DOT National Transportation Integrated Search
2006-11-23
This report provides evaluation results for prototype fuel cell transit buses operating at Santa Clara Valley Transportation Authority (VTA) in San Jose, California. San Mateo County Transit District (SamTrans) in San Carlos, California, is a partner...
DOT National Transportation Integrated Search
2006-03-23
This report provides preliminary results from an evaluation of prototype fuel cell transit buses operating at Santa Clara Valley Transportation Authority (VTA) in San Jose, California. San Mateo County Transit District (SamTrans) in San Carlos, Calif...
Holly, Elizabeth N; Boyson, Christopher O; Montagud-Romero, Sandra; Stein, Dirson J; Gobrogge, Kyle L; DeBold, Joseph F; Miczek, Klaus A
2016-04-06
Intermittent social defeat stress escalates later cocaine self-administration. Reward and stress both activate ventral tegmental area (VTA) dopamine neurons, increasing downstream extracellular dopamine concentration in the medial prefrontal cortex and nucleus accumbens. The stress neuropeptide corticotropin releasing factor (CRF) and its receptors (CRF-R1, CRF-R2) are located in the VTA and influence dopaminergic activity. These experiments explore how CRF release and the activation of its receptors within the VTA both during and after stress influence later cocaine self-administration in rats.In vivo microdialysis of CRF in the VTA demonstrated that CRF is phasically released in the posterior VTA (pVTA) during acute defeat, but, with repeated defeat, CRF is recruited into the anterior VTA (aVTA) and CRF tone is increased in both subregions. Intra-VTA antagonism of CRF-R1 in the pVTA and CRF-R2 in the aVTA during each social defeat prevented escalated cocaine self-administration in a 24 h "binge." VTA CRF continues to influence cocaine seeking in stressed animals long after social defeat exposure. Unlike nonstressed controls, previously stressed rats show significant cocaine seeking after 15 d of forced abstinence. Previously stressed rats continue to express elevated CRF tone within the VTA and antagonism of pVTA CRF-R1 or aVTA CRF-R2 reverses cocaine seeking. In conclusion, these experiments demonstrate neuroadaptive changes in tonic and phasic CRF with repeated stress, that CRF release during stress may contribute to later escalated cocaine taking, and that persistently elevated CRF tone in the VTA may drive later cocaine seeking through increased activation of pVTA CRF-R1 and aVTA CRF-R2. Corticotropin releasing factor (CRF) within the ventral tegmental area (VTA) has emerged as a likely candidate molecule underlying the fundamental link between stress history and escalated drug self-administration. However, the nature of CRF release in the VTA during acute and repeated stress, as well as its role in enduring neuroadaptations driving later drug taking and seeking, are poorly understood. These experiments explore how CRF is released and interacts with its receptors in specific regions of the VTA both during and after stress to fuel later escalated cocaine taking and seeking behavior. Understanding these acute and persistent changes to the VTA CRF system may lead to better therapeutic interventions for addiction. Copyright © 2016 the authors 0270-6474/16/364094-13$15.00/0.
Boyson, Christopher O.; Montagud-Romero, Sandra; Stein, Dirson J.; Gobrogge, Kyle L.; DeBold, Joseph F.; Miczek, Klaus A.
2016-01-01
Intermittent social defeat stress escalates later cocaine self-administration. Reward and stress both activate ventral tegmental area (VTA) dopamine neurons, increasing downstream extracellular dopamine concentration in the medial prefrontal cortex and nucleus accumbens. The stress neuropeptide corticotropin releasing factor (CRF) and its receptors (CRF-R1, CRF-R2) are located in the VTA and influence dopaminergic activity. These experiments explore how CRF release and the activation of its receptors within the VTA both during and after stress influence later cocaine self-administration in rats. In vivo microdialysis of CRF in the VTA demonstrated that CRF is phasically released in the posterior VTA (pVTA) during acute defeat, but, with repeated defeat, CRF is recruited into the anterior VTA (aVTA) and CRF tone is increased in both subregions. Intra-VTA antagonism of CRF-R1 in the pVTA and CRF-R2 in the aVTA during each social defeat prevented escalated cocaine self-administration in a 24 h “binge.” VTA CRF continues to influence cocaine seeking in stressed animals long after social defeat exposure. Unlike nonstressed controls, previously stressed rats show significant cocaine seeking after 15 d of forced abstinence. Previously stressed rats continue to express elevated CRF tone within the VTA and antagonism of pVTA CRF-R1 or aVTA CRF-R2 reverses cocaine seeking. In conclusion, these experiments demonstrate neuroadaptive changes in tonic and phasic CRF with repeated stress, that CRF release during stress may contribute to later escalated cocaine taking, and that persistently elevated CRF tone in the VTA may drive later cocaine seeking through increased activation of pVTA CRF-R1 and aVTA CRF-R2. SIGNIFICANCE STATEMENT Corticotropin releasing factor (CRF) within the ventral tegmental area (VTA) has emerged as a likely candidate molecule underlying the fundamental link between stress history and escalated drug self-administration. However, the nature of CRF release in the VTA during acute and repeated stress, as well as its role in enduring neuroadaptations driving later drug taking and seeking, are poorly understood. These experiments explore how CRF is released and interacts with its receptors in specific regions of the VTA both during and after stress to fuel later escalated cocaine taking and seeking behavior. Understanding these acute and persistent changes to the VTA CRF system may lead to better therapeutic interventions for addiction. PMID:27053215
Advanced diesel electronic fuel injection and turbocharging
NASA Astrophysics Data System (ADS)
Beck, N. J.; Barkhimer, R. L.; Steinmeyer, D. C.; Kelly, J. E.
1993-12-01
The program investigated advanced diesel air charging and fuel injection systems to improve specific power, fuel economy, noise, exhaust emissions, and cold startability. The techniques explored included variable fuel injection rate shaping, variable injection timing, full-authority electronic engine control, turbo-compound cooling, regenerative air circulation as a cold start aid, and variable geometry turbocharging. A Servojet electronic fuel injection system was designed and manufactured for the Cummins VTA-903 engine. A special Servojet twin turbocharger exhaust system was also installed. A series of high speed combustion flame photos was taken using the single cylinder optical engine at Michigan Technological University. Various fuel injection rate shapes and nozzle configurations were evaluated. Single-cylinder bench tests were performed to evaluate regenerative inlet air heating techniques as an aid to cold starting. An exhaust-driven axial cooling air fan was manufactured and tested on the VTA-903 engine.
Persistent Adaptations in Afferents to Ventral Tegmental Dopamine Neurons after Opiate Withdrawal.
Kaufling, Jennifer; Aston-Jones, Gary
2015-07-15
Protracted opiate withdrawal is accompanied by altered responsiveness of midbrain dopaminergic (DA) neurons, including a loss of DA cell response to morphine, and by behavioral alterations, including affective disorders. GABAergic neurons in the tail of the ventral tegmental area (tVTA), also called the rostromedial tegmental nucleus, are important for behavioral responses to opiates. We investigated the tVTA-VTA circuit in rats after chronic morphine exposure to determine whether tVTA neurons participate in the loss of opiate-induced disinhibition of VTA DA neurons observed during protracted withdrawal. In vivo recording revealed that VTA DA neurons, but not tVTA GABAergic neurons, are tolerant to morphine after 2 weeks of withdrawal. Optogenetic stimulation of tVTA neurons inhibited VTA DA neurons similarly in opiate-naive and long-term withdrawn rats. However, tVTA inactivation increased VTA DA activity in opiate-naive rats, but not in withdrawn rats, resembling the opiate tolerance effect in DA cells. Thus, although inhibitory control of DA neurons by tVTA is maintained during protracted withdrawal, the capacity for disinhibitory control is impaired. In addition, morphine withdrawal reduced both tVTA neural activity and tonic glutamatergic input to VTA DA neurons. We propose that these changes in glutamate and GABA inputs underlie the apparent tolerance of VTA DA neurons to opiates after chronic exposure. These alterations in the tVTA-VTA DA circuit could be an important factor in opiate tolerance and addiction. Moreover, the capacity of the tVTA to inhibit, but not disinhibit, DA cells after chronic opiate exposure may contribute to long-term negative affective states during withdrawal. Dopaminergic (DA) cells of the ventral tegmental area (VTA) are the origin of a brain reward system and are critically involved in drug abuse. Morphine has long been known to affect VTA DA cells via GABAergic interneurons. Recently, GABAergic neurons caudal to the VTA were discovered and named the tail of VTA (tVTA). Here, we show that tVTA GABA neurons lose their capacity to disinhibit, but not to inhibit, VTA DA cells after chronic opiate exposure. The failure of disinhibition was associated with a loss of glutamatergic input to DA neurons after chronic morphine. These findings reveal mechanisms by which the tVTA may play a key role in long-term negative affective states during opiate withdrawal. Copyright © 2015 the authors 0270-6474/15/3510290-14$15.00/0.
Persistent Adaptations in Afferents to Ventral Tegmental Dopamine Neurons after Opiate Withdrawal
Kaufling, Jennifer
2015-01-01
Protracted opiate withdrawal is accompanied by altered responsiveness of midbrain dopaminergic (DA) neurons, including a loss of DA cell response to morphine, and by behavioral alterations, including affective disorders. GABAergic neurons in the tail of the ventral tegmental area (tVTA), also called the rostromedial tegmental nucleus, are important for behavioral responses to opiates. We investigated the tVTA–VTA circuit in rats after chronic morphine exposure to determine whether tVTA neurons participate in the loss of opiate-induced disinhibition of VTA DA neurons observed during protracted withdrawal. In vivo recording revealed that VTA DA neurons, but not tVTA GABAergic neurons, are tolerant to morphine after 2 weeks of withdrawal. Optogenetic stimulation of tVTA neurons inhibited VTA DA neurons similarly in opiate-naive and long-term withdrawn rats. However, tVTA inactivation increased VTA DA activity in opiate-naive rats, but not in withdrawn rats, resembling the opiate tolerance effect in DA cells. Thus, although inhibitory control of DA neurons by tVTA is maintained during protracted withdrawal, the capacity for disinhibitory control is impaired. In addition, morphine withdrawal reduced both tVTA neural activity and tonic glutamatergic input to VTA DA neurons. We propose that these changes in glutamate and GABA inputs underlie the apparent tolerance of VTA DA neurons to opiates after chronic exposure. These alterations in the tVTA–VTA DA circuit could be an important factor in opiate tolerance and addiction. Moreover, the capacity of the tVTA to inhibit, but not disinhibit, DA cells after chronic opiate exposure may contribute to long-term negative affective states during withdrawal. SIGNIFICANCE STATEMENT Dopaminergic (DA) cells of the ventral tegmental area (VTA) are the origin of a brain reward system and are critically involved in drug abuse. Morphine has long been known to affect VTA DA cells via GABAergic interneurons. Recently, GABAergic neurons caudal to the VTA were discovered and named the tail of VTA (tVTA). Here, we show that tVTA GABA neurons lose their capacity to disinhibit, but not to inhibit, VTA DA cells after chronic opiate exposure. The failure of disinhibition was associated with a loss of glutamatergic input to DA neurons after chronic morphine. These findings reveal mechanisms by which the tVTA may play a key role in long-term negative affective states during opiate withdrawal. PMID:26180204
Johnston, Caitlin E.; Herschel, Daniel; Lasek, Amy W.; Hammer, Ronald P.; Nikulina, Ella M.
2014-01-01
Social defeat stress causes social avoidance and long-lasting cross-sensitization to psychostimulants, both of which are associated with increased brain-derived neurotrophic factor (BDNF) expression in the ventral tegmental area (VTA). Moreover, social stress upregulates VTA mu-opioid receptor (MOR) mRNA. In the VTA, MOR activation inhibits GABA neurons to disinhibit VTA dopamine neurons, thus providing a role for VTA MORs in the regulation of psychostimulant sensitization. The present study determined the effect of lentivirus-mediated MOR knockdown in the VTA on the consequences of intermittent social defeat stress, a salient and profound stressor in humans and rodents. Social stress exposure induced social avoidance and attenuated weight gain in animals with non-manipulated VTA MORs, but both these effects were prevented by VTA MOR knockdown. Rats with non-manipulated VTA MOR expression exhibited cross-sensitization to amphetamine challenge (1.0 mg/kg, i.p.), evidenced by a significant augmentation of locomotion. By contrast, knockdown of VTA MORs prevented stress-induced cross-sensitization without blunting the locomotor-activating effects of amphetamine. At the time point corresponding to amphetamine challenge, immunohistochemical analysis was performed to examine the effect of stress on VTA BDNF expression. Prior stress exposure increased VTA BDNF expression in rats with non-manipulated VTA MOR expression, while VTA MOR knockdown prevented stress-induced expression of VTA BDNF. Taken together, these results suggest that upregulation of VTA MOR is necessary for the behavioral and biochemical changes induced by social defeat stress. Elucidating VTA MOR regulation of stress effects on the mesolimbic system may provide new therapeutic targets for treating stress-induced vulnerability to substance abuse. PMID:25446676
Separating Analgesia from Reward within the Ventral Tegmental Area
Schifirneţ, Elena; Bowen, Scott E.; Borszcz, George S.
2014-01-01
Activation of the dopaminergic mesolimbic reward circuit that originates in the ventral tegmental area (VTA) is postulated to preferentially suppress emotional responses to noxious stimuli, and presumably contributes to the addictive liability of strong analgesics. VTA dopamine neurons are activated via cholinergic afferents and microinjection of carbachol (cholinergic agonist) into VTA is rewarding. Here, we evaluated regional differences within VTA in the capacity of carbachol to suppress rats' affective response to pain (vocalization afterdischarges, VADs) and to support conditioned place preference (CPP) learning. As carbachol is a non-specific agonist, muscarinic and nicotinic receptor involvement was assessed by administering atropine (muscarinic antagonist) and mecamylamine (nicotinic antagonist) into VTA prior to carbachol treatment. Unilateral injections of carbachol (4 μg) into anterior VTA (aVTA) and posterior VTA (pVTA) suppressed VADs and supported CPP; whereas, injections into midVTA failed to effect either VADs or CPP. These findings corroborate the hypothesis that the neural substrates underlying affective analgesia and reward overlap. However, the extent of the overlap was only partial. Whereas both nicotinic and muscarinic receptors contributed to carbachol-induced affective analgesia in aVTA, only muscarinic receptors mediated the analgesic action of carbachol in pVTA. The rewarding effects of carbachol are mediated by the activation of both nicotinic and muscarinic receptors in both aVTA and pVTA. The results indicate that analgesia and reward are mediated by separate cholinergic mechanisms within pVTA. Nicotinic receptor antagonism within pVTA failed to attenuate carbachol-induced analgesia, but prevented carbachol-induced reward. As addictive liability of analgesics stem from their rewarding properties, the present findings suggest that these processes can be neuropharmacologically separated within pVTA. PMID:24434773
The posterior ventral tegmental area mediates alcohol-seeking behavior in alcohol-preferring rats.
Hauser, Sheketha R; Ding, Zheng-Ming; Getachew, Bruk; Toalston, Jamie E; Oster, Scott M; McBride, William J; Rodd, Zachary A
2011-03-01
The mesolimbic dopamine (DA) system is involved in the rewarding process of drugs of abuse and is activated during the anticipation of drug availability. However, the neurocircuitry that regulates ethanol (EtOH)-seeking has not been adequately investigated. The objectives of the present study were to determine 1) whether the posterior ventral tegmental area (p-VTA) mediates EtOH-seeking, 2) whether microinjections of EtOH into the p-VTA could stimulate EtOH-seeking, and (3) the involvement of p-VTA DA neurons in EtOH-seeking. Alcohol-preferring rats were trained to self-administer 15% EtOH and water. After 10 weeks, rats underwent extinction training, followed by 2 weeks in their home cages. During the home-cage period, rats were then bilaterally implanted with guide cannulae aimed at the p-VTA or anterior ventral tegmental area (a-VTA). EtOH-seeking was assessed by the Pavlovian spontaneous recovery model. Separate experiments examined the effects of: 1) microinjection of quinpirole into the p-VTA, 2) EtOH microinjected into the p-VTA, 3) coadministration of EtOH and quinpirole into the p-VTA, 4) microinjection of quinpirole into the a-VTA, and 5) microinjection of EtOH into the a-VTA. Quinpirole microinjected into the p-VTA reduced EtOH-seeking. Microinjections of EtOH into the p-VTA increased EtOH-seeking. Pretreatment with both quinpirole and EtOH into the p-VTA reduced EtOH-seeking. Microinjections of quinpirole or EtOH into the a-VTA did not alter EtOH-seeking. Overall, the results suggest that the p-VTA is a neuroanatomical substrate mediating alcohol-seeking behavior and that activation of local DA neurons is involved.
Self-averaging in complex brain neuron signals
NASA Astrophysics Data System (ADS)
Bershadskii, A.; Dremencov, E.; Fukayama, D.; Yadid, G.
2002-12-01
Nonlinear statistical properties of Ventral Tegmental Area (VTA) of limbic brain are studied in vivo. VTA plays key role in generation of pleasure and in development of psychological drug addiction. It is shown that spiking time-series of the VTA dopaminergic neurons exhibit long-range correlations with self-averaging behavior. This specific VTA phenomenon has no relation to VTA rewarding function. Last result reveals complex role of VTA in limbic brain.
Cognitive Neurostimulation: Learning to Volitionally Sustain Ventral Tegmental Area Activation
MacInnes, Jeff J.; Dickerson, Kathryn C.; Chen, Nan-kuei; Adcock, R. Alison
2016-01-01
SUMMARY Activation of the ventral tegmental area (VTA) and mesolimbic networks is essential to motivation, performance, and learning. Humans routinely attempt to motivate themselves, with unclear efficacy or impact on VTA networks. Using fMRI, we found untrained participants’ motivational strategies failed to consistently activate VTA. After real-time VTA neurofeedback training, however, participants volitionally induced VTA activation without external aids, relative to baseline, Pre-Test, and control groups. VTA self-activation was accompanied by increased mesolimbic network connectivity. Among two comparison groups (no neurofeedback, false neurofeedback) and an alternate neurofeedback group (nucleus accumbens), none sustained activation in target regions of interest nor increased VTA functional connectivity. The results comprise two novel demonstrations: learning and generalization after VTA neurofeedback training and the ability to sustain VTA activation without external reward or reward cues. These findings suggest theoretical alignment of ideas about motivation and midbrain physiology and the potential for generalizable interventions to improve performance and learning. PMID:26948894
Cognitive Neurostimulation: Learning to Volitionally Sustain Ventral Tegmental Area Activation.
MacInnes, Jeff J; Dickerson, Kathryn C; Chen, Nan-Kuei; Adcock, R Alison
2016-03-16
Activation of the ventral tegmental area (VTA) and mesolimbic networks is essential to motivation, performance, and learning. Humans routinely attempt to motivate themselves, with unclear efficacy or impact on VTA networks. Using fMRI, we found untrained participants' motivational strategies failed to consistently activate VTA. After real-time VTA neurofeedback training, however, participants volitionally induced VTA activation without external aids, relative to baseline, Pre-test, and control groups. VTA self-activation was accompanied by increased mesolimbic network connectivity. Among two comparison groups (no neurofeedback, false neurofeedback) and an alternate neurofeedback group (nucleus accumbens), none sustained activation in target regions of interest nor increased VTA functional connectivity. The results comprise two novel demonstrations: learning and generalization after VTA neurofeedback training and the ability to sustain VTA activation without external reward or reward cues. These findings suggest theoretical alignment of ideas about motivation and midbrain physiology and the potential for generalizable interventions to improve performance and learning. Copyright © 2016 Elsevier Inc. All rights reserved.
Complexity of VTA DA neural activities in response to PFC transection in nicotine treated rats.
Chen, Ting Y; Zhang, Die; Dragomir, Andrei; Akay, Yasemin M; Akay, Metin
2011-02-27
The dopaminergic (DA) neurons in the ventral tegmental area (VTA) are widely implicated in the addiction and natural reward circuitry of the brain. These neurons project to several areas of the brain, including prefrontal cortex (PFC), nucleus accubens (NAc) and amygdala. The functional coupling between PFC and VTA has been demonstrated, but little is known about how PFC mediates nicotinic modulation in VTA DA neurons. The objectives of this study were to investigate the effect of acute nicotine exposure on the VTA DA neuronal firing and to understand how the disruption of communication from PFC affects the firing patterns of VTA DA neurons. Extracellular single-unit recordings were performed on Sprague-Dawley rats and nicotine was administered after stable recording was established as baseline. In order to test how input from PFC affects the VTA DA neuronal firing, bilateral transections were made immediate caudal to PFC to mechanically delete the interaction between VTA and PFC. The complexity of the recorded neural firing was subsequently assessed using a method based on the Lempel-Ziv estimator. The results were compared with those obtained when computing the entropy of neural firing. Exposure to nicotine triggered a significant increase in VTA DA neurons firing complexity when communication between PFC and VTA was present, while transection obliterated the effect of nicotine. Similar results were obtained when entropy values were estimated. Our findings suggest that PFC plays a vital role in mediating VTA activity. We speculate that increased firing complexity with acute nicotine administration in PFC intact subjects is due to the close functional coupling between PFC and VTA. This hypothesis is supported by the fact that deletion of PFC results in minor alterations of VTA DA neural firing when nicotine is acutely administered.
Ahmad, Tasha; Laviolette, Steven R
2017-08-01
The ventral tegmental area (VTA) and its projections to the basolateral amygdala (BLA) and nucleus accumbens (NAc) are critical for cannabinoid-related motivational effects. Cannabinoid CB1 receptor (CB1R) transmission modulates VTA dopamine (DA) neuron activity and previous reports demonstrate anatomically segregated effects of CB1R transmission in the VTA. However, the underlying pharmacological and anatomical regions responsible for these effects are currently unknown. The objective of the study is to characterize the motivational effects of localized anterior vs. posterior intra-VTA activation vs. blockade of CB1R transmission and the potential role of intra-BLA and intra-NAc DA transmission in these phenomena. Using a conditioned place preference (CPP) procedure, we administered a CB1 agonist (WIN-55,212-2) or antagonist (AM 251) into the posterior VTA (pVTA) or anterior VTA (aVTA) of rats, combined with intra-BLA or intra-NAc DA receptor blockade and intra-VTA co-administration of selective mu vs. kappa opiate-receptor antagonists. Intra-pVTA CB1R activation produced robust rewarding effects through a mu-opiate receptor mechanism whereas CB1R blockade produced conditioned place aversions (CPA) through a kappa-opiate receptor substrate. In contrast, modulation of aVTA CB1R transmission produced no observable effects. Intra-BLA DA receptor blockade prevented the rewarding effects of pVTA CB1R activation, but had no effects on CB1R blockade-induced aversions. In contrast, intra-NAc DA receptor blockade selectively blocked the aversive effects of pVTA CB1R antagonism. Activation vs. blockade of CB1R transmission in the posterior VTA produces bivalent rewarding or aversive effects through separate mu vs. kappa-opiate receptor substrates. These dissociable effects depend on separate DA receptor transmission substrates in the BLA or NAc, respectively.
Activation of VTA GABA neurons disrupts reward consumption
van Zessen, Ruud; Phillips, Jana L.; Budygin, Evgeny A.; Stuber, Garret D.
2012-01-01
The activity of Ventral Tegmental Area (VTA) dopamine (DA) neurons promotes behavioral responses to rewards and environmental stimuli that predict them. VTA GABA inputs synapse directly onto DA neurons and may regulate DA neuronal activity to alter reward-related behaviors, however, the functional consequences of selective activation of VTA GABA neurons remains unknown. Here, we show that in vivo optogenetic activation of VTA GABA neurons disrupts reward consummatory behavior, but not conditioned anticipatory behavior in response to reward-predictive cues. In addition, direct activation of VTA GABA projections to the nucleus accumbens (NAc) resulted in detectable GABA release, but did not alter reward consumption. Furthermore, optogenetic stimulation of VTA GABA neurons directly suppressed the activity and excitability of neighboring DA neurons, as well as the release of DA in the NAc, suggesting that the dynamic interplay between VTA DA and GABA neurons can control the initiation and termination of reward-related behaviors. PMID:22445345
Chen, Ming; Zhao, Yanfang; Yang, Hualan; Luan, Wenjie; Song, Jiaojiao; Cui, Dongyang; Dong, Yi; Lai, Bin; Ma, Lan; Zheng, Ping
2015-07-24
One reported mechanism for morphine activation of dopamine (DA) neurons of the ventral tegmental area (VTA) is the disinhibition model of VTA-DA neurons. Morphine inhibits GABA inhibitory neurons, which shifts the balance between inhibitory and excitatory input to VTA-DA neurons in favor of excitation and then leads to VTA-DA neuron excitation. However, it is not known whether morphine has an additional strengthening effect on excitatory input. Our results suggest that glutamatergic input to VTA-DA neurons is inhibited by GABAergic interneurons via GABAB receptors and that morphine promotes presynaptic glutamate release by removing this inhibition. We also studied the contribution of the morphine-induced disinhibitory effect on the presynaptic glutamate release to the overall excitatory effect of morphine on VTA-DA neurons and related behavior. Our results suggest that the disinhibitory action of morphine on presynaptic glutamate release might be the main mechanism for morphine-induced increase in VTA-DA neuron firing and related behaviors.
Margolis, Elyssa B; Lock, Hagar; Hjelmstad, Gregory O; Fields, Howard L
2006-01-01
The ventral tegmental area (VTA) and in particular VTA dopamine (DA) neurons are postulated to play a central role in reward, motivation and drug addiction. However, most evidence implicating VTA DA neurons in these functions is based on indirect electrophysiological characterization, rather than cytochemical identification. These physiological criteria were first established in the substantia nigra pars compacta (SNc), but their validity in the VTA is uncertain. In the current study we found that while 88 ± 2% of SNc neurons labelled by the neuronal marker NeuN were co-labelled for the catecholamine enzyme tyrosine hydroxylase (TH), a much smaller percentage (55 ± 2%) of VTA neurons co-expressed TH. In addition, using in vitro whole-cell recordings we found that widely accepted physiological criteria for VTA DA neurons, including the hyperpolarization-activated inwardly rectifying non-specific cation current (Ih), spike duration, and inhibition by DA D2 receptor agonists, do not reliably predict the DA content of VTA neurons. We could not distinguish DA neurons from other VTA neurons by size, shape, input resistance, Ih size, or spontaneous firing rate. Although the absence of an Ih reliably predicted that a VTA neuron was non-dopaminergic, and Ih(−) neurons differ from Ih(+) neurons in firing rate, interspike interval (ISI) standard deviation, and ISI skew, no physiological property examined here is both sensitive and selective for DA neurons in the VTA. We conclude that reliable physiological criteria for VTA DA neuron identification have yet to be determined, and that the criteria currently being used are unreliable. PMID:16959856
Blacktop, Jordan M.; Vranjkovic, Oliver; Mayer, Matthieu; Van Hoof, Matthew; Baker, David A.; Mantsch, John R.
2015-01-01
Stress-induced reinstatement of cocaine seeking requires corticotropin releasing factor (CRF) actions in the ventral tegmental area (VTA). However the mechanisms through which CRF regulates VTA function to promote cocaine use are not fully understood. Here we examined the role of GABAergic neurotransmission in the VTA mediated by GABA-A or GABA-B receptors in the reinstatement of extinguished cocaine seeking by a stressor, uncontrollable intermittent footshock, or bilateral intra-VTA administration of CRF. Rats underwent repeated daily cocaine self-administration (1.0 mg/kg/ing; 14 × 6 hrs/day) and extinction and were tested for reinstatement in response to footshock (0.5 mA, 0.5” duration, average every 40 sec; range 10–70 sec) or intra-VTA CRF delivery (500 ng/side) following intra-VTA pretreatment with the GABA-A antagonist, bicuculline, the GABA-B antagonist, 2-hydroxysaclofen or vehicle. Intra-VTA bicuculline (1, 10 or 20 ng/side) failed to block footshock- or CRF-induced cocaine seeking at either dose tested. By contrast, 2-hydroxysaclofen (0.2 or 2 µg/side) prevented reinstatement by both footshock and intra-VTA CRF at a concentration that failed to attenuate food-reinforced lever pressing (45 mg sucrose-sweetened pellets; FR4 schedule) in a separate group of rats. These data suggest that GABA-B receptor-dependent CRF actions in the VTA mediate stress-induced cocaine seeking and that GABA-B receptor antagonists may have utility for the management of stress-induced relapse in cocaine addicts. PMID:26596556
Species-specific diversity in the anatomical and physiological organisation of the BNST-VTA pathway.
Kaufling, Jennifer; Girard, Delphine; Maitre, Marlène; Leste-Lasserre, Thierry; Georges, François
2017-05-01
The anteromedial part of the bed nucleus of the stria terminalis (amBNST) is a limbic structure innervating the ventral tegmental area (VTA) that is remarkably constant across species. The amBNST modulates fear and anxiety, and activation of VTA dopamine (DA) neurons by amBNST afferents seems to be the way by which stress controls motivational states associated with reward or aversion. Because fear learning and anxiety states can be expressed differently between rats and mice, we compared the functional connectivity between amBNST and the VTA-DA neurons in both species using consistent methodological approaches. Using a combination of in vivo electrophysiological, neuroanatomical tracing and laser capture approaches we explored the BNST influences on VTA-DA neuron activity. First, we characterised in rats the molecular phenotype of the amBNST neurons projecting to the VTA. We found that this projection is complex, including both GABAergic and glutamatergic neurons. Then, VTA injections of a conventional retrograde tracer, the β-sub-unit of the cholera toxin (CTB), revealed a stronger BNST-VTA projection in mice than in rats. Finally, electrical stimulations of the BNST during VTA-DA neuron recording demonstrated a more potent excitatory influence of the amBNST on VTA-DA neuron activity in rats than in mice. These data illustrate anatomically, but also functionally, a significant difference between rats and mice in the amBNST-VTA pathway. More generally, together with previous findings, our research highlights the importance of species differences for the interpretation and the generalisation of research data. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Circuit Architecture of VTA Dopamine Neurons Revealed by Systematic Input-Output Mapping.
Beier, Kevin T; Steinberg, Elizabeth E; DeLoach, Katherine E; Xie, Stanley; Miyamichi, Kazunari; Schwarz, Lindsay; Gao, Xiaojing J; Kremer, Eric J; Malenka, Robert C; Luo, Liqun
2015-07-30
Dopamine (DA) neurons in the midbrain ventral tegmental area (VTA) integrate complex inputs to encode multiple signals that influence motivated behaviors via diverse projections. Here, we combine axon-initiated viral transduction with rabies-mediated trans-synaptic tracing and Cre-based cell-type-specific targeting to systematically map input-output relationships of VTA-DA neurons. We found that VTA-DA (and VTA-GABA) neurons receive excitatory, inhibitory, and modulatory input from diverse sources. VTA-DA neurons projecting to different forebrain regions exhibit specific biases in their input selection. VTA-DA neurons projecting to lateral and medial nucleus accumbens innervate largely non-overlapping striatal targets, with the latter also sending extensive extra-striatal axon collaterals. Using electrophysiology and behavior, we validated new circuits identified in our tracing studies, including a previously unappreciated top-down reinforcing circuit from anterior cortex to lateral nucleus accumbens via VTA-DA neurons. This study highlights the utility of our viral-genetic tracing strategies to elucidate the complex neural substrates that underlie motivated behaviors. Copyright © 2015 Elsevier Inc. All rights reserved.
Amylin Modulates the Mesolimbic Dopamine System to Control Energy Balance
Mietlicki-Baase, Elizabeth G; Reiner, David J; Cone, Jackson J; Olivos, Diana R; McGrath, Lauren E; Zimmer, Derek J; Roitman, Mitchell F; Hayes, Matthew R
2015-01-01
Amylin acts in the CNS to reduce feeding and body weight. Recently, the ventral tegmental area (VTA), a mesolimbic nucleus important for food intake and reward, was identified as a site-of-action mediating the anorectic effects of amylin. However, the long-term physiological relevance and mechanisms mediating the intake-suppressive effects of VTA amylin receptor (AmyR) activation are unknown. Data show that the core component of the AmyR, the calcitonin receptor (CTR), is expressed on VTA dopamine (DA) neurons and that activation of VTA AmyRs reduces phasic DA in the nucleus accumbens core (NAcC). Suppression in NAcC DA mediates VTA amylin-induced hypophagia, as combined NAcC D1/D2 receptor agonists block the intake-suppressive effects of VTA AmyR activation. Knockdown of VTA CTR via adeno-associated virus short hairpin RNA resulted in hyperphagia and exacerbated body weight gain in rats maintained on high-fat diet. Collectively, these findings show that VTA AmyR signaling controls energy balance by modulating mesolimbic DA signaling. PMID:25035079
Wang, Bin; You, Zhi-Bing; Wise, Roy A
2009-01-01
Background Hypocretin (Hcrt), an arousal- and feeding-associated peptide is expressed in lateral hypothalamic neurons that project to the ventral tegmental area (VTA). Intra-VTA Hcrt reinstates morphine-conditioned place preferences, and intracerebroventricular and intra-VTA corticotropin-releasing factor (CRF) reinstate cocaine-seeking. Each is presumed to act at least in part through actions local to the VTA. Here we examined the possibility that VTA perfusion of Hcrt reinstates cocaine-seeking and, if so, whether it does so through the VTA mechanism that is implicated in reinstatement by CRF. Methods Rats were trained to lever-press for intravenous cocaine (2 weeks) and then underwent extinction training (saline substituted for cocaine: 3 weeks). Reinstatement behavior was tested and VTA dialysates were collected and assayed for glutamate or dopamine following footshock or perfusion of Hcrt or CRF, with or without Hcrt or CRF antagonists, into the VTA. Results VTA perfusion of Hcrt-1 or footshock stress reinstated cocaine-seeking and caused release of VTA glutamate and dopamine. The effects of Hcrt-1 were blocked by a selective Hcrt-1 antagonist but not a CRF antagonist, and were not mimicked by Hcrt-2. The Hcrt-1 antagonist did not block CRF-dependent footshock-induced reinstatement or glutamate or dopamine release. The behavioral and neurochemical effects of Hcrt-1 were attenuated but not blocked by kynurenic acid, an ionotropic glutamate antagonist that blocks footshock-induced reinstatement and glutamate release. Conclusions While Hcrt and CRF are known to interact in some area of the brain, in the VTA proper they appear to have largely independent actions on the mesolimbic dopamine mechanisms of cocaine-seeking. PMID:19251246
Blacktop, Jordan M; Vranjkovic, Oliver; Mayer, Matthieu; Van Hoof, Matthew; Baker, David A; Mantsch, John R
2016-03-01
Stress-induced reinstatement of cocaine seeking requires corticotropin releasing factor (CRF) actions in the ventral tegmental area (VTA). However the mechanisms through which CRF regulates VTA function to promote cocaine use are not fully understood. Here we examined the role of GABAergic neurotransmission in the VTA mediated by GABA-A or GABA-B receptors in the reinstatement of extinguished cocaine seeking by a stressor, uncontrollable intermittent footshock, or bilateral intra-VTA administration of CRF. Rats underwent repeated daily cocaine self-administration (1.0 mg/kg/ing; 14 × 6 h/day) and extinction and were tested for reinstatement in response to footshock (0.5 mA, 0.5" duration, average every 40 s; range 10-70 s) or intra-VTA CRF delivery (500 ng/side) following intra-VTA pretreatment with the GABA-A antagonist, bicuculline, the GABA-B antagonist, 2-hydroxysaclofen or vehicle. Intra-VTA bicuculline (1, 10 or 20 ng/side) failed to block footshock- or CRF-induced cocaine seeking at either dose tested. By contrast, 2-hydroxysaclofen (0.2 or 2 μg/side) prevented reinstatement by both footshock and intra-VTA CRF at a concentration that failed to attenuate food-reinforced lever pressing (45 mg sucrose-sweetened pellets; FR4 schedule) in a separate group of rats. These data suggest that GABA-B receptor-dependent CRF actions in the VTA mediate stress-induced cocaine seeking and that GABA-B receptor antagonists may have utility for the management of stress-induced relapse in cocaine addicts. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sotomayor-Zárate, Ramón; Abarca, Jorge; Araya, Katherine A; Renard, Georgina M; Andrés, María E; Gysling, Katia
2015-11-01
A higher vulnerability to drug abuse has been observed in human studies of individuals exposed to chronic or persistent stress, as well as in animal models of drug abuse. Here, we explored the effect of repeated immobilization stress on cocaine-induced increase in dopamine extracellular levels in VTA and its regulation by corticotropin-releasing factor (CRF) and GABA systems. Cocaine (10mg/Kg i.p.) induced an increase of VTA DA extracellular levels in control rats. However, this effect was not observed in repeated stress rats. Considering the evidence relating stress with CRF, we decided to perfuse CRF and CP-154526 (selective antagonist of CRF1 receptor) in the VTA of control and repeated stress rats, respectively. We observed that perfusion of 20μM CRF inhibited the increase of VTA DA extracellular levels induced by cocaine in control rats. Interestingly, we observed that in the presence of 10μM CP-154526, cocaine induced a significant increase of VTA DA extracellular levels in repeated stress rats. Regarding the role of VTA GABA neurotransmission, cocaine administration induced a significant increase in VTA GABA extracellular levels only in repeated stress rats. Consistently, cocaine was able to increase VTA DA extracellular levels in repeated stress rats when 100μM bicuculline, an antagonist of GABAA receptor, was perfused intra VTA. Thus, both CRF and GABA systems are involved in the lack of response to cocaine in the VTA of repeated stress rats. It is tempting to suggest that the loss of response in VTA dopaminergic neurons to cocaine, after repeated stress, is due to an interaction between CRF and GABA systems. Copyright © 2015 Elsevier Ltd. All rights reserved.
Alpha1-adrenergic receptor blockade in the VTA modulates fear memories and stress responses.
Solecki, Wojciech B; Szklarczyk, Klaudia; Klasa, Adam; Pradel, Kamil; Dobrzański, Grzegorz; Przewłocki, Ryszard
2017-08-01
Activity of the ventral tegmental area (VTA) and its terminals has been implicated in the Pavlovian associative learning of both stressful and rewarding stimuli. However, the role of the VTA noradrenergic signaling in fear responses remains unclear. We aimed to examine how alpha 1 -adrenergic receptor (α 1 -AR) signaling in the VTA affects conditioned fear. The role of α 1 -AR was assessed using the micro-infusions into the VTA of the selective antagonists (0.1-1µg/0.5µl prazosin and 1µg/0.5µl terazosin) in acquisition and expression of fear memory. In addition, we performed control experiments with α 1 -AR blockade in the mammillary bodies (MB) - a brain region with α 1 -AR expression adjacent to the VTA. Intra-VTA but not intra-MB α 1 -AR blockade prevented formation and retrieval of fear memories. Importantly, local administration of α 1 -AR antagonists did not influence footshock sensitivity, locomotion or anxiety-like behaviors. Similarly, α 1 -AR blockade in the VTA had no effects on negative affect measured as number of 22kHz ultrasonic vocalizations during fear conditioning training. We propose that noradrenergic signaling in the VTA via α 1 -AR regulates formation and retrieval of fear memories but not other behavioral responses to stressful environmental stimuli. It enhances the encoding of environmental stimuli by the VTA to form and retrieve conditioned fear memories and to predict future behavioral outcomes. Our results provide novel insight into the role of the VTA α 1 -AR signaling in the regulation of stress responsiveness and fear memory. Copyright © 2017 Elsevier B.V. and ECNP. All rights reserved.
Terrill, Sarah J; Hyde, Kellie M; Kay, Kristen E; Greene, Hayden E; Maske, Calyn B; Knierim, Amanda E; Davis, Jon F; Williams, Diana L
2016-09-01
Hypothalamic orexin neurons project to numerous brain areas, including the ventral tegmental area (VTA), which is involved in motivation and food-seeking behavior. Here we address how exogenously administered orexin-A and endogenous orexin 1 receptor (OX1R) activation in the VTA affects feeding behavior. We hypothesized that orexin-A and OX1R antagonist SB334867 delivered to the VTA, at doses that were subthreshold for effect when injected into the ventricle, would affect intake of palatable foods in multiple test situations. We first used a hedonic feeding model in which satiated rats selectively consume a high-fat diet (HFD). Intra-VTA orexin-A stimulated additional consumption of chow and increased HFD intake in this model. In ad libitum-fed rats given daily 30-min test sessions, intra-VTA orexin-A also increased intake of HFD and 0.1 M sucrose. Further analysis of licking patterns revealed that that VTA orexin-A increased meal size and licking burst size only toward the end of the meal. Consistent with this finding, a subthreshold dose of VTA orexin-A prevented intake suppression induced by gastrointestinal nutrient infusion. Surprisingly, intra-VTA orexin-A had no effect on operant responding for sucrose pellets on a progressive ratio schedule of reinforcement. A role for endogenous VTA OX1R stimulation is supported by our finding that bilateral VTA injection of the selective OX1R antagonist SB334867 suppressed 0.1 M sucrose intake. Together, our data suggest that OX1R activity in the VTA facilitates food intake, potentially by counteracting postingestive negative feedback that would normally suppress feeding later in a meal. Copyright © 2016 the American Physiological Society.
Miner, Patricia; Shimonova, Lyudmila; Khaimov, Arthur; Borukhova, Yaffa; Ilyayeva, Ester; Ranaldi, Robert; Bodnar, Richard J
2012-03-14
Food intake is significantly increased following administration of agonists of GABA and opioid receptors into the nucleus accumbens shell (NACs) and ventral tegmental area (VTA). GABA-A or GABA-B receptor antagonist pretreatment within the VTA or NACs differentially affects mu-opioid agonist-induced feeding elicited from the same site. Correspondingly, general or selective opioid receptor antagonist pretreatment within the VTA or NACs differentially affects GABA agonist-induced feeding elicited from the same site. Regional interactions have been evaluated in feeding studies by administering antagonists in one site prior to agonist administration in a second site. Thus, opioid antagonist-opioid agonist and GABA antagonist-GABA agonist feeding interactions have been identified between the VTA and NACs. However, pretreatment with GABA-A or GABA-B receptor antagonists in the VTA failed to affect mu opioid agonist-induced feeding elicited from the NACs, and correspondingly, these antagonists administered in the NACs failed to affect mu opioid-induced feeding elicited from the VTA. To evaluate whether regional and reciprocal VTA and NACs feeding interactions occur for opioid receptor modulation of GABA agonist-mediated feeding, the present study examined whether feeding elicited by the GABA-B agonist, baclofen microinjected into the NACs was dose-dependently blocked by pretreatment with general (naltrexone: NTX), mu (beta-funaltrexamine: BFNA), kappa (nor-binaltorphamine: NBNI) or delta (naltrindole: NTI) opioid antagonists in the VTA, and correspondingly, whether VTA baclofen-induced feeding was dose-dependently blocked by NACs pretreatment with NTX, BFNA, NBNI or NTI in rats. Bilateral pairs of cannulae aimed at the VTA and NACs were stereotaxically implanted in rats, and their food intakes were assessed following vehicle and baclofen (200 ng) in each site. Baclofen produced similar magnitudes of increased food intake following VTA and NACs treatment. Baclofen administration in the VTA or NACs was also preceded by administration of NTX (0.1, 1, 5 μg, 0.5 h), BFNA (0.4, 4 μg, 24 h), NBNI (0.6, 6 μg, 0.5 h) or NTI (0.4, 4 μg, 0.5 h) into the other site with intake measured 1, 2 and 4 h after agonist treatment. VTA NTX significantly reduced NACs baclofen-induced feeding. Correspondingly, NACs NTX significantly reduced VTA baclofen-induced feeding, indicating a robust and bidirectional general opioid and GABA-B receptor feeding interaction. Whereas the high, but not low VTA BFNA dose reduced NACs baclofen-induced feeding, NACs BFNA failed to affect VTA baclofen-induced feeding, indicating a unidirectional mu opioid and GABA-B receptor feeding interaction. Whereas VTA NBNI at both doses reduced NACs baclofen-induced feeding, the high, but not low NACs NBNI dose significantly reduced VTA baclofen-induced feeding, indicating a bidirectional kappa opioid and GABA-B receptor feeding interaction. Whereas VTA NTI only transiently reduced NACs baclofen-induced feeding, NACs NTI failed to affect VTA baclofen-induced feeding, indicating a weak unidirectional delta opioid and GABA-B receptor interaction. Whereas administration of NTX or BFNA into the NACs or VTA marginally reduced spontaneous food intake, NBNI or NTI into the same sites failed to alter food intake alone. Therefore, the present study suggests that GABA employs a distributed brain network in mediating its ingestive effects that is dependent upon intact opioid receptor signaling with kappa opioid receptors more involved than mu and delta opioid receptors underlying these regional effects. An alternative hypothesis to be considered is that these effects could be the sum of two independent drug effects (opioid antagonists decreasing and baclofen increasing food intake). Copyright © 2012 Elsevier B.V. All rights reserved.
Ferrada, Carla; Sotomayor-Zárate, Ramón; Abarca, Jorge; Gysling, Katia
2017-01-01
The mesocorticolimbic circuit projects to the prefrontal cortex, hippocampus, amygdala, and nucleus accumbens, among others, and it originates in the dopaminergic neurons of the ventral tegmental area (VTA). The VTA receives glutamatergic inputs from the prefrontal cortex and several subcortical regions. The glutamate released activates dopaminergic neurons and its action depends on the activation of ionotropic and metabotropic glutamate receptors. VTA dopaminergic neurons release dopamine (DA) from axon terminals in the innervated regions and somatodendritically in the VTA itself. DA release in the VTA is directly correlated with the activity of dopaminergic neurons. We hypothesized that metabotropic glutamate 5 receptors (mGlu5) directly regulate the activity of VTA dopaminergic neurons. To test this hypothesis, the extracellular levels of VTA DA and glutamate were studied by in-vivo microdialysis after an intra-VTA perfusion of (R,S)-2-chloro-5-hydroxyphenylglycine (CHPG), selective mGlu5 agonist. We observed that CHPG induced a significant increase in VTA DA and glutamate extracellular levels. To determine whether the effect of CHPG on DA levels is because of the increase in glutamate release, we perfused kynurenic acid, an ionotropic glutamate receptor antagonist, through the probe. Our results showed that kynurenic acid did not block the ability of CHPG to cause DA release. Thus, our results suggest that CHPG acts directly on mGlu5 in dopaminergic neurons to induce the release of DA.
Rodd-Henricks, Z A; McKinzie, D L; Crile, R S; Murphy, J M; McBride, W J
2000-04-01
Because current findings indicate that the selectively bred alcohol-preferring P line of rats self-administers 50-200 mg% ethanol (EtOH) directly into the ventral tegmental area (VTA), whereas the alcohol-nonpreferring NP line does not, it is important to determine whether unselected, common stock rats would self-administer EtOH directly into the VTA. In addition, because neuroanatomical and self-administration studies indicate that the VTA may be functionally heterogeneous, the present study was designed to determine whether there were subregional differences within the VTA for the intracranial self-administration (ICSA) of EtOH. The objective of this study was to employ the ICSA technique to determine whether adult female Wistar rats would self-administer EtOH directly into the VTA, and whether regional heterogeneity existed for EtOH self-infusion within the VTA. Following surgery to implant guide cannulae aimed at either the posterior or anterior VTA, subjects were placed in standard experimental chambers equipped with an 'active lever' [fixed ratio (FR)1 schedule of reinforcement], which caused the delivery of the infusate, and an 'inactive lever', which had no programmed consequence. Subjects were assigned to groups that self-administered either artificial cerebrospinal fluid (aCSF) throughout, or 100-400 mg% EtOH for the first four sessions (acquisition), aCSF in sessions 5 and 6 (extinction), and EtOH again during session 7 (reinstatement). During the four acquisition sessions, rats with posterior VTA placements readily self-administered 200 mg% and 250 mg% EtOH and discriminated between the active and inactive levers. These subjects also demonstrated extinction, when aCSF was substituted for EtOH, and reinstatement when EtOH was reintroduced. Rats with posterior VTA placements self-infused 300 mg% and 400 mg% EtOH, and demonstrated lever discrimination only during the initial acquisition sessions. In contrast, rats with anterior VTA placements did not self-administer EtOH. The findings suggest that EtOH is reinforcing within the posterior VTA of Wistar rats, and the VTA is a functionally heterogeneous structure with regard to EtOH reinforcement.
Neurotrophins in the ventral tegmental area: Role in social stress, mood disorders and drug abuse.
Nikulina, E M; Johnston, C E; Wang, J; Hammer, R P
2014-12-12
This review discusses the impact of neurotrophins and other trophic factors, including fibroblast growth factor and glial cell line-derived neurotrophic factor, on mood disorders, weight regulation and drug abuse, with an emphasis on stress- and drug-induced changes in the ventral tegmental area (VTA). Neurotrophins, comprising nerve growth factor, brain-derived neurotrophic factor (BDNF), and neurotrophins 3 and 4/5 play important roles in neuronal plasticity and the development of different psychopathologies. In the VTA, most research has focused on the role of BDNF, because other neurotrophins are not found there in significant quantities. BDNF originating in the VTA provides trophic support to dopamine neurons. The diverse intracellular signaling pathways activated by BDNF may underlie precise physiological functions specific to the VTA. In general, VTA BDNF expression increases after psychostimulant exposures, and enhanced BDNF level in the VTA facilitates psychostimulant effects. The impact of VTA BDNF on the behavioral effects of psychostimulants relies primarily on its action within the mesocorticolimbic circuit. In the case of opiates, VTA BDNF expression and effects seem to be dependent on whether an animal is drug-naïve or has a history of drug use, only the latter of which is related to dopamine mechanisms. Social defeat stress that is continuous in mice or intermittent in rats increases VTA BDNF expression, and is associated with depressive and social avoidance behaviors. Intermittent social defeat stress induces persistent VTA BDNF expression that triggers psychostimulant cross-sensitization. Understanding the cellular and molecular substrates of neurotrophin effects may lead to novel therapeutic approaches for the prevention and treatment of substance use and mood disorders. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Ventral tegmental area GABA neurons and opiate motivation
Vargas-Perez, Hector; Mabey, Jennifer K.; Shin, Samuel I.; Steffensen, Scott C.; van der Kooy, Derek
2013-01-01
Rational Past research has demonstrated that when an animal changes from a previously drug-naive to an opiate-dependent and withdrawn state, morphine’s motivational effects are switched from a tegmental pedunculopontine nucleus (TPP)-dependent to a dopamine-dependent pathway. Interestingly, a corresponding change is observed in ventral tegmental area (VTA) GABAA receptors, which change from mediating hyperpolarization of VTA GABA neurons to mediating depolarization. Objectives The present study investigated whether pharmacological manipulation of VTA GABAA receptor activity could directly influence the mechanisms underlying opiate motivation. Results Using an unbiased place conditioning procedure, we demonstrated that in Wistar rats, intra-VTA administration of furosemide, a Cl− cotransporter inhibitor, was able to promote a switch in the mechanisms underlying morphine’s motivational properties, one which is normally observed only after chronic opiate exposure. This behavioral switch was prevented by intra-VTA administration of acetazolamide, an inhibitor of the bicarbonate ion-producing carbonic anhydrase enzyme. Electrophysiological recordings of mouse VTA showed that furosemide reduced the sensitivity of VTA GABA neurons to inhibition by the GABAA receptor agonist muscimol, instead increasing the firing rate of a significant subset of these GABA neurons. Conclusion Our results suggest that the carbonic anhydrase enzyme may constitute part of a common VTA GABA neuron-based biological pathway responsible for controlling the mechanisms underlying opiate motivation, supporting the hypothesis that VTA GABAA receptor hyperpolarization or depolarization is responsible for selecting TPP- or dopamine-dependent motivational outputs, respectively. PMID:23392354
An alarm pheromone reduces ventral tegmental area-nucleus accumbens shell responsivity.
Gutiérrez-García, Ana G; Contreras, Carlos M; Saldivar-Lara, Mauricio
2018-06-21
2-Heptanone (methyl n-amyl ketone) is a ketone that produces alarm reactions in insects (e.g., bees and ants). As an olfactory stimulus, 2-heptanone produces anxiety reactions in the short term and despair in the long term in rodent models. Among the anatomical connections of the olfactory system that integrate behavioral responses, connections between the amygdala and nucleus accumbens are important, which in turn form a circuit with the ventral tegmental area (VTA). 2-Heptanone increases the firing rate of amygdala neurons without participation of the vomeronasal organ. The olfactory amygdala-VTA-nucleus accumbens circuit may integrate defensive behaviors, but the possible actions of 2-heptanone on the responsivity of VTA-nucleus accumbens connections have not yet been explored. In the present study, multiunit activity recordings were obtained in adult Wistar rats from the core and shell subregions of the nucleus accumbens during electrical stimulation of the VTA under basal conditions and later during simultaneous stimulation of the VTA and olfactory exposure to 2-heptanone. 2-Heptanone reduced the responsivity of the VTA-nucleus accumbens shell but did not influence the responsivity of the VTA-nucleus accumbens core. The lower VTA-nucleus accumbens shell excitability may be related to a primary defensive warning when exposed to an alarm pheromone. Copyright © 2018 Elsevier B.V. All rights reserved.
Kunori, Nobuo; Kajiwara, Riichi; Takashima, Ichiro
2016-03-11
Intracortical microstimulation (ICMS)-evoked neural activity combined with ventral tegmental area (VTA) stimulation was studied in rat primary motor cortex (M1). We used voltage-sensitive dye (VSD) imaging to analyze the spatiotemporal dynamics of M1 activity following VTA-M1 paired stimulation. VTA stimulation was preceded by M1 ICMS at inter-stimulus intervals (ISIs) of 15-350ms. VSD imaging showed an excitatory-inhibitory sequence of neural activity after composing VTA stimulus- and ICMS-induced M1 neural activity. To evaluate the net ICMS M1 response, the optical response to unpaired VTA stimulation was subtracted from the VTA-M1 paired response. This revealed that the net ICMS-evoked M1 neural activity was inhibited when the ISI was 30-50ms, but highly facilitated when the ISI was 100-350ms. These results suggest that VTA modulates M1 excitability in the order of tens to hundreds of milliseconds and might directly affect the motor command generation process in the M1. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Transduction-like gene transfer in the methanogen Methanococcus voltae
NASA Technical Reports Server (NTRS)
Bertani, G.
1999-01-01
Strain PS of Methanococcus voltae (a methanogenic, anaerobic archaebacterium) was shown to generate spontaneously 4.4-kbp chromosomal DNA fragments that are fully protected from DNase and that, upon contact with a cell, transform it genetically. This activity, here called VTA (voltae transfer agent), affects all markers tested: three different auxotrophies (histidine, purine, and cobalamin) and resistance to BES (2-bromoethanesulfonate, an inhibitor of methanogenesis). VTA was most effectively prepared by culture filtration. This process disrupted a fraction of the M. voltae cells (which have only an S-layer covering their cytoplasmic membrane). VTA was rapidly inactivated upon storage. VTA particles were present in cultures at concentrations of approximately two per cell. Gene transfer activity varied from a minimum of 2 x 10(-5) (BES resistance) to a maximum of 10(-3) (histidine independence) per donor cell. Very little VTA was found free in culture supernatants. The phenomenon is functionally similar to generalized transduction, but there is no evidence, for the time being, of intrinsically viral (i.e., containing a complete viral genome) particles. Consideration of VTA DNA size makes the existence of such viral particles unlikely. If they exist, they must be relatively few in number;perhaps they differ from VTA particles in size and other properties and thus escaped detection. Digestion of VTA DNA with the AluI restriction enzyme suggests that it is a random sample of the bacterial DNA, except for a 0.9-kbp sequence which is amplified relative to the rest of the bacterial chromosome. A VTA-sized DNA fraction was demonstrated in a few other isolates of M. voltae.
Multiplexed Neurochemical Signaling by Neurons of the Ventral Tegmental Area
Barker, David J.; Root, David H.; Zhang, Shiliang; Morales, Marisela
2016-01-01
The ventral tegmental area (VTA) is an evolutionarily conserved structure that has roles in reward-seeking, safety-seeking, learning, motivation, and neuropsychiatric disorders such as addiction and depression. The involvement of the VTA in these various behaviors and disorders is paralleled by its diverse signaling mechanisms. Here we review recent advances in our understanding of neuronal diversity in the VTA with a focus on cell phenotypes that participate in ‘multiplexed’ neurotransmission involving distinct signaling mechanisms. First, we describe the cellular diversity within the VTA, including neurons capable of transmitting dopamine, glutamate or GABA as well as neurons capable of multiplexing combinations of these neurotransmitters. Next, we describe the complex synaptic architecture used by VTA neurons in order to accommodate the transmission of multiple transmitters. We specifically cover recent findings showing that VTA multiplexed neurotransmission may be mediated by either the segregation of dopamine and glutamate into distinct microdomains within a single axon or by the integration of glutamate and GABA into a single axon terminal. In addition, we discuss our current understanding of the functional role that these multiplexed signaling pathways have in the lateral habenula and the nucleus accumbens. Finally, we consider the putative roles of VTA multiplexed neurotransmission in synaptic plasticity and discuss how changes in VTA multiplexed neurons may relate to various psychopathologies including drug addiction and depression. PMID:26763116
Echo, Joyce A; Lamonte, Nicole; Ackerman, Tsippa F; Bodnar, Richard J
2002-05-01
Food intake is significantly increased following administration of mu-selective opioid agonists into the ventral tegmental area (VTA) region acting through multiple local opioid receptor subtypes. Since GABA receptor agonists in the VTA region are capable of eliciting feeding, the present study investigated whether feeding elicited by the mu-selective opioid agonist [D-Ala(2), NMe(4), Gly-ol(5)]-enkephalin (DAMGO) in the VTA region was altered by pretreatment into the same site with equimolar doses of either GABA(A) (bicuculline) or GABA(B) (saclofen) antagonists, and further, whether pretreatment with either general opioid or selective GABA receptor antagonists decreased feeding elicited by GABA(A) (muscimol) or GABA(B) (baclofen) agonists in the VTA region. DAMGO-induced feeding in the VTA region was dose-dependently decreased following pretreatment with either GABA(A) or GABA(B) antagonists in the absence of significant alterations in food intake by the antagonists per se. However, the presence of short-lived seizures following bicuculline in the VTA region suggests that this ingestive effect was caused by nonspecific actions. In contrast, GABA(B) receptors are involved in the full expression of mu-opioid agonist-induced feeding in this region since saclofen failed to elicit either seizure activity or a conditioned taste aversion. Pretreatment with naltrexone in the VTA region reduced intake elicited by baclofen, but not muscimol. Finally, baclofen-induced feeding was significantly reduced by saclofen, but not bicuculline, pretreatment in the VTA region. Therefore, possible coregulation between GABA(B) and opioid receptors in the VTA region, as suggested by immunocytochemical evidence, is supported by these behavioral effects upon ingestion.
Chen, Ting Y; Zhang, Die; Dragomir, Andrei; Akay, Yasemin; Akay, Metin
2011-05-01
We investigated the influence of nicotine exposure and prefrontal cortex (PFC) transections on ventral tegmental areas (VTA) dopamine (DA) neurons' firing activities using a time-frequency method based on the continuous wavelet transform (CWT). Extracellular single-unit neural activity was recorded from DA neurons in the VTA area of rats. One group had their PFC inputs to the VTA intact, while the other group had the inputs to VTA bilaterally transected immediate caudal to the PFC. We hypothesized that the systemic nicotine exposure will significantly change the energy distribution in the recorded neural activity. Additionally, we investigated whether the loss of inputs to the VTA caused by the PFC transection resulted in the cancellation of the nicotine' effect on the neurons' firing patterns. The time-frequency representations of VTA DA neurons firing activity were estimated from the reconstructed firing rate histogram. The energy contents were estimated from three frequency bands, which are known to encompass the significant modes of operation of DA neurons. Our results show that systemic nicotine exposure disrupts the energy distribution in PFC-intact rats. Particularly, there is a significant increase in energy contents of the 1-1.5 Hz frequency band. This corresponds to an observed increase in the firing rate of VTA DA neurons following nicotine exposure. Additionally, our results from PFC-transected rats show that there is no change in the energy distribution of the recordings after systemic nicotine exposure. These results indicate that the PFC plays an important role in affecting the activities of VTA DA neurons and that the CWT is a useful method for monitoring the changes in neural activity patterns in both time and frequency domains.
Labouèbe, Gwenaël; Liu, Shuai; Dias, Carine; Zou, Haiyan; Wong, Jovi C.Y.; Karunakaran, Subashini; Clee, Susanne M.; Phillips, Anthony; Boutrel, Benjamin; Borgland, Stephanie L.
2014-01-01
The prevalence of obesity has drastically increased over the last few decades. Exploration into how hunger and satiety signals influence the reward system can help us to understand non-homeostatic mechanisms of feeding. Evidence suggests that insulin may act in the ventral tegmental area (VTA), a critical site for reward-seeking behavior, to suppress feeding. However, the neural mechanisms underlying insulin effects in the VTA remain unknown. We demonstrate that insulin, a circulating catabolic peptide that inhibits feeding, can induce a long-term depression (LTD) of excitatory synapses onto VTA dopamine neurons. This effect requires endocannabinoid-mediated presynaptic inhibition of glutamate release. Furthermore, after a sweetened high fat meal, which elevates endogenous insulin levels, insulin-induced LTD is occluded. Finally, insulin in the VTA reduces food anticipatory behavior and conditioned place preference for food. Taken together, these results suggest that insulin in the VTA suppresses excitatory synaptic transmission and reduces salience of food-related cues. PMID:23354329
Ventral tegmental area dopamine revisited: effects of acute and repeated stress
Holly, Elizabeth N.; Miczek, Klaus A.
2015-01-01
Aversive events rapidly and potently excite certain dopamine neurons in the ventral tegmental area (VTA), promoting phasic increases in the medial prefrontal cortex and nucleus accumbens. This is in apparent contradiction to a wealth of literature demonstrating that most VTA dopamine neurons are strongly activated by reward and reward-predictive cues while inhibited by aversive stimuli. How can these divergent processes both be mediated by VTA dopamine neurons? The answer may lie within the functional and anatomical heterogeneity of the VTA. We focus on VTA heterogeneity in anatomy, neurochemistry, electrophysiology, and afferent/efferent connectivity. Second, recent evidence for a critical role of VTA dopamine neurons in response to both acute and repeated stress will be discussed. Understanding which dopamine neurons are activated by stress, the neural mechanisms driving the activation, and where these neurons project will provide valuable insight into how stress can promote psychiatric disorders associated with the dopamine system, such as addiction and depression. PMID:26676983
HCN2 channels in the ventral tegmental area regulate behavioral responses to chronic stress
Zhong, Peng; Vickstrom, Casey R; Liu, Xiaojie; Hu, Ying; Yu, Laikang; Yu, Han-Gang
2018-01-01
Dopamine neurons in the ventral tegmental area (VTA) are powerful regulators of depression-related behavior. Dopamine neuron activity is altered in chronic stress-based models of depression, but the underlying mechanisms remain incompletely understood. Here, we show that mice subject to chronic mild unpredictable stress (CMS) exhibit anxiety- and depressive-like behavior, which was associated with decreased VTA dopamine neuron firing in vivo and ex vivo. Dopamine neuron firing is governed by voltage-gated ion channels, in particular hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. Following CMS, HCN-mediated currents were decreased in nucleus accumbens-projecting VTA dopamine neurons. Furthermore, shRNA-mediated HCN2 knockdown in the VTA was sufficient to recapitulate CMS-induced depressive- and anxiety-like behavior in stress-naïve mice, whereas VTA HCN2 overexpression largely prevented CMS-induced behavioral deficits. Together, these results reveal a critical role for HCN2 in regulating VTA dopamine neuronal activity and depressive-related behaviors. PMID:29256865
Chapter 12 - Mapping wildland fuel across large regions for the LANDFIRE Prototype Project
Robert E. Keane; Tracey Frescino; Matthew C. Reeves; Jennifer L. Long
2006-01-01
The Landscape Fire and Resource Management Planning Tools Prototype Project, or LANDFIRE Prototype Project, required that the entire array of wildland fuel characteristics be mapped to provide fire and landscape managers with consistent baseline geo-spatial information to plan projects for hazardous fuel mitigation and to improve public and firefighter safety. Fuel...
Zhang, Jin-Tao; Ma, Shan-Shan; Yip, Sarah W; Wang, Ling-Jiao; Chen, Chao; Yan, Chao-Gan; Liu, Lu; Liu, Ben; Deng, Lin-Yuan; Liu, Qin-Xue; Fang, Xiao-Yi
2015-11-18
Internet gaming disorder (IGD) has become an increasing mental health problem worldwide. Decreased resting-state functional connectivity (rsFC) between the ventral tegmental area (VTA) and the nucleus accumbens (NAcc) has been found in substance use and is thought to play an important role in the development of substance addiction. However, rsFC between the VTA and NAcc in a non-substance addiction, such as IGD, has not been assessed previously. The current study aimed to investigate: (1) if individuals with IGD exhibit alterations in VTA-NAcc functional connectivity; and (2) whether VTA-NAcc functional connectivity is associated with subjective Internet craving. Thirty-five male participants with IGD and 24 healthy control (HC) individuals participated in resting-state functional magnetic resonance imaging. Regions of interest (left NAcc, right NAcc and VTA) were selected based on the literature and were defined by placing spheres centered on Talairach Daemon coordinates. In comparison with HCs, individuals with IGD had significantly decreased rsFC between the VTA and right NAcc. Resting-state functional connectivity strength between the VTA and right NAcc was negatively correlated with self-reported subjective craving for the Internet. These results suggest possible neural functional similarities between individuals with IGD and individuals with substance addictions.
Development of compact fuel processor for 2 kW class residential PEMFCs
NASA Astrophysics Data System (ADS)
Seo, Yu Taek; Seo, Dong Joo; Jeong, Jin Hyeok; Yoon, Wang Lai
Korea Institute of Energy Research (KIER) has been developing a novel fuel processing system to provide hydrogen rich gas to residential polymer electrolyte membrane fuel cells (PEMFCs) cogeneration system. For the effective design of a compact hydrogen production system, the unit processes of steam reforming, high and low temperature water gas shift, steam generator and internal heat exchangers are thermally and physically integrated into a packaged hardware system. Several prototypes are under development and the prototype I fuel processor showed thermal efficiency of 73% as a HHV basis with methane conversion of 81%. Recently tested prototype II has been shown the improved performance of thermal efficiency of 76% with methane conversion of 83%. In both prototypes, two-stage PrOx reactors reduce CO concentration less than 10 ppm, which is the prerequisite CO limit condition of product gas for the PEMFCs stack. After confirming the initial performance of prototype I fuel processor, it is coupled with PEMFC single cell to test the durability and demonstrated that the fuel processor is operated for 3 days successfully without any failure of fuel cell voltage. Prototype II fuel processor also showed stable performance during the durability test.
Activation of Pedunculopontine Glutamate Neurons Is Reinforcing
Yoo, Ji Hoon; Zell, Vivien; Wu, Johnathan; Punta, Cindy; Ramajayam, Nivedita; Shen, Xinyi; Faget, Lauren; Lilascharoen, Varoth; Lim, Byung Kook
2017-01-01
Dopamine transmission from midbrain ventral tegmental area (VTA) neurons underlies behavioral processes related to motivation and drug addiction. The pedunculopontine tegmental nucleus (PPTg) is a brainstem nucleus containing glutamate-, acetylcholine-, and GABA-releasing neurons with connections to basal ganglia and limbic brain regions. Here we investigated the role of PPTg glutamate neurons in reinforcement, with an emphasis on their projections to VTA dopamine neurons. We used cell-type-specific anterograde tracing and optogenetic methods to selectively label and manipulate glutamate projections from PPTg neurons in mice. We used anatomical, electrophysiological, and behavioral assays to determine their patterns of connectivity and ascribe functional roles in reinforcement. We found that photoactivation of PPTg glutamate cell bodies could serve as a direct positive reinforcer on intracranial self-photostimulation assays. Further, PPTg glutamate neurons directly innervate VTA; photostimulation of this pathway preferentially excites VTA dopamine neurons and is sufficient to induce behavioral reinforcement. These results demonstrate that ascending PPTg glutamate projections can drive motivated behavior, and PPTg to VTA synapses may represent an important target relevant to drug addiction and other mental health disorders. SIGNIFICANCE STATEMENT Uncovering brain circuits underlying reward-seeking is an important step toward understanding the circuit bases of drug addiction and other psychiatric disorders. The dopaminergic system emanating from the ventral tegmental area (VTA) plays a key role in regulating reward-seeking behaviors. We used optogenetics to demonstrate that the pedunculopontine tegmental nucleus sends glutamatergic projections to VTA dopamine neurons, and that stimulation of this circuit promotes behavioral reinforcement. The findings support a critical role for pedunculopontine tegmental nucleus glutamate neurotransmission in modulating VTA dopamine neuron activity and behavioral reinforcement. PMID:28053028
Ducrot, Charles; Fortier, Emmanuel; Bouchard, Claude; Rompré, Pierre-Paul
2013-01-01
Previous studies have shown that blockade of ventral tegmental area (VTA) glutamate N-Methyl-D-Aspartate (NMDA) receptors induces reward, stimulates forward locomotion and enhances brain stimulation reward. Glutamate induces two types of excitatory response on VTA neurons, a fast and short lasting depolarization mediated by α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors and a longer lasting depolarization mediated by NMDA receptors. A role for the two glutamate receptors in modulation of VTA neuronal activity is evidenced by the functional change in AMPA and NMDA synaptic responses that result from repeated exposure to reward. Since both receptors contribute to the action of glutamate on VTA neuronal activity, we studied the effects of VTA AMPA and NMDA receptor blockade on reward induced by electrical brain stimulation. Experiments were performed on rats trained to self-administer electrical pulses in the medial posterior mesencephalon. Reward thresholds were measured with the curve-shift paradigm before and for 2 h after bilateral VTA microinjections of the AMPA antagonist, NBQX (2,3,-Dioxo-6-nitro-1,2,3,4-tetrahydrobenzo(f)quinoxaline-7-sulfonamide, 0, 80, and 800 pmol/0.5 μl/side) and of a single dose (0.825 nmol/0.5 μl/side) of the NMDA antagonist, PPPA (2R,4S)-4-(3-Phosphonopropyl)-2-piperidinecarboxylic acid). NBQX produced a dose-dependent increase in reward threshold with no significant change in maximum rate of responding. Whereas PPPA injected at the same VTA sites produced a significant time dependent decrease in reward threshold and increase in maximum rate of responding. We found a negative correlation between the magnitude of the attenuation effect of NBQX and the enhancement effect of PPPA; moreover, NBQX and PPPA were most effective when injected, respectively, into the anterior and posterior VTA. These results suggest that glutamate acts on different receptor sub-types, most likely located on different VTA neurons, to modulate reward. PMID:24106463
Ducrot, Charles; Fortier, Emmanuel; Bouchard, Claude; Rompré, Pierre-Paul
2013-01-01
Previous studies have shown that blockade of ventral tegmental area (VTA) glutamate N-Methyl-D-Aspartate (NMDA) receptors induces reward, stimulates forward locomotion and enhances brain stimulation reward. Glutamate induces two types of excitatory response on VTA neurons, a fast and short lasting depolarization mediated by α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors and a longer lasting depolarization mediated by NMDA receptors. A role for the two glutamate receptors in modulation of VTA neuronal activity is evidenced by the functional change in AMPA and NMDA synaptic responses that result from repeated exposure to reward. Since both receptors contribute to the action of glutamate on VTA neuronal activity, we studied the effects of VTA AMPA and NMDA receptor blockade on reward induced by electrical brain stimulation. Experiments were performed on rats trained to self-administer electrical pulses in the medial posterior mesencephalon. Reward thresholds were measured with the curve-shift paradigm before and for 2 h after bilateral VTA microinjections of the AMPA antagonist, NBQX (2,3,-Dioxo-6-nitro-1,2,3,4-tetrahydrobenzo(f)quinoxaline-7-sulfonamide, 0, 80, and 800 pmol/0.5 μl/side) and of a single dose (0.825 nmol/0.5 μl/side) of the NMDA antagonist, PPPA (2R,4S)-4-(3-Phosphonopropyl)-2-piperidinecarboxylic acid). NBQX produced a dose-dependent increase in reward threshold with no significant change in maximum rate of responding. Whereas PPPA injected at the same VTA sites produced a significant time dependent decrease in reward threshold and increase in maximum rate of responding. We found a negative correlation between the magnitude of the attenuation effect of NBQX and the enhancement effect of PPPA; moreover, NBQX and PPPA were most effective when injected, respectively, into the anterior and posterior VTA. These results suggest that glutamate acts on different receptor sub-types, most likely located on different VTA neurons, to modulate reward.
Garduño-Gutiérrez, René; León-Olea, Martha; Rodríguez-Manzo, Gabriela
2013-11-01
Male rats allowed to copulate until reaching sexual exhaustion exhibit a long-lasting sexual behavior inhibition (around 72 h) that can be reversed by systemic opioid receptor antagonist administration. Copulation activates the mesolimbic dopaminergic system (MLS) and promotes endogenous opioid release. In addition, endogenous opioids, acting at the ventral tegmental area (VTA), modulate the activity of the MLS. We hypothesized that endogenous opioids participate in the sexual exhaustion phenomenon by interacting with VTA opioid receptors and consequently, its reversal by opioid antagonists could be exerted at those receptors. In this study we determined the effects of intra-VTA infusion of different doses of the non-specific opioid receptor antagonist naltrexone (0.1-1.0 μg/rat) on the already established sexual behavior inhibition of sexually exhausted male rats. To elucidate the possible involvement of VTA δ-opioid receptors in the naltrexone-mediated reversal of sexual exhaustion, the effects of different doses of the selective δ-opioid receptor antagonist, naltrindole (0.03-1.0 μg/rat) were also tested. Results showed that intra-VTA injection of 0.3 μg naltrexone reversed the sexual inhibition of sexually exhausted rats, evidenced by an increased percentage of animals capable of showing two successive ejaculations. Intra-VTA infused naltrindole did not reverse sexual exhaustion at any dose. It is concluded that the MLS is involved in the reversal of sexual exhaustion induced by systemic naltrexone, and that μ-, but not δ-opioid receptors participate in this effect. Intra-VTA naltrexone infusion to sexually experienced male rats had an inhibitory effect on sexual activity. The opposite effects of intra-VTA naltrexone on male rat sexual behavior expression of sexually experienced and sexually exhausted rats is discussed. Copyright © 2013 Elsevier B.V. All rights reserved.
Engle, Staci E; McIntosh, J Michael; Drenan, Ryan M
2015-04-01
Nicotine + ethanol co-exposure results in additive and/or synergistic effects in the ventral tegmental area (VTA) to nucleus accumbens (NAc) dopamine (DA) pathway, but the mechanisms supporting this are unclear. We tested the hypothesis that nAChRs containing α6 subunits (α6* nAChRs) are involved in the response to nicotine + ethanol co-exposure. Exposing VTA slices from C57BL/6 WT animals to drinking-relevant concentrations of ethanol causes a marked enhancement of α-amino-3-hydroxy-5-methyl-isoxazolepropionic acid (AMPA) receptor (AMPAR) function in VTA neurons. This effect was sensitive to α-conotoxin MII (an α6β2* nAChR antagonist), suggesting that α6* nAChR function is required. In mice expressing hypersensitive α6* nAChRs (α6L9S mice), we found that lower concentrations (relative to C57BL/6 WT) of ethanol were sufficient to enhance AMPAR function in VTA neurons. Exposure of live C57BL/6 WT mice to ethanol also produced AMPAR functional enhancement in VTA neurons, and studies in α6L9S mice strongly suggest a role for α6* nAChRs in this response. We then asked whether nicotine and ethanol cooperate to enhance VTA AMPAR function. We identified low concentrations of nicotine and ethanol that were capable of strongly enhancing VTA AMPAR function when co-applied to slices, but that did not enhance AMPAR function when applied alone. This effect was sensitive to both varenicline (an α4β2* and α6β2* nAChR partial agonist) and α-conotoxin MII. Finally, nicotine + ethanol co-exposure also enhanced AMPAR function in VTA neurons from α6L9S mice. Together, these data identify α6* nAChRs as important players in the response to nicotine + ethanol co-exposure in VTA neurons. Copyright © 2014 Elsevier Ltd. All rights reserved.
Martig, Adria K; Mizumori, Sheri JY
2010-01-01
Hippocampus (HPC) receives dopaminergic (DA) projections from the ventral tegmental area (VTA) and substantia nigra. These inputs appear to provide a modulatory signal that influences HPC dependent behaviors and place fields. We examined how efferent projections from VTA to HPC influence spatial working memory and place fields when the reward context changes. CA1 and CA3 process environmental context changes differently and VTA preferentially innervates CA1. Given these anatomical data and electrophysiological evidence that implicates DA in reward processing, we predicted that CA1 place fields would respond more strongly to both VTA disruption and changes in the reward context than CA3 place fields. Rats (N=9) were implanted with infusion cannula targeting VTA and recording tetrodes aimed at HPC. Then they were tested on a differential reward, win-shift working memory task. One recording session consisted of 5 baseline and 5 manipulation trials during which place cells in CA1/CA2 (N=167) and CA3 (N=94) were recorded. Prior to manipulation trials rats were infused with either baclofen or saline and then subjected to control or reward conditions during which the learned locations of large and small reward quantities were reversed. VTA disruption resulted in an increase in errors, and in CA1/CA2 place field reorganization. There were no changes in any measures of CA3 place field stability during VTA disruption. Reward manipulations did not affect performance or place field stability in CA1/CA2 or CA3; however, changes in the reward locations “rescued” performance and place field stability in CA1/CA2 when VTA activity was compromised, perhaps by trigging compensatory mechanisms. These data support the hypothesis that VTA contributes to spatial working memory performance perhaps specifically by maintaining place field stability selectively in CA1/CA2. PMID:20082295
Steffensen, Scott C.; Taylor, Seth R.; Horton, Malia L.; Barber, Elise N.; Lyle, Laura T.; Stobbs, Sarah H.; Allison, David W.
2010-01-01
The aim of this study was to evaluate the effects of cocaine on γ-aminobutyric acid (GABA) and dopamine (DA) neurons in the ventral tegmental area (VTA). Utilizing single-unit recordings in vivo, microelectrophoretic administration of DA enhanced the firing rate of VTA GABA neurons via D2/D3 DA receptor activation. Lower doses of intravenous cocaine (0.25–0.5 mg/kg), or the DA transporter (DAT) blocker methamphetamine, enhanced VTA GABA neuron firing rate via D2/D3 receptor activation. Higher doses of cocaine (1.0–2.0 mg/kg) inhibited their firing rate, which was not sensitive to the D2/D3 antagonist eticlopride. The voltage-sensitive sodium channel (VSSC) blocker lidocaine inhibited the firing rate of VTA GABA neurons at all doses tested (0.25–2.0 mg/kg). Cocaine or lidocaine reduced VTA GABA neuron spike discharges induced by stimulation of the internal capsule (ICPSDs) at dose levels 0.25–2 mg/kg (IC50 1.2 mg/kg). There was no effect of DA or methamphetamine on ICPSDs, or of DA antagonists on cocaine inhibition of ICPSDs. In VTA GABA neurons in vitro, cocaine reduced (IC50 13 μm) current-evoked spikes and TTX-sensitive sodium currents in a use-dependent manner. In VTA DA neurons, cocaine reduced IPSCs (IC50 13 μm), increased IPSC paired-pulse facilitation and decreased spontaneous IPSC frequency, without affecting miniature IPSC frequency or amplitude. These findings suggest that cocaine acts on GABA neurons to reduce activity-dependent GABA release on DA neurons in the VTA, and that cocaine's use-dependent blockade of VTA GABA neuron VSSCs may synergize with its DAT inhibiting properties to enhance mesolimbic DA transmission implicated in cocaine reinforcement. PMID:19046384
Escalated cocaine "binges" in rats: enduring effects of social defeat stress or intra-VTA CRF.
Leonard, Michael Z; DeBold, Joseph F; Miczek, Klaus A
2017-09-01
Exposure to intermittent social defeat stress elicits corticotropin releasing factor (CRF) release into the VTA and induces long-term modulation of mesocorticolimbic dopamine activity in rats. These adaptations are associated with an intense cocaine-taking phenotype, which is prevented by CRF receptor antagonists. The present studies examine whether infusion of CRF into the VTA is sufficient to escalate cocaine-taking behavior, in the absence of social defeat experience. Additionally, we aimed to characterize changes in cocaine valuation that may promote binge-like cocaine intake. Male Long-Evans rats were microinjected into the VTA with CRF (50 or 500 ng/side), vehicle, or subjected to social defeat stress, intermittently over 10 days. Animals were then trained to self-administer IV cocaine (FR5). Economic demand for cocaine was evaluated using a within-session behavioral-economics threshold procedure, which was followed by a 24-h extended access "binge." Rats that experienced social defeat or received intra-VTA CRF microinfusions (50 ng) both took significantly more cocaine than controls over the 24-h binge but showed distinct patterns of intake. Behavioral economic analysis revealed that individual demand for cocaine strongly predicts binge-like consumption, and demand elasticity (i.e. α) is augmented by intra-VTA CRF, but not by social defeat. The effects of CRF on cocaine-taking were also prevented by intra-VTA pretreatment with CP376395, but not Astressin-2B. Repeated infusion of CRF into the VTA persistently alters cocaine valuation and intensifies binge-like drug intake in a CRF-R1-dependent manner. Conversely, the persistent pattern of cocaine bingeing induced by social defeat stress may suggest impaired inhibitory control, independent of reward valuation.
Pina, Melanie M; Cunningham, Christopher L
2016-10-15
The ventral tegmental area (VTA) is a well-established neural substrate of reward-related processes. Activity within this structure is increased by the primary and conditioned rewarding effects of abused drugs and its engagement is heavily reliant on excitatory input from structures upstream. In the case of drug seeking, it is thought that exposure to drug-associated cues engages glutamatergic VTA afferents that signal directly to dopamine cells, thereby triggering this behavior. It is unclear, however, whether glutamate input to VTA is directly involved in ethanol-associated cue seeking. Here, the role of intra-VTA ionotropic glutamate receptor (iGluR) signaling in ethanol-cue seeking was evaluated in DBA/2J mice using an ethanol conditioned place preference (CPP) procedure. Intra-VTA iGluRs α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPAR)/kainate and N-methyl-d-aspartate (NMDAR) were blocked during ethanol CPP expression by co-infusion of antagonist drugs 6,7-dinitroquinoxaline-2,3-dione (DNQX; AMPA/kainate) and d-(-)-2-Amino-5-phosphonopentanoic acid (AP5; NMDA). Compared to aCSF, bilateral infusion of low (1 DNQX+100 AP5ng/side) and high (5 DNQX+500 AP5ng/side) doses of the AMPAR and NMDAR antagonist cocktail into VTA blocked ethanol CPP expression. This effect was site specific, as DNQX/AP5 infusion proximal to VTA did not significantly impact CPP expression. An increase in activity was found at the high but not low dose of DNQX/AP5. These findings demonstrate that activation of iGluRs within the VTA is necessary for ethanol-associated cue seeking, as measured by CPP. Copyright © 2016 Elsevier B.V. All rights reserved.
You, Zhi-Bing; Wang, Bin; Zitzman, Dawnya; Wise, Roy A
2008-09-03
Microdialysis was used to assess the contribution to cocaine seeking of cholinergic input to the mesocorticolimbic dopamine system in ventral tegmental area (VTA). VTA acetylcholine (ACh) was elevated in animals lever pressing for intravenous cocaine and in cocaine-experienced and cocaine-naive animals passively receiving similar "yoked" injections. In cocaine-trained animals, the elevations comprised an initial (first hour) peak to approximately 160% of baseline and a subsequent plateau of 140% of baseline for the rest of the cocaine intake period. In cocaine-naive animals, yoked cocaine injections raised ACh levels to the 140% plateau but did not cause the initial 160% peak. In cocaine-trained animals that received unexpected saline (extinction conditions) rather than the expected cocaine, the initial peak was seen but the subsequent plateau was absent. VTA ACh levels played a causal role and were not just a correlate of cocaine seeking. Blocking muscarinic input to the VTA increased cocaine intake; the increase in intake offset the decrease in cholinergic input, resulting in the same VTA dopamine levels as were seen in the absence of the ACh antagonists. Increased VTA ACh levels (resulting from 10 microM VTA neostigmine infusion) increased VTA dopamine levels and reinstated cocaine seeking in cocaine-trained animals that had undergone extinction; these effects were strongly attenuated by local infusion of a muscarinic antagonist and weakly attenuated by a nicotinic antagonist. These findings identify two cholinergic responses to cocaine self-administration, an unconditioned response to cocaine itself and a conditioned response triggered by cocaine-predictive cues, and confirm that these cholinergic responses contribute to the control of cocaine seeking.
Glutamatergic and Dopaminergic Neurons in the Mouse Ventral Tegmental Area
Yamaguchi, Tsuyoshi; Qi, Jia; Wang, Hui-Ling; Zhang, Shiliang; Morales, Marisela
2014-01-01
The ventral tegmental area (VTA) comprises dopamine (DA), GABA and glutamate (Glu) neurons. Some rat VTA Glu neurons, expressing vesicular glutamate transporter 2 (VGluT2), co-express tyrosine hydroxylase (TH). While transgenic mice are now being used in attempts to determine the role of VGluT2/TH neurons in reward and neuronal signaling, such neurons have not been characterized in mouse tissue. By cellular detection of VGluT2-mRNA and TH-immunoreactivity (TH-IR), we determined the cellular expression of VGluT2-mRNA within VTA TH-IR neurons in the mouse. We found that some mouse VGluT2 neurons co-expressed TH-IR, but their frequency was lower than in the rat. To determine whether low expression of TH mRNA or TH-IR accounts for this low frequency, we evaluated VTA cellular co-expression of TH-transcripts and TH-protein. Within the medial aspects of the VTA, some neurons expressed TH mRNA but lacked TH-IR; among them a subset co-expressed VGluT2 mRNA. To determine if lack of VTA TH-IR was due to TH trafficking, we tagged VTA TH neurons by cre-inducible expression of mCherry in TH::Cre mice. By dual immunofluorescence, we detected axons containing mCherry, but lacking TH-IR, in the lateral habenula, indicating that mouse low frequency of VGluT2 mRNA (+)/TH-IR (+) neurons is due to lack of synthesis of TH protein, rather than TH-protein trafficking. In conclusion, VGluT2 neurons are present in the rat and mouse VTA, but they differ in the populations of VGluT2/TH and TH neurons. We reveal that under normal conditions, the translation of TH protein is suppressed in the mouse mesohabenular TH neurons. PMID:25572002
Ghrelin interacts with neuropeptide Y Y1 and opioid receptors to increase food reward.
Skibicka, Karolina P; Shirazi, Rozita H; Hansson, Caroline; Dickson, Suzanne L
2012-03-01
Ghrelin, a stomach-derived hormone, is an orexigenic peptide that was recently shown to potently increase food reward behavior. The neurochemical circuitry that links ghrelin to the mesolimbic system and food reward behavior remains unclear. Here we examined the contribution of neuropeptide Y (NPY) and opioids to ghrelin's effects on food motivation and intake. Both systems have well-established links to the mesolimbic ventral tegmental area (VTA) and reward/motivation control. NPY mediates the effect of ghrelin on food intake via activation of NPY-Y1 receptor (NPY-Y1R); their connection with respect to motivated behavior is unexplored. The role of opioids in any aspect of ghrelin's action on food-oriented behaviors is unknown. Rats were trained in a progressive ratio sucrose-induced operant schedule to measure food reward/motivation behavior. Chow intake was measured immediately after the operant test. In separate experiments, we explored the suppressive effects of a selective NPY-Y1R antagonist or opioid receptor antagonist naltrexone, injected either intracerebroventricularly or intra-VTA, on ghrelin-induced food reward behavior. The ventricular ghrelin-induced increase in sucrose-motivated behavior and chow intake were completely blocked by intracerebroventricular pretreatment with either an NPY-Y1R antagonist or naltrexone. The intra-VTA ghrelin-induced sucrose-motivated behavior was blocked only by intra-VTA naltrexone. In contrast, the intra-VTA ghrelin-stimulated chow intake was attenuated only by intra-VTA NPY-Y1 blockade. Finally, ghrelin infusion was associated with an elevated VTA μ-opioid receptor expression. Thus, we identify central NPY and opioid signaling as the necessary mediators of food intake and reward effects of ghrelin and localize these interactions to the mesolimbic VTA.
Lippert, Rachel N; Ellacott, Kate L J; Cone, Roger D
2014-05-01
The melanocortin-3 receptor (MC3R) and MC4R are known to play critical roles in energy homeostasis. However, the physiological functions of the MC3R remain poorly understood. Earlier reports indicated that the ventral tegmental area (VTA) is one of the highest sites of MC3R expression, and we sought to determine the function of the receptor in this brain region. A MC3R-green-fluorescent protein transgenic mouse and a MC3R knockout mouse strain were used to characterize the neurochemical identity of the MC3R neurons in the VTA and to determine the effects of global MC3R deletion on VTA dopamine (DA) homeostasis. We demonstrate that the MC3R, but not MC4R, is expressed in up to a third of dopaminergic neurons of the VTA. Global deletion of the MC3R increases total dopamine by 42% in the VTA and decreases sucrose intake and preference in female but not male mice. Ovariectomy restores dopamine levels to normal, but aberrant decreased VTA dopamine levels are also observed in prepubertal female mice. Because arcuate Agouti-related peptide/neuropeptide Y neurons are known to innervate and regulate VTA signaling, the MC3R in dopaminergic neurons provides a specific input for communication of nutritional state within the mesolimbic dopamine system. Data provided here suggest that this input may be highly sexually dimorphic, functioning as a specific circuit regulating effects of estrogen on VTA dopamine levels and on sucrose preference. Overall, this data support a sexually dimorphic function of MC3R in regulation of the mesolimbic dopaminergic system and reward.
Multi-component solid solution alloys having high mixing entropy
Bei, Hongbin
2015-10-06
A multi-component high-entropy alloy includes a composition selected from the following group: VNbTaTiMoWRe, VNbTaTiMoW, VNbTaTiMoRe, VNbTaTiWRe, VNbTaMoWRe, VNbTiMoWRe, VTaTiMoWRe, NbTaTiMoWRe, VNbTaTiMo, VNbTaTiW, VNbTaMoW, VNbTiMoW, VTaTiMoW, NbTaTiMoW, VNbTaTiRe, VNbTaMoRe, VNbTiMoRe, VTaTiMoRe, NbTaTiMoRe, VNbTaWRe, VNbTiWRe, VTaTiWRe, NbTaTiWRe, VNbMoWRe, VTaMoWRe, NbTaMoWRe, VTiMoWRe, NbTiMoWRe, TaTiMoWRe, wherein relative amounts of each element vary by no more than .+-.15 atomic %.
VTA neurons coordinate with the hippocampal reactivation of spatial experience
Gomperts, Stephen N; Kloosterman, Fabian; Wilson, Matthew A
2015-01-01
Spatial learning requires the hippocampus, and the replay of spatial sequences during hippocampal sharp wave-ripple (SPW-R) events of quiet wakefulness and sleep is believed to play a crucial role. To test whether the coordination of VTA reward prediction error signals with these replayed spatial sequences could contribute to this process, we recorded from neuronal ensembles of the hippocampus and VTA as rats performed appetitive spatial tasks and subsequently slept. We found that many reward responsive (RR) VTA neurons coordinated with quiet wakefulness-associated hippocampal SPW-R events that replayed recent experience. In contrast, coordination between RR neurons and SPW-R events in subsequent slow wave sleep was diminished. Together, these results indicate distinct contributions of VTA reinforcement activity associated with hippocampal spatial replay to the processing of wake and SWS-associated spatial memory. DOI: http://dx.doi.org/10.7554/eLife.05360.001 PMID:26465113
Role of cholinergic receptors in locomotion induced by scopolamine and oxotremorine-M.
Chintoh, Araba; Fulton, James; Koziel, Nicole; Aziz, Mariam; Sud, Manu; Yeomans, John S
2003-08-01
Mesopontine cholinergic neurons activate dopamine neurons important for reward-seeking and locomotor activity. The present studies tested whether cholinergic receptor blockade in the ventral tegmental area (VTA) altered locomotion induced by scopolamine (3 mg/kg i.p.) or by oxotremorine-M (0.1 microg bilaterally in the VTA). It was predicted that cholinergic blockers in the VTA would attenuate these cholinergic-induced locomotor increases. Locomotor activity was increased by scopolamine and oxotremorine-M administration in all treatments. When dihydro-beta-erythroidine (DHBE), a nicotinic receptor antagonist, was applied in VTA prior to oxotremorine-M, locomotion was reduced to slightly above saline baseline levels, but atropine, a muscarinic antagonist, had no effect. This suggests that the locomotor effect of oxotremorine-M at this dose was mediated mainly via nicotinic, not muscarinic, receptors. Intra-VTA injections of DHBE, however, did not attenuate scopolamine-induced locomotion indicating that scopolamine-induced locomotion is not mediated mainly via VTA cholinergic receptors. In mutant mice with a deletion in the M5 muscarinic receptor gene, scopolamine-induced locomotion was increased versus wild type mice after scopolamine injection. This suggests that the M5 receptor has an inhibitory effect on scopolamine-induced locomotion.
West, Charles Hutchison Keesor; Weiss, Jay Michael
2010-01-01
Increasing attention is now focused on reduced dopaminergic neurotransmission in the forebrain as participating in depression. The present paper assessed whether effective antidepressant (AD) treatments might counteract, or compensate for, such a change by altering the neuronal activity of dopaminergic neurons in the ventral tegmental area (VTA-DA neurons), the cell bodies of the mesocorticolimbic dopaminergic system. Eight AD drugs or vehicle were administered to rats for 14 days via subcutaneously-implanted minipumps, at which time single-unit electrophysiological activity of VTA-DA neurons was recorded under anesthesia. Also, animals received a series of five electroconvulsive shocks (ECS) or control procedures, after which VTA-DA activity was measured either three or five days after the last ECS. Results showed that the chronic administration of all AD drugs tested except for the monoamine oxidase inhibitor increased the spontaneous firing rate of VTA-DA neurons, while effects on “burst” firing activity were found to be considerably less notable or consistent. ECS increased both spontaneous firing rate and burst firing of VTA-DA neurons. It is suggested that the effects observed are consistent with reports of increased dopamine release in regions to which VTA neurons project after effective AD treatment. However, it is further suggested that changes in VTA-DA neuronal activity in response to AD treatment should be most appropriately assessed under conditions associated with depression, such as stressful conditions. PMID:20482941
McDaid, John; McElvain, Maureen A.; Brodie, Mark S.
2008-01-01
The dopaminergic neurons of the ventral tegmental area (DA VTA neurons) are important for the rewarding and reinforcing properties of drugs of abuse, including ethanol. Ethanol increases the firing frequency of DA VTA neurons from rats and mice. Because of a recent report on block of ethanol excitation in mouse DA VTA neurons with ZD7288, a selective blocker of the hyperpolarization-activated cationic current Ih, we examined the effect of ZD7288 on ethanol excitation in DA VTA neurons from C57Bl/6J and DBA/2J mice and Fisher 344 rats. Ethanol (80 mM) caused only increases in firing rate in mouse DA VTA neurons in the absence of ZD7288, but in the presence of ZD7288 (30 μM), ethanol produced a more transient excitation followed by a decrease of firing. This same biphasic phenomenon was observed in DA VTA neurons from rats in the presence of ZD7288 only at very high ethanol concentrations (160–240 mM) but not at lower pharmacologically relevant concentrations. The longer latency ethanol-induced inhibition was not observed in DA VTA neurons from mice or rats in the presence of barium (100 μM), which blocks G protein–linked potassium channels (GIRKs) and other inwardly rectifying potassium channels. Ethanol may have a direct effect to increase an inhibitory potassium conductance, but this effect of ethanol can only decrease the firing rate if Ih is blocked. PMID:18614756
Pandit, Rahul; Omrani, Azar; Luijendijk, Mieneke C M; de Vrind, Véronne A J; Van Rozen, Andrea J; Ophuis, Ralph J A Oude; Garner, Keith; Kallo, Imre; Ghanem, Alexander; Liposits, Zsolt; Conzelmann, Karl-Klaus; Vanderschuren, Louk J M J; la Fleur, Susanne E; Adan, Roger A H
2016-08-01
The central melanocortin (MC) system mediates its effects on food intake via MC3 (MC3R) and MC4 receptors (MC4R). Although the role of MC4R in meal size determination, satiation, food preference, and motivation is well established, the involvement of MC3R in the modulation of food intake has been less explored. Here, we investigated the role of MC3R on the incentive motivation for food, which is a crucial component of feeding behavior. Dopaminergic neurons within the ventral tegmental area (VTA) have a crucial role in the motivation for food. We here report that MC3Rs are expressed on VTA dopaminergic neurons and that pro-opiomelanocortinergic (POMC) neurons in the arcuate nucleus of the hypothalamus (Arc) innervate these VTA dopaminergic neurons. Our findings show that intracerebroventricular or intra-VTA infusion of the selective MC3R agonist γMSH increases responding for sucrose under a progressive ratio schedule of reinforcement, but not free sucrose consumption in rats. Furthermore, ex vivo electrophysiological recordings show increased VTA dopaminergic neuronal activity upon γMSH application. Consistent with a dopamine-mediated effect of γMSH, the increased motivation for sucrose after intra-VTA infusion of γMSH was blocked by pretreatment with the dopamine receptor antagonist α-flupenthixol. Taken together, we demonstrate an Arc POMC projection onto VTA dopaminergic neurons that modulates motivation for palatable food via activation of MC3R signaling.
Quantity and management of spent fuel from prototype and research reactors in Germany
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dorr, Sabine; Bollingerfehr, Wilhelm; Filbert, Wolfgang
Within the scope of an R and D project (project identification number FKZ 02 S 8679) sponsored by BMBF (Federal Ministry of Education and Research), the current state of storage and management of fuel elements from prototype and research reactors was established, and an approach for their future storage/management was developed. The spent fuels from prototype and research reactors in Germany that require disposal were specified and were described in regard to their repository-relevant characteristics. As there are currently no casks licensed for disposal in Germany, descriptions of casks that were considered to be suitable were provided. Based on themore » information provided on the spent fuel from prototype and research reactors and the potential casks, a technical disposal concept was developed. In this context, concepts to integrate the spent fuel from prototype and research reactors into existing disposal concepts for spent fuel from German nuclear power plants and for waste from reprocessing were developed for salt and clay formations. (authors)« less
Hoang, John; Bruce-Keller, Annadora; Berthoud, Hans-Rudolf; Morrison, Christopher D.
2017-01-01
The lateral hypothalamus (LHA) integrates reward and appetitive behavior and is composed of many overlapping neuronal populations. Recent studies associated LHA GABAergic neurons (LHAGABA), which densely innervate the ventral tegmental area (VTA), with modulation of food reward and consumption; yet, LHAGABA projections to the VTA exclusively modulated food consumption, not reward. We identified a subpopulation of LHAGABA neurons that coexpress the neuropeptide galanin (LHAGal). These LHAGal neurons also modulate food reward, but lack direct VTA innervation. We hypothesized that LHAGal neurons may represent a subpopulation of LHAGABA neurons that mediates food reward independent of direct VTA innervation. We used chemogenetic activation of LHAGal or LHAGABA neurons in mice to compare their role in feeding behavior. We further analyzed locomotor behavior to understand how differential VTA connectivity and transmitter release in these LHA neurons influences this behavior. LHAGal or LHAGABA neuronal activation both increased operant food-seeking behavior, but only activation of LHAGABA neurons increased overall chow consumption. Additionally, LHAGal or LHAGABA neuronal activation similarly induced locomotor activity, but with striking differences in modality. Activation of LHAGABA neurons induced compulsive-like locomotor behavior; while LHAGal neurons induced locomotor activity without compulsivity. Thus, LHAGal neurons define a subpopulation of LHAGABA neurons without direct VTA innervation that mediate noncompulsive food-seeking behavior. We speculate that the striking difference in compulsive-like locomotor behavior is also based on differential VTA innervation. The downstream neural network responsible for this behavior and a potential role for galanin as neuromodulator remains to be identified. SIGNIFICANCE STATEMENT The lateral hypothalamus (LHA) regulates motivated feeding behavior via GABAergic LHA neurons. The molecular identity of LHAGABA neurons is heterogeneous and largely undefined. Here we introduce LHAGal neurons as a subset of LHAGABA neurons that lack direct innervation of the ventral tegmental area (VTA). LHAGal neurons are sufficient to drive motivated feeding and locomotor activity similar to LHAGABA neurons, but without inducing compulsive-like behaviors, which we propose to require direct VTA innervation. Our study integrates galanin-expressing LHA neurons into our current understanding of the neuronal circuits and molecular mechanisms of the LHA that contribute to motivated feeding behaviors. PMID:28539422
Eiler, William J A; June, Harry L
2007-06-01
The dopamine (DA) mesolimbic pathway, which originates from DA cell bodies within the ventral tegmental area (VTA), has been shown by various studies to play a role in the mediation of various drugs of abuse including alcohol (EtOH). It has been suggested that the VTA's control of EtOH reward is mediated in part by the D2 receptors within the VTA. These receptors may be under the regulation of reciprocal GABAergic inputs from forebrain components of the mesolimbic path such as the nucleus accumbens (NAcc), a classic EtOH reward substrate, and the bed nucleus of the stria terminalis, a substrate recently implicated in EtOH reinforcement, forming a self-regulating feedback loop. To test this hypothesis, D2 regulation of EtOH self-administration (SA) was evaluated by the microinfusion of the D2 antagonist eticlopride into the VTA of P rats, which produced profound reductions in EtOH SA in the highest (20.0 and 40.0microg) doses tested in both BST/VTA and NAcc/VTA implanted P rats. To determine the role of GABA in the mediation of EtOH SA, a 32.0ng dose the non-selective GABA antagonist SR 95531 was microinfused into the BST producing no effect on responding for EtOH and into the NAcc which lead to a reduction in EtOH responding. Finally, the hypothesis that GABA innervation of the VTA from the mesolimbic forebrain may influence EtOH SA was examined by the simultaneous infusion of eticlopride (40.0microg) into the VTA and SR 95531 (32.0ng) into either the BST or NAcc. This combination infusion completely attenuated the reduction in EtOH SA observed with the 40.0microg dose of eticlopride alone in both groups of animals. These results suggest that while the D2 receptors within the VTA regulate EtOH-motivated behaviors, this is modulated by GABAergic input from the mesolimbic forebrain, specifically from the BST and NAcc.
Deehan, Gerald A.; Knight, Christopher P.; Waeiss, R. Aaron; Engleman, Eric A.; Toalston, Jamie E.; McBride, William J.; Hauser, Sheketha R.; Rodd, Zachary A.
2016-01-01
Aims Two critical neurotransmitter systems regulating ethanol (EtOH) reward are serotonin (5-HT) and dopamine (DA). Within the posterior ventral tegmental area (pVTA), 5-HT receptors have been shown to regulate DA neuronal activity. Increased pVTA neuronal activity has been linked to drug reinforcement. The current experiment sought to determine the effect of EtOH on 5-HT and DA levels within the pVTA. Methods Wistar rats were implanted with cannula aimed at the pVTA. Neurochemical levels were determined using standard microdialysis procedures with concentric probes. Rats were randomly assigned to one of the five groups (n = 41; 7–9 per group) that were treated with 0–3.0 g/kg EtOH (intraperitoneally). Results Ethanol produced increased extracellular DA levels in the pVTA that resembled an inverted U-shape dose–response curve with peak levels (~200% of baseline) at the 2.25 g/kg dose. The increase in DA levels was observed for an extended period of time (~100 minutes). The effects of EtOH on extracellular 5-HT levels in the pVTA also resembled an inverted U-shape dose–response curve. However, increased 5-HT levels were only observed during the initial post-injection sample. The increases in extracellular DA and 5-HT levels were significantly correlated. Conclusion The data indicate intraperitoneal EtOH administration stimulated the release of both 5-HT and DA within the pVTA, the levels of which were significantly correlated. Overall, the current findings suggest that the ability of EtOH to stimulate DA activity within the mesolimbic system may be modulated by increases in 5-HT release within the pVTA. Short summary Two critical neurotransmitter systems regulating ethanol reward are serotonin and dopamine. The current experiment determined that intraperitoneal ethanol administration increased serotonin and dopamine levels within the pVTA (levels were significantly correlated). The current findings suggest the ability of EtOH to stimulate serotonin and dopamine activity within the mesolimbic system. PMID:27307055
Park, Junchol
2017-01-01
Actions motivated by rewards are often associated with risk of punishment. Little is known about the neural representation of punishment risk during reward-seeking behavior. We modeled this circumstance in rats by designing a task where actions were consistently rewarded but probabilistically punished. Spike activity and local field potentials were recorded during task performance simultaneously from VTA and mPFC, two reciprocally connected regions implicated in reward-seeking and aversive behaviors. At the single unit level, we found that ensembles of putative dopamine and non-dopamine VTA neurons and mPFC neurons encode the relationship between action and punishment. At the network level, we found that coherent theta oscillations synchronize VTA and mPFC in a bottom-up direction, effectively phase-modulating the neuronal spike activity in the two regions during punishment-free actions. This synchrony declined as a function of punishment probability, suggesting that during reward-seeking actions, risk of punishment diminishes VTA-driven neural synchrony between the two regions. PMID:29058673
Ishikawa, Masago; Otaka, Mami; Neumann, Peter A; Wang, Zhijian; Cook, James M; Schlüter, Oliver M; Dong, Yan; Huang, Yanhua H
2013-01-01
Synaptic projections from the ventral tegmental area (VTA) to the nucleus accumbens (NAc) make up the backbone of the brain reward pathway, a neural circuit that mediates behavioural responses elicited by natural rewards as well as by cocaine and other drugs of abuse. In addition to the well-known modulatory dopaminergic projection, the VTA also provides fast excitatory and inhibitory synaptic input to the NAc, directly regulating NAc medium spiny neurons (MSNs). However, the cellular nature of VTA-to-NAc fast synaptic transmission and its roles in drug-induced adaptations are not well understood. Using viral-mediated in vivo expression of channelrhodopsin 2, the present study dissected fast excitatory and inhibitory synaptic transmission from the VTA to NAc MSNs in rats. Our results suggest that, following repeated exposure to cocaine (15 mg kg−1 day−1× 5 days, i.p., 1 or 21 day withdrawal), a presynaptic enhancement of excitatory transmission and suppression of inhibitory transmission occurred at different withdrawal time points at VTA-to-NAc core synapses. In contrast, no postsynaptic alterations were detected at either type of synapse. These results suggest that changes in VTA-to-NAc fast excitatory and inhibitory synaptic transmissions may contribute to cocaine-induced alteration of the brain reward circuitry. PMID:23918773
Mejias-Aponte, Carlos A.; Ye, Changquan; Bonci, Antonello; Kiyatkin, Eugene A.
2015-01-01
Systemic administration of cocaine is thought to decrease the firing rates of ventral tegmental area (VTA) dopamine (DA) neurons. However, this view is based on categorizations of recorded neurons as DA neurons using preselected electrophysiological characteristics lacking neurochemical confirmation. Without applying cellular preselection, we recorded the impulse activity of VTA neurons in response to cocaine administration in anesthetized adult rats. The phenotype of recorded neurons was determined by their juxtacellular labeling and immunohistochemical detection of tyrosine hydroxylase (TH), a DA marker. We found that intravenous cocaine altered firing rates in the majority of recorded VTA neurons. Within the cocaine-responsive neurons, half of the population was excited and the other half was inhibited. Both populations had similar discharge rates and firing regularities, and most neurons did not exhibit changes in burst firing. Inhibited neurons were more abundant in the posterior VTA, whereas excited neurons were distributed evenly throughout the VTA. Cocaine-excited neurons were more likely to be excited by footshock. Within the subpopulation of TH-positive neurons, 36% were excited by cocaine and 64% were inhibited. Within the subpopulation of TH-negative neurons, 44% were excited and 28% were inhibited. Contrary to the prevailing view that all DA neurons are inhibited by cocaine, we found a subset of confirmed VTA DA neurons that is excited by systemic administration of cocaine. We provide evidence indicating that DA neurons are heterogeneous in their response to cocaine and that VTA non-DA neurons play an active role in processing systemic cocaine. PMID:25653355
Heimovics, Sarah A; Salvante, Katrina G; Sockman, Keith W; Riters, Lauren V
2013-01-01
Individuals display dramatic differences in social communication even within similar social contexts. Across vertebrates dopaminergic projections from the ventral tegmental area (VTA) and midbrain central gray (GCt) strongly influence motivated, reward-directed behaviors. Norepinephrine is also rich in these areas and may alter dopamine neuronal activity. The present study was designed to provide insight into the roles of dopamine and norepinephrine in VTA and GCt and their efferent striatal target, song control region area X, in the regulation of individual differences in the motivation to sing. We used high pressure liquid chromatography with electrochemical detection to measure dopamine, norepinephrine and their metabolites in micropunched samples from VTA, GCt, and area X in male European starlings (Sturnus vulgaris). We categorized males as sexually motivated or non-sexually motivated based on individual differences in song produced in response to a female. Dopamine markers and norepinephrine in VTA and dopamine in area X correlated positively with sexually-motivated song. Norepinephrine in area X correlated negatively with non-sexually-motivated song. Dopamine in GCt correlated negatively with sexually-motivated song, and the metabolite DOPAC correlated positively with non-sexually-motivated song. Results highlight a role for evolutionarily conserved dopaminergic projections from VTA to striatum in the motivation to communicate and highlight novel patterns of catecholamine activity in area X, VTA, and GCt associated with individual differences in sexually-motivated and non-sexually-motivated communication. Correlations between dopamine and norepinephrine markers also suggest that norepinephrine may contribute to individual differences in communication by modifying dopamine neuronal activity in VTA and GCt. PMID:21907203
Frye, Cheryl A; Paris, Jason J
2011-01-01
In the midbrain ventral tegmental area (VTA), actions of neurosteroids, such as the progesterone metabolite, 5α-pregnan-3α-ol-20-one (3α,5α-THP), can facilitate mating and influence stress-related processes. Some actions of 3α,5α-THP may occur via positive modulation of GABA(A) receptors (GBRs), or negative modulation of N-methyl-D: -aspartate receptors (NMDARs), to influence anxiety-like behavior; but this is not known. We aimed to assess the role that neurosteroids and stress factors play on intra-VTA NMDAR- and/or GBR-mediated anxiety-like and mating behavior. Estradiol-primed, ovariectomized rats, which were partially or completely adrenalectomized (ADX), received infusions of vehicle, an NMDAR blocker (MK-801; 200 ng), or a GBR antagonist (bicuculline, 100 ng) to the VTA. Rats then received intra-VTA vehicle or a neurosteroidogenesis enhancer (N,N-Dihexyl-2-(4-fluorophenyl)indole-3-acetamide, FGIN 1-27, 5 μg) and anxiety-like and sexual behavior was assessed. Complete, compared to partial, ADX significantly reduced open arm exploration on an elevated plus maze, the proportion of females that engaged in mating, lordosis quotients, pacing of sexual contacts, and defensive aggression towards a sexually vigorous male. Intra-VTA MK-801 enhanced open arm investigation and the proportion of females that engaged in mating. Infusions of either, MK-801 or FGIN 1-27, enhanced lordosis and, when co-administered, FGIN 1-27 attenuated MK-801's lordosis-enhancing effects. Intra-VTA infusions of bicuculline, prior to FGIN 1-27, blocked FGIN 1-27's effects to enhance lordosis. Together, these data suggest that reduced NMDAR activity in the VTA may influence motivation to explore and engage in sexual behavior. These data suggest that neurosteroid actions at NMDARs and GBRs in the VTA are important for exploration and/or sexual behavior.
Paris, Jason J.
2013-01-01
Rationale In the midbrain ventral tegmental area (VTA), actions of neurosteroids, such as the progesterone metabolite, 5α-pregnan-3α-ol-20-one (3α,5α-THP), can facilitate mating and influence stress-related processes. Some actions of 3α,5α-THP may occur via positive modulation of GABAA receptors (GBRs), or negative modulation of N-methyl-D-aspartate receptors (NMDARs), to influence anxiety-like behavior; but this is not known. Objectives We aimed to assess the role that neurosteroids and stress factors play on intra-VTA NMDAR- and/or GBR-mediated anxiety-like and mating behavior. Methods Estradiol-primed, ovariectomized rats, which were partially or completely adrenalectomized (ADX), received infusions of vehicle, an NMDAR blocker (MK-801; 200 ng), or a GBR antagonist (bicuculline, 100 ng) to the VTA. Rats then received intra-VTA vehicle or a neurosteroidogenesis enhancer (N,N-Dihexyl-2-(4-fluorophenyl)indole-3-acetamide, FGIN 1-27, 5 μg) and anxiety-like and sexual behavior was assessed. Results Complete, compared to partial, ADX significantly reduced open arm exploration on an elevated plus maze, the proportion of females that engaged in mating, lordosis quotients, pacing of sexual contacts, and defensive aggression towards a sexually vigorous male. Intra-VTA MK-801 enhanced open arm investigation and the proportion of females that engaged in mating. Infusions of either, MK-801 or FGIN 1-27, enhanced lordosis and, when co-administered, FGIN 1-27 attenuated MK-801’s lordosis-enhancing effects. Intra-VTA infusions of bicuculline, prior to FGIN 1-27, blocked FGIN 1-27’s effects to enhance lordosis. Conclusions Together, these data suggest that reduced NMDAR activity in the VTA may influence motivation to explore and engage in sexual behavior. These data suggest that neurosteroid actions at NMDARs and GBRs in the VTA are important for exploration and/or sexual behavior. PMID:20878318
Qualls-Creekmore, Emily; Yu, Sangho; Francois, Marie; Hoang, John; Huesing, Clara; Bruce-Keller, Annadora; Burk, David; Berthoud, Hans-Rudolf; Morrison, Christopher D; Münzberg, Heike
2017-06-21
The lateral hypothalamus (LHA) integrates reward and appetitive behavior and is composed of many overlapping neuronal populations. Recent studies associated LHA GABAergic neurons (LHA GABA ), which densely innervate the ventral tegmental area (VTA), with modulation of food reward and consumption; yet, LHA GABA projections to the VTA exclusively modulated food consumption, not reward. We identified a subpopulation of LHA GABA neurons that coexpress the neuropeptide galanin (LHA Gal ). These LHA Gal neurons also modulate food reward, but lack direct VTA innervation. We hypothesized that LHA Gal neurons may represent a subpopulation of LHA GABA neurons that mediates food reward independent of direct VTA innervation. We used chemogenetic activation of LHA Gal or LHA GABA neurons in mice to compare their role in feeding behavior. We further analyzed locomotor behavior to understand how differential VTA connectivity and transmitter release in these LHA neurons influences this behavior. LHA Gal or LHA GABA neuronal activation both increased operant food-seeking behavior, but only activation of LHA GABA neurons increased overall chow consumption. Additionally, LHA Gal or LHA GABA neuronal activation similarly induced locomotor activity, but with striking differences in modality. Activation of LHA GABA neurons induced compulsive-like locomotor behavior; while LHA Gal neurons induced locomotor activity without compulsivity. Thus, LHA Gal neurons define a subpopulation of LHA GABA neurons without direct VTA innervation that mediate noncompulsive food-seeking behavior. We speculate that the striking difference in compulsive-like locomotor behavior is also based on differential VTA innervation. The downstream neural network responsible for this behavior and a potential role for galanin as neuromodulator remains to be identified. SIGNIFICANCE STATEMENT The lateral hypothalamus (LHA) regulates motivated feeding behavior via GABAergic LHA neurons. The molecular identity of LHA GABA neurons is heterogeneous and largely undefined. Here we introduce LHA Gal neurons as a subset of LHA GABA neurons that lack direct innervation of the ventral tegmental area (VTA). LHA Gal neurons are sufficient to drive motivated feeding and locomotor activity similar to LHA GABA neurons, but without inducing compulsive-like behaviors, which we propose to require direct VTA innervation. Our study integrates galanin-expressing LHA neurons into our current understanding of the neuronal circuits and molecular mechanisms of the LHA that contribute to motivated feeding behaviors. Copyright © 2017 the authors 0270-6474/17/376053-13$15.00/0.
Oxytocin increases VTA activation to infant and sexual stimuli in nulliparous and postpartum women
Gregory, Rebecca; Cheng, Hu; Rupp, Heather A.; Sengelaub, Dale R.; Heiman, Julia R.
2015-01-01
After giving birth, women typically experience decreased sexual desire and increased responsiveness to infant stimuli. These postpartum changes may be viewed as a trade-off in reproductive interests, which could be due to alterations in brain activity including areas associated with reward. The goal of this study was to describe the roles of oxytocin and parity on reward area activation in response to reproductive stimuli, specifically infant and sexual images. Because they have been shown to be associated with reward, the ventral tegmental area (VTA) and nucleus accumbens (NAc) were targeted as areas of expected alterations in activity. Oxytocin was chosen as a potential mediator of reproductive trade-offs because of its relationship to both mother–infant interactions, including breastfeeding and bonding, and sexual responses. We predicted that postpartum women would show higher reward area activation to infant stimuli and nulliparous women would show higher activation to sexual stimuli and that oxytocin would increase activation to infant stimuli in nulliparous women. To test this, we measured VTA and NAc activation using fMRI in response to infant photos, sexual photos, and neutral photos in 29 postpartum and 30 nulliparous women. Participants completed the Sexual Inhibition (SIS) and Sexual Excitation (SES) Scales and the Brief Index of Sexual Function for Women (BISF-W), which includes a sexual desire dimension, and received either oxytocin or placebo nasal spray before viewing crying and smiling infant and sexual images in an fMRI scanner. For both groups of women, intranasal oxytocin administration increased VTA activation to both crying infant and sexual images but not to smiling infant images. We found that postpartum women showed lower SES, higher SIS, and lower sexual desire compared to nulliparous women. Across parity groups, SES scores were correlated with VTA activation and subjective arousal ratings to sexual images. In postpartum women, sexual desire was positively correlated with VTA activation to sexual images and with SES. Our findings show that postpartum decreases in sexual desire may in part be mediated by VTA activation, and oxytocin increased activation of the VTA but not NAc in response to sexual and infant stimuli. Oxytocin may contribute to the altered reproductive priorities in postpartum women by increasing VTA activation to salient infant stimuli. PMID:25562711
Keleta, Yonas B; Martinez, Joe L
2012-03-01
The reinforcing effects of addictive drugs including methamphetamine (METH) involve the midbrain ventral tegmental area (VTA). VTA is primary source of dopamine (DA) to the nucleus accumbens (NAc) and the ventral hippocampus (VHC). These three brain regions are functionally connected through the hippocampal-VTA loop that includes two main neural pathways: the bottom-up pathway and the top-down pathway. In this paper, we take the view that addiction is a learning process. Therefore, we tested the involvement of the hippocampus in reinforcement learning by studying conditioned place preference (CPP) learning by sequentially conditioning each of the three nuclei in either the bottom-up order of conditioning; VTA, then VHC, finally NAc, or the top-down order; VHC, then VTA, finally NAc. Following habituation, the rats underwent experimental modules consisting of two conditioning trials each followed by immediate testing (test 1 and test 2) and two additional tests 24 h (test 3) and/or 1 week following conditioning (test 4). The module was repeated three times for each nucleus. The results showed that METH, but not Ringer's, produced positive CPP following conditioning each brain area in the bottom-up order. In the top-down order, METH, but not Ringer's, produced either an aversive CPP or no learning effect following conditioning each nucleus of interest. In addition, METH place aversion was antagonized by coadministration of the N-methyl-d-aspartate (NMDA) receptor antagonist MK801, suggesting that the aversion learning was an NMDA receptor activation-dependent process. We conclude that the hippocampus is a critical structure in the reward circuit and hence suggest that the development of target-specific therapeutics for the control of addiction emphasizes on the hippocampus-VTA top-down connection.
Organization of GABAergic synaptic circuits in the rat ventral tegmental area.
Ciccarelli, Alessandro; Calza, Arianna; Panzanelli, Patrizia; Concas, Alessandra; Giustetto, Maurizio; Sassoè-Pognetto, Marco
2012-01-01
The ventral tegmental area (VTA) is widely implicated in drug addiction and other psychiatric disorders. This brain region is densely populated by dopaminergic (DA) neurons and also contains a sparse population of γ-aminobutyric acid (GABA)ergic cells that regulate the activity of the principal neurons. Therefore, an in-depth knowledge of the organization of VTA GABAergic circuits and of the plasticity induced by drug consumption is essential for understanding the mechanisms by which drugs induce stable changes in brain reward circuits. Using immunohistochemistry, we provide a detailed description of the localization of major GABA(A) and GABA(B) receptor subunits in the rat VTA. We show that DA and GABAergic cells express both GABA(A) and GABA(B) receptors. However VTA neurons differ considerably in the expression of GABA(A) receptor subunits, as the α1 subunit is associated predominantly with non-DA cells, whereas the α3 subunit is present at low levels in both types of VTA neurons. Using an unbiased stereological method, we then demonstrate that α1-positive elements represent only a fraction of non-DA neurons and that the ratio of DA and non-DA cells is quite variable throughout the rostro-caudal extent of the VTA. Interestingly, DA and non-DA cells receive a similar density of perisomatic synapses, whereas axo-dendritic synapses are significantly more abundant in non-DA cells, indicating that local interneurons receive prominent GABAergic inhibition. These findings reveal a differential expression of GABA receptor subtypes in the two major categories of VTA neurons and provide an anatomical basis for interpreting the plasticity of inhibitory circuits induced by drug exposure.
Intra-ventral tegmental area microinjections of urotensin II modulate the effects of cocaine.
Mueller, L E; Kausch, M A; Markovic, T; MacLaren, D A A; Dietz, D M; Park, J; Clark, S D
2015-02-01
Although the peptide urotensin II (UII) has well studied direct actions on the cardiovascular system, the UII receptor (UIIR) is expressed by neurons of the hindbrain. Specifically, the UIIR is expressed by the cholinergic neurons of the laterodorsal tegmentum (LDTg) and the pedunculopontine tegmentum (PPTg). These neurons send axons to the ventral tegmental area (VTA), for which the PPTg and LDTg are the sole source of acetylcholine. Therefore, it was hypothesized that UIIR activation within the VTA would modulate reward-related behaviors, such as cocaine-induced drug seeking. Intra-VTA microinjections of UII at high concentrations (1 nmole) established conditioned place preference (CPP), but also blocked cocaine-mediated CPP (10 mg/kg). When rats received systemic sub-effectual doses of cocaine (7.5 mg/kg) with intra-VTA injections of 1 or 10 pmole of UII CPP was formed. Furthermore, the second endogenous ligand for the UIIR, urotensin II-related peptide, had the same effect at the 10 pmole dose. The effects of low doses of UII were blocked by pretreatment with the UIIR antagonist SB657510. Furthermore, it was found that intra-VTA UII (10 pmole) further increased cocaine-mediated (7.5 mg/kg) rises in electrically evoked dopamine in the nucleus accumbens. Our study has found that activation of VTA-resident UIIR produces observable behavioral changes in rats, and that UIIR is able to modulate the effects of cocaine. In addition, it was found that UIIR activation within the VTA can potentiate cocaine-mediated neurochemical effects. Therefore, the coincident activation of the UII-system and cocaine administration may increase the liability for drug taking behavior. Copyright © 2014 Elsevier B.V. All rights reserved.
Chen, Ting; Zhang, Die; Dragomir, Andrei; Kobayashi, Kunikazu; Akay, Yasemin; Akay, Metin
2011-10-21
All drugs of abuse, including nicotine, activate the mesocorticolimbic system that plays critical roles in nicotine reward and reinforcement development and triggers glutamatergic synaptic plasticity on the dopamine (DA) neurons in the ventral tegmental area (VTA). The addictive behavior and firing pattern of the VTA DA neurons are thought to be controlled by the glutamatergic synaptic input from prefrontal cortex (PFC). Interrupted functional input from PFC to VTA was shown to decrease the effects of the drug on the addiction process. Nicotine treatment could enhance the AMPA/NMDA ratio in VTA DA neurons, which is thought as a common addiction mechanism. In this study, we investigate whether or not the lack of glutamate transmission from PFC to VTA could make any change in the effects of nicotine. We used the traditional AMPA/NMDA peak ratio, AMPA/NMDA area ratio, and KL (Kullback-Leibler) divergence analysis method for the present study. Our results using AMPA/NMDA peak ratio showed insignificant difference between PFC intact and transected and treated with saline. However, using AMPA/NMDA area ratio and KL divergence method, we observed a significant difference when PFC is interrupted with saline treatment. One possible reason for the significant effect that the PFC transection has on the synaptic responses (as indicated by the AMPA/NMDA area ratio and KL divergence) may be the loss of glutamatergic inputs. The glutamatergic input is one of the most important factors that contribute to the peak ratio level. Our results suggested that even within one hour after a single nicotine injection, the peak ratio of AMPA/NMDA on VTA DA neurons could be enhanced.
Lane, D.A.; Reed, B.; Kreek, M.J.; Pickel, V.M.
2011-01-01
Cocaine-induced plasticity of mesocorticolimbic dopamine (DA) neurons, originating in the ventral tegmental area (VTA), persists in the absence of cocaine and may contribute to both drug-craving and relapse. Glutamate AMPA receptors (AMPARs) in these neurons are implicated in this plasticity. However, there is no ultrastructural evidence that the absence of cocaine following repeated administrations affects the critical surface/synaptic availability of AMPAR GluR1 subunits in either DA or non-DA, putative GABAergic neurons within the VTA. To assess this, we used electron microscopic immunolabeling in the VTA of adult male mice sacrificed at 30 minutes or 72 hours after receiving the final of six (15 mg/kg) cocaine injections, a dosing paradigm that resulted in development of locomotor sensitization. At each time point, both cocaine- and saline-injected mice showed AMPAR GluR1 immunogold labeling in somatodendritic profiles, many of which contained immunoperoxidase labeling for the DA-synthesizing enzyme, tyrosine hydroxylase (TH). At 30 minutes after the last injection, when cocaine was systemically present, only the non-TH labeled dendrites showed a significant increase in the synaptic/plasmalemmal density of GluR1 immunogold particles. At 72 hours, when systemic cocaine was depleted, synaptic GluR1 labeling was greatly enhanced in TH-containing dendrites throughout the VTA and in non-TH dendrites of the limbic-associated paranigral VTA. Our results demonstrate that systemic cocaine produces GluR1 trafficking specifically in non-DA neurons of the VTA, which may subsequently contribute to the abstinent-induced enhancement of AMPA receptor synaptic transmission in mesocorticolimbic DA neurons leading to heightened drug seeking behavior. PMID:21215761
Role of dopamine receptors in the ventral tegmental area in conditioned fear.
de Oliveira, Amanda Ribeiro; Reimer, Adriano Edgar; Brandão, Marcus Lira
2009-05-16
The increased startle reflex in the presence of a stimulus that has been previously paired with footshock has been termed fear-potentiated startle (FPS) and is considered a reliable index of anxiety. Some studies have suggested an association between stressful situations and alterations in dopaminergic (DA) transmission. Many studies converge on the hypothesis that the mesocorticolimbic pathway, originating from DA neurons in the ventral tegmental area (VTA), is particularly sensitive to fear-arousing stimuli. The present study explored the involvement of VTA DA receptors in the acquisition and expression of conditioned fear to a light conditioned stimulus (CS). We evaluated the effects of intra-VTA administration of SKF 38393 (D(1) agonist), SCH 23390 (D(1) antagonist), quinpirole (D(2) agonist), and sulpiride (D(2) antagonist) on FPS. All drugs were administered bilaterally into the VTA (1.0 microg/0.2 microl/site). Locomotor activity/exploration and motor coordination were evaluated in the open-field and rotarod tests. None of the drugs produced significant effects on FPS when injected before conditioning, indicating that VTA DA receptors are not involved in the acquisition of conditioned fear to a light-CS. In contrast, when injected before the test session, quinpirole significantly reduced FPS, whereas the other drugs had no effect. Quinpirole's ability to decrease FPS may be the result of an action on VTA D(2) presynaptic autoreceptors that decrease dopamine levels in terminal fields of the mesocorticolimbic pathway. Altogether, the present results suggest the importance of VTA DA neurons in the fear-activating effects of Pavlovian conditioning. In addition to demonstrating the importance of dopaminergic mechanisms in the motivational consequences of footshock, the present findings also indicate that these neural circuits are mainly involved in the expression, rather than acquisition, of conditioned fear.
Allison, David W; Wilcox, Rebecca S; Ellefsen, Kyle L; Askew, Caitlin E; Hansen, David M; Wilcox, Jeffrey D; Sandoval, Stephanie S; Eggett, Dennis L; Yanagawa, Yuchio; Steffensen, Scott C
2011-08-01
Connexin-36 (Cx36) gap junctions (GJs) appear to be involved in the synchronization of GABA interneurons in many brain areas. We have previously identified a population of Cx36-connected ventral tegmental area (VTA) GABA neurons that may regulate mesolimbic dopamine (DA) neurotransmission, a system implicated in reward from both natural behaviors and drugs of abuse. The aim of this study was to determine the effect mefloquine (MFQ) has on midbrain DA and GABA neuron inhibition, and the role Cx36 GJs play in regulating midbrain VTA DA neuron activity in mice. In brain slices from adolescent wild-type (WT) mice the Cx36-selective GJ blocker mefloquine (MFQ, 25 μM) increased VTA DA neuron sIPSC frequency sixfold, and mIPSC frequency threefold. However, in Cx36 KO mice, MFQ only increased sIPSC and mIPSC frequency threefold. The nonselective GJ blocker carbenoxolone (CBX, 100 μM) increased DA neuron sIPSC frequency twofold in WT mice, did not affect Cx36 KO mouse sIPSCs, and did not affect mIPSCs in WT or Cx36 KO mice. Interestingly, MFQ had no effect on VTA GABA neuron sIPSC frequency. We also examined MFQ effects on VTA DA neuron firing rate and current-evoked spiking in WT and Cx36 KO mice, and found that MFQ decreased WT DA neuron firing rate and current-evoked spiking, but did not alter these measures in Cx36 KO mice. Taken together these findings suggest that blocking Cx36 GJs increases VTA DA neuron inhibition, and that GJs play in key role in regulating inhibition of VTA DA neurons. Synapse, 2011. © 2011 Wiley-Liss, Inc. Copyright © 2011 Wiley-Liss, Inc.
Heimovics, Sarah A; Salvante, Katrina G; Sockman, Keith W; Riters, Lauren V
2011-11-01
Individuals display dramatic differences in social communication even within similar social contexts. Across vertebrates dopaminergic projections from the ventral tegmental area (VTA) and midbrain central gray (GCt) strongly influence motivated, reward-directed behaviors. Norepinephrine is also rich in these areas and may alter dopamine neuronal activity. The present study was designed to provide insight into the roles of dopamine and norepinephrine in VTA and GCt and their efferent striatal target, song control region area X, in the regulation of individual differences in the motivation to sing. We used high pressure liquid chromatography with electrochemical detection to measure dopamine, norepinephrine and their metabolites in micropunched samples from VTA, GCt, and area X in male European starlings (Sturnus vulgaris). We categorized males as sexually motivated or non-sexually motivated based on individual differences in song produced in response to a female. Dopamine markers and norepinephrine in VTA and dopamine in area X correlated positively with sexually-motivated song. Norepinephrine in area X correlated negatively with non-sexually-motivated song. Dopamine in GCt correlated negatively with sexually-motivated song, and the metabolite DOPAC correlated positively with non-sexually-motivated song. Results highlight a role for evolutionarily conserved dopaminergic projections from VTA to striatum in the motivation to communicate and highlight novel patterns of catecholamine activity in area X, VTA, and GCt associated with individual differences in sexually-motivated and non-sexually-motivated communication. Correlations between dopamine and norepinephrine markers also suggest that norepinephrine may contribute to individual differences in communication by modifying dopamine neuronal activity in VTA and GCt. Copyright © 2011. Published by Elsevier Inc.
Runegaard, Annika H; Sørensen, Andreas T; Fitzpatrick, Ciarán M; Jørgensen, Søren H; Petersen, Anders V; Hansen, Nikolaj W; Weikop, Pia; Andreasen, Jesper T; Mikkelsen, Jens D; Perrier, Jean-Francois; Woldbye, David; Rickhag, Mattias; Wortwein, Gitta; Gether, Ulrik
2018-01-01
Dopamine plays a key role in the cellular and behavioral responses to drugs of abuse, but the implication of metabotropic regulatory input to dopaminergic neurons on acute drug effects and subsequent drug-related behavior remains unclear. Here, we used chemogenetics [Designer Receptors Exclusively Activated by Designer Drugs (DREADDs)] to modulate dopamine signaling and activity before cocaine administration in mice. We show that chemogenetic inhibition of dopaminergic ventral tegmental area (VTA) neurons differentially affects locomotor and reward-related behavioral responses to cocaine. Stimulation of Gi-coupled DREADD (hM4Di) expressed in dopaminergic VTA neurons persistently reduced the locomotor response to repeated cocaine injections. An attenuated locomotor response was seen even when a dual-viral vector approach was used to restrict hM4Di expression to dopaminergic VTA neurons projecting to the nucleus accumbens. Surprisingly, despite the attenuated locomotor response, hM4Di-mediated inhibition of dopaminergic VTA neurons did not prevent cocaine sensitization, and the inhibitory effect of hM4Di-mediated inhibition was eliminated after withdrawal. In the conditioned place-preference paradigm, hM4Di-mediated inhibition did not affect cocaine-induced place preference; however, the extinction period was extended. Also, hM4Di-mediated inhibition had no effect on preference for a sugar-based reward over water but impaired motivation to work for the same reward in a touchscreen-based motivational assay. In addition, to support that VTA dopaminergic neurons operate as regulators of reward motivation toward both sugar and cocaine, our data suggest that repeated cocaine exposure leads to adaptations in the VTA that surmount the ability of Gi-signaling to suppress and regulate VTA dopaminergic neuronal activity.
Garzón, Miguel; Pickel, Virginia M.
2008-01-01
Acetylcholine can affect cognitive functions and reward, in part, through activation of muscarinic receptors in the ventral tegmental area (VTA) to evoke changes in mesocorticolimbic dopaminergic transmission. Of the known muscarinic receptor subtypes present in the VTA, the M2 receptor (M2R) is most implicated in autoregulation, and also may play a heteroreceptor role in regulation of the output of the dopaminergic neurons. We sought to determine the functionally relevant sites for M2R activation in relation to VTA dopaminergic neurons by examining the electron microscopic immunolabeling of M2R and the dopamine transporter (DAT) in the VTA of rat brain. The M2R was localized to endomembranes in DAT-containing somatodendritic profiles, but showed a more prominent, size-dependent plasmalemmal location in non-dopaminergic dendrites. M2R also was located on the plasma membrane of morphologically heterogenous axon terminals contacting unlabeled as well as M2R or DAT-labeled dendrites. Some of these terminals formed asymmetric synapses resembling those of cholinergic terminals in the VTA. The majority, however, formed symmetric, inhibitory-type synapses, or were apposed without recognized junctions. Our results provide the first ultrastructural evidence that the M2R is expressed, but largely not available for local activation, on the plasma membrane of VTA dopaminergic neurons. Instead, the M2R in this region has a distribution suggesting more indirect regulation of mesocorticolimbic transmission through autoregulation of acetylcholine release and changes in the physiological activity or release of other, largely inhibitory transmitters. These findings could have implications for understanding the muscarinic control of cognitive and goal-directed behaviors within the VTA. PMID:16927256
Accelerated Maternal Responding Following Intra-VTA Pertussis Toxin Treatment
Byrnes, John J.; Gleason, Erin D.; Schoen, Mathew K.; Lovelock, Dennis F.; Carini, Lindsay M.; Byrnes, Elizabeth M.; Bridges, Robert S.
2011-01-01
Prior studies have supported a role for mesolimbic dopaminergic mechanisms in the regulation of maternal behavior. Accordingly, the ventral tegmental area (VTA) and its dopaminergic projections to the nucleus accumbens (NAc) and medial prefrontal cortex (mPFC) have been implicated in both the onset and maintenance of normal maternal behavior. To date, studies of direct manipulation of VTA neurochemistry at the onset of maternal behavior have been limited. The current study was undertaken to directly test the hypothesis that enhancement of dopaminergic transmission in the mesolimbic dopamine system can stimulate maternal activity using a pup-induced virgin model. Nulliparous female rats were stereotaxically infused with pertussis toxin (PTX 0, 0.1, or 0.3 μg/hemisphere) into the VTA to chronically stimulate the activity of dopaminergic projection neurons. After 3 days of recovery, maternal responding to donor pups was tested daily, and latency (in days) to full maternal behavior was recorded. Intra-VTA PTX treatment produced a robust dose-dependent decrease in maternal behavior latency, and a long-lasting increase in locomotor activity. These effects were associated with significantly decreased dopamine D1 receptor mRNA expression in the NAc. No effects of PTX treatment on mesolimbic dopamine utilization or mPFC receptor expression were observed. The findings indicate that chronic neural activation in the VTA accelerates the onset of maternal behavior in virgin female rats via modification of the NAc dopamine D1 receptor. PMID:21571006
Chen, Han-Ting
2015-01-01
The molecular mechanisms underlying drug extinction remain largely unknown, although a role for medial prefrontal cortex (mPFC) glutamate neurons has been suggested. Considering that the mPFC sends glutamate efferents to the ventral tegmental area (VTA), we tested whether the VTA is involved in methamphetamine (METH) extinction via conditioned place preference (CPP). Among various METH-CPP stages, we found that the amount of phospho-GluR1/Ser845 increased in the VTA at behavioral extinction, but not the acquisition or withdrawal stage. Via surface biotinylation, we found that levels of membrane GluR1 were significantly increased during METH-CPP extinction, while no change was observed at the acquisition stage. Specifically, the number of dendritic spines in the VTA was increased at behavioral extinction, but not during acquisition. To validate the role of the mPFC in METH-CPP extinction, we lesioned the mPFC. Ibotenic acid lesioning of the mPFC did not affect METH-CPP acquisition, however, it abolished the extinction stage and reversed the enhanced phospho-GluR1/Ser845 levels as well as increases in VTA dendritic spines during METH-CPP extinction. Overall, this study demonstrates that the mPFC plays a critical role in METH-CPP extinction and identifies the VTA as an alternative target in mediating the extinction of drug conditioning. PMID:25691515
Parcellation of the human substantia nigra based on anatomical connectivity to the striatum☆
Chowdhury, Rumana; Lambert, Christian; Dolan, Raymond J.; Düzel, Emrah
2013-01-01
Substantia nigra/ventral tegmental area (SN/VTA) subregions, defined by dopaminergic projections to the striatum, are differentially affected by health (e.g. normal aging) and disease (e.g. Parkinson's disease). This may have an impact on reward processing which relies on dopaminergic regions and circuits. We acquired diffusion tensor imaging (DTI) with probabilistic tractography in 30 healthy older adults to determine whether subregions of the SN/VTA could be delineated based on anatomical connectivity to the striatum. We found that a dorsomedial region of the SN/VTA preferentially connected to the ventral striatum whereas a more ventrolateral region connected to the dorsal striatum. These SN/VTA subregions could be characterised by differences in quantitative structural imaging parameters, suggesting different underlying tissue properties. We also observed that these connectivity patterns differentially mapped onto reward dependence personality trait. We show that tractography can be used to parcellate the SN/VTA into anatomically plausible and behaviourally meaningful compartments, an approach that may help future studies to provide a more fine-grained synopsis of pathological changes in the dopaminergic midbrain and their functional impact. PMID:23684858
Structural Basis of Vta1 Function in the Multivesicular Body Sorting Pathway
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Junyu; Xia, Hengchuan; Zhou, Jiahai
The MVB pathway plays essential roles in several eukaryotic cellular processes. Proper function of the MVB pathway requires reversible membrane association of the ESCRTs, a process catalyzed by Vps4 ATPase. Vta1 regulates the Vps4 activity, but its mechanism of action was poorly understood. We report the high-resolution crystal structures of the Did2- and Vps60-binding N-terminal domain and the Vps4-binding C-terminal domain of S. cerevisiae Vta1. The C-terminal domain also mediates Vta1 dimerization and both subunits are required for its function as a Vps4 regulator. Emerging from our analysis is a mechanism of regulation by Vta1 in which the C-terminal domainmore » stabilizes the ATP-dependent double ring assembly of Vps4. In addition, the MIT motif-containing N-terminal domain, projected by a long disordered linker, allows contact between the Vps4 disassembly machinery and the accessory ESCRT-III proteins. This provides an additional level of regulation and coordination for ESCRT-III assembly and disassembly.« less
Carnell, Susan; Benson, Leora; Pantazatos, Spiro P; Hirsch, Joy; Geliebter, Allan
2014-11-01
The obesogenic environment is pervasive, yet only some people become obese. The aim was to investigate whether obese individuals show differential neural responses to visual and auditory food cues, independent of cue modality. Obese (BMI 29-41, n = 10) and lean (BMI 20-24, n = 10) females underwent fMRI scanning during presentation of auditory (spoken word) and visual (photograph) cues representing high-energy-density (ED) and low-ED foods. The effect of obesity on whole-brain activation, and on functional connectivity with the midbrain/VTA, was examined. Obese compared with lean women showed greater modality-independent activation of the midbrain/VTA and putamen in response to high-ED (vs. low-ED) cues, as well as relatively greater functional connectivity between the midbrain/VTA and cerebellum (P < 0.05 corrected). Heightened modality-independent responses to food cues within the midbrain/VTA and putamen, and altered functional connectivity between the midbrain/VTA and cerebellum, could contribute to excessive food intake in obese individuals. © 2014 The Obesity Society.
Structural basis of Vta1 function in the multi-vesicular body sorting pathway
Xiao, Junyu; Xia, Hengchuan; Zhou, Jiahai; Azmi, Ishara; Davies, Brian A.; Katzmann, David J.; Xu, Zhaohui
2009-01-01
Summary The MVB pathway plays essential roles in several eukaryotic cellular processes. Proper function of the MVB pathway requires reversible membrane association of the ESCRTs, a process catalyzed by Vps4 ATPase. Vta1 regulates the Vps4 activity but its mechanism of action was poorly understood. We report the high-resolution crystal structures of the Did2- and Vps60-binding N-terminal domain and the Vps4-binding C-terminal domain of S. cerevisiae Vta1. The C-terminal domain also mediates Vta1 dimerization and both subunits are required for its function as a Vps4 regulator. Emerging from our analysis is a mechanism of regulation by Vta1 in which the C-terminal domain stabilizes the ATP-dependent double ring assembly of Vps4. In addition, the MIT motif containing N-terminal domain, projected by a long disordered linker, allows contact between the Vps4 disassembly machinery and the accessory ESCRT-III proteins. This provides an additional level of regulation and coordination for ESCRT-III assembly and disassembly. PMID:18194651
Sheng, Zhenyu; Santiago, Ammy M; Thomas, Mark P; Routh, Vanessa H
2014-09-01
Lateral hypothalamic area (LHA) orexin neurons modulate reward-based feeding by activating ventral tegmental area (VTA) dopamine (DA) neurons. We hypothesize that signals of peripheral energy status influence reward-based feeding by modulating the glucose sensitivity of LHA orexin glucose-inhibited (GI) neurons. This hypothesis was tested using electrophysiological recordings of LHA orexin-GI neurons in brain slices from 4 to 6week old male mice whose orexin neurons express green fluorescent protein (GFP) or putative VTA-DA neurons from C57Bl/6 mice. Low glucose directly activated ~60% of LHA orexin-GFP neurons in both whole cell and cell attached recordings. Leptin indirectly reduced and ghrelin directly enhanced the activation of LHA orexin-GI neurons by glucose decreases from 2.5 to 0.1mM by 53±12% (n=16, P<0.001) and 41±24% (n=8, P<0.05), respectively. GABA or neurotensin receptor blockade prevented leptin's effect on glucose sensitivity. Fasting increased activation of LHA orexin-GI neurons by decreased glucose, as would be predicted by these hormonal effects. We also evaluated putative VTA-DA neurons in a novel horizontal slice preparation containing the LHA and VTA. Decreased glucose increased the frequency of spontaneous excitatory post-synaptic currents (sEPSCs; 125 ± 40%, n=9, P<0.05) and action potentials (n=9; P<0.05) in 45% (9/20) of VTA DA neurons. sEPSCs were completely blocked by AMPA and NMDA glutamate receptor antagonists (CNQX 20 μM, n=4; APV 20μM, n=4; respectively), demonstrating that these sEPSCs were mediated by glutamatergic transmission onto VTA DA neurons. Orexin-1 but not 2 receptor antagonism with SB334867 (10μM; n=9) and TCS-OX2-29 (2μM; n=5), respectively, blocks the effects of decreased glucose on VTA DA neurons. Thus, decreased glucose increases orexin-dependent excitatory glutamate neurotransmission onto VTA DA neurons. These data suggest that the glucose sensitivity of LHA orexin-GI neurons links metabolic state and reward-based feeding. Copyright © 2014 Elsevier Inc. All rights reserved.
Glutamatergic neurons are present in the rat ventral tegmental area
Yamaguchi, Tsuyoshi; Sheen, Whitney; Morales, Marisela
2010-01-01
The ventral tegmental area (VTA) is thought to play an important role in reward function. Two populations of neurons, containing either dopamine (DA) or γ-amino butyric acid (GABA), have been extensively characterized in this area. However, recent electrophysiological studies are consistent with the notion that neurons that utilize neurotransmitters other than DA or GABA are likely to be present in the VTA. Given the pronounced phenotypic diversity of neurons in this region, we have proposed that additional cell types, such as those that express the neurotransmitter glutamate may also be present in this area. Thus, by using in situ hybridization histochemistry we investigated whether transcripts encoded by genes for the two vesicular glutamate transporters, VGluT1 or VGluT2, were expressed in the VTA. We found that VGluT2 mRNA but not VGluT1 mRNA is expressed in the VTA. Neurons expressing VGluT2 mRNA were differentially distributed throughout the rostro-caudal and medio-lateral aspects of the VTA, with the highest concentration detected in rostro-medial areas. Phenotypic characterization with double in situ hybridization of these neurons indicated that they rarely co–expressed mRNAs for tyrosine hydroxylase (TH, marker for DAergic neurons) or glutamic acid decarboxylase (GAD, marker for GABAergic neurons). Based on the results described here, we concluded that the VTA contains glutamatergic neurons that in their vast majority are clearly non-DAergic and non-GABAergic. PMID:17241272
Giordano, Giulia Maria; Stanziano, Mario; Papa, Michele; Mucci, Armida; Prinster, Anna; Soricelli, Andrea; Galderisi, Silvana
2018-04-10
Avolition, a deficit in goal-directed behavior, is a key aspect of negative symptoms. It is highly prevalent in schizophrenia and is associated to poor functional outcome and to measures of real life motivation, indicating that central to the concept is the lack of interest and motivation. In this study we tested the hypothesis that avolition is related to altered connectivity within dopaminergic cortico-striatal circuits involved in motivation processes. Since dopamine input to these circuits derives mostly from the ventro-tegmental area (VTA), we investigated the relationships between the resting-state functional connectivity (RS-FC) of the VTA and avolition in twenty-six subjects with schizophrenia (SCZ), treated with second-generation antipsychotics only, compared to twenty-two healthy controls (HC). SCZ, in comparison to HC, showed significantly reduced RS-FC of the VTA with bilateral ventro-lateral prefrontal cortex (VLPFC), bilateral insular cortex (IC) and right (R) lateral occipital complex (LOC) and increased RS-FC of the VTA with bilateral dorso-lateral prefrontal cortex (DLPFC). Significant negative correlations were found between avolition and RS-FC of the VTA with the bilateral IC, R VLPFC and R LOC. According to our findings, avolition is linked to a disconnectivity of the VTA from several key cortical regions involved in the integration of value information with action selection. These findings are in line with translational animal models of "auto-activation apathy". Copyright © 2018 Elsevier B.V. and ECNP. All rights reserved.
Margolis, Elyssa B; Fields, Howard L; Hjelmstad, Gregory O; Mitchell, Jennifer M
2008-11-26
Alcoholism is a complex and debilitating syndrome affecting approximately 140 million people worldwide. However, not everyone who consumes ethanol develops abuse, raising the possibility that some individuals have a protective mechanism that inhibits elevated alcohol consumption. We tested the hypothesis that the delta-opioid receptor (DOR) plays such a protective role. Here we show that DOR activity in the ventral tegmental area (VTA) robustly decreases ethanol consumption in rats and that these effects depend on baseline ethanol consumption. Intra-VTA microinjection of the DOR agonist DPDPE decreases drinking, particularly in low-drinking animals. Furthermore, VTA microinjection of the DOR selective antagonist TIPP-Psi increases drinking in low, but not high, drinkers and this increase is blocked by comicroinjection of the GABA(A) antagonist bicuculline. Using electrophysiological techniques we found that in VTA brain slices from drinking rats DPDPE presynaptically inhibits GABA(A) receptor mediated IPSCs in low drinkers, but not in high drinkers or naive animals, most likely through activation of DORs on GABA terminals. This DOR-mediated inhibition of IPSCs also correlates inversely with behavioral correlates of anxiety measured in the elevated plus maze. In contrast, presynaptic inhibition of VTA GABA(A) IPSCs by the mu-opioid receptor agonist DAMGO is significantly reduced in both high- and low-drinking rats (<30%) compared with age-matched nondrinking controls (>70%). Together, our findings demonstrate the protective nature of VTA DORs and identify an important new target for therapeutic intervention for alcoholism.
Leite-Morris, Kimberly A; Fukudome, Eugene Y; Kaplan, Gary B
2002-01-14
Recent studies suggest that gamma-aminobutyric acid type B (GABA(B)) receptors located on dopaminergic cells in the ventral tegmental area (VTA) regulate mesolimbic dopaminergic (A10) activity. In the current study, we identified GABA(B) receptor subtypes in the area of the VTA and examined their role in modulating acute opiate actions. We studied the effects of intra-VTA infusions of the selective GABA(B) agonist baclofen on morphine-induced locomotor stimulation and A10 neuronal activation. Drug treatments were followed by ambulatory activity monitoring for 180 min. Intra-VTA baclofen treatment produced a 70% inhibition of morphine-stimulated locomotor activity. Furthermore, functional activation of A10 neurons was assessed by immunohistochemical staining of c-Fos in the nucleus accumbens (NAc), where A10 neurons terminate. We found that morphine treatment increased the levels of Fos-positive nuclei in the NAc, while intra-VTA baclofen treatment reversed morphine's effects. Finally, GABA(B) receptor subtypes and isoforms were identified in the ventromedial mesencephalon using immunoblotting. We demonstrated the presence of GABA(B)R1a (130 kDa), GABA(B)R1b (100 kDa), and GABA(B)R2 (120 kDa) receptor subtypes in this region. These results suggest that GABA(B) receptor isoforms are found in the VTA and their activation results in the blockade of behavioral effects of opiates via inhibition of dopaminergic neurotransmission.
Glucose modulates food-related salience coding of midbrain neurons in humans.
Ulrich, Martin; Endres, Felix; Kölle, Markus; Adolph, Oliver; Widenhorn-Müller, Katharina; Grön, Georg
2016-12-01
Although early rat studies demonstrated that administration of glucose diminishes dopaminergic midbrain activity, evidence in humans has been lacking so far. In the present functional magnetic resonance imaging study, glucose was intravenously infused in healthy human male participants while seeing images depicting low-caloric food (LC), high-caloric food (HC), and non-food (NF) during a food/NF discrimination task. Analysis of brain activation focused on the ventral tegmental area (VTA) as the origin of the mesolimbic system involved in salience coding. Under unmodulated fasting baseline conditions, VTA activation was greater during HC compared with LC food cues. Subsequent to infusion of glucose, this difference in VTA activation as a function of caloric load leveled off and even reversed. In a control group not receiving glucose, VTA activation during HC relative to LC cues remained stable throughout the course of the experiment. Similar treatment-specific patterns of brain activation were observed for the hypothalamus. The present findings show for the first time in humans that glucose infusion modulates salience coding mediated by the VTA. Hum Brain Mapp 37:4376-4384, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Enrico, P; Migliore, M; Spiga, S; Mulas, G; Caboni, F; Diana, M
2016-05-13
Dopamine (DA) neurons of the ventral tegmental area (VTA) play a key role in the neurobiological basis of goal-directed behaviors and addiction. Morphine (MOR) withdrawal induces acute and long-term changes in the morphology and physiology of VTA DA cells, but the mechanisms underlying these modifications are poorly understood. Because of their predictive value, computational models are a powerful tool in neurobiological research, and are often used to gain further insights and deeper understanding on the molecular and physiological mechanisms underlying the development of various psychiatric disorders. Here we present a biophysical model of a DA VTA neuron based on 3D morphological reconstruction and electrophysiological data, showing how opiates withdrawal-driven morphological and electrophysiological changes could affect the firing rate and discharge pattern. The model findings suggest how and to what extent a change in the balance of GABA/GLU inputs can take into account the experimentally observed hypofunction of VTA DA neurons during acute and prolonged withdrawal, whereas morphological changes may play a role in the increased excitability of VTA DA cell to opiate administration observed during opiate withdrawal. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Involvement of serotonin in the ventral tegmental area in thermoregulation of freely moving rats.
Ishiwata, Takayuki; Hasegawa, Hiroshi; Greenwood, Benjamin N
2017-07-13
We have recently reported that the serotonin (5-HT) projections from the midbrain's raphe nuclei that contains 5-HT cell bodies may play a role both in heat production and in heat loss. The purpose of the present study was to clarify the involvement of 5-HT in the ventral tegmental area (VTA), where 5-HT is suggested to participate in thermoregulation, using the combined methods of telemetry, microdialysis, and high performance liquid chromatography, with a special emphasis on regulation of the body temperature (T b ) in freely moving rats. First, we measured changes in T b , tail skin temperature (T tail ; an index of heat loss), heart rate (HR; an index of heat production), locomotor activity (Act), and levels of extracellular monoamines in the VTA during cold (5°C) or heat (35°C) exposure. Subsequently, we perfused citalopram (5-HT re-uptake inhibitor) into the VTA and measured the thermoregulatory parameters and monoamines release. Although T b , T tail , and HR changed during both exposures, significant changes in extracellular level of 5-HT (138.7±12.7% baseline, p<0.01), but not dopamine (DA) or noradrenaline (NA) were noted in the VTA only during heat exposure. In addition, perfusion of citalopram into the VTA increased extracellular 5-HT levels (221.0±52.2% baseline, p<0.01), but not DA or NA, while T b decreased from 37.4±0.1°C to 36.8±0.2°C (p<0.001),T tail increased from 26.3±0.4°C to 28.4±0.4°C (p<0.001), and HR and Act remained unchanged. Our results suggest that the VTA is a key area for thermoregulation, and 5-HT, but not DA or NA, modulates the heat loss system through action in the VTA. Copyright © 2017 Elsevier B.V. All rights reserved.
De Gregorio, Danilo; Posa, Luca; Ochoa-Sanchez, Rafael; McLaughlin, Ryan; Maione, Sabatino; Comai, Stefano; Gobbi, Gabriella
2016-11-01
d-lysergic diethylamide (LSD) is a hallucinogenic drug that interacts with the serotonin (5-HT) system binding to 5-HT 1 and 5-HT 2 receptors. Little is known about its potential interactions with the dopamine (DA) neurons of the ventral tegmental area (VTA). Using in-vivo electrophysiology in male adult rats, we evaluated the effects of cumulative doses of LSD on VTA DA neuronal activity, compared these effects to those produced on 5-HT neurons in the dorsal raphe nucleus (DRN), and attempted to identify the mechanism of action mediating the effects of LSD on VTA DA neurons. LSD, at low doses (5-20μg/kg, i.v.) induced a significant decrease of DRN 5-HT firing activity through 5-HT 2A and D 2 receptors. At these low doses, LSD did not alter VTA DA neuronal activity. On the contrary, at higher doses (30-120μg/kg, i.v.), LSD dose-dependently decreased VTA DA firing activity. The depletion of 5-HT with p-chlorophenylalanine did not modulate the effects of LSD on DA firing activity. The inhibitory effects of LSD on VTA DA firing activity were prevented by the D 2 receptor antagonist haloperidol (50μg/kg, i.v.) and by the 5-HT 1A receptor antagonist WAY-100,635 (500μg/kg, i.v.). Notably, pretreatment with the trace amine-associate receptor 1 (TAAR 1 ) antagonist EPPTB (5mg/kg, i.v.) blocked the inhibitory effect of LSD on VTA DA neurons. These results suggest that LSD at high doses strongly affects DA mesolimbic neuronal activity in a 5-HT independent manner and with a pleiotropic mechanism of action involving 5-HT 1A, D 2 and TAAR 1 receptors. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hisey, Erin; Kearney, Matthew Gene; Mooney, Richard
2018-04-01
The complex skills underlying verbal and musical expression can be learned without external punishment or reward, indicating their learning is internally guided. The neural mechanisms that mediate internally guided learning are poorly understood, but a circuit comprising dopamine-releasing neurons in the midbrain ventral tegmental area (VTA) and their targets in the basal ganglia are important to externally reinforced learning. Juvenile zebra finches copy a tutor song in a process that is internally guided and, in adulthood, can learn to modify the fundamental frequency (pitch) of a target syllable in response to external reinforcement with white noise. Here we combined intersectional genetic ablation of VTA neurons, reversible blockade of dopamine receptors in the basal ganglia, and singing-triggered optogenetic stimulation of VTA terminals to establish that a common VTA-basal ganglia circuit enables internally guided song copying and externally reinforced syllable pitch learning.
Dautan, Daniel; Souza, Albert S; Huerta-Ocampo, Icnelia; Valencia, Miguel; Assous, Maxime; Witten, Ilana B; Deisseroth, Karl; Tepper, James M; Bolam, J Paul; Gerdjikov, Todor V; Mena-Segovia, Juan
2016-08-01
Dopamine neurons in the ventral tegmental area (VTA) receive cholinergic innervation from brainstem structures that are associated with either movement or reward. Whereas cholinergic neurons of the pedunculopontine nucleus (PPN) carry an associative/motor signal, those of the laterodorsal tegmental nucleus (LDT) convey limbic information. We used optogenetics and in vivo juxtacellular recording and labeling to examine the influence of brainstem cholinergic innervation of distinct neuronal subpopulations in the VTA. We found that LDT cholinergic axons selectively enhanced the bursting activity of mesolimbic dopamine neurons that were excited by aversive stimulation. In contrast, PPN cholinergic axons activated and changed the discharge properties of VTA neurons that were integrated in distinct functional circuits and were inhibited by aversive stimulation. Although both structures conveyed a reinforcing signal, they had opposite roles in locomotion. Our results demonstrate that two modes of cholinergic transmission operate in the VTA and segregate the neurons involved in different reward circuits.
A close relationship between verbal memory and SN/VTA integrity in young and older adults.
Düzel, Sandra; Schütze, Hartmut; Stallforth, Sabine; Kaufmann, Jörn; Bodammer, Nils; Bunzeck, Nico; Münte, Thomas F; Lindenberger, Ulman; Heinze, Hans-Jochen; Düzel, Emrah
2008-11-01
Age-related dysfunction in dopaminergic neuromodulation is assumed to contribute to age-associated memory impairment. However, to date there are no in vivo data on how structural parameters of the substantia nigra/ventral tegmental area (SN/VTA), the main origin of dopaminergic projections, relate to memory performance in healthy young and older adults. We investigated this relationship in a cross-sectional study including data from the hippocampus and frontal white matter (FWM) and also assessing working memory span and attention. In groups of young and older adults matched for the variance of their age distribution, gender and body mass index, we observed a robust positive correlation between Magnetization Transfer Ratio (MTR)--a measure of structural integrity--of the SN/VTA and FWM with verbal learning and memory performance among older adults, while there was a negative correlation in the young. Two additional imaging parameters, anisotropy of diffusion and diffusion coefficient, suggested that in older adults FWM changes reflected vascular pathology while SN/VTA changes pointed towards neuronal loss and loss of water content. The negative correlation in the young possibly reflected maturational changes. Multiple regression analyses indicated that in both young and older adults, SN/VTA MTR explained more variance of verbal learning and memory than FWM MTR or hippocampal MTR, and contributed less to explaining variance of working memory span. Together these findings indicate that structural integrity in the SN/VTA has a relatively selective impact on verbal learning and memory and undergoes specific changes from young adulthood to older age that qualitatively differ from changes in the FWM and hippocampus.
Oleic Acid in the Ventral Tegmental Area Inhibits Feeding, Food Reward, and Dopamine Tone.
Hryhorczuk, Cecile; Sheng, Zhenyu; Décarie-Spain, Léa; Giguère, Nicolas; Ducrot, Charles; Trudeau, Louis-Éric; Routh, Vanessa H; Alquier, Thierry; Fulton, Stephanie
2018-02-01
Long-chain fatty acids (FAs) act centrally to decrease food intake and hepatic glucose production and alter hypothalamic neuronal activity in a manner that depends on FA type and cellular transport proteins. However, it is not known whether FAs are sensed by ventral tegmental area (VTA) dopamine (DA) neurons to control food-motivated behavior and DA neurotransmission. We investigated the impact of the monounsaturated FA oleate in the VTA on feeding, locomotion, food reward, and DA neuronal activity and DA neuron expression of FA-handling proteins and FA uptake. A single intra-VTA injection of oleate, but not of the saturated FA palmitate, decreased food intake and increased locomotor activity. Furthermore, intra-VTA oleate blunted the rewarding effects of high-fat/sugar food in an operant task and inhibited DA neuronal firing. Using sorted DA neuron preparations from TH-eGFP mice we found that DA neurons express FA transporter and binding proteins, and are capable of intracellular transport of long-chain FA. Finally, we demonstrate that a transporter blocker attenuates FA uptake into DA neurons and blocks the effects of intra-VTA oleate to decrease food-seeking and DA neuronal activity. Together, these results suggest that DA neurons detect FA and that oleate has actions in the VTA to suppress DA neuronal activity and food seeking following cellular incorporation. These findings highlight the capacity of DA neurons to act as metabolic sensors by responding not only to hormones but also to FA nutrient signals to modulate food-directed behavior.
Concomitant Release of Ventral Tegmental Acetylcholine and Accumbal Dopamine by Ghrelin in Rats
Jerlhag, Elisabet; Janson, Anna Carin; Waters, Susanna; Engel, Jörgen A.
2012-01-01
Ghrelin, an orexigenic peptide, regulates energy balance specifically via hypothalamic circuits. Growing evidence suggest that ghrelin increases the incentive value of motivated behaviours via activation of the cholinergic-dopaminergic reward link. It encompasses the cholinergic afferent projection from the laterodorsal tegmental area (LDTg) to the dopaminergic cells of the ventral tegmental area (VTA) and the mesolimbic dopamine system projecting from the VTA to nucleus accumbens (N.Acc.). Ghrelin receptors (GHS-R1A) are expressed in these reward nodes and ghrelin administration into the LDTg increases accumbal dopamine, an effect involving nicotinic acetylcholine receptors in the VTA. The present series of experiments were undertaken directly to test this hypothesis. Here we show that ghrelin, administered peripherally or locally into the LDTg concomitantly increases ventral tegmental acetylcholine as well as accumbal dopamine release. A GHS-R1A antagonist blocks this synchronous neurotransmitter release induced by peripheral ghrelin. In addition, local perfusion of the unselective nicotinic antagonist mecamylamine into the VTA blocks the ability of ghrelin (administered into the LDTg) to increase N.Acc.-dopamine, but not VTA-acetylcholine. Collectively our data indicate that ghrelin activates the LDTg causing a release of acetylcholine in the VTA, which in turn activates local nicotinic acetylcholine receptors causing a release of accumbal dopamine. Given that a dysfunction in the cholinergic-dopaminergic reward system is involved in addictive behaviours, including compulsive overeating and alcohol use disorder, and that hyperghrelinemia is associated with such addictive behaviours, ghrelin-responsive circuits may serve as a novel pharmacological target for treatment of alcohol use disorder as well as binge eating. PMID:23166710
Degoulet, Mickael; Stelly, Claire E.; Ahn, Kee-Chan; Morikawa, Hitoshi
2015-01-01
Drug addiction is driven, in part, by powerful and enduring memories of sensory cues associated with drug intake. As such, relapse to drug use during abstinence is frequently triggered by an encounter with drug-associated cues, including the drug itself. L-type Ca2+ channels (LTCCs) are known to regulate different forms of synaptic plasticity, the major neural substrate for learning and memory, in various brain areas. Long-term potentiation (LTP) of NMDA receptor (NMDAR)-mediated glutamatergic transmission in the ventral tegmental area (VTA) may contribute to the increased motivational valence of drug-associated cues triggering relapse. In this study, using rat brain slices, we found that isradipine, a general LTCC antagonist used as antihypertensive medication, not only blocks the induction of NMDAR LTP but also promotes the reversal of previously induced LTP in the VTA. In behaving rats, isradipine injected into the VTA suppressed the acquisition of cocaine-paired contextual cue memory assessed using a conditioned place preference (CPP) paradigm. Furthermore, administration of isradipine or a CaV1.3 subtype-selective LTCC antagonist (systemic or intra-VTA) before a single extinction or reinstatement session, while having no immediate effect at the time of administration, abolished previously acquired cocaine and alcohol (ethanol) CPP on subsequent days. Notably, CPP thus extinguished cannot be reinstated by drug re-exposure, even after 2 weeks of withdrawal. These results suggest that LTCC blockade during exposure to drug-associated cues may cause unlearning of the increased valence of those cues, presumably via reversal of glutamatergic synaptic plasticity in the VTA. PMID:26100537
Degoulet, M; Stelly, C E; Ahn, K-C; Morikawa, H
2016-03-01
Drug addiction is driven, in part, by powerful and enduring memories of sensory cues associated with drug intake. As such, relapse to drug use during abstinence is frequently triggered by an encounter with drug-associated cues, including the drug itself. L-type Ca(2+) channels (LTCCs) are known to regulate different forms of synaptic plasticity, the major neural substrate for learning and memory, in various brain areas. Long-term potentiation (LTP) of NMDA receptor (NMDAR)-mediated glutamatergic transmission in the ventral tegmental area (VTA) may contribute to the increased motivational valence of drug-associated cues triggering relapse. In this study, using rat brain slices, we found that isradipine, a general LTCC antagonist used as antihypertensive medication, not only blocks the induction of NMDAR LTP but also promotes the reversal of previously induced LTP in the VTA. In behaving rats, isradipine injected into the VTA suppressed the acquisition of cocaine-paired contextual cue memory assessed using a conditioned place preference (CPP) paradigm. Furthermore, administration of isradipine or a CaV1.3 subtype-selective LTCC antagonist (systemic or intra-VTA) before a single extinction or reinstatement session, while having no immediate effect at the time of administration, abolished previously acquired cocaine and alcohol (ethanol) CPP on subsequent days. Notably, CPP thus extinguished cannot be reinstated by drug re-exposure, even after 2 weeks of withdrawal. These results suggest that LTCC blockade during exposure to drug-associated cues may cause unlearning of the increased valence of those cues, presumably via reversal of glutamatergic synaptic plasticity in the VTA.
Liu, Zhiqiang; Han, Jing; Jia, Lintao; Maillet, Jean-Christian; Bai, Guang; Xu, Lin; Jia, Zhengping; Zheng, Qiaohua; Zhang, Wandong; Monette, Robert; Merali, Zul; Zhu, Zhou; Wang, Wei; Ren, Wei; Zhang, Xia
2010-01-01
Drug addiction is an association of compulsive drug use with long-term associative learning/memory. Multiple forms of learning/memory are primarily subserved by activity- or experience-dependent synaptic long-term potentiation (LTP) and long-term depression (LTD). Recent studies suggest LTP expression in locally activated glutamate synapses onto dopamine neurons (local Glu-DA synapses) of the midbrain ventral tegmental area (VTA) following a single or chronic exposure to many drugs of abuse, whereas a single exposure to cannabinoid did not significantly affect synaptic plasticity at these synapses. It is unknown whether chronic exposure of cannabis (marijuana or cannabinoids), the most commonly used illicit drug worldwide, induce LTP or LTD at these synapses. More importantly, whether such alterations in VTA synaptic plasticity causatively contribute to drug addictive behavior has not previously been addressed. Here we show in rats that chronic cannabinoid exposure activates VTA cannabinoid CB1 receptors to induce transient neurotransmission depression at VTA local Glu-DA synapses through activation of NMDA receptors and subsequent endocytosis of AMPA receptor GluR2 subunits. A GluR2-derived peptide blocks cannabinoid-induced VTA synaptic depression and conditioned place preference, i.e., learning to associate drug exposure with environmental cues. These data not only provide the first evidence, to our knowledge, that NMDA receptor-dependent synaptic depression at VTA dopamine circuitry requires GluR2 endocytosis, but also suggest an essential contribution of such synaptic depression to cannabinoid-associated addictive learning, in addition to pointing to novel pharmacological strategies for the treatment of cannabis addiction. PMID:21187978
Alkaline RFC Space Station prototype - 'Next step Space Station'. [Regenerative Fuel Cells
NASA Technical Reports Server (NTRS)
Hackler, I. M.
1986-01-01
The regenerative fuel cell, a candidate technology for the Space Station's energy storage system, is described. An advanced development program was initiated to design, manufacture, and integrate a regenerative fuel cell Space Station prototype (RFC SSP). The RFC SSP incorporates long-life fuel cell technology, increased cell area for the fuel cells, and high voltage cell stacks for both units. The RFC SSP's potential for integration with the Space Station's life support and propulsion systems is discussed.
Consolidated fuel reprocessing program
NASA Astrophysics Data System (ADS)
1985-02-01
Improved processes and components for the Breeder Reprocessing Engineering Test (BRET) were identified and developed as well as the design, procurement and development of prototypic equipment. The integrated testing of process equipment and flowsheets prototypical of a pilot scale full reprocessing plant, and also for testing prototypical remote features of specific complex components in the system are provided. Information to guide the long range activities of the Consolidated Fuel Reprocessing Program (CERP), a focal point for foreign exchange activities, and support in specialized technical areas are described. Research and development activities in HTGR fuel treatment technology are being conducted. Head-end process and laboratory scale development efforts, as well as studies specific to HTGR fuel, are reported. The development of off-gas treatment processes has generic application to fuel reprocessing, progress in this work is also reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandler, K.; Eudy, L.
This report describes operations at Connecticut Transit (CTTRANSIT) in Hartford for one prototype fuel cell bus and three new diesel buses operating from the same location. The prototype fuel cell bus was manufactured by Van Hool and ISE Corp. and features an electric hybrid drive system with a UTC Power PureMotion 120 Fuel Cell Power System and ZEBRA batteries for energy storage. The fuel cell bus started operation in April 2007, and evaluation results through October 2009 are provided in this report.
Activation of Ventral Tegmental Area 5-HT2C Receptors Reduces Incentive Motivation.
Valencia-Torres, Lourdes; Olarte-Sánchez, Cristian M; Lyons, David J; Georgescu, Teodora; Greenwald-Yarnell, Megan; Myers, Martin G; Bradshaw, Christopher M; Heisler, Lora K
2017-06-01
Obesity is primarily due to food intake in excess of the body's energetic requirements, intake that is not only associated with hunger but also the incentive value of food. The 5-hydroxytryptamine 2C receptor (5-HT 2C R) is a target for the treatment of human obesity. Mechanistically, 5-HT 2C Rs are positioned to influence both homeostatic feeding circuits within the hypothalamus and reward circuits within the ventral tegmental area (VTA). Here we investigated the role of 5-HT 2C Rs in incentive motivation using a mathematical model of progressive ratio (PR) responding in mice. We found that the 5-HT 2C R agonist lorcaserin significantly reduced both ad libitum chow intake and PR responding for chocolate pellets and increased c-fos expression in VTA 5-HT 2C R expressing γ-aminobutyric acid (GABA) neurons, but not 5-HT 2C R expressing dopamine (DA) neurons. We next adopted a chemogenetic approach using a 5-HT 2C R CRE line to clarify the function of subset of 5-HT 2C receptor expressing VTA neurons in the modulation of appetite and food-motivated behavior. Activation of VTA 5-HT 2C receptor expressing neurons significantly reduced ad libitum chow intake, operant responding for chocolate pellets, and the incentive value of food. In contrast, chemogenetic inhibition of VTA 5-HT 2C receptor expressing neurons had no effect on the feeding behavior. These results indicate that activation of the subpopulation of 5-HT 2C R neurons within the VTA is sufficient to significantly reduce homeostatic feeding and effort-based intake of palatable food, and that this subset has an inhibitory role in motivational processes. These findings are relevant to the treatment of obesity.
Lammer, Jan; Prager, Sonja G.; Cheney, Michael C.; Ahmed, Amel; Radwan, Salma H.; Burns, Stephen A.; Silva, Paolo S.; Sun, Jennifer K.
2016-01-01
Purpose To determine whether cone density, spacing, or regularity in eyes with and without diabetes (DM) as assessed by high-resolution adaptive optics scanning laser ophthalmoscopy (AOSLO) correlates with presence of diabetes, diabetic retinopathy (DR) severity, or presence of diabetic macular edema (DME). Methods Participants with type 1 or 2 DM and healthy controls underwent AOSLO imaging of four macular regions. Cone assessment was performed by independent graders for cone density, packing factor (PF), nearest neighbor distance (NND), and Voronoi tile area (VTA). Regularity indices (mean/SD) of NND (RI-NND) and VTA (RI-VTA) were calculated. Results Fifty-three eyes (53 subjects) were assessed. Mean ± SD age was 44 ± 12 years; 81% had DM (duration: 22 ± 13 years; glycated hemoglobin [HbA1c]: 8.0 ± 1.7%; DM type 1: 72%). No significant relationship was found between DM, HbA1c, or DR severity and cone density or spacing parameters. However, decreased regularity of cone arrangement in the macular quadrants was correlated with presence of DM (RI-NND: P = 0.04; RI-VTA: P = 0.04), increasing DR severity (RI-NND: P = 0.04), and presence of DME (RI-VTA: P = 0.04). Eyes with DME were associated with decreased density (P = 0.04), PF (P = 0.03), and RI-VTA (0.04). Conclusions Although absolute cone density and spacing don't appear to change substantially in DM, decreased regularity of the cone arrangement is consistently associated with the presence of DM, increasing DR severity, and DME. Future AOSLO evaluation of cone regularity is warranted to determine whether these changes are correlated with, or predict, anatomic or functional deficits in patients with DM. PMID:27926754
Wohlschläger, Afra; Karne, Harish; Jordan, Denis; Lowe, Mark J; Jones, Stephen E; Anand, Amit
2018-01-01
Background: Dorsal raphe nucleus (DRN) and ventral tegmental area (VTA) are major brainstem monamine nuclei consisting of serotonin and dopamine neurons respectively. Animal studies show that firing patterns in both nuclei are altered when animals exhibit depression like behaviors. Functional MRI studies in humans have shown reduced VTA activation and DRN connectivity in depression. This study for the first time aims at investigating the functional integrity of local neuronal firing concurrently in both the VTA and DRN in vivo in humans using spectral analysis of resting state low frequency fluctuation fMRI. Method: A total of 97 medication-free subjects-67 medication-free young patients (ages 18-30) with major depressive disorder and 30 closely matched healthy controls were included in the study to detect aberrant dynamics in DRN and VTA. For the investigation of altered localized dynamics we conducted power spectral analysis and above this spectral cross correlation between the two groups. Complementary to this, spectral dependence of permutation entropy, an information theoretical measure, was compared between groups. Results: Patients displayed significant spectral slowing in VTA vs. controls ( p = 0.035, corrected). In DRN, spectral slowing was less pronounced, but the amount of slowing significantly correlated with 17-item Hamilton Depression Rating scores of depression severity ( p = 0.038). Signal complexity as assessed via permutation entropy showed spectral alterations inline with the results on spectral slowing. Conclusion: Our results indicate that altered functional dynamics of VTA and DRN in depression can be detected from regional fMRI signal. On this basis, impact of antidepressant treatment and treatment response can be assessed using these markers in future studies.
Prieto-Garcia, Luna; Egecioglu, Emil; Studer, Erik; Westberg, Lars; Jerlhag, Elisabet
2015-12-01
In addition to food intake and energy balance regulation, ghrelin mediate the rewarding and motivational properties of palatable food as well as addictive drugs. The ability of ghrelin to regulate reinforcement involves the cholinergic-dopaminergic reward link, which encompasses a cholinergic projection from the laterodorsal tegmental area (LDTg) to the ventral tegmental area (VTA) together with mesolimbic dopaminergic projections from the VTA to the nucleus accumbens (NAc). Recently, systemic ghrelin was shown to regulate sexual behavior and motivation in male mice via dopamine neurotransmission. The present study therefore elucidates the role of ghrelin and ghrelin receptor (GHS-R1A) antagonist treatment within NAc, VTA or LDTg for sexual behavior in sexually naïve male mice. Local administration of the GHSR-1A antagonist, JMV2959, into the VTA or LDTg was found to reduce the preference for female mice, the number of mounts and the duration of mounting as well as to prolong the latency to mount. This was further substantiated by the findings that ghrelin administration into the VTA or LDTg increased the number of mounts and the duration of mounting and decreased the latency to mount. Moreover, ghrelin administered into the LDTg increased the preference for female mice. Accumbal administration of ghrelin increased whereas GHS-R1A antagonist decreased the intake of palatable food, but did not alter sexual behavior. In males exposed to sexual interaction, systemic administration of ghrelin increases whereas JMV2959 decreases the turnover of dopamine in the VTA. These data suggest that ghrelin signaling within the tegmental areas is required for sexual behavior in sexually naïve male mice. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Harrison, Ian F.; Anis, Hiba K.; Dexter, David T.
2016-01-01
Parkinson’s disease (PD) manifests clinically as bradykinesia, rigidity, and development of a resting tremor, primarily due to degeneration of dopaminergic nigrostriatal pathways in the brain. Intranigral administration of the irreversible ubiquitin proteasome system inhibitor, lactacystin, has been used extensively to model nigrostriatal degeneration in rats, and study the effects of candidate neuroprotective agents on the integrity of the dopaminergic nigrostriatal system. Recently however, adjacent extra-nigral brain regions such as the ventral tegmental area (VTA) have been noted to also become affected in this model, yet their integrity in studies of candidate neuroprotective agents in the model have largely been overlooked. Here we quantify the extent and distribution of dopaminergic degeneration in the VTA of rats intranigrally lesioned with lactacystin, and quantify the extent of VTA dopaminergic neuroprotection after systemic treatment with an epigenetic therapeutic agent, valproate, shown previously to protect dopaminergic SNpc neurons in this model. We found that unilateral intranigral administration of lactacystin resulted in a 53.81% and 31.72% interhemispheric loss of dopaminergic SNpc and VTA neurons, respectively. Daily systemic treatment of lactacystin lesioned rats with valproate however resulted in dose-dependant neuroprotection of VTA neurons. Our findings demonstrate that not only is the VTA also affected in the intranigral lactacystin rat model of PD, but that this extra-nigral brain region is substrate for neuroprotection by valproate, an agent shown previously to induce neuroprotection and neurorestoration of SNpc dopaminergic neurons in this model. Our results therefore suggest that valproate is a candidate for extra-nigral as well as intra-nigral neuroprotection. PMID:26742637
Harrison, Ian F; Anis, Hiba K; Dexter, David T
2016-02-12
Parkinson's disease (PD) manifests clinically as bradykinesia, rigidity, and development of a resting tremor, primarily due to degeneration of dopaminergic nigrostriatal pathways in the brain. Intranigral administration of the irreversible ubiquitin proteasome system inhibitor, lactacystin, has been used extensively to model nigrostriatal degeneration in rats, and study the effects of candidate neuroprotective agents on the integrity of the dopaminergic nigrostriatal system. Recently however, adjacent extra-nigral brain regions such as the ventral tegmental area (VTA) have been noted to also become affected in this model, yet their integrity in studies of candidate neuroprotective agents in the model have largely been overlooked. Here we quantify the extent and distribution of dopaminergic degeneration in the VTA of rats intranigrally lesioned with lactacystin, and quantify the extent of VTA dopaminergic neuroprotection after systemic treatment with an epigenetic therapeutic agent, valproate, shown previously to protect dopaminergic SNpc neurons in this model. We found that unilateral intranigral administration of lactacystin resulted in a 53.81% and 31.72% interhemispheric loss of dopaminergic SNpc and VTA neurons, respectively. Daily systemic treatment of lactacystin lesioned rats with valproate however resulted in dose-dependant neuroprotection of VTA neurons. Our findings demonstrate that not only is the VTA also affected in the intranigral lactacystin rat model of PD, but that this extra-nigral brain region is substrate for neuroprotection by valproate, an agent shown previously to induce neuroprotection and neurorestoration of SNpc dopaminergic neurons in this model. Our results therefore suggest that valproate is a candidate for extra-nigral as well as intra-nigral neuroprotection. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Yeganeh, Fahimeh; Ranjbar, Afsaneh; Hatam, Masoumeh; Nasimi, Ali
2015-07-23
The ventral tegmental area (VTA) contains GABA terminals involved in the regulation of the cardiovascular system. Previously, we demonstrated that blocking GABAA but not GABAB receptors produced a pressor response accompanied by marked bradycardia. This study was performed to find the possible mechanisms involved in these responses by blocking ganglionic nicotinic receptors, peripheral muscarinic receptors or peripheral V1 vasopressin receptors. Experiments were performed on urethane anesthetized male Wistar rats. Drugs were microinjected unilaterally into the VTA (100 nl). The average changes in mean arterial pressure (MAP) and heart rate (HR) were compared between pre- and post-treatment using paired t-test. Injection of bicuculline methiodide (BMI), a GABAA antagonist, into the VTA caused a significant increase in MAP and a decrease in HR. Administration (i.v.) of the nicotinic receptor blocker, hexamethonium, enhanced the pressor response but abolished the bradycardic response to BMI, which ruled out involvement of the sympathetic nervous system. Blockade of the peripheral muscarinic receptors by homatropine (i.v.) abolished the bradycardic effect of BMI, but had no effect on the pressor response, indicating that bradycardia was produced by the parasympathetic outflow to the heart. Both the pressor and bradycardic responses to BMI were blocked by V1 receptor antagonist (i.v.), indicating that administration of BMI in the VTA disinhibited the release of vasopressin into the circulation. In conclusion, we demonstrated that GABAergic mechanism of the VTA exerts a tonic inhibition on vasopressin release through activation of GABAA receptors. The sympathetic system is not involved in the decrease of blood pressure by GABA of the VTA. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Altier, N; Stewart, J
1998-04-01
In the present study, we examined the effects of dopamine (DA) receptor antagonists infused into the nucleus accumbens septi (NAS) on analgesia induced by intra-ventral tegmental area (VTA) infusions of the substance P (SP) analog, DiMe-C7 or morphine and intra-NAS infusions of amphetamine. Rats received intra-NAS infusions of either the mixed DA receptor antagonist flupenthixol (1.5 or 3.0 microg/0.5 microl/side; DiMe-C7 only), the DA D1/D5 receptor antagonist SCH 23390 (0.1 microg/0.5 microl/side; DiMe-C7 only) or the DA D2-type receptor antagonist raclopride (1.0, 3.0 or 5.0 microg/0.5 microl/side). Ten minutes later, rats received intra-VTA infusions of DiMe-C7 (3.0 microg/0.5 microl/side) or morphine (3.0 microg/0.5 microl/side) or intra-NAS infusions of amphetamine (2.5 microg/0.5 microl/side). Animals were then administered the formalin test for tonic pain. Intra-NAS raclopride prevented analgesia induced by intra-VTA DiMe-C7, intra-VTA morphine and intra-NAS amphetamine. Similarly, intra-NAS flupenthixol or SCH 23390 attenuated the analgesia induced by intra-VTA DiMe-C7. These findings suggest that tonic pain is inhibited, at least in part, by enhanced DA released from terminals of mesolimbic neurons. Furthermore, the evidence that SP and opioids in the VTA mediate stress-induced analgesia suggests that the pain-suppression system involving the activation of mesolimbic DA neurons is naturally triggered by exposure to stress, pain or both.
Altier, N; Stewart, J
1993-11-19
Experiments were designed to examine the analgesic effects of SP injected into the ventral tegmental area (VTA). Rats received bilateral intra-VTA infusions of 3.0 micrograms/0.5 microliter/side of the SP analogue, DiMe-C7, or the vehicle, either immediately prior to or 25 min following an injection of 0.05 ml of 2.5% formalin into one hind paw. Formalin-induced pain responses were continuously recorded for 75 min. DiMe-C7 attenuated pain responses for approximately 30 min; the analgesia was more potent and longer-lasting when DiMe-C7 was infused after, rather than prior to, the early pain phase. In another set of experiments, rats were tested in the formalin test immediately following bilateral infusions of amphetamine (1.5 or 2.5 micrograms/0.05 microliter/side) into either the medial prefrontal cortex (mPFC) or the nucleus accumbens septi (NAS). Amphetamine failed to alter pain responses when infused into the mPFC, but both doses attenuated pain responses during 25 min when infused into the NAS. There was no evidence for pain inhibition in the tail-flick test for phasic pain following either intra-VTA DiMe-C7 or intra-NAS amphetamine. The finding that intra-VTA DiMe-C7 and intra-NAS amphetamine produces analgesia in the formalin, but not the tail-flick test, suggests that activation of mesolimbic dopamine (DA) neurons contributes to suppression of tonic pain. Because stressors attenuate tonic pain responses, and are known to cause SP release in the VTA, we speculate that SP-induced activation of midbrain DA systems may mediate a form of pain- or stress-induced pain inhibitory system.
Vandegrift, Bertha J; You, Chang; Satta, Rosalba; Brodie, Mark S; Lasek, Amy W
2017-01-01
Gender differences in psychiatric disorders such as addiction may be modulated by the steroid hormone estrogen. For instance, 17β-estradiol (E2), the predominant form of circulating estrogen in pre-menopausal females, increases ethanol consumption, suggesting that E2 may affect the rewarding properties of ethanol and thus the development of alcohol use disorder in females. The ventral tegmental area (VTA) is critically involved in the rewarding and reinforcing effects of ethanol. In order to determine the role of E2 in VTA physiology, gonadally intact female mice were sacrificed during diestrus II (high E2) or estrus (low E2) for electrophysiology recordings. We measured the excitation by ethanol and inhibition by dopamine (DA) of VTA DA neurons and found that both excitation by ethanol and inhibition by dopamine were greater in diestrus II compared with estrus. Treatment of VTA slices from mice in diestrus II with an estrogen receptor antagonist (ICI 182,780) reduced ethanol-stimulated neuronal firing, but had no effect on ethanol-stimulated firing of neurons in slices from mice in estrus. Surprisingly, ICI 182,780 did not affect the inhibition by DA, indicating different mechanisms of action of estrogen receptors in altering ethanol and DA responses. We also examined the responses of VTA DA neurons to ethanol and DA in ovariectomized mice treated with E2 and found that E2 treatment enhanced the responses to ethanol and DA in a manner similar to what we observed in mice in diestrus II. Our data indicate that E2 modulates VTA neuron physiology, which may contribute to both the enhanced reinforcing and rewarding effects of alcohol and the development of other psychiatric disorders in females that involve alterations in DA neurotransmission.
Activation of Ventral Tegmental Area 5-HT2C Receptors Reduces Incentive Motivation
Valencia-Torres, Lourdes; Olarte-Sánchez, Cristian M; Lyons, David J; Georgescu, Teodora; Greenwald-Yarnell, Megan; Myers, Martin G; Bradshaw, Christopher M; Heisler, Lora K
2017-01-01
Obesity is primarily due to food intake in excess of the body's energetic requirements, intake that is not only associated with hunger but also the incentive value of food. The 5-hydroxytryptamine 2C receptor (5-HT2CR) is a target for the treatment of human obesity. Mechanistically, 5-HT2CRs are positioned to influence both homeostatic feeding circuits within the hypothalamus and reward circuits within the ventral tegmental area (VTA). Here we investigated the role of 5-HT2CRs in incentive motivation using a mathematical model of progressive ratio (PR) responding in mice. We found that the 5-HT2CR agonist lorcaserin significantly reduced both ad libitum chow intake and PR responding for chocolate pellets and increased c-fos expression in VTA 5-HT2CR expressing γ-aminobutyric acid (GABA) neurons, but not 5-HT2CR expressing dopamine (DA) neurons. We next adopted a chemogenetic approach using a 5-HT2CRCRE line to clarify the function of subset of 5-HT2C receptor expressing VTA neurons in the modulation of appetite and food-motivated behavior. Activation of VTA 5-HT2C receptor expressing neurons significantly reduced ad libitum chow intake, operant responding for chocolate pellets, and the incentive value of food. In contrast, chemogenetic inhibition of VTA 5-HT2C receptor expressing neurons had no effect on the feeding behavior. These results indicate that activation of the subpopulation of 5-HT2CR neurons within the VTA is sufficient to significantly reduce homeostatic feeding and effort-based intake of palatable food, and that this subset has an inhibitory role in motivational processes. These findings are relevant to the treatment of obesity. PMID:27882999
Vandegrift, Bertha J.; You, Chang; Satta, Rosalba; Brodie, Mark S.
2017-01-01
Gender differences in psychiatric disorders such as addiction may be modulated by the steroid hormone estrogen. For instance, 17β-estradiol (E2), the predominant form of circulating estrogen in pre-menopausal females, increases ethanol consumption, suggesting that E2 may affect the rewarding properties of ethanol and thus the development of alcohol use disorder in females. The ventral tegmental area (VTA) is critically involved in the rewarding and reinforcing effects of ethanol. In order to determine the role of E2 in VTA physiology, gonadally intact female mice were sacrificed during diestrus II (high E2) or estrus (low E2) for electrophysiology recordings. We measured the excitation by ethanol and inhibition by dopamine (DA) of VTA DA neurons and found that both excitation by ethanol and inhibition by dopamine were greater in diestrus II compared with estrus. Treatment of VTA slices from mice in diestrus II with an estrogen receptor antagonist (ICI 182,780) reduced ethanol-stimulated neuronal firing, but had no effect on ethanol-stimulated firing of neurons in slices from mice in estrus. Surprisingly, ICI 182,780 did not affect the inhibition by DA, indicating different mechanisms of action of estrogen receptors in altering ethanol and DA responses. We also examined the responses of VTA DA neurons to ethanol and DA in ovariectomized mice treated with E2 and found that E2 treatment enhanced the responses to ethanol and DA in a manner similar to what we observed in mice in diestrus II. Our data indicate that E2 modulates VTA neuron physiology, which may contribute to both the enhanced reinforcing and rewarding effects of alcohol and the development of other psychiatric disorders in females that involve alterations in DA neurotransmission. PMID:29107956
Leung, Beatrice K; Balleine, Bernard W
2015-03-25
Outcome-specific Pavlovian-instrumental transfer (PIT) demonstrates the way that reward-related cues influence choice between instrumental actions. The nucleus accumbens shell (NAc-S) contributes critically to this effect, particularly through its output to the rostral medial ventral pallidum (VP-m). Using rats, we investigated in two experiments the role in the PIT effect of the two major outputs of this VP-m region innervated by the NAc-S, the mediodorsal thalamus (MD) and the ventral tegmental area (VTA). First, two retrograde tracers were injected into the MD and VTA to compare the neuronal activity of the two populations of projection neurons in the VP-m during PIT relative to controls. Second, the functional role of the connection between the VP-m and the MD or VTA was assessed using asymmetrical pharmacological manipulations before a PIT test. It was found that, whereas neurons in the VP-m projecting to the MD showed significantly more neuronal activation during PIT than those projecting to the VTA, neuronal activation of these latter neurons correlated with the size of the PIT effect. Disconnection of the two pathways during PIT also revealed different deficits in performance: disrupting the VP-m to MD pathway removed the response biasing effects of reward-related cues, whereas disrupting the VP-m to VTA pathway preserved the response bias but altered the overall rate of responding. The current results therefore suggest that the VP-m exerts distinct effects on the VTA and MD and that these latter structures mediate the motivational and cognitive components of specific PIT, respectively. Copyright © 2015 the authors 0270-6474/15/354953-12$15.00/0.
Lammer, Jan; Prager, Sonja G; Cheney, Michael C; Ahmed, Amel; Radwan, Salma H; Burns, Stephen A; Silva, Paolo S; Sun, Jennifer K
2016-12-01
To determine whether cone density, spacing, or regularity in eyes with and without diabetes (DM) as assessed by high-resolution adaptive optics scanning laser ophthalmoscopy (AOSLO) correlates with presence of diabetes, diabetic retinopathy (DR) severity, or presence of diabetic macular edema (DME). Participants with type 1 or 2 DM and healthy controls underwent AOSLO imaging of four macular regions. Cone assessment was performed by independent graders for cone density, packing factor (PF), nearest neighbor distance (NND), and Voronoi tile area (VTA). Regularity indices (mean/SD) of NND (RI-NND) and VTA (RI-VTA) were calculated. Fifty-three eyes (53 subjects) were assessed. Mean ± SD age was 44 ± 12 years; 81% had DM (duration: 22 ± 13 years; glycated hemoglobin [HbA1c]: 8.0 ± 1.7%; DM type 1: 72%). No significant relationship was found between DM, HbA1c, or DR severity and cone density or spacing parameters. However, decreased regularity of cone arrangement in the macular quadrants was correlated with presence of DM (RI-NND: P = 0.04; RI-VTA: P = 0.04), increasing DR severity (RI-NND: P = 0.04), and presence of DME (RI-VTA: P = 0.04). Eyes with DME were associated with decreased density (P = 0.04), PF (P = 0.03), and RI-VTA (0.04). Although absolute cone density and spacing don't appear to change substantially in DM, decreased regularity of the cone arrangement is consistently associated with the presence of DM, increasing DR severity, and DME. Future AOSLO evaluation of cone regularity is warranted to determine whether these changes are correlated with, or predict, anatomic or functional deficits in patients with DM.
Abizaid, Alfonso; Liu, Zhong-Wu; Andrews, Zane B.; Shanabrough, Marya; Borok, Erzsebet; Elsworth, John D.; Roth, Robert H.; Sleeman, Mark W.; Picciotto, Marina R.; Tschöp, Matthias H.; Gao, Xiao-Bing; Horvath, Tamas L.
2006-01-01
The gut hormone ghrelin targets the brain to promote food intake and adiposity. The ghrelin receptor growth hormone secretagogue 1 receptor (GHSR) is present in hypothalamic centers controlling energy metabolism as well as in the ventral tegmental area (VTA), a region important for motivational aspects of multiple behaviors, including feeding. Here we show that in mice and rats, ghrelin bound to neurons of the VTA, where it triggered increased dopamine neuronal activity, synapse formation, and dopamine turnover in the nucleus accumbens in a GHSR-dependent manner. Direct VTA administration of ghrelin also triggered feeding, while intra-VTA delivery of a selective GHSR antagonist blocked the orexigenic effect of circulating ghrelin and blunted rebound feeding following fasting. In addition, ghrelin- and GHSR-deficient mice showed attenuated feeding responses to restricted feeding schedules. Taken together, these data suggest that the mesolimbic reward circuitry is targeted by peripheral ghrelin to influence physiological mechanisms related to feeding. PMID:17060947
Poirier, Guillaume L; Huang, Wei; Tam, Kelly; DiFranza, Joseph R; King, Jean A
2017-09-01
Individuals with attention deficit/hyperactivity disorder (ADHD) are susceptible to earlier and more severe nicotine addiction. To shed light on the relationship between nicotine and ADHD, we examined nicotine's effects on functional brain networks in an animal model of ADHD. Awake magnetic resonance imaging was used to compare functional connectivity in adolescent (post-natal day 44 ± 2) males of the spontaneously hypertensive rat (SHR) strain and two control strains, Wistar-Kyoto and Sprague-Dawley (n = 16 each). We analyzed functional connectivity immediately before and after nicotine exposure (0.4 mg/kg base) in naïve animals, using a region-of-interest approach focussing on 16 regions previously implicated in reward and addiction. Relative to the control groups, the SHR strain demonstrated increased functional connectivity between the ventral tegmental area (VTA) and retrosplenial cortex in response to nicotine, suggesting an aberrant response to nicotine. In contrast, increased VTA-substantia nigra connectivity in response to a saline injection in the SHR was absent following a nicotine injection, suggesting that nicotine normalized function in this circuit. In the SHR, nicotine triggered an atypical response in one VTA circuit while normalizing activity in another. The VTA has been widely implicated in drug reward. Our data suggest that increased susceptibility to nicotine addiction in individuals with ADHD may involve altered responses to nicotine involving VTA circuits. Nicotine addiction is more common among individuals with ADHD. We found that two circuits involving the VTA responded differently to nicotine in animals that model ADHD in comparison to two control strains. In one circuit, nicotine normalized activity that was abnormal in the ADHD animals, while in the other circuit nicotine caused an atypical brain response in the ADHD animals. The VTA has been implicated in drug reward. Our results would be consistent with an interpretation that nicotine may normalize abnormal brain activity in ADHD, and that nicotine may be more rewarding for individuals with ADHD. © The Author 2017. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Ding, Zheng-Ming; Ingraham, Cynthia M; Rodd, Zachary A; McBride, William J
2016-10-01
Repeated local administration of ethanol (EtOH) sensitized the posterior ventral tegmental area (pVTA) to the local dopamine (DA)-stimulating effects of EtOH. Chronic alcohol drinking increased nucleus accumbens (NAC) DA transmission and pVTA glutamate transmission in alcohol-preferring (P) rats. The objectives of the present study were to determine the effects of chronic alcohol drinking by P rats on the (a) sensitivity and response of the pVTA DA neurons to the DA-stimulating actions of EtOH, and (b) negative feedback control of DA (via D2 auto-receptors) and glutamate (via group II mGlu auto-receptors) release in the pVTA. EtOH (50 or 150 mg%) or the D2/3 receptor antagonist sulpiride (100 or 200 μM) was microinjected into the pVTA while DA was sampled with microdialysis in the NAC shell (NACsh). The mGluR2/3 antagonist LY341495 (1 or 10 μM) was perfused through the pVTA via reverse microdialysis and local extracellular glutamate and DA levels were measured. EtOH produced a more robust increase of NACsh DA in the 'EtOH' than 'Water' groups (e.g., 150 mg% EtOH: to ∼ 210 vs 150% of baseline). In contrast, sulpiride increased DA release in the NACsh more in the 'Water' than 'EtOH' groups (e.g., 200 μM sulpiride: to ∼ 190-240 vs 150-160% of baseline). LY341495 (at 10 μM) increased extracellular glutamate and DA levels in the 'Water' (to ∼ 150-180% and 180-230% of baseline, respectively) but not the 'EtOH' groups. These results indicate that alcohol drinking enhanced the DA-stimulating effects of EtOH, and attenuated the functional activities of D2 auto-receptors and group II mGluRs within the pVTA. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wei, X J; Sun, B; Chen, K; Lv, B; Luo, X; Yan, J Q
2015-08-06
Ghrelin is a potent orexigenic hormone that acts in the central nervous system to stimulate food intake via the growth hormone secretagogue receptor (GHSR) that is abundantly expressed in the ventral tegmental area (VTA). Not only does ghrelin modulate feeding behavior via a homeostatic mechanism, but numerous studies have identified ghrelin as a key regulator of reward-based hedonic feeding behaviors. Nutritional states influence ghrelin and GHSR expression as well as the behavioral sensitivity to reward-inducing stimuli. In the current study, we examined the role of ghrelin at the VTA level in food intake in two different nutritional states, satiety and hunger, by using a restricted feeding model. In this model, rats were conditioned to a daily 3-h (h) feeding session on standard chow for 10days and a high-fat diet (HFD) was supplied either in the third hour after 2h of chow diet intake, or at the beginning of a daily meal on the test day. We found that intra-VTA microinjection of 1, 2, and 4μg of ghrelin, induced a dose-related increase of 1h of reward-based feeding on HFD in sated rats, as well as a 24-h body weight gain. The overconsumption stimulated by ghrelin could be attenuated by 10μg of direct infusion of the ghrelin receptor antagonist D-Lys3-GHRP-6 into the VTA. Moreover, our data showed that the injection of 1, 2, and 4μg of ghrelin in the VTA, enhanced fasting-induced hyperphagia on HFD in a dose-related manner following a 21-h food restriction as well as a 24-h body weight gain. Conversely, hyperphagia on HFD that is potentiated by ghrelin could be blocked by pretreatment with a 10-μg D-Lys3-GHRP-6 intra-VTA microinjection. Collectively, these data demonstrate that ghrelin signaling at the VTA level mediates both reward-based eating and fasting-induced hyperphagia and provides a primary target for the control of the intake of rewarding food. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Boekhoudt, Linde; Wijbrans, Ellen C; Man, Jodie H K; Luijendijk, Mieneke C M; de Jong, Johannes W; van der Plasse, Geoffrey; Vanderschuren, Louk J M J; Adan, Roger A H
2018-01-01
Motivational deficits are a key symptom in multiple psychiatric disorders, including major depressive disorder, schizophrenia and addiction. A likely neural substrate for these motivational deficits is the brain dopamine (DA) system. In particular, DA signalling in the nucleus accumbens, which originates from DA neurons in the ventral tegmental area (VTA), has been identified as a crucial substrate for effort-related and activational aspects of motivation. Unravelling how VTA DA neuronal activity relates to motivational behaviours is required to understand how motivational deficits in psychiatry can be specifically targeted. In this study, we therefore used designer receptors exclusively activated by designer drugs (DREADD) in TH:Cre rats, in order to determine the effects of chemogenetic DA neuron activation on different aspects of motivational behaviour. We found that chemogenetic activation of DA neurons in the VTA, but not substantia nigra, significantly increased responding for sucrose under a progressive ratio schedule of reinforcement. More specifically, high effort exertion was characterized by increased initiations of reward-seeking actions. This effect was dependent on effort requirements and instrumental contingencies, but was not affected by sucrose pre-feeding. Together, these findings indicate that VTA DA neuronal activation drives motivational behaviour by facilitating action initiation. With this study, we show that enhancing excitability of VTA DA neurons is a viable strategy to improve motivational behaviour. Copyright © 2017 Elsevier B.V. and ECNP. All rights reserved.
McCall, Nora M; Kotecki, Lydia; Dominguez-Lopez, Sergio; Marron Fernandez de Velasco, Ezequiel; Carlblom, Nicholas; Sharpe, Amanda L; Beckstead, Michael J; Wickman, Kevin
2017-02-01
The increase in dopamine (DA) neurotransmission stimulated by in vivo cocaine exposure is tempered by G protein-dependent inhibitory feedback mechanisms in DA neurons of the ventral tegmental area (VTA). G protein-gated inwardly rectifying K + (GIRK/Kir3) channels mediate the direct inhibitory effect of GABA B receptor (GABA B R) and D 2 DA receptor (D 2 R) activation in VTA DA neurons. Here we examined the effect of the DA neuron-specific loss of GIRK channels on D 2 R-dependent regulation of VTA DA neuron excitability and on cocaine-induced, reward-related behaviors. Selective ablation of Girk2 in DA neurons did not alter the baseline excitability of VTA DA neurons but significantly reduced the magnitude of D 2 R-dependent inhibitory somatodendritic currents and blunted the impact of D 2 R activation on spontaneous activity and neuronal excitability. Mice lacking GIRK channels in DA neurons exhibited increased locomotor activation in response to acute cocaine administration and an altered locomotor sensitization profile, as well as increased responding for and intake of cocaine in an intravenous self-administration test. These mice, however, showed unaltered cocaine-induced conditioned place preference. Collectively, our data suggest that feedback inhibition to VTA DA neurons, mediated by GIRK channel activation, tempers the locomotor stimulatory effect of cocaine while also modulating the reinforcing effect of cocaine in an operant-based self-administration task.
A new role for GABAergic transmission in the control of male rat sexual behavior expression.
Rodríguez-Manzo, Gabriela; Canseco-Alba, Ana
2017-03-01
GABAergic transmission in the ventral tegmental area (VTA) exerts a tonic inhibitory influence on mesolimbic dopaminergic neurons' activity. Blockade of VTA GABA A receptors increases dopamine release in the nucleus accumbens (NAcc). Increases in NAcc dopamine levels typically accompany sexual behavior display. Copulation to satiety is characterized by the instatement of a long lasting (72h) sexual behavior inhibition and the mesolimbic system appears to be involved in this phenomenon. GABAergic transmission in the VTA might play a role in the maintenance of this long lasting sexual inhibitory state. To test this hypothesis, in the present work we investigated the effect of GABA A receptor blockade in sexually exhausted males 24h after copulation to satiety, once the sexual inhibitory state is established, and compared it with its effect in sexually experienced rats. Results showed that low doses of systemically administered bicuculline induced sexual behavior expression in sexually exhausted rats, but lacked an effect on copulation of sexually experienced animals. Intra-VTA bilateral infusion of bicuculline did not modify sexual behavior of sexually experienced rats, but induced sexual behavior expression in all the sexually exhausted males. Hence, GABA plays a role in the control of sexual behavior expression at the VTA. The role played by GABAergic transmission in male sexual behavior expression of animals with distinct sexual behavior conditions is discussed. Copyright © 2016 Elsevier B.V. All rights reserved.
Social Modulation during Songbird Courtship Potentiates Midbrain Dopaminergic Neurons
Huang, Ya-Chun; Hessler, Neal A.
2008-01-01
Synaptic transmission onto dopaminergic neurons of the mammalian ventral tegmental area (VTA) can be potentiated by acute or chronic exposure to addictive drugs. Because rewarding behavior, such as social affiliation, can activate the same neural circuitry as addictive drugs, we tested whether the intense social interaction of songbird courtship may also potentiate VTA synaptic function. We recorded glutamatergic synaptic currents from VTA of male zebra finches who had experienced distinct social and behavioral conditions during the previous hour. The level of synaptic transmission to VTA neurons, as assayed by the ratio of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) to N-methyl-D-aspartic acid (NMDA) glutamate receptor mediated synaptic currents, was increased after males sang to females, and also after they saw females without singing, but not after they sang while alone. Potentiation after female exposure alone did not appear to result from stress, as it was not blocked by inhibition of glucocorticoid receptors. This potentiation was restricted to synapses of dopaminergic projection neurons, and appeared to be expressed postsynaptically. This study supports a model in which VTA dopaminergic neurons are more strongly activated during singing used for courtship than during non-courtship singing, and thus can provide social context-dependent modulation to forebrain areas. More generally, these results demonstrate that an intense social encounter can trigger the same pathways of neuronal plasticity as addictive drugs. PMID:18827927
Analysis and Test of a Proton Exchange Membrane Fuel Cell Power System for Space Power Applications
NASA Technical Reports Server (NTRS)
Vasquez, Arturo; Varanauski, Donald; Clark, Robert, Jr.
2000-01-01
An effort is underway to develop a prototype Proton Exchange Membrane (PEM) Fuel Cell breadboard system for fuhlre space applications. This prototype will be used to develop a comprehensive design basis for a space-rated PEM fuel cell powerplant. The prototype system includes reactant pressure regulators, ejector-based reactant pumps, a 4-kW fuel cell stack and cooling system, and a passive, membranebased oxygen / water separator. A computer model is being developed concurrently to analytically predict fluid flow in the oxidant reactant system. Fuel cells have historically played an important role in human-rated spacecraft. The Gemini and Apollo spacecraft used fuel cells for vehicle electrical power. The Space Shuttle currently uses three Alkaline Fuel Cell Powerplants (AFCP) to generate all of the vehicle's 15-20kW electrical power. Engineers at the Johnson Space Center have leveraged off the development effort ongoing in the commercial arena to develop PEM fuel cel ls for terrestrial uses. The prototype design originated from efforts to develop a PEM fuel cell replacement for the current Space Shuttle AFCP' s. In order to improve on the life and an already excellent hi storical record of reliability and safety, three subsystems were focused on. These were the fuel cell stack itself, the reactant circulation devices, and reactant / product water separator. PEM fuel cell stack performance is already demonstrating the potential for greater than four times the useful life of the current Shuttle's AFCP. Reactant pumping for product water removal has historically been accomplished with mechanical pumps. Ejectors offer an effective means of reactant pumping as well as the potential for weight reduction, control simplification, and long life. Centrifugal water separation is used on the current AFCP. A passive, membrane-based water separator offers compatibility with the micro-gravity environment of space, and the potential for control simplification, elimination of moving parts in an oxygen environment, and long life. The prototype system has been assembled from components that have previously been tested and evaluated at the component level. Preliminary data obtained from tests performed with the prototype system, as well as other published data, has been used to validate the analytical component models. These components have been incorporated into an integrated oxidant fluid system model. Results obtained from both the performance tests and the analytical model are presented.
Nicotine Modulates the Long-Lasting Storage of Fear Memory
ERIC Educational Resources Information Center
Lima, Ramon H.; Radiske, Andressa; Kohler, Cristiano A.; Gonzalez, Maria Carolina; Bevilaqua, Lia R.; Rossato, Janine I.; Medina, Jorge H.; Cammarota, Martin
2013-01-01
Late post-training activation of the ventral tegmental area (VTA)-hippocampus dopaminergic loop controls the entry of information into long-term memory (LTM). Nicotinic acetylcholine receptors (nAChR) modulate VTA function, but their involvement in LTM storage is unknown. Using pharmacological and behavioral tools, we found that…
ERIC Educational Resources Information Center
Chou, Chih-Yueh; Huang, Bau-Hung; Lin, Chi-Jen
2011-01-01
This study proposes a virtual teaching assistant (VTA) to share teacher tutoring tasks in helping students practice program tracing and proposes two mechanisms of complementing machine intelligence and human intelligence to develop the VTA. The first mechanism applies machine intelligence to extend human intelligence (teacher answers) to evaluate…
ERIC Educational Resources Information Center
Chen Han-Ting; Chen, Jin-Chung
2015-01-01
The molecular mechanisms underlying drug extinction remain largely unknown, although a role for medial prefrontal cortex (mPFC) glutamate neurons has been suggested. Considering that the mPFC sends glutamate efferents to the ventral tegmental area (VTA), we tested whether the VTA is involved in methamphetamine (METH) extinction via conditioned…
Ion plating studies for high temperature applications
NASA Technical Reports Server (NTRS)
Davis, J. H.
1980-01-01
An experimental project was undertaken to ion plate, by electron beam evaporation, Al films onto 4340 steel substrates using (and at the time troubleshooting) the custom built V.T.A. 7375 electron beam ion plating system. A careful recent literature and commercial vendor survey indicates possible means of improving the trouble plagued V.T.A. system.
Projection-Target-Defined Effects of Orexin and Dynorphin on VTA Dopamine Neurons.
Baimel, Corey; Lau, Benjamin K; Qiao, Min; Borgland, Stephanie L
2017-02-07
Circuit-specific signaling of ventral tegmental area (VTA) dopamine neurons drives different aspects of motivated behavior, but the neuromodulatory control of these circuits is unclear. We tested the actions of co-expressed lateral hypothalamic peptides, orexin A (oxA) and dynorphin (dyn), on projection-target-defined dopamine neurons in mice. We determined that VTA dopamine neurons that project to the nucleus accumbens lateral shell (lAcbSh), medial shell (mAcbSh), and basolateral amygdala (BLA) are largely non-overlapping cell populations with different electrophysiological properties. Moreover, the neuromodulatory effects of oxA and dyn on these three projections differed. OxA selectively increased firing in lAcbSh- and mAcbSh-projecting dopamine neurons. Dyn decreased firing in the majority of mAcbSh- and BLA-projecting dopamine neurons but reduced firing only in a small fraction of those that project to the lAcbSh. In conclusion, the oxA-dyn input to the VTA may drive reward-seeking behavior by tuning dopaminergic output in a projection-target-dependent manner. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Nader, K; LeDoux, J E
1999-10-01
Previous findings have demonstrated that systemic dopaminergic manipulations impair the retrieval of Pavlovian conditioned fear. A second-order fear-conditioning paradigm was used to test whether the dopaminergic projection from the ventral tegmental area (VTA) to the lateral and basal amygdala (LBA) can affect conditioned fear. Phase 1 entailed conditioned stimulus-unconditioned stimulus (CS1-US) pairings. In Phase 2, drugs were infused in either the LBA or VTA prior to pairings of CS2 (a second cue) with CS1. In Phase 3, freezing behavior elicited by CS2 was tested without drugs. Infusions of the D2 agonist quinpirole into the VTA or of the D1 antagonist SCH 23390 into the LBA caused a decrease in freezing to CS2. Both manipulations decrease D1 receptor activation in the LBA. Infusions of the D1 agonist SKF 38393 into the LBA had no effect. This pattern of results is consistent with the hypothesis that the VTA-LBA dopaminergic projection modulates the retrieval of an association between a CS and footshock US.
Brain Neurons as Quantum Computers:
NASA Astrophysics Data System (ADS)
Bershadskii, A.; Dremencov, E.; Bershadskii, J.; Yadid, G.
The question: whether quantum coherent states can sustain decoherence, heating and dissipation over time scales comparable to the dynamical timescales of brain neurons, has been actively discussed in the last years. A positive answer on this question is crucial, in particular, for consideration of brain neurons as quantum computers. This discussion was mainly based on theoretical arguments. In the present paper nonlinear statistical properties of the Ventral Tegmental Area (VTA) of genetically depressive limbic brain are studied in vivo on the Flinders Sensitive Line of rats (FSL). VTA plays a key role in the generation of pleasure and in the development of psychological drug addiction. We found that the FSL VTA (dopaminergic) neuron signals exhibit multifractal properties for interspike frequencies on the scales where healthy VTA dopaminergic neurons exhibit bursting activity. For high moments the observed multifractal (generalized dimensions) spectrum coincides with the generalized dimensions spectrum calculated for a spectral measure of a quantum system (so-called kicked Harper model, actively used as a model of quantum chaos). This observation can be considered as a first experimental (in vivo) indication in the favor of the quantum (at least partially) nature of brain neurons activity.
Autism gene Ube3a and seizures impair sociability by repressing VTA Cbln1
Krishnan, Vaishnav; Stoppel, David C.; Nong, Yi; Johnson, Mark A.; Nadler, Monica J.S.; Ozkaynak, Ekim; Teng, Brian L.; Nagakura, Ikue; Mohammad, Fahim; Silva, Michael A.; Peterson, Sally; Cruz, Tristan J.; Kasper, Ekkehard M.; Arnaout, Ramy; Anderson, Matthew P.
2017-01-01
Summary Maternally inherited 15q11-13 chromosomal triplications cause a frequent and highly penetrant autism linked to increased gene dosages of UBE3A, which both possesses ubiquitin-ligase and transcriptional co-regulatory functions. Here, using in vivo mouse genetics, we show that increasing UBE3A in the nucleus down-regulates glutamatergic synapse organizer cerebellin-1 (Cbln1) that is needed for sociability in mice. Epileptic seizures also repress Cbln1 and are found to expose sociability impairments in mice with asymptomatic increases of UBE3A. This Ube3a-seizure synergy maps to glutamate neurons of the midbrain ventral tegmental area (VTA) where Cbln1 deletions impair sociability and weaken glutamatergic transmission. We provide preclinical evidence that viral-vector-based chemogenetic activations of, or Cbln1 restorations in VTA glutamatergic neurons rescues sociability deficits induced by Ube3a and/or seizures. Our results suggest a gene × seizure interaction in VTA glutamatergic neurons that impairs sociability by downregulating Cbln1, a key node in the expanding protein interaction network of autism genes. PMID:28297715
TAGLIAFERRO, PATRICIA; MORALES, MARISELA
2008-01-01
Interactions between stress and the mesocorticolimbic dopamine (DA) system have been suggested from behavioral and electrophysiological studies. Because corticotropin-releasing factor (CRF) plays a role in stress responses, we investigated possible interactions between neurons containing CRF and those producing DA in the ventral tegmental area (VTA). We first investigated the cellular distribution of CRF in the VTA by immunolabeling VTA sections with anti-CRF antibodies and analyzing these sections by electron microscopy. We found CRF immunoreactivity present mostly in axon terminals establishing either symmetric or asymmetric synapses with VTA dendrites. We established that nearly all CRF asymmetric synapses are glutamatergic, insofar as the CRF-immunolabeled axon terminals in these synapses coexpressed the vesicular glutamate transporter 2, and that the majority of CRF symmetric synapses are GABAergic, insofar as the CRF-immunolabeled axon terminals in these synapses coexpressed glutamic acid decarboxylase, findings that are of functional importance. We then looked for synaptic interactions between CRF- and DA-containing neurons, by using antibodies against CRF and tyrosine hydroxylase (TH; a marker for DA neurons). We found that most synapses between CRF-immunoreactive axon terminals and TH neurons are asymmetric (in the majority likely to be glutamatergic) and suggest that glutamatergic neurons containing CRF may be part of the neuronal circuitry that mediates stress responses involving the mesocorticolimbic DA system. The presence of CRF synapses in the VTA offers a mechanism for interactions between the stress-associated neuropeptide CRF and the mesocorticolimbic DA system. PMID:18067140
Boender, Arjen J.; Koning, Nivard A.; van den Heuvel, José K.; Luijendijk, Mieneke C. M.; van Rozen, Andrea J.; la Fleur, Susanne E.; Adan, Roger A. H.
2014-01-01
Several genome-wide association studies have implicated the transcription factor E-twenty- six version 5 (Etv5) in the regulation of body mass index. Further substantiating the role of Etv5 in feeding behavior are the findings that targeted disruption of Etv5 in mice leads to decreased body weight gain and that expression of Etv5 is decreased in the ventral tegmental area and substantia nigra pars compacta (VTA/SNpc) after food restriction. As Etv5 has been suggested to influence dopaminergic neurotransmission by driving the expression of genes that are responsible for the synthesis and release of dopamine, we investigated if expression levels of Etv5 are dependent on nutritional state and subsequently influence the expression levels of tyrosine hydroxylase. While it was shown that Etv5 expression in the VTA/SNpc increases after central administration of leptin and that Etv5 was able to drive expression of tyrosine hydroxylase in vitro, AAV-mediated gene transfer of Etv5 into the VTA/SNpc of rats did not alter expression of tyrosine hydroxylase in vivo. Moreover, AAV-mediated gene transfer of Etv5 in the VTA/SNpc did not affect measures of energy balance or performances in a progressive ratio schedule. Thus, these data do not support a role for increased expression of Etv5 in the VTA/SNpc in the regulation of feeding behavior. PMID:24710089
Richter, Anja; Gruber, Oliver
2018-02-01
It is argued that the mesolimbic system has a more general function in processing all salient events, including and extending beyond rewards. Saliency was defined as an event that is unexpected due to its frequency of occurrence and elicits an attentional-behavioral switch. Using functional magnetic resonance imaging (fMRI), signals were measured in response to the modulation of salience of rewarding and nonrewarding events during a reward-based decision making task, the so called desire-reason dilemma paradigm (DRD). Replicating previous findings, both frequent and infrequent, and therefore salient, reward stimuli elicited reliable activation of the ventral tegmental area (VTA) and ventral striatum (vStr). When immediate reward desiring contradicted the superordinate task-goal, we found an increased activation of the VTA and vStr when the salient reward stimuli were presented compared to the nonsalient reward stimuli, indicating a boosting of activation in these brain regions. Furthermore, we found a significantly increased functional connectivity between the VTA and vStr, confirming the boosting of vStr activation via VTA input. Moreover, saliency per se without a reward association led to an increased activation of brain regions in the mesolimbic reward system as well as the orbitofrontal cortex (OFC), inferior frontal gyrus (IFG), and anterior cingulate cortex (ACC). Finally, findings uncovered multiple increased functional interactions between cortical saliency-processing brain areas and the VTA and vStr underlying detection and processing of salient events and adaptive decision making. © 2017 Wiley Periodicals, Inc.
Giudici, Marcela; Pascual, Roberto; de la Canal, Laura; Pfüller, Karola; Pfüller, Uwe; Villalaín, José
2003-01-01
Viscotoxins are small proteins that are thought to interact with biomembranes, displaying different toxic activities against a varied number of cell types, being viscotoxin A3 (VtA3) the most cytotoxic whereas viscotoxin B (VtB) is the less potent. By using infrared and fluorescence spectroscopies, we have studied the interaction of VtA3 and VtB, both wild and reduced ones, with model membranes containing negatively charged phospholipids. Both VtA3 and VtB present a high conformational stability, and a similar conformation both in solution and when bound to membranes. In solution, the infrared spectra of the reduced proteins show an increase in bandwidth compared to the nonreduced ones indicating a greater flexibility. VtA3 and VtB bind with high affinity to membranes containing negatively charged phospholipids and are motional restricted, their binding being dependent on phospholipid composition. Whereas nonreduced proteins maintain their structure when bound to membranes, reduced ones aggregate. Furthermore, leakage experiments show that wild proteins were capable of disrupting membranes whereas reduced proteins were not. The effect of VtA3 and VtB on membranes having different phospholipid composition is diverse, affecting the cooperativity and fluidity of the membranes. Viscotoxins interact with membranes in a complex way, most likely organizing themselves at the surface inducing the appearance of defects that lead to the destabilization and disruption of the membrane bilayer. PMID:12885644
Orzeł-Gryglewska, Jolanta; Jurkowlaniec, Edyta; Trojniar, Weronika
2006-01-30
The midbrain ventral tegmental area (VTA), a key structure of the mesocorticolimbic system is anatomically connected with the hippocampal formation. In addition mesocortical dopamine was found to influence hippocampus-related memory and hippocampal synaptic plasticity, both being linked to the theta rhythm. Therefore, the aim of the present study was to evaluate the possible role of the VTA in the regulation of the hippocampal theta activity. The study was performed on urethane-anesthetized male Wistar rats in which theta rhythm was evoked by tail pinch. It was found that unilateral, temporal inactivation of the VTA by means of direct procaine injection resulted in bilateral suppression of the hippocampal theta which manifested as a loss of synchronization of hippocampal EEG and respective reduction of the power and also the frequency of the 3-6 Hz theta band. Depression of the power of the 3-6 Hz component of the EEG signal was also seen in spontaneous hippocampal EEG after procaine. The permanent destruction of the VTA by means of unilateral electrocoagulation evoked a long-lasting, mainly ipsilateral depression of the power of the theta with some influence on its frequency. Simultaneously, there was a substantial increase of the power in higher frequency bands indicating decrease of a synchrony of the hippocampal EEG activity. On the basis of these results indicating impairment of synchronization of the hippocampal activity the VTA may be considered as another part of the brainstem theta synchroning system.
Development of a Prototype Military Field Space Heater
1983-04-01
COMBUSTION HEATERS TENT HEATERS LIQUID FUELS LIQUID FUEL BURNERS 2&< ABSTRACT rCamrtbmum «o rarerem ataT» ft namteaamry mod Identity by block...M1941 heater. This prototype features a large triple stage burner obtained from Holland that uses staged combustion to achieve clean burning with...M1941. This Dutch burner features staged combustion , which results in complete and very clean burning of diesel fuel. This report covers fabrication and
Ruwald, Anne-Christine; Marcus, Frank; Estes, N.A. Mark; Link, Mark; McNitt, Scott; Polonsky, Bronislava; Calkins, Hugh; Towbin, Jeffrey A.; Moss, Arthur J.; Zareba, Wojciech
2015-01-01
Aims It has been proposed that competitive sport increases the risk of ventricular tachyarrhythmias (VTA) and death in patients with arrhythmogenic right-ventricular cardiomyopathy (ARVC). However, it is unknown whether this only applies to competitive sport or if recreational sports activity also increases the risk of VTA/death. Methods and results Probands diagnosed with ARVC according to the 2010 task force criteria for ARVC (n = 108) were included in the current analysis. At the time of enrolment, study participants were questioned about exercise level prior to and after ARVC diagnosis, within three categories of sports participation: competitive (n = 41), recreational (n = 48), and inactive (n = 19). Competitive sport was associated with a significantly higher risk of VTA/death when compared with both recreational sport [HR = 1.99 (1.21–3.28), P = 0.007] and inactive patients [HR = 2.05 (1.07–3.91), P = 0.030]. No increased risk of VTA/death was associated with recreational sport when compared with patients who were inactive [HR = 1.03 (0.54–1.97), P = 0.930]. Symptoms developed at an earlier age in patients who participated in competitive sport (30 ± 12 years), when compared with patients who participated in recreational sport (38 ± 17 years) (P = 0.015) and inactive patients (41 ± 11 years) (P = 0.002). No difference in age at first symptom was seen between patients who participated in recreational sport and inactive patients (P = 0.651). Conclusion Competitive sport was associated with a two-fold increased risk of VTA/death, and earlier presentation of symptoms, when compared with inactive patients, and to patients who participated in recreational sport. When compared with inactive patients, recreational sport was not associated with earlier onset of symptoms or increased risk of VTA/death. Clinical trials.gov identifier NCT00024505. PMID:25896080
Brocka, Marta; Helbing, Cornelia; Vincenz, Daniel; Scherf, Thomas; Montag, Dirk; Goldschmidt, Jürgen; Angenstein, Frank; Lippert, Michael
2018-04-30
Mapping the activity of the human mesolimbic dopamine system by BOLD-fMRI is a tempting approach to non-invasively study the action of the brain reward system during different experimental conditions. However, the contribution of dopamine release to the BOLD signal is disputed. To assign the actual contribution of dopaminergic and non-dopaminergic VTA neurons to the formation of BOLD responses in target regions of the mesolimbic system, we used two optogenetic approaches in rats. We either activated VTA dopaminergic neurons selectively, or dopaminergic and mainly glutamatergic projecting neurons together. We further used electrical stimulation to non-selectively activate neurons in the VTA. All three stimulation conditions effectively activated the mesolimbic dopaminergic system and triggered dopamine releases into the NAcc as measured by in vivo fast-scan cyclic voltammetry. Furthermore, both optogenetic stimulation paradigms led to indistinguishable self-stimulation behavior. In contrast to these similarities, however, the BOLD response pattern differed greatly between groups. In general, BOLD responses were weaker and sparser with increasing stimulation specificity for dopaminergic neurons. In addition, repetitive stimulation of the VTA caused a progressive decoupling of dopamine release and BOLD signal strength, and dopamine receptor antagonists were unable to block the BOLD signal elicited by VTA stimulation. To exclude that the sedation during fMRI is the cause of minimal mesolimbic BOLD in response to specific dopaminergic stimulation, we repeated our experiments using CBF SPECT in awake animals. Again, we found activations only for less-specific stimulation. Based on these results we conclude that canonical BOLD responses in the reward system represent mainly the activity of non-dopaminergic neurons. Thus, the minor effects of projecting dopaminergic neurons are concealed by non-dopaminergic activity, a finding which highlights the importance of a careful interpretation of reward-related human fMRI data. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Rodd, Zachary A; Bell, Richard L; Oster, Scott M; Toalston, Jamie E; Pommer, Tylene J; McBride, William J; Murphy, James M
2010-05-01
Several studies indicated the involvement of serotonin-3 ([5-hydroxy tryptamine] 5-HT(3)) receptors in regulating alcohol-drinking behavior. The objective of this study was to determine the involvement of 5-HT(3) receptors within the ventral tegmental area (VTA) in regulating ethanol self-administration by alcohol-preferring (P) rats. Standard two-lever operant chambers (Coulbourn Instruments, Allentown, PA) were used to examine the effects of seven consecutive bilateral microinfusions of ICS 205-930 (ICS), a 5-HT(3) receptor antagonist, directly into the posterior VTA on the acquisition and maintenance of 15% (vol/vol) ethanol self-administration. P rats readily acquired ethanol self-administration by the fourth session. The three highest doses (0.125, 0.25, and 1.25 microg) of ICS prevented acquisition of ethanol self-administration. During the acquisition postinjection period, all rats treated with ICS demonstrated higher responding on the ethanol lever, with the highest dose producing the greatest effect. In contrast, during the maintenance phase, the three highest doses (0.75, 1.0, and 1.25 microg) of ICS significantly increased responding on the ethanol lever; after the 7-day dosing regimen, responding on the ethanol lever returned to control levels. Microinfusion of ICS into the posterior VTA did not alter the low responding on the water lever and did not alter saccharin (0.0125% wt/v) self-administration. Microinfusion of ICS into the anterior VTA did not alter ethanol self-administration. Overall, the results of this study suggest that 5-HT(3) receptors in the posterior VTA of the P rat may be involved in regulating ethanol self-administration. In addition, chronic operant ethanol self-administration and/or repeated treatments with a 5-HT(3) receptor antagonist may alter neuronal circuitry within the posterior VTA. 2010 Elsevier Inc. All rights reserved.
Placenza, Franca M; Fletcher, Paul J; Rotzinger, Susan; Vaccarino, Franco J
2004-12-01
The mesocorticolimbic dopamine (DA) system is critically involved in mediating reinstatement of drug-seeking behaviour. Substance P (SP) is a neuropeptide that significantly interacts with the mesocorticolimbic system, therefore suggesting a possible role for the SP system in the mediation of relapse. This study examined the effects of injections of the SP analogue, DiMe-C7, into the ventral tegmental area (VTA) on reinstatement of cocaine-seeking behaviour, as well as on locomotor activity in rats. Additionally, this study examined whether these effects are DA-dependent. Rats were trained to self-administer cocaine for 15 days followed by 15 days of extinction. Reinstatement of cocaine-seeking behaviour was then measured in response to bilateral intra-VTA microinjections of DiMe-C7 (0, 0.1, 0.5 and 2.5 microg). In a separate group of rats, locomotor activity was measured in response to intra-VTA injections of DiMe-C7 (0, 0.5, 1.5 and 3 microg). The effects of pre-treatment with DA receptor antagonists on DiMe-C7-induced reinstatement and locomotor activity were also examined. Animals were pre-treated with the D(1) and D(2) receptor antagonists, SCH23390 and haloperidol (0, 0.01 and 0.03 mg/kg, IP), respectively, prior to receiving intra-VTA injections of DiMe-C7 (0 and 2.5 microg). Infusion of DiMe-C7 into the VTA increased locomotor activity and induced reinstatement of cocaine-seeking behaviour. Both SCH23390 and haloperidol blocked intra-VTA DiMe-C7-induced locomotor activation. In addition, SCH23390 attenuated DiMe-C7-induced reinstatement of cocaine-seeking behaviour, while haloperidol had no effect. These results suggest that interactions between SP and the mesocorticolimbic DA system may play a role in mediating reinstatement of cocaine-seeking behaviour and that the involvement of these interactions in reinstatement are dependent upon D(1) receptor mechanisms.
Grant, R J; Clarke, P B S
2002-01-01
The aims of this study were to determine (1) whether mesolimbic and nigrostriatal DA cell bodies degenerate to different extents after 6-hydroxydopamine (6-OHDA) is administered into their respective terminal fields and (2) whether hypothermia, associated with sodium pentobarbital anesthesia, protects DA neurons from the toxic effects of 6-OHDA. To address these questions, 6-OHDA or vehicle was infused into either the ventral or dorsal striatum or into the medial forebrain bundle, under conditions of brain normothermia or hypothermia. Two weeks post-surgery, tyrosine hydroxylase-positive cell bodies were counted in the ventral tegmental area (VTA) and substantia nigra. In addition, autoradiographic labeling of tyrosine hydroxylase protein and dopamine transporter was quantified in dopamine terminal fields and cell body areas. Overall, DA cell bodies in the VTA were substantially less susceptible than those in the substantia nigra to depletion of dopaminergic markers. Hypothermia provided two types of neuroprotection. The first occurred when 6-OHDA was administered into the dorsal striatum, and was associated with a 30-50% increase in residual dopaminergic markers in the lateral portion of the VTA. The second neuroprotective effect of hypothermia occurred when 6-OHDA was given into the medial forebrain bundle. This was associated with a 200-300% increase in residual dopaminergic markers in the mesolimbic and nigrostriatal terminal fields; no significant protection occurred in the cell body regions.Collectively, these findings show that (1) the dopaminergic somata in the substantia nigra are more susceptible than those in the VTA to 6-OHDA-induced denervation, and (2) hypothermia can provide anatomically selective neuroprotection within the substantia nigra-VTA cell population. The continued survival of mesolimbic dopamine cell bodies after a 6-OHDA lesion may have functional implications relating to drugs of abuse, as somatodendritic release of dopamine in the VTA has been shown to play a role in the effectiveness of cocaine reward.
A Role for the Lateral Dorsal Tegmentum in Memory and Decision Neural Circuitry
Redila, Van; Kinzel, Chantelle; Jo, Yong Sang; Puryear, Corey B.; Mizumori, Sheri J.Y.
2017-01-01
A role for the hippocampus in memory is clear, although the mechanism for its contribution remains a matter of debate. Converging evidence suggests that hippocampus evaluates the extent to which context-defining features of events occur as expected. The consequence of mismatches, or prediction error, signals from hippocampus is discussed in terms of its impact on neural circuitry that evaluates the significance of prediction errors: Ventral tegmental area (VTA) dopamine cells burst fire to rewards or cues that predict rewards (Schultz et al., 1997). Although the lateral dorsal tegmentum (LDTg) importantly controls dopamine cell burst firing (Lodge & Grace, 2006) the behavioral significance of the LDTg control is not known. Therefore, we evaluated LDTg functional activity as rats performed a spatial memory task that generates task-dependent reward codes in VTA (Jo et al., 2013; Puryear et al., 2010) and another VTA afferent, the pedunculopontine nucleus (PPTg, Norton et al., 2011). Reversible inactivation of the LDTg significantly impaired choice accuracy. LDTg neurons coded primarily egocentric information in the form of movement velocity, turning behaviors, and behaviors leading up to expected reward locations. A subset of the velocity-tuned LDTg cells also showed high frequency bursts shortly before or after reward encounters, after which they showed tonic elevated firing during consumption of small, but not large, rewards. Cells that fired before reward encounters showed stronger correlations with velocity as rats moved toward, rather than away from, rewarded sites. LDTg neural activity was more strongly regulated by egocentric behaviors than that observed for PPTg or VTA cells that were recorded by Puryear et al. and Norton et al. While PPTg activity was uniquely sensitive to ongoing sensory input, all three regions encoded reward magnitude (although in different ways), reward expectation, and reward encounters. Only VTA encoded reward prediction errors. LDTg may inform VTA about learned goal-directed movement that reflects the current motivational state, and this in turn may guide VTA determination of expected subjective goal values. When combined it is clear the LDTg and PPTg provide only a portion of the information that dopamine cells need to assess the value of prediction errors, a process that is essential to future adaptive decisions and switches of cognitive (i.e. memorial) strategies and behavioral responses. PMID:24910282
Beloate, Lauren N; Omrani, Azar; Adan, Roger A; Webb, Ian C; Coolen, Lique M
2016-09-21
Experience with sexual behavior causes cross-sensitization of amphetamine reward, an effect dependent on a period of sexual reward abstinence. We previously showed that ΔFosB in the nucleus accumbens (NAc) is a key mediator of this cross-sensitization, potentially via dopamine receptor activation. However, the role of mesolimbic dopamine for sexual behavior or cross-sensitization between natural and drug reward is unknown. This was tested using inhibitory designer receptors exclusively activated by designer drugs in ventral tegmental area (VTA) dopamine cells. rAAV5/hSvn-DIO-hm4D-mCherry was injected into the VTA of TH::Cre adult male rats. Males received clozapine N-oxide (CNO) or vehicle injections before each of 5 consecutive days of mating or handling. Following an abstinence period of 7 d, males were tested for amphetamine conditioned place preference (CPP). Next, males were injected with CNO or vehicle before mating or handling for analysis of mating-induced cFos, sex experience-induced ΔFosB, and reduction of VTA dopamine soma size. Results showed that CNO did not affect mating behavior. Instead, CNO prevented sexual experience-induced cross-sensitization of amphetamine CPP, ΔFosB in the NAc and medial prefrontal cortex, and decreases in VTA dopamine soma size. Expression of hm4D-mCherry was specific to VTA dopamine cells and CNO blocked excitation and mating-induced cFos expression in VTA dopamine cells. These findings provide direct evidence that VTA dopamine activation is not required for initiation or performance of sexual behavior. Instead, VTA dopamine directly contributes to increased vulnerability for drug use following loss of natural reward by causing neuroplasticity in the mesolimbic pathway during the natural reward experience. Drugs of abuse act on the neural pathways that mediate natural reward learning and memory. Exposure to natural reward behaviors can alter subsequent drug-related reward. Specifically, experience with sexual behavior, followed by a period of abstinence from sexual behavior, causes increased reward for amphetamine in male rats. This study demonstrates that activation of ventral tegmental area dopamine neurons during sexual experience regulates cross-sensitization of amphetamine reward. Finally, ventral tegmental area dopamine cell activation is essential for experience-induced neural adaptations in the nucleus accumbens, prefrontal cortex, and ventral tegmental area. These findings demonstrate a role of mesolimbic dopamine in the interaction between natural and drug rewards, and identify mesolimbic dopamine as a key mediator of changes in vulnerability for drug use after loss of natural reward. Copyright © 2016 the authors 0270-6474/16/369949-13$15.00/0.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindgren, Eric Richard; Durbin, Samuel G
2007-04-01
The objective of this project was to provide basic thermal-hydraulic data associated with a SFP complete loss-of-coolant accident. The accident conditions of interest for the SFP were simulated in a full-scale prototypic fashion (electrically-heated, prototypic assemblies in a prototypic SFP rack) so that the experimental results closely represent actual fuel assembly responses. A major impetus for this work was to facilitate code validation (primarily MELCOR) and reduce questions associated with interpretation of the experimental results. It was necessary to simulate a cluster of assemblies to represent a higher decay (younger) assembly surrounded by older, lower-power assemblies. Specifically, this program providedmore » data and analysis confirming: (1) MELCOR modeling of inter-assembly radiant heat transfer, (2) flow resistance modeling and the natural convective flow induced in a fuel assembly as it heats up in air, (3) the potential for and nature of thermal transient (i.e., Zircaloy fire) propagation, and (4) mitigation strategies concerning fuel assembly management.« less
77 FR 23543 - Privacy Act of 1974; System of Records
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-19
...As required by the Privacy Act of 1974 (5 U.S.C. 552a(e)(4), (11)), notice is hereby given that the Department of Veterans Affairs (VA) is amending the system of records entitled ``Veterans Tracking Application (VTA).'' VA is amending the system of records by revising the System Name to ``Veterans Tracking Application (VTA)/Federal Case Management Tool (FCMT)'' and System Location to include the ``Federal Case Management Tool (FCMT).'' The VTA data will also be accessed using the FCMT. Further, the Routine Uses have been updated in conjunction with VA's Virtual Lifetime Electronic Record (VLER), to reflect the nature of electronic coordination that will fully support the users of this application. VA is republishing the system notice in its entirety.
Sexual behavior and sex-associated environmental cues activate the mesolimbic system in male rats.
Balfour, Margaret E; Yu, Lei; Coolen, Lique M
2004-04-01
The mesolimbic system plays an important role in the regulation of both pathological behaviors such as drug addiction and normal motivated behaviors such as sexual behavior. The present study investigated the mechanism by which this system is endogenously activated during sexual behavior. Specifically, the effects of sexual experience and sex-related environmental cues on the activation of several components of the mesolimbic system were studied. The mesolimbic system consists of a dopaminergic projection from the ventral tegmental area (VTA) to the nucleus accumbens (NAc). Previous studies suggest that these neurons are under tonic inhibition by local GABA interneurons, which are in turn modulated by mu opioid receptor (MOR) ligands. To test the hypothesis that opioids are acting in the VTA during sexual behavior, visualization of MOR internalization in VTA was used as a marker for ligand-induced activation of the receptor. Significant increases in MOR internalization were observed following copulation or exposure to sex-related environmental cues. The next goal was to determine if sexual behavior activates dopamine neurons in the VTA, using tyrosine hydroxylase as a marker for dopaminergic neurons and Fos-immunoreactivity as a marker for neuronal activation. Significant increases in the percentage of activated dopaminergic neurons were observed following copulation or exposure to sex-related environmental cues. In addition, mating and sex-related cues activated a large population of nondopaminergic neurons in VTA as well as neurons in both the NAc Core and Shell. Taken together, our results provide functional neuroanatomical evidence that the mesolimbic system is activated by both sexual behavior and exposure to sex-related environmental cues.
Han, Xiao; DeBold, Joseph F; Miczek, Klaus A
2017-09-01
A history of brief intermittent social defeat stress can escalate cocaine self-administration and induce long-term adaptations in the mesolimbic dopamine system. Extra-hypothalamic corticotrophin releasing factor (CRF) has been shown to be closely associated with stress-induced escalation of drug use. How repeated stress modulates CRF release in the ventral tegmental area (VTA) and the roles of CRF receptors during different phases of stress-induced cocaine self-administration remain to be defined. The current study examines the roles of CRF and CRF receptor 1 (CRFR1) in escalated intravenous cocaine self-administration after exposure to social defeat stress in mice. First, CRFR1 antagonist (CP 376,395, 15 mg/kg, i.p.) given 30 min prior to each social defeat episode prevented later escalated cocaine self-administration. When CP 376,395 (5 and 15 mg/kg, i.p.) was administered 10 days after the last episode of social stress, the escalation of cocaine intake was dose-dependently reversed. Moreover, socially defeated mice showed increased CRF release in the VTA compared to controls. To further explore the role of CRFR1, CP 376,395 (0.5 and 1 μg/0.2 μl) was infused directly into the VTA before the cocaine self-administration session. Intra-VTA antagonism of CRFR1 was sufficient to reverse social defeat stress-escalated cocaine self-administration. These findings suggest that CRF and CRFR1 exert multiple roles in the response to social stress that are relevant to escalated cocaine self-administration.
Omelchenko, Natalia; Sesack, Susan R.
2009-01-01
The midbrain central gray (periaqueductal gray; PAG) mediates defensive behaviors and is implicated in the rewarding effects of opiate drugs. Projections from the PAG to the ventral tegmental area (VTA) suggest that this region might also regulate behaviors involving motivation and cognition. However, studies have not yet examined the morphological features of PAG axons in the VTA or whether they synapse onto dopamine (DA) or GABA neurons. In this study, we injected anterograde tracers into the rat PAG and used immunoperoxidase to visualize the projections to the VTA. Immunogold-silver labeling for tyrosine hydroxylase (TH) or GABA was then used to identify the phenotype of innervated cells. Electron microscopic examination of the VTA revealed axons labeled anterogradely from the PAG, including myelinated and unmyelinated fibers and axon varicosities, some of which formed identifiable synapses. Approximately 55% of these synaptic contacts were of the symmetric (presumably inhibitory) type; the rest were asymmetric (presumably excitatory). These findings are consistent with the presence of both GABA and glutamate projection neurons in the PAG. Some PAG axons contained dense-cored vesicles indicating the presence of neuropeptides in addition to classical neurotransmitters. PAG projections synapsed onto both DA and GABA cells with no obvious selectivity, providing the first anatomical evidence for these direct connections. The results suggest a diverse nature of PAG physiological actions on midbrain neurons. Moreover, as both the VTA and PAG are implicated in the reinforcing actions of opiates, our findings provide a potential substrate for some of the rewarding effects of these drugs. PMID:19885830
Goodson, James L; Kabelik, David; Kelly, Aubrey M; Rinaldi, Jacob; Klatt, James D
2009-05-26
Mesolimbic dopamine (DA) circuits mediate a wide range of goal-oriented behavioral processes, and DA strongly influences appetitive and consummatory aspects of male sexual behavior. In both birds and mammals, mesolimbic projections arise primarily from the ventral tegmental area (VTA), with a smaller contribution from the midbrain central gray (CG). Despite the well known importance of the VTA cell group for incentive motivation functions, relationships of VTA subpopulations to specific aspects of social phenotype remain wholly undescribed. We now show that in male zebra finches (Estrildidae: Taeniopygia guttata), Fos activity within a subpopulation of tyrosine hydroxylase-immunoreactive (TH-ir; presumably dopaminergic) neurons in the caudal VTA is significantly correlated with courtship singing and coupled to gonadal state. In addition, the number of TH-ir neurons in this caudal subpopulation dichotomously differentiates courting from non-courting male phenotypes, and evolves in relation to sociality (flocking vs. territorial) across several related finch species. Combined, these findings for the VTA suggest that divergent social phenotypes may arise due to the differential assignment of "incentive value" to conspecific stimuli. TH-ir neurons of the CG (a population of unknown function in mammals) exhibit properties that are even more selectively and tightly coupled to the expression of courtship phenotypes (and appetitive courtship singing), both in terms of TH-ir cell number, which correlates significantly with constitutive levels of courtship motivation, and with TH-Fos colocalization, which increases in direct proportion to the phasic expression of song. We propose that these neurons may be core components of social communication circuits across diverse vertebrate taxa.
de Oliveira, Amanda R; Reimer, Adriano E; Reis, Fernando M C V; Brandão, Marcus L
2017-02-01
Considering the complexity of aversive information processing and defensive response expression, a combined action of stress modulators may be required for an optimal performance during threatening situations. Dopamine is now recognized as one of the most active modulators underlying states of fear and anxiety. On the other hand, activation of hypothalamic-pituitary-adrenocortical (HPA) axis, which leads to the release of corticosterone in rodents, has been considered a key part of the stress response. The current study is an extension of prior work investigating modulatory effects of dopamine and corticosterone on conditioned fear expression. We have showed that corticosterone, acting through mineralocorticoid receptors in the ventral tegmental area (VTA), upregulates dopaminergic system in the basolateral amygdala (BLA), enabling the expression of conditioned freezing response. The novel question addressed here is whether VTA-BLA dopaminergic signaling is necessary for increases in corticosterone during conditioned fear expression. Using site-specific treatment with D 2 -like agonist quinpirole (VTA) and D 2 -like antagonist sulpiride (BLA), we evaluated freezing and plasma corticosterone in rats exposed to a light used as aversive conditioned stimulus (CS). Intra-VTA quinpirole and intra-BLA sulpiride significantly decreased freezing expression in the conditioned fear test, but this anxiolytic-like effect of the dopaminergic drugs was not associated with changes in plasma corticosterone concentrations. Altogether, data suggest that interferences with the ability of the CS to activate the dopaminergic VTA-BLA pathway reduce the expression of freezing, but activation of the HPA axis seems to occur upstream of the recruitment of dopaminergic mechanisms in conditioned fear states.
Dobbs, Lauren K.; Mark, Gregory P.
2012-01-01
Methamphetamine (MA) increases dopamine (DA) levels within the mesolimbic pathway and acetylcholine (ACh), a neurotransmitter known to increase DA cell firing and release and mediate reinforcement, within the ventral tegmental area (VTA). The laterodorsal tegmental (LDT) and pedunculopontine tegmental (PPT) nuclei provide cholinergic input to the VTA; however, the contribution of LDT- and PPT-derived ACh to MA-induced DA and ACh levels and locomotor activation remains unknown. The first experiment examined the role of LDT-derived ACh in MA locomotor activation by reversibly inhibiting these neurons with bilateral intra-LDT microinjections of the M2 receptor agonist oxotremorine (OXO). Male C57BL/6 J mice were given a bilateral 0.1 µl OXO (0, 1, or 10 nM/side) microinjection immediately prior to IP saline or MA (2 mg/kg). The highest OXO concentration significantly inhibited both saline-and MA-primed locomotor activity. In a second set of experiments we characterized the individual contributions of ACh originating in the LDT or pedunculopontine tegmental nucleus (PPT) to MA-induced levels of ACh and DA by administering intra-LDT or PPT OXO and performing in vivo microdialysis in the VTA and NAc. Intra-LDT OXO dose-dependently attenuated the MA-induced increase in ACh within the VTA but had no effect on DA in NAc. Intra-PPT OXO had no effect on ACh or DA levels within the VTA or NAc, respectively. We conclude that LDT, but not PPT, ACh is important in locomotor behavior and the cholinergic, but not dopaminergic, response to systemic MA. PMID:21945297
Fitoussi, Aurelie; Zunder, Jordan; Tan, Huibing; Laviolette, Steven R
2018-05-18
Chronic or acute exposure to delta-9-tetrahydrocannabinol (THC), the main psychoactive compound in cannabis, has been associated with numerous neuropsychiatric side-effects, including dysregulation of emotional processing and associative memory formation. Clinical and pre-clinical evidence suggests that the effects of THC are due to the ability to modulate mesolimbic dopamine (DA) activity states in the nucleus accumbens (NAc) and ventral tegmental area (VTA). Nevertheless, the mechanisms by which THC modulates mesolimbic DA function and emotional processing are not well understood. Using an olfactory associative fear memory procedure combined with in vivo neuronal electrophysiology, we examined the effects of direct THC microinfusions targeting the shell region of the NAc (NASh) and examined how THC may modulate the processing of fear-related emotional memory and concomitant activity states of the mesolimbic DA system. We report that intra-NASh THC dose-dependently potentiates the emotional salience of normally sub-threshold fear-conditioning cues. These effects were dependent upon intra-VTA transmission through GABAergic receptor mechanisms and intra-NASh DAergic transmission. Furthermore, doses of intra-NASh THC that potentiated fear memory salience were found to modulate intra-VTA neuronal network activity by increasing the spontaneous firing and bursting frequency of DAergic neurons whilst decreasing the activity levels of a subpopulation of putative GABAergic VTA neurons. These findings demonstrate that THC can act directly in the NASh to modulate mesolimbic activity states and induce disturbances in emotional salience and memory formation through modulation of VTA DAergic transmission. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Cha, Jiook; Carlson, Joshua M; Dedora, Daniel J; Greenberg, Tsafrir; Proudfit, Greg H; Mujica-Parodi, Lilianne R
2014-04-23
The ventral tegmental area (VTA) has been primarily implicated in reward-motivated behavior. Recently, aberrant dopaminergic VTA signaling has also been implicated in anxiety-like behaviors in animal models. These findings, however, have yet to be extended to anxiety in humans. Here we hypothesized that clinical anxiety is linked to dysfunction of the mesocorticolimbic circuit during threat processing in humans; specifically, excessive or dysregulated activity of the mesocorticolimbic aversion circuit may be etiologically related to errors in distinguishing cues of threat versus safety, also known as "overgeneralization of fear." To test this, we recruited 32 females with generalized anxiety disorder and 25 age-matched healthy control females. We measured brain activity using fMRI while participants underwent a fear generalization task consisting of pseudo-randomly presented rectangles with systematically varying widths. A mid-sized rectangle served as a conditioned stimulus (CS; 50% electric shock probability) and rectangles with widths of CS ±20%, ±40%, and ±60% served as generalization stimuli (GS; never paired with electric shock). Healthy controls showed VTA reactivity proportional to the cue's perceptual similarity to CS (threat). In contrast, patients with generalized anxiety disorder showed heightened and less discriminating VTA reactivity to GS, a feature that was positively correlated with trait anxiety, as well as increased mesocortical and decreased mesohippocampal coupling. Our results suggest that the human VTA and the mesocorticolimbic system play a crucial role in threat processing, and that abnormalities in this system are implicated in maladaptive threat processing in clinical anxiety.
He, Dao-Yao; McGough, Nancy N H; Ravindranathan, Ajay; Jeanblanc, Jerome; Logrip, Marian L; Phamluong, Khanhky; Janak, Patricia H; Ron, Dorit
2005-01-19
Alcohol addiction manifests as uncontrolled drinking despite negative consequences. Few medications are available to treat the disorder. Anecdotal reports suggest that ibogaine, a natural alkaloid, reverses behaviors associated with addiction including alcoholism; however, because of side effects, ibogaine is not used clinically. In this study, we first characterized the actions of ibogaine on ethanol self-administration in rodents. Ibogaine decreased ethanol intake by rats in two-bottle choice and operant self-administration paradigms. Ibogaine also reduced operant self-administration of ethanol in a relapse model. Next, we identified a molecular mechanism that mediates the desirable activities of ibogaine on ethanol intake. Microinjection of ibogaine into the ventral tegmental area (VTA), but not the substantia nigra, reduced self-administration of ethanol, and systemic administration of ibogaine increased the expression of glial cell line-derived neurotrophic factor (GDNF) in a midbrain region that includes the VTA. In dopaminergic neuron-like SHSY5Y cells, ibogaine treatment upregulated the GDNF pathway as indicated by increases in phosphorylation of the GDNF receptor, Ret, and the downstream kinase, ERK1 (extracellular signal-regulated kinase 1). Finally, the ibogaine-mediated decrease in ethanol self-administration was mimicked by intra-VTA microinjection of GDNF and was reduced by intra-VTA delivery of anti-GDNF neutralizing antibodies. Together, these results suggest that GDNF in the VTA mediates the action of ibogaine on ethanol consumption. These findings highlight the importance of GDNF as a new target for drug development for alcoholism that may mimic the effect of ibogaine against alcohol consumption but avoid the negative side effects.
He, Dao-Yao; McGough, Nancy N. H.; Ravindranathan, Ajay; Jeanblanc, Jerome; Logrip, Marian L.; Phamluong, Khanhky; Janak, Patricia H.; Ron, Dorit
2005-01-01
Alcohol addiction manifests as uncontrolled drinking despite negative consequences. Few medications are available to treat the disorder. Anecdotal reports suggest that ibogaine, a natural alkaloid, reverses behaviors associated with addiction including alcoholism; however, because of side effects, ibogaine is not used clinically. In this study, we first characterized the actions of ibogaine on ethanol self-administration in rodents. Ibogaine decreased ethanol intake by rats in two-bottle choice and operant self-administration paradigms. Ibogaine also reduced operant self-administration of ethanol in a relapse model. Next, we identified a molecular mechanism that mediates the desirable activities of ibogaine on ethanol intake. Microinjection of ibogaine into the ventral tegmental area (VTA), but not the substantia nigra, reduced self-administration of ethanol, and systemic administration of ibogaine increased the expression of glial cell line-derived neurotrophic factor (GDNF) in a midbrain region that includes the VTA. In dopaminergic neuron-like SHSY5Y cells, ibogaine treatment upregulated the GDNF pathway as indicated by increases in phosphorylation of the GDNF receptor, Ret, and the downstream kinase, ERK1 (extracellular signal-regulated kinase 1). Finally, the ibogaine-mediated decrease in ethanol self-administration was mimicked by intra-VTA microinjection of GDNF and was reduced by intra-VTA delivery of anti-GDNF neutralizing antibodies. Together, these results suggest that GDNF in the VTA mediates the action of ibogaine on ethanol consumption. These findings highlight the importance of GDNF as a new target for drug development for alcoholism that may mimic the effect of ibogaine against alcohol consumption but avoid the negative side effects. PMID:15659598
ERIC Educational Resources Information Center
Murschall, Anja; Hauber, Wolfgang
2006-01-01
Pavlovian stimuli can markedly elevate instrumental responding, an effect known as Pavlovian-instrumental transfer (PIT). As the role of the ventral tegmental area (VTA) in PIT is yet unknown, we examined the effects of transient VTA inactivation by direct microinjections of a mixture of the GABA[subscript A] and GABA[subscript B] receptor…
USDA-ARS?s Scientific Manuscript database
Vegetative treatment systems (VTSs) are one type of control structure that has shown potential to control runoff from open feedlots. To achieve maximum performance, sheet-flow over the width of the vegetative treatment area (VTA) is required. Tools, such as maps of flow paths through the VTA, are ne...
NASA Technical Reports Server (NTRS)
Quayle, S. S.
1982-01-01
The results obtained from fuel economy and emission tests conducted on a prototype Fiat 131 turbocharged diesel vehicle are presented. The vehicle was tested on a chassis dynamometer over selected drive cycles and steady-state conditions. Two fuels were used, a United States number 2 diesel and a European diesel fuel. Particulate emission rates were calculated from dilution tunnel measurements and large volume particulate samples were collected for biological and chemical analysis. It was determined that turbocharging accompanied by complementary modifications results in small but substantial improvements in regulated emissions, fuel economy, and performance. Notably, particulate levels were reduced by 30 percent.
An Anatomical Basis for Opponent Process Mechanisms of Opiate Withdrawal
Radke, Anna K.; Rothwell, Patrick E.; Gewirtz, Jonathan C.
2011-01-01
Opponent process theory predicts that the first step in the induction of drug withdrawal is the activation of reward-related circuitry. Using the acoustic startle reflex as a model of anxiety-like behavior in rats, we show the emergence of a negative affective state during withdrawal after direct infusion of morphine into the ventral tegmental area (VTA), the origin of the mesolimbic dopamine system. Potentiation of startle during withdrawal from systemic morphine exposure requires a decrease in opiate receptor stimulation in the VTA and can be relieved by administration of the dopamine receptor agonist apomorphine. Together, our results suggest that the emergence of anxiety during withdrawal from acute opiate exposure begins with activation of VTA mesolimbic dopamine circuitry, providing a mechanism for the opponent process view of withdrawal. PMID:21593338
Altier, N; Stewart, J
1997-12-01
Experiments were designed to examine the analgesic effects induced by selective tachykinin receptor agonists microinfused into either the ventral tegmental area (VTA) or nucleus accumbens septi (NAS). Rats were tested in the formalin test for tonic pain following an injection of 0.05 ml of 2.5% formalin into one hind paw immediately after bilateral intra-VTA infusions of either the NK-1 agonist, GR-73632 (0.005, 0.05 or 0.5 nmol/side), the NK-3 agonist, senktide (0.005, 0.5 or 1.5 nmol/side), or saline. Two weeks later, the saline-treated rats were assessed in the tail-flick test for phasic pain after infusions of the tachykinin agonists. Tail-flick latencies were recorded following immersion of the tail in 55 degrees C hot water at 10 min intervals for 1 h immediately after intra-VTA infusions of either GR-73632 (0.5 nmol/side), senktide (1.5 nmol/side) or saline. In a second group of rats, the same effects were studied after infusions into the nucleus accumbens (NAS) of GR-73632 (0.005, 0.5 or 1.5 nmol/side), senktide (0.005, 0.5 or 1.5 nmol/side), or saline. In both the VTA and NAS, the NK-1 and the NK-3 agonists caused significant analgesia in the formalin test, although the NK-1 agonist appeared to be more effective. Naltrexone (2.0 mg/kg) pretreatment failed to reverse the analgesic effects in the formalin test induced by intra-VTA infusions of the substance P (SP) analog, DiMe-C7 (3.0 microg/side), GR-73632 (0.5 nmol/side), or senktide (1.5 nmol/side). Neither compound given at either site was effective in the tail-flick test. These findings suggest that SP-dopamine (DA) interactions within the mesolimbic DA system play an important role in the inhibition of tonic pain. Furthermore, they support our earlier ideas that activation of midbrain DA systems by SP might play a role in stress- and/or pain-induced analgesia.
Functional μ-Opioid-Galanin Receptor Heteromers in the Ventral Tegmental Area
Moreno, Estefanía; Quiroz, César; Rea, William; Cai, Ning-Sheng; Cortés, Antoni
2017-01-01
The neuropeptide galanin has been shown to interact with the opioid system. More specifically, galanin counteracts the behavioral effects of the systemic administration of μ-opioid receptor (MOR) agonists. Yet the mechanism responsible for this galanin–opioid interaction has remained elusive. Using biophysical techniques in mammalian transfected cells, we found evidence for selective heteromerization of MOR and the galanin receptor subtype Gal1 (Gal1R). Also in transfected cells, a synthetic peptide selectively disrupted MOR–Gal1R heteromerization as well as specific interactions between MOR and Gal1R ligands: a negative cross talk, by which galanin counteracted MAPK activation induced by the endogenous MOR agonist endomorphin-1, and a cross-antagonism, by which a MOR antagonist counteracted MAPK activation induced by galanin. These specific interactions, which represented biochemical properties of the MOR-Gal1R heteromer, could then be identified in situ in slices of rat ventral tegmental area (VTA) with MAPK activation and two additional cell signaling pathways, AKT and CREB phosphorylation. Furthermore, in vivo microdialysis experiments showed that the disruptive peptide selectively counteracted the ability of galanin to block the dendritic dopamine release in the rat VTA induced by local infusion of endomorphin-1, demonstrating a key role of MOR-Gal1R heteromers localized in the VTA in the direct control of dopamine cell function and their ability to mediate antagonistic interactions between MOR and Gal1R ligands. The results also indicate that MOR-Gal1R heteromers should be viewed as targets for the treatment of opioid use disorders. SIGNIFICANCE STATEMENT The μ-opioid receptor (MOR) localized in the ventral tegmental area (VTA) plays a key role in the reinforcing and addictive properties of opioids. With parallel in vitro experiments in mammalian transfected cells and in situ and in vivo experiments in rat VTA, we demonstrate that a significant population of these MORs form functional heteromers with the galanin receptor subtype Gal1 (Gal1R), which modulate the activity of the VTA dopaminergic neurons. The MOR-Gal1R heteromer can explain previous results showing antagonistic galanin–opioid interactions and offers a new therapeutic target for the treatment of opioid use disorder. PMID:28007761
Tye, S J; Miller, A D; Blaha, C D
2013-11-12
Activation of glutamate receptors within the ventral tegmental area (VTA) stimulates extrasynaptic (basal) dopamine release in terminal regions, including the nucleus accumbens (NAc). Hindbrain inputs from the laterodorsal tegmental nucleus (LDT) are critical for elicitation of phasic VTA dopamine cell activity and consequent transient dopamine release. This study investigated the role of VTA ionotropic glutamate receptor (iGluR) stimulation on both basal and LDT electrical stimulation-evoked dopamine efflux in the NAc using in vivo chronoamperometry and fixed potential amperometry in combination with stearate-graphite paste and carbon fiber electrodes, respectively. Intra-VTA infusion of the iGluR agonists (±)-α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA; 1 μg/μl) or N-methyl-d-aspartic acid (NMDA; 2 μg/μl) enhanced basal NAc dopamine efflux. This iGluR-mediated potentiation of basal dopamine efflux was paralleled by an attenuation of LDT-evoked transient NAc dopamine efflux, suggesting that excitation of basal activity effectively inhibited the capacity of hindbrain afferents to elicit transient dopamine efflux. In line with this, post-NMDA infusion of the dopamine D2 autoreceptor (D2R) agonist quinpirole (1 μg/μl; intra-VTA) partially recovered NMDA-mediated attenuation of LDT-evoked NAc dopamine, while concurrently attenuating NMDA-mediated potentiation of basal dopamine efflux. Post-NMDA infusion of quinpirole (1 μg/μl) alone attenuated basal and LDT-evoked dopamine efflux. Taken together, these data reveal that hyperstimulation of basal dopamine transmission can stunt hindbrain burst-like stimulation-evoked dopamine efflux. Inhibitory autoreceptor mechanisms within the VTA help to partially recover the magnitude of phasic dopamine efflux, highlighting the importance of both iGluRs and D2 autoreceptors in maintaining the functional balance of tonic and phasic dopamine neurotransmission. Dysregulation of this balance may have important implications for disorders of dopamine dysregulation such as attention deficit hyperactivity disorder. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.
Thermally resistant polymers for fuel tank sealants
NASA Technical Reports Server (NTRS)
Webster, J. A.
1972-01-01
Conversion of fluorocarbon dicarboxylic acid to intermediates whose terminal functional groups permit polymerization is discussed. Resulting polymers are used as fuel tank sealers for jet fuels at elevated temperatures. Stability and fuel resistance of the prototype polymers is explained.
Kramer, A C; Mirto, A J; Austin, K J; Roselli, C E; Alexander, B M
2017-12-01
Dopamine synthesis in the ventral tegmental area (VTA) is necessary for the reinforcement of sexual behavior. The objective of this study determined if sexual stimuli initiates reward, and whether reward is attenuated in sexually inactive rams. Sexually active rams were exposed to urine from estrous (n=4) or ovariectomized (n=3) ewes with inactive rams (n=3) exposed to urine from estrous ewes. Following exposure, rams were exsanguinated and brains perfused. Alternating sections of the VTA were stained for Fos related antigens (FRA), tyrosine hydroxylase, and dopamine beta-hydroxylase activity. Forebrain tissue, mid-sagittal ventral to the anterior corpus callosum, was stained for dopamine D 2 receptors. Concentrations of cortisol was determined prior to and following exposure. Exposure to ovariectomized-ewe urine in sexually active rams did not influence (P=0.6) FRA expression, but fewer (P<0.05) neurons were positive for tyrosine hydroxylase in the VTA. Sexually inactive rams had fewer (P<0.05) FRA and tyrosine hydroxylase positive neurons in the VTA than sexually active rams following exposure to estrous ewe urine. VTA neurons staining positive for dopamine beta-hydroxylase did not differ by sexual activity (P=0.44) or urine exposure (P=0.07). Exposure to stimulus did not influence (P=0.46) numbers of forebrain neurons staining positive for dopamine D2 receptors in sexually active rams, but fewer (P=0.04) neurons stain positive in inactive rams. Serum concentrations of cortisol did not differ (P≥0.52) among rams prior to or following stimulus. In conclusion sexual inactivity is unlikely due to stress, but may be partially a result of decreased tyrosine hydroxylase and/or the response to dopamine. Copyright © 2017 Elsevier B.V. All rights reserved.
Electrical Stimulation of the Ventral Tegmental Area Induces Reanimation from General Anesthesia
Solt, Ken; Van Dort, Christa J.; Chemali, Jessica J.; Taylor, Norman E.; Kenny, Jonathan D.; Brown, Emery N.
2014-01-01
BACKGROUND Methylphenidate or a D1 dopamine receptor agonist induce reanimation (active emergence) from general anesthesia. We tested whether electrical stimulation of dopaminergic nuclei also induces reanimation from general anesthesia. METHODS In adult rats, a bipolar insulated stainless steel electrode was placed in the ventral tegmental area (VTA, n = 5) or substantia nigra (SN, n = 5). After a minimum 7-day recovery period, the isoflurane dose sufficient to maintain loss of righting was established. Electrical stimulation was initiated and increased in intensity every 3 min to a maximum of 120μA. If stimulation restored the righting reflex, an additional experiment was performed at least 3 days later during continuous propofol anesthesia. Histological analysis was conducted to identify the location of the electrode tip. In separate experiments, stimulation was performed in the prone position during general anesthesia with isoflurane or propofol, and the electroencephalogram was recorded. RESULTS To maintain loss of righting, the dose of isoflurane was 0.9% ± 0.1 vol%, and the target plasma dose of propofol was 4.4 μg/ml ± 1.1 μg/ml (mean ± SD). In all rats with VTA electrodes, electrical stimulation induced a graded arousal response including righting that increased with current intensity. VTA stimulation induced a shift in electroencephalogram peak power from δ (<4 Hz) to θ (4–8 Hz). In all rats with SN electrodes, stimulation did not elicit an arousal response or significant electroencephalogram changes. CONCLUSIONS Electrical stimulation of the VTA, but not the SN, induces reanimation during general anesthesia with isoflurane or propofol. These results are consistent with the hypothesis that dopamine release by VTA, but not SN, neurons induces reanimation from general anesthesia. PMID:24398816
Rogers, Tiffany D.; Dickson, Price E.; McKimm, Eric; Heck, Detlef H.; Goldowitz, Dan; Blaha, Charles D.; Mittleman, Guy
2013-01-01
Imaging, clinical and pre-clinical studies have provided ample evidence for a cerebellar involvement in cognitive brain function including cognitive brain disorders, such as autism and schizophrenia. We previously reported that cerebellar activity modulates dopamine release in the mouse medial prefrontal cortex (mPFC) via two distinct pathways: (1) cerebellum to mPFC via dopaminergic projections from the ventral tegmental area [VTA] and (2) cerebellum to mPFC via glutamatergic projections from the mediodorsal and ventrolateral thalamus (ThN md and vl). The present study compared functional adaptations of cerebello-cortical circuitry following developmental cerebellar pathology in a mouse model of developmental loss of Purkinje cells (Lurcher) and a mouse model of fragile X syndrome (Fmr1 KO mice). Fixed potential amperometry was used to measure mPFC dopamine release in response to cerebellar electrical stimulation. Mutant mice of both strains showed an attenuation in cerebellar-evoked mPFC dopamine release compared to respective wildtype mice. This was accompanied by a functional reorganization of the VTA and thalamic pathways mediating cerebellar modulation of mPFC dopamine release. Inactivation of the VTA pathway by intra-VTA lidocaine or kynurenate infusions decreased dopamine release by 50% in wildtype and 20-30% in mutant mice of both strains. Intra-ThN vl infusions of either drug decreased dopamine release by 15% in wildtype and 40% in mutant mice of both strains, while dopamine release remained relatively unchanged following intra-ThN md drug infusions. These results indicate a shift in strength towards the thalamic vl projection, away from the VTA. Thus, cerebellar neuropathologies associated with autism spectrum disorders may cause a reduction in cerebellar modulation of mPFC dopamine release that is related to a reorganization of the mediating neuronal pathways. PMID:23436049
Rogers, Tiffany D; Dickson, Price E; McKimm, Eric; Heck, Detlef H; Goldowitz, Dan; Blaha, Charles D; Mittleman, Guy
2013-08-01
Imaging, clinical, and pre-clinical studies have provided ample evidence for a cerebellar involvement in cognitive brain function including cognitive brain disorders, such as autism and schizophrenia. We previously reported that cerebellar activity modulates dopamine release in the mouse medial prefrontal cortex (mPFC) via two distinct pathways: (1) cerebellum to mPFC via dopaminergic projections from the ventral tegmental area (VTA) and (2) cerebellum to mPFC via glutamatergic projections from the mediodorsal and ventrolateral thalamus (ThN md and vl). The present study compared functional adaptations of cerebello-cortical circuitry following developmental cerebellar pathology in a mouse model of developmental loss of Purkinje cells (Lurcher) and a mouse model of fragile X syndrome (Fmr1 KO mice). Fixed potential amperometry was used to measure mPFC dopamine release in response to cerebellar electrical stimulation. Mutant mice of both strains showed an attenuation in cerebellar-evoked mPFC dopamine release compared to respective wildtype mice. This was accompanied by a functional reorganization of the VTA and thalamic pathways mediating cerebellar modulation of mPFC dopamine release. Inactivation of the VTA pathway by intra-VTA lidocaine or kynurenate infusions decreased dopamine release by 50 % in wildtype and 20-30 % in mutant mice of both strains. Intra-ThN vl infusions of either drug decreased dopamine release by 15 % in wildtype and 40 % in mutant mice of both strains, while dopamine release remained relatively unchanged following intra-ThN md drug infusions. These results indicate a shift in strength towards the thalamic vl projection, away from the VTA. Thus, cerebellar neuropathologies associated with autism spectrum disorders may cause a reduction in cerebellar modulation of mPFC dopamine release that is related to a reorganization of the mediating neuronal pathways.
The role of connexin-36 gap junctions in alcohol intoxication and consumption.
Steffensen, Scott C; Bradley, Katie D; Hansen, David M; Wilcox, Jeffrey D; Wilcox, Rebecca S; Allison, David W; Merrill, Collin B; Edwards, Jeffrey G
2011-08-01
Ventral tegmental area (VTA) GABA neurons appear to be critical substrates underlying the acute and chronic effects of ethanol on dopamine (DA) neurotransmission in the mesocorticolimbic system implicated in alcohol reward. The aim of this study was to examine the role of midbrain connexin-36 (Cx36) gap junctions (GJs) in ethanol intoxication and consumption. Using behavioral, molecular, and electrophysiological methods, we compared the effects of ethanol in mature Cx36 knockout (KO) mice and age-matched wild-type (WT) controls. Compared to WT mice, Cx36 KO mice exhibited significantly more ethanol-induced motor impairment in the open field test, but less disruption in motor coordination in the rotarod paradigm. Cx36 KO mice, and WT mice treated with the Cx36 antagonist mefloquine (MFQ), consumed significantly less ethanol than their WT controls in the drink-in-the-dark procedure. The firing rate of VTA GABA neurons in WT mice was inhibited by ethanol with an IC₅₀ of 0.25 g/kg, while VTA GABA neurons in KO mice were significantly less sensitive to ethanol. Dopamine neuron GABA-mediated sIPSC frequency was reduced by ethanol (30 mM) in WT mice, but not affected in KO mice. Cx36 KO mice evinced a significant up-regulation in DAT and D2 receptors in the VTA, as assessed by quantitative RT-PCR. These findings demonstrate the behavioral relevance of Cx36 GJ-mediated electrical coupling between GABA neurons in mature animals, and suggest that loss of coupling between VTA GABA neurons results in disinhibition of DA neurons, a hyper-DAergic state and lowered hedonic valence for ethanol consumption. Copyright © 2010 Wiley-Liss, Inc.
Bose, Poulomee; Rompré, Pierre-Paul; Warren, Richard A
2015-11-01
Neurotensin (NT) is an endogenous neuropeptide that modulates dopamine and glutamate neurotransmission in several limbic regions innervated by neurons located in the ventral tegmental area (VTA). While several studies showed that NT exerted a direct modulation on VTA dopamine neurons less is known about its role in the modulation of glutamatergic neurotransmission in this region. The present study was aimed at characterising the effects of NT on glutamate-mediated responses in different populations of VTA neurons. Using whole cell patch clamp recording technique in horizontal rat brain slices, we measured the amplitude of glutamatergic excitatory post-synaptic currents (EPSCs) evoked by electrical stimulation of VTA afferents before and after application of different concentrations of NT1-13 or its C-terminal fragment, NT8-13. Neurons were classified as either Ih(+) or Ih(-) based on the presence or absence of a hyperpolarisation activated cationic current (Ih). We found that NT1-13 and NT8-13 produced comparable concentration dependent increase in the amplitude of EPSCs in both Ih(+) and Ih(-) neurons. In Ih(+) neurons, the enhancement effect of NT8-13 was blocked by both antagonists, while in Ih(-) neurons it was blocked by the NTS1/NTS2 antagonist, SR142948A, but not the preferred NTS1 antagonist, SR48692. In as much as Ih(-) neurons are non-dopaminergic neurons and Ih(+) neurons represent both dopamine and non-dopamine neurons, we can conclude that NT enhances glutamatergic mediated responses in dopamine, and in a subset of non-dopamine, neurons by acting respectively on NTS1 and an NT receptor other than NTS1. Copyright © 2015 Elsevier Inc. All rights reserved.
Ahmadiantehrani, Somayeh; Barak, Segev; Ron, Dorit
2012-01-01
Glial cell line-derived neurotrophic factor (GDNF) is a potent inhibitor of ethanol consumption and relapse (Carnicella et al., 2008; Carnicella and Ron, 2009; Carnicella et al., 2009c; Barak et al., 2011a), and GDNF heterozygous knockout mice display increased reward sensitivity to ethanol, and consume more ethanol after a period of abstinence, than their wild-type littermates (Carnicella et al., 2009b). Here, we tested whether ethanol alters GDNF expression in the ventral tegmental area (VTA; GDNF’s site of action) and/or the nucleus accumbens (NAc; the main source of GDNF), and if so, determine the role of the endogenous growth factor in the regulation of ethanol consumption. Systemic administration of ethanol increased GDNF expression and protein levels in the VTA, but not the NAc. Additionally, GDNF levels were elevated after an ethanol-drinking session in rats that consumed ethanol in the intermittent-access two-bottle choice procedure for 1 week, but not 7 weeks. Deprivation following 7 weeks of excessive ethanol intake reduced GDNF levels, while a short ethanol binge drinking period following deprivation upregulated GDNF expression. Importantly, knockdown of GDNF within the VTA using adenovirus expressing short hairpin RNA facilitated the escalation of ethanol drinking by ethanol-naïve rats, but not by rats with a history of excessive ethanol consumption. These results suggest that during initial ethanol-drinking experiences, GDNF in the VTA is increased and protects against the development of excessive ethanol intake. However, the growth factor’s protective response to ethanol breaks down after protracted excessive ethanol intake and withdrawal, resulting in persistent, excessive ethanol consumption. PMID:23298382
Peltonen, I; Myöhänen, T T; Männistö, P T
2012-09-01
Prolyl oligopeptidase (PREP) is an intracellular enzyme digesting small proline-containing peptides. Since PREP resides the same brain areas as neurotensin in the nigrostriatal and mesolimbic dopaminergic pathways, we were interested to study if there is an intracellular interaction between them. A colocalization of PREP with neurotensin and neurotensin receptor 1 (NTS1) in the rat striatum, nucleus accumbens (NAcc), substantia nigra (SN) and ventral tegmental area (VTA) was studied with immunofluorescence. From the same brain areas, the levels of dopamine and its metabolites were measured 1 h after the injection of saline, NTS1 ligands (JMV-449; 5 μg) or antagonist (SR142948; 5 μg) to the rat striatum or NAcc. We also studied whether an intraperitoneal injection of a PREP inhibitor (KYP-2047; 5 mg/kg) affects the levels of dopamine and its metabolites alone or modifies the effects of the NTS1 ligands. PREP was highly colocalized with neurotensin and NTS1 in the VTA, and with NTS1 in the SN. Colocalization was moderate or low in other brain areas. When injected to the striatum, JMV-449 had a tendency to increase dopamine (p = 0.052) and metabolite levels in the striatum and SN, whereas SR142948 did not. After the injection to the NAcc, JMV-449 but not SR142948, increased dopamine levels in the VTA and dopamine metabolite levels in the NAcc and VTA. KYP-2047 decreased the dopamine levels in the striatum, but increased dopamine metabolite levels in the NAcc and VTA. Our results suggest a novel role for PREP in the modulation of dopaminergic transmission, which may be different in nigrostriatal and mesolimbic pathways.
Whiting, Lynda; McCutcheon, James E; Boyle, Christina N; Roitman, Mitchell F; Lutz, Thomas A
2017-07-01
The pancreatic hormone amylin and its agonist salmon calcitonin (sCT) act via the area postrema (AP) and the lateral parabrachial nucleus (PBN) to reduce food intake. Investigations of amylin and sCT signaling in the ventral tegmental area (VTA) and nucleus accumbens (NAc) suggest that the eating inhibitory effect of amylin is, in part, mediated through the mesolimbic 'reward' pathway. Indeed, administration of the sCT directly to the VTA decreased phasic dopamine release (DA) in the NAc. However, it is not known if peripheral amylin modulates the mesolimbic system directly or whether this occurs via the AP and PBN. To determine whether and how peripheral amylin or sCT affect mesolimbic reward circuitry we utilized fast scan cyclic voltammetry under anesthesia to measure phasic DA release in the NAc evoked by electrical stimulation of the VTA in intact, AP lesioned and bilaterally PBN lesioned rats. Amylin (50μg/kg i.p.) did not change phasic DA responses compared to saline control rats. However, sCT (50μg/kg i.p.) decreased evoked DA release to VTA-stimulation over 1h compared to saline treated control rats. Further investigations determined that AP and bilateral PBN lesions abolished the ability of sCT to suppress evoked phasic DA responses to VTA-stimulation. These findings implicate the AP and the PBN as important sites for peripheral sCT to decrease evoked DA release in the NAc and suggest that these nuclei may influence hedonic and motivational processes to modulate food intake. Copyright © 2017 Elsevier Inc. All rights reserved.
Centrally Administered Ghrelin Acutely Influences Food Choice in Rodents
Schéle, Erik; Bake, Tina; Rabasa, Cristina; Dickson, Suzanne L.
2016-01-01
We sought to determine whether the orexigenic hormone, ghrelin, is involved in the intrinsic regulation of food choice in rats. Ghrelin would seem suited to serve such a role given that it signals hunger information from the stomach to brain areas important for feeding control, including the hypothalamus and reward system (e.g. ventral tegmental area, VTA). Thus, in rats offered a choice of palatable foods (sucrose pellets and lard) superimposed on regular chow for 2 weeks, we explored whether acute central delivery of ghrelin (intracerebroventricular (ICV) or intra-VTA) is able to redirect their dietary choice. The major unexpected finding is that, in rats with high baseline lard intake, acute ICV ghrelin injection increased their chow intake over 3-fold, relative to vehicle-injected controls, measured at both 3 hr and 6 hr after injection. Similar effects were observed when ghrelin was delivered to the VTA, thereby identifying the VTA as a likely contributing neurobiological substrate for these effects. We also explored food choice after an overnight fast, when endogenous ghrelin levels are elevated, and found similar effects of dietary choice to those described for ghrelin. These effects of fasting on food choice were suppressed in models of suppressed ghrelin signaling (i.e. peripheral injection of a ghrelin receptor antagonist to rats and ghrelin receptor (GHSR) knock-out mice), implicating a role for endogenous ghrelin in the changes in food choice that occur after an overnight fast. Thus, in line with its role as a gut-brain hunger hormone, ghrelin appears to be able to acutely alter food choice, with notable effects to promote “healthy” chow intake, and identify the VTA as a likely contributing neurobiological substrate for these effects. PMID:26925974
Organization of monosynaptic inputs to the serotonin and dopamine neuromodulatorysystems
Ogawa, Sachie K.; Cohen, Jeremiah Y.; Hwang, Dabin; Uchida, Naoshige; Watabe-Uchida, Mitsuko
2014-01-01
SUMMARY Serotonin and dopamine are major neuromodulators. Here we used a modified rabies virus to identify monosynaptic inputs to serotonin neurons in the dorsal and median raphe (DR and MR). We found that inputs to DR and MR serotonin neurons are spatially shiftedin the forebrain, with MRserotonin neurons receiving inputs from more medial structures. We then compared these data with inputs to dopamine neurons in the ventral tegmental area (VTA) and substantianigra pars compacta (SNc). We found that DR serotonin neurons receive inputs from a remarkably similar set of areas as VTA dopamine neurons, apart from the striatum, which preferentially targets dopamine neurons. Ourresults suggest three majorinput streams: amedial stream regulates MR serotonin neurons, anintermediate stream regulatesDR serotonin and VTA dopamine neurons, and alateral stream regulatesSNc dopamine neurons. These results providefundamental organizational principlesofafferent control forserotonin and dopamine. PMID:25108805
Fuel Cell Vehicle Basics | NREL
Fuel Cell Vehicle Basics Fuel Cell Vehicle Basics Researchers are developing fuel cells that can be silver four-door sedan being driven on a roadway and containing the words "hydrogen fuel cell electric" across the front and rear doors. This prototype hydrogen fuel cell electric vehicle was
Ethanol and Mesolimbic Serotonin/Dopamine Interactions Via 5-HT1B Receptors
2006-03-01
baclofen , a GABAB receptor agonist, into the VTA probe and the response of extracellular DA in the ipsilateral NACC was determined. A significant...decrease (50% deduction) in extracellular DA in the ipsilateral NACC after perfusion with baclofen was considered an appropriate implantation of the...the VTA with baclofen were included in data analyses. Approximately 70% of the animals that had undergone surgery had both probes correctly implanted
GIRK Channels Modulate Opioid-Induced Motor Activity in a Cell Type- and Subunit-Dependent Manner
Kotecki, Lydia; Hearing, Matthew; McCall, Nora M.; Marron Fernandez de Velasco, Ezequiel; Pravetoni, Marco; Arora, Devinder; Victoria, Nicole C.; Munoz, Michaelanne B.; Xia, Zhilian; Slesinger, Paul A.; Weaver, C. David
2015-01-01
G-protein-gated inwardly rectifying K+ (GIRK/Kir3) channel activation underlies key physiological effects of opioids, including analgesia and dependence. GIRK channel activation has also been implicated in the opioid-induced inhibition of midbrain GABA neurons and consequent disinhibition of dopamine (DA) neurons in the ventral tegmental area (VTA). Drug-induced disinhibition of VTA DA neurons has been linked to reward-related behaviors and underlies opioid-induced motor activation. Here, we demonstrate that mouse VTA GABA neurons express a GIRK channel formed by GIRK1 and GIRK2 subunits. Nevertheless, neither constitutive genetic ablation of Girk1 or Girk2, nor the selective ablation of GIRK channels in GABA neurons, diminished morphine-induced motor activity in mice. Moreover, direct activation of GIRK channels in midbrain GABA neurons did not enhance motor activity. In contrast, genetic manipulations that selectively enhanced or suppressed GIRK channel function in midbrain DA neurons correlated with decreased and increased sensitivity, respectively, to the motor-stimulatory effect of systemic morphine. Collectively, these data support the contention that the unique GIRK channel subtype in VTA DA neurons, the GIRK2/GIRK3 heteromer, regulates the sensitivity of the mouse mesolimbic DA system to drugs with addictive potential. PMID:25948263
Amphetamine regulation of mesolimbic dopamine/cholecystokinin neurotransmission.
Hurd, Y L; Lindefors, N; Brodin, E; Brené, S; Persson, H; Ungerstedt, U; Hökfelt, T
1992-04-24
The effects of acute and repeated amphetamine administration on mesolimbic dopamine (DA) neurons was assessed by studying DA and cholecystokinin (CCK) release in the nucleus accumbens (Acc), as well as effects on mRNA genes regulating DA and CCK synthesis in ventral tegmental area (VTA) cells in rats. Amphetamine (1.5 mg/kg) markedly increased extracellular levels of DA in the medial Acc (assessed by in vivo microdialysis) in drug-naive animals, about twice the amount released in animals repeatedly administered the drug for the previous 7 days (twice daily). CCK overflow was found to mirror the DA responses in that the very transient elevation of CCK monitored in drug-naive animals was attenuated in those with prior amphetamine use. The attenuation of both DA and CCK overflow in the medial Acc was found to be associated with a decrease in the number of CCK mRNA-positive VTA neurons (assessed by in situ hybridization histochemistry). Although the number of cells expressing CCK mRNA were decreased, the gene expression in those positive CCK and tyrosine hydroxylase mRNA cells in the VTA was significantly increased. The CCK mRNA neurons in the VTA were positively identified as those projecting to the medial Acc by the local perfusion of Fluoro-gold retrograde tracer via microdialysis probes located in the Acc.
Glutamate neurons are intermixed with midbrain dopamine neurons in nonhuman primates and humans
Root, David H.; Wang, Hui-Ling; Liu, Bing; Barker, David J.; Mód, László; Szocsics, Péter; Silva, Afonso C.; Maglóczky, Zsófia; Morales, Marisela
2016-01-01
The rodent ventral tegmental area (VTA) and substantia nigra pars compacta (SNC) contain dopamine neurons intermixed with glutamate neurons (expressing vesicular glutamate transporter 2; VGluT2), which play roles in reward and aversion. However, identifying the neuronal compositions of the VTA and SNC in higher mammals has remained challenging. Here, we revealed VGluT2 neurons within the VTA and SNC of nonhuman primates and humans by simultaneous detection of VGluT2 mRNA and tyrosine hydroxylase (TH; for identification of dopamine neurons). We found that several VTA subdivisions share similar cellular compositions in nonhuman primates and humans; their rostral linear nuclei have a high prevalence of VGluT2 neurons lacking TH; their paranigral and parabrachial pigmented nuclei have mostly TH neurons, and their parabrachial pigmented nuclei have dual VGluT2-TH neurons. Within nonhuman primates and humans SNC, the vast majority of neurons are TH neurons but VGluT2 neurons were detected in the pars lateralis subdivision. The demonstration that midbrain dopamine neurons are intermixed with glutamate or glutamate-dopamine neurons from rodents to humans offers new opportunities for translational studies towards analyzing the roles that each of these neurons play in human behavior and in midbrain-associated illnesses such as addiction, depression, schizophrenia, and Parkinson’s disease. PMID:27477243
Lennington, Jessica B; Pope, Sara; Goodheart, Anna E; Drozdowicz, Linda; Daniels, Stephen B; Salamone, John D; Conover, Joanne C
2011-09-14
Coordinated regulation of the adult neurogenic subventricular zone (SVZ) is accomplished by a myriad of intrinsic and extrinsic factors. The neurotransmitter dopamine is one regulatory molecule implicated in SVZ function. Nigrostriatal and ventral tegmental area (VTA) midbrain dopamine neurons innervate regions adjacent to the SVZ, and dopamine synapses are found on SVZ cells. Cell division within the SVZ is decreased in humans with Parkinson's disease and in animal models of Parkinson's disease following exposure to toxins that selectively remove nigrostriatal neurons, suggesting that dopamine is critical for SVZ function and nigrostriatal neurons are the main suppliers of SVZ dopamine. However, when we examined the aphakia mouse, which is deficient in nigrostriatal neurons, we found no detrimental effect to SVZ proliferation or organization. Instead, dopamine innervation of the SVZ tracked to neurons at the ventrolateral boundary of the VTA. This same dopaminergic neuron population also innervated the SVZ of control mice. Characterization of these neurons revealed expression of proteins indicative of VTA neurons. Furthermore, exposure to the neurotoxin MPTP depleted neurons in the ventrolateral VTA and resulted in decreased SVZ proliferation. Together, these results reveal that dopamine signaling in the SVZ originates from a population of midbrain neurons more typically associated with motivational and reward processing.
NASA Technical Reports Server (NTRS)
Emrich, William J., Jr.
2014-01-01
To support the on-going nuclear thermal propulsion effort, a state-of-the-art non nuclear experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The facility to perform this testing is referred to as the Nuclear Thermal Rocket Element Environment Simulator (NTREES). This device can simulate the environmental conditions (minus the radiation) to which nuclear rocket fuel components will be subjected during reactor operation. Prototypical fuel elements mounted in the simulator are inductively heated in such a manner so as to accurately reproduce the temperatures and heat fluxes which would normally occur as a result of nuclear fission in addition to being exposed to flowing hydrogen. Recent upgrades to NTREES now allow power levels 24 times greater than those achievable in the previous facility configuration. This higher power operation will allow near prototypical power densities and flows to finally be achieved in most prototypical fuel elements.
NASA Technical Reports Server (NTRS)
Walter, R. A.
1982-01-01
The results obtained from fuel economy and emission tests conducted on a prototype Chrysler Volare diesel vehicle are documented. The vehicle was tested on a chassis dynamometer over selected drive cycles and steady-state conditions. The fuel used, was a DOE/BETC referee fuel. Particulate emission rates were calculated from dilution tunnel measurements and large volume particulate samples were collected for biological and chemical analysis. The vehicle obtained 32.7 mpg for the FTP urban cycle and 48.8 mpg for the highway cycle. The emissions rates were 0.42/1.58/1.17/0.28 g/mile of HC, CO, NOx and particulates respectively.
Early life stress confers lifelong stress susceptibility in mice via ventral tegmental area OTX2.
Peña, Catherine J; Kronman, Hope G; Walker, Deena M; Cates, Hannah M; Bagot, Rosemary C; Purushothaman, Immanuel; Issler, Orna; Loh, Yong-Hwee Eddie; Leong, Tin; Kiraly, Drew D; Goodman, Emma; Neve, Rachael L; Shen, Li; Nestler, Eric J
2017-06-16
Early life stress increases risk for depression. Here we establish a "two-hit" stress model in mice wherein stress at a specific postnatal period increases susceptibility to adult social defeat stress and causes long-lasting transcriptional alterations that prime the ventral tegmental area (VTA)-a brain reward region-to be in a depression-like state. We identify a role for the developmental transcription factor orthodenticle homeobox 2 ( Otx2 ) as an upstream mediator of these enduring effects. Transient juvenile-but not adult-knockdown of Otx2 in VTA mimics early life stress by increasing stress susceptibility, whereas its overexpression reverses the effects of early life stress. This work establishes a mechanism by which early life stress encodes lifelong susceptibility to stress via long-lasting transcriptional programming in VTA mediated by Otx2 . Copyright © 2017, American Association for the Advancement of Science.
Cholinergic Mesopontine Signals Govern Locomotion and Reward Through Dissociable Midbrain Pathways
Xiao, Cheng; Cho, Jounhong Ryan; Zhou, Chunyi; Treweek, Jennifer B.; Chan, Ken; McKinney, Sheri L.; Yang, Bin; Gradinaru, Viviana
2016-01-01
The mesopontine tegmentum, including the pedunculopontine and laterodorsal tegmental nuclei (PPN and LDT), provides major cholinergic inputs to midbrain and regulates locomotion and reward. To delineate the underlying projection-specific circuit mechanisms we employed optogenetics to control mesopontine cholinergic neurons at somata and at divergent projections within distinct midbrain areas. Bidirectional manipulation of PPN cholinergic cell bodies exerted opposing effects on locomotor behavior and reinforcement learning. These motor and reward effects were separable via limiting photostimulation to PPN cholinergic terminals in the ventral substantia nigra pars compacta (vSNc) or to the ventral tegmental area (VTA), respectively. LDT cholinergic neurons also form connections with vSNc and VTA neurons, however although photo-excitation of LDT cholinergic terminals in the VTA caused positive reinforcement, LDT-to-vSNc modulation did not alter locomotion or reward. Therefore, the selective targeting of projection-specific mesopontine cholinergic pathways may offer increased benefit in treating movement and addiction disorders. PMID:27100197
Reward and aversion in a heterogeneous midbrain dopamine system.
Lammel, Stephan; Lim, Byung Kook; Malenka, Robert C
2014-01-01
The ventral tegmental area (VTA) is a heterogeneous brain structure that serves a central role in motivation and reward processing. Abnormalities in the function of VTA dopamine (DA) neurons and the targets they influence are implicated in several prominent neuropsychiatric disorders including addiction and depression. Recent studies suggest that the midbrain DA system is composed of anatomically and functionally heterogeneous DA subpopulations with different axonal projections. These findings may explain a number of previously confusing observations that suggested a role for DA in processing both rewarding as well as aversive events. Here we will focus on recent advances in understanding the neural circuits mediating reward and aversion in the VTA and how stress as well as drugs of abuse, in particular cocaine, alter circuit function within a heterogeneous midbrain DA system. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'. Copyright © 2013 Elsevier Ltd. All rights reserved.
Mere exposure: Preference change for novel drinks reflected in human ventral tegmental area
Ballard, Ian C.; Hennigan, Kelly; McClure, Samuel M.
2018-01-01
Preferences for novel stimuli tend to develop slowly over many exposures. Psychological accounts of this effect suggest that it depends on changes in the brain’s valuation system. Subjects consumed a novel fluid daily for 10 days and underwent functional magnetic resonance imaging on the first and last days. We hypothesized that changes in activation in areas associated with the dopamine system would accompany changes in preference. The change in activation in the ventral tegmental area (VTA) between sessions scaled with preference change. Further, a network comprising the sensory thalamus, posterior insula, and ventrolateral striatum showed differential connectivity with the VTA that correlated with individual changes in preference. Our results suggest that the VTA is centrally involved in both assigning value to sensory stimuli and influencing downstream regions in order to translate these value signals into subjective preference. These results have important implications for models of dopaminergic function and behavioral addiction. PMID:28129051
Mere Exposure: Preference Change for Novel Drinks Reflected in Human Ventral Tegmental Area.
Ballard, Ian C; Hennigan, Kelly; McClure, Samuel M
2017-05-01
Preferences for novel stimuli tend to develop slowly over many exposures. Psychological accounts of this effect suggest that it depends on changes in the brain's valuation system. Participants consumed a novel fluid daily for 10 days and underwent fMRI on the first and last days. We hypothesized that changes in activation in areas associated with the dopamine system would accompany changes in preference. The change in activation in the ventral tegmental area (VTA) between sessions scaled with preference change. Furthermore, a network comprising the sensory thalamus, posterior insula, and ventrolateral striatum showed differential connectivity with the VTA that correlated with individual changes in preference. Our results suggest that the VTA is centrally involved in both assigning value to sensory stimuli and influencing downstream regions to translate these value signals into subjective preference. These results have important implications for models of dopaminergic function and behavioral addiction.
Evidence for a neural law of effect.
Athalye, Vivek R; Santos, Fernando J; Carmena, Jose M; Costa, Rui M
2018-03-02
Thorndike's law of effect states that actions that lead to reinforcements tend to be repeated more often. Accordingly, neural activity patterns leading to reinforcement are also reentered more frequently. Reinforcement relies on dopaminergic activity in the ventral tegmental area (VTA), and animals shape their behavior to receive dopaminergic stimulation. Seeking evidence for a neural law of effect, we found that mice learn to reenter more frequently motor cortical activity patterns that trigger optogenetic VTA self-stimulation. Learning was accompanied by gradual shaping of these patterns, with participating neurons progressively increasing and aligning their covariance to that of the target pattern. Motor cortex patterns that lead to phasic dopaminergic VTA activity are progressively reinforced and shaped, suggesting a mechanism by which animals select and shape actions to reliably achieve reinforcement. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Wang, Shan-shan; Wei, Chun-ling; Liu, Zhi-qiang; Ren, Wei
2011-02-25
Burst firing of dopaminergic neurons in ventral tegmental area (VTA) induces a large transient increase in synaptic dopamine (DA) release and thus is considered the reward-related signal. But the mechanisms of burst generation of dopaminergic neuron still remain unclear. This experiment investigated the burst firing of VTA dopaminergic neurons in rat midbrain slices perfused with carbachol and L-glutamate individually or simultaneously to understand the neurotransmitter mechanism underlying burst generation. The results showed that bath application of carbachol (10 μmol/L) and pulse application of L-glutamate (3 mmol/L) both induced burst firing in dopaminergic neuron. Co-application of carbachol and L-glutamate induced burst firing in VTA dopaminergic cells which couldn't be induced to burst by the two chemicals separately. The result indicates that carbachol and L-glutamate co-regulate burst firing of dopaminergic neuron.
Time Within:. the Perceptual Rivalry Switch as a Neural Clock
NASA Astrophysics Data System (ADS)
Pettigrew, John D.; Tilden, Jan D.
2005-10-01
Attention is drawn to weaknesses in the case for an external, physical basis for time's perceptual phenomena, raising the possibility of a Darwinian evolutionary explanation for the apparent flow, structure and arrow of time. We develop the hypothesis that, of all arrows of time identified by physicists and philosophers, the most fundamental is the psychological arrow. Based on findings of an on-going program of empirical research, we suggest a neural basis for time phenomena in the rhythmicity and plasticity of one of the brainstem dopaminergic nuclei, the venetral tegmental area (VTA). We examine links between neural time-keeping and perceptual rivalry and discuss evidence that rivalry is mediated by the VTA which functions as an ultradian oscillator. Further research is suggested, which could challenge or support the hypothesis of the VTA as an important neural time-keeper and the subjective basis of the asymmetric phenomena of time.
Vapor feed direct methanol fuel cells with passive thermal-fluids management system
NASA Astrophysics Data System (ADS)
Guo, Zhen; Faghri, Amir
The present paper describes a novel technology that can be used to manage methanol and water in miniature direct methanol fuel cells (DMFCs) without the need for a complex micro-fluidics subsystem. At the core of this new technology is a unique passive fuel delivery system that allows for fuel delivery at an adjustable rate from a reservoir to the anode. Furthermore, the fuel cell is designed for both passive water management and effective carbon dioxide removal. The innovative thermal management mechanism is the key for effective operation of the fuel cell system. The vapor feed DMFC reached a power density of 16.5 mW cm -2 at current density of 60 mA cm -2. A series of fuel cell prototypes in the 0.5 W range have been successfully developed. The prototypes have demonstrated long-term stable operation, easy fuel delivery control and are scalable to larger power systems. A two-cell stack has successfully operated for 6 months with negligible degradation.
Chapter 7 - Mapping potential vegetation type for the LANDFIRE Prototype Project
Tracey S. Frescino; Matthew G. Rollins
2006-01-01
Mapped potential vegetation functioned as a key component in the Landscape Fire and Resource Management Planning Tools Prototype Project (LANDFIRE Prototype Project). Disturbance regimes, vegetation response and succession, and wildland fuel dynamics across landscapes are controlled by patterns of the environmental factors (biophysical settings) that entrain the...
Functional μ-Opioid-Galanin Receptor Heteromers in the Ventral Tegmental Area.
Moreno, Estefanía; Quiroz, César; Rea, William; Cai, Ning-Sheng; Mallol, Josefa; Cortés, Antoni; Lluís, Carme; Canela, Enric I; Casadó, Vicent; Ferré, Sergi
2017-02-01
The neuropeptide galanin has been shown to interact with the opioid system. More specifically, galanin counteracts the behavioral effects of the systemic administration of μ-opioid receptor (MOR) agonists. Yet the mechanism responsible for this galanin-opioid interaction has remained elusive. Using biophysical techniques in mammalian transfected cells, we found evidence for selective heteromerization of MOR and the galanin receptor subtype Gal1 (Gal1R). Also in transfected cells, a synthetic peptide selectively disrupted MOR-Gal1R heteromerization as well as specific interactions between MOR and Gal1R ligands: a negative cross talk, by which galanin counteracted MAPK activation induced by the endogenous MOR agonist endomorphin-1, and a cross-antagonism, by which a MOR antagonist counteracted MAPK activation induced by galanin. These specific interactions, which represented biochemical properties of the MOR-Gal1R heteromer, could then be identified in situ in slices of rat ventral tegmental area (VTA) with MAPK activation and two additional cell signaling pathways, AKT and CREB phosphorylation. Furthermore, in vivo microdialysis experiments showed that the disruptive peptide selectively counteracted the ability of galanin to block the dendritic dopamine release in the rat VTA induced by local infusion of endomorphin-1, demonstrating a key role of MOR-Gal1R heteromers localized in the VTA in the direct control of dopamine cell function and their ability to mediate antagonistic interactions between MOR and Gal1R ligands. The results also indicate that MOR-Gal1R heteromers should be viewed as targets for the treatment of opioid use disorders. The μ-opioid receptor (MOR) localized in the ventral tegmental area (VTA) plays a key role in the reinforcing and addictive properties of opioids. With parallel in vitro experiments in mammalian transfected cells and in situ and in vivo experiments in rat VTA, we demonstrate that a significant population of these MORs form functional heteromers with the galanin receptor subtype Gal1 (Gal1R), which modulate the activity of the VTA dopaminergic neurons. The MOR-Gal1R heteromer can explain previous results showing antagonistic galanin-opioid interactions and offers a new therapeutic target for the treatment of opioid use disorder. Copyright © 2017 the authors 0270-6474/17/371176-11$15.00/0.
van Opstal, Anna M; van den Berg-Huysmans, Annette A; Hoeksma, Marco; Blonk, Cor; Pijl, Hanno; Rombouts, Serge A R B; van der Grond, Jeroen
2018-01-01
Excessive consumption of sugar-sweetened beverages (SSBs) has been associated with obesity and related diseases. SSBs are often consumed cold, and both the energy content and temperature might influence the consumption behavior for SSBs. The main aim of this study was to elucidate whether consumption temperature and energy (i.e., glucose) content modulate homeostatic (hypothalamus) and reward [ventral tegmental area (VTA)] responses. Sixteen healthy men participated in our study [aged 18-25 y; body mass index (kg/m2): 20-23]. High-resolution functional magnetic resonance imaging data were collected after ingestion of 4 different study stimuli: plain tap water at room temperature (22°C), plain tap water at 0°C, a glucose-containing beverage (75 g glucose dissolved in 300 mL water) at 22°C, and a similar glucose drink at 0°C. Blood oxygen level-dependent (BOLD) changes from baseline (7 min preingestion) were analyzed over time in the hypothalamus and VTA for individual stimulus effects and for effects between stimuli. In the hypothalamus, water at 22°C led to a significantly increased BOLD response; all other stimuli resulted in a direct, significant decrease in BOLD response compared with baseline. In the VTA, a significantly decreased BOLD response compared with baseline was found after the ingestion of stimuli containing glucose at 0°C and 22°C. These responses were not significantly modulated by consumption temperature. The consumption of plain water did not have a significant VTA BOLD effect. Our data show that glucose at 22°C, glucose at 0°C, and water at 0°C lowered hypothalamic activity, which is associated with increased satiation. On the contrary, the consumption of water at room temperature increased activity. All stimuli led to a similar VTA response, which suggests that all drinks elicited a similar hedonic response. Our results indicate that, in addition to glucose, the low temperature at which SSBs are often consumed also leads to a response from the hypothalamus and might strengthen the response of the VTA. This trial was registered at www.clinicaltrials.gov as NCT03181217. © 2018 American Society for Nutrition. All rights reserved.
Nasihatkon, Zohreh Sadat; Khosravi, Maryam; Bourbour, Zahra; Hassantash, Seyedeh Maryam; Sahraei, Mohammad; Baghlani, Kefayat
2014-01-01
Background. Stress and its consequences are among the causes of accidents. Objective. The effects of intraventral tegmental area (I-VTA) memantine on the plasma corticosterone and eating parameters disturbance induced by acute stress were investigated. Methods. Male Wistar rats (W: 250–300 g) were divided into control and experiential groups, each of which received memantine either intra-VTA or peripherally. One week after bilateral cannulation, the rats received memantine (1 and 5 μg/Rat) five min before electroshock stress. The other experimental groups received memantine (1 and 5 mg/kg) intraperitoneally 30 min before stress. The control groups received saline or memantine but did not experience stress. Food and water intake and plasma corticosterone level were recorded. Results. Results showed that stress decreases food intake but does not change water intake and increase in plasma corticosterone level. Intraperitoneal memantine administration slightly inhibits the stress effects on food intake. However, water intake and plasma corticosterone level were increased. Intra-VTA memantine reduces the effects of stress on corticosterone and water intake. Conclusion. It could be concluded that inhibition of glutamate NMDA receptors in the VTA by memantine leads to the inhibition of the eating behavior parameters and plasma corticosterone level disturbance induced by stress in rats. PMID:25177106
Mikhailova, Maria A.; Bass, Caroline E.; Grinevich, Valentina P.; Chappell, Ann M.; Deal, Alex L.; Bonin, Keith D.; Weiner, Jeff L.; Gainetdinov, Raul R.; Budygin, Evgeny A.
2016-01-01
Recent optogenetic studies demonstrated that phasic dopamine release in the nucleus accumbens may play a causal role in multiple aspects of natural and drug reward-related behaviors. The role of tonic dopamine release in reward consummatory behavior remains unclear. The current study used a combinatorial viral-mediated gene delivery approach to express ChR2 on mesolimbic dopamine neurons in rats. We used optical activation of this dopamine circuit to mimic tonic dopamine release in the nucleus accumbens and to explore the causal relationship between this form of dopamine signaling within the ventral tegmental area (VTA)-nucleus accumbens projection and consumption of a natural reward. Using a two bottle choice paradigm (sucrose vs. water), the experiments revealed that tonic optogenetic stimulation of mesolimbic dopamine transmission significantly decreased reward consummatory behaviors. Specifically, there was a significant decrease in the number of bouts, licks and amount of sucrose obtained during the drinking session. Notably, activation of VTA dopamine cell bodies or dopamine terminals in the nucleus accumbens resulted in identical behavioral consequences. No changes in the water intake were evident under the same experimental conditions. Collectively, these data demonstrate that tonic optogenetic stimulation of VTA-nucleus accumbens dopamine release is sufficient to inhibit reward consummatory behavior, possibly by preventing this circuit from engaging in phasic activity that is thought to be essential for reward-based behaviors. PMID:27421228
Reducing Ventral Tegmental Dopamine D2 Receptor Expression Selectively Boosts Incentive Motivation
de Jong, Johannes W; Roelofs, Theresia J M; Mol, Frédérique M U; Hillen, Anne E J; Meijboom, Katharina E; Luijendijk, Mieneke C M; van der Eerden, Harrie A M; Garner, Keith M; Vanderschuren, Louk J M J; Adan, Roger A H
2015-01-01
Altered mesolimbic dopamine signaling has been widely implicated in addictive behavior. For the most part, this work has focused on dopamine within the striatum, but there is emerging evidence for a role of the auto-inhibitory, somatodendritic dopamine D2 receptor (D2R) in the ventral tegmental area (VTA) in addiction. Thus, decreased midbrain D2R expression has been implicated in addiction in humans. Moreover, knockout of the gene encoding the D2R receptor (Drd2) in dopamine neurons has been shown to enhance the locomotor response to cocaine in mice. Therefore, we here tested the hypothesis that decreasing D2R expression in the VTA of adult rats, using shRNA knockdown, promotes addiction-like behavior in rats responding for cocaine or palatable food. Rats with decreased VTA D2R expression showed markedly increased motivation for both sucrose and cocaine under a progressive ratio schedule of reinforcement, but the acquisition or maintenance of cocaine self-administration were not affected. They also displayed enhanced cocaine-induced locomotor activity, but no change in basal locomotion. This robust increase in incentive motivation was behaviorally specific, as we did not observe any differences in fixed ratio responding, extinction responding, reinstatement or conditioned suppression of cocaine, and sucrose seeking. We conclude that VTA D2R knockdown results in increased incentive motivation, but does not directly promote other aspects of addiction-like behavior. PMID:25735756
Viereckel, Thomas; Dumas, Sylvie; Smith-Anttila, Casey J. A.; Vlcek, Bianca; Bimpisidis, Zisis; Lagerström, Malin C.; Konradsson-Geuken, Åsa; Wallén-Mackenzie, Åsa
2016-01-01
The ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) of the midbrain are associated with Parkinson’s disease (PD), schizophrenia, mood disorders and addiction. Based on the recently unraveled heterogeneity within the VTA and SNc, where glutamate, GABA and co-releasing neurons have been found to co-exist with the classical dopamine neurons, there is a compelling need for identification of gene expression patterns that represent this heterogeneity and that are of value for development of human therapies. Here, several unique gene expression patterns were identified in the mouse midbrain of which NeuroD6 and Grp were expressed within different dopaminergic subpopulations of the VTA, and TrpV1 within a small heterogeneous population. Optogenetics-coupled in vivo amperometry revealed a previously unknown glutamatergic mesoaccumbal pathway characterized by TrpV1-Cre-expression. Human GRP was strongly detected in non-melanized dopaminergic neurons within the SNc of both control and PD brains, suggesting GRP as a marker for neuroprotected neurons in PD. This study thus unravels markers for distinct subpopulations of neurons within the mouse and human midbrain, defines unique anatomical subregions within the VTA and exposes an entirely new glutamatergic pathway. Finally, both TRPV1 and GRP are implied in midbrain physiology of importance to neurological and neuropsychiatric disorders. PMID:27762319
Tufvesson-Alm, Maximilian; Schwieler, Lilly; Schwarcz, Robert; Goiny, Michel; Erhardt, Sophie; Engberg, Göran
2018-06-05
Kynurenine 3-monooxygenase (KMO) is an essential enzyme of the kynurenine pathway, converting kynurenine into 3-hydroxykynurenine. Inhibition of KMO increases kynurenine, resulting in elevated levels of kynurenic acid (KYNA), an endogenous N-methyl-d-aspartate and α*7-nicotinic receptor antagonist. The concentration of KYNA is elevated in the brain of patients with schizophrenia, possibly as a result of a reduced KMO activity. In the present study, using in vivo single cell recording techniques, we investigated the electrophysiological characteristics of ventral tegmental area dopamine (VTA DA) neurons and their response to antipsychotic drugs in a KMO knock-out (K/O) mouse model. KMO K/O mice exhibited a marked increase in spontaneous VTA DA neuron activity as compared to wild-type (WT) mice. Furthermore, VTA DA neurons showed clear-cut, yet qualitatively opposite, responses to the antipsychotic drugs haloperidol and clozapine in the two genotypes. The anti-inflammatory drug parecoxib successfully lowered the firing activity of VTA DA neurons in KMO K/O, but not in WT mice. Minocycline, an antibiotic and anti-inflammatory drug, produced no effect in this regard. Taken together, the present data further support the usefulness of KMO K/O mice for studying distinct aspects of the pathophysiology and pharmacological treatment of psychiatric disorders such as schizophrenia. Copyright © 2018. Published by Elsevier Ltd.
Ghrelin enhances cue-induced bar pressing for high fat food.
St-Onge, Veronique; Watts, Alexander; Abizaid, Alfonso
2016-02-01
Ghrelin is an orexigenic hormone produced by the stomach that acts on growth hormone secretagogue receptors (GHSRs) both peripherally and centrally. The presence of GHSRs in the ventral tegmental area (VTA) suggests that ghrelin signaling at this level may increase the incentive value of palatable foods as well as other natural and artificial rewards. The present investigation sought to determine if ghrelin plays a role in relapse to such foods following a period of abstinence. To achieve this, thirty-six male Long Evans rats were trained to press a lever to obtain a high fat chocolate food reward on a fixed ratio schedule of 1. Following an extinction period during which lever presses were not reinforced, rats were implanted with a cannula connected to a minipump that continuously delivered ghrelin, a GHSR antagonist ([d-Lys-3]-GHRP-6), or saline in the VTA for 14days. One week later, food reward-associated cues, food reward priming, and an overnight fast were used to induce reinstatement of the lever pressing response. Our results indicate that intra-VTA ghrelin enhances cue-induced reinstatement of responses for palatable food pellets. To the extent that the reinstatement paradigm is considered a valid model of relapse in humans, this suggests that ghrelin signaling facilitates relapse to preferred foods in response to food cues through GHSR signaling in the VTA. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandler, K.; Eudy, L.
2007-03-01
This report provides an evaluation of three prototype fuel cell-powered transit buses operating at AC Transit in Oakland, California, and six baseline diesel buses similar in design to the fuel cell buses.
Truitt, William A.; Hauser, Sheketha R.; Deehan, Gerald A.; Toalston, Jamie E.; Wilden, Jessica A.; Bell, Richard L.; McBride, William J.; Rodd, Zachary A.
2015-01-01
Rationale Ethanol and nicotine are frequently co-abused. The biological basis for the high co-morbidity rate is not known. Alcohol-preferring (P) rats will self-administer EtOH or nicotine directly into the posterior ventral tegmental area (pVTA). Objective The current experiments examined whether sub-threshold concentrations of EtOH and nicotine would support the development of self-administration behaviors if the drugs were combined. Methods Rats were implanted with a guide cannula aimed at the pVTA. Rats were randomly assigned to groups that self-administered sub-threshold concentrations of EtOH (50 mg%) or nicotine (1 μM) or combinations of ethanol (25 or 50 mg%) and nicotine (0.5 or 1.0 μM). Alterations in gene expression downstream projections areas (nucleus accumbens shell, AcbSh) were assessed following a single, acute exposure to EtOH (50 mg%), nicotine (1 μM) or ethanol and nicotine (50 mg% + 1 μM) directly into the pVTA. Results The results indicated that P rats would co-administer EtOH and nicotine directly into the pVTA at concentrations that did not support individual self-administration. EtOH and nicotine directly administered into the pVTA resulted in alterations in gene expression in the AcbSh (50.8-fold increase in BDNF, 2.4-fold decrease in GDNF, 10.3-fold increase in Vglut1) that were not observed following microinjections of equivalent concentrations/doses of ethanol or nicotine. Conclusion The data indicate that ethanol and nicotine act synergistically to produce reinforcement and alter gene expression within the mesolimbic dopamine system. The high rate of co-morbidity of alcoholism and nicotine dependence could the result of the interactions of EtOH and nicotine within the mesolimbic dopamine system. PMID:25155311
Mejías-Aponte, Carlos A.; Kiyatkin, Eugene A.
2012-01-01
Cocaine’s multiple pharmacological substrates are ubiquitously present in the peripheral and central nervous system. Thus, upon its administration, cocaine acts in the periphery before directly acting in the brain. We determined whether cocaine alters ventral tegmental area (VTA) neuronal activity via peripheral actions, and whether this precedes its central actions. In urethane-anesthetized rats, we recorded VTA neurons responses to intravenous injections of two cocaine analogs: cocaine-hydrochloride (HCl, 0.25 mg/kg) that readily cross the blood-brain barrier (BBB) and cocaine-methiodide (MI, 0.33 mg/kg) that does not cross the BBB. Both cocaine analogs produced sustained changes in discharge rates that began 5s after the initiation of a 10s drug infusion. Within the first 90s post-injection the magnitudes of neuronal responsive of both cocaine analogs were comparable, but later in time the effects of cocaine-HCl were stronger and persisted longer than those of cocaine-MI. The proportion of neurons responsive to cocaine-HCl was twice to that of cocaine-MI (74% and 35% respectively). Both analogs also differed in the response onsets. Cocaine-MI rarely evoked responses after 1 min whereas cocaine-HCl continued to evoke responses within 3 min post-injection. VTA neurons were either excited or inhibited by both cocaine analogs. Most units responsive to cocaine-MI, regardless of excitation or inhibition, had electrophysiological characteristics of putative DA neurons. Units inhibited by cocaine-HCl also had characteristic of DA neurons whereas excited neurons had widely varying action potential durations and discharge rates. Cocaine-MI and cocaine-HCl each produced changes in VTA neuron activity under full DA receptor blockade. However, the duration of inhibition was shortened, the number of excitations increased, and they occurred with an earlier onset during DA receptor blockade. These findings indicate that cocaine acts peripherally with a short latency and alters the activity of VTA neurons prior to its well-known direct actions in the brain. PMID:22300980
Cook, Jason B.; Werner, David F.; Maldonado-Devincci, Antoniette M.; Leonard, Maggie N.; Fisher, Kristen R.; O'Buckley, Todd K.; Porcu, Patrizia; McCown, Thomas J.; Besheer, Joyce; Hodge, Clyde W.
2014-01-01
Neuroactive steroids are endogenous neuromodulators capable of altering neuronal activity and behavior. In rodents, systemic administration of endogenous or synthetic neuroactive steroids reduces ethanol self-administration. We hypothesized this effect arises from actions within mesolimbic brain regions that we targeted by viral gene delivery. Cytochrome P450 side chain cleavage (P450scc) converts cholesterol to pregnenolone, the rate-limiting enzymatic reaction in neurosteroidogenesis. Therefore, we constructed a recombinant adeno-associated serotype 2 viral vector (rAAV2), which drives P450scc expression and neuroactive steroid synthesis. The P450scc-expressing vector (rAAV2-P450scc) or control GFP-expressing vector (rAAV2-GFP) were injected bilaterally into the ventral tegmental area (VTA) or nucleus accumbens (NAc) of alcohol preferring (P) rats trained to self-administer ethanol. P450scc overexpression in the VTA significantly reduced ethanol self-administration by 20% over the 3 week test period. P450scc overexpression in the NAc, however, did not alter ethanol self-administration. Locomotor activity was unaltered by vector administration to either region. P450scc overexpression produced a 36% increase in (3α,5α)-3-hydroxypregnan-20-one (3α,5α-THP, allopregnanolone)-positive cells in the VTA, but did not increase 3α,5α-THP immunoreactivity in NAc. These results suggest that P450scc overexpression and the resultant increase of 3α,5α-THP-positive cells in the VTA reduces ethanol reinforcement. 3α,5α-THP is localized to neurons in the VTA, including tyrosine hydroxylase neurons, but not astrocytes. Overall, the results demonstrate that using gene delivery to modulate neuroactive steroids shows promise for examining the neuronal mechanisms of moderate ethanol drinking, which could be extended to other behavioral paradigms and neuropsychiatric pathology. PMID:24760842
Razavi, Yasaman; Alamdary, Shabnam Zeighamy; Katebi, Seyedeh-Najmeh; Khodagholi, Fariba; Haghparast, Abbas
2014-03-01
Some data suggest that morphine induces apoptosis in neurons, while other evidences show that morphine could have protective effects against cell death. In this study, we suggested that there is a parallel role of morphine in reward circuitry and apoptosis processing. Therefore, we investigated the effect of morphine on modifications of apoptotic factors in the ventral tegmental area (VTA) and hippocampus (HPC) which are involved in the reward circuitry after the acquisition and extinction periods of conditioned place preference (CPP). In behavioral experiments, different doses of morphine (0.5, 5, and 10 mg/kg) and saline were examined in the CPP paradigm. Conditioning score and locomotor activity were recorded by Ethovision software after acquisition on the post-conditioning day, and days 4 and 8 of extinction periods. In order to investigate the molecular mechanisms in each group, we then dissected the brains and measured the expression of apoptotic factors in the VTA and HPC by western blotting analysis. All of the morphine-treated groups showed an increase of apoptotic factors in these regions during acquisition but not in extinction period. In the HPC, morphine significantly increased the ratio of Bax/Bcl-2, caspases-3, and PARP by the lowest dose (0.5 mg/kg), but, in the VTA, a considerable increase was seen in the dose of 5 mg/kg; promotion of apoptotic factors in the HPC and VTA insinuates that morphine can affect the molecular mechanisms that interfere with apoptosis through different receptors. Our findings suggest that a specific opioid receptor involves in modification of apoptotic factors expression in these areas. It seems that the reduction of cell death in response to high dose of morphine in the VTA and HPC may be due to activation of low affinity opioid receptors which are involved in neuroprotective features of morphine.
Cook, Jason B; Werner, David F; Maldonado-Devincci, Antoniette M; Leonard, Maggie N; Fisher, Kristen R; O'Buckley, Todd K; Porcu, Patrizia; McCown, Thomas J; Besheer, Joyce; Hodge, Clyde W; Morrow, A Leslie
2014-04-23
Neuroactive steroids are endogenous neuromodulators capable of altering neuronal activity and behavior. In rodents, systemic administration of endogenous or synthetic neuroactive steroids reduces ethanol self-administration. We hypothesized this effect arises from actions within mesolimbic brain regions that we targeted by viral gene delivery. Cytochrome P450 side chain cleavage (P450scc) converts cholesterol to pregnenolone, the rate-limiting enzymatic reaction in neurosteroidogenesis. Therefore, we constructed a recombinant adeno-associated serotype 2 viral vector (rAAV2), which drives P450scc expression and neuroactive steroid synthesis. The P450scc-expressing vector (rAAV2-P450scc) or control GFP-expressing vector (rAAV2-GFP) were injected bilaterally into the ventral tegmental area (VTA) or nucleus accumbens (NAc) of alcohol preferring (P) rats trained to self-administer ethanol. P450scc overexpression in the VTA significantly reduced ethanol self-administration by 20% over the 3 week test period. P450scc overexpression in the NAc, however, did not alter ethanol self-administration. Locomotor activity was unaltered by vector administration to either region. P450scc overexpression produced a 36% increase in (3α,5α)-3-hydroxypregnan-20-one (3α,5α-THP, allopregnanolone)-positive cells in the VTA, but did not increase 3α,5α-THP immunoreactivity in NAc. These results suggest that P450scc overexpression and the resultant increase of 3α,5α-THP-positive cells in the VTA reduces ethanol reinforcement. 3α,5α-THP is localized to neurons in the VTA, including tyrosine hydroxylase neurons, but not astrocytes. Overall, the results demonstrate that using gene delivery to modulate neuroactive steroids shows promise for examining the neuronal mechanisms of moderate ethanol drinking, which could be extended to other behavioral paradigms and neuropsychiatric pathology.
Simmons, J M; Ackermann, R F; Gallistel, C R
1998-10-15
Lesions in the medial forebrain bundle rostral to a stimulating electrode have variable effects on the rewarding efficacy of self-stimulation. We attempted to account for this variability by measuring the anatomical and functional effects of electrolytic lesions at the level of the lateral hypothalamus (LH) and by correlating these effects to postlesion changes in threshold pulse frequency (pps) for self-stimulation in the ventral tegmental area (VTA). We implanted True Blue in the VTA and compared cell labeling patterns in forebrain regions of intact and lesioned animals. We also compared stimulation-induced regional [14C]deoxyglucose (DG) accumulation patterns in the forebrains of intact and lesioned animals. As expected, postlesion threshold shifts varied: threshold pps remained the same or decreased in eight animals, increased by small but significant amounts in three rats, and increased substantially in six subjects. Unexpectedly, LH lesions did not anatomically or functionally disconnect all forebrain nuclei from the VTA. Most septal and preoptic regions contained equivalent levels of True Blue label in intact and lesioned animals. In both intact and lesioned groups, VTA stimulation increased metabolic activity in the fundus of the striatum (FS), the nucleus of the diagonal band, and the medial preoptic area. On the other hand, True Blue labeling demonstrated anatomical disconnection of the accumbens, FS, substantia innominata/magnocellular preoptic nucleus (SI/MA), and bed nucleus of the stria terminalis. [14C]DG autoradiography indicated functional disconnection of the lateral preoptic area and SI/MA. Correlations between patterns of True Blue labeling or [14C]deoxyglucose accumulation and postlesion shifts in threshold pulse frequency were weak and generally negative. These direct measures of connectivity concord with the behavioral measures in suggesting a diffuse net-like connection between forebrain nuclei and the VTA.
Ko, Moon Yi; Jang, Eun Young; Lee, June Yeon; Kim, Soo Phil; Whang, Sung Hun; Lee, Bong Hyo; Kim, Hee Young; Yang, Chae Ha; Cho, Hee Jung; Gwak, Young S
2018-04-20
Spinal cord injury (SCI) frequently results in chronic neuropathic pain (CNP). However, the understanding of brain neural circuits in CNP modulation is unclear. The present study examined the changes of ventral tegmental area (VTA) putative GABAergic and dopaminergic neuronal activity with CNP attenuation in rats. SCI was established by T10 clip compression injury (35 g, 1 min) in rats, and neuropathic pain behaviors, in vivo extracellular single-cell recording of putative VTA gamma-aminobutyric acid (GABA)/dopamine neurons, extracellular GABA level, glutamic acid decarboxylase (GAD), and vesicular GABA transporters (VGATs) were measured in the VTA, respectively. The results revealed that extracellular GABA level was significantly increased in the CNP group (50.5 ± 18.9 nM) compared to the sham control group (10.2 ± 1.7 nM). In addition, expression of GAD 65/67 , c-Fos, and VGAT exhibited significant increases in the SCI groups compared to the sham control group. With regard to neuropathic pain behaviors, spontaneous pain measured by ultrasound vocalizations (USVs) and evoked pain measured by paw withdrawal thresholds showed significant alteration, which was reversed by intravenous (i.v.) administration of morphine (0.5-5.0 mg/kg). With regard to in vivo electrophysiology, VTA putative GABAergic neuronal activity (13.6 ± 1.7 spikes/sec) and putative dopaminergic neuronal activity (2.4 ± 0.8 spikes/sec) were increased and decreased, respectively, in the SCI group compared to the sham control group. These neuronal activities were reversed by i.v. administration of morphine. The present study suggests that chronic increase of GABAergic neuronal activity suppresses dopaminergic neuronal activity in the VTA and is responsible for negative emotion and motivation for attenuation of SCI-induced CNP.
Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus Preliminary Evaluation Results
DOT National Transportation Integrated Search
2008-10-16
This report describes operations at Connecticut Transit (CTTRANSIT) in Hartford for one prototype fuel cell bus and three new diesel buses operating from the same location. The report discusses the planned fuel cell bus demonstration and equipment us...
American Fuel Cell Bus Project Evaluation : Second Report
DOT National Transportation Integrated Search
2015-09-01
This report presents results of the American Fuel Cell Bus (AFCB) Project, a demonstration of fuel cell electric buses (FCEB) operating in the Coachella Valley area of California. The prototype AFCB was developed as part of the Federal Transit Admini...
Paratransit Vehicle Test and Evaluation : Volume 4. Fuel Economy Tests.
DOT National Transportation Integrated Search
1978-06-01
A series of tests and evaluations of two prototype vehicles for paratransit were conducted. This volume (Volume IV) presents the test procedures and results of the fuel economy tests. The test series determined the fuel economy of the vehicles as the...
Post-irradiation examination of prototype Al-64 wt% U{sub 3}Si{sub 2} fuel rods from NRU
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sears, D.F.; Primeau, M.F.; Buchanan, C.
1997-08-01
Three prototype fuel rods containing Al-64 wt% U{sub 3}Si{sub 2} (3.15 gU/cm{sup 3}) have been irradiated to their design burnup in the NRU reactor without incident. The fuel was fabricated using production-scale equipment and processes previously developed for Al-U{sub 3}Si fuel fabrication at Chalk River Laboratories, and special equipment developed for U{sub 3}Si{sub 2} powder production and handling. The rods were irradiated in NRU up to 87 at% U-235 burnup under typical driver fuel conditions; i.e., nominal coolant inlet temperature 37{degrees}C, inlet pressure 654 kPa, mass flow 12.4 L/s, and element linear power ratings up to 73 kW/m. Post-irradiation examinationsmore » showed that the fuel elements survived the irradiation without defects. Fuel core diametral increases and volumetric swelling were significantly lower than that of Al-61 wt% U{sub 3}Si fuel irradiated under similar conditions. This irradiation demonstrated that the fabrication techniques are adequate for full-scale fuel manufacture, and qualified the fuel for use in AECL`s research reactors.« less
TOPAZ II Anti-Criticality Device Rapid Prototype
NASA Astrophysics Data System (ADS)
Campbell, Donald R.; Otting, William D.
1994-07-01
The Ballistic Missile Defense Organization (BMDO) has been working on a Nuclear Electric Propulsion Space Test Project (NEPSTP) using an existing Russian Topaz II reactor system to power the NEPSTP satellite. Safety investigations have shown that it will be possible to safely launch the Topaz II system in the United States with some modification to preclude water flooded criticality. A ``fuel-out'' water subcriticality concept was selected by the Los Alamos National Laboratory (LANL) as the baseline concept. A fuel-out anti-criticality device (ACD) conceptual design was developed by Rockwell. The concept functions to hold the fuel from the four centermost thermionic fuel elements (TFEs) outside the reactor during launch and reliably inserts the fuel into the reactor once the operational orbit is achieved. A four-tenths scale ACD rapid prototype model, fabricated from the CATIA solids design model, clearly shows in three dimensions the relative size and spatial relationship of the ACD components.
Jennifer L. Long; Melanie Miller; James P. Menakis; Robert E. Keane
2006-01-01
The Landscape Fire and Resource Management Planning Tools Prototype Project, or LANDFIRE Prototype Project, required a system for classifying vegetation composition, biophysical settings, and vegetation structure to facilitate the mapping of vegetation and wildland fuel characteristics and the simulation of vegetation dynamics using landscape modeling. We developed...
Chapter 8 - Mapping existing vegetation composition and structure for the LANDFIRE Prototype Project
Zhiliang Zhu; James Vogelmann; Donald Ohlen; Jay Kost; Xuexia Chen; Brian Tolk
2006-01-01
The Landscape Fire and Resource Management Planning Tools Prototype Project, or LANDFIRE Prototype Project, required the mapping of existing vegetation composition (cover type) and structural stages at a 30-m spatial resolution to provide baseline vegetation data for the development of wildland fuel maps and for comparison to simulated historical vegetation reference...
46 CFR 160.135-13 - Approval inspections and tests for prototype lifeboats.
Code of Federal Regulations, 2013 CFR
2013-10-01
...-11 of this subpart; (ii) Assuring that the quality assurance program of the manufacturer is.... (2) Fiber Reinforced Plastic (FRP) prototype lifeboat lay-up. For the prototype of each design of an... non-portable fuel tank must be tested by a static head above the tank top of 3 m (10 ft) of water...
46 CFR 160.135-13 - Approval inspections and tests for prototype lifeboats.
Code of Federal Regulations, 2014 CFR
2014-10-01
...-11 of this subpart; (ii) Assuring that the quality assurance program of the manufacturer is.... (2) Fiber Reinforced Plastic (FRP) prototype lifeboat lay-up. For the prototype of each design of an... non-portable fuel tank must be tested by a static head above the tank top of 3 m (10 ft) of water...
46 CFR 160.135-13 - Approval inspections and tests for prototype lifeboats.
Code of Federal Regulations, 2012 CFR
2012-10-01
...-11 of this subpart; (ii) Assuring that the quality assurance program of the manufacturer is.... (2) Fiber Reinforced Plastic (FRP) prototype lifeboat lay-up. For the prototype of each design of an... non-portable fuel tank must be tested by a static head above the tank top of 3 m (10 ft) of water...
Hydrogen, CNG, and HCNG Dispenser System – Prototype Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
James Francfort
2005-02-01
The U.S. Department of Energy’s Advanced Vehicle Testing Activity is currently testing a prototype gaseous fuel dispenser developed by the Electric Transportation Engineering Corporation (ETEC). The dispenser (Figure 1) delivers three types of fuels: 100% hydrogen, 100% compressed natural gas (CNG), and blends of hydrogen and CNG (HCNG) using two independent single nozzles (Figure 2). The nozzle for the 100% hydrogen dispensing is rated at 5,000 psig and used solely for 100% hydrogen fuel. The second nozzle is rated at 3,600 psig and is used for both CNG and HCNG fuels. This nozzle connects to both a CNG supply linemore » and a hydrogen supply line and blends the hydrogen and CNG to supply HCNG levels of 15, 20, 30, and 50% (by volume).« less
Locus coeruleus and dopaminergic consolidation of everyday memory
Takeuchi, Tomonori; Duszkiewicz, Adrian J.; Sonneborn, Alex; Spooner, Patrick A.; Yamasaki, Miwako; Watanabe, Masahiko; Smith, Caroline C.; Fernández, Guillén; Deisseroth, Karl; Greene, Robert W.; Morris, Richard G. M.
2016-01-01
Summary The retention of episodic-like memory is enhanced, in humans and animals, when something novel happens shortly before or after encoding. Using an everyday memory task in mice, we sought the neurons mediating this dopamine-dependent novelty effect, previously thought to originate exclusively from the tyrosine hydroxylase-expressing (TH+) neurons in the ventral tegmental area (VTA). We report that neuronal firing in the locus coeruleus (LC) is especially sensitive to environmental novelty, LC-TH+ neurons project more profusely than VTA-TH+ neurons to the hippocampus, optogenetic activation of LC-TH+ neurons mimics the novelty effect, and this novelty-associated memory enhancement is unaffected by VTA inactivation. Surprisingly, two effects of LC-TH+ photoactivation are sensitive to hippocampal D1/D5 receptor blockade and resistant to adrenoceptors blockade – memory enhancement and long lasting potentiation of synaptic transmission in CA1 ex vivo. Thus, LC-TH+ neurons can mediate post-encoding memory enhancement in a manner consistent with possible co-release of dopamine in hippocampus. PMID:27602521
Zhao-Shea, Rubing; DeGroot, Steven R.; Liu, Liwang; Vallaster, Markus; Pang, Xueyan; Su, Qin; Gao, Guangping; Rando, Oliver J.; Martin, Gilles E.; George, Olivier; Gardner, Paul D.; Tapper, Andrew R.
2015-01-01
Increased anxiety is a predominant withdrawal symptom in abstinent smokers, yet the neuroanatomical and molecular bases underlying it are unclear. Here, we show that withdrawal-induced anxiety increases activity of neurons in the interpeduncular intermediate (IPI), a subregion of the interpeduncular nucleus (IPN). IPI activation during nicotine withdrawal was mediated by increased corticotropin releasing factor (CRF) receptor-1 expression and signaling, which modulated glutamatergic input from the medial habenula (MHb). Pharmacological blockade of IPN CRF1 receptors or optogenetic silencing of MHb input reduced IPI activation and alleviated withdrawal-induced anxiety; whereas IPN CRF infusion in mice increased anxiety. We identified a meso-interpeduncular circuit, consisting of ventral tegmental area (VTA) dopaminergic neurons projecting to the IPN, as a potential source of CRF. Knock-down of CRF synthesis in the VTA prevented IPI activation and anxiety during nicotine withdrawal. These data indicate that increased CRF receptor signaling within a VTA-IPN-MHb circuit triggers anxiety during nicotine withdrawal. PMID:25898242
Navarro, Gemma; Quiroz, César; Moreno-Delgado, David; Sierakowiak, Adam; McDowell, Kimberly; Moreno, Estefanía; Rea, William; Cai, Ning-Sheng; Aguinaga, David; Howell, Lesley A.; Hausch, Felix; Cortés, Antonio; Mallol, Josefa; Casadó, Vicent; Lluís, Carme; Canela, Enric I.
2015-01-01
Release of the neuropeptides corticotropin-releasing factor (CRF) and orexin-A in the ventral tegmental area (VTA) play an important role in stress-induced cocaine-seeking behavior. We provide evidence for pharmacologically significant interactions between CRF and orexin-A that depend on oligomerization of CRF1 receptor (CRF1R) and orexin OX1 receptors (OX1R). CRF1R–OX1R heteromers are the conduits of a negative crosstalk between orexin-A and CRF as demonstrated in transfected cells and rat VTA, in which they significantly modulate dendritic dopamine release. The cocaine target σ1 receptor (σ1R) also associates with the CRF1R–OX1R heteromer. Cocaine binding to the σ1R–CRF1R–OX1R complex promotes a long-term disruption of the orexin-A–CRF negative crosstalk. Through this mechanism, cocaine sensitizes VTA cells to the excitatory effects of both CRF and orexin-A, thus providing a mechanism by which stress induces cocaine seeking. PMID:25926444
Nobili, Annalisa; Latagliata, Emanuele Claudio; Viscomi, Maria Teresa; Cavallucci, Virve; Cutuli, Debora; Giacovazzo, Giacomo; Krashia, Paraskevi; Rizzo, Francesca Romana; Marino, Ramona; Federici, Mauro; De Bartolo, Paola; Aversa, Daniela; Dell'Acqua, Maria Concetta; Cordella, Alberto; Sancandi, Marco; Keller, Flavio; Petrosini, Laura; Puglisi-Allegra, Stefano; Mercuri, Nicola Biagio; Coccurello, Roberto; Berretta, Nicola; D'Amelio, Marcello
2017-01-01
Alterations of the dopaminergic (DAergic) system are frequently reported in Alzheimer's disease (AD) patients and are commonly linked to cognitive and non-cognitive symptoms. However, the cause of DAergic system dysfunction in AD remains to be elucidated. We investigated alterations of the midbrain DAergic system in the Tg2576 mouse model of AD, overexpressing a mutated human amyloid precursor protein (APPswe). Here, we found an age-dependent DAergic neuron loss in the ventral tegmental area (VTA) at pre-plaque stages, although substantia nigra pars compacta (SNpc) DAergic neurons were intact. The selective VTA DAergic neuron degeneration results in lower DA outflow in the hippocampus and nucleus accumbens (NAc) shell. The progression of DAergic cell death correlates with impairments in CA1 synaptic plasticity, memory performance and food reward processing. We conclude that in this mouse model of AD, degeneration of VTA DAergic neurons at pre-plaque stages contributes to memory deficits and dysfunction of reward processing. PMID:28367951
SHANK3 controls maturation of social reward circuits in the VTA
Glangetas, Christelle; Prévost-Solié, Clément; Pucci, Luca; Viguié, Joanna; Bezzi, Paola; O’Connor, Eoin C.; Georges, François; Lüscher, Christian; Bellone, Camilla
2016-01-01
Summary Haploinsufficiency of SHANK3, encoding the synapse scaffolding protein SHANK3, leads to a highly penetrant form of Autism Spectrum Disorder (ASD). How SHANK3 insufficiency affects specific neural circuits and this is related to specific ASD symptoms remains elusive. Here we used shRNA to model Shank3 insufficiency in the Ventral Tegmental Area (VTA) of mice. We identified dopamine (DA) and GABA cell-type specific changes in excitatory synapse transmission that converge to reduce DA neuron activity and generate behavioral deficits, including impaired social preference. Administration of a positive allosteric modulator of the type 1 metabotropic glutamate receptors (mGluR1) during the first postnatal week restored DA neuron excitatory synapse transmission and rescued the social preference defects, while optogenetic DA neuron stimulation was sufficient to enhance social preference. Collectively, these data reveal the contribution of impaired VTA function to social behaviors and identify mGluR1 modulation during postnatal development as a potential treatment strategy. PMID:27273769
The role of motivation and reward neural systems in vocal communication in songbirds
Riters, Lauren V.
2012-01-01
Many vertebrates are highly motivated to communicate, suggesting that the consequences of communication may be rewarding. Past studies show that dopamine and opioids in the medial preoptic nucleus (mPOA) and ventral tegmental area (VTA) play distinct roles in motivation and reward. In songbirds, multiple lines of recent evidence indicate that the roles of dopamine and opioid activity in mPOA and VTA in male birdsong differ depending upon whether song is used to attract females (sexually-motivated) or is produced spontaneously (undirected). Evidence is reviewed supporting the hypotheses that 1) mPOA and VTA interact to influence the context in which a male sings, 2) distinct patterns of dopamine activity underlie the motivation to produce sexually-motivated and undirected song, 3) sexually-motivated communication is externally reinforced by opioids released as part of social interactions, and 4) undirected communication is facilitated and rewarded by immediate opioid release linked to the act of singing. PMID:22569510
The role of motivation and reward neural systems in vocal communication in songbirds.
Riters, Lauren V
2012-04-01
Many vertebrates are highly motivated to communicate, suggesting that the consequences of communication may be rewarding. Past studies show that dopamine and opioids in the medial preoptic nucleus (mPOA) and ventral tegmental area (VTA) play distinct roles in motivation and reward. In songbirds, multiple lines of recent evidence indicate that the roles of dopamine and opioid activity in mPOA and VTA in male birdsong differ depending upon whether song is used to attract females (sexually-motivated) or is produced spontaneously (undirected). Evidence is reviewed supporting the hypotheses that (1) mPOA and VTA interact to influence the context in which a male sings, (2) distinct patterns of dopamine activity underlie the motivation to produce sexually-motivated and undirected song, (3) sexually-motivated communication is externally reinforced by opioids released as part of social interactions, and (4) undirected communication is facilitated and rewarded by immediate opioid release linked to the act of singing. Copyright © 2012 Elsevier Inc. All rights reserved.
Single-Cylinder Diesel Engine Tests with Unstabilized Water-in-Fuel Emulsions
DOT National Transportation Integrated Search
1978-08-01
A single-cylinder, four-stroke cycle diesel engine was operated on unstabilized water-in-fuel emulsions. Two prototype devices were used to produce the emulsions on-line with the engine. More than 350 test points were run with baseline diesel fuel an...
Ishida, Kota; Murata, Mikio; Katagiri, Nobuyuki; Ishikawa, Masago; Abe, Kenji; Kato, Masatoshi; Utsunomiya, Iku; Taguchi, Kyoji
2005-08-01
The effects of systemic administration of beta-phenylethylamine (beta-PEA) and microiontophoretically applied beta-PEA on the spontaneous discharge of dopamine (DA) neurons in the ventral tegmental area (VTA) of the anesthetized rat were examined. Intravenous administration of beta-PEA (1.0, 2.5, and 5.0 mg/kg) and microiontophoretic applications of beta-PEA caused inhibitory responses in DA neurons. Systemic administration and microiontophoretic applications of beta-PEA induced dose- or current-dependent responses. The systemic beta-PEA-induced inhibitory responses were reversed by pretreatment with the DA D(2) receptor antagonists haloperidol (0.5 mg/kg i.p.) and sulpiride (10 mg/kg i.p). Pretreatment with reserpine (5 mg/kg i.p. 24 h earlier) did not completely block the systemic administration of beta-PEA (2.5 mg/kg) inhibition. A microdialysis study of freely moving rats demonstrated that the extracellular DA level increased significantly in response to local application of beta-PEA (100 muM) in the VTA via a microdialysis probe, and local application of beta-PEA-stimulated somatodendritic DA release in the VTA. The beta-PEA-induced release of DA was calcium ion-independent and was enhanced by pretreatment with pertussis toxin. These findings indicate that beta-phenylethylamine inhibits DA neuron activity via DA D(2) autoreceptors in the rat VTA and that this inhibitory effect is mediated by the somatodendritic DA release.
Sugama, Shuei; Kakinuma, Yoshihiko
2016-10-01
Parkinson's disease (PD) is a neurodegenerative disease characterized by loss of dopaminergic (DA) neurons in the nigrostriatal and mesolimbic pathways including ventral tegmental area (VTA). Although several factors for the neuronal loss have been suggested, most of the PD cases are sporadic and idiopathic. In our previous study, we demonstrated the first evidence that solely chronic restraint stress (RS) induced the DA neuronal loss in the substantia nigra (SN). In this study, we further investigated whether chronic stress could affect other major DA systems, VTA and tuberoinfundibular system (TIDA), by using immunohistochemical and in situ hybridization techniques. The present study showed that, in the VTA, tyrosine hydroxylase (TH) immunoreactive neurons decreased by 9.8% at 2nd week, 19.2% at 4th week, 39.5% at 8th week, and 40.6% at 16th week during chronic RS as compared to control. Similarly, in the TIDA, the TH neurons decreased by 10.9% at 2nd week, 38.2% at 4th week, 56.3% at 8th week, and 57.1% at 16th week. The in situ hybridization results consistently demonstrated decreases in Th mRNA expressing cells in the VTA and TIDA in a comparable time dependent manner. Thus, exposure to chronic stress may simultaneously induce multiple neuronal loss of DA systems. Copyright © 2016 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.
Cordoni, Giada; Palagi, Elisabetta
2015-01-01
Animals adopt different behavioral strategies to cope with the conflict of interests coming from the competition over limited resources. Starting from the study on chimpanzees, post-conflict third-party affiliation (the affiliative contact provided by a third-party toward the victim--VTA--or the aggressor--ATA) was investigated mainly in primates. Later, this post-conflict mechanism has been demonstrated also in other mammals, such as wallabies, horses, dolphins, domestic dogs, and wolves. Here, we present data on triadic post-conflict affiliation in wolves (Canis lupus lupus) by exploring some of the hypotheses already proposed for primates and never tested before in other social mammals. In this carnivore species, the study of VTA and ATA revealed that these strategies cannot be considered as a unique behavioral category since they differ in many functional aspects. VTA serves to protect the victim by reducing the likelihood of reiterated attacks from the previous aggressor and to reinforce the relationship shared by the third-party and the victim. On the other hand, ATA has a role in bystander protection by limiting the renewed attacks of the previous aggressor toward uninvolved group-members (potential third-parties). In conclusion, exploring VTA and ATA gives the opportunity to concurrently demonstrate some functional differences in triadic post-conflict affiliation according to the different targets of bystanders (victims or aggressors). The data comparison between primates and other social mammals should permit to open new lines of research. © 2015 Wiley Periodicals, Inc.
Groppe, Sarah E; Gossen, Anna; Rademacher, Lena; Hahn, Alexa; Westphal, Luzie; Gründer, Gerhard; Spreckelmeyer, Katja N
2013-08-01
Evidence accumulates that the neuropeptide oxytocin plays an important role in mediating social interaction among humans and that a dysfunction in oxytocin-modulated brain mechanisms might lie at the core of disturbed social behavior in neuropsychiatric disease. Explanatory models suggest that oxytocin guides social approach and avoidance by modulating the perceived salience of socially meaningful cues. Animal data point toward the ventral tegmental area (VTA) as the brain site where this modulation takes place. We used functional magnetic resonance imaging and a social incentive delay task to test the hypothesis that oxytocin modulates the neural processing of socially relevant cues in the VTA, hereby facilitating behavioral response. Twenty-eight nulliparous women (not taking any hormones) received intranasal oxytocin or placebo in a double-blind randomized clinical trial with a parallel-group design. Oxytocin significantly enhanced VTA activation in response to cues signaling social reward (friendly face) or social punishment (angry face). Oxytocin effects on behavioral performance were modulated by individual differences in sociability with enhanced performance in women scoring low but decreased performance in women scoring high on self-reported measures of agreeableness. Our data provide evidence that the VTA is the human brain site where oxytocin attaches salience to socially relevant cues. This mechanism might play an important role in triggering motivation to react at the prospect of social reward or punishment. Copyright © 2013 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Mitchell, Jennifer M; Margolis, Elyssa B; Coker, Allison R; Allen, Daicia C; Fields, Howard L
2014-01-01
While there is a growing body of evidence that the delta opioid receptor (DOR) modulates ethanol (EtOH) consumption, development of DOR-based medications is limited in part because there are 2 pharmacologically distinct DOR subtypes (DOR-1 and DOR-2) that can have opposing actions on behavior. We studied the behavioral influence of the DOR-1-selective agonist [D-Pen(2) ,D-Pen(5) ]-Enkephalin (DPDPE) and the DOR-2-selective agonist deltorphin microinjected into the ventral tegmental area (VTA) on EtOH consumption and conditioned place preference (CPP) and the physiological effects of these 2 DOR agonists on GABAergic synaptic transmission in VTA-containing brain slices from Lewis rats. Neither deltorphin nor DPDPE induced a significant place preference in EtOH-naïve Lewis rats. However, deltorphin (but not DPDPE) induced a significant CPP in EtOH-drinking rats. In contrast to the previous finding that intra-VTA DOR-1 activity inhibits EtOH consumption and that this inhibition correlates with a DPDPE-induced inhibition of GABA release, here we found no effect of DOR-2 activity on EtOH consumption nor was there a correlation between level of drinking and deltorphin-induced change in GABAergic synaptic transmission. These data indicate that the therapeutic potential of DOR agonists for alcohol abuse is through a selective action at the DOR-1 form of the receptor. Copyright © 2013 by the Research Society on Alcoholism.
Control of extracellular dopamine at dendrite and axon terminals
Ford, Christopher P.; Gantz, Stephanie C.; Phillips, Paul E. M.; Williams, John T.
2010-01-01
Midbrain dopamine neurons release dopamine from both axons and dendrites. The mechanism underlying release at these different sites has been proposed to differ. This study used electrochemical and electrophysiological methods to compare the time course and calcium-dependence of somatodendritc dopamine release in the ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) to that of axonal dopamine release in the dorsal striatum. The amount of dopamine released in the striatum was ~20 fold greater than in cell body regions of the VTA or SNc. However the calcium dependence and time to peak of the dopamine transients were similar. These results illustrate an unexpected overall similarity in the mechanisms of dopamine release in the striatum and cell body regions. To examine how diffusion regulates the time course of dopamine following release, dextran was added to the extracellular solution to slow diffusion. In the VTA, dextran slowed the rate of rise and fall of the extracellular dopamine transient as measured by fast-scan cyclic voltammetry (FSCV) yet did not alter the kinetics of the dopamine dependent inhibitory post-synaptic current (IPSC). Dextran failed to significantly alter the time course of the rise and fall of the dopamine transient in the striatum suggesting a more influential role for reuptake in the striatum. The conclusion is that the time course of dopamine within the extracellular space of the VTA is dependent on both diffusion and reuptake, whereas the activation of D2-receptors on dopamine neurons is primarily limited by reuptake. PMID:20484639
Moreines, Jared L; Owrutsky, Zoe L; Grace, Anthony A
2017-03-01
Emerging evidence supports a role for dopamine in major depressive disorder (MDD). We recently reported fewer spontaneously active ventral tegmental area (VTA) dopamine neurons (ie, reduced dopamine neuron population activity) in the chronic mild stress (CMS) rodent model of MDD. In this study, we examined the role of two brain regions that have been implicated in MDD in humans, the infralimbic prefrontal cortex (ILPFC)-that is, rodent homolog of Brodmann area 25 (BA25), and the lateral habenula (LHb) in the CMS-induced attenuation of dopamine neuron activity. The impact of activating the ILPFC or LHb was evaluated using single-unit extracellular recordings of identified VTA dopamine neurons. The involvement of each region in dopamine neuron attenuation following 5-7 weeks of CMS was then evaluated by selective inactivation. Activation of either ILPFC or LHb in normal rats potently suppressed dopamine neuron population activity, but in unique patterns. ILPFC activation selectively inhibited dopamine neurons in medial VTA, which were most impacted by CMS. Conversely, LHb activation selectively inhibited dopamine neurons in lateral VTA, which were unaffected by CMS. Moreover, only ILPFC inactivation restored dopamine neuron population activity to normal levels following CMS; LHb inactivation had no restorative effect. These data suggest that, in the CMS model of MDD, the ILPFC is the primary driver of diminished dopamine neuron responses. These findings support a neural substrate for ILPFC/BA25 linking affective and motivational circuitry dysfunction in MDD.
Carnicella, Sebastien; He, Dao-Yao; Yowell, Quinn V.; Glick, Stanley D.; Ron, Dorit
2013-01-01
Ibogaine is a naturally occurring alkaloid that has been reported to decrease various adverse phenotypes associated with exposure to drugs of abuse and alcohol in human and rodent models. Unfortunately, ibogaine cannot be used as a medication to treat addiction because of severe side effects. Previously, we reported that the desirable actions of ibogaine to reduce self-administration of, and relapse to, alcohol consumption are mediated via the upregulation of the expression of the glial cell line-derived neurotrophic factor (GDNF) in the midbrain ventral tegmental area (VTA), and the consequent activation of the GDNF pathway. The ibogaine metabolite, noribogaine, and a synthetic derivative of ibogaine, 18-Methoxycoronaridine (18-MC), possess a similar anti-addictive profile as ibogaine in rodent models, but without some of its adverse side effects. Here, we determined whether noribogaine and/or 18-MC, like ibogaine, increase GDNF expression, and whether their site of action to reduce alcohol consumption is the VTA. We used SH-SY5Y cells as a cell culture model and found that noribogaine, like ibogaine, but not 18-MC, induces a robust increase in GDNF mRNA levels. Next, we tested the effect of intra-VTA infusion of noribogaine and 18-MC on rat operant alcohol self-administration and found that noribogaine, but not 18-MC, in the VTA decreases responding for alcohol. Together, our results suggest that noribogaine and 18-MC have different mechanisms and sites of action. PMID:21040239
Yang, Pamela B; Swann, Alan C; Dafny, Nachum
2006-01-17
Methylphenidate (MPD) is a psychostimulant commonly prescribed for attention deficit/hyperactivity disorder. The mode of action of the brain circuitry responsible for initiating the animals' behavior in response to psychostimulants is not well understood. There is some evidence that psychostimulants activate the ventral tegmental area (VTA), nucleus accumbens (NAc), and prefrontal cortex (PFC). The present study was designed to investigate the acute dose-response of MPD (0.6, 2.5, and 10.0 mg/kg) on locomotor behavior and sensory evoked potentials recorded from the VTA, NAc, and PFC in freely behaving rats previously implanted with permanent electrodes. For locomotor behavior, adult male Wistar-Kyoto (WKY; n = 39) rats were given saline on experimental day 1 and either saline or an acute injection of MPD (0.6, 2.5, or 10.0 mg/kg, i.p.) on experimental day 2. Locomotor activity was recorded for 2-h post injection on both days using an automated, computerized activity monitoring system. Electrophysiological recordings were also performed in the adult male WKY rats (n = 10). Five to seven days after the rats had recovered from the implantation of electrodes, each rat was placed in a sound-insulated, electrophysiological test chamber where its sensory evoked field potentials were recorded before and after saline and 0.6, 2.5, and 10.0 mg/kg MPD injection. Time interval between injections was 90 min. Results showed an increase in locomotion with dose-response characteristics, while a dose-response decrease in amplitude of the components of sensory evoked field responses of the VTA, NAc, and PFC neurons. For example, the P3 component of the sensory evoked field response of the VTA decreased by 19.8% +/- 7.4% from baseline after treatment of 0.6 mg/kg MPD, 37.8% +/- 5.9% after 2.5 mg/kg MPD, and 56.5% +/- 3.9% after 10 mg/kg MPD. Greater attenuation from baseline was observed in the NAc and PFC. Differences in the intensity of MPD-induced attenuation were also found among these brain areas. These results suggest that an acute treatment of MPD produces electrophysiologically detectable alterations at the neuronal level, as well as observable, behavioral responses. The present study is the first to investigate the acute dose-response effects of MPD on behavior in terms of locomotor activity and in the brain involving the sensory inputs of VTA, NAc, and PFC neurons in intact, non-anesthetized, freely behaving rats previously implanted with permanent electrodes.
A microfluidic fuel cell with flow-through porous electrodes.
Kjeang, Erik; Michel, Raphaelle; Harrington, David A; Djilali, Ned; Sinton, David
2008-03-26
A microfluidic fuel cell architecture incorporating flow-through porous electrodes is demonstrated. The design is based on cross-flow of aqueous vanadium redox species through the electrodes into an orthogonally arranged co-laminar exit channel, where the waste solutions provide ionic charge transfer in a membraneless configuration. This flow-through architecture enables improved utilization of the three-dimensional active area inside the porous electrodes and provides enhanced rates of convective/diffusive transport without increasing the parasitic loss required to drive the flow. Prototype fuel cells are fabricated by rapid prototyping with total material cost estimated at 2 USD/unit. Improved performance as compared to previous microfluidic fuel cells is demonstrated, including power densities at room temperature up to 131 mW cm-2. In addition, high overall energy conversion efficiency is obtained through a combination of relatively high levels of fuel utilization and cell voltage. When operated at 1 microL min-1 flow rate, the fuel cell produced 20 mW cm-2 at 0.8 V combined with an active fuel utilization of 94%. Finally, we demonstrate in situ fuel and oxidant regeneration by running the flow-through architecture fuel cell in reverse.
Integrated photovoltaics in nickel cadmium battery electric vehicles.
DOT National Transportation Integrated Search
2008-12-01
This research report presents Connecticut Department of Transportations (ConnDOTs) : evaluation of preproduction prototype nickel-cadmium (NiCd) battery-powered electric : vehicles (BEVs) as an alternative-fuel (alt-fuel) option for local trips...
Strategic Partnerships in Fuel Cell Development
ERIC Educational Resources Information Center
Diab, Dorey
2006-01-01
This article describes how forming strategic alliances with universities, emerging technology companies, the state of Ohio, the federal government, and the National Science Foundation, has enabled Stark State College to develop a $5.5 million Fuel Cell Prototyping Center and establish a Fuel Cell Technology program to promote economic development…
NREL: News - Prototype Low-Emissions Natural Gas Engine Saves Fuel
/heavy_vehicle/natgas_pub.html#engine for a copy of the full NREL report, "Development of a Throttleless engines. In testing, the prototype engine operated over the full speed and load range, delivering 250
Engle, Staci E; Shih, Pei-Yu; McIntosh, J Michael; Drenan, Ryan M
2013-09-01
Tobacco addiction is a serious threat to public health in the United States and abroad, and development of new therapeutic approaches is a major priority. Nicotine activates and/or desensitizes nicotinic acetylcholine receptors (nAChRs) throughout the brain. nAChRs in ventral tegmental area (VTA) dopamine (DA) neurons are crucial for the rewarding and reinforcing properties of nicotine in rodents, suggesting that they may be key mediators of nicotine's action in humans. However, it is unknown which nAChR subtypes are sufficient to activate these neurons. To test the hypothesis that nAChRs containing α6 subunits are sufficient to activate VTA DA neurons, we studied mice expressing hypersensitive, gain-of-function α6 nAChRs (α6L9'S mice). In voltage-clamp recordings in brain slices from adult mice, 100 nM nicotine was sufficient to elicit inward currents in VTA DA neurons via α6β2* nAChRs. In addition, we found that low concentrations of nicotine could act selectively through α6β2* nAChRs to enhance the function of 2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propanoic acid (AMPA) receptors on the surface of these cells. In contrast, α6β2* activation did not enhance N-methyl-D-aspartic acid receptor function. Finally, AMPA receptor (AMPAR) function was not similarly enhanced in brain slices from α6L9'S mice lacking α4 nAChR subunits, suggesting that α4α6β2* nAChRs are important for enhancing AMPAR function in VTA DA neurons. Together, these data suggest that activation of α4α6β2* nAChRs in VTA DA neurons is sufficient to support the initiation of cellular changes that play a role in addiction to nicotine. α4α6β2* nAChRs may be a promising target for future smoking cessation pharmacotherapy.
Liu, Jing-Jing; Bello, Nicholas T; Pang, Zhiping P
2017-12-06
Synaptic transmission controls brain activity and behaviors, including food intake. Leptin, an adipocyte-derived hormone, acts on neurons located in the lateral hypothalamic area (LHA) to maintain energy homeostasis and regulate food intake behavior. The specific synaptic mechanisms, cell types, and neural projections mediating this effect remain unclear. In male mice, using pathway-specific retrograde tracing, whole-cell patch-clamp recordings and post hoc cell type identification, we found that leptin reduces excitatory synaptic strength onto both melanin-concentrating hormone- and orexin-expressing neurons projecting from the LHA to the ventral tegmental area (VTA), which may affect dopamine signaling and motivation for feeding. A presynaptic mechanism mediated by distinct intracellular signaling mechanisms may account for this regulation by leptin. The regulatory effects of leptin depend on intact leptin receptor signaling. Interestingly, the synaptic regulatory function of leptin in the LHA-to-VTA neuronal pathway is highly sensitive to energy states: both energy deficiency (acute fasting) and excessive energy storage (high-fat diet-induced obesity) blunt the effect of leptin. These data revealed that leptin may regulate synaptic transmission in the LHA-to-VTA neurocircuitry in an inverted "U-shape" fashion dependent on plasma glucose levels and related to metabolic states. SIGNIFICANCE STATEMENT The lateral hypothalamic area (LHA) to ventral tegmental area (VTA) projection is an important neural pathway involved in balancing whole-body energy states and reward. We found that the excitatory synaptic inputs to both orexin- and melanin-concentrating hormone expressing LHA neurons projecting to the VTA were suppressed by leptin, a peptide hormone derived from adipocytes that signals peripheral energy status to the brain. Interestingly, energy states seem to affect how leptin regulates synaptic transmission since both the depletion of energy induced by acute food deprivation and excessive storage of energy by high-fat diet feeding dampen the suppressive effect of leptin on synaptic transmission. Together, these data show that leptin regulates synaptic transmission and might be important for maintaining energy homeostasis. Copyright © 2017 the authors 0270-6474/17/3711854-13$15.00/0.
Frolov, Alexander Vladimirovich; Vaikhanskaya, Tatjana Gennadjevna; Melnikova, Olga Petrovna; Vorobiev, Anatoly Pavlovich; Guel, Ludmila Michajlovna
2017-01-01
The development of prognostic factors of life-threatening ventricular tachyarrhythmias (VTA) and sudden cardiac death (SCD) continues to maintain its priority and relevance in cardiology. The development of a method of personalised prognosis based on multifactorial analysis of the risk factors associated with life-threatening heart rhythm disturbances is considered a key research and clinical task. To design a prognostic and mathematical model to define personalised risk for life-threatening VTA in patients with chronic heart failure (CHF). The study included 240 patients with CHF (mean-age of 50.5 ± 12.1 years; left ventricular ejection fraction 32.8 ± 10.9%; follow-up period 36.8 ± 5.7 months). The participants received basic therapy for heart failure. The elec-trocardiogram (ECG) markers of myocardial electrical instability were assessed including microvolt T-wave alternans, heart rate turbulence, heart rate deceleration, and QT dispersion. Additionally, echocardiography and Holter monitoring (HM) were performed. The cardiovascular events were considered as primary endpoints, including SCD, paroxysmal ventricular tachycardia/ventricular fibrillation (VT/VF) based on HM-ECG data, and data obtained from implantable device interrogation (CRT-D, ICD) as well as appropriated shocks. During the follow-up period, 66 (27.5%) subjects with CHF showed adverse arrhythmic events, including nine SCD events and 57 VTAs. Data from a stepwise discriminant analysis of cumulative ECG-markers of myocardial electrical instability were used to make a mathematical model of preliminary VTA risk stratification. Uni- and multivariate Cox logistic regression analysis were performed to define an individualised risk stratification model of SCD/VTA. A binary logistic regression model demonstrated a high prognostic significance of discriminant function with a classification sensitivity of 80.8% and specificity of 99.1% (F = 31.2; c2 = 143.2; p < 0.0001). The method of personalised risk stratification using Cox logistic regression allows correct classification of more than 93.9% of CHF cases. A robust body of evidence concerning logistic regression prognostic significance to define VTA risk allows inclusion of this method into the algorithm of subsequent control and selection of the optimal treatment modality to treat patients with CHF.
Mechanistic insights into epigenetic modulation of ethanol consumption.
Ponomarev, Igor; Stelly, Claire E; Morikawa, Hitoshi; Blednov, Yuri A; Mayfield, R Dayne; Harris, R Adron
2017-05-01
There is growing evidence that small-molecule inhibitors of epigenetic modulators, such as histone deacetylases (HDAC) and DNA methyltransferases (DNMT), can reduce voluntary ethanol consumption in animal models, but molecular and cellular processes underlying this behavioral effect are poorly understood. We used C57BL/6J male mice to investigate the effects of two FDA-approved drugs, decitabine (a DNMT inhibitor) and SAHA (an HDAC inhibitor), on ethanol consumption using two tests: binge-like drinking in the dark (DID) and chronic intermittent every other day (EOD) drinking. Decitabine but not SAHA reduced ethanol consumption in both tests. We further investigated decitabine's effects on the brain's reward pathway by gene expression profiling in the ventral tegmental area (VTA), using RNA sequencing and electrophysiological recordings from VTA dopaminergic neurons. Decitabine-induced decreases in EOD drinking were associated with global changes in gene expression, implicating regulation of cerebral blood flow, extracellular matrix organization, and neuroimmune functions in decitabine actions. In addition, an in vivo administration of decitabine shortened ethanol-induced excitation of VTA dopaminergic neurons in vitro, suggesting that decitabine reduces ethanol drinking via changes in the reward pathway. Taken together, our data suggest a contribution of both neuronal and non-neuronal mechanisms in the VTA in the regulation of ethanol consumption. Decitabine and other epigenetic compounds have been approved for cancer treatment, and understanding their mechanisms of actions in the brain may assist in repurposing these drugs and developing novel therapies for central disorders, including drug addiction. Copyright © 2017 Elsevier Inc. All rights reserved.
Taurine elevates dopamine levels in the rat nucleus accumbens; antagonism by strychnine.
Ericson, Mia; Molander, Anna; Stomberg, Rosita; Söderpalm, Bo
2006-06-01
The mesolimbic dopamine (DA) system, projecting from the ventral tegmental area (VTA) to the nucleus accumbens (nAcc), is involved in reward-related behaviours and addictive processes, such as alcoholism and drug addiction. It was recently suggested that strychnine-sensitive glycine receptors (GlyR) in the nAcc regulate both basal and ethanol-induced mesolimbic DA activity via a neuronal loop involving endogenous activation of nicotinic acetylcholine receptors (nAChR) in the VTA. However, as the nAcc appears to contain few glycine-immunoreactive cell bodies or fibres, the question as to what may be the endogenous ligand for GlyRs in this brain region remains open. Here we have investigated whether the amino acid taurine could serve this purpose using in vivo microdialysis in awake, freely moving male Wistar rats. Local perfusion of taurine (1, 10 or 100 mm in the perfusate) increased DA levels in the nAcc. The taurine (10 mm)-induced DA increase was, similarly to that previously observed after ethanol, completely blocked by (i) perfusion of the competitive GlyR antagonist strychnine in the nAcc, (ii) perfusion of the nAChR antagonist mecamylamine (100 microm) in the VTA, and (iii) systemic administration of the acetylcholine-depleting drug vesamicol (0.4 mg/kg, i.p). The present results suggest that taurine may be an endogenous ligand for GlyRs in the nAcc and that the taurine-induced elevation of DA levels in this area, similarly to that observed after local ethanol, is mediated via a neuronal loop involving endogenous activation of nAChRs in the VTA.
Senthilkumar, B; Rajasekaran, R
2017-03-01
Rapid increase in antibiotic resistance has posed a worldwide threat, due to increased mortality, morbidity, and expenditure caused by antibiotic-resistant microbes. Recent development of the antimicrobial peptides like viscotoxin (Vt) has been successfully comprehended as a substitute for classical antibiotics. A structurally stable peptide, Vt can enhance antimicrobial property and can be used for various developmental purposes. Thus, structural stability among the antimicrobial peptides, Vt A1 (3C8P), A2 (1JMN), A3 (1ED0), B (1JMP), and C (1ORL) of Viscus album was computationally analyzed. In specific, the static confirmation of VtA3 showed high number of intramolecular interactions, along with an increase in hydrophobicity than others comparatively. Further, conformational sampling was used to analyze various geometrical parameters such as root mean square deviation, root mean square fluctuation, radius of gyration, and ovality which also revealed the structural stability of VtA3. Moreover, the statistically validated contours of surface area, lipophilicity, and distance constraints of disulfide bonds also supported the priority of VtA3 with respect to stability. Finally, the functional activity of peptides was accessed by computing their free energy of membrane association and membrane interactions, which defined VtA3 as functionally stable. Currently, peptide-based antibiotics and nanoparticles have attracted the pharmaceutical industries for their potential therapeutic applications. Thereby, it is proposed that viscotoxin A3 (1ED0) could be used as a preeminent template for scaffolding potentially efficient antimicrobial peptide-based drugs and nanomaterials in future.
Acute fasting increases somatodendritic dopamine release in the ventral tegmental area
2015-01-01
Fasting and food restriction alter the activity of the mesolimbic dopamine system to affect multiple reward-related behaviors. Food restriction decreases baseline dopamine levels in efferent target sites and enhances dopamine release in response to rewards such as food and drugs. In addition to releasing dopamine from axon terminals, dopamine neurons in the ventral tegmental area (VTA) also release dopamine from their soma and dendrites, and this somatodendritic dopamine release acts as an autoinhibitory signal to inhibit neighboring VTA dopamine neurons. It is unknown whether acute fasting also affects dopamine release, including the local inhibitory somatodendritic dopamine release in the VTA. In these studies, I have tested whether fasting affects the inhibitory somatodendritic dopamine release within the VTA by examining whether an acute 24-h fast affects the inhibitory postsynaptic current mediated by evoked somatodendritic dopamine release (D2R IPSC). Fasting increased the contribution of the first action potential to the overall D2R IPSC and increased the ratio of repeated D2R IPSCs evoked at short intervals. Fasting also reduced the effect of forskolin on the D2R IPSC and led to a significantly bigger decrease in the D2R IPSC in low extracellular calcium. Finally, fasting resulted in an increase in the D2R IPSCs when a more physiologically relevant train of D2R IPSCs was used. Taken together, these results indicate that fasting caused a change in the properties of somatodendritic dopamine release, possibly by increasing dopamine release, and that this increased release can be sustained under conditions where dopamine neurons are highly active. PMID:26084913
García-Pérez, Daniel; López-Bellido, Roger; Hidalgo, Juana M; Rodríguez, Raquel E; Laorden, Maria Luisa; Núñez, Cristina; Milanés, Maria Victoria
2015-01-01
Epigenetic changes such as microRNAs (miRs)/Ago2-induced gene silencing represent complex molecular signature that regulate cellular plasticity. Recent studies showed involvement of miRs and Ago2 in drug addiction. In this study, we show that changes in gene expression induced by morphine and morphine withdrawal occur with concomitant epigenetic modifications in the mesolimbic dopaminergic (DA) pathway [ventral tegmental area (VTA)/nucleus accumbens (NAc) shell], which is critically involved in drug-induced dependence. We found that acute or chronic morphine administration as well as morphine withdrawal did not modify miR-133b messenger RNA (mRNA) expression in the VTA, whereas Ago2 protein levels were decreased and increased in morphine-dependent rats and after morphine withdrawal, respectively. These changes were paralleled with enhanced and decreased NAc tyrosine hydroxylase (TH) protein (an early DA marker) in morphine-dependent rats and after withdrawal, respectively. We also observed changes in TH mRNA expression in the VTA that could be related to Ago2-induced translational repression of TH mRNA during morphine withdrawal. However, the VTA number of TH-positive neurons suffered no alterations after the different treatment. Acute morphine administration produced a marked increase in TH activity and DA turnover in the NAc (shell). In contrast, precipitated morphine withdrawal decreased TH activation and did not change DA turnover. These findings provide new information into the possible correlation between Ago2/miRs complex regulation and DA neurons plasticity during opiate addiction. © 2013 Society for the Study of Addiction.
Colombo, Laura; Parravicini, Chiara; Lecca, Davide; Dossi, Elena; Heine, Claudia; Cimino, Mauro; Wanke, Enzo; Illes, Peter; Franke, Heike; Abbracchio, Maria P
2014-01-01
Unveiling the roles of distinct cell types in brain response to insults is a partially unsolved challenge and a key issue for new neuroreparative approaches. In vivo models are not able to dissect the contribution of residential microglia and infiltrating blood-borne monocytes/macrophages, which are fundamentally undistinguishable; conversely, cultured cells lack original tissue anatomical and functional complexity, which profoundly alters reactivity. Here, we tested whether rodent organotypic co-cultures from mesencephalic ventral tegmental area/substantia nigra and prefrontal cortex (VTA/SN-PFC) represent a suitable model to study changes induced by oxygen/glucose deprivation and reperfusion (OGD/R). OGD/R induced cytotoxicity to both VTA/SN and PFC slices, with higher VTA/SN susceptibility. Neurons were highly affected, with astrocytes and oligodendrocytes undergoing very mild damage. Marked reactive astrogliosis was also evident. Notably, OGD/R triggered the activation of CD68-expressing microglia and increased expression of Ym1 and Arg1, two markers of "alternatively" activated beneficial microglia. Treatment with two well-known neuroprotective drugs, the anticonvulsant agent valproic acid and the purinergic P2-antagonist PPADS, prevented neuronal damage. Thus, VTA/SN-PFC cultures are an integrated model to investigate OGD/R-induced effects on distinct cells and easily screen neuroprotective agents. The model is particularly adequate to dissect the microglia phenotypic shift in the lack of a functional vascular compartment. Copyright © 2014 Elsevier Ltd. All rights reserved.
Dickson, S L; Hrabovszky, E; Hansson, C; Jerlhag, E; Alvarez-Crespo, M; Skibicka, K P; Molnar, C S; Liposits, Z; Engel, J A; Egecioglu, E
2010-12-29
Here we sought to determine whether ghrelin's central effects on food intake can be interrupted by nicotine acetylcholine receptor (nAChR) blockade. Ghrelin regulates mesolimbic dopamine neurons projecting from the ventral tegmental area (VTA) to the nucleus accumbens, partly via cholinergic VTA afferents originating in the laterodorsal tegmental area (LDTg). Given that these cholinergic projections to the VTA have been implicated in natural as well as drug-induced reinforcement, we sought to investigate the role of cholinergic signaling in ghrelin-induced food intake as well as fasting-induced food intake, for which endogenous ghrelin has been implicated. We found that i.p. treatment with the non-selective centrally active nAChR antagonist, mecamylamine decreased fasting-induced food intake in both mice and rats. Moreover, central administration of mecamylamine decreased fasting-induced food intake in rats. I.c.v. ghrelin-induced food intake was suppressed by mecamylamine i.p. but not by hexamethonium i.p., a peripheral nAChR antagonist. Furthermore, mecamylamine i.p. blocked food intake following ghrelin injection into the VTA. Expression of the ghrelin receptor, the growth hormone secretagogue receptor 1A, was found to co-localize with choline acetyltransferase, a marker of cholinergic neurons, in the LDTg. Finally, mecamylamine treatment i.p. decreased the ability of palatable food to condition a place preference. These data suggest that ghrelin-induced food intake is partly mediated via nAChRs and that nicotinic blockade decreases the rewarding properties of food. Copyright © 2010 IBRO. Published by Elsevier Ltd. All rights reserved.
Social defeat disrupts reward learning and potentiates striatal nociceptin/orphanin FQ mRNA in rats.
Der-Avakian, Andre; D'Souza, Manoranjan S; Potter, David N; Chartoff, Elena H; Carlezon, William A; Pizzagalli, Diego A; Markou, Athina
2017-05-01
Mood disorders can be triggered by stress and are characterized by deficits in reward processing, including disrupted reward learning (the ability to modulate behavior according to past rewards). Reward learning is regulated by the anterior cingulate cortex (ACC) and striatal circuits, both of which are implicated in the pathophysiology of mood disorders. Here, we assessed in rats the effects of a potent stressor (social defeat) on reward learning and gene expression in the ACC, ventral tegmental area (VTA), and striatum. Adult male Wistar rats were trained on an operant probabilistic reward task (PRT) and then exposed to 3 days of social defeat before assessment of reward learning. After testing, the ACC, VTA, and striatum were dissected, and expression of genes previously implicated in stress was assessed. Social defeat blunted reward learning (manifested as reduced response bias toward a more frequently rewarded stimulus) and was associated with increased nociceptin/orphanin FQ (N/OFQ) peptide mRNA levels in the striatum and decreased Fos mRNA levels in the VTA. Moreover, N/OFQ peptide and nociceptin receptor mRNA levels in the ACC, VTA and striatum were inversely related to reward learning. The behavioral findings parallel previous data in humans, suggesting that stress similarly disrupts reward learning in both species. Increased striatal N/OFQ mRNA in stressed rats characterized by impaired reward learning is consistent with accumulating evidence that antagonism of nociceptin receptors, which bind N/OFQ, has antidepressant-like effects. These results raise the possibility that nociceptin systems represent a molecular substrate through which stress produces reward learning deficits in mood disorders.
Contribution of synchronized GABAergic neurons to dopaminergic neuron firing and bursting.
Morozova, Ekaterina O; Myroshnychenko, Maxym; Zakharov, Denis; di Volo, Matteo; Gutkin, Boris; Lapish, Christopher C; Kuznetsov, Alexey
2016-10-01
In the ventral tegmental area (VTA), interactions between dopamine (DA) and γ-aminobutyric acid (GABA) neurons are critical for regulating DA neuron activity and thus DA efflux. To provide a mechanistic explanation of how GABA neurons influence DA neuron firing, we developed a circuit model of the VTA. The model is based on feed-forward inhibition and recreates canonical features of the VTA neurons. Simulations revealed that γ-aminobutyric acid (GABA) receptor (GABAR) stimulation can differentially influence the firing pattern of the DA neuron, depending on the level of synchronization among GABA neurons. Asynchronous activity of GABA neurons provides a constant level of inhibition to the DA neuron and, when removed, produces a classical disinhibition burst. In contrast, when GABA neurons are synchronized by common synaptic input, their influence evokes additional spikes in the DA neuron, resulting in increased measures of firing and bursting. Distinct from previous mechanisms, the increases were not based on lowered firing rate of the GABA neurons or weaker hyperpolarization by the GABAR synaptic current. This phenomenon was induced by GABA-mediated hyperpolarization of the DA neuron that leads to decreases in intracellular calcium (Ca 2+ ) concentration, thus reducing the Ca 2+ -dependent potassium (K + ) current. In this way, the GABA-mediated hyperpolarization replaces Ca 2+ -dependent K + current; however, this inhibition is pulsatile, which allows the DA neuron to fire during the rhythmic pauses in inhibition. Our results emphasize the importance of inhibition in the VTA, which has been discussed in many studies, and suggest a novel mechanism whereby computations can occur locally. Copyright © 2016 the American Physiological Society.
Contribution of synchronized GABAergic neurons to dopaminergic neuron firing and bursting
Myroshnychenko, Maxym; Zakharov, Denis; di Volo, Matteo; Gutkin, Boris; Lapish, Christopher C.; Kuznetsov, Alexey
2016-01-01
In the ventral tegmental area (VTA), interactions between dopamine (DA) and γ-aminobutyric acid (GABA) neurons are critical for regulating DA neuron activity and thus DA efflux. To provide a mechanistic explanation of how GABA neurons influence DA neuron firing, we developed a circuit model of the VTA. The model is based on feed-forward inhibition and recreates canonical features of the VTA neurons. Simulations revealed that γ-aminobutyric acid (GABA) receptor (GABAR) stimulation can differentially influence the firing pattern of the DA neuron, depending on the level of synchronization among GABA neurons. Asynchronous activity of GABA neurons provides a constant level of inhibition to the DA neuron and, when removed, produces a classical disinhibition burst. In contrast, when GABA neurons are synchronized by common synaptic input, their influence evokes additional spikes in the DA neuron, resulting in increased measures of firing and bursting. Distinct from previous mechanisms, the increases were not based on lowered firing rate of the GABA neurons or weaker hyperpolarization by the GABAR synaptic current. This phenomenon was induced by GABA-mediated hyperpolarization of the DA neuron that leads to decreases in intracellular calcium (Ca2+) concentration, thus reducing the Ca2+-dependent potassium (K+) current. In this way, the GABA-mediated hyperpolarization replaces Ca2+-dependent K+ current; however, this inhibition is pulsatile, which allows the DA neuron to fire during the rhythmic pauses in inhibition. Our results emphasize the importance of inhibition in the VTA, which has been discussed in many studies, and suggest a novel mechanism whereby computations can occur locally. PMID:27440240
Carnicella, Sebastien; He, Dao-Yao; Yowell, Quinn V; Glick, Stanley D; Ron, Dorit
2010-10-01
Ibogaine is a naturally occurring alkaloid that has been reported to decrease various adverse phenotypes associated with exposure to drugs of abuse and alcohol in human and rodent models. Unfortunately, ibogaine cannot be used as a medication to treat addiction because of severe side effects. Previously, we reported that the desirable actions of ibogaine to reduce self-administration of, and relapse to, alcohol consumption are mediated via the upregulation of the expression of the glial cell line-derived neurotrophic factor (GDNF) in the midbrain ventral tegmental area (VTA), and the consequent activation of the GDNF pathway. The ibogaine metabolite, noribogaine, and a synthetic derivative of ibogaine, 18-Methoxycoronaridine (18-MC), possess a similar anti-addictive profile as ibogaine in rodent models, but without some of its adverse side effects. Here, we determined whether noribogaine and/or 18-MC, like ibogaine, increase GDNF expression, and whether their site of action to reduce alcohol consumption is the VTA. We used SH-SY5Y cells as a cell culture model and found that noribogaine, like ibogaine, but not 18-MC, induces a robust increase in GDNF mRNA levels. Next, we tested the effect of intra-VTA infusion of noribogaine and 18-MC on rat operant alcohol self-administration and found that noribogaine, but not 18-MC, in the VTA decreases responding for alcohol. Together, our results suggest that noribogaine and 18-MC have different mechanisms and sites of action. © 2010 The Authors, Addiction Biology © 2010 Society for the Study of Addiction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Combs, S.K.; Foust, C.R.; Qualls, A.L.
Pellet injection systems for the next-generation fusion devices, such as the proposed International Thermonuclear Experimental Reactor (ITER), will require feed systems capable of providing a continuous supply of hydrogen ice at high throughputs. A straightforward concept in which multiple extruder units operate in tandem has been under development at the Oak Ridge National Laboratory. A prototype with three large-volume extruder units has been fabricated and tested in the laboratory. In experiments, it was found that each extruder could provide volumetric ice flow rates of up to {approximately}1.3 cm{sup 3}/s (for {approximately}10 s), which is sufficient for fueling fusion reactors atmore » the gigawatt power level. With the three extruders of the prototype operating in sequence, a steady rate of {approximately}0.33 cm{sup 3}/s was maintained for a duration of 1 h. Even steady-state rates approaching the full ITER design value ({approximately}1 cm{sup 3}/s) may be feasible with the prototype. However, additional extruder units (1{endash}3) would facilitate operations at the higher throughputs and reduce the duty cycle of each unit. The prototype can easily accommodate steady-state pellet fueling of present large tokamaks or other near-term plasma experiments.« less
NASA Technical Reports Server (NTRS)
DeLaat, John C.; Kopasakis, George; Saus, Joseph R.; Chang, Clarence T.; Wey, Changlie
2012-01-01
Lean combustion concepts for aircraft engine combustors are prone to combustion instabilities. Mitigation of instabilities is an enabling technology for these low-emissions combustors. NASA Glenn Research Center s prior activity has demonstrated active control to suppress a high-frequency combustion instability in a combustor rig designed to emulate an actual aircraft engine instability experience with a conventional, rich-front-end combustor. The current effort is developing further understanding of the problem specifically as applied to future lean-burning, very low-emissions combustors. A prototype advanced, low-emissions aircraft engine combustor with a combustion instability has been identified and previous work has characterized the dynamic behavior of that combustor prototype. The combustor exhibits thermoacoustic instabilities that are related to increasing fuel flow and that potentially prevent full-power operation. A simplified, non-linear oscillator model and a more physics-based sectored 1-D dynamic model have been developed to capture the combustor prototype s instability behavior. Utilizing these models, the NASA Adaptive Sliding Phasor Average Control (ASPAC) instability control method has been updated for the low-emissions combustor prototype. Active combustion instability suppression using the ASPAC control method has been demonstrated experimentally with this combustor prototype in a NASA combustion test cell operating at engine pressures, temperatures, and flows. A high-frequency fuel valve was utilized to perturb the combustor fuel flow. Successful instability suppression was shown using a dynamic pressure sensor in the combustor for controller feedback. Instability control was also shown with a pressure feedback sensor in the lower temperature region upstream of the combustor. It was also demonstrated that the controller can prevent the instability from occurring while combustor operation was transitioning from a stable, low-power condition to a normally unstable high-power condition, thus enabling the high-power condition.
Herbert Easterly auxiliary truck heater. Final technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The objective of this work was to continue the development of the Herbert Easterly heater apparatus for vehicles, such as semi-trailer tractors in order to fully establish its technical feasibility and provide the basis for its commercialization. This heater is auxiliary to the vehicle`s primary heating system. With the engine off it heats both the vehicle engine to a temperature at which it starts easily and the vehicle passenger compartment. Specifically, this heater is automatically ignitable, operates directly from the vehicle diesel fuel supply and preheats the vehicle engine fuel prior to combustion. During the course of this work ninemore » different versions of prototype heaters were designed, constructed and tested. All designs were based on the ideas and principles outlined in the Easterly patent. Each successive version incorporated design and fabrication improvements relative to the previous version. The final version, Prototype 9, utilized a multiple water jacket design to capture additional heat from the combustion gases prior to exhausting to the atmosphere. This final prototype exceeded the performance of a commercially available Webasto DBW-2010 using the same commercial burner as the one used in the Webasto unit. The time required to raise the heater fluid temperature by 120{degree}F was 23% less (20 minutes compared to 26 minutes) for Prototype 9 compared to the commercially available unit. In addition a prototype heat exchanger for preheating engine fuel was designed, fabricated and tested. It was also determined that the Prototype 9 auxiliary heater could operate at 85{degree}F for approximately 6 hours on a fully charged 12 volt marine battery rated to deliver 500 cold cranking amps.« less
Herbert Easterly auxiliary truck heater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The objective of this work was to continue the development of the Herbert Easterly heater apparatus for vehicles, such as semi-trailer tractors in order to fully establish its technical feasibility and provide the basis for its commercialization. This heater is auxiliary to the vehicle's primary heating system. With the engine off it heats both the vehicle engine to a temperature at which it starts easily and the vehicle passenger compartment. Specifically, this heater is automatically ignitable, operates directly from the vehicle diesel fuel supply and preheats the vehicle engine fuel prior to combustion. During the course of this work ninemore » different versions of prototype heaters were designed, constructed and tested. All designs were based on the ideas and principles outlined in the Easterly patent. Each successive version incorporated design and fabrication improvements relative to the previous version. The final version, Prototype 9, utilized a multiple water jacket design to capture additional heat from the combustion gases prior to exhausting to the atmosphere. This final prototype exceeded the performance of a commercially available Webasto DBW-2010 using the same commercial burner as the one used in the Webasto unit. The time required to raise the heater fluid temperature by 120{degree}F was 23% less (20 minutes compared to 26 minutes) for Prototype 9 compared to the commercially available unit. In addition a prototype heat exchanger for preheating engine fuel was designed, fabricated and tested. It was also determined that the Prototype 9 auxiliary heater could operate at 85{degree}F for approximately 6 hours on a fully charged 12 volt marine battery rated to deliver 500 cold cranking amps.« less
Structural basis of protein translocation by the Vps4-Vta1 AAA ATPase
Monroe, Nicole; Han, Han; Shen, Peter S; Sundquist, Wesley I; Hill, Christopher P
2017-01-01
Many important cellular membrane fission reactions are driven by ESCRT pathways, which culminate in disassembly of ESCRT-III polymers by the AAA ATPase Vps4. We report a 4.3 Å resolution cryo-EM structure of the active Vps4 hexamer with its cofactor Vta1, ADP·BeFx, and an ESCRT-III substrate peptide. Four Vps4 subunits form a helix whose interfaces are consistent with ATP binding, is stabilized by Vta1, and binds the substrate peptide. The fifth subunit approximately continues this helix but appears to be dissociating. The final Vps4 subunit completes a notched-washer configuration as if transitioning between the ends of the helix. We propose that ATP binding propagates growth at one end of the helix while hydrolysis promotes disassembly at the other end, so that Vps4 ‘walks’ along ESCRT-III until it encounters the ordered N-terminal domain to destabilize the ESCRT-III lattice. This model may be generally applicable to other protein-translocating AAA ATPases. DOI: http://dx.doi.org/10.7554/eLife.24487.001 PMID:28379137
Ripollés, Pablo; Marco-Pallarés, Josep; Alicart, Helena; Tempelmann, Claus; Rodríguez-Fornells, Antoni; Noesselt, Toemme
2016-09-20
Humans constantly learn in the absence of explicit rewards. However, the neurobiological mechanisms supporting this type of internally-guided learning (without explicit feedback) are still unclear. Here, participants who completed a task in which no external reward/feedback was provided, exhibited enhanced fMRI-signals within the dopaminergic midbrain, hippocampus, and ventral striatum (the SN/VTA-Hippocampal loop) when successfully grasping the meaning of new-words. Importantly, new-words that were better remembered showed increased activation and enhanced functional connectivity between the midbrain, hippocampus, and ventral striatum. Moreover, enhanced emotion-related physiological measures and subjective pleasantness ratings during encoding were associated with remembered new-words after 24 hr. Furthermore, increased subjective pleasantness ratings were also related to new-words remembered after seven days. These results suggest that intrinsic-potentially reward-related-signals, triggered by self-monitoring of correct performance, can promote the storage of new information into long-term memory through the activation of the SN/VTA-Hippocampal loop, possibly via dopaminergic modulation of the midbrain.
Navarro, Gemma; Quiroz, César; Moreno-Delgado, David; Sierakowiak, Adam; McDowell, Kimberly; Moreno, Estefanía; Rea, William; Cai, Ning-Sheng; Aguinaga, David; Howell, Lesley A; Hausch, Felix; Cortés, Antonio; Mallol, Josefa; Casadó, Vicent; Lluís, Carme; Canela, Enric I; Ferré, Sergi; McCormick, Peter J
2015-04-29
Release of the neuropeptides corticotropin-releasing factor (CRF) and orexin-A in the ventral tegmental area (VTA) play an important role in stress-induced cocaine-seeking behavior. We provide evidence for pharmacologically significant interactions between CRF and orexin-A that depend on oligomerization of CRF1 receptor (CRF1R) and orexin OX1 receptors (OX1R). CRF1R-OX1R heteromers are the conduits of a negative crosstalk between orexin-A and CRF as demonstrated in transfected cells and rat VTA, in which they significantly modulate dendritic dopamine release. The cocaine target σ1 receptor (σ1R) also associates with the CRF1R-OX1R heteromer. Cocaine binding to the σ1R-CRF1R-OX1R complex promotes a long-term disruption of the orexin-A-CRF negative crosstalk. Through this mechanism, cocaine sensitizes VTA cells to the excitatory effects of both CRF and orexin-A, thus providing a mechanism by which stress induces cocaine seeking. Copyright © 2015 the authors 0270-6474/15/356639-15$15.00/0.
Ripollés, Pablo; Marco-Pallarés, Josep; Alicart, Helena; Tempelmann, Claus; Rodríguez-Fornells, Antoni; Noesselt, Toemme
2016-01-01
Humans constantly learn in the absence of explicit rewards. However, the neurobiological mechanisms supporting this type of internally-guided learning (without explicit feedback) are still unclear. Here, participants who completed a task in which no external reward/feedback was provided, exhibited enhanced fMRI-signals within the dopaminergic midbrain, hippocampus, and ventral striatum (the SN/VTA-Hippocampal loop) when successfully grasping the meaning of new-words. Importantly, new-words that were better remembered showed increased activation and enhanced functional connectivity between the midbrain, hippocampus, and ventral striatum. Moreover, enhanced emotion-related physiological measures and subjective pleasantness ratings during encoding were associated with remembered new-words after 24 hr. Furthermore, increased subjective pleasantness ratings were also related to new-words remembered after seven days. These results suggest that intrinsic—potentially reward-related—signals, triggered by self-monitoring of correct performance, can promote the storage of new information into long-term memory through the activation of the SN/VTA-Hippocampal loop, possibly via dopaminergic modulation of the midbrain. DOI: http://dx.doi.org/10.7554/eLife.17441.001 PMID:27644419
Post-learning hippocampal dynamics promote preferential retention of rewarding events
Gruber, Matthias J.; Ritchey, Maureen; Wang, Shao-Fang; Doss, Manoj K.; Ranganath, Charan
2016-01-01
Reward motivation is known to modulate memory encoding, and this effect depends on interactions between the substantia nigra/ ventral tegmental area complex (SN/VTA) and the hippocampus. It is unknown, however, whether these interactions influence offline neural activity in the human brain that is thought to promote memory consolidation. Here, we used functional magnetic resonance imaging (fMRI) to test the effect of reward motivation on post-learning neural dynamics and subsequent memory for objects that were learned in high- or low-reward motivation contexts. We found that post-learning increases in resting-state functional connectivity between the SN/VTA and hippocampus predicted preferential retention of objects that were learned in high-reward contexts. In addition, multivariate pattern classification revealed that hippocampal representations of high-reward contexts were preferentially reactivated during post-learning rest, and the number of hippocampal reactivations was predictive of preferential retention of items learned in high-reward contexts. These findings indicate that reward motivation alters offline post-learning dynamics between the SN/VTA and hippocampus, providing novel evidence for a potential mechanism by which reward could influence memory consolidation. PMID:26875624
High altitude aerodynamic platform concept evaluation and prototype engine testing
NASA Technical Reports Server (NTRS)
Akkerman, J. W.
1984-01-01
A design concept has been developed for maintaining a 150-pound payload at 60,000 feet altitude for about 50 hours. A 600-pound liftoff weight aerodynamic vehicle is used which operates at sufficient speeds to withstand prevailing winds. It is powered by a turbocharged four-stoke cycle gasoline fueled engine. Endurance time of 100 hours or more appears to be feasible with hydrogen fuel and a lighter payload. A prototype engine has been tested to 40,000 feet simulated altitude. Mismatch of the engine and the turbocharger system flow and problems with fuel/air mixture ratio control characteristics prohibited operation beyond 40,000 feet. But there seems to be no reason why the concept cannot be developed to function as analytically predicted.
DOT National Transportation Integrated Search
1981-01-01
Tests were performed on a prototyple Vokswagen (VW) Turbocharged (TC) Rabbit diesel vehicle on a chassis dynamometer. The vheicle was tested for fuel economy and emissions on the urban Federal test Procedure (FTP), Highway Fuel Economy Test (HFET), C...
Thin-Film Solid Oxide Fuel Cells
NASA Technical Reports Server (NTRS)
Chen, Xin; Wu, Nai-Juan; Ignatiev, Alex
2009-01-01
The development of thin-film solid oxide fuel cells (TFSOFCs) and a method of fabricating them have progressed to the prototype stage. This can result in the reduction of mass, volume, and the cost of materials for a given power level.
Ettenberg, Aaron; Cotten, Samuel W; Brito, Michael A; Klein, Adam K; Ohana, Tatum A; Margolin, Benjamin; Wei, Alex; Wenzel, Jennifer M
2015-11-01
In addition to its initial rewarding effects, cocaine has been shown to produce profound negative/anxiogenic actions. Recent work on the anxiogenic effects of cocaine has examined the role of corticotropin releasing factor (CRF), with particular attention paid to the CRF cell bodies resident to the extended amygdala (i.e., the central nucleus of the amygdala [CeA] and the bed nucleus of the stria terminalis [BNST]) and the interconnections within and projections outside the region (e.g., to the ventral tegmental area [VTA]). In the current study, localized CRF receptor antagonism was produced by intra-BNST, intra-CeA or intra-VTA application of the CRF antagonists, D-Phe CRF(12-41) or astressin-B. The effect of these treatments were examined in a runway model of i.v. cocaine self-administration that has been shown to be sensitive to both the initial rewarding and delayed anxiogenic effects of the drug in the same animal on the same trial. These dual actions of cocaine are reflected in the development of an approach-avoidance conflict ("retreat behaviors") about goal box entry that stems from the mixed associations that subjects form about the goal. CRF antagonism within the VTA, but not the CeA or BNST, significantly reduced the frequency of approach-avoidance retreat behaviors while leaving start latencies (an index of the positive incentive properties of cocaine) unaffected. These results suggest that the critical CRF receptors contributing to the anxiogenic state associated with acute cocaine administration may lie outside the extended amygdala, and likely involve CRF projections to the VTA. Copyright © 2015 Elsevier Inc. All rights reserved.
Occupancy of striatal and extrastriatal dopamine D2/D3 receptors by olanzapine and haloperidol.
Kessler, Robert M; Ansari, Mohammad Sib; Riccardi, Patrizia; Li, Rui; Jayathilake, Karuna; Dawant, Benoit; Meltzer, Herbert Y
2005-12-01
There have been conflicting reports as to whether olanzapine produces lower occupancy of striatal dopamine D(2)/D(3) receptor than typical antipsychotic drugs and preferential occupancy of extrastriatal dopamine D(2)/D(3) receptors. We performed [(18)F] fallypride PET studies in six schizophrenic subjects treated with olanzapine and six schizophrenic subjects treated with haloperidol to examine the occupancy of striatal and extrastriatal dopamine receptors by these antipsychotic drugs. [(18)F] setoperone PET studies were performed in seven olanzapine-treated subjects to determine 5-HT(2A) receptor occupancy. Occupancy of dopamine D(2)/D(3) receptors by olanzapine was not significantly different from that seen with haloperidol in the putamen, ventral striatum, medial thalamus, amygdala, or temporal cortex, that is, 67.5-78.2% occupancy; olanzapine produced no preferential occupancy of dopamine D(2)/D(3) receptors in the ventral striatum, medial thalamus, amygdala, or temporal cortex. There was, however, significantly lower occupancy of substantia nigra/VTA dopamine D(2)/D(3) receptors in olanzapine-treated compared to haloperidol-treated subjects, that is, 40.2 vs 59.3% (p=0.0014, corrected for multiple comparisons); in olanzapine-treated subjects, the substantia nigra/VTA was the only region with significantly lower dopamine D(2)/D(3) receptor occupancy than the putamen, that is, 40.2 vs 69.2% (p<0.001, corrected for multiple comparison). Occupancy of 5-HT(2A) receptors was 85-93% in the olanzapine- treated subjects. The results of this study demonstrated that olanzapine does not produce preferential occupancy of extrastriatal dopamine D(2)/D(3) receptors but does spare substantia nigra/VTA receptors. Sparing of substantia nigra/VTA dopamine D(2)/D(3) receptor occupancy may contribute to the low incidence of extrapyramidal side effects in olanzapine-treated patients.
Gil, Mario; Nguyen, Ngoc-Thao; McDonald, Mark; Albers, H Elliott
2013-07-01
Nearly all species engage in a variety of intraspecific social interactions, and there is evidence that these interactions are rewarding. Less is known, however, about the factors that influence social reward. Using the conditioned place preference paradigm, we tested whether social interactions are rewarding for male Syrian hamsters. We also tested whether social stimuli increase neural activation in the ventral tegmental area (VTA), a component of the mesolimbic reward system, and how individual differences in social behavior and experience influence neural activation. In the present study, we found that hamsters developed a conditioned place preference for social interactions, but the effects were significantly stronger in dominant animals compared with subordinates. The number of Fos-immunoreactive cells in the VTA was significantly higher in hamsters that had engaged in a direct social encounter compared with hamsters exposed to a caged stimulus hamster or controls. Interestingly, socially experienced males had more Fos-immunoreactive cells in the VTA than socially naive males after exposure to a social stimulus. Surprisingly, the amount of Fos immunoreactivity in the VTA induced by a social stimulus was correlated with the amount of aggressive/dominance behaviors that had been observed during interactions that had occurred 2 months earlier. Our results indicate that social interactions between males are rewarding, and that social dominance increases the reward value. Social interactions stimulate the mesolimbic reward system, and social experience enhances its response to novel social stimuli and may produce long-term changes in the neural mechanisms that mediate the maintenance of dominance over long periods of time. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Lasseter, Heather C; Xie, Xiaohu; Arguello, Amy A; Wells, Audrey M; Hodges, Matthew A; Fuchs, Rita A
2014-02-01
Cocaine-seeking behavior triggered by drug-paired environmental context exposure is dependent on orbitofrontal cortex (OFC)-basolateral amygdala (BLA) interactions. Here, we present evidence supporting the hypothesis that dopaminergic input from the ventral tegmental area (VTA) to the OFC critically regulates these interactions. In experiment 1, we employed site-specific pharmacological manipulations to show that dopamine D1-like receptor stimulation in the OFC is required for drug context-induced reinstatement of cocaine-seeking behavior following extinction training in an alternate context. Intra-OFC pretreatment with the dopamine D1-like receptor antagonist, SCH23390, dose-dependently attenuated cocaine-seeking behavior in an anatomically selective manner, without altering motor performance. Furthermore, the effects of SCH23390 could be surmounted by co-administration of a sub-threshold dose of the D1-like receptor agonist, SKF81297. In experiment 2, we examined effects of D1-like receptor antagonism in the OFC on OFC-BLA interactions using a functional disconnection manipulation. Unilateral SCH23390 administration into the OFC plus GABA agonist-induced neural inactivation of the contralateral or ipsilateral BLA disrupted drug context-induced cocaine-seeking behavior relative to vehicle, while independent unilateral manipulations of these brain regions were without effect. Finally, in experiment 3, we used fluorescent retrograde tracers to demonstrate that the VTA, but not the substantia nigra, sends dense intra- and interhemispheric projections to the OFC, which in turn has reciprocal bi-hemispheric connections with the BLA. These findings support that dopaminergic input from the VTA, via dopamine D1-like receptor stimulation in the OFC, is required for OFC-BLA functional interactions. Thus, a VTA-OFC-BLA neural circuit promotes drug context-induced motivated behavior.
Friend, Lindsey; Sandoval, Philip; Nufer, Teresa; Ostlund, Isaac
2017-01-01
The VTA is necessary for reward behavior with dopamine cells critically involved in reward signaling. Dopamine cells in turn are innervated and regulated by neighboring inhibitory GABA cells. Using whole-cell electrophysiology in juvenile-adolescent GAD67-GFP male mice, we examined excitatory plasticity in fluorescent VTA GABA cells. A novel CB1-dependent LTD was induced in GABA cells that was dependent on metabotropic glutamate receptor 5, and cannabinoid receptor 1 (CB1). LTD was absent in CB1 knock-out mice but preserved in heterozygous littermates. Bath applied Δ9-tetrahydrocannabinol depressed GABA cell activity, therefore downstream dopamine cells will be disinhibited; and thus, this could potentially result in increased reward. Chronic injections of Δ9-tetrahydrocannabinol occluded LTD compared with vehicle injections; however, a single exposure was insufficient to do so. As synaptic modifications by drugs of abuse are often tied to addiction, these data suggest a possible mechanism for the addictive effects of Δ9-tetrahydrocannabinol in juvenile-adolescents, by potentially altering reward behavioral outcomes. SIGNIFICANCE STATEMENT The present study identifies a novel form of glutamatergic synaptic plasticity in VTA GABA neurons, a currently understudied cell type that is critical for the brain's reward circuit, and how Δ9-tetrahydrocannabinol occludes this plasticity. This study specifically addresses a potential unifying mechanism whereby marijuana could exert rewarding and addictive/withdrawal effects. Marijuana use and legalization are a pressing issue for many states in the United States. Although marijuana is the most commonly abused illicit drug, the implications of legalized, widespread, or continued usage are speculative. This study in juvenile-adolescent aged mice identifies a novel form of synaptic plasticity in VTA GABA cells, and the synaptic remodeling that can occur after Δ9-tetrahydrocannabinol use. PMID:29038246
Khalil-Khalili, Masoumeh; Rashidy-Pour, Ali; Bandegi, Ahmad Reza; Yousefi, Behpoor; Jorjani, Hassan; Miladi-Gorji, Hossein
2018-03-06
This study examined the effects of systemic administration of the TrkB receptor antagonist (ANA-12) on the severity of physical and psychological dependence and morphine-induced locomotor sensitization, the ventral tegmental area (VTA)-nucleus accumbens (NAc) BDNF levels in morphine-dependent and withdrawn rats. Rats were injected with bi-daily doses (10 mg/kg, at 12 h intervals) of morphine for 10 days. Then, rats were tested for naloxone-precipitated morphine withdrawal signs, the anxiety (the elevated plus maze-EPM) after the last morphine injection and injection of ANA12 (ip). Also, morphine-induced locomotor sensitization was evaluated after morphine challenge followed by an injection of ANA-12 in morphine-withdrawn rats. The VTA-NAc BDNF levels were assessed in morphine-dependent and withdrawn rats. The overall Gellert-Holtzman score was significantly higher in morphine-dependent rats receiving ANA-12 than in those receiving saline. Also, the percentage of time spent in the open arms in control and morphine-dependent rats receiving ANA-12 were higher compared to the Cont/Sal and D/Sal rats, respectively. There was no significant difference in the locomotor activity and the VTA-NAc BDNF levels between D/Sal/morphine and D/ANA-12/morphine groups after morphine withdrawal. We conclude that the systemic administration of ANA-12 exacerbates the severity of physical dependence on morphine and partially attenuates the anxiety-like behavior in morphine-dependent rats. However, ANA-12 did not affect morphine-induced locomotor sensitization and the VTA-NAc BDNF levels in morphine-dependent and withdrawn rats. Copyright © 2017 Elsevier B.V. All rights reserved.
Garduño-Gutiérrez, René; León-Olea, Martha; Rodríguez-Manzo, Gabriela
2018-05-15
Sexual experience modifies brain functioning and copulatory efficiency. Sexual activity, ejaculation in particular, is a rewarding behavior associated with the release of endogenous opioids, which modulate the activity of the mesolimbic dopaminergic system (MLS). In sexually exhausted rats, repeated ejaculation produces μ (MOR) and δ opioid receptor (DOR) internalization in ventral tegmental area (VTA) neurons, as well as long-lasting behavioral changes suggestive of brain plasticity processes. We hypothesized that in sexually naïve rats the endogenous opioids released during sexual experience acquisition, might contribute to brain plasticity processes involved in the generation of the behavioral changes induced by sexual experience. To this aim, using double immunohistochemistry and confocal microscopy, we compared in vivo MOR, DOR and β-arrestin2 densities and activation in the VTA of sexually naïve males, sexually experienced rats not executing sexual activity prior to sacrifice and sexually experienced animals that ejaculated once before sacrifice. Results showed that sexual experience acquisition improved male's copulatory ability and induced persistent changes in the density, cellular distribution and activation of MOR and β-arrestin2 in VTA neurons. DOR density was not modified, but its cellular location changed after sexual experience, revealing that these two opioid receptors were differentially activated during sexual experience acquisition. It is concluded that the endogenous opioids released during sexual activity produce adjustments in VTA neurons of sexually naïve male rats that might contribute to the behavioral plasticity expressed as an improvement in male copulatory parameters, promoted by the acquisition of sexual experience. Copyright © 2018 Elsevier Inc. All rights reserved.
Burke, Andrew R.; DeBold, Joseph F.; Miczek, Klaus A.
2016-01-01
Background Activation of corticotropin releasing factor type 1 receptors (CRF-R1) in the ventral tegmental area (VTA) represents a critical mechanism for social defeat to escalate cocaine self-administration in adult rats. Objective We determined the acute effect of a CRF-R1 antagonist (CP376395) microinfusion into the VTA prior to each episode of social defeat in adolescent rats and determined whether this drug treatment could prevent later escalation of cocaine taking in early adulthood. Methods Rats were implanted with bilateral cannulae aimed at the VTA five days before the first social defeat. Bilateral microinfusion of CP376395 (500ng/side) or vehicle occurred 20 min before each episode of social defeat on postnatal days (P) 35, 38, 41, and 44. Behavior was quantified on P35 and P44. On P57, rats were implanted with intra-jugular catheters, and subsequent cocaine self-administration was analyzed. Results CP376395-treated adolescent rats walked less and were attacked more slowly, but were socially investigated more than vehicle-treated adolescents. Vehicle-treated rats showed increased social and decreased non-social exploration from P35 to P44, while CP376395-treated rats did not. Socially defeated, vehicle-treated adolescents took more cocaine during a 24-hour unlimited access binge during adulthood. The latency to supine posture on P44 was inversely correlated with later cocaine self-administration during fixed and progressive ratio schedules of reinforcement and during the binge. Conclusions CP376395 treatment in adolescence blocked escalation of cocaine taking in adulthood. Episodes of social defeat stress engender neuroadaptation in CRF-R1s in the VTA that alter coping with social stress and that persist into adulthood. PMID:27251131
Bajic, Dusica; Commons, Kathryn G.
2010-01-01
It is poorly understood if and how pain may modify the effect of opioids on neural systems that contribute to reward and addictive behavior. We hypothesized that the activation of ascending dopaminergic and serotonergic nuclei by morphine is modified by the presence of noxious stimulation. Immunohistochemical double-labeling technique with Fos was used to examine if an intraplantar formalin injection, an acute noxious input, changed the effect of morphine on dopaminergic neurons of the ventral tegmental area (VTA), and serotonergic neurons of the dorsal raphe nucleus (DR). Four groups of rats were analyzed: (1) CONTROL injected with normal saline subcutaneously, (2) rats treated with FORMALIN into the hind paw 30 minutes after normal saline injection, (3) rats injected with MORPHINE sulfate subcutaneously, and (4) rats treated with formalin into the hind paw 30 minutes after morphine injection (MORPHINE/FORMALIN). Following morphine injection, there was an increase in the number of dopaminergic neurons in the VTA with Fos immunolabeling. However, noxious stimulation did not detectably change morphine's effect on Fos expression in VTA dopamine neurons. In contrast, the number of serotonergic neurons containing Fos was increased in the morphine/formalin group compared to all other groups and this effect was topographically selective for the dorsal area of the DR at mid rostro-caudal levels. Therefore, morphine's activation of the VTA, which is associated with motivated behavior and reward seeking, appears similar in the context of pain. However, activation of the ascending serotonin system, which influences mood and has the capacity to modify reward pathways, appears different. In addition, these findings reveal interactions between nociceptive signaling and opioids that contrasts with the notion that opioids simply block access of nociceptive signaling to supraspinal structures. PMID:20026253
2003-03-04
Aerovironment technicians carefully line up attachments as a fuel cell electrical system is installed on the Helios Prototype solar powered flying wing. The fuel cell system will power the aircraft at night during NASA-sponsored long-endurance demonstration flight in the summer of 2003.
Fabrication of fuel pin assemblies, phase 3
NASA Technical Reports Server (NTRS)
Keeton, A. R.; Stemann, L. G.
1972-01-01
Five full size and eight reduced length fuel pins were fabricated for irradiation testing to evaluate design concepts for a fast spectrum lithium cooled compact space power reactor. These assemblies consisted of uranium mononitride fuel pellets encased in a T-111 (Ta-8W-2Hf) clad with a tungsten barrier separating fuel and clad. Fabrication procedures were fully qualified by process development and assembly qualification tests. Detailed specifications and procedures were written for the fabrication and assembly of prototype fuel pins.
Hickam Air Force Base Fuel Cell Vehicles : Early Implementation Experience
DOT National Transportation Integrated Search
2008-07-01
This report describes operations at Alameda-Contra Costa Transit District (AC Transit) for three prototype fuel cell buses and six diesel buses operating from the same location. This is the third evaluation report for this site, and it describes new ...
Liquid-fuel valve with precise throttling control
NASA Technical Reports Server (NTRS)
Mcdougal, A. R.; Porter, R. N.; Riebling, R. W.
1971-01-01
Prototype liquid-fuel valve performs on-off and throttling functions in vacuum without component cold-welding or excessive leakage. Valve design enables simple and rapid disassembly and parts replacement and operates with short working stroke, providing maximum throttling sensitivity commensurate with good control.
Proton exchange membrane micro fuel cells on 3D porous silicon gas diffusion layers
NASA Astrophysics Data System (ADS)
Kouassi, S.; Gautier, G.; Thery, J.; Desplobain, S.; Borella, M.; Ventura, L.; Laurent, J.-Y.
2012-10-01
Since the 90's, porous silicon has been studied and implemented in many devices, especially in MEMS technology. In this article, we present a new approach to build miniaturized proton exchange membrane micro-fuel cells using porous silicon as a hydrogen diffusion layer. In particular, we propose an innovative process to build micro fuel cells from a “corrugated iron like” 3D structured porous silicon substrates. This structure is able to increase up to 40% the cell area keeping a constant footprint on the silicon wafer. We propose here a process route to perform electrochemically 3D porous gas diffusion layers and to deposit fuel cell active layers on such substrates. The prototype peak power performance was measured to be 90 mW cm-2 in a “breathing configuration” at room temperature. These performances are less than expected if we compare with a reference 2D micro fuel cell. Actually, the active layer deposition processes are not fully optimized but this prototype demonstrates the feasibility of these 3D devices.
Synaptic potentiation onto habenula neurons in the learned helplessness model of depression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, B.; Schulz, D.; Li, B
The cellular basis of depressive disorders is poorly understood. Recent studies in monkeys indicate that neurons in the lateral habenula (LHb), a nucleus that mediates communication between forebrain and midbrain structures, can increase their activity when an animal fails to receive an expected positive reward or receives a stimulus that predicts aversive conditions (that is, disappointment or anticipation of a negative outcome). LHb neurons project to, and modulate, dopamine-rich regions, such as the ventral tegmental area (VTA), that control reward-seeking behaviour and participate in depressive disorders. Here we show that in two learned helplessness models of depression, excitatory synapses ontomore » LHb neurons projecting to the VTA are potentiated. Synaptic potentiation correlates with an animal's helplessness behaviour and is due to an enhanced presynaptic release probability. Depleting transmitter release by repeated electrical stimulation of LHb afferents, using a protocol that can be effective for patients who are depressed, markedly suppresses synaptic drive onto VTA-projecting LHb neurons in brain slices and can significantly reduce learned helplessness behaviour in rats. Our results indicate that increased presynaptic action onto LHb neurons contributes to the rodent learned helplessness model of depression.« less
Hétu, Sébastien; Luo, Yi; D’Ardenne, Kimberlee; Lohrenz, Terry
2017-01-01
Abstract As models of shared expectations, social norms play an essential role in our societies. Since our social environment is changing constantly, our internal models of it also need to change. In humans, there is mounting evidence that neural structures such as the insula and the ventral striatum are involved in detecting norm violation and updating internal models. However, because of methodological challenges, little is known about the possible involvement of midbrain structures in detecting norm violation and updating internal models of our norms. Here, we used high-resolution cardiac-gated functional magnetic resonance imaging and a norm adaptation paradigm in healthy adults to investigate the role of the substantia nigra/ventral tegmental area (SN/VTA) complex in tracking signals related to norm violation that can be used to update internal norms. We show that the SN/VTA codes for the norm’s variance prediction error (PE) and norm PE with spatially distinct regions coding for negative and positive norm PE. These results point to a common role played by the SN/VTA complex in supporting both simple reward-based and social decision making. PMID:28981876
Boekhoudt, Linde; Voets, Elisa S; Flores-Dourojeanni, Jacques P; Luijendijk, Mieneke Cm; Vanderschuren, Louk Jmj; Adan, Roger Ah
2017-05-01
Attentional impairments and exaggerated impulsivity are key features of psychiatric disorders, such as attention-deficit/hyperactivity disorder, schizophrenia, and addiction. These deficits in attentional performance and impulsive behaviors have been associated with aberrant dopamine (DA) signaling, but it remains unknown whether these deficits result from enhanced DA neuronal activity in the midbrain. Here, we took a novel approach by testing the impact of chemogenetically activating DA neurons in the ventral tegmental area (VTA) or substantia nigra pars compacta (SNc) on attention and impulsivity in the five-choice serial reaction time task (5-CSRTT) in rats. We found that activation of DA neurons in both the VTA and SNc impaired attention by increasing trial omissions. In addition, SNc DA neuron activation decreased attentional accuracy. Surprisingly, enhanced DA neuron activity did not affect impulsive action in this task. These results show that enhanced midbrain DA neuronal activity induces deficits in attentional performance, but not impulsivity. Furthermore, DA neurons in the VTA and SNc have different roles in regulating attention. These findings contribute to our understanding of the neural substrates underlying attention deficits and impulsivity, and provide valuable insights to improve treatment of these symptoms.
Synaptic potentiation onto habenula neurons in learned helplessness model of depression
Li, Bo; Piriz, Joaquin; Mirrione, Martine; Chung, ChiHye; Proulx, Christophe D.; Schulz, Daniela; Henn, Fritz; Malinow, Roberto
2010-01-01
The cellular basis of depressive disorders is poorly understood1. Recent studies in monkeys indicate that neurons in the lateral habenula (LHb), a nucleus that mediates communication between forebrain and midbrain structures, can increase their activity when an animal fails to receive an expected positive reward or receives a stimulus that predicts aversive conditions (i.e. disappointment or anticipation of a negative outcome)2, 3, 4. LHb neurons project to and modulate dopamine-rich regions such as the ventral-tegmental area (VTA)2, 5 that control reward-seeking behavior6 and participate in depressive disorders7. Here we show in two learned helplessness models of depression that excitatory synapses onto LHb neurons projecting to the VTA are potentiated. Synaptic potentiation correlates with an animal’s helplessness behavior and is due to an enhanced presynaptic release probability. Depleting transmitter release by repeated electrical stimulation of LHb afferents, using a protocol that can be effective on depressed patients8, 9, dramatically suppresses synaptic drive onto VTA-projecting LHb neurons in brain slices and can significantly reduce learned helplessness behavior in rats. Our results indicate that increased presynaptic action onto LHb neurons contributes to the rodent learned helplessness model of depression. PMID:21350486
Synaptic potentiation onto habenula neurons in the learned helplessness model of depression.
Li, Bo; Piriz, Joaquin; Mirrione, Martine; Chung, ChiHye; Proulx, Christophe D; Schulz, Daniela; Henn, Fritz; Malinow, Roberto
2011-02-24
The cellular basis of depressive disorders is poorly understood. Recent studies in monkeys indicate that neurons in the lateral habenula (LHb), a nucleus that mediates communication between forebrain and midbrain structures, can increase their activity when an animal fails to receive an expected positive reward or receives a stimulus that predicts aversive conditions (that is, disappointment or anticipation of a negative outcome). LHb neurons project to, and modulate, dopamine-rich regions, such as the ventral tegmental area (VTA), that control reward-seeking behaviour and participate in depressive disorders. Here we show that in two learned helplessness models of depression, excitatory synapses onto LHb neurons projecting to the VTA are potentiated. Synaptic potentiation correlates with an animal's helplessness behaviour and is due to an enhanced presynaptic release probability. Depleting transmitter release by repeated electrical stimulation of LHb afferents, using a protocol that can be effective for patients who are depressed, markedly suppresses synaptic drive onto VTA-projecting LHb neurons in brain slices and can significantly reduce learned helplessness behaviour in rats. Our results indicate that increased presynaptic action onto LHb neurons contributes to the rodent learned helplessness model of depression.
Guo, Yujie; Tang, Xun; Zhang, Jichuan; Jin, Sen; Li, Jinnan; Ding, Lufeng; Zhang, Keming; Yang, Chaoyu; Zhou, Hua; He, Xiaobin; Xu, Fuqiang; Bi, Guo-Qiang; Xu, Lin; Lau, Pak-Ming
2018-06-06
Self-injurious behavior (SIB) is commonly observed in patients with neuropsychiatric disorders, as well as in nonclinical populations with stress-related mental-health problems. However, the exact circuitry mechanisms underlying SIB have remained poorly understood. Here, with bilateral injection of muscimol into the entopeduncular nucleus (EP), we established a rat model of SIB. Following the muscimol injection, the male rats exhibited in a dose-dependent manner stereotypic self-biting behavior that lasted for hours and often resulted in wounds of various severities. The SIB was associated with an elevated level of serum corticosterone and could be exacerbated by enhancing the corticosterone signaling and, conversely, alleviated by inhibiting the corticosterone signaling. Activity mapping using c-fos immunostaining, combined with connectivity mapping using herpes simplex virus-based anterograde tracing from the EP and pseudorabies virus-based retrograde tracing from the masseter muscle, revealed the potential involvement of many brain areas in SIB. In particular, the lateral habenula (LHb) and the ventral tegmental area (VTA), the two connected brain areas involved in stress response and reward processing, showed a significant increase in neuronal activation during SIB. Furthermore, suppressing the LHb activity or modulating the GABAergic transmission in the VTA could significantly reduce the occurrence of SIB. These results demonstrate the importance of stress hormone signaling and the LHb-VTA circuit in modulating SIB resulting from EP malfunction, and suggest potential targets for therapeutic intervention of SIB and related disorders. SIGNIFICANCE STATEMENT Self-injurious behavior (SIB) occurs in ∼4% of the general population, with substantially higher occurrence among adolescents and patients of neuropsychiatric disorders. Stress has been linked to the occurrence of SIB, yet the underlying mechanisms have remained unclear. Using a rat model of SIB induced by disruption of activity in the entopeduncular nucleus (EP), we found that the behavior is regulated by stress and linked to corticosterone signaling. Viral tracing and c-fos immunostaining revealed the involvement of various subcortical areas, especially the EP-lateral habenula (LHb)-ventral tegmental area (VTA) circuit, in SIB. Furthermore, regulating activity in the LHb or the VTA alleviates SIB. These results may have implications in the development of new strategies for treating SIB. Copyright © 2018 the authors 0270-6474/18/385252-16$15.00/0.
Oxidation and reduction behaviors of a prototypic MgO-PuO2-x inert matrix fuel
NASA Astrophysics Data System (ADS)
Miwa, Shuhei; Osaka, Masahiko
2017-04-01
Oxidation and reduction behaviors of prototypic MgO-based inert matrix fuels (IMFs) containing PuO2-x were experimentally investigated by means of thermogravimetry. The oxidation and reduction kinetics of the MgO-PuO2-x specimen were determined. The oxidation and reduction rates of the MgO-PuO2-x were found to be low compared with those of PuO2-x. It is note that the changes in O/Pu ratios of MgO-PuO2-x from stoichiometry were smaller than those of PuO2-x at high oxygen partial pressure.
SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation : Third Results Report
DOT National Transportation Integrated Search
2012-05-01
SunLine Transit Agency provides public transit services to the Coachella Valley area of California. SunLine has demonstrated hydrogen and fuel cell bus technologies for more than 10 years. This report describes operations at SunLine for a prototype f...
Alameda-Contra Costa Transit District (AC Transit) Fuel Cell Transit Buses : Third Evaluation Report
DOT National Transportation Integrated Search
2008-07-04
This report describes operations at Alameda-Contra Costa Transit District (AC Transit) for three prototype fuel cell buses and six diesel buses operating from the same location. This is the third evaluation report for this site, and it describes new ...
Transportation-Related Consumer Preference Data | Transportation Research |
NREL Transportation-Related Consumer Preference Data Transportation-Related Consumer Preference Data Photo of reporters test driving Toyota prototype electric and fuel cell vehicles. Consumer consumer preference data related to alternative fuel and advanced vehicles and their effects on energy
Experimental test results of a generalized parameter fuel control
NASA Technical Reports Server (NTRS)
Batterton, P. G.; Gold, H.
1973-01-01
Considerable interest has been generated recently in low cost jet propulsion systems. One of the more complicated components of jet engines is the fuel control. Results of an effort to develop a simpler hydromechanical fuel control are presented. This prototype fuel control was installed on a J85-GE-13 jet engine. Results show that the fuel control provided satisfactory engine performance at sea level static conditions over its normal nonafterburning operating range, including startup. Results of both bench and engine tests are presented; the difficulties encountered are described.
Miniature DMFCs with passive thermal-fluids management system
NASA Astrophysics Data System (ADS)
Guo, Zhen; Faghri, Amir
A new miniature DMFC system that includes a fuel cell stack, a fuel tank and a passive ancillary system (termed "thermal-fluids management system" in this paper) is presented. The thermal-fluids management system utilizes passive approaches for fuel storage and delivery, air breathing, water management, CO 2 release and thermal management. With 5.1 g of neat methanol in the fuel cartridge, a prototype has successfully demonstrated 18 h of continuous operation with total power output of 1.56 Wh.
2003-03-04
Technicians for AeroVironment, Inc., jack up a pressure tank to the wing of the Helios Prototype solar-electric flying wing. The tank carries pressurized hydrogen to fuel an experimental fuel cell system that powered the aircraft at night during an almost two-day long-endurance flight demonstration in the summer of 2003.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, L. B.; Donohoe, S. P.; Jones, M. H.
This article reports on the testing and comparison of a prototype hydrogen fuel cell light tower (H2LT) and a conventional diesel-powered metal halide light trailer for use in road maintenance and construction activities. The prototype was originally outfitted with plasma lights and then with light-emitting diode (LED) luminaires. Light output and distribution, lighting energy efficiency (i.e., efficacy), power source thermal efficiency, and fuel costs are compared. The metal halide luminaires have 2.2 and 3.1 times more light output than the plasma and LED luminaires, respectively, but they require more power/lumen to provide that output. The LED luminaires have 1.6 timesmore » better light efficacy than either the metal halide or plasma luminaires. The light uniformity ratios produced by the plasma and LED towers are acceptable. The fuel cell thermal efficiency at the power required to operate the plasma lights is 48%, significantly higher than the diesel generator efficiency of 23% when operating the metal halide lights. Due to the increased efficiency of the fuel cell and the LED lighting, the fuel cost per lumen-hour of the H2LT is 62% of the metal halide diesel light tower assuming a kilogram of hydrogen is twice the cost of a gallon of diesel fuel.« less
Miller, L. B.; Donohoe, S. P.; Jones, M. H.; ...
2015-04-22
This article reports on the testing and comparison of a prototype hydrogen fuel cell light tower (H2LT) and a conventional diesel-powered metal halide light trailer for use in road maintenance and construction activities. The prototype was originally outfitted with plasma lights and then with light-emitting diode (LED) luminaires. Light output and distribution, lighting energy efficiency (i.e., efficacy), power source thermal efficiency, and fuel costs are compared. The metal halide luminaires have 2.2 and 3.1 times more light output than the plasma and LED luminaires, respectively, but they require more power/lumen to provide that output. The LED luminaires have 1.6 timesmore » better light efficacy than either the metal halide or plasma luminaires. The light uniformity ratios produced by the plasma and LED towers are acceptable. The fuel cell thermal efficiency at the power required to operate the plasma lights is 48%, significantly higher than the diesel generator efficiency of 23% when operating the metal halide lights. Due to the increased efficiency of the fuel cell and the LED lighting, the fuel cost per lumen-hour of the H2LT is 62% of the metal halide diesel light tower assuming a kilogram of hydrogen is twice the cost of a gallon of diesel fuel.« less
D-amino acid oxidase is expressed in the ventral tegmental area and modulates cortical dopamine
Betts, Jill F.; Schweimer, Judith V.; Burnham, Katherine E.; Burnet, Philip W. J.; Sharp, Trevor; Harrison, Paul J.
2014-01-01
D-amino acid oxidase (DAO, DAAO) degrades the NMDA receptor co-agonist D-serine, modulating D-serine levels and thence NMDA receptor function. DAO inhibitors are under development as a therapy for schizophrenia, a disorder involving both NMDA receptor and dopaminergic dysfunction. However, a direct role for DAO in dopamine regulation has not been demonstrated. Here, we address this question in two ways. First, using in situ hybridization and immunohistochemistry, we show that DAO mRNA and immunoreactivity are present in the ventral tegmental area (VTA) of the rat, in tyrosine hydroxylase (TH)-positive and -negative neurons, and in glial fibrillary acidic protein (GFAP)-immunoreactive astrocytes. Second, we show that injection into the VTA of sodium benzoate, a DAO inhibitor, increases frontal cortex extracellular dopamine, as measured by in vivo microdialysis and high performance liquid chromatography. Combining sodium benzoate and D-serine did not enhance this effect, and injection of D-serine alone affected dopamine metabolites but not dopamine. These data show that DAO is expressed in the VTA, and suggest that it impacts on the mesocortical dopamine system. The mechanism by which the observed effects occur, and the implications of these findings for schizophrenia therapy, require further study. PMID:24822045
Mouws, Elisabeth M J P; Yaksh, Ameeta; Knops, Paul; Kik, Charles; Boersma, Eric; Bogers, Ad J J C; de Groot, Natasja M S
2017-09-01
The prevalence of ventricular dysrhythmias (VD) [ventricular premature beats (VPBs), ventricular couplets (Vcouplets), ventricular runs (Vruns)] after coronary artery bypass grafting (CABG) has so far not been examined. The goal of this study is to examine characteristics of VD and whether they precede ventricular tachyarrhythmias (VTA) during a postoperative follow-up period of 5 days using continuous rhythm registrations. In addition, we determined predictive factors of VD/VTA. Incidences and burdens of VD/VTA were calculated in patients (N=105, 83 male, 65±9 years) undergoing primary, on-pump CABG. Independent risk factors were examined using multivariate analysis. VPBs, Vcouplets, and Vruns occurred in respectively 100%, 82.9%, and 48.6% with corresponding burdens of 0.05%, 0%, and 0%. Sustained ventricular tachycardia (VT) and ventricular fibrillation (VF) did not occur in our cohort. Independent risk factors for VD included male gender, mitral valve insufficiency, hyperlipidemia, and age ≥60 years. VD are common in patients with coronary artery disease after CABG. Despite high incidences of these dysrhythmias, corresponding burdens are low and sustained VT or VF did not occur. Incidences were highest on the first postoperative day and diminished over time. Copyright © 2017 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.
The Role of GABAA Receptors in the Development of Alcoholism
Enoch, Mary-Anne
2008-01-01
Alcoholism is a common, heritable, chronic relapsing disorder. GABAA receptors undergo allosteric modulation by ethanol, anesthetics, benzodiazepines and neurosteroids and have been implicated in the acute as well as the chronic effects of ethanol including tolerance, dependence and withdrawal. Medications targeting GABAA receptors ameliorate the symptoms of acute withdrawal. Ethanol induces plasticity in GABAA receptors: tolerance is associated with generally decreased GABAA receptor activation and differentially altered subunit expression. The dopamine (DA) mesolimbic reward pathway originating in the ventral tegmental area (VTA), and interacting stress circuitry play an important role in the development of addiction. VTA GABAergic interneurons are the primary inhibitory regulators of DA neurons and a subset of VTA GABAA receptors may be implicated in the switch from heavy drinking to dependence. GABAA receptors modulate anxiety and response to stress; important elements of sustained drinking and relapse. The GABAA receptor subunit genes clustered on chromosome 4 are highly expressed in the reward pathway. Several recent studies have provided strong evidence that one of these genes, GABRA2, is implicated in alcoholism in humans. The influence of the interaction between ethanol and GABAA receptors in the reward pathway on the development of alcoholism together with genetic and epigenetic vulnerabilities will be explored in this review. PMID:18440057
PPARγ activation attenuates opioid consumption and modulates mesolimbic dopamine transmission.
de Guglielmo, Giordano; Melis, Miriam; De Luca, Maria Antonietta; Kallupi, Marsida; Li, Hong Wu; Niswender, Kevin; Giordano, Antonio; Senzacqua, Martina; Somaini, Lorenzo; Cippitelli, Andrea; Gaitanaris, George; Demopulos, Gregory; Damadzic, Ruslan; Tapocik, Jenica; Heilig, Markus; Ciccocioppo, Roberto
2015-03-01
PPARγ is one of the three isoforms identified for the peroxisome proliferator-activated receptors (PPARs) and is the receptor for the thiazolidinedione class of anti-diabetic medications including pioglitazone. PPARγ has been long studied for its role in adipogenesis and glucose metabolism, but the discovery of the localization in ventral tegmental area (VTA) neurons opens new vistas for a potential role in the regulation of reward processing and motivated behavior in drug addiction. Here, we demonstrate that activation of PPARγ by pioglitazone reduces the motivation for heroin and attenuates its rewarding properties. These effects are associated with a marked reduction of heroin-induced increase in phosphorylation of DARPP-32 protein in the nucleus accumbens (NAc) and with a marked and selective reduction of acute heroin-induced elevation of extracellular dopamine (DA) levels in the NAc shell, as measured by in vivo microdialysis. Through ex vivo electrophysiology in acute midbrain slices, we also show that stimulation of PPARγ attenuates opioid-induced excitation of VTA DA neurons via reduction of presynaptic GABA release from the rostromedial tegmental nucleus (RMTg). Consistent with this finding, site-specific microinjection of pioglitazone into the RMTg but not into the VTA reduced heroin taking. Our data illustrate that activation of PPARγ may represent a new pharmacotherapeutic option for the treatment of opioid addiction.
Eison, A S; Eison, M S; Iversen, S D
1982-04-22
The behavioural response following infusion of a novel, stable substance P (SP) analogue, DiMe-C7, into the ventral tegmental area (VTA) of rats was characterized and contrasted with the response to an equal dose of the parent compound SP. DiMe-C7 produced a longer-lasting behavioural stimulation than SP as evidenced in several behaviours, including locomotor activity, wet dog shakes, rearing and grooming. DiMe-C7-induced locomotor activity and rearing were potentiated by concurrent peripheral administration of D-amphetamine and blocked by pretreatment with haloperidol. Such responses to DiMe-C7 may thus be dependent upon dopaminergic activity. When given immediately following VTA infusion of DiMe-C7, morphine decreased, while naloxone had no effect upon most behavioural measures. The effect of methysergide on DiMe-C7 or SP into the substantia nigra reticulata produced a pattern of responses similar to nature to those produced by VTA infusion but different with respect to time course. These findings suggest that DiMe-C7 is a metabolically stable analogue of substance P which manifests prolonged actions on behaviour when centrally administered. Further, a role for central dopaminergic mechanisms is implicated in DiMe-C7-induced behavioural action.
Modulation of singing-related activity in the songbird ventral tegmental area by social context.
Yanagihara, Shin; Hessler, Neal A
2006-12-01
Successful reproduction depends critically on social interactions. To understand the neural mechanisms underlying such interactions, the study of courtship singing of songbirds has many advantages. Male zebra finches produce a similar song during courtship of a female and while alone. However, singing-related neural activity in the anterior forebrain pathway (AFP), a basal ganglia-forebrain circuit, is markedly dependent on the social context in which singing occurs. Thus, the AFP should receive a signal of social context from outside the song system. Here, we have begun to investigate the neural source of such a signal by recording from neurons in the ventral tegmental area (VTA), which provides dopaminergic input to Area X, a striatal nucleus of the AFP. The level of activity of most VTA neurons we recorded (32/35) was clearly modulated during singing, especially when males sang to a female bird. Modulation of the level of activity could occur in the presence of a female without singing, but typically was further increased when males sang to the female. In addition, activity of some neurons was patterned in relation to song elements, and appeared related to motor output. These results suggest that VTA activity could carry signals related to motivational aspects of singing, as well as more primary sensory and motor signals.
Murty, Vishnu P.; Adcock, R. Alison
2014-01-01
Learning how to obtain rewards requires learning about their contexts and likely causes. How do long-term memory mechanisms balance the need to represent potential determinants of reward outcomes with the computational burden of an over-inclusive memory? One solution would be to enhance memory for salient events that occur during reward anticipation, because all such events are potential determinants of reward. We tested whether reward motivation enhances encoding of salient events like expectancy violations. During functional magnetic resonance imaging, participants performed a reaction-time task in which goal-irrelevant expectancy violations were encountered during states of high- or low-reward motivation. Motivation amplified hippocampal activation to and declarative memory for expectancy violations. Connectivity of the ventral tegmental area (VTA) with medial prefrontal, ventrolateral prefrontal, and visual cortices preceded and predicted this increase in hippocampal sensitivity. These findings elucidate a novel mechanism whereby reward motivation can enhance hippocampus-dependent memory: anticipatory VTA-cortical–hippocampal interactions. Further, the findings integrate literatures on dopaminergic neuromodulation of prefrontal function and hippocampus-dependent memory. We conclude that during reward motivation, VTA modulation induces distributed neural changes that amplify hippocampal signals and records of expectancy violations to improve predictions—a potentially unique contribution of the hippocampus to reward learning. PMID:23529005
The role of GABA(A) receptors in the development of alcoholism.
Enoch, Mary-Anne
2008-07-01
Alcoholism is a common, heritable, chronic relapsing disorder. GABA(A) receptors undergo allosteric modulation by ethanol, anesthetics, benzodiazepines and neurosteroids and have been implicated in the acute as well as the chronic effects of ethanol including tolerance, dependence and withdrawal. Medications targeting GABA(A) receptors ameliorate the symptoms of acute withdrawal. Ethanol induces plasticity in GABA(A) receptors: tolerance is associated with generally decreased GABA(A) receptor activation and differentially altered subunit expression. The dopamine (DA) mesolimbic reward pathway originating in the ventral tegmental area (VTA), and interacting stress circuitry play an important role in the development of addiction. VTA GABAergic interneurons are the primary inhibitory regulators of DA neurons and a subset of VTA GABA(A) receptors may be implicated in the switch from heavy drinking to dependence. GABA(A) receptors modulate anxiety and response to stress; important elements of sustained drinking and relapse. The GABA(A) receptor subunit genes clustered on chromosome 4 are highly expressed in the reward pathway. Several recent studies have provided strong evidence that one of these genes, GABRA2, is implicated in alcoholism in humans. The influence of the interaction between ethanol and GABA(A) receptors in the reward pathway on the development of alcoholism together with genetic and epigenetic vulnerabilities will be explored in this review.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-06-01
Beginning in February, 1970, the Nuclear Materials and Equipment Corporation (NUMEC) undertook a program to design, develop and manufacture a radioisotope powered cardiac pacemaker system. The scope of technical work was specified to be: establish system, component, and process cost reduction goals using the prototype Radioisotope Powered Cardiac Pacemaker (RCP) design and develop production techniques to achieve these cost reduction objectives; fabricate radioisotope powered fueled prototype cardiac pacemakers (RCP's) on a pilot production basis; conduct liaison with a Government-designated fueling facility for purposes of defining fueling requirements, fabrication and encapsulation procedures, safety design criteria and quality control and inspection requirements;more » develop and implement Quality Assurance and Reliability Programs; conduct performance, acceptance, lifetime and reliability tests of fueled RCP's in the laboratory; conduct liaison with the National Institutes of Health and with Government specified medical research institutions selected for the purpose of undertaking clinical evaluation of the RCP in humans; monitor and evaluate, on a continuing basis, all test data; and perform necessary safety analyses and tests. Pacemaker designs were developed and quality assurance and manufacturing procedures established. Prototype pacemakers were fabricated. A total of 126 radioisotope powered units were implanted and have been followed clinically for approximately seven years. Four (4) of these units have failed. Eighty-three (83) units remain implanted and satisfactorily operational. An overall failure rate of less than the target 0.15% per month has been achieved.« less
Raising Nuclear Thermal Propulsion (NTP) Technology Readiness Above 3
NASA Technical Reports Server (NTRS)
Gerrish, Harold P., Jr.
2014-01-01
NTP development is currently supported by the NASA program office "Advanced Exploration Systems". The concept is a main propulsion option being considered for human missions to Mars in the 2030's. Major NTP development took place in the 1960's and 1970's under the Rover/NERVA program. The technology had matured to TRL 6 and was preparing to go to TRL 7 with a prototype flight engine before the program was cancelled. Over the last 40 years, a variety of continuations started, but only lasted a few years each. The Rover/NERVA infrastructure is almost all gone. The only remains are a few pieces of hardware, final reports and a few who worked the Rover/NERVA. Two types of nuclear fuel are being investigated to meet the current engine design specific impulse of 900 seconds compared to approximately 850 seconds demonstrated during Rover/NERVA. One is a continuation of composite fuel with new coatings to better control mid-band corrosion. The other type is a CERMET fuel made of Tungsten and UO2. Both fuels are being made from Rover/NERVA lessons learned, but with slightly different recipes to increase fuel endurance at higher operating temperatures. The technology readiness level (TRL) of these current modified reactor fuels is approximately TRL 3. To keep the development cost low and help mature the TRL level past 4 quickly, a few special non-nuclear test facilities have been made to test surrogate fuel, with depleted uranium, as coupons and full length elements. Both facilities utilize inductive heating and are licensed to handle depleted uranium. TRL 5 requires exposing the fuel to a nuclear environment and TRL 6 requires a prototype ground or flight engine system test. Currently, three different NTP ground test facility options are being investigated: exhaust scrubber, bore hole, and total exhaust containment. In parallel, a prototype flight demonstration test is also being studied. The first human mission to Mars in the 2030's is currently 2033. For an advanced propulsion concept to be seriously considered for use, the engine development plans need to show it is feasible and affordable to reach TRL 8 by 2027 and can be qualified for human mission use.
Sexual Dimorphism in the Brain of the Monogamous California Mouse (Peromyscus californicus).
Campi, Katharine L; Jameson, Chelsea E; Trainor, Brian C
2013-01-01
Sex differences in behavior and morphology are usually assumed to be stronger in polygynous species compared to monogamous species. A few brain structures have been identified as sexually dimorphic in polygynous rodent species, but it is less clear whether these differences persist in monogamous species. California mice are among the 5% or less of mammals that are considered to be monogamous and as such provide an ideal model to examine sexual dimorphism in neuroanatomy. In the present study we compared the volume of hypothalamic- and limbic-associated regions in female and male California mice for sexual dimorphism. We also used tyrosine hydroxylase (TH) immunohistochemistry to compare the number of dopamine neurons in the ventral tegmental area (VTA) in female and male California mice. Additionally, tract tracing was used to accurately delineate the boundaries of the VTA. The total volume of the sexually dimorphic nucleus of the preoptic area (SDN-POA), the principal nucleus of the bed nucleus of the stria terminalis (BNST), and the posterodorsal medial amygdala (MEA) was larger in males compared to females. In the SDN-POA we found that the magnitude of sex differences in the California mouse were intermediate between the large differences observed in promiscuous meadow voles and rats and the absence of significant differences in monogamous prairie voles. However, the magnitude of sex differences in MEA and the BNST were comparable to polygynous species. No sex differences were observed in the volume of the whole brain, the VTA, the nucleus accumbens or the number of TH-ir neurons in the VTA. These data show that despite a monogamous social organization, sexual dimorphisms that have been reported in polygynous rodents extend to California mice. Our data suggest that sex differences in brain structures such as the SDN-POA persist across species with different social organizations and may be an evolutionarily conserved characteristic of mammalian brains.
Abisse, Saddam S.; Lampert, Rachel; Burg, Mattew; Soufer, Robert; Shusterman, Vladimir
2011-01-01
Introduction Changes in the autonomic nervous system activity (ANS) are a major trigger of life-threatening ventricular tachyarrhythmias (VTA). Mental arithmetic, a condition administered in a laboratory setting, can provide insight into the ANS effects on cardiac physiology. We examined the responses of cardiac repolarization to laboratory-induced psychological stressors in patients with implantable cardioverter defibrillators (ICDs) with the objective of identifying the indices that differentiate patients with and without subsequent VTA in follow-up. Methods Continuous ECG signals were recorded using 3 standard bipolar (Holter) leads in 56 patients (age: 63.6±11.9, female: 12%, LVEF: 32.3±11) with ICDs during mental arithmetic. The patients were separated into those with subsequent VTA during 3–4 years of follow-up (Group 1: N=9 pts) and those without VTA (Group 2: N=47 pts). Changes in repolarization (QT-interval, mean T-wave amplitude (Tamp), and T-wave area (Tarea) were analyzed during 5min of baseline, stress and recovery. The temporal instability of Tamp and Tarea was examined using the range (Δ) and variance (σ2) of beat-to-beat variations of the corresponding parameters. Results There were no significant differences in HR between the two groups at baseline (61 vs. 63 bpm, p=0.97), during stress (64 vs. 65 bpm, p=0.40), and recovery (62 vs. 61 bpm, p= 0.88). However, during mental stress and post-stress recovery ΔTamp was almost 2-fold greater in Group 1 compared with Group 2 (111 (57–203)) vs. 68 (44–94) μV p=0.04, respectively). Changes in QT-intervals were also greater in Group 1 compared with Group 2 (p=0.02). Conclusion Among patients with ICDs, changes of T-wave amplitude after psychological stress were greater in those with subsequent arrhythmic events. This might signal proarrhythmic repolarization response and help identify patients who would benefit the most from ICD implantation and proactive management. PMID:21920534
Friend, Lindsey; Weed, Jared; Sandoval, Philip; Nufer, Teresa; Ostlund, Isaac; Edwards, Jeffrey G
2017-11-08
The VTA is necessary for reward behavior with dopamine cells critically involved in reward signaling. Dopamine cells in turn are innervated and regulated by neighboring inhibitory GABA cells. Using whole-cell electrophysiology in juvenile-adolescent GAD67-GFP male mice, we examined excitatory plasticity in fluorescent VTA GABA cells. A novel CB1-dependent LTD was induced in GABA cells that was dependent on metabotropic glutamate receptor 5, and cannabinoid receptor 1 (CB1). LTD was absent in CB1 knock-out mice but preserved in heterozygous littermates. Bath applied Δ 9 -tetrahydrocannabinol depressed GABA cell activity, therefore downstream dopamine cells will be disinhibited; and thus, this could potentially result in increased reward. Chronic injections of Δ 9 -tetrahydrocannabinol occluded LTD compared with vehicle injections; however, a single exposure was insufficient to do so. As synaptic modifications by drugs of abuse are often tied to addiction, these data suggest a possible mechanism for the addictive effects of Δ 9 -tetrahydrocannabinol in juvenile-adolescents, by potentially altering reward behavioral outcomes. SIGNIFICANCE STATEMENT The present study identifies a novel form of glutamatergic synaptic plasticity in VTA GABA neurons, a currently understudied cell type that is critical for the brain's reward circuit, and how Δ 9 -tetrahydrocannabinol occludes this plasticity. This study specifically addresses a potential unifying mechanism whereby marijuana could exert rewarding and addictive/withdrawal effects. Marijuana use and legalization are a pressing issue for many states in the United States. Although marijuana is the most commonly abused illicit drug, the implications of legalized, widespread, or continued usage are speculative. This study in juvenile-adolescent aged mice identifies a novel form of synaptic plasticity in VTA GABA cells, and the synaptic remodeling that can occur after Δ 9 -tetrahydrocannabinol use. Copyright © 2017 the authors 0270-6474/17/3710943-12$15.00/0.
Frye, Cheryl A.; Paris, J. J.; Walf, A. A.; Rusconi, J. C.
2011-01-01
Progestogens [progesterone (P4) and its products] play fundamental roles in the development and/or function of the central nervous system during pregnancy. We, and others, have investigated the role of pregnane neurosteroids for a plethora of functional effects beyond their pro-gestational processes. Emerging findings regarding the effects, mechanisms, and sources of neurosteroids have challenged traditional dogma about steroid action. How the P4 metabolite and neurosteroid, 3α-hydroxy-5α-pregnan-20-one (3α,5α-THP), influences cellular functions and behavioral processes involved in emotion/affect, motivation, and reward, is the focus of the present review. To further understand these processes, we have utilized an animal model assessing the effects, mechanisms, and sources of 3α,5α-THP. In the ventral tegmental area (VTA), 3α,5α-THP has actions to facilitate affective, and motivated, social behaviors through non-traditional targets, such as GABA, glutamate, and dopamine receptors. 3α,5α-THP levels in the midbrain VTA both facilitate, and/or are enhanced by, affective and social behavior. The pregnane xenobiotic receptor (PXR) mediates the production of, and/or metabolism to, various neurobiological factors. PXR is localized to the midbrain VTA of rats. The role of PXR to influence 3α,5α-THP production from central biosynthesis, and/or metabolism of peripheral P4, in the VTA, as well as its role to facilitate, or be increased by, affective/social behaviors is under investigation. Investigating novel behavioral functions of 3α,5α-THP extends our knowledge of the neurobiology of progestogens, relevant for affective/social behaviors, and their connections to systems that regulate affect and motivated processes, such as those important for stress regulation and neuropsychiatric disorders (anxiety, depression, schizophrenia, drug dependence). Thus, further understanding of 3α,5α-THP’s role and mechanisms to enhance affective and motivated processes is essential. PMID:22294977
Wille-Bille, Aranza; Miranda-Morales, Roberto Sebastián; Pucci, Mariangela; Bellia, Fabio; D'Addario, Claudio; Pautassi, Ricardo Marcos
2018-07-13
Animal models have suggested that prenatal ethanol exposure (PEE) alters the κ opioid receptor system. The present study investigated the brain expression of dynorphin and nociceptin/orphanin FQ related genes and assessed anxiety-like behavior in the light-dark box (LDB), shelter-seeking and risk-taking behaviors in the concentric square field (CSF) test, and ethanol-induced locomotion in the open field (OF), in infant or adolescent Wistar rats that were exposed to PEE (0.0 or 2.0 g/kg, intragastrically, gestational days 17-20). We measured brain mRNA levels of prodynorphin (PDYN), κ opioid receptors (KOR), the nociceptin/orphanin FQ opioid peptide precursor prepronociceptin (ppN/OFQ) and nociceptine/orphanin FQ receptors (NOR). Prenatal ethanol exposure upregulated PDYN and KOR mRNA levels in the ventral tegmental area (VTA) in infant and adolescent rats and KOR mRNA levels in the prefrontal cortex in infant rats. The changes in gene expression in the VTA were accompanied by a reduction of DNA methylation at the PDYN gene promoter, and by a reduction of DNA methylation at the KOR gene promoter. The PEE-induced upregulation of PDYN/KOR in the VTA was accompanied by lower NOR gene expression in the VTA, and lower PDYN gene expression in the nucleus accumbens. PEE rats exhibited hypolocomotion in the OF, greater avoidance of the white and brightly lit areas in the LDB and CSF, and greater preference for the sheltered area in the CSF test. These results suggest that PEE upregulates the dynorphin system, resulting in an anxiety-prone phenotype and triggering compensatory responses in the nociceptin/orphanin FQ system. These findings may help elucidate the mechanisms that underlie the effects of PEE and suggest that the dynorphin and nociceptin/orphanin FQ systems may be possible targets for the prevention and treatment of PEE-induced alterations. Copyright © 2018 Elsevier Inc. All rights reserved.
Kenny, Paul J; Chartoff, Elena; Roberto, Marisa; Carlezon, William A; Markou, Athina
2009-01-01
Nicotine is considered an important component of tobacco responsible for the smoking habit in humans. Nicotine increases glutamate-mediated transmission throughout brain reward circuitries. This action of nicotine could potentially contribute to its intrinsic rewarding and reward-enhancing properties, which motivate consumption of the drug. Here we show that the competitive N-methyl-D-aspartate (NMDA) receptor antagonist LY235959 (0.5-2.5 mg per kg) abolished nicotine-enhanced brain reward function, reflected in blockade of the lowering of intracranial self-stimulation (ICSS) thresholds usually observed after experimenter-administered (0.25 mg per kg) or intravenously self-administered (0.03 mg per kg per infusion) nicotine injections. The highest LY235959 dose (5 mg per kg) tested reversed the hedonic valence of nicotine from positive to negative, reflected in nicotine-induced elevations of ICSS thresholds. LY235959 doses that reversed nicotine-induced lowering of ICSS thresholds also markedly decreased nicotine self-administration without altering responding for food reinforcement, whereas the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor antagonist NBQX had no effects on nicotine intake. In addition, nicotine self-administration upregulated NMDA receptor subunit expression in the central nucleus of the amygdala (CeA) and ventral tegmental area (VTA), suggesting important interactions between nicotine and the NMDA receptor. Furthermore, nicotine (1 microM) increased NMDA receptor-mediated excitatory postsynaptic currents in rat CeA slices, similar to its previously described effects in the VTA. Finally, infusion of LY235959 (0.1-10 ng per side) into the CeA or VTA decreased nicotine self-administration. Taken together, these data suggest that NMDA receptors, including those in the CeA and VTA, gate the magnitude and valence of the effects of nicotine on brain reward systems, thereby regulating motivation to consume the drug.
Zhao, Changjiu; Sun, Tao; Li, Ming
2012-01-01
Clinical observations suggest that antipsychotic effect starts early and increases progressively over time. This time course of antipsychotic effect can be captured in a rat phencyclidine (PCP)-induced hyperlocomotion model, as repeated antipsychotic treatment progressively increases its inhibition of the repeated PCP-induced hyperlocomotion. Although the neural basis of acute antipsychotic action has been studied extensively, the system that mediates the potentiated effect of repeated antipsychotic treatment has not been elucidated. In the present study, we investigated the neuroanatomical basis of the potentiated action of haloperidol (HAL) and clozapine (CLZ) treatment in the repeated PCP-induced hyperlocomotion. Once daily for five consecutive days, adult Sprague-Dawley male rats were first injected with HAL (0.05 mg/kg, sc), CLZ (10.0 mg/kg, sc) or saline, followed by an injection of PCP (3.2 mg/kg, sc) or saline 30 min later, and motor activity was measured for 90 min after the PCP injection. C-Fos immunoreactivity was assessed either after the acute (day 1) or repeated (day 5) drug tests. Behaviorally, repeated HAL or CLZ treatment progressively increased the inhibition of PCP-induced hyperlocomotion throughout the five days of drug testing. Neuroanatomically, both acute and repeated treatment of HAL significantly increased PCP-induced c-Fos expression in the nucleus accumbens shell (NAs) and the ventral tegmental area (VTA), but reduced it in the central amygdaloid nucleus (CeA). Acute and repeated CLZ treatment significantly increased PCP-induced c-Fos expression in the ventral part of lateral septal nucleus (LSv) and VTA, but reduced it in the medial prefrontal cortex (mPFC). More importantly, the effects of HAL and CLZ in these brain areas underwent a time-dependent reduction from day 1 to day 5. These findings suggest that repeated HAL achieves its potentiated inhibition of the PCP-induced hyperlocomotion by acting on the NAs, CeA and VTA, while CLZ does so by acting on the mPFC, LSv and VTA. PMID:22476004
Masilamoni, Gunasingh Jeyaraj; Groover, Olivia; Smith, Yoland
2017-04-01
There is anatomical and functional evidence that ventral midbrain dopaminergic (DA) cell groups and the subthalamic nucleus (STN) receive noradrenergic innervation in rodents, but much less is known about these interactions in primates. Degeneration of NE neurons in the locus coeruleus (LC) and related brainstem NE cell groups is a well-established pathological feature of Parkinson's disease (PD), but the development of such pathology in animal models of PD has been inconsistent across species and laboratories. We recently demonstrated 30-40% neuronal loss in the LC, A5 and A6 NE cell groups of rhesus monkeys rendered parkinsonian by chronic administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). In this study, we used dopamine-beta-hydroxylase (DβH) immunocytochemistry to assess the impact of this neuronal loss on the number of NE terminal-like varicosities in the substantia nigra pars compacta (SNC), ventral tegmental area (VTA), retrorubral field (RRF) and STN of MPTP-treated parkinsonian monkeys. Our findings reveal that the NE innervation of the ventral midbrain and STN of normal monkeys is heterogeneously distributed being far more extensive in the VTA, RRF and dorsal tier of the SNC than in the ventral SNC and STN. In parkinsonian monkeys, all regions underwent a significant (~50-70%) decrease in NE innervation. At the electron microscopic level, some DβH-positive terminals formed asymmetric axo-dendritic synapses in VTA and STN. These findings demonstrate that the VTA, RRF and SNCd are the main ventral midbrain targets of ascending NE inputs, and that these connections undergo a major break-down in chronically MPTP-treated parkinsonian monkeys. This severe degeneration of the ascending NE system may contribute to the pathophysiology of ventral midbrain and STN neurons in PD. Copyright © 2017 Elsevier Inc. All rights reserved.
Kim, In-Soo; Sohn, Jungwoo; Lee, Seung-Jun; Park, Jin-Kyu; Uhm, Jae-Sun; Pak, Hui-Nam; Lee, Moon-Hyoung; Kim, Changsoo; Joung, Boyoung
2017-08-01
This study investigated the acute effects of exposure to air pollution on ventricular tachyarrhythmias (VTAs) in an East Asian population. The association between air pollution and VTA has not yet been studied in an East Asian country affected by the Asian dust phenomenon, which worsens air quality. The study cohort consisted of 160patients with implantable cardioverter defibrillator (ICD) devices in the Seoul metropolitan area who were followed for 5.5±3.8years. We used ICD records of VTAs and matched these with hourly measurements of air pollutant concentrations and meteorological data. Fine particle mass and gaseous air pollution plus temperature and relative humidity were measured hourly during the study period. During the study period, 1064 VTA events including 204 instances of ventricular fibrillation (VF) were observed. We found a statistically significant association between overall VTA events and SO 2 (lag 24h; OR 1.49, 95%CI 1.16-1.92, p=0.002), PM 10 (lag 2h; OR 2.56, 95%CI 2.03-3.23, p<0.001), NO 2 (lag 24h; OR 1.25, 95%CI 1.19-1.31, p<0.001) and CO (lag 24h; OR 1.05, 95%CI 1.02-1.08, p=0.003). Sustained ventricular tachycardia or VF was also independently associated with SO 2 , PM 10 , NO 2 and CO (all p<0.01). Exposures to SO 2 , PM 10 , NO 2 , and CO (all p<0.01) were significantly related to overall VTAs, especially in patients with structural heart disease (SHD). Associations between air pollution and VTA were observed in a metropolitan area of an East Asian country. Exposures to SO 2 , PM 10 , NO 2 , and CO were significantly associated with VTAs in ICD patients with SHD. Copyright © 2017 Elsevier B.V. All rights reserved.
Kerosene-Fuel Engine Testing Under Way
2003-11-17
NASA Stennis Space Center engineers conducted a successful cold-flow test of an RS-84 engine component Sept. 24. The RS-84 is a reusable engine fueled by rocket propellant - a special blend of kerosene - designed to power future flight vehicles. Liquid oxygen was blown through the RS-84 subscale preburner to characterize the test facility's performance and the hardware's resistance. Engineers are now moving into the next phase, hot-fire testing, which is expected to continue into February 2004. The RS-84 engine prototype, developed by the Rocketdyne Propulsion and Power division of The Boeing Co. of Canoga Park, Calif., is one of two competing Rocket Engine Prototype technologies - a key element of NASA's Next Generation Launch Technology program.
Kerosene-Fuel Engine Testing Under Way
NASA Technical Reports Server (NTRS)
2003-01-01
NASA Stennis Space Center engineers conducted a successful cold-flow test of an RS-84 engine component Sept. 24. The RS-84 is a reusable engine fueled by rocket propellant - a special blend of kerosene - designed to power future flight vehicles. Liquid oxygen was blown through the RS-84 subscale preburner to characterize the test facility's performance and the hardware's resistance. Engineers are now moving into the next phase, hot-fire testing, which is expected to continue into February 2004. The RS-84 engine prototype, developed by the Rocketdyne Propulsion and Power division of The Boeing Co. of Canoga Park, Calif., is one of two competing Rocket Engine Prototype technologies - a key element of NASA's Next Generation Launch Technology program.
Blum, Kenneth; Chen, Thomas J H; Chen, Amanda L H; Madigan, Margaret; Downs, B William; Waite, Roger L; Braverman, Eric R; Kerner, Mallory; Bowirrat, Abdalla; Giordano, John; Henshaw, Harry; Gold, Mark S
2010-03-01
Using fMRI, Menon and Levitin [9] clearly found for the first time that listening to music strongly modulates activity in a network of mesolimbic structures involved in reward processing including the nucleus accumbens (NAc) and the ventral tegmental area (VTA), as well as the hypothalamus, and insula, which are thought to be involved in regulating autonomic and physiological responses to rewarding and emotional stimuli. Importantly, responses in the NAc and VTA were strongly correlated pointing to an association between dopamine release and NAc response to music. Listing to pleasant music induced a strong response and significant activation of the VTA-mediated interaction of the NAc with the hypothalamus, insula, and orbitofrontal cortex. Blum et al. [10] provided the first evidence that the dopamine D2 receptor gene (DRD2) Taq 1 A1 allele significantly associated with severe alcoholism whereby the author's suggested that they found the first "reward gene" located in the mesolimbic system. The enhanced functional and effective connectivity between brain regions mediating reward, autonomic, and cognitive processing provides insight into understanding why listening to music is one of the most rewarding and pleasurable human experiences. However, little is known about why some people have a more or less powerful mesolimbic experience when they are listening to music. It is well-known that music may induce an endorphinergic response that is blocked by naloxone, a known opioid antagonist (Goldstein [19]). Opioid transmission in the NAc is associated with dopamine release in the VTA. Moreover, dopamine release in the VTA is linked to polymorphisms of the DRD2 gene and even attention-deficit hyperactivity disorder (ADHD), whereby carriers of the DRD2 A1 allele show a reduced NAc release of dopamine (DA). Thus it is conjectured that similar mechanisms in terms of adequate dopamine release and subsequent activation of reward circuitry by listening to music might also be affected by an individual's D2 density in the VTA mediated interaction of the NAc. It is therefore hypothesized that carriers of DRD2 A1 allele may respond significantly differently to carriers of the DRD2 A2 genotype. In this regard, carriers of the D2 A1 allele have a blunted response to glucose and monetary rewards. In contrast powerful D2 agonists like bromocryptine show a heightened activation of the reward circuitry only in DRD2 A1 allele carriers. If music causes a powerful activation in spite of the DRD2 A1 allele due to a strong DA neuronal release which subsequently impinges on existing D2 receptors, then it is reasonable to assume that music is a strong indirect D2 agonist (by virtue of DA neuronal release in the NAc) and may have important therapeutic applicability in Reward Deficiency Syndrome (RDS) related behaviors including Substance Use Disorder (SUD). Ross et al. [18] found that music therapy appears to be a novel motivational tool in a severely impaired inpatient sample of patients with co-occurring mental illness and addiction. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
Mass tracking and material accounting in the integral fast reactor (IFR)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orechwa, Y.; Adams, C.H.; White, A.M.
1991-01-01
This paper reports on the Integral Fast Reactor (IFR) which is a generic advanced liquid metal cooled reactor concept being developed at Argonne National Laboratory. There are a number of technical features of the IFR which contribute to its potential as a next-generation reactor. These are associated with large safety margins with regard to off-normal events involving the heat transport system, and the use of metallic fuel which makes possible the utilization of innovative fuel cycle processes. The latter feature permits fuel cycle closure with compact, low-cost reprocessing facilities, collocated with the reactor plant. These primary features are being demonstratedmore » in the facilities at ANL-West, utilizing Experimental Breeder Reactor II and the associated Fuel Cycle Facility (FCF) as an IFR prototype. The demonstration of this IFR prototype includes the design and implementation of the Mass-tracking System (MTG). In this system, data from the operations of the FCF, including weights and batch-process parameters, are collected and maintained by the MTG running on distributed workstations.« less
Recent Progress in Nanostructured Electrocatalysts for PEM Fuel Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Sheng; Shao, Yuyan; Yin, Geping
2013-03-30
Polymer electrolyte membrane (PEM) fuel cells are attracting much attention as promising clean power sources and an alternative to conventional internal combustion engines, secondary batteries, and other power sources. Much effort from government laboratories, industry, and academia has been devoted to developing PEM fuel cells, and great advances have been achieved. Although prototype cars powered by fuel cells have been delivered, successful commercialization requires fuel cell electrocatalysts, which are crucial components at the heart of fuel cells, meet exacting performance targets. In this review, we present a brief overview of the recent progress in fuel cell electrocatalysts, which involves catalystmore » supports, Pt and Pt-based electrocatalysts, and non-Pt electrocatalysts.« less
Test Plan for Cask Identification Detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rauch, Eric Benton
2016-09-29
This document serves to outline the testing of a Used Fuel Cask Identification Detector (CID) currently being designed under the DOE-NE MPACT Campaign. A bench-scale prototype detector will be constructed and tested using surrogate neutron sources. The testing will serve to inform the design of the full detector that is to be used as a way of fingerprinting used fuel storage casks based on the neutron signature produced by the used fuel inside the cask.
García-Pérez, Daniel; Luisa Laorden, M; Núñez, Cristina; Victoria Milanés, M
2014-09-15
Opiates cause persistent restructuring in the mesolimbic reward system. Although a possible role for midkine and pleiotrophin cytokines in the field of synaptic plasticity has been proposed, it has not been assessed whether morphine administration regulates astrogliosis and midkine and pleiotrophin transcription. We observed that single morphine injection and chronic morphine increased glial fibrillary acidic protein expression in the ventral tegmental area (VTA). Interestingly, single morphine injection and chronic morphine increased VTA midkine and pleiotrophin mRNA expression. Given these results, we hypothesize a role for these cytokines in mediating, at least in part, acute neuroprotective effects and chronic neurotrophic adaptations that contribute to drug dependence. Copyright © 2014 Elsevier B.V. All rights reserved.
Edwards, Alexander; Abizaid, Alfonso
2016-07-01
Independent stimulation of either the ghrelin or endocannabinoid system promotes food intake and increases adiposity. Given the similar distribution of their receptors in feeding associated brain regions and organs involved in metabolism, it is not surprising that evidence of their interaction and its importance in modulating energy balance has emerged. This review documents the relationship between ghrelin and endocannabinoid systems within the periphery and hypothalamus (HYP) before presenting evidence suggesting that these two systems likewise work collaboratively within the ventral tegmental area (VTA) to modulate non-homeostatic feeding. Mechanisms, consistent with current evidence and local infrastructure within the VTA, will be proposed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Advanced rotary engine studies
NASA Technical Reports Server (NTRS)
Jones, C.
1980-01-01
A review of rotary engine developments relevant to a stratified charge rotary aircraft engine is presented. Advantages in module size and weight, fuel efficiency, reliability, and multi-fuel capability are discussed along with developments in turbocharging, increased mean effective pressure, improved apex seal/trochoid wear surfacing materials, and high strength and temperature aluminum casting alloys. A carbureted prototype aircraft engine is also described.
Murty, Vishnu P; Adcock, R Alison
2014-08-01
Learning how to obtain rewards requires learning about their contexts and likely causes. How do long-term memory mechanisms balance the need to represent potential determinants of reward outcomes with the computational burden of an over-inclusive memory? One solution would be to enhance memory for salient events that occur during reward anticipation, because all such events are potential determinants of reward. We tested whether reward motivation enhances encoding of salient events like expectancy violations. During functional magnetic resonance imaging, participants performed a reaction-time task in which goal-irrelevant expectancy violations were encountered during states of high- or low-reward motivation. Motivation amplified hippocampal activation to and declarative memory for expectancy violations. Connectivity of the ventral tegmental area (VTA) with medial prefrontal, ventrolateral prefrontal, and visual cortices preceded and predicted this increase in hippocampal sensitivity. These findings elucidate a novel mechanism whereby reward motivation can enhance hippocampus-dependent memory: anticipatory VTA-cortical-hippocampal interactions. Further, the findings integrate literatures on dopaminergic neuromodulation of prefrontal function and hippocampus-dependent memory. We conclude that during reward motivation, VTA modulation induces distributed neural changes that amplify hippocampal signals and records of expectancy violations to improve predictions-a potentially unique contribution of the hippocampus to reward learning. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Medel-Matus, Jesús-Servando; Shin, Don; Sankar, Raman; Mazarati, Andrey
2017-08-01
The objective was to determine whether the depression comorbid with epilepsy could be predicted based on inherent premorbid patterns of monoaminergic transmission. In male Wistar rats, despair-like and anhedonia-like behaviors were examined using forced swimming and taste preference tests, respectively. Serotonergic raphe nucleus (RN)-prefrontal cortex (PFC) and dopaminergic ventral tegmental area (VTA)-nucleus accumbens (NAcc) pathways were interrogated by fast scan cyclic voltammetry (FSCV). The assays were performed before and 2 months after pilocarpine status epilepticus. In a subset of naive rats, FSCV, coupled with the intensity-dependent stimulation paradigm, detected specific deviations in each pathway (six rats for RN-PFC and seven rats for VTA-NAcc, with overlap in two, of 19 total subjects) in the absence of behavioral impairments. During epilepsy, animals with preexisting deviations in RN-PFC invariably developed despair, and rats with deviations in VTA-NAcc developed anhedonia. Serotonergic and dopaminergic pathways, respectively, showed signs of explicit deterioration. We suggest that epilepsy triggers decompensations in the already vulnerable depression-relevant neuronal circuits, which culminate in depression. The established connection between the identified specific signatures in monoamine transmission in naive rats and specific symptoms of epilepsy-associated depression may help in understanding causes of comorbidity and in developing its early biomarkers. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.
Cordella, Alberto; Krashia, Paraskevi; Nobili, Annalisa; Pignataro, Annabella; La Barbera, Livia; Viscomi, Maria Teresa; Valzania, Alessandro; Keller, Flavio; Ammassari-Teule, Martine; Mercuri, Nicola Biagio; Berretta, Nicola; D'Amelio, Marcello
2018-08-01
The functional loop involving the ventral tegmental area (VTA), dorsal hippocampus and nucleus accumbens (NAc) plays a pivotal role in the formation of spatial memory and persistent memory traces. In particular, the dopaminergic innervation from the VTA to the hippocampus is critical for hippocampal-related memory function and alterations in the midbrain dopaminergic system are frequently reported in Alzheimer's disease (AD), contributing to age-related decline in memory and non-cognitive functions. However, much less is known about the hippocampus-NAc connectivity in AD. Here, we evaluated the functioning of the hippocampus-to-NAc core connectivity in the Tg2576 mouse model of AD that shows a selective and progressive degeneration of VTA dopaminergic neurons. We show that reduced dopaminergic innervation in the Tg2576 hippocampus results in reduced synaptic plasticity and excitability of dorsal subiculum pyramidal neurons. Importantly, the glutamatergic transmission from the hippocampus to the NAc core is also impaired. Chemogenetic depolarisation of Tg2576 subicular pyramidal neurons with an excitatory Designer Receptor Exclusively Activated by Designer Drugs, or systemic administration of the DA precursor levodopa, can both rescue the deficits in Tg2576 mice. Our data suggest that the dopaminergic signalling in the hippocampus is essential for the proper functioning of the hippocampus-NAc excitatory synaptic transmission. Copyright © 2018 Elsevier Inc. All rights reserved.
Frye, Cheryl A; Rhodes, Madeline E
2005-03-15
5 alpha-Pregnan-3 alpha-ol-20-one (3 alpha,5 alpha-THP), progesterone (P4)'s 5 alpha-reduced, 3 alpha-hydroxysteroid oxidoreduced product, facilitates lordosis of rodents in part via agonist-like actions at GABA(A)/benzodiazepine receptor complexes in the ventral tegmental area (VTA). Whether 3 alpha,5 alpha-THP influences another reproductively-relevant behavior, lateral displacement, of hamsters was investigated. Lateral displacement is the movement that female hamsters make with their perineum towards male-like tactile stimulation. This behavior facilitates, and is essential for, successful mating. Hamsters in behavioral estrus had greater lateral displacement responses when endogenous progestin levels were elevated compared to when progestin levels were lower. Administration of P4, a prohormone for 3 alpha,5 alpha-THP, dose-dependently (500 > 200 > 100, 50, or 0 microg) enhanced lateral displacement of ovariectomized hamsters that had been primed with SC estradiol benzoate (5 or 10 microg). Inhibiting P4's metabolism to 3 alpha,5 alpha-THP by co-administering finasteride, a 5 alpha-reductase inhibitor, or indomethacin, a 3 alpha-hydroxysteroid oxidoreductase inhibitor, either systemically or to the VTA, significantly decreased lateral displacement and midbrain progestin levels of naturally receptive or hormone-primed hamsters compared to controls. These data suggest that lateral displacement is progestin-sensitive and requires the formation of 3 alpha,5 alpha-THP in the midbrain VTA.
Memory and reward systems coproduce 'nostalgic' experiences in the brain.
Oba, Kentaro; Noriuchi, Madoka; Atomi, Tomoaki; Moriguchi, Yoshiya; Kikuchi, Yoshiaki
2016-07-01
People sometimes experience an emotional state known as 'nostalgia', which involves experiencing predominantly positive emotions while remembering autobiographical events. Nostalgia is thought to play an important role in psychological resilience. Previous neuroimaging studies have shown involvement of memory and reward systems in such experiences. However, it remains unclear how these two systems are collaboratively involved with nostalgia experiences. Here, we conducted a functional magnetic resonance imaging study of healthy females to investigate the relationship between memory-reward co-activation and nostalgia, using childhood-related visual stimuli. Moreover, we examined the factors constituting nostalgia and their neural correlates. We confirmed the presence of nostalgia-related activity in both memory and reward systems, including the hippocampus (HPC), substantia nigra/ventral tegmental area (SN/VTA), and ventral striatum (VS). We also found significant HPC-VS co-activation, with its strength correlating with individual 'nostalgia tendencies'. Factor analyses showed that two dimensions underlie nostalgia: emotional and personal significance and chronological remoteness, with the former correlating with caudal SN/VTA and left anterior HPC activity, and the latter correlating with rostral SN/VTA activity. These findings demonstrate the cooperative activity of memory and reward systems, where each system has a specific role in the construction of the factors that underlie the experience of nostalgia. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Evaluating wildland fire danger and prioritizing vegetation and fuels treatments
Paul F. Hessburg; Keith M. Reynolds; Robert E. Keane; Kevin M. James; R. Brion Salter
2010-01-01
We present a prototype decision support system for evaluating wild-land fire danger and prioritizing subwatersheds for vegetation and fuels treatment. We demonstrate the use of the system with an example from the Rocky Mountain region in the State of Utah, which represents a planning area of about 4.8 million ha and encompasses 575 complete subwatersheds. In a logic...
Larsen, Tobias; Collette, Sven; Tyszka, Julian M.; Seymour, Ben; O'Doherty, John P.
2015-01-01
The role of neurons in the substantia nigra (SN) and ventral tegmental area (VTA) of the midbrain in contributing to the elicitation of reward prediction errors during appetitive learning has been well established. Less is known about the differential contribution of these midbrain regions to appetitive versus aversive learning, especially in humans. Here we scanned human participants with high-resolution fMRI focused on the SN and VTA while they participated in a sequential Pavlovian conditioning paradigm involving an appetitive outcome (a pleasant juice), as well as an aversive outcome (an unpleasant bitter and salty flavor). We found a degree of regional specialization within the SN: Whereas a region of ventromedial SN correlated with a temporal difference reward prediction error during appetitive Pavlovian learning, a dorsolateral area correlated instead with an aversive expected value signal in response to the most distal cue, and to a reward prediction error in response to the most proximal cue to the aversive outcome. Furthermore, participants' affective reactions to both the appetitive and aversive conditioned stimuli more than 1 year after the fMRI experiment was conducted correlated with activation in the ventromedial and dorsolateral SN obtained during the experiment, respectively. These findings suggest that, whereas the human ventromedial SN contributes to long-term learning about rewards, the dorsolateral SN may be particularly important for long-term learning in aversive contexts. SIGNIFICANCE STATEMENT The role of the substantia nigra (SN) and ventral tegmental area (VTA) in appetitive learning is well established, but less is known about their contribution to aversive compared with appetitive learning, especially in humans. We used high-resolution fMRI to measure activity in the SN and VTA while participants underwent higher-order Pavlovian learning. We found a regional specialization within the SN: a ventromedial area was selectively engaged during appetitive learning, and a dorsolateral area during aversive learning. Activity in these areas predicted affective reactions to appetitive and aversive conditioned stimuli over 1 year later. These findings suggest that, whereas the human ventromedial SN contributes to long-term learning about rewards, the dorsolateral SN may be particularly important for long-term learning in aversive contexts. PMID:26490862
Engleman, Eric A; Keen, Elizabeth J; Tilford, Sydney S; Thielen, Richard J; Morzorati, Sandra L
2011-09-01
Moderate ethanol exposure produces neuroadaptive changes in the mesocorticolimbic dopamine (DA) system in nondependent rats and increases measures of DA neuronal activity in vitro and in vivo. Moreover, moderate ethanol drinking and moderate systemic exposure elevates extracellular DA levels in mesocorticolimbic projection regions. However, the neuroadaptive changes subsequent to moderate ethanol drinking on basal DA levels have not been investigated in the ventral tegmental area (VTA). In the present study, adult female alcohol-preferring (P) rats were divided into alcohol-naive, alcohol-drinking, and alcohol-deprived groups. The alcohol-drinking group had continuous access to water and ethanol (15%, vol/vol) for 8 weeks. The alcohol-deprived group had 6 weeks of access followed by 2 weeks of ethanol deprivation, 2 weeks of ethanol re-exposure, followed again by 2 weeks of deprivation. The deprived rats demonstrated a robust alcohol deprivation effect (ADE) on ethanol reinstatement. The alcohol-naïve group had continuous access to water only. In the last week of the drinking protocol, all rats were implanted with unilateral microdialysis probes aimed at the posterior VTA and no-net-flux microdialysis was conducted to quantify extracellular DA levels and DA clearance. Results yielded significantly lower basal extracellular DA concentrations in the posterior VTA of the alcohol-drinking group compared with the alcohol-naive and alcohol-deprived groups (3.8±0.3nM vs. 5.0±0.5nM [P<.02] and 4.8±0.4nM, [P<.05], respectively). Extraction fractions were significantly (P<.0002) different between the alcohol-drinking and alcohol-naive groups (72±2% vs. 46±4%, respectively) and not significantly different (P=.051) between alcohol-deprived and alcohol-naive groups (61±6% for the alcohol-deprived group). The data indicate that reductions in basal DA levels within the posterior VTA occur after moderate chronic ethanol intake in nondependent P rats. This reduction may result, in part, from increased DA uptake and may be important for the maintenance of ethanol drinking. These adaptations normalize with ethanol deprivation and may not contribute to the ADE. Copyright © 2011 Elsevier Inc. All rights reserved.
Cui, Xiangzhi; Shi, Jianlin; Wang, Yongxia; Chen, Yu; Zhang, Lingxia; Hua, Zile
2014-01-01
As one of the most important clean energy sources, proton exchange membrane fuel cells (PEMFCs) have been a topic of extensive research focus for decades. Unfortunately, several critical technique obstacles, such as the high cost of platinum electrode catalysts, performance degradation due to the CO poisoning of the platinum anode, and carbon corrosion by oxygen in the cathode, have greatly impeded its commercial development. A prototype of a single PEMFC catalyzed by a mesostructured platinum-free WO3/C anode and a mesostructured carbon-free Pt/WC cathode catalysts is reported herein. The prototype cell exhibited 93% power output of a standard PEMFC using commercial Pt/C catalysts at 50 and 70 °C, and more importantly, CO poisoning-free and carbon corrosion-resistant characters of the anode and cathode, respectively. Consequently, the prototype cell demonstrated considerably enhanced cell operation durability. The mesostructured electrode catalysts are therefore highly promising in the future development and application of PEMFCs. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Imminent: Irradiation Testing of (Th,Pu)O{sub 2} Fuel - 13560
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, Julian F.; Franceschini, Fausto
2013-07-01
Commercial-prototype thorium-plutonium oxide (Th-MOX) fuel pellets have been loaded into the material test reactor in Halden, Norway. The fuel is being operated at full power - with instrumentation - in simulated LWR / PHWR conditions and its behaviour is measured 'on-line' as it operates to high burn-up. This is a vital test on the commercialization pathway for this robust new thoria-based fuel. The performance data that is collected will support a fuel modeling effort to support its safety qualification. Several different samples of Th-MOX fuel will be tested, thereby collecting information on ceramic behaviours and their microstructure dependency. The fuel-cyclemore » reasoning underpinning the test campaign is that commercial Th- MOX fuels are an achievable intermediate / near-term SNF management strategy that integrates well with a fast reactor future. (authors)« less
Achieving Tier 4 Emissions in Biomass Cookstoves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marchese, Anthony; DeFoort, Morgan; Gao, Xinfeng
Previous literature on top-lit updraft (TLUD) gasifier cookstoves suggested that these stoves have the potential to be the lowest emitting biomass cookstove. However, the previous literature also demonstrated a high degree of variability in TLUD emissions and performance, and a lack of general understanding of the TLUD combustion process. The objective of this study was to improve understanding of the combustion process in TLUD cookstoves. In a TLUD, biomass is gasified and the resulting producer gas is burned in a secondary flame located just above the fuel bed. The goal of this project is to enable the design of amore » more robust TLUD that consistently meets Tier 4 performance targets through a better understanding of the underlying combustion physics. The project featured a combined modeling, experimental and product design/development effort comprised of four different activities: Development of a model of the gasification process in the biomass fuel bed; Development of a CFD model of the secondary combustion zone; Experiments with a modular TLUD test bed to provide information on how stove design, fuel properties, and operating mode influence performance and provide data needed to validate the fuel bed model; Planar laser-induced fluorescence (PLIF) experiments with a two-dimensional optical test bed to provide insight into the flame dynamics in the secondary combustion zone and data to validate the CFD model; Design, development and field testing of a market ready TLUD prototype. Over 180 tests of 40 different configurations of the modular TLUD test bed were performed to demonstrate how stove design, fuel properties and operating mode influences performance, and the conditions under which Tier 4 emissions are obtainable. Images of OH and acetone PLIF were collected at 10 kHz with the optical test bed. The modeling and experimental results informed the design of a TLUD prototype that met Tier 3 to Tier 4 specifications in emissions and Tier 2 in efficiency. The final prototype was field tested in India.« less
Performance testing of a prototype Pd-Ag diffuser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgan, G. A.; Hodge, B. J.
The fusion fuel cycle has gained significant attention over the last decade as interest in fusion programs has increased. One of the critical components of the fusion process is the tritium fuel cycle. The tritium fuel cycle is designed to supply and recycle process tritium at a specific throughput rate. One of the most important processes within the tritium fuel cycle is the clean-up of the of the process tritium. This step will initially separate the hydrogen isotopes (H2, D2, and T2) from the rest of the process gas using Pd-Ag diffusers or permeators. The Pd-Ag diffuser is an integralmore » component for any tritium purification system; whether part of the United States’ defense mission or fusion programs. Domestic manufacturers of Pd-Ag diffusers are extremely limited and only a few manufacturers exist. Johnson-Matthey (JM) Pd-Ag diffusers (permeators) have previously been evaluated for the separation of hydrogen isotopes from non-hydrogen gas species in the process. JM is no longer manufacturing Pd-Ag diffusers and a replacement vendor needs to be identified to support future needs. A prototype Pd-Ag diffuser has been manufactured by Power and Energy, and is considered a potential replacement for the JM diffuser for tritium service. New diffuser designs for a tritium facility for any fusion energy applications must be characterized by evaluating their operating envelope prior to installation in a tritium processing facility. The prototype Pd-Ag diffuser was characterized to determine the overall performance as a function of the permeation of hydrogen through the membrane. The tests described in this report consider the effects of feed gas compositions, feed flow rates, pump configuration and internal tube pressure on the permeation of H2 through the Pd-Ag tubes.« less
Advance prototype silver ion water bactericide system
NASA Technical Reports Server (NTRS)
Jasionowski, W. J.; Allen, E. T.
1974-01-01
An advance prototype unit was designed and fabricated to treat anticipated fuel cell water. The unit is a single canister that contains a membrane-type prefilter and a silver bromide contacting bed. A seven day baseline simulated mission test was performed; the performance was satisfactory and the effluent water was within all specifications for potability. After random vibrations another seven day simulated mission test was performed, and results indicate that simulated launch vibrations have no effects on the design and performance of the advanced prototype. Bench tests and accelerated breadboard tests were conducted to define the characteristics of an upgraded model of the advance prototype unit which would have 30 days of operating capability. A preliminary design of a silver ion generator for the shuttle orbiter was also prepared.
Elliott, P J; Alpert, J E; Bannon, M J; Iversen, S D
1986-01-15
Microinfusion of the metabolically stable substance P (SP) agonist, [pGlu5,MePhe8,Sar9]-SP5-11 (DiMe-C7), into the ventral tegmental area (VTA) of rat brain increased levels of the dopamine (DA) metabolite dihydroxyphenylacetic acid in the prefrontal cortex (+ 120%) and nucleus accumbens (+30%) but not in other regions of forebrain. In contrast, infusions of DiMe-C7 or SP into the lateral ventricles or microinfusions of SP into VTA failed to elicit increases in DOPAC levels in forebrain. DA levels were unaffected by SP or DiMe-C7 regardless of the route of administration. These data and previous studies suggest a role for endogenous SP in the modulation of mesocortical and mesolimbic DA neurones.
Marijuana and cannabinoid regulation of brain reward circuits.
Lupica, Carl R; Riegel, Arthur C; Hoffman, Alexander F
2004-09-01
The reward circuitry of the brain consists of neurons that synaptically connect a wide variety of nuclei. Of these brain regions, the ventral tegmental area (VTA) and the nucleus accumbens (NAc) play central roles in the processing of rewarding environmental stimuli and in drug addiction. The psychoactive properties of marijuana are mediated by the active constituent, Delta(9)-THC, interacting primarily with CB1 cannabinoid receptors in a large number of brain areas. However, it is the activation of these receptors located within the central brain reward circuits that is thought to play an important role in sustaining the self-administration of marijuana in humans, and in mediating the anxiolytic and pleasurable effects of the drug. Here we describe the cellular circuitry of the VTA and the NAc, define the sites within these areas at which cannabinoids alter synaptic processes, and discuss the relevance of these actions to the regulation of reinforcement and reward. In addition, we compare the effects of Delta(9)-THC with those of other commonly abused drugs on these reward circuits, and we discuss the roles that endogenous cannabinoids may play within these brain pathways, and their possible involvement in regulating ongoing brain function, independently of marijuana consumption. We conclude that, whereas Delta(9)-THC alters the activity of these central reward pathways in a manner that is consistent with other abused drugs, the cellular mechanism through which this occurs is likely different, relying upon the combined regulation of several afferent pathways to the VTA.
Topography and collateralization of dopaminergic projections to primary motor cortex in rats.
Hosp, Jonas A; Nolan, Helen E; Luft, Andreas R
2015-05-01
Dopaminergic signaling within the primary motor cortex (M1) is necessary for successful motor skill learning. Dopaminergic neurons projecting to M1 are located in the ventral tegmental area (VTA, nucleus A10) of the midbrain. It is unknown which behavioral correlates are encoded by these neurons. The objective here is to investigate whether VTA-M1 fibers are collaterals of projections to prefrontal cortex (PFC) or nucleus accumbens (NAc) or if they form a distinct pathway. In rats, multiple-site retrograde fluorescent tracers were injected into M1, PFC and the core region of the NAc and VTA sections investigated for concomitant labeling of different tracers. Dopaminergic neurons projecting to M1, PFC and NAc were found in nucleus A10 and to a lesser degree in the medial nucleus A9. Neurons show high target specificity, minimal collateral branching to other than their target area and hardly cross the midline. Whereas PFC- and NAc-projecting neurons are indistinguishably intermingled within the ventral portion of dopaminergic nuclei in middle and caudal midbrain, M1-projecting neurons are only located within the dorsal part of the rostral midbrain. Within M1, the forelimb representation receives sevenfold more dopaminergic projections than the hindlimb representation. This strong rostro-caudal gradient as well as the topographical preference to dorsal structures suggest that projections to M1 emerged late in the development of the dopaminergic systems in and form a functionally distinct system.
Nucleus Accumbens Microcircuit Underlying D2-MSN-Driven Increase in Motivation.
Soares-Cunha, Carina; Coimbra, Bárbara; Domingues, Ana Verónica; Vasconcelos, Nivaldo; Sousa, Nuno; Rodrigues, Ana João
2018-01-01
The nucleus accumbens (NAc) plays a central role in reinforcement and motivation. Around 95% of the NAc neurons are medium spiny neurons (MSNs), divided into those expressing dopamine receptor D1 (D1R) or dopamine receptor D2 (D2R). Optogenetic activation of D2-MSNs increased motivation, whereas inhibition of these neurons produced the opposite effect. Yet, it is still unclear how activation of D2-MSNs affects other local neurons/interneurons or input terminals and how this contributes for motivation enhancement. To answer this question, in this work we combined optogenetic modulation of D2-MSNs with in loco pharmacological delivery of specific neurotransmitter antagonists in rats. First, we showed that optogenetic activation of D2-MSNs increases motivation in a progressive ratio (PR) task. We demonstrated that this behavioral effect relies on cholinergic-dependent modulation of dopaminergic signalling of ventral tegmental area (VTA) terminals, which requires D1R and D2R signalling in the NAc. D2-MSN optogenetic activation decreased ventral pallidum (VP) activity, reducing the inhibitory tone to VTA, leading to increased dopaminergic activity. Importantly, optogenetic activation of D2-MSN terminals in the VP was sufficient to recapitulate the motivation enhancement. In summary, our data suggests that optogenetic stimulation of NAc D2-MSNs indirectly modulates VTA dopaminergic activity, contributing for increased motivation. Moreover, both types of dopamine receptors signalling in the NAc are required in order to produce the positive behavioral effects.
Nucleus Accumbens Microcircuit Underlying D2-MSN-Driven Increase in Motivation
Soares-Cunha, Carina; Coimbra, Bárbara; Domingues, Ana Verónica; Vasconcelos, Nivaldo; Sousa, Nuno
2018-01-01
Abstract The nucleus accumbens (NAc) plays a central role in reinforcement and motivation. Around 95% of the NAc neurons are medium spiny neurons (MSNs), divided into those expressing dopamine receptor D1 (D1R) or dopamine receptor D2 (D2R). Optogenetic activation of D2-MSNs increased motivation, whereas inhibition of these neurons produced the opposite effect. Yet, it is still unclear how activation of D2-MSNs affects other local neurons/interneurons or input terminals and how this contributes for motivation enhancement. To answer this question, in this work we combined optogenetic modulation of D2-MSNs with in loco pharmacological delivery of specific neurotransmitter antagonists in rats. First, we showed that optogenetic activation of D2-MSNs increases motivation in a progressive ratio (PR) task. We demonstrated that this behavioral effect relies on cholinergic-dependent modulation of dopaminergic signalling of ventral tegmental area (VTA) terminals, which requires D1R and D2R signalling in the NAc. D2-MSN optogenetic activation decreased ventral pallidum (VP) activity, reducing the inhibitory tone to VTA, leading to increased dopaminergic activity. Importantly, optogenetic activation of D2-MSN terminals in the VP was sufficient to recapitulate the motivation enhancement. In summary, our data suggests that optogenetic stimulation of NAc D2-MSNs indirectly modulates VTA dopaminergic activity, contributing for increased motivation. Moreover, both types of dopamine receptors signalling in the NAc are required in order to produce the positive behavioral effects. PMID:29780881
Shirane, M; Nakamura, K
2001-10-19
Aniracetam, a cognition enhancer, has been recently found to preferentially increase extracellular levels of dopamine (DA) and serotonin (5-HT) in the prefrontal cortex (PFC), basolateral amygdala and dorsal hippocampus of the mesocorticolimbic system in stroke-prone spontaneously hypertensive rats. In the present study, we aimed to identify actually active substances among aniracetam and its major metabolites and to clarify the mode of action in DA and 5-HT release in the PFC. Local perfusion of mecamylamine, a nicotinic acetylcholine (nACh) and N-methyl-D-aspartate (NMDA) receptor antagonist, into the ventral tegmental area (VTA) and dorsal raphe nucleus (DRN) completely blocked DA and 5-HT release, respectively, in the PFC elicited by orally administered aniracetam. The effects of aniracetam were mimicked by local perfusion of N-anisoyl-gamma-aminobutyric acid [corrected] (N-anisoyl-GABA), one of the major metabolites of aniracetam, into the VTA and DRN. The cortical DA release induced by N-anisoyl-GABA applied to the VTA was also completely abolished by co-perfusion of mecamylamine. Additionally, when p-anisic acid, another metabolite of aniracetam, and N-anisoyl-GABA were locally perfused into the PFC, they induced DA and 5-HT release in the same region, respectively. These results indicate that aniracetam enhances DA and 5-HT release by mainly mediating the action of N-anisoyl-GABA that targets not only somatodendritic nACh and NMDA receptors but also presynaptic nACh receptors.
Human mesostriatal response tracks motivational tendencies under naturalistic goal conflict.
Gonen, Tal; Soreq, Eyal; Eldar, Eran; Ben-Simon, Eti; Raz, Gal; Hendler, Talma
2016-06-01
Goal conflict situations, involving the simultaneous presence of reward and punishment, occur commonly in real life, and reflect well-known individual differences in the behavioral tendency to approach or avoid. However, despite accumulating neural depiction of motivational processing, the investigation of naturalistic approach behavior and its interplay with individual tendencies is remarkably lacking. We developed a novel ecological interactive scenario which triggers motivational behavior under high or low goal conflict conditions. Fifty-five healthy subjects played the game during a functional magnetic resonance imaging scan. A machine-learning approach was applied to classify approach/avoidance behaviors during the game. To achieve an independent measure of individual tendencies, an integrative profile was composed from three established theoretical models. Results demonstrated that approach under high relative to low conflict involved increased activity in the ventral tegmental area (VTA), peri-aquaductal gray, ventral striatum (VS) and precuneus. Notably, only VS and VTA activations during high conflict discriminated between approach/avoidance personality profiles, suggesting that the relationship between individual personality and naturalistic motivational tendencies is uniquely associated with the mesostriatal pathway. VTA-VS further demonstrated stronger coupling during high vs low conflict. These findings are the first to unravel the multilevel relationship among personality profile, approach tendencies in naturalistic set-up and their underlying neural manifestation, thus enabling new avenues for investigating approach-related psychopathologies. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Steidl, Stephan; Lee, Esther; Wasserman, David; Yeomans, John S
2013-09-01
Lesions of the pedunculopontine tegmental nucleus (PPT), one of two sources of cholinergic input to the ventral tegmental area (VTA), block conditioned place preference (CPP) for morphine in drug-naïve rats. M5 muscarinic cholinergic receptors, expressed by midbrain dopamine neurons, are critical for the ability of morphine to increase nucleus accumbens dopamine levels and locomotion, and for morphine CPP. This suggests that M5-mediated PPT cholinergic inputs to VTA dopamine neurons critically contribute to morphine-induced dopamine activation, reward and locomotion. In the current study we tested whether food deprivation, which reduces PPT contribution to morphine CPP in rats, could also reduce M5 contributions to morphine-induced locomotion in mice. Acute 18-h food deprivation reversed the phenotypic differences usually seen between non-deprived wild-type and M5 knockout mice. That is, food deprivation increased morphine-induced locomotion in M5 knockout mice but reduced morphine-induced locomotion in wild-type mice. Food deprivation increased saline-induced locomotion equally in wild-type and M5 knockout mice. Based on these findings, we suggest that food deprivation reduces the contribution of M5-mediated PPT cholinergic inputs to the VTA in morphine-induced locomotion and increases the contribution of a PPT-independent pathway. The contributions of cholinergic, dopaminergic and GABAergic neurons to the effects of acute food deprivation are discussed. Copyright © 2013 Elsevier B.V. All rights reserved.
Omelchenko, Natalia; Sesack, Susan R.
2008-01-01
Cholinergic afferents to the ventral tegmental area (VTA) contribute substantially to the regulation of motivated behaviors and the rewarding properties of nicotine. These actions are believed to involve connections with dopamine (DA) neurons projecting to the nucleus accumbens (NAc). However, this direct synaptic link has never been investigated, nor is it known whether cholinergic inputs innervate other populations of DA and GABA neurons, including those projecting to the prefrontal cortex (PFC). We addressed these questions using electron microscopic analysis of retrograde tract-tracing and immunocytochemistry for the vesicular acetylcholine transporter (VAChT) and for tyrosine hydroxylase (TH) and GABA. In tissue labeled for TH, VAChT+ terminals frequently synapsed onto DA mesoaccumbens neurons but only seldom contacted DA mesoprefrontal cells. In tissue labeled for GABA, one third of VAChT+ terminals innervated GABA-labeled dendrites, including both mesoaccumbens and mesoprefrontal populations. VAChT+ synapses onto DA and mesoaccumbens neurons were more commonly of the asymmetric (presumed excitatory) morphological type, whereas VAChT+ synapses onto GABA cells were more frequently symmetric (presumed inhibitory or modulatory). These findings suggest that cholinergic inputs to the VTA mediate complex synaptic actions, with a major portion of this effect likely to involve an excitatory influence on DA mesoaccumbens neurons. As such, the results suggest that natural and drug rewards operating through cholinergic afferents to the VTA have a direct synaptic link to the mesoaccumbens DA neurons that modulate approach behaviors. PMID:16385486
Nimitvilai, Sudarat; Arora, Devinder S.; McElvain, Maureen A.; Brodie, Mark S.
2012-01-01
Neurons of the ventral tegmental area (VTA) are critical in the rewarding and reinforcing properties of drugs of abuse. Desensitization of VTA neurons to moderate extracellular concentrations of dopamine (DA) is dependent on protein kinase C (PKC) and intracellular calcium levels. This desensitization is called DA inhibition reversal (DIR), as it requires concurrent activation of D2 and D1-like receptors; activation of D2 receptors alone does not result in desensitization. Activation of other G-protein linked receptors can substitute for D1 activation. Like D2 receptors, GABAB receptors in the VTA are coupled to G-protein-linked potassium channels. In the present study, we examined interactions between a GABAB agonist, baclofen, and dopamine agonists, dopamine and quinpirole, to determine whether there was some interaction in the processes of desensitization of GABAB and D2 responses. Long-duration administration of baclofen alone produced reversal of the baclofen-induced inhibition indicative of desensitization, and this desensitization persisted for at least 60 min after baclofen washout. Desensitization to baclofen was dependent on protein kinase C. Dopamine inhibition was reduced for 30 min after baclofen-induced desensitization and conversely, the magnitude of baclofen inhibition was reduced for 30 min by long-duration application of dopamine, but not quinpirole. These results indicate that D2 and GABAB receptors share some protein kinase C-dependent mechanisms of receptor desensitization. PMID:22986166
Manza, Peter; Zhang, Sheng; Hu, Sien; Chao, Herta H; Leung, Hoi-Chung; Li, Chiang-Shan R
2015-02-15
The basal ganglia nuclei are critical for a variety of cognitive and motor functions. Much work has shown age-related structural changes of the basal ganglia. Yet less is known about how the functional interactions of these regions with the cerebral cortex and the cerebellum change throughout the lifespan. Here, we took advantage of a convenient sample and examined resting state functional magnetic resonance imaging data from 250 adults 18 to 49 years of age, focusing specifically on the caudate nucleus, pallidum, putamen, and ventral tegmental area/substantia nigra (VTA/SN). There are a few main findings to report. First, with age, caudate head connectivity increased with a large region of ventromedial prefrontal/medial orbitofrontal cortex. Second, across all subjects, pallidum and putamen showed negative connectivity with default mode network (DMN) regions such as the ventromedial prefrontal cortex and posterior cingulate cortex, in support of anti-correlation of the "task-positive" network (TPN) and DMN. This negative connectivity was reduced with age. Furthermore, pallidum, posterior putamen and VTA/SN connectivity to other TPN regions, such as somatomotor cortex, decreased with age. These results highlight a distinct effect of age on cerebral functional connectivity of the dorsal striatum and VTA/SN from young to middle adulthood and may help research investigating the etiologies or monitoring outcomes of neuropsychiatric conditions that implicate dopaminergic dysfunction. Copyright © 2014 Elsevier Inc. All rights reserved.
Flatscher-Bader, T; Zuvela, N; Landis, N; Wilce, P A
2008-01-01
Drugs of abuse including nicotine and alcohol elicit their effect by stimulating the mesocorticolimbic dopaminergic system. There is a high incidence of nicotine dependence in alcoholics. To date only limited data is available on the molecular mechanism underlying the action of alcohol and nicotine in the human brain. This study utilized gene expression screening to identify genes sensitive to chronic alcohol abuse within the ventral tegmental area (VTA) of the human brain. Alcohol-responsive genes encoded proteins primarily involved in structural plasticity and neurotransmitter transport and release. In particular, genes involved with brain-derived neurotrophic factor signalling and glutamatergic transmission were found to be affected. The possibility that glutamate transport was a target of chronic alcohol and/or tobacco abuse was further investigated in an extended case set by measurement of mRNA and protein expression. Expression levels of vesicular glutamate transporters SLC17A6 and SLC17A7 were robustly induced by smoking, an effect that was reduced by alcohol co-exposure. Glutamatergic transmission is vital for the control of the VTA and may also be critical to the weighting of novelty and importance of a stimulus, an essential output of this brain region. We conclude that enduring plasticity within the VTA may be a major molecular mechanism for the maintenance of smoking addiction and that alcohol, nicotine and co-abuse have distinct impacts on glutamatergic transmission with important implications for the control of this core mesolimbic structure.
Fabrication of capsule assemblies, phase 3
NASA Technical Reports Server (NTRS)
Keeton, A. R.; Stemann, L. G.
1973-01-01
Thirteen capsule assemblies were fabricated for evaluation of fuel pin design concepts for a fast spectrum lithium cooled compact space power reactor. These instrumented assemblies were designed for real time test of prototype fuel pins. Uranium mononitride fuel pins were encased in AISI 304L stainless steel capsules. Fabrication procedures were fully qualified by process development and assembly qualification tests. Instrumentation reliability was achieved utilizing specially processed and closely controlled thermocouple hot zone fabrication and by thermal screening tests. Overall capsule reliability was achieved with an all electron beam welded assembly.
Alkaline water electrolysis technology for Space Station regenerative fuel cell energy storage
NASA Technical Reports Server (NTRS)
Schubert, F. H.; Hoberecht, M. A.; Le, M.
1986-01-01
The regenerative fuel cell system (RFCS), designed for application to the Space Station energy storage system, is based on state-of-the-art alkaline electrolyte technology and incorporates a dedicated fuel cell system (FCS) and water electrolysis subsystem (WES). In the present study, emphasis is placed on the WES portion of the RFCS. To ensure RFCS availability for the Space Station, the RFCS Space Station Prototype design was undertaken which included a 46-cell 0.93 cu m static feed water electrolysis module and three integrated mechanical components.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venkataraman, M.; Natarajan, R.; Raj, Baldev
The reprocessing of spent fuel from Fast Breeder Test Reactor (FBTR) has been successfully demonstrated in the pilot plant, CORAL (COmpact Reprocessing facility for Advanced fuels in Lead shielded cell). Since commissioning in 2003, spent mixed carbide fuel from FBTR of different burnups and varying cooling period, have been reprocessed in this facility. Reprocessing of the spent fuel with a maximum burnup of 100 GWd/t has been successfully carried out so far. The feed backs from these campaigns with progressively increasing specific activities, have been useful in establishing a viable process flowsheet for reprocessing the Prototype Fast Breeder Reactor (PFBR)more » spent fuel. Also, the design of various equipments and processes for the future plants, which are either under design for construction, namely, the Demonstration Fast Reactor Fuel Reprocessing Plant (DFRP) and the Fast reactor fuel Reprocessing Plant (FRP) could be finalized. (authors)« less
Fluid circulating pump operated by same incident solar energy which heats energy collection fluid
NASA Technical Reports Server (NTRS)
Collins, E. R.
1980-01-01
The application of using a spacecraft solar powered pump terrestrially to reduce or eliminate the need for fossil fuel generated electricity for domestic solar hot water systems was investigated. A breadboard prototype model was constructed utilizing bimetals to convert thermal energy into mechanical motion by means of a toggle operated shutter mechanism. Although it did not meet expected thermal efficiency, the prototype model was sufficient to demonstrate the mechanical concept.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marschman, Steven Craig
While low burn-up fuel [that characterized as having a burn-up of less than 45 gigawatt days per metric ton uranium (GWD/MTU)] has been stored for nearly three decades, the storage of high burn-up used fuels is more recent. The DOE has funded a High Burn-Up (HBU) Confirmatory Data Project to confirm the behavior of used high burn-up fuel under prototypic conditions. The Electric Power Research Institute (EPRI) is leading a project team to develop and implement the Test Plan to collect this data from a UNF dry storage system containing high burn-up fuel. As part of that project, 25 “sister”more » fuel rods have been selected, removed from assemblies, and placed in a fuel container ready for shipment to a national laboratory. This report documents that status of readiness to receive the fuel if that fuel were to be sent to Idaho National Laboratory (INL).« less
Irradiation performance of PFBR MOX fuel after 112 GWd/t burn-up
NASA Astrophysics Data System (ADS)
Venkiteswaran, C. N.; Jayaraj, V. V.; Ojha, B. K.; Anandaraj, V.; Padalakshmi, M.; Vinodkumar, S.; Karthik, V.; Vijaykumar, Ran; Vijayaraghavan, A.; Divakar, R.; Johny, T.; Joseph, Jojo; Thirunavakkarasu, S.; Saravanan, T.; Philip, John; Rao, B. P. C.; Kasiviswanathan, K. V.; Jayakumar, T.
2014-06-01
The 500 MWe Prototype Fast Breeder Reactor (PFBR) which is in advanced stage of construction at Kalpakkam, India, will use mixed oxide (MOX) fuel with a target burnup of 100 GWd/t. The fuel pellet is of annular design to enable operation at a peak linear power of 450 W/cm with the requirement of minimum duration of pre-conditioning. The performance of the MOX fuel and the D9 clad and wrapper material was assessed through Post Irradiation Examinations (PIE) after test irradiation of 37 fuel pin subassembly in Fast Breeder Test Reactor (FBTR) to a burn-up of 112 GWd/t. Fission product distribution, swelling and fuel-clad gap evolution, central hole diameter variation, restructuring, fission gas release and clad wastage due to fuel-clad chemical interaction were evaluated through non-destructive and destructive examinations. The examinations have indicated that the MOX fuel can safely attain the desired target burn-up in PFBR.
PEM Fuel Cells Redesign Using Biomimetic and TRIZ Design Methodologies
NASA Astrophysics Data System (ADS)
Fung, Keith Kin Kei
Two formal design methodologies, biomimetic design and the Theory of Inventive Problem Solving, TRIZ, were applied to the redesign of a Proton Exchange Membrane (PEM) fuel cell. Proof of concept prototyping was performed on two of the concepts for water management. The liquid water collection with strategically placed wicks concept demonstrated the potential benefits for a fuel cell. Conversely, the periodic flow direction reversal concepts might cause a potential reduction water removal from a fuel cell. The causes of this water removal reduction remain unclear. In additional, three of the concepts generated with biomimetic design were further studied and demonstrated to stimulate more creative ideas in the thermal and water management of fuel cells. The biomimetic design and the TRIZ methodologies were successfully applied to fuel cells and provided different perspectives to the redesign of fuel cells. The methodologies should continue to be used to improve fuel cells.
Prototype Stilbene Neutron Collar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prasad, M. K.; Shumaker, D.; Snyderman, N.
2016-10-26
A neutron collar using stilbene organic scintillator cells for fast neutron counting is described for the assay of fresh low enriched uranium (LEU) fuel assemblies. The prototype stilbene collar has a form factor similar to standard He-3 based collars and uses an AmLi interrogation neutron source. This report describes the simulation of list mode neutron correlation data on various fuel assemblies including some with neutron absorbers (burnable Gd poisons). Calibration curves (doubles vs 235U linear mass density) are presented for both thermal and fast (with Cd lining) modes of operation. It is shown that the stilbene collar meets or exceedsmore » the current capabilities of He-3 based neutron collars. A self-consistent assay methodology, uniquely suited to the stilbene collar, using triples is described which complements traditional assay based on doubles calibration curves.« less
“A System for Automatically Maintaining Pressure in a Commercial Truck Tire”
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maloney, John
2017-07-07
Under-inflated tires significantly reduce a vehicle’s fuel efficiency by increasing rolling resistance (drag force). The Air Maintenance Technology (“AMT”) system developed through this project replenishes lost air and maintains optimal tire cavity pressure whenever the tire is rolling in service, thus improving overall fuel economy by reducing the tire’s rolling resistance. The system consists of an inlet air filter, an air pump driven by tire deformation during rotation, and a pressure regulating device. Pressurized air in the tire cavity naturally escapes by diffusion through the tire and wheel, leaks in tire seating, and through the filler valve and its seating.more » As a result, tires require constant maintenance to replenish lost air. Since manual tire inflation maintenance is both labor intensive and time consuming, it is frequently overlooked or ignored. By automating the maintenance of optimal tire pressure, the tire’s contribution to the vehicle’s overall fuel economy can be maximized. The work was divided into three phases. The objectives of Phase 1, Planning and Initial Design, resulted in an effective project plan and to create a baseline design. The objectives for Phase 2, Design and Process Optimization, were: to identify finalized design for the pump, regulator and filter components; identify a process to build prototype tires; assemble prototype tires; test prototype tires and document results. The objectives of Phase 3, Design Release and Industrialization, were to finalize system tire assembly, perform release testing and industrialize the assembly process.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baek, M. H.; Kim, S. J.; Yoo, J.
The major roles of a prototype SFR are to provide irradiation test capability for the fuel and structure materials, and to obtain operational experiences of systems. Due to a compromise between the irradiation capability and construction costs, the power level should be properly determined. In this paper, a trade-off study on the power level of the prototype SFR was performed from a neutronics viewpoint. To select candidate cores, the parametric study of pin diameters was estimated using 20 wt.% uranium fuel. The candidate cores of different power levels, 125 MWt, 250 MWt, 400 MWt, and 500 MWt, were compared withmore » the 1500 MWt reference core. The resulting core performance and economic efficiency indices became insensitive to the power at about 400-500 MWt and sharply deteriorated at about 125-250 MWt with decreasing core sizes. Fuel management scheme, TRU core performance comparing with uranium core, and sodium void reactivity were also evaluated with increasing power levels. It is found that increasing the number of batches showed higher burnup performance and economic efficiency. However, increasing the cycle length showed the trends in lower economic efficiency. Irradiation performance of TRU and enriched TRU cores was improved about 20 % and 50 %, respectively. The maximum sodium void reactivity of 5.2$ was confirmed less than the design limit of 7.5$. As a result, the power capacity of the prototype SFR should not be less than 250 MWt and would be appropriate at {approx} 500 MWt considering the performance and economic efficiency. (authors)« less
Post-Irradiation Non-Destructive Analyses of the AFIP-7 Experiment
NASA Astrophysics Data System (ADS)
Williams, W. J.; Robinson, A. B.; Rabin, B. H.
2017-12-01
This article reports the results and interpretation of post-irradiation non-destructive examinations performed on four curved full-size fuel plates that comprise the AFIP-7 experiment. These fuel plates, having a U-10 wt.%Mo monolithic design, were irradiated under moderate operating conditions in the Advanced Test Reactor to assess fuel performance for geometries that are prototypic of research reactor fuel assemblies. Non-destructive examinations include visual examination, neutron radiography, profilometry, and precision gamma scanning. This article evaluates the qualitative and quantitative data taken for each plate, compares corresponding data sets, and presents the results of swelling analyses. These characterization results demonstrate that the fuel meets established irradiation performance requirements for mechanical integrity, geometric stability, and stable and predictable behavior.
Emerging Energy Requirements for Future C4ISR
2002-09-01
hydrogen (H2). The transition has already begun, and private industry is leading the way by developing prototype vehicles that use fuel cells and... fuel cell generators in homes and businesses may spread the development cost of the technology beyond vehicles and accelerate consumer acceptance...military and civilian requirements, and this could foster joint programs to develop modern nuclear power sources for use in the 21st century. 4
Robert E. Keane; Matthew Rollins; Zhi-Liang Zhu
2007-01-01
Canopy and surface fuels in many fire-prone forests of the United States have increased over the last 70 years as a result of modern fire exclusion policies, grazing, and other land management activities. The Healthy Forest Restoration Act and National Fire Plan establish a national commitment to reduce fire hazard and restore fire-adapted ecosystems across the USA....
NASA Astrophysics Data System (ADS)
Balakrishnan, A.; Frei, M.; Kerzenmacher, S.; Reinecke, H.; Mueller, C.
2015-12-01
In this work we present the design and fabrication of the miniaturized PEM fuel cell combined microreactor system with hydrogen regulation mechanism and testing of prototype microreactor. The system consists of two components (i) fuel cell component and (ii) microreactor component. The fuel cell component represents the miniaturized PEM fuel cell system (combination of screen printed fuel cell assembly and an on-board hydrogen storage medium). Hydrogen production based on catalytic hydrolysis of chemical hydride takes place in the microreactor component. The self-regulated hydrogen mechanism based on the gaseous hydrogen produced from the catalytic hydrolysis of sodium borohydride (NaBH4) gets accumulated as bubbles at the vicinity of the hydrophobic coated hydrogen exhaust holes. When the built up hydrogen bubbles pressure exceeds the burst pressure at the hydrogen exhaust holes the bubble collapses. This collapse causes a surge of fresh NaBH4 solution onto the catalyst surface leading to the removal of the reaction by-products formed at the active sites of the catalyst. The catalyst used in the system is platinum deposited on a base substrate. Nickel foam, carbon porous medium (CPM) and ceramic plate were selected as candidates for base substrate for developing a robust catalyst surface. For the first time the platinum layer fabricated by pulsed electrodeposition and dealloying (EPDD) technique is used for hydrolysis of NaBH4. The major advantages of such platinum catalyst layers are its high surface area and their mechanical stability. Prototype microreactor system with self-regulated hydrogen mechanism is demonstrated.
Steidl, Stephan; Wang, Huiling; Wise, Roy A
2014-01-01
Cholinergic input to the ventral tegmental area (VTA) is known to contribute to reward. Although it is known that the pedunculopontine tegmental nucleus (PPTg) provides an important source of excitatory input to the dopamine system, the specific role of PPTg cholinergic input to the VTA in cocaine reward has not been previously determined. We used a diphtheria toxin conjugated to urotensin-II (Dtx::UII), the endogenous ligand for urotensin-II receptors expressed by PPTg cholinergic but not glutamatergic or GABAergic cells, to lesion cholinergic PPTg neurons. Dtx::UII toxin infusion resulted in the loss of 95.78 (±0.65)% of PPTg cholinergic cells but did not significantly alter either cocaine or heroin self-administration or the development of cocaine or heroin conditioned place preferences. Thus, cholinergic cells originating in PPTg do not appear to be critical for the rewarding effects of cocaine or of heroin.
Yoon, Ki-Hyuk; Kang, Min-Koo; Lee, Hwasun; Kim, Sung-Kyu
2018-01-01
We study optical technologies for viewer-tracked autostereoscopic 3D display (VTA3D), which provides improved 3D image quality and extended viewing range. In particular, we utilize a technique-the so-called dynamic fusion of viewing zone (DFVZ)-for each 3D optical line to realize image quality equivalent to that achievable at optimal viewing distance, even when a viewer is moving in a depth direction. In addition, we examine quantitative properties of viewing zones provided by the VTA3D system that adopted DFVZ, revealing that the optimal viewing zone can be formed at viewer position. Last, we show that the comfort zone is extended due to DFVZ. This is demonstrated by a viewer's subjective evaluation of the 3D display system that employs both multiview autostereoscopic 3D display and DFVZ.
Takahashi, Yuji K.; Langdon, Angela J.; Niv, Yael; Schoenbaum, Geoffrey
2016-01-01
Summary Dopamine neurons signal reward prediction errors. This requires accurate reward predictions. It has been suggested that the ventral striatum provides these predictions. Here we tested this hypothesis by recording from putative dopamine neurons in the VTA of rats performing a task in which prediction errors were induced by shifting reward timing or number. In controls, the neurons exhibited error signals in response to both manipulations. However, dopamine neurons in rats with ipsilateral ventral striatal lesions exhibited errors only to changes in number and failed to respond to changes in timing of reward. These results, supported by computational modeling, indicate that predictions about the temporal specificity and the number of expected rewards are dissociable, and that dopaminergic prediction-error signals rely on the ventral striatum for the former but not the latter. PMID:27292535
Description of the prototype diagnostic residual gas analyzer for ITER.
Younkin, T R; Biewer, T M; Klepper, C C; Marcus, C
2014-11-01
The diagnostic residual gas analyzer (DRGA) system to be used during ITER tokamak operation is being designed at Oak Ridge National Laboratory to measure fuel ratios (deuterium and tritium), fusion ash (helium), and impurities in the plasma. The eventual purpose of this instrument is for machine protection, basic control, and physics on ITER. Prototyping is ongoing to optimize the hardware setup and measurement capabilities. The DRGA prototype is comprised of a vacuum system and measurement technologies that will overlap to meet ITER measurement requirements. Three technologies included in this diagnostic are a quadrupole mass spectrometer, an ion trap mass spectrometer, and an optical penning gauge that are designed to document relative and absolute gas concentrations.
A pilot biomedical engineering course in rapid prototyping for mobile health.
Stokes, Todd H; Venugopalan, Janani; Hubbard, Elena N; Wang, May D
2013-01-01
Rapid prototyping of medically assistive mobile devices promises to fuel innovation and provides opportunity for hands-on engineering training in biomedical engineering curricula. This paper presents the design and outcomes of a course offered during a 16-week semester in Fall 2011 with 11 students enrolled. The syllabus covered a mobile health design process from end-to-end, including storyboarding, non-functional prototypes, integrated circuit programming, 3D modeling, 3D printing, cloud computing database programming, and developing patient engagement through animated videos describing the benefits of a new device. Most technologies presented in this class are open source and thus provide unlimited "hackability". They are also cost-effective and easily transferrable to other departments.
Wu, Dawei; Roskilly, Anthony P.; Yu, Hongdong
2013-01-01
According to the International Energy Agency's World Energy Outlook 2011, 60 per cent of the population in Africa, some 587 million people, mostly in sub-Saharan Africa, lacked access to electricity in 2009. We developed a 6.5 kWe micro-trigeneration prototype, on the basis of internal combustion engine with pure Croton megalocarpus oil (CMO) fuelling, which configures a distributed energy system to generate power, heating and cooling from a single sustainable fuel source for remote users. Croton megalocarpus is an indigenous tree in East and South Africa which has recently attracted lots of interests as a biofuel source because of its high oil-yield rate. The direct and local use of CMO, instead of CMO biodiesel converted by the transesterification process, minimizes the carbon footprints left behind because of the simple fuel production of CMO. The experimental assessment proves that the prototype fuelled with CMO achieves similar efficiency as with diesel. Also, with the elevation of the oil injection temperature, the gaseous and particulate emissions of CMO could be ameliorated to some extent as improvement of the atomization in the spray and the combustion in the engine cylinder. PMID:24427514
NASA Astrophysics Data System (ADS)
Dutta, N. G.
2012-11-01
Bharatiya Nabhikiya Vidyut Nigam (BHAVINI) is engaged in construction of 500MW Prototype Fast Breeder Reactor (PFBR) at Kalpak am, Chennai. In this very important and prestigious national programme Special Product Division (SPD) of M/s Kay Bouvet Engg.pvt. ltd. (M/s KBEPL) Satara is contributing in a major way by supplying many important sub-assemblies like- Under Water trolley (UWT), Airlocks (PAL, EAL) Container and Storage Rack (CSR) Vessels in Fuel Transfer Cell (FTC) etc for PFBR. SPD of KBEPL caters to the requirements of Government departments like - Department of Atomic Energy (DAE), BARC, Defense, and Government undertakings like NPCIL, BHAVINI, BHEL etc. and other precision Heavy Engg. Industries. SPD is equipped with large size Horizontal Boring Machines, Vertical Boring Machines, Planno milling, Vertical Turret Lathe (VTL) & Radial drilling Machine, different types of welding machines etc. PFBR is 500 MWE sodium cooled pool type reactor in which energy is produced by fissions of mixed oxides of Uranium and Plutonium pellets by fast neutrons and it also breeds uranium by conversion of thorium, put along with fuel rod in the reactor. In the long run, the breeder reactor produces more fuel then it consumes. India has taken the lead to go ahead with Fast Breeder Reactor Programme to produce electricity primarily because India has large reserve of Thorium. To use Thorium as further fuel in future, thorium has to be converted in Uranium by PFBR Technology.
Dopamine neurons in the ventral tegmental area fire faster in adolescent rats than in adults.
McCutcheon, James E; Conrad, Kelly L; Carr, Steven B; Ford, Kerstin A; McGehee, Daniel S; Marinelli, Michela
2012-09-01
Adolescence may be a period of vulnerability to drug addiction. In rats, elevated firing activity of ventral tegmental area (VTA) dopamine neurons predicts enhanced addiction liability. Our aim was to determine if dopamine neurons are more active in adolescents than in adults and to examine mechanisms underlying any age-related difference. VTA dopamine neurons fired faster in adolescents than in adults as measured with in vivo extracellular recordings. Dopamine neuron firing can be divided into nonbursting (single spikes) and bursting activity (clusters of high-frequency spikes). Nonbursting activity was higher in adolescents compared with adults. Frequency of burst events did not differ between ages, but bursts were longer in adolescents than in adults. Elevated dopamine neuron firing in adolescent rats was also observed in cell-attached recordings in ex vivo brain slices. Using whole cell recordings, we found that passive and active membrane properties were similar across ages. Hyperpolarization-activated cation currents and small-conductance calcium-activated potassium channel currents were also comparable across ages. We found no difference in dopamine D2-class autoreceptor function across ages, although the high baseline firing in adolescents resulted in autoreceptor activation being less effective at silencing neurons. Finally, AMPA receptor-mediated spontaneous excitatory postsynaptic currents occurred at lower frequency in adolescents; GABA(A) receptor-mediated spontaneous inhibitory postsynaptic currents occurred at both lower frequency and smaller amplitude in adolescents. In conclusion, VTA dopamine neurons fire faster in adolescence, potentially because GABA tone increases as rats reach adulthood. This elevation of firing rate during adolescence is consistent with it representing a vulnerable period for developing drug addiction.
Wang, Jianli; Liu, Chaobao; Ma, Yongping
2017-01-15
Parents-offspring bonding is critical for development of offspring in mammals. While it is known that pups stimuli provide rewarding effects on their parents, few studies have assessed whether parental stimuli serve as a reinforcing agent to their pups, and what the neural mechanisms underlying this reward process may be. In addition to maternal care, male ICR mice display pairmate-dependent parental behavior. Using the conditioned place preference (CPP) paradigm, we examined the effects of maternal and paternal conditioning on the postnatal day 17-21 female ICR mice pups, and compared the expression of oxytocin (OT)- and tyrosine hydroxylase (TH)- immunoreactive (IR) neurons. We found that the pups established dam- or sire- induced CPP when using mother conditioning (MC) or father conditioning (FC) alone. However, the pups failed to show any preference when using mother versus father conditioning (MFC). Compared to the control group, the MC and MFC groups displayed more OT-IR neurons in the supraoptic nucleus and more TH-IR neurons in the ventral tegmental area (VTA). The FC group showed more TH-IR neurons in the VTA compared to the control group, but there were no significant differences in OT-IR neurons. These findings indicate that female ICR mice pups may establish mother- or father- induced CPP. The underpinnings of preference for parents are associated with the activity of VTA dopaminergic neurons, and the preference of pups for mother in particular appears to be associated with OT levels. Copyright © 2016 Elsevier B.V. All rights reserved.
Kim, Kyung Man; Baratta, Michael V; Yang, Aimei; Lee, Doheon; Boyden, Edward S; Fiorillo, Christopher D
2012-01-01
Activation of dopamine receptors in forebrain regions, for minutes or longer, is known to be sufficient for positive reinforcement of stimuli and actions. However, the firing rate of dopamine neurons is increased for only about 200 milliseconds following natural reward events that are better than expected, a response which has been described as a "reward prediction error" (RPE). Although RPE drives reinforcement learning (RL) in computational models, it has not been possible to directly test whether the transient dopamine signal actually drives RL. Here we have performed optical stimulation of genetically targeted ventral tegmental area (VTA) dopamine neurons expressing Channelrhodopsin-2 (ChR2) in mice. We mimicked the transient activation of dopamine neurons that occurs in response to natural reward by applying a light pulse of 200 ms in VTA. When a single light pulse followed each self-initiated nose poke, it was sufficient in itself to cause operant reinforcement. Furthermore, when optical stimulation was delivered in separate sessions according to a predetermined pattern, it increased locomotion and contralateral rotations, behaviors that are known to result from activation of dopamine neurons. All three of the optically induced operant and locomotor behaviors were tightly correlated with the number of VTA dopamine neurons that expressed ChR2, providing additional evidence that the behavioral responses were caused by activation of dopamine neurons. These results provide strong evidence that the transient activation of dopamine neurons provides a functional reward signal that drives learning, in support of RL theories of dopamine function.
Cook, Jason B; Hendrickson, Linzy M; Garwood, Grant M; Toungate, Kelsey M; Nania, Christina V; Morikawa, Hitoshi
2017-01-01
Similar to drugs of abuse, the hedonic value of food is mediated, at least in part, by the mesostriatal dopamine (DA) system. Prolonged intake of either high calorie diets or drugs of abuse both lead to a blunting of the DA system. Most studies have focused on DAergic alterations in the striatum, but little is known about the effects of high calorie diets on ventral tegmental area (VTA) DA neurons. Since high calorie diets produce addictive-like DAergic adaptations, it is possible these diets may increase addiction susceptibility. However, high calorie diets consistently reduce psychostimulant intake and conditioned place preference in rodents. In contrast, high calorie diets can increase or decrease ethanol drinking, but it is not known how a junk food diet (cafeteria diet) affects ethanol drinking. In the current study, we administered a cafeteria diet consisting of bacon, potato chips, cheesecake, cookies, breakfast cereals, marshmallows, and chocolate candies to male Wistar rats for 3-4 weeks, producing an obese phenotype. Prior cafeteria diet feeding reduced homecage ethanol drinking over 2 weeks of testing, and transiently reduced sucrose and chow intake. Importantly, cafeteria diet had no effect on ethanol metabolism rate or blood ethanol concentrations following 2g/kg ethanol administration. In midbrain slices, we showed that cafeteria diet feeding enhances DA D2 receptor (D2R) autoinhibition in VTA DA neurons. These results show that junk food diet-induced obesity reduces ethanol drinking, and suggest that increased D2R autoinhibition in the VTA may contribute to deficits in DAergic signaling and reward hypofunction observed with obesity.
Estradiol is a critical regulator of food-reward behavior.
Richard, Jennifer E; López-Ferreras, Lorena; Anderberg, Rozita H; Olandersson, Kajsa; Skibicka, Karolina P
2017-04-01
Food intake is reduced by estrogenic hormones, levels of which vary throughout life and fluctuate throughout the ovarian cycle in females. However, estrogens have also been shown to increase reward derived from drugs of abuse, where motivational properties of drugs and progression to addiction are potentiated by estrogens. Whether reward derived from food, and specifically motivational properties of food, are altered by estrogens remains unknown. Here we investigated the effect of the estrous cycle on food reward behavior and show estrous cycle dictated variability in food motivation, measured by progressive ratio operant conditioning, in female rats. Reward behavior was lowest on days associated with high estrogen signaling. We therefore also examined the actions of subcutaneously administered β-estradiol on food reward and found that β-estradiol reduced food reward behavior. The ventral tegmental area (VTA) is a crucial node of the neurocircuitry underlying motivated behavior and estrogen receptors are expressed in this nucleus. Thus, we examined whether the effects of estrogens on reward were exerted directly at the level of the VTA. Intra-VTA microinjection of β-estradiol led to a significant reduction in food-motivated behavior. Interestingly, this effect was not accompanied by a reduction in chow intake or body weight, nor did it alter locomotor activity. Importantly, removal of the ovaries produced a potent and lasting elevation in food reward and food-seeking behavior, suggesting that ovarian sex steroids are critical for maintenance of normal food reward behavior. These data reveal a novel role for estrogens in the control of food reward behavior.. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tseng, Kuei Y; Kargieman, Lucila; Gacio, Sebastian; Riquelme, Luis A; Murer, M Gustavo
2005-11-01
Severe chronic dopamine (DA) depletion increases the proportion of neurons in the basal ganglia that fire rhythmic bursts of action potential (LFO units) synchronously with the cortical oscillations. Here we report on how different levels of mesencephalic DA denervation affect substantia nigra pars reticulata (SNpr) neuronal activity in the rat and its relationship to akinesia (stepping test). Chronic nigrostriatal lesion induced with 0 (control group), 4, 6 or 8 microg of 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle resulted in a dose-dependent decrease of tyrosine hydroxylase positive (TH+) neurons in the SN and ventral tegmental area (VTA). Although 4 microg of 6-OHDA reduced the number of TH+ neurons in the SN by approximately 60%, both stepping test performance and SNpr neuronal activity remained indistinguishable from control animals. By contrast, animals that received 6 microg of 6-OHDA showed a marked reduction of TH+ cells in the SN ( approximately 75%) and VTA ( approximately 55%), a significant stepping test deficit and an increased proportion of LFO units. These changes were not dramatically enhanced with 8 microg 6-OHDA, a dose that induced an extensive DA lesion (> 95%) in the SN and approximately 70% reduction of DA neurons in the VTA. These results suggest a threshold level of DA denervation for both the appearance of motor deficits and LFO units. Thus, the presence of LFO activity in the SNpr is not related to a complete nigrostriatal DA neuron depletion (ultimate stage parkinsonism); instead, it may reflect a functional disruption of cortico-basal ganglia dynamics associated with clinically relevant stages of the disease.
Involvement of lateral septum in alcohol's dopamine-elevating effect in the rat.
Jonsson, Susanne; Morud, Julia; Stomberg, Rosita; Ericson, Mia; Söderpalm, Bo
2017-01-01
Drugs of abuse share the ability to increase extracellular dopamine (DA) levels in the mesolimbic DA system. This effect has been linked to positive and reinforcing experiences of drug consumption and is presumed to be of importance for continued use, as well as for the development of dependence and addiction. Previous rat studies from our lab have implicated a neuronal circuitry involving glycine receptors in nucleus accumbens (nAc) and, secondarily, nicotinic acetylcholine receptors in the ventral tegmental area (VTA) in ethanol's (EtOH) DA-elevating effect. The work presented here, performed in male Wistar rats, suggests that the lateral septum (LS), which has previously been associated with different aspects of EtOH-related behaviour, is involved as well. In vivo microdialysis methodology demonstrated that blocking the generation of action potentials in LS using tetrodotoxin prevented a DA increase in nAc after accumbal EtOH perfusion. Retrograde tracing and polymerase chain reaction (PCR) were used to identify and characterize cells projecting to VTA from nAc/LS and from LS to nAc. Based on the PCR results, cells projecting from both LS/nAc to anterior VTA and from LS to nAc were mainly GABAergic neurons expressing glycine receptors, and these cells are presumed to be involved in mediating the DA-elevating effect of EtOH. These results provide further evidence implicating LS in the reinforcing effects of EtOH. Additional studies are needed to investigate LS involvement in EtOH consumption behaviour and its potential role in the development of dependence and addiction. © 2015 Society for the Study of Addiction.
Mesolimbic leptin signaling negatively regulates cocaine-conditioned reward.
Shen, M; Jiang, C; Liu, P; Wang, F; Ma, L
2016-12-06
The regulatory mechanisms underlying the response to addictive drugs are complex, and increasing evidence indicates that there is a role for appetite-regulating pathways in substance abuse. Leptin, an important adipose hormone that regulates energy balance and appetite, exerts its physiological functions via leptin receptors. However, the role of leptin signaling in regulating the response to cocaine remains unclear. Here we examined the potential role of leptin signaling in cocaine reward using a conditioned place preference (CPP) procedure. Our results showed that inhibition of leptin signaling by intracerebroventricular infusion of the leptin receptor (LepR) antagonist SMLA during cocaine conditioning increased the cocaine-CPP and upregulated the level of dopamine and its metabolites in the nucleus accumbens (NAc). We then selectively knocked down the LepR in the mesolimbic ventral tegmental area (VTA), NAc core and central amygdala (CeA) by injecting AAV-Cre into Lepr flox/flox mice. LepR deletion in the VTA increased the dopamine levels in the NAc and enhanced the cocaine-conditioned reward. LepR deletion in the NAc core enhanced the cocaine-conditioned reward and impaired the effect of the D2-dopamine receptor on cocaine-CPP, whereas LepR deletion in the CeA had no effect on cocaine-CPP but increased the anxiety level of mice. In addition, prior exposure to saccharin increased LepR mRNA and STAT3 phosphorylation in the NAc and VTA and impaired cocaine-CPP. These results indicate that leptin signaling is critically involved in cocaine-conditioned reward and the regulation of drug reward by a natural reward and that these effects are dependent on mesolimbic LepR.
Gugusheff, Jessica R; Bae, Sung Eun; Rao, Alexandra; Clarke, Iain J; Poston, Lucilla; Taylor, Paul D; Coen, Clive W; Muhlhausler, Beverly S
2016-03-15
Perinatal junk food exposure increases the preference for palatable diets in juvenile and adult rat offspring. Previous studies have implicated reduced sensitivity of the opioid pathway in the programming of food preferences; however it is not known when during development these changes in opioid signalling first emerge. This study aimed to determine the impact of a maternal junk food (JF) diet on mu-opioid receptor (MuR) expression and ligand binding in two key regions of the reward pathway, the nucleus accumbens (NAc) and the ventral tegmental area (VTA) in rats during the early suckling (postnatal day (PND) 1 and 7) and late suckling/early post-weaning (PND 21 and 28) periods. Female rats were fed either a JF or a control diet for two weeks prior to mating and throughout pregnancy and lactation. MuR expression in the VTA was significantly reduced in female JF offspring on PND 21 and 28 (by 32% and 57% respectively, P<0.05), but not at earlier time points (PND 1 and 7). MuR ligand binding was also reduced (by 22%, P<0.05) in the VTA of female JF offspring on PND 28. No effects of perinatal junk food exposure on MuR mRNA expression or binding were detected at these time points in male offspring. These findings provide evidence that the opioid signalling system is a target of developmental programming by the end of the third postnatal week in females, but not in males. Copyright © 2015 Elsevier B.V. All rights reserved.
Wei, Luqing; Hu, Xiao; Yuan, Yonggui; Liu, Weiguo; Chen, Hong
2018-07-16
Neuropathology suggests that Parkinson's disease (PD) with depression may involve a progressive degeneration of the nigrostriatal and mesocorticolimbic dopaminergic systems. Previous positron emission tomography (PET) and single-photon emission computed tomography (SPECT) studies have shown that dopamine changes in individual brain regions constituting the nigrostriatal and mesocorticolimbic circuits are associated with depression in PD. However, few studies have been conducted on the circuit-level alterations in this disease. The present study used resting-state fMRI and seed-based functional connectivity of putative dopaminergic midbrain regions (i.e., substantia nigra (SN) and ventral tegmental area (VTA)) to investigate the circuit-related abnormalities in PD with depression. The results showed that depressed PD (DPD) patients relative to healthy controls (HC) and non-depressed PD (NDPD) patients had increased functional connectivity between VTA and anterior cingulate cortex (ACC), demonstrating that dysfunctional mesocorticolimbic dopaminergic neurotransmission may be associated with depression in PD. Compared with HC, DPD and NDPD patients showed increased functional connectivity from SN to sensorimotor cortex, validating that alterations in the nigrostriatal circuitry could be responsible for cardinal motor features in PD. In addition, aberrant connectivity between VTA and ACC was correlated with the severity of depression in PD patients, further supporting that abnormal mesocorticolimbic system may account for depressive symptoms in PD. These results have provided potential circuit-level biomarkers of depression in PD, and suggested that resting state functional connectivity of midbrain dopaminergic nuclei may be useful for understanding the underlying pathology in PD with depression. Copyright © 2018 Elsevier B.V. All rights reserved.
Wakabayashi, Ken T; Bruno, Michael J; Bass, Caroline E; Park, Jinwoo
2016-06-21
The olfactory tubercle (OT), as a component of the ventral striatum, serves as an important multisensory integration center for reward-related processes in the brain. Recent studies show that dense dopaminergic innervation from the ventral tegmental area (VTA) into the OT may play an outsized role in disorders such as psychostimulant addiction and disorders of motivation, increasing recent scientific interest in this brain region. However, due to its anatomical inaccessibility, relative small size, and proximity to other dopamine-rich structures, neurochemical assessments using conventional methods cannot be readily employed. Here, we investigated dopamine (DA) regulation in the OT of urethane-anesthetized rats using in vivo fast-scan voltammetry (FSCV) coupled with carbon-fiber microelectrodes, following optogenetic stimulation of the VTA. The results were compared with DA regulation in the nucleus accumbens (NAc), a structure located adjacent to the OT and which also receives dense DA innervation from the VTA. FSCV coupled with optically evoked release allowed us to investigate the spatial distribution of DA in the OT and characterize OT DA dynamics (release and clearance) with subsecond temporal and micrometer spatial resolution for the first time. In this study, we demonstrated that DA transporters play an important role in regulating DA in the OT. However, the control of extracellular DA by uptake in the OT was less than in the NAc. The difference in DA transmission in the terminal fields of the OT and NAc may be involved in region-specific responses to drugs of abuse and contrasting roles in mediating reward-related behavior.
Kudryavtseva, N N; Smagin, D A; Kovalenko, I L; Galyamina, A G; Vishnivetskaya, G B; Babenko, V N; Orlov, Yu L
2017-01-01
In course of daily agonistic interactions, mice tend to stratify into those with chronic social defeats and those that repeatedly display aggression, which lead to the development of mixed anxiety/depression-like state and the pathology of aggressive behavior, respectively. Using the data of whole transcriptome analysis (RNA-seq), the changes in the expression of serotonergic genes involved in the synthesis, inactivation, and reception of serotonin, as well as of the Creb1 (transcription factor) gene and the Bdnf (brain-derived neurotrophic factor) gene were detected in the striatum (STR), ventral tegmental area (VTA), midbrain raphe nuclei (MRN), hypothalamus (HYP), and hippocampus (HIP) of defeated and aggressive male mice. In mice of both groups, the Tph2, Ddc, Slc6a4, Htr2a, Htr3a, Htr5b, Slc18a2, and Bdnf genes were downregulated in the MRN and the Tph2, Ddc, and Slc6a4 genes were upregulated in the VTA. These changes were more significant in defeated mice. The Htr5b gene has first been shown to be involved in mechanisms of depression and pathology of aggressive behavior. In the defeated mice, the expression levels of the Htr4 and Aldh1b1 genes were increased in the MRN, and expression levels of the Maob, Htr4, Htr1a, and Slc18a2 genes were increased in the VTA, while the expression level of the Htr3a gene was decreased. In the HYP of aggressive mice the Maoa, Htr2a, Htr2c, and Creb1 genes were downregulated and the Htr6 gene was upregulated. In the defeated mice, the Maoa and Creb1 genes were downregulated and the Htr6 and Aldh1b1 genes were upregulated in the HYP. In the STR, the Htr1a gene was downregulated and the Htr7 and Bdnf genes were upregulated. The Htr1b gene was upregulated in the HIP. The coexpression of dopaminergic and serotonergic genes in the MRN and VTA in the control of pathological behaviors is discussed. Thus, the complex pattern of differential expression of serotonergic genes in brain regions developing under repeated agonistic interactions in mice in dependence on behavioral pathology have been observed.
NASA Astrophysics Data System (ADS)
Swaminathan, K.; Asokane, C.; Sylvia, J. I.; Kalyanasundaram, P.; Swaminathan, P.
2012-02-01
An ultrasonic under-sodium scanner has been developed for deployment in Prototype Fast Breeder Reactor (PFBR) which is in advanced stage of construction at Kalpakkam, India. Its purpose is to scan the above-core plenum for detection, if any, of displacement of sub-assemblies. During its burn-up in the reactor, the head of a Fuel Sub-Assembly (FSA) may undergo a lateral shift from its original position (called `bowing') due to the fast neutron induced damage on its structural material. A simple scanning technique has been developed for measuring the extent of bowing in-situ. This paper describes a PC-controlled mock-up of the scanner used to implement the scanning technique and the results obtained of scanning a mock-up FSA head under water. The details of the liquid-sodium proof transducer developed for use in the PFBR scanner and its performance are also discussed.
American Fuel Cell Bus Project Evaluation. Second Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eudy, Leslie; Post, Matthew
2015-09-01
This report presents results of the American Fuel Cell Bus (AFCB) Project, a demonstration of fuel cell electric buses operating in the Coachella Valley area of California. The prototype AFCB was developed as part of the Federal Transit Administration's (FTA's) National Fuel Cell Bus Program. Through the non-profit consortia CALSTART, a team led by SunLine Transit Agency and BAE Systems developed a new fuel cell electric bus for demonstration. SunLine added two more AFCBs to its fleet in 2014 and another in 2015. FTA and the AFCB project team are collaborating with the U.S. Department of Energy (DOE) and DOE'smore » National Renewable Energy Laboratory to evaluate the buses in revenue service. This report summarizes the performance results for the buses through June 2015.« less
Testing of fuel/oxidizer-rich, high-pressure preburners
NASA Technical Reports Server (NTRS)
Lawver, B. R.
1982-01-01
Results of an evaluation of high pressure combustion of fuel rich and oxidizer rich LOX/RP-1 propellants using 4.0 inch diameter prototype preburner injectors and chambers are presented. Testing covered a pressure range from 8.9 to 17.5 MN/square meters (1292 to 2540 psia). Fuel rich mixture ratios ranged from 0.238 to 0.367; oxidizer rich mixture ratios ranged from 27.2 to 47.5. Performance, gas temperature uniformity, and stability data for two fuel rich and two ozidizer rich preburner injectors are presented for a conventional like-on-like (LOL) design and a platelet design injector. Kinetically limited combustion is shown by the excellent agreement of measured fuel rich gas composition and C performance data with kinetic model predictions. The oxidizer rich test results support previous equilibrium combustion predictions.
CLEAN HYDROGEN TECHNOLOGY FOR 3-WHEEL TRANSPORTATION IN INDIA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishna Sapru
2005-11-15
Hydrogen is a clean burning, non-polluting transportation fuel. It is also a renewable energy carrier that can be produced from non-fossil fuel resources such as solar, wind and biomass. Utilizing hydrogen as an alternative fuel for vehicles will diversify the resources of energy, and reduce dependence on oil in the transportation sector. Additionally, clean burning hydrogen fuel will also alleviate air pollution that is a very severe problem in many parts of world, especially major metropolitan areas in developing countries, such as India and China. In our efforts to foster international collaborations in the research, development, and demonstration of hydrogenmore » technologies, through a USAID/DOE cost-shared project, Energy Conversion Devices, Inc.,(www.ovonic.com) a leading materials and alternative energy company, in collaboration with Bajaj Auto Limited, India's largest three-wheeler taxi manufacturer, has successfully developed and demonstrated prototype hydrogen ICE three-wheelers in the United States and India. ECD's proprietary Ovonic solid-state hydrogen storage technology is utilized on-board to provide a means of compact, low pressure, and safe hydrogen fuel. These prototype hydrogen three-wheelers have demonstrated comparable performance to the original CNG version of the vehicle, achieving a driving range of 130 km. The hydrogen storage system capable of storing 1 kg hydrogen can be refilled to 80% of its capacity in about 15 minutes at a pressure of 300 psi. The prototype vehicles developed under this project have been showcased and made available for test rides to the public at exhibits such as the 16th NHA annual meeting in April 2005, Washington, DC, and the SIAM (Society of Indian Automotive Manufacturers) annual conference in August 2005, New Delhi, India. Passengers have included members of the automotive industry, founders of both ECD and Bajaj, members of the World Bank, the Indian Union Minister for Finance, the President of the Asia Development Bank, members of USAID, USDOE and many other individuals, all of whom have had praise for the vehicle and the technology. The progress made through this phase I work and the importance of hydrogen three-wheelers has also resulted in extensive press coverage by the news media around the world.« less
NASA Technical Reports Server (NTRS)
Cooper, K. G.; Wells, D.
2000-01-01
Investment casting masters of a selected propulsion hardware component, a fuel pump housing, were rapid prototyped on the several processes in-house, along with the new Z-Corp process acquired through this project. Also, tensile samples were prototyped and cast using the same significant parameters. The models were then shelled in-house using a commercial grade zircon-based slurry and stucco technique. Next, the shelled models were fired and cast by our in-house foundry contractor (IITRI), with NASA-23, a commonly used test hardware metal. The cast models are compared by their surface finish and overall appearance (i.e., the occurrence of pitting, warping, etc.), as well as dimensional accuracy.
Phosphoric acid electric utility fuel cell technology development
NASA Astrophysics Data System (ADS)
Breault, R. D.; Briggs, T. A.; Congdon, J. V.; Demarche, T. E.; Gelting, R. L.; Goller, G. J.; Luoma, W. L.; McCloskey, M. W.; Mientek, A. P.; Obrien, J. J.
1991-04-01
The major objective of this effort was the advancement of cell and stack technology required to meet performance and cost criteria for fabrication and operation of a prototype large area, full height phosphoric acid fuel cell stack. The performance goal for the cell stack corresponded to a power density of 150 wsf, and the manufactured cost goal was a 510 $/kW reduction (in 1981 dollars) compared to existing 3.7 ft.(exp 2) active area cell stacks.
Initial Operation of the Nuclear Thermal Rocket Element Environmental Simulator
NASA Technical Reports Server (NTRS)
Emrich, William J., Jr.; Pearson, J. Boise; Schoenfeld, Michael P.
2015-01-01
The Nuclear Thermal Rocket Element Environmental Simulator (NTREES) facility is designed to perform realistic non-nuclear testing of nuclear thermal rocket (NTR) fuel elements and fuel materials. Although the NTREES facility cannot mimic the neutron and gamma environment of an operating NTR, it can simulate the thermal hydraulic environment within an NTR fuel element to provide critical information on material performance and compatibility. The NTREES facility has recently been upgraded such that the power capabilities of the facility have been increased significantly. At its present 1.2 MW power level, more prototypical fuel element temperatures nay now be reached. The new 1.2 MW induction heater consists of three physical units consisting of a transformer, rectifier, and inverter. This multiunit arrangement facilitated increasing the flexibility of the induction heater by more easily allowing variable frequency operation. Frequency ranges between 20 and 60 kHz can accommodated in the new induction heater allowing more representative power distributions to be generated within the test elements. The water cooling system was also upgraded to so as to be capable of removing 100% of the heat generated during testing In this new higher power configuration, NTREES will be capable of testing fuel elements and fuel materials at near-prototypic power densities. As checkout testing progressed and as higher power levels were achieved, several design deficiencies were discovered and fixed. Most of these design deficiencies were related to stray RF energy causing various components to encounter unexpected heating. Copper shielding around these components largely eliminated these problems. Other problems encountered involved unexpected movement in the coil due to electromagnetic forces and electrical arcing between the coil and a dummy test article. The coil movement and arcing which were encountered during the checkout testing effectively destroyed the induction coil in use at the time and resulted in NTREES being out of commission for a couple of months while a new stronger coil was procured. The new coil includes several additional pieces of support structure to prevent coil movement in the future. In addition, new insulating test article support components have been fabricated to prevent unexpected arcing to the test articles. Additional activities are also now underway to address ways in which the radial temperature profiles across test articles may be controlled such that they are more prototypical of what they would encounter in an operating nuclear engine. The causes of the temperature distribution problem are twofold. First, the fuel element test article is isolated in NTREES as opposed to being in the midst of many other mostly identical fuel elements in a nuclear engine. As a result, the fuel element heat flux boundary conditions in NTREES are far from adiabatic as would normally be the case in a reactor. Second, induction heating skews the power distribution such that power is preferentially deposited near the outside of the fuel element. Nuclear heating, conversely, deposits its power much more uniformly throughout the fuel element. Current studies are now looking at various schemes to adjust the amount of thermal radiation emitted from the fuel element surface so as to essentially vary the thermal boundary conditions on the test article. It is hoped that by properly adjusting the thermal boundary conditions on the fuel element test article, it may be possible to substantially correct for the inappropriate radial power distributions resulting from the induction heating so as to yield a more nearly correct temperature distribution throughout the fuel element.
Automotive Thermoelectric Waste Heat Recovery
NASA Astrophysics Data System (ADS)
Meisner, Gregory P.
2015-03-01
Considerable fuel energy, as much as 70%, is not converted to useful work by internal combustion engines but is instead rejected as waste heat, and more than half of the waste heat, nearly 40% of fuel energy, is contained in vehicle exhaust gas. This provides an opportunity to recover some of the wasted fuel energy and convert it from heat into useful work, subject to the laws of thermodynamics, and thereby improve vehicle energy efficiency. Thermoelectric (TE) materials have been extensively researched and TE devices are now being developed for operation at high temperatures corresponding to automotive exhaust gases for direct solid-state conversion of heat into electricity. This has stimulated substantial progress in the development of practical TE generator (TEG) systems for large-scale commercialization. A significant enabler of this progress has been the US Department of Energy's Vehicle Technologies Program through funding for low cost solutions for automotive TE waste heat recovery to improve fuel economy. Our current project at General Motors has culminated in the identification of the potential supply chain for all components and assembly of an automotive TEG. A significant focus has been to develop integrated and iterative modeling tools for a fully optimized TEG design that includes all components and subsystems (TE modules, heat exchangers, thermal interfaces, electrical interconnects, power conditioning, and vehicle integration for maximal use of TEG power). We have built and tested a new, low-cost Initial TEG prototype based on state-of-the-art production-scale skutterudite TE modules, novel heat exchanger designs, and practical solutions to the many technical challenges for optimum TEG performance. We will use the results for our Initial TEG prototype to refine our modeling and design tools for a Final automotive TEG system prototype. Our recent results will be presented. Thanks to: J.R. Salvador, E.R. Gundlach, D. Thompson, N.K. Bucknor, M.G. Reynolds, K. Rober, F.R. Stabler; Marlow, JPL, Dana, Delphi E&S, Eberspaecher, Molycorp, University of Washington, Purdue University, Michigan State University, ORNL, BNL. Supported by US DOE.
NASA Technical Reports Server (NTRS)
Quayle, S. S.; Davis, M. M.; Walter, R. A.
1981-01-01
The vehicle was tested on a chassis dynamometer over selected drive cycles and steady-state conditions. Two fuels were used, a U.S. no. 2 diesel and a European diesel fuel. The vehicle was tested with retarded timing and with and without an oxidation catalyst. Particulate emission rates were calculated from dilution tunnel measurements and large volume particulate samples were collected for biological and chemical analysis. It was determined that while the catalyst was generally effective in reducing hydrocarbon and carbon monoxide levels, it was also a factor in increasing particulate emissions. Increased particulate emission rates were particularly evident when the vehicle was operated on the European fuel which has a high sulfur content.
Design of an external-fueled thermionic diode for in-pile testing.
NASA Technical Reports Server (NTRS)
Ernst, D. M.; Peelgren, M. L.
1971-01-01
Description of an external-fueled thermionic diode suitable for in-pile testing in a research reactor. The active electrode area is 94 sq cm. The 10-in. long, 1.5-in.-OD emitter body is tungsten 2% thoria. The fuel is contained in six 0.4-in.-diam holes equally spaced about the 0.5-in. central emitter hole. The collector is niobium-1% zirconium. The expected diode performance is 6 W/sq cm at 2000 K. In addition to following the constraints imposed by the in-pile testing and the electrically heated performance mapping prior to insertion in-pile, the diode will have end configurations prototypical of those anticipated for a flow-through, NaK-cooled, external-fuel thermionic reactor.
Simulation and Experimental Study of Bipolar Plate on the Performance PEM Fuel cell
NASA Astrophysics Data System (ADS)
Chinnasa, Pornchai; Khamsuk, Pattama; Seechalee, Sarunya; Swatsitang, Ekaphan
2017-09-01
This research is a simulated and experimental study on effects of bipolar electrodes of a PEM fuel cell on its power conversion efficiency. The PEM fuel cell structure consists of bipolar electrodes, proton exchange membrane with catalysts, flow channels of gases. This research used fuel cell of 49 cm2 in active area as a research sample and the Comsol 4.4 was employed to simulate flow channels which are serpentine pattern for anode and parallel pattern for cathode. The parameters used were calculated effects of such parameters using Comsol 4.4. After the calculation has been completed, the prototype of the PEM fuel cell were fabricated using graphite plate as electrodes which had the channel height of 0.20 cm, proton exchange membrane using carbon-platinum catalyst. Finally, further it was found that the effect of temperature on the power conversion efficiency is not severely. And for anode, the concentration of hydrogen gas was reduced 64 wt% due to the reaction whereas in parallel channel of cathode the oxygen concentration was reduced by only 6 wt% from 23 wt% at the entrance to 17 wt% at the end. The maximum power output of the prototype operated under such condition was 0.28 W/cm2 calculated from maximum power output voltage (Vmp) of 0.70 V and maximum power output current density of 0.42 A/cm2 which was in good agreement with that simulated using Comsol 4.4 which revealed the power output of 0.29 W/cm2.
Dela Cruz, J A D; Coke, T; Karagiorgis, T; Sampson, C; Icaza-Cukali, D; Kest, K; Ranaldi, R; Bodnar, R J
2015-02-01
Overconsumption of nutrients high in fats and sugars can lead to obesity. Previous studies indicate that sugar or fat consumption activate individual brain sites using Fos-like immunoreactivity (FLI). Sugars and fats also elicit conditioned flavor preferences (CFP) that are differentially mediated by flavor-flavor (orosensory: f/f) and flavor-nutrient (post-ingestive: f/n) processes. Dopamine (DA) signaling in the medial prefrontal cortex (mPFC), the amygdala (AMY) and the nucleus accumbens (NAc), has been implicated in acquisition and expression of fat- and sugar-CFP. The present study examined the effects of acute consumption of fat (corn oil: f/f and f/n), glucose (f/f and f/n), fructose, (f/f only), saccharin, xanthan gum or water upon simultaneous FLI activation of DA mesotelencephalic nuclei (ventral tegmental area (VTA)) and projections (infralimbic and prelimbic mPFC, basolateral and central-cortico-medial AMY, core and shell of NAc as well as the dorsal striatum). Consumption of corn oil solutions, isocaloric to glucose and fructose, significantly increased FLI in all sites except for the NAc shell. Glucose intake significantly increased FLI in both AMY areas, dorsal striatum and NAc core, but not in either mPFC area, VTA or Nac shell. Correspondingly, fructose intake significantly increased FLI in the both AMY areas, the infralimbic mPFC and dorsal striatum, but not the prelimbic mPFC, VTA or either NAc area. Saccharin and xanthan gum intake failed to activate FLI relative to water. When significant FLI activation occurred, highly positive relationships were observed among sites, supporting the idea of activation of a distributed brain network mediating sugar and fat intake. Copyright © 2014 Elsevier Inc. All rights reserved.
Dela Cruz, Julie A D; Coke, Tricia; Bodnar, Richard J
2016-08-24
This study uses cellular c-fos activation to assess effects of novel ingestion of fat and sugar on brain dopamine (DA) pathways in rats. Intakes of sugars and fats are mediated by their innate attractions as well as learned preferences. Brain dopamine, especially meso-limbic and meso-cortical projections from the ventral tegmental area (VTA), has been implicated in both of these unlearned and learned responses. The concept of distributed brain networks, wherein several sites and transmitter/peptide systems interact, has been proposed to mediate palatable food intake, but there is limited evidence empirically demonstrating such actions. Thus, sugar intake elicits DA release and increases c-fos-like immunoreactivity (FLI) from individual VTA DA projection zones including the nucleus accumbens (NAC), amygdala (AMY) and medial prefrontal cortex (mPFC) as well as the dorsal striatum. Further, central administration of selective DA receptor antagonists into these sites differentially reduce acquisition and expression of conditioned flavor preferences elicited by sugars or fats. One approach by which to determine whether these sites interacted as a distributed brain network in response to sugar or fat intake would be to simultaneous evaluate whether the VTA and its major mesotelencephalic DA projection zones (prelimbic and infralimbic mPFC, core and shell of the NAc, basolateral and central-cortico-medial AMY) as well as the dorsal striatum would display coordinated and simultaneous FLI activation after oral, unconditioned intake of corn oil (3.5%), glucose (8%), fructose (8%) and saccharin (0.2%) solutions. This approach is a successful first step in identifying the feasibility of using cellular c-fos activation simultaneously across relevant brain sites to study reward-related learning in ingestion of palatable food in rodents.
Montagud-Romero, Sandra; Nuñez, Cristina; Blanco-Gandia, M Carmen; Martínez-Laorden, Elena; Aguilar, María A; Navarro-Zaragoza, Javier; Almela, Pilar; Milanés, Maria-Victoria; Laorden, María-Luisa; Miñarro, José; Rodríguez-Arias, Marta
2017-07-01
Repeated social defeat (RSD) increases the rewarding effects of cocaine in adolescent and adult rodents. The aim of the present study was to compare the long-term effects of RSD on the conditioned rewarding effects of cocaine and levels of the transcription factors Pitx3 and Nurr1 in the ventral tegmental area (VTA), the dopamine transporter (DAT), the D2 dopamine receptor (D2DR) and precursor of brain-derived neurotrophic factor (proBDNF) signaling pathways, and the tropomyosin-related kinase B (TrkB) receptor in the nucleus accumbens (NAc) in adult and adolescent mice. Male adolescent and young adult OF1 mice were exposed to four episodes of social defeat and were conditioned 3 weeks later with 1 mg/kg of cocaine. In a second set of mice, the expressions of the abovementioned dopaminergic and proBDNF and TrkB receptor were measured in VTA and NAc, respectively. Adolescent mice experienced social defeats less intensely than their adult counterparts and produced lower levels of corticosterone. However, both adult and adolescent defeated mice developed conditioned place preference for the compartment associated with this low dose of cocaine. Furthermore, only adolescent defeated mice displayed diminished levels of the transcription factors Pitx3 in the VTA, without changes in the expression of DAT and D2DR in the NAc. In addition, stressed adult mice showed a decreased expression of proBDNF and the TrkB receptor, while stressed adolescent mice exhibited increased expression of latter without changes in the former. Our findings suggest that dopaminergic pathways and proBDNF signaling and TrkB receptors play different roles in social defeat-stressed mice exposed to cocaine.
Peana, Alessandra T; Pintus, Francesca A; Bennardini, Federico; Rocchitta, Gaia; Bazzu, Gianfranco; Serra, Pier Andrea; Porru, Simona; Rosas, Michela; Acquas, Elio
2017-09-01
The oxidative metabolism of ethanol into acetaldehyde involves several enzymes, including alcohol dehydrogenase (ADH) and catalase-hydrogen peroxide (H 2 O 2 ). In this regard, while it is well known that 4-methylpyrazole (4-MP) acts by inhibiting ADH in the liver, little attention has been placed on its ability to interfere with fatty acid oxidation-mediated generation of H 2 O 2 , a mechanism that may indirectly affect catalase whose enzymatic activity requires H 2 O 2 . The aim of our investigation was twofold: 1) to evaluate the effect of systemic (i.p. [intraperitoneal]) and local (into the posterior ventral tegmental area, pVTA) administration of 4-MP on oral ethanol self-administration, and 2) to assess ex vivo whether or not systemic 4-MP affects liver and brain H 2 O 2 availability. The results show that systemic 4-MP reduced ethanol but not acetaldehyde or saccharin self-administration, and decreased the ethanol deprivation effect. Moreover, local intra-pVTA administration of 4-MP reduced ethanol but not saccharin self-administration. In addition, although unable to affect basal catalase activity, systemic administration of 4-MP decreased H 2 O 2 availability both in liver and in brain. Overall, these results indicate that 4-MP interferes with ethanol self-administration and suggest that its behavioral effects could be due to a decline in catalase-H 2 O 2 system activity as a result of a reduction of H 2 O 2 availability, thus highlighting the role of central catalase-mediated metabolism of ethanol and further supporting the key role of acetaldehyde in the reinforcing properties of ethanol. Copyright © 2017 Elsevier Inc. All rights reserved.
Zhong, Jing; Liang, Mingkun; Akther, Shirin; Higashida, Chiharu; Tsuji, Takahiro; Higashida, Haruhiro
2014-09-11
Appropriate parental care by fathers greatly facilitates health in human family life. Much less is known from animal studies regarding the factors and neural circuitry that affect paternal behavior compared with those affecting maternal behavior. We recently reported that ICR mouse sires displayed maternal-like retrieval behavior when they were separated from pups and caged with their mates (co-housing) because the sires receive communicative interactions via ultrasonic and pheromone signals from the dams. We investigated the brain structures involved in regulating this activity by quantifying c-Fos-immunoreactive cells as neuronal activation markers in the neural pathway of male parental behavior. c-Fos expression in the medial preoptic area (mPOA) was significantly higher in sires that exhibited retrieval behavior (retrievers) than those with no such behavior (non-retrievers). Identical increased expression was found in the mPOA region in the retrievers stimulated by ultrasonic vocalizations or pheromones from their mates. Such increases in expression were not observed in the ventral tegmental area (VTA), nucleus accumbens (NAcc) or ventral palladium (VP). On the following day that we identified the families of the retrievers or non-retrievers, c-Fos expression in neuronal subsets in the mPOA, VTA, NAcc and VP was much higher in the retriever sires when they isolated together with their mates in new cages. This difference was not observed in the singly isolated retriever sires in new cages. The non-retriever sires did not display expression changes in the four brain regions that were assessed. The mPOA neurons appeared to be activated by direct communicative interactions with mate dams, including ultrasonic vocalizations and pheromones. The mPOA-VTA-NAcc-VP neural circuit appears to be involved in paternal retrieval behavior.
Merullo, Devin P; Cordes, Melissa A; Susan DeVries, M; Stevenson, Sharon A; Riters, Lauren V
2015-11-01
Vocalizations coordinate social interactions in many species and often are important for behaviors such as mate attraction or territorial defense. Although the neural circuitry underlying vocal communication is well-known for some animal groups, such as songbirds, the motivational processes that regulate vocal signals are not as clearly understood. Neurotensin (NT) is a neuropeptide implicated in motivation that can modulate the activity of dopaminergic neurons. Dopaminergic projections from the ventral tegmental area (VTA) are key to mediating highly motivated, goal-directed behaviors, including sexually-motivated birdsong. However, the role of NT in modifying vocal communication or other social behaviors has not been well-studied. Here in European starlings (Sturnus vulgaris) we analyzed relationships between sexually-motivated song and NT and NT1 receptor (NTSR1) expression in VTA. Additionally, we examined NT and NTSR1 expression in four regions that receive dopaminergic projections from VTA and are involved in courtship song: the medial preoptic nucleus (POM), the lateral septum (LS), Area X, and HVC. Relationships between NT and NTSR1 expression and non-vocal courtship and agonistic behaviors were also examined. NT expression in Area X positively related to sexually-motivated song production. NT expression in POM positively correlated with non-vocal courtship behavior and agonistic behavior. NT expression in POM was greatest in males owning nesting sites, and the opposite pattern was observed for NTSR1 expression in LS. These results are the first to implicate NT in Area X in birdsong, and further highlight NT as a potential neuromodulator for the control of vocal communication and other social behaviors. Copyright © 2015 Elsevier Inc. All rights reserved.
Identification and validation of midbrain Kcnq4 regulation of heavy alcohol consumption in rodents.
McGuier, Natalie S; Rinker, Jennifer A; Cannady, Reginald; Fulmer, Diana B; Jones, Sara R; Hoffman, Michaela; Mulholland, Patrick J
2018-05-24
Currently available pharmacotherapies for treating alcohol use disorder (AUD) suffer from deleterious side effects and are not efficacious in diverse populations. Clinical and preclinical studies provide evidence that the Kcnq family of genes that encode K V 7 channels influence alcohol intake and dependence. K V 7 channels are a class of slowly activating voltage-dependent K + channels that regulate neuronal excitability. Studies indicate that the K V 7 channel positive modulator retigabine can decrease dopaminergic neuron firing, alter dopamine (DA) release, and reduce alcohol intake in heavy drinking rodents. Given the critical nature of ventral tegmental area (VTA) DA to the addiction process and predominant expression of Kcnq4 in DA neurons, we investigated the role of midbrain Kcnq genes and K V 7 channels in the VTA of genetically diverse mice and long-term heavy drinking rats, respectively. Integrative bioinformatics analysis identified negative correlations between midbrain Kcnq4 expression and alcohol intake and seeking behaviors. Kcnq4 expression levels were also correlated with dopaminergic-related phenotypes in BXD strains, and Kcnq4 was present in support intervals for alcohol sensitivity and alcohol withdrawal severity QTLs in rodents. Pharmacological validation studies revealed that VTA K V 7 channels regulate excessive alcohol intake in rats with a high-drinking phenotype. Administration of a novel and selective K V 7.2/4 channel positive modulator also reduced alcohol drinking in rats. Together, these findings indicate that midbrain Kcnq4 expression regulates alcohol-related behaviors in genetically diverse mice and provide evidence that K V 7.4 channels are a critical mediator of excessive alcohol drinking. Copyright © 2018 Elsevier Ltd. All rights reserved.
Courtney, Nicholas A; Mamaligas, Aphroditi A; Ford, Christopher P
2012-01-01
The somatodendritic release of dopamine within the ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) activates inhibitory post-synaptic D2-receptors on dopaminergic neurons. The proposed mechanisms that regulate this form of transmission differ between electrochemical studies using rats and guinea pigs and electrophysiological studies using mice. This study examines the release and resulting dopamine D2-autoreceptor mediated inhibitory post-synaptic currents (D2-IPSCs) in the VTA of mouse, rat and guinea pig. Robust D2-IPSCs were observed in all recordings from neurons in slices taken from mouse, whereas in rat and guinea pig D2-IPSCs were observed less frequently and were significantly smaller in amplitude. In slices taken from guinea pig, dopamine release was more persistent under conditions of reduced extracellular calcium. The decline in the concentration of dopamine was also prolonged and not as sensitive to inhibition of reuptake by cocaine. This resulted in an increased duration of D2-IPSCs in the guinea pig. Therefore, unlike the mouse or the rat, the time course of dopamine in the extracellular space of the guinea pig determined the duration the D2-IPSC. Functionally, differences in D2-IPSCs resulted in inhibition of dopamine neuron firing only in slices from mouse. The results suggest that the mechanisms and functional consequences of somatodendritic dopamine transmission in the VTA vary among species. This highlights the complexity that underlies dopamine dependent transmission in one brain area. Differences in somatodendritic transmission would be expected in vivo to affect the downstream activity of the mesocorticolimbic dopamine system and subsequent terminal release. PMID:23015441
Reduced levels of Cacna1c attenuate mesolimbic dopamine system function.
Terrillion, C E; Dao, D T; Cachope, R; Lobo, M K; Puche, A C; Cheer, J F; Gould, T D
2017-06-01
Genetic variation in CACNA1C, which codes for the L-type calcium channel (LTCC) Ca v 1.2, is associated with clinical diagnoses of bipolar disorder, depression and schizophrenia. Dysregulation of the mesolimbic-dopamine (ML-DA) system is linked to these syndromes and LTCCs are required for normal DAergic neurotransmission between the ventral tegmental area (VTA) and nucleus accumbens (NAc). It is unclear, however, how variations in CACNA1C genotype, and potential subsequent changes in expression levels in these regions, modify risk. Using constitutive and conditional knockout mice, and treatment with the LTCC antagonist nimodipine, we examined the role of Cacna1c in DA-mediated behaviors elicited by psychomotor stimulants. Using fast-scan cyclic voltammetry, DA release and reuptake in the NAc were measured. We find that subsecond DA release in Cacna1c haploinsufficient mice lacks normal sensitivity to inhibition of the DA transporter (DAT). Constitutive haploinsufficiency of Cacna1c led to attenuation of hyperlocomotion following acute administration of stimulants specific to DAT, and locomotor sensitization of these mice to the DAT antagonist GBR12909 did not reach the same level as wild-type mice. The maintenance of sensitization to GBR12909 was attenuated by administration of nimodipine. Sensitization to GBR12909 was attenuated in mice with reduced Cacna1c selectively in the VTA but not in the NAc. Our findings show that Cacna1c is crucial for normal behavioral responses to DA stimulants and that its activity in the VTA is required for behavioral sensitization. Cacna1c likely exerts these effects through modifications to presynaptic ML-DA system function. © 2017 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
Chronic lithium treatment rectifies maladaptive dopamine release in the nucleus accumbens.
Can, Adem; Frost, Douglas O; Cachope, Roger; Cheer, Joseph F; Gould, Todd D
2016-11-01
Chronic lithium treatment effectively reduces behavioral phenotypes of mania in humans and rodents. The mechanisms by which lithium exerts these actions are poorly understood. Pre-clinical and clinical evidence have implicated increased mesolimbic dopamine (DA) neurotransmission with mania. We used fast-scan cyclic voltammetry to characterize changes in extracellular DA concentrations in the nucleus accumbens (NAc) core evoked by 20 and 60 Hz electrical stimulation of the ventral tegmental area (VTA) in C57BL6/J mice treated either acutely or chronically with lithium. The effects of chronic lithium treatment on the availability of DA for release were assessed by depleting readily releasable DA using short inter-train intervals, or administering d-amphetamine acutely to mobilize readily releasable DA. Chronic, but not acute, lithium treatment decreased the amplitude of DA responses in the NAc following 60 Hz pulse train stimulation. Neither lithium treatment altered the kinetics of DA release or reuptake. Chronic treatment did not impact the progressive reduction in the amplitude of DA responses when, using 20 or 60 Hz pulse trains, the VTA was stimulated every 6 s to deplete DA. Specifically, the amplitude of DA responses to 60 Hz pulse trains was initially reduced compared to control mice, but by the fifth pulse train, there was no longer a treatment effect. However, chronic lithium treatment attenuated d-amphetamine-induced increases in DA responses to 20 Hz pulse trains stimulation. Our data suggest that long-term administration of lithium may ameliorate mania phenotypes by normalizing the readily releasable DA pool in VTA axon terminals in the NAc. Read the Editorial Highlight for this article on Page 520. © 2016 International Society for Neurochemistry.
Yu, Fei; Zhong, Peng; Liu, Xiaojie; Sun, Dalong; Gao, Hai-Qing; Liu, Qing-Song
2013-06-01
Antagonism of group I metabotropic glutamate receptors (mGluR1 and mGluR5) reduces behavioral effects of drugs of abuse, including cocaine. However, the underlying mechanisms remain poorly understood. Activation of mGluR5 increases protein synthesis at synapses. Although mGluR5-induced excessive protein synthesis has been implicated in the pathology of fragile X syndrome, it remains unknown whether group I mGluR-mediated protein synthesis is involved in any behavioral effects of drugs of abuse. We report that group I mGluR agonist DHPG induced more pronounced initial depression of inhibitory postsynaptic currents (IPSCs) followed by modest long-term depression (I-LTD) in dopamine neurons of rat ventral tegmental area (VTA) through the activation of mGluR1. The early component of DHPG-induced depression of IPSCs was mediated by the cannabinoid CB1 receptors, while DHPG-induced I-LTD was dependent on protein synthesis. Western blotting analysis indicates that mGluR1 was coupled to extracellular signal-regulated kinase (ERK) and mammalian target of rapamycin (mTOR) signaling pathways to increase translation. We also show that cocaine conditioning activated translation machinery in the VTA via an mGluR1-dependent mechanism. Furthermore, intra-VTA microinjections of mGluR1 antagonist JNJ16259685 and protein synthesis inhibitor cycloheximide significantly attenuated or blocked the acquisition of cocaine-induced conditioned place preference (CPP) and activation of translation elongation factors. Taken together, these results suggest that mGluR1 antagonism inhibits de novo protein synthesis; this effect may block the formation of cocaine-cue associations and thus provide a mechanism for the reduction in CPP to cocaine.
PPARα modulation of mesolimbic dopamine transmission rescues depression-related behaviors.
Scheggi, Simona; Melis, Miriam; De Felice, Marta; Aroni, Sonia; Muntoni, Anna Lisa; Pelliccia, Teresa; Gambarana, Carla; De Montis, Maria Graziella; Pistis, Marco
2016-11-01
Depressive disorders cause a substantial burden for the individual and the society. Key depressive symptoms can be modeled in animals and enable the development of novel therapeutic interventions. Chronic unavoidable stress disrupts rats' competence to escape noxious stimuli and self-administer sucrose, configuring a depression model characterized by escape deficit and motivational anhedonia associated to impaired dopaminergic responses to sucrose in the nucleus accumbens shell (NAcS). Repeated treatments that restore these responses also relieve behavioral symptoms. Ventral tegmental area (VTA) dopamine neurons encode reward and motivation and are implicated in the neuropathology of depressive-like behaviors. Peroxisome proliferator-activated receptors type-α (PPARα) acutely regulate VTA dopamine neuron firing via β2 subunit-containing nicotinic acetylcholine receptors (β2*nAChRs) through phosphorylation and this effect is predictive of antidepressant-like effects. Here, by combining behavioral, electrophysiological and biochemical techniques, we studied the effects of repeated PPARα stimulation by fenofibrate on mesolimbic dopamine system. We found decreased β2*nAChRs phosphorylation levels and a switch from tonic to phasic activity of dopamine cells in the VTA, and increased phosphorylation of dopamine and cAMP-regulated phosphoprotein Mr 32,000 (DARPP-32) in the NAcS. We then investigated whether long-term fenofibrate administration to stressed rats reinstated the decreased DARPP-32 response to sucrose and whether this effect translated into antidepressant-like properties. Fenofibrate restored dopaminergic responses to appetitive stimuli, reactivity to aversive stimuli and motivation to self-administer sucrose. Overall, this study suggests PPARα as new targets for antidepressant therapies endowed with motivational anti-anhedonic properties, further supporting the role of an unbalanced mesolimbic dopamine system in pathophysiology of depressive disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.
Liu, Chengyu; Zhao, Lina; Tang, Hong; Li, Qiao; Wei, Shoushui; Li, Jianqing
2016-08-01
False alarm (FA) rates as high as 86% have been reported in intensive care unit monitors. High FA rates decrease quality of care by slowing staff response times while increasing patient burdens and stresses. In this study, we proposed a rule-based and multi-channel information fusion method for accurately classifying the true or false alarms for five life-threatening arrhythmias: asystole (ASY), extreme bradycardia (EBR), extreme tachycardia (ETC), ventricular tachycardia (VTA) and ventricular flutter/fibrillation (VFB). The proposed method consisted of five steps: (1) signal pre-processing, (2) feature detection and validation, (3) true/false alarm determination for each channel, (4) 'real-time' true/false alarm determination and (5) 'retrospective' true/false alarm determination (if needed). Up to four signal channels, that is, two electrocardiogram signals, one arterial blood pressure and/or one photoplethysmogram signal were included in the analysis. Two events were set for the method validation: event 1 for 'real-time' and event 2 for 'retrospective' alarm classification. The results showed that 100% true positive ratio (i.e. sensitivity) on the training set were obtained for ASY, EBR, ETC and VFB types, and 94% for VTA type, accompanied by the corresponding true negative ratio (i.e. specificity) results of 93%, 81%, 78%, 85% and 50% respectively, resulting in the score values of 96.50, 90.70, 88.89, 92.31 and 64.90, as well as with a final score of 80.57 for event 1 and 79.12 for event 2. For the test set, the proposed method obtained the score of 88.73 for ASY, 77.78 for EBR, 89.92 for ETC, 67.74 for VFB and 61.04 for VTA types, with the final score of 71.68 for event 1 and 75.91 for event 2.
Modulation of cue-induced firing of ventral tegmental area dopamine neurons by leptin and ghrelin
van der Plasse, G; van Zessen, R; Luijendijk, M C M; Erkan, H; Stuber, G D; Ramakers, G M J; Adan, R A H
2015-01-01
Background/objectives: The rewarding value of palatable foods contributes to overconsumption, even in satiated subjects. Midbrain dopaminergic activity in response to reward-predicting environmental stimuli drives reward-seeking and motivated behavior for food rewards. This mesolimbic dopamine (DA) system is sensitive to changes in energy balance, yet it has thus far not been established whether reward signaling of DA neurons in vivo is under control of hormones that signal appetite and energy balance such as ghrelin and leptin. Subjects/methods: We trained rats (n=11) on an operant task in which they could earn two different food rewards. We then implanted recording electrodes in the ventral tegmental area (VTA), and recorded from DA neurons during behavior. Subsequently, we assessed the effects of mild food restriction and pretreatment with the adipose tissue-derived anorexigenic hormone leptin or the orexigenic hormone ghrelin on VTA DA reward signaling. Results: Animals showed an increase in performance following mild food restriction (P=0.002). Importantly, food-cue induced DA firing increased when animals were food restricted (P=0.02), but was significantly attenuated after leptin pretreatment (P=0.00). While ghrelin did affect baseline DA activity (P=0.025), it did not affect cue-induced firing (P⩾0.353). Conclusions: Metabolic signals, such as leptin, affect food seeking, a process that is dependent on the formation of cue-reward outcomes and involves midbrain DA signaling. These data show that food restriction engages the encoding of food cues by VTA DA neurons at a millisecond level and leptin suppresses this activity. This suggests that leptin is a key in linking metabolic information to reward signaling. PMID:26183405
Peña, Catherine Jensen; Champagne, Frances A
2014-01-01
Maternal behavior is dependent on estrogen receptor-alpha (ERα; Esr1) and oxytocin receptor (OTR) signaling in the medial preoptic area (MPOA) of the hypothalamus, as well as dopamine signaling from the ventral tegmental area (VTA) to forebrain regions. Previous studies in rats indicate that low levels of maternal care, particularly licking/grooming (LG), lead to reduced levels of MPOA ERα and VTA dopamine neurons in female offspring and predict lower levels of postpartum maternal behavior by these offspring. The aim of the current study was to determine the functional impact on maternal behavior of neonatal manipulation of ERα in females that had experienced low vs. high levels of postnatal maternal LG. Adenovirus expressing ESR1 was targeted to the MPOA in female pups from low and high LG litters on postnatal day 2–3. Over-expression of ESR1 in low LG offspring elevated the level of ERα-immunoreactive cells in the MPOA and of tyrosine hydroxylase cells in the VTA to that observed in high LG females. Amongst juvenile female low LG offspring, ESR1 over-expression also decreased the latency to engage in maternal behavior toward donor pups. These results show that virally-mediated expression of ESR1 in the neonatal rat hypothalamus results in lasting changes in ESR1 expression through the juvenile period, and can “rescue” hormone receptor levels and behavior of offspring reared by low LG dams, potentially mediated by downstream alterations within reward circuitry. Thus, the transmission of maternal behavior from one generation to the next can be augmented by neonatal ERα in the MPOA. PMID:25044746
Vrettou, Maria; Granholm, Linnea; Todkar, Aniruddha; Nilsson, Kent W; Wallén-Mackenzie, Åsa; Nylander, Ingrid; Comasco, Erika
2017-03-01
Alcohol use disorder is the outcome of both genetic and environmental influences and their interaction via epigenetic mechanisms. The neurotransmitter glutamate is an important regulator of reward circuits and implicated in adaptive changes induced by ethanol intake. The present study aimed at investigating corticolimbic and corticostriatal genetic signatures focusing on the glutamatergic phenotype in relation to early-life stress (ELS) and consequent adult ethanol consumption. A rodent maternal separation model was employed to mimic ELS, and a free-choice paradigm was used to assess ethanol intake in adulthood. Gene expression levels of the Vesicular Glutamate Transporters (Vglut) 1, 2 and 3, as well as two key regulators of DNA methylation, DNA (cytosine-5)-methyltransferase 1 (Dnmt1) and methyl-CpG-binding protein 2 (Mecp2), were analyzed. Brain regions of interest were the ventral tegmental area (VTA), nucleus accumbens (Acb), medial prefrontal cortex (mPFC) and dorsal striatum (dStr), all involved in mediating aspects of ethanol reward. Region-specific Vglut, Dnmt1 and Mecp2 expression patterns were observed. ELS was associated with down-regulated expression of Vglut2 in the VTA and mPFC. Rats exposed to ELS were more sensitive to ethanol-induced changes in Vglut expression in the VTA, Acb, and dStr and in Dnmt1 and Mecp2 expression in the striatal regions. These findings suggest long-term glutamatergic and DNA methylation neuroadaptations as a consequence of ELS, and show an association between voluntary drinking in non-preferring, non-dependent, rodents and different Vglut, Dnmt1 and Mecp2 expression depending on early-life history. © 2015 Society for the Study of Addiction.
Hamed, Adam; Kursa, Miron Bartosz
2018-05-17
A growing body of research provides compelling evidence that in rats 50-kHz USVs are a form of expression of positive emotions. Context-induced 50-kHz USVs emission is variable among rats, indicating individual differences in contextual response bound up with pharmacological reward. The aims of this study were to: extract the most important neurotransmitters related to context-induced conditioned 50-kHz USVs response; find biological basis of existing inter-individual differences in context-induced conditioned 50-kHz USVs response; create a model of all-to-all neurotransmitters correlations. The data collected here confirms that re-exposure to the context of morphine administration after the withdrawal period increases the level of 50-kHz USVs and this contextual response is associated with elevated serotonin concentrations in amygdala, hippocampus and mPFC and with increased Glu/Gln ratio in nucleus accumbens. The concentration of serotonin increases simultaneously in amygdala, nucleus accumbens and hippocampus. Moreover, 5-HT concentration in amygdala is bound up with glutamate level in this structure as well as in hippocampus. Furthermore, Glu/Gln ratio in nucleus accumbens has strong associations with Glu/Gln ratio simultaneously in VTA, amygdala, striatum and hippocampus. All-to-all-analysis indicate that concentration of glutamate in hippocampus is proportional to glutamate in VTA and GABA concentration in the hippocampus. We have also demonstrated that Glu/GABA ratio in VTA and amygdala was elevated after post withdrawal re-exposure to the pharmacological reward paired context. Presented analysis indicates a strong correlation between serotonergic and glutamatergic systems in context-induced conditioned response. The strength of this co-transmission correlates with the number of 50-kHz USVs emitted in response to morphine-paired context.
Tan, Huibing; Rosen, Laura G; Ng, Garye A; Rushlow, Walter J; Laviolette, Steven R
2014-12-01
N-Methyl-D-aspartate (NMDA) receptors in the medial prefrontal cortex (mPFC) are involved in opiate reward processing and modulate sub-cortical dopamine (DA) activity. NMDA receptor blockade in the prelimbic (PLC) division of the mPFC strongly potentiates the rewarding behavioural properties of normally sub-reward threshold doses of opiates. However, the possible functional interactions between cortical NMDA and sub-cortical DAergic motivational neural pathways underlying these effects are not understood. This study examines how NMDA receptor modulation in the PLC influences opiate reward processing via interactions with sub-cortical DAergic transmission. We further examined whether direct intra-PLC NMDA receptor modulation may activate DA-dependent opiate reward signaling via interactions with the ventral tegmental area (VTA). Using an unbiased place conditioning procedure (CPP) in rats, we performed bilateral intra-PLC microinfusions of the competitive NMDA receptor antagonist, (2R)-amino-5-phosphonovaleric acid (AP-5), prior to behavioural morphine place conditioning and challenged the rewarding effects of morphine with DA receptor blockade. We next examined the effects of intra-PLC NMDA receptor blockade on the spontaneous activity patterns of presumptive VTA DA or GABAergic neurons, using single-unit, extracellular in vivo neuronal recordings. We show that intra-PLC NMDA receptor blockade strongly activates sub-cortical DA neurons within the VTA while inhibiting presumptive non-DA GABAergic neurons. Behaviourally, NMDA receptor blockade activates a DA-dependent opiate reward system, as pharmacological blockade of DA transmission blocked morphine reward only in the presence of intra-PLC NMDA receptor antagonism. These findings demonstrate a cortical NMDA-mediated mechanism controlling mesolimbic DAergic modulation of opiate reward processing.
Heimovics, Sarah A; Riters, Lauren V
2005-12-01
In some species, such as songbirds, much is known about how the brain regulates vocal learning, production, and perception. What remains a mystery is what regulates the motivation to communicate. European starlings (Sturnus vulgaris) sing throughout most of the year, but the social and environmental factors that motivate singing behavior differ seasonally. Male song is highly sexually motivated during, but not outside of, the breeding season. Brain areas outside the song control system, such as the medial preoptic nucleus (POM) and ventral tegmental area (VTA), have been implicated in regulating sexually motivated behaviors in birds, including song. The present study was designed to explore whether these regions, as well as three song control nuclei [area X, the high vocal center (HVC), and the robust nucleus of the arcopallium (RA)], might be involved differentially in song produced within compared to outside of a breeding context. We recorded the behavioral responses of breeding and nonbreeding condition male starlings to the introduction of a female conspecific. Males did not show context-dependent differences in the overall amount of song sung. However, immunocytochemistry for the protein product of the immediate early gene cFOS revealed a positive linear relationship between the total amount of songs sung and number of cFOS-labeled cells in POM, VTA, HVC, and RA for birds singing during, but not outside of, a breeding context. These results suggest that these regions differentially regulate male song production depending on reproductive context. Overall the data support the hypothesis that the POM and VTA interact with the song control system, specifically HVC and RA, to regulate sexually motivated vocal communication in songbirds.
Norris, Christopher; Loureiro, Michael; Kramar, Cecilia; Zunder, Jordan; Renard, Justine; Rushlow, Walter; Laviolette, Steven R
2016-01-01
Emerging evidence suggests that the largest phytochemical component of cannabis, cannabidiol (CBD), may possess pharmacotherapeutic properties in the treatment of neuropsychiatric disorders. CBD has been reported to functionally interact with both the mesolimbic dopamine (DA) and serotonergic (5-HT) receptor systems. However, the underlying mechanisms by which CBD may modulate emotional processing are not currently understood. Using a combination of in vivo electrophysiological recording and fear conditioning in rats, the present study aimed to characterize the behavioral, neuroanatomical, and pharmacological effects of CBD within the mesolimbic pathway, and its possible functional interactions with 5-HT and DAergic transmission. Using targeted microinfusions of CBD into the shell region of the mesolimbic nucleus accumbens (NASh), we report that intra-NASh CBD potently blocks the formation of conditioned freezing behaviors. These effects were challenged with DAergic, cannabinoid CB1 receptor, and serotonergic (5-HT1A) transmission blockade, but only 5-HT1A blockade restored associative conditioned freezing behaviors. In vivo intra-ventral tegmental area (VTA) electrophysiological recordings revealed that behaviorally effective doses of intra-NASh CBD elicited a predominant decrease in spontaneous DAergic neuronal frequency and bursting activity. These neuronal effects were reversed by simultaneous blockade of 5-HT1A receptor transmission. Finally, using a functional contralateral disconnection procedure, we demonstrated that the ability of intra-NASh CBD to block the formation of conditioned freezing behaviors was dependent on intra-VTA GABAergic transmission substrates. Our findings demonstrate a novel NAc→VTA circuit responsible for the behavioral and neuronal effects of CBD within the mesolimbic system via functional interactions with serotonergic 5-HT1A receptor signaling. PMID:27296152
A Polymer Optical Fiber Fuel Level Sensor: Application to Paramotoring and Powered Paragliding
Montero, David Sánchez; Lallana, Pedro Contreras; Vázquez, Carmen
2012-01-01
A low-cost intensity-based polymer optical fiber (POF) sensor for fuel level measurements in paramotoring and powered paragliding is presented, exploiting the advantages of the optical fiber sensing technology. Experimental results demonstrate that the best option can be performed by stripping the fiber at the desired discrete points to measure the fuel level as well as with a gauge-shape fiber bending. The prototype has a good linearity, better than 4% full scale (F.S.), and sensitivity around 0.5 V per bend are obtained. Hysteresis due to residual fluid at the sensing points is found to be less than 9% F.S. PMID:22778637
NASA Astrophysics Data System (ADS)
Lee, Jin Wook; Kjeang, Erik
2013-11-01
Fuel cells are gaining momentum as a critical component in the renewable energy mix for stationary, transportation, and portable power applications. State-of-the-art fuel cell technology benefits greatly from nanotechnology applied to nanostructured membranes, catalysts, and electrodes. However, the potential of utilizing nanofluidics for fuel cells has not yet been explored, despite the significant opportunity of harnessing rapid nanoscale reactant transport in close proximity to the reactive sites. In the present article, a nanofluidic fuel cell that utilizes fluid flow through nanoporous media is conceptualized and demonstrated for the first time. This transformative concept captures the advantages of recently developed membraneless and catalyst-free fuel cell architectures paired with the enhanced interfacial contact area enabled by nanofluidics. When compared to previously reported microfluidic fuel cells, the prototype nanofluidic fuel cell demonstrates increased surface area, reduced activation overpotential, superior kinetic characteristics, and moderately enhanced fuel cell performance in the high cell voltage regime with up to 14% higher power density. However, the expected mass transport benefits in the high current density regime were constrained by high ohmic cell resistance, which could likely be resolved through future optimization studies.
Reforming of natural gas—hydrogen generation for small scale stationary fuel cell systems
NASA Astrophysics Data System (ADS)
Heinzel, A.; Vogel, B.; Hübner, P.
The reforming of natural gas to produce hydrogen for fuel cells is described, including the basic concepts (steam reforming or autothermal reforming) and the mechanisms of the chemical reactions. Experimental work has been done with a compact steam reformer, and a prototype of an experimental reactor for autothermal reforming was tested, both containing a Pt-catalyst on metallic substrate. Experimental results on the steam reforming system and a comparison of the steam reforming process with the autothermal process are given.
Direct Midbrain Dopamine Input to the Suprachiasmatic Nucleus Accelerates Circadian Entrainment.
Grippo, Ryan M; Purohit, Aarti M; Zhang, Qi; Zweifel, Larry S; Güler, Ali D
2017-08-21
Dopamine (DA) neurotransmission controls behaviors important for survival, including voluntary movement, reward processing, and detection of salient events, such as food or mate availability. Dopaminergic tone also influences circadian physiology and behavior. Although the evolutionary significance of this input is appreciated, its precise neurophysiological architecture remains unknown. Here, we identify a novel, direct connection between the DA neurons of the ventral tegmental area (VTA) and the suprachiasmatic nucleus (SCN). We demonstrate that D1 dopamine receptor (Drd1) signaling within the SCN is necessary for properly timed resynchronization of activity rhythms to phase-shifted light:dark cycles and that elevation of DA tone through selective activation of VTA DA neurons accelerates photoentrainment. Our findings demonstrate a previously unappreciated role for direct DA input to the master circadian clock and highlight the importance of an evolutionarily significant relationship between the circadian system and the neuromodulatory circuits that govern motivational behaviors. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sufficiency of Mesolimbic Dopamine Neuron Stimulation for the Progression to Addiction.
Pascoli, Vincent; Terrier, Jean; Hiver, Agnès; Lüscher, Christian
2015-12-02
The factors causing the transition from recreational drug consumption to addiction remain largely unknown. It has not been tested whether dopamine (DA) is sufficient to trigger this process. Here we use optogenetic self-stimulation of DA neurons of the ventral tegmental area (VTA) to selectively mimic the defining commonality of addictive drugs. All mice readily acquired self-stimulation. After weeks of abstinence, cue-induced relapse was observed in parallel with a potentiation of excitatory afferents onto D1 receptor-expressing neurons of the nucleus accumbens (NAc). When the mice had to endure a mild electric foot shock to obtain a stimulation, some stopped while others persevered. The resistance to punishment was associated with enhanced neural activity in the orbitofrontal cortex (OFC) while chemogenetic inhibition of the OFC reduced compulsivity. Together, these results show that stimulating VTA DA neurons induces behavioral and cellular hallmarks of addiction, indicating sufficiency for the induction and progression of the disease. Copyright © 2015 Elsevier Inc. All rights reserved.
Hormonal gain control of a medial preoptic area social reward circuit
McHenry, Jenna A.; Otis, James M.; Rossi, Mark A.; Robinson, J. Elliott; Kosyk, Oksana; Miller, Noah W.; McElligott, Zoe A.; Budygin, Evgeny A.; Rubinow, David R.; Stuber, Garret D.
2017-01-01
Neural networks that control reproduction must integrate social and hormonal signals, tune motivation, and invigorate social interactions. However, the neurocircuit mechanisms for these processes remain unresolved. The medial preoptic area (mPOA), an essential node for social behaviors and is comprised of molecularly-diverse neurons with widespread projections. Here, we identify a steroid-responsive subset of neurotensin (Nts) expressing mPOA neurons that interface with the ventral tegmental area (VTA) to form a socially-engaged reward circuit. Using in vivo 2-photon imaging in female mice, we show that mPOANts neurons preferentially encode attractive male cues compared to non-social appetitive stimuli. Ovarian hormone signals regulate both the physiological and cue encoding properties of these cells. Furthermore, optogenetic stimulation of mPOANts-VTA circuitry promotes rewarding phenotypes, social approach, and striatal dopamine release. Collectively, these data demonstrate that steroid-sensitive mPOA neurons encode ethologically-relevant stimuli and co-opt midbrain reward circuits to promote prosocial behavior critical for species survival. PMID:28135243
Phasic Stimulation of Midbrain Dopamine Neuron Activity Reduces Salt Consumption
Sandhu, Eleanor C.; Fernando, Anushka B. P.; Tossell, Kyoko; Kokkinou, Michelle; Glegola, Justyna; Howes, Oliver D.
2018-01-01
Abstract Salt intake is an essential dietary requirement, but excessive consumption is implicated in hypertension and associated conditions. Little is known about the neural circuit mechanisms that control motivation to consume salt, although the midbrain dopamine system, which plays a key role in other reward-related behaviors, has been implicated. We, therefore, examined the effects on salt consumption of either optogenetic excitation or chemogenetic inhibition of ventral tegmental area (VTA) dopamine neurons in male mice. Strikingly, optogenetic excitation of dopamine neurons decreased salt intake in a rapid and reversible manner, despite a strong salt appetite. Importantly, optogenetic excitation was not aversive, did not induce hyperactivity, and did not alter salt concentration preferences in a need-free state. In addition, we found that chemogenetic inhibition of dopamine neurons had no effect on salt intake. Lastly, optogenetic excitation of dopamine neurons reduced consumption of sucrose following an overnight fast, suggesting a more general role of VTA dopamine neuron excitation in organizing motivated behaviors. PMID:29766048
Engine Performance Test of the Honda CVCC
DOT National Transportation Integrated Search
1975-09-01
This report presents the data which were obtained from a test of a prototype Honda CVCC, 90.8-cubic-inch, 4-cylinder engine. The data included are sufficient to establish the steady-state engine maps for fuel consumption and emissions (HC, CO, NOx) o...
Environmentally Benign Battlefield Effects Black Smoke Simulator
2006-11-01
tested and results Fuel Oxidizer Color of Smoke Density of Smoke Sugar (Sucrose) KNO3 Grey Medium Dextrin KNO3 Grey Thin Microcrystalline...design. 3.5 Initial Prototype Scale Fiberboard Testing Several quality black smoke formulations were identified in the small pellet testing to
CTTRANSIT Operates New England's First Fuel Cell Hybrid Bus
DOT National Transportation Integrated Search
2018-02-01
The purpose of the Impact Assessment Plan is to take the results of the test track or field tests of the prototype, make reasonable extrapolations of those results to a theoretical full scale implementation, and answer the following 7 questions relat...
Space reactor fuel element testing in upgraded TREAT
NASA Astrophysics Data System (ADS)
Todosow, M.; Bezler, P.; Ludewig, H.; Kato, W. Y.
The testing of candidate fuel elements at prototypic operating conditions with respect to temperature, power density, hydrogen coolant flow rate, etc.; a crucial component in the development and qualification of nuclear rocket engines based on the Particle Bed Reactor (PBR); NERVA-derivative; and other concepts are discussed. Such testing may be performed at existing reactors, or at new facilities. A scoping study has been performed to assess the feasibility of testing PBR based fuel elements at the TREAT reactor. Initial results suggest that full-scale PBR elements could be tested at an average energy deposition of approximately 60-80 MW-s/L in the current TREAT reactor. If the TREAT reactor was upgraded to include fuel elements with a higher temperature limit, average energy deposition of approximately 100 MW/L may be achievable.
Space reactor fuel element testing in upgraded TREAT
NASA Astrophysics Data System (ADS)
Todosow, Michael; Bezler, Paul; Ludewig, Hans; Kato, Walter Y.
1993-01-01
The testing of candidate fuel elements at prototypic operating conditions with respect to temperature, power density, hydrogen coolant flow rate, etc., is a crucial component in the development and qualification of nuclear rocket engines based on the Particle Bed Reactor (PBR), NERVA-derivative, and other concepts. Such testing may be performed at existing reactors, or at new facilities. A scoping study has been performed to assess the feasibility of testing PBR based fuel elements at the TREAT reactor. Initial results suggests that full-scale PBR elements could be tested at an average energy deposition of ˜60-80 MW-s/L in the current TREAT reactor. If the TREAT reactor was upgraded to include fuel elements with a higher temperture limit, average energy deposition of ˜100 MW/L may be achievable.
Development of an alkaline fuel cell subsystem
NASA Technical Reports Server (NTRS)
1987-01-01
A two task program was initiated to develop advanced fuel cell components which could be assembled into an alkaline power section for the Space Station Prototype (SSP) fuel cell subsystem. The first task was to establish a preliminary SSP power section design to be representative of the 200 cell Space Station power section. The second task was to conduct tooling and fabrication trials and fabrication of selected cell stack components. A lightweight, reliable cell stack design suitable for the SSP regenerative fuel cell power plant was completed. The design meets NASA's preliminary requirements for future multikilowatt Space Station missions. Cell stack component fabrication and tooling trials demonstrated cell components of the SSP stack design of the 1.0 sq ft area can be manufactured using techniques and methods previously evaluated and developed.
High Energy Density Additives for Hybrid Fuel Rockets to Improve Performance and Enhance Safety
NASA Technical Reports Server (NTRS)
Jaffe, Richard L.
2014-01-01
We propose a conceptual study of prototype strained hydrocarbon molecules as high energy density additives for hybrid rocket fuels to boost the performance of these rockets without compromising safety and reliability. Use of these additives could extend the range of applications for which hybrid rockets become an attractive alternative to conventional solid or liquid fuel rockets. The objectives of the study were to confirm and quantify the high enthalpy of these strained molecules and to assess improvement in rocket performance that would be expected if these additives were blended with conventional fuels. We confirmed the chemical properties (including enthalpy) of these additives. However, the predicted improvement in rocket performance was too small to make this a useful strategy for boosting hybrid rocket performance.
Ventral Tegmental Area and Substantia Nigra Neural Correlates of Spatial Learning
ERIC Educational Resources Information Center
Martig, Adria K.; Mizumori, Sheri J. Y.
2011-01-01
The ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) may provide modulatory signals that, respectively, influence hippocampal (HPC)- and striatal-dependent memory. Electrophysiological studies investigating neural correlates of learning and memory of dopamine (DA) neurons during classical conditioning tasks have found DA…
Liu, Xiaojie; Chen, Yao; Tong, Jiaqing; Reynolds, Ashley M; Proudfoot, Sarah C; Qi, Jinshun; Penzes, Peter; Lu, Youming; Liu, Qing-Song
2016-04-27
Exchange protein directly activated by cAMP (Epac) and protein kinase A (PKA) are intracellular receptors for cAMP. Although PKA and its downstream effectors have been studied extensively in the context of drug addiction, whether and how Epac regulates cellular and behavioral effects of drugs of abuse remain essentially unknown. Epac is known to regulate AMPA receptor (AMPAR) trafficking. Previous studies have shown that a single cocaine exposure in vivo leads to an increase in GluA2-lacking AMPARs in dopamine neurons of the ventral tegmental area (VTA). We tested the hypothesis that Epac mediates cocaine-induced changes in AMPAR subunit composition in the VTA. We report that a single cocaine injection in vivo in wild-type mice leads to inward rectification of EPSCs and renders EPSCs sensitive to a GluA2-lacking AMPAR blocker in VTA dopamine neurons. The cocaine-induced increase in GluA2-lacking AMPARs was absent in Epac2-deficient mice but not in Epac1-deficient mice. In addition, activation of Epac with the selective Epac agonist 8-CPT-2Me-cAMP (8-CPT) recapitulated the cocaine-induced increase in GluA2-lacking AMPARs, and the effects of 8-CPT were mediated by Epac2. We also show that conditioned place preference to cocaine was impaired in Epac2-deficient mice and in mice in which Epac2 was knocked down in the VTA but was not significantly altered in Epac1-deficient mice. Together, these results suggest that Epac2 is critically involved in the cocaine-induced change in AMPAR subunit composition and drug-cue associative learning. Addictive drugs, such as cocaine, induce long-lasting adaptions in the reward circuits of the brain. A single intraperitoneal injection of cocaine leads to changes in the composition and property of the AMPAR that carries excitatory inputs to dopamine neurons. Here, we provide evidence that exchange protein directly activated by cAMP (Epac), a cAMP sensor protein, is required for the cocaine-induced changes of the AMPAR. We found that the effects of cocaine were mimicked by activation of Epac but were blocked by genetic deletion of Epac. Furthermore, cocaine-cue associative learning was impaired in mice lacking Epac. These findings uncovered a critical role of Epac in regulating the cellular and behavioral actions of cocaine. Copyright © 2016 the authors 0270-6474/16/364802-14$15.00/0.
Osacka, J; Horvathova, L; Majercikova, Z; Kiss, Alexander
2017-04-25
Fos protein expression in catecholamine-synthesizing neurons of the substantia nigra (SN) pars compacta (SNC, A8), pars reticulata (SNR, A9), and pars lateralis (SNL), the ventral tegmental area (VTA, A10), the locus coeruleus (LC, A6) and subcoeruleus (sLC), the ventrolateral pons (PON-A5), the nucleus of the solitary tract (NTS-A2), the area postrema (AP), and the ventrolateral medulla (VLM-A1) was quantitatively evaluated aft er a single administration of asenapine (ASE) (designated for schizophrenia treatment) in male Wistar rats preconditioned with a chronic unpredictable variable mild stress (CMS) for 21 days. Th e aim of the present study was to reveal whether a single ASE treatment may 1) activate Fos expression in the brain areas selected; 2) activate tyrosine hydroxylase (TH)-synthesizing cells displaying Fos presence; and 3) be modulated by CMS preconditioning. Control (CON), ASE, CMS, and CMS+ASE groups were used. CMS included restraint, social isolation, crowding, swimming, and cold. Th e ASE and CMS+ASE groups received a single dose of ASE (0.3 mg/kg, s.c.) and CON and CMS saline (300 μl/rat, s.c.). The animals were sacrificed 90 min aft er the treatments. Fos protein and TH-labeled immunoreactive perikarya were analyzed on double labeled histological sections and enumerated on captured pictures using combined light and fluorescence microscope illumination. Saline or CMS alone did not promote Fos expression in any of the structures investigated. ASE alone or in combination with CMS elicited Fos expression in two parts of the SN (SNC, SNR) and the VTA. Aside from some cells in the central gray tegmental nuclei adjacent to LC, where a small number of Fos profiles occurred, none or negligible Fos occurrence was detected in the other structures investigated including the LC and sLC, PON-A5, NTS-A2, AP, and VLM-A1. CMS preconditioning did not infl uence the level of Fos induction in the SN and VTA elicited by ASE administration. Similarly, the ratio between the amount of free Fos and Fos colocalized with TH was not aff ected by stress preconditioning in the SNC, SNR, and the VTA. Th e present study provides an anatomical/functional knowledge about the nature of the acute ASE treatment on the catecholamine-synthesizing neurons activity in certain brain structures and their missing interplay with the CMS preconditioning.
Contreras, Marcela L; de la Fuente-Ortega, Erwin; Vargas-Roberts, Sofía; Muñoz, Daniela C; Goic, Carolina A; Haeger, Paola A
2017-01-01
Ethanol exposure increases oxidative stress in developing organs, including the brain. Antioxidant treatment during maternal ethanol ingestion improves behavioral deficits in rodent models of fetal alcohol spectrum disorder (FASD). However, the impact of general antioxidant treatment in their adult offspring and the Specific Reactive Species (ROS)-dependent mechanism, are not fully understood. We hypothesized that pre and early postnatal ethanol exposure (PEE) modifies redox homeostasis, in particular NOX2 function during reward signaling in the mesocorticolimbic pathway, which reinforces the effects of alcohol. We developed a FASD rat model which was evaluated during adolescence (P21) and adulthood (P70). We first studied whether redox homeostasis is affected in PEE animals, by analyzing mRNA expression of SOD1, CAT, and Gpx1. We found that PEE reduced the mRNA levels of these three anti-oxidant enzymes in PFC and HIPP at P21 and in the VTA at P70. We also analyzed basal mRNA and protein expression of NOX2 subunits such as gp91phox, p22 phox, and p47 phox, in mesocorticolimbic brain areas of PEE rat brains. At P21, gp91 phox, and p47 phox levels in the VTA were decreased. At P70, gp91 phox mRNA levels was decreased in HIPP and both mRNA and protein levels were decreased in PFC. Since NOX2 is regulated by the N-methyl-D-aspartate Receptor (NMDAR), we analyzed NMDAR mRNA expression and found differential expression of NMDAR subunits (NR1 and NR2B) in the PFC that was age dependent, with levels decreased at P21 and increased at P70. The analysis also revealed decreased NR2B mRNA expression in HIPP and VTA at P70. Offspring from maternal ethanol users consumed 25% more ethanol in a free choice alcohol consumption test than control rats, and showed place preference for an alcohol-paired compartment. In vivo inhibition of NOX2 using apocynin in drinking water, or infusion of blocked peptide gp91 phox ds in the VTA normalized alcohol place preference, suggesting that NOX2 plays an important role in addictive like behavior. Taken together, PEE significantly affects the expression of antioxidant enzymes, NOX2, NMDAR in an age, and brain region dependent manner. Moreover, we demonstrate that NOX2 regulates alcohol seeking behavior.
V.C.3 Technology Validation : Fuel Cell Bus Evaluations
DOT National Transportation Integrated Search
2005-01-06
Based on the results of this analysis and the response from the project partners, the SunLine demonstration was deemed to be a success. Although it was a prototype (or pre-commercial) vehicle, the ThunderPower bus operated in revenue service at a rel...
Mathematical modeling of a four-stroke resonant engine for micro and mesoscale applications
NASA Astrophysics Data System (ADS)
Preetham, B. S.; Anderson, M.; Richards, C.
2014-12-01
In order to mitigate frictional and leakage losses in small scale engines, a compliant engine design is proposed in which the piston in cylinder arrangement is replaced by a flexible cavity. A physics-based nonlinear lumped-parameter model is derived to predict the performance of a prototype engine. The model showed that the engine performance depends on input parameters, such as heat input, heat loss, and load on the engine. A sample simulation for a reference engine with octane fuel/air ratio of 0.043 resulted in an indicated thermal efficiency of 41.2%. For a fixed fuel/air ratio, higher output power is obtained for smaller loads and vice-versa. The heat loss from the engine and the work done on the engine during the intake stroke are found to decrease the indicated thermal efficiency. The ratio of friction work to indicated work in the prototype engine is about 8%, which is smaller in comparison to the traditional reciprocating engines.
Mass tracking and material accounting in the Integral Fast Reactor (IFR)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orechwa, Y.; Adams, C.H.; White, A.M.
1991-01-01
The Integral Fast Reactor (IFR) is a generic advanced liquid metal cooled reactor concept being developed at Argonne National Laboratory (ANL). There are a number of technical features of the IFR which contribute to its potential as a next-generation reactor. These are associated with large safety margins with regard to off-normal events involving the heat transport system, and the use of metallic fuel which makes possible the utilization of innovative fuel cycle processes. The latter feature permits fuel cycle closure the compact, low-cost reprocessing facilities, collocated with the reactor plant. These primary features are being demonstrated in the facilities atmore » ANL-West, utilizing Experimental Breeder Reactor 2 and the associated Fuel Cycle Facility (FCF) as an IFR prototype. The demonstration of this IFR prototype includes the design and implementation of the Mass-Tracking System (MTG). In this system, data from the operations of the FCF, including weights and batch-process parameters, are collected and maintained by the MTG running on distributed workstations. The components of the MTG System include: (1) an Oracle database manager with a Fortran interface, (2) a set of MTG Tasks'' which collect, manipulate and report data, (3) a set of MTG Terminal Sessions'' which provide some interactive control of the Tasks, and (4) a set of servers which manage the Tasks and which provide the communications link between the MTG System and Operator Control Stations, which control process equipment and monitoring devices within the FCF.« less
Fabrication and Testing of CERMET Fuel Materials for Nuclear Thermal Propulsion
NASA Technical Reports Server (NTRS)
Hickman, Robert; Broadway, Jeramie; Mireles, Omar
2012-01-01
A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on Nuclear Thermal Propulsion (NTP) is currently being developed for Advanced Space Exploration Systems. The overall goal of the project is to address critical NTP technology challenges and programmatic issues to establish confidence in the affordability and viability of NTP systems. The current technology roadmap for NTP identifies the development of a robust fuel form as a critical near term need. The lack of a qualified nuclear fuel is a significant technical risk that will require a considerable fraction of program resources to mitigate. Due to these risks and the cost for qualification, the development and selection of a primary fuel must begin prior to Authority to Proceed (ATP) for a specific mission. The fuel development is a progressive approach to incrementally reduce risk, converge the fuel materials, and mature the design and fabrication process of the fuel element. A key objective of the current project is to advance the maturity of CERMET fuels. The work includes fuel processing development and characterization, fuel specimen hot hydrogen screening, and prototypic fuel element testing. Early fuel materials development is critical to help validate requirements and fuel performance. The purpose of this paper is to provide an overview and status of the work at Marshall Space Flight Center (MSFC).
Rapid Prototyping of Microbial Cell Factories via Genome-scale Engineering
Si, Tong; Xiao, Han; Zhao, Huimin
2014-01-01
Advances in reading, writing and editing genetic materials have greatly expanded our ability to reprogram biological systems at the resolution of a single nucleotide and on the scale of a whole genome. Such capacity has greatly accelerated the cycles of design, build and test to engineer microbes for efficient synthesis of fuels, chemicals and drugs. In this review, we summarize the emerging technologies that have been applied, or are potentially useful for genome-scale engineering in microbial systems. We will focus on the development of high-throughput methodologies, which may accelerate the prototyping of microbial cell factories. PMID:25450192
Silver ion bactericide system. [for Space Shuttle Orbiter potable water
NASA Technical Reports Server (NTRS)
Jasionowski, W. J.; Allen, E. T.
1974-01-01
Description of a preliminary flight prototype system which uses silver ions as the bactericide to preserve sterility of the water used for human consumption and hygiene in the Space Shuttle Orbiter. The performance of silver halide columns for passively dosing fuel cell water with silver ions is evaluated. Tests under simulated Orbiter mission conditions show that silver ion doses of 0.05 ppm are bactericidal for Pseudomonas aeruginosa and Type IIIa, the two bacteria found in Apollo potable water systems. The design of the Advance Prototype Silver Ion Water Bactericide System now under development is discussed.
Keane, Robert E.; Rollins, Matthew; Zhu, Zhi-Liang
2007-01-01
Canopy and surface fuels in many fire-prone forests of the United States have increased over the last 70 years as a result of modern fire exclusion policies, grazing, and other land management activities. The Healthy Forest Restoration Act and National Fire Plan establish a national commitment to reduce fire hazard and restore fire-adapted ecosystems across the USA. The primary index used to prioritize treatment areas across the nation is Fire Regime Condition Class (FRCC) computed as departures of current conditions from the historical fire and landscape conditions. This paper describes a process that uses an extensive set of ecological models to map FRCC from a departure statistic computed from simulated time series of historical landscape composition. This mapping process uses a data-driven, biophysical approach where georeferenced field data, biogeochemical simulation models, and spatial data libraries are integrated using spatial statistical modeling to map environmental gradients that are then used to predict vegetation and fuels characteristics over space. These characteristics are then fed into a landscape fire and succession simulation model to simulate a time series of historical landscape compositions that are then compared to the composition of current landscapes to compute departure, and the FRCC values. Intermediate products from this process are then used to create ancillary vegetation, fuels, and fire regime layers that are useful in the eventual planning and implementation of fuel and restoration treatments at local scales. The complex integration of varied ecological models at different scales is described and problems encountered during the implementation of this process in the LANDFIRE prototype project are addressed.
The fractalline properties of experimentally simulated PWR fuel crud
NASA Astrophysics Data System (ADS)
Dumnernchanvanit, I.; Mishra, V. K.; Zhang, N. Q.; Robertson, S.; Delmore, A.; Mota, G.; Hussey, D.; Wang, G.; Byers, W. A.; Short, M. P.
2018-02-01
The buildup of fouling deposits on nuclear fuel rods, known as crud, continues to challenge the worldwide fleet of light water reactors (LWRs). Crud may cause serious operational problems for LWRs, including axial power shifts, accelerated fuel clad corrosion, increased primary circuit radiation dose rates, and in some instances has led directly to fuel failure. Numerous studies continue to attempt to model and predict the effects of crud, but each makes critical assumptions regarding how to treat the complex, porous microstructure of crud and its resultant effects on temperature, pressure, and crud chemistry. In this study, we demonstrate that crud is indeed a fractalline porous medium using flowing loop experiments, validating the most recent models of its effects on LWR fuel cladding. This crud is shown to match that in other LWR-prototypical facilities through a porosity-fractal dimension scaling law. Implications of this result range from post-mortem analysis of the effects of crud on reactor fuel performance, to utilizing crud's fractalline dimensions to quantify the effectiveness of anti-fouling measures.
Bacteriophage-like Particles Associated with the Gene Transfer Agent of Methanococcus Voltale PS
NASA Technical Reports Server (NTRS)
Bertani, G.; Eiserling, F.; Pushkin, A.; Gingery, M.
1999-01-01
The methanogenic archaebacterium Methanococus voltae (strain PS) is known to produce a filterable, DNase resistant agent (called VTA, for voltae transfer agent), which carries very small fragments (4,400 base pairs) of bacterial DNA and is able to transduce bacterial genes between derivatives of the strain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandler, K.; Eudy, L.
This report describes operations at Connecticut Transit (CTTRANSIT) in Hartford for one prototype fuel cell bus and three new diesel buses operating from the same location. The evaluation period in this report (January 2008 through February 2009) has been chosen to coincide with a UTC Power propulsion system changeout that occurred on January 15, 2008.
Fundamentals of fuel cell system integration
NASA Astrophysics Data System (ADS)
Krumpelt, Michael; Kumar, Romesh; Myles, Kevin M.
1994-04-01
Fuel cells are theoretically very efficient energy conversion devices that have the potential of becoming a commercial product for numerous uses in the civilian economy. We have analyzed several fuel cell system designs with regard to thermal and chemical integration of the fuel cell stack into the rest of the system. Thermal integration permits the use of the stack waste heat for the endothermic steps of fuel reforming. Chemical integration provides the steam needed for fuel reforming from the water produced by the electrochemical cell reaction. High-temperature fuel cells, such as the molten carbonate and the solid oxide fuel cells, permit this system integration in a relatively simple manner. Lower temperature fuel cells, such as the polymer electrolyte and phosphoric acid systems, require added system complexity to achieve such integration. The system economics are affected by capital and fuel costs and technical parameters, such as electrochemical fuel utilization, current density, and system complexity. At today's low fuel prices and the high fuel cell costs (in part, because of the low rates of production of the early prototypes), fuel cell systems are not cost competitive with conventional power generation. With the manufacture and sale of larger numbers of fuel cell systems, the total costs will decrease from the current several thousand dollars per kW, to perhaps less than $100 per kW as production volumes approa ch a million units per year.
Design, integration and demonstration of a 50 W JP8/kerosene fueled portable SOFC power generator
NASA Astrophysics Data System (ADS)
Cheekatamarla, Praveen K.; Finnerty, Caine M.; Robinson, Charles R.; Andrews, Stanley M.; Brodie, Jonathan A.; Lu, Y.; DeWald, Paul G.
A man-portable solid oxide fuel cell (SOFC) system integrated with desulfurized JP8 partial oxidation (POX) reformer was demonstrated to supply a continuous power output of 50 W. This paper discusses some of the design paths chosen and challenges faced during the thermal integration of the stack and reformer in aiding the system startup and shutdown along with balance of plant and power management solutions. The package design, system capabilities, and test results of the prototype unit are presented.
Space reactor fuel element testing in upgraded TREAT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Todosow, M.; Bezler, P.; Ludewig, H.
1993-01-14
The testing of candidate fuel elements at prototypic operating conditions with respect to temperature, power density, hydrogen coolant flow rate, etc., a crucial component in the development and qualification of nuclear rocket engines based on the Particle Bed Reactor (PBR), NERVA-derivative, and other concepts. Such testing may be performed at existing reactors, or at new facilities. A scoping study has been performed to assess the feasibility of testing PBR based fuel elements at the TREAT reactor. initial results suggest that full-scale PBR, elements could be tested at an average energy deposition of {approximately}60--80 MW-s/L in the current TREAT reactor. Ifmore » the TREAT reactor was upgraded to include fuel elements with a higher temperature limit, average energy deposition of {approximately}100 MW/L may be achievable.« less
Space reactor fuel element testing in upgraded TREAT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Todosow, M.; Bezler, P.; Ludewig, H.
1993-05-01
The testing of candidate fuel elements at prototypic operating conditions with respect to temperature, power density, hydrogen coolant flow rate, etc., a crucial component in the development and qualification of nuclear rocket engines based on the Particle Bed Reactor (PBR), NERVA-derivative, and other concepts. Such testing may be performed at existing reactors, or at new facilities. A scoping study has been performed to assess the feasibility of testing PBR based fuel elements at the TREAT reactor. initial results suggest that full-scale PBR, elements could be tested at an average energy deposition of {approximately}60--80 MW-s/L in the current TREAT reactor. Ifmore » the TREAT reactor was upgraded to include fuel elements with a higher temperature limit, average energy deposition of {approximately}100 MW/L may be achievable.« less
Diesel fuel to dc power: Navy & Marine Corps Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bloomfield, D.P.
1996-12-31
During the past year Analytic Power has tested fuel cell stacks and diesel fuel processors for US Navy and Marine Corps applications. The units are 10 kW demonstration power plants. The USN power plant was built to demonstrate the feasibility of diesel fueled PEM fuel cell power plants for 250 kW and 2.5 MW shipboard power systems. We designed and tested a ten cell, 1 kW USMC substack and fuel processor. The complete 10 kW prototype power plant, which has application to both power and hydrogen generation, is now under construction. The USN and USMC fuel cell stacks have beenmore » tested on both actual and simulated reformate. Analytic Power has accumulated operating experience with autothermal reforming based fuel processors operating on sulfur bearing diesel fuel, jet fuel, propane and natural gas. We have also completed the design and fabrication of an advanced regenerative ATR for the USMC. One of the significant problems with small fuel processors is heat loss which limits its ability to operate with the high steam to carbon ratios required for coke free high efficiency operation. The new USMC unit specifically addresses these heat transfer issues. The advances in the mill programs have been incorporated into Analytic Power`s commercial units which are now under test.« less
Refractory oxide insulated thermocouple designed and analyzed for high temperature applications
NASA Technical Reports Server (NTRS)
Popper, G. F.; Zeren, T. Z.
1969-01-01
Study establishes design criteria for constructing high temperature thermocouple to measure nuclear fuel pin temperature. The study included a literature search to determine the compatibility of material useful for thermocouples, a hot zone error analysis, and a prototype design for hot junction and connector pin connections.
Fuel cells for vehicle applications in cars - bringing the future closer
NASA Astrophysics Data System (ADS)
Panik, Ferdinand
Among all alternative drive systems, the fuel cell electric propulsion system has the highest potential to compete with the internal combustion engine. For this reason, Daimler-Benz AG has entered into a co-operative alliance with Ballard Power Systems, with the objectives of bringing fuel cell vehicles to the market. Apart from the fuel cell itself, fuel cell vehicles require comprehensive system technology to provide fuel and air supply, cooling, energy management, electric and electronic functions. The system technology determines to a large extent the cost, weight, efficiency, performance and overall customer benefit of fuel cell vehicles. Hence, Daimler-Benz and Ballard are pooling their expertise in fuel cell system technology in a joint company, with the aim of bringing their fuel cell vehicular systems to the stage of maturity required for market entry as early as possible. Hydrogen-fuelled zero-emission fuel cell transit `buses' will be the first market segment addressed, with an emphasis on the North American and European markets. The first buses are already scheduled for delivery to customers in late 1997. Since a liquid fuel like methanol is easier to handle in passenger cars, fuel reforming technologies are developed and will shortly be demonstrated in a prototype, as well. The presentation will cover concepts of fuel cell vehicles with an emphasis on system technology, the related testing procedures and results as well as an outline of market entry strategies.
Behavioral Specifications of Reward-Associated Long-Term Memory Enhancement in Humans
ERIC Educational Resources Information Center
Wittmann, Bianca C.; Dolan, Raymond J.; Duzel, Emrah
2011-01-01
Recent functional imaging studies link reward-related activation of the midbrain substantia nigra-ventral tegmental area (SN/VTA), the site of origin of ascending dopaminergic projections, with improved long-term episodic memory. Here, we investigated in two behavioral experiments how (1) the contingency between item properties and reward, (2) the…
Developing Oral Proficiency with VoiceThread: Learners' Strategic Uses and Views
ERIC Educational Resources Information Center
Dugartsyrenova, Vera A.; Sardegna, Veronica G.
2017-01-01
This study explored Russian as a foreign language (RFL) learners' self-reported strategic uses of "VoiceThread" (VT)--a multimodal asynchronous computer-mediated communication tool--in order to gain insights into learner perceived effectiveness of VT for second language (L2) oral skills development and to determine the factors that…
The influence of contextual reward statistics on risk preference
Rigoli, Francesco; Rutledge, Robb B.; Dayan, Peter; Dolan, Raymond J.
2016-01-01
Decision theories mandate that organisms should adjust their behaviour in the light of the contextual reward statistics. We tested this notion using a gambling choice task involving distinct contexts with different reward distributions. The best fitting model of subjects' behaviour indicated that the subjective values of options depended on several factors, including a baseline gambling propensity, a gambling preference dependent on reward amount, and a contextual reward adaptation factor. Combining this behavioural model with simultaneous functional magnetic resonance imaging we probed neural responses in three key regions linked to reward and value, namely ventral tegmental area/substantia nigra (VTA/SN), ventromedial prefrontal cortex (vmPFC) and ventral striatum (VST). We show that activity in the VTA/SN reflected contextual reward statistics to the extent that context affected behaviour, activity in the vmPFC represented a value difference between chosen and unchosen options while VST responses reflected a non-linear mapping between the actual objective rewards and their subjective value. The findings highlight a multifaceted basis for choice behaviour with distinct mappings between components of this behaviour and value sensitive brain regions. PMID:26707890
Leptin Suppresses the Rewarding Effects of Running via STAT3 Signaling in Dopamine Neurons.
Fernandes, Maria Fernanda A; Matthys, Dominique; Hryhorczuk, Cécile; Sharma, Sandeep; Mogra, Shabana; Alquier, Thierry; Fulton, Stephanie
2015-10-06
The adipose hormone leptin potently influences physical activity. Leptin can decrease locomotion and running, yet the mechanisms involved and the influence of leptin on the rewarding effects of running ("runner's high") are unknown. Leptin receptor (LepR) signaling involves activation of signal transducer and activator of transcription-3 (STAT3), including in dopamine neurons of the ventral tegmental area (VTA) that are essential for reward-relevant behavior. We found that mice lacking STAT3 in dopamine neurons exhibit greater voluntary running, an effect reversed by viral-mediated STAT3 restoration. STAT3 deletion increased the rewarding effects of running whereas intra-VTA leptin blocked it in a STAT3-dependent manner. Finally, STAT3 loss-of-function reduced mesolimbic dopamine overflow and function. Findings suggest that leptin influences the motivational effects of running via LepR-STAT3 modulation of dopamine tone. Falling leptin is hypothesized to increase stamina and the rewarding effects of running as an adaptive means to enhance the pursuit and procurement of food. Copyright © 2015 Elsevier Inc. All rights reserved.
Genetic and pharmacological antagonism of NK1 receptor prevents opiate abuse potential.
Sandweiss, A J; McIntosh, M I; Moutal, A; Davidson-Knapp, R; Hu, J; Giri, A K; Yamamoto, T; Hruby, V J; Khanna, R; Largent-Milnes, T M; Vanderah, T W
2017-05-09
Development of an efficacious, non-addicting analgesic has been challenging. Discovery of novel mechanisms underlying addiction may present a solution. Here we target the neurokinin system, which is involved in both pain and addiction. Morphine exerts its rewarding actions, at least in part, by inhibiting GABAergic input onto substance P (SP) neurons in the ventral tegmental area (VTA), subsequently increasing SP release onto dopaminergic neurons. Genome editing of the neurokinin 1 receptor (NK 1 R) in the VTA renders morphine non-rewarding. Complementing our genetic approach, we demonstrate utility of a bivalent pharmacophore with dual activity as a μ/δ opioid agonist and NK 1 R antagonist in inhibiting nociception in an animal model of acute pain while lacking any positive reinforcement. These data indicate that dual targeting of the dopaminergic reward circuitry and pain pathways with a multifunctional opioid agonist-NK 1 R antagonist may be an efficacious strategy in developing future analgesics that lack abuse potential.Molecular Psychiatry advance online publication, 9 May 2017; doi:10.1038/mp.2017.102.
Rapid prototyping of microbial cell factories via genome-scale engineering.
Si, Tong; Xiao, Han; Zhao, Huimin
2015-11-15
Advances in reading, writing and editing genetic materials have greatly expanded our ability to reprogram biological systems at the resolution of a single nucleotide and on the scale of a whole genome. Such capacity has greatly accelerated the cycles of design, build and test to engineer microbes for efficient synthesis of fuels, chemicals and drugs. In this review, we summarize the emerging technologies that have been applied, or are potentially useful for genome-scale engineering in microbial systems. We will focus on the development of high-throughput methodologies, which may accelerate the prototyping of microbial cell factories. Copyright © 2014 Elsevier Inc. All rights reserved.
Multi-fuel reformers for fuel cells used in transportation. Phase 1: Multi-fuel reformers
NASA Astrophysics Data System (ADS)
1994-05-01
DOE has established the goal, through the Fuel Cells in Transportation Program, of fostering the rapid development and commercialization of fuel cells as economic competitors for the internal combustion engine. Central to this goal is a safe feasible means of supplying hydrogen of the required purity to the vehicular fuel cell system. Two basic strategies are being considered: (1) on-board fuel processing whereby alternative fuels such as methanol, ethanol or natural gas stored on the vehicle undergo reformation and subsequent processing to produce hydrogen, and (2) on-board storage of pure hydrogen provided by stationary fuel processing plants. This report analyzes fuel processor technologies, types of fuel and fuel cell options for on-board reformation. As the Phase 1 of a multi-phased program to develop a prototype multi-fuel reformer system for a fuel cell powered vehicle, the objective of this program was to evaluate the feasibility of a multi-fuel reformer concept and to select a reforming technology for further development in the Phase 2 program, with the ultimate goal of integration with a DOE-designated fuel cell and vehicle configuration. The basic reformer processes examined in this study included catalytic steam reforming (SR), non-catalytic partial oxidation (POX) and catalytic partial oxidation (also known as Autothermal Reforming, or ATR). Fuels under consideration in this study included methanol, ethanol, and natural gas. A systematic evaluation of reforming technologies, fuels, and transportation fuel cell applications was conducted for the purpose of selecting a suitable multi-fuel processor for further development and demonstration in a transportation application.
Production Strategies for Production-Quality Parts for Aerospace Applications
NASA Technical Reports Server (NTRS)
Cawley, J. D.; Best, J. E.; Liu, Z.; Eckel, A. J.; Reed, B. D.; Fox, D. S.; Bhatt, R.; Levine, Stanley R. (Technical Monitor)
2000-01-01
A combination of rapid prototyping processes (3D Systems' stereolithography and Sanders Prototyping's ModelMaker) are combined with gelcasting to produce high quality silicon nitride components that were performance tested under simulated use conditions. Two types of aerospace components were produced, a low-force rocket thruster and a simulated airfoil section. The rocket was tested in a test stand using varying mixtures of H2 and O2, whereas the simulated airfoil was tested by subjecting it to a 0.3 Mach jet-fuel burner flame. Both parts performed successfully, demonstrating the usefulness of the rapid prototyping in efforts to effect materials substitution. In addition, the simulated airfoil was used to explore the possibility of applying thermal/environmental barrier coatings and providing for internal cooling of ceramic parts. It is concluded that this strategy for processing offers the ceramic engineer all the flexibility normally associated with investment casting of superalloys.
The role of the central ghrelin system in reward from food and chemical drugs.
Dickson, Suzanne L; Egecioglu, Emil; Landgren, Sara; Skibicka, Karolina P; Engel, Jörgen A; Jerlhag, Elisabet
2011-06-20
Here we review recent advances that identify a role for the central ghrelin signalling system in reward from both natural rewards (such as food) and artificial rewards (that include alcohol and drugs of abuse). Whereas ghrelin emerged as a stomach-derived hormone involved in energy balance, hunger and meal initiation via hypothalamic circuits, it now seems clear that it also has a role in motivated reward-driven behaviours via activation of the so-called "cholinergic-dopaminergic reward link". This reward link comprises a dopamine projection from the ventral tegmental area (VTA) to the nucleus accumbens together with a cholinergic input, arising primarily from the laterodorsal tegmental area. Ghrelin administration into the VTA or LDTg activates the "cholinergic-dopaminergic" reward link, suggesting that ghrelin may increase the incentive value of motivated behaviours such as reward-seeking behaviour ("wanting" or "incentive motivation"). Further, direct injection of ghrelin into the brain ventricles or into the VTA increases the consumption of rewarding foods as well as alcohol in mice and rats. Studies in rodents show beneficial effects of ghrelin receptor (GHS-R1A) antagonists to suppress the intake of palatable food, to reduce preference for caloric foods, to suppress food reward and motivated behaviour for food. They have also been shown to reduce alcohol consumption, suppress reward induced by alcohol, cocaine and amphetamine. Furthermore, variations in the GHS-R1A and pro-ghrelin genes have been associated with high alcohol consumption, smoking and increased weight gain in alcohol dependent individuals as well as with bulimia nervosa and obesity. Thus, the central ghrelin signalling system interfaces neurobiological circuits involved in reward from food as well as chemical drugs; agents that directly or indirectly suppress this system emerge as potential candidate drugs for suppressing problematic over-eating that leads to obesity as well as for the treatment of substance use disorder. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Gao, Yong-Long; Zhang, Yang; Cao, Jiang-Peng; Wu, Sheng-Bing; Cai, Xing-Hui; Zhang, Yan-Chun; Zhang, Rong-Jun; Song, Xiao-Ge; Zhang, Li-Da
2017-10-01
To evaluate regulation of the endoplasmic reticulum stress (ERS) response by acupuncture and to investigate its neuroprotective effect on brain injury caused by heroin addiction. A total of 48 male Sprague-Dawley rats were randomly divided into a healthy control group (Control), an untreated heroin exposed group (Heroin) and a heroin exposed group receiving electroacupuncture (EA) treatment at GV14 and GV20 (Heroin+acupuncture) with n=16 rats per group. A rat model of heroin addiction was established by intramuscular injection of incremental doses of heroin for 8 consecutive days. A rat model of heroin relapse was established according to the exposure (addiction) → detoxification method. Apoptotic changes in nerve cells in the hippocampus and ventral tegmental area (VTA) were evaluated in each group of rats using terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) assay. PERK, eIF2a, CHOP, IRE1 and JNK gene expression and protein expression were measured using quantitative real-time PCR (RT-qPCR) assay and immunohistochemical assay, respectively. The total number of positive nerve cells in the hippocampus and VTA was significantly lower in the Heroin+acupuncture group than in the Heroin group (p<0.01). Compared with the Heroin group, mRNA and protein expression of PERK, eIF2a, CHOP, IRE1 and JNK in the hippocampus and VTA were significantly downregulated in the Heroin+acupuncture group (p<0.05). The acupuncture-regulated ERS response appears to mediate the neuroprotective effect of acupuncture in heroin-addicted rats with brain injury. Inhibition of CHOP and JNK upregulation and reduction of nerve cell apoptosis may be the main mechanisms underlying the effects of acupuncture on heroin addiction-induced brain injury. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Shapiro, Alexandra; Cheng, Kit-Yan; Gao, Yongxin; Seo, Dong-Oh; Anton, Steve; Carter, Christy S; Zhang, Yi; Tumer, Nihal; Scarpace, Philip J
2011-01-01
To test the hypothesis that exercise increases central leptin signaling, and thus reduces dietary weight gain in an aged obese model, we assessed the effects of voluntary wheel running (WR) in 23-month-old F344×BN rats fed a 60% high-fat (HF) diet for 3 months. After 2 months on the HF diet, half of the rats were provided access to running wheels for 2 weeks while the other half remained sedentary. Following the removal of the wheels, physical performance was evaluated, and 4 weeks later leptin signaling was assessed in hypothalamus and VTA after an acute bout of WR. Introduction of a HF diet led to prolonged hyperphagia (63.9 ± 7.8 kcal/day on chow diet vs. 88.1 ± 8.2 kcal/day on high-fat diet (when food intake stabilized), p < 0.001). As little as 9 (ranging to 135) wheel revolutions per day significantly reduced caloric consumption of HF food (46.8 ± 11.2 kcal/day) to a level below that on chow diet (63.9 ± 7.8 kcal/day, p < 0.001). After 2 weeks of WR, body weight was significantly reduced (7.9 ± 2.1% compared with prerunning weight, p < 0.001), and physical performance (latency to fall from an incline plane) was significantly improved (p = 0.04). WR significantly increased both basal (p = 0.04) and leptin-stimulated (p = 0.001) STAT3 phosphorylation in the ventral tegmental area (VTA), but not in the hypothalamus. Thus, in aged dietary obese rats, the act but not the extent of voluntary WR is highly effective in reversing HF consumption, decreasing body weight, and improving physical performance. It appears to trigger a response that substitutes for the reward of highly palatable food that may be mediated by increased leptin signaling in the VTA. Copyright © 2010 S. Karger AG, Basel.
Diet-induced obesity causes ghrelin resistance in reward processing tasks.
Lockie, Sarah H; Dinan, Tara; Lawrence, Andrew J; Spencer, Sarah J; Andrews, Zane B
2015-12-01
Diet-induced obesity (DIO) causes ghrelin resistance in hypothalamic Agouti-related peptide (AgRP) neurons. However, ghrelin promotes feeding through actions at both the hypothalamus and mesolimbic dopamine reward pathways. Therefore, we hypothesized that DIO would also establish ghrelin resistance in the ventral tegmental area (VTA), a major site of dopaminergic cell bodies important in reward processing. We observed reduced sucrose and saccharin consumption in Ghrelin KO vs Ghrelin WT mice. Moreover, DIO reduced saccharin consumption relative to chow-fed controls. These data suggest that the deletion of ghrelin and high fat diet both cause anhedonia. To assess if these are causally related, we tested whether DIO caused ghrelin resistance in a classic model of drug reward, conditioned place preference (CPP). Chow or high fat diet (HFD) mice were conditioned with ghrelin (1mg/kg in 10ml/kg ip) in the presence or absence of food in the conditioning chamber. We observed a CPP to ghrelin in chow-fed mice but not in HFD-fed mice. HFD-fed mice still showed a CPP for cocaine (20mg/kg), indicating that they maintained the ability to develop conditioned behaviour. The absence of food availability during ghrelin conditioning sessions induced a conditioned place aversion, an effect that was still present in both chow and HFD mice. Bilateral intra-VTA ghrelin injection (0.33μg/μl in 0.5μl) robustly increased feeding in both chow-fed and high fat diet (HFD)-fed mice; however, this was correlated with body weight only in the chow-fed mice. Our results suggest that DIO causes ghrelin resistance albeit not directly in the VTA. We suggest there is impaired ghrelin sensitivity in upstream pathways regulating reward pathways, highlighting a functional role for ghrelin linking appropriate metabolic sensing with reward processing. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Foldi, Claire J; Milton, Laura K; Oldfield, Brian J
2017-11-01
Patients suffering from anorexia nervosa (AN) become anhedonic; unable or unwilling to derive normal pleasures and avoid rewarding outcomes, most profoundly in food intake. The activity-based anorexia (ABA) model recapitulates many of the characteristics of the human condition, including anhedonia, and allows investigation of the underlying neurobiology of AN. The potential for increased neuronal activity in reward/hedonic circuits to prevent and rescue weight loss is investigated in this model. The mesolimbic pathway extending from the ventral tegmental area (VTA) to the nucleus accumbens (NAc) was activated using a dual viral strategy, involving retrograde transport of Cre (CAV-2-Cre) to the VTA and coincident injection of DREADD receptors (AAV-hSyn-DIO-hM3D(Gq)-mCherry). Systemic clozapine-n-oxide (CNO; 0.3 mg/kg) successfully recruited a large proportion of the VTA-NAc dopaminergic projections, with activity evidenced by colocalization with elevated levels of Fos protein. The effects of reward circuit activation on energy balance and predicted survival was investigated in female Sprague-Dawley rats, where free access to running wheels was paired with time-limited (90 min) access to food, a paradigm (ABA) which will cause anorexia and death if unchecked. Excitation of the reward pathway substantially increased food intake and food anticipatory activity (FAA) to prevent ABA-associated weight loss, while overall locomotor activity was unchanged. Similar activation of reward circuitry, delayed until establishment of the ABA phenotype, rescued rats from their precipitous weight loss. Although these data are consistent with shifts primarily in food intake, the contribution of mechanisms including energy expenditure to survival remains to be determined. These results will inform the neurobiological underpinnings of AN, and provide insight into the mechanisms of reward circuitry relevant to feeding and weight loss.
Shabani, S; Foster, R; Gubner, N; Phillips, T J; Mark, G P
2010-10-13
The cholinergic input from the lateral dorsal tegmental area (LDTg) modulates the dopamine cells of the ventral tegmental area (VTA) and plays an important role in cocaine taking. Specific pharmacological agents that block or stimulate muscarinic receptors in the LDTg change acetylcholine (ACh) levels in the VTA. Furthermore, manipulations of cholinergic input in the VTA can change cocaine taking. In the current study, the ACh output from the LDTg was attenuated by treatment with the selective muscarinic type 2 (M2) autoreceptor agonist oxotremorine.sesquifumarate (OxoSQ). We hypothesized that OxoSQ would reduce the motivation of rats to self-administer both natural and drug rewards. Animals were tested on progressive ratio (PR) schedules of reinforcement for food pellets and cocaine. On test days, animals on food and on cocaine schedules were bilaterally microinjected prior to the test. Rats received either LDTg OxoSQ infusions or LDTg artificial cerebrospinal fluid (aCSF) infusions in a within-subjects design. In addition, infusions were delivered into a dorsal brain area above the LDTg as an anatomical control region. OxoSQ microinjection in the LDTg, compared to aCSF, significantly reduced both the number of self-administered pellets and cocaine infusions during the initial half of the session; this reduction was dose-dependent. OxoSQ microinjections into the area just dorsal to the LDTg had no significant effect on self-administration of food pellets or cocaine. Animals were also tested in locomotor activity chambers for motor effects following the above microinjections. Locomotor activity was mildly increased by OxoSQ microinjection into the LDTg during the initial half of the session. Overall, these data suggest that LDTg cholinergic neurons play an important role in modifying the reinforcing value of natural and drug rewards. These effects cannot be attributed to significant alterations of locomotor behavior and are likely accomplished through LDTg muscarinic autoreceptors. Published by Elsevier Ltd.
Evaluation of the micro-carburetor
NASA Technical Reports Server (NTRS)
Weiss, M. F.; Hall, R. A.; Mazor, S. D.
1981-01-01
A prototype sonic, variable-venturi automotive carburetor was evaluated for its effects on vehicle performance, fuel economy, and exhaust emissions. A 350 CID Chevrolet Impala vehicle was tested on a chassis dynamometer over the 1975 Federal Test Procedure, urban driving cycle. The Micro-carburetor was tested and compared with stock and modified-stock engine configurations. Subsequently, the test vehicle's performance characteristics were examined with the stock carburetor and again with the Micro-carburetor in a series of on-road driveability tests. The test engine was then removed from the vehicle and installed on an engine dynamometer. Engine tests were conducted to compare the fuel economy, thermal efficiency, and cylinder-to-cylinder mixture distribution of the Micro-carburetor to that of the stock configuration. Test results show increases in thermal efficiency and improvements in fuel economy at all test conditions. Improve fuel/air mixture preparation is implied from the information presented. Further improvements in fuel economy and exhaust emissions are possible through a detailed recalibration of the Micro-carburetor.
Mobile electric power. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bloomfield, D.P.; Bloomfield, V.J.; Grosjean, P.D.
1995-12-01
The objective of this program was to develop a mobile fuel cell power supply for use by soldiers. The Century Series of 100 through 500 watt fuel cell power supplies was developed. The Century Series fuel cell power supplies are made up of a fuel cell stack, chemical hydride hydrogen supply, a fan and a controller. The FC-200, the 200 watt Century Series power supply, weighs 8.8 ib. and has a volume of 322 in.3. The operating point is 0.7 volt/cell at 125 ASF; a power density of 22.7 watts/lb. or 0.62 watts/in.3 and an energy density of 110 whr/lb.more » The prototype 750 whr hydrogen supply weighs 7 lbs. and has a volume of 193 in.3. The fuel elements weigh 0.45 lb. and require 0.79 lbs. of water. The FC-200 has powered a scooter requiring a starting current of three times the rated current of the stack. It has also powered a microclimate cooler. (KAR) P. 1.« less
NASA Astrophysics Data System (ADS)
Bloomfield, David P.; Bloomfield, Valerie J.; Grosjean, Paul D.; Kelland, James W.
1995-02-01
The objective of this program was to develop a mobile fuel cell power supply for use by soldiers. The Century Series of 100 through 500 watt fuel cell power supplies was developed. The Century Series fuel cell power supplies are made up of a fuel cell stack, chemical hydride hydrogen supply, a fan and a controller. The FC-200, the 200 watt Century Series power supply, weighs 8.8 lb. and has a volume of 322 cu in. The operating point is 0.7 volt/cell at 125 ASF; a power density of 22.7 watts/cu in. or 0.62 watts/cu in. and an energy density of 110 whr/lb. The prototype 750 whr hydrogen supply weighs 7 lbs. and has a volume of 193 cu in. The fuel elements weigh 0.45 lb. and require 0.79 lbs. of water. The FC-200 has powered a scooter requiring a starting current of three times the rated current of the stack. It has also powered a microclimate cooler.
Hasirci, A. Sait; Maldonado-Devincci, Antoniette M.; Beattie, Matthew C.; O'Buckley, Todd K.; Morrow, A. Leslie
2016-01-01
Background The GABAergic neuroactive steroid (3α,5α)-3-hydroxy-pregnan-20-one (3α,5α-THP, allopregnanolone) enhances GABAergic activity and produces subjective effects similar to ethanol. The effect of chronic alcohol exposure on 3α,5α-THP concentrations has been studied in mouse, rat, and monkey limbic brain areas. Chronic ethanol exposure produced divergent brain region and cell specific changes in 3α,5α-THP concentrations in animal studies. However, 3α,5α-THP levels in similar human brain regions have never been examined in individuals diagnosed with alcohol use disorder (AUD). Therefore, we used immunohistochemistry to examine 3α,5α-THP levels in the ventral tegmental area (VTA), substantia nigra pars medialis (SNM), and amygdala of human postmortem brains of patients diagnosed with AUD compared to social drinkers. The effects of sex and liver disease on 3α,5α-THP concentrations were examined in the aforementioned brain regions. Methods Human postmortem brains of AUD patients and age-matched controls were obtained from the New South Wales Brain Tissue Resource Center. Immunohistochemistry was performed using anti-3α,5α-THP antibody on formalin fixed and paraffin embedded brain sections to detect cellular 3α,5α-THP levels. Immunoreactivity was analyzed by pixel density/mm2 for the comparison between AUD patients and controls. Results 3α,5α-THP immunoreactivity was increased by 23.2±9% in the VTA of AUD patients compared to age matched controls (p= 0.014). Moreover, a 29.6±10% increase in 3α,5α-THP immunoreactivity was observed in the SNM of male AUD patients compared to male controls (p<0.01), but not in female subjects. 3α,5α-THP immunoreactivity in the VTA and SNM regions did not differ between non-cirrhotic and cirrhotic AUD patients. A sex difference in 3α,5α-THP immunoreactivity (female 51±18% greater than male) was observed among control subjects in the SNM, but no other brain region. 3α,5α-THP immunoreactivity in the basolateral and lateral amygdala were negatively correlated with the length of the tissue fixation time as well as the age of the subjects, precluding assessment of the effect of AUD. Conclusions Cellular 3α,5α-THP levels in VTA are increased in human AUD patients, an effect that is likely independent of sex and liver disease. The differences between animal models and human studies should be factored into the interpretation of the physiological significance of elevated 3α,5α-THP levels in humans. PMID:28068457
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doerner, R.C.; Bauer, T.H.; Morman, J.A.
Prototypic oxide fuel was subjected to simulated, fast reactor severe accident conditions in a series of in-pile tests in the Transient Reactor Test Facility reactor. Seven experiments were performed on fresh and previously irradiated oxide fuel pins under transient overpower and transient undercooled. overpower accident conditions. For each of the tests, fuel motions were observed by the hodoscope. Hodoscope data are correlated with coolant flow, pressure, and temperature data recorded by the loop instrumentation. Data were analyzed from the onset of initial failure to a final mass distribution at the end of the test. In this paper results of thesemore » analyses are compared to pre- and posttest accident calculations and to posttest metallographic accident calculations and to posttest metallographic examinations and computed tomographic reconstructions from neutron radiographs.« less
Metal-catalyst-free carbohydrazide fuel cells with three-dimensional graphene anodes.
Qi, Ji; Benipal, Neeva; Wang, Hui; Chadderdon, David J; Jiang, Yibo; Wei, Wei; Hu, Yun Hang; Li, Wenzhen
2015-04-13
As a potential solution to concerns on sustainable energy, the wide spread commercialization of fuel cell has long been hindered by limited reserves and relatively high costs of metal catalysts. 3D graphene, a carbon-only catalyst prepared by reduction of carbon monoxide with lithium oxide, is found to electrochemically catalyze carbohydrazide oxidation reaction efficiently. A prototype of a completely metal-catalyst-free anion exchange membrane fuel cell (AEMFC) with a 3D graphene anode catalyst and an N-doped CNT (N-CNT) cathode catalyst generate a peak power density of 24.9 mW cm(-2) . The average number of electrons electrochemically extracted from one carbohydrazide molecule is 4.9, indicating the existence of CN bond activation, which is a key factor contributing to high fuel utilization efficiency. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Picot, D.; Metkemeijer, R.; Bezian, J. J.; Rouveyre, L.
In this paper, experimental water and thermal balances with three proton exchange membrane fuel cells (PEMFC) are proposed. On the test facility of Ecole des Mines de Paris, three De Nora SPA fuel cell stacks have been successfully studied: An 1 kW e prototype using Nafion® 117, a 5 and a 10 kW e module using Nafion® 115. The averaged water symmetry factor determines strategies to avoid drying membrane. So, we propose analytical solutions to find compromises between humidification and cooling conditions, which determines outlet temperatures of gases. For transport applications, the space occupied by the power module must be reduced. One of the main efforts consists in decreasing the operative pressure. Thus, if adequate cooling power is applied, we show experimentally and theoretically the possibility to use De Nora PEM fuel cells with low pressure, without specific external humidification.
Jha, Neetu; Ramesh, Palanisamy; Bekyarova, Elena; Tian, Xiaojuan; Wang, Feihu; Itkis, Mikhail E.; Haddon, Robert C.
2013-01-01
Chemically modified single-walled carbon nanotubes (SWNTs) with varying degrees of functionalization were utilized for the fabrication of SWNT thin film catalyst support layers (CSLs) in polymer electrolyte membrane fuel cells (PEMFCs), which were suitable for benchmarking against the US DOE 2017 targets. Use of the optimum level of SWNT -COOH functionality allowed the construction of a prototype SWNT-based PEMFC with total Pt loading of 0.06 mgPt/cm2 - well below the value of 0.125 mgPt/cm2 set as the US DOE 2017 technical target for total Pt group metals (PGM) loading. This prototype PEMFC also approaches the technical target for the total Pt content per kW of power (<0.125 gPGM/kW) at cell potential 0.65 V: a value of 0.15 gPt/kW was achieved at 80°C/22 psig testing conditions, which was further reduced to 0.12 gPt/kW at 35 psig back pressure. PMID:23877112
Jha, Neetu; Ramesh, Palanisamy; Bekyarova, Elena; Tian, Xiaojuan; Wang, Feihu; Itkis, Mikhail E; Haddon, Robert C
2013-01-01
Chemically modified single-walled carbon nanotubes (SWNTs) with varying degrees of functionalization were utilized for the fabrication of SWNT thin film catalyst support layers (CSLs) in polymer electrolyte membrane fuel cells (PEMFCs), which were suitable for benchmarking against the US DOE 2017 targets. Use of the optimum level of SWNT -COOH functionality allowed the construction of a prototype SWNT-based PEMFC with total Pt loading of 0.06 mg(Pt)/cm²--well below the value of 0.125 mg(Pt)/cm² set as the US DOE 2017 technical target for total Pt group metals (PGM) loading. This prototype PEMFC also approaches the technical target for the total Pt content per kW of power (<0.125 g(PGM)/kW) at cell potential 0.65 V: a value of 0.15 g(Pt)/kW was achieved at 80°C/22 psig testing conditions, which was further reduced to 0.12 g(Pt)/kW at 35 psig back pressure.
Benchmark Evaluation of Dounreay Prototype Fast Reactor Minor Actinide Depletion Measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hess, J. D.; Gauld, I. C.; Gulliford, J.
2017-01-01
Historic measurements of actinide samples in the Dounreay Prototype Fast Reactor (PFR) are of interest for modern nuclear data and simulation validation. Samples of various higher-actinide isotopes were irradiated for 492 effective full-power days and radiochemically assayed at Oak Ridge National Laboratory (ORNL) and Japan Atomic Energy Research Institute (JAERI). Limited data were available regarding the PFR irradiation; a six-group neutron spectra was available with some power history data to support a burnup depletion analysis validation study. Under the guidance of the Organisation for Economic Co-Operation and Development Nuclear Energy Agency (OECD NEA), the International Reactor Physics Experiment Evaluation Projectmore » (IRPhEP) and Spent Fuel Isotopic Composition (SFCOMPO) Project are collaborating to recover all measurement data pertaining to these measurements, including collaboration with the United Kingdom to obtain pertinent reactor physics design and operational history data. These activities will produce internationally peer-reviewed benchmark data to support validation of minor actinide cross section data and modern neutronic simulation of fast reactors with accompanying fuel cycle activities such as transportation, recycling, storage, and criticality safety.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wheeler, D.; Ulsh, M.
In 2008, the National Renewable Energy Laboratory (NREL), under contract to the US Department of Energy (DOE), conducted a manufacturing readiness assessment (MRA) of fuel cell systems and fuel cell stacks for back-up power and material handling applications (MHE). To facilitate the MRA, manufacturing readiness levels (MRL) were defined that were based on the Technology Readiness Levels previously established by the US Department of Energy (DOE). NREL assessed the extensive existing hierarchy of MRLs developed by Department of Defense (DoD) and other Federal entities, and developed a MRL scale adapted to the needs of the Fuel Cell Technologies Program (FCTP)more » and to the status of the fuel cell industry. The MRL ranking of a fuel cell manufacturing facility increases as the manufacturing capability transitions from laboratory prototype development through Low Rate Initial Production to Full Rate Production. DOE can use MRLs to address the economic and institutional risks associated with a ramp-up in polymer electrolyte membrane (PEM) fuel cell production. In 2010, NREL updated this assessment, including additional manufacturers, an assessment of market developments since the original report, and a comparison of MRLs between 2008 and 2010.« less
Micro reactor integrated μ-PEM fuel cell system: a feed connector and flow field free approach
NASA Astrophysics Data System (ADS)
Balakrishnan, A.; Mueller, C.; Reinecke, H.
2013-12-01
A system level microreactor concept for hydrogen generation with Sodium Borohydride (NaBH4) is demonstrated. The uniqueness of the system is the transport and distribution feature of fuel (hydrogen) to the anode of the fuel cell without any external feed connectors and flow fields. The approach here is to use palladium film instead of feed connectors and the flow fields; palladium's property to adsorb and desorb the hydrogen at ambient and elevated condition. The proof of concept is demonstrated with a polymethyl methacrylate (PMMA) based complete system integration which includes microreactor, palladium transport layer and the self-breathing polymer electrolyte membrane (PEM) fuel cell. The hydrolysis of NaBH4 was carried out in the presence of platinum supported by nickel (NiPt). The prototype functionality is tested with NaBH4 chemical hydride. The characterization of the integrated palladium layer and fuel cell is tested with constant and switching load. The presented integrated fuel cell is observed to have a maximum power output and current of 60 mW and 280 mA respectively.
Phenomenology of BWR fuel assembly degradation
NASA Astrophysics Data System (ADS)
Kurata, Masaki; Barrachin, Marc; Haste, Tim; Steinbrueck, Martin
2018-03-01
Severe accidents occurred at the Fukushima-Daiichi Nuclear Power Station (FDNPS) which required an immediate re-examination of fuel degradation phenomenology. The present paper reviews the updated knowledge on the phenomenology of the fuel degradation, focusing mainly on the BWR fuel assembly degradation at the macroscopic scale and that of the individual interactions at the meso-scale. Oxidation of boron carbide (B4C) control rods potentially generates far larger amounts of heat and hydrogen under BWR accident conditions. All integral tests with B4C control rods or control blades have shown early failure, liquefaction, relocation and oxidation of B4C starting at temperatures around 1250 °C, well below the significant interaction temperatures of UO2-Zry. These interactions or reactions potentially influence the progress of fuel degradation in the early phase. The steam-starved conditions, which are being discussed as a likely scenario at the FDNPS accident, highly influence the individual interactions and potentially lead the fuel degradation in non-prototypical directions. The detailed phenomenology of individual interactions and their influence on the transient and on the late phase of the severe accidents are also discussed.
Design of an integrated fuel processor for residential PEMFCs applications
NASA Astrophysics Data System (ADS)
Seo, Yu Taek; Seo, Dong Joo; Jeong, Jin Hyeok; Yoon, Wang Lai
KIER has been developing a novel fuel processing system to provide hydrogen rich gas to residential PEMFCs system. For the effective design of a compact hydrogen production system, each unit process for steam reforming and water gas shift, has a steam generator and internal heat exchangers which are thermally and physically integrated into a single packaged hardware system. The newly designed fuel processor (prototype II) showed a thermal efficiency of 78% as a HHV basis with methane conversion of 89%. The preferential oxidation unit with two staged cascade reactors, reduces, the CO concentration to below 10 ppm without complicated temperature control hardware, which is the prerequisite CO limit for the PEMFC stack. After we achieve the initial performance of the fuel processor, partial load operation was carried out to test the performance and reliability of the fuel processor at various loads. The stability of the fuel processor was also demonstrated for three successive days with a stable composition of product gas and thermal efficiency. The CO concentration remained below 10 ppm during the test period and confirmed the stable performance of the two-stage PrOx reactors.
LIGHT WATER REACTOR ACCIDENT TOLERANT FUELS IRRADIATION TESTING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carmack, William Jonathan; Barrett, Kristine Eloise; Chichester, Heather Jean MacLean
2015-09-01
The purpose of Accident Tolerant Fuels (ATF) experiments is to test novel fuel and cladding concepts designed to replace the current zirconium alloy uranium dioxide (UO2) fuel system. The objective of this Research and Development (R&D) is to develop novel ATF concepts that will be able to withstand loss of active cooling in the reactor core for a considerably longer time period than the current fuel system while maintaining or improving the fuel performance during normal operations, operational transients, design basis, and beyond design basis events. It was necessary to design, analyze, and fabricate drop-in capsules to meet the requirementsmore » for testing under prototypic LWR temperatures in Idaho National Laboratory's Advanced Test Reactor (ATR). Three industry led teams and one DOE team from Oak Ridge National Laboratory provided fuel rodlet samples for their new concepts for ATR insertion in 2015. As-built projected temperature calculations were performed on the ATF capsules using the BISON fuel performance code. BISON is an application of INL’s Multi-physics Object Oriented Simulation Environment (MOOSE), which is a massively parallel finite element based framework used to solve systems of fully coupled nonlinear partial differential equations. Both 2D and 3D models were set up to examine cladding and fuel performance.« less
On the Development of Fuel-Free Power Supply Sources on Pneumatic Energy Conversion Principles
NASA Astrophysics Data System (ADS)
Son, E. E.; Nikolaev, V. G.; Kudryashov, Yu. I.; Nikolaev, V. V.
2017-12-01
The article is devoted to the evaluation of capabilities and problems of creation of fuel-free power supply of isolated and autonomous Russian consumers of low (up to several hundreds kW) power based on the joint use of wind power plants and progressive systems of pneumatic accumulation and conversion of energy. The basic and functional schemes and component structure of the system prototype are developed and proposed, the evaluations of the expected technical and economic indicators of system are presented, and the ways of its further practical implementation are planned.
NASA Astrophysics Data System (ADS)
Crepaldi, M.; Chiolerio, A.; Tommasi, T.; Hidalgo, D.; Canavese, G.; Stassi, S.; Demarchi, D.; Pirri, F. C.
2013-05-01
Microbial Fuel Cells (MFCs) are energy sources which generate electrical charge thanks to bacteria metabolism. Although functionally similar to chemical fuel cells (both including reactants and two electrodes, and anode and cathode), they have substantial advantages, e.g. 1) operation at ambient temperature and pressure; 2) use of neutral electrolytes and avoidance of expensive catalysts (e.g. platinum); 3) operation using organic wastes. An MFC can be effectively used in environments where ubiquitous networking requires the wireless monitoring of energy sources. We then report on a simple monitoring system for MFC comprising an ultra-low-power Impulse-Radio Ultra-Wide-Band Transmitter (TX) operating in the low 0-960MHz band and a nanostructured piezoresistive pressure sensor connected to a discrete component digital read-out circuit. The sensor comprises an insulating matrix of polydimethylsiloxane and nanostructured multi-branched copper microparticles as conductive filler. Applied mechanical stress induces a sample deformation that modulates the mean distance between particles, i.e. the current flow. The read-out circuit encodes pressure as a pulse rate variation, with an absolute sensitivity to the generated MFC voltage. Pulses with variable repetition frequency can encode battery health: the pressure sensor can be directly connected to the cells membrane to read excessive pressure. A prototype system comprises two MFCs connected in series to power both the UWB transmitter which consumes 40μW and the read-out circuit. The two MFC generate an open circuit voltage of 1.0+/-0.1V. Each MFC prototype has a total volume of 0.34L and is formed by two circular Poly(methyl methacrylate) (PMMA) chambers (anode and cathode) separated by a cation exchange membrane. The paper reports on the prototype and measurements towards a final solution which embeds all functionalities within a MFC cell. Our solution is conceived to provide energy sources integrating energy management and health monitoring capabilities to sensor nodes which are not connected to the energy grid.
2013-12-13
Materials AT Anti-Thrust AVG Average BFV Bradley Fighting Vehicle CAT Caterpillar EOT End Of Test GEP General Engine Products HMMWV High...Vehicle ( BFV ), is a 14.8 liter, V8, turbocharged after-cooled diesel engine, producing approximately 600 hp, and 1225 lb-ft of torque at their respective
2009-11-01
modulating neurobio - logical responses to ethanol and drugs of abuse, including the striatum, nucleus accumbens (NAc), ventral tegmental area (VTA...critically required for the regulation of energy homeostasis in mice. Mol Cell Biol 22, 5027–5035. Rasmussen, D.D., Bryant, C.A., Boldt, B.M., Colasurdo
Fuel processing in integrated micro-structured heat-exchanger reactors
NASA Astrophysics Data System (ADS)
Kolb, G.; Schürer, J.; Tiemann, D.; Wichert, M.; Zapf, R.; Hessel, V.; Löwe, H.
Micro-structured fuel processors are under development at IMM for different fuels such as methanol, ethanol, propane/butane (LPG), gasoline and diesel. The target application are mobile, portable and small scale stationary auxiliary power units (APU) based upon fuel cell technology. The key feature of the systems is an integrated plate heat-exchanger technology which allows for the thermal integration of several functions in a single device. Steam reforming may be coupled with catalytic combustion in separate flow paths of a heat-exchanger. Reactors and complete fuel processors are tested up to the size range of 5 kW power output of a corresponding fuel cell. On top of reactor and system prototyping and testing, catalyst coatings are under development at IMM for numerous reactions such as steam reforming of LPG, ethanol and methanol, catalytic combustion of LPG and methanol, and for CO clean-up reactions, namely water-gas shift, methanation and the preferential oxidation of carbon monoxide. These catalysts are investigated in specially developed testing reactors. In selected cases 1000 h stability testing is performed on catalyst coatings at weight hourly space velocities, which are sufficiently high to meet the demands of future fuel processing reactors.
Planar array stack design aided by rapid prototyping in development of air-breathing PEMFC
NASA Astrophysics Data System (ADS)
Chen, Chen-Yu; Lai, Wei-Hsiang; Weng, Biing-Jyh; Chuang, Huey-Jan; Hsieh, Ching-Yuan; Kung, Chien-Chih
The polymer electrolyte membrane fuel cell (PEMFC) is one of the most important research topics in the new and clean energy area. The middle or high power PEMFCs can be applied to the transportation or the distributed power system. But for the small power application, it is needed to match the power requirement of the product generally. On the other hand, the direct methanol fuel cell (DMFC) is one of the most common type that researchers are interested in, but recently the miniature or the micro-PEMFCs attract more attention due to their advantages of high open circuit voltage and high power density. The objective of this study is to develop a new air-breathing planar array fuel cell stacked from 10 cells made by rapid prototyping technology which has potential for fast commercial design, low cost manufacturing, and even without converters/inverters for the system. In this paper, the main material of flow field plates is acrylonitrile-butadiene-styrene (ABS) which allows the fuel cell be mass-manufactured by plastic injection molding technology. The rapid prototyping technology is applied to construct the prototype and verify the practicability of the proposed stack design. A 10-cell air-breathing miniature PEMFC stack with a volume of 6 cm × 6 cm × 0.9 cm is developed and tested. Its segmented membrane electrode assembly (MEA) is designed with the active surface area of 1.3 cm × 1.3 cm in each individual MEA. The platinum loading at anode and cathode are 0.2 mg cm -2 and 0.4 mg cm -2, respectively. Results show that the peak power densities of the parallel connected and serial connected stack are 99 mW cm -2 at 0.425 V and 92 mW cm -2 at 4.25 V, respectively under the conditions of 70 °C relative saturated humidity (i.e., dew point temperature), ambient temperature and free convection air. Besides, the stack performance is increased under forced convection. If the cell surface air is blown by an electric fan, the peak power densities of parallel connected and serial connected stack are improved to 123 mW cm -2 at 0.425 V and 105 mW cm -2 at 5.25 V, respectively. The forced convection air can not only increases the oxygen diffusion rate at the air-breathing surface, but also enhance the uniformity of output voltage distribution. The performance obtained in this work reaches to the state-of-the-air of air-breathing planar PEMFC stack comparing to recent literatures. In this study, the different behavior of output performance at water-rich region and water-lean region is also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eudy, Leslie; Post, Matthew; Jeffers, Matthew
This report presents results of the American Fuel Cell Bus (AFCB) Project, a demonstration of fuel cell electric buses operating in the Coachella Valley area of California. The prototype AFCB, which was developed as part of the Federal Transit Administration's (FTA) National Fuel Cell Bus Program, was delivered to SunLine in November 2011 and was put in revenue service in mid-December 2011. Two new AFCBs with an upgraded design were delivered in June/July of 2014 and a third new AFCB was delivered in February 2015. FTA and the AFCB project team are collaborating with the U.S. Department of Energy (DOE)more » and DOE's National Renewable Energy Laboratory to evaluate the buses in revenue service. This report covers the performance of the AFCBs from July 2015 through December 2016.« less
The Varied Impacts of Energy Storage and Photovoltaics on Fossil Fuel Emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Studarus, Karen E.; Thayer, Brandon L.; Barrett, Emily L.
The emissions consequences of smart grid technologies can be significant but are not always intuitive. This is particularly true in the implementation of energy storage (ES) to enable the installation of solar photovoltaic (PV) systems. Using the web calculator at https://eqt.pnnl.gov and prototypical distribution feeders, this paper explores the COmore » $${_2}$$, SO$${_2}$$ and NO$${_x}$$ impacts of ES deployed with solar PV, where the energy storage system is operated to minimize load variation. Five regions of the country were explored using 15 prototypical distribution feeders and 2015 historical data. Impacts vary in direction, magnitude, and trend, and require a context-dependent screening method for faithful representation.« less
Prototype of Self-Sensing Magnetic Bearing for Liquid Nitrogen Pump
NASA Astrophysics Data System (ADS)
Eguchi, Seiji; Komori, Mochimitsu; Okuhata, Taro
Recently, pumps used in extremely low temperature such as 77K are found to be necessary. They are expected to use for rocket engines and hydrogen stations for fueled vehicles. Generally, conventional magnetic bearings do not work in the extremely low temperature. Therefore, we have studied magnitic bearings for these pumps. Self-sensing technique is tried to apply to magnetic bearings. If self-sensing magnetic bearings were made, we could apply the self-sensing magnetic bearing to liquid nitrogen pumps. In this paper, we propose a prototype self-sensing magnetic bearing and study the static and dynamic characteristics. The dynamic characteristics in the air and in liquid nitrogen are also discussed.
Development and Demonstration of a 25 Watt Thermophotovoltaic Power Source for a Hybrid Power System
NASA Technical Reports Server (NTRS)
Doyle, Edward; Shukla, Kailash; Metcalfe, Christopher
2001-01-01
The development of a propane-fueled, 25 W thermophotovoltaic (TPV) power source for use in a hybrid power system is described. The TPV power source uses a platinum emitting surface with an anti-reflective coating to radiate to gallium antimonide photocells, which converts the radiation to electric power. The development program started with the design and fabrication of an engineering prototype system. This was used as a component development vehicle to develop the technologies for the various components. A 25 W demonstration prototype was then designed and fabricated using the most advanced component approaches. The designs and test results from this development program are discussed.
Safety, Codes, and Standards | Hydrogen and Fuel Cells | NREL
to develop and test hydrogen sensor technologies. In addition to partnering with organizations in the and Validation of Prototype Hydrogen Sensors, P.K. Sekhar, J. Zhou, M.B. Post, L. Woo, W.J. Buttner , M.B. Post, C. Rivkin, R. Burgess, and W.J. Buttner, International Journal of Hydrogen Energy (March
NASA Astrophysics Data System (ADS)
Barber, Duncan Henry
During some postulated accidents at nuclear power stations, fuel cooling may be impaired. In such cases, the fuel heats up and the subsequent increased fission-gas release from the fuel to the gap may result in fuel sheath failure. After fuel sheath failure, the barrier between the coolant and the fuel pellets is lost or impaired, gases and vapours from the fuel-to-sheath gap and other open voids in the fuel pellets can be vented. Gases and steam from the coolant can enter the broken fuel sheath and interact with the fuel pellet surfaces and the fission-product inclusion on the fuel surface (including material at the surface of the fuel matrix). The chemistry of this interaction is an important mechanism to model in order to assess fission-product releases from fuel. Starting in 1995, the computer program SOURCE 2.0 was developed by the Canadian nuclear industry to model fission-product release from fuel during such accidents. SOURCE 2.0 has employed an early thermochemical model of irradiated uranium dioxide fuel developed at the Royal Military College of Canada. To overcome the limitations of computers of that time, the implementation of the RMC model employed lookup tables to pre-calculated equilibrium conditions. In the intervening years, the RMC model has been improved, the power of computers has increased significantly, and thermodynamic subroutine libraries have become available. This thesis is the result of extensive work based on these three factors. A prototype computer program (referred to as SC11) has been developed that uses a thermodynamic subroutine library to calculate thermodynamic equilibria using Gibbs energy minimization. The Gibbs energy minimization requires the system temperature (T) and pressure (P), and the inventory of chemical elements (n) in the system. In order to calculate the inventory of chemical elements in the fuel, the list of nuclides and nuclear isomers modelled in SC11 had to be expanded from the list used by SOURCE 2.0. A benchmark calculation demonstrates the improvement in agreement of the total inventory of those chemical elements included in the RMC fuel model to an ORIGEN-S calculation. ORIGEN-S is the Oak Ridge isotope generation and depletion computer program. The Gibbs energy minimizer requires a chemical database containing coefficients from which the Gibbs energy of pure compounds, gas and liquid mixtures, and solid solutions can be calculated. The RMC model of irradiated uranium dioxide fuel has been converted into the required format. The Gibbs energy minimizer has been incorporated into a new model of fission-product vaporization from the fuel surface. Calculated release fractions using the new code have been compared to results calculated with SOURCE IST 2.0P11 and to results of tests used in the validation of SOURCE 2.0. The new code shows improvements in agreement with experimental releases for a number of nuclides. Of particular significance is the better agreement between experimental and calculated release fractions for 140La. The improved agreement reflects the inclusion in the RMC model of the solubility of lanthanum (III) oxide (La2O3) in the fuel matrix. Calculated lanthanide release fractions from earlier computer programs were a challenge to environmental qualification analysis of equipment for some accident scenarios. The new prototype computer program would alleviate this concern. Keywords: Nuclear Engineering; Material Science; Thermodynamics; Radioactive Material, Gibbs Energy Minimization, Actinide Generation and Depletion, FissionProduct Generation and Depletion.