic correction in cystic fibrosis (CF) tissue or cells may be limited. Accurate assessment of therapeutic efficacy, i.e., correlating wild type CF transmembrane conductance regulator (CFTR) levels with phenotypic correction in tissue or individual cells, requires a sensitive assay. Radioactive chloride ((36)Cl) efflux was compared to Ussing chamber analysis for measuring cAMP-dependent Cl(-) transport in mixtures of human normal (16HBE14o-) and cystic fibrosis (CF) (CFTE29o- or CFBE41o-, respectively) airway epithelial cells. Cell mixtures with decreasing amounts of 16HBE14o- cells were evaluated. Efflux and Ussing chamber studies on mixed populations of normal and CF airway epithelial cells showed that, as the number of CF cells within the population was progressively increased, the cAMP-dependent Cl(-) decreased. The (36)Cl efflux assay was effective for measuring Cl(-) transport when ≥ 25% of the cells were normal. If < 25% of the cells were phenotypically wild-type (wt), the (36)Cl efflux assay was no longer reliable. Polarized CFBE41o- cells, also homozygous for the ΔF508 mutation, were used in the Ussing chamber studies. Ussing analysis detected cAMP-dependent Cl(-) currents in mixtures with ≥1% wild-type cells indicating that Ussing analysis is more sensitive than (36)Cl efflux analysis for detection of functional CFTR. Assessment of CFTR function by Ussing analysis is more sensitive than (36)Cl efflux analysis. Ussing analysis indicates that cell mixtures containing 10% 16HBE14o- cells showed 40-50% of normal cAMP-dependent Cl(-) transport that drops off exponentially between 10-1% wild-type cells. Copyright © 2010 S. Karger AG, Basel.
Xia, Juan; Song, Le Xin; Dang, Zheng
2012-07-05
The present work is devoted to an attempt to understand the effect of an inorganic salt such as ferric trichloride (FeCl(3)) on the carbonization and degradation of carbohydrates such as β-cyclodextrin (CD), amylose, and cellulose. Our data revealed two important observations. First, the presence of FeCl(3) led to the occurrence of a low carbonization temperature of 373 K. This is a rare phenomenon, in which carbonization improvement is present even if a small amount of FeCl(3) was added. Experimental results had provided evidence for the fact that a redox process was started during the low-temperature carbonization of β-CD, causing the reduction of FeCl(3) to ferrous chloride (FeCl(2)) by carbon materials formed in the carbonization process in air. However, the reduction process of FeCl(3) produced the in situ composite nanomaterial of Fe-FeCl(2) combination in nitrogen. Second, a molecule-ion interaction emerged between FeCl(3) and the carbohydrates in aqueous solution, resulting in a more effective degradation of the carbohydrates. Moreover, our results demonstrated that FeCl(3) played the role of a catalyst during the degradation of the carbohydrates in solution. We believe that the current work not only has a significant potential application in disposal of waste carbohydrates but also could be helpful in many fields such as environmental protection, biomass energy development, and inorganic composite nanomaterials.
High Coulombic efficiency aluminum-ion battery using an AlCl3-urea ionic liquid analog electrolyte.
Angell, Michael; Pan, Chun-Jern; Rong, Youmin; Yuan, Chunze; Lin, Meng-Chang; Hwang, Bing-Joe; Dai, Hongjie
2017-01-31
In recent years, impressive advances in harvesting renewable energy have led to a pressing demand for the complimentary energy storage technology. Here, a high Coulombic efficiency (∼99.7%) Al battery is developed using earth-abundant aluminum as the anode, graphite as the cathode, and a cheap ionic liquid analog electrolyte made from a mixture of AlCl 3 and urea in a 1.3:1 molar ratio. The battery displays discharge voltage plateaus around 1.9 and 1.5 V (average discharge = 1.73 V) and yielded a specific cathode capacity of ∼73 mAh g -1 at a current density of 100 mA g -1 (∼1.4 C). High Coulombic efficiency over a range of charge-discharge rates and stability over ∼150-200 cycles was easily demonstrated. In situ Raman spectroscopy clearly showed chloroaluminate anion intercalation/deintercalation of graphite (positive electrode) during charge-discharge and suggested the formation of a stage 2 graphite intercalation compound when fully charged. Raman spectroscopy and NMR suggested the existence of AlCl 4 - , Al 2 Cl 7 - anions and [AlCl 2 ·(urea) n ] + cations in the AlCl 3 /urea electrolyte when an excess of AlCl 3 was present. Aluminum deposition therefore proceeded through two pathways, one involving Al 2 Cl 7 - anions and the other involving [AlCl 2 ·(urea) n ] + cations. This battery is a promising prospect for a future high-performance, low-cost energy storage device.
Regulation of Cl(-) secretion by AMPK in vivo.
Kongsuphol, Patthara; Hieke, Bernhard; Ousingsawat, Jiraporn; Almaca, Joana; Viollet, Benoit; Schreiber, Rainer; Kunzelmann, Karl
2009-03-01
Previous in vitro studies suggested that Cl(-) currents produced by the cystic fibrosis transmembrane conductance regulator (CFTR; ABCC7) are inhibited by the alpha1 isoform of the adenosine monophosphate (AMP)-stimulated kinase (AMPK). AMPK is a serine/threonine kinase that is activated during metabolic stress. It has been proposed as a potential mediator for transport-metabolism coupling in epithelial tissues. All previous studies have been performed in vitro and thus little is known about the regulation of Cl(-) secretion by AMPK in vivo. Using AMPKalpha1(-/-) mice and wild-type littermates, we demonstrate that phenformin, an activator of AMPK, strongly inhibits cAMP-activated Cl(-) secretion in mouse airways and colon, when examined in ex vivo in Ussing chamber recordings. However, phenformin was equally effective in AMPKalpha1(-/-) and wild-type animals, suggesting additional AMPK-independent action of phenformin. Phenformin inhibited CFTR Cl(-) conductance in basolaterally permeabilized colonic epithelium from AMPKalpha1(+/+) but not AMPKalpha1(-/-) mice. The inhibitor of AMPK compound C enhanced CFTR-mediated Cl(-) secretion in epithelial tissues of AMPKalpha1(-/-) mice, but not in wild-type littermates. There was no effect on Ca(2+)-mediated Cl(-) secretion, activated by adenosine triphosphate or carbachol. Moreover CFTR-dependent Cl(-) secretion was enhanced in the colon of AMPKalpha1(-/-) mice, as indicated in Ussing chamber ex vivo and rectal PD measurements in vivo. Taken together, these data suggest that epithelial Cl(-) secretion mediated by CFTR is controlled by AMPK in vivo.
Human SLC4A11 Is a Novel NH3/H+ Co-transporter*
Zhang, Wenlin; Ogando, Diego G.; Bonanno, Joseph A.; Obukhov, Alexander G.
2015-01-01
SLC4A11 has been proposed to be an electrogenic membrane transporter, permeable to Na+, H+ (OH−), bicarbonate, borate, and NH4+. Recent studies indicate, however, that neither bicarbonate or borate is a substrate. Here, we examined potential NH4+, Na+, and H+ contributions to electrogenic ion transport through SLC4A11 stably expressed in Na+/H+ exchanger-deficient PS120 fibroblasts. Inward currents observed during exposure to NH4Cl were determined by the [NH3]o, not [NH4+]o, and current amplitudes varied with the [H+] gradient. These currents were relatively unaffected by removal of Na+, K+, or Cl− from the bath but could be reduced by inclusion of NH4Cl in the pipette solution. Bath pH changes alone did not generate significant currents through SLC4A11, except immediately following exposure to NH4Cl. Reversal potential shifts in response to changing [NH3]o and pHo suggested an NH3/H+-coupled transport mode for SLC4A11. Proton flux through SLC4A11 in the absence of ammonia was relatively small, suggesting that ammonia transport is of more physiological relevance. Methylammonia produced currents similar to NH3 but with reduced amplitude. Estimated stoichiometry of SLC4A11 transport was 1:2 (NH3/H+). NH3-dependent currents were insensitive to 10 μm ethyl-isopropyl amiloride or 100 μm 4,4′- diisothiocyanatostilbene-2,2′-disulfonic acid. We propose that SLC4A11 is an NH3/2H+ co-transporter exhibiting unique characteristics. PMID:26018076
Role of Nrf2 in preventing oxidative stress induced chloride current alteration in human lung cells.
Canella, Rita; Benedusi, Mascia; Martini, Marta; Cervellati, Franco; Cavicchio, Carlotta; Valacchi, Giuseppe
2018-08-01
The lung tissue is one of the main targets of oxidative stress due to external sources and respiratory activity. In our previous work, we have demonstrated in that O 3 exposure alters the Cl - current-voltage relationship, with the appearance of a large outward rectifier component mainly sustained by outward rectifier chloride channels (ORCCs) in human lung epithelial cells (A549 line). In the present study, we have performed patch clamp experiments, in order to identify which one of the O 3 byproducts (4hydroxynonenal (HNE) and/or H 2 O 2 ) was responsible for chloride current change. While 4HNE exposition (up to 25 μM for 30' before electrophysiological analysis) did not reproduce O 3 effect, H 2 O 2 produced by glucose oxidase 10 mU for 24 hr before electrophysiological analysis mimicked O 3 response. This result was confirmed treating the cell with catalase (CAT) before O 3 exposure (1,000 U/ml for 2 hr): CAT was able to rescue Cl - current alteration. Since CAT is regulated by Nrf2 transcription factor, we pre-treated the cells with the Nrf2 activators, resveratrol and tBHQ. Immunochemical and immunocytochemical results showed Nrf2 activation with both substances that lead to prevent OS effect on Cl - current. These data bring new insights into the mechanisms involved in OS-induced lung tissue damage, pointing out the role of H 2 O 2 in chloride current alteration and the ability of Nfr2 activation in preventing this effect. © 2017 Wiley Periodicals, Inc.
AgCl precipitates in isolated cuticular membranes reduce rates of cuticular transpiration.
Schreiber, Lukas; Elshatshat, Salem; Koch, Kerstin; Lin, Jinxing; Santrucek, Jiri
2006-01-01
Counter diffusion of chloride, applied as NaCl at the inner side of isolated cuticles, and silver, applied as AgNO(3) at the outer side, lead to the formation of insoluble AgCl precipitates in isolated cuticles. AgCl precipitates could be visualized by light and scanning electron microscopy. The presence of AgCl precipitates in isolated cuticles was verified by energy dispersive X-ray analysis. It is argued that insoluble AgCl precipitates formed in polar pores of cuticles and as a consequence, cuticular transpiration of 13 out of 15 investigated species was significantly reduced up to three-fold. Water as a small and uncharged but polar molecule penetrates cuticles via two parallel paths: a lipophilic path, formed by lipophilic cutin and wax domains, and a aqueous pathe, formed by polar pores. Thus, permeances P (m s(-1)) of water, which is composed of the two quantities P (Lipid) and P (Pore), decreased, since water transport across polar pores was affected by AgCl precipitates. Cuticles with initially high rates of cuticular transpiration were generally more sensitive towards AgCl precipitates compared to cuticles with initially low rates of transpiration. Results presented here, significantly improves the current model of the structure of the cuticular transpiration barrier, since the pronounced heterogeneity of the cuticular transport barrier, composed of lipophilic as well as polar paths of diffusion, has to be taken into account in future.
Aerospace applications of sodium batteries using novel cathode materials
NASA Technical Reports Server (NTRS)
Ratnakumar, B. V.; Di Stefano, S.; Bankston, C. P.
1989-01-01
Preliminary fundamental investigations aimed at evaluating sodium metal chloride systems for future aerospace applications are described. Since the sodium metal chloride systems are relatively new, the approach has been to characterize their fundamental properties in order to understand their limitations. To this end, a series of fundamental electrochemical investigations have been carried out, the results of which are reported here. The metal chloride cathodes show high exchange current densities which corroborate their good reversibility in a battery application. The reduction mechanisms appear to be complex and involve multielectron transfer steps and intermediates. Such intermediates in the reaction mechanism have already been identified in the case of FeCl2. Similar mechanisms may be operative in the case of NiCl2. CuCl2, however, exhibits a second relaxation loop in the impedance plot at low frequencies and also a sloping discharge curve, unlike FeCl2 and NiCl2, which may indicate the existence of monovalent copper in the reduction mechanism.
ERIC Educational Resources Information Center
Lusthaus, Evelyn W.
1985-01-01
The author examines current attempts to define mentally retarded persons as less than human and suggests that these ideologies are being used to justify euthanasia practices and to formulate euthanasia policies. (CL)
Stratospheric ozone - Impact of human activity
NASA Technical Reports Server (NTRS)
Mcelroy, Michael B.; Salawitch, Ross J.
1989-01-01
The current knowledge of the chemistry of the stratosphere is reviewed, with particular consideration given to the measurements from the Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment and from the Airborne Antarctic Ozone Experiment. Analysis of the ATMOS data at 30 deg N suggests that the current understanding of the contemporary-stratosphere chemistry at mid-latitudes is relatively complete, except for possible problems with the diurnal variations of N2O5 at low altitudes, and with ClNO3 at higher altitudes. Except for some difficulties with these two compounds, the data from ATMOS agree well with the gas phase models for nitrogen and chlorine species at 30 deg N in spring. It is emphasized that, in addition to the HOCl mechanism proposed by Solomon et al. (1986), the ClO-BrO scheme proposed by McElroy et al. (1986), and the ClO dimer mechanism introduced by Molina and Molina (1987), other processes exist that are responsible for ozone removal.
Magnetic Fe-Co films electroplated in a deep-eutectic-solvent-based plating bath
NASA Astrophysics Data System (ADS)
Yanai, T.; Shiraishi, K.; Watanabe, Y.; Ohgai, T.; Nakano, M.; Suzuki, K.; Fukunaga, H.
2015-05-01
We fabricated Fe-Co films from a deep eutectic solvent (DES)-based plating bath and investigated magnetic properties of the plated films. The plating baths were obtained by stirring the mixture of choline chloride, ethylene glycol, FeCl2.4H2O, and CoCl2.6H2O. The composition of the plated films depended on the amount of FeCl2.4H2O in the plating bath, and Fe content of the films was varied from 0 to 100 at. %. Depending on the Fe content, the saturation magnetization and the coercivity of the films varied. The Fe76Co24 film shows high saturation magnetization and smooth surface, and the change in the saturation magnetization shows good agreement with the expected change by the Slater-Pauling curve. High current efficiency (>90%) could be obtained in the wide film composition. From these results, we concluded that the DES-based plating bath is one of effective baths for the Fe-Co films with high current efficiency.
Mok, Daniel K W; Chau, Foo-Tim; Lee, Edmond P F; Dyke, John M
2010-02-01
CCSD(T) and/or CASSCF/MRCI calculations have been carried out on the X(1)A' and A(1)A'' states of HGeCl. The fully relativistic effective core potential, ECP10MDF, and associated standard valence basis sets of up to the aug-cc-pV5Z quality were employed for Ge. Contributions from core correlation and extrapolation to the complete basis set limit were included in determining the computed equilibrium geometrical parameters and relative electronic energy of these two states of HGeCl. Based on the currently, most systematic CCSD(T) calculations performed in this study, the best theoretical geometrical parameters of the X(1)A' state are r(e)(HGe) = 1.580 +/- 0.001 A, theta(e) = 93.88 +/- 0.01 degrees and r(e)(GeCl) = 2.170 +/- 0.001 A. In addition, Franck-Condon factors including allowance for anharmonicity and Duschinsky rotation between these two states of HGeCl and DGeCl were calculated employing CCSD(T) and CASSCF/MRCI potential energy functions, and were used to simulate A(1)A'' --> X(1)A' SVL emission spectra of HGeCl and DGeCl. The iterative Franck-Condon analysis (IFCA) procedure was carried out to determine the equilibrium geometrical parameters of the A(1)A'' state of HGeCl by matching the simulated, and available experimental SVL emission spectra of HGeCl and DGeCl of Tackett et al., J Chem Phys 2006, 124, 124320, using the available, estimated experimental equilibrium (r(e)(z)) structure for the X(1)A' state, while varying the equilibrium geometrical parameters of the A(1)A'' state systematically. Employing the derived IFCA geometry of r(e)(HGe) = 1.590 A, r(e)(GeCl) = 2.155 A and theta(e)(HGeCl) = 112.7 degrees for the A(1)A'' state of HGeCl in the spectral simulation, the simulated absorption and SVL emission spectra of HGeCl and DGeCl agree very well with the available experimental LIF and SVL emission spectra, respectively. Copyright 2009 Wiley Periodicals, Inc.
Böhlke, John Karl; Mroczkowski, Stanley J.; Sturchio, Neil C.; Heraty, Linnea J.; Richman, Kent W.; Sullivan, Donald B.; Griffith, Kris N.; Gu, Baohua; Hatzinger, Paul B.
2017-01-01
RationalePerchlorate (ClO4−) is a common trace constituent of water, soils, and plants; it has both natural and synthetic sources and is subject to biodegradation. The stable isotope ratios of Cl and O provide three independent quantities for ClO4− source attribution and natural attenuation studies: δ37Cl, δ18O, and δ17O (or Δ17O or 17Δ) values. Documented reference materials, calibration schemes, methods, and interferences will improve the reliability of such studies.MethodsThree large batches of KClO4 with contrasting isotopic compositions were synthesized and analyzed against VSMOW-SLAP, atmospheric O2, and international nitrate and chloride reference materials. Three analytical methods were tested for O isotopes: conversion of ClO4− to CO for continuous-flow IRMS (CO-CFIRMS), decomposition to O2 for dual-inlet IRMS (O2-DIIRMS), and decomposition to O2 with molecular-sieve trap (O2-DIIRMS+T). For Cl isotopes, KCl produced by thermal decomposition of KClO4 was reprecipitated as AgCl and converted into CH3Cl for DIIRMS.ResultsKClO4 isotopic reference materials (USGS37, USGS38, USGS39) represent a wide range of Cl and O isotopic compositions, including non-mass-dependent O isotopic variation. Isotopic fractionation and exchange can affect O isotope analyses of ClO4− depending on the decomposition method. Routine analyses can be adjusted for such effects by normalization, using reference materials prepared and analyzed as samples. Analytical errors caused by SO42−, NO3−, ReO42−, and C-bearing contaminants include isotope mixing and fractionation effects on CO and O2, plus direct interference from CO2 in the mass spectrometer. The results highlight the importance of effective purification of ClO4− from environmental samples.ConclusionsKClO4 reference materials are available for testing methods and calibrating isotopic data for ClO4− and other substances with widely varying Cl or O isotopic compositions. Current ClO4−extraction, purification, and analysis techniques provide relative isotope-ratio measurements with uncertainties much smaller than the range of values in environmental ClO4−, permitting isotopic evaluation of environmental ClO4− sources and natural attenuation.
Relaxation-phenomena in LiAl/FeS-cells
NASA Astrophysics Data System (ADS)
Borger, W.; Kappus, W.; Panesar, H. S.
A theoretical model of the capacity of strongly relaxing electrochemical systems is applied to the LiAl/FeS system. Relaxation phenomena in LiAl and FeS electrodes can be described by this model. Experimental relaxation data indicate that lithium transport through the alpha-LiAl layer to the particle surface is the capacity limiting process at high discharge current density in the LiAl electrode in LiCl-KCl and LiF-LiCl-LiBr mixtures. Strong relaxation is observed in the FeS electrode with LiCl-KCl electrolyte caused by lithium concentration gradients and precipitation of KCl in the pores.
Chloride currents activated by caffeine in rat intestinal smooth muscle cells.
Ohta, T; Ito, S; Nakazato, Y
1993-01-01
1. Current responses to caffeine in single smooth muscle cells isolated from rat intestine were studied with the whole-cell patch clamp technique. Intracellular calcium concentration, [Ca2+]i, was simultaneously monitored with fura-2 (0.1 mM) introduced into the cell through a patch pipette. 2. With a potassium-containing pipette solution, caffeine (10 mM) produced an outward current at a holding potential of 0 mV and an inward current at -60 mV, both of which were accompanied by parallel increases in [Ca2+]i. The outward current response disappeared after the removal of K+ from pipette solutions, indicating that caffeine activates a Ca(2+)-activated K+ conductance. 3. When NaCl was present in both pipette and external solutions as the major constituent, caffeine evoked an inward current at -60 mV simultaneously with a rise in [Ca2+]i. The reversal potential (Er) of this current was about 0 mV. 4. Substitution of Tris+ or choline+ for external Na+ did not alter the Er. When external Cl- was replaced by thiocyanate-, iodide- or glutamate-, the Er changed to respectively -55, -38 and +35 mV. 5. The current response to caffeine decreased with increasing concentration of EGTA in the pipette solution. The caffeine-induced current and the intracellular Ca2+ transient was still observed for a few minutes after exposure of the cells to Ca(2+)-free external solution containing 2 mM EGTA. Caffeine failed to produce an inward current and Ca2+ transient after treatment with extracellular ryanodine. 6. It is concluded that caffeine caused an increase in membrane Cl- conductance and in K+ conductance resulting from a rise in [Ca2+]i derived from ryanodine-sensitive intracellular Ca2+ stores in isolated smooth muscle cells of the rat intestine. PMID:8229831
Selective detection and recovery of gold at tannin-immobilized non-conducting electrode.
Banu, Khaleda; Shimura, Takayoshi; Sadeghi, Saman
2015-01-01
A tannin-immobilized glassy carbon electrode (TIGC) was prepared via electrochemical oxidation of the naturally occurring polyphenolic mimosa tannin, which generated a non-conducting polymeric film (NCPF) on the electrode surface. The fouling of the electrode surface by the electropolymerized film was evaluated by monitoring the electrode response of ferricyanide ions as a redox marker. The NCPF was permselective to HAuCl4, and the electrochemical reduction of HAuCl4 to metallic gold at the TIGC electrode was evaluated by recording the reduction current during cyclic voltammetry measurement. In the mixed electrolyte containing HAuCl4 along with FeCl3 and/or CuCl2, the NCPF remained selective toward the electrochemical reduction of HAuCl4 into the metallic state. The chemical reduction of HAuCl4 into metallic gold was also observed when the NCPF was inserted into an acidic gold solution overnight. The adsorption capacity of Au(III) on tannin-immobilized carbon fiber was 29±1.45 mg g(-1) at 60°C. In the presence of excess Cu(II) and Fe(III), tannin-immobilized NCPF proved to be an excellent candidate for the selective detection and recovery of gold through both electrochemical and chemical processes. Copyright © 2014 Elsevier B.V. All rights reserved.
Chlorine Isotope Ratios in M Giants and S Stars
NASA Astrophysics Data System (ADS)
Maas, Zachary; Pilachowski, C. A.
2018-01-01
Chlorine is an odd-Z, light element that has been poorly studied in stars. Recently, the first stellar abundance measurements of the isotopologue 35Cl were made and the 35Cl/37Cl ratio was derived in RZ Ari (Maas et al. 2016). Additional abundance measurements are necessary to understand the Galactic chemical evolution and complex nucleosynthesis of Cl. The Cl isotope ratio in particular is important in distinguishing contributions from different nucleosynthesis sites to the surface abundances of stars. For example, current nucloesynthesis models predict that both isotopes of Cl are produced primarily during core collapse supernovae (CCSNe) with the energy and progenitor mass impacting the isotopic ratio of the ejected material. In addition to CCSNe, 37Cl is formed by the s-process both in massive stars and in AGB stars, and 35Cl may be produced from neutrino spallation. Understanding the formation of the Cl isotopes is also important to studies of the interstellar medium (ISM). A range of Cl isotope ratios mainly between 2 - 3.5 have been measured in star forming regions, in the circumstellar envelopes of evolved stars, and in proto-stellar cores using Cl bearing molecules. Additional measurements of the Cl isotope ratio in nearby stars will test nucleosynthesis models and allow comparisons with the range of isotope ratios observed in the ISM.We build on the results of Maas et al. (2016) by measuring the Cl isotope ratio in six M giants and four S stars using R~50,000 resolution spectra from Phoenix on Gemini South. We find no significant difference between the average Cl isotope ratios in the M stars and S stars and our measurements are consistent with the range of values seen in the ISM. We also find the average Cl ratio to be larger than the predicted isotope ratio of 1.8 for the solar neighborhood. Finally, two S stars, GG Pup and WY Pyx, show anomalously strong HCl features with equivalent widths ~3-5 times larger than the HCl features of other stars of similar temperature.
Spatiotemporal and molecular epidemiology of cutaneous leishmaniasis in Libya
Al-Dwibe, Hamida; Gashout, Aisha; Moskalenko, Olga; Galafin, Marlena; Hamarsheh, Omar; Frohme, Marcus; Jaeschke, Anja; Schönian, Gabriele; Kuhls, Katrin
2017-01-01
Background Cutaneous leishmaniasis (CL) is a major public health problem in Libya. In this paper, we describe the eco-epidemiological parameters of CL during the armed conflict period from January 2011 till December 2012. Current spatiotemporal distributions of CL cases were explored and projected to the future using a correlative modelling approach. In addition the present results were compared with our previous data obtained for the time period 1995–2008. Methodology/Principal findings We investigated 312 CL patients who presented to the Dermatology Department at the Tripoli Central Hospital and came from 81 endemic areas distributed in 10 districts. The patients presented with typical localized lesions which appeared commonly on the face, arms and legs. Molecular identification of parasites by a PCR-RFLP approach targeting the ITS1 region of the rDNA was successful for 81 patients with two causative species identified: L. major and L. tropica comprised 59 (72.8%) and 22 (27.2%) cases, respectively. Around 77.3% of L. tropica CL and 57.7% of L. major CL caused single lesions. Five CL patients among our data set were seropositive for HIV. L. tropica was found mainly in three districts, Murqub (27.3%), Jabal al Gharbi (27.3%) and Misrata (13.7%) while L. major was found in two districts, in Jabal al Gharbi (61%) and Jafara (20.3%). Seasonal occurrence of CL cases showed that most cases (74.2%) admitted to the hospital between November and March, L. major cases from November till January (69.4%), and L. tropica cases mainly in January and February (41%). Two risk factors were identified for the two species; the presence of previously infected household members, and the presence of rodents and sandflies in patient’s neighborhoods. Spatiotemporal projections using correlative distribution models based on current case data and climatic conditions showed that coastal regions have a higher level of risk due to more favourable conditions for the transmitting vectors. Conclusion Future projection of CL until 2060 showed a trend of increasing incidence of CL in the north-western part of Libya, a spread along the coastal region and a possible emergence of new endemics in the north-eastern districts of Libya. These results should be considered for control programs to prevent the emergence of new endemic areas taking also into consideration changes in socio-economical factors such as migration, conflicts, urbanization, land use and access to health care. PMID:28880944
Modelling of the test of the JT-60SA HTS current leads
NASA Astrophysics Data System (ADS)
Zappatore, A.; Heller, R.; Savoldi, L.; Zanino, R.
2017-07-01
The CURLEAD code, which was developed at the Karlsruhe Institute of Technology (KIT), implements an integrated 1D transient model of a high temperature superconducting (HTS) current lead (CL) including the room termination (RT), the meander-flow type heat exchanger (HX), and the HTS module. CURLEAD was successfully used for the design of the 70 kA ITER demonstrator and of the W7-X and JT-60SA CLs. Recently the code was successfully applied to the prediction and analysis of steady state operation of the ITER correction coils (CC) HTS CL. Here the steady state and pulsed operation of the JT-60SA HTS CLs are analysed, which requires also the modelling of the HX shell and of the vacuum shell, which was not present in the ITER CC. The CURLEAD model extension is presented and the capability of the new version of CURLEAD to reproduce the transient experimental data of the JT-60SA HTS CL is shown. The results obtained provide a better understanding of key parameters of the CL, among which the temperature evolution at the HX-HTS interface, the GHe mass flow rate needed in the HX to achieve the target temperature at that location and the heat load at the cold end.
Electrodeposition of germanium from supercritical fluids.
Ke, Jie; Bartlett, Philip N; Cook, David; Easun, Timothy L; George, Michael W; Levason, William; Reid, Gillian; Smith, David; Su, Wenta; Zhang, Wenjian
2012-01-28
Several Ge(II) and Ge(IV) compounds were investigated as possible reagents for the electrodeposition of Ge from liquid CH(3)CN and CH(2)F(2) and supercritical CO(2) containing as a co-solvent CH(3)CN (scCO(2)) and supercritical CH(2)F(2) (scCH(2)F(2)). For Ge(II) reagents the most promising results were obtained using [NBu(n)(4)][GeCl(3)]. However the reproducibility was poor and the reduction currents were significantly less than the estimated mass transport limited values. Deposition of Ge containing films was possible at high cathodic potential from [NBu(n)(4)][GeCl(3)] in liquid CH(3)CN and supercritical CO(2) containing CH(3)CN but in all cases they were heavily contaminated by C, O, F and Cl. Much more promising results were obtained using GeCl(4) in liquid CH(2)F(2) and supercritical CH(2)F(2). In this case the reduction currents were consistent with mass transport limited reduction and bulk electrodeposition produced amorphous films of Ge. Characterisation by XPS showed the presence of low levels of O, F and C, XPS confirmed the presence of Ge together with germanium oxides, and Raman spectroscopy showed that the as deposited amorphous Ge could be crystallised by the laser used in obtaining the Raman measurements.
Current limiting remote power control module
NASA Technical Reports Server (NTRS)
Hopkins, Douglas C.
1990-01-01
The power source for the Space Station Freedom will be fully utilized nearly all of the time. As such, any loads on the system will need to operate within expected limits. Should any load draw an inordinate amount of power, the bus voltage for the system may sag and disrupt the operation of other loads. To protect the bus and loads some type of power interface between the bus and each load must be provided. This interface is most crucial when load faults occur. A possible system configuration is presented. The proposed interface is the Current Limiting Remote Power Controller (CL-RPC). Such an interface should provide the following power functions: limit overloading and resulting undervoltage; prevent catastrophic failure and still provide for redundancy management within the load; minimize cable heating; and provide accurate current measurement. A functional block diagram of the power processing stage of a CL-RPC is included. There are four functions that drive the circuit design: rate control of current; current sensing; the variable conductance switch (VCS) technology; and the algorithm used for current limiting. Each function is discussed separately.
Zifarelli, Giovanni
2015-01-01
Abstract The CLC protein family comprises both Cl− channels and H+-coupled anion transporters. The understanding of the critical role of CLC proteins in a number of physiological functions has greatly contributed to a revision of the classical paradigm that attributed to Cl− ions only a marginal role in human physiology. The endosomal ClC-5 and the lysosomal ClC-7 are the best characterized human CLC transporters. Their dysfunction causes Dent’s disease and osteopetrosis, respectively. It had been originally proposed that they would provide a Cl− shunt conductance allowing efficient acidification of intracellular compartments. However, this model seems to conflict with the transport properties of these proteins and with recent physiological evidence. Currently, there is no consensus on their specific physiological role. CLC proteins present also a number of peculiar biophysical properties, such as the dimeric architecture, the co-existence of intrinsically different thermodynamic modes of transport based on similar structural principles, and the gating mechanism recently emerging for the transporters, just to name a few. This review focuses on the biophysical properties and physiological roles of ClC-5 and ClC-7. PMID:26036722
Bhattacharjee, D; Rajan, R; Krishnamoorthy, L; Singh, B B
1997-06-01
Mouse spermatogonial germ cells are highly sensitive to ionizing radiation. Lithium salts are reported to stimulate the postirradiation recovery of hematopoietic marrow cells. We have, therefore, examined whether administered lithium chloride (LiCl) would also be able to protect the mouse germinal cells against radiation injury. Taking DNA synthesis as an endpoint, our results show that the testicular DNA-specific activity in irradiated mice was higher by 61% on average when they had been pretreated with LiCl both 24 h and 1 h prior to gamma-irradiation (2.0 Gy). It was also observed that the DNA synthetic activity in the germinal cells fully recovered after LiCl pretreatment at doses of 40 mg per kg body weight prior to total body irradiation of 0.05-0.25 Gy, whereas at doses of 0.5-6.0 Gy, following the same procedure of LiCl pretreatment, only an incomplete recovery was observed. The dose reduction factor for LiCl is 1.84. The current findings indicate that pretreatment with LiCl provides considerable protection against radiation damage in mouse spermatogonia.
New Developments in Cathodoluminescence Spectroscopy for the Study of Luminescent Materials
den Engelsen, Daniel; Fern, George R.; Harris, Paul G.; Ireland, Terry G.; Silver, Jack
2017-01-01
Herein, we describe three advanced techniques for cathodoluminescence (CL) spectroscopy that have recently been developed in our laboratories. The first is a new method to accurately determine the CL-efficiency of thin layers of phosphor powders. When a wide band phosphor with a band gap (Eg > 5 eV) is bombarded with electrons, charging of the phosphor particles will occur, which eventually leads to erroneous results in the determination of the luminous efficacy. To overcome this problem of charging, a comparison method has been developed, which enables accurate measurement of the current density of the electron beam. The study of CL from phosphor specimens in a scanning electron microscope (SEM) is the second subject to be treated. A detailed description of a measuring method to determine the overall decay time of single phosphor crystals in a SEM without beam blanking is presented. The third technique is based on the unique combination of microscopy and spectrometry in the transmission electron microscope (TEM) of Brunel University London (UK). This combination enables the recording of CL-spectra of nanometre-sized specimens and determining spatial variations in CL emission across individual particles by superimposing the scanning TEM and CL-images. PMID:28772671
Ghosh, Buddhadeb; Papanastasiou, Dimitrios K; Talukdar, Ranajit K; Roberts, James M; Burkholder, James B
2012-06-21
Recent studies have shown that the UV/vis photolysis of nitryl chloride (ClNO2) can be a major source of reactive chlorine in the troposphere. The present work reports measurements of the ClNO2 absorption spectrum and its temperature dependence between 210 and 296 K over the wavelength range 200–475 nm using diode array spectroscopy. The room temperature spectrum obtained in this work was found to be in good agreement with the results from Ganske et al. (J. Geophys. Res. 1992, 97, 7651) over the wavelength range common to both studies (200–370 nm) but differs systematically from the currently recommended spectrum for use in atmospheric models. The present results lead to a decrease in the calculated atmospheric ClNO2 photolysis rate by 30%. Including the temperature dependence of the ClNO2 spectrum decreases the calculated atmospheric photolysis rate at lower temperatures (higher altitudes) even further. A parametrization of the wavelength and temperature dependence of the ClNO2 spectrum is presented. O(3P) quantum yields, Φ(ClNO2)(O), in the photolysis of ClNO2 at 193 and 248 nm were measured at 296 K using pulsed laser photolysis combined with atomic resonance fluorescence detection of O(3P) atoms. Φ(ClNO2)(O)(λ) was found to be 0.67 ± 0.12 and 0.15 ± 0.03 (2σ error limits, including estimated systematic errors) at 193 and 248 nm, respectively, indicating that multiple dissociation channels are active in the photolysis of ClNO2 at these wavelengths. The Φ(ClNO2)(O)(λ) values obtained in this work are discussed in light of previous ClNO2 photodissociation studies and the differences are discussed.
Chloromethane formation and degradation in the fern phyllosphere.
Jaeger, Nicole; Besaury, Ludovic; Röhling, Amelie Ninja; Koch, Fabien; Delort, Anne-Marie; Gasc, Cyrielle; Greule, Markus; Kolb, Steffen; Nadalig, Thierry; Peyret, Pierre; Vuilleumier, Stéphane; Amato, Pierre; Bringel, Françoise; Keppler, Frank
2018-09-01
Chloromethane (CH 3 Cl) is the most abundant halogenated trace gas in the atmosphere. It plays an important role in natural stratospheric ozone destruction. Current estimates of the global CH 3 Cl budget are approximate. The strength of the CH 3 Cl global sink by microbial degradation in soils and plants is under discussion. Some plants, particularly ferns, have been identified as substantial emitters of CH 3 Cl. Their ability to degrade CH 3 Cl remains uncertain. In this study, we investigated the potential of leaves from 3 abundant ferns (Osmunda regalis, Cyathea cooperi, Dryopteris filix-mas) to produce and degrade CH 3 Cl by measuring their production and consumption rates and their stable carbon and hydrogen isotope signatures. Investigated ferns are able to degrade CH 3 Cl at rates from 2.1 to 17 and 0.3 to 0.9μgg dw -1 day - 1 for C. cooperi and D. filix-mas respectively, depending on CH 3 Cl supplementation and temperature. The stable carbon isotope enrichment factor of remaining CH 3 Cl was -39±13‰, whereas negligible isotope fractionation was observed for hydrogen (-8±19‰). In contrast, O. regalis did not consume CH 3 Cl, but produced it at rates ranging from 0.6 to 128μgg dw -1 day - 1 , with stable isotope values of -97±8‰ for carbon and -202±10‰ for hydrogen, respectively. Even though the 3 ferns showed clearly different formation and consumption patterns, their leaf-associated bacterial diversity was not notably different. Moreover, we did not detect genes associated with the only known chloromethane utilization pathway "cmu" in the microbial phyllosphere of the investigated ferns. Our study suggests that still unknown CH 3 Cl biodegradation processes on plants play an important role in global cycling of atmospheric CH 3 Cl. Copyright © 2018 Elsevier B.V. All rights reserved.
Liu, Wei; Li, Jingwen; Gao, Lichen; Zhang, Zhou; Zhao, Jing; He, Xin; Zhang, Xin
2018-02-01
Chlorinated polyfluorinated ether sulfonate (Cl-PFESA) is a novel alternative compound for perfluorooctane sulfonate (PFOS), with its environmental risk not well known. The bioaccumulation and toxic effects of Cl-PFESA in the freshwater alga is crucial for the understanding of its potential hazards to the aquatic environment. Scenedesmus obliquus was exposed to Cl-PFESA at ng L -1 to mg L -1 , with the exposure regime beginning at the environmentally relevant level. The total log BAF of Cl-PFESA in S. obliquus was 4.66, higher than the reported log BAF of PFOS in the freshwater plankton (2.2-3.2). Cl-PFESA adsorbed to the cell surface accounted for 33.5-68.3% of the total concentrations. The IC50 of Cl-PFESA to algal growth was estimated to be 40.3 mg L -1 . Significant changes in algal growth rate and chlorophyll a/b contents were observed at 11.6 mg L -1 and 13.4 mg L -1 of Cl-PFESA, respectively. The sample cell membrane permeability, measured by the fluorescein diacetate hydrolyzation, was increased by Cl-PFESA at 5.42 mg L -1 . The mitochondrial membrane potential, measured by Rh123 staining, was also increased, indicating the hyperpolarization induced by Cl-PFESA. The increasing ROS and MDA contents, along with the enhanced SOD, CAT activity, and GSH contents, suggested that Cl-PFESA caused oxidative damage in the algal cells. It is less possible that current Cl-PFESA pollution in surface water posed obvious toxic effects on the green algae. However, the bioaccumulation of Cl-PFESA in algae would contribute to its biomagnification in the aquatic food chain and its effects on membrane property could potentially increase the accessibility and toxicity of other coexisting pollutants. Copyright © 2017 Elsevier Ltd. All rights reserved.
Critical limits for the control points for halal poultry slaughter.
Shahdan, Intan Azura; Regenstein, Joe Mac; Rahman, Mohammad Tariqur
2017-06-01
This study proposes critical limits (CL) for control points for halal slaughter (CPHS). Previously, 6 control points (CP) were determined, and CL for these 6 CPHS are suggested based on: 1) a literature survey for the CL for CP 1 (poultry breeding, rearing, and poultry feed) and CP 2 (welfare of poultry during transportation and lairage); 2) a field survey of slaughter plants in Kuantan (Malaysia) for CP 3 (immobilization), CP 4 (slaughter), CP 5 (time for full bleed-out), and CP 6 (washing and packaging); and 3) controlled experiments to refine the CL for CP 3, 4, and 5. The CL for CP 1 focused on stress reduction during rearing and use of substances that could compromise poultry meat wholesomeness. The CL for CP 2 emphasizes humane best-practices for handling poultry during lairage. The CL for CP 3 suggests a gap of 5 s between 2 shackles if only one shackler is employed and shackling times of <1 min for live chickens. In countries permitting water-bath electrical stunning of halal poultry, the stunning current needed to induce unconsciousness must be defined for the breed and bird size but not cause any chicken deaths. The CL for CP 4 mandates the recitation of the tasmiyah (the invocation), which if done for every chicken, will require ≥5 s between stunning and neck cutting. The CL for CP 4 also includes information about the slaughter knife. In CP 5 the recommended minimum time between neck cutting and scalding is 9.5 min. Finally, the CL for CP 6 emphasizes good supply chain hygiene and zero adulteration from haram species and substances. © 2016 Poultry Science Association Inc.
Huang, Binbin; Lei, Chao; Wei, Chaohai; Zeng, Guangming
2014-10-01
Chlorinated volatile organic compounds (Cl-VOCs), including polychloromethanes, polychloroethanes and polychloroethylenes, are widely used as solvents, degreasing agents and a variety of commercial products. These compounds belong to a group of ubiquitous contaminants that can be found in contaminated soil, air and any kind of fluvial mediums such as groundwater, rivers and lakes. This review presents a summary of the research concerning the production levels and sources of Cl-VOCs, their potential impacts on human health as well as state-of-the-art remediation technologies. Important sources of Cl-VOCs principally include the emissions from industrial processes, the consumption of Cl-VOC-containing products, the disinfection process, as well as improper storage and disposal methods. Human exposure to Cl-VOCs can occur through different routes, including ingestion, inhalation and dermal contact. The toxicological impacts of these compounds have been carefully assessed, and the results demonstrate the potential associations of cancer incidence with exposure to Cl-VOCs. Most Cl-VOCs thus have been listed as priority pollutants by the Ministry of Environmental Protection (MEP) of China, Environmental Protection Agency of the U.S. (U.S. EPA) and European Commission (EC), and are under close monitor and strict control. Yet, more efforts will be put into the epidemiological studies for the risk of human exposure to Cl-VOCs and the exposure level measurements in contaminated sites in the future. State-of-the-art remediation technologies for Cl-VOCs employ non-destructive methods and destructive methods (e.g. thermal incineration, phytoremediation, biodegradation, advanced oxidation processes (AOPs) and reductive dechlorination), whose advantages, drawbacks and future developments are thoroughly discussed in the later sections. Copyright © 2014 Elsevier Ltd. All rights reserved.
Eom, Tae Sung; Kim, Kyung Hwan; Bark, Chung Wung; Choi, Hyung Wook
2014-10-01
Titanium tetrachloride (TiCl4) treatment processed by chemical bath deposition is usually adopted as pre- and post-treatment for nanocrystalline titanium dioxide (TiO2) film deposition in the dye-sensitized solar cells (DSSCs) technology. TiCl4 post-treatment is a widely known method capable of improving the performance of dye-sensitized solar cells. In this work, the effect of TiCl4 post-treatment on the TiO2 electrode is proposed and compared to the untreated film. A TiO2 passivating layer was deposited on FTO glass by RF magnetron sputtering. The TiO2 sol prepared sol-gel method, nanoporous TiO2 upper layer was deposited by screen printing method on the passivating layer. TiCl4 post-treatment was deposited on the substrate by hydrolysis of TiCl4 aqueous solution. Crystalline structure was adjusted by various TiCl4 concentration and dipping time: 20 mM-150 mM and 30 min-120 min. The conversion efficiency was measured by solar simulator (100 mW/cm2). The dye-sensitized solar cell using TiCl4 post-treatment was measured the maximum conversion efficiency of 5.04% due to electron transport effectively. As a result, the DSSCs based on TiCl4 post-treatment showed better photovoltaic performance than cells made purely of TiO2 nanoparticles. The relative DSSCs devices are characterized in terms of short circuit current density, open circuit voltage, fill factor, conversion efficiency.
[The tasks and aims of hospital psychiatry today and in the future].
Honig, A; Sierink, D; Verwey, B
Care provided by consultation-liaison (CL) psychiatry and general hospital (GH) psychiatry varies widely. This means that certain services are almost unrecognisable and therefore less readily available to patients.
AIM: To describe the core tasks of current CL- and GH-psychiatry care and to suggest how these tasks can best be performed and developed in the future.
METHOD: We conducted a selective review of relevant CL- and GH-related literature and combined the information we obtained with the results of a consultation with CL-psychiatrists about how CL- and GL psychiatry should function in the future.
RESULTS: Core tasks of CL- and GH-psychiatry are: 1. inpatient and outpatient care for complex patients with combined somatic and psychiatric problems (including addiction) and 2. acute care, diagnosis and treatment of patients referred to the Emergency Department. We gave an outline of how the quality of training can be maintained and/or improved and we suggest ways in which the funding of CL- and GH-psychiatry can be safeguarded and, if possible, increased in the future.
CONCLUSION: We strongly recommend that large teaching hospitals and all university hospitals should have at their disposal a psychiatric consultation service that includes psychiatric Emergency Department facilities and specialised CL and GH inpatient and outpatient facility such as a medical-psychiatric unit. The CL- and GH-service should have a psychiatrist as gatekeeper and should be integrated into the hospital's chain of care. Partners in this chain of care are interns who have other medical specialisms, mental health specialists employed at other (mainly psychiatric) hospitals and general practitioners (GPs).
High Coulombic efficiency aluminum-ion battery using an AlCl3-urea ionic liquid analog electrolyte
Angell, Michael; Pan, Chun-Jern; Rong, Youmin; Yuan, Chunze; Lin, Meng-Chang; Hwang, Bing-Joe; Dai, Hongjie
2017-01-01
In recent years, impressive advances in harvesting renewable energy have led to a pressing demand for the complimentary energy storage technology. Here, a high Coulombic efficiency (∼99.7%) Al battery is developed using earth-abundant aluminum as the anode, graphite as the cathode, and a cheap ionic liquid analog electrolyte made from a mixture of AlCl3 and urea in a 1.3:1 molar ratio. The battery displays discharge voltage plateaus around 1.9 and 1.5 V (average discharge = 1.73 V) and yielded a specific cathode capacity of ∼73 mAh g−1 at a current density of 100 mA g−1 (∼1.4 C). High Coulombic efficiency over a range of charge–discharge rates and stability over ∼150–200 cycles was easily demonstrated. In situ Raman spectroscopy clearly showed chloroaluminate anion intercalation/deintercalation of graphite (positive electrode) during charge–discharge and suggested the formation of a stage 2 graphite intercalation compound when fully charged. Raman spectroscopy and NMR suggested the existence of AlCl4−, Al2Cl7− anions and [AlCl2·(urea)n]+ cations in the AlCl3/urea electrolyte when an excess of AlCl3 was present. Aluminum deposition therefore proceeded through two pathways, one involving Al2Cl7− anions and the other involving [AlCl2·(urea)n]+ cations. This battery is a promising prospect for a future high-performance, low-cost energy storage device. PMID:28096353
Density-based parallel skin lesion border detection with webCL
2015-01-01
Background Dermoscopy is a highly effective and noninvasive imaging technique used in diagnosis of melanoma and other pigmented skin lesions. Many aspects of the lesion under consideration are defined in relation to the lesion border. This makes border detection one of the most important steps in dermoscopic image analysis. In current practice, dermatologists often delineate borders through a hand drawn representation based upon visual inspection. Due to the subjective nature of this technique, intra- and inter-observer variations are common. Because of this, the automated assessment of lesion borders in dermoscopic images has become an important area of study. Methods Fast density based skin lesion border detection method has been implemented in parallel with a new parallel technology called WebCL. WebCL utilizes client side computing capabilities to use available hardware resources such as multi cores and GPUs. Developed WebCL-parallel density based skin lesion border detection method runs efficiently from internet browsers. Results Previous research indicates that one of the highest accuracy rates can be achieved using density based clustering techniques for skin lesion border detection. While these algorithms do have unfavorable time complexities, this effect could be mitigated when implemented in parallel. In this study, density based clustering technique for skin lesion border detection is parallelized and redesigned to run very efficiently on the heterogeneous platforms (e.g. tablets, SmartPhones, multi-core CPUs, GPUs, and fully-integrated Accelerated Processing Units) by transforming the technique into a series of independent concurrent operations. Heterogeneous computing is adopted to support accessibility, portability and multi-device use in the clinical settings. For this, we used WebCL, an emerging technology that enables a HTML5 Web browser to execute code in parallel for heterogeneous platforms. We depicted WebCL and our parallel algorithm design. In addition, we tested parallel code on 100 dermoscopy images and showed the execution speedups with respect to the serial version. Results indicate that parallel (WebCL) version and serial version of density based lesion border detection methods generate the same accuracy rates for 100 dermoscopy images, in which mean of border error is 6.94%, mean of recall is 76.66%, and mean of precision is 99.29% respectively. Moreover, WebCL version's speedup factor for 100 dermoscopy images' lesion border detection averages around ~491.2. Conclusions When large amount of high resolution dermoscopy images considered in a usual clinical setting along with the critical importance of early detection and diagnosis of melanoma before metastasis, the importance of fast processing dermoscopy images become obvious. In this paper, we introduce WebCL and the use of it for biomedical image processing applications. WebCL is a javascript binding of OpenCL, which takes advantage of GPU computing from a web browser. Therefore, WebCL parallel version of density based skin lesion border detection introduced in this study can supplement expert dermatologist, and aid them in early diagnosis of skin lesions. While WebCL is currently an emerging technology, a full adoption of WebCL into the HTML5 standard would allow for this implementation to run on a very large set of hardware and software systems. WebCL takes full advantage of parallel computational resources including multi-cores and GPUs on a local machine, and allows for compiled code to run directly from the Web Browser. PMID:26423836
Density-based parallel skin lesion border detection with webCL.
Lemon, James; Kockara, Sinan; Halic, Tansel; Mete, Mutlu
2015-01-01
Dermoscopy is a highly effective and noninvasive imaging technique used in diagnosis of melanoma and other pigmented skin lesions. Many aspects of the lesion under consideration are defined in relation to the lesion border. This makes border detection one of the most important steps in dermoscopic image analysis. In current practice, dermatologists often delineate borders through a hand drawn representation based upon visual inspection. Due to the subjective nature of this technique, intra- and inter-observer variations are common. Because of this, the automated assessment of lesion borders in dermoscopic images has become an important area of study. Fast density based skin lesion border detection method has been implemented in parallel with a new parallel technology called WebCL. WebCL utilizes client side computing capabilities to use available hardware resources such as multi cores and GPUs. Developed WebCL-parallel density based skin lesion border detection method runs efficiently from internet browsers. Previous research indicates that one of the highest accuracy rates can be achieved using density based clustering techniques for skin lesion border detection. While these algorithms do have unfavorable time complexities, this effect could be mitigated when implemented in parallel. In this study, density based clustering technique for skin lesion border detection is parallelized and redesigned to run very efficiently on the heterogeneous platforms (e.g. tablets, SmartPhones, multi-core CPUs, GPUs, and fully-integrated Accelerated Processing Units) by transforming the technique into a series of independent concurrent operations. Heterogeneous computing is adopted to support accessibility, portability and multi-device use in the clinical settings. For this, we used WebCL, an emerging technology that enables a HTML5 Web browser to execute code in parallel for heterogeneous platforms. We depicted WebCL and our parallel algorithm design. In addition, we tested parallel code on 100 dermoscopy images and showed the execution speedups with respect to the serial version. Results indicate that parallel (WebCL) version and serial version of density based lesion border detection methods generate the same accuracy rates for 100 dermoscopy images, in which mean of border error is 6.94%, mean of recall is 76.66%, and mean of precision is 99.29% respectively. Moreover, WebCL version's speedup factor for 100 dermoscopy images' lesion border detection averages around ~491.2. When large amount of high resolution dermoscopy images considered in a usual clinical setting along with the critical importance of early detection and diagnosis of melanoma before metastasis, the importance of fast processing dermoscopy images become obvious. In this paper, we introduce WebCL and the use of it for biomedical image processing applications. WebCL is a javascript binding of OpenCL, which takes advantage of GPU computing from a web browser. Therefore, WebCL parallel version of density based skin lesion border detection introduced in this study can supplement expert dermatologist, and aid them in early diagnosis of skin lesions. While WebCL is currently an emerging technology, a full adoption of WebCL into the HTML5 standard would allow for this implementation to run on a very large set of hardware and software systems. WebCL takes full advantage of parallel computational resources including multi-cores and GPUs on a local machine, and allows for compiled code to run directly from the Web Browser.
Khalik, Wan Fadhilah; Ong, Soon-An; Ho, Li-Ngee; Wong, Yee-Shian; Voon, Chun-Hong; Yusuf, Sara Yasina; Yusoff, Nik Athirah; Lee, Sin-Li
2016-08-01
This study investigated the effect of different supporting electrolyte (Na2SO4, MgSO4, NaCl) in degradation of Reactive Black 5 (RB5) and generation of electricity. Zinc oxide (ZnO) was immobilized onto carbon felt acted as photoanode, while Pt-coated carbon paper as photocathode was placed in a single chamber photocatalytic fuel cell, which then irradiated by UV lamp for 24 h. The degradation and mineralization of RB5 with 0.1 M NaCl rapidly decreased after 24-h irradiation time, followed by MgSO4, Na2SO4 and without electrolyte. The voltage outputs for Na2SO4, MgSO4 and NaCl were 908, 628 and 523 mV, respectively, after 24-h irradiation time; meanwhile, their short-circuit current density, J SC, was 1.3, 1.2 and 1.05 mA cm(-2), respectively. The power densities for Na2SO4, MgSO4 and NaCl were 0.335, 0.256 and 0.245 mW cm(-2), respectively. On the other hand, for without supporting electrolyte, the voltage output and short-circuit current density was 271.6 mV and 0.055 mA cm(-2), respectively. The supporting electrolyte NaCl showed greater performance in degradation of RB5 and generation of electricity due to the formation of superoxide radical anions which enhance the degradation of dye. The mineralization of RB5 with different supporting electrolyte was measured through spectrum analysis and reduction in COD concentration.
High-precision half-life measurements of the T =1 /2 mirror β decays 17F and 33Cl
NASA Astrophysics Data System (ADS)
Grinyer, J.; Grinyer, G. F.; Babo, M.; Bouzomita, H.; Chauveau, P.; Delahaye, P.; Dubois, M.; Frigot, R.; Jardin, P.; Leboucher, C.; Maunoury, L.; Seiffert, C.; Thomas, J. C.; Traykov, E.
2015-10-01
Background: Measurements of the f t values for T =1 /2 mirror β+ decays offer a method to test the conserved vector current hypothesis and to determine Vud, the up-down matrix element of the Cabibbo-Kobayashi-Maskawa matrix. In most mirror decays used for these tests, uncertainties in the f t values are dominated by the uncertainties in the half-lives. Purpose: Two precision half-life measurements were performed for the T =1 /2 β+ emitters, 17F and 33Cl, in order to eliminate the half-life as the leading source of uncertainty in their f t values. Method: Half-lives of 17F and 33Cl were determined using β counting of implanted radioactive ion beam samples on a moving tape transport system at the Système de Production d'Ions Radioactifs Accélérés en Ligne low-energy identification station at the Grand Accélérateur National d'Ions Lourds. Results: The 17F half-life result, 64.347 (35) s, precise to ±0.05 % , is a factor of 5 times more precise than the previous world average. The half-life of 33Cl was determined to be 2.5038 (22) s. The current precision of ±0.09 % is nearly 2 times more precise compared to the previous world average. Conclusions: The precision achieved during the present measurements implies that the half-life no longer dominates the uncertainty of the f t values for both T =1 /2 mirror decays 17F and 33Cl.
CFTR Cl- channel and CFTR-associated ATP channel: distinct pores regulated by common gates.
Sugita, M; Yue, Y; Foskett, J K
1998-01-01
The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel that is regulated by phosphorylation of the R domain and ATP hydrolysis at two nucleotide-binding domains (NBDs). It is controversial whether CFTR conducts ATP or whether CFTR might be closely associated with a separate ATP conductance. To characterize ATP channels associated with CFTR, we analyzed Cl- and ATP single channel-currents in excised inside-out membrane patches from MDCK epithelial cells transiently expressing CFTR. With 100 mM ATP in the pipette and 140 mM Cl- in the bath, ATP channels were associated with CFTR Cl- channels in two-thirds of patches that included CFTR. CFTR Cl- channels and CFTR-associated ATP channels had slope conductances of 7.4 pS and 5.2 pS, respectively, and had distinct reversal potentials and sensitivities to channel blockers. CFTR-associated ATP channels exhibited slow gating kinetics that depended on the presence of protein kinase A and cytoplasmic ATP, similar to CFTR Cl- channels. Gating kinetics of the ATP channels as well as the CFTR Cl- channels were similarly affected by non-hydrolyzable ATP analogues and mutations in the CFTR R domain and NBDs. Our results indicate that phosphorylation- and nucleotide-hydrolysis-dependent gating of CFTR is directly involved in gating of an associated ATP channel. However, the permeation pathways for Cl- and ATP are distinct and the ATP conduction pathway is not obligatorily associated with the expression of CFTR. PMID:9463368
Yu, Zhenyang; Zhang, Jing; Hou, Meifang
2018-05-01
The redox state of NADH/NADPH balance (nicotinamide adenine dinucleotide/nicotinamide adenine dinucleotide phosphate) is crucial in cellular homeostasis. Recent studies reported that sodium halide ions (NaX, X = F - , Cl - , Br - and I - ) stimulated NAD(P)H in Vibrio fischeri (VF). However, it remained unanswered whether this pattern applied in salts with other cations, e.g., K + , Mg 2+ and Ca 2+ , whose aquatic concentrations were increased by anthropogenic activities and climate change. Currently, VF were incubated with chloride salts, including KCl, MgCl 2 and CaCl 2 , and effects were measured in a time-dependent fashion. Both NADH and NADPH showed stimulation that increased over time, and the greatest maximum stimulation at 24 h was CaCl 2 > MgCl 2 > KCl. The changes of NADH/NADPH ratios over time in CaCl 2 , MgCl 2 and KCl were descendent, ascendant and stable, respectively. Simultaneously, FMN:NAD(P)H reaction catalyst (luciferase, in the form of expression levels of lux A and lux B), adenosine triphosphate and the expression levels of its regulating gene adk were also stimulated. The luminescence showed even more significant stimulations than the overall redox reaction. Together with earlier reported effects of NaCl, the chloride salts commonly disturbed the redox state and influenced the adaption of organisms to challenging environments. Copyright © 2018 Elsevier Ltd. All rights reserved.
Is there any chlorine monoxide in the stratosphere?
NASA Technical Reports Server (NTRS)
Mumma, M. J.; Rogers, J. D.; Kostiuk, T.; Deming, D.; Hillman, J. J.; Zipoy, D.
1983-01-01
A ground-based search for stratospheric 35-ClO was carried out using an infrared heterodyne spectrometer in the solar absorption mode. Lines due to stratospheric HNO3 and tropospheric OCS were detected at about 0.2 percent absorptance levels, but the expected 0.1 percent lines of ClO in this same region were not seen. We find that stratospheric ClO is at least a factor of seven less abundant than is indicated by in situ measurements, and we set an upper limit of 2.3 x 10 to the 13th molecules/sq cm at the 95 percent confidence level for the integrated vertical column density of ClO. Our results imply that the release of chlorofluorocarbons may be significantly less important for the destruction of stratospheric ozone (O3) than is currently thought. Previously announced in STAR as N83-27518
The rectification of mono- and bivalent ions in single conical nanopores
NASA Astrophysics Data System (ADS)
Wei, Junzhe; Du, Guanghua; Guo, Jinlong; Li, Yaning; Liu, Wenjing; Yao, Huijun; Zhao, Jing; Wu, Ruqun; Chen, Hao; Ponomarov, Artem
2017-08-01
The polyethylene terephthalate (PET) films were irradiated with single 6.9 MeV/u 58Ni19+ ions at the Lanzhou Interdisciplinary Heavy Ion Microbeam (LIHIM), and single conical nanopores were produced by asymmetric chemical etching of the latent ion tracks. Then, the current-voltage (I-V) characteristic was measured in LiCl, NaCl, KCl, MgCl2, and CaCl2 solution at different concentrations to study the transport properties of different cations in the single conical nanopores respectively. The measured I-V data showed that the conical nanopores have rectified transportation of these cations at the applied voltage of between +2 V and -2 V. The rectification coefficient γ of the mono- and bivalent ions was determined in their solution of 0.0001-1 M measured at 1 V, the result showed that the rectification coefficient is dependent on the valence of the ions and the electrolyte solution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuznetsova, Ya. V., E-mail: yana@mail.ioffe.ru; Jmerik, V. N.; Nechaev, D. V.
2016-07-15
The specific features of the cathodoluminescence (CL) spectra in AlInGaN heterostructures, caused by the influence of phase separation and internal electric fields, observed at varied CL excitation density, are studied. It is shown that the evolution of the CL spectrum and the variation in the spectral position of emission lines of nanoscale layers with current density in the primary electron beam makes it possible to identify the occurrence of phase separation in the layer and, in the absence of this separation, to estimate the electric-field strength in the active region of the structure.
State of Consultation-Liaison Psychiatry in India: Current status and vision for future
Grover, Sandeep
2011-01-01
Over the years Consultation-Liaison (C-L) psychiatry has contributed significantly to the growth of the psychiatry and has brought psychiatry very close to the advances in the medicine. It has also led to changes in the medical education and in the providing comprehensive management to the physically ill. In India, although the General Hospital Psychiatric units were established in 1930s, C-L Psychiatry has never been the main focus of training and research. Hence there is an urgent need to improve C-L Psychiatry services and training to provide best and optimal care to the patients and provide best education to the trainees. PMID:22135437
In situ observations of midlatitude stratospheric ClO and BrO
NASA Technical Reports Server (NTRS)
Brune, William H.; Anderson, James C.
1986-01-01
A balloon-borne experiment to measure midlatitude stratospheric BrO and ClO concentrations by NO chemical conversion/atomic resonance fluorescence was flown from Palestine, Texas, on May 20 1986. In this first study of BrO, no signal attributable to BrO was detected, and upper limits (2 sigma uncertainty) between 35 and 24 km altitude give BrO mixing ratios less than 15 pptv. Current models predict mixing ratios that are 1.7 times larger. Measurements of ClO were obtained at less than 0.2-km altitude resolution from 41 to 22 km. The smoothly varying altitude profile lies within the range of two-dimensional model calculations.
Treatment of pulp and paper industry bleaching effluent by electrocoagulant process.
Sridhar, R; Sivakumar, V; Prince Immanuel, V; Prakash Maran, J
2011-02-28
The experiments were carried out in an electrocoagulation reactor with aluminum as sacrificial electrodes. The influence of electrolysis time, current density, pH, NaCl concentration, rotational speed of the stirrer and electrode distance on reduction of color, COD and BOD were studied in detail. From the experimental results, 15 mA/cm(2) current density, pH of 7, 1 g/l NaCl, 100 rpm, 28°C temperature and 3 cm electrode distance were found to be optimum for maximum reduction of color, COD and BOD. The reduction of color, COD and BOD under the optimum condition were found to be 94%, 90% and 87% respectively. The electrode energy consumption was calculated and found to be varied from 10.1 to 12.9 kWh/m(3) depending on the operating conditions. Under optimal operating condition such as 15 mA/cm(2) current density, pH of 7, 1 g/l NaCl, 100 rpm, 28°C temperature and 3 cm electrode distance, the operating cost was found to be 1.56 US $/m(3). The experimental results proved that the electrocoagulation is a suitable method for treating bleaching plant effluents for reuse. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chernov, Ya. B.; Filatov, E. S.
2017-08-01
The kinetics of thermal diffusion boriding in a melt based on calcium chloride with a boron oxide additive is studied using reversed current. The main temperature, concentration, and current parameters of the process are determined. The phase composition of the coating is determined by a metallographic method.
Polyimide-Epoxy Composites with Superior Bendable Properties for Application in Flexible Electronics
NASA Astrophysics Data System (ADS)
Lee, Sangyoup; Yoo, Taewon; Han, Youngyu; Kim, Hanglim; Han, Haksoo
2017-08-01
The need for flexible electronics with outstanding bending properties is increasing due to the demand for wearable devices and next-generation flexible or rollable smartphones. In addition, the requirements for flexible or rigid-flexible electronics are sharply increasing to achieve the design of space-saving electronic devices. In this regard, coverlay (CL) film is a key material used in the bending area of flexible electronics, albeit infrequently. Because flexible electronics undergo folding and unfolding numerous times, CL films with superior mechanical and bending properties are required so that the bending area can endure such severe stress. However, because current CL films are only used for a designated bending area in the flexible electronics panel, their highly complicated and expensive manufacturing procedure is a disadvantage. In addition, the thickness of CL films must be decreased to satisfy the ongoing requirement for increasingly thin products. However, due to the limitations of the two-layer structure of existing CL films, the manufacturing process cannot be made more cost effective by simply applying more thin film onto the board. To address this problem, we have developed liquid coverlay inks (LCIs) with superior bendable properties, in comparison with CL films, when applied onto flexible electronics using a screen-printing method. The results show that LCIs have the potential to become one of the leading candidates to replace existing CL films because of their lower cost and faster manufacturing process.
Kuo, Yung-Chih; Lin, Che-Yu; Li, Jay-Shake; Lou, Yung-I
2017-01-01
Curcumin (CRM) and nerve growth factor (NGF) were entrapped in liposomes (LIP) with surface wheat germ agglutinin (WGA) to downregulate the phosphorylation of kinases in Alzheimer’s disease (AD) therapy. Cardiolipin (CL)-conjugated LIP carrying CRM (CRM-CL/LIP) and also carrying NGF (NGF-CL/LIP) were used with AD models of SK-N-MC cells and Wistar rats after an insult with β-amyloid peptide (Aβ). We found that CRM-CL/LIP inhibited the expression of phosphorylated p38 (p-p38), phosphorylated c-Jun N-terminal kinase (p-JNK), and p-tau protein at serine 202 and prevented neurodegeneration of SK-N-MC cells. In addition, NGF-CL/LIP could enhance the quantities of p-neurotrophic tyrosine kinase receptor type 1 and p-extracellular signal-regulated kinase 5 for neuronal rescue. Moreover, WGA-grafted CRM-CL/LIP and WGA-grafted NGF-CL/LIP significantly improved the permeation of CRM and NGF across the blood–brain barrier, reduced Aβ plaque deposition and the malondialdehyde level, and increased the percentage of normal neurons and cholinergic activity in the hippocampus of AD rats. Based on the marker expressions and in vivo evidence, current LIP carriers can be promising drug delivery systems to protect nervous tissue against Aβ-induced apoptosis in the brain during the clinical management of AD. PMID:28280340
Functional anion concept: effect of fluorine anion on hydrogen storage of sodium alanate.
Yin, Li-Chang; Wang, Ping; Kang, Xiang-Dong; Sun, Cheng-Hua; Cheng, Hui-Ming
2007-03-28
Doping NaAlH(4) with Ti-catalyst has produced a promising hydrogen storage system that can be reversibly operated at moderate temperature conditions. Of the various dopant precursors, TiCl(3) was well recognized due to its pronounced catalytic effect on the reversible dehydrogenation processes of sodium aluminium hydrides. Quite recently we experimentally found that TiF(3) was even better than TiCl(3) in terms of the critical hydrogen storage properties of the doped hydrides, in particular the dehydriding performance at Na(3)AlH(6)/NaH + Al step at moderate temperature. We present here the DFT calculation results of the TiF(3) or TiCl(3) doped Na(3)AlH(6). Our computational studies have demonstrated that F(-) and Cl(-) anions differ substantially from each other with regard to the state and function in the doped sodium aluminium hydride. In great contrast to the case of chloride doping where Cl(-) anion constitutes the "dead weight" NaCl, the fluoride doping results in a substitution of H(-) by F(-) anion in the hydride lattice and accordingly, a favorable thermodynamics adjustment. These results well explain the observed dehydriding performance associated with TiF(3)/TiCl(3)-doping. More significantly, the coupled computational and experimental efforts allow us to put forward a "functional anion" concept. This renews the current mechanism understanding in the catalytically enhanced sodium alanate.
Superconductivity could occur Na-supersaturated NaCl
NASA Astrophysics Data System (ADS)
Hanaki, Koji
1997-04-01
A flow-into electron and a flow-out hole mean flow-into of two unit electric c harges. Even if an exciton consisting of an electron and a hole is a neutral q uasi-particle, overlapping of excitons, namely, the bose condensation changes into a superconductor where half the electric current is due to holes moving t oward the reverse direction. The Meisner effect of the bose condensation comes from the precession of the each exciton under the magnetic field^1. Moreo ver, the present mechanism is supported with that superconducting material alw ays has two kinds of carriers. The superconductivity of NaCl comes from the ab ove-mentioned theory. Free stable holes at first and then electrons are produc ed in NaCl when considerable number of Cl^- lattice vacancies are brought in NaCl mainly because some electrons in the Cl-3p filled band fall into the v acancies. The coexistence of two kinds of stable carriers does not always mean the presence of excitons like VO with electrons not paired and localized in e ach V atom though. While, the absorption spectrum of the NaCl has already conf irmed the presence of excitons; the strength of the spectrum seems to indicate the formation of the bose condensation. Thus we could expect a new supercondu ctor. 1) Hanaki B.Am.P.Soc.,40-1(1995)568
Evaluating the Impact of Hospital Based Drug and Alcohol Consultation Liaison Services.
Reeve, Rebecca; Arora, Sheena; Butler, Kerryn; Viney, Rosalie; Burns, Lucinda; Goodall, Stephen; van Gool, Kees
2016-09-01
Consultation liaison (CL) services provide direct access to specialist services for support, treatment advice and assistance with the management of a given condition. Alcohol and other drugs (AOD) CL services aim to improve identification and treatment of patients with AOD morbidity. Our objective was to evaluate the costs and consequences of AOD CL services in hospitals in New South Wales, Australia. Patients were surveyed at eight hospitals and problematic AOD use was identified using the Alcohol, Smoking and Substance Involvement Screening Test (n=1615). For consenting participants, medical record data were obtained from 18 months pre- to 12 months post-survey. We used interrupted time series analyses to compare utilization and costs for patients with and without AOD problems and changes over time between those who received AOD CL and similar patients. Approximately 35% of patients surveyed had AOD problems (excluding tobacco) with 7% requiring intensive treatment. Only 24% of patients requiring intensive treatment were treated by AOD CL. Those treated had relative improvements over time in the cost of presentations to emergency departments, emergency admission performance and increased uptake of appropriate pharmaceuticals. The estimated net benefit of AOD CL services was at least AUD$100,000 savings per hospital per year. Expanding AOD CL services to address current unmet need may lead to even greater cost savings for hospitals. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Bansod, Ankur V.; Khobragade, Nilay N.; Giradkar, Karansagar V.; Patil, Awanikumar P.
2017-11-01
Due to low cost and easily available material, 316L stainless steel (SS) is used for biomedical implants. The electrochemical corrosion behavior of 316L (SS) was studied as a function of the concentration of simulated biological fluid (hyaluronic acid), the influence of Cl- and the combined effect of NaCl and hyaluronic acid (HA). For the electrochemical tests, potentiodynamic polarization test and electrochemical impedance spectroscopy (EIS) were undertaken. With the increase in HA concentration, corrosion rate increases. Whereas, with the addition of NaCl to HA the solution, the corrosion resistance of the sample was enhanced. Also, in pure NaCl solution, the corrosion current density (i corr) increased as compared to bare HA and HA + NaCl. This is due to the adhesion property of the HA on the sample surface. EIS result agrees with the findings of potentiodynamic polarization tests. X-ray photoelectron spectroscopy (XPS) was executed to analyze the passive film formed in the solution of HA and NaCl on 316L SS. XPS spectra confirms the formation of the passive film containing chromium oxide and hydroxides. Also, the formation of MoO2 helps in improving better corrosion resistance. The peak of nitrogen was observed in the sample immersed in HA solution. Scanning electron microscope (SEM) was carried out to analyze the surface morphology.
Electrodeposition and Characterization of Mn-Cu-Zn Alloys for Corrosion Protection Coating
NASA Astrophysics Data System (ADS)
Tsurtsumia, Gigla; Gogoli, David; Koiava, Nana; Kakhniashvili, Izolda; Jokhadze, Nunu; Lezhava, Tinatin; Nioradze, Nikoloz; Tatishvili, Dimitri
2017-12-01
Mn-Cu-Zn alloys were electrodeposited from sulphate bath, containing citrate or EDTA and their mixtures as complexing ligands. The influence of bath composition and deposition parameters on alloys composition, cathodic current efficiency and structural and electrochemical properties were studied. At a higher current density (≥ 37.5 A dm-2) a uniform surface deposit of Mn-Cu-Zn was obtained. Optimal pH of electrolyte (0.3 mol/dm3Mn2+ + 0.6 mol/dm3 (NH4)2SO4 +0.1 mol/dm3Zn2++0.005 mol/dm3 Cu2++ 0.05mol/dm3Na3Cit + 0.15mol/dm3 EDTA; t=300C; τ=20 min) for silvery, nonporous coating of Mn-Cu-Zn alloy was within 6.5-7.5; coating composition: 71-83% Mn, 6-7.8% Cu, 11.5-20% Zn, current efficiency up to 40%. XRD patterns revealed BCT (body centred tetragonal) γ-Mn solid phase solution (lattice constants a=2.68 Å c=3.59 Å). Corrosion measurements of deposited alloys were performed in aerated 3.5% NaCl solution. The corrosion current density (icorr) of the electrodeposited alloys on carbon steel was 10 times lower than corrosion rate of pure zinc and manganese coatings. Triple alloy coatings corrosion potential (Ecorr = -1140 mV vs. Ag/AgCl) preserved negative potential value longer (more than three months) compared to carbon steel substrate (Ecorr = -670 mV vs. Ag/AgCl). Tafel polarization curves taken on Mn-Cu-Zn alloy coating in aerated 3.5% NaCl solution did not show a typical passivation behaviour which can be explained by formation oflow solubility of adherent corrosion products on the alloy surface. Corrosion test of Mn-Cu-Zn electrocoating in chlorine environment shows that it is the best cathodic protective coating for a steel product.
Connell, Justin G.; Genorio, Bostjan; Lopes, Pietro Papa; ...
2016-10-17
Developing a new generation of battery chemistries is a critical challenge to moving beyond current Li-ion technologies. In this work, we introduce a surface-science-based approach for understanding the complex phenomena controlling the reversibility of Mg anodes for Mg-ion batteries. In addition, we identify the profound impact of trace levels of H 2O (≤3 ppm) on the kinetics of Mg deposition and determine that passive films of MgO and Mg(OH) 2 are formed only after Mg deposition ceases, rather than continuously during Mg reduction. We also find that Cl – inhibits passivation through the formation of adsorbed Cl – (Mg–Cl(ad)) and/ormore » MgCl 2 on the surface, as well as through a dynamic competition with H 2O in the double layer. In conclusion, this surface-science-based approach goes well beyond Mg anodes, highlighting the need for more in-depth understanding of electrolyte chemistries before a new generation of efficient and reversible battery technologies can be realized.« less
Chemiluminescence microarrays in analytical chemistry: a critical review.
Seidel, Michael; Niessner, Reinhard
2014-09-01
Multi-analyte immunoassays on microarrays and on multiplex DNA microarrays have been described for quantitative analysis of small organic molecules (e.g., antibiotics, drugs of abuse, small molecule toxins), proteins (e.g., antibodies or protein toxins), and microorganisms, viruses, and eukaryotic cells. In analytical chemistry, multi-analyte detection by use of analytical microarrays has become an innovative research topic because of the possibility of generating several sets of quantitative data for different analyte classes in a short time. Chemiluminescence (CL) microarrays are powerful tools for rapid multiplex analysis of complex matrices. A wide range of applications for CL microarrays is described in the literature dealing with analytical microarrays. The motivation for this review is to summarize the current state of CL-based analytical microarrays. Combining analysis of different compound classes on CL microarrays reduces analysis time, cost of reagents, and use of laboratory space. Applications are discussed, with examples from food safety, water safety, environmental monitoring, diagnostics, forensics, toxicology, and biosecurity. The potential and limitations of research on multiplex analysis by use of CL microarrays are discussed in this review.
LiCl-LiI molten salt electrolyte with bismuth-lead positive electrode for liquid metal battery
NASA Astrophysics Data System (ADS)
Kim, Junsoo; Shin, Donghyeok; Jung, Youngjae; Hwang, Soo Min; Song, Taeseup; Kim, Youngsik; Paik, Ungyu
2018-02-01
Liquid metal batteries (LMBs) are attractive energy storage device for large-scale energy storage system (ESS) due to the simple cell configuration and their high rate capability. The high operation temperature caused by high melting temperature of both the molten salt electrolyte and metal electrodes can induce the critical issues related to the maintenance cost and degradation of electrochemical properties resulting from the thermal corrosion of materials. Here, we report a new chemistry of LiCl-LiI electrolyte and Bi-Pb positive electrode to lower the operation temperature of Li-based LMBs and achieve the long-term stability. The cell (Li|LiCl-LiI|Bi-Pb) is operated at 410 °C by employing the LiCl-LiI (LiCl:LiI = 36:64 mol %) electrolyte and Bi-Pb alloy (Bi:Pb = 55.5:44.5 mol %) positive electrode. The cell shows excellent capacity retention (86.5%) and high Coulombic efficiencies over 99.3% at a high current density of 52 mA cm-2 during 1000th cycles.
NASA Astrophysics Data System (ADS)
Qiu, Guohong; Jiang, Kai; Ma, Meng; Wang, Dihua; Jin, Xianbo; Chen, George Z.
2007-06-01
Previous work, mainly from this research group, is re-visited on electrochemical reduction of solid metal oxides, in the form of compacted powder, in molten CaCl2, aiming at further understanding of the roles of cationic and elemental calcium. The discussion focuses on six aspects: 1.) debate on two mechanisms proposed in the literature, i. e. electro-metallothermic reduction and electro-reduction (or electro-deoxidation), for the electrolytic removal of oxygen from solid metals or metal oxides in molten CaCl2; 2.) novel metallic cavity working electrodes for electrochemical investigations of compacted metal oxide powders in high temperature molten salts assisted by a quartz sealed Ag/AgCl reference electrode (650 ºC- 950 ºC); 3.) influence of elemental calcium on the background current observed during electrolysis of solid metal oxides in molten CaCl2; 4.) electrochemical insertion/ inclusion of cationic calcium into solid metal oxides; 5.) typical features of cyclic voltammetry and chronoamperometry (potentiostatic electrolysis) of metal oxide powders in molten CaCl2; and 6.) some kinetic considerations on the electrolytic removal of oxygen.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilhelm, Christina M., E-mail: wilhelmc@battelle.org; Snider, Thomas H., E-mail: snidert@battelle.org; Babin, Michael C., E-mail: babinm@battelle.org
The currently fielded pre-hospital therapeutic regimen for the treatment of organophosphorus (OP) poisoning in the United States (U.S.) is the administration of atropine in combination with an oxime antidote (2-PAM Cl) to reactivate inhibited acetylcholinesterase (AChE). Depending on clinical symptoms, an anticonvulsant, e.g., diazepam, may also be administered. Unfortunately, 2-PAM Cl does not offer sufficient protection across the range of OP threat agents, and there is some question as to whether it is the most effective oxime compound available. The objective of the present study is to identify an oxime antidote, under standardized and comparable conditions, that offers protection atmore » the FDA approved human equivalent dose (HED) of 2-PAM Cl against tabun (GA), sarin (GB), soman (GD), cyclosarin (GF), and VX, and the pesticides paraoxon, chlorpyrifos oxon, and phorate oxon. Male Hartley guinea pigs were subcutaneously challenged with a lethal level of OP and treated at approximately 1 min post challenge with atropine followed by equimolar oxime therapy (2-PAM Cl, HI-6 DMS, obidoxime Cl{sub 2}, TMB-4, MMB4-DMS, HLö-7 DMS, MINA, and RS194B) or therapeutic-index (TI) level therapy (HI-6 DMS, MMB4-DMS, MINA, and RS194B). Clinical signs of toxicity were observed for 24 h post challenge and blood cholinesterase [AChE and butyrylcholinesterase (BChE)] activity was analyzed utilizing a modified Ellman's method. When the oxime is standardized against the HED of 2-PAM Cl for guinea pigs, the evidence from clinical observations, lethality, quality of life (QOL) scores, and cholinesterase reactivation rates across all OPs indicated that MMB4 DMS and HLö-7 DMS were the two most consistently efficacious oximes. - Highlights: • First comprehensive evaluation of leading AChE oxime reactivators • All oximes are compared against current U.S. therapy 2-PAM Cl. • Relative therapeutic oxime efficacies against OP CWNA and pesticides • Contribution to more effective antidotes for civilian and military populations.« less
Characterization of the human pH- and PKA-activated ClC-2G(2 alpha) Cl- channel.
Sherry, A M; Stroffekova, K; Knapp, L M; Kupert, E Y; Cuppoletti, J; Malinowska, D H
1997-08-01
A ClC-2G(2 alpha) Cl- channel was identified to be present in human lung and stomach, and a partial cDNA for this Cl- channel was cloned from a human fetal lung library. A full-length expressible human ClC-2G(2 alpha) cDNA was constructed by ligation of mutagenized expressible rabbit ClC-2G(2 alpha) cDNA with the human lung ClC-2G(2 alpha) cDNA, expressed in oocytes, and characterized at the single-channel level. Adenosine 3',5'-cyclic monophosphate-dependent protein kinase (PKA) treatment increased the probability of opening of the channel (Po). After PKA activation, the channel exhibited a linear (r = 0.99) current-voltage curve with a slope conductance of 22.1 +/- 0.8 pS in symmetric 800 mM tetraethylammonium chloride (TEACl; pH 7.4). Under fivefold gradient conditions of TEACl, a reversal potential of +21.5 +/- 2.8 mV was measured demonstrating anion-to-cation discrimination. As previously demonstrated for the rabbit ClC-2G(2 alpha) Cl- channel, the human analog, hClC-2G(2 alpha), was active at pH 7.4 as well as when the pH of the extracellular face of the channel (trans side of the bilayer; pHtrans) was asymmetrically reduced to pH 3.0. The extent of PKA activation was dependent on pHtrans. With PKA treatment, Po increased fourfold with a pHtrans of 7.4 and eightfold with a pHtrans of 3.0. Effects of sequential PKA addition followed by pHtrans reduction on the same channel suggested that the PKA- and pH-dependent increases in channel Po were separable and cumulative. Northern analysis showed ClC-2G(2 alpha) mRNA to be present in human adult and fetal lung and adult stomach, and quantitative reverse transcriptase-polymerase chain reaction showed this channel to be present in the adult human lung and stomach at about one-half the level found in fetal lung. The findings of the present study suggest that the ClC-2G(2 alpha) Cl- channel may play an important role in Cl- transport in the fetal and adult human lung.
Cathodic Potential Dependence of Electrochemical Reduction of SiO2 Granules in Molten CaCl2
NASA Astrophysics Data System (ADS)
Yang, Xiao; Yasuda, Kouji; Nohira, Toshiyuki; Hagiwara, Rika; Homma, Takayuki
2016-09-01
As part of an ongoing fundamental study to develop a new process for producing solar-grade silicon, this paper examines the effects of cathodic potential on reduction kinetics, current efficiency, morphology, and purity of Si product during electrolysis of SiO2 granules in molten CaCl2 at 1123 K (850 °C). SiO2 granules were electrolyzed potentiostatically at different cathodic potentials (0.6, 0.8, 1.0, and 1.2 V vs Ca2+/Ca). The reduction kinetics was evaluated based on the growth of the reduced Si layer and the current behavior during electrolysis. The results suggest that a more negative cathodic potential is favorable for faster reduction. Current efficiencies in 60 minutes are greater than 65 pct at all the potentials examined. Si wires with sub-micron diameters are formed, and their morphologies show little dependence on the cathodic potential. The impurities in the Si product can be controlled at low level. The rate-determining step for the electrochemical reduction of SiO2 granules in molten CaCl2 changes with time. At the initial stage of electrolysis, the electron transfer is the rate-determining step. At the later stage, the diffusion of O2- ions is the rate-determining step. The major cause of the decrease in reduction rate with increasing electrolysis time is the potential drop from the current collector to the reaction front due to the increased contact resistance among the reduced Si particles.
Mears, Emily Rose; Modabber, Farrokh; Don, Robert; Johnson, George E.
2015-01-01
The current in vivo models for the utility and discovery of new potential anti-leishmanial drugs targeting Cutaneous Leishmaniasis (CL) differ vastly in their immunological responses to the disease and clinical presentation of symptoms. Animal models that show similarities to the human form of CL after infection with Leishmania should be more representative as to the effect of the parasite within a human. Thus, these models are used to evaluate the efficacy of new anti-leishmanial compounds before human clinical trials. Current animal models aim to investigate (i) host–parasite interactions, (ii) pathogenesis, (iii) biochemical changes/pathways, (iv) in vivo maintenance of parasites, and (v) clinical evaluation of drug candidates. This review focuses on the trends of infection observed between Leishmania parasites, the predictability of different strains, and the determination of parasite load. These factors were used to investigate the overall effectiveness of the current animal models. The main aim was to assess the efficacy and limitations of the various CL models and their potential for drug discovery and evaluation. In conclusion, we found that the following models are the most suitable for the assessment of anti-leishmanial drugs: L. major–C57BL/6 mice (or–vervet monkey, or–rhesus monkeys), L. tropica–CsS-16 mice, L. amazonensis–CBA mice, L. braziliensis–golden hamster (or–rhesus monkey). We also provide in-depth guidance for which models are not suitable for these investigations. PMID:26334763
Single- and double-ion type cross-linked polysiloxane solid electrolytes for lithium cells
NASA Astrophysics Data System (ADS)
Tsutsumi, Hiromori; Yamamoto, Masahiro; Morita, Masayuki; Matsuda, Yoshiharu; Nakamura, Takashi; Asai, Hiroyuki
Polymeric solid electrolytes, that have poly(dimethylsiloxane) (PMS) backbone and cross-linked network, were applied to a rechargeable lithium battery system. Single- (PMS-Li) and double-ion type (PMS-LiClO 4) electrolytes were prepared from the same prepolymers. Lithium electrode in the both electrolytes showed reversible stripping and deposition of lithium. Intercalation and deintercalation processes of lithium ion between lithium-manganese composite oxide (Li xMnO 2) electrode and the electrolytes were also confirmed by cyclic voltammetry, however, peak current decreased with several cycles in both cases. The model cell, Li/PMS-Li/Li xMnO 2 cell had 1.4 mA h g -1 (per 1 g of active material, current density: 3.77 μA cm -2), and the Li/PMS-LiClO 4/Li xMnO 2 cell had 1.6 mA h g -1 (current density: 75.3 μA cm -2).
NASA Astrophysics Data System (ADS)
Maxwell, Graham Lane
CdTe photovoltaic technology has the potential to become a leading energy producer in the coming decades. Its physical properties are well suited for photovoltaic energy conversion. A key processing step in the production of high efficiency CdTe/CdS solar cells is a post-CdTe deposition heat treatment with CdCl2, which can improve performance by promoting CdTe rectrystallization, QE response, defect passivation and others. Understanding the effects of the CdCl2 treatment is crucial in order to optimize processing conditions and improve performance. This study investigates the effects of variations of CdCl2 treatment duration on CdTe/CdS solar cells manufactured at Colorado State University. In order to investigate the optimal time of CdCl 2 treatment, sample solar cells were tested for microstructural and performance properties. Device microstructure was analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM). Device performance was analyzed using current density-voltage (J-V) measurements, time-resolved photoluminescence (TRPL), quantum efficiency (QE), and laser beam induced current (LBIC) measurements. Little change in microstructure was observed with extended CdCl 2 treatment and is attributed to the high CdTe deposition temperatures used by heat pocket deposition (HPD). This deposition technique allows for large initial grains to be formed with low lattice strain energy which prevents recrystallization and grain growth that is often seen with other deposition techniques. The CdCl2 treatment initially improves performance significantly, but it was shown to that extending the CdCl2 treatment can reduce performance. Overall performance was reduced despite an increase in minority carrier lifetime values. The mechanism of reduced performance is suggested to be the formation of a low bandgap CdTe layer resulting from sulfur diffusion from the CdS layer. Sulfur diffusion primarily occurs during the CdCl 2 treatment and also leads to thinning of the CdS layer. Solar cell modeling was employed to investigate possible mechanisms for performance degradation. Modeling was done with AMPS and SCAPS modeling software. Models were created to investigate the effects of minority carrier lifetime, CdS thickness, and a low bandgap CdTe layer. Modeling results showed that the formation of a low bandgap CdTe layer combined with CdS thinning reduces device performance. Further research is needed using a statistically significant number of samples to investigate other possible degradation mechanisms associated with extended CdCl2 treatment.
Weinberger, Sebastian; Wojciechowski, Daniel; Sternberg, Damien; Lehmann-Horn, Frank; Jurkat-Rott, Karin; Becher, Toni; Begemann, Birgit; Fahlke, Christoph; Fischer, Martin
2012-01-01
Myotonia congenita is a genetic condition that is caused by mutations in the muscle chloride channel gene CLCN1 and characterized by delayed muscle relaxation and muscle stiffness. We here investigate the functional consequences of two novel disease-causing missense mutations, C277R and C277Y, using heterologous expression in HEK293T cells and patch clamp recording. Both mutations reduce macroscopic anion currents in transfected cells. Since hClC-1 is a double-barrelled anion channel, this reduction in current amplitude might be caused by altered gating of individual protopores or of joint openings and closing of both protopores. We used non-stationary noise analysis and single channel recordings to separate the mutants’ effects on individual and common gating processes. We found that C277Y inverts the voltage dependence and reduces the open probabilities of protopore and common gates resulting in decreases of absolute open probabilities of homodimeric channels to values below 3%. In heterodimeric channels, C277R and C277Y also reduce open probabilities and shift the common gate activation curve towards positive potentials. Moreover, C277Y modifies pore properties of hClC-1. It reduces single protopore current amplitudes to about two-thirds of wild-type values, and inverts the anion permeability sequence to I− = NO3− > Br− > Cl−. Our findings predict a dramatic reduction of the muscle fibre resting chloride conductance and thus fully explain the disease-causing effects of mutations C277R and C277Y. Moreover, they provide additional insights into the function of C277, a residue recently implicated in common gating of ClC channels. PMID:22641783
DOE Office of Scientific and Technical Information (OSTI.GOV)
F. Cui; F.J. Presuel-Moreno; R.G. Kelly
2005-10-13
The ability of a SS316L surface wetted with a thin electrolyte layer to serve as an effective cathode for an active localized corrosion site was studied computationally. The dependence of the total net cathodic current, I{sub net}, supplied at the repassivation potential E{sub rp} (of the anodic crevice) on relevant physical parameters including water layer thickness (WL), chloride concentration ([Cl{sup -}]) and length of cathode (Lc) were investigated using a three-level, full factorial design. The effects of kinetic parameters including the exchange current density (i{sub o,c}) and Tafel slope ({beta}{sub c}) of oxygen reduction, the anodic passive current density (i{submore » p}) (on the cathodic surface), and E{sub rp} were studied as well using three-level full factorial designs of [Cl{sup -}] and Lc with a fixed WL of 25 {micro}m. The study found that all the three parameters WL, [Cl{sup -}] and Lc as well as the interactions of Lc x WL and Lc x [Cl{sup -}] had significant impact on I{sub net}. A five-factor regression equation was obtained which fits the computation results reasonably well, but demonstrated that interactions are more complicated than can be explained with a simple linear model. Significant effects on I{sub net} were found upon varying either i{sub o,c}, {beta}{sub c}, or E{sub rp}, whereas i{sub p} in the studied range was found to have little impact. It was observed that I{sub net} asymptotically approached maximum values (I{sub max}) when Lc increased to critical minimum values. I{sub max} can be used to determine the stability of coupled localized corrosion and the critical Lc provides important information for experimental design and corrosion protection.« less
Fu, YunLin; Pao, Te; Chen, Sih-Zih; Yau, ShuehLin; Dow, Wei-Ping; Lee, Yuh-Lang
2012-07-03
This study employed real-time in situ STM imaging to examine the adsorption of PEG molecules on Pt(111) modified by a monolayer of copper adatoms and the subsequent bulk Cu deposition in 1 M H(2)SO(4) + 1 mM CuSO(4)+ 1 mM KCl + 88 μM PEG. At the end of Cu underpotential deposition (~0.35 V vs Ag/AgCl), a highly ordered Pt(111)-(√3 × √7)-Cu + HSO(4)(-) structure was observed in 1 M H(2)SO(4) + 1 mM CuSO(4). This adlattice restructured upon the introduction of poly(ethylene glycol) (PEG, molecular weight 200) and chloride anions. At the onset potential for bulk Cu deposition (~0 V), a Pt(111)-(√3 × √3)R30°-Cu + Cl(-) structure was imaged with a tunneling current of 0.5 nA and a bias voltage of 100 mV. Lowering the tunneling current to 0.2 nA yielded a (4 × 4) structure, presumably because of adsorbed PEG200 molecules. The subsequent nucleation and deposition processes of Cu in solution containing PEG and Cl(-) were examined, revealing the nucleation of 2- to 3-nm-wide CuCl clusters on an atomically smooth Pt(111) surface at overpotentials of less than 50 mV. With larger overpotential (η > 150 mV), Cu deposition seemed to bypass the production of CuCl species, leading to layered Cu deposition, starting preferentially at step defects, followed by lateral growth to cover the entire Pt electrode surface. These processes were observed with both PEG200 and 4000, although the former tended to produce more CuCl nanoclusters. Raising [H(2)SO(4)] to 1 M substantiates the suppressing effect of PEG on Cu deposition. This STM study provided atomic- or molecular-level insight into the effect of PEG additives on the deposition of Cu.
Search for neutral D meson mixing using semileptonic decays
NASA Astrophysics Data System (ADS)
Flood, Kevin T.
Based on a 87 fb-1 dataset, a search for D0-D¯0 mixing is made using the semileptonic decay modes D*+ → pi +D0, D0 → [K/K*]enu (+c.c.) at the B-Factory facility at the Stanford Linear Accelerator Center. These modes offer unambiguous initial and final-state charm flavor tags, and allow the combined use of the D0 lifetime and D*+- D0 mass difference (DeltaM) in a global likelihood fit. The high-statistics sample of reconstructed unmixed semileptonic D0 decays is used to model both the DeltaM distribution and the time-dependence of mixed events directly from the data. Neural networks are used both to select events and to fully reconstruct the D0. A result consistent with no charm mixing has been obtained, Rmix = 0.0023 +/- 0.0012(stat) +/- 0.0004(sys ). This corresponds to an upper limit of Rmix < 0.0047 (95% C.L.) and Rmix < 0.0043 (90% C.L.). The lowest current published limit on semileptonic charm mixing is 0.005 (90% C.L.) (E791, E.M. Aitala et al., Phys.Rev.Lett. 77 2384 (1996)). The current best published limit using any analysis technique on the total rate of charm mixing is 0.0016 (95% C.L.) (Babar Kpi mixing, B. Aubert et al., Phys.Rev.Lett. 91 171801 (2003)).
NASA Astrophysics Data System (ADS)
King, Simon J.; Price, Stephen D.
2011-02-01
Relative partial ionization cross sections (PICS) for the formation of fragment ions following electron ionization of SiCl4, in the electron energy range 30-200 eV, have been determined using time-of-flight mass spectrometry coupled with an ion coincidence technique. By this method, the contributions to the yield of each fragment ion from dissociative single, double, and triple ionization, are distinguished. These yields are quantified in the form of relative precursor-specific PICS, which are reported here for the first time for SiCl4. For the formation of singly charged ionic fragments, the low-energy maxima appearing in the PICS curves are due to contributions from single ionization involving predominantly indirect ionization processes, while contributions to the yields of these ions at higher electron energies are often dominated by dissociative double ionization. Our data, in the reduced form of relative PICS, are shown to be in good agreement with a previous determination of the PICS of SiCl4. Only for the formation of doubly charged fragment ions are the current relative PICS values lower than those measured in a previous study, although both datasets agree within combined error limits. The relative PICS data presented here include the first quantitative measurements of the formation of Cl2+ fragment ions and of the formation of ion pairs via dissociative double ionization. The peaks appearing in the 2D ion coincidence data are analyzed to provide further information concerning the mechanism and energetics of the charge-separating dissociations of SiCl42+. The lowest energy dicationic precursor state, leading to SiCl3+ + Cl+ formation, lies 27.4 ± 0.3 eV above the ground state of SiCl4 and is in close agreement with a calculated value of the adiabatic double ionization energy (27.3 eV).
King, Simon J; Price, Stephen D
2011-02-21
Relative partial ionization cross sections (PICS) for the formation of fragment ions following electron ionization of SiCl(4), in the electron energy range 30-200 eV, have been determined using time-of-flight mass spectrometry coupled with an ion coincidence technique. By this method, the contributions to the yield of each fragment ion from dissociative single, double, and triple ionization, are distinguished. These yields are quantified in the form of relative precursor-specific PICS, which are reported here for the first time for SiCl(4). For the formation of singly charged ionic fragments, the low-energy maxima appearing in the PICS curves are due to contributions from single ionization involving predominantly indirect ionization processes, while contributions to the yields of these ions at higher electron energies are often dominated by dissociative double ionization. Our data, in the reduced form of relative PICS, are shown to be in good agreement with a previous determination of the PICS of SiCl(4). Only for the formation of doubly charged fragment ions are the current relative PICS values lower than those measured in a previous study, although both datasets agree within combined error limits. The relative PICS data presented here include the first quantitative measurements of the formation of Cl(2) (+) fragment ions and of the formation of ion pairs via dissociative double ionization. The peaks appearing in the 2D ion coincidence data are analyzed to provide further information concerning the mechanism and energetics of the charge-separating dissociations of SiCl(4) (2+). The lowest energy dicationic precursor state, leading to SiCl(3) (+) + Cl(+) formation, lies 27.4 ± 0.3 eV above the ground state of SiCl(4) and is in close agreement with a calculated value of the adiabatic double ionization energy (27.3 eV).
An induced current method for measuring zeta potential of electrolyte solution-air interface.
Song, Yongxin; Zhao, Kai; Wang, Junsheng; Wu, Xudong; Pan, Xinxiang; Sun, Yeqing; Li, Dongqing
2014-02-15
This paper reports a novel and very simple method for measuring the zeta potential of electrolyte solution-air interface. When a measuring electrode contacts the electrolyte solution-air interface, an electrical current will be generated due to the potential difference between the electrode-air surface and the electrolyte solution-air interface. The amplitude of the measured electric signal is linearly proportional to this potential difference; and depends only on the zeta potential at the electrolyte solution-air interface, regardless of the types and concentrations of the electrolyte. A correlation between the zeta potential and the measured voltage signal is obtained based on the experimental data. Using this equation, the zeta potential of any electrolyte solution-air interface can be evaluated quickly and easily by inserting an electrode through the electrolyte solution-air interface and measuring the electrical signal amplitude. This method was verified by comparing the obtained results of NaCl, MgCl2 and CaCl2 solutions of different pH values and concentrations with the zeta potential data reported in the published journal papers. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Hui-yan; Dong, Chao-fang; Xiao, Kui; Li, Xiao-gang; Zhong, Ping
2016-11-01
The effects of Cl- ion concentration and pH values on the corrosion behavior of Cr12Ni3Co12Mo4W ultra-high-strength martensitic stainless steel (UHSMSS) were investigated by a series of electrochemical tests combined with observations by stereology microscopy and scanning electron microscopy. A critical Cl- ion concentration was found to exist (approximately 0.1wt%), above which pitting occurred. The pitting potential decreased with increasing Cl- ion concentration. A UHSMSS specimen tempered at 600°C exhibited a better pitting corrosion resistance than the one tempered at 400°C. The corrosion current density and passive current density of the UHSMSS tempered at 600°C decreased with increasing pH values of the corrosion solution. The pits developed a shallower dish geometry with increasing polarization potential. A lacy cover on the pits of the UHSMSS tempered at 400°C accelerated pitting, whereas corrosion products deposited in the pits of the UHSMSS tempered at 600°C hindered pitting.
Corrosion resistance of steel materials in LiCl-KCl melts
NASA Astrophysics Data System (ADS)
Wang, Le; Li, Bing; Shen, Miao; Li, Shi-yan; Yu, Jian-guo
2012-10-01
The corrosion behaviors of 304SS, 316LSS, and Q235A in LiCl-KCl melts were investigated at 450°C by Tafel curves and electrochemical impedance spectroscopy (EIS). 316LSS shows the best corrosion resistance behaviors among the three materials, including the most positive corrosion potential and the smallest corrosion current from the Tafel curves and the largest electron transfer resistance from the Nyquist plots. The results are in good agreement with the weight losses in the static corrosion experiments for 45 h. This may be attributed to the better corrosion resistance of Mo and Ni existing as alloy elements in 316LSS, which exhibit the lower corrosion current densities and more positive corrosion potentials than 316LSS in the same melts.
Grogl, Max; Boni, Marina; Carvalho, Edgar M.; Chebli, Houda; Cisse, Mamoudou; Diro, Ermias; Fernandes Cota, Gláucia; Erber, Astrid C.; Gadisa, Endalamaw; Handjani, Farhad; Khamesipour, Ali; Llanos-Cuentas, Alejandro; López Carvajal, Liliana; Grout, Lise; Lmimouni, Badre Eddine; Mokni, Mourad; Nahzat, Mohammad Sami; Ben Salah, Afif; Ozbel, Yusuf; Pascale, Juan Miguel; Rizzo Molina, Nidia; Rode, Joelle; Romero, Gustavo; Ruiz-Postigo, José Antonio; Gore Saravia, Nancy; Soto, Jaime; Uzun, Soner; Mashayekhi, Vahid; Vélez, Ivan Dario; Vogt, Florian; Zerpa, Olga; Arana, Byron
2018-01-01
Introduction Progress with the treatment of cutaneous leishmaniasis (CL) has been hampered by inconsistent methodologies used to assess treatment effects. A sizable number of trials conducted over the years has generated only weak evidence backing current treatment recommendations, as shown by systematic reviews on old-world and new-world CL (OWCL and NWCL). Materials and methods Using a previously published guidance paper on CL treatment trial methodology as the reference, consensus was sought on key parameters including core eligibility and outcome measures, among OWCL (7 countries, 10 trial sites) and NWCL (7 countries, 11 trial sites) during two separate meetings. Results Findings and level of consensus within and between OWCL and NWCL sites are presented and discussed. In addition, CL trial site characteristics and capacities are summarized. Conclusions The consensus reached allows standardization of future clinical research across OWCL and NWCL sites. We encourage CL researchers to adopt and adapt as required the proposed parameters and outcomes in their future trials and provide feedback on their experience. The expertise afforded between the two sets of clinical sites provides the basis for a powerful consortium with potential for extensive, standardized assessment of interventions for CL and faster approval of candidate treatments. PMID:29329311
Silva, Paulo Sérgio da; Gasparini, Bianca C; Magosso, Hérica A; Spinelli, Almir
2014-05-30
The water-soluble 3-n-propyl-4-picolinium silsesquioxane chloride (Si4Pic(+)Cl(-)) polymer was prepared, characterized and used as a stabilizing agent for the synthesis of gold nanoparticles (nAu). The ability of Si4Pic(+)Cl(-) to adsorb anionic metal complexes such as AuCl4(-) ions allowed well-dispersed nAu to be obtained with an average particle size of 4.5nm. The liquid suspension of nAu-Si4Pic(+)Cl(-) was deposited by the drop coating method onto a glassy carbon electrode (GCE) surface to build a sensor (nAu-Si4Pic(+)Cl(-)/GCE) which was used for the detection of o-nitrophenol (o-NP) and p-nitrophenol (p-NP). Under optimized experimental conditions the reduction peak current increased with increasing concentrations of both nitrophenol isomers in the range of 0.1-1.5μmolL(-1). The detection limits were 46nmolL(-1) and 55nmolL(-1) for o-NP and p-NP, respectively. These findings indicate that the nAu-Si4Pic(+)Cl(-) material is a very promising candidate to assemble electrochemical sensors for practical applications in the field of analytical chemistry. Copyright © 2014 Elsevier B.V. All rights reserved.
Progesterone down-regulates SLIT/ROBO expression in mouse corpus luteum.
Zhang, Xuejing; Mi, Meiyan; Hao, Weili; Fan, Qiongying; Gao, Bulang
2017-09-01
Progesterone produced by the corpus luteum (CL) is essential for preparation, implantation and maintenance of gestation. Furthermore, progesterone plays a protective role against luteolysis in rodents. It has been reported that Slit/Robo family members expressed in the CL and involved in prostaglandin F 2α (PGF 2α ) induced luteolysis. However, the interactions between progesterone and Slits/Robos in CL are not clear. This study was designed to examine whether or not luteolysis is regulated by the interaction of progesterone and Slits/Robos in mouse CL. In the current study, we used Real-time PCR to identify the effect of progesterone on Slit2/Robo1 expression in cultured luteal cells in vitro, and the exogenous progesterone injection on mouse luteolysis and Slit/Robo expression in vivo was studied via Real-time PCR and Western bolt. Our in vitro experiment revealed that 1μM progesterone significantly decreased Slit2/Robo1 mRNA levels at 6h, 12h and 24h. Our in vivo experiment showed that the mRNA and protein levels of Slit2 and Robo1 decreased significantly 7days after progesterone supplement. These findings indicate that progesterone maintains CL function and resists luteolysis possibly through down-regulating Slit/Robo signaling pathway in the CL. Copyright © 2017 Elsevier GmbH. All rights reserved.
Effectiveness and safety of nitrofurantoin in outpatient male veterans.
Ingalsbe, Michelle L; Wojciechowski, Amy L; Smith, Kelly A; Mergenhagen, Kari A
2015-08-01
The aim of the study was to assess both the safety and the effectiveness of nitrofurantoin in male veterans treated for urinary tract infections (UTIs) with varying degrees of renal impairment in the outpatient setting. Nitrofurantoin is an important oral option for treating UTIs given increasing resistance to commonly used agents. Nitrofurantoin is currently contraindicated in patients with a creatinine clearance (CrCl) of < 60 ml/min, but the reason for this threshold has not been well documented. Data were collected through a retrospective chart review from January 2004 to July 2013 of men who had received nitrofurantoin. Bivariate analyses followed by multivariate analyses were performed between patients experiencing clinical cure and those who did not, to determine factors significantly impacting effectiveness. The Gram stain of the organism causing the UTI and CrCl were significant factors impacting effectiveness. For every 1 ml/min increase in CrCl, the odds of clinical cure increased by 1.3%. Patients with Gram-negative UTIs predictably had 80% cure rates with CrCl around 60 ml/min. Patients with Gram-positive UTIs required higher CrCl, nearing 100 ml/min, to establish an 80% cure rate. Adverse effects did not vary with CrCl. The odds of clinical cure varied with CrCl and with the type of organism causing the UTI, while adverse events did not differ based on renal function. A minimum CrCl of 60 ml/min is suggested for men to achieve an 80% cure rate for UTIs with the most common urinary pathogens.
NASA Astrophysics Data System (ADS)
Plint, Trevor G.; Lessard, Benoît H.; Bender, Timothy P.
2018-01-01
We have incorporated chloro boron subphthalocyanine (Cl-BsubPc) and chloro boron subnapthalocyanines (Cl-ClnBsubNcs) into organic light emitting diodes (OLEDs) that enabled an overall warm white emission with CIE coordinates close to that of a 60 W incandescent lightbulb. More specifically, we have shown that Cl-BsubPc and Cl-ClnBsubNcs can be used as dopant emitters in a simple host-dopant architecture, and we have compared the use of NPB and Alq3 as potential hosts for these materials. When doped into Alq3, Cl-BsubPc shows a strong orange emission, and Cl-ClnBsubNcs shows a moderately strong red emission. We have further demonstrated that Cl-BsubPc and Cl-ClnBsubNcs can be co-doped into the same layer giving combined orange and red emission peaks. A "cascade" energy transfer mechanism of sequential absorption and re-emission is proposed. Device performance characteristics such as luminance, current efficiency, photoluminescence efficiency, and external quantum efficiency are tabulated. Additionally, in view of ongoing research into white emitting OLEDs for indoor lighting purposes, the Colour Rendering Index (CRI), R9 values, and CIE co-ordinates for these devices are also discussed. We conclude from this study that the BsubNc chromophore has potential application as a red dopant in OLEDs including for indoor lighting. Additionally, given the scope for axial and peripheral derivatization of the BsubNc motif, we believe that this chromophore has many unexplored molecular design handles that will affect its ultimate performance and application in OLEDs and other opto-electronic devices.
Kim, Jung Hwan; Maitlo, Hubdar Ali; Park, Joo Yang
2017-05-15
Electrocoagulation with an iron-air fuel cell is an innovative arsenate removal system that can operate without an external electricity supply. Thus, this technology is advantageous for treating wastewater in remote regions where it is difficult to supply electricity. In this study, the possibility of real applications of this system for arsenate treatment with electricity production was verified through electrolyte effect investigations using a small-scale fuel cell and performance testing of a liter-scale fuel cell stack. The electrolyte species studied were NaCl, Na 2 SO 4 , and NaHCO 3 . NaCl was overall the most effective electrolyte for arsenate treatment, although Na 2 SO 4 produced the greatest electrical current and power density. In addition, although the current density and power density were proportional to the concentrations of NaCl and Na 2 SO 4 , the use of concentrations above 20 mM of NaCl and Na 2 SO 4 inhibited arsenate treatment due to competition effects between anions and arsenate in adsorption onto the iron hydroxide. The dominant iron hydroxide produced at the iron anode was found to be lepidocrocite by means of Raman spectroscopy. A liter-scale four-stack iron-air fuel cell with 10 mM NaCl electrolyte was found to be able to treat about 300 L of 1 ppm arsenate solution to below 10 ppb during 1 day, based on its 60-min treatment capacity, as well as produce the maximum power density of 250 mW/m 2 . Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Singh, Hanwant B.
2015-01-01
Atmospheric sources of Carbon Tetrachloride (CTC) have been controversial since its detection in the early 1970. Initial proposals were that it is globally uniformly distributed and its lack of current emissions and inferred lifetime indicated that it was likely of natural origin. Historical analysis of CTC use and emissions showed that atmospheric CTC was long-lived and mainly of man-made origin although small natural sources and sinks (e. g. oceans) could not be ruled out. This deduction was hard because a majority of emissions had occurred in early part of the 20th century when CTC was commonly used as a fumigant, a solvent, and a raw material for the manufacture of many chemicals. In the 1940's adverse health effects of exposure to CTC became evident and its emissions were greatly curtailed and substituted with C2Cl4 which was thought to be much safer. There were smog chamber studies that showed that C2Cl4, a widely used solvent during the late 20th century, could produce CTC with up to a 7% yield. Subsequently it was discovered that this chemistry probably required Cl atoms and since Cl atoms were not abundant in the atmosphere actual yields based on OH oxidation were probably closer to 0.1%. CTC was subsequently banned by the Montreal Protocol to prevent stratospheric ozone depletion and its preferred substitute C2Cl4 was also banned by EPA for reasons of potential carcinogenicity and toxicity. CTC since has been measured in many airborne NASA campaigns in which plumes have been sampled from a variety of regions which may still be emitting CTC. I will briefly discuss this historical perspective of CTC and show some recent data that may shed light on its current sources or lack there off.
Brittain, Matthew K.; McGarry, Kevin G.; Moyer, Robert A.; Babin, Michael C.; Jett, David A.; Platoff, Gennady E.; Yeung, David T.
2016-01-01
Purpose Aldicarb and methomyl are carbamate pesticides commonly implicated in human poisonings. The primary toxic mechanism of action for carbamate poisoning is cholinesterase (ChE) inhibition. As such, it is logical to assume that the currently accepted therapies for organophosphate poisoning [muscarinic antagonist atropine and the oxime acetylcholinesterase reactivator pralidoxime chloride (2-PAM Cl),], could afford therapeutic protection. However, oximes have been shown to be contraindicated for poisoning by some carbamates. Methods A protective ratio study was conducted in guinea pigs to evaluate the efficacy of atropine and 2-PAM Cl. ChE activity was determined in both the blood and cerebral cortex.. Results Co-administration of atropine free base (0.4 mg/kg) and 2-PAM Cl (25.7 mg/kg) demonstrated protective ratios of 2 and 3 against aldicarb and methomyl, respectively, relative to saline. The data reported here show that this protection was primarily mediated by the action of atropine. The reactivator 2-PAM Cl had neither positive nor negative effects on survival. Both blood acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities were significantly reduced at 15 minutes post-challenge but gradually returned to normal within 24 h. Analysis of cerebral cortex showed that BChE, but not AChE, activity was reduced in animals that succumbed prior to 24 h after challenge. Conclusion The results suggest that co-administration of atropine and 2-PAM Cl at the currently recommended human equivalent doses for use in the pre-hospital setting to treat organophosphorus nerve agent and pesticide poisoning would likely also be effective against aldicarb or methomyl poisoning. PMID:27102179
Common symptoms of Nepalese soft contact lens wearers: A pilot study.
Sapkota, Kishor; Martin, Raul; Franco, Sandra; Lira, Madalena
2015-01-01
To determine the common symptoms in current soft contact lens (CL) wearers and their association with other factors among Nepalese population. All the current CL wearers who started to wear soft CL in Nepal Eye Hospital between July 2007 and June 2012 were invited for the participation. Frequency of the ten most common symptoms, divided into never, occasionally, frequently and consistent were recorded. Association between degree of symptoms with other factors, e.g. age, gender, profession, cigarette smoking, ethnicity, level of education and duration and wearing modality of CL wear were analyzed. Out of 129 subjects participated in this study, 67% were female; the mean age of the subjects was 23.9±4.3 years. Ninety seven percent of them had at least one symptom occasionally or frequently or consistently. Discomfort was found in 88.4% of the total subjects. Other common symptoms were foreign body sensation in 73.6%, redness in 65.9%, reduced wearing time in 63.6% and dryness in 62.8%. Symptoms were found occasionally in the majority of subjects. Degree of symptoms was not associated with age, gender, profession, education status, ethnicity of subjects and duration or modality of lens wear (p>0.05) but was positively associated with passive cigarette smoking (p<0.001). Almost all of the Nepalese soft CL wearers had some types of symptoms at least occasionally. Discomfort was the most common symptom. Degree of symptoms was associated with the passive smoking but not with other factors like age, sex, profession and duration of lens wear. Copyright © 2014 Spanish General Council of Optometry. Published by Elsevier Espana. All rights reserved.
2018-01-01
Electrical restitution (ER) is a major determinant of repolarization stability and, under fast pacing rate, it reveals memory properties of the cardiac action potential (AP), whose dynamics have never been fully elucidated, nor their ionic mechanisms. Previous studies have looked at ER mainly in terms of changes in AP duration (APD) when the preceding diastolic interval (DI) changes and described dynamic conditions where this relationship shows hysteresis which, in turn, has been proposed as a marker of short-term AP memory and repolarization stability. By means of numerical simulations of a non-propagated human ventricular AP, we show here that measuring ER as APD versus the preceding cycle length (CL) provides additional information on repolarization dynamics which is not contained in the companion formulation. We focus particularly on fast pacing rate conditions with a beat-to-beat variable CL, where memory properties emerge from APD vs CL and not from APD vs DI and should thus be stored in APD and not in DI. We provide an ion-currents characterization of such conditions under periodic and random CL variability, and show that the memory stored in APD plays a stabilizing role on AP repolarization under pacing rate perturbations. The gating kinetics of L-type calcium current seems to be the main determinant of this safety mechanism. We also show that, at fast pacing rate and under otherwise identical pacing conditions, a periodically beat-to-beat changing CL is more effective than a random one in stabilizing repolarization. In summary, we propose a novel view of short-term AP memory, differentially stored between systole and diastole, which opens a number of methodological and theoretical implications for the understanding of arrhythmia development. PMID:29494628
Marcet, Brice; Becq, Frédéric; Norez, Caroline; Delmas, Patrick; Verrier, Bernard
2004-03-01
1. Cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel is defective during cystic fibrosis (CF). Activators of the CFTR Cl(-) channel may be useful for therapy of CF. Here, we demonstrate that a range of general anesthetics like normal-alkanols (n-alkanols) and related compounds can stimulate the Cl(-) channel activity of wild-type CFTR and delF508-CFTR mutant. 2. The effects of n-alkanols like octanol on CFTR activity were measured by iodide ((125)I) efflux and patch-clamp techniques on three distinct cellular models: (1). CFTR-expressing Chinese hamster ovary cells, (2). human airway Calu-3 epithelial cells and (3). human airway JME/CF15 epithelial cells which express the delF508-CFTR mutant. 3. Our data show for the first time that n-alkanols activate both wild-type CFTR and delF508-CFTR mutant. Octanol stimulated (125)I efflux in a dose-dependent manner in CFTR-expressing cells (wild-type and delF508) but not in cell lines lacking CFTR. (125)I efflux and Cl(-) currents induced by octanol were blocked by glibenclamide but insensitive to 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid, as expected for a CFTR Cl(-) current. 4. CFTR activation by octanol was neither due to cell-to-cell uncoupling properties of octanol nor to an intracellular cAMP increase. CFTR activation by octanol requires phosphorylation by protein kinase-A (PKA) since it was prevented by H-89, a PKA inhibitor. 5. n-Alkanols chain length was an important determinant for channel activation, with rank order of potencies: 1-heptanol<1-octanol<2-octanol<1-decanol. Our findings may be of valuable interest for developing novel therapeutic strategies for CF.
Eberhart, James G.; Battles, James E.
1980-01-01
Electrochemical cell components such as interelectrode separators, retaining screens and current collectors are contacted with lithium tetrachloroaluminate prior to contact with molten electrolytic salt to improve electrolyte wetting. The LiAlCl.sub.4 can be applied in powdered, molten or solution form but, since this material has a lower melting point than the electrolytic salt used in high-temperature cells, the powdered LiAlCl.sub.4 forms a molten flux prior to contact by the molten electrolyte when both materials are initially provided in solid form. Components of materials such as boron nitride and other materials which are difficult to wet with molten salts are advantageously treated by this process.
Electrolysis of plutonium nitride in LiCl-KCl eutectic melts
NASA Astrophysics Data System (ADS)
Shirai, O.; Iwai, T.; Shiozawa, K.; Suzuki, Y.; Sakamura, Y.; Inoue, T.
2000-01-01
The electrolysis of plutonium nitride, PuN, was investigated in the LiCl-KCl eutectic salt with 0.54 wt% PuCl 3 at 773 K in order to understand the dissolution of PuN at the anode and the deposition of metal at the cathode from the viewpoint of the application of a pyrochemical process to nitride fuel cycle. It was found from cyclic voltammetry that the electrochemical dissolution of PuN began nearly at the theoretically evaluated potential and this reaction was irreversible. Several grams of plutonium metal were successfully recovered at the molybdenum electrode as a deposit with a current efficiency of about 90%, although some fractions of the deposited plutonium often fell from the molybdenum electrode.
Katz, E; Ferro, P A; Cherksey, B D; Sugimori, M; Llinás, R; Uchitel, O D
1995-01-01
1. The effects of the calcium channel blockers, funnel-web spider toxin (FTX), omega-agatoxin IVA (omega-Aga IVA) and omega-conotoxin GVIA (omega-CgTX), were tested on transmitter release and presynaptic currents in frog motor nerve endings. 2. Evoked transmitter release was blocked by FTX (IC50 = 0.02 microliter ml-1) and omega-CgTX (1 microM) but was not affected by omega-Aga IVA (0.5 microM). When FTX (0.1 microliter ml-1) was assayed on spontaneous release either in normal Ringer solution or in low Ca(2+)-high Mg2+ solution, it was found not to affect miniature endplate potential (MEPP) amplitude but to increase MEPP frequency by approximately 2-fold in both conditions. 3. Presynaptic calcium currents (ICa), measured by the perineurial technique in the presence of 10 mM tetraethylammonium chloride (TEA) and 200 microM BaCl2 to block K+ currents, were blocked by omega-CgTX (5 microM), partially blocked by FTX (1 microliter ml-1) and not affected by omega-Aga IVA (0.5 microM). 4. The presynaptic calcium-activated potassium current (IK(Ca)) measured by the perineurial technique in the presence of 0.5 microM 3,4-aminopyridine (DAP) to block voltage-dependent K+ currents, was strongly affected by charybdotoxin (ChTX) (300 nM) and completely abolished by BaCl2 (200 microM). This current was also blocked by omega-CgTX (5 microM) and by CdCl2 (200 microM) but was not affected by FTX (1 microliter ml-1). The blockade by omega-CgTX could not be reversed by elevating [Ca]o to 10 mM. 5. The results suggest that in frog synaptic terminals two omega-CgTX-sensitive populations might coexist. The transmitter release process seems to be mediated by calcium influx through a omega-CgTX- and FTX-sensitive population. PMID:7473230
Katz, E; Ferro, P A; Cherksey, B D; Sugimori, M; Llinás, R; Uchitel, O D
1995-08-01
1. The effects of the calcium channel blockers, funnel-web spider toxin (FTX), omega-agatoxin IVA (omega-Aga IVA) and omega-conotoxin GVIA (omega-CgTX), were tested on transmitter release and presynaptic currents in frog motor nerve endings. 2. Evoked transmitter release was blocked by FTX (IC50 = 0.02 microliter ml-1) and omega-CgTX (1 microM) but was not affected by omega-Aga IVA (0.5 microM). When FTX (0.1 microliter ml-1) was assayed on spontaneous release either in normal Ringer solution or in low Ca(2+)-high Mg2+ solution, it was found not to affect miniature endplate potential (MEPP) amplitude but to increase MEPP frequency by approximately 2-fold in both conditions. 3. Presynaptic calcium currents (ICa), measured by the perineurial technique in the presence of 10 mM tetraethylammonium chloride (TEA) and 200 microM BaCl2 to block K+ currents, were blocked by omega-CgTX (5 microM), partially blocked by FTX (1 microliter ml-1) and not affected by omega-Aga IVA (0.5 microM). 4. The presynaptic calcium-activated potassium current (IK(Ca)) measured by the perineurial technique in the presence of 0.5 microM 3,4-aminopyridine (DAP) to block voltage-dependent K+ currents, was strongly affected by charybdotoxin (ChTX) (300 nM) and completely abolished by BaCl2 (200 microM). This current was also blocked by omega-CgTX (5 microM) and by CdCl2 (200 microM) but was not affected by FTX (1 microliter ml-1). The blockade by omega-CgTX could not be reversed by elevating [Ca]o to 10 mM. 5. The results suggest that in frog synaptic terminals two omega-CgTX-sensitive populations might coexist. The transmitter release process seems to be mediated by calcium influx through a omega-CgTX- and FTX-sensitive population.
Characteristics of 5-HT-containing chemoreceptor cells of the chicken aortic body
Ito, Shigeo; Ohta, Toshio; Nakazato, Yoshikazu
1999-01-01
Voltage-dependent and oxygen-sensitive currents in 5-HT-containing epithelioid cells isolated from chicken thoracic aorta were examined using the whole-cell patch clamp technique. 5-HT immunoreactive cells were identified with Neutral Red. The release of 5-HT from chicken thoracic aorta in the presence of excess KCl and veratridine was also examined using HPLC. At a holding potential of −70 mV with CsCl pipette solution, depolarizing steps between −30 and +60 mV produced inward currents that were blocked by tetrodotoxin (0.2 μm). In the presence of tetrodotoxin and BaCl2 (5 mm), depolarizing steps evoked slow inward currents that were sensitive to CoCl2 (2 mm). Nifedipine (1 μm) decreased the currents to 79.4 ± 1.7%, and ω-conotoxin GVIA (1 μm) to 20.2 ± 3.8%. When KCl pipette solution was used, depolarizing potentials positive to −40 mV caused outward currents that were inhibited by tetraethylammonium chloride. The K+ currents evoked by depolarizing steps to +20 mV were reduced to 90.3 ± 0.8% by hypoxia in five out of seven cells. Two cells failed to respond to hypoxia. The K+ current response was partly decreased by Neutral Red (20 μm). Excess KCl (60 mm) and veratridine (30 μm) both caused the release of 5-HT from aortic strips. 5-HT outputs induced by both stimuli were partly inhibited by nifedipine (1 μm) and by ω-conotoxin GVIA (1 μm), and were abolished by these drugs in combination and by extracellular Ca2+ removal. These results suggest that epithelioid cells containing 5-HT act as chemoreceptor cells in the chicken aortic body, having voltage-dependent Na+, K+, and L- and N-type Ca2+ channels, and oxygen-sensitive K+ channels. PMID:9925877
Investigation and Taguchi Optimization of Microbial Fuel Cell Salt Bridge Dimensional Parameters
NASA Astrophysics Data System (ADS)
Sarma, Dhrupad; Barua, Parimal Bakul; Dey, Nabendu; Nath, Sumitro; Thakuria, Mrinmay; Mallick, Synthia
2018-01-01
One major problem of two chamber salt bridge microbial fuel cells (MFCs) is the high resistance offered by the salt bridge to anion flow. Many researchers who have studied and optimized various parameters related to salt bridge MFC, have not shed much light on the effect of salt bridge dimensional parameters on the MFC performance. Therefore, the main objective of this research is to investigate the effect of length and cross sectional area of salt bridge and the effect of solar radiation and atmospheric temperature on MFC current output. An experiment has been designed using Taguchi L9 orthogonal array, taking length and cross sectional area of salt bridge as factors having three levels. Nine MFCs were fabricated as per the nine trial conditions. Trials were conducted for 3 days and output current of each of the MFCs along with solar insolation and atmospheric temperature were recorded. Analysis of variance shows that salt bridge length has significant effect both on mean (with 53.90% contribution at 95% CL) and variance (with 56.46% contribution at 87% CL), whereas the effect of cross sectional area of the salt bridge and the interaction of these two factors is significant on mean only (with 95% CL). Optimum combination was found at 260 mm salt bridge length and 506.7 mm2 cross sectional area with 4.75 mA of mean output current. The temperature and solar insolation data when correlated with each of the MFCs average output current, revealed that both external factors have significant impact on MFC current output but the correlation coefficient varies from MFC to MFC depending on salt bridge dimensional parameters.
Alam, Munirul; Nusrin, Suraia; Islam, Atiqul; Bhuiyan, Nurul A; Rahim, Niaz; Delgado, Gabriela; Morales, Rosario; Mendez, Jose Luis; Navarro, Armando; Gil, Ana I; Watanabe, Haruo; Morita, Masatomo; Nair, G Balakrish; Cravioto, Alejandro
2010-10-01
Vibrio cholerae O1 biotype El Tor (ET), the cause of the current 7th pandemic, has recently been replaced in Asia and Africa by an altered ET biotype possessing cholera toxin (CTX) of the classical (CL) biotype that originally caused the first six pandemics before becoming extinct in the 1980s. Until recently, the ET prototype was the biotype circulating in Peru; a detailed understanding of the evolutionary trend of V. cholerae causing endemic cholera in Latin America is lacking. The present retrospective microbiological, molecular, and phylogenetic study of V. cholerae isolates recovered in Mexico (n = 91; 1983 to 1997) shows the existence of the pre-1991 CL biotype and the ET and CL biotypes together with the altered ET biotype in both epidemic and endemic cholera between 1991 and 1997. According to sero- and biotyping data, the altered ET, which has shown predominance in Mexico since 1991, emerged locally from ET and CL progenitors that were found coexisting until 1997. In Latin America, ET and CL variants shared a variable number of phenotypic markers, while the altered ET strains had genes encoding the CL CTX (CTX(CL)) prophage, ctxB(CL) and rstR(CL), in addition to resident rstR(ET), as the underlying regional signature. The distinct regional fingerprints for ET in Mexico and Peru and their divergence from ET in Asia and Africa, as confirmed by subclustering patterns in a pulsed-field gel electrophoresis (NotI)-based dendrogram, suggest that the Mexico epidemic in 1991 may have been a local event and not an extension of the epidemics occurring in Asia and South America. Finally, the CL biotype reservoir in Mexico is unprecedented and must have contributed to the changing epidemiology of global cholera in ways that need to be understood.
Evaluation of CHO Benchmarks on the Arria 10 FPGA using Intel FPGA SDK for OpenCL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Zheming; Yoshii, Kazutomo; Finkel, Hal
The OpenCL standard is an open programming model for accelerating algorithms on heterogeneous computing system. OpenCL extends the C-based programming language for developing portable codes on different platforms such as CPU, Graphics processing units (GPUs), Digital Signal Processors (DSPs) and Field Programmable Gate Arrays (FPGAs). The Intel FPGA SDK for OpenCL is a suite of tools that allows developers to abstract away the complex FPGA-based development flow for a high-level software development flow. Users can focus on the design of hardware-accelerated kernel functions in OpenCL and then direct the tools to generate the low-level FPGA implementations. The approach makes themore » FPGA-based development more accessible to software users as the needs for hybrid computing using CPUs and FPGAs are increasing. It can also significantly reduce the hardware development time as users can evaluate different ideas with high-level language without deep FPGA domain knowledge. Benchmarking of OpenCL-based framework is an effective way for analyzing the performance of system by studying the execution of the benchmark applications. CHO is a suite of benchmark applications that provides support for OpenCL [1]. The authors presented CHO as an OpenCL port of the CHStone benchmark. Using Altera OpenCL (AOCL) compiler to synthesize the benchmark applications, they listed the resource usage and performance of each kernel that can be successfully synthesized by the compiler. In this report, we evaluate the resource usage and performance of the CHO benchmark applications using the Intel FPGA SDK for OpenCL and Nallatech 385A FPGA board that features an Arria 10 FPGA device. The focus of the report is to have a better understanding of the resource usage and performance of the kernel implementations using Arria-10 FPGA devices compared to Stratix-5 FPGA devices. In addition, we also gain knowledge about the limitations of the current compiler when it fails to synthesize a benchmark application.« less
TADS and Technical Assistance.
ERIC Educational Resources Information Center
Trohanis, Pascal L.
1983-01-01
Accomplishments of the Technical Assistance Development System (TADS) are cited, current challenges (including program development, and communication and coordination) are noted, and the mission mandated for TADS is outlined. (CL)
Mechanism of ion transport by avian salt gland primary cell cultures.
Lowy, R J; Dawson, D C; Ernst, S A
1989-06-01
Confluent sheets formed from primary culture of avian salt gland secretory cells exhibit a short-circuit current (Isc) in response to cholinergic and beta-adrenergic stimulation [Lowy, R. J., D. C. Dawson, and S. A. Ernst. Am J. Physiol. 249 (Cell Physiol. 18): C41-C47, 1985]. To establish the ionic basis for the Isc, transmural fluxes of 22Na and 36Cl were measured. Under short-circuit conditions there was little net flux of either ion in the absence of agonists. Addition of carbachol elevated net serosal-to-mucosal Cl flux to 1.71 mu eq.h-1.cm-2, whereas a smaller increase to 0.85 mu eq.h-1.cm-2 occurred with isoproterenol. Neither agonist altered net Na flux. The stimulated Isc accounted for 70% of the net Cl flux induced by carbachol and nearly 100% of that induced by isoproterenol. Replacement of Cl by gluconate or Na by choline abolished (carbachol) or greatly reduced (isoproterenol) the Isc, which could be restored in a dose-dependent fashion by ion restitution. Active ion transport was preferentially inhibited by basal (vs. apical) addition of ouabain, furosemide, or barium. The results provide evidence that cholinergic and beta-adrenergic agonists elicit active transmural Cl secretion. They further suggest that transport is dependent on the Na+-K+-adenosine-triphosphatase, a Na-Cl cotransport process, and a basal K conductance, all features of a secondary active Cl secretory mechanism.
Sakai, Hideki; Uchiumi, Takaoki; Lee, Jung-Bum; Ohira, Yuta; Ohkura, Jun-ichi; Suzuki, Tomoyuki; Hayashi, Toshimitsu; Takeguchi, Noriaki
2004-02-01
Sargassum horneri is an edible marine brown alga distributed along the seacoast of Japan. Here we examined effects on the water-soluble (ethanol-insoluble) extracts (EIS) from Sargassum horneri on ion transports across the isolated rat colonic mucosa set in Ussing chambers. The nonpolysaccharide fraction of EIS (EIS-2) significantly decreased short-circuit current (Isc) across the mucosa, and increased the tissue conductance (Gt). The half-maximal effect of EIS-2 was obtained at 20 microg/ml. In contrast, the polysaccharide fraction of EIS (EIS-1; 100 microg/ml) had little effect on Isc and Gt. The effect of EIS-2 depended on the presence of Cl- and HCO3- but not K+ in the bathing solution. These results suggest that EIS-2 stimulates Cl)absorption in the colonic mucosa. The EIS-2-induced changes in Isc and Gt were inhibited by 3-(1-[p-chlorobenzyl]-5-[isopropyl]-3-t-butylthioindol-2-yl)-2,2-dimethyl-propanoic acid sodium (MK-886; 10 microM), a 5-lipoxygenase-activating protein inhibitor, and 5-nitro-2-(3-phenylpropylamino)-benzoate (NPPB; 100 microM), a Cl- channel blocker. EIS-2 attenuated the prostaglandin E2 (0.5 microM)-increased Isc, and the half-maximal effect of EIS-2 was obtained at 50 microg/ml. The present study suggests that the EIS-2 stimulates Cl- absorption mediated by basolateral leukotriene-sensitive Cl- channels and apical Cl-/HCO3- exchanger in the rat colonic mucosa.
Printable Organic Nanoelectronics for Memory, Sensors and Display
2014-02-01
central ion but associated with ring- based processes during oxidation and reduction. The electrochromic behaviour of the film was examined by cyclic...Fluorine-doped tin oxide 12 satDI Saturation current 9 scI Short circuit current 10 LiClO4 Lithium perchlorate 14 NADH reduced nicotinamide...resistor R and capacitor C , connected in parallel. The net current I is the sum of the circulating current and displacement components in the form
Salt taste inhibition by cathodal current.
Hettinger, Thomas P; Frank, Marion E
2009-09-28
Effects of cathodal current, which draws cations away from the tongue and drives anions toward the tongue, depend on the ionic content of electrolytes through which the current is passed. To address the role of cations and anions in human salt tastes, cathodal currents of -40 microA to -80 microA were applied to human subjects' tongues through supra-threshold salt solutions. The salts were sodium chloride, sodium bromide, potassium chloride, ammonium chloride, calcium chloride, sodium nitrate, sodium sulfate, sodium saccharin, sodium acetate and sodium benzoate, which taken together encompass salty, bitter, sour and sweet taste qualities. The taste of NaCl, the salty and bitter tastes of the other chloride salts and the taste of NaNO(3) was inhibited, suggesting the current displaced stimulatory cations from salty and bitter receptors. However, bitter tastes of non-halide sodium salts were not inhibited, likely because other bitter receptors respond to anions. A discharge current at cathode-off ubiquitously evoked a metallic taste reminiscent of anodal taste used in clinical electrogustometry. Analogous effects on ambient NaCl responses were recorded from the hamster chorda tympani nerve. Increases in tastes of the saccharin and benzoate anions were not evoked during current flow, suggesting that cathodal current does not carry stimulatory anions to sweet receptors. Cathodal current may selectively inhibit salty and bitter-salty tastes for which proximal stimuli are cations.
He, Xiulan; Zhang, Kailin; Liu, Yang; Wu, Fei; Yu, Ping; Mao, Lanqun
2018-04-16
A nonintuitive observation of monovalent anion-induced ion current rectification inversion at polyimidazolium brush (PimB)-modified nanopipettes is presented. The rectification inversion degree is strongly dependent on the concentration and species of monovalent anions. For chaotropic anions (for example, ClO 4 - ), the rectification inversion is easily observed at a low concentration (5 mm), while there is no rectification inversion observed for kosmotropic anions (Cl - ) even at a high concentration (1 m). Moreover, at the specific concentration (for example, 10 mm), the variation of rectification ratio on the type of anions is ranged by Hofmeister series (Cl - ≥NO 3 - >BF 4 - >ClO 4 - >PF 6 - >Tf 2 N - ). Estimation of the electrokinetic charge density (σ ek ) demonstrates that rectification inversion originates from the charge inversion owing to the over-adsorption of chaotropic monovalent anion. To qualitatively understand this phenomenon, a concentration-dependent adsorption mechanism is proposed. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
GluCl a target of indole alkaloid okaramines: a 25 year enigma solved
NASA Astrophysics Data System (ADS)
Furutani, Shogo; Nakatani, Yuri; Miura, Yuka; Ihara, Makoto; Kai, Kenji; Hayashi, Hideo; Matsuda, Kazuhiko
2014-08-01
In 1989, indole alkaloid okaramines isolated from the fermentation products of Penicillium simplicissimum were shown to be insecticidal, yet the mechanism of their toxicity to insects remains unknown. We therefore examined the action of okaramine B on silkworm larval neurons using patch-clamp electrophysiology. Okaramine B induced inward currents which reversed close to the chloride equilibrium potential and were blocked by fipronil. Thus it was tested on the silkworm RDL (resistant-to-dieldrin) γ-aminobutyric-acid-gated chloride channel (GABACl) and a silkworm L-glutamate-gated chloride channel (GluCl) expressed in Xenopus laevis oocytes. Okaramine B activated GluCl, but not RDL. GluCl activation by okaramines correlated with their insecticidal activity, offering a solution to a long-standing enigma concerning their insecticidal actions. Also, unlike ivermectin, okaramine B was inactive at 10 μM on human α1β2γ2 GABACl and α1β glycine-gated chloride channels and provides a new lead for the development of safe insect control chemicals.
An enzyme cascade synthesis of ε-caprolactone and its oligomers.
Schmidt, Sandy; Scherkus, Christian; Muschiol, Jan; Menyes, Ulf; Winkler, Till; Hummel, Werner; Gröger, Harald; Liese, Andreas; Herz, Hans-Georg; Bornscheuer, Uwe T
2015-02-23
Poly-ε-caprolactone (PCL) is chemically produced on an industrial scale in spite of the need for hazardous peracetic acid as an oxidation reagent. Although Baeyer-Villiger monooxygenases (BVMO) in principle enable the enzymatic synthesis of ε-caprolactone (ε-CL) directly from cyclohexanone with molecular oxygen, current systems suffer from low productivity and are subject to substrate and product inhibition. The major limitations for such a biocatalytic route to produce this bulk chemical were overcome by combining an alcohol dehydrogenase with a BVMO to enable the efficient oxidation of cyclohexanol to ε-CL. Key to success was a subsequent direct ring-opening oligomerization of in situ formed ε-CL in the aqueous phase by using lipase A from Candida antarctica, thus efficiently solving the product inhibition problem and leading to the formation of oligo-ε-CL at more than 20 g L(-1) when starting from 200 mM cyclohexanol. This oligomer is easily chemically polymerized to PCL. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chlorine doped graphene quantum dots: Preparation, properties, and photovoltaic detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Jianhong; Xiang, Jinzhong, E-mail: jzhxiang@ynu.edu.cn; Tang, Libin, E-mail: scitang@163.com
Graphene quantum dots (GQDs) are becoming one of the hottest advanced functional materials because of the opening of the bandgap due to quantum confinement effect, which shows unique optical and electrical properties. The chlorine doped GQDs (Cl-GQDs) have been fabricated by chemical exfoliation of HCl treated carbon fibers (CFs), which were prepared from degreasing cotton through an annealing process at 1000 °C for 30 min. Raman study shows that both G and 2D peaks of GQDs may be redshifted (softened) by chlorine doping, leading to an n-type doping. The first vertical (Cl)-GQDs based photovoltaic detectors have been demonstrated, both the light absorbingmore » and electron-accepting roles for (Cl)-GQDs in photodetection have been found, resulting in an exceptionally big ratio of photocurrent to dark current as high as ∼10{sup 5} at room temperature using a 405 nm laser irradiation under the reverse bias voltage. The study expands the application of (Cl)-GQDs to the important optoelectronic detection devices.« less
NASA Astrophysics Data System (ADS)
Papanastasiou, D. K.; Papadimitriou, V. C.; Fahey, D. W.; Burkholder, J. B.
2009-12-01
Chlorine containing species play an important role in catalytic ozone depleting cycles in the Antarctic and Arctic stratosphere. The ClO dimer (Cl2O2) catalytic ozone destruction cycle accounts for the majority of the observed polar ozone loss. A key step in this catalytic cycle is the UV photolysis of Cl2O2. The determination of the Cl2O2 UV absorption spectrum has been the subject of several studies since the late 1980’s. Recently, Pope et al. (J. Phys. Chem. A, 111, 4322, 2007) reported significantly lower absorption cross sections for Cl2O2 for the atmospherically relevant wavelength region, >300 nm, than currently recommended for use in atmospheric models. If correct, the Pope et al. results would alter our understanding of the chemistry of polar ozone depletion significantly. In this study, the UV absorption spectrum and absolute cross sections of gas-phase Cl2O2 are reported for the wavelength range 200 - 420 nm at ~200 K. Sequential pulsed laser photolysis of various precursors were used to produce the ClO radical and Cl2O2 via the subsequent ClO + ClO + M reaction under static conditions. UV absorption spectra of the reaction mixture were measured using a diode array spectrometer after completion of the gas-phase radical chemistry. The spectral analysis utilized the observed isosbestic points, reaction stoichiometry, and chlorine mass balance to determine the UV spectrum and absolute cross section of Cl2O2. A complementary experimental technique similar to that used by Pope et al. was also used in this study. We obtained consistent Cl2O2 UV absorption spectra using the two different techniques. The Cl2O2 absorption cross sections for wavelengths in the 300 - 420 nm range were found to be in very good agreement with the values reported previously by Burkholder et al. (J. Phys. Chem. A, 94, 687, 1990) and significantly greater than the Pope et al. values in this atmospherically important wavelength region. A possible explanation for the disagreement with the Pope et al. study will be discussed. Finally, using the Cl2O2 UV cross sections reported in this work representative atmospheric photolysis rates along with a detailed analysis of estimated uncertainties will be presented. A conclusion from this work is that the Cl2O2 absorption cross section data obtained in this work is sufficient to adequately model the observed ozone losses in the Antarctic and Arctic stratosphere.
NASA Astrophysics Data System (ADS)
Goldfarb, Leah
1997-09-01
The catalytic destruction of stratospheric ozone via chlorinated species was first proposed in the 1970's. Since that time a decline in column ozone abundance in the polar regions as well as at mid-latitudes has been observed. Much of this reduction has been attributed to the increases in anthropogenic chlorine compounds such as CFCs. This study summarizes experimental results obtained using pulsed-photolysis resonance fluorescence and pulsed- photolysis long-path absorption methods to study processes important to chlorine-catalyzed ozone destruction: the quantum yields of the products in the dissociation of ClONO2 and the reactions of free radicals with ClONO2 and ClO. The quantum yields for the production of O, Cl and ClO from ClONO2 were studied at specific laser wavelengths (193, 222, 248, and 308 nm). Cl and ClO yields were comparable at nearly all the wavelengths, expect for 193 nm, where the O atom yield was appreciable. The yields at 308 nm (a wavelength available in the stratosphere) were 0.64 ± 0.17 for Cl, 0.37 ± 0.18 for ClO and <0.05 for O. The rate coefficients of O and Cl atoms with ClONO2 were measured over a wide range of temperatures, and the NO3 product yield for the former reaction, previously unreported, was determined to be ~1. The kinetics of the reaction of O atoms with ClO were measured using a new experimental system built specifically to investigate such radical-radical reactions. A slight negative temperature dependence (E/B = -90 ± 30) was observed over the temperature range (227-363 K). From the measured Arrhenius equation the rate constant at 240 K is 4.1 × 10-11 cm3molecule-1s-1 which is in excellent agreement (l.4% greater) with the currently recommended value. This observation is significant, since this reaction is the rate limiting the dominate chlorine catalytic cycle that destroys O3 near 40 km. To analyze the implications of the kinetic and photochemical information from this work, a box model was constructed. The vertical profile of ozone concentrations and loss rates calculated by this simple model compare well with atmospheric measurements and calculations.
Devi, Th Babita; Ahmaruzzaman, M
2016-09-01
In the current study, we report the utilization of the biogenic potential of Benincasa hispida (ash gourd) peel extract for the synthesis of Ag embedded AgCl nanoparticles nanoparticles (Ag/AgCl NPs) without the use of any external organic solvents. The appearance of dark brown color from the pale yellow color confirmed the formation of Ag/AgCl nanoparticles which was further validated by absorbance peak using UV-visible spectroscopy. The phytochemicals (flavones) present in the B. hispida peel extract acts as a reducing/stabilizing agents. The morphology and size of the synthesized NPs were characterized by transmission electron microscope (TEM), selected area electron microscope (SAED) and high resolution transmission electron microscope (HR-TEM). FT-IR spectra of the B. hispida peel extract and after the development of nanoparticles are determined to identify the functional groups responsible for the conversion of metal ions to metal nanoparticles. The synthesized nanoparticles showed an excellent photocatalytic property in the degradation of toxic dye like malachite green oxalate under sunlight irradiation. For the first time, malachite green oxalate dye was degraded by Ag/AgCl nanoparticles under sunlight irradiation.
Picosecond dynamics from lanthanide chloride melts
NASA Astrophysics Data System (ADS)
Kalampounias, Angelos G.
2012-12-01
The picosecond dynamics of molten lanthanide chlorides is studied by means of vibrational spectroscopy. Polarized Raman spectra of molten LaCl3, NdCl3, GdCl3, DyCl3, HoCl3 and YCl3 are fitted to a model enabling to obtain the times of vibrational dephasing, tν and vibrational frequency modulation tω. Our aim is to find possible sensitive indicators of short-time dynamics. It has been found that all lanthanide chlorides exhibit qualitative similarities in the vibrational relaxation and frequency modulation times in the molten state. It appears that the vibrational correlation functions of all melts comply with the Rothschild approach assuming that the environmental modulation is described by a stretched exponential decay. The evolution of the dispersion parameter α indicates the deviation of the melts from the model simple liquid and the similar local environment in which the oscillator is placed and with which it is coupled. The "packing" of the anions around central La3+ cation seems to be the key factor for the structure and the dynamics of the melts. The results are discussed in the framework of the current phenomenological status of the field.
P2Y6 receptor mediates colonic NaCl secretion via differential activation of cAMP-mediated transport
Köttgen, Michael; Löffler, Thomas; Jacobi, Christoph; Nitschke, Roland; Pavenstädt, Hermann; Schreiber, Rainer; Frische, Sebastian; Nielsen, Søren; Leipziger, Jens
2003-01-01
Extracellular nucleotides are important regulators of epithelial ion transport. Here we investigated nucleotide-mediated effects on colonic NaCl secretion and the signal transduction mechanisms involved. Basolateral UDP induced a sustained activation of Cl– secretion, which was completely inhibited by 293B, a specific inhibitor of cAMP-stimulated basolateral KCNQ1/KCNE3 K+ channels. We therefore speculated that a basolateral P2Y6 receptor could increase cAMP. Indeed UDP elevated cAMP in isolated crypts. We identified an epithelial P2Y6 receptor using crypt [Ca2+]i measurements, RT-PCR, and immunohistochemistry. To investigate whether the rat P2Y6elevates cAMP, we coexpressed the P2Y1 or P2Y6 receptor together with the cAMP-regulated cystic fibrosis transmembrane conductance regulator (CFTR) Cl– channel in Xenopus oocytes. A two-electrode voltage clamp was used to monitor nucleotide-induced Cl– currents. In oocytes expressing the P2Y1 receptor, ATP transiently activated the endogenous Ca2+-activated Cl– current, but not CFTR. In contrast, in oocytes expressing the P2Y6receptor, UDP transiently activated the Ca2+-activated Cl– current and subsequently CFTR. CFTR Cl– currents were identified by their halide conductance sequence. In summary we find a basolateral P2Y6 receptor in colonic epithelial cells stimulating sustained NaCl secretion by way of a synergistic increase of [Ca2+]i and cAMP. In support of these data P2Y6 receptor stimulation differentially activates CFTR in Xenopus oocytes. PMID:12569163
Child-Langmuir flow in a planar diode filled with charged dust impurities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang Xiaoyan; Institut fuer Theoretische Physik IV, Fakultaet fuer Physik und Astronomie, Ruhr-Universitaet Bochum, D-44870 Bochum; Shukla, Padma Kant
The Child-Langmuir (CL) flow in a planar diode in the presence of stationary charged dust particles is studied. The limiting electron current density and other diode properties, such as the electrostatic potential, the electron flow speed, and the electron number density, are calculated analytically. A comparison of the results with the case without dust impurities reveals that the diode parameters mentioned above decrease with the increase of the dust charge density. Furthermore, it is found that the classical scaling of D{sup -2} (the gap spacing D) for the CL current density remains exactly valid, while the scaling of V{sup 3/2}more » (the applied gap voltage V) can be a good approximation for low applied gap voltage and for low dust charge density.« less
Rajasekharan, Vishnu V; Clark, Brandi N; Boonsalee, Sansanee; Switzer, Jay A
2007-06-15
The commonly used disinfectants in drinking water are free chlorine (in the form of HOCl/OCl-) and monochloramine (NH2Cl). While free chlorine reacts with natural organic matter in water to produce chlorinated hydrocarbon byproducts, there is also concern that NH2Cl may react with Pbto produce soluble Pb(II) products--leading to elevated Pb levels in drinking water. In this study, electrochemical methods are used to compare the thermodynamics and kinetics of the reduction of these two disinfectants. The standard reduction potential for NH2Cl/Cl- was estimated to be +1.45 V in acidic media and +0.74 V in alkaline media versus NHE using thermodynamic cycles. The kinetics of electroreduction of the two disinfectants was studied using an Au rotating disk electrode. The exchange current densities estimated from Koutecky-Levich plots were 8.2 x 10(-5) and 4.1 x 10(-5) A/cm2, and by low overpotential experiments were 7.5 +/- 0.3 x 10(-5) and 3.7 +/- 0.4 x 10(-5) A/cm2 for free chlorine and NH2Cl, respectively. The rate constantforthe electrochemical reduction of free chlorine at equilibrium is approximately twice as large as that for the reduction of NH2Cl. Equilibrium potential measurements show that free chlorine will oxidize Pb to PbO2 above pH 1.7, whereas NH2Cl will oxidize Pb to PbO2 only above about pH 9.5, if the total dissolved inorganic carbon (DIC) is 18 ppm. Hence, NH2Cl is not capable of producing a passivating PbO2 layer on Pb, and could lead to elevated levels of dissolved Pb in drinking water.
NASA Astrophysics Data System (ADS)
Mielke, L. H.; Stutz, J.; Tsai, C.; Hurlock, S. C.; Roberts, J. M.; Veres, P. R.; Froyd, K. D.; Hayes, P. L.; Cubison, M. J.; Jimenez, J. L.; Washenfelder, R. A.; Young, C. J.; Gilman, J. B.; de Gouw, J. A.; Flynn, J. H.; Grossberg, N.; Lefer, B. L.; Liu, J.; Weber, R. J.; Osthoff, H. D.
2013-09-01
nocturnal conversion of dinitrogen pentoxide (N2O5) to nitryl chloride (ClNO2) on chloride-containing aerosol can be a regionally important NOx (= NO + NO2) recycling and halogen activation pathway that affects oxidant photochemistry the following day. Here we present a comprehensive measurement data set acquired at Pasadena, California, during the CalNex-LA campaign 2010 that included measurements of odd nitrogen and its major components (NOy = NOx + NO3 + 2N2O5 + ClNO2 + HNO3 + HONO + peroxyacyl, alkyl, and aerosol nitrates) and aerosol size distribution and composition. Nitryl chloride was present during every night of the study (median mixing ratio at sunrise 800 pptv) and was usually a more significant nocturnal NOx and odd oxygen (Ox = O3 + NO2 + 3N2O5 + ClNO2) reservoir species than N2O5 (whose concentrations were calculated from its equilibrium with NO2 and NO3). At sunrise, ClNO2 accounted for 21% of NOz (=NOy - NOx), 4% of NOy, and 2.5% of Ox, respectively (median values). Kinetic parameters for the N2O5 to ClNO2 conversion were estimated by relating ClNO2 concentrations to their time-integrated heterogeneous production from N2O5 and were highly variable between nights. Production of ClNO2 required conversion of N2O5 on submicron aerosol with average yield (φ) and N2O5 reactive uptake probability (γ) of γφ = 0.008 (maximum 0.04), scaled with submicron aerosol chloride content, and was suppressed by aerosol organic matter and liquid water content. Not all of the observed variability of ClNO2 production efficiency could be rationalized using current literature parameterizations.
Vargas, Roger I; Stark, John D; Mackey, Bruce; Bull, Richard
2005-10-01
Amulet C-L (cue-lure) and Amulet ME (methyl eugenol) molded paper fiber "attract-and-kill" dispensers containing fipronil were tested under Hawaiian weather conditions against Bactrocera cucurbitae (Coquillett) (melon fly) and Bactrocera dorsalis (Hendel) (oriental fruit fly), respectively. In paired tests (fresh versus weathered), C-L dispensers were effective for at least 77 d, whereas ME dispensers were effective for at least 21 d. Thus, C-L dispensers exceeded, whereas ME dispensers did not meet the label interval replacement recommendation of 60 d. Addition of 4 ml of ME to 56-d-old ME dispensers restored attraction and kill for an additional 21 d. This result suggested the fipronil added at manufacture was still effective. By enclosing and weathering ME dispensers inside small plastic bucket traps, longevity of ME dispensers was extended up to 56 d. Fipronil ME and C-L dispensers also were compared, inside bucket traps, to other toxicants: spinosad, naled, DDVP, malathion, and permethrin. Against B. dorsalis, fipronil ME dispensers compared favorably only up to 3 wk. Against B. cucurbitae, fipronil C-L dispensers compared favorably for at least 15 wk. Our results suggest that fipronil C-L dispensers can potentially be used in Hawaii; however, fipronil ME dispensers need to be modified or protected from the effects of weathering to extend longevity and meet label specifications. Nonetheless, Amulet C-L and ME dispensers are novel prepackaged formulations containing C-L or ME and fipronil that are more convenient and safer to handle than current liquid insecticide formulations used for areawide suppression of B. dorsalis and B. cucurbitae in Hawaii.
Effects of PCB Substrate Surface Finish, Flux, and Phosphorus Content on Ionic Contamination
NASA Astrophysics Data System (ADS)
Bacior, M.; Sobczak, N.; Siewiorek, A.; Kudyba, A.; Homa, M.; Nowak, R.; Dziula, M.; Masłoń, S.
2015-02-01
The ionic contamination on printed circuit boards (PCB) having different surface finishes was examined using ionograph. The study was performed at the RT on three types of PCBs covered with: (i) hot air solder leveling (HASL LF), (ii) electroless nickel immersion gold (ENIG), and (iii) organic surface protectant (OSP), all on Cu substrates, as well as two types of fluxes, namely EF2202 and RF800. In the group of boards without soldered components, the lowest average value of contamination was for the ENIG 18 µm surface (0.01 μg NaCl/cm2). Boards with soldered components were more contaminated (from 0.29 μg NaCl/cm2 for the HASL LF 18 µm surface). After spraying boards with fluxing agents, the values of contaminants were the highest. The influence of phosphorus content in Ni-P layer of ENIG finish on ionic contamination was examined. In the group of PCBs with Au coating, the smallest amount of surface contaminants (0.32 μg NaCl/cm2) was for Ni-2-5%P layer. PCBs with Ni-11%P layer were higher contaminated (0.47 μg NaCl/cm2), and another with Ni-8%P layer had 0.81 μg NaCl/cm2. PCBs without Au coating, had the lowest contamination (0.48 μg NaCl/cm2) at phosphorous content equal 11%P. Higher contamination (0.67 μg NaCl/cm2) was at 2-5%P, up to 1.98 μg NaCl/cm2 for 8% of P. Boards with Au finish have lower value of contamination than identical boards without Au layer thus contributing to better reliability of electronic assemblies, since its failures due to current leakage and corrosion can be caused by contaminants.
Fillat, Federico; Pérez-Cabello, Fernando; Alados, Concepción L.
2016-01-01
Over the last decades, global changes have altered the structure and properties of natural and semi-natural mountain grasslands. Those changes have contributed to grassland loss mainly through colonization by woody species at low elevations, and increases in biomass and greenness at high elevations. Nevertheless, the interactions between agropastoral components; i.e., ecological (grassland, environmental, and geolocation properties), social, and economic components, and their effects on the grasslands are still poorly understood. We estimated the vulnerability of dense grasslands in the Central Pyrenees, Spain, based on the connectivity loss (CL) among grassland patches that has occurred between the 1980s and the 2000s, as a result of i) an increase in biomass and greenness (CL-IBG), ii) woody encroachment (CL-WE), or iii) a decrease in biomass and greenness (CL-DBG). The environmental and grassland components of the agropastoral system were associated with the three processes, especially CL-IBG and CL-WE, in relation with the succession of vegetation toward climax communities, fostered by land abandonment and exacerbated by climate warming. CL-IBG occurred in pasture units that had a high proportion of dense grasslands and low current livestock pressure. CL-WE was most strongly associated with pasture units that had a high proportion of woody habitat and a large reduction in sheep and goat pressure between the 1930s and the 2000s. The economic component was correlated with the CL-WE and the CL-DBG; specifically, expensive pastures were the most productive and could maintain the highest rates of livestock grazing, which slowed down woody encroachment, but caused grassland degradation and DBG. In addition, CL-DBG was associated with geolocation of grasslands, mainly because livestock tend to graze closer to passable roads and buildings, where they cause grassland degradation. To properly manage the grasslands, an integrated management plan must be developed that includes an understanding of all components of the agropastoral system and takes into account all changes that have occurred in dense mountain grasslands. Addressing the problems individually risks the improvement of some grasslands and the deterioration of others. PMID:27171181
Gartzia, Maite; Fillat, Federico; Pérez-Cabello, Fernando; Alados, Concepción L
2016-01-01
Over the last decades, global changes have altered the structure and properties of natural and semi-natural mountain grasslands. Those changes have contributed to grassland loss mainly through colonization by woody species at low elevations, and increases in biomass and greenness at high elevations. Nevertheless, the interactions between agropastoral components; i.e., ecological (grassland, environmental, and geolocation properties), social, and economic components, and their effects on the grasslands are still poorly understood. We estimated the vulnerability of dense grasslands in the Central Pyrenees, Spain, based on the connectivity loss (CL) among grassland patches that has occurred between the 1980s and the 2000s, as a result of i) an increase in biomass and greenness (CL-IBG), ii) woody encroachment (CL-WE), or iii) a decrease in biomass and greenness (CL-DBG). The environmental and grassland components of the agropastoral system were associated with the three processes, especially CL-IBG and CL-WE, in relation with the succession of vegetation toward climax communities, fostered by land abandonment and exacerbated by climate warming. CL-IBG occurred in pasture units that had a high proportion of dense grasslands and low current livestock pressure. CL-WE was most strongly associated with pasture units that had a high proportion of woody habitat and a large reduction in sheep and goat pressure between the 1930s and the 2000s. The economic component was correlated with the CL-WE and the CL-DBG; specifically, expensive pastures were the most productive and could maintain the highest rates of livestock grazing, which slowed down woody encroachment, but caused grassland degradation and DBG. In addition, CL-DBG was associated with geolocation of grasslands, mainly because livestock tend to graze closer to passable roads and buildings, where they cause grassland degradation. To properly manage the grasslands, an integrated management plan must be developed that includes an understanding of all components of the agropastoral system and takes into account all changes that have occurred in dense mountain grasslands. Addressing the problems individually risks the improvement of some grasslands and the deterioration of others.
Electrochemical Dissolution of Tungsten Carbide in NaCl-KCl-Na2WO4 Molten Salt
NASA Astrophysics Data System (ADS)
Zhang, Liwen; Nie, Zuoren; Xi, Xiaoli; Ma, Liwen; Xiao, Xiangjun; Li, Ming
2018-02-01
Tungsten carbide was utilized as anode to extract tungsten in a NaCl-KCl-Na2WO4 molten salt, and the electrochemical dissolution was investigated. Although the molten salt electrochemical method is a short process method of tungsten extraction from tungsten carbide in one step, the dissolution efficiency and current efficiency are quite low. In order to improve the dissolution rate and current efficiency, the sodium tungstate was added as the active substance. The dissolution rate, the anode current efficiency, and the cathode current efficiency were calculated with different contents of sodium tungstate addition. The anodes prior to and following the reaction, as well as the product, were analyzed through X-ray diffraction, scanning electron microscopy, and energy dispersive spectrometry. The results demonstrated that the sodium tungstate could improve the dissolution rate and the current efficiency, due to the addition of sodium tungstate decreasing the charge transfer resistance in the electrolysis system. Due to the fact that the addition of sodium tungstate could remove the carbon during electrolysis, pure tungsten powders with 100 nm diameter were obtained when the content of sodium tungstate was 1.0 pct.
Magnetic Properties of Restacked 2D Spin 1/2 honeycomb RuCl3 Nanosheets.
Weber, Daniel; Schoop, Leslie M; Duppel, Viola; Lippmann, Judith M; Nuss, Jürgen; Lotsch, Bettina V
2016-06-08
Spin 1/2 honeycomb materials have gained substantial interest due to their exotic magnetism and possible application in quantum computing. However, in all current materials out-of-plane interactions are interfering with the in-plane order, hence a true 2D magnetic honeycomb system is still in demand. Here, we report the exfoliation of the magnetic semiconductor α-RuCl3 into the first halide monolayers and the magnetic characterization of the spin 1/2 honeycomb arrangement of turbostratically stacked RuCl3 monolayers. The exfoliation is based on a reductive lithiation/hydration approach, which gives rise to a loss of cooperative magnetism due to the disruption of the spin 1/2 state by electron injection into the layers. The restacked, macroscopic pellets of RuCl3 layers lack symmetry along the stacking direction. After an oxidative treatment, cooperative magnetism similar to the bulk is restored. The oxidized pellets of restacked single layers feature a magnetic transition at TN = 7 K if the field is aligned parallel to the ab-plane, while the magnetic properties differ from bulk α-RuCl3 if the field is aligned perpendicular to the ab-plane. The deliberate introduction of turbostratic disorder to manipulate the magnetic properties of RuCl3 is of interest for research in frustrated magnetism and complex magnetic order as predicted by the Kitaev-Heisenberg model.
NASA Astrophysics Data System (ADS)
Belhaj Salah, S.; Pereira da Silva, P. S.; Lefebvre, F.; Ben Nasr, C.; Ammar, S.; Mrad, M. L.
2017-04-01
The current study reports the chemical preparation, crystal structure, Hirshfeld surface analysis and spectroscopic characterization of the novel compound [C6H16N2O]2SnCl6·2Cl·2H2O. This compound crystallizes in the triclinic system (space group P - 1, Z = 1) with the following unit cell dimensions: a = 7.9764(9), b = 8.2703(9), c = 12.1103(14)Å, α = 84.469(6), β = 75.679(6), and γ = 64.066(5)°. The structure was solved using 3093 independent reflections down to R = 0.020. The atomic arrangement shows alternation of organic and inorganic entities. The cohesion between these entities is ensured by Nsbnd H…Cl and Osbnd H…Cl hydrogen bonds that build a three-dimensional network. The 3D Hirshfeld surfaces and the associated 2D fingerprint plots were investigated for intermolecular interactions. The 13C and 15N CP-MAS NMR spectra are in agreement with the X-ray structure. The vibrational absorption bands were identified by infrared spectroscopy. DFT calculations allowed the attribution of the IR and NMR bands. X-ray powder, XPS and UV spectrum have been carried out. The DSC profile shows that the title material exhibits dehydration at 339 K.
Garcia-Segura, Sergi; Keller, Jürg; Brillas, Enric; Radjenovic, Jelena
2015-01-01
Electrochemical advanced oxidation processes (EAOPs) have been widely investigated as promising technologies to remove trace organic contaminants from water, but have rarely been used for the treatment of real waste streams. Anodic oxidation with a boron-doped diamond (BDD) anode was applied for the treatment of secondary effluent from a municipal sewage treatment plant containing 29 target pharmaceuticals and pesticides. The effectiveness of the treatment was assessed from the contaminants decay, dissolved organic carbon and chemical oxygen demand removal. The effect of applied current and pH was evaluated. Almost complete mineralization of effluent organic matter and trace contaminants can be obtained by this EAOP primarily due to the action of hydroxyl radicals formed at the BDD surface. The oxidation of Cl(-) ions present in the wastewater at the BDD anode gave rise to active chlorine species (Cl2/HClO/ClO(-)), which are competitive oxidizing agents yielding chloramines and organohalogen byproducts, quantified as adsorbable organic halogen. However, further anodic oxidation of HClO/ClO(-) species led to the production of ClO3(-) and ClO4(-) ions. The formation of these species hampers the application as a single-stage tertiary treatment, but posterior cathodic reduction of chlorate and perchlorate species may reduce the risks associated to their presence in the environment. Copyright © 2014 Elsevier B.V. All rights reserved.
Mohamed, Anis Syamimi; Hanafi, Noorul Izzati; Sheikh Abdul Kadir, Siti Hamimah; Md Noor, Julina; Abdul Hamid Hasani, Narimah; Ab Rahim, Sharaniza; Siran, Rosfaiizah
2017-10-01
In hepatocytes, ursodeoxycholic acid (UDCA) activates cell signalling pathways such as p53, intracellular calcium ([Ca 2+ ] i ), and sphingosine-1-phosphate (S1P)-receptor via Gα i -coupled-receptor. Recently, UDCA has been shown to protect the heart against hypoxia-reoxygenation injury. However, it is not clear whether UDCA cardioprotection against hypoxia acts through a transcriptional mediator of cells stress, HIF-1α and p53. Therefore, in here, we aimed to investigate whether UDCA could protect cardiomyocytes (CMs) against hypoxia by regulating expression of HIF-1α, p53, [Ca 2+ ] i , and S1P-Gα i -coupled-receptor. Cardiomyocytes were isolated from newborn rats (0-2 days), and hypoxia was induced by using cobalt chloride (CoCl 2 ). Cardiomyocytes were treated with UDCA and cotreated with either FTY720 (S1P-receptor agonist) or pertussis toxin (PTX; Gα i inhibitor). Cells were subjected for proliferation assay, beating frequency, QuantiGene Plex assay, western blot, immunofluorescence, and calcium imaging. Our findings showed that UDCA counteracted the effects of CoCl 2 on cell viability, beating frequency, HIF-1α, and p53 protein expression. We found that these cardioprotection effects of UDCA were similar to FTY720, S1P agonist. Furthermore, we observed that UDCA protects CMs against CoCl 2 -induced [Ca 2+ ] i dynamic alteration. Pharmacological inhibition of the Gα i -sensitive receptor did not abolish the cardioprotection of UDCA against CoCl 2 detrimental effects, except for cell viability and [Ca 2+ ] i . Pertussis toxin is partially effective in inhibiting UDCA protection against CoCl 2 effects on CM cell viability. Interestingly, PTX fully inhibits UDCA cardioprotection on CoCl 2 -induced [Ca 2+ ] i dynamic changes. We conclude that UDCA cardioprotection against CoCl 2 -induced hypoxia is similar to FTY720, and its actions are not fully mediated by the Gα i -coupled protein sensitive pathways. Ursodeoxycholic acid is the most hydrophilic bile acid and is currently used to treat liver diseases. Recently, UDCA is shown to have a cardioprotection effects; however, the mechanism of UDCA cardioprotection is still poorly understood. The current data generated were the first to show that UDCA is able to inhibit the activation of HIF-1α and p53 protein during CoCl 2 -induced hypoxia in cardiomyocytes. This study provides an insight of UDCA mechanism in protecting cardiomyocytes against hypoxia. Copyright © 2017 John Wiley & Sons, Ltd.
Toward a Better Quantitative Understanding of Polar Stratospheric Ozone Loss
NASA Technical Reports Server (NTRS)
Frieler, K.; Rex, M.; Salawitch, R. J.; Canty, T.; Streibel, M.; Stimpfle, R. M.; Pfeilsticker, K.; Dorf, M.; Weisenstein, D. K.; Godin-Beekmann, S.
2006-01-01
Previous studies have shown that observed large O3 loss rates in cold Arctic Januaries cannot be explained with current understanding of the loss processes, recommended reaction kinetics, and standard assumptions about total stratospheric chlorine and bromine. Studies based on data collected during recent field campaigns suggest faster rates of photolysis and thermal decomposition of ClOOCl and higher stratospheric bromine concentrations than previously assumed. We show that a model accounting for these kinetic changes and higher levels of BrO can largely resolve the January Arctic O3 loss problem and closely reproduces observed Arctic O3 loss while being consistent with observed levels of ClO and ClOOCl. The model also suggests that bromine catalyzed O3 loss is more important relative to chlorine catalyzed loss than previously thought.
Congenital Rubella: Clinical and Related Studies
ERIC Educational Resources Information Center
Menser, Margaret A.
1977-01-01
Briefly described are four studies currently being undertaken in Australia to determine the effectiveness of vaccination in the prevention of rubella and to examine the relationship between rubella and diabetes. (CL)
... Management by Laboratory Methods . 23rd ed. Philadelphia, PA: Elsevier; 2017:chap 64. Bope ET, Kellerman RD. The ... ET, ed. Conn's Current Therapy 2016 . Philadelphia, PA: Elsevier; 2016:chap 3. Haines CF, Sears CL. Infectious ...
1988-01-01
There is good evidence indicating that ion-transport pathways in the apical regions of lingual epithelial cells, including taste bud cells, may play a role in salt taste reception. In this article, we present evidence that, in the case of the dog, there also exists a sugar- activated ion-transport pathway that is linked to sugar taste transduction. Evidence was drawn from two parallel lines of experiments: (a) ion-transport studies on the isolated canine lingual epithelium, and (b) recordings from the canine chorda tympani. The results in vitro showed that both mono- and disaccharides in the mucosal bath stimulate a dose-dependent increase in the short-circuit current over the concentration range coincident with mammalian sugar taste responses. Transepithelial current evoked by glucose, fructose, or sucrose in either 30 mM NaCl or in Krebs-Henseleit buffer (K-H) was partially blocked by amiloride. Among current carriers activated by saccharides, the current response was greater with Na than with K. Ion flux measurements in K-H during stimulation with 3-O-methylglucose showed that the sugar-evoked current was due to an increase in the Na influx. Ouabain or amiloride reduced the sugar-evoked Na influx without effect on sugar transport as measured with tritiated 3-O-methylglucose. Amiloride inhibited the canine chorda tympani response to 0.5 M NaCl by 70-80% and the response to 0.5 M KCl by approximately 40%. This agreed with the percent inhibition by amiloride of the short-circuit current supported in vitro by NaCl and KCl. Amiloride also partially inhibited the chorda tympani responses to sucrose and to fructose. The results indicate that in the dog: (a) the ion transporter subserving Na taste also subserves part of the response to K, and (b) a sugar-activated, Na- preferring ion-transport system is one mechanism mediating sugar taste transduction. Results in the literature indicate a similar sweet taste mechanism for humans. PMID:3171536
Kinetic and thermochemical studies of the ClO + ClO + M ↔ Cl2O2 + M reaction
NASA Astrophysics Data System (ADS)
Ferracci, V.; Rowley, D. M.
2009-12-01
Chlorine monoxide (ClO) radicals play a crucial role in polar ozone destruction events and the ClO dimer cycle has been identified as one of the most effective ozone-depleting catalytic cycles operating in the polar winter. A recent paper by von Hobe et al.1 highlighted significant inconsistencies between laboratory results, theoretical calculations and field observations concerning the ClO dimer ozone destruction cycle. This work has investigated the temperature dependence of the equilibrium constant of one of the key reactions in this cycle, ClO + ClO + M ↔ Cl2O2 + M (1, -1), by means of laser flash photolysis coupled with time-resolved UV absorption spectroscopy. ClO radicals were generated via laser flash photolysis of Cl2/Cl2O mixtures in synthetic air. The concentration of radicals was monitored via UV absorption spectroscopy: the use of a Charge Coupled Device (CCD) detector allowed time resolution over a broad range of wavelengths. The equilibrium constant Keq was determined as the ratio of the rate constants of the forward and reverse reaction (1, -1) over the T range 256 - 312 K. Second Law and Third Law analytical methods were employed to determine the standard enthalpy and entropy changes of reaction 1, ΔrH° and ΔrS°, from the measured equilibrium constants. The values obtained from the Second Law analysis (ΔrH° = - 80.8 ± 2.2 kJ mol-1; ΔrS° = - 168.4 ± 7.9 J K-1 mol-1) are in good agreement with previous work 2 but greater in magnitude than current NASA recommendations 3. It was also found that, under typical laboratory conditions employed in this work, [ClO] decay exhibits pure second order kinetics at T ≤ 250 K. A higher rate constant for the ClO recombination reaction (1) was also observed in this work (compared to the NASA evaluation 3), implying a higher Keq and a different partitioning between ClO and Cl2O2, shifting towards the dimer. 1. M. Von Hobe, R. J. Salawitch, T. Canty, H. Keller-Rudek, G. K. Moortgat, J.-U. Grooss, R. Müller, F. Stroh, Atmospheric Chemistry and Physics, 2007, 7, 3055 2. S. L. Nickolaisen, R. R. Friedl, S. P. Sander, Journal of Physical Chemistry, 1994, 98, 155 3. S. P. Sander, R. R. Friedl, D. M. Golden, M. J. Kurylo, R. E. Huie, V. L. Orkin, G. K. Moortgat, A. R. Ravishankara, C. E. Kolb, M. J. Molina, B. J. Finlayson-Pitts, Chemical Kinetics and Photochemical Data for use in Atmospheric Studies, Evaluation No. 14, JPL Publication 02-25, NASA Jet Propulsion Laboratory, Pasadena CA, 2003
Vibrio cholerae ACE stimulates Ca(2+)-dependent Cl(-)/HCO(3)(-) secretion in T84 cells in vitro.
Trucksis, M; Conn, T L; Wasserman, S S; Sears, C L
2000-09-01
ACE, accessory cholera enterotoxin, the third enterotoxin in Vibrio cholerae, has been reported to increase short-circuit current (I(sc)) in rabbit ileum and to cause fluid secretion in ligated rabbit ileal loops. We studied the ACE-induced change in I(sc) and potential difference (PD) in T84 monolayers mounted in modified Ussing chambers, an in vitro model of a Cl(-) secretory cell. ACE added to the apical surface alone stimulated a rapid increase in I(sc) and PD that was concentration dependent and immediately reversed when the toxin was removed. Ion replacement studies established that the current was dependent on Cl(-) and HCO(3)(-). ACE acted synergistically with the Ca(2+)-dependent acetylcholine analog, carbachol, to stimulate secretion in T84 monolayers. In contrast, the secretory response to cAMP or cGMP agonists was not enhanced by ACE. The ACE-stimulated secretion was dependent on extracellular and intracellular Ca(2+) but was not associated with an increase in intracellular cyclic nucleotides. We conclude that the mechanism of secretion by ACE involves Ca(2+) as a second messenger and that this toxin stimulates a novel Ca(2+)-dependent synergy.
Therapeutic vaccines for leishmaniasis.
Khamesipour, Ali
2014-11-01
Numerous therapeutic strategies are used to treat leishmaniasis. The treatment of cutaneous leishmaniasis (CL) is solely depends on antimonate derivatives with safety issues and questionable efficacy and there is no fully effective modality to treat CL caused by Leishmania tropica and Leishmania braziliensis. There is no prophylactic vaccine available against any form of leishmaniasis. Immunotherapy for CL has a long history; immunotherapy trials of first and second generation vaccines showed promising results. The current article briefly covers the prophylactic vaccines and explains different immunotherapy strategies that have been used to treat leishmaniasis. This paper does not include experimental vaccines and only lays emphasis on human trials and those vaccines which reached human trials. Immunotherapy is currently used to successfully treat several disorders; Low cost, limited side effects and no possibility to develop resistance make immunotherapy a valuable choice especially for infectious disease with chemotherapy problems. Efforts are needed to explore the immunological surrogate marker(s) of cure and protection in leishmaniasis and overcome the difficulties in standardization of crude Leishmania vaccines. One of the reasons for anti-leishmaniasis vaccine failure is lack of an appropriate adjuvant. So far, not enough attention has been paid to develop vaccines for immunotherapy of leishmaniasis.
Electrochemical Behaviour and Electrorefining of Cobalt in NaCl-KCl-K2TiF6 Melt
NASA Astrophysics Data System (ADS)
Kuznetsov, Sergey A.; Kazakova, Olga S.; Makarova, Olga V.
2009-08-01
The electrorefining of cobalt in NaCl-KCl-K2TiF6 (20 wt%) melt has been investigated. It was shown that complexes of Ti(III) and Co(II) appeared in the melt due to the reaction 2Ti(IV) + Co → 2Ti(III) + Co(II) and this reaction was entirely shifted to the right hand side. On the base of linear sweep voltammetry diagnostic criteria it was found that the discharge of Co(II) to Co metal is controlled by diffusion. The limiting current density of discharge Co(II) to metal in NaCl-KCl-K2TiF6 (20 wt%) melt was determined by steady-state voltammetry. The electrorefining of cobalt was carried out in hermetic electrolyser under argon atmosphere. Initial cathodic current density was changed from 0.2 Acm-2 up to 0.7 Acm-2, the electrolysis temperature varied within 973 - 1123 K. Behaviour of impurities during cobalt electrorefining was discussed. It was shown that electrorefining led to the elimination of most of the interstitial impurities (H2, N2, O2, C), with the result that the remaining impurity levels below 10 ppm impart high ductility to cobalt.
Interface Si donor control to improve dynamic performance of AlGaN/GaN MIS-HEMTs
NASA Astrophysics Data System (ADS)
Song, Liang; Fu, Kai; Zhang, Zhili; Sun, Shichuang; Li, Weiyi; Yu, Guohao; Hao, Ronghui; Fan, Yaming; Shi, Wenhua; Cai, Yong; Zhang, Baoshun
2017-12-01
In this letter, we have studied the performance of AlGaN/GaN metal-insulator-semiconductor high electron mobility transistors (MIS-HEMTs) with different interface Si donor incorporation which is tuned during the deposition process of LPCVD-SiNx which is adopted as gate dielectric and passivation layer. Current collapse of the MIS-HEMTs without field plate is suppressed more effectively by increasing the SiH2Cl2/NH3 flow ratio and the normalized dynamic on-resistance (RON) is reduced two orders magnitude after off-state VDS stress of 600 V for 10 ms. Through interface characterization, we have found that the interface deep-level traps distribution with high Si donor incorporation by increasing the SiH2Cl2/NH3 flow ratio is lowered. It's indicated that the Si donors are most likely to fill and screen the deep-level traps at the interface resulting in the suppression of slow trapping process and the virtual gate effect. Although the Si donor incorporation brings about the increase of gate leakage current (IGS), no clear degradation of breakdown voltage can be seen by choosing appropriate SiH2Cl2/NH3 flow ratio.
Anodic oxidation of slaughterhouse wastewater on boron-doped diamond: process variables effect.
Abdelhay, Arwa; Jum'h, Inshad; Abdulhay, Enas; Al-Kazwini, Akeel; Alzubi, Mashael
2017-12-01
A non-sacrificial boron-doped diamond electrode was prepared in the laboratory and used as a novel anode for electrochemical oxidation of poultry slaughterhouse wastewater. This wastewater poses environmental threats as it is characterized by a high content of recalcitrant organics. The influence of several process variables, applied current density, initial pH, supporting electrolyte nature, and concentration of electrocoagulant, on chemical oxygen demand (COD) removal, color removal, and turbidity removal was investigated. Results showed that raising the applied current density to 3.83 mA/cm 2 has a positive effect on COD removal, color removal, and turbidity removal. These parameters increased to 100%, 90%, and 80% respectively. A low pH of 5 favored oxidants generation and consequently increased the COD removal percentage to reach 100%. Complete removal of COD had occurred in the presence of NaCl (1%) as supporting electrolyte. Na 2 SO 4 demonstrated lower efficiency than NaCl in terms of COD removal. The COD decay kinetics follows the pseudo-first-order reaction. The simultaneous use of Na 2 SO 4 and FeCl 3 decreased the turbidity in wastewater by 98% due to electrocoagulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khyzhun, O.Y., E-mail: khyzhun@ipms.kiev.ua; Piasecki, M.; Kityk, I.V.
Single crystal of the ternary halide Tl{sub 10}Hg{sub 3}Cl{sub 16} was grown using Bridgman-Stockbarger method. For the Tl{sub 10}Hg{sub 3}Cl{sub 16} crystal, we have measured X-ray photoelectron spectra for both pristine and Ar{sup +} ion-bombarded surfaces and additionally investigated photoinduced piezoelectricity. Our data indicate that the Tl{sub 10}Hg{sub 3}Cl{sub 16} single crystal surface is very sensitive with respect to Ar{sup +} ion-bombardment. In particular, Ar{sup +} ion-bombardment with energy of 3.0 keV over 5 min at an ion current density of 14 μA/cm{sup 2} causes significant changes of the elemental stoichiometry of the Tl{sub 10}Hg{sub 3}Cl{sub 16} surface resulting inmore » an abrupt decrease of the mercury content in the top surface layers of the studied single crystal. As a result of the treatment, the mercury content becomes nil in the top surface layers. In addition, the present XPS measurements allow for concluding about very low hygroscopicity of the Tl{sub 10}Hg{sub 3}Cl{sub 16} single crystal surface. The property is extremely important for the crystal handling in optoelectronic or nano-electronic devices working at ambient conditions. The photoinduced piezoelectricity has been explored for Tl{sub 10}Hg{sub 3}Cl{sub 16} depending on nitrogen (λ=371 nm) laser power density and temperature. - Graphical abstract: As-grown single crystal boule of Tl{sub 10}Hg{sub 3}Cl{sub 16}; dependence of the effective piezoelecric coefficient d{sub 33} versus the photoinducing nitrogen laser power density, I, at different temperatures, T; and packing of the polyhedra of halide atoms around Hg atoms in the Tl{sub 10}Hg{sub 3}Cl{sub 16} structure. - Highlights: • High-quality Tl{sub 10}Hg{sub 3}Cl{sub 16} single crystal has been grown by Bridgman-Stockbarger method. • Electronic structure of Tl{sub 10}Hg{sub 3}Cl{sub 16} is studied by the XPS method. • Tl{sub 10}Hg{sub 3}Cl{sub 16} single crystal surface is sensitive with respect to Ar{sup +} ion-bombardment. • Very low hygroscopicity is characteristic of the Tl{sub 10}Hg{sub 3}Cl{sub 16} surface. • Photoinduced piezoelectricity is studied for the Tl{sub 10}Hg{sub 3}Cl{sub 16} compound.« less
Maduray, K; Odhav, B
2013-11-05
Metal-based phthalocyanines currently are utilized as a colorant for industrial applications but their unique properties also make them prospective photosensitizers. Photosensitizers are non-toxic drugs, which are commonly used in photodynamic therapy (PDT), for the treatment of various cancers. PDT is based on the principle that, exposure to light shortly after photosensitizer administration predominately leads to the production of reactive oxygen species for the eradication of cancerous cells and tissue. This in vitro study investigated the photodynamic effect of gallium (GaPcCl), indium (InPcCl) and iron (FePcCl) phthalocyanine chlorides on human lung adenocarcinoma cells (A549). Experimentally, 2 × 10(4)cells/ml were seeded in 24-well tissue culture plates and allowed to attach overnight, after which cells were treated with different concentrations of GaPcCl, InPcCl and FePcCl ranging from 2 μg/ml to 100 μg/ml. After 2h, cells were irradiated with constant light doses of 2.5 J/cm(2), 4.5 J/cm(2) and 8.5 J/cm(2) delivered from a diode laser (λ = 661 nm). Post-irradiated cells were incubated for 24h before cell viability was measured using the MTT Assay. At 24h after PDT, irradiation with a light dose of 2.5 J/cm(2) for each photosensitizing concentration of GaPcCl, InPcCl and FePcCl produced a significant decrease in cell viability, but when the treatment light dose was further increased to 4.5 J/cm(2) and 8.5 J/cm(2) the cell survival was less than 40%. Results also showed that photoactivated FePcCl decreased cell survival of A549 cells to 0% with photosensitizing concentrations of 40 μg/ml and treatment light dose of 2.5 J/cm(2). A 20 μg/ml photosensitizing concentration of FePcCl in combination with an increased treatment light dose of either 4.5 J/cm(2) or 8.5 J/cm(2) also resulted in 0% cell survival. This PDT study concludes that low concentrations on GaPcCl, InPcCl and FePcCl activated with low level light doses can be used for the effective in vitro killing of lung cancer cells. Copyright © 2013 Elsevier B.V. All rights reserved.
Hill, E.F.
1982-01-01
The toxicities of mercuric chloride (HgCl(,2)) and methylmercuric chloride (CH(,3)HgCl) were compared for coturnix (Coturnix coturnix japonica) from hatching to adulthood. Comparisons were based on: (1) Median lethal dosages (LD50) derived by administering single peroral and single intramuscular dosages of mercury, (2) median lethal concentrations (LC50) derived by feeding mercury for 5 days, (3) median toxic concentrations (TC50) derived by feeding mercury 9 weeks and measuring plasma enzyme activity, plasma electrolytes, and other blood constituents, and (4) transient changes of various blood chemistries following a single peroral dose of mercury. Acute peroral and intramuscular LD50s for HgCl(,2) and CH(,3)HgCl increased by two- to threefold for coturnix chicks from hatching to 4 weeks of age. Concomitantly, the LC50s also increased, but the important difference between test procedures was that with both single dose routes of exposure the toxicity ratios, i.e., HgCl(,2)/CH(,3)HgCl, at each age were about 2 to 2.5 compared to about 100 for the LC50s. For example, at 2 weeks of age the peroral LD50s for HgCl(,2) and CH(,3)HgCl were 42 and 18 mg/kg; the dietary LC50s were 5086 and 47 ppm for HgCl(,2) and CH(,3)HgCl. The 9 week feeding trial was not associated with gross effects from either HgCl(,2) at 0.5 to 32 ppm or CH(,3)HgCl at 0.125 to 8 ppm. However, subtle responses were detected for the plasma enzymes aspartate aminotransferase, lactate dehydrogenase, and ornithine carbamoyl transferase and could be quantified by probit analysis. This quantal procedure was based on establishment of a normal value for each enzyme and classing outliers as respondents. A 'hazard index' based on the TC50 for an enzyme divided by the LD50 or LC50 was introduced. The single oral dosages of HgCl(,2) and CH(,3)HgCl showed that ratios of alanine aminotransferase, lactate dehydrogenase, and orinthine carbamoyl transferase for the liver and kidneys of adult coturnix were opposite from that accepted for mammals. It was concluded that a chronic study of sublethal responses of young birds should be required in addition to the current toxicity screens used for regulatory purposes.
Hill, E.F.
1981-01-01
The toxicities of mercuric chloride (HgCl(,2)) and methylmercuric chloride (CH(,3)HgCl) were compared for coturnix (Coturnix coturnix japonica) from hatching to adulthood. Comparisons were based on: (1) Median lethal dosages (LD50) derived by administering single peroral and single intramuscular dosages of mercury, (2) median lethal concentrations (LC50) derived by feeding mercury for 5 days, (3) median toxic concentrations (TC50) derived by feeding mercury 9 weeks and measuring plasma enzyme activity, plasma electrolytes, and other blood constituents, and (4) transient changes of various blood chemistries following a single peroral dose of mercury. Acute peroral and intramuscular LD50s for HgCl(,2) and CH(,3)HgCl increased by two- to threefold for coturnix chicks from hatching to 4 weeks of age. Concomitantly, the LC50s also increased, but the important difference between test procedures was that with both single dose routes of exposure the toxicity ratios, i.e., HgCl(,2)/CH(,3)HgCl, at each age were about 2 to 2.5 compared to about 100 for the LC50s. For example, at 2 weeks of age the peroral LD50s for HgCl(,2) and CH(,3)HgCl were 42 and 18 mg/kg; the dietary LC50s were 5086 and 47 ppm for HgCl(,2) and CH(,3)HgCl. The 9 week feeding trial was not associated with gross effects from either HgCl(,2) at 0.5 to 32 ppm or CH(,3)HgCl at 0.125 to 8 ppm. However, subtle responses were detected for the plasma enzymes aspartate aminotransferase, lactate dehydrogenase, and ornithine carbamoyl transferase and could be quantified by probit analysis. This quantal procedure was based on establishment of a normal value for each enzyme and classing outliers as respondents. A 'hazard index' based on the TC50 for an enzyme divided by the LD50 or LC50 was introduced. The single oral dosages of HgCl(,2) and CH(,3)HgCl showed that ratios of alanine aminotransferase, lactate dehydrogenase, and orinthine carbamoyl transferase for the liver and kidneys of adult coturnix were opposite from that accepted for mammals. It was concluded that a chronic study of sublethal responses of young birds should be required in addition to the current toxicity screens used for regulatory purposes.
NASA Astrophysics Data System (ADS)
Wang, Zengjie; Guan, Chunyang; Liu, Qiaochu; Xue, Jilai
Molten salts electrolysis method to prepare Al-RE alloys has attracted increasing attention recently. CaCl2 and Na3AlF6 were the most often used melts for this purpose. In this work, Al-Sc alloys prepared by electrolytic deposition process in both CaCl2 and Na3AlF6 melts were investigated, respectively. It was found that Sc distributes almost uniformly and Sc contents increase with increasing current intensity in both melts. Current efficiency was measured for comparison among various current densities applied. The alloy products were analyzed using XRD and SEM, where the formation behaviors of Al-Sc intermetallics were investigated in details. The experimental and theoretical results demonstrate that Al3Sc and Al0.968Sc0.032 are the major precipitates in the Al-Sc alloys prepared by molten electrolysis. The results are useful for selection and optimization of the molten salts compositions and the parameters of electrolysis operation.
Dislocation related droop in InGaN/GaN light emitting diodes investigated via cathodoluminescence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pozina, Galia; Ciechonski, Rafal; Bi, Zhaoxia
2015-12-21
Today's energy saving solutions for general illumination rely on efficient white light emitting diodes (LEDs). However, the output efficiency droop experienced in InGaN based LEDs with increasing current injection is a serious limitation factor for future development of bright white LEDs. We show using cathodoluminescence (CL) spatial mapping at different electron beam currents that threading dislocations are active as nonradiative recombination centers only at high injection conditions. At low current, the dislocations are inactive in carrier recombination due to local potentials, but these potentials are screened by carriers at higher injection levels. In CL images, this corresponds to the increasemore » of the dark contrast around dislocations with the injection (excitation) density and can be linked with droop related to the threading dislocations. Our data indicate that reduction of droop in the future efficient white LED can be achieved via a drastic reduction of the dislocation density by using, for example, bulk native substrates.« less
NASA Astrophysics Data System (ADS)
Cartwright, Ian; Hofmann, Harald; Gilfedder, Ben
2013-04-01
Understanding whether catchments are in chemical mass balance is important in understand long-term groundwater-surface water interactions. The mass balance of a conservative solute such as Cl in a catchment is: P*Cl(P) = SW*Cl(SW) + GW*Cl(GW) + dST*Cl(ST) where P, SW, and GW, are net precipitation, surface water outflows, and groundwater outflows and dST accounts for changes to water held in storage, primarily in the groundwater system. Cl() is the concentration of Cl in the various water components. Precipitation and river discharges are commonly well constrained and in many regions there are also rainfall, groundwater, and surface water geochemistry data. Groundwater fluxes and changes to water in storage are less well known meaning that it is difficult to perform accurate solute balances. However, if the flux of a conservative solute out of a catchment via the river system is larger than the input from rainfall (i.e., if SW*Cl(SW) > P*Cl(P)), the catchment is a net exporter of solutes. In turn this implies a change to the amount of water stored in the catchment and/or a change in chemistry of water in storage. We apply this technique to several regional-scale catchments (areas up to 15,000 km2) from Victoria, southeast Australia. Cl/Br ratios indicate that the Cl in groundwater and surface water in this region is derived from evapotranspiration of rainfall. Rivers from several catchments in Victoria are saline (Cl >500 mg/L) due mainly to groundwater inflows. Cl concentrations and EC values are well correlated allowing a long-term (up to 25 years) continual record of Cl fluxes to be estimated from sub-daily river discharge and EC data. Many of the rivers export significantly higher volumes of Cl than is delivered via rainfall (up to 1800%). Two scenarios may explain this chemical imbalance. Firstly, saline marshes and lakes developed on young (<1 Ma) basaltic lava plains have gradually drained as blocked river systems re-established. Evapotranspiration and repeated recharge-discharge cycles within these lakes and wetlands produced shallow groundwater with high Cl concentrations that is currently being exported via the re-established river systems. Secondly, in many catchments land-clearing over the last 200 years has resulted in lower evapotranspiration rates and increased recharge. The increased recharge has resulted in a rise of regional water tables and increased baseflow to the rivers. As a consequence, Cl from the groundwater that has relatively long residence time is now being exported. In both cases, the catchments are adjusting to a new hydrological balance and the Cl mass balance indicates that the present patterns of groundwater-surface water interaction are transitory. Both scenarios involve a decrease in evapotranspiration in the catchments that results in groundwater salinities decreasing. Thus, over time, the Cl concentrations in these rivers will decrease as fresher groundwater increasingly forms the baseflow to the rivers and the catchments will tend toward chemical balance; the timescale of change however may be several ka.
NASA Astrophysics Data System (ADS)
Schachel, Tilo D.; Metwally, Haidy; Popa, Vlad; Konermann, Lars
2016-11-01
Infusion of NaCl solutions into an electrospray ionization (ESI) source produces [Na( n+1)Cl n ]+ and other gaseous clusters. The n = 4, 13, 22 magic number species have cuboid ground state structures and exhibit elevated abundance in ESI mass spectra. Relatively few details are known regarding the mechanisms whereby these clusters undergo collision-induced dissociation (CID). The current study examines to what extent molecular dynamics (MD) simulations can be used to garner insights into the sequence of events taking place during CID. Experiments on singly charged clusters reveal that the loss of small neutrals is the dominant fragmentation pathway. MD simulations indicate that the clusters undergo extensive structural fluctuations prior to decomposition. Consistent with the experimentally observed behavior, most of the simulated dissociation events culminate in ejection of small neutrals ([NaCl] i , with i = 1, 2, 3). The MD data reveal that the prevalence of these dissociation channels is linked to the presence of short-lived intermediates where a relatively compact core structure carries a small [NaCl] i protrusion. The latter can separate from the parent cluster via cleavage of a single Na-Cl contact. Fragmentation events of this type are kinetically favored over other dissociation channels that would require the quasi-simultaneous rupture of multiple electrostatic contacts. The CID behavior of NaCl cluster ions bears interesting analogies to that of collisionally activated protein complexes. Overall, it appears that MD simulations represent a valuable tool for deciphering the dissociation of noncovalently bound systems in the gas phase.
Nawata, C Michele; Walsh, Patrick J; Wood, Chris M
2015-07-01
Although they are ureotelic, marine elasmobranchs express Rh glycoproteins, putative ammonia channels. To address questions raised by a recent study on high environmental ammonia (HEA) exposure, dogfish were intravascularly infused for 24 h at 3 ml kg(-1) h(-1) with isosmotic NaCl (500 mmol l(-1), control), NH4HCO3 (500 mmol l(-1)), NH4Cl (500 mmol l(-1)), or HCl (as 125 mmol l(-1) HCl + 375 mmol l(-1) NaCl). While NaCl had no effect on arterial acid-base status, NH4HCO3 caused mild alkalosis, NH4Cl caused strong acidosis, and HCl caused lesser acidosis, all predominantly metabolic in nature. Total plasma ammonia (T(Amm)) and excretion rates of ammonia (J(Amm)) and urea-N (J(Urea-N)) were unaffected by NaCl or HCl. However, despite equal loading rates, plasma T(Amm) increased to a greater extent with NH4Cl, while J(Amm) increased to a greater extent with NH4HCO3 due to much greater increases in blood-to-water PNH3 gradients. As with HEA, both treatments caused large (90%) elevations of J(Urea-N), indicating that urea-N synthesis by the ornithine-urea cycle (OUC) is driven primarily by ammonia rather than HCO3(-). Branchial mRNA expressions of Rhbg and Rhp2 were unaffected by NH4HCO3 or NH4Cl, but v-type H(+)-ATPase was down-regulated by both treatments, and Rhbg and Na(+)/H(+) exchanger NHE2 were up-regulated by HCl. In the kidney, Rhbg was unresponsive to all treatments, but Rhp2 was up-regulated by HCl, and the urea transporter UT was up-regulated by HCl and NH4Cl. These responses are discussed in the context of current ideas about branchial, renal, and OUC function in this nitrogen-limited predator.
Rossetti, Paolo; Quirós, Carmen; Moscardó, Vanessa; Comas, Anna; Giménez, Marga; Ampudia-Blasco, F Javier; León, Fabián; Montaser, Eslam; Conget, Ignacio; Bondia, Jorge; Vehí, Josep
2017-06-01
Postprandial (PP) control remains a challenge for closed-loop (CL) systems. Few studies with inconsistent results have systematically investigated the PP period. To compare a new CL algorithm with current pump therapy (open loop [OL]) in the PP glucose control in type 1 diabetes (T1D) subjects. A crossover randomized study was performed in two centers. Twenty T1D subjects (F/M 13/7, age 40.7 ± 10.4 years, disease duration 22.6 ± 9.9 years, and A1c 7.8% ± 0.7%) underwent an 8-h mixed meal test on four occasions. In two (CL1/CL2), after meal announcement, a bolus was given followed by an algorithm-driven basal infusion based on continuous glucose monitoring (CGM). Alternatively, in OL1/OL2 conventional pump therapy was used. Main outcome measures were as follows: glucose variability, estimated with the coefficient of variation (CV) of the area under the curve (AUC) of plasma glucose (PG) and CGM values, and from the analysis of the glucose time series; mean, maximum (C max ), and time to C max glucose concentrations and time in range (<70, 70-180, >180 mg/dL). CVs of the glucose AUCs were low and similar in all studies (around 10%). However, CL achieved greater reproducibility and better PG control in the PP period: CL1 = CL2
Chlorine isotope fractionation during supergene enrichment of copper
NASA Astrophysics Data System (ADS)
Reich, M.; Barnes, J.; Barra, F.; Milojevic, C.; Drew, D.
2017-12-01
Supergene enrichment of Cu deposits in the Atacama Desert has played a critical role in making this the prime Cu-producing province of the world. The Cu-hydroxychloride atacamite is a major component of supergene zones in this region whereas in similar deposits elsewhere it is rare. Atacamite requires saline water to form and dissolves rapidly when exposed to fresh, meteoric water. Previous chlorine stable isotope data [1] for atacamite mineralization at the Radomiro Tomic, Chuquicamata and Mina Sur Cu deposits show δ37Cl values that range from -0.1 to +0.2‰, indicating a similar nonmagmatic source for the introduction of chloride. However, distal atacamite mineralization on the periphery of these orebodies show more fractionated and lighter δ37Cl values (-3.2 to -0.1‰). Although little disagreement currently exists about the involvement of saline groundwater during the formation of atacamite [2], no δ37Cl data are currently available for atacamite within a single deposit and/or supergene enrichment profile that allow explaining the aforementioned differences in the observed δ37Cl values. Furthermore, no experimental data for chlorine isotope fractionation between Cu-hydroxychloride minerals and water exist that help evaluate possible mechanisms of fractionation along the groundwater flow path. Here we present a new database that combines detailed mineralogical observations with δ37Cl data of atacamite along a thick ( 100 m) supergene enrichment profile at the Barreal Seco IOCG deposit in the Atacama Desert of northern Chile. Chlorine stable isotope data of atacamite vary between -0.62 and +2.1 ‰ and show a well-defined trend where δ37Cl values progressively decrease (become lighter) with depth. These data, when combined with new experimental determinations of chlorine isotope fractionation between atacamite and water, point to changes triggered by the progressive deepening of groundwater tables during Andean uplift and the extreme desiccation of Atacama. References [1] Arcuri T, Brimhall G (2003) The chloride source for atacamite mineralization at the Radomiro Tomic porphyry copper deposit, Northern Chile. Econ Geol 98:1667-1681 [2] Reich M et al. (2009) Supergene enrichment of copper deposits since the onset of modern hyperaridity in the Atacama Desert, Chile. Miner Deposita 44: 497-504
NASA Astrophysics Data System (ADS)
Baksht, E. Kh; Panchenko, Aleksei N.; Tarasenko, Viktor F.
2000-06-01
An efficient electric-discharge XeCl laser is developed, which is pumped by a self-sustained discharge with a prepulse formed by a generator with an inductive energy storage device and a semiconductor current interrupter on a basis of semiconductor opening switch (SOS) diodes. An output energy up to 800 mJ, a pulse length up to 450 ns, and a total laser efficiency of 2.2% were attained by using spark UV preionisation.
Adenine specific DNA chemical sequencing reaction.
Iverson, B L; Dervan, P B
1987-01-01
Reaction of DNA with K2PdCl4 at pH 2.0 followed by a piperidine workup produces specific cleavage at adenine (A) residues. Product analysis revealed the K2PdCl4 reaction involves selective depurination at adenine, affording an excision reaction analogous to the other chemical DNA sequencing reactions. Adenine residues methylated at the exocyclic amine (N6) react with lower efficiency than unmethylated adenine in an identical sequence. This simple protocol specific for A may be a useful addition to current chemical sequencing reactions. Images PMID:3671067
2008-04-17
resolution TEM images (see Fig. 10) also show that ZnO nanocrystals nucleate on Fig. 9 SEM images of ZnO nanorods grown on (a) Si(001) and b) GaN/Al2O3... electrodeposition in a non-aqueous solution. The solution consisted of ZnClO4 (10.5 gm), LiClO4 (2.5 gm) and dimethyl sulfoxide (250 ml). The porous...valent Zn atoms which were selectively electrodeposited within the pores since they offered the least impedance path for the ac current
Dry etching, surface passivation and capping processes for antimonide based photodetectors
NASA Astrophysics Data System (ADS)
Dutta, Partha; Langer, Jeffery; Bhagwat, Vinay; Juneja, Jasbir
2005-05-01
III-V antimonide based devices suffer from leakage currents. Surface passivation and subsequent capping of the surfaces are absolutely essential for any practical applicability of antimonide based devices. The quest for a suitable surface passivation technology is still on. In this paper, we will present some of the promising recent developments in this area based on dry etching of GaSb based homojunction photodiodes structures followed by various passivation and capping schemes. We have developed a damage-free, universal dry etching recipe based on unique ratios of Cl2/BCl3/CH4/Ar/H2 in ECR plasma. This novel dry plasma process etches all III-V compounds at different rates with minimal damage to the side walls. In GaSb based photodiodes, an order of magnitude lower leakage current, improved ideality factor and higher responsivity has been demonstrated using this recipe compared to widely used Cl2/Ar and wet chemical etch recipes. The dynamic zero bias resistance-area product of the Cl2/BCl3/CH4/Ar/H2 etched diodes (830 Ω cm2) is higher than the Cl2/Ar (300 Ω cm2) and wet etched (330 Ω cm2) diodes. Ammonium sulfide has been known to passivate surfaces of III-V compounds. In GaSb photodiodes, the leakage current density reduces by a factor of 3 upon sulfur passivation using ammonium sulfide. However, device performance degrades over a period of time in the absence of any capping or protective layer. Silicon Nitride has been used as a cap layer by various researchers. We have found that by using silicon nitride caps, the devices exhibit higher leakage than unpassivated devices probably due to plasma damage during SiNx deposition. We have experimented with various polymers for capping material. It has been observed that ammonium sulfide passivation when combined with parylene capping layer (150 Å), devices retain their improved performance for over 4 months.
Marshall; Duquesnay; Gillis; Bryson; Liedtke
1998-05-21
Opercular epithelia from seawater-adapted killifish (Fundulus heteroclitus) were dissected with the nerve intact, mounted in Ussing-style membrane chambers and bathed in symmetrical saline solutions. Nerve stimulation rapidly inhibited transepithelial current (a measure of Cl- secretion rate) by 27.3+/-3.3 % (N=22), and the effect could be sustained for more than 10 min using intermittent pulse trains at 10 Hz. The effect was blocked in a dose-dependent manner by yohimbine, but not by propranolol, atropine or tubocurarine, indicating mediation by
2-adrenergic receptors. The effect was also present, but significantly diminished, in opercular membranes from animals that had been transferred to sea water for 48 h (18+/-8.6 % inhibition, N=14). The resting current and the effect were absent in membranes from freshwater-adapted animals. The addition of clonidine (1.0 micromol l-1 serosal side) started to inhibit Cl- current after 40-60 s; immediately before this, at 30 s, there was a significant rise (P<0.05, N=14) in tissue inositol 1,4,5, -trisphosphate (InsP3) level, but no change at later times, compared with LiCl-treated control membranes and measured by radiolabeled receptor assay. The results indicate that seawater-adapted killifish can decrease their Cl- secretion rate through the action of the sympathetic nervous system, a response appropriate for the entry of estuarine fish to fresh water, and that the effect is mediated by
2-adrenoceptors via InsP3. The results imply that euryhaline fish entering fresh water can undergo an autonomic reflex reduction in salt secretion that does not require a stress response.
NASA Astrophysics Data System (ADS)
Yang, Shaohua; Wu, Lin; Yang, Fengli; Li, Mingzhou; Hu, Xianwei; Wang, Zhaowen; Shi, Zhongning; Gao, Bingliang
Aluminum-magnesium alloys were prepared from magnesium oxide by molten salt electrolysis method. 10w%RECl3-63.5w%KCl-23.5w%MgCl2-3w%MgO was taken as electrolyte. The results showed that RE could be attained in aluminum-magnesium alloy, and it was proved that the RE was reduced directly by aluminum. Magnesium in the alloy was produced by electrolysis on cathode. The content of RE in the alloy was about 0.8wt %-1.2wt%, and the content of Mg in the alloy was lwt%˜6wt% with electrolytic times. The highest current efficiency was 81.3% with 0.8A/cm2 current density. The process of electrolysis was controlled together by electrochemical polarization and concentration polarization.
Correlation between dislocations and leakage current of p-n diodes on a free-standing GaN substrate
NASA Astrophysics Data System (ADS)
Usami, Shigeyoshi; Ando, Yuto; Tanaka, Atsushi; Nagamatsu, Kentaro; Deki, Manato; Kushimoto, Maki; Nitta, Shugo; Honda, Yoshio; Amano, Hiroshi; Sugawara, Yoshihiro; Yao, Yong-Zhao; Ishikawa, Yukari
2018-04-01
Dislocations that cause a reverse leakage current in vertical p-n diodes on a GaN free-standing substrate were investigated. Under a high reverse bias, dot-like leakage spots were observed using an emission microscope. Subsequent cathodoluminescence (CL) observations revealed that the leakage spots coincided with part of the CL dark spots, indicating that some types of dislocation cause reverse leakage. When etch pits were formed on the dislocations by KOH etching, three sizes of etch pits were obtained (large, medium, and small). Among these etch pits, only the medium pits coincided with leakage spots. Additionally, transmission electron microscopy observations revealed that pure screw dislocations are present under the leakage spots. The results revealed that 1c pure screw dislocations are related to the reverse leakage in vertical p-n diodes.
Minimal modification of tri-bimaximal neutrino mixing and leptonic CP violation
NASA Astrophysics Data System (ADS)
Kang, Sin Kyu
2017-12-01
We confront possible forms of the minimal modification of the tri-bimaximal (TBM) neutrino mixing matrix proposed by Kang and Kim (Phys. Rev. D 90, 077301 (2014)) with the latest global fit to neutrino data. One form among them is singled out by the current experimental results at 1σ confidence level (C.L.) The minimal modification of the TBM mixing matrix makes possible the prediction of Dirac-type CP phase in the Pontecorbo-Maki-Nakagawa-Sakata neutrino mixing matrix in terms of two neutrino mixing angles. By carrying out a numerical analysis based on the latest experimental results for neutrino mixing angles, we are able to present new results on the prediction of the Dirac-type CP phase. We also compare our results on CP violation with those from the current global fit at 1 σ C.L.
Development and content validation of performance assessments for endoscopic third ventriculostomy.
Breimer, Gerben E; Haji, Faizal A; Hoving, Eelco W; Drake, James M
2015-08-01
This study aims to develop and establish the content validity of multiple expert rating instruments to assess performance in endoscopic third ventriculostomy (ETV), collectively called the Neuro-Endoscopic Ventriculostomy Assessment Tool (NEVAT). The important aspects of ETV were identified through a review of current literature, ETV videos, and discussion with neurosurgeons, fellows, and residents. Three assessment measures were subsequently developed: a procedure-specific checklist (CL), a CL of surgical errors, and a global rating scale (GRS). Neurosurgeons from various countries, all identified as experts in ETV, were then invited to participate in a modified Delphi survey to establish the content validity of these instruments. In each Delphi round, experts rated their agreement including each procedural step, error, and GRS item in the respective instruments on a 5-point Likert scale. Seventeen experts agreed to participate in the study and completed all Delphi rounds. After item generation, a total of 27 procedural CL items, 26 error CL items, and 9 GRS items were posed to Delphi panelists for rating. An additional 17 procedural CL items, 12 error CL items, and 1 GRS item were added by panelists. After three rounds, strong consensus (>80% agreement) was achieved on 35 procedural CL items, 29 error CL items, and 10 GRS items. Moderate consensus (50-80% agreement) was achieved on an additional 7 procedural CL items and 1 error CL item. The final procedural and error checklist contained 42 and 30 items, respectively (divided into setup, exposure, navigation, ventriculostomy, and closure). The final GRS contained 10 items. We have established the content validity of three ETV assessment measures by iterative consensus of an international expert panel. Each measure provides unique assessment information and thus can be used individually or in combination, depending on the characteristics of the learner and the purpose of the assessment. These instruments must now be evaluated in both the simulated and operative settings, to determine their construct validity and reliability. Ultimately, the measures contained in the NEVAT may prove suitable for formative assessment during ETV training and potentially as summative assessment measures during certification.
Urtiaga, Ane; Soriano, Alvaro; Carrillo-Abad, Jordi
2018-06-01
The concerns about the undesired impacts on human health and the environment of long chain perfluorinated alkyl substances (PFASs) have driven industrial initiatives to replace PFASs by shorter chain fluorinated homologues. 6:2 fluorotelomer sulfonic acid (6:2 FTSA) is applied as alternative to PFOS in metal plating and fluoropolymer manufacture. This study reports the electrochemical treatment of aqueous 6:2 FTSA solutions on microcrystalline BDD anodes. Bench scale batch experiments were performed, focused on assessing the effect of the electrolyte and the applied current density (5-600 A m -2 ) on the removal of 6:2 FTSA, the reduction of total organic carbon (TOC) and the fluoride release. Results showed that at the low range of applied current density (J = 50 A m -2 ), using NaCl, Na 2 SO 4 and NaClO 4 , the electrolyte exerted a minimal effect on removal rates. The formation of toxic inorganic chlorine species such as ClO 4 - was not observed. When using Na 2 SO 4 electrolyte, increasing the applied current density to 350-600 A m -2 promoted a notable enhancement of the 6:2 FTSA removal and defluorination rates, pointing to the positive contribution of electrogenerated secondary oxidants to the overall removal rate. 6:2 FTSA was transformed into shorter-chain PFCAs, and eventually into CO 2 and fluoride, as TOC reduction was >90%. Finally, it was demonstrated that diffusion in the liquid phase was controlling the overall kinetic rate, although with moderate improvements due to secondary oxidants at very high current densities. Copyright © 2018 Elsevier Ltd. All rights reserved.
Bruck, Andrea M; Yin, Jiefu; Tong, Xiao; Takeuchi, Esther S; Takeuchi, Kenneth J; Szczepura, Lisa F; Marschilok, Amy C
2018-05-07
The cluster-based material Re 6 Se 8 Cl 2 is a two-dimensional ternary material with cluster-cluster bonding across the a and b axes capable of multiple electron transfer accompanied by ion insertion across the c axis. The Li/Re 6 Se 8 Cl 2 system showed reversible electron transfer from 1 to 3 electron equivalents (ee) at high current densities (88 mA/g). Upon cycling to 4 ee, there was evidence of capacity degradation over 50 cycles associated with the formation of an organic solid-electrolyte interface (between 1.45 and 1 V vs Li/Li + ). This investigation highlights the ability of cluster-based materials with two-dimensional cluster bonding to be used in applications such as energy storage, showing structural stability and high rate capability.
Ultrashort-Pulse Child-Langmuir Law in the Quantum and Relativistic Regimes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ang, L. K.; Zhang, P.
This Letter presents a consistent quantum and relativistic model of short-pulse Child-Langmuir (CL) law, of which the pulse length {tau} is less than the electron transit time in a gap of spacing D and voltage V. The classical value of the short-pulse CL law is enhanced by a large factor due to quantum effects when the pulse length and the size of the beam are, respectively, in femtosecond duration and nanometer scale. At high voltage larger than the electron rest mass, relativistic effects will suppress the enhancement of short-pulse CL law, which is confirmed by particle-in-cell simulation. When the pulsemore » length is much shorter than the gap transit time, the current density is proportional to V, and to the inverse power of D and {tau}.« less
Ammonia removal in electrochemical oxidation: mechanism and pseudo-kinetics.
Li, Liang; Liu, Yan
2009-01-30
This paper investigated the mechanism and pseudo-kinetics for removal of ammonia by electrochemical oxidation with RuO(2)/Ti anode using batch tests. The results show that the ammonia oxidation rates resulted from direct oxidation at electrode-liquid interfaces of the anode by stepwise dehydrogenation, and from indirect oxidation by hydroxyl radicals were so slow that their contribution to ammonia removal was negligible under the condition with Cl(-). The oxidation rates of ammonia ranged from 1.0 to 12.3 mg N L(-1)h(-1) and efficiency reached nearly 100%, primarily due to the indirect oxidation of HOCl, and followed pseudo zero-order kinetics in electrochemical oxidation with Cl(-). About 88% ammonia was removed from the solution. The removed one was subsequently found in the form of N(2) in the produced gas. The rate at which Cl(-) lost electrons at the anode was a major factor in the overall ammonia oxidation. Current density and Cl(-) concentration affected the constant of the pseudo zero-order kinetics, expressed by k=0.0024[Cl(-)]xj. The ammonia was reduced to less than 0.5 mg N L(-1) after 2h of electrochemical oxidation for the effluent from aerobic or anaerobic reactors which treated municipal wastewater. This result was in line with the strict discharge requirements.
A Three-State Multi-Ion Kinetic Model for Conduction Properties of ClC-0 Chloride Channel
Wang, Xiao-Qing; Yu, Tao; Sang, Jian-Ping; Zou, Xian-Wu; Chen, Tsung-Yu; Bolser, Diana; Zou, Xiaoqin
2010-01-01
Abstract A three-state, multiion kinetic model was proposed to enable the conduction properties of the mammalian channel ClC-0 to be well characterized. Using this rate-theory based model, the current-voltage and conductance-concentration relations were obtained. The five parameters needed were determined by fitting the data of conduction experiments of the wild-type ClC-0 and its K519C mutant. The model was then tested against available calculation and simulation data, and the energy differences between distinct chloride-occupancy states computed agreed with an independent calculation on the binding free energies solved by using the Poisson-Boltzmann equation. The average ion number of conduction and the ion passing duration calculated closely resembled the values obtained from Brownian dynamics simulations. According to the model, the decrease of conductance caused by mutating residue K519 to C519 can be attributed to the effect of K519C mutation on translocation rate constants. Our study sets up a theoretical model for ion permeation and conductance in ClC-0. It provides a starting point for experimentalists to test the three-state model, and would help in understanding the conduction mechanism of ClC-0. PMID:20643064
Interactions between chloride and cement-paste materials.
Barberon, Fabien; Baroghel-Bouny, Véronique; Zanni, Hélène; Bresson, Bruno; d'Espinose de la Caillerie, Jean-Baptiste; Malosse, Lucie; Gan, Zehong
2005-02-01
The durability of cement-based materials with respect to exterior aggressions is one of the current priorities in civil engineering. Depending on their use, the cement-based materials can be exposed to different types of aggressive environments. For instance, damages to concrete structures in contact with a saline environment (sea water on bridges, deicing salts on roads, etc.) are of utmost importance. Upon exposure to saline water, Cl- ions penetrate into the structures and subsequently lead to reinforcement corrosion. Chloride attack is often combined with other aggressive influences such as temperature (e.g., freezing) or the ingress of other ions (e.g., sulfates in sea water). We therefore aim to explore the effect of sodium chloride (NaCl) on the structural chemistry of cement paste. Existing studies about reinforcement corrosion by chloride have focused on the penetration of Cl- ions and the comparison between "free" ions (water-soluble ions) and bound ones. However, little is known about the fixation mechanisms, the localization of Cl in the cement matrix and the structural interaction between Cl and the silicate and aluminate hydrate phases present in cement paste. We present here results of a multinuclear nuclear magnetic resonance study on the fixation of chloride in the hydration products and the characterization of new phases potentially appearing due to chloride ingress.
Stock, Nicola Marie; Humphries, Kerry; Pourcain, Beate St; Bailey, Maggie; Persson, Martin; Ho, Karen M; Ring, Susan; Marsh, Cathy; Albery, Liz; Rumsey, Nichola; Sandy, Jonathan
2016-05-01
Cleft lip and/or palate (CL/P) is one of the most common birth conditions in the world, but little is known about its causes. Professional opinion remains divided as to which treatments may be the most beneficial for patients with CL/P, and the factors that contribute to psychological adjustment are poorly understood. The use of different methodological approaches and tools plays a key role in hampering efforts to address discrepancies within the evidence base. A new UK-wide program of research, The Cleft Collective, was established to combat many of these methodological challenges and to address some of the key research questions important to all CL/P stakeholders. To describe the establishment of CL/P cohort studies in the United Kingdom and to consider the many opportunities this resource will generate. To date, protocols have been developed and implemented within most UK cleft teams. Biological samples, environmental information, and data pertaining to parental psychological well-being and child development are being collected successfully. Recruitment is currently on track to meet the ambitious target of approximately 9800 individuals from just more than 3000 families. The Cleft Collective cohort studies represent a significant step forward for research in the field of CL/P. The data collected will form a comprehensive resource of information about individuals with CL/P and their families. This resource will provide the basis for many future projects and collaborations, both in the United Kingdom and around the world.
2010-01-01
Background Pseudomonas aeruginosa is commonly associated with contact lens (CL) -related eye infections, for which bacterial adhesion and biofilm formation upon hydrogel CLs is a specific risk factor. Whilst P. aeruginosa has been widely used as a model organism for initial biofilm formation on CLs, in-vitro models that closely reproduce in-vivo conditions have rarely been presented. Results In the current investigation, a novel in-vitro biofilm model for studying the adherence of P. aeruginosa to hydrogel CLs was established. Nutritional and interfacial conditions similar to those in the eye of a CL wearer were created through the involvement of a solid:liquid and a solid:air interface, shear forces and a complex artificial tear fluid. Bioburdens varied depending on the CL material and biofilm maturation occurred after 72 h incubation. Whilst a range of biofilm morphologies were visualised including dispersed and adherent bacterial cells, aggregates and colonies embedded in extracellular polymer substances (EPS), EPS fibres, mushroom-like formations, and crystalline structures, a compact and heterogeneous biofilm morphology predominated on all CL materials. Conclusions In order to better understand the process of biofilm formation on CLs and to test the efficacy of CL care solutions, representative in-vitro biofilm models are required. Here, we present a three-phase biofilm model that simulates the environment in the eye of a CL wearer and thus generates biofilms which resemble those commonly observed in-situ. PMID:21062489
Scott, R. H.; Sweeney, M. I.; Kobrinsky, E. M.; Pearson, H. A.; Timms, G. H.; Pullar, I. A.; Wedley, S.; Dolphin, A. C.
1992-01-01
1. Toxins from invertebrates have proved useful tools for investigation of the properties of ion channels. In this study we describe the actions of arginine polyamine which is believed to be a close analogue of FTX, a polyamine isolated from the American funnel web spider, Agelenopsis aperta. 2. Voltage-activated Ca2+ currents and Ca(2+)-dependent Cl- currents recorded from rat cultured dorsal root ganglion neurones were reversibly inhibited by arginine polyamine (AP; 0.001 to 100 microM). Low voltage-activated T-type Ca2+ currents were significantly more sensitive to AP than high voltage-activated Ca2+ currents. The IC50 values for the actions of AP on low and high voltage-activated Ca2+ currents were 10 nM and 3 microM respectively. AP was equally effective in inhibiting high voltage-activated currents carried by Ba2+, Sr2+ or Ca2+. However, AP-induced inhibition of Ca2+ currents was attenuated by increasing the extracellular Ca2+ concentration from 2 mM to 10 mM. 3. The actions of AP on a Ca(2+)-independent K+ current were more complex, 1 microM AP enhanced this current but 10 microM AP had a dual action, initially enhancing but then inhibiting the K+ current. 4. gamma-Aminobutyric acid-activated Cl- currents were also reversibly inhibited by 1 to 10 microM AP. In contrast N-methyl-D-aspartate currents recorded from rat cultured cerebellar neurones were greatly enhanced by 10 microM AP. 5. We conclude that at a concentration of 10 nM, AP is a selective inhibitor of low threshold T-type voltage-activated Ca2+ currents.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1380382
Anti-Leishmania Activity of Osthole
Kermani, Elaheh Kordzadeh; Sajjadi, Seyed Ebrahim; Hejazi, Seyed Hossein; Arjmand, Reza; Saberi, Sedigheh; Eskandarian, Abbas Ali
2016-01-01
Background: Treatment of cutaneous leishmaniasis (CL) is occasionally highly resistant to pentavalent antimonials, the gold standard in pharmacotherapy of CL. Since there is no effective vaccine, the discovery of natural antileishmanial products as complementary therapeutic agents could be used to improve the current regimens. Objective: In this study in vitro and in vivo antileishmanial activities of osthole, a natural coumarin known to possess antibacterial and parasiticidal activities are evaluated. Materials and Methods: Leishmania major infected J774.A1 macrophages were treated with increasing concentrations of osthole. CL lesions of BALB/c mice were treated topically with 0.2% osthole. Results: Osthole exhibited dose-dependent leishmanicidal activity against intracellular amastigotes with IC50 value of 14.95 μg/ml. Treatment of CL lesions in BALB/c mice with osthole significantly declined lesion progression compared to untreated mice (P < 0.05), however did not result in recovery. Conclusion: Osthole demonstrated remarkable leishmanicidal activity in vitro. Higher concentrations of osthole may demonstrate the therapeutic property in vivo. SUMMARY In vitro and in vivo antileishmanial activities of osthole, a pernylated coumarin extracted from Prangos asperula Boiss., are studied against Leishmania major. PMID:27114685
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Liang; Luo, Miao; Qin, Sikai
2015-10-05
Antimony selenide (Sb{sub 2}Se{sub 3}) is appealing as a promising light absorber because of its intrinsically benign grain boundaries, suitable band gap (∼1.1 eV), strong absorption coefficient, and relatively environmentally friendly constituents. Recently, we achieved a certified 5.6% efficiency Sb{sub 2}Se{sub 3} thin film solar cell with the assistance of ambient CdCl{sub 2} treatment on the CdS buffer layer. Here, we focused on investigating the underlying mechanism from a combined materials and device physics perspective applying current density-voltage (J-V) fitting analysis, atomic force microscope, X-ray photoelectron spectroscopy, fluorescence, and UV–Vis transmission spectroscopy. Our results indicated that ambient CdCl{sub 2} treatment onmore » CdS film not only improved CdS grain size and quality, but also incorporated Cl and more O into the film, both of which can significantly improve the heterojunction quality and device performance of CdS/Sb{sub 2}Se{sub 3} solar cells.« less
Liao, Nina; Joshi, Mahesh Kumar; Tiwari, Arjun Prasad; Park, Chan-Hee; Kim, Cheol Sang
2016-07-01
The objective of the current work is to incorporate calcium lactate (CL) into polycaprolactone (PCL)/zein composite micro/nanofibrous scaffolds via electrospinning to engineer bone tissue. In this study, a composite micro/nano fibrous scaffold was fabricated using a single two-nozzle electrospinning system to combine indicative nanofibers from a blended solution of zein-CL and micro-sized fibers from a PCL solution. Incorporation of the CL into the PCL/zein fibers were shown to improve the wettability, tensile strength and biological activity of the composite mats. Moreover, the composite mats have a high efficiency to nucleate calcium phosphate from simulated body fluid (SBF) solution. An in vitro cell culture with osteoblast cells demonstrated that the electrospun composite mats possessed improved biological properties, including a better cell adhesion, spread and proliferation. This study has demonstrated that the PCL/zein-CL composite provides a simple platform to fabricate a new biomimetic scaffold for bone tissue engineering, which can recapitulate both the morphology of extracellular matrix and composition of the bone. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pillaiyar, Thanigaimalai; Manickam, Manoj; Namasivayam, Vigneshwaran; Hayashi, Yoshio; Jung, Sang-Hun
2016-07-28
Severe acute respiratory syndrome (SARS) is caused by a newly emerged coronavirus that infected more than 8000 individuals and resulted in more than 800 (10-15%) fatalities in 2003. The causative agent of SARS has been identified as a novel human coronavirus (SARS-CoV), and its viral protease, SARS-CoV 3CL(pro), has been shown to be essential for replication and has hence been recognized as a potent drug target for SARS infection. Currently, there is no effective treatment for this epidemic despite the intensive research that has been undertaken since 2003 (over 3500 publications). This perspective focuses on the status of various efficacious anti-SARS-CoV 3CL(pro) chemotherapies discovered during the last 12 years (2003-2015) from all sources, including laboratory synthetic methods, natural products, and virtual screening. We describe here mainly peptidomimetic and small molecule inhibitors of SARS-CoV 3CL(pro). Attempts have been made to provide a complete description of the structural features and binding modes of these inhibitors under many conditions.
Zhou, Chao; Zhang, H P; Tang, Jinyao; Wang, Wei
2018-03-13
Micromotors are an emerging class of micromachines that could find potential applications in biomedicine, environmental remediation, and microscale self-assembly. Understanding their propulsion mechanisms holds the key to their future development. This is especially true for a popular category of micromotors that are driven by asymmetric surface photochemical reactions. Many of these micromotors release ionic species and are propelled via a mechanism termed "ionic self-diffusiophoresis". However, exactly how it operates remains vague. To address this fundamental yet important issue, we have developed a dielectric-AgCl Janus micromotor that clearly moves away from the AgCl side when exposed to UV or strong visible light. Taking advantage of numerical simulations and acoustic levitation techniques, we have provided tentative explanations for its speed decay over time as well as its directionality. In addition, photoactive AgCl micromotors demonstrate interesting gravitactic behaviors that hint at three-dimensional transport or sensing applications. The current work presents a well-controlled and easily fabricated model system to understand chemically powered micromotors, highlighting the usefulness of acoustic levitation for studying active matter free from the effect of boundaries.
Direct Imaging of Gene-Carrier Complexes in Animal Cells
NASA Astrophysics Data System (ADS)
Lin, Alison J.; Slack, Nelle L.; Ahmad, Ayesha; Matsumoto, Brian; Safinya, Cyrus R.
1998-03-01
Cationic lipids are promising gene carriers for DNA transfection. Establishing the correlations between structures of cationic lipid/DNA complexes (CL-DNA) and pathways of transfection will greatly aid us in achieving the optimal CL-DNA transfections. Our first step is to determine the uptake mechanism of DNA by studying the interactions and structures of DNA and cationic lipids. X-ray diffraction shows that the CL-DNA undergoes structural phase transitions from lamellar( J. Raedler, I. Koltover, T. Salditt, C. R. Safinya, Science 275, 810 (1997).) to inverted hexagonal self-assemblies as we change the lipid composition. X-ray diffraction and optical microscopy techniques are used to directly image the progress of the CL-DNA in mouse L-cells and unravel the complex structure in-situ. Fluorescence and confocal optical microscopy techniques allow us to monitor the interactions between the complexes and different organelles in the cell cytoplasm. Current results indicate that once inside cells, complexes containing DOPE follow a different pathway from those containing DOPC. This research is funded by NSF-DMR-9624091, PRF-31352-AC7, and Los Alamos-STB/UC:96-108.
Lu, Guojin; Zangari, Giovanni
2005-04-28
The electrochemical deposition of Pt on highly oriented pyrolytic graphite (HOPG) from H2PtCl6 solutions was investigated by cyclic voltammetry and chronoamperometry. The effects of deposition overpotential, H2PtCl6 concentration, supporting electrolyte, and anion additions on the deposition process were evaluated. Addition of chloride inhibits Pt deposition due to adsorption on the substrate and blocking of reduction sites, while SO4(2-) and ClO4- slightly promote Pt reduction. By comparing potentiostatic current-time transients with the Scharifker-Hills model, a transition from progressive to instantaneous nucleation was observed when increasing the deposition overpotential. Following addition of chloride anions the fit of experimental transients with the instantaneous nucleation mode improves, while the addition of SO4(2-) induces only small changes. Chloride anions strongly inhibit the reduction process, which is shifted in the cathodic direction. The above results indicate that the most appropriate conditions for growing Pt nanoparticles on HOPG with narrow size distribution are to use an H2PtCl6 solution with HCl as supporting electrolyte and to apply a high cathodic overpotential.
Electrochemical Studies of Redox Systems for Energy Storage
NASA Technical Reports Server (NTRS)
Wu, C. D.; Calvo, E. J.; Yeager, E.
1983-01-01
Particular attention was paid to the Cr(II)/Cr(III) redox couple in aqueous solutions in the presence of Cl(-) ions. The aim of this research has been to unravel the electrode kinetics of this redox couple and the effect of Cl(1) and electrode substrate. Gold and silver were studied as electrodes and the results show distinctive differences; this is probably due to the role Cl(-) ion may play as a mediator in the reaction and the difference in state of electrical charge on these two metals (difference in the potential of zero charge, pzc). The competition of hydrogen evolution with CrCl3 reduction on these surfaces was studied by means of the rotating ring disk electrode (RRDE). The ring downstream measures the flux of chromous ions from the disk and therefore separation of both Cr(III) and H2 generation can be achieved by analyzing ring and disk currents. The conditions for the quantitative detection of Cr(2+) at the ring electrode were established. Underpotential deposition of Pb on Ag and its effect on the electrokinetics of Cr(II)/Cr(III) reaction was studied.
Almássy, János; Siguenza, Elias; Skaliczki, Marianna; Matesz, Klara; Sneyd, James; Yule, David I; Nánási, Péter P
2018-04-01
The plasma membrane of parotid acinar cells is functionally divided into apical and basolateral regions. According to the current model, fluid secretion is driven by transepithelial ion gradient, which facilitates water movement by osmosis into the acinar lumen from the interstitium. The osmotic gradient is created by the apical Cl - efflux and the subsequent paracellular Na + transport. In this model, the Na + -K + pump is located exclusively in the basolateral membrane and has essential role in salivary secretion, since the driving force for Cl - transport via basolateral Na + -K + -2Cl - cotransport is generated by the Na + -K + pump. In addition, the continuous electrochemical gradient for Cl - flow during acinar cell stimulation is maintained by the basolateral K + efflux. However, using a combination of single-cell electrophysiology and Ca 2+ -imaging, we demonstrate that photolysis of Ca 2+ close to the apical membrane of parotid acinar cells triggered significant K + current, indicating that a substantial amount of K + is secreted into the lumen during stimulation. Nevertheless, the K + content of the primary saliva is relatively low, suggesting that K + might be reabsorbed through the apical membrane. Therefore, we investigated the localization of Na + -K + pumps in acinar cells. We show that the pumps appear evenly distributed throughout the whole plasma membrane, including the apical pole of the cell. Based on these results, a new mathematical model of salivary fluid secretion is presented, where the pump reabsorbs K + from and secretes Na + to the lumen, which can partially supplement the paracellular Na + pathway.
NASA Astrophysics Data System (ADS)
Saffari, Mohaddeseh; Mohebpour, Mohammad Ali; Rahimpour Soleimani, H.; Bagheri Tagani, Meysam
2017-10-01
Since perovskite solar cells have attracted a great deal of attention over the past few years, the enhancement of their optical absorption and current density are among the basic upcoming challenges. For this reason, first, we have studied the structural and optical properties of organic-inorganic hybrid halide perovskite CH3NH3PbI3 and the compounds doped by chlorine halogen CH3NH3PbI3-x Cl x in the cubic phase by using a density functional theory (DFT). Then, we model a single-junction perovskite solar cell based on a full solution to Maxwell’s equations, using a finite difference time domain (FDTD) technique, which helps us to investigate the light absorption efficiency and optical current density of the cell with CH3NH3PbI3-x Cl x (x = 0, 1, 2, 3) as the active layer. The results suggest that increasing the amount of chlorine in CH3NH3PbI3-x Cl x compound leads to an increase in the bandgap energy, as well as a decrease in the lattice constants and optical properties, like the refractive index and extinction coefficient of the structure. Also, the results obtained by the simulation express that by taking advantage of the light trapping techniques of SiO2, a remarkable increase of light absorption will be achieved to the magnitude of 83.13%, which is noticeable.
NASA Astrophysics Data System (ADS)
Korani, Aazam; Salimi, Abdollah; Hadadzadeh, Hasan
2015-05-01
Here, [Ni(phendion) (phen)]Cl2 complex, (phendion and phen are 1,10-phenanthroline-5,6-dione and 5-amino-1, 10-phenanthrolin) covalently attached onto carboxyl functionalized multi walls carbon nanotube modified glassy carbon electrode (GCE/MWCNTs-COOH) using solid phase interactions and combinatorial approaches.The attached [Ni(phendion) (phen)]Cl2 complex displays a surface controlled electrode process and it acts as an effective redox mediator for electrocatalytic oxidation of dihydronicotinamide adenine dinucleotide (NADH) at reduced overpotentials. With co-immobilization of glucose dehydrogenase enzyme (GDH) by crosslinking an effective biocatalyst for glucose oxidation designed. The onset potential and current density are -0.1 V versus Ag/AgCl electrode and 0.550 mA cm-2, which indicate the applicability of the proposed system as an efficient bioanode for biofuel cell (BFC) design. A GCE/MWCNTs modified with electrodeposited gold nanoparticles (AuNPs) as a platform for immobilization of bilirubin oxidase (BOD) and the prepared GCE/MWCNTs/AuNPs/BOD biocathode exhibits an onset potential of 0.56 V versus Ag/AgCl. The performance of the fabricated bioanode and biocathode in a membraneless enzyme based glucose/O2 biofuel cell is evaluated. The open circuit voltage of the cell and maximum current density are 520 mV and 0.233 mA cm-2, respectively, while maximum power density of 40 μWcm-2 achieves at voltage of 280 mV with stable output power after 24 h continues operation.
Chemistry and Spectroscopy of Frozen Chloride Salts on Icy Bodies
NASA Astrophysics Data System (ADS)
Johnson, P. V.; Thomas, E. C.; Hodyss, R. P.; Vu, T. H.; Choukroun, M.
2016-12-01
Understanding the habitability of Europa's ocean is of great interest to astrobiology and is the focus of missions currently being considered to explore Europa. Currently, our best means of constraining the subsurface ocean composition and its subsequent habitability is by further study of Europa's surface chemical composition. Analysis of existing (and future) remote sensing data is limited by the availability of spectral libraries of candidate materials under relevant conditions (temperature, thermal/radiation history, etc.). Geochemical predictions of Europa's ocean composition suggest that chloride salts are likely to exist on the surface of Europa as well as other ocean worlds. We have conducted a study of frozen chloride-salt brines prepared at temperatures, pressures and radiation conditions (UV) in order to simulate conditions on the surface of Europa and other airless bodies. Hydration states of various chloride salts as a function of temperature were determined using Raman spectroscopy. Near IR reflectance spectra of identically prepared samples were measured to provide reference spectra of the identified hydrated salts. We find that the freezing of NaCl at temperatures ranging from 80 K to 233 K forms hydrohalite. In contrast, KCl hydrates are not formed from the freezing of KCl brines. In addition, a stable hexahydrate forms from the freezing of MgCl2 solutions, while a hexahydrate, a tetrahydrate, and a dihydrate, form upon freezing of CaCl2 solutions. Salts were observed to dehydrated with increasing temperatures, leading to a succession of hydration states in the case of CaCl2. Irradiation with vacuum ultraviolet light was observed to lead to dehydration as well.
Cai, Weiwei; Liu, Jiaqi; Zhang, Xiangru; Ng, Wun Jern; Liu, Yu
2016-11-01
On-line chemical cleaning of membranes with sodium hypochlorite (NaClO) has been commonly employed for maintaining a constant permeability of membrane bioreactor (MBR) due to its simple and efficient operation. However, activated sludge is inevitably exposed to NaClO during this cleaning process. In spite of the broad applications of on-line chemical cleaning in MBR such as chemical cleaning-in-place (CIP) and chemical enhanced backwash (CEB), little information is currently available for the release of emerging dissolved organic matter (DOM) and byproducts from this prevalent practice. Therefore, in this study, activated sludge suspended in a phosphate buffered saline solution was exposed to different doses of NaClO in order to determine the generation of potential DOM and byproducts. The results showed the occurrence of significant DOM release (up to 24.7 mg/L as dissolved organic carbon) after exposure to NaClO for 30 min. The dominant components of the released DOM were characterized to be humic acid-like as well as protein-like substances by using an excitation-emission matrix fluorescence spectrophotometer. Furthermore, after the contact of activated sludge with NaClO, 19 kinds of chlorinated and brominated byproducts were identified by ultra performance liquid chromatography/electrospray ionization-triple quadrupole mass spectrometry, eight of which were confirmed and characterized with standard compounds. Many byproducts were found to be halogenated aromatic compounds, including halopyrroles and halo(hydro)benzoquinones, which had been reported to be significantly more toxic than the halogenated aliphatic ones. Consequently, this study offers new insights into the practice of on-line chemical cleaning, and opens up a window to re-examine the current operation of MBR by looking into the generation of micropollutants. Copyright © 2016 Elsevier Ltd. All rights reserved.
See, Kimberly A; Liu, Yao-Min; Ha, Yeyoung; Barile, Christopher J; Gewirth, Andrew A
2017-10-18
Magnesium batteries offer an opportunity to use naturally abundant Mg and achieve large volumetric capacities reaching over four times that of conventional Li-based intercalation anodes. High volumetric capacity is enabled by the use of a Mg metal anode in which charge is stored via electrodeposition and stripping processes, however, electrolytes that support efficient Mg electrodeposition and stripping are few and are often prepared from highly reactive compounds. One interesting electrolyte solution that supports Mg deposition and stripping without the use of highly reactive reagents is the magnesium aluminum chloride complex (MACC) electrolyte. The MACC exhibits high Coulombic efficiencies and low deposition overpotentials following an electrolytic conditioning protocol that stabilizes species necessary for such behavior. Here, we discuss the effect of the MgCl 2 and AlCl 3 concentrations on the deposition overpotential, current density, and the conditioning process. Higher concentrations of MACC exhibit enhanced Mg electrodeposition current density and much faster conditioning. An increase in the salt concentrations causes a shift in the complex equilibria involving both cations. The conditioning process is strongly dependent on the concentration suggesting that the electrolyte is activated through a change in speciation of electrolyte complexes and is not simply due to the annihilation of electrolyte impurities. Additionally, the presence of the [Mg 2 (μ-Cl) 3 ·6THF] + in the electrolyte solution is again confirmed through careful analysis of experimental Raman spectra coupled with simulation and direct observation of the complex in sonic spray ionization mass spectrometry. Importantly, we suggest that the ∼210 cm -1 mode commonly observed in the Raman spectra of many Mg electrolytes is indicative of the C 3v symmetric [Mg 2 (μ-Cl) 3 ·6THF] + . The 210 cm -1 mode is present in many electrolytes containing MgCl 2 , so its assignment is of broad interest to the Mg electrolyte community.
NASA Technical Reports Server (NTRS)
Jackson, Andrew; Davila, Alfonso F.; Boehlke, J. K.; Sturchio, Neil C.; Sevanthi, Ritesh; Estrada, Nubia; Brundrette, Megan; Lacell, Denis; McKay, Christopher P.; Poghosyan, Armen;
2016-01-01
The salt fraction in permafrost soils/sediments of the McMurdo Dry Valleys (MDV) of Antarctica can be used as a proxy for cold desert geochemical processes and paleoclimate reconstruction. Previous analyses of the salt fraction in MDV permafrost soils have largely been conducted in coastal regions where permafrost soils are variably affected by aqueous processes and mixed inputs from marine and stratospheric sources. We expand upon this work by evaluating permafrost soil/sediments in University Valley, located in the ultraxerous zone where both liquid water transport and marine influences are minimal. We determined the abundances of Cl(-), NO3(-, ClO4(-)and ClO3(-)in dry and ice-cemented soil/sediments, snow and glacier ice, and also characterized Cl(-) and NO3(-) isotopically. The data are not consistent with salt deposition in a sublimation till, nor with nuclear weapon testing fall-out, and instead point to a dominantly stratospheric source and to varying degrees of post depositional transformation depending on the substrate, from minimal alteration in bare soils to significant alteration (photodegradation and/or volatilization) in snow and glacier ice. Ionic abundances in the dry permafrost layer indicate limited vertical transport under the current climate conditions, likely due to percolation of snowmelt. Subtle changes in ClO4(-)/NO3(-) ratios and NO3(-) isotopic composition with depth and location may reflect both transport related fractionation and depositional history. Low molar ratios of ClO3(-)/ClO4(-) in surface soils compared to deposition and other arid systems suggest significant post depositional loss of ClO3(-), possibly due to reduction by iron minerals, which may have important implications for oxy-chlorine species on Mars. Salt accumulation varies with distance along the valley and apparent accumulation times based on multiple methods range from approximately 10 to 30 kyr near the glacier to 70-200 kyr near the valley mouth. The relatively young age of the salts and relatively low and homogeneous anion concentrations in the ice-cemented sediments point to either a mechanism of recent salt removal, or to relatively modern permafrost soils (less than 1 million years). Together, our results show that near surface salts in University Valley serve as an end-member of stratospheric sources not subject to biological processes or extensive remobilization.
Brogan, P T; Henning, H; Stout, T A E; de Ruijter-Villani, M
2016-03-01
Colour-flow Doppler sonography has been described as a means of assessing corpus luteum (CL) function rapidly, because area of luteal blood vessels correlates well with circulating progesterone (P4) concentrations [P4] in oestrous cycling mares. The aim of this study was to assess the relationships between CL size and vascularity, and circulating [P4] during early pregnancy in mares, and to determine whether luteal blood flow was a useful aid for selecting an embryo transfer recipient. Equine embryos (n=48) were recovered 8 days after ovulation and were transferred to available recipient mares as part of a commercial program with the degree of synchrony in timing of recipient ovulation ranging from 1 day before to 4 days after the donor. Immediately prior to embryo transfer (ET), maximum CL cross-section and blood vessel areas were assessed sonographically, and jugular blood was collected to measure plasma [P4]. Sonographic measurements and jugular blood collection were repeated at day 4 after ET for all mares, and again at days 11, 18 and 25 after ET in mares that were pregnant. The number of grey-scale and colour pixels within the CL was subsequently quantified using ImageJ software. The CL blood flow correlated significantly but weakly with plasma [P4] on the day of transfer and on day 4 after ET in all mares, and on days 11 and 25 after ET in pregnant mares (r=0.30-0.36). The CL area and plasma [P4] were also correlated on each day until day 11 after ET (r=0.49-0.60). The CL colour pixel area decreased significantly after day 18, whereas CL area was already decreasing by day 4 after ET. The CL area, area of blood flow, or [P4] was predictive of pregnancy. Findings in the present study suggest that both CL area and blood flow are correlated with circulating [P4] at the time of transfer and in early pregnancy. Evaluation of the CL using B-mode or CF sonography, although practical, provides no improvement in the selection of recipients or prediction of pregnancy outcomes than methods employed currently. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jackson, Andrew; Davila, Alfonso F.; Böhlke, John Karl; Sturchio, Neil C.; Sevanthi, Ritesh; Estrada, Nubia; Brundrett, Maeghan; Lacelle, Denis; McKay, Christopher P.; Poghosyan, Armen; Pollard, Wayne; Zacny, Kris
2016-06-01
The salt fraction in permafrost soils/sediments of the McMurdo Dry Valleys (MDV) of Antarctica can be used as a proxy for cold desert geochemical processes and paleoclimate reconstruction. Previous analyses of the salt fraction in MDV permafrost soils have largely been conducted in coastal regions where permafrost soils are variably affected by aqueous processes and mixed inputs from marine and stratospheric sources. We expand upon this work by evaluating permafrost soil/sediments in University Valley, located in the ultraxerous zone where both liquid water transport and marine influences are minimal. We determined the abundances of Cl-, NO3-, ClO4- and ClO3- in dry and ice-cemented soil/sediments, snow and glacier ice, and also characterized Cl- and NO3- isotopically. The data are not consistent with salt deposition in a sublimation till, nor with nuclear weapon testing fall-out, and instead point to a dominantly stratospheric source and to varying degrees of post depositional transformation depending on the substrate, from minimal alteration in bare soils to significant alteration (photodegradation and/or volatilization) in snow and glacier ice. Ionic abundances in the dry permafrost layer indicate limited vertical transport under the current climate conditions, likely due to percolation of snowmelt. Subtle changes in ClO4-/NO3- ratios and NO3- isotopic composition with depth and location may reflect both transport related fractionation and depositional history. Low molar ratios of ClO3-/ClO4- in surface soils compared to deposition and other arid systems suggest significant post depositional loss of ClO3-, possibly due to reduction by iron minerals, which may have important implications for oxy-chlorine species on Mars. Salt accumulation varies with distance along the valley and apparent accumulation times based on multiple methods range from ∼10 to 30 kyr near the glacier to 70-200 kyr near the valley mouth. The relatively young age of the salts and relatively low and homogeneous anion concentrations in the ice-cemented sediments point to either a mechanism of recent salt removal, or to relatively modern permafrost soils (<1 million years). Together, our results show that near surface salts in University Valley serve as an end-member of stratospheric sources not subject to biological processes or extensive remobilization.
pH-Sensitive carboxymethyl chitosan-modified cationic liposomes for sorafenib and siRNA co-delivery.
Yao, Yao; Su, Zhihui; Liang, Yanchao; Zhang, Na
2015-01-01
Combination of chemotherapeutic drug and small interfering RNA (siRNA) can affect multiple disease pathways and has been proven effective in suppressing tumor progression. Co-delivery of drug and siRNA within a same nanocarrier is a vital means in this field. The present study aimed at the development of a pH-sensitive liposome to co-deliver drug and siRNA to tumor region. Driven by the electrostatic interaction, the pH-sensitive material, carboxymethyl chitosan (CMCS), was coated onto the surface of the cationic liposome (CL) preloaded with sorafenib (Sf) and siRNA (Si). To evaluate whether the resulting CMCS-modified Sf and siRNA co-delivery cationic liposome (CMCS-SiSf-CL) enhanced antitumor efficiency after systematic administration, in vitro and in vivo experiments were evaluated in HepG2 cells and the H22 cells-bearing Kunming mice model. The experimental results demonstrated that CMCS-SiSf-CL was able to condense siRNA efficiently and protect siRNA from being degraded by serum and RNase. The release rate of Sf from CMCS-modified liposome exhibited pH-sensitive release behavior. Furthermore, in vitro cellular uptake results showed that CMCS-SiSf-CL yielded higher fluorescence intensity at pH 6.5 than at pH 7.4, and that siRNA could be delivered to tumor site by CMCS-SiSf-CL in vivo. The in vivo antitumor efficacy showed that CMCS-Sf-CL inhibits tumor growth effectively when compared with free Sf solution. In current experimental conditions, this liposomal formulation did not show significant toxicity both in vitro and in vivo. Therefore, co-delivering Sf with siRNA by CMCS-SiSf-CL might provide a promising approach for tumor therapy.
Long-term corrosion of a Ga-containing restorative material.
Sarkar, N K; Moiseyeva, R; Berzins, D W; Osborne, J W
2000-03-01
The aim was to simulate and characterize the long-term corrosion of a Ga-containing alloy (Galloy, SDI). To induce corrosion, cylindrical specimens, 8 x 4 mm, of the material were subject to potentiostatic polarization at -0.1 V (SCE) in a phosphated buffered saline (PBS) solution at 20 degrees C for d. The current-time transients during polarization were recorded and the corresponding anodic charge, Q, was calculated. Parallel potentiostatic corrosion tests in a Cl-free PBS solution were also conducted to demonstrate the significance of the Cl- ion in corrosion. In addition, potentiodynamic anodic polarization tests were performed to characterize the overall corrosion behavior of the alloy in both electrolytes. The external and internal corroded layers, formed during potentiostatic corrosion in PBS, were measured by optical microscopy. SEM and EDXA were used to characterize the morphology and composition of the potentiostatically polarized surfaces. Galloy was passive in Cl-free PBS. The Cl- ion in PBS destroyed passivity and initiated a "dissolution-precipitation" type reaction during potentiostatic corrosion. The latter led to circumferential internal corrosion and growth of a layer of external corrosion products. The thickness of the internal and external corrosion layers was 0.77 +/- 0.07 and 0.86 +/- 0.37 mm, respectively. The Q value (89.3 +/- 13.7 C/cm2) in PBS was about two orders of magnitude higher than that (0.66 +/- 0.24 C/cm2) in Cl-free PBS. The corrosion products contained Sn, Ga, In, Cu, O and Cl. Massive internal and external corrosion in a Cl-containing medium as in saliva, accumulation of corrosion products at the cavity wall, and the consequent stress build-up contribute to post-operative pain, tooth straining, marginal breakdown and fractured teeth reported with the clinical use of Galloy.
Suganthi, Muralidharan; Sangeetha, Gopalakrishnan; Gayathri, Govindaraj; Ravi Sankar, Bhaskaran
2012-12-01
Lithium, the first element of Group I in the periodic system, is used to treat bipolar psychiatric disorders. Lithium chloride (LiCl) is a selective inhibitor of glycogen synthase kinase-3β (GSK-3β), a serine/threonine kinase that regulates many cellular processes, in addition to its role in the regulation of glycogen synthase. GSK-3β is emerged as a promising drug target for various neurological diseases, type-2 diabetes, cancer, and inflammation. Several works have demonstrated that lithium can either inhibit or stimulate growth of normal and cancer cells. Hence, the present study is focused to analyze the underlying mechanisms that dictate the biphasic oncogenic properties of LiCl. In the current study, we have investigated the dose-dependent effects of LiCl on human breast cancer cells (MCF-7) by assessing the consequences on cytotoxicity and protein expressions of signaling molecules crucial for the maintenance of cell survival. The results showed breast cancer cells respond in a diverse manner to LiCl, i.e., at lower concentrations (1, 5, and 10 mM), LiCl induces cell survival by inhibiting apoptosis through regulation of GSK-3β, caspase-2, Bax, and cleaved caspase-7 and by activating anti-apoptotic proteins (Akt, β-catenin, Bcl-2, and cyclin D1). In contrast, at high concentrations (50 and 100 mM), it induces apoptosis by reversing these effects. Moreover, LiCl also alters the sodium and potassium levels thereby altering the membrane potential of MCF-7 cells. Thus it is inferred that LiCl exerts a dose-dependent biphasic effect on breast cancer cells (MCF-7) by altering the apoptotic/anti-apoptotic balance.
Zanos, Panos; Piantadosi, Sean C.; Wu, Hui-Qiu; Pribut, Heather J.; Dell, Matthew J.; Can, Adem; Snodgrass, H. Ralph; Zarate, Carlos A.; Schwarcz, Robert
2015-01-01
Currently approved antidepressant drug treatment typically takes several weeks to be effective. The noncompetitive N-methyl-d-aspartate (NMDA) receptor antagonist ketamine has shown efficacy as a rapid-acting treatment of depression, but its use is associated with significant side effects. We assessed effects following blockade of the glycineB co-agonist site of the NMDA receptor, located on the GluN1 subunit, by the selective full antagonist 7-chloro-kynurenic acid (7-Cl-KYNA), delivered by systemic administration of its brain-penetrant prodrug 4-chlorokynurenine (4-Cl-KYN) in mice. Following administration of 4-Cl-KYN, 7-Cl-KYNA was promptly recovered extracellularly in hippocampal microdialysate of freely moving animals. The behavioral responses of the animals were assessed using measures of ketamine-sensitive antidepressant efficacy (including the 24-hour forced swim test, learned helplessness test, and novelty-suppressed feeding test). In these tests, distinct from fluoxetine, and similar to ketamine, 4-Cl-KYN administration resulted in rapid, dose-dependent and persistent antidepressant-like effects following a single treatment. The antidepressant effects of 4-Cl-KYN were prevented by pretreatment with glycine or the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione (NBQX). 4-Cl-KYN administration was not associated with the rewarding and psychotomimetic effects of ketamine, and did not induce locomotor sensitization or stereotypic behaviors. Our results provide further support for antagonism of the glycineB site for the rapid treatment of treatment-resistant depression without the negative side effects seen with ketamine or other channel-blocking NMDA receptor antagonists. PMID:26265321
Transgenic mouse lines for non-invasive ratiometric monitoring of intracellular chloride
Batti, Laura; Mukhtarov, Marat; Audero, Enrica; Ivanov, Anton; Paolicelli, Rosa Chiara; Zurborg, Sandra; Gross, Cornelius; Bregestovski, Piotr; Heppenstall, Paul A.
2013-01-01
Chloride is the most abundant physiological anion and participates in a variety of cellular processes including trans-epithelial transport, cell volume regulation, and regulation of electrical excitability. The development of tools to monitor intracellular chloride concentration ([Cli]) is therefore important for the evaluation of cellular function in normal and pathological conditions. Recently, several Cl-sensitive genetically encoded probes have been described which allow for non-invasive monitoring of [Cli]. Here we describe two mouse lines expressing a CFP-YFP-based Cl probe called Cl-Sensor. First, we generated transgenic mice expressing Cl-Sensor under the control of the mouse Thy1 mini promoter. Cl-Sensor exhibited good expression from postnatal day two (P2) in neurons of the hippocampus and cortex, and its level increased strongly during development. Using simultaneous whole-cell monitoring of ionic currents and Cl-dependent fluorescence, we determined that the apparent EC50 for Cli was 46 mM, indicating that this line is appropriate for measuring neuronal [Cli] in postnatal mice. We also describe a transgenic mouse reporter line for Cre-dependent conditional expression of Cl-Sensor, which was targeted to the Rosa26 locus and by incorporating a strong exogenous promoter induced robust expression upon Cre-mediated recombination. We demonstrate high levels of tissue-specific expression in two different Cre-driver lines targeting cells of the myeloid lineage and peripheral sensory neurons. Using these mice the apparent EC50 for Cli was estimated to be 61 and 54 mM in macrophages and DRG, respectively. Our data suggest that these mouse lines will be useful models for ratiometric monitoring of Cli in specific cell types in vivo. PMID:23734096
Moeser, Adam J; Nighot, Prashant K; Engelke, Kory J; Ueno, Ryuji; Blikslager, Anthony T
2007-02-01
Previous studies utilizing an ex vivo porcine model of intestinal ischemic injury demonstrated that prostaglandin (PG)E(2) stimulates repair of mucosal barrier function via a mechanism involving Cl(-) secretion and reductions in paracellular permeability. Further experiments revealed that the signaling mechanism for PGE(2)-induced mucosal recovery was mediated via type-2 Cl(-) channels (ClC-2). Therefore, the objective of the present study was to directly investigate the role of ClC-2 in mucosal repair by evaluating mucosal recovery in ischemia-injured intestinal mucosa treated with the selective ClC-2 agonist lubiprostone. Ischemia-injured porcine ileal mucosa was mounted in Ussing chambers, and short-circuit current (I(sc)) and transepithelial electrical resistance (TER) were measured in response to lubiprostone. Application of 0.01-1 microM lubiprostone to ischemia-injured mucosa induced concentration-dependent increases in TER, with 1 microM lubiprostone stimulating a twofold increase in TER (DeltaTER = 26 Omega.cm(2); P < 0.01). However, lubiprostone (1 microM) stimulated higher elevations in TER despite lower I(sc) responses compared with the nonselective secretory agonist PGE(2) (1 microM). Furthermore, lubiprostone significantly (P < 0.05) reduced mucosal-to-serosal fluxes of (3)H-labeled mannitol to levels comparable to those of normal control tissues and restored occludin localization to tight junctions. Activation of ClC-2 with the selective agonist lubiprostone stimulated elevations in TER and reductions in mannitol flux in ischemia-injured intestine associated with structural changes in tight junctions. Prostones such as lubiprostone may provide a selective and novel pharmacological mechanism of accelerating recovery of acutely injured intestine compared with the nonselective action of prostaglandins such as PGE(2).
Tang, Xianqiang; Li, Qingyun; Wang, Zhenhua; Hu, Yanping; Hu, Yuan; Scholz, Miklas
2018-03-10
Novel soil remediation equipment based on electro-kinetic geosynthetics (EKG) was developed for in situ isolation of metals from paddy soil. Two mutually independent field plot experiments A and B (with and without electric current applied) were conducted. After saturation using ferric chloride (FeCl 3 ) and calcium chloride (CaCl 2 ), soil water drainage capacity, soil cadmium (Cd) removal performance, energy consumption as well as soil residual of iron (Fe) and chloride (Cl) were assessed. Cadmium dissolved in the soil matrix and resulted in a 100% increase of diethylenetriamine-pentaacetic acid (DTPA) extracted phyto-available Cd. The total soil Cd content reductions were 15.20% and 26.58% for groups A and B, respectively, and electric field applications resulted in a 74.87% increase of soil total Cd removal. The electric energy consumption was only 2.17 kWh/m 3 for group B. Drainage by gravity contributed to > 90% of the overall soil dewatering capacity. Compared to conventional electro-kinetic technology, excellent and fast soil water drainage resulted in negligible hydrogen ion (H + ) and hydroxide ion (OH - ) accumulation at nearby electrode zones, which addressed the challenge of anode corrosion and cathode precipitation of soil metals. External addition of FeCl 3 and CaCl 2 caused soil Fe and Cl residuals and led to 4.33-7.59% and 139-172% acceptable augments in soil total Fe and Cl content, correspondingly, if compared to original untreated soils. Therefore, the novel soil remediation equipment developed based on EKG can be regarded as a promising new in situ technology for thoroughly isolating metals from large-scale paddy soil fields.
Differential Activation of Human Monocytes and Lymphocytes by Distinct Strains of Trypanosoma cruzi.
Magalhães, Luísa M D; Viana, Agostinho; Chiari, Egler; Galvão, Lúcia M C; Gollob, Kenneth J; Dutra, Walderez O
2015-01-01
Trypanosoma cruzi strains are currently classified into six discrete typing units (DTUs) named TcI to VI. It is known that these DTUs have different geographical distribution, as well as biological features. TcI and TcII are major DTUs found in patients from northern and southern Latin America, respectively. Our hypothesis is that upon infection of human peripheral blood cells, Y strain (Tc II) and Col cl1.7 (Tc I), cause distinct immunological changes, which might influence the clinical course of Chagas disease. We evaluated the infectivity of CFSE-stained trypomastigotes of Col cl1.7 and Y strain in human monocytes for 15 and 72 hours, and determined the immunological profile of lymphocytes and monocytes exposed to the different isolates using multiparameter flow cytometry. Our results showed a similar percentage and intensity of monocyte infection by Y and Col cl1.7. We also observed an increased expression of CD80 and CD86 by monocytes infected with Col cl1.7, but not Y strain. IL-10 was significantly higher in monocytes infected with Col cl1.7, as compared to Y strain. Moreover, infection with Col cl1.7, but not Y strain, led to an increased expression of IL-17 by CD8+ T cells. On the other hand, we observed a positive correlation between the expression of TNF-alpha and granzyme A only after infection with Y strain. Our study shows that while Col cl1.7 induces higher monocyte activation and, at the same time, production of IL-10, infection with Y strain leads to a lower monocyte activation but higher inflammatory profile. These results show that TcI and TcII have a distinct immunological impact on human cells during early infection, which might influence disease progression.
Zanos, Panos; Piantadosi, Sean C; Wu, Hui-Qiu; Pribut, Heather J; Dell, Matthew J; Can, Adem; Snodgrass, H Ralph; Zarate, Carlos A; Schwarcz, Robert; Gould, Todd D
2015-10-01
Currently approved antidepressant drug treatment typically takes several weeks to be effective. The noncompetitive N-methyl-d-aspartate (NMDA) receptor antagonist ketamine has shown efficacy as a rapid-acting treatment of depression, but its use is associated with significant side effects. We assessed effects following blockade of the glycineB co-agonist site of the NMDA receptor, located on the GluN1 subunit, by the selective full antagonist 7-chloro-kynurenic acid (7-Cl-KYNA), delivered by systemic administration of its brain-penetrant prodrug 4-chlorokynurenine (4-Cl-KYN) in mice. Following administration of 4-Cl-KYN, 7-Cl-KYNA was promptly recovered extracellularly in hippocampal microdialysate of freely moving animals. The behavioral responses of the animals were assessed using measures of ketamine-sensitive antidepressant efficacy (including the 24-hour forced swim test, learned helplessness test, and novelty-suppressed feeding test). In these tests, distinct from fluoxetine, and similar to ketamine, 4-Cl-KYN administration resulted in rapid, dose-dependent and persistent antidepressant-like effects following a single treatment. The antidepressant effects of 4-Cl-KYN were prevented by pretreatment with glycine or the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione (NBQX). 4-Cl-KYN administration was not associated with the rewarding and psychotomimetic effects of ketamine, and did not induce locomotor sensitization or stereotypic behaviors. Our results provide further support for antagonism of the glycineB site for the rapid treatment of treatment-resistant depression without the negative side effects seen with ketamine or other channel-blocking NMDA receptor antagonists. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.
Influence of inhalation anesthetics on ion transport across a planar bilayer lipid membrane.
Hichiri, Kei; Shirai, Osamu; Kano, Kenji
2012-01-01
Ion transport from one aqueous phase (W1) to another (W2) across a planar bilayer lipid membrane (BLM) in the presence of inhalation anesthetics was electrochemically investigated. In the absence of inhalation anesthetics in the BLM system, no ion transport current flowed between W1 and W2 across the BLM. When inhalation anesthetics such as halothane, chloroform, diethyl ether and trichloroethylene were added to the two aqueous phases or the BLM, the ion transport current quite clearly appeared. When the ratio of the concentration of KCl or NaCl in W1 to that in W2 was varied, the zero current potential across the BLM was shifted. By considering the magnitude of the potential shift, we concluded that the ion transport current can be predominantly ascribed to the transport of Cl(-) across the BLM. Since the dielectric constants of these anesthetics are larger than that of the inner hydrophobic domain of the BLM, the concentration of hydrophilic electrolyte ions in the BLM increases with the increase in the dielectric constant of the inner hydrophobic domain caused by addition of these anesthetics. These situations lead to an increase in the ion permeability coefficient.
Alternative medicine in allergies - prevalence, patterns of use, and costs.
Schäfer, T; Riehle, A; Wichmann, H-E; Ring, J
2002-08-01
There is evidence that the use of alternative medicine (AM) for allergies has increased. However, little is known from population-based studies about what determines its use. The objective of this study was to evaluate the patterns of use of AM for allergies. A population-based nested case-control study was conducted in 2000-01 using computer-assisted telephone interviews. Three hundred and fifty-one adults participated (median age 46 years) with allergies including hay fever, asthma, atopic eczema, and food hypersensitivity. Information was obtained on demographics, prevalence, motivation, information, type of AM, provider, costs, willingness to pay, and subjective assessment of AM. 26.5% of participants used AM because of their allergies. Compared to nonusers, this group of users was significantly younger (median age 43 vs 47; p=0.004) and better educated (school education > 8 year vs
NASA Astrophysics Data System (ADS)
Ye, Ke; Zhang, Mi Lin; Chen, Ye; Han, Wei; de Yan, Yong; Cao, Peng
2010-06-01
The electrochemical codeposition of Mg and Li at an aluminium electrode in LiCl-KCl (50:50 wt pct) melts containing different concentrations of MgCl2 at 893 K (620 °C) to form Al-Li-Mg alloys was investigated. Cyclic voltammograms showed that the potential of Li metal deposition at an Al electrode, before the addition of MgCl2, is more positive than that of Li metal deposition at an Mo electrode, which indicated the formation of an Al-Li alloy. The underpotential deposition of magnesium at an aluminium electrode leads to the formation of Al-Mg alloys, and the succeeding underpotential deposition of lithium on predeposited Al-Mg alloys leads to the formation of Al-Li-Mg alloys. Chronopotentiometric measurements indicated that the codeposition of Mg and Li occurs at current densities lower than -0.668 A cm-2 in LiCl-KCl-MgCl2 (8 wt pct) melts at an aluminium electrode. The chronoamperometric studies indicated that the onset potential for the codeposition of Mg and Li is -2.000 V, and the codeposition of Mg and Li at an aluminium electrode is formed into Al-Li-Mg alloys when the applied potentials are more negative than -2.000 V. X-ray diffraction and inductively coupled plasma analysis indicated that Al-Li-Mg alloys with different lithium and magnesium contents were prepared via potentiostatic and galvanostatic electrolysis. The microstructure of typical dual phases of the Al-Li-Mg alloy was characterized by an optical microscope and by scanning electron microscopy. The analysis of energy dispersive spectrometry showed that the elements of Al and Mg distribute homogeneously in the Al-Li-Mg alloy. The lithium and magnesium contents of Al-Li-Mg alloys can be controlled by MgCl2 concentrations and by electrolytic parameters.
Functional characterization of a ClC transporter by solid-supported membrane electrophysiology
Garcia-Celma, Juan; Szydelko, Adrian
2013-01-01
EcClC, a prokaryotic member of the ClC family of chloride channels and transporters, works as coupled H+/Cl− exchanger. With a known structure and the possibility of investigating its behavior with different biochemical and biophysical techniques, the protein has become an important model system for the family. Although many aspects of its function have been previously characterized, it was difficult to measure transport on the same sample under different environmental conditions. To overcome this experimental limitation, we have studied EcClC by solid-supported membrane electrophysiology. The large transport-related transient currents and a simple way of relating transport rates to the measured signal have allowed a thorough investigation of ion selectivity, inhibition, and the dependence of transport on changes in ion concentration and pH. Our results confirm that the protein transports larger anions with about similar rates, whereas the smaller fluoride is not a substrate. We also show that 4,4′-diisothiocyano-2,2’-stilbenedisulfonic acid (DIDS), a known inhibitor of other anion transport protein, irreversibly inhibits EcClC from the intracellular side. The chloride dependence shows an apparent saturation at millimolar concentrations that resembles a similar behavior in eukaryotic ClC channels. Our experiments have also allowed us to quantify the pH dependence of transport. EcClC shows a strong activation at low pH with an apparent pKa of 4.6. The pronounced pH dependence is lost by the mutation of a conserved glutamate facing the extracellular solution that was previously shown to be an acceptor for transported protons, whereas it is largely retained by the mutation of an equivalent residue at the intracellular side. Our results have provided a quantitative basis for the transport behavior of EcClC, and they will serve as a reference for future investigations of novel electrogenic transporters with still-uncharacterized properties. PMID:23478993
NASA Astrophysics Data System (ADS)
Fabien-Ouellet, Gabriel; Gloaguen, Erwan; Giroux, Bernard
2017-03-01
Full Waveform Inversion (FWI) aims at recovering the elastic parameters of the Earth by matching recordings of the ground motion with the direct solution of the wave equation. Modeling the wave propagation for realistic scenarios is computationally intensive, which limits the applicability of FWI. The current hardware evolution brings increasing parallel computing power that can speed up the computations in FWI. However, to take advantage of the diversity of parallel architectures presently available, new programming approaches are required. In this work, we explore the use of OpenCL to develop a portable code that can take advantage of the many parallel processor architectures now available. We present a program called SeisCL for 2D and 3D viscoelastic FWI in the time domain. The code computes the forward and adjoint wavefields using finite-difference and outputs the gradient of the misfit function given by the adjoint state method. To demonstrate the code portability on different architectures, the performance of SeisCL is tested on three different devices: Intel CPUs, NVidia GPUs and Intel Xeon PHI. Results show that the use of GPUs with OpenCL can speed up the computations by nearly two orders of magnitudes over a single threaded application on the CPU. Although OpenCL allows code portability, we show that some device-specific optimization is still required to get the best performance out of a specific architecture. Using OpenCL in conjunction with MPI allows the domain decomposition of large models on several devices located on different nodes of a cluster. For large enough models, the speedup of the domain decomposition varies quasi-linearly with the number of devices. Finally, we investigate two different approaches to compute the gradient by the adjoint state method and show the significant advantages of using OpenCL for FWI.
Akhlaghi, Yousef; Ghaffari, Solmaz; Attar, Hossein; Alamir Hoor, Amir
2015-11-01
Octreotide as a synthetic cyclic octapeptide is a somatostatin analog with longer half-life and more selectivity for inhibition of the growth hormone. The acetate salt of octreotide is currently used for medical treatment of somatostatin-related disorders such as endocrine and carcinoid tumors, acromegaly, and gigantism. Octreotide contains both cysteine and tryptophan residues which make the hydrolysis part of its amino acid analysis procedure very challenging. The current paper introduces a fast and additive-free method which preserves tryptophan and cysteine residues during the hydrolysis. Using only 6 M HCl, this hydrolysis process is completed in 30 min at 150 °C. This fast hydrolysis method followed by pre-column derivatization of the released amino acids with 4-N,N-dimethylaminoazobenzene-4'-sulfonyl chloride (DABS-Cl) which takes only 20 min, makes it possible to do the complete amino acid analysis of an octreotide sample in a few hours. The highly stable-colored DABS-Cl derivatives can be detected in 436 nm in a reversed phase chromatographic system, which eliminates spectral interferences to a great extent. The amino acid analysis of octreotide acetate including hydrolysis, derivatization, and reversed phase HPLC determination was validated according to International Conference of Harmonization (ICH) guidelines.
NASA Astrophysics Data System (ADS)
Zhai, Yanling; Zhu, Zhijun; Lu, Xiaolin; Zhou, H. Susan
2016-10-01
The direct ethanol fuel cell is an emerging energy conversion device for which palladium is considered as the one of the most effective components for anode catalyst, however, its widespread application has been still limited by the activity and durability of the anode catalyst. In this work, AuPd alloy networks (NWs) are synthesized using H2PdCl4 and HAuCl4 as precursors reduced by NaBH4 in the presence of sodium citrate (SC). The results reveal that SC plays significant role in network structure, resulting in the enhanced electrocatalytic activity of the catalyst. This self-supported AuPd NWs catalyst exhibits much higher electrochemical catalytic activity than commercial Pd/C catalyst toward ethanol electrooxidation in alkaline solution. Significantly, AuPd NWs catalyst shows extremely high durability at the beginning of the chronoamperometry test, and as high as 49% of the mass current density (1.41 A/mgPd) remains after 4000 s current-time test at -0.3 V (vs. Ag/AgCl) in N2-saturated KOH-ethanol solution. This strategy provides a facile method for the preparation of alloy networks with high electrochemical activity, and can be potentially expanded to a variety of electrochemical applications.
Wavelength-Controlled Photodetector Based on Single CdSSe Nanobelt
NASA Astrophysics Data System (ADS)
Li, Xinmin; Tan, Qiuhong; Feng, Xiaobo; Wang, Qianjin; Liu, Yingkai
2018-06-01
CdSSe nanobelts (NBs) are synthesized by thermal evaporation and then characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL), and cathodoluminescence (CL). It is found that the CdSSe NBs have a good morphology and microstructure without defects. CL is sensitive to the defects of CdSSe NBs; thus, we can select single nanobelt with homogeneous CL emission to prepare a detector. Based on it, the photodetector of single CdSSe NB was developed and its photoelectric properties were investigated in detail. It is found that under illumination of white light and at the bias voltage of 1 V, the photocurrent of a single CdSSe nanobelt device is 1.60 × 10-7 A, the dark current is 1.96 × 10-10 A, and the ratio of light current to dark one is 816. In addition, the CdSSe nanobelt detector has high photoelectric performance with spectral responsivity of 10.4 AW-1 and external quantum efficiency (EQE) of 19.1%. Its rise/decay time is about 1.62/4.70 ms. This work offers a novel strategy for design wavelength-controlled photodetectors by adjusting their compositions.
Wavelength-Controlled Photodetector Based on Single CdSSe Nanobelt.
Li, Xinmin; Tan, Qiuhong; Feng, Xiaobo; Wang, Qianjin; Liu, Yingkai
2018-06-07
CdSSe nanobelts (NBs) are synthesized by thermal evaporation and then characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL), and cathodoluminescence (CL). It is found that the CdSSe NBs have a good morphology and microstructure without defects. CL is sensitive to the defects of CdSSe NBs; thus, we can select single nanobelt with homogeneous CL emission to prepare a detector. Based on it, the photodetector of single CdSSe NB was developed and its photoelectric properties were investigated in detail. It is found that under illumination of white light and at the bias voltage of 1 V, the photocurrent of a single CdSSe nanobelt device is 1.60 × 10 -7 A, the dark current is 1.96 × 10 -10 A, and the ratio of light current to dark one is 816. In addition, the CdSSe nanobelt detector has high photoelectric performance with spectral responsivity of 10.4 AW -1 and external quantum efficiency (EQE) of 19.1%. Its rise/decay time is about 1.62/4.70 ms. This work offers a novel strategy for design wavelength-controlled photodetectors by adjusting their compositions.
Cl- channels of the gastric parietal cell that are active at low pH.
Cuppoletti, J; Baker, A M; Malinowska, D H
1993-06-01
HCl secretion across mammalian gastric parietal cell apical membrane may involve Cl- channels. H(+)-K(+)-ATPase-containing membranes isolated from gastric mucosa of histamine-stimulated rabbits were fused to planar lipid bilayers. Channels were recorded with symmetric 800 mM CsCl solutions, pH 7.4. A linear current-voltage (I-V) relationship was obtained, and conductance was 28 +/- 1 pS at 800 mM CsCl. Conductance was 6.9 +/- 2 pS at 150 mM CsCl. Reversal potential was +22 mV with a fivefold cis-trans CsCl concentration gradient, indicating that the channel was anion selective with a discrimination ratio of 6:1 for Cl- over Cs+. Anion selectivity of the channel was I- > Cl- > or = Br- > NO3-, and gluconate was impermeant. Channels obtained at pH 7.4 persisted when pH of medium bathing the trans side of the bilayer (pHtrans) was reduced to pH 3, without a change in conductance, linearity of I-V relationship, or ion selectivity. In contrast, asymmetric reduction of pH of medium bathing the cis side of the bilayer from 7.4 to 3 always resulted in loss of channel activity. At pH 7.4, open probability (Po) of the channel was voltage dependent, i.e., predominantly open at +80 mV but mainly closed at -80 mV. In contrast, with low pHtrans, channel Po at -80 mV was increased 3.5-fold. The Cl- channel was Ca2+ indifferent. In absence of ionophores, ion selectivity for support of H(+)-K(+)-ATPase activity and H+ transport was consistent with that exhibited by the channel and could be limited by substitution with NO3-, whereas maximal H(+)-K(+)-ATPase activity was indifferent to anion present, demonstrating that anion transport can be rate limiting. Cl- channels with similar characteristics (conductance, linear I-V relationship, and ion selectivity) were also present in H(+)-K(+)-ATPase-containing vesicles isolated from resting (cimetidine-treated) gastric mucosa, exhibiting at -80 mV a pH-independent approximately 3.5-fold lower Po than stimulated vesicle channels. At -80 mV, reduction of pHtrans increased Po of both resting and stimulated Cl- channels by five- to sixfold. Changing membrane potential from 0 to -80 mV across stimulated vesicles increased Cl- channel activity an additional 10-fold.(ABSTRACT TRUNCATED AT 400 WORDS)
NASA Astrophysics Data System (ADS)
Chou, L.; Kenig, F. P. H.; Jackson, W. A.
2017-12-01
The ubiquity of oxychlorine salts in the Martian soil significantly hampers our ability to unambiguously detect and characterize organic matter (OM) that is of Martian origin via pyrolysis. The Sample Analysis at Mars (SAM) instrument suite onboard the Curiosity Rover detected chlorinated and non-chlorinated inorganic and organic compounds (HCl, CO2, C1-C4 chloroalkanes, chlorobenzenes) at Gale Crater. The C1 to C3 chloroalkanes have been attributed to the reaction between the oxychlorines and OM deriving from the SAM instrument suite. Chlorobenzenes and dichloroalkanes, on the other hand, were observed at elevated levels at Gale Crater and are hypothesized to be the first indigenous OM detected on Mars. However, due to complex chlorination and oxidation reactions in the SAM pyrolysis oven, the precursor molecules to these chlorohydrocarbons are unknown. In order to facilitate the detection of OM in ClO4-rich samples on Mars, we explore various strategies, such as using strong base anion (SBA) exchange resins, to remove ClO4- from a Mars analog sample. This sample was obtained from a subsurface brine beneath the frozen Lake Vida (East Antarctica). Lake Vida brine (LVBr) contains abundant DOC at 48.2 mmol·L-1 and ClO4- at 49 µg•L-1. Resin-treated samples were analyzed via solid phase microextraction (SPME) gas chromatography-mass spectrometry (GC-MS). The SBA resin successfully removed ClO4- to below detection level from standard brine solution (3M NaCl + 50 µg•L-1 ClO4-) and LVBr using a minimum of 3.4 mL of resin volume per 100 mL of sample volume. Although the abundance of CO2, CH2Cl2 and HCl formed via the oxidation and chlorination of OM during SPME GC-MS analysis of resin-treated LVBr was significantly reduced, it was not completely eliminated. This suggests that the degradation of other oxychlorines (i.e. ClO3-) may also be obstructing our ability to detect OM indigenous to LVBr. The average level of ClO3- in LVBr after resin treatment was 16.7 ppb. We attempt to remove ClO3- using a nitrate-specific resin, as ClO3-specific resins are not currently manufactured, in an effort to further reduce the levels of ClO3- from the brine sample, allowing for the downstream pyrolytic analysis of OM present in LVBr, as well as oxychlorine-rich samples on Mars.
PLUTONIUM ELECTROREFINING CELLS
Mullins, L.J. Jr.; Leary, J.A.; Bjorklund, C.W.; Maraman, W.J.
1963-07-16
Electrorefining cells for obtaining 99.98% plutonium are described. The cells consist of an impure liquid plutonium anode, a molten PuCl/sub 3/-- alkali or alkaline earth metal chloanode, a molten PuCl/sub 3/-alkali or alkaline earth metal chloride electrolyte, and a nonreactive cathode, all being contained in nonreactive ceramic containers which separate anode from cathode by a short distance and define a gap for the collection of the purified liquid plutonium deposited on the cathode. Important features of these cells are the addition of stirrer blades on the anode lead and a large cathode surface to insure a low current density. (AEC)
Characteristics and Corrosion Behavior of Pure Titanium Subjected to Surface Mechanical Attrition
NASA Astrophysics Data System (ADS)
Fu, Tianlin; Wang, Xiao; Liu, Jianxiong; Li, Li; Yu, Xiaohua; Zhan, Zhaolin
2017-10-01
A stable passive film exhibiting good corrosion resistance in a 3.5 wt.% NaCl solution was formed on the surface of pure titanium (Ti) subjected to a surface mechanical attrition treatment (SMAT). The corrosion potential (-0.21 V) of the film was significantly higher than that (-0.92 V) of the untreated sample. Moreover, the corrosion current density was an order of magnitude lower than that of the untreated sample. SMAT resulted in a decrease in the vacancy condensation in the TiO2 film, thereby inhibiting the invasion and diffusion of Cl- in the film.
Educational Implications of Current Research on the Syndrome of Autism.
ERIC Educational Resources Information Center
Valcante, Greg
1986-01-01
Findings from a review of recent empirical studies on autism in the areas of behavioral characteristics (stimulus overselectivity, echolalia, imitation) and treatment interventions (social language development, stereotypic behavior, instructional design) are presented. (Author/CL)
NASA Astrophysics Data System (ADS)
Xu, Junli; Kjos, Ole Sigmund; Osen, Karen Sende; Martinez, Ana Maria; Kongstein, Ole Edvard; Haarberg, Geir Martin
2016-11-01
A new kind of membrane free liquid metal battery was developed. The battery employs liquid sodium and zinc as electrodes both in liquid state, and NaCl-CaCl2 molten salts as electrolyte. The discharge flat voltage is in the range of about 1.4 V-1.8 V, and the cycle efficiency achieved is about 90% at low discharge current densities (below 40 mA cm-2). Moreover, this battery can also be charged and discharged at high current density with good performance. The discharge flat voltage is above 1.1 V when it is discharged at 100 mA cm-2, while it is about 0.8 V with 100% cycle efficiency when it is discharged at 200 mA cm-2. Compared to other reported liquid metal battery, this battery has lower cost, which suggests broad application prospect in energy storage systems for power grid.
NASA Astrophysics Data System (ADS)
Zhao, Tianliang; Liu, Zhiyong; Hu, Shanshan; Du, Cuiwei; Li, Xiaogang
2017-05-01
The effect of hydrogen charging on the stress corrosion cracking (SCC) behavior of 2205 duplex stainless steel (DSS) under 3.5 wt.% NaCl thin electrolyte layer was investigated on precharged samples through hydrogen determination, electrochemical measurement, and slow strain rate tensile test. Results show that hydrogen charging weakens the passive film without inducing any obvious trace of localized anodic dissolution. Therefore, hydrogen charging increases the SCC susceptibility of 2205 DSS mainly through mechanism of hydrogen embrittlement rather than mechanism of localized anodic dissolution. 2205 DSS shows a more susceptibility to hydrogen under the TEL when hydrogen charging current density (HCCD) is between 20 and 50 mA cm-2. The increasing trend is remarkable when hydrogen charging current density increases from 20 to 50 mA cm-2 and fades after 50 mA cm-2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurahashi, Naoya; Horio, Takuya; Suzuki, Toshinori, E-mail: suzuki@kuchem.kyoto-u.ac.jp
2014-05-07
The streaming potentials of liquid beams of aqueous NaCl, NaBr, and NaI solutions are measured using soft X-ray, He(I), and laser multiphoton ionization photoelectron spectroscopy. Gaseous molecules are ionized in the vicinity of liquid beams and the photoelectron energy shifts are measured as a function of the distance between the ionization point and the liquid beam. The streaming potentials change their polarity with concentration of electrolytes, from which the singular points of concentration eliminating the streaming potentials are determined. The streaming currents measured in air also vanish at these concentrations. The electron binding energies of liquid water and I{sup −},more » Br{sup −}, and Cl{sup −} anions are revisited and determined more accurately than in previous studies.« less
Bonaccorso, Antonio; Tripi, Teresa Roberta; Rondelli, Gianni; Condorelli, Guglielmo Guido; Cantatore, Giuseppe; Schäfer, Edgar
2008-02-01
This study evaluated the pitting corrosion resistance of nickel-titanium (NiTi) rotary instruments with different surface treatments in 17% ethylenediaminetetraacetic acid (EDTA) and NaCl solutions. Electropolished RaCe instruments were allocated to group A, non-electropolished RaCe instruments to group B, and physical vapor deposition (PVD)-coated Alpha files to group C (10 instruments per group). Electrochemical measurements were carried out by using a potentiostat for galvanic current measurements. On the basis of electrochemical tests, no localized corrosion problems are to be expected in EDTA. In NaCl, pitting potential occurred at higher values for the electropolished and PVD instruments, indicating an increased corrosion resistance. There appears to be a risk of corrosion for NiTi instruments without surface treatments in contact with NaCl. NiTi files with PVD and electropolishing surface treatments showed an increase corrosion resistance.
Comprehensive Study of Microgel Electrode for On-Chip Electrophoretic Cell Sorting
NASA Astrophysics Data System (ADS)
Akihiro Hattori,; Kenji Yasuda,
2010-06-01
We have developed an on-chip cell sorting system and microgel electrode for applying electrostatic force in microfluidic pathways in the chip. The advantages of agarose electrodes are 1) current-driven electrostatic force generation, 2) stability against pH change and chemicals, and 3) no bubble formation caused by electrolysis. We examined the carrier ion type and concentration dependence of microgel electrode impedance, and found that CoCl2 has less than 1/10 of the impedance from NaCl, and the reduction of the impedance of NaCl gel electrode was plateaued at 0.5 M. The structure control of the microgel electrode exploiting the surface tension of sol-state agarose was also introduced. The addition of 1% (w/v) trehalose into the microgel electrode allowed the frozen storage of the microgel electrode chip. The experimental results demonstrate the potential of our system and microgel electrode for practical applications in microfluidic chips.
Wei, Tongbo; Kong, Qingfeng; Wang, Junxi; Li, Jing; Zeng, Yiping; Wang, Guohong; Li, Jinmin; Liao, Yuanxun; Yi, Futing
2011-01-17
InGaN-based light emitting diodes (LEDs) with a top nano-roughened p-GaN surface are fabricated using self-assembled CsCl nano-islands as etch masks. Following formation of hemispherical GaN nano-island arrays, electroluminescence (EL) spectra of roughened LEDs display an obvious redshift due to partial compression release in quantum wells through Inductively Coupled Plasma (ICP) etching. At a 350-mA current, the enhancement of light output power of LEDs subjected to ICP treatment with durations of 50, 150 and 250 sec compared with conventional LED have been determined to be 9.2, 70.6, and 42.3%, respectively. Additionally, the extraction enhancement factor can be further improved by increasing the size of CsCl nano-island. The economic and rapid method puts forward great potential for high performance lighting devices.
More rapid polar ozone depletion through the reaction of HOCl with HCl on polar stratospheric clouds
NASA Technical Reports Server (NTRS)
Prather, Michael J.
1992-01-01
The direct reaction of HOCl with HCl is shown here to play a critical part in polar ozone loss. Observations of high levels of OClO and ClO in the springtime Antarctic stratosphere confirm that most of the available chlorine is in the form of ClO(x). But current photochemical models have difficulty converting HCl to ClO(x) rapidly enough in early spring to account fully for the observations. Here, a chemical model is used to show that the direct reaction of HOCl with HCl provides the missing mechanism. As alternative sources of nitrogen-containing oxidants have been converted in the late autumn to inactive HNO3 by known reactions on the sulfate layer aerosols, the reaction of HOCl with HCl on polar stratospheric clouds becomes the most important pathway for releasing that stratospheric chlorine which goes into polar night as HCl.
NASA Technical Reports Server (NTRS)
Li, C.-J.; Sun, Q.; Lagowski, J.; Gatos, H. C.
1985-01-01
The microscale characterization of electronic defects in (SI) GaAs has been a challenging issue in connection with materials problems encountered in GaAs IC technology. The main obstacle which limits the applicability of high resolution electron beam methods such as Electron Beam-Induced Current (EBIC) and cathodoluminescence (CL) is the low concentration of free carriers in semiinsulating (SI) GaAs. The present paper provides a new photo-EBIC characterization approach which combines the spectroscopic advantages of optical methods with the high spatial resolution and scanning capability of EBIC. A scanning electron microscope modified for electronic characterization studies is shown schematically. The instrument can operate in the standard SEM mode, in the EBIC modes (including photo-EBIC and thermally stimulated EBIC /TS-EBIC/), and in the cathodo-luminescence (CL) and scanning modes. Attention is given to the use of CL, Photo-EBIC, and TS-EBIC techniques.
Quantum mechanical probability current as electromagnetic 4-current from topological EM fields
NASA Astrophysics Data System (ADS)
van der Mark, Martin B.
2015-09-01
Starting from a complex 4-potential A = αdβ we show that the 4-current density in electromagnetism and the probability current density in relativistic quantum mechanics are of identical form. With the Dirac-Clifford algebra Cl1,3 as mathematical basis, the given 4-potential allows topological solutions of the fields, quite similar to Bateman's construction, but with a double field solution that was overlooked previously. A more general nullvector condition is found and wave-functions of charged and neutral particles appear as topological configurations of the electromagnetic fields.
Peters, Baron
2009-12-28
Recent simulations of crystal nucleation from a compressed liquid of oppositely charged colloids show that the natural Brownian dynamics results in nuclei of a charge-disordered FCC (DFCC) solid whereas artificially accelerated dynamics with charge swap moves result in charge-ordered nuclei of a CsCl phase. These results were interpreted as a breakdown of the quasiequilibrium assumption for precritical nuclei. We use structure-specific nucleus size coordinates for the CsCl and DFCC structures and equilibrium based sampling methods to understand the dynamical effects on structure selectivity in this system. Nonequilibrium effects observed in previous simulations emerge from a diffusion tensor that dramatically changes when charge swap moves are used. Without the charge swap moves diffusion is strongly anisotropic with very slow motion along the charge-ordered CsCl axis and faster motion along the DFCC axis. Kramers-Langer-Berezhkovskii-Szabo theory predicts that under the realistic dynamics, the diffusion anisotropy shifts the current toward the DFCC axis. The diffusion tensor also varies with location on the free energy landscape. A numerical calculation of the current field with a diffusion tensor that depends on the location in the free energy landscape exacerbates the extent to which the current is skewed toward DFCC structures. Our analysis confirms that quasiequilibrium theories based on equilibrium properties can explain the nonequilibrium behavior of this system. Our analysis also shows that using a structure-specific nucleus size coordinate for each possible nucleation product can provide mechanistic insight on selectivity and competition between nucleation pathways.
NASA Astrophysics Data System (ADS)
Peters, Baron
2009-12-01
Recent simulations of crystal nucleation from a compressed liquid of oppositely charged colloids show that the natural Brownian dynamics results in nuclei of a charge-disordered FCC (DFCC) solid whereas artificially accelerated dynamics with charge swap moves result in charge-ordered nuclei of a CsCl phase. These results were interpreted as a breakdown of the quasiequilibrium assumption for precritical nuclei. We use structure-specific nucleus size coordinates for the CsCl and DFCC structures and equilibrium based sampling methods to understand the dynamical effects on structure selectivity in this system. Nonequilibrium effects observed in previous simulations emerge from a diffusion tensor that dramatically changes when charge swap moves are used. Without the charge swap moves diffusion is strongly anisotropic with very slow motion along the charge-ordered CsCl axis and faster motion along the DFCC axis. Kramers-Langer-Berezhkovskii-Szabo theory predicts that under the realistic dynamics, the diffusion anisotropy shifts the current toward the DFCC axis. The diffusion tensor also varies with location on the free energy landscape. A numerical calculation of the current field with a diffusion tensor that depends on the location in the free energy landscape exacerbates the extent to which the current is skewed toward DFCC structures. Our analysis confirms that quasiequilibrium theories based on equilibrium properties can explain the nonequilibrium behavior of this system. Our analysis also shows that using a structure-specific nucleus size coordinate for each possible nucleation product can provide mechanistic insight on selectivity and competition between nucleation pathways.
Noh, S J; Kim, M J; Shim, S; Han, J K
1998-08-01
In Xenopus oocytes, both sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA) activate Ca2+-dependent oscillatory Cl- currents by acting through membrane-bound receptors. External application of 50 microM S1P elicited a long-lasting oscillatory current that continued over 30 min from the beginning of oscillation, with 300 nA (n = 11) as a usual maximum peak of current, whereas 1-microM LPA treatment showed only transiently oscillating but more vigorous current responses, with 2,800 nA (n = 18) as a maximum peak amplitude. Both phospholipid-induced Ca2+-dependent Cl- currents were observed in the absence of extracellular Ca2+, were blocked by intracellular injection of the Ca2+ chelator, EGTA, and could not be elicited by treatment with thapsigargin, an inhibitor of endoplasmic reticulum (ER) Ca2+ ATPase. Intracellular Ca2+ release appeared to be from inositol 1,4,5-trisphosphate (IP3)-sensitive Ca2+ store, because Cl- currents were blocked by heparin injection. Pretreatment with the aminosteroid, U-73122, an inhibitor of G protein-mediated phospholipase C (PLC) activation, to oocytes inhibited the current responses evoked both by S1P and LPA. However, when they were injected with 10 ng of antisense oligonucleotide (AS-ODN) against Xenopus phospholipase C (PLC-xbeta), oocytes could not respond to S1P application, whereas they responded normally to LPA, indicating that the S1P signaling pathway goes through PLC-xbeta, whereas LPA signaling goes through another unknown PLC. To determine the types of G proteins involved, we introduced AS-ODNs against four types of G-protein alpha subunits that were identified in Xenopus laevis; G(q)alpha, G11alpha, G0alpha, and G(i1)alpha. Among AS-ODNs against the G alphas tested, AS-G(q)alpha and AS-G(i1)alpha to S1P and AS-G(q)alpha and AS-G11alpha to LPA specifically reduced current responses, respectively, to about 20-30% of controls. These results demonstrate that LPA and S1P, although they have similar structural features, release intracellular Ca2+ from the IP3-sensitive pool, use different components in their signal transduction pathways in Xenopus oocytes.
1986-01-01
Functional calcium channels present in purified skeletal muscle transverse tubules were inserted into planar phospholipid bilayers composed of the neutral lipid phosphatidylethanolamine (PE), the negatively charged lipid phosphatidylserine (PS), and mixtures of both. The lengthening of the mean open time and stabilization of single channel fluctuations under constant holding potentials was accomplished by the use of the agonist Bay K8644. It was found that the barium current carried through the channel saturates as a function of the BaCl2 concentration at a maximum current of 0.6 pA (at a holding potential of 0 mV) and a half-saturation value of 40 mM. Under saturation, the slope conductance of the channel is 20 pS at voltages more negative than -50 mV and 13 pS at a holding potential of 0 mV. At barium concentrations above and below the half-saturation point, the open channel currents were independent of the bilayer mole fraction of PS from XPS = 0 (pure PE) to XPS = 1.0 (pure PS). It is shown that in the absence of barium, the calcium channel transports sodium or potassium ions (P Na/PK = 1.4) at saturating rates higher than those for barium alone. The sodium conductance in pure PE bilayers saturates as a function of NaCl concentration, following a curve that can be described as a rectangular hyperbola with a half-saturation value of 200 mM and a maximum conductance of 68 pS (slope conductance at a holding potential of 0 mV). In pure PS bilayers, the sodium conductance is about twice that measured in PE at concentrations below 100 mM NaCl. The maximum channel conductance at high ionic strength is unaffected by the lipid charge. This effect at low ionic strength was analyzed according to J. Bell and C. Miller (1984. Biophysical Journal. 45:279- 287) and interpreted as if the conduction pathway of the calcium channel were separated from the bilayer lipid by approximately 20 A. This distance thereby effectively insulates the ion entry to the channel from the bulk of the bilayer lipid surface charge. Current vs. voltage curves measured in NaCl in pure PE and pure PS show that similarly small surface charge effects are present in both inward and outward currents. This suggests that the same conduction insulation is present at both ends of the calcium channel. PMID:2425043
2015-01-01
Accurate force field parameters for ions are essential for meaningful simulation studies of proteins and nucleic acids. Currently accepted models of ions, especially for divalent ions, do not necessarily reproduce the right physiological behavior of Ca2+ and Mg2+ ions. Saxena and Sept (J. Chem. Theor. Comput.2013, 9, 3538–3542) described a model, called the multisite-ion model, where instead of treating the ions as an isolated sphere, the charge was split into multiple sites with partial charge. This model provided accurate inner shell coordination of the ion with biomolecules and predicted better free energies for proteins and nucleic acids. Here, we expand and refine the multisite model to describe the behavior of divalent ions in concentrated MgCl2 and CaCl2 electrolyte solutions, eliminating the unusual ion–ion pairing and clustering of ions which occurred in the original model. We calibrate and improve the parameters of the multisite model by matching the osmotic pressure of concentrated solutions of MgCl2 to the experimental values and then use these parameters to test the behavior of CaCl2 solutions. We find that the concentrated solutions of both divalent ions exhibit the experimentally observed behavior with correct osmotic pressure, the presence of solvent separated ion pairs instead of direct ion pairs, and no aggregation of ions. The improved multisite model for (Mg2+ and Ca2+) can be used in classical simulations of biomolecules at physiologically relevant salt concentrations. PMID:25482831
Wang, Yimin; Bowman, Joel M; Kamarchik, Eugene
2016-03-21
We report full-dimensional, ab initio-based potentials and dipole moment surfaces for NaCl, NaF, Na(+)H2O, F(-)H2O, and Cl(-)H2O. The NaCl and NaF potentials are diabatic ones that dissociate to ions. These are obtained using spline fits to CCSD(T)/aug-cc-pV5Z energies. In addition, non-linear least square fits using the Born-Mayer-Huggins potential are presented, providing accurate parameters based strictly on the current ab initio energies. The long-range behavior of the NaCl and NaF potentials is shown to go, as expected, accurately to the point-charge Coulomb interaction. The three ion-H2O potentials are permutationally invariant fits to roughly 20,000 coupled cluster CCSD(T) energies (awCVTZ basis for Na(+) and aVTZ basis for Cl(-) and F(-)), over a large range of distances and H2O intramolecular configurations. These potentials are switched accurately in the long range to the analytical ion-dipole interactions, to improve computational efficiency. Dipole moment surfaces are fits to MP2 data; for the ion-ion cases, these are well described in the intermediate- and long-range by the simple point-charge expression. The performance of these new fits is examined by direct comparison to additional ab initio energies and dipole moments along various cuts. Equilibrium structures, harmonic frequencies, and electronic dissociation energies are also reported and compared to direct ab initio results. These indicate the high fidelity of the new PESs.
Three types of membrane excitations in the marine diatom Coscinodiscus wailesii.
Gradmann, D; Boyd, C M
2000-05-15
Three types of electrical excitation have been investigated in the marine diatom Coscinodiscus wailesii. I: Depolarization-triggered, transient Cl(-) conductance, G(Cl)(t), followed by a transient, voltage-gated K(+) conductance, G(K), with an active state a and two inactive states i(1) and i(2) in series (a-i(1)-i(2)). II: Similar G(Cl)(t) as in Type-I but triggered by hyperpolarization; a subsequent increase of G(K) in this type is indicated but not analyzed in detail. III: Hyperpolarization-induced transient of a voltage-gated activity of an electrogenic pump (i(2)-a-i(2)), followed by G(Cl)(t) as in Type-II excitations. Type-III with pump gating is novel as such. G(Cl)(t) in all types seems to reflect the mechanism of InsP(-)(3) and Ca(2+)-mediated G(Cl)(t) in the action potential in Chara (Biskup et al., 1999). The nonlinear current-voltage-time relationships of Type-I and Type-III excitations have been recorded under voltage-clamp using single saw-tooth command voltages (voltage range: -200 to +50 mV, typical slope: +/-1 Vs(-1)). Fits of the corresponding models to the experimental data provided numerical values of the model parameters. The statistical significance of these solutions is investigated. We suggest that the original function of electrical excitability of biological membranes is related to osmoregulation which has persisted through evolution in plants, whereas the familiar and osmotically neutral action potentials in animals have evolved later towards the novel function of rapid transmission of information over long distances.
[Effect of chloride ion on corrosion of two commonly used dental alloys].
Chen, Lei; Zhang, Weidan; Zhang, Yuanyuan
2014-11-01
To investigate the eff ect of chloride concentration on the corrosion of Co-Cr alloy and pure Ti in a simulated oral environment. The electrochemical corrosion tests of pure Ti and Co-Cr alloy were carried out in neutral artificial saliva solutions with different NaCl concentrations (0.9%, 2.0%, and 3.0%). Th e morphologies of corroded surface for pure Ti and Co-Cr alloy were observed by scanning electron microscope (SEM). Th e changes in the self-corrosion potentials (Ecorr) for pure Ti and Co-Cr alloy in three kinds of artificial saliva solutions was not obvious. However, the self-corrosion current densities (Icorr) of pure Ti were much lower than those of Co-Cr. The Icorr of Co-Cr alloy increased in a concentration-dependent manner of NaCl, whereas the breakdown potential (Eb) of Co-Cr alloy decreased in a concentration-dependent manner. Th e potential ranged for the breakdown of oxide film (Ev) was shortened in a concentration-dependent manner of NaCl. There was no obvious difference in the Icorr of pure Ti with different concentrations of NaCl. The breakdown potential was not seen according to the polarization curves. In a certain range, the increase of the concentration of Cl- leads to accelerate the corrosion behavior of Co-Cr alloy, but it does not affect pure Ti.
Gene expression of human lung cancer cell line CL1-5 in response to a direct current electric field.
Huang, Ching-Wen; Chen, Huai-Yi; Yen, Meng-Hua; Chen, Jeremy J W; Young, Tai-Horng; Cheng, Ji-Yen
2011-01-01
Electrotaxis is the movement of adherent living cells in response to a direct current (dc) electric field (EF) of physiological strength. Highly metastatic human lung cancer cells, CL1-5, exhibit directional migration and orientation under dcEFs. To understand the transcriptional response of CL1-5 cells to a dcEF, microarray analysis was performed in this study. A large electric-field chip (LEFC) was designed, fabricated, and used in this study. CL1-5 cells were treated with the EF strength of 0 mV/mm (the control group) and 300 mV/mm (the EF-treated group) for two hours. Signaling pathways involving the genes that expressed differently between the two groups were revealed. It was shown that the EF-regulated genes highly correlated to adherens junction, telomerase RNA component gene regulation, and tight junction. Some up-regulated genes such as ACVR1B and CTTN, and some down-regulated genes such as PTEN, are known to be positively and negatively correlated to cell migration, respectively. The protein-protein interactions of adherens junction-associated EF-regulated genes suggested that platelet-derived growth factor (PDGF) receptors and ephrin receptors may participate in sensing extracellular electrical stimuli. We further observed a high percentage of significantly regulated genes which encode cell membrane proteins, suggesting that dcEF may directly influence the activity of cell membrane proteins in signal transduction. In this study, some of the EF-regulated genes have been reported to be essential whereas others are novel for electrotaxis. Our result confirms that the regulation of gene expression is involved in the mechanism of electrotactic response.
An experimental and theoretical study of new phosphors for full color field emission displays
NASA Astrophysics Data System (ADS)
Zhang, Fu-Li
An in depth study is reported of the cathodoluminescent (CL) properties of three new highly efficiency blue phosphors for field emission display (FED) applications doped with fast activators. The superior performance of a new Eu-doped green SrGa2S4 will also be reported. This work addresses four main topics: (1) a detailed study of the dependence of the luminescent intensity on activator concentration, as a function of electron beam voltage and current density; (2) the optical properties of thew phosphors and the development of a CL efficiency characterization technique using a critical screen weight method, which can obtain maximum light output and improve measurement accuracy; (3) understanding the low voltage CL mechanism associated with nanocrystal size by developing a thin film and disk model based on transportation theory and experimental results; (4) Development of a comprehensive evaluation method of red, green, and blue (RGB) phosphors for full color displays by calculation of luminance ratios, required luminance, and measurements of spectra, efficiency and saturation behavior. For FEDs which combine the best properties of CRT and flat panel displays, the development of efficient phosphors at low voltages and high current densities is shown to be critical to meet the luminance and power requirement demands for portable displays. Of particular importance is the need for a good blue phosphor, and to understand the dependence of the CL efficiency on nanocrystal size, penetration depth, diffusion length and surface recombination rate. This has been obtained from the thin film and disk models and fits to experiment. Comparisons between full color phosphor sets show that the performance of a display can vary by over a factor of three depending on the choice of the RGB set. Other factors that are important for optimizing the performance of FED phosphors are reviewed.
Ejaz, Sohail; Camer, Gerry Amor; Anwar, Khaleeq; Ashraf, Muhammad
2014-04-01
Environmental toxicants invariably affect all biological organisms resulting to sufferings ranging from subclinical to debilitating clinical conditions. This novel research aimed to determine the toxic burdens of increased environmental elements in some vital organs/tissues of the wild animals (starling, owl, crow and pigeon), exposed to air polluted environment were assessed using particle induced X-ray emission and histopathological approaches. The presence of significantly elevated amounts of elemental toxicants namely: Aluminum (Al), Chlorine (Cl), Iron (Fe), Potassium (K), Magnesium (Mg), Manganese (Mn), Silicon (Si) and Vanadium (V) from the skin, muscle, lungs, liver and kidney of sampled animals were in concurrence with the observed histopathological changes. The skin of sampled starling, owl, pigeon and crow spotlighted highly significant increase (P < 0.001) in Al, Cl, Mg and Si. Muscle samples with myodegenerative lesions and mineral depositions highlighted substantial augmentation (P < 0.001) in the amount of Al, Fe, Mn, Si and V. The lungs of starling, owl, and pigeon were severely intoxicated (P < 0.001) with increased amount of Al, Fe, K, Mn and Si producing pulmonary lesions of congestion, edema, pneumonitis and mineral debris depositions. Liver samples revealed that the sampled animals were laden with Cl, Fe, Mg, Mn and V with histopathological profound degenerative changes and hepatic necrosis. Kidney sections presented severe tubular degenerative and necrotic changes that may be attributed to increased amounts of Cl and Fe. These current findings implied that the environmental/elemental toxicants and the accompanying lesions that were discerned in the organs/tissues of sampled birds may as well be afflicting people living within the polluted area. Further assessment to more conclusively demonstrate correlations of current findings to those of the populace within the area is encouraged.
Monovalent Cation Permeation through the Connexin40 Gap Junction Channel
Beblo, Dolores A.; Veenstra, Richard D.
1997-01-01
The unitary conductances and permeability sequences of the rat connexin40 (rCx40) gap junction channels to seven monovalent cations and anions were studied in rCx40-transfected neuroblastoma 2A (N2A) cell pairs using the dual whole cell recording technique. Chloride salt cation substitutions (115 mM principal salt) resulted in the following junctional maximal single channel current-voltage relationship slope conductances (γj in pS): CsCl (153), RbCl (148), KCl (142), NaCl (115), LiCl (86), TMACl (71), TEACl (63). Reversible block of the rCx40 channel was observed with TBA. Potassium anion salt γj are: Kglutamate (160), Kacetate (160), Kaspartate (158), KNO3 (157), KF (148), KCl (142), and KBr (132). Ion selectivity was verified by measuring reversal potentials for current in rCx40 gap junction channels with asymmetric salt solutions in the two electrodes and using the Goldman-Hodgkin-Katz equation to calculate relative permeabilities. The permeabilities relative to Li+ are: Cs+ (1.38), Rb+ (1.32), K+ (1.31), Na+ (1.16), TMA+ (0.53), TEA+ (0.45), TBA+ (0.03), Cl− (0.19), glutamate− (0.04), and NO3− (0.14), assuming that the monovalent anions permeate the channel by forming ion pairs with permeant monovalent cations within the pore thereby causing proportionate decreases in the channel conductance. This hypothesis can account for why the predicted increasing conductances with increasing ion mobilities in an essentially aqueous channel were not observed for anions in the rCx40 channel. The rCx40 effective channel radius is estimated to be 6.6 Å from a theoretical fit of the relationship of relative permeability and cation radius. PMID:9101408
Dark radiation sterile neutrino candidates after Planck data
NASA Astrophysics Data System (ADS)
Di Valentino, Eleonora; Melchiorri, Alessandro; Mena, Olga
2013-11-01
Recent Cosmic Microwave Background (CMB) results from the Planck satellite, combined with previous CMB data and Hubble constant measurements from the Hubble Space Telescope, provide a constraint on the effective number of relativistic degrees of freedom 3.62+0.50-0.48 at 95% CL. New Planck data provide a unique opportunity to place limits on models containing relativistic species at the decoupling epoch. We present here the bounds on sterile neutrino models combining Planck data with galaxy clustering information. Assuming Neff active plus sterile massive neutrino species, in the case of a Planck+WP+HighL+HST analysis we find mν, sterileeff < 0.36 eV and 3.14 < Neff < 4.15 at 95% CL, while using Planck+WP+HighL data in combination with the full shape of the galaxy power spectrum from the Baryon Oscillation Spectroscopic Survey BOSS Data Relase 9 measurements, we find that 3.30 < Neff < 4.43 and mν, sterileeff < 0.33 eV both at 95% CL with the three active neutrinos having the minimum mass allowed in the normal hierarchy scheme, i.e. ∑mν ~ 0.06 eV. These values compromise the viability of the (3+2) massive sterile neutrino models for the parameter region indicated by global fits of neutrino oscillation data. Within the (3+1) massive sterile neutrino scenario, we find mν, sterileeff < 0.34 eV at 95% CL. While the existence of one extra sterile massive neutrino state is compatible with current oscillation data, the values for the sterile neutrino mass preferred by oscillation analyses are significantly higher than the current cosmological bound. We review as well the bounds on extended dark sectors with additional light species based on the latest Planck CMB observations.
Rescue of volume-regulated anion current by bestrophin mutants with altered charge selectivity.
Chien, Li-Ting; Hartzell, H Criss
2008-11-01
Mutations in human bestrophin-1 are linked to various kinds of retinal degeneration. Although it has been proposed that bestrophins are Ca(2+)-activated Cl(-) channels, definitive proof is lacking partly because mice with the bestrophin-1 gene deleted have normal Ca(2+)-activated Cl(-) currents. Here, we provide compelling evidence to support the idea that bestrophin-1 is the pore-forming subunit of a cell volume-regulated anion channel (VRAC) in Drosophila S2 cells. VRAC was abolished by treatment with RNAi to Drosophila bestrophin-1. VRAC was rescued by overexpressing bestrophin-1 mutants with altered biophysical properties and responsiveness to sulfhydryl reagents. In particular, the ionic selectivity of the F81C mutant changed from anionic to cationic when the channel was treated with the sulfhydryl reagent, sodium (2-sulfonatoethyl) methanethiosulfonate (MTSES(-)) (P(Cs)/P(Cl) = 0.25 for native and 2.38 for F81C). The F81E mutant was 1.3 times more permeable to Cs(+) than Cl(-). The finding that VRAC was rescued by F81C and F81E mutants with different biophysical properties shows that bestrophin-1 is a VRAC in S2 cells and not simply a regulator or an auxiliary subunit. F81C overexpressed in HEK293 cells also exhibits a shift of ionic selectivity after MTSES(-) treatment, although the effect is quantitatively smaller than in S2 cells. To test whether bestrophins are VRACs in mammalian cells, we compared VRACs in peritoneal macrophages from wild-type mice and mice with both bestrophin-1 and bestrophin-2 disrupted (best1(-/-)/best2(-/-)). VRACs were identical in wild-type and best1(-/-)/best2(-/-) mice, showing that bestrophins are unlikely to be the classical VRAC in mammalian cells.
Anticonvulsants for alcohol dependence.
Pani, Pier Paolo; Trogu, Emanuela; Pacini, Matteo; Maremmani, Icro
2014-02-13
Alcohol dependence is a major public health problem that is characterised by recidivism and a host of medical and psychosocial complications. Besides psychosocial interventions, different pharmacological interventions have been or currently are under investigation through Cochrane systematic reviews. The primary aim of the review is to assess the benefits/risks of anticonvulsants for the treatment of alcohol dependence. We searched the Cochrane Drugs and Alcohol Group Trials Register (October 2013), PubMed (1966 to October 2013), EMBASE (1974 to October 2013) and CINAHL (1982 to October 2013). Randomised controlled trials (RCTs) and controlled clinical trials (CCTs) comparing anticonvulsants alone or in association with other drugs and/or psychosocial interventions versus placebo, no treatment and other pharmacological or psychosocial interventions. We used standard methodological procedures as expected by The Cochrane Collaboration. A total of 25 studies were included in the review (2641 participants). Most participants were male, with an average age of 44 years. Anticonvulsants were compared with placebo (17 studies), other medications (seven studies) and no medication (two studies). The mean duration of the trials was 17 weeks (range four to 52 weeks). The studies took place in the USA, Europe, South America, India and Thailand. Variation was reported in the characteristics of the studies, including their design and the rating instruments used. For many key outcomes, the risk of bias associated with unclear or unconcealed allocation and lack of blinding affected the quality of the evidence.Anticonvulsants versus placebo: For dropouts (16 studies, 1675 participants, risk ratio (RR) 0.94, 95% confidence interval (Cl) 0.74 to 1.19, moderate-quality evidence) and continuous abstinence (eight studies, 634 participants, RR 1.21, 95% Cl 95% 0.97 to 1.52, moderate-quality evidence), results showed no evidence of differences. Moderate-quality evidence suggested that anticonvulsants reduced drinks/drinking days (11 studies, 1126 participants, mean difference (MD) -1.49, 95% Cl -2.32 to -0.65) and heavy drinking (12 studies, 1129 participants, standardised mean difference (SMD) -0.35, 95% Cl -0.51 to -0.19). Moreover, withdrawal for medical reasons (12 studies, 1410 participants, RR 1.22, 95% Cl 0.58 to 2.56, moderate-quality evidence) showed no evidence of difference, but for specific adverse effects (nine studies, 1164 participants), two of 18 adverse event outcomes favoured placebo. The direction of results was confirmed by subgroup analyses for topiramate and partially for gabapentin and valproate.Anticonvulsants versus naltrexone: No evidence of difference was shown in dropout rates (five studies, 528 participants, RR 0.74, 95% CI 0.52 to 1.06), severe relapse rates (four studies, 427 participants, RR 0.69, 95% Cl 0.44 to 1.07) and continuous abstinence rates (five studies, 528 participants, RR 1.21, 95% Cl 0.99 to 1.49); anticonvulsants were associated with fewer heavy drinking days (three studies, 308 participants, MD -5.21, 95% Cl -8.58 to -1.83), more days to severe relapse (three studies, 244 participants, MD 11.88, 95% Cl 3.29 to 20.46) and lower withdrawal for medical reasons (three studies, 245 participants, RR 0.13, 95% Cl 0.03 to 0.58). At the current stage of research, randomised evidence supporting the clinical use of anticonvulsants to treat alcohol dependence is insufficient. Results are conditioned by heterogeneity and by the low number and quality of studies comparing anticonvulsants with other medications. The uncertainty associated with these results leaves to clinicians the need to balance possible benefits/risks of treatment with anticonvulsants versus other medications as supported by evidence of efficacy.
Khloya, Poonam; Kumar, Satish; Kaushik, Pawan; Surain, Parveen; Kaushik, Dhirender; Sharma, Pawan K
2015-03-15
Current Letter presents design, synthesis and biological evaluation of a novel series of pyrazolylthiazole carboxylates 1a-1p and corresponding acid derivatives 2a-2p. All 32 novel compounds were tested for their in vivo anti-inflammatory activity by carrageenan-induced rat paw edema method as well as for in vitro antimicrobial activity. All the tested compounds exhibited excellent AI activity profile. Three compounds 1p (R=Cl, R(1)=Cl), 2c (R=H, R(1)=F) and 2n (R=Cl, R(1)=OCH3) were identified as potent anti-inflammatory agents exhibiting edema inhibition of 93.06-89.59% which is comparable to the reference drug indomethacin (91.32%) after 3h of carrageenan injection while most of the other compounds displayed inhibition ⩾80%. In addition, pyrazolylthiazole carboxylic acids (2a-2p) also showed good antimicrobial profile. Compound 2h (R=OCH3, R(1)=Cl) showed excellent antimicrobial activity (MIC 6.25μg/mL) against both Gram positive bacteria comparable with the reference drug ciprofloxacin (MIC 6.25μg/mL). Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Z.; Zhou, A.; Baidoo, E.
2009-12-01
The response of Desulfovibrio vulgaris Hildenborough to salt adaptation (long-term NaCl exposure) was examined by physiological, global transcriptional, and metabolite analyses. The growth of D. vulgaris was inhibited by high levels of NaCl, and the growth inhibition could be relieved by the addition of exogenous amino acids (e.g., glutamate, alanine, tryptophan) or yeast extract. Salt adaptation induced the expression of genes involved in amino acid biosynthesis and transport, electron transfer, hydrogen oxidation, and general stress responses (e.g., heat shock proteins, phage shock proteins, and oxidative stress response proteins). Genes involved in carbon metabolism, cell motility, and phage structures were repressed.more » Comparison of transcriptomic profiles of D. vulgaris responses to salt adaptation with those of salt shock (short-term NaCl exposure) showed some similarity as well as a significant difference. Metabolite assays showed that glutamate and alanine were accumulated under salt adaptation, suggesting that they may be used as osmoprotectants in D. vulgaris. A conceptual model is proposed to link the observed results to currently available knowledge for further understanding the mechanisms of D. vulgaris adaptation to elevated NaCl.« less
The Split Personality of Glutamate Transporters: A Chloride Channel and a Transporter.
Cater, Rosemary J; Ryan, Renae M; Vandenberg, Robert J
2016-03-01
Transporters and ion channels are conventionally categorised into distinct classes of membrane proteins. However, some membrane proteins have a split personality and can function as both transporters and ion channels. The excitatory amino acid transporters (EAATs) in particular, function as both glutamate transporters and chloride (Cl(-)) channels. The EAATs couple the transport of glutamate to the co-transport of three Na(+) ions and one H(+) ion into the cell, and the counter-transport of one K(+) ion out of the cell. The EAAT Cl(-) channel is activated by the binding of glutamate and Na(+), but is thermodynamically uncoupled from glutamate transport and involves molecular determinants distinct from those responsible for glutamate transport. Several crystal structures of an EAAT archaeal homologue, GltPh, at different stages of the transport cycle, alongside numerous functional studies and molecular dynamics simulations, have provided extensive insights into the mechanism of substrate transport via these transporters. However, the molecular determinants involved in Cl(-) permeation, and the mechanism by which this channel is activated are not entirely understood. Here we will discuss what is currently known about the molecular determinants involved in EAAT-mediated Cl(-) permeation and the mechanisms that underlie their split personality.
Selective Isobar Suppression for Accelerator Mass Spectrometry and Radioactive Ion Beam Science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galindo-Uribarri, Alfredo; Havener, Charles C; Lewis, Thomas L.
2010-01-01
Several applications of AMS will benefit from pushing further the detection limits of AMS isotopes. A new method of selective isobar suppression by photodetachment in a radio-frequency quadrupole ion cooler is being developed at HRIBF with a two-fold purpose: (1) increasing the AMS sensitivity for certain isotopes of interest and (2) purifying radioactive ion beams for nuclear science. The potential of suppressing the 36S contaminants in a 36Cl beam using this method has been explored with stable S- and Cl- ions and a Nd:YLF laser. In the study, the laser beam was directed along the experiment's beam line and throughmore » a RF quadrupole ion cooler. Negative 32S and 35Cl ions produced by a Cs sputter ion source were focused into the ion cooler where they were slowed by collisions with He buffer gas; this increased the interaction time between the negative ion beam and the laser beam. As a result, suppression of S- by a factor of 3000 was obtained with about 2.5 W average laser power in the cooler while no reduction in Cl- current was observed.« less
cis-2,2'-Bipyrimidine-bridged polynuclear complex: a stairway-like mixed-valent {Fe(4)} cluster.
Alborés, Pablo; Rentschler, Eva
2010-10-04
We report the first example of a polynuclear discrete coordination compound exhibiting only bpym bridges and containing a first-row d transition metal. A smooth self-assembly one-pot synthetic route, starting from simply FeCl(2) and FeCl(3) hydrates, allowed us to prepare a tetranuclear Fe(4) cluster with a stairway-like structure and the formula cis-{[(H(2)O)Cl(3)Fe(III)-μ(bpym)Fe(II)Cl(2)]}(2)-μ(bpym) (1) . All spectroscopic data suggest that complex 1 is a valence-localized mixed-valent Fe(II)-Fe(III) cluster with typical Mössbauer lines for both sites, which do not change with temperature. Reflectance spectroscopy did not allow one to distinguish an intervalence charge-transfer band. However, time-dependent density functional theory (DFT) calculations predict a weak high-energy Fe(II) → Fe(III) transition. Regarding the magnetic properties, the high-spin Fe(II) and Fe(III) ions interact in a weakly antiferromagnetic way with isotropic J constants of only a few wavenumbers as derived from direct-current susceptibility and magnetization data. Broken-symmetry DFT calculations support these observations.
Martín de Vidales, María J; Millán, María; Sáez, Cristina; Pérez, José F; Rodrigo, Manuel A; Cañizares, Pablo
2015-10-01
In this work, the usefulness of Conductive Diamond Electrochemical Oxidation (CDEO) to degrade caffeine in real urban wastewater matrixes was assessed. The oxidation of actual wastewater intensified with caffeine (from 1 to 100 mg L(-1)) was studied, paying particular attention to the influence of the initial load of caffeine and the differences observed during the treatment of caffeine in synthetic wastewater. The results showed that CDEO is a technology that is capable of efficiently degrading this compound even at very low concentrations and that it can even be completely depleted. Profiles of the ionic species of S (SO4(2-)), N (NH4(+), NO3(-)) and Cl (ClO(-), ClO3(-) and ClO4(-)) were monitored and explained for plausible oxidation mechanisms. It was observed that the efficiency achieved is higher in the treatment of real wastewater than in the oxidation of synthetic wastewater because of the contribution of electrogenerated oxidant species such as hypochlorite. The formation of chlorate and perchlorate during electrochemical processes was observed, and a combined strategy to prevent this important drawback was successfully tested based on the application of low current densities with the simultaneous dosing of hydrogen peroxide. Copyright © 2015 Elsevier Ltd. All rights reserved.
The Perils of Electron Microprobe Analysis of Apatite
NASA Astrophysics Data System (ADS)
Henderson, C. E.; Essene, E. J.; Wang, K. L.; Zhang, Y.
2010-12-01
Accurate electron microprobe analysis of apatite is problematic, especially for F and Cl, whose concentrations are essential in calculating a non-analyzable OH component. The issues include beam-induced sample damage and temporal variation of F and Cl X-rays; both effects are mainly dependent on beam current, beam spot size and apatite orientation [1]. To establish a rigorous analytical procedure, several oriented apatite samples, including the well-known Durango and Wilberforce fluorapatites, were analyzed for a large suite of elements, including oxygen. Careful X-ray spectroscopy was performed, including selection of appropriate analytical standards, background measurement positions and comparison of area peak factors. Polarized infrared spectra on oriented apatite samples were also collected for complementary information. The results show that when apatite samples are oriented with the c-axis parallel to the electron beam, there is significant nonlinear variation (an increase or decrease, depending on measurement conditions) of F and Cl X-ray intensities during analyses, and systematically higher-than-expected F apparent concentrations, despite the careful selection of electron beam conditions from a series of X-ray time scans and zero-time count rate extrapolation. On the other hand, when the electron beam is oriented perpendicular to the c-axis, with a ≤ 15 nA beam current and a ≥ 5 µm diameter defocused beam, F and Cl X-ray intensities do not vary or vary slowly and predictably with time, yielding quantitative analysis results for the Durango and Wilberforce apatites (both containing little OH) which are in good agreement with published wet chemical analyses. Furthermore, the OH and CO2 contents inferred for three other analyzed apatite samples are roughly consistent with infrared analyses. For example, for an apatite from Silver Crater Mine in Ontario, significant deficiency in the P site, as well as extra F, was inferred from microprobe analyses. Infrared spectra show a strong band of (CO3)2- for this apatite, which indicates a possible substitution of (CO3)2-(F)- for (PO4)3-. Other techniques to mitigate temporal variation of F and Cl, including alternative metal coatings, concurrent stage movement, and cryogenic sample-cooling were attempted, but did not eliminate the disparity in measured F concentrations between the two sample orientations. Thus, we believe that F measurements on F-rich apatite samples of unknown orientation are immediately suspect and should be regarded as upper limits of true F concentration. X-ray mapping, CL imaging and subsequent quantitative analyses show compositional variations in Na, S, Si, and REE in the Durango and Wilberforce fluorapatite samples used in this study. Problems of electron beam sensitivity, X-ray intensity anisotropy due to sample orientation, and compositional heterogeneity call into question their continued use as routine microanalysis reference materials. Microanalysts are encouraged to use more robust calibration standards, such as Cl-rich or other F-poor apatites for Ca, P, O and Cl, and MgF2 for F measurements. [1] Stormer, J.C., Pierson, M.L, and Tacker, R.C. (1993) Variation of F and Cl X-ray intensity due to anisotropic diffusion in apatite during electron microprobe analysis. Am. Min., 78, 641-648.
Play-a-Long, Sing-a-Long with the Hi Hopes
ERIC Educational Resources Information Center
Walker, Doris E.
1975-01-01
Described are the beginnings and current activities of the Hi Hopes, a music group of seven trainable mentally retarded adults who have recorded three albums, appeared on television specials and played before more than 250,000 people. (CL)
Identification of an ovarian voltage-activated Na+-channel type: hints to involvement in luteolysis.
Bulling, A; Berg, F D; Berg, U; Duffy, D M; Stouffer, R L; Ojeda, S R; Gratzl, M; Mayerhofer, A
2000-07-01
An endocrine type of voltage-activated sodium channel (eNaCh) was identified in the human ovary and human luteinized granulosa cells (GC). Whole-cell patch-clamp studies showed that the eNaCh in GC is functional and tetrodotoxin (TTX) sensitive. The luteotrophic hormone human CG (hCG) was found to decrease the peak amplitude of the sodium current within seconds. Treatment with hCG for 24-48 h suppressed not only eNaCh mRNA levels, but also mean Na+ peak currents and resting membrane potentials. An unexpected role for eNaChs in regulating cell morphology and function was indicated after pharmacological modulation of presumed eNaCh steady-state activity in GC cultures for 24-48 h using TTX (NaCh blocker) and veratridine (NaCh activator). TTX preserved a highly differentiated cellular phenotype. Veratridine not only increased the number of secondary lysosomes but also led to a significantly reduced progesterone production. Importantly, endocrine cells of the nonhuman primate corpus luteum (CL), which represent in vivo counterparts of luteinized GC, also contain eNaCh mRNA. Although the mechanism of channel activity under physiological conditions is not clear, it may include persistent Na+ currents. As observed in GC in culture, abundant secondary lysosomes were particularly evident in the regressing CL, suggesting a functional link between eNaCh activity and this form of cellular regression in vivo. Our results identify eNaCh in ovarian endocrine cells and demonstrate that their expression is under the inhibitory control of hCG. Activation of eNaChs in luteal cells, due to loss of gonadotropin support, may initiate a cascade of events leading to decreased CL function, a process that involves lysosomal activation and autophagy. These results imply that ovarian eNaChs are involved in the physiological demise of the temporary endocrine organ CL in the primate ovary during the menstrual cycle. Because commonly used drugs, including phenytoin, target NaChs, these results may be of clinical relevance.
NASA Astrophysics Data System (ADS)
Ostermaier, Clemens; Pozzovivo, Gianmauro; Basnar, Bernhard; Schrenk, Werner; Carlin, Jean-François; Gonschorek, Marcus; Grandjean, Nicolas; Vincze, Andrej; Tóth, Lajos; Pécz, Bela; Strasser, Gottfried; Pogany, Dionyz; Kuzmik, Jan
2010-11-01
We have investigated an inductively coupled plasma etching recipe using SiCl4 and SF6 with a resulting selectivity >10 for GaN in respect to InAlN. The formation of an etch-resistant layer of AlF3 on InAlN required about 1 min and was noticed by a 4-times-higher initial etch rate on bare InAlN barrier high electron mobility transistors (HEMTs). Comparing devices with and without plasma-treatment below the gate showed no degradation in drain current and gate leakage current for plasma exposure durations shorter than 30 s, indicating no plasma-induced damage of the InAlN barrier. Devices etched longer than the required time for the formation of the etch-resistant barrier exhibited a slight decrease in drain current and an increase in gate leakage current which saturated for longer etching-time durations. Finally, we could prove the quality of the recipe by recessing the highly doped 6 nm GaN cap layer of a GaN/InAlN/AlN/GaN heterostructure down to the 2 nm thin InAlN/AlN barrier layer.
Non-aqueous aluminium-air battery based on ionic liquid electrolyte
NASA Astrophysics Data System (ADS)
Revel, Renaud; Audichon, Thomas; Gonzalez, Serge
2014-12-01
A promising metal-air secondary battery based on aluminium-oxygen couple is described. In this paper, we observed that an aluminium-air battery employing EMImCl, AlCl3 room temperature ionic liquid (RTIL) as electrolyte and aluminium as negative electrode, has an exceptional reduced self-discharged rate. Due to its new and innovative type of electrolyte, this aluminium-air battery can support relatively high current densities (up to 0.6 mA cm-2) and an average voltage of 0.6-0.8 V. Such batteries may find immediate applications, as they can provide an internal, built-in autonomous and self-sustained energy source.
Atmospheric chemistry of ethane and ethylene
NASA Technical Reports Server (NTRS)
Aikin, A. C.; Herman, J. R.; Maier, E. J.; Mcquillan, C. J.
1982-01-01
It is shown by a study of ethane and ethylene photochemistry that the loss of ethane is controlled by OH in the troposphere and Cl in the stratosphere. Ethane observations indicating free Cl concentrations below 30 km that are only 10% of the value predicted by the present model calculations cannot be explained by heterogeneous aerosol concentration processes, and contradict current stratospheric photochemistry. The chemical destruction of ethane and ethylene leads to the generation of such compounds as carbon monoxide and formaldehyde, and it is found that the tropospheric concentrations of the latter are enhanced by nearly a factor of three for an ethylene mixing ratio of 2 ppb.
Acid-inducible proton influx currents in the plasma membrane of murine osteoclast-like cells.
Kuno, Miyuki; Li, Guangshuai; Moriura, Yoshie; Hino, Yoshiko; Kawawaki, Junko; Sakai, Hiromu
2016-05-01
Acidification of the resorption pits, which is essential for dissolving bone, is produced by secretion of protons through vacuolar H(+)-ATPases in the plasma membrane of bone-resorbing cells, osteoclasts. Consequently, osteoclasts face highly acidic extracellular environments, where the pH gradient across the plasma membrane could generate a force driving protons into the cells. Proton influx mechanisms during the acid exposure are largely unknown, however. In this study, we investigated extracellular-acid-inducible proton influx currents in osteoclast-like cells derived from a macrophage cell line (RAW264). Decreasing extracellular pH to <5.5 induced non-ohmic inward currents. The reversal potentials depended on the pH gradients across the membrane and were independent of concentrations of Na(+), Cl(-), and HCO3 (-), suggesting that they were carried largely by protons. The acid-inducible proton influx currents were not inhibited by amiloride, a widely used blocker for cation channels/transporters, or by 4,4'-diisothiocyanato-2,2'-stilbenesulfonate(DIDS) which blocks anion channels/transporters. Additionally, the currents were not significantly affected by V-ATPase inhibitors, bafilomycin A1 and N,N'-dicyclohexylcarbodiimide. Extracellular Ca(2+) (10 mM) did not affect the currents, but 1 mM ZnCl2 decreased the currents partially. The intracellular pH in the vicinity of the plasma membrane was dropped by the acid-inducible H(+) influx currents, which caused overshoot of the voltage-gated H(+) channels after removal of acids. The H(+) influx currents were smaller in undifferentiated, mononuclear RAW cells and were negligible in COS7 cells. These data suggest that the acid-inducible H(+) influx (H(+) leak) pathway may be an additional mechanism modifying the pH environments of osteoclasts upon exposure to strong acids.
Four-dimensional ultrasound current source density imaging of a dipole field
NASA Astrophysics Data System (ADS)
Wang, Z. H.; Olafsson, R.; Ingram, P.; Li, Q.; Qin, Y.; Witte, R. S.
2011-09-01
Ultrasound current source density imaging (UCSDI) potentially transforms conventional electrical mapping of excitable organs, such as the brain and heart. For this study, we demonstrate volume imaging of a time-varying current field by scanning a focused ultrasound beam and detecting the acoustoelectric (AE) interaction signal. A pair of electrodes produced an alternating current distribution in a special imaging chamber filled with a 0.9% NaCl solution. A pulsed 1 MHz ultrasound beam was scanned near the source and sink, while the AE signal was detected on remote recording electrodes, resulting in time-lapsed volume movies of the alternating current distribution.
Luo, Jinwei; Zhong, Wenbin; Zou, Yubo; Xiong, Changlun; Yang, Wantai
2017-01-11
Design and preparation of carbon-based electrode material with high nitrogen-doping ratio and appropriate density attract much interest for supercapacitors in practical application. Herein, three porous carbon/graphene (NCG Cu , NCG Fe , and NCG Zn ) with high doping ratio of nitrogen have been prepared via directly pyrolysis of graphene oxide (GO)/metal-organic coordination polymer (MOCP) composites, which were formed by reacting 4,4'-bipyridine (BPD) with CuCl 2 , FeCl 3 , and ZnCl 2 , respectively. As-prepared NCG Cu , NCG Fe and NCG Zn showed high nitrogen doping ratio of 10.68, 12.99, and 11.21 at. %; and high density of 1.52, 0.84, and 1.15 g cm -3 , respectively. When as-prepared samples were used as supercapacitor electrodes, NCG Cu , NCG Fe and NCG Zn exhibited high gravimetric specific capacitances of 369, 298.5, 309.5 F g -1 , corresponding to high volumetric specific capacitances of 560.9, 250.7, 355.9 F cm -3 at a current density of 0.5 A g -1 , as well as good cycling stability, nearly 100% of the capacitance retained after 1000 cycles even at a large current density of 10 A g -1 . It is expected that the provided novel strategy can be used to develop electrode materials in high performance energy conversion/storage devices.
Scott, R H; Sweeney, M I; Kobrinsky, E M; Pearson, H A; Timms, G H; Pullar, I A; Wedley, S; Dolphin, A C
1992-05-01
1. Toxins from invertebrates have proved useful tools for investigation of the properties of ion channels. In this study we describe the actions of arginine polyamine which is believed to be a close analogue of FTX, a polyamine isolated from the American funnel web spider, Agelenopsis aperta. 2. Voltage-activated Ca2+ currents and Ca(2+)-dependent Cl- currents recorded from rat cultured dorsal root ganglion neurones were reversibly inhibited by arginine polyamine (AP; 0.001 to 100 microM). Low voltage-activated T-type Ca2+ currents were significantly more sensitive to AP than high voltage-activated Ca2+ currents. The IC50 values for the actions of AP on low and high voltage-activated Ca2+ currents were 10 nM and 3 microM respectively. AP was equally effective in inhibiting high voltage-activated currents carried by Ba2+, Sr2+ or Ca2+. However, AP-induced inhibition of Ca2+ currents was attenuated by increasing the extracellular Ca2+ concentration from 2 mM to 10 mM. 3. The actions of AP on a Ca(2+)-independent K+ current were more complex, 1 microM AP enhanced this current but 10 microM AP had a dual action, initially enhancing but then inhibiting the K+ current. 4. gamma-Aminobutyric acid-activated Cl- currents were also reversibly inhibited by 1 to 10 microM AP. In contrast N-methyl-D-aspartate currents recorded from rat cultured cerebellar neurones were greatly enhanced by 10 microM AP. 5. We conclude that at a concentration of 10 nM, AP is a selective inhibitor of low threshold T-type voltage-activated Ca2+ currents. However, at higher concentrations 1-10 microM AP interacts with ion channels or other membrane constituents to produce a variety of actions on both voltage and ligand gated ion channels.
Current Trends in the Treament of Phobias in Autistic and Mentally Retarded Persons.
ERIC Educational Resources Information Center
Jackson, Henry J.
1983-01-01
The paper reviews research on phobic disorders of mentally retarded and autistic persons, noting the definitions, incidence and prevalence, etiological explanations, and treatment approaches. Methodological weaknesses are stressed. Behavioral interventions are seen as the treatments of choice. (CL)
NASA Astrophysics Data System (ADS)
Bégué, Florence; Deering, Chad D.; Gravley, Darren M.; Chambefort, Isabelle; Kennedy, Ben M.
2017-10-01
The magmatic contribution into geothermal fluids in the central Taupo Volcanic Zone (TVZ), New Zealand, has been attributed to either andesitic, 'arc-type' fluids, or rhyolitic, 'rift-type' fluids to explain the compositional diversity of discharge waters. However, this model relies on outdated assumptions related to geochemical trends associated with the magma at depth of typical arc to back-arc settings. Current tectonic models have shown that the TVZ is situated within a rifting arc and hosts magmatic systems dominated by distinct rhyolite types, that are likely to have evolved under different conditions than the subordinate andesites. Therefore, a new appraisal of the existing models is required to further understand the origin of the spatial compositional diversity observed in the geothermal fluids and its relationship to the structural setting. Here, we use volatile concentrations (i.e. H2O, Cl, B) from rhyolitic and andesitic mineral-hosted melt inclusions to evaluate the magmatic contribution to the TVZ geothermal systems. The andesite and two different types of rhyolites (R1 and R2) are each distinct in Cl/H2O and B/Cl, which will affect volatile solubility and phase separation (vapor vs. hydrosaline liquid) of the exsolved volatile phase. Ultimately, these key differences in the magmatic volatile constituents will play a significant role in governing the concentration of Cl discharged into geothermal systems. We estimate bulk fluid compositions (B and Cl) in equilibrium with the different melt types to show the potential contribution of 'parent' fluids to the geothermal systems throughout the TVZ. The results of this analysis show that the variability in fluid compositions partly reflects degassing from previously unaccounted for distinct magma source compositions. We suggest the geothermal systems that appear to have an 'arc-type' andesitic fluid contribution are actually derived from a rhyolite melt in equilibrium with a highly crystalline andesite magma. This model is in better agreement with the current understanding of magma petrogenesis in the central TVZ and its atypical rifted-arc tectonic setting, and show that the central TVZ records an arc, not back-arc, fluid signature.
Denef, Vincent J; Mueller, Ryan S; Chiang, Edna; Liebig, James R; Vanderploeg, Henry A
2015-12-18
The Chloroflexi CL500-11 clade contributes a large proportion of the bacterial biomass in the oxygenated hypolimnia of deep lakes worldwide, including the world's largest freshwater system, the Laurentian Great Lakes. Traits that allow CL500-11 to thrive and its biogeochemical role in these environments are currently unknown. Here, we found that a CL500-11 population was present mostly in offshore waters along a transect in ultraoligotrophic Lake Michigan (a Laurentian Great Lake). It occurred throughout the water column in spring and only in the hypolimnion during summer stratification, contributing up to 18.1% of all cells. Genome reconstruction from metagenomic data suggested an aerobic, motile, heterotrophic lifestyle, with additional energy being gained through carboxidovory and methylovory. Comparisons to other available streamlined freshwater genomes revealed that the CL500-11 genome contained a disproportionate number of cell wall/capsule biosynthesis genes and the most diverse spectrum of genes involved in the uptake of dissolved organic matter (DOM) substrates, particularly peptides. In situ expression patterns indicated the importance of DOM uptake and protein/peptide turnover, as well as type I and type II carbon monoxide dehydrogenase and flagellar motility. Its location in the water column influenced its gene expression patterns the most. We observed increased bacteriorhodopsin gene expression and a response to oxidative stress in surface waters compared to its response in deep waters. While CL500-11 carries multiple adaptations to an oligotrophic lifestyle, its investment in motility, its large cell size, and its distribution in both oligotrophic and mesotrophic lakes indicate its ability to thrive under conditions where resources are more plentiful. Our data indicate that CL500-11 plays an important role in nitrogen-rich DOM mineralization in the extensive deep-lake hypolimnion habitat. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Alam, Munirul; Nusrin, Suraia; Islam, Atiqul; Bhuiyan, Nurul A.; Rahim, Niaz; Delgado, Gabriela; Morales, Rosario; Mendez, Jose Luis; Navarro, Armando; Gil, Ana I.; Watanabe, Haruo; Morita, Masatomo; Nair, G. Balakrish; Cravioto, Alejandro
2010-01-01
Vibrio cholerae O1 biotype El Tor (ET), the cause of the current 7th pandemic, has recently been replaced in Asia and Africa by an altered ET biotype possessing cholera toxin (CTX) of the classical (CL) biotype that originally caused the first six pandemics before becoming extinct in the 1980s. Until recently, the ET prototype was the biotype circulating in Peru; a detailed understanding of the evolutionary trend of V. cholerae causing endemic cholera in Latin America is lacking. The present retrospective microbiological, molecular, and phylogenetic study of V. cholerae isolates recovered in Mexico (n = 91; 1983 to 1997) shows the existence of the pre-1991 CL biotype and the ET and CL biotypes together with the altered ET biotype in both epidemic and endemic cholera between 1991 and 1997. According to sero- and biotyping data, the altered ET, which has shown predominance in Mexico since 1991, emerged locally from ET and CL progenitors that were found coexisting until 1997. In Latin America, ET and CL variants shared a variable number of phenotypic markers, while the altered ET strains had genes encoding the CL CTX (CTXCL) prophage, ctxBCL and rstRCL, in addition to resident rstRET, as the underlying regional signature. The distinct regional fingerprints for ET in Mexico and Peru and their divergence from ET in Asia and Africa, as confirmed by subclustering patterns in a pulsed-field gel electrophoresis (NotI)-based dendrogram, suggest that the Mexico epidemic in 1991 may have been a local event and not an extension of the epidemics occurring in Asia and South America. Finally, the CL biotype reservoir in Mexico is unprecedented and must have contributed to the changing epidemiology of global cholera in ways that need to be understood. PMID:20668130
Hahn, Anne; Faulhaber, Johannes; Srisawang, Lalita; Stortz, Andreas; Salomon, Johanna J; Mall, Marcus A; Frings, Stephan; Möhrlen, Frank
2017-06-01
Transport of water and electrolytes in airway epithelia involves chloride-selective ion channels, which are controlled either by cytosolic Ca 2+ or by cAMP The contributions of the two pathways to chloride transport differ among vertebrate species. Because rats are becoming more important as animal model for cystic fibrosis, we have examined how Ca 2+ - dependent and cAMP- dependent Cl - secretion is organized in the rat tracheal epithelium. We examined the expression of the Ca 2+ -gated Cl - channel anoctamin 1 (ANO1), the cystic fibrosis transmembrane conductance regulator (CFTR) Cl - channel, the epithelial Na + channel ENaC, and the water channel aquaporin 5 (AQP5) in rat tracheal epithelium. The contribution of ANO1 channels to nucleotide-stimulated Cl - secretion was determined using the channel blocker Ani9 in short-circuit current recordings obtained from primary cultures of rat tracheal epithelial cells in Ussing chambers. We found that ANO1, CFTR and AQP5 proteins were expressed in nonciliated cells of the tracheal epithelium, whereas ENaC was expressed in ciliated cells. Among nonciliated cells, ANO1 occurred together with CFTR and Muc5b and, in addition, in a different cell type without CFTR and Muc5b. Bioelectrical studies with the ANO1-blocker Ani9 indicated that ANO1 mediated the secretory response to the nucleotide uridine-5'-triphosphate. Our data demonstrate that, in rat tracheal epithelium, Cl - secretion and Na + absorption are routed through different cell types, and that ANO1 channels form the molecular basis of Ca 2+ -dependent Cl - secretion in this tissue. These characteristic features of Cl - -dependent secretion reveal similarities and distinct differences to secretory processes in human airways. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Fan, Shujun; Harfoot, Natalie; Bartolo, Ray C; Butt, A Grant
2012-04-01
The cystic fibrosis transmembrane conductance regulator (CFTR) is central to anion secretion in both the possum and eutherian small intestine. Here, we investigated its role in the possum proximal colon, which has novel transport properties compared with the eutherian proximal colon. Despite considerable CFTR expression, high doses of the CFTR activator forskolin (EC(50)≈10 μmol l(-1)) were required for a modest, CFTR-dependent increase in short-circuit current (I(sc)) in the proximal colon. Presumably, this is because CFTR is restricted to the apical membrane of a small population of CFTR high expresser (CHE) cells in the surface and upper crypt epithelium. Furthermore, although the forskolin-stimulated I(sc) was dependent on serosal Na(+), Cl(-) and HCO(3)(-), consistent with anion secretion, inhibition of the basolateral Na-K-2Cl(-) (NKCC1) or Na-HCO(3) (pNBCe1) cotransporters did not prevent it. Therefore, although NKCC1 and pNBCe1 are expressed in the colonic epithelium they do not appear to be expressed in CHE cells. At low doses (IC(50)≈1 μmol l(-1)), forskolin also decreased the transepithelial conductance (G(T)) of the colon through inhibition of a 4,4'-diisothiocyano-2,2'-stilbenedisulphonic acid-sensitive anion conductance in the basolateral membrane of the CHE cells. This conductance is arranged in series with CFTR in the CHE cells and, therefore, the CHE cells provide a transepithelial Cl(-) conductance for passive Cl(-) absorption across the epithelium. Inhibition of the basolateral Cl(-) conductance of the CHE cells by forskolin will inhibit Na(+) absorption by restricting the movement of its counter-ion Cl(-), assisting in the conversion of the tissue from an absorptive to a secretory state.
Fang, Zhong; Giambini, Hugo; Zeng, Heng; Camp, Jon J.; Dadsetan, Mahrokh; Robb, Richard A.; An, Kai-Nan; Yaszemski, Michael J.
2014-01-01
A novel biodegradable copolymer, poly(propylene fumarate-co-caprolactone) [P(PF-co-CL)], has been developed in our laboratory as an injectable scaffold for bone defect repair. In the current study, we evaluated the ability of P(PF-co-CL) to reconstitute the load-bearing capacity of vertebral bodies with lytic lesions. Forty vertebral bodies from four fresh-frozen cadaveric thoracolumbar spines were used for this study. They were randomly divided into four groups: intact vertebral body (intact control), simulated defect without treatment (negative control), defect treated with P(PF-co-CL) (copolymer group), and defect treated with poly(methyl methacrylate) (PMMA group). Simulated metastatic lytic defects were made by removing a central core of the trabecular bone in each vertebral body with an approximate volume of 25% through an access hole in the side of the vertebrae. Defects were then filled by injecting either P(PF-co-CL) or PMMA in situ crosslinkable formulations. After the spines were imaged with quantitative computerized tomography, single vertebral body segments were harvested for mechanical testing. Specimens were compressed until failure or to 25% reduction in body height and ultimate strength and elastic modulus of each specimen were then calculated from the force–displacement data. The average failure strength of the copolymer group was 1.83 times stronger than the untreated negative group and it closely matched the intact vertebral bodies (intact control). The PMMA-treated vertebrae, however, had a failure strength 1.64 times larger compared with the intact control. The elastic modulus followed the same trend. This modulus mismatch between PMMA-treated vertebrae and the host vertebrae could potentially induce a fracture cascade and degenerative changes in adjacent intervertebral discs. In contrast, P(PF-co-CL) restored the mechanical properties of the treated segments similar to the normal, intact, vertebrae. Therefore, P(PF-co-CL) may be a suitable alternative to PMMA for vertebroplasty treatment of vertebral bodies with lytic defects. PMID:24256208
Kessler, C; Oldenburg, J; Ettingshausen, C Escuriola; Tiede, A; Khair, K; Négrier, C; Klamroth, R
2015-01-01
Inhibitor development is the most serious and challenging complication in the treatment of severe haemophilia A. Up to 38% of such patients develop inhibitors with current recombinant factor VIII (rFVIII) products produced in hamster cell lines. Human-cl rhFVIII is a new generation fully sulfated B-domain-deleted FVIII coagulant glycoprotein, which is generated from a human cell line. Thus, there are no non-human epitopes which would be potentially immunogenic. This molecule has significantly higher VWF-binding affinity compared with existing full-length rFVIII produced in hamster cell lines. The development aim of Human-cl rhFVIII is to address the challenges of FVIII inhibitors and frequent infusions during prophylaxis. Human-cl rhFVIII's mean half-life is very comparable to some of the newer products which involve modification of the FVIII molecule to extend the circulating half-life. There are promising data concerning the use of a personalized prophylaxis regimen with Human-cl rhFVIII. Preliminary data indicate a median dosing interval of 3.5 days with 66.7% of the patients on a twice per week or fewer infusions schedule combined with a low bleeding rate and no increased FVIII consumption when compared to standard prophylaxis. No product-specific laboratory assay is required to monitor the coagulation activity for Human-cl rhFVIII. The results of registration clinical trials with Human-cl rhFVIII as well as the ongoing studies in previously untreated patients (NuProtect) and personalized prophylaxis study in previously treated patients (NuPreviq), will be discussed. The manufacturer has received marketing authorization for Human-cl rhFVIII in Europe and Canada under the name Nuwiq(®) and plans to launch it in the USA and globally in 2015. © 2014 John Wiley & Sons Ltd.
Heterogeneous processes: Laboratory, field, and modeling studies
NASA Technical Reports Server (NTRS)
Poole, Lamont R.; Kurylo, Michael J.; Jones, Rod L.; Wahner, Andreas; Calvert, Jack G.; Leu, M.-T.; Fried, A.; Molina, Mario J.; Hampson, Robert F.; Pitts, M. C.
1991-01-01
The efficiencies of chemical families such as ClO(x) and NO(x) for altering the total abundance and distribution of stratospheric ozone are controlled by a partitioning between reactive (active) and nonreactive (reservoir) compounds within each family. Gas phase thermodynamics, photochemistry, and kinetics would dictate, for example, that only about 1 percent of the chlorine resident in the lower stratosphere would be in the form of active Cl or ClO, the remainder existing in the reservoir compounds HCl and ClONO2. The consistency of this picture was recently challenged by the recognition that important chemical transformations take place on polar regions: the Airborne Antarctic Ozone Experiment (AAOE) and the Airborne Arctic Stratospheric Expedition (AASA). Following the discovery of the Antarctic ozone hole, Solomon et al. suggested that the heterogeneous chemical reaction: ClONO2(g)+HCl(s) yields Cl2(g)+HNO3(s) could play a key role in converting chlorine from inactive forms into a species (Cl2) that would rapidly dissociate in sunlight to liberate atomic chlorine and initiate ozone depletion. The symbols (s) and (g) denote solid phase, or adsorbed onto a solid surface, and gas phase, respectively, and represent the approach by which such a reaction is modeled rather than the microscopic details of the reaction. The reaction was expected to be most important at altitudes where PSC's were most prevalent (10 to 25 km), thereby extending the altitude range over which chlorine compounds can efficiently destroy ozone from the 35 to 45 km region (where concentrations of active chlorine are usually highest) to lower altitudes where the ozone concentration is at its peak. This chapter will briefly review the current state of knowledge of heterogeneous processes in the stratosphere, emphasizing those results obtained since the World Meteorological Organization (WMO) conference. Sections are included on laboratory investigations of heterogeneous reactions, the characteristics and climatology of PSC's, stratospheric sulfate aerosols, and evidence of heterogeneous chemical processing.
Colloidal graphite/graphene nanostructures using collagen showing enhanced thermal conductivity.
Bhattacharya, Soumya; Dhar, Purbarun; Das, Sarit K; Ganguly, Ranjan; Webster, Thomas J; Nayar, Suprabha
2014-01-01
In the present study, the exfoliation of natural graphite (GR) directly to colloidal GR/graphene (G) nanostructures using collagen (CL) was studied as a safe and scalable process, akin to numerous natural processes and hence can be termed "biomimetic". Although the exfoliation and functionalization takes place in just 1 day, it takes about 7 days for the nano GR/G flakes to stabilize. The predominantly aromatic residues of the triple helical CL forms its own special micro and nanoarchitecture in acetic acid dispersions. This, with the help of hydrophobic and electrostatic forces, interacts with GR and breaks it down to nanostructures, forming a stable colloidal dispersion. Surface enhanced Raman spectroscopy, X-ray diffraction, photoluminescence, fluorescence, and X-ray photoelectron spectroscopy of the colloid show the interaction between GR and CL on day 1 and 7. Differential interference contrast images in the liquid state clearly reveal how the GR flakes are entrapped in the CL fibrils, with a corresponding fluorescence image showing the intercalation of CL within GR. Atomic force microscopy of graphene-collagen coated on glass substrates shows an average flake size of 350 nm, and the hexagonal diffraction pattern and thickness contours of the G flakes from transmission electron microscopy confirm ≤ five layers of G. Thermal conductivity of the colloid shows an approximate 17% enhancement for a volume fraction of less than approximately 0.00005 of G. Thus, through the use of CL, this new material and process may improve the use of G in terms of biocompatibility for numerous medical applications that currently employ G, such as internally controlled drug-delivery assisted thermal ablation of carcinoma cells.
Spectral-element Seismic Wave Propagation on CUDA/OpenCL Hardware Accelerators
NASA Astrophysics Data System (ADS)
Peter, D. B.; Videau, B.; Pouget, K.; Komatitsch, D.
2015-12-01
Seismic wave propagation codes are essential tools to investigate a variety of wave phenomena in the Earth. Furthermore, they can now be used for seismic full-waveform inversions in regional- and global-scale adjoint tomography. Although these seismic wave propagation solvers are crucial ingredients to improve the resolution of tomographic images to answer important questions about the nature of Earth's internal processes and subsurface structure, their practical application is often limited due to high computational costs. They thus need high-performance computing (HPC) facilities to improving the current state of knowledge. At present, numerous large HPC systems embed many-core architectures such as graphics processing units (GPUs) to enhance numerical performance. Such hardware accelerators can be programmed using either the CUDA programming environment or the OpenCL language standard. CUDA software development targets NVIDIA graphic cards while OpenCL was adopted by additional hardware accelerators, like e.g. AMD graphic cards, ARM-based processors as well as Intel Xeon Phi coprocessors. For seismic wave propagation simulations using the open-source spectral-element code package SPECFEM3D_GLOBE, we incorporated an automatic source-to-source code generation tool (BOAST) which allows us to use meta-programming of all computational kernels for forward and adjoint runs. Using our BOAST kernels, we generate optimized source code for both CUDA and OpenCL languages within the source code package. Thus, seismic wave simulations are able now to fully utilize CUDA and OpenCL hardware accelerators. We show benchmarks of forward seismic wave propagation simulations using SPECFEM3D_GLOBE on CUDA/OpenCL GPUs, validating results and comparing performances for different simulations and hardware usages.
Wilhelm, Christina M.; Snider, Thomas H.; Babin, Michael C.; Jett, David A.; Platoff, Gennady E.; Yeung, David T.
2014-01-01
The currently fielded pre-hospital therapeutic regimen for the treatment of organophosphorus (OP) poisoning in the United States (U.S.) is the administration of atropine in combination with an oxime antidote (2-PAM Cl) to reactivate inhibited acetylcholinesterase (AChE). Depending on clinical symptoms, an anticonvulsant, e.g., diazepam, may also be administered. Unfortunately, 2-PAM Cl does not offer sufficient protection across the range of OP threat agents, and there is some question as to whether it is the most effective oxime compound available. The objective of the present study is to identify an oxime antidote, under standardized and comparable conditions, that offers protection at the FDA approved human equivalent dose (HED) of 2-PAM Cl against tabun (GA), sarin (GB), soman (GD), cyclosarin (GF), and VX, and the pesticides paraoxon, chlorpyrifos oxon, and phorate oxon. Male Hartley guinea pigs were subcutaneously challenged with a lethal level of OP and treated at approximately 1 min post challenge with atropine followed by equimolar oxime therapy (2-PAM Cl, HI-6 DMS, obidoxime Cl2, TMB-4, MMB4-DMS, HLö-7 DMS, MINA, and RS194B) or therapeutic-index (TI) level therapy (HI-6 DMS, MMB4-DMS, MINA, and RS194B). Clinical signs of toxicity were observed for 24 hours post challenge and blood cholinesterase [AChE and butyrylcholinesterase (BChE)] activity was analyzed utilizing a modified Ellman’s method. When the oxime is standardized against the HED of 2-PAM Cl for guinea pigs, the evidence from clinical observations, lethality, quality of life (QOL) scores, and cholinesterase reactivation rates across all OPs indicated that MMB4 DMS and HLö-7 DMS were the two most consistently efficacious oximes. PMID:25448441
On the inhibition of muscle membrane chloride conductance by aromatic carboxylic acids
Palade, PT; Barchi, RL
1977-01-01
25 aromatic carboxylic acids which are analogs of benzoic acid were tested in the rat diaphragm preparation for effects on chloride conductance (G(Cl)). Of the 25, 19 were shown to reduce membrane G(Cl) with little effect on other membrane parameters, although their apparent K(i) varied widely. This inhibition was reversible if exposure times were not prolonged. The most effective analog studied was anthracene-9-COOH (9-AC; K(i) = 1.1 x 10(-5) M). Active analogs produced concentration-dependent inhibition of a type consistent with interaction at a single site or group of sites having similar binding affinities, although a correlation could also be shown between lipophilicity and K(i). Structure-activity analysis indicated that hydrophobic ring substitution usually increased inhibitory activity while para polar substitutions reduced effectiveness. These compounds do not appear to inhibit G(Cl) by altering membrane surface charge and the inhibition produced is not voltage dependent. Qualitative characteristics of the I-V relationship for Cl(-) current are not altered. Conductance to all anions is not uniformly altered by these acids as would be expected from steric occlusion of a common channel. Concentrations of 9-AC reducing G(Cl) by more than 90 percent resulted in slight augmentation of G(I). The complete conductance sequence obtained at high levels of 9-AC was the reverse of that obtained under control conditions. Permeability sequences underwent progressive changes with increasing 9-AC concentration and ultimately inverted at high levels of the analog. Aromatic carboxylic acids appear to inhibit G(Cl) by binding to a specific intramembrane site and altering the selectivity sequence of the membrane anion channel. PMID:894246
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yimin, E-mail: yimin.wang@emory.edu; Bowman, Joel M., E-mail: jmbowma@emory.edu; Kamarchik, Eugene, E-mail: eugene.kamarchik@gmail.com
2016-03-21
We report full-dimensional, ab initio-based potentials and dipole moment surfaces for NaCl, NaF, Na{sup +}H{sub 2}O, F{sup −}H{sub 2}O, and Cl{sup −}H{sub 2}O. The NaCl and NaF potentials are diabatic ones that dissociate to ions. These are obtained using spline fits to CCSD(T)/aug-cc-pV5Z energies. In addition, non-linear least square fits using the Born-Mayer-Huggins potential are presented, providing accurate parameters based strictly on the current ab initio energies. The long-range behavior of the NaCl and NaF potentials is shown to go, as expected, accurately to the point-charge Coulomb interaction. The three ion-H{sub 2}O potentials are permutationally invariant fits to roughly 20 000more » coupled cluster CCSD(T) energies (awCVTZ basis for Na{sup +} and aVTZ basis for Cl{sup −} and F{sup −}), over a large range of distances and H{sub 2}O intramolecular configurations. These potentials are switched accurately in the long range to the analytical ion-dipole interactions, to improve computational efficiency. Dipole moment surfaces are fits to MP2 data; for the ion-ion cases, these are well described in the intermediate- and long-range by the simple point-charge expression. The performance of these new fits is examined by direct comparison to additional ab initio energies and dipole moments along various cuts. Equilibrium structures, harmonic frequencies, and electronic dissociation energies are also reported and compared to direct ab initio results. These indicate the high fidelity of the new PESs.« less
Kunzelmann, K; Lei, D C; Eng, K; Escobar, L C; Koslowsky, T; Gruenert, D C
1995-09-01
Analysis of vectorial ion transport and protein trafficking in transformed cystic fibrosis (CF) epithelial cells has been limited because the cells tend to lose their tight junctions with multiple subcultures. To elucidate ion transport and protein trafficking in CF epithelial cells, a polar cell line with apical and basolateral compartments will facilitate analysis of the efficacy of different gene therapy strategies in a "tight epithelium" in vitro. This study investigates the genotypic and phenotypic properties of a CF nasal polyp epithelial, delta F508 homozygote, cell line that has tight junctions pre-crisis. The cells (sigma CFNPE14o-) were transformed with an origin-of-replication defective SV40 plasmid. They develop transepithelial resistance in Ussing chambers and are defective in cAMP-dependent Cl- transport as measured by efflux of radioactive Cl-, short circuit current (Isc), or whole-cell patch clamp. Stimulation of the cells by bradykinin, histamine, or ATP seems to activate both K(+)- and Ca(+2)-dependent Cl- transport. Measurement of 36Cl- efflux following stimulation with A23187 and ionomycin indicate a Ca(+2)-dependent Cl- transport. Volume regulatory capacity of the cells is indicated by cell swelling conductance. Expression of the CF transmembrane conductance regulator mRNA was indicated by RT-PCR amplification. When cells are grown at 26 degrees C for 48 h there is no indication of cAMP-dependent Cl- as has been previously indicated in heterologous expression systems. Antibodies specific for secretory cell antigens indicate the presence of antigens found in goblet, serous, and mucous cells; in goblet and serous cells; or in goblet and mucous cells; but not antigens found exclusively in mucous or serous cells.(ABSTRACT TRUNCATED AT 250 WORDS)
Cunha, B A; Cunha, C B; Lam, B; Giuga, J; Chin, J; Zafonte, V F; Gerson, S
2017-07-01
Nitrofurantoin remains a key oral antibiotic stewardship program (ASP) option in the treatment of acute uncomplicated cystitis (AUC) due to multi-drug resistant (MDR) Gram negative bacilli (GNB). However, there have been concerns regarding decreased nitrofurantoin efficacy with renal insufficiency. In our experience over the past three decades, nitrofurantoin has been safe and effective in treating AUC in hospitalized adults with renal insufficiency. Accordingly, we retrospectively reviewed our recent experience treating AUC in hospitalized adults with decreased renal function (CrCl < 60 ml/min) with nitrofurantoin. Excluded were complicated urinary tract infections. Urinary isolated susceptibility testing was done by micro broth dilution (MBD). Treatment duration was 5-7 days. Cure was defined as eradication of the uropathogen and failure was defined as minimal/no decrease in urine colony counts. Of 26 evaluable patients with renal insufficiency (CrCl < 60 ml/min), nitrofurantoin eradicated the uropathogen in 18/26 (69%) of patients, and failed in 8/26 (31%). Of the eight failures, five were due to intrinsically resistant uropathogens, e.g., Proteus sp., and one failure was related to an alkaline urine. Of the treatment failures, only two were due to renal insufficiency, i.e., CrCl < 30 ml/min. Since there are few oral antibiotics available to treat AUC due to MDR GNB uropathogens, these results have important ASP implications. Currently, nitfurantoin is not recommended if CrCl < 60 ml/min. In our experience, used appropriately against susceptible uropathogens, nitrofurantoin was highly effective in nearly all patients with CrCl = 30-60 ml/min., and only failed in two patients due to renal insufficiency (CrCl < 30 ml/ml).
Seo, Joonho; Koizumi, Norihiro; Funamoto, Takakazu; Sugita, Naohiko; Yoshinaka, Kiyoshi; Nomiya, Akira; Homma, Yukio; Matsumoto, Yoichiro; Mitsuishi, Mamoru
2011-06-01
Applying ultrasound (US)-guided high-intensity focused ultrasound (HIFU) therapy for kidney tumours is currently very difficult, due to the unclearly observed tumour area and renal motion induced by human respiration. In this research, we propose new methods by which to track the indistinct tumour area and to compensate the respiratory tumour motion for US-guided HIFU treatment. For tracking indistinct tumour areas, we detect the US speckle change created by HIFU irradiation. In other words, HIFU thermal ablation can coagulate tissue in the tumour area and an intraoperatively created coagulated lesion (CL) is used as a spatial landmark for US visual tracking. Specifically, the condensation algorithm was applied to robust and real-time CL speckle pattern tracking in the sequence of US images. Moreover, biplanar US imaging was used to locate the three-dimensional position of the CL, and a three-actuator system drives the end-effector to compensate for the motion. Finally, we tested the proposed method by using a newly devised phantom model that enables both visual tracking and a thermal response by HIFU irradiation. In the experiment, after generation of the CL in the phantom kidney, the end-effector successfully synchronized with the phantom motion, which was modelled by the captured motion data for the human kidney. The accuracy of the motion compensation was evaluated by the error between the end-effector and the respiratory motion, the RMS error of which was approximately 2 mm. This research shows that a HIFU-induced CL provides a very good landmark for target motion tracking. By using the CL tracking method, target motion compensation can be realized in the US-guided robotic HIFU system. Copyright © 2011 John Wiley & Sons, Ltd.
Yeap, Jia Wei; Kaur, Simran; Lou, Fangfei; DiCaprio, Erin; Morgan, Mark; Linton, Richard
2015-01-01
Acute gastroenteritis caused by human norovirus is a significant public health issue. Fresh produce and seafood are examples of high-risk foods associated with norovirus outbreaks. Food contact surfaces also have the potential to harbor noroviruses if exposed to fecal contamination, aerosolized vomitus, or infected food handlers. Currently, there is no effective measure to decontaminate norovirus on food contact surfaces. Chlorine dioxide (ClO2) gas is a strong oxidizer and is used as a decontaminating agent in food processing plants. The objective of this study was to determine the kinetics and mechanism of ClO2 gas inactivation of a norovirus surrogate, murine norovirus 1 (MNV-1), on stainless steel (SS) coupons. MNV-1 was inoculated on SS coupons at the concentration of 107 PFU/coupon. The samples were treated with ClO2 gas at 1, 1.5, 2, 2.5, and 4 mg/liter for up to 5 min at 25°C and a relative humidity of 85%, and virus survival was determined by plaque assay. Treatment of the SS coupons with ClO2 gas at 2 mg/liter for 5 min and 2.5 mg/liter for 2 min resulted in at least a 3-log reduction in MNV-1, while no infectious virus was recovered at a concentration of 4 mg/liter even within 1 min of treatment. Furthermore, it was found that the mechanism of ClO2 gas inactivation included degradation of viral protein, disruption of viral structure, and degradation of viral genomic RNA. In conclusion, treatment with ClO2 gas can serve as an effective method to inactivate a human norovirus surrogate on SS contact surfaces. PMID:26475110
Zhou, Weiran; Zhou, Pengcheng; Lei, Xunyong; Fang, Zhimin; Zhang, Mengmeng; Liu, Qing; Chen, Tao; Zeng, Hualing; Ding, Liming; Zhu, Jun; Dai, Songyuan; Yang, Shangfeng
2018-01-17
Organometal halide CH 3 NH 3 PbI 3 (MAPbI 3 ) has been commonly used as the light absorber layer of perovskite solar cells (PSCs), and, especially, another halide element chlorine (Cl) has been often incorporated to assist the crystallization of perovskite film. However, in most cases, a predominant MAPbI 3 phase with trace of Cl - is obtained ultimately and the role of Cl involvement remains unclear. Herein, we develop a low-cost and facile method, named hydrochloric acid vapor annealing (HAVA) post-treatment, and realize a rapid conversion of MAPbI 3 to phase-pure MAPbCl 3 , demonstrating a new concept of phase engineering of perovskite materials toward efficiency enhancement of PSCs for the first time. The average grain size of perovskite film after HAVA post-treatment increases remarkably through an Ostwald ripening process, leading to a denser and smoother perovskite film with reduced trap states and enhanced crystallinity. More importantly, the generation of MAPbCl 3 secondary phase via phase engineering is beneficial for improving the carrier mobility with a more balanced carrier transport rate and enlarging the band gap of perovskite film along with optimized energy level alignment. As a result, under the optimized HAVA post-treatment time (2 min), we achieved a significant enhancement of the power conversion efficiency (PCE) of the MAPbI 3 -based planar heterojunction-PSC device from 14.02 to 17.40% (the highest PCE reaches 18.45%) with greatly suppressed hysteresis of the current-voltage response.
Colloidal graphite/graphene nanostructures using collagen showing enhanced thermal conductivity
Bhattacharya, Soumya; Dhar, Purbarun; Das, Sarit K; Ganguly, Ranjan; Webster, Thomas J; Nayar, Suprabha
2014-01-01
In the present study, the exfoliation of natural graphite (GR) directly to colloidal GR/graphene (G) nanostructures using collagen (CL) was studied as a safe and scalable process, akin to numerous natural processes and hence can be termed “biomimetic”. Although the exfoliation and functionalization takes place in just 1 day, it takes about 7 days for the nano GR/G flakes to stabilize. The predominantly aromatic residues of the triple helical CL forms its own special micro and nanoarchitecture in acetic acid dispersions. This, with the help of hydrophobic and electrostatic forces, interacts with GR and breaks it down to nanostructures, forming a stable colloidal dispersion. Surface enhanced Raman spectroscopy, X-ray diffraction, photoluminescence, fluorescence, and X-ray photoelectron spectroscopy of the colloid show the interaction between GR and CL on day 1 and 7. Differential interference contrast images in the liquid state clearly reveal how the GR flakes are entrapped in the CL fibrils, with a corresponding fluorescence image showing the intercalation of CL within GR. Atomic force microscopy of graphene-collagen coated on glass substrates shows an average flake size of 350 nm, and the hexagonal diffraction pattern and thickness contours of the G flakes from transmission electron microscopy confirm ≤ five layers of G. Thermal conductivity of the colloid shows an approximate 17% enhancement for a volume fraction of less than approximately 0.00005 of G. Thus, through the use of CL, this new material and process may improve the use of G in terms of biocompatibility for numerous medical applications that currently employ G, such as internally controlled drug-delivery assisted thermal ablation of carcinoma cells. PMID:24648728
Chlorine as a geobarometer tool: Application to the large explosive eruptions of Vesuvius
NASA Astrophysics Data System (ADS)
Balcone-Boissard, Hélène; Boudon, Georges; Cioni, Raffaello; Zdanowicz, Géraldine; Orsi, Giovanni; Civetta, Lucia
2015-04-01
One of the current stakes in modern volcanology is the definition of magma storage conditions which has direct implications on the eruptive style and thus on the associated risks and the management of likely related crisis. In alkaline differentiated magmas, chlorine (Cl), contrary to H2O, occurs as a minor volatile species but may be used as a geobarometer. Numerous experimental studies on Cl solubility have highlighted its saturation conditions in alkaline silicate melts. The NaCl-H2O system is characterized by immiscibility under wide ranges of pressure, temperature and NaCl content (< 200 MPa, < 1000°C). The addition of the silicate melt to the system does not rule out this property. These P-T conditions are very common for alkaline magmas evolving in shallow reservoirs, and they strongly affect the evolution of sin-eruptive magmatic melts and fluids. In H2O-bearing systems, the Cl concentration in the exsolved H2O vapour phase may increase with that of Cl in the silicate melt. Yet this system becomes strongly non-Henryan at high Cl concentration, depending on P-T conditions: the exsolved fluid phase unmixes to form a low-density, Cl-poor and H2O -rich vapour phase, and a dense hypersaline brine. In such a subcritical domain, as the composition of both vapour phase and brine is fixed, also the Cl concentration in the silicate melt is invariant, as expected from the Gibb's phase rule. The Cl buffer value will depend on the silicate melt composition, being higher in alkali-rich melts. The achievement of the Cl buffer value is so explained by the equilibrium of the silicate melt with a two-phase fluid in the reservoir. As this equilibrium is generally inherited from conditions established in the reservoir rather than during magma ascent, Cl buffering effect can be evidenced through the analysis of the residual glass. Here we applied systematically this methodology to the large explosive eruptions of Monte Somma-Vesuvius: We have analysed the products of 13 explosive eruptions of Monte Somma-Vesuvius, including four Plinian (Pomici di Base, Mercato, Avellino, Pompeii), five sub-Plinian (Verdoline, AP1, AP2, Pollena, 1631 AD) and four violent strombolian to ash emission events (AP3, 1822, 1906, 1944). We have focussed our research on the earliest emitted, most evolved products of each eruption, likely representing the shallower, H2O-saturated portion of the reservoir. We highlighted two magma ponding zones, at ~170-200 MPa and ~105-115 MPa. We have also estimated maximum pre-eruptive H2O content for the different magma compositions, varying between 3.5 and 7 wt%. The results, in large agreement with literature, are very promising. The Cl geobarometer may help scientists to define the reservoir dynamics through time and provide strong constraints on pre-eruptive conditions, of outmost importance for the interpretation of the monitoring data and the identification of precursory signals.
Impacts of fullerene C60 and virgin olive oil on cadmium-induced genotoxicity in rats.
Aly, Fayza M; Kotb, Ahmed M; Haridy, Mohie A M; Hammad, Seddik
2018-07-15
Currently, cadmium is considered to be one of the major environmental pollutants. Environmentally, cadmium is released in various forms e.g. oxide, chloride and sulphide. The aim of the present study was to examine the genotoxic impact of fullerene nanoparticles C 60 (C 60 ) and virgin olive oil (VOO) on cadmium chloride (CdCl 2 )-induced genotoxicity in rats. To evaluate these effects on DNA damage and chromosomal frequency, 25 albino rats were randomly assigned to 5 groups (n=5 per group): Group 1 served as a control; Group 2 received a single intraperitoneal dose of CdCl 2 (3.5mg/kg); Group 3 animals were treated with C 60 (4mg/kg, orally) every other day for 20days; Group 4 received a single intraperitoneal dose of CdCl 2 (3.5mg/kg) and an oral dose of C 60 (4mg/kg); and Group 5 received a single intraperitoneal dose of CdCl 2 (3.5mg/kg) and oral doses of VOO every other day for 20 consecutive days. Genotoxic and anti-genotoxic effects of C 60 and VOO were evaluated in the liver, kidney and bone marrow using molecular and cytogenetic assays. As expected, CdCl 2 and C 60 administration was associated with band number alterations in both liver and kidney; however, C 60 pretreatment recovered to approximately basal number. Surprisingly, C 60 and VOO significantly attenuated the genotoxic effects caused by CdCl 2 in livers and kidneys. In bone marrow, in addition to a reduction in the chromosomal number, several chromosomal aberrations were caused by CdCl 2 . These chromosomal alterations were also reversed by C 60 and VOO. In conclusion, molecular and cytogenetic studies showed that C 60 and VOO exhibit anti-genotoxic agents against CdCl 2 -induced genotoxicity in rats. Further studies are needed to investigate the optimal conditions for potential biomedical applications of these anti-genotoxic agents. Copyright © 2018 Elsevier B.V. All rights reserved.
Miller, L.G.; Warner, K.L.; Baesman, S.M.; Oremland, R.S.; McDonald, I.R.; Radajewski, S.; Murrell, J.C.
2004-01-01
Bacteria in soil microcosm experiments oxidized elevated levels of methyl chloride (MeCl) and methyl bromide (MeBr), the former compound more rapidly than the latter. MeBr was also removed by chemical reactions while MeCl was not. Chemical degradation dominated the early removal of MeBr and accounted for more than half of its total loss. Fractionation of stable carbon isotopes during chemical degradation of MeBr resulted in a kinetic isotope effect (KIE) of 59 ?? 7???. Soil bacterial oxidation dominated the later removal of MeBr and MeCl and was characterized by different KIEs for each compound. The KIE for MeBr oxidation was 69 ?? 9??? and the KIE for MeCl oxidation was 49 ?? 3???. Stable isotope probing revealed that different populations of soil bacteria assimilated added 13C-labeled MeBr and MeCl. The identity of the active MeBr and MeCl degrading bacteria in soil was determined by analysis of 16S rRNA gene sequences amplified from 13C-DNA fractions, which identified a number of sequences from organisms not previously thought to be involved in methyl halide degradation. These included Burkholderia , the major clone type in the 13C-MeBr fraction, and Rhodobacter, Lysobacter and Nocardioides the major clone types in the 13C-MeCl fraction. None of the 16S rRNA gene sequences for methyl halide oxidizing bacteria currently in culture (including Aminobacter strain IMB-1 isolated from fumigated soil) were identified. Functional gene clone types closely related to Aminobacter spp. were identified in libraries containing the sequences for the cmuA gene, which codes for the enzyme known to catalyze the initial step in the oxidation of MeBr and MeCl. The cmuA gene was limited to members of the alpha-Proteobacteria whereas the greater diversity demonstrated by the 16S rRNA gene may indicate that other enzymes catalyze methyl halide oxidation in different groups of bacteria. Copyright ?? 2004 Elsevier Ltd.
Electrospun nanofibrous SF/P(LLA-CL) membrane: a potential substratum for endothelial keratoplasty.
Chen, Junzhao; Yan, Chenxi; Zhu, Mengyu; Yao, Qinke; Shao, Chunyi; Lu, Wenjuan; Wang, Jing; Mo, Xiumei; Gu, Ping; Fu, Yao; Fan, Xianqun
2015-01-01
Cornea transplant technology has progressed markedly in recent decades, allowing surgeons to replace diseased corneal endothelium by a thin lamellar structure. A thin, transparent, biocompatible, tissue-engineered substratum with corneal endothelial cells for endothelial keratoplasty is currently of interest. Electrospinning a nanofibrous structure can simulate the extracellular matrix and have beneficial effects for cell culture. Silk fibroin (SF) has good biocompatibility but poor mechanical properties, while poly(L-lactic acid-co-ε-caprolactone) (P(LLA-CL)) has good mechanical properties but poor biocompatibility. Blending SF with P(LLA-CL) can maintain the advantages of both these materials and overcome their disadvantages. Blended electrospun nanofibrous membranes may be suitable for regeneration of the corneal endothelium. The aim of this study was to produce a tissue-engineered construct suitable for endothelial keratoplasty. Five scaffolds containing different SF:P(LLA-CL) blended ratios (100:0, 75:25, 50:50, 25:75, 0:100) were manufactured. A human corneal endothelial (B4G12) cell line was cultured on the membranes. Light transmission, speed of cell adherence, cell viability (live-dead test), cell proliferation (Ki-67, BrdU staining), and cell monolayer formation were detected on membranes with the different blended ratios, and expression of some functional genes was also detected by real-time polymerase chain reaction. Different blended ratios of scaffolds had different light transmittance properties. The 25:75 blended ratio membrane had the best transmittance among these scaffolds. All electrospun nanofibrous membranes showed improved speed of cell adherence when compared with the control group, especially when the P(LLA-CL) ratio increased. The 25:75 blended ratio membranes also had the highest cell proliferation. B4G12 cells could form a monolayer on all scaffolds, and most functional genes were also stably expressed on all scaffolds. Only two genes showed changes in expression. All blended ratios of SF:P(LLA-CL) scaffolds were evaluated and showed good biocompatibility for cell adherence and monolayer formation. Among them, the 25:75 blended ratio SF:P(LLA-CL) scaffold had the best transmittance and the highest cell proliferation. These attributes further the potential application of the SF:P(LLA-CL) scaffold for corneal endothelial transplantation.
Gomaa, Ola M; Selim, Nabila S; Wee, Josephine; Linz, John E
2017-08-01
Aspergillus niger was previously demonstrated to decolorize the commercial dye malachite green (MG) and this process was enhanced under calcium chloride (CaCl 2 ) treatment. Previous data also suggested that the decolorization process is related to mitochondrial cytochrome c. In the current work, we analyzed in depth the specific relationship between CaCl 2 treatment and MG decolorization. Gene expression analysis (RNA Seq) using Next Generation Sequencing (NGS) revealed up-regulation of 28 genes that are directly or indirectly associated with stress response functions as early as 30min of CaCl 2 treatment; these data further strengthen our previous findings that CaCl 2 treatment induces a stress response in A. niger which enhances the ability to decolorize MG. A significant increase in fluorescence observed by MitoTracker dye suggests that CaCl 2 treatment also increased mitochondrial membrane potential. Isolated mitochondrial membrane protein fractions obtained from A. niger grown under standard growth conditions decolorized MG in the presence of NADH and decolorization was enhanced in samples isolated from CaCl 2 -treated A. niger cultures. Treatment of whole mitochondrial fraction with KCN which inhibits electron transport by cytochrome c oxidase and Triton-X 100 which disrupts mitochondrial membrane integrity suggests that cyanide sensitive cytochrome c oxidase activity is a key biochemical step in MG decolorization. This suggestion was confirmed by the addition of palladium α-lipoic acid complex (PLAC) which resulted in an initial increase in decolorization. Although the role of cytochrome c and cytochrome c oxidase was confirmed at the biochemical level, changes in levels of transcripts encoding these enzymes after CaCl 2 treatment were not found to be statistically significant in RNA Seq analysis. These data suggest that the regulation of cytochrome c enzymes occur predominantly at the post-transcriptional level under CaCl 2 stress. Thus, using global transcriptomics and biochemical approaches, our study provides a molecular association between fungal mitochondrial electron transfer systems and MG decolorization. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Miller, Laurence G.; Warner, Karen L.; Baesman, Shaun M.; Oremland, Ronald S.; McDonald, Ian R.; Radajewski, Stefan; Murrell, J. Colin
2004-08-01
Bacteria in soil microcosm experiments oxidized elevated levels of methyl chloride (MeCl) and methyl bromide (MeBr), the former compound more rapidly than the latter. MeBr was also removed by chemical reactions while MeCl was not. Chemical degradation dominated the early removal of MeBr and accounted for more than half of its total loss. Fractionation of stable carbon isotopes during chemical degradation of MeBr resulted in a kinetic isotope effect (KIE) of 59 ± 7‰. Soil bacterial oxidation dominated the later removal of MeBr and MeCl and was characterized by different KIEs for each compound. The KIE for MeBr oxidation was 69 ± 9‰ and the KIE for MeCl oxidation was 49 ± 3‰. Stable isotope probing revealed that different populations of soil bacteria assimilated added 13C-labeled MeBr and MeCl. The identity of the active MeBr and MeCl degrading bacteria in soil was determined by analysis of 16S rRNA gene sequences amplified from 13C-DNA fractions, which identified a number of sequences from organisms not previously thought to be involved in methyl halide degradation. These included Burkholderia, the major clone type in the 13C-MeBr fraction, and Rhodobacter, Lysobacter and Nocardioides the major clone types in the 13C-MeCl fraction. None of the 16S rRNA gene sequences for methyl halide oxidizing bacteria currently in culture (including Aminobacter strain IMB-1 isolated from fumigated soil) were identified. Functional gene clone types closely related to Aminobacter spp. were identified in libraries containing the sequences for the cmuA gene, which codes for the enzyme known to catalyze the initial step in the oxidation of MeBr and MeCl. The cmuA gene was limited to members of the alpha-Proteobacteria whereas the greater diversity demonstrated by the 16S rRNA gene may indicate that other enzymes catalyze methyl halide oxidation in different groups of bacteria.
Niemeyer, María Isabel; Marabolí, Vanessa; González-Nilo, F. Danilo; Teulon, Jacques; Sepúlveda, Francisco V.; Cid, L. Pablo
2014-01-01
Parasitic sea lice represent a major sanitary threat to marine salmonid aquaculture, an industry accounting for 7% of world fish production. Caligus rogercresseyi is the principal sea louse species infesting farmed salmon and trout in the southern hemisphere. Most effective control of Caligus has been obtained with macrocyclic lactones (MLs) ivermectin and emamectin. These drugs target glutamate-gated chloride channels (GluCl) and act as irreversible non-competitive agonists causing neuronal inhibition, paralysis and death of the parasite. Here we report the cloning of a full-length CrGluClα receptor from Caligus rogercresseyi. Expression in Xenopus oocytes and electrophysiological assays show that CrGluClα is activated by glutamate and mediates chloride currents blocked by the ligand-gated anion channel inhibitor picrotoxin. Both ivermectin and emamectin activate CrGluClα in the absence of glutamate. The effects are irreversible and occur with an EC50 value of around 200 nM, being cooperative (nH = 2) for ivermectin but not for emamectin. Using the three-dimensional structure of a GluClα from Caenorabditis elegans, the only available for any eukaryotic ligand-gated anion channel, we have constructed a homology model for CrGluClα. Docking and molecular dynamics calculations reveal the way in which ivermectin and emamectin interact with CrGluClα. Both drugs intercalate between transmembrane domains M1 and M3 of neighbouring subunits of a pentameric structure. The structure displays three H-bonds involved in this interaction, but despite similarity in structure only of two these are conserved from the C. elegans crystal binding site. Our data strongly suggest that CrGluClα is an important target for avermectins used in the treatment of sea louse infestation in farmed salmonids and open the way for ascertaining a possible mechanism of increasing resistance to MLs in aquaculture industry. Molecular modeling could help in the design of new, more efficient drugs whilst functional expression of the receptor allows a first stage of testing of their efficacy. PMID:25255455
Cornejo, Isabel; Andrini, Olga; Niemeyer, María Isabel; Marabolí, Vanessa; González-Nilo, F Danilo; Teulon, Jacques; Sepúlveda, Francisco V; Cid, L Pablo
2014-09-01
Parasitic sea lice represent a major sanitary threat to marine salmonid aquaculture, an industry accounting for 7% of world fish production. Caligus rogercresseyi is the principal sea louse species infesting farmed salmon and trout in the southern hemisphere. Most effective control of Caligus has been obtained with macrocyclic lactones (MLs) ivermectin and emamectin. These drugs target glutamate-gated chloride channels (GluCl) and act as irreversible non-competitive agonists causing neuronal inhibition, paralysis and death of the parasite. Here we report the cloning of a full-length CrGluClα receptor from Caligus rogercresseyi. Expression in Xenopus oocytes and electrophysiological assays show that CrGluClα is activated by glutamate and mediates chloride currents blocked by the ligand-gated anion channel inhibitor picrotoxin. Both ivermectin and emamectin activate CrGluClα in the absence of glutamate. The effects are irreversible and occur with an EC(50) value of around 200 nM, being cooperative (n(H) = 2) for ivermectin but not for emamectin. Using the three-dimensional structure of a GluClα from Caenorabditis elegans, the only available for any eukaryotic ligand-gated anion channel, we have constructed a homology model for CrGluClα. Docking and molecular dynamics calculations reveal the way in which ivermectin and emamectin interact with CrGluClα. Both drugs intercalate between transmembrane domains M1 and M3 of neighbouring subunits of a pentameric structure. The structure displays three H-bonds involved in this interaction, but despite similarity in structure only of two these are conserved from the C. elegans crystal binding site. Our data strongly suggest that CrGluClα is an important target for avermectins used in the treatment of sea louse infestation in farmed salmonids and open the way for ascertaining a possible mechanism of increasing resistance to MLs in aquaculture industry. Molecular modeling could help in the design of new, more efficient drugs whilst functional expression of the receptor allows a first stage of testing of their efficacy.
Duan, Min; Wang, Wei; Zhao, Haijian; Zhang, Chuanbao; He, Falin; Zhong, Kun; Yuan, Shuai; Wang, Zhiguo
2018-05-01
Internal quality control (IQC) is essential for precision evaluation and continuous quality improvement. This study aims to investigate the IQC status of blood gas analysis (BGA) in clinical laboratories of China from 2014 to 2017. IQC information on BGA (including pH, pCO2, pO2, Na+, K+, Ca2+, Cl-) was submitted by external quality assessment (EQA) participant laboratories and collected through Clinet-EQA reporting system in March from 2014 to 2017. First, current CVs were compared among different years and measurement systems. Then, percentages of laboratories meeting five allowable imprecision specifications for each analyte were calculated, respectively. Finally, laboratories were divided into different groups based on control rules and frequency to compare their variation trend. The current CVs of BGA were significantly decreasing from 2014 to 2017. pH and pCO2 got the highest pass rates when compared with the minimum imprecision specification, whereas pO2, Na+, K+, Ca2+, Cl- got the highest pass rates when 1/3 TEa imprecision specification applied. The pass rates of pH, pO2, Na+, K+, Ca2+, Cl- were significantly increasing during the 4 years. The comparisons of current CVs among different measurement systems showed that the precision performance of different analytes among different measurement systems had no regular distribution from 2014 to 2017. The analysis of IQC practice indicated great progress and improvement among different years. The imprecision performance of BGA has improved from 2014 to 2017, but the status of imprecision performance in China remains unsatisfying. Therefore, further investigation and continuous improvement measures should be taken.
Yamada, Hiroshi; Saeki, Minako; Ito, Junko; Kawada, Kazuhiro; Higurashi, Aya; Funakoshi, Hiromi; Takeda, Kohji
2015-02-01
The pulse CO-Oximeter (Radical-7; Masimo Corp., Irvine, CA) is a multi-wavelength spectrophotometric method for noninvasive continuous monitoring of hemoglobin (SpHb). Because evaluating the relative change in blood volume (ΔBV) is crucial to avoid hypovolemia and hypotension during hemodialysis, it would be of great clinical benefit if ΔBV could be estimated by measurement of SpHb during hemodialysis. The capability of the pulse CO-Oximeter to monitor ΔBV depends on the relative trending accuracy of SpHb. The purpose of the current study was to evaluate the relative trending accuracy of SpHb by the pulse CO-Oximeter using Crit-Line as a reference device. In 12 patients who received hemodialysis (total 22 sessions) in the intensive care unit, ΔBV was determined from SpHb. Relative changes in blood volume determined from SpHb were calculated according to the equation: ΔBV(SpHb)=[starting SpHb]/[current SpHb] - 1. The absolute values of SpHb and hematocrit measured by Crit-Line (CL-Hct) showed poor correlation. On the contrary, linear regression analysis showed good correlation between ΔBV(SpHb) and the relative change in blood volume measured by Crit-Line [ΔBV(CL-Hct)] (r=0.83; P≤0.001). Bland-Altman analysis also revealed good agreement between ΔBV(SpHb) and ΔBV(CL-Hct) (bias, -0.77%; precision, 3.41%). Polar plot analysis revealed good relative trending accuracy of SpHb with an angular bias of 4.1° and radial limits of agreement of 24.4° (upper) and -16.2° (lower). The results of the current study indicate that SpHb measurement with the pulse CO-Oximeter has good relative trending accuracy.
Stoll, Dominic; Schmidt-Heydt, Markus; Geisen, Rolf
2013-07-19
Penicillium verrucosum, P. nordicum and Aspergillus carbonarius are three important ochratoxin A producing species. P. verrucosum is in addition able to produce citrinin. It has been shown earlier that P. nordicum is adapted to NaCl rich environments like salt rich dry cured foods or even salines. In this organism, the biosynthesis of ochratoxin A plays an adaptive role in this habitat. P. verrucosum generally can be found on cereals, but occasionally also on salt rich dry cured foods. In contrast A. carbonarius usually cannot be found in NaCl rich environments, but it occurs in another environment with high concentration of solutes, e.g., in sugar rich substrates like grapes and grape juices. Usually osmotic challenging conditions activate the HOG MAP kinase signal cascade, which in turn activates various osmo-regulated genes. In the current analysis, it could be demonstrated that in case of P. nordicum and P. verrucosum the NaCl induced production of ochratoxin A is correlated to the phosphorylation status of the HOG MAP kinase. Just the opposite was true for A. carbonarius. In this case, also higher amounts of NaCl in the medium lead to an increased phosphorylation status of HOG, but no increase in ochratoxin biosynthesis was observed. In contrast to the Penicillia, higher NaCl concentrations lead to a rapid cessation of growth by A. carbonarius. High glucose concentrations have much less impact on growth and the phosphorylation of HOG.
Modulation of secretagogue-induced chloride secretion by intracellular bicarbonate.
Dagher, P C; Morton, T Z; Joo, C S; Taglietta-Kohlbrecher, A; Egnor, R W; Charney, A N
1994-05-01
We have previously demonstrated inhibition of basal Cl- secretion by intracellular bicarbonate concentration ([HCO3-]i) in rat distal colon. We now examined whether secretagogue-induced Cl- secretion is inhibited by [HCO3-]i as well. Stripped segments of distal colon from male Sprague-Dawley rats and the colon tumor cell line T84 were studied. Flux measurements were performed in the Ussing chamber under short-circuit conditions. [HCO3-]i was calculated from intracellular pH (pHi) values that were estimated with the pH-sensitive dye 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein. Dibutyryl adenosine 3',5'-cyclic monophosphate (cAMP) and carbachol were used as secretagogues. In both distal colon and T84 cells, [HCO3-]i did not affect cAMP-induced Cl- secretion. However, carbachol-induced secretion was inhibited by [HCO3-]i; in rat colon, Cl- secretion decreased from 2.3 to 1.5 mueq.cm-2.h-1 when [HCO3-]i was increased from 15.0 to 28.4 mM (P < 0.05). In T84 cells, the change in short-circuit current decreased from 8.1 to 1.1 microA/cm2 over a range of [HCO3-]i from 0 to 15.6 mM (P < 0.001). We conclude that [HCO3-]i is an important modulator of carbachol-stimulated Cl- secretion in both rat distal colon and the T84 cell line. cAMP-mediated secretion is not affected by [HCO3-]i.
Huang, Zhen-Zhen; Li, Dai; Liu, Cui-Cui; Cui, Yu; Zhu, He-Quan; Zhang, Wen-Wen; Li, Yong-Yong; Xin, Wen-Jun
2014-08-01
Painful peripheral neuropathy is a dose-limiting side effect of paclitaxel therapy, which hampers the optimal clinical management of chemotherapy in cancer patients. Currently the underlying mechanisms remain largely unknown. Here we showed that the clinically relevant dose of paclitaxel (3×8mg/kg, cumulative dose 24mg/kg) induced significant upregulation of the chemokine CX3CL1 in the A-fiber primary sensory neurons in vivo and in vitro and infiltration of macrophages into the dorsal root ganglion (DRG) in rats. Paclitaxel treatment also increased cleaved caspase-3 expression, induced the loss of primary afferent terminal fibers and decreased sciatic-evoked A-fiber responses in the spinal dorsal horn, indicating DRG neuronal apoptosis induced by paclitaxel. In addition, the paclitaxel-induced DRG neuronal apoptosis occurred exclusively in the presence of macrophage in vitro study. Intrathecal or systemic injection of CX3CL1 neutralizing antibody blocked paclitaxel-induced macrophage recruitment and neuronal apoptosis in the DRG, and also attenuated paclitaxel-induced allodynia. Furthermore, depletion of macrophage by systemic administration of clodronate inhibited paclitaxel-induced allodynia. Blocking CX3CL1 decreased activation of p38 MAPK in the macrophage, and inhibition of p38 MAPK activity blocked the neuronal apoptosis and development of mechanical allodynia induced by paclitaxel. These findings provide novel evidence that CX3CL1-recruited macrophage contributed to paclitaxel-induced DRG neuronal apoptosis and painful peripheral neuropathy. Copyright © 2014 Elsevier Inc. All rights reserved.
Li, Ji; Zhang, Peipei; Xu, Yan; Su, Zhi; Qian, Yong; Li, Shunli; Yu, Tao; Sadler, Peter J; Liu, Hong-Ke
2017-11-28
The bottom-up construction of highly functional metallamacrocycles from simple building blocks is a challenge of much current interest. We have used solvothermal reactions of a bifunctional p-bitmb ligand with [Ru(arene)X 2 ] 2 in CH 2 Cl 2 or CH 2 Br 2 to generate the novel mononuclear metallamacrocyclic [RuX(arene)L 2 CH 2 ]X 3 complexes 1-3 (1, arene = p-cym, X = Cl; 2, arene = bip, X = Cl; 3, arene = p-cym, X = Br), which were characterized by various techniques. These complexes are "bowl-like" and have two faces: one coordinative Ru centre (arene)Ru(N,N)X bridged by L (L = 1,4-bis(imidazol-1-ylmethyl)-2,3,5,6-tetramethylbenzene, p-bitmb) to a dipositive bis-imidazolinium centre. Cl - or Br - anions can be trapped inside the cavity of the "bowl-like" structure, forming H-bonds with the backbone. Experimental (NMR and ESI-MS) and computational (DFT calculations) studies show that the source of the bridging -CH 2 - group is the dihalogenated solvent (CH 2 Cl 2 or CH 2 Br 2 ) that links the two arms of an initially formed non-cyclic complex (arene)RuX 2 L 2 by a mechanism of nucleophilic substitution. Optimization of the reaction conditions afforded the macrocyclic complexes in almost quantitative yields. The applications of these complexes as anti-proliferative agents towards cancer cells and for selective anion sensing have been explored.
Biological variability of the sweat chloride in diagnostic sweat tests: A retrospective analysis.
Vermeulen, F; Lebecque, P; De Boeck, K; Leal, T
2017-01-01
The sweat test is the current gold standard for the diagnosis of cystic fibrosis (CF). CF is unlikely when sweat chloride (Cl sw ) is lower than 30mmol/L, Cl sw >60 is suggestive of CF, with intermediate values between 30 and 60mmol/L. To correctly interpret a sweat chloride value, the biological variability of the sweat chloride has to be known. Sweat tests performed in two centers using the classic Gibson and Cooke method were retrospectively reviewed (n=5904). Within test variability of Cl sw was measured by comparing results from right and left arm collected on the same day. Between test variability was calculated from subjects with sweat tests performed on more than one occasion. Within test variability of Cl sw calculated in 1022 subjects was low with differences between -3.2 (p5) and +3.6mmol/L (p95). Results from left and right arm were classified differently in only 3 subjects. Between test variability of Cl sw in 197 subjects was larger, with differences between -18.2mmol/L (p5) and +14.1mmol/L (p95) between repeat tests. Changes in diagnostic conclusion were seen in 55/197 subjects, the most frequent being changing from indeterminate to 'CF unlikely' range (48/102). Variability of sweat chloride is substantial, with frequent changes in diagnostic conclusion, especially in the intermediate range. Copyright © 2016 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.
Zheng, Yan-Qiong; Zhang, Jing; Yang, Fang; Komino, Takeshi; Wei, Bin; Zhang, Jianhua; Wang, Zixing; Pu, Wenhong; Yang, Changzhu; Adachi, Chihaya
2015-10-09
The dependence of the morphology of neat chloroaluminum phthalocyanine (ClAlPc) films on substrate temperature (Tsub) during deposition is investigated by variable angle spectroscopic ellipsometry (VASE), x-ray diffraction (XRD), and atomic force microscopy (AFM) to obtain detailed information about the molecular orientation, phase separation, and crystallinity. AFM images indicate that both grain size and root mean square (RMS) roughness noticeably increase with Tsub both in neat and blend films. Increasing Tsub from room temperature to 420 K increases the horizontal orientation of the ClAlPc molecules with an increase of the mean molecular tilt angle from 60.13° (300 K) to 65.86° (420 K). The UV-vis absorption band of the corresponding films increases and the peak wavelength slightly red shifts with the Tsub increase. XRD patterns show a clear diffraction peak at Tsub over 390 K, implying the π-stacking of interconnected ClAlPc molecules at high Tsub. Planar and bulk heterojunction (BHJ) photovoltaic cells containing pristine ClAlPc films and ClAlPc:C60 blend films fabricated at Tsub of 390 K show increases in the power conversion efficiency (ηPCE) of 28% (ηPCE = 3.12%) and 36% (ηPCE = 3.58%), respectively, relative to devices as-deposited at room temperature. The maximum short circuit current in BHJs is obtained at 390 K in the Tsub range from 300 K to 450 K.
NASA Astrophysics Data System (ADS)
Sus, Oliver; Stengel, Martin; Stapelberg, Stefan; McGarragh, Gregory; Poulsen, Caroline; Povey, Adam C.; Schlundt, Cornelia; Thomas, Gareth; Christensen, Matthew; Proud, Simon; Jerg, Matthias; Grainger, Roy; Hollmann, Rainer
2018-06-01
We present here the key features of the Community Cloud retrieval for CLimate (CC4CL) processing algorithm. We focus on the novel features of the framework: the optimal estimation approach in general, explicit uncertainty quantification through rigorous propagation of all known error sources into the final product, and the consistency of our long-term, multi-platform time series provided at various resolutions, from 0.5 to 0.02°. By describing all key input data and processing steps, we aim to inform the user about important features of this new retrieval framework and its potential applicability to climate studies. We provide an overview of the retrieved and derived output variables. These are analysed for four, partly very challenging, scenes collocated with CALIOP (Cloud-Aerosol lidar with Orthogonal Polarization) observations in the high latitudes and over the Gulf of Guinea-West Africa. The results show that CC4CL provides very realistic estimates of cloud top height and cover for optically thick clouds but, where optically thin clouds overlap, returns a height between the two layers. CC4CL is a unique, coherent, multi-instrument cloud property retrieval framework applicable to passive sensor data of several EO missions. Through its flexibility, CC4CL offers the opportunity for combining a variety of historic and current EO missions into one dataset, which, compared to single sensor retrievals, is improved in terms of accuracy and temporal sampling.
A Calcium-Dependent Chloride Current Increases Repetitive Firing in Mouse Sympathetic Neurons
Martinez-Pinna, Juan; Soriano, Sergi; Tudurí, Eva; Nadal, Angel; de Castro, Fernando
2018-01-01
Ca2+-activated ion channels shape membrane excitability in response to elevations in intracellular Ca2+. The most extensively studied Ca2+-sensitive ion channels are Ca2+-activated K+ channels, whereas the physiological importance of Ca2+-activated Cl- channels has been poorly studied. Here we show that a Ca2+-activated Cl- currents (CaCCs) modulate repetitive firing in mouse sympathetic ganglion cells. Electrophysiological recording of mouse sympathetic neurons in an in vitro preparation of the superior cervical ganglion (SCG) identifies neurons with two different firing patterns in response to long depolarizing current pulses (1 s). Neurons classified as phasic (Ph) made up 67% of the cell population whilst the remainders were tonic (T). When a high frequency train of spikes was induced by intracellular current injection, SCG sympathetic neurons reached an afterpotential mainly dependent on the ratio of activation of two Ca2+-dependent currents: the K+ [IK(Ca)] and CaCC. When the IK(Ca) was larger, an afterhyperpolarization was the predominant afterpotential but when the CaCC was larger, an afterdepolarization (ADP) was predominant. These afterpotentials can be observed after a single action potential (AP). Ph and T neurons had similar ADPs and hence, the CaCC does not seem to determine the firing pattern (Ph or T) of these neurons. However, inhibition of Ca2+-activated Cl- channels with anthracene-9′-carboxylic acid (9AC) selectively inhibits the ADP, reducing the firing frequency and the instantaneous frequency without affecting the characteristics of single- or first-spike firing of both Ph and T neurons. Furthermore, we found that the CaCC underlying the ADP was significantly larger in SCG neurons from males than from females. Furthermore, the CaCC ANO1/TMEM16A was more strongly expressed in male than in female SCGs. Blocking ADPs with 9AC did not modify synaptic transmission in either Ph or T neurons. We conclude that the CaCC responsible for ADPs increases repetitive firing in both Ph and T neurons, and it is more relevant in male mouse sympathetic ganglion neurons. PMID:29867553
A Calcium-Dependent Chloride Current Increases Repetitive Firing in Mouse Sympathetic Neurons.
Martinez-Pinna, Juan; Soriano, Sergi; Tudurí, Eva; Nadal, Angel; de Castro, Fernando
2018-01-01
Ca 2+ -activated ion channels shape membrane excitability in response to elevations in intracellular Ca 2+ . The most extensively studied Ca 2+ -sensitive ion channels are Ca 2+ -activated K + channels, whereas the physiological importance of Ca 2+ -activated Cl - channels has been poorly studied. Here we show that a Ca 2+ -activated Cl - currents (CaCCs) modulate repetitive firing in mouse sympathetic ganglion cells. Electrophysiological recording of mouse sympathetic neurons in an in vitro preparation of the superior cervical ganglion (SCG) identifies neurons with two different firing patterns in response to long depolarizing current pulses (1 s). Neurons classified as phasic (Ph) made up 67% of the cell population whilst the remainders were tonic (T). When a high frequency train of spikes was induced by intracellular current injection, SCG sympathetic neurons reached an afterpotential mainly dependent on the ratio of activation of two Ca 2+ -dependent currents: the K + [I K(Ca) ] and CaCC. When the I K(Ca) was larger, an afterhyperpolarization was the predominant afterpotential but when the CaCC was larger, an afterdepolarization (ADP) was predominant. These afterpotentials can be observed after a single action potential (AP). Ph and T neurons had similar ADPs and hence, the CaCC does not seem to determine the firing pattern (Ph or T) of these neurons. However, inhibition of Ca 2+ -activated Cl - channels with anthracene-9'-carboxylic acid (9AC) selectively inhibits the ADP, reducing the firing frequency and the instantaneous frequency without affecting the characteristics of single- or first-spike firing of both Ph and T neurons. Furthermore, we found that the CaCC underlying the ADP was significantly larger in SCG neurons from males than from females. Furthermore, the CaCC ANO1/TMEM16A was more strongly expressed in male than in female SCGs. Blocking ADPs with 9AC did not modify synaptic transmission in either Ph or T neurons. We conclude that the CaCC responsible for ADPs increases repetitive firing in both Ph and T neurons, and it is more relevant in male mouse sympathetic ganglion neurons.
Separation of plutonium from lanthanum by electrolysis in LiCl KCl onto molten bismuth electrode
NASA Astrophysics Data System (ADS)
Serp, J.; Lefebvre, P.; Malmbeck, R.; Rebizant, J.; Vallet, P.; Glatz, J.-P.
2005-04-01
This work presents a study on the electroseparation of plutonium from lanthanum using molten bismuth electrodes in LiCl-KCl eutectic at 733 K. The reduction potentials of Pu3+ and La3+ ions were measured on a Bi thin film electrode using cyclic voltammetry (CV). A difference between the peak potentials for the formation of PuBi2 and LaBi2 of approximately 100 mV was found. Separation tests were then carried out using different current densities and salt phase compositions between a plutonium rod anode and an unstirred molten Bi cathode in order to evaluate the efficiency of an electrolytic separation process. At a current density of 12 mA/cm2/wt% (Pu3+), only Pu3+ ions are reduced into the molten Bi electrode, leaving La3+ ions in the salt melt. Similar results were found at two different Pu/La concentration ratios ([Pu]/[La] = 4 and 10). At a current density of 26 mA/cm2/wt% (Pu3+), co-reduction of Pu and La was observed as expected by the large negative potential of the Bi cathode during the separation test.
Aad, G; Abbott, B; Abdallah, J; Abdinov, O; Aben, R; Abolins, M; AbouZeid, O S; Abramowicz, H; Abreu, H; Abreu, R; Abulaiti, Y; Acharya, B S; Adamczyk, L; Adams, D L; Adelman, J; Adomeit, S; Adye, T; Affolder, A A; Agatonovic-Jovin, T; Agricola, J; Aguilar-Saavedra, J A; Ahlen, S P; Ahmadov, F; Aielli, G; Akerstedt, H; Åkesson, T P A; Akimov, A V; Alberghi, G L; Albert, J; Albrand, S; Alconada Verzini, M J; Aleksa, M; Aleksandrov, I N; Alexa, C; Alexander, G; Alexopoulos, T; Alhroob, M; Alimonti, G; Alio, L; Alison, J; Alkire, S P; Allbrooke, B M M; Allport, P P; Aloisio, A; Alonso, A; Alonso, F; Alpigiani, C; Altheimer, A; Alvarez Gonzalez, B; Álvarez Piqueras, D; Alviggi, M G; Amadio, B T; Amako, K; Amaral Coutinho, Y; Amelung, C; Amidei, D; Amor Dos Santos, S P; Amorim, A; Amoroso, S; Amram, N; Amundsen, G; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, G; Anders, J K; Anderson, K J; Andreazza, A; Andrei, V; Angelidakis, S; Angelozzi, I; Anger, P; Angerami, A; Anghinolfi, F; Anisenkov, A V; Anjos, N; Annovi, A; Antonelli, M; Antonov, A; Antos, J; Anulli, F; Aoki, M; Aperio Bella, L; Arabidze, G; Arai, Y; Araque, J P; Arce, A T H; Arduh, F A; Arguin, J-F; Argyropoulos, S; Arik, M; Armbruster, A J; Arnaez, O; Arnal, V; Arnold, H; Arratia, M; Arslan, O; Artamonov, A; Artoni, G; Asai, S; Asbah, N; Ashkenazi, A; Åsman, B; Asquith, L; Assamagan, K; Astalos, R; Atkinson, M; Atlay, N B; Augsten, K; Aurousseau, M; Avolio, G; Axen, B; Ayoub, M K; Azuelos, G; Baak, M A; Baas, A E; Baca, M J; Bacci, C; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Bagiacchi, P; Bagnaia, P; Bai, Y; Bain, T; Baines, J T; Baker, O K; Baldin, E M; Balek, P; Balestri, T; Balli, F; Banas, E; Banerjee, Sw; Bannoura, A A E; Bansil, H S; Barak, L; Barberio, E L; Barberis, D; Barbero, M; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnes, S L; Barnett, B M; Barnett, R M; Barnovska, Z; Baroncelli, A; Barone, G; Barr, A J; Barreiro, F; Barreiro Guimarães da Costa, J; Bartoldus, R; Barton, A E; Bartos, P; Basalaev, A; Bassalat, A; Basye, A; Bates, R L; Batista, S J; Batley, J R; Battaglia, M; Bauce, M; Bauer, F; Bawa, H S; Beacham, J B; Beattie, M D; Beau, T; Beauchemin, P H; Beccherle, R; Bechtle, P; Beck, H P; Becker, K; Becker, M; Beckingham, M; Becot, C; Beddall, A J; Beddall, A; Bednyakov, V A; Bee, C P; Beemster, L J; Beermann, T A; Begel, M; Behr, J K; Belanger-Champagne, C; Bell, W H; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belotskiy, K; Beltramello, O; Benary, O; Benchekroun, D; Bender, M; Bendtz, K; Benekos, N; Benhammou, Y; Benhar Noccioli, E; Benitez Garcia, J A; Benjamin, D P; Bensinger, J R; Bentvelsen, S; Beresford, L; Beretta, M; Berge, D; Bergeaas Kuutmann, E; Berger, N; Berghaus, F; Beringer, J; Bernard, C; Bernard, N R; Bernius, C; Bernlochner, F U; Berry, T; Berta, P; Bertella, C; Bertoli, G; Bertolucci, F; Bertsche, C; Bertsche, D; Besana, M I; Besjes, G J; Bessidskaia Bylund, O; Bessner, M; Besson, N; Betancourt, C; Bethke, S; Bevan, A J; Bhimji, W; Bianchi, R M; Bianchini, L; Bianco, M; Biebel, O; Biedermann, D; Bieniek, S P; Biglietti, M; Bilbao De Mendizabal, J; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Biondi, S; Black, C W; Black, J E; Black, K M; Blackburn, D; Blair, R E; Blanchard, J-B; Blanco, J E; Blazek, T; Bloch, I; Blocker, C; Blum, W; Blumenschein, U; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Bock, C; Boehler, M; Bogaerts, J A; Bogavac, D; Bogdanchikov, A G; Bohm, C; Boisvert, V; Bold, T; Boldea, V; Boldyrev, A S; Bomben, M; Bona, M; Boonekamp, M; Borisov, A; Borissov, G; Borroni, S; Bortfeldt, J; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Boudreau, J; Bouffard, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Bousson, N; Boveia, A; Boyd, J; Boyko, I R; Bozic, I; Bracinik, J; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Brazzale, S F; Breaden Madden, W D; Brendlinger, K; Brennan, A J; Brenner, L; Brenner, R; Bressler, S; Bristow, K; Bristow, T M; Britton, D; Britzger, D; Brochu, F M; Brock, I; Brock, R; Bronner, J; Brooijmans, G; Brooks, T; Brooks, W K; Brosamer, J; Brost, E; Brown, J; Bruckman de Renstrom, P A; Bruncko, D; Bruneliere, R; Bruni, A; Bruni, G; Bruschi, M; Bruscino, N; Bryngemark, L; Buanes, T; Buat, Q; Buchholz, P; Buckley, A G; Buda, S I; Budagov, I A; Buehrer, F; Bugge, L; Bugge, M K; Bulekov, O; Bullock, D; Burckhart, H; Burdin, S; Burgard, C D; Burghgrave, B; Burke, S; Burmeister, I; Busato, E; Büscher, D; Büscher, V; Bussey, P; Butler, J M; Butt, A I; Buttar, C M; Butterworth, J M; Butti, P; Buttinger, W; Buzatu, A; Buzykaev, A R; Cabrera Urbán, S; Caforio, D; Cairo, V M; Cakir, O; Calace, N; Calafiura, P; Calandri, A; Calderini, G; Calfayan, P; Caloba, L P; Calvet, D; Calvet, S; Camacho Toro, R; Camarda, S; Camarri, P; Cameron, D; Caminal Armadans, R; Campana, S; Campanelli, M; Campoverde, A; Canale, V; Canepa, A; Cano Bret, M; Cantero, J; Cantrill, R; Cao, T; Capeans Garrido, M D M; Caprini, I; Caprini, M; Capua, M; Caputo, R; Cardarelli, R; Cardillo, F; Carli, T; Carlino, G; Carminati, L; Caron, S; Carquin, E; Carrillo-Montoya, G D; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Casolino, M; Castaneda-Miranda, E; Castelli, A; Castillo Gimenez, V; Castro, N F; Catastini, P; Catinaccio, A; Catmore, J R; Cattai, A; Caudron, J; Cavaliere, V; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Cerio, B C; Cerny, K; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cerv, M; Cervelli, A; Cetin, S A; Chafaq, A; Chakraborty, D; Chalupkova, I; Chang, P; Chapman, J D; Charlton, D G; Chau, C C; Chavez Barajas, C A; Cheatham, S; Chegwidden, A; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, K; Chen, L; Chen, S; Chen, X; Chen, Y; Cheng, H C; Cheng, Y; Cheplakov, A; Cheremushkina, E; Cherkaoui El Moursli, R; Chernyatin, V; Cheu, E; Chevalier, L; Chiarella, V; Chiarelli, G; Chiodini, G; Chisholm, A S; Chislett, R T; Chitan, A; Chizhov, M V; Choi, K; Chouridou, S; Chow, B K B; Christodoulou, V; Chromek-Burckhart, D; Chudoba, J; Chuinard, A J; Chwastowski, J J; Chytka, L; Ciapetti, G; Ciftci, A K; Cinca, D; Cindro, V; Cioara, I A; Ciocio, A; Cirotto, F; Citron, Z H; Ciubancan, M; Clark, A; Clark, B L; Clark, P J; Clarke, R N; Cleland, W; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Coffey, L; Cogan, J G; Colasurdo, L; Cole, B; Cole, S; Colijn, A P; Collot, J; Colombo, T; Compostella, G; Conde Muiño, P; Coniavitis, E; Connell, S H; Connelly, I A; Consorti, V; Constantinescu, S; Conta, C; Conti, G; Conventi, F; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Cornelissen, T; Corradi, M; Corriveau, F; Corso-Radu, A; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Côté, D; Cottin, G; Cowan, G; Cox, B E; Cranmer, K; Cree, G; Crépé-Renaudin, S; Crescioli, F; Cribbs, W A; Crispin Ortuzar, M; Cristinziani, M; Croft, V; Crosetti, G; Cuhadar Donszelmann, T; Cummings, J; Curatolo, M; Cuthbert, C; Czirr, H; Czodrowski, P; D'Auria, S; D'Onofrio, M; Da Cunha Sargedas De Sousa, M J; Da Via, C; Dabrowski, W; Dafinca, A; Dai, T; Dale, O; Dallaire, F; Dallapiccola, C; Dam, M; Dandoy, J R; Dang, N P; Daniells, A C; Danninger, M; Dano Hoffmann, M; Dao, V; Darbo, G; Darmora, S; Dassoulas, J; Dattagupta, A; Davey, W; David, C; Davidek, T; Davies, E; Davies, M; Davison, P; Davygora, Y; Dawe, E; Dawson, I; Daya-Ishmukhametova, R K; De, K; de Asmundis, R; De Benedetti, A; De Castro, S; De Cecco, S; De Groot, N; de Jong, P; De la Torre, H; De Lorenzi, F; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; Dearnaley, W J; Debbe, R; Debenedetti, C; Dedovich, D V; Deigaard, I; Del Peso, J; Del Prete, T; Delgove, D; Deliot, F; Delitzsch, C M; Deliyergiyev, M; Dell'Acqua, A; Dell'Asta, L; Dell'Orso, M; Della Pietra, M; Della Volpe, D; Delmastro, M; Delsart, P A; Deluca, C; DeMarco, D A; Demers, S; Demichev, M; Demilly, A; Denisov, S P; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deterre, C; Deviveiros, P O; Dewhurst, A; Dhaliwal, S; Di Ciaccio, A; Di Ciaccio, L; Di Domenico, A; Di Donato, C; Di Girolamo, A; Di Girolamo, B; Di Mattia, A; Di Micco, B; Di Nardo, R; Di Simone, A; Di Sipio, R; Di Valentino, D; Diaconu, C; Diamond, M; Dias, F A; Diaz, M A; Diehl, E B; Dietrich, J; Diglio, S; Dimitrievska, A; Dingfelder, J; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; Djuvsland, J I; do Vale, M A B; Dobos, D; Dobre, M; Doglioni, C; Dohmae, T; Dolejsi, J; Dolezal, Z; Dolgoshein, B A; Donadelli, M; Donati, S; Dondero, P; Donini, J; Dopke, J; Doria, A; Dova, M T; Doyle, A T; Drechsler, E; Dris, M; Dubreuil, E; Duchovni, E; Duckeck, G; Ducu, O A; Duda, D; Dudarev, A; Duflot, L; Duguid, L; Dührssen, M; Dunford, M; Duran Yildiz, H; Düren, M; Durglishvili, A; Duschinger, D; Dyndal, M; Eckardt, C; Ecker, K M; Edgar, R C; Edson, W; Edwards, N C; Ehrenfeld, W; Eifert, T; Eigen, G; Einsweiler, K; Ekelof, T; El Kacimi, M; Ellert, M; Elles, S; Ellinghaus, F; Elliot, A A; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Enari, Y; Endner, O C; Endo, M; Erdmann, J; Ereditato, A; Ernis, G; Ernst, J; Ernst, M; Errede, S; Ertel, E; Escalier, M; Esch, H; Escobar, C; Esposito, B; Etienvre, A I; Etzion, E; Evans, H; Ezhilov, A; Fabbri, L; Facini, G; Fakhrutdinov, R M; Falciano, S; Falla, R J; Faltova, J; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Faucci Giannelli, M; Favareto, A; Fayard, L; Federic, P; Fedin, O L; Fedorko, W; Feigl, S; Feligioni, L; Feng, C; Feng, E J; Feng, H; Fenyuk, A B; Feremenga, L; Fernandez Martinez, P; Fernandez Perez, S; Ferrando, J; Ferrari, A; Ferrari, P; Ferrari, R; Ferreira de Lima, D E; Ferrer, A; Ferrere, D; Ferretti, C; Ferretto Parodi, A; Fiascaris, M; Fiedler, F; Filipčič, A; Filipuzzi, M; Filthaut, F; Fincke-Keeler, M; Finelli, K D; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, A; Fischer, C; Fischer, J; Fisher, W C; Fitzgerald, E A; Flaschel, N; Fleck, I; Fleischmann, P; Fleischmann, S; Fletcher, G T; Fletcher, G; Fletcher, R R M; Flick, T; Floderus, A; Flores Castillo, L R; Flowerdew, M J; Formica, A; Forti, A; Fournier, D; Fox, H; Fracchia, S; Francavilla, P; Franchini, M; Francis, D; Franconi, L; Franklin, M; Frate, M; Fraternali, M; Freeborn, D; French, S T; Friedrich, F; Froidevaux, D; Frost, J A; Fukunaga, C; Fullana Torregrosa, E; Fulsom, B G; Fusayasu, T; Fuster, J; Gabaldon, C; Gabizon, O; Gabrielli, A; Gabrielli, A; Gach, G P; Gadatsch, S; Gadomski, S; Gagliardi, G; Gagnon, P; Galea, C; Galhardo, B; Gallas, E J; Gallop, B J; Gallus, P; Galster, G; Gan, K K; Gao, J; Gao, Y; Gao, Y S; Garay Walls, F M; Garberson, F; García, C; García Navarro, J E; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garonne, V; Gatti, C; Gaudiello, A; Gaudio, G; Gaur, B; Gauthier, L; Gauzzi, P; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Ge, P; Gecse, Z; Gee, C N P; Geich-Gimbel, Ch; Geisler, M P; Gemme, C; Genest, M H; Gentile, S; George, M; George, S; Gerbaudo, D; Gershon, A; Ghasemi, S; Ghazlane, H; Giacobbe, B; Giagu, S; Giangiobbe, V; Giannetti, P; Gibbard, B; Gibson, S M; Gilchriese, M; Gillam, T P S; Gillberg, D; Gilles, G; Gingrich, D M; Giokaris, N; Giordani, M P; Giorgi, F M; Giorgi, F M; Giraud, P F; Giromini, P; Giugni, D; Giuliani, C; Giulini, M; Gjelsten, B K; Gkaitatzis, S; Gkialas, I; Gkougkousis, E L; Gladilin, L K; Glasman, C; Glatzer, J; Glaysher, P C F; Glazov, A; Goblirsch-Kolb, M; Goddard, J R; Godlewski, J; Goldfarb, S; Golling, T; Golubkov, D; Gomes, A; Gonçalo, R; Goncalves Pinto Firmino Da Costa, J; Gonella, L; González de la Hoz, S; Gonzalez Parra, G; Gonzalez-Sevilla, S; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorini, B; Gorini, E; Gorišek, A; Gornicki, E; Goshaw, A T; Gössling, C; Gostkin, M I; Goujdami, D; Goussiou, A G; Govender, N; Gozani, E; Grabas, H M X; Graber, L; Grabowska-Bold, I; Gradin, P O J; Grafström, P; Grahn, K-J; Gramling, J; Gramstad, E; Grancagnolo, S; Gratchev, V; Gray, H M; Graziani, E; Greenwood, Z D; Grefe, C; Gregersen, K; Gregor, I M; Grenier, P; Griffiths, J; Grillo, A A; Grimm, K; Grinstein, S; Gris, Ph; Grivaz, J-F; Grohs, J P; Grohsjean, A; Gross, E; Grosse-Knetter, J; Grossi, G C; Grout, Z J; Guan, L; Guenther, J; Guescini, F; Guest, D; Gueta, O; Guido, E; Guillemin, T; Guindon, S; Gul, U; Gumpert, C; Guo, J; Guo, Y; Gupta, S; Gustavino, G; Gutierrez, P; Gutierrez Ortiz, N G; Gutschow, C; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haber, C; Hadavand, H K; Haddad, N; Haefner, P; Hageböck, S; Hajduk, Z; Hakobyan, H; Haleem, M; Haley, J; Hall, D; Halladjian, G; Hallewell, G D; Hamacher, K; Hamal, P; Hamano, K; Hamilton, A; Hamity, G N; Hamnett, P G; Han, L; Hanagaki, K; Hanawa, K; Hance, M; Hanke, P; Hanna, R; Hansen, J B; Hansen, J D; Hansen, M C; Hansen, P H; Hara, K; Hard, A S; Harenberg, T; Hariri, F; Harkusha, S; Harrington, R D; Harrison, P F; Hartjes, F; Hasegawa, M; Hasegawa, Y; Hasib, A; Hassani, S; Haug, S; Hauser, R; Hauswald, L; Havranek, M; Hawkes, C M; Hawkings, R J; Hawkins, A D; Hayashi, T; Hayden, D; Hays, C P; Hays, J M; Hayward, H S; Haywood, S J; Head, S J; Heck, T; Hedberg, V; Heelan, L; Heim, S; Heim, T; Heinemann, B; Heinrich, L; Hejbal, J; Helary, L; Hellman, S; Hellmich, D; Helsens, C; Henderson, J; Henderson, R C W; Heng, Y; Hengler, C; Henkelmann, S; Henrichs, A; Henriques Correia, A M; Henrot-Versille, S; Herbert, G H; Hernández Jiménez, Y; Herrberg-Schubert, R; Herten, G; Hertenberger, R; Hervas, L; Hesketh, G G; Hessey, N P; Hetherly, J W; Hickling, R; Higón-Rodriguez, E; Hill, E; Hill, J C; Hiller, K H; Hillier, S J; Hinchliffe, I; Hines, E; Hinman, R R; Hirose, M; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoenig, F; Hohlfeld, M; Hohn, D; Holmes, T R; Homann, M; Hong, T M; Hooft van Huysduynen, L; Hopkins, W H; Horii, Y; Horton, A J; Hostachy, J-Y; Hou, S; Hoummada, A; Howard, J; Howarth, J; Hrabovsky, M; Hristova, I; Hrivnac, J; Hryn'ova, T; Hrynevich, A; Hsu, C; Hsu, P J; Hsu, S-C; Hu, D; Hu, Q; Hu, X; Huang, Y; Hubacek, Z; Hubaut, F; Huegging, F; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Hülsing, T A; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Ideal, E; Idrissi, Z; Iengo, P; Igonkina, O; Iizawa, T; Ikegami, Y; Ikematsu, K; Ikeno, M; Ilchenko, Y; Iliadis, D; Ilic, N; Ince, T; Introzzi, G; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Irles Quiles, A; Isaksson, C; Ishino, M; Ishitsuka, M; Ishmukhametov, R; Issever, C; Istin, S; Iturbe Ponce, J M; Iuppa, R; Ivarsson, J; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jabbar, S; Jackson, B; Jackson, M; Jackson, P; Jaekel, M R; Jain, V; Jakobs, K; Jakobsen, S; Jakoubek, T; Jakubek, J; Jamin, D O; Jana, D K; Jansen, E; Jansky, R; Janssen, J; Janus, M; Jarlskog, G; Javadov, N; Javůrek, T; Jeanty, L; Jejelava, J; Jeng, G-Y; Jennens, D; Jenni, P; Jentzsch, J; Jeske, C; Jézéquel, S; Ji, H; Jia, J; Jiang, Y; Jiggins, S; Jimenez Pena, J; Jin, S; Jinaru, A; Jinnouchi, O; Joergensen, M D; Johansson, P; Johns, K A; Jon-And, K; Jones, G; Jones, R W L; Jones, T J; Jongmanns, J; Jorge, P M; Joshi, K D; Jovicevic, J; Ju, X; Jung, C A; Jussel, P; Juste Rozas, A; Kaci, M; Kaczmarska, A; Kado, M; Kagan, H; Kagan, M; Kahn, S J; Kajomovitz, E; Kalderon, C W; Kama, S; Kamenshchikov, A; Kanaya, N; Kaneti, S; Kantserov, V A; Kanzaki, J; Kaplan, B; Kaplan, L S; Kapliy, A; Kar, D; Karakostas, K; Karamaoun, A; Karastathis, N; Kareem, M J; Karentzos, E; Karnevskiy, M; Karpov, S N; Karpova, Z M; Karthik, K; Kartvelishvili, V; Karyukhin, A N; Kashif, L; Kass, R D; Kastanas, A; Kataoka, Y; Kato, C; Katre, A; Katzy, J; Kawagoe, K; Kawamoto, T; Kawamura, G; Kazama, S; Kazanin, V F; Keeler, R; Kehoe, R; Keller, J S; Kempster, J J; Keoshkerian, H; Kepka, O; Kerševan, B P; Kersten, S; Keyes, R A; Khalil-Zada, F; Khandanyan, H; Khanov, A; Kharlamov, A G; Khoo, T J; Khovanskiy, V; Khramov, E; Khubua, J; Kido, S; Kim, H Y; Kim, S H; Kim, Y K; Kimura, N; Kind, O M; King, B T; King, M; King, S B; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kiss, F; Kiuchi, K; Kivernyk, O; Kladiva, E; Klein, M H; Klein, M; Klein, U; Kleinknecht, K; Klimek, P; Klimentov, A; Klingenberg, R; Klinger, J A; Klioutchnikova, T; Kluge, E-E; Kluit, P; Kluth, S; Knapik, J; Kneringer, E; Knoops, E B F G; Knue, A; Kobayashi, A; Kobayashi, D; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koffas, T; Koffeman, E; Kogan, L A; Kohlmann, S; Kohout, Z; Kohriki, T; Koi, T; Kolanoski, H; Koletsou, I; Komar, A A; Komori, Y; Kondo, T; Kondrashova, N; Köneke, K; König, A C; Kono, T; Konoplich, R; Konstantinidis, N; Kopeliansky, R; Koperny, S; Köpke, L; Kopp, A K; Korcyl, K; Kordas, K; Korn, A; Korol, A A; Korolkov, I; Korolkova, E V; Kortner, O; Kortner, S; Kosek, T; Kostyukhin, V V; Kotov, V M; Kotwal, A; Kourkoumeli-Charalampidi, A; Kourkoumelis, C; Kouskoura, V; Koutsman, A; Kowalewski, R; Kowalski, T Z; Kozanecki, W; Kozhin, A S; Kramarenko, V A; Kramberger, G; Krasnopevtsev, D; Krasny, M W; Krasznahorkay, A; Kraus, J K; Kravchenko, A; Kreiss, S; Kretz, M; Kretzschmar, J; Kreutzfeldt, K; Krieger, P; Krizka, K; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Krumnack, N; Kruse, A; Kruse, M C; Kruskal, M; Kubota, T; Kucuk, H; Kuday, S; Kuehn, S; Kugel, A; Kuger, F; Kuhl, A; Kuhl, T; Kukhtin, V; Kukla, R; Kulchitsky, Y; Kuleshov, S; Kuna, M; Kunigo, T; Kupco, A; Kurashige, H; Kurochkin, Y A; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; Kwan, T; Kyriazopoulos, D; La Rosa, A; La Rosa Navarro, J L; La Rotonda, L; Lacasta, C; Lacava, F; Lacey, J; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Lambourne, L; Lammers, S; Lampen, C L; Lampl, W; Lançon, E; Landgraf, U; Landon, M P J; Lang, V S; Lange, J C; Lankford, A J; Lanni, F; Lantzsch, K; Lanza, A; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Lasagni Manghi, F; Lassnig, M; Laurelli, P; Lavrijsen, W; Law, A T; Laycock, P; Lazovich, T; Le Dortz, O; Le Guirriec, E; Le Menedeu, E; LeBlanc, M; LeCompte, T; Ledroit-Guillon, F; Lee, C A; Lee, S C; Lee, L; Lefebvre, G; Lefebvre, M; Legger, F; Leggett, C; Lehan, A; Lehmann Miotto, G; Lei, X; Leight, W A; Leisos, A; Leister, A G; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Leney, K J C; Lenz, T; Lenzi, B; Leone, R; Leone, S; Leonidopoulos, C; Leontsinis, S; Leroy, C; Lester, C G; Levchenko, M; Levêque, J; Levin, D; Levinson, L J; Levy, M; Lewis, A; Leyko, A M; Leyton, M; Li, B; Li, H; Li, H L; Li, L; Li, L; Li, S; Li, X; Li, Y; Liang, Z; Liao, H; Liberti, B; Liblong, A; Lichard, P; Lie, K; Liebal, J; Liebig, W; Limbach, C; Limosani, A; Lin, S C; Lin, T H; Linde, F; Lindquist, B E; Linnemann, J T; Lipeles, E; Lipniacka, A; Lisovyi, M; Liss, T M; Lissauer, D; Lister, A; Litke, A M; Liu, B; Liu, D; Liu, H; Liu, J; Liu, J B; Liu, K; Liu, L; Liu, M; Liu, M; Liu, Y; Livan, M; Lleres, A; Llorente Merino, J; Lloyd, S L; Lo Sterzo, F; Lobodzinska, E; Loch, P; Lockman, W S; Loebinger, F K; Loevschall-Jensen, A E; Loginov, A; Lohse, T; Lohwasser, K; Lokajicek, M; Long, B A; Long, J D; Long, R E; Looper, K A; Lopes, L; Lopez Mateos, D; Lopez Paredes, B; Lopez Paz, I; Lorenz, J; Lorenzo Martinez, N; Losada, M; Lösel, P J; Lou, X; Lounis, A; Love, J; Love, P A; Lu, N; Lubatti, H J; Luci, C; Lucotte, A; Luehring, F; Lukas, W; Luminari, L; Lundberg, O; Lund-Jensen, B; Lynn, D; Lysak, R; Lytken, E; Ma, H; Ma, L L; Maccarrone, G; Macchiolo, A; Macdonald, C M; Maček, B; Machado Miguens, J; Macina, D; Madaffari, D; Madar, R; Maddocks, H J; Mader, W F; Madsen, A; Maeda, J; Maeland, S; Maeno, T; Maevskiy, A; Magradze, E; Mahboubi, K; Mahlstedt, J; Maiani, C; Maidantchik, C; Maier, A A; Maier, T; Maio, A; Majewski, S; Makida, Y; Makovec, N; Malaescu, B; Malecki, Pa; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyshev, V M; Malyukov, S; Mamuzic, J; Mancini, G; Mandelli, B; Mandelli, L; Mandić, I; Mandrysch, R; Maneira, J; Manfredini, A; Manhaes de Andrade Filho, L; Manjarres Ramos, J; Mann, A; Manousakis-Katsikakis, A; Mansoulie, B; Mantifel, R; Mantoani, M; Mapelli, L; March, L; Marchiori, G; Marcisovsky, M; Marino, C P; Marjanovic, M; Marley, D E; Marroquim, F; Marsden, S P; Marshall, Z; Marti, L F; Marti-Garcia, S; Martin, B; Martin, T A; Martin, V J; Martin Dit Latour, B; Martinez, M; Martin-Haugh, S; Martoiu, V S; Martyniuk, A C; Marx, M; Marzano, F; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massa, L; Massol, N; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Mättig, P; Mattmann, J; Maurer, J; Maxfield, S J; Maximov, D A; Mazini, R; Mazza, S M; Mazzaferro, L; Mc Goldrick, G; Mc Kee, S P; McCarn, A; McCarthy, R L; McCarthy, T G; McCubbin, N A; McFarlane, K W; Mcfayden, J A; Mchedlidze, G; McMahon, S J; McPherson, R A; Medinnis, M; Meehan, S; Mehlhase, S; Mehta, A; Meier, K; Meineck, C; Meirose, B; Mellado Garcia, B R; Meloni, F; Mengarelli, A; Menke, S; Meoni, E; Mercurio, K M; Mergelmeyer, S; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Meyer Zu Theenhausen, H; Middleton, R P; Miglioranzi, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Milesi, M; Milic, A; Miller, D W; Mills, C; Milov, A; Milstead, D A; Minaenko, A A; Minami, Y; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mitani, T; Mitrevski, J; Mitsou, V A; Miucci, A; Miyagawa, P S; Mjörnmark, J U; Moa, T; Mochizuki, K; Mohapatra, S; Mohr, W; Molander, S; Moles-Valls, R; Monden, R; Mönig, K; Monini, C; Monk, J; Monnier, E; Montejo Berlingen, J; Monticelli, F; Monzani, S; Moore, R W; Morange, N; Moreno, D; Moreno Llácer, M; Morettini, P; Mori, D; Morii, M; Morinaga, M; Morisbak, V; Moritz, S; Morley, A K; Mornacchi, G; Morris, J D; Mortensen, S S; Morton, A; Morvaj, L; Mosidze, M; Moss, J; Motohashi, K; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Muanza, S; Mudd, R D; Mueller, F; Mueller, J; Mueller, R S P; Mueller, T; Muenstermann, D; Mullen, P; Mullier, G A; Murillo Quijada, J A; Murray, W J; Musheghyan, H; Musto, E; Myagkov, A G; Myska, M; Nachman, B P; Nackenhorst, O; Nadal, J; Nagai, K; Nagai, R; Nagai, Y; Nagano, K; Nagarkar, A; Nagasaka, Y; Nagata, K; Nagel, M; Nagy, E; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Namasivayam, H; Naranjo Garcia, R F; Narayan, R; Narrias Villar, D I; Naumann, T; Navarro, G; Nayyar, R; Neal, H A; Nechaeva, P Yu; Neep, T J; Nef, P D; Negri, A; Negrini, M; Nektarijevic, S; Nellist, C; Nelson, A; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neumann, M; Neves, R M; Nevski, P; Newman, P R; Nguyen, D H; Nickerson, R B; Nicolaidou, R; Nicquevert, B; Nielsen, J; Nikiforou, N; Nikiforov, A; Nikolaenko, V; Nikolic-Audit, I; Nikolopoulos, K; Nilsen, J K; Nilsson, P; Ninomiya, Y; Nisati, A; Nisius, R; Nobe, T; Nomachi, M; Nomidis, I; Nooney, T; Norberg, S; Nordberg, M; Novgorodova, O; Nowak, S; Nozaki, M; Nozka, L; Ntekas, K; Nunes Hanninger, G; Nunnemann, T; Nurse, E; Nuti, F; O'Brien, B J; O'grady, F; O'Neil, D C; O'Shea, V; Oakham, F G; Oberlack, H; Obermann, T; Ocariz, J; Ochi, A; Ochoa, I; Ochoa-Ricoux, J P; Oda, S; Odaka, S; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohman, H; Oide, H; Okamura, W; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Olivares Pino, S A; Oliveira Damazio, D; Oliver Garcia, E; Olszewski, A; Olszowska, J; Onofre, A; Onogi, K; Onyisi, P U E; Oram, C J; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Oropeza Barrera, C; Orr, R S; Osculati, B; Ospanov, R; Otero Y Garzon, G; Otono, H; Ouchrif, M; Ould-Saada, F; Ouraou, A; Oussoren, K P; Ouyang, Q; Ovcharova, A; Owen, M; Owen, R E; Ozcan, V E; Ozturk, N; Pachal, K; Pacheco Pages, A; Padilla Aranda, C; Pagáčová, M; Pagan Griso, S; Paganis, E; Paige, F; Pais, P; Pajchel, K; Palacino, G; Palestini, S; Palka, M; Pallin, D; Palma, A; Pan, Y B; Panagiotopoulou, E; Pandini, C E; Panduro Vazquez, J G; Pani, P; Panitkin, S; Pantea, D; Paolozzi, L; Papadopoulou, Th D; Papageorgiou, K; Paramonov, A; Paredes Hernandez, D; Parker, M A; Parker, K A; Parodi, F; Parsons, J A; Parzefall, U; Pasqualucci, E; Passaggio, S; Pastore, F; Pastore, Fr; Pásztor, G; Pataraia, S; Patel, N D; Pater, J R; Pauly, T; Pearce, J; Pearson, B; Pedersen, L E; Pedersen, M; Pedraza Lopez, S; Pedro, R; Peleganchuk, S V; Pelikan, D; Penc, O; Peng, C; Peng, H; Penning, B; Penwell, J; Perepelitsa, D V; Perez Codina, E; Pérez García-Estañ, M T; Perini, L; Pernegger, H; Perrella, S; Peschke, R; Peshekhonov, V D; Peters, K; Peters, R F Y; Petersen, B A; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petroff, P; Petrolo, E; Petrucci, F; Pettersson, N E; Pezoa, R; Phillips, P W; Piacquadio, G; Pianori, E; Picazio, A; Piccaro, E; Piccinini, M; Pickering, M A; Piegaia, R; Pignotti, D T; Pilcher, J E; Pilkington, A D; Pina, J; Pinamonti, M; Pinfold, J L; Pingel, A; Pires, S; Pirumov, H; Pitt, M; Pizio, C; Plazak, L; Pleier, M-A; Pleskot, V; Plotnikova, E; Plucinski, P; Pluth, D; Poettgen, R; Poggioli, L; Pohl, D; Polesello, G; Poley, A; Policicchio, A; Polifka, R; Polini, A; Pollard, C S; Polychronakos, V; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Popovic, D S; Poppleton, A; Pospisil, S; Potamianos, K; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Pozdnyakov, V; Pralavorio, P; Pranko, A; Prasad, S; Prell, S; Price, D; Price, L E; Primavera, M; Prince, S; Proissl, M; Prokofiev, K; Prokoshin, F; Protopapadaki, E; Protopopescu, S; Proudfoot, J; Przybycien, M; Ptacek, E; Puddu, D; Pueschel, E; Puldon, D; Purohit, M; Puzo, P; Qian, J; Qin, G; Qin, Y; Quadt, A; Quarrie, D R; Quayle, W B; Queitsch-Maitland, M; Quilty, D; Raddum, S; Radeka, V; Radescu, V; Radhakrishnan, S K; Radloff, P; Rados, P; Ragusa, F; Rahal, G; Rajagopalan, S; Rammensee, M; Rangel-Smith, C; Rauscher, F; Rave, S; Ravenscroft, T; Raymond, M; Read, A L; Readioff, N P; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Rehnisch, L; Reichert, J; Reisin, H; Relich, M; Rembser, C; Ren, H; Renaud, A; Rescigno, M; Resconi, S; Rezanova, O L; Reznicek, P; Rezvani, R; Richter, R; Richter, S; Richter-Was, E; Ricken, O; Ridel, M; Rieck, P; Riegel, C J; Rieger, J; Rifki, O; Rijssenbeek, M; Rimoldi, A; Rinaldi, L; Ristić, B; Ritsch, E; Riu, I; Rizatdinova, F; Rizvi, E; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Roda, C; Roe, S; Røhne, O; Rolli, S; Romaniouk, A; Romano, M; Romano Saez, S M; Romero Adam, E; Rompotis, N; Ronzani, M; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, P; Rosendahl, P L; Rosenthal, O; Rossetti, V; Rossi, E; Rossi, L P; Rosten, J H N; Rosten, R; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rubinskiy, I; Rud, V I; Rudolph, C; Rudolph, M S; Rühr, F; Ruiz-Martinez, A; Rurikova, Z; Rusakovich, N A; Ruschke, A; Russell, H L; Rutherfoord, J P; Ruthmann, N; Ryabov, Y F; Rybar, M; Rybkin, G; Ryder, N C; Saavedra, A F; Sabato, G; Sacerdoti, S; Saddique, A; Sadrozinski, H F-W; Sadykov, R; Safai Tehrani, F; Sahinsoy, M; Saimpert, M; Saito, T; Sakamoto, H; Sakurai, Y; Salamanna, G; Salamon, A; Salazar Loyola, J E; Saleem, M; Salek, D; Sales De Bruin, P H; Salihagic, D; Salnikov, A; Salt, J; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sammel, D; Sampsonidis, D; Sanchez, A; Sánchez, J; Sanchez Martinez, V; Sandaker, H; Sandbach, R L; Sander, H G; Sanders, M P; Sandhoff, M; Sandoval, C; Sandstroem, R; Sankey, D P C; Sannino, M; Sansoni, A; Santoni, C; Santonico, R; Santos, H; Santoyo Castillo, I; Sapp, K; Sapronov, A; Saraiva, J G; Sarrazin, B; Sasaki, O; Sasaki, Y; Sato, K; Sauvage, G; Sauvan, E; Savage, G; Savard, P; Sawyer, C; Sawyer, L; Saxon, J; Sbarra, C; Sbrizzi, A; Scanlon, T; Scannicchio, D A; Scarcella, M; Scarfone, V; Schaarschmidt, J; Schacht, P; Schaefer, D; Schaefer, R; Schaeffer, J; Schaepe, S; Schaetzel, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Schiavi, C; Schillo, C; Schioppa, M; Schlenker, S; Schmieden, K; Schmitt, C; Schmitt, S; Schmitt, S; Schneider, B; Schnellbach, Y J; Schnoor, U; Schoeffel, L; Schoening, A; Schoenrock, B D; Schopf, E; Schorlemmer, A L S; Schott, M; Schouten, D; Schovancova, J; Schramm, S; Schreyer, M; Schroeder, C; Schuh, N; Schultens, M J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwanenberger, C; Schwartzman, A; Schwarz, T A; Schwegler, Ph; Schweiger, H; Schwemling, Ph; Schwienhorst, R; Schwindling, J; Schwindt, T; Sciacca, F G; Scifo, E; Sciolla, G; Scuri, F; Scutti, F; Searcy, J; Sedov, G; Sedykh, E; Seema, P; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Sekhon, K; Sekula, S J; Seliverstov, D M; Semprini-Cesari, N; Serfon, C; Serin, L; Serkin, L; Serre, T; Sessa, M; Seuster, R; Severini, H; Sfiligoj, T; Sforza, F; Sfyrla, A; Shabalina, E; Shamim, M; Shan, L Y; Shang, R; Shank, J T; Shapiro, M; Shatalov, P B; Shaw, K; Shaw, S M; Shcherbakova, A; Shehu, C Y; Sherwood, P; Shi, L; Shimizu, S; Shimmin, C O; Shimojima, M; Shiyakova, M; Shmeleva, A; Shoaleh Saadi, D; Shochet, M J; Shojaii, S; Shrestha, S; Shulga, E; Shupe, M A; Shushkevich, S; Sicho, P; Sidebo, P E; Sidiropoulou, O; Sidorov, D; Sidoti, A; Siegert, F; Sijacki, Dj; Silva, J; Silver, Y; Silverstein, S B; Simak, V; Simard, O; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simon, D; Sinervo, P; Sinev, N B; Sioli, M; Siragusa, G; Sisakyan, A N; Sivoklokov, S Yu; Sjölin, J; Sjursen, T B; Skinner, M B; Skottowe, H P; Skubic, P; Slater, M; Slavicek, T; Slawinska, M; Sliwa, K; Smakhtin, V; Smart, B H; Smestad, L; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, M N K; Smith, R W; Smizanska, M; Smolek, K; Snesarev, A A; Snidero, G; Snyder, S; Sobie, R; Socher, F; Soffer, A; Soh, D A; Sokhrannyi, G; Solans, C A; Solar, M; Solc, J; Soldatov, E Yu; Soldevila, U; Solodkov, A A; Soloshenko, A; Solovyanov, O V; Solovyev, V; Sommer, P; Song, H Y; Soni, N; Sood, A; Sopczak, A; Sopko, B; Sopko, V; Sorin, V; Sosa, D; Sosebee, M; Sotiropoulou, C L; Soualah, R; Soukharev, A M; South, D; Sowden, B C; Spagnolo, S; Spalla, M; Spangenberg, M; Spanò, F; Spearman, W R; Sperlich, D; Spettel, F; Spighi, R; Spigo, G; Spiller, L A; Spousta, M; Spreitzer, T; Denis, R D St; Stabile, A; Staerz, S; Stahlman, J; Stamen, R; Stamm, S; Stanecka, E; Stanescu, C; Stanescu-Bellu, M; Stanitzki, M M; Stapnes, S; Starchenko, E A; Stark, J; Staroba, P; Starovoitov, P; Staszewski, R; Steinberg, P; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stewart, G A; Stillings, J A; Stockton, M C; Stoebe, M; Stoicea, G; Stolte, P; Stonjek, S; Stradling, A R; Straessner, A; Stramaglia, M E; Strandberg, J; Strandberg, S; Strandlie, A; Strauss, E; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Stroynowski, R; Strubig, A; Stucci, S A; Stugu, B; Styles, N A; Su, D; Su, J; Subramaniam, R; Succurro, A; Sugaya, Y; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, S; Sun, X; Sundermann, J E; Suruliz, K; Susinno, G; Sutton, M R; Suzuki, S; Svatos, M; Swiatlowski, M; Sykora, I; Sykora, T; Ta, D; Taccini, C; Tackmann, K; Taenzer, J; Taffard, A; Tafirout, R; Taiblum, N; Takai, H; Takashima, R; Takeda, H; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A A; Tam, J Y C; Tan, K G; Tanaka, J; Tanaka, R; Tanaka, S; Tannenwald, B B; Tannoury, N; Tapprogge, S; Tarem, S; Tarrade, F; Tartarelli, G F; Tas, P; Tasevsky, M; Tashiro, T; Tassi, E; Tavares Delgado, A; Tayalati, Y; Taylor, F E; Taylor, G N; Taylor, W; Teischinger, F A; Teixeira Dias Castanheira, M; Teixeira-Dias, P; Temming, K K; Temple, D; Ten Kate, H; Teng, P K; Teoh, J J; Tepel, F; Terada, S; Terashi, K; Terron, J; Terzo, S; Testa, M; Teuscher, R J; Theveneaux-Pelzer, T; Thomas, J P; Thomas-Wilsker, J; Thompson, E N; Thompson, P D; Thompson, R J; Thompson, A S; Thomsen, L A; Thomson, E; Thomson, M; Thun, R P; Tibbetts, M J; Ticse Torres, R E; Tikhomirov, V O; Tikhonov, Yu A; Timoshenko, S; Tiouchichine, E; Tipton, P; Tisserant, S; Todome, K; Todorov, T; Todorova-Nova, S; Tojo, J; Tokár, S; Tokushuku, K; Tollefson, K; Tolley, E; Tomlinson, L; Tomoto, M; Tompkins, L; Toms, K; Torrence, E; Torres, H; Torró Pastor, E; Toth, J; Touchard, F; Tovey, D R; Trefzger, T; Tremblet, L; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Trischuk, W; Trocmé, B; Troncon, C; Trottier-McDonald, M; Trovatelli, M; True, P; Truong, L; Trzebinski, M; Trzupek, A; Tsarouchas, C; Tseng, J C-L; Tsiareshka, P V; Tsionou, D; Tsipolitis, G; Tsirintanis, N; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsukerman, I I; Tsulaia, V; Tsuno, S; Tsybychev, D; Tudorache, A; Tudorache, V; Tuna, A N; Tupputi, S A; Turchikhin, S; Turecek, D; Turra, R; Turvey, A J; Tuts, P M; Tykhonov, A; Tylmad, M; Tyndel, M; Ueda, I; Ueno, R; Ughetto, M; Ugland, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Ungaro, F C; Unno, Y; Unverdorben, C; Urban, J; Urquijo, P; Urrejola, P; Usai, G; Usanova, A; Vacavant, L; Vacek, V; Vachon, B; Valderanis, C; Valencic, N; Valentinetti, S; Valero, A; Valery, L; Valkar, S; Valladolid Gallego, E; Vallecorsa, S; Valls Ferrer, J A; Van Den Wollenberg, W; Van Der Deijl, P C; van der Geer, R; van der Graaf, H; van Eldik, N; van Gemmeren, P; Van Nieuwkoop, J; van Vulpen, I; van Woerden, M C; Vanadia, M; Vandelli, W; Vanguri, R; Vaniachine, A; Vannucci, F; Vardanyan, G; Vari, R; Varnes, E W; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vazeille, F; Vazquez Schroeder, T; Veatch, J; Veloce, L M; Veloso, F; Velz, T; Veneziano, S; Ventura, A; Ventura, D; Venturi, M; Venturi, N; Venturini, A; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Viazlo, O; Vichou, I; Vickey, T; Vickey Boeriu, O E; Viehhauser, G H A; Viel, S; Vigne, R; Villa, M; Villaplana Perez, M; Vilucchi, E; Vincter, M G; Vinogradov, V B; Vivarelli, I; Vives Vaque, F; Vlachos, S; Vladoiu, D; Vlasak, M; Vogel, M; Vokac, P; Volpi, G; Volpi, M; von der Schmitt, H; von Radziewski, H; von Toerne, E; Vorobel, V; Vorobev, K; Vos, M; Voss, R; Vossebeld, J H; Vranjes, N; Vranjes Milosavljevic, M; Vrba, V; Vreeswijk, M; Vuillermet, R; Vukotic, I; Vykydal, Z; Wagner, P; Wagner, W; Wahlberg, H; Wahrmund, S; Wakabayashi, J; Walder, J; Walker, R; Walkowiak, W; Wang, C; Wang, F; Wang, H; Wang, H; Wang, J; Wang, J; Wang, K; Wang, R; Wang, S M; Wang, T; Wang, T; Wang, X; Wanotayaroj, C; Warburton, A; Ward, C P; Wardrope, D R; Washbrook, A; Wasicki, C; Watkins, P M; Watson, A T; Watson, I J; Watson, M F; Watts, G; Watts, S; Waugh, B M; Webb, S; Weber, M S; Weber, S W; Webster, J S; Weidberg, A R; Weinert, B; Weingarten, J; Weiser, C; Weits, H; Wells, P S; Wenaus, T; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, P; Wessels, M; Wetter, J; Whalen, K; Wharton, A M; White, A; White, M J; White, R; White, S; Whiteson, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik-Fuchs, L A M; Wildauer, A; Wilkens, H G; Williams, H H; Williams, S; Willis, C; Willocq, S; Wilson, A; Wilson, J A; Wingerter-Seez, I; Winklmeier, F; Winter, B T; Wittgen, M; Wittkowski, J; Wollstadt, S J; Wolter, M W; Wolters, H; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wu, M; Wu, M; Wu, S L; Wu, X; Wu, Y; Wyatt, T R; Wynne, B M; Xella, S; Xu, D; Xu, L; Yabsley, B; Yacoob, S; Yakabe, R; Yamada, M; Yamaguchi, D; Yamaguchi, Y; Yamamoto, A; Yamamoto, S; Yamanaka, T; Yamauchi, K; Yamazaki, Y; Yan, Z; Yang, H; Yang, H; Yang, Y; Yao, W-M; Yasu, Y; Yatsenko, E; Yau Wong, K H; Ye, J; Ye, S; Yeletskikh, I; Yen, A L; Yildirim, E; Yorita, K; Yoshida, R; Yoshihara, K; Young, C; Young, C J S; Youssef, S; Yu, D R; Yu, J; Yu, J M; Yu, J; Yuan, L; Yuen, S P Y; Yurkewicz, A; Yusuff, I; Zabinski, B; Zaidan, R; Zaitsev, A M; Zalieckas, J; Zaman, A; Zambito, S; Zanello, L; Zanzi, D; Zeitnitz, C; Zeman, M; Zemla, A; Zeng, Q; Zengel, K; Zenin, O; Ženiš, T; Zerwas, D; Zhang, D; Zhang, F; Zhang, H; Zhang, J; Zhang, L; Zhang, R; Zhang, X; Zhang, Z; Zhao, X; Zhao, Y; Zhao, Z; Zhemchugov, A; Zhong, J; Zhou, B; Zhou, C; Zhou, L; Zhou, L; Zhou, M; Zhou, N; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhukov, K; Zibell, A; Zieminska, D; Zimine, N I; Zimmermann, C; Zimmermann, S; Zinonos, Z; Zinser, M; Ziolkowski, M; Živković, L; Zobernig, G; Zoccoli, A; Zur Nedden, M; Zurzolo, G; Zwalinski, L
A search for single top-quark production via flavour-changing neutral current processes from gluon plus up- or charm-quark initial states in proton-proton collisions at the LHC is presented. Data collected with the ATLAS detector in 2012 at a centre-of-mass energy of 8 TeV and corresponding to an integrated luminosity of 20.3 fb[Formula: see text] are used. Candidate events for a top quark decaying into a lepton, a neutrino and a jet are selected and classified into signal- and background-like candidates using a neural network. No signal is observed and an upper limit on the production cross-section multiplied by the [Formula: see text] branching fraction is set. The observed 95 % CL limit is [Formula: see text] and the expected 95 % CL limit is [Formula: see text]. The observed limit can be interpreted as upper limits on the coupling constants of the flavour-changing neutral current interactions divided by the scale of new physics [Formula: see text] and [Formula: see text] and on the branching fractions [Formula: see text] and [Formula: see text].
Current forgings and their properties for steam generator of nuclear plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsukada, Hisashi; Suzuki, Komei; Kusuhashi, Mikio
1997-12-31
Current steel forgings for steam generator (SG) of PWR plant are reviewed in the aspect of design and material improvement. The following three items are introduced. The use of integral type steel forgings for the fabrication of steam generator enhances the structural integrity and makes easier fabrication and inspection including in-service inspection. The following examples of current integral type forgings developed by the Japan Steel Works, Ltd. (JSW) are introduced: (1) primary head integrated with nozzles, manways and supports; (2) steam drum head integrated with nozzle and handhole; (3) conical shell integrated with cylindrical sections and handholes. In order tomore » decrease the weight of steam generator, the high strength materials such as SA508, Cl.3a steel have been adopted in some cases. The properties of this steel are introduced and the chemistry and heat treatment condition are discussed. As one of the methods to minimize the macro- and micro-segregations, the use of vacuum carbon deoxidation (VCD), i.e. deoxidization of steel by gaseous CO reaction, with addition of Al for grain refining was investigated. The properties of SA508, Cl.3 steels with Low Si content are compared with those of conventional one.« less
Tests of stratospheric models - The reactions of atomic chlorine with O3 and CH4 at low temperature
NASA Technical Reports Server (NTRS)
Demore, W. B.
1991-01-01
The rate-constant ratio of the photochemical reactions of atomic chlorine with O3 and CH4 was determined using data from laboratory experiments on competitive chlorination of O3/CH4 mixtures at stratospheric temperatures (197-217 K). Two experimental approaches were used: (1) measuring the k1/k2 ratio for the reactions of atomic chlorine with ozone and methane and (2) testing for some of the ClO/CH3O2 chemistry. The chlorine and ozone concentrations were monitored by UV-Vis spectroscopy, and the CH3Cl concentration was measured by FTIR. The results on the k1/k2 ratio are in excellent agreement with the current NASA recommendation (DeMore et al., 1990), being only 12 percent higher. On the other hand, results on the ClO + CH3O2 reaction do not support the rate constant suggested by Simon et al. (1989).
In vivo cardiac electrical activity of nitric oxide in barium chloride treated male rats
NASA Astrophysics Data System (ADS)
Salihi, Abbas B. Q.; Shekha, Mudhir S.; Hamadamin, Peshraw S.; Maulood, Ismail M.; Rasul, Khder H.; Salim, Muhammed A.; Qadir, Fikry A.; Othman, Goran Q.; Mahmud, Almas M. R.; Al-Habib, Omar A. M.
2017-09-01
The aim of this study was to evaluate the effects of nitric oxide in barium chloride (BaCl2)-induced arrhythmia in male albino rats. 10mg/kg/hr of BaCl2 was infused intravenously through caudal vein to induce arrhythmia, to ameliorate this effect 1mg and 10mg/kg/hr of sodium nitroprusside (SNP; nitric oxide donor) were infused, respectively. The ECG signals and parameters were recorded and analyzed with the aid of BioAmp of ADInstruments data acquisition system and Labchart software. The results showed that infusion of both 1mg/kg/hr and 10mg/kg/hr of SNP non significantly changed heart rate (BPM), QRS interval (s), S amplitude (mV), T amplitude (mV), ST height (mV), JT height (mV), QT intervals (s) and QTc (s). In conclusion the results of the current study indicate that SNP cannot ameliorate arrhythmia-induced by BaCl2.
New technologies for solar energy silicon - Cost analysis of dichlorosilane process
NASA Technical Reports Server (NTRS)
Yaws, C. L.; Li, K.-Y.; Chu, T. C. T.; Fang, C. S.; Lutwack, R.; Briglio, A., Jr.
1981-01-01
A reduction in the cost of silicon for solar cells is an important objective in a project concerned with the reduction of the cost of electricity produced with solar cells. The cost goal for the silicon material is about $14 per kg (1980 dollars). The process which is currently employed to produce semiconductor grade silicon from trichlorosilane is not suited for meeting this cost goal. Other processes for producing silicon are, therefore, being investigated. A description is presented of results obtained for the DCS process which involves the production of dichlorosilane as a silicon source material for solar energy silicon. Major benefits of dichlorosilane as a silicon source material include faster reaction rates for chemical vapor deposition of silicon. The DCS process involves the reaction 2SiHCl3 yields reversibly SiH2Cl2 + SiCl4. The results of a cost analysis indicate a total product cost without profit of $1.29/kg of SiH2Cl2.
Faradaically selective membrane for liquid metal displacement batteries
NASA Astrophysics Data System (ADS)
Yin, Huayi; Chung, Brice; Chen, Fei; Ouchi, Takanari; Zhao, Ji; Tanaka, Nobuyuki; Sadoway, Donald R.
2018-02-01
In the realm of stationary energy storage, a plurality of candidate chemistries continues to vie for acceptance, among them the Na-NiCl2 displacement battery, which has eluded widespread adoption owing to the fragility of the β″-Al2O3 membrane. Here we report a porous electronically conductive membrane, which achieves chemical selectivity by preferred faradaic reaction instead of by regulated ionic conduction. Fitted with a porous membrane of TiN, a displacement cell comprising a liquid Pb positive electrode, a liquid Li-Pb negative electrode and a molten-salt electrolyte of PbCl2 dissolved in LiCl-KCl eutectic was cycled at a current density of 150 mA cm-2 at a temperature of 410 °C and exhibited a coulombic efficiency of 92% and a round-trip energy efficiency of 71%. As an indication of industrial scalability, we show comparable performance in a cell fitted with a faradaic membrane fashioned out of porous metal.
Cathode Wetting Studies in Magnesium Electrolysis
NASA Astrophysics Data System (ADS)
McLean, Kevin; Pettingill, James; Davis, Boyd
The effects of cathode materials and electrolyte additives on magnesium wetting were studied with the goal of improving current efficiency in a magnesium electrolysis cell. The study consisted of static wetting and electrolysis tests, both conducted in a visual cell with a molten salt electrolyte of MgCl2-CaCl2-NaCl-KCl-CaF2. The wetting conditions were tested using high resolution photography and contact angle software. The electrolysis tests were completed to qualitatively assess the effect of additives to the melt and were recorded with a digital video camcorder. Results from the static wetting tests showed a significant variation in wetting depending on the material used for the cathode. Mo and a Mo-W alloy, with contact angles of 60° and 52° respectively, demonstrated excellent wetting. The contact angle for steel was 132° and it ranged from 142°-154° for graphite depending on the type. Improvements to the cathode wetting were observed with tungsten and molybdenum oxide additives.
Choi, Dong Han; Jang, Gwang Ii; Lapidus, Alla; Copeland, Alex; Reddy, T B K; Mukherjee, Supratim; Huntemann, Marcel; Varghese, Neha; Ivanova, Natalia; Pillay, Manoj; Tindall, Brian J; Göker, Markus; Woyke, Tanja; Klenk, Hans-Peter; Kyrpides, Nikos C; Cho, Byung Cheol
2017-01-01
The genus Marinobacterium belongs to the family Alteromonadaceae within the class Gammaproteobacteria and was reported in 1997. Currently the genus Marinobacterium contains 16 species. Marinobacterium rhizophilum CL-YJ9 T was isolated from sediment associated with the roots of a plant growing in a tidal flat of Youngjong Island, Korea. The genome of the strain CL-YJ9 T was sequenced through the Genomic Encyclopedia of Type Strains, Phase I: KMG project. Here we report the main features of the draft genome of the strain. The 5,364,574 bp long draft genome consists of 58 scaffolds with 4762 protein-coding and 91 RNA genes. Based on the genomic analyses, the strain seems to adapt to osmotic changes by intracellular production as well as extracellular uptake of compatible solutes, such as ectoine and betaine. In addition, the strain has a number of genes to defense against oxygen stresses such as reactive oxygen species and hypoxia.
Corrosion studies of DC reactive magnetron sputtered alumina coating on 304 SS
NASA Astrophysics Data System (ADS)
Thangaraj, Baskar; Mahadevan, Krishnan
2017-12-01
Aluminum oxide films on SS 304 deposited by DC reactive magnetron sputtering technique were studied with respect to the composition of the sputter gas (Ar:O2), gas pressure, substrate temperature, current etc. to achieve good insulating films with high corrosion resistance. The films were characterized by XRD and SEM techniques. Potentiodynamic polarization and electrochemical impedance spectroscopy measurements were made under static conditions in order to evaluate the corrosion performance of the alumina-coated SS 304 for various immersion durations in 0.5 M and 1 M NaCl solution. Alumina-coated SS 304 has low corrosion value of 0.4550 and 1.1090MPY for 24 h immersion time in both solutions. The impedance plots for the alumina coated SS 304 in 1 M NaCl solution at different durations are slightly different to when compared to its immersion in 0.5 M NaCl solutions and are composed of two depressed semi circles. For the alumina coated film, the impedance spectrum decreased, when immersion time increased.
Characteristics of n-GaN After Cl2/Ar and Cl2/N2 Inductively Coupled Plasma Etching
NASA Astrophysics Data System (ADS)
Han, Yan-Jun; Xue, Song; Guo, Wen-Ping; Sun, Chang-Zheng; Hao, Zhi-Biao; Luo, Yi
2003-10-01
A systematic study on the effect of inductively coupled plasma (ICP) etching on n-type GaN is presented. The optical and electrical properties and surface stoichiometry of n-type GaN are evaluated using room-temperature photoluminescence (PL) and current-voltage (I-V) characteristic measurements, and X-ray photoelectron spectroscopy (XPS), respectively. Investigation of the effect of additive gas (N2 and Ar) and RF power on these characteristics has also been carried out. It is shown that the decrease in the O/Ga ratio after ICP etching can suppress the deterioration of the near-band-edge emission intensity. Furthermore, N vacancy (VN) with a shallow donor nature and Ga vacancy (VGa) with a deep acceptor nature are generated after ICP etching upon the addition of Ar and N2 to Cl2 plasma, respectively. Lower ohmic contact resistance could be obtained when VN or ion-bombardment-induced defect is dominant at the surface. Improved etching conditions have been obtained based on these results.
Numerical Simulations of a Multiscale Model of Stratified Langmuir Circulation
NASA Astrophysics Data System (ADS)
Malecha, Ziemowit; Chini, Gregory; Julien, Keith
2012-11-01
Langmuir circulation (LC), a prominent form of wind and surface-wave driven shear turbulence in the ocean surface boundary layer (BL), is commonly modeled using the Craik-Leibovich (CL) equations, a phase-averaged variant of the Navier-Stokes (NS) equations. Although surface-wave filtering renders the CL equations more amenable to simulation than are the instantaneous NS equations, simulations in wide domains, hundreds of times the BL depth, currently earn the ``grand challenge'' designation. To facilitate simulations of LC in such spatially-extended domains, we have derived multiscale CL equations by exploiting the scale separation between submesoscale and BL flows in the upper ocean. The numerical algorithm for simulating this multiscale model resembles super-parameterization schemes used in meteorology, but retains a firm mathematical basis. We have validated our algorithm and here use it to perform multiscale simulations of the interaction between LC and upper ocean density stratification. ZMM, GPC, KJ gratefully acknowledge funding from NSF CMG Award 0934827.
Air-supplied pinhole discharge in aqueous solution for the inactivation of Escherichia coli
NASA Astrophysics Data System (ADS)
Suganuma, Ryota; Yasuoka, Koichi
2018-04-01
An air-supplied pinhole discharge in aqueous solution has been developed to provide a short-lived and odorless bactericide to replace current conventional disinfectants such as O3, ClO-, HClO, and ClO2. The pinhole discharge that was initiated inside a water bubble generated hydrogen peroxide (H2O2) and nitrous acid (HNO2) simultaneously. The concentrations of H2O2, HNO2, and HNO3 were 16.3, 13.9, and 17.4 mg/L, respectively when flow rates of NaCl solution and air were 72 and 12.5 mL/min, respectively. The pH value of the solution was 3.87, and HO2 radicals were generated from the reaction of H2O2 with HNO2. The efficacy of sterilization of discharge-treated water was evaluated by changing the acetic solutions. A 4-orders-of-magnitude decrease in Escherichia coli survival rate was observed after treatment with a sodium citrate solution of pH 3.2 for 60 s.
Novel low-cost thermotherapy for cutaneous leishmaniasis in Peru.
Valencia, Braulio M; Miller, David; Witzig, Richard S; Boggild, Andrea K; Llanos-Cuentas, Alejandro
2013-01-01
Thermotherapy is an accepted alternative therapy for new-world cutaneous leishmaniasis, but current heat-delivery modalities are too costly to be made widely available to endemic populations. We adapted a low-cost heat pack named the HECT-CL device that delivers safe, reliable, and renewable conduction heat. 25 patients with cutaneous leishmaniasis completed treatment with the device at an initial temperature of 52°C ± 2°C for 3 minutes to each lesion, repeated daily for 7 days, and were followed up for 6 months by direct observation. The overall definitive clinical cure rate was 60%. Concurrently, 13 patients meeting minimally significant exclusion criteria received identical compassionate use treatment with a cumulative definitive cure rate of 68.4%, 75% for those who had experienced CL relapse after prior antimonial treatment. Therapy was well tolerated. Reversible second-degree burns occurred in two patients and no bacterial super-infections were observed. HECT-CL is a promising treatment and deserves further study to verify its safety and efficacy as adjuvant and mono- therapy.
Novel Low-Cost Thermotherapy for Cutaneous Leishmaniasis in Peru
Witzig, Richard S.; Boggild, Andrea K.; Llanos-Cuentas, Alejandro
2013-01-01
Thermotherapy is an accepted alternative therapy for new-world cutaneous leishmaniasis, but current heat-delivery modalities are too costly to be made widely available to endemic populations. We adapted a low-cost heat pack named the HECT-CL device that delivers safe, reliable, and renewable conduction heat. 25 patients with cutaneous leishmaniasis completed treatment with the device at an initial temperature of 52°C±2°C for 3 minutes to each lesion, repeated daily for 7 days, and were followed up for 6 months by direct observation. The overall definitive clinical cure rate was 60%. Concurrently, 13 patients meeting minimally significant exclusion criteria received identical compassionate use treatment with a cumulative definitive cure rate of 68.4%, 75% for those who had experienced CL relapse after prior antimonial treatment. Therapy was well tolerated. Reversible second-degree burns occurred in two patients and no bacterial super-infections were observed. HECT-CL is a promising treatment and deserves further study to verify its safety and efficacy as adjuvant and mono- therapy. PMID:23658851
Congenital Cytomegalovirus Infection: A Significant Cause of Deafness and Mental Deficiency.
ERIC Educational Resources Information Center
Eichhorn, Sarah K.
1982-01-01
Research on cytomegalovirus (CMV), a herpes virus causing neurological damage (hearing problems and/or mental retardation) in 10 percent of infants born with the condition, is reviewed. Incidence of hearing and retardation in CMV cases is reported and current treatment described. (CL)
Cathodoluminescence Study of Hafnium Oxide
NASA Astrophysics Data System (ADS)
Purcell, Emily; Hengehold, Robert; McClory, John
2011-10-01
Hafnium dioxide (HfO2) is increasingly being used in place of silicon oxide as a gate insulator in field effect transistors. This is primarily due to its high dielectric constant, κ, of 25. Samples of HfO2 were grown by either atomic layer deposition (ALD) or pulsed laser deposition (PLD), with the PLD samples having assorted substrate temperatures during deposition (300 C, 500 C, and 750 C). Cathodoluminescence (CL) was chosen as the technique used for studying these HfO2 samples. The CL system used was capable of beam energies ranging from 1 keV to 20 keV and beam currents ranging from 10 μA to 50 μA. A Monte Carlo calculation using CASINO software was performed in order to determine the beam energy for the desired depth of penetration. Measurements were taken at sample temperatures ranging from 7K (closed cycled cryostat) to 300K (room temperature), as well as at various beam energies and beam currents. Comparison will be made between the PLD and ALD spectra.
Henning, Sebastian; Ishikawa, Hiroshi; Kühn, Laura; Herranz, Juan; Müller, Elisabeth; Eychmüller, Alexander; Schmidt, Thomas J
2017-08-28
Highly active and durable oxygen reduction catalysts are needed to reduce the costs and enhance the service life of polymer electrolyte fuel cells (PEFCs). This can be accomplished by alloying Pt with a transition metal (for example Ni) and by eliminating the corrodible, carbon-based catalyst support. However, materials combining both approaches have seldom been implemented in PEFC cathodes. In this work, an unsupported Pt-Ni alloy nanochain ensemble (aerogel) demonstrates high current PEFC performance commensurate with that of a carbon-supported benchmark (Pt/C) following optimization of the aerogel's catalyst layer (CL) structure. The latter is accomplished using a soluble filler to shift the CL's pore size distribution towards larger pores which improves reactant and product transport. Chiefly, the optimized PEFC aerogel cathodes display a circa 2.5-fold larger surface-specific ORR activity than Pt/C and maintain 90 % of the initial activity after an accelerated stress test (vs. 40 % for Pt/C). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Metals Electroprocessing in Molten Salts
NASA Technical Reports Server (NTRS)
Sadoway, D. R.
1985-01-01
The present study seeks to explain the poor quality of solid electrodeposits in molten salts through a consideration of the effects of fluid flow of the electrolyte. Transparent cells allow observation of electrolyte circulation by a laser schlieren optical technique during the electrodeposition of solid zinc from the molten salt electrolyte, ZnCl2 - LiCl-KCl. Experimental variables are current, density, electrolyte composition, and cell geometry. Based on the results of earlier electrodeposition studies as well as reports in the literature, these parameters are identified as having the primary influence on cell performance and deposit quality. Experiments are conducted to measure the fluid flow patterns and the electrochemical cell characteristics, and to correlate this information with the morphology of the solid electrodeposit produced. Specifically, cell voltage, cell current, characteristic time for dendrite evolution, and dendrite growth directions are noted. Their relationship to electrolyte flow patterns and the morphology of the resulting electrodeposit are derived. Results to date indicate that laser schlieren imaging is capable of revealing fluid flow patterns in a molten salt electrolyte.
Resistance characterization of nickel sulfide electrodes in LiCl-containing molten salt electrolytes
NASA Astrophysics Data System (ADS)
Redey, L.; Vissers, D. R.
The electrode kinetics of a high area loading: (545.6 mAh/cm(2) for the Ni reversible NiS transition), porous nickel sulfide electrode were studied under one-dimensional current distribution in a half-cell-type test arrangement. Area-specific resistance values (ASR/sub t/) were measured under wide variety of conditions: temperature, 450 to 490(0)C; current density, 0.01 to 3A/cm(2); and mechanical stress, 0.11 to 1.68 kg/cm(2). The ASR/sub t/ values were used for quantitative characterization of the ohmic-related and electrochemical-related resistances of the electrode bed. When cycled in the Ni reversible NiS transition range, the electrode showed good utilization and excellent power characteristics in an all-lithium-cation (LiF-LiCl-LiBr) electrolyte. Capability of continuous cycling at high rates (up to 800 mA/cm(12) was demonstrated. The performance of the electrode was also found to be dependent on the mechanical stress developed in the electrode.
Rubart, M; Lopshire, J C; Fineberg, N S; Zipes, D P
2000-06-01
We previously demonstrated in dogs that a transient rate increase superimposed on bradycardia causes prolongation of ventricular refractoriness that persists for hours after resumption of bradycardia. In this study, we examined changes in membrane currents that are associated with this phenomenon. The whole cell, patch clamp technique was used to record transmembrane voltages and currents, respectively, in single mid-myocardial left ventricular myocytes from dogs with 1 week of complete AV block; dogs either underwent 1 hour of left ventricular pacing at 120 beats/min or did not undergo pacing. Pacing significantly heightened mean phase 1 and peak plateau amplitudes by approximately 6 and approximately 3 mV, respectively (P < 0.02), and prolonged action potential duration at 90% repolarization from 235+/-8 msec to 278+/-8 msec (1 Hz; P = 0.02). Rapid pacing-induced changes in transmembrane ionic currents included (1) a more pronounced cumulative inactivation of the 4-aminopyridine-sensitive transient outward K+ current, Ito, over the range of physiologic frequencies, resulting from a approximately 30% decrease in the population of quickly reactivating channels; (2) increases in peak density of L-type Ca2+ currents, I(Ca.L), by 15% to 35 % between +10 and +60 mV; and (3) increases in peak density of the Ca2+-activated chloride current, I(Cl.Ca), by 30% to 120% between +30 and +50 mV. Frequency-dependent reduction in Ito combined with enhanced I(Ca.L) causes an increase in net inward current that may be responsible for the observed changes in ventricular repolarization. This augmentation of net cation influx is partially antagonized by an increase in outward I(Ca.Cl).
Chang-Lin, Joan-En; Kim, Kwang-Jin; Lee, Vincent H L
2005-06-01
Previously, we reported the development of a primary culture model of tight rabbit corneal epithelial cell layers (RCrECL) characterizing bioelectric parameters, morphology, cytokeratin, and passive permeability. In the present study, we specifically evaluated the active ion transport processes of RCrECL cultured from either pigmented or albino rabbits. Primary cultured RCrECL were grown at an air-interface on Clear-Snapwells precoated with collagen/fibronectin/laminin and mounted in a modified Ussing-type chamber for the evaluation of their active ion transport processes under short-circuited conditions. Contribution of active Na(+) and Cl(-) transport to overall short-circuit current (I(sc)) was evaluated by removing Na(+) and Cl(-), respectively, from bathing fluids of RCrECL and measurements of net fluxes of Na(+) and Cl(-) using (22)Na and (36)Cl, respectively. Amiloride and benzamil were used to determine the role of apical Na(+)-channel activities to net Na(+) fluxes. N-phenylanthranilic acid (NPAA), ouabain, BaCl(2) and bumetanide were used to determine the role of basolateral Na,K-ATPase, apical Cl(-)-channel, and basolateral K(+)-channel and Na(+)(K(+))2Cl(-)-cotransporter activities, respectively, in active ion transport across RCrECL. I(sc) of RCrECL derived from pigmented rabbits was comprised of 64+/-2% and 44+/-5% for active Na(+) and Cl(-) transport, respectively, consistent with net Na(+) absorption and Cl(-) secretion of 0.062+/-0.006 and 0.046+/-0.008 muEq/cm(2)/hr estimated from radionuclide fluxes. Apical amiloride and benzamil inhibited I(sc) by up to approximately 50% with an IC(50) of 1 and 0.1 microm, respectively, consistent with participation of apical epithelial Na(+)-channels to net Na(+) absorption across RCrECL cultured from pigmented rabbits. Addition of ouabain to the basolateral, NPAA to the apical, BaCl(2) to the basolateral and bumetanide to basolateral fluid decreased I(sc) by 86+/-1.5%, 53+/-3%, 18+/-1.8% and 13+/-1.9% in RCrECL cultured from pigmented rabbits, while 85+/-0.7%, 36+/-1.6%, 38+/-1.8% and 15+/-3.5% decreases are observed for RCrECL from albino rabbits, respectively. Air-interface cultured RCrECL from either pigmented or albino rabbits exhibited active ion transport properties similar to those present in excised tissues. This primary culture system may be a reliable in-vitro model for mechanistic characterization of corneal epithelial function and regulation of transport properties.
Unusual Cathodoluminescence in Diamonds: Evidence for Metamorphism or a Source Characteristic
NASA Astrophysics Data System (ADS)
Bruce, L. F.; Longo, M.; Kopylova, M.; Ryder, J.
2009-05-01
Cathodoluminescence (CL) is a useful means of diamond "fingerprinting". CL-active cratonic macrodiamonds usually cathodoluminesce blue or yellow, and always exhibit prominent wide CL emittance peaks at 430-450 nm and 480-490 nm. Exceptions to this norm are diamond suites recently discovered in the Archean rocks metamorphosed in the greenschist facies. These macrodiamonds cathodoluminesce red, orange and yellow, and invariably exhibit the most prominent CL peak at 520 nm. The diamond suites with the unusual CL are derived from two different locations within the Michipicoten Greenstone Belt (Southern Superior craton), near the town of Wawa (Ontario). One suite is extracted from the 2.68-2.74 Ga polymict volcanic breccias and lamprophyres and the other suite - from the 2.68 Ga sedimentary conglomerates grading into overlying sandstones of the Dore assemblage. The diamondiferous conglomerates are found in an area 8 km south of the breccias and 12 km northeast of Wawa. CL emittance of macrodiamonds (> 0.5 mm) extracted from the breccias consists of a broad band at 520 nm, a sharp peak at 575.5 nm, and several lines at 550-670 nm. The conglomerate macrodiamonds mostly show a dominant peak at 520 nm, whereas corresponding microdiamonds exhibit two peaks at about 576 and 600 nm. None of the diamonds show a maximum peak at 420 nm. Polycrystalline stones from conglomerates show distinct CL spectra and colours for all intergrown crystals in the same diamond. The relative abundances of the CL colors of the conglomerate diamonds are orange-red (46%), yellow (28%), orange-green (10%), green (6%), and non-uniform colors (10%). These colours are more diverse than mostly orange CL colours in the breccia diamonds; this results from a larger variety of positions and intensity of CL peaks in the conglomerate diamonds. We propose two models for explaining the presence of the 520 nm CL peak in the breccia and conglomerate diamonds in Wawa. The first model suggests metamorphism as the main factor influencing the CL colors of the suites. Diamonds in the volcaniclastic breccias and sedimentary conglomerates may have come from different deep sources, but acquired similar cathodoluminescence due to a metamorphic overprint. Metamorphic fluids have been shown to have a potential to percolate through diamond fractures and affect diamond inclusions. Furthermore, diamonds found in the Kokchetav metamorphic massif are reported to have green CL with an emission at 514-537 nm. The "metamorphic" model is supported by the contrast in the diamond indicator minerals recovered from the volcaniclastic breccias and sedimentary conglomerates. Only the latter contain kimberlite indicator minerals from a proximal source, such as diopside and garnet with preserved kelyphitic rims. The second model suggests the presence of the 520 nm CL peak controlling the green-red CL visible colors is an internal characteristic of the two Wawa diamond suites related to their origin from the same deep source. Currently, we are studying the N content and aggregation state of the conglomerate diamonds using the Fourier transform infrared technique to compare these data with the corresponding values for the breccia diamonds. Further work is needed to determine if either model can explain all observed properties of the Wawa diamond suites.
Guo, Peng; La Plante, Erika Callagon; Wang, Bu; Chen, Xin; Balonis, Magdalena; Bauchy, Mathieu; Sant, Gaurav
2018-05-22
The Cl - -induced corrosion of metals and alloys is of relevance to a wide range of engineered materials, structures, and systems. Because of the challenges in studying pitting corrosion in a quantitative and statistically significant manner, its kinetics remain poorly understood. Herein, by direct, nano- to micro-scale observations using vertical scanning interferometry (VSI), we examine the temporal evolution of pitting corrosion on AISI 1045 carbon steel over large surface areas in Cl - -free, and Cl - -enriched solutions. Special focus is paid to examine the nucleation and growth of pits, and the associated formation of roughened regions on steel surfaces. By statistical analysis of hundreds of individual pits, three stages of pitting corrosion, namely, induction, propagation, and saturation, are quantitatively distinguished. By quantifying the kinetics of these processes, we contextualize our current understanding of electrochemical corrosion within a framework that considers spatial dynamics and morphology evolutions. In the presence of Cl - ions, corrosion is highly accelerated due to multiple autocatalytic factors including destabilization of protective surface oxide films and preservation of aggressive microenvironments within the pits, both of which promote continued pit nucleation and growth. These findings offer new insights into predicting and modeling steel corrosion processes in mid-pH aqueous environments.
Alkaline pH block of CLC-K kidney chloride channels mediated by a pore lysine residue.
Gradogna, Antonella; Pusch, Michael
2013-07-02
CLC-K chloride channels are expressed in the kidney and the inner ear, where they are involved in NaCl reabsorption and endolymph production, respectively. These channels require the beta subunit barttin for proper function. Mutations in ClC-Kb and barttin, lead to Bartter's syndrome. Block of CLC-K channels by acid pH was described in a previous work, and we had identified His-497 as being responsible for the acidic block of CLC-K channels. Here, we show that ClC-K currents are blocked also by alkaline pH with an apparent pK value of ∼8.7 for ClC-K1. Using noise analysis, we demonstrate that alkaline block is mediated by an allosteric reduction of the open probability. By an extensive mutagenic screen we identified K165, a highly conserved residue in the extracellular vestibule of the channel, as the major element responsible for the alkaline pH modulation. Deprotonation of K165 underlies the alkaline block. However, MTS modification of the K165C mutant demonstrated that not only the charge but also the chemical and sterical properties of lysine 165 are determinants of CLC-K gating. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Recovery of Platinum Group Metals from Spent Catalysts Using Iron Chloride Vapor Treatment
NASA Astrophysics Data System (ADS)
Taninouchi, Yu-ki; Okabe, Toru H.
2018-05-01
The recovery of platinum group metals (PGMs) from spent automobile catalysts is a difficult process because of their relatively low contents in the scrap. In this study, to improve the efficiency of the existing recycling techniques, a novel physical concentration method involving treatment with FeCl2 vapor has been examined. The reactions occurring between typical catalyst components and FeCl2 vapor are discussed from the thermodynamic point of view, and the validity of the proposed technique was experimentally verified. The obtained results indicate that the vapor treatment at around 1200 K (927 °C) can effectively alloy PGMs (Pt, Pd, and Rh) with Fe, resulting in the formation of a ferromagnetic alloy. It was also confirmed that cordierite and alumina (the major catalyst components) remained unreacted after the vapor treatment, while ceria species were converted into oxychlorides. The samples simulating the automobile catalyst were also subjected to magnetic separation after the treatment with FeCl2 vapor; as a result, PGMs were successfully extracted and concentrated in the form of a magnetic powder. Thus, the FeCl2 vapor treatment followed by magnetic separation can be utilized for recovering PGMs directly from spent catalysts as an effective pretreatment for the currently used recycling methods.
NASA Astrophysics Data System (ADS)
Dun, Yuchao; Zhao, Xuhui; Tang, Yuming; Dino, Sahib; Zuo, Yu
2018-04-01
Heptadecafluorodecyl trimethoxysilane (FAS-17) was incorporated into γ-(2,3-epoxypropoxy) propyltrimethoxysilane/graphene (GPTMS/rGO) by adding pre-hydrolyzed FAS-17 solution in GPTMS solution, and a hybrid silane-graphene film (FG/rGO) was prepared on 2024 aluminum alloy surface. The FG/rGO film showed better thermal shock resistance, good adhesion force and high micro-hardness, compared with GPTMS/rGO film. In neutral 3.5 wt% NaCl solution, the corrosion current density for 2024 AA sample with FG/rGO film was 3.40 × 10-3 μA/cm2, which is about one fifth of that for the sample with GPTMS/rGO film. In acidic and alkaline NaCl solutions, the FG/rGO film also showed obviously better corrosion resistance than GPTMS/rGO film. EIS results confirm that the FG/rGO film showed longer performance than GPTMS/rGO film for 2024 AA in NaCl solution. The hydrophobic FAS-17 increased water contact angle of the film surface from 68° to 113°, and changed the stacking structure of graphene in the film. The higher crosslink degree and less interfaces promoted the barrier property of FG/rGO film against aggressive ions and prolonged the performance time in NaCl solution.
NASA Astrophysics Data System (ADS)
Domenech, Jose Luis; Cueto, Maite; Herrero, Victor Jose; Tanarro, Isabel; Cernicharo, Jose; Drouin, Brian
2015-06-01
HCl^+ is a key intermediate in the interstellar chemistry of chlorine. It has been recently identified in space from Herschel's spectra and it has also been detected in the laboratory through its optical emission, infrared and mm-wave spectra. Now that Hershchel is decomissioned, further astrophysical studies on this radical ion will likely rely on ground-based observations in the mid-infrared. We have used a difference frequency laser spectrometer coupled to a hollow cathode discharge to measure the absorption spectrum of H35Cl^+ and H37Cl^+ in the v=0-1 band of the ^2Π state with Dopppler limited resolution. The accuracy of the individual measurements (˜ 10 MHz (3σ)) relies on a solid state wavemeter referenced to an iodine-stabilized Ar^+ laser. The new data are being fit using the CALPGM software from JPL, and the current status will be presented. M. De Luca et al., Astrophys. J. Lett. 751, L37 (2012) W. D. Sheasley and C. W. Mathews, J. Mol. Spectrosc. 47, 420 (1973) P. B. Davies, P. A. Hamilton, B. A. Johnson, Mol. Phys. 57, 217 (1986) H. Gupta, B. J. Drouin, and J. C. Pearson, Astrophys. J. Lett. 751, L37 (2012)
Investigation of a mercury speciation technique for flue gas desulfurization materials.
Lee, Joo-Youp; Cho, Kyungmin; Cheng, Lei; Keener, Tim C; Jegadeesan, Gautham; Al-Abed, Souhail R
2009-08-01
Most of the synthetic gypsum generated from wet flue gas desulfurization (FGD) scrubbers is currently being used for wallboard production. Because oxidized mercury is readily captured by the wet FGD scrubber, and coal-fired power plants equipped with wet scrubbers desire to benefit from the partial mercury control that these systems provide, some mercury is likely to be bound in with the FGD gypsum and wallboard. In this study, the feasibility of identifying mercury species in the FGD gypsum and wallboard samples was investigated using a large sample size thermal desorption method. Potential candidates of pure mercury standards including mercuric chloride (HgCl2), mercurous chloride (Hg2Cl2), mercury oxide (HgO), mercury sulfide (HgS), and mercuric sulfate (HgSO4) were analyzed to compare their results with those obtained from FGD gypsum and dry wallboard samples. Although any of the thermal evolutionary curves obtained from these pure mercury standards did not exactly match with those of the FGD gypsum and wallboard samples, it was identified that Hg2Cl2 and HgCl2 could be candidates. An additional chlorine analysis from the gypsum and wallboard samples indicated that the chlorine concentrations were approximately 2 orders of magnitude higher than the mercury concentrations, suggesting possible chlorine association with mercury.
NASA Astrophysics Data System (ADS)
Pabalan, Roberto T.; Pitzer, Kenneth S.
1987-09-01
Mineral solubilities in binary and ternary electrolyte mixtures in the system Na-K-Mg-Cl-SO 4-OH-H 2O are calculated to high temperatures using available thermodynamic data for solids and for aqueous electrolyte solutions. Activity and osmotic coefficients are derived from the ion-interaction model of Pitzer (1973, 1979) and co-workers, the parameters of which are evaluated from experimentally determined solution properties or from solubility data in binary and ternary mixtures. Excellent to good agreement with experimental solubilities for binary and ternary mixtures indicate that the model can be successfully used to predict mineral-solution equilibria to high temperatures. Although there are currently no theoretical forms for the temperature dependencies of the various model parameters, the solubility data in ternary mixtures can be adequately represented by constant values of the mixing term θ ij and values of ψ ijk which are either constant or have a simple temperature dependence. Since no additional parameters are needed to describe the thermodynamic properties of more complex electrolyte mixtures, the calculations can be extended to equilibrium studies relevant to natural systems. Examples of predicted solubilities are given for the quaternary system NaCl-KCl-MgCl 2-H 2O.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Dongyun; Li Jingxia; Gao Jimin
2009-02-15
Arsenic is a well-documented human carcinogen associated with skin carcinogenesis. Our previous work reveals that arsenite exposure is able to induce cell transformation in mouse epidermal cell JB6 Cl41 through the activation of ERK, rather than JNK pathway. Our current studies further evaluate downstream pathway in low dose arsenite-induced cell transformation in JB6 Cl41 cells. Our results showed that treatment of cells with low dose arsenite induced activation of c-Jun/AP-1 pathway, and ectopic expression of dominant negative mutant of c-Jun (TAM67) blocked arsenite-induced transformation. Furthermore, our data indicated that cyclin D1 was an important downstream molecule involved in c-Jun/AP-1-mediated cellmore » transformation upon low dose arsenite exposure, because inhibition of cyclin D1 expression by its specific siRNA in the JB6 Cl41 cells resulted in impairment of anchorage-independent growth of cells induced by low dose arsenite. Collectively, our results demonstrate that c-Jun/AP-1-mediated cyclin D1 expression is at least one of the key events implicated in cell transformation upon low dose arsenite exposure.« less
Voltage dependence of acetylcholine receptor channel gating in rat myoballs
1992-01-01
Whole-cell currents from nicotinic acetylcholine receptor (AChR) channels were studied in rat myoballs using a light-activated agonist to determine the voltage dependence of the macroscopic opening and closing rate constants. Myoballs were bathed in a solution containing a low concentration of the inactive isomer of the photoisomerizable azobenzene derivative, cis-Bis-Q. A light flash was then presented to produce a known concentration jump of agonist, trans-Bis-Q, across a wide range of membrane potentials in symmetrical solutions (NaCl or CsCl on both sides) or asymmetrical solutions (NaCl in the bath and CsCl in the pipette). At the low agonist concentration used in this study, the reciprocal of the macroscopic time constants gives an unambiguous measure of the effective closing rate. It showed an exponential decrease with membrane hyperpolarization between +20 and - 100 mV, but tended to level off at more depolarized and at more hyperpolarized membrane potentials. The relative effective opening rate was derived from the steady-state conductance, the single-channel conductance, and the apparent closing rate; it decreased sharply in the depolarizing region and tended to level off and then turn up in the hyperpolarizing region. The two effective rate constants were shown to depend on the first, second, and third power of membrane potential. PMID:1460456
Fractional-dimensional Child-Langmuir law for a rough cathode
NASA Astrophysics Data System (ADS)
Zubair, M.; Ang, L. K.
2016-07-01
This work presents a self-consistent model of space charge limited current transport in a gap combined of free-space and fractional-dimensional space (Fα), where α is the fractional dimension in the range 0 < α ≤ 1. In this approach, a closed-form fractional-dimensional generalization of Child-Langmuir (CL) law is derived in classical regime which is then used to model the effect of cathode surface roughness in a vacuum diode by replacing the rough cathode with a smooth cathode placed in a layer of effective fractional-dimensional space. Smooth transition of CL law from the fractional-dimensional to integer-dimensional space is also demonstrated. The model has been validated by comparing results with an experiment.
Hydrogen donors and acceptors and basic amino acids jointly contribute to carcinogenesis.
Tang, Man; Zhou, Yanchao; Li, Yiqi; Zou, Juntong; Yang, Beicheng; Cai, Li; Zhang, Xuelan; Liu, Qiuyun
2017-01-01
A hypothesis is postulated that high content of hydrogen donors and acceptors, and basic amino acids cause the intracellular trapping of the H + and Cl - ions, which increases cancer risks as local formation of HCl is mutagenic to DNA. Other cations such as Ca 2+ , and weak acids such as short-chain organic acids may attenuate the intracellular gathering of the H + and Cl - , two of the most abundant ions in the cells. Current data on increased cancer risks in diabetic and obese patients are consistent with the assumption that hydrogen bonding propensity on glucose, triglycerides and other molecules is among the causative factors. Copyright © 2016 Elsevier Ltd. All rights reserved.
Functional and structural effects of amyloid-β aggregate on Xenopus laevis oocytes.
Parodi, Jorge; Ochoa-de la Paz, Lenin; Miledi, Ricardo; Martínez-Torres, Ataúlfo
2012-10-01
Xenopus laevis oocytes exposed to amyloid-β aggregate generated oscillatory electric activity (blips) that was recorded by two-microelectrode voltage-clamp. The cells exhibited a series of "spontaneous" blips ranging in amplitude from 3.8 ± 0.9 nA at the beginning of the recordings to 6.8 ± 1.7 nA after 15 min of exposure to 1 μM aggregate. These blips were similar in amplitude to those induced by the channel-forming antimicrobial agents amphotericin B (7.8 ± 1.2 nA) and gramicidin (6.3 ± 1.1 nA). The amyloid aggregate-induced currents were abolished when extracellular Ca(2+) was removed from the bathing solution, suggesting a central role for this cation in generating the spontaneous electric activity. The amyloid aggregate also affected the Ca(2+)-dependent Cl(-) currents of oocytes, as shown by increased amplitude of the transient-outward chloride current (T(out)) and the serum-activated, oscillatory Cl(-) currents. Electron microcopy revealed that amyloid aggregate induced the dissociation of the follicular cells that surround the oocyte, thus leading to a failure in the electro-chemical communication between these cells. This was also evidenced by the suppression of the oscillatory Ca(2+)-dependent ATP-currents, which require proper coupling between oocytes and the follicular cell layer. These observations, made using the X. laevis oocytes as a versatile experimental model, may help to understand the effects of amyloid aggregate on cellular communication.
NASA Astrophysics Data System (ADS)
Nagarajan, Sounderya; Pioche-Durieu, Catherine; Tizei, Luiz H. G.; Fang, Chia-Yi; Bertrand, Jean-Rémi; Le Cam, Eric; Chang, Huan-Cheng; Treussart, François; Kociak, Mathieu
2016-06-01
Light and Transmission Electron Microscopies (LM and TEM) hold potential in bioimaging owing to the advantages of fast imaging of multiple cells with LM and ultrastructure resolution offered by TEM. Integrated or correlated LM and TEM are the current approaches to combine the advantages of both techniques. Here we propose an alternative in which the electron beam of a scanning TEM (STEM) is used to excite concomitantly the luminescence of nanoparticle labels (a process known as cathodoluminescence, CL), and image the cell ultrastructure. This CL-STEM imaging allows obtaining luminescence spectra and imaging ultrastructure simultaneously. We present a proof of principle experiment, showing the potential of this technique in image cytometry of cell vesicular components. To label the vesicles we used fluorescent diamond nanocrystals (nanodiamonds, NDs) of size ~150 nm coated with different cationic polymers, known to trigger different internalization pathways. Each polymer was associated with a type of ND with a different emission spectrum. With CL-STEM, for each individual vesicle, we were able to measure (i) their size with nanometric resolution, (ii) their content in different ND labels, and realize intracellular component cytometry. In contrast to the recently reported organelle flow cytometry technique that requires cell sonication, CL-STEM-based image cytometry preserves the cell integrity and provides a much higher resolution in size. Although this novel approach is still limited by a low throughput, the automatization of data acquisition and image analysis, combined with improved intracellular targeting, should facilitate applications in cell biology at the subcellular level.Light and Transmission Electron Microscopies (LM and TEM) hold potential in bioimaging owing to the advantages of fast imaging of multiple cells with LM and ultrastructure resolution offered by TEM. Integrated or correlated LM and TEM are the current approaches to combine the advantages of both techniques. Here we propose an alternative in which the electron beam of a scanning TEM (STEM) is used to excite concomitantly the luminescence of nanoparticle labels (a process known as cathodoluminescence, CL), and image the cell ultrastructure. This CL-STEM imaging allows obtaining luminescence spectra and imaging ultrastructure simultaneously. We present a proof of principle experiment, showing the potential of this technique in image cytometry of cell vesicular components. To label the vesicles we used fluorescent diamond nanocrystals (nanodiamonds, NDs) of size ~150 nm coated with different cationic polymers, known to trigger different internalization pathways. Each polymer was associated with a type of ND with a different emission spectrum. With CL-STEM, for each individual vesicle, we were able to measure (i) their size with nanometric resolution, (ii) their content in different ND labels, and realize intracellular component cytometry. In contrast to the recently reported organelle flow cytometry technique that requires cell sonication, CL-STEM-based image cytometry preserves the cell integrity and provides a much higher resolution in size. Although this novel approach is still limited by a low throughput, the automatization of data acquisition and image analysis, combined with improved intracellular targeting, should facilitate applications in cell biology at the subcellular level. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01908k