Effect of vulcanization temperature and humidity on the properties of RTV silicone rubber
NASA Astrophysics Data System (ADS)
Wu, Xutao; Li, Xiuguang; Hao, Lu; Wen, Xishan; Lan, Lei; Yuan, Xiaoqing; Zhang, Qingping
2017-06-01
In order to study the difference in performance of room temperature vulcanized (RTV) silicone rubber in vulcanization environment with different temperature and humidity, static contact angle method, FTIR and TG is utilized to depict the properties of hydrophobicity, transfer of hydrophobicity, functional groups and thermal stability of RTV silicone rubber. It is found that different vulcanization conditions have effects on the characteristics of RTV silicone rubber, which shows that the hydrophobicity of RTV silicone rubber changes little with the vulcanization temperature but a slight increase with the vulcanization humidity. Temperature and humidity have obvious effects on the hydrophobicity transfer ability of RTV silicone rubber, which is better when vulcanization temperature is 5°C or vulcanization humidity is 95%. From the Fourier transform infrared spectroscopy, it can be concluded that humidity and temperature of vulcanization conditions have great effect on the functional groups of silicone rubber, and vulcanization conditions also have effect on thermal stability of RTV silicone rubber. When vulcanization temperature is 5°C or vulcanization humidity is 15% or 95%, the thermal stability of silicone rubber becomes worse.
Positron Annihilation Spectroscopy during physical aging of carbon-black filled rubber composites
NASA Astrophysics Data System (ADS)
Jobando, Vincent; Wang, Jingyi; Quarles, C. A.
2004-10-01
We have used positron annihilation spectroscopy to investigate the relaxation behavior of vulcanized and un-vulcanized rubber-carbon black composites. The samples were studied at temperatures above their glassy transitions. Changes in o-Ps intensity and S-parameter are indicative of the structural relaxation process. We have found that at room temperature, both vulcanized and un-vulcanized rubber showed no changes after ageing for about two months. While within the same period, un-vulcanized samples heated at 60^oC and allowed to age at room -temperature showed a decrease in o-Ps intensity and S-parameter. The o-Ps lifetime also decreased after this heat treatment for the un-vulcanized samples while the vulcanized ones remained unchanged. The changes seen were reversible however when we stopped heating the samples. We proposed that heat disordered the system and on cooling, rubber molecules formed more ordered regions, which we interpreted as crystallization. Vulcanized samples remained unchanged. We also found out that free volume decreases during physical deformation of pure rubber, but rubber with carbon black showed a significant rise in free volume. The lifetimes however remained unchanged.
Study of gamma spectrometry laboratory measurement in various sediment and vulcanic rocks
NASA Astrophysics Data System (ADS)
Nurhandoko, Bagus Endar B.; Kurniadi, Rizal; Rizka Asmara Hadi, Muhammad; Rizal Komara, Insan
2017-01-01
Gamma-ray spectroscopy is the quantitative study of the energy spectra of gamma-ray sources. This method is powerful to characterize some minerals, especially to differentiate rocks which contains among Potassium, Uranium, dan Thorium. Rock contains radioactive material which produce gamma rays in various energies and intensities. When these emissions are detected and analyzed with a spectroscopy system, a gamma-ray energy spectrum can be used as indicator for mineral content of rock. Some sediment and vulcanic rock have been collected from East Java Basin. Samples are ranging from Andesite vulcanics, Tuff, Shale, various vulcanic clay and Alluvial clay. We present some unique characteristics of gamma spectrometry in various sedimentar and vulcanic rocks of East Java Basins. Details contents of gamma ray spectra give enrichments to characterize sample of sediment and vulcanic in East Java. Weathered vulcanic clay has lower counting rate of gamma ray than alluvial deltaic clay counting rate. Therefore, gamma spectrometrometry can be used as tool for characterizing the enviroment of clay whether vulcanic or alluvial-deltaic. This phenomena indicates that gamma ray spectrometry can be as tool for characterizing the clay whether it tends to Smectite or Illite
Reinforcement of dynamically vulcanized EPDM/PP elastomers using organoclay fillers
Tsai, Yuhsin; Wu, Jyh-Horng; Wu, Yao-Tsu; Li, Chia-Hao; Leu, Ming-Tsong
2008-01-01
Dynamically vulcanized EPDM/PP (ethylene-propylene-diene/polypropylene) elastomers reinforced with various amounts of organoclay were prepared using octylphenol-formaldehyde resin and stannous chloride dehydrate as vulcanizing agents. The effects of organoclay on vulcanization characteristics, rheological behavior, morphology, thermal stability and thermomechanical properties were studied. Experimental results showed that organoclay affected neither the vulcanization process nor the degree of vulcanization chemically. X-ray analysis revealed that these organoclay-filled thermoplastic vulcanizates (TPVs) were intercalated. With respect to the mechanical properties, organoclay increased both the strength and degree of elongation of TPVs. The morphological observation of fractured surfaces suggested that organoclay acted as a nucleating agent in TPVs, improving their mechanical properties. However, adding organoclay reduced the thermal stability of TPVs by decomposing the swelling agents in the organoclay. PMID:27878033
Reinforcement of dynamically vulcanized EPDM/PP elastomers using organoclay fillers.
Tsai, Yuhsin; Wu, Jyh-Horng; Wu, Yao-Tsu; Li, Chia-Hao; Leu, Ming-Tsong
2008-12-01
Dynamically vulcanized EPDM/PP (ethylene-propylene-diene/polypropylene) elastomers reinforced with various amounts of organoclay were prepared using octylphenol-formaldehyde resin and stannous chloride dehydrate as vulcanizing agents. The effects of organoclay on vulcanization characteristics, rheological behavior, morphology, thermal stability and thermomechanical properties were studied. Experimental results showed that organoclay affected neither the vulcanization process nor the degree of vulcanization chemically. X-ray analysis revealed that these organoclay-filled thermoplastic vulcanizates (TPVs) were intercalated. With respect to the mechanical properties, organoclay increased both the strength and degree of elongation of TPVs. The morphological observation of fractured surfaces suggested that organoclay acted as a nucleating agent in TPVs, improving their mechanical properties. However, adding organoclay reduced the thermal stability of TPVs by decomposing the swelling agents in the organoclay.
NASA Astrophysics Data System (ADS)
Lee, Su-Yoon; Jeong, Ye-Jin; Chae, So-Ryong; Yeon, Kyeong-Ho; Lee, Yunkyu; Kim, Chan-Soo; Jeong, Nam-Jo; Park, Jin-Soo
2016-04-01
Performance of graphite foil electrodes coated by porous carbon black (i.e., Vulcan) was investigated in comparison with metal electrodes for reverse electrodialysis (RED) application. The electrode slurry that was used for fabrication of the porous carbon-coated graphite foil is composed of 7.2 wt% of carbon black (Vulcan X-72), 0.8 wt% of a polymer binder (polyvinylidene fluoride, PVdF), and 92.0 wt% of a mixing solvent (dimethylacetamide, DMAc). Cyclic voltammograms of both the porous carbon (i.e., Vulcan)-coated graphite foil electrode and the graphite foil electrode without Vulcan showed good reversibility in the hexacyanoferrate(III) (i.e., Fe(CN)63-) and hexacyanoferrate(II) (i.e., Fe(CN)64-) redox couple and 1 M Na2SO4 at room temperature. However, anodic and cathodic current of the Vulcan-coated graphite foil electrode was much higher than those of the graphite foil electrode. Using a bench-scale RED stack, the current-voltage polarization curve of the Vulcan-coated graphite electrode was compared to that of metal electrodes such as iridium (Ir) and platinum (Pt). From the results, it was confirmed that resistance of four different electrodes increased with the following order: the Vulcan-coated graphite foil
NASA Astrophysics Data System (ADS)
Milani, Gabriele; Milani, Federico
2012-12-01
The main problem in the industrial production process of thick EPM/EPDM elements is constituted by the different temperatures which undergo internal (cooler) and external regions. Indeed, while internal layers remain essentially under-vulcanized, external coating is always over-vulcanized, resulting in an overall average tensile strength insufficient to permit the utilization of the items in several applications where it is required a certain level of performance. Possible ways to improve rubber output mechanical properties include a careful calibration of exposition time and curing temperature in traditional heating or a vulcanization through innovative techniques, such as microwaves. In the present paper, a comprehensive numerical model able to give predictions on the optimized final mechanical properties of vulcanized 2D and 3D thick rubber items is presented and applied to a meaningful example of engineering interest. A detailed comparative numerical study is finally presented in order to establish pros and cons of traditional vulcanization vs microwaves curing.
NASA Astrophysics Data System (ADS)
Özdemir, Tonguç
2008-06-01
In this study, the radiation degradation/modification of the vulcanized EPDM and the effects of dose rate, peroxide type/content in vulcanization system and ENB content of EPDM were studied to investigate the change in the extend of the modification/degradation of the mechanical properties of vulcanized EPDM via gamma irradiation. In addition, thermal, dynamic mechanical, ATR-FTIR, TGA, TGA-FTIR tests were carried out to understand the change of properties of vulcanized EPDM via irradiation. Samples were irradiated with two different dose rates of 1280 and 64.6 Gy/h. Total dose of irradiation was up to 184 kGy. The FTIR spectral analysis showed structural changes of EPDM via irradiation. It was observed that the dose rate changed the mechanical properties with different extends. The change of ENB content of EPDM and peroxide type and content in vulcanization system affect extend of the modification/degradation of the EPDM's properties.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-16
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER13-1273-000] Vulcan/BN Geothermal Power Company; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for... Vulcan/BN Geothermal Power Company's application for market-based rate authority, with an accompanying...
NASA Astrophysics Data System (ADS)
Du Nguyen, Huy; Thuy Luyen Nguyen, T.; Nguyen, Khac Manh; Ha, Thuc Huy; Hien Nguyen, Quoc
2015-01-01
Pt nanoparticles on vulcan XC-72R support (Pt/vulcan XC-72R) were prepared by the impregnation-reduction method. The Pt content, the morphological properties and the electrochemical catalysis of the Pt/vulcan XC 72R materials have been investigated by ICP-OES analysis, FESEM, TEM, and cyclic voltammetry. These materials were then used as catalyst for hydrogen evolution reaction at the cathode of proton exchange membrane (PEM) water electrolysers. The best catalyst was Pt/vulcan XC-72R prepared by the impregnation-reduction method which is conducted in two reducing steps with the reductants of sodium borohydride and ethylene glycol, respectively. The current density of PEM water electrolysers reached 1.0 A cm-2 when applying a voltage of 2.0 V at 25 °C.
EXTERIOR OVERVIEW, LOOKING NORTH, OF THIS 400' DEEP LIMESTONE QUARRY ...
EXTERIOR OVERVIEW, LOOKING NORTH, OF THIS 400' DEEP LIMESTONE QUARRY PIT ('THE OLD PIT') WITH LEDGE PREPARED FOR LIMESTONE EXTRACTION. AN ELEVEN-HOLE SHOT WILL DISLODGE APPROXIMATELY 25,000 TONS OF LIMESTONE WHICH, AFTER LOADING AND CRUSHING, WILL BE USED FOR ROAD CONSTRUCTION. THE CALERA QUARRY IS ONE OF FOUR ACTIVE VULCAN MATERIALS COMPANY QUARRIES IN THE DISTRICT. VULCAN MATERIALS, A FORTUNE 500 FIRM, ESTABLISHED IN BIRMINGHAM IN 1906 AS BIRMINGHAM SLAG COMPANY, VULCAN MATERIALS IS THE NATION'S FOREMOST PRODUCER OF CONSTRUCTION AGGREGATE AND A LEADING CHEMICALS MANUFACTURER. - Vulcan Material Company, Calera Quarry, 1614 Highway 84, Calera, Shelby County, AL
EXTERIOR OVERVIEW, LOOKING NORTH, OF THIS 400' DEEP LIMESTONE QUARRY ...
EXTERIOR OVERVIEW, LOOKING NORTH, OF THIS 400' DEEP LIMESTONE QUARRY PIT ("THE OLD PIT") WITH LEDGE PREPARED FOR LIMESTONE EXTRACTION. AN ELEVEN-HOLE SHOT WILL DISLODGE APPROXIMATELY 25,000 TONS OF LIMESTONE WHICH, AFTER LOADING AND CRUSHING, WILL BE USED FOR ROAD CONSTRUCTION. THE CALERA QUARRY IS ONE OF FOUR ACTIVE VULCAN MATERIALS COMPANY QUARRIES IN THE DISTRICT. VULCAN MATERIALS, A FORTUNE 500 FIRM, ESTABLISHED IN BIRMINGHAM IN 1906 AS BIRMINGHAM SLAG COMPANY, VULCAN MATERIALS IS THE NATION'S FOREMOST PRODUCER OF CONSTRUCTION AGGREGATE AND A LEADING CHEMICALS MANUFACTURER - Vulcan Material Company, Calera Quarry, 1614 Highway 84, Calera, Shelby County, AL
Development of optical laser balloon and drainage from radiation vulcanized natural rubber latex
NASA Astrophysics Data System (ADS)
Shimamura, Yoshiyuki
Rubber film made of radiation vulcanized natural rubber latex (RVNRL) has better transparency and lower toxicity compared with sulfur-vulcanized latex film. Optical laser balloon (optical endoscopical balloon) and drainage were developed by using RVNRL. An endoscope was equipped with a saline-filled latex rubber balloon at its tip to displace contaminating blood, bile, or gastric contents during operative portoscopy, biliary endoscopy, or upper gastrointestinal endoscopy. The transmission of Nd-Yag laser through the balloon is 98%, higher than the sulfur-vulcanized latex rubber (75%). High transparency of the drainage bag facilitated easy observation of discharged fluids without detaching the bag from the tube.
[Oxygen plasma-vulcanized deformable polydimethylsiloxane sheet culture substrates].
Zhang, Yiyi; Tao, Zulai
2003-06-01
A method of preparing deformable polydimethylsiloxane sheet culture substrates by oxygen plasma vulcanization was developed. As compared with the traditional heating vulcanization method, the substrates prepared in this way have hydrophilic surfaces, the adhesion and spreading of cells both occur quickly, and the wrinkling deformation of substrates develops quickly, too. In addition, the changes of wrinkles during treatment of cytochalasin D were observed, and the result shows that this technique has high temporal resolution.
Historical Doctrinal Publications of the U.S. Army; a Union List
1983-02-01
27FI/2 20 Mar 78 Soldier’s Manual: Vulcan/Faar Repairer MOSC 27F, Skill Levels 1 & 2 AS 9-27F3 20 Mar 78 Soldier’s Manual: Vulcan/Faar Repairer MOSC ...27F (Skill Level 3) AS 9-27F/CM 20 Mar 78 Commander’s Manual: Vulcan/Faar Repairer, MOSC 27F AS 9-27GI/2 20 Mar 78 Solder’s Manual: Chaparral/Redeye
High reactive sulphide chemically supported on silica surface to prepare functional nanoparticle
NASA Astrophysics Data System (ADS)
Chen, Lijuan; Guo, Xiaohui; Jia, Zhixin; Tang, Yuhan; Wu, Lianghui; Luo, Yuanfang; Jia, Demin
2018-06-01
A solid-phase preparation method was applied to obtain a novel, green and effective functional nanoparticle, silica-supported sulfur monochloride (silica-s-S2Cl2), by the chemical reaction between chlorine atom and silicon hydroxyl on the silica surface. Through this chemical reaction, silica surface supported with high content of sulfur, and the functional nanoparticles can not only vulcanize the rubber instead of sulfur or other vulcanizing agent with high performance, but also improve the filler-rubber interaction as a modifier due to the improved modification effect. 29Si NMR, Raman spectroscopy, Element analysis and TGA confirm that the sulfur monochloride is chemically bonded on the silica surface. Cure properties measurement, morphology of filler dispersion, mechanical properties measurement, immobilized polymer layer and oxidation induction time increment together show that the novel vulcanizing agent silica-s-S2Cl2 instead of sulfur in rubber vulcanization gives rise to significant improvement in the crosslinking density and the interfacial adhesion between silica particles and the rubber matrix, which is on account of the promoted vulcanizing on the functional silica nanoparticles surface with the supported sulfur.
Microwave treatment of vulcanized rubber
Wicks, George G [Aiken, SC; Schulz, Rebecca L [Aiken, SC; Clark, David E [Gainesville, FL; Folz, Diane C [Gainesville, FL
2002-07-16
A process and resulting product is provided in which a vulcanized solid particulate, such as vulcanized crumb rubber, has select chemical bonds broken by microwave radiation. The direct application of microwaves in combination with uniform heating of the crumb rubber renders the treated crumb rubber more suitable for use in new rubber formulations. As a result, larger particle sizes and/or loading levels of the treated crumb rubber can be used in new rubber mixtures to produce recycled composite products with good properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, Shang-Min; Grosheintz, Luc; Kitzmann, Daniel
We present an open-source and validated chemical kinetics code for studying hot exoplanetary atmospheres, which we name VULCAN. It is constructed for gaseous chemistry from 500 to 2500 K, using a reduced C–H–O chemical network with about 300 reactions. It uses eddy diffusion to mimic atmospheric dynamics and excludes photochemistry. We have provided a full description of the rate coefficients and thermodynamic data used. We validate VULCAN by reproducing chemical equilibrium and by comparing its output versus the disequilibrium-chemistry calculations of Moses et al. and Rimmer and Helling. It reproduces the models of HD 189733b and HD 209458b by Mosesmore » et al., which employ a network with nearly 1600 reactions. We also use VULCAN to examine the theoretical trends produced when the temperature–pressure profile and carbon-to-oxygen ratio are varied. Assisted by a sensitivity test designed to identify the key reactions responsible for producing a specific molecule, we revisit the quenching approximation and find that it is accurate for methane but breaks down for acetylene, because the disequilibrium abundance of acetylene is not directly determined by transport-induced quenching, but is rather indirectly controlled by the disequilibrium abundance of methane. Therefore we suggest that the quenching approximation should be used with caution and must always be checked against a chemical kinetics calculation. A one-dimensional model atmosphere with 100 layers, computed using VULCAN, typically takes several minutes to complete. VULCAN is part of the Exoclimes Simulation Platform (ESP; exoclime.net) and publicly available at https://github.com/exoclime/VULCAN.« less
NASA Astrophysics Data System (ADS)
Gurney, K. R.; Zhou, Y.; Geethakumar, S.; Godbole, A.; Mendoza, D. L.; Vaidhyanathan, M.; Sahni, N.
2009-12-01
The Vulcan Project has quantified 2002 fossil fuel CO2 for the US at the sub-county/hourly scale and is a key component of attributing CO2 fluxes within the North American Carbon Program. Vulcan approached quantification of CO2 emissions by leveraging information already contained within regulatory and monitoring agencies including the US EPA’s Acid Rain Program, the EPA’s National Emissions Inventory for the assessment of nationally regulated air pollution, the Department of Energy, the U.S. Census and the Department of Transportation. By utilizing the inventory emissions of carbon monoxide combined with fuel/device-specific emission factors, we have calculated CO2 emissions for industrial point sources, power plants, mobile sources, residential and commercial sectors with information on fuel used and source classification information. In this presentation, I provide critical recent advances in the Vulcan Project with particular emphasis on our contribution to the NACP mid-continent intensive campaign. Version 1.2 of the Vulcan fossil fuel CO2 emissions inventory includes the 2008 US Census road atlas, overcoming many of the missing roads and links that were prevalent in previous road atlas releases. This offers better spatial allocation of the onroad emissions. Figure 1 shows the improved road layer density for the MCI study region. Furthermore the temporal dimension of onroad emissions have been improved through the use of hourly traffic monitoring data at roughly 6000 monitoring locations across the US. The residential and commercial sector emissions now have hourly time structure via a spatially explicit heating degree day calculation utilizing the North American Regional Reanalysis temperature output. Finally, we have generated a multiyear (1997-2008) data product for the MCI region through use of Energy Information Administration state-level fuel sales data. Figure 1. improved road density via utilization of the new 2008 US census road layer. Left: previous Vulcan release road density; Right: latest Vulcan release road density
NASA Astrophysics Data System (ADS)
Gurney, K. R.; Chandrasekaran, V.; Mendoza, D. L.; Geethakumar, S.
2010-12-01
The Vulcan Project has estimated United States fossil fuel CO2 emissions at the hourly time scale and at spatial scales below the county level for the year 2002. Vulcan is built from a wide variety of observational data streams including regulated air pollutant emissions reporting, traffic monitoring, energy statistics, and US census data. In addition to these data sets, Vulcan relies on a series of modeling assumptions and constructs to interpolate in space, time and transform non-CO2 reporting into an estimate of CO2 combustion emissions. The recent version 2.0 of the Vulcan inventory has produced advances in a number of categories with particular emphasis on improved temporal structure. Onroad transportation emissions now avail of roughly 5000 automated traffic count monitors allowing for much improved diurnal and weekly time structure in our onroad transportation emissions. Though the inventory shows excellent agreement with independent national-level CO2 emissions estimates, uncertainty quantification has been a challenging task given the large number of data sources and numerous modeling assumptions. However, we have now accomplished a complete uncertainty estimate across all the Vulcan economic sectors and will present uncertainty estimates as a function of space, time, sector and fuel. We find that, like the underlying distribution of CO2 emissions themselves, the uncertainty is also strongly lognormal with high uncertainty associated with a relatively small number of locations. These locations typically are locations reliant upon coal combustion as the dominant CO2 source. We will also compare and contrast Vulcan fossil fuel CO2 emissions estimates against estimates built from DOE fuel-based surveys at the state level. We conclude that much of the difference between the Vulcan inventory and DOE statistics are not due to biased estimation but mechanistic differences in supply versus demand and combustion in space/time.
NASA Astrophysics Data System (ADS)
Basak, Ganesh C.; Bandyopadhyay, Abhijit; Neogi, Sudarsan; Bhowmick, Anil K.
2011-01-01
Vulcanized ethylene propylene diene polymethylene (EPDM) rubber surface was treated in a radio frequency capacitatively coupled low pressure argon/oxygen plasma to improve adhesion with compounded natural rubber (NR) during co-vulcanization. The plasma modified surfaces were analyzed by means of contact angle measurement, surface energy, attenuated total reflection-infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, energy dispersive X-ray sulfur mapping and atomic force microscopy. Several experimental variables such as plasma power, length of exposure time and composition of the argon-oxygen gas mixture were considered. It was delineated that plasma treatment changed both surface composition and roughness, and consequently increased peel strength. The change in surface composition was mainly ascribed to the formation of C-O and -Cdbnd O functional groups on the vulcanized surfaces. A maximum of 98% improvement in peel strength was observed after plasma treatment.
NASA Astrophysics Data System (ADS)
El Labban, A.; Mousseau, P.; Bailleul, J. L.; Deterre, R.
2007-04-01
Although numerical simulation has proved to be a useful tool to predict the rubber vulcanization process, few applications in the process control have been reported. Because the end-use rubber properties depend on the state of cure distribution in the parts thickness, the prediction of the optimal distribution remains a challenge for the rubber industry. The analysis of the vulcanization process requires the determination of the thermal behavior of the material and the cure kinetics. A nonisothermal vulcanization model with nonisothermal induction time is used in this numerical study. Numerical results are obtained for natural rubber (NR) thick-section part curing. A controlled gradient of the state of cure in the part thickness is obtained by a curing process that consists not only in mold heating phase, but also a forced convection mold cooling phase in order to stop the vulcanization process and to control the vulcanization distribution. The mold design that allows this control is described. In the heating phase, the state of cure is mainly controlled by the chemical kinetics (the induction time), but in the cooling phase, it is the heat diffusion that controls the state of cure distribution. A comparison among different cooling conditions is shown and a good state of cure gradient control is obtained.
Chonkaew, Wunpen; Minghvanish, Withawat; Kungliean, Ulchulee; Rochanawipart, Nutthaya; Brostow, Witold
2011-03-01
Two silane coupling agents were used for hydrolysis-condensation reaction modification of nanosilica surfaces. The surface characteristics were analyzed using Fourier transform infrared spectroscopy (FTIR). The vulcanization kinetics of natural rubber (NR) + silica composites was studied and compared to behavior of the neat NR using differential scanning calorimetry (DSC) in the dynamic scan mode. Dynamic mechanical analysis (DMA) was performed to evaluate the effects of the surface modification. Activation energy E(a) values for the reaction are obtained. The presence of silica, modified or otherwise, inhibits the vulcanization reaction of NR. The neat silica containing system has the lowest cure rate index and the highest activation energy for the vulcanization reaction. The coupling agent with longer chains causes more swelling and moves the glass transition temperature T(g) downwards. Below the glass transition region, silica causes a lowering of the dynamic storage modulus G', a result of hindering the cure reaction. Above the glass transition, silica-again modified or otherwise-provides the expected reinforcement effect.
Method for the addition of vulcanized waste rubber to virgin rubber products
Romine, Robert A.; Snowden-Swan, Lesley J.
1997-01-01
The invention is a method of using enzymes from thiophyllic microbes for selectively breaking the sulfur rubber cross-link bonds in vulcanized rubber. The process is halted at the sulfoxide or sulfone step so that a devulcanized layer is reactive with virgin rubber.
Combined effects of microwaves, electron beams and polyfunctional monomers on rubber vulcanization.
Manaila, Elena; Martin, Diana; Stelescu, Daniela Zuga; Craciun, Gabriela; Ighigeanu, Daniel; Matei, Constantin
2009-01-01
This paper presents comparative results obtained by conventional vulcanization with benzoyl peroxide (CV-BP), separate electron beam vulcanization (EB-V) and simultaneous electron beam and microwave vulcanization (EB+MW-V) applied to two kind of rubber samples: EVA (ethylene vinyl acetate) rubber-sample (EVA-sample) and EPDM (ethylene-propylene terpolymer) rubber-sample (EPDM-sample). The EVA-samples contain 61.54% EVA Elvax 260, 30.77% carbon black, 1.85% TAC (triallylcyanurate) polyfunctional monomer and 5.84% filler (zinc oxide, stearic acid, polyethylene glycol and antioxidant). The EPDM-samples contain 61.54% EPDM Nordel 4760, 30.77% carbon black, 1.85% TMPT (trimethylopropane trimethacrylate) polyfunctional monomer and 5.84% filler (zinc oxide, stearic acid, polyethylene glycol and antioxidant). The rubber samples designed for different vulcanization methods were obtained from raw rubber mixtures, as compressed sheets of 2 mm in the polyethylene foils to minimize oxidation. For EB and EB + MW treatments the sheets were cut in rectangular shape 0.15 x 0.15 m2. The physical properties of samples obtained by CV-BP EV-Vand EB + MW-V methods were evaluated by measuring the tearing strength, residual elongation, elongation at break, tensile strength, 300% modulus, 100% modulus, elasticity and hardness. The obtained results demonstrate an improvement of rubber several properties obtained by EB and EB + MW processing as compared to classical procedure using benzoyl peroxide.
Gomez, Iñaki; Leonet, Olatz; Blazquez, J Alberto; Mecerreyes, David
2016-12-20
Lithium-sulfur batteries are among the most promising next-generation battery systems due to the high capacity of sulfur as cathodic material. Beyond its interesting intrinsic properties, sulfur possesses a very low conductivity and complex electrochemistry, which involves the high solubility of the lithium sulfides in the electrolyte. These two characteristics are at the core of a series of limitations of its performance as active cathode material, which leads to batteries with low cyclability. Recently, inverse vulcanized sulfur was shown to retain capacity far better than elemental sulfur, leading to batteries with excellent cyclability. Nevertheless, the diene co-monomers used so far in the inverse vulcanization process are man-made molecules. Herein, a tentative work on exploring inverse vulcanization using two naturally available monomers, diallyl sulfide and myrcene, is presented. The inverse vulcanization of sulfur was successfully completed, and the resulting polymers were characterized by FTIR, NMR spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. Afterwards these polymers were tested as cathodic materials in lithium-sulfur cells. The sulfur-natural dienes materials exhibited high capacity at different C rates and high lifetime over 200 cycles with very high capacity retention at a moderate C rate of C/5. Altogether, these materials made from inexpensive and abundant chemicals are an excellent option as sustainable materials for electrochemical energy storage. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Method for the addition of vulcanized waste rubber to virgin rubber products
Romine, R.A.; Snowden-Swan, L.J.
1997-01-28
The invention is a method of using enzymes from thiophyllic microbes for selectively breaking the sulfur rubber cross-link bonds in vulcanized rubber. The process is halted at the sulfoxide or sulfone step so that a devulcanized layer is reactive with virgin rubber. 8 figs.
NASA Astrophysics Data System (ADS)
Saputra, A. H.; Juneva, S.; Sari, T. I.; Cifriadi, A.
2018-04-01
Dimethyl ether can cause degradation of the rubber material seal in some applications. In order to use of natural rubber in industry, research about a blending of natural rubber (NR) and nitrile rubber (NBR) to produce rubber to meet the standard seal material application were conducted. This study will observe the degradation mechanisms that occur in the blending natural rubber and nitrile rubber (NR/NBR) by dimethyl ether. Nitrile rubber types used in this study is medium quality nitrile rubber with 33% of acrylonitrile content (NBR33). The observed parameters are percent change in mass, mechanical properties and surface morphology. This study is limited to see the effect of variation vulcanized blending ratio (NR/NBR33) against to swelling. The increase of nitrile rubber (NBR33) ratio of blending rubber vulcanized can reduce the tensile strength and elongation. The best elastomer variation was obtained after comparing with the standard feasibility material of seal is rubber vulcanized blending (NR/NBR33) with ratio 40:60 NR: NBR.
Riba Ruiz, Jordi-Roger; Canals, Trini; Cantero, Rosa
2017-01-01
Ethylene propylene diene monomer (EPDM) rubber is widely used in a diverse type of applications, such as the automotive, industrial and construction sectors among others. Due to its appealing features, the consumption of vulcanized EPDM rubber is growing significantly. However, environmental issues are forcing the application of devulcanization processes to facilitate recovery, which has led rubber manufacturers to implement strict quality controls. Consequently, it is important to develop methods for supervising the vulcanizing and recovery processes of such products. This paper deals with the supervision process of EPDM compounds by means of Fourier transform mid-infrared (FT-IR) spectroscopy and suitable multivariate statistical methods. An expedited and nondestructive classification approach was applied to a sufficient number of EPDM samples with different applied processes, that is, with and without application of vulcanizing agents, vulcanized samples, and microwave treated samples. First the FT-IR spectra of the samples is acquired and next it is processed by applying suitable feature extraction methods, i.e., principal component analysis and canonical variate analysis to obtain the latent variables to be used for classifying test EPDM samples. Finally, the k nearest neighbor algorithm was used in the classification stage. Experimental results prove the accuracy of the proposed method and the potential of FT-IR spectroscopy in this area, since the classification accuracy can be as high as 100%.
NASA Astrophysics Data System (ADS)
Sheehan, William
1996-05-01
The first director of the Washburn Observatory, Watson began his career at the University of Michigan, where he discovered more than a score of asteroids and planned (but did not live to carry out) the first search for a trans-Neptunian planet. He became a strong supporter of Le Verrier's hypothesis that a planet closer to the Sun than Mercury (Vulcan) was causing the anomalous advance of 38" of arc per century of Mercury's perihelion, and mounted a special search for Vulcan at the July 29, 1878 total eclipse, at Separation, Wyoming, recording two strange reddish stars near the Sun which he assumed were intra-Mercurial bodies. With the exception of Lewis Swift at Denver, Colorado, no one else confirmed his observations, and they were sharply criticized by Clinton College (New York) astronomer C. H. F. Peters. Nevertheless, Watson remained absolutely convinced of what he had seen, and his move from Ann Arbor to Madison in 1879 was partly motivated by the prospects of obtaining better instruments with which to further his search for Vulcan, which became the obsession of his later years. He was in the process of constructing an underground solar observatory from which he hoped to see stars near the Sun in broad daylight when he died, unexpectedly, in 1880. Though it is now known that Vulcan does not exist, Watson's observations at the July 1878 eclipse remain problematic; it is probable that he observed at least one and possibly two pygmy comets in the neighborhood of the Sun.
2015-07-21
typically degrade quickly and are not capable of forming new bonds. In the 1930s it was already found that vulcanized rubber could self - heal in the...To overcome this limitation, Diesendruck et al. demonstrated Scheme 1. Mechanochemical scission and self - healing in vulcanized rubber . Long-lived...effective autonomic self - healing for soft materials. Cordier et al. prepared supramolecular rubbers based on hydrogen bonding between urea-functionalized
Nonaqueous ozonation of vulcanized rubber
Serkiz, Steven M.
1999-01-01
A process and resulting product is provided in which a solid particulate, such as vulcanized crumb rubber, has the surface functional groups oxidized by ozonation using a nonpolar solvent. The ozonation process renders the treated crumb rubber more suitable for use in new rubber formulations. As a result, larger loading levels of the treated crumb rubber can be used in new rubber mixtures.
Hot air vulcanization of rubber profiles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerlach, J.
1995-07-01
Elastomer profiles are deployed in quantity by the automobile industry as seals and wateproofing in coachwork. The high standards demanded by the industry; improvement in weather prediction, noise reduction, restriction of tolerances, together with powerful demand for EPDM force the rubber processing industry into development, particularly of elastomers. Complex proofing systems must also be achieved with extremely complicated profile forms. All too often such profiles have an extremely large surface together with a low cross-section density. They frequently consist of two or three rubber compounds and are steel reinforced. Sometimes they are flocked and coated with a low friction finish.more » Such high-tech seals require an adjustment of the vulcanization method. The consistent trend in the nineties towards lower quantities of elastomer per sealing unit and the dielectric factor, especially with EPDM, has brought an old fashioned vulcanization method once more to the fore, a method developed over the past years to an extremely high standard, namely the hot-air method. This paper describes various vulcanization and curing methods and their relative merits and disadvantages, the Gerlach hot-air concept, the hot air installation concept, and energy saving and efficiency afforded by this technique. 4 figs.« less
NASA Astrophysics Data System (ADS)
Lu, Canhui; Zhang, Xinxing; Zhang, Wei
2015-05-01
The partially devulcanization or de-crosslinking of ground tire rubber (GTR), post-vulcanized fluororubber scraps and crosslinked polyethylene from cable scraps through high-shear mechanochemical milling (HSMM) was conducted by a modified solid-state mechanochemical reactor. The results indicated that the HSMM treated crosslinked polymer scraps can be reprocessed as virgin rubbers or thermoplastics to produce materials with high performance. The foamed composites of low density polyethylene/GTR and the blend of post-vulcanized flurorubber (FKM) with polyacrylate rubber (ACM) with better processability and mechanical properties were obtained. The morphology observation showed that the dispersion and compatibility between de-crosslinked polymer scraps and matrix were enhanced. The results demonstrated that HSMM is a feasible alternative technology for recycling post-vulcanized or crosslinked polymer scraps.
High resolution fossil fuel combustion CO2 emission fluxes for the United States.
Gurney, Kevin R; Mendoza, Daniel L; Zhou, Yuyu; Fischer, Marc L; Miller, Chris C; Geethakumar, Sarath; de la Rue du Can, Stephane
2009-07-15
Quantification of fossil fuel CO2 emissions at fine space and time resolution is emerging as a critical need in carbon cycle and climate change research. As atmospheric CO2 measurements expand with the advent of a dedicated remote sensing platform and denser in situ measurements, the ability to close the carbon budget at spatial scales of approximately 100 km2 and daily time scales requires fossil fuel CO2 inventories at commensurate resolution. Additionally, the growing interest in U.S. climate change policy measures are best served by emissions that are tied to the driving processes in space and time. Here we introduce a high resolution data product (the "Vulcan" inventory: www.purdue.edu/eas/carbon/vulcan/) that has quantified fossil fuel CO2 emissions for the contiguous U.S. at spatial scales less than 100 km2 and temporal scales as small as hours. This data product completed for the year 2002, includes detail on combustion technology and 48 fuel types through all sectors of the U.S. economy. The Vulcan inventory is built from the decades of local/regional air pollution monitoring and complements these data with census, traffic, and digital road data sets. The Vulcan inventory shows excellent agreement with national-level Department of Energy inventories, despite the different approach taken by the DOE to quantify U.S. fossil fuel CO2 emissions. Comparison to the global 1degree x 1 degree fossil fuel CO2 inventory, used widely by the carbon cycle and climate change community prior to the construction of the Vulcan inventory, highlights the space/time biases inherent in the population-based approach.
NASA Astrophysics Data System (ADS)
Lequeux, James
2016-10-01
After his discovery of Neptune in 1846, Le Verrier attempted to extend Newton's theory to the innermost planet, Mercury. He found a small unexplained discrepancy in its motion. Applying the same assumption as had succeeded to explain the motion of Uranus with Neptune, he proposed the existence of an intra-Mercurial planet, named Vulcan, which would have perturbed Mercury. This article describes the long searches for Vulcan in America. Vulcan was never found from either side of the Atlantic, as well as a possible ring of debris which could have played the same role. The anomalous precession of the perihelion of Mercury was finally explained by Einstein in1915 in terms of the General Theory of Relativity, and provided one of the first confirmations of the theory's correctness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Canhui; Zhang, Xinxing; Zhang, Wei
The partially devulcanization or de-crosslinking of ground tire rubber (GTR), post-vulcanized fluororubber scraps and crosslinked polyethylene from cable scraps through high-shear mechanochemical milling (HSMM) was conducted by a modified solid-state mechanochemical reactor. The results indicated that the HSMM treated crosslinked polymer scraps can be reprocessed as virgin rubbers or thermoplastics to produce materials with high performance. The foamed composites of low density polyethylene/GTR and the blend of post-vulcanized flurorubber (FKM) with polyacrylate rubber (ACM) with better processability and mechanical properties were obtained. The morphology observation showed that the dispersion and compatibility between de-crosslinked polymer scraps and matrix were enhanced. Themore » results demonstrated that HSMM is a feasible alternative technology for recycling post-vulcanized or crosslinked polymer scraps.« less
Griebel, Jared J; Namnabat, Soha; Kim, Eui Tae; Himmelhuber, Roland; Moronta, Dominic H; Chung, Woo Jin; Simmonds, Adam G; Kim, Kyung-Jo; van der Laan, John; Nguyen, Ngoc A; Dereniak, Eustace L; Mackay, Michael E; Char, Kookheon; Glass, Richard S; Norwood, Robert A; Pyun, Jeffrey
2014-05-21
Polymers for IR imaging: The preparation of high refractive index polymers (n = 1.75 to 1.86) via the inverse vulcanization of elemental sulfur is reported. High quality imaging in the near (1.5 μm) and mid-IR (3-5 μm) regions using high refractive index polymeric lenses from these sulfur materials was demonstrated. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yuan, Daosheng; Chen, Kunling; Xu, Chuanhui; Chen, Zhonghua; Chen, Yukun
2014-11-26
In this study, blends of entirely biosourced polymers, namely polylactide (PLA) and natural rubber (NR), were prepared through dynamic vulcanization using dicumyl peroxide (DCP), sulphur (S) and phenolic resin (2402) as curing agents, respectively. The crosslinked NR phase was found to be a continuous structure in all the prepared blends. The molecular weight changes of PLA were studied by gel permeation chromatography. Interfacial compatibilization between PLA and NR was investigated using Fourier transform infrared spectroscopy and scanning electron microscopy. The thermal properties of blends were evaluated by differential scanning calorimetry and thermogravimetric analysis instrument. It was found that the molecular weight of PLA and interfacial compatibilizaion between PLA and NR showed a significant influence on the mechanical and thermal properties of blends. The PLA/NR blend (60/40 w/w) by DCP-induced dynamic vulcanization owned the finest mechanical properties and thermal stability. Copyright © 2014 Elsevier Ltd. All rights reserved.
Environmental Exposure and Accelerated Testing of Rubber-to-Metal Vulcanized Bonded Assemblies
1974-11-01
by weapon components in the field and to determine the effect of this exposure on the vulcanized bond The purpose is also to duplicate these long term...storage and environmental exposure, and to develop accelerated methods for use in predicting this resistance. BACKGROUND: The most effective method of... the rubber coatings on the M60 machine gun components, the shock isolator and recoil adapter on the CAU 28/A Minigun, rubber pads for all tracked
Conceptual design of 100 TW solid state laser system
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMordie, J.A.
1995-12-31
Currently the main solid state laser facilities used for plasma physics research in the United Kingdom are the VULCAN laser at the Rutherford Appleton Laboratory and the HELEN facility at the Atomic Weapons Establishment. In the future it is proposed to replace HELEN with a new 100 TW facility to come on line early in the next century. A brief review is given of the VULCAN and HELEN. Then the authors discuss the design for the HELEN replacement.
Predicting Arrival Of Protons Emitted In Solar Flares
NASA Technical Reports Server (NTRS)
Spagnuolo, John N., Jr.; Schwuttke, Ursula M.; Han, Cecilia S.; Hervias, Felipe
1996-01-01
Visual Utility for Localization of Corona Accelerated Nuclei (VULCAN) computer program provides both advance warnings and insight for post-event analyses of effects of solar flares. Using measurements of peak fluxes, times of detection, flare location, solar wind velocities, and x-ray emissions from Sun, as electronically sent by NOAA (National Oceanographic and Atmospheric Administration), VULCAN predicts resulting intensities of proton fluxes at various user-chosen points (spacecraft or planets) of solar system. Also predicts times of onset of fluxes of protons and peak values of fluxes.
Xiao, Lifen; Cao, Yuliang; Xiao, Jie; Schwenzer, Birgit; Engelhard, Mark H; Saraf, Laxmikant V; Nie, Zimin; Exarhos, Gregory J; Liu, Jun
2012-03-02
A novel vulcanized polyaniline nanotube/sulfur composite was prepared successfully via an in situ vulcanization process by heating a mixture of polyaniline nanotube and sulfur at 280 °C. The electrode could retain a discharge capacity of 837 mAh g(-1) after 100 cycles at a 0.1 C rate and manifested 76% capacity retention up to 500 cycles at a 1 C rate. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Environmental Exposure and Accelerated Testing of Rubber-to-Metal Vulcanized-Bonded Assemblies
1975-08-01
such bonds are those of rubber coatings on the aluminum M60 machinq gun components, shock isolator and recoil adapter on the GAU 2B/A Minigun, rubber...accelerated humidity test data can be compared to show that both have the same effect on vulcanized bonded assemblies. Butadlene/styrene rubber-to-metal...distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abstract enterd In 8!ock 20. It different frore Rel , V " - ’O" ) " 18. SUPPLEMENTARY NOTES
Chemistry of rubber processing and disposal.
Bebb, R L
1976-01-01
The major chemical changes during the processing of rubber occur with the breakdown in mastication and during vulcanization of the molded tire. There is little chemical change during the compounding, calendering, extrusion, and molding steps. Reclaiming is the process of converting scrap rubber into an unsaturated, processible product that can be vulcanized with sulfur. Pyrolysis of scrap rubber yields a complex mixture of liquids, gas, and residue in varying ratios dependent on the nature of the scrap and the conditions of pyrolysis. PMID:799964
Vulcanism and Radiocarbon Dates
DOE R&D Accomplishments Database
Libby, L. M.; Libby, W. F.
1972-10-01
We consider whether the long term perturbation of radiocarbon dates, which is known to be approximately a sin function of period about 8000 years and amplitude of about 8% peak-to-peak, could have been caused in any major part by vulcanism. We conclude that this is not the case. On the contrary, present day volcanoes are a far less important source of inert CO{sub 2} (about 100 fold less) than is man's burning of fossil fuels which has caused the Suess dilution of about 2%. (auth)
NASA Astrophysics Data System (ADS)
Fan, Lili; Wang, Guoping; Wang, Wenju; Shi, Guanxin; Yang, Fufeng; Rui, Xiaoting
2018-04-01
Various anisotropic magnetorheological elastomers (MREs) were synthesized using the rubber mixing technique. Magnetic and temperature distributions of the experimental equipment and test instruments were analyzed by the ANSYS. NH4HCO3 was filled in the natural rubber matrix to modify properties of MREs. Microstructures and compositions of samples were studied by the scanning electron microscope (SEM), the energy dispersive x-ray spectroscopy (EDAX) analysis and x-ray powder diffraction (XRD). Via vibrating sample magnetometer (VSM) and density functional theory (DFT) method, the magnetic property of carbonyl iron (CI) was illuminated. The shear storage modulus and MR effect of MREs were investigated by the dynamic mechanical analyzer (DMA). It indicated that distributions of magnetic and temperature in the experimental and testing devices were uniform. Before vulcanization, CI particles were uniformly distributed in the matrix, while a CI chain structure was formed and embedded in the matrix after the vulcanization process. Moderate addition of NH4HCO3 accelerated the rubber vulcanization and enhanced the MR effect.
Wu, Hanguang; Tian, Ming; Zhang, Liqun; Tian, Hongchi; Wu, Youping; Ning, Nanying
2014-03-21
The breakup of the rubber phase in an ethylene-propylene-diene monomer (EPDM)/polypropylene (PP) blend at the early stage of dynamic vulcanization is similar to that in an unvulcanized EPDM/PP blend because of the low crosslink density of the EPDM phase. In this work, the minimum size of the rubber phase in the unvulcanized EPDM/PP blend was first calculated by using the critical breakup law of viscoelastic droplets in a matrix. The calculated results showed that the minimum size of the rubber phase in the unvulcanized blend was in the nanometer scale (25-46 nm), not the micrometer scale as reported in many works. Meanwhile, the actual size of the rubber phase in the thermoplastic vulcanizate (TPV) at both the early stage and the final stage of dynamic vulcanization was observed by using peak force tapping atomic force microscopy (PF-AFM). The results indicated that the EPDM phase indeed broke up into nanoparticles at the early stage of dynamic vulcanization, in good agreement with the calculated results. More interestingly, we first revealed that the micrometer-sized rubber particles commonly observed in TPV were actually the agglomerates of rubber nanoparticles with diameters between 40 and 60 nm. The mechanism for the formation of rubber nanoparticles and their agglomerates during dynamic vulcanization was then discussed. Our work provides guidance to control the microstructure of the rubber phase in TPV to prepare high performance TPV products for a wide range of applications in the automobile and electronic industries.
New sulfenamide accelerators derived from 'safe' amines for the rubber and tyre industry.
Wacker, C D; Spiegelhalder, B; Preussmann, R
1991-01-01
A reduction of the high exposures to N-nitrosamines in the rubber and tyre industry is possible using the concept of 'safe' amines, in which vulcanization accelerators contain amine moieties that are both difficult to nitrosate and, on nitrosation, yield noncarcinogenic N-nitroso compounds. The toxicological and technological properties of more than 50 benzothiazole sulfenamides derived from 'safe' amines have been evaluated. Some of the new compounds show excellent vulcanization properties and seem suitable as replacements for traditional accelerators in this class of compounds.
Characterization of some selected vulcanized and raw silicon rubber materials
NASA Astrophysics Data System (ADS)
Sasikala, A.; Kala, A.
2017-06-01
Silicone Rubber is a high need of importance of Medical devices, Implants, Aviation and Aerospace wiring applications. Silicone rubbers are widely used in industry, and there are in multiple formulations. A raw and vulcanized silicone rubber Chemical and Physical structures of particles was confirmed and mechanical strength has been analyzed by FTIR spectroscopy. Thermal properties studied from Thermo Gravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC) analysis. Activation energy of the rubber materials were calculated using Broido method, Piloyon-Novikova relation and coats-Red fern methods.
NASA Astrophysics Data System (ADS)
Du, Ke; Li, Hongxu; Zhang, Mingming
2017-11-01
Copper and cobalt are two of the most valuable metals that can be recovered from copper converter slag. In the reduction-vulcanization process, copper is reduced before cobalt, while FeS vulcanizes Cu2O into Cu2S and forms the matte phase. The matte phase can dissolve the reduced metals as solvent. In this study, the distribution coefficient of cobalt between metallic cobalt in matte and CoO in slag, namely L Co, was calculated to be 5000-8500 at the reaction temperature of 1600-1700 K, while the distribution coefficient between CoS and CoO, namely L_{Co}^{{^' } }}, was calculated to be between 6 and 8. The distribution coefficient of copper between metallic copper in matte and Cu2O in slag, namely L Cu, was calculated to be in the range of 7500-8500, while the coefficient between Cu2S and Cu2O, namely L_{Cu}^{{^' } }}, was calculated to be in the range of 60,000-75,000.
NASA Astrophysics Data System (ADS)
Tikhomirov, S. G.; Pyatakov, Y. V.; Karmanova, O. V.; Maslov, A. A.
2018-03-01
The studies of the vulcanization kinetics of elastomers were carried out using a Truck tyre tread rubber compound. The formal kinetic scheme of vulcanization of rubbers sulfur-accelerator curing system was used which generalizes the set of reactions occurring in the curing process. A mathematical model is developed for determining the thermal parameters vulcanizable mixture comprising algorithms for solving direct and inverse problems for system of equations of heat conduction and kinetics of the curing process. The performance of the model is confirmed by the results of numerical experiments on model examples.
Combination biological and microwave treatments of used rubber products
Fliermans, Carl B.; Wicks, George G.
2002-01-01
A process and resulting product is provided in which a vulcanized solid particulate, such as vulcanized crumb rubber, has select chemical bonds altered by biotreatment with thermophillic microorganisms selected from natural isolates from hot sulfur springs. Following the biotreatment, microwave radiation is used to further treat the surface and to treat the bulk interior of the crumb rubber. The resulting combined treatments render the treated crumb rubber more suitable for use in new rubber formulations. As a result, larger loading levels and sizes of the treated crumb rubber can be used in new rubber mixtures and good properties obtained from the new recycled products.
Revisiting the Boeing B-47 and the Avro Vulcan with implications on aircraft design today
NASA Astrophysics Data System (ADS)
van Seeters, Philip A.
This project compares the cruise mission performance of the historic Boeing B-47 and Avro Vulcan. The author aims to demonstrate that despite superficial similarities, these aircraft perform quite differently away from their intended design points. The investigation uses computer aided design software, and an aircraft sizing program to generate digital models of both airplanes. Subsequent simulations of various missions quantify the performance mainly in terms of fuel efficiency, and productivity. Based on this comparison, the efforts conclude that these aircraft perform indeed differently, and that a performance comparison based on a design mission alone, is insufficient.
NASA Astrophysics Data System (ADS)
Dubey, K. A.; Bhardwaj, Y. K.; Chaudhari, C. V.; Kumar, Virendra; Goel, N. K.; Sabharwal, S.
2009-03-01
Blends of polychloroprene rubber (PCR) and ethylene propylene diene terpolymer rubber (EPDM) of different compositions were made and exposed to different gamma radiation doses. The radiation sensitivity and radiation vulcanization efficiency of blends was estimated by gel-content analysis, Charlesby-Pinner parameter determination and crosslinking density measurements. Gamma radiation induced crosslinking was most efficient for EPDM ( p0/ q0 ˜ 0.08), whereas it was the lowest for blends containing 40% PCR ( p0/ q0 ˜ 0.34). The vulcanized blends were characterized for solvent diffusion characteristics by following the swelling dynamics. Blends with higher PCR content showed anomalous swelling. The sorption and permeability of the solvent were not strictly in accordance with each other and the extent of variation in two parameters was found to be a function of blend composition. The Δ G values for solvent diffusion were in the range -2.97 to -9.58 kJ/mol and indicated thermodynamically favorable sorption for all blends. These results were corroborated by dynamic swelling, experimental as well as simulated profiles and have been explained on the basis of correlation between crosslinking density, diffusion kinetics, thermodynamic parameters and polymer-polymer interaction parameter.
Xu, Chuanhui; Cao, Liming; Lin, Baofeng; Liang, Xingquan; Chen, Yukun
2016-07-13
Introducing ionic associations is one of the most effective approaches to realize a self-healing behavior for rubbers. However, most of commercial rubbers are nonpolar rubbers without now available functional groups to be converted into ionic groups. In this paper, our strategy was based on a controlled peroxide-induced vulcanization to generate massive ionic cross-links via polymerization of zinc dimethacrylate (ZDMA) in natural rubber (NR) and exploited it as a potential self-healable material. We controlled vulcanization process to retard the formation of covalent cross-link network, and successfully generated a reversible supramolecular network mainly constructed by ionic cross-links. Without the restriction of covalent cross-linkings, the NR chains in ionic supramolecular network had good flexibility and mobility. The nature that the ionic cross-links was easily reconstructed and rearranged facilitating the self-healing behavior, thereby enabling a fully cut sample to rejoin and retain to its original properties after a suitable self-healing process at ambient temperature. This study thus demonstrates a feasible approach to impart an ionic association induced self-healing function to commercial rubbers without ionic functional groups.
Vulcan Identification of Eclipsing Binaries in the Kepler Field of View
NASA Astrophysics Data System (ADS)
Mjaseth, Kimberly; Batalha, N.; Borucki, W.; Caldwell, D.; Latham, D.; Martin, K. R.; Rabbette, M.; Witteborn, F.
2007-05-01
We report the discovery of 236 new eclipsing binary stars located in and around the field of view of the Kepler Mission. The binaries were identified from photometric light curves from the Vulcan exoplanet transit survey. The Vulcan camera is comprised of a modest aperture (10cm) f/2.8 Canon lens focusing a 7° x 7° field of view onto a 4096 x 4096 Kodak CCD. The system yields an hour-to-hour relative precision of 0.003 on 12th magnitude stars and saturates at 9th magnitude. The binaries have magnitudes in the range of 9.5 < V < 13.5 and periods ranging from 0.5 to 13 days. The milli-magnitude photometric precision allows detection of transits as shallow as 1%. The catalog contains a total of 273 eclipsing binary stars, including detached systems (high and low mass ratio), contact binaries, and triple systems. We present the derived orbital/transit properties, light curves, and stellar properties for selected targets. In addition, we summarize the results of radial velocity follow-up work. Support for this work came from NASA's Discovery Program and NASA's Origins of the Solar System Program.
NASA Astrophysics Data System (ADS)
Guzman Blas, Rolando Pedro
This thesis is focused on fuel cells using hydrogen, methanol and ethanol as fuel. Also, in the method of preparation of catalytic material for the anode: Supercritical Fluid Deposition (SFD) and impregnation method using ethylenediaminetetraacetic acid (EDTA) as a chelating agent. The first part of the thesis describes the general knowledge about Hydrogen Polymer Exchange Membrane Fuel Cell (HPEMFC),Direct Methanol Fuel Cell (DMFC) and Direct Ethanol Fuel Cell (DEFC), as well as the properties of Cerium and CeO2 (Ceria). The second part of the thesis describes the preparation of catalytic material by Supercritical Fluid Deposition (SFD). SFD was utilized to deposit Pt and ceria simultaneously onto gas diffusion layers. The Pt-ceria catalyst deposited by SFD exhibited higher methanol oxidation activity compared to the platinum catalyst alone. The linear sweep traces of the cathode made for the methanol cross over study indicate that Pt-Ceria/C as the anode catalyst, due to its better activity for methanol, improves the fuel utilization, minimizing the methanol permeation from anode to cathode compartment. The third and fourth parts of the thesis describe the preparation of material catalytic material Carbon-Platinum-Cerium by a simple and cheap impregnation method using EDTA as a chelating agent to form a complex with cerium (III). This preparation method allows the mass production of the material catalysts without additional significant cost. Fuel cell polarization and power curves experiments showed that the Carbon-Platinum-Cerium anode materials exhibited better catalytic activity than the only Vulcan-Pt catalysts for DMFC, DEFC and HPEMFC. In the case of Vulcan-20%Pt-5%w Cerium, this material exhibits better catalytic activity than the Vulcan-20%Pt in DMFC. In the case of Vulcan-40% Pt-doped Cerium, this material exhibits better catalytic activity than the Vulcan-40% Pt in DMFC, DEFC and HPEMFC. Finally, I propose a theory that explains the reason why the carbon-platinum-cerium has better catalytic activity than platinum-carbon. Due to the hybridization behavior of C and Ce could arise charge transfer, both carbon and cerium to the Platinum. Ce-C→Pt charge transfer could occur at the Ce-C/Pt interface. Thus, results in an increase in the catalytic activity of platinum-cerium-carbon when compared with carbon-platinum.
NASA Astrophysics Data System (ADS)
Arshad Bashir, M.; Shahid, M.; Ahmed, Riaz; Yahya, A. G.
2014-06-01
In this research paper the effect of blending ratio of natural rubber (NR) with Ethylene Propylene Diene Monomer (EPDM) were investigated. Different samples of EPDM/NR ratio were prepared to study the variation of NR in EPDM on rheology, curing characteristics, tangent δ, and viscosity variation during vulcanization of sponge nano composites.The main aim of present research is to develop elastomeric based sponge composites with the blending ratio of base elastomers along with the carbon nano particles for high energy absorbing and damping applications. The curing characteristics, rheology and viscoelastic nature of the composite is remarkably influenced with the progressive blending ratio of the base elastomeric matrix.
Evaluation of some antioxidants in radiation vulcanized ethylene-propylene diene (EPDM) rubber
NASA Astrophysics Data System (ADS)
Abdel-Aziz, M. M.; Basfar, A. A.
2001-12-01
Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) have been used to study the oxidation of γ-ray vulcanized ethylene-propylene diene rubber (EPDM) stabilized with various types of antioxidants. The antioxidants used were pentaerythrityl tetrakis(3,5-di-tert-butyl(-4-hydroxyphenyl))propionate (Irganox 1010), Irganox 1035, Irganox 1520D, as primary antioxidants; Irganox B561 and Irganox B900, as synergistic blends; hindered amine light stabilizer (HALS), i.e. Tinuvin 622 LD; N-isopropyl- N-phenyl- p-phenylene diamine (IPPD) and trimethyl quinoline (TMQ) and their mixtures. The measurements were carried out under atmospheric conditions. The effects of antioxidant type and its selected concentration were determined and mechanism of reaction proposed.
Accelerated aging and stabilization of radiation-vulcanized EPDM rubber
NASA Astrophysics Data System (ADS)
Basfar, A. A.; Abdel-Aziz, M. M.; Mofti, S.
2000-03-01
The effect of different antioxidants and their mixtures on the thermal aging and accelerated weathering of γ-radiation vulcanized EPDM rubber in presence of crosslinking coagent, was investigated. The compounds used were either a synergistic blend of phenolic and phosphite antioxidants, i.e. 1:4 Irganox 1076: Irgafos 168 or a blend of arylamine and quinoline type antioxidants, i.e. 1:1 IPPD: TMQ, at fixed concentration. Tinuvin 622 LD hindered amine light stabilized (HALS) was also used. The response was evaluated by the tensile strength and elongation at break for irradiated samples after thermal aging at 100°C for 28 days and accelerated weathering (Xenon test) up to 200 h.
NASA Astrophysics Data System (ADS)
Cho, Hiroaki; Ashida, Yasunori; Nakamura, Shuhei; Shimizu, Wataru; Murakami, Yasushi
Room temperature vulcanizing (RTV) elastic silicone usually employs organic tin compounds as a hardener. It is well known that they are strong biohazardous. Thus, European Union is going to regulate the use of organic tin compounds and to exclude them from industrial products till 2015. Authors have succeeded in making a substitute of organic tin compounds as a hardener for RTV elastic silicone by using titanium alkoxide and a carboxylate ester as a hardener and a promoter, respectively. In this paper, composites of RTV elastic silicone made with silica particles and a silane coupling agent are studied based on the mechanical, heat-resistive and adhesive properties.
Shopping For Danger: E-commerce techniques applied to collaboration in cyber security
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruce, Joseph R.; Fink, Glenn A.
Collaboration among cyber security analysts is essential to a successful protection strategy on the Internet today, but it is uncommonly practiced or encouraged in operating environments. Barriers to productive collaboration often include data sensitivity, time and effort to communicate, institutional policy, and protection of domain knowledge. We propose an ambient collaboration framework, Vulcan, designed to remove the barriers of time and effort and mitigate the others. Vulcan automated data collection, collaborative filtering, and asynchronous dissemination, eliminating the effort implied by explicit collaboration among peers. We instrumented two analytic applications and performed a mock analysis session to build a dataset andmore » test the output of the system.« less
NASA Astrophysics Data System (ADS)
Milani, G.; Hanel, T.; Donetti, R.; Milani, F.
2016-06-01
The paper presents the final results of a comprehensive experimental and numerical analysis aimed at deeply investigating the behavior of Natural Rubber (NR) vulcanized with sulphur in presence of different accelerators during standard rheometer tests. NR in presence of sulphur and two different accelerators (DPG and TBBS) in various concentrations is investigated, changing the curing temperature in the range 150-180°C and obtaining rheometer curves with a step of 10°C. Sulphur-TBBS concentrations considered are 1-1, 1-3, 3-3 and 3-1, with DPG at 1-4 phr respectively. A total of 48 experimental rheometer curves is so obtained. To fit experimental data, the general reaction scheme proposed by Han and co-workers for vulcanized sulphur NR is re-adapted and suitably modified taking into account the single contributions of the different accelerators. Chain reactions initiated by the formation of macro-compounds responsible for the formation of the unmatured crosslinked polymer are accounted for. In presence of two accelerators, reactions are assumed to proceed in parallel, making the practically effective hypothesis that there is no interaction between the two accelerators. From the simplified kinetic scheme adopted, a closed form solution is found for the crosslink density, with the only limitation that the induction period is excluded from computations. For each experimented case on the same blend, reaction kinetic constants provided by the model are utilized to deduce their trend in the Arrhenius space, also outside the temperature range inspected. Rather close linearity is found in the majority of the cases. A comparative analysis is carefully conducted among the constants at the different concentrations of S, TBBS and DPG investigated, allowing a prediction of curing behavior at any vulcanization temperature and with concentrations not experimentally tested, without the need of addition costly experimentation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milani, G., E-mail: gabriele.milani@polimi.it; Hanel, T.; Donetti, R.
2016-06-08
The paper presents the final results of a comprehensive experimental and numerical analysis aimed at deeply investigating the behavior of Natural Rubber (NR) vulcanized with sulphur in presence of different accelerators during standard rheometer tests. NR in presence of sulphur and two different accelerators (DPG and TBBS) in various concentrations is investigated, changing the curing temperature in the range 150-180°C and obtaining rheometer curves with a step of 10°C. Sulphur-TBBS concentrations considered are 1-1, 1-3, 3-3 and 3-1, with DPG at 1-4 phr respectively. A total of 48 experimental rheometer curves is so obtained. To fit experimental data, the generalmore » reaction scheme proposed by Han and co-workers for vulcanized sulphur NR is re-adapted and suitably modified taking into account the single contributions of the different accelerators. Chain reactions initiated by the formation of macro-compounds responsible for the formation of the unmatured crosslinked polymer are accounted for. In presence of two accelerators, reactions are assumed to proceed in parallel, making the practically effective hypothesis that there is no interaction between the two accelerators. From the simplified kinetic scheme adopted, a closed form solution is found for the crosslink density, with the only limitation that the induction period is excluded from computations. For each experimented case on the same blend, reaction kinetic constants provided by the model are utilized to deduce their trend in the Arrhenius space, also outside the temperature range inspected. Rather close linearity is found in the majority of the cases. A comparative analysis is carefully conducted among the constants at the different concentrations of S, TBBS and DPG investigated, allowing a prediction of curing behavior at any vulcanization temperature and with concentrations not experimentally tested, without the need of addition costly experimentation.« less
Selective Deuteron Acceleration and Neutron Production on the Vulcan PW Laser
NASA Astrophysics Data System (ADS)
Krygier, A. G.; Morrison, J. T.; Freeman, R. R.; Ahmed, H.; Green, J. A.; Alejo, A.; Kar, S.; Vassura, L.
2014-10-01
Fast neutron sources are important for a variety of applications including radiography and the detection of sensitive materials. Here we report on the results of an experiment using the Vulcan PW laser at Rutherford Appleton Laboratory to produce a nearly pure deuterium ion beam via Target Normal Sheath Acceleration. The typical contaminants are suppressed by freezing a μ m's thick layer of heavy water vapor (D2 O) onto a cryogenic target during the shot sequence. Neutrons were generated by colliding the accelerated deuterons were into secondary targets made of deuterated plastic in the pitcher-catcher arrangement. Absolute yields for deuterium ions and neutrons are reported. This work is supported by DOE Contract DE-FC02-04ER54789.
Neutron Production from In-situ Heavy Ice Coated Targets at Vulcan
NASA Astrophysics Data System (ADS)
Morrison, John; Krygier, A. G.; Kar, S.; Ahmed, H.; Alejo, A.; Clarke, R.; Fuchs, J.; Green, A.; Jung, D.; Kleinschmidt, A.; Najmudin, Z.; Nakamura, H.; Norreys, P.; Notley, M.; Oliver, M.; Roth, M.; Vassura, L.; Zepf, M.; Borghesi, M.; Freeman, R. R.
2015-05-01
Laser based neutron production experiments have been performed utilizing ultra-high intensity laser accelerated ions impinging upon a secondary target. The neutron yield from such experiments may be improved if the accelerated ions were primarily deuterons taking advantage of the d-d cross section. Recent experiments have demonstrated that selective deuteron acceleration from in-situ heavy ice coating of targets can produce ion spectra where deuterons comprise > 99 % of the measured ions. Results will be presented from integrated neutron production experiments from heavy ice targets coated in-situ recently performed on the Vulcan laser at Rutherford Appleton Laboratory. We are grateful for the Staff at RAL and acknowledge funding from the US DoE. AFOSR, European Social Fund, and the Czech Republic.
Stabilizing platinum in phosphoric acid fuel cells
NASA Technical Reports Server (NTRS)
Remick, R. J.
1981-01-01
The cathode of the phosphoric acid fuel cell uses a high surface area platinum catalyst supported on a carbon substrate. During operation, the small platinum crystallites sinter, causing loss in cell performance. A support was developed that stabilizes platinum in the high surface area condition by retarding or preventing the sintering process. The approach is to form etch pits in the carbon by oxidizing the carbon in the presence of a metal oxide catalyst, remove the metal oxide by an acid wash, and then deposit platinum in these pits. Results confirm the formation of etch pits in each of the three supports chosen for investigation: Vulcan XC-72R, Vulcan XC-72 that was graphized at 2500 C, and Shawinigan Acetylene Black.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Araki, Kunihiro; Kaneko, Shonosuke; Matsumoto, Koki
We investigated the efficient use of cellulose to resolve the problem of the depletion of fossil resources. In this study, as the biomass material, the green composite based on natural rubber (NR) and the flake-shaped cellulose particles (FSCP) was produced. In order to further improvement of functional characteristics, epoxidized natural rubber (ENR) was also used instead of NR. The FSCP were produced by mechanical milling in a planetary ball mill with a grinding aid as a cellulose aggregation inhibitor. Moreover, talc and mica particles were used to compare with FSCP. NR and ENR was mixed with vulcanizing agents and thenmore » each filler was added to NR compound in an internal mixer. The vulcanizing agents are as follows: stearic acid, zinc oxide, sulfur, and vulcanization accelerator. The functionalities of the composites were evaluated by a vibration-damping experiment and a gas permeability experiment. As a result, we found that FSCP filler has effects similar to (or more than) inorganic filler in vibration-damping and O{sub 2} barrier properties. And then, vibration- damping and O{sub 2} barrier properties of the composite including FSCP was increased with use of ENR. In particular, we found that ENR-50 composite containing 50 phr FSCP has three times as high vibration-damping property as ENR-50 without FSCP.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Towry, Amanda; Quarles, C. A.
Previous research has demonstrated a correlation between the Doppler broadening S parameter and the intensity of the ortho-positronium lifetime component in polymers that depends on the composition of the polymer. On the other hand, rubber polymers do not show this correlation and behave more like liquids for which the S parameter is essentially independent of the ortho-positronium intensity. The bubble model has been suggested as an explanation of the lack of correlation in analogy with liquids, but the bubble model applied to rubber is controversial. There are two important differences between the rubber and the polymers samples: first, the rubbermore » samples at room temperature were all above the glass transition temperature (T{sub G}). Second, the rubber samples all contained sulfur and were vulcanized. These differences were investigated by first measuring the S parameter for six rubber samples below T{sub G} where the bubble model would not be expected to work. Second, raw rubber samples that did not contain any sulfur and were unvulcanized were studied at room temperature. The results show that the lack of correlation between the S parameter and the ortho-positronium intensity previously observed for vulcanized rubber is due to the inhibition of positronium formation by the sulfur in the vulcanized rubber samples rather than to the rubber being above T{sub G}.« less
Zeković, Ivana; Marinović-Cincović, Milena
2014-01-01
Opalized white tuff (OWT) with 40 μm average particle size and 39.3 m2/g specific surface area has been introduced into polyisoprene rubber (NR). Their reinforcing effects were evaluated by comparisons with those from precipitated silica (PSi). The cure characteristic, apparent activation energy of cross-link (E ac) and reversion (E ar), and mechanical properties of a variety of composites based on these rubbers were studied. This was done using vulcanization techniques, mechanical testing, and scanning electron microscopy (SEM). The results showed that OWT can greatly improve the vulcanizing process by shortening the time of optimum cure (t c90) and the scorch time (t s2) of cross-linked rubber composites, which improves production efficiency and operational security. The rubber composites filled with 50 phr of OWT were found to have good mechanical and elastomeric properties. The tensile strengths of the NR/OWT composites are close to those of NR/PSi composites, but the tear strength and modulus are not as good as the corresponding properties of those containing precipitated silica. Morphology results revealed that the OWT is poorly dispersed in the rubber matrix. According to that, the lower interactions between OWT and polyisoprene rubber macromolecules are obtained, but similar mechanical properties of NR/OWT (100/50) rubber composites compared with NR/PSi (100/50) rubber composites are resulted. PMID:24672391
NASA Astrophysics Data System (ADS)
Milani, G.; Milani, F.
A GUI software (GURU) for experimental data fitting of rheometer curves in Natural Rubber (NR) vulcanized with sulphur at different curing temperatures is presented. Experimental data are automatically loaded in GURU from an Excel spreadsheet coming from the output of the experimental machine (moving die rheometer). To fit the experimental data, the general reaction scheme proposed by Han and co-workers for NR vulcanized with sulphur is considered. From the simplified kinetic scheme adopted, a closed form solution can be found for the crosslink density, with the only limitation that the induction period is excluded from computations. Three kinetic constants must be determined in such a way to minimize the absolute error between normalized experimental data and numerical prediction. Usually, this result is achieved by means of standard least-squares data fitting. On the contrary, GURU works interactively by means of a Graphical User Interface (GUI) to minimize the error and allows an interactive calibration of the kinetic constants by means of sliders. A simple mouse click on the sliders allows the assignment of a value for each kinetic constant and a visual comparison between numerical and experimental curves. Users will thus find optimal values of the constants by means of a classic trial and error strategy. An experimental case of technical relevance is shown as benchmark.
NASA Astrophysics Data System (ADS)
Sheehan, William
2016-01-01
The discovery of the outer planet Neptune in 1846, based on the calculated position published by Urbain Jean Joseph Le Verrier, has been hailed as the "zenith of Newtonian mechanics." An attempt by Le Verrier to further extend the dominion of Newton's gravitational theory to the innermost known planet of the Solar System, Mercury, seemingly came to grief with the discovery of a small unexplained discrepancy in the precession of the perihelion of Mercury, whose value was later calculated as 43".0 per century. Le Verrier proposed that it could be explained on the basis of Newtonian theory by assuming the existence of an intra-mercurial planet ("Vulcan") or ring of debris. Efforts to confirm this hypothesis, culminating in high drama on the plains of the western United States at the great North American solar eclipse of July 1878, proved futile; by 1908, W. W. Campbell and C.D. Perrine of Lick Observatory, who had carried out exhaustive photographic searches at three eclipses (1901, 1905, and 1908) could declare that Vulcan did not exist. The theoretical problem it was invoked to explain remained until November 1915, when Albert Einstein used the recently discovered generally covariant gravitational equations to put the problem to rest. "Perihelion motions explained quantitatively … you will be astonished," he wrote to his friend Michael Besso.
Experimental study on behaviors of dielectric elastomer based on acrylonitrile butadiene rubber
NASA Astrophysics Data System (ADS)
An, Kuangjun; Chuc, Nguyen Huu; Kwon, Hyeok Yong; Phuc, Vuong Hong; Koo, Jachoon; Lee, Youngkwan; Nam, Jaedo; Choi, Hyouk Ryeol
2010-04-01
Previously, the dielectric elastomer based on Acrylonitrile Butadiene Rubber (NBR), called synthetic elastomer has been reported by our group. It has the advantages that its characteristics can be modified according to the requirements of performances, and thus, it is applicable to a wide variety of applications. In this paper, we address the effects of additives and vulcanization conditions on the overall performance of synthetic elastomer. In the present work, factors to have effects on the performances are extracted, e.g additives such as dioctyl phthalate (DOP), barium titanium dioxide (BaTiO3) and vulcanization conditions such as dicumyl peroxide (DCP), cross-linking times. Also, it is described how the performances can be optimized by using DOE (Design of Experiments) technique and experimental results are analyzed by ANOVA (Analysis of variance).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brundage, Aaron L.; Nicolette, Vernon F.; Donaldson, A. Burl
2005-09-01
A joint experimental and computational study was performed to evaluate the capability of the Sandia Fire Code VULCAN to predict thermocouple response temperature. Thermocouple temperatures recorded by an Inconel-sheathed thermocouple inserted into a near-adiabatic flat flame were predicted by companion VULCAN simulations. The predicted thermocouple temperatures were within 6% of the measured values, with the error primarily attributable to uncertainty in Inconel 600 emissivity and axial conduction losses along the length of the thermocouple assembly. Hence, it is recommended that future thermocouple models (for Inconel-sheathed designs) include a correction for axial conduction. Given the remarkable agreement between experiment and simulation,more » it is recommended that the analysis be repeated for thermocouples in flames with pollutants such as soot.« less
Sealed head access area enclosure
Golden, Martin P.; Govi, Aldo R.
1978-01-01
A liquid-metal-cooled fast breeder power reactor is provided with a sealed head access area enclosure disposed above the reactor vessel head consisting of a plurality of prefabricated structural panels including a center panel removably sealed into position with inflatable seals, and outer panels sealed into position with semipermanent sealant joints. The sealant joints are located in the joint between the edge of the panels and the reactor containment structure and include from bottom to top an inverted U-shaped strip, a lower layer of a room temperature vulcanizing material, a separator strip defining a test space therewithin, and an upper layer of a room temperature vulcanizing material. The test space is tapped by a normally plugged passage extending to the top of the enclosure for testing the seal or introducing a buffer gas thereinto.
NASA Technical Reports Server (NTRS)
Axdahl, Erik L.
2015-01-01
Removing human interaction from design processes by using automation may lead to gains in both productivity and design precision. This memorandum describes efforts to incorporate high fidelity numerical analysis tools into an automated framework and applying that framework to applications of practical interest. The purpose of this effort was to integrate VULCAN-CFD into an automated, DAKOTA-enabled framework with a proof-of-concept application being the optimization of supersonic test facility nozzles. It was shown that the optimization framework could be deployed on a high performance computing cluster with the flow of information handled effectively to guide the optimization process. Furthermore, the application of the framework to supersonic test facility nozzle flowpath design and optimization was demonstrated using multiple optimization algorithms.
Spatially- explicit Fossil Fuel Carbon Dioxide Inventories for Transportation in the U.S.
NASA Astrophysics Data System (ADS)
Hutchins, M.; Gurney, K. R.
2016-12-01
The transportation sector is the second largest source of Fossil Fuel CO2 (FFCO2) emissions, and is unique in that federal, state, and municipal levels of government are all able to enact transportation policy. However, since data related to transportation activities are reported by multiple different government agencies, the data are not always consistent. As a result, the methods and data used to inventory and account for transportation related FFCO2 emissions have important implications for both science and policy. Aggregate estimates of transportation related FFCO2 emissions can be spatially distributed using traffic data, such as the Highway Performance Monitoring System (HPMS) Average Annual Daily Traffic (AADT). There are currently two datasets that estimate the spatial distribution of transportation related FFCO2 in the United States- Vulcan 3.0 and the Database of Road Transportation Emissions (DARTE). Both datasets are at 1 km resolution, for the year 2011, and utilize HPMS AADT traffic data. However, Vulcan 3.0 and DARTE spatially distribute emissions using different methods and inputs, resulting in a number of differences. Vulcan 3.0 and DARTE estimate national transportation related FFCO2 emissions within 2.5% of each other, with more significant differences at the county and state level. The differences are most notable in urban versus rural regions, and for specific road classes. The origin of these differences are explored in depth to understand the implication of using specific data sources, such as the National Emissions Inventory and other aggregate transportation statistics from the Federal Highway Administration (FHWA). In addition to comparing Vulcan 3.0 and DARTE to each other, the results from both data sets are compared to independent traffic volume measurements acquired from the FHWA Continuous Count Station (CCS) network. The CCS records hourly traffic counts at fixed locations in space throughout the U.S. We calculate transportation related FFCO2 emissions at a CCS stations using fuel specific emissions factors combined with the raw traffic counts. The CCS network provides a unique opportunity to compare spatially explicit, "bottom-up" models of transportation related FFCO2 emissions to measured traffic volume at over 300 specific locations.
NASA Astrophysics Data System (ADS)
Harahap, Hamidah; Lubis, Yuni Aldriani; Taslim, Iriany, Nasution, Halimatuddahliana; Agustini, Hamda Eka
2018-04-01
A study has been conducted on the effect of filler loading on NRL films filled with NCC from corn cob waste. This study reviews on the filler loading of NRL film characteristics. The process begins with the production of NCC filler and then proceed with the production NRL film which is processed by coagulant dipping method. NRL is filled with NCC and PVP as dispersion agent of 2, 4, 3, 8 grams (filler loading) and 1% PVP by weight. The production of NRL film started with pre-vulcanization process at 70 °C and followed by vulcanization process at 110 °C for 20 minutes. The results showed that higher filler loading improved the higher crosslink density and mechanical properties of NRL film.
Lv, Haifeng; Wu, Peng; Wan, Wei; Mu, Shichun
2014-09-01
Carbon nanospheres is wildly used to support noble metal nanocatalysts in proton exchange membrane (PEM) fuel cells, however they show a low resistance to electrochemical corrosion. In this study, the N-doped treatment of carbon nanospheres (Vulcan XC-72) is carried out in ammonia gas. The effect of heating treatment (up to 1000 degrees C) on resistances to electrochemical oxidation of the N-doped carbon nanospheres (HNC) is investigated. The resistance to electrochemical oxidation of carbon supports and stability of the catalysts are investigated with potentiostatic oxidation and accelerated durability test by simulating PEM fuel cell environment. The HNC exhibit a higher resistance to electrochemical oxidation than traditional Vulcan XC-72. The results show that the N-doped carbon nanospheres have a great potential application in PEM fuel cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milani, Gabriele, E-mail: milani@stru.polimi.it, E-mail: gabriele.milani@polimi.it; Hanel, Thomas; Donetti, Raffaella
2015-03-10
The basic reaction scheme due to Han and co-workers for NR vulcanized with sulphur is adopted and modified taking into account the single contributions of the different accelerators, focusing in particular on some experimental data ad hoc obtained at Pirelli’s laboratories, where NR was vulcanized at different temperatures (from 150 to 180 °C) and concentrations of sulphur, using TBBS and DPG in the mixture as co-agents. Typically, the chain reactions are initiated by the formation of macro-compounds that are responsible of the formation of the unmatured crosslinked polymer. This first reaction depends on the reciprocal concentrations of all components andmore » their chemical nature. In presence of two accelerators, it was considered that the reactions between each single accelerator and the NR raw material occur in parallel, making the reasonable assumption that there are no mutual reactions between the two accelerators. From the kinetic scheme adopted, a closed form solution was found for the crosslink density, with the only limitation that the induction period is excluded from computations. Even kinetic constants are evaluated in closed form, avoiding a numerically demanding least-squares best fitting on rheometer experimental data. Two series of experiments available, relying into rheometer curves at different temperatures and different concentrations of sulphur and accelerator, are utilized to evaluate the fitting capabilities of the mathematical model. Very good agreement between numerical output and experimental data is experienced in all cases analysed.« less
20. DETAILED OBLIQUE VIEW SOUTHWEST FURNACE 2, SHOWING STEEL FRAME ...
20. DETAILED OBLIQUE VIEW SOUTHWEST FURNACE 2, SHOWING STEEL FRAME BOXES FOR COUNTERWEIGHTS, AND FURNACE HEATING PIPES AT RIGHT. - Vulcan Crucible Steel Company, Building No. 3, 100 First Street, Aliquippa, Beaver County, PA
Bishop, M.G.
1999-01-01
The Bonaparte Gulf Basin Province (USGS #3910) of northern Australia contains three important hydrocarbon source-rock intervals. The oldest source-rock interval and associated reservoir rocks is the Milligans-Carboniferous, Permian petroleum system. This petroleum system is located at the southern end of Joseph Bonaparte Gulf and includes both onshore and offshore areas within a northwest to southeast trending Paleozoic rift that was initiated in the Devonian. The Milligans Formation is a Carboniferous marine shale that sources accumulations of both oil and gas in Carboniferous and Permian deltaic, marine shelf carbonate, and shallow to deep marine sandstones. The second petroleum system in the Paleozoic rift is the Keyling, Hyland Bay-Permian. Source rocks include Lower Permian Keyling Formation delta-plain coals and marginal marine shales combined with Upper Permian Hyland Bay Formation prodelta shales. These source-rock intervals provide gas and condensate for fluvial, deltaic, and shallow marine sandstone reservoirs primarily within several members of the Hyland Bay Formation. The Keyling, Hyland Bay-Permian petroleum system is located in the Joseph Bonaparte Gulf, north of the Milligans-Carboniferous, Permian petroleum system, and may extend northwest under the Vulcan graben sub-basin. The third and youngest petroleum system is the Jurassic, Early Cretaceous-Mesozoic system that is located seaward of Joseph Bonaparte Gulf on the Australian continental shelf, and trends southwest-northeast. Source-rock intervals in the Vulcan graben sub-basin include deltaic mudstones of the Middle Jurassic Plover Formation and organic-rich marine shales of the Upper Jurassic Vulcan Formation and Lower Cretaceous Echuca Shoals Formation. These intervals produce gas, oil, and condensate that accumulates in, shallow- to deep-marine sandstone reservoirs of the Challis and Vulcan Formations of Jurassic to Cretaceous age. Organic-rich, marginal marine claystones and coals of the Plover Formation (Lower to Upper Jurassic), combined with marine claystones of the Flamingo Group and Darwin Formation (Upper Jurassic to Lower Cretaceous) comprise the source rocks for the remaining area of the system. These claystones and coals source oil, gas, and condensate accumulations in reservoirs of continental to marine sandstones of the Plover Formation and Flamingo Group. Shales of the regionally distributed Lower Cretaceous Bathurst Island Group and intraformational shales act as seals for hydrocarbons trapped in anticlines and fault blocks, which are the major traps of the province. Production in the Bonaparte Gulf Basin Province began in 1986 using floating production facilities, and had been limited to three offshore fields located in the Vulcan graben sub-basin. Cumulative production from these fields totaled more than 124 million barrels of oil before the facilities were removed after production fell substantially in 1995. Production began in 1998 from three offshore wells in the Zone of Cooperation through floating production facilities. After forty years of exploration, a new infrastructure of pipelines and facilities are planned to tap already discovered offshore reserves and to support additional development.
ERIC Educational Resources Information Center
Shomon, Joseph James
1985-01-01
Recounts the dramatic eruption of Mount St. Helens volcano in 1980. Details the force of the blast, extent of damage, changes in landscape, death toll, vulcanism, and ecosystem recovery. Several black-and-white photographs of the area are included. (DH)
Graphitic Carbon Nitride Supported Catalysts for Polymer Electrolyte Fuel Cells
2014-01-01
Graphitic carbon nitrides are investigated for developing highly durable Pt electrocatalyst supports for polymer electrolyte fuel cells (PEFCs). Three different graphitic carbon nitride materials were synthesized with the aim to address the effect of crystallinity, porosity, and composition on the catalyst support properties: polymeric carbon nitride (gCNM), poly(triazine) imide carbon nitride (PTI/Li+Cl–), and boron-doped graphitic carbon nitride (B-gCNM). Following accelerated corrosion testing, all graphitic carbon nitride materials are found to be more electrochemically stable compared to conventional carbon black (Vulcan XC-72R) with B-gCNM support showing the best stability. For the supported catalysts, Pt/PTI-Li+Cl– catalyst exhibits better durability with only 19% electrochemical surface area (ECSA) loss versus 36% for Pt/Vulcan after 2000 scans. Superior methanol oxidation activity is observed for all graphitic carbon nitride supported Pt catalysts on the basis of the catalyst ECSA. PMID:24748912
Rubisz-Brzezińska, J; Bogdanowski, T; Brzezińska-Wcisło, L; Mozdzanowska, K; Bajcar, S
1990-01-01
Dermatological examination and patch tests with 34 rubber components were carried out in 114 tire manufacturers, 78 women and 36 men aged 29 years on average, with a mean duration of work in the plant 7 years. For correct interpretation of the obtained results patch tests with the same components were done in two control groups that is in 120 healthy subjects and 120 patients with contact dermatitis. Patch tests with proper concentrations of the studied components were evaluated after 48, 72 and 96 hours. Positive patch tests were found most frequently with antioxidants--16.6% (including IPPD--8.6%), followed by vulcanization accelerators--10.6%, and other rubber components--11.4% in all. During about 3 years of follow-up in 4 manufacturers contact allergic eczema was noted and polyvalent hypersensitivity to antioxidants and vulcanization accelerators without clinical manifestations of this hypersensitivity was diagnosed in 3 other subjects.
NASA Astrophysics Data System (ADS)
Harahap, H.; Ridha, M.; Halimatuddahliana; Taslim; Iriany
2018-02-01
This study about the resistance of natural rubber latex films using nanocrystals cellulose filler from corn cob waste by aging treatment. Corn cob used as organic filler composed of cellulose, hemicellulose, and lignin. Each component has a potential for reuse, such as cellulose. Cellulose from corn cob has potential application as a filler prepared by hydrolysis process using a strong acid. The producing of natural rubber latex films through coagulant dowsing process. This research started with the pre-vulcanization process of natural rubber latex at 70 °C and followed by process of vulcanization at 110 °C for 20 minutes. Natural rubber latex films that have been produced continued with the aging treatment at 70 °C for 168 hours. The mechanical properties of natural rubber latex films after aging treatment are the tensile strength, elongation at break, M100 and M300 have performed.
Computational Aerothermodynamic Simulation Issues on Unstructured Grids
NASA Technical Reports Server (NTRS)
Gnoffo, Peter A.; White, Jeffery A.
2004-01-01
The synthesis of physical models for gas chemistry and turbulence from the structured grid codes LAURA and VULCAN into the unstructured grid code FUN3D is described. A directionally Symmetric, Total Variation Diminishing (STVD) algorithm and an entropy fix (eigenvalue limiter) keyed to local cell Reynolds number are introduced to improve solution quality for hypersonic aeroheating applications. A simple grid-adaptation procedure is incorporated within the flow solver. Simulations of flow over an ellipsoid (perfect gas, inviscid), Shuttle Orbiter (viscous, chemical nonequilibrium) and comparisons to the structured grid solvers LAURA (cylinder, Shuttle Orbiter) and VULCAN (flat plate) are presented to show current capabilities. The quality of heating in 3D stagnation regions is very sensitive to algorithm options in general, high aspect ratio tetrahedral elements complicate the simulation of high Reynolds number, viscous flow as compared to locally structured meshes aligned with the flow.
3. SIDE VIEW OF HOIST, SHOWING REDUCTION GEARS AND BED ...
3. SIDE VIEW OF HOIST, SHOWING REDUCTION GEARS AND BED FOR (MISSING) CLUTCH/DRIVE GEAR UNIT, LOOKING SOUTH - Buffalo Coal Mine, Vulcan Cable Hoist, Wishbone Hill, Southeast end, near Moose Creek, Sutton, Matanuska-Susitna Borough, AK
4. END VIEW OF HOIST, SHOWING REDUCTION GEARS AND BED ...
4. END VIEW OF HOIST, SHOWING REDUCTION GEARS AND BED FOR (MISSING) CLUTCH/DRIVE GEAR UNIT, LOOKING SOUTHEAST - Buffalo Coal Mine, Vulcan Cable Hoist, Wishbone Hill, Southeast end, near Moose Creek, Sutton, Matanuska-Susitna Borough, AK
Use of discarded tires in highway construction.
DOT National Transportation Integrated Search
1980-01-01
In August 1978, bituminous surface treatments in which vulcanized rubber was blended with the asphalt cement were placed on two secondary roads by the Sahuaro Petroleum and Asphalt Company and the Whitehurst Paving Company. The work was jointly finan...
6. OBLIQUE VIEW OF HOIST, SHOWING WOODEN BRAKE SHOES, REDUCTION ...
6. OBLIQUE VIEW OF HOIST, SHOWING WOODEN BRAKE SHOES, REDUCTION GEARS AND BED FOR (MISSING) CLUTCH/DRIVE GEAR UNIT, LOOKING NORTHWEST - Buffalo Coal Mine, Vulcan Cable Hoist, Wishbone Hill, Southeast end, near Moose Creek, Sutton, Matanuska-Susitna Borough, AK
1,1,2-Trichloroethane (TCE); Final Enforceable Consent Agreement and Testing Consent Order
EPA has issued an enforceable consent agreement (ECA) with The Dow Chemical Company; Vulcan Materials Company; Occidental Chemical Corp; Oxy Vinyls, LP; Georgia Gulf Corp; Westlake Chemical Corp; PPG, Borden Chemicals & Plastics, and Formosa Plastics.
22. DETAIL OBLIQUE VIEW NORTHWEST OF FURNACE 2, SHOWING GENERAL ...
22. DETAIL OBLIQUE VIEW NORTHWEST OF FURNACE 2, SHOWING GENERAL CONSTRUCTION. CONCRETE PAD AT LEFT IS SITE OF FORMER FURNACE USED TO HEAT URANIUM BILLETS. - Vulcan Crucible Steel Company, Building No. 3, 100 First Street, Aliquippa, Beaver County, PA
30. DETAILED FRONTAL VIEW WEST OF EXCAVATION AT SUSPECTED MICA ...
30. DETAILED FRONTAL VIEW WEST OF EXCAVATION AT SUSPECTED MICA PIT, SHOWING SOIL MIXED WITH MICA FLAKES AT REAR, AND DEEPER HOLE OF VIRGIN SOIL AT FRONT. - Vulcan Crucible Steel Company, Building No. 3, 100 First Street, Aliquippa, Beaver County, PA
Vulcan Planitia, Type Example of Outer Solar System Ammonia-Water Cryovolcanism
NASA Astrophysics Data System (ADS)
McKinnon, W. B.; Beyer, R. A.; Schenk, P. M.; Moore, J. M.; Singer, K. N.; White, O. L.; Spencer, J. R.; Cook, J. C.; Grundy, W. M.; Cruikshank, D. P.; Weaver, H. A.; Young, L. A.; Olkin, C. B.; Stern, S. A.; Robbins, S. J.; New Horizons GGI Team; New Horizons Composition Team
2018-06-01
Pluto's moon Charon offered the first clear (ground-based) evidence for the ammonia-water volcanism predicted long ago by J.S. Lewis. New Horizons then obtained compelling evidence for an ammonia-bearing cryovolcanic plain. But how did it get there?
Potting procedure for electronic components
NASA Technical Reports Server (NTRS)
Rubino, A. G.; Zimmerman, J.
1977-01-01
Potting process is modified to effect a match more closely between embedded electronic components, potting mediums, and thermal environment. Application of room-temperature vulcanizing silicone rubber band cured in modified thermal cycle minimizes coil-to-resin adhesion and thus lowers stresses between transformer and potting compound.
1,2-Ethylene Dichloride; Final Enforceable Consent Agreement and Testing Consent Order
This document announces that EPA has signed an enforceable testing Consent Order with the Dow Chemical Co, Vulcan Materials Co, Occidental Chemical Corp, Oxy Vinyls, LP, Georgia Gulf Corp, Westlake Chemical Corp, PPG Industries, Inc., and Formosa Plastics.
Microwave heating: Industrial applications. Citations from the Engineering Index data base
NASA Astrophysics Data System (ADS)
Reed, W. E.
1980-06-01
Industrialized uses of microwave heating are covered in 225 citations, 22 of which are new entries. The topics include industrial heating and drying for processes such as paper drying, vulcanization, and textile processing. Equipment design and safety are also cited.
ODC-Free Solvent Implementation Issues for Vulcanized Rubber and Bond Systems
NASA Technical Reports Server (NTRS)
Hodgson, James R.; McCool, Alex (Technical Monitor)
2001-01-01
Thiokol Propulsion has worked extensively to replace 1,1,1-trichloroethane (TCA) with ozone depleting chemicals (ODC)-free solvents for use in the manufacture of the Reusable Solid Rocket Motor (RSRM) for the Space Shuttle Program. As Thiokol has transitioned from sub-scale to full-scale testing and implementation of these new solvents, issues have been discovered which have required special attention. The original intent of Thiokol's solvent replacement strategy was to replace TCA with a single drop-in solvent for all equivalent applications. We have learned that a single candidate does not exist for replacing TCA. Solvent incompatibility with process materials has caused us to seek for niche solvents and/or processing changes that provide an ODC-free solution for special applications. This paper addresses some of the solvent incompatibilities, which have lead to processes changes and possible niche solvent usage. These incompatibilities were discovered during full-scale testing of ODC-free solvents and relate to vulcanized rubber and bond systems in the RSRM. Specifically, the following items are presented: (1) Cure effects of d-limonene based solvents on Silica Filled Ethylene Propylene Diene Monomer (SF-EPDM) rubber. During full-scale test operations, Thiokol discovered that d-limonene (terpene) based solvents inhibit the cure of EPDM rubber. Subsequent testing showed the same issue with Nitrile Butadiene Rubber (NBR). Also discussed are efforts to minimize uncured rubber exposure to solvents; and (2) Cured bond system sensitivity to ODC-free solvents. During full scale testing it was discovered that a natural rubber to steel vulcanized bond could degrade after prolonged exposure to ODC-free solvents. Follow on testing showed that low vapor pressure and residence time seemed to be most likely cause for failure.
BSM Delta Qualification 2, volume 3, book 2
NASA Technical Reports Server (NTRS)
1994-01-01
This report, presented in three volumes, provides the results of a two-motor Delta Qualification 2 program conducted in 1993 to certify the following enhancements for incorporation into booster separation motor (BSM0 flight hardware: vulcanized-in-place nozzle aft closure insulation; new iso-static ATJ bulk graphite throat insert material, adhesive EA9394 for bonding the nozzle throat, igniter grain rod/centering insert/igniter case; deletion of the igniter adapter insulator ring; deletion of the igniter adapter/igniter case interface RTV; and deletion of loctite from igniter retainer plate threads. The enhancements above directly resulted from (1) the BSM total quality management (TQM) team initiatives to enhance the BSM producibility, and (2) the necessity to qualify new throat insert and adhesive systems to replace existing materials that will not be available. Testing was completed at both the component and motor levels. Component testing was accomplished to screen candidate materials (e.g., throat materials, adhesive systems) and to optimize processes (e.g., aft closure insulator vulcanization approach) prior to their incorporation into the test motors. Motor testing--consisting of two motors, randomly selected by USBI's on-site quality personnel from production lot AAY, which were modified to accept the enhancements -- was completed to provide the final qualification of the enhancements for incorporation into flight hardware. Volume 3, Book 2 provides various supporting documentation to the previous volumes with regards to the testing of the two Delta qualification units: data acceptance records, thermal conditioning analysis, igniter adapter thermal flake analysis, laboratory adhesive (EA-9394) qualification report, throat insert thermal/structural analysis, Delta Qualification Nonconformance Reports (NCR's), O-ring seating tests, and interim test report for vulcanization process qualification.
Accelerated Comparative Fatigue Strength Testing of Belt Adhesive Joints
NASA Astrophysics Data System (ADS)
Bajda, Miroslaw; Blazej, Ryszard; Jurdziak, Leszek
2017-12-01
Belt joints are the weakest link in the serial structure that creates an endless loop of spliced belt segments. This affects not only the lower strength of adhesive joints of textile belts in comparison to vulcanized splices, but also the replacement of traditional glues to more ecological but with other strength parameters. This is reflected in the lowered durability of adhesive joints, which in underground coal mines is nearly twice shorter than the operating time of belts. Vulcanized splices require high precision in performance, they need long time to achieve cross-linking of the friction mixture and, above all, they require specialized equipment (vulcanization press) which is not readily available and often takes much time to be delivered down, which means reduced mining output or even downtime. All this reduces the reliability and durability of adhesive joints. In addition, due to the consolidation on the Polish coal market, mines are joined into large economic units serviced by a smaller number of processing plants. The consequence is to extend the transport routes downstream and increase reliability requirements. The greater number of conveyors in the chain reduces reliability of supply and increases production losses. With high fixed costs of underground mines, the reduction in mining output is reflected in the increase in unit costs, and this at low coal prices on the market can mean substantial losses for mines. The paper describes the comparative study of fatigue strength of shortened samples of adhesive joints conducted to compare many different variants of joints (various adhesives and materials). Shortened samples were exposed to accelerated fatigue in the usually long-lasting dynamic studies, allowing more variants to be tested at the same time. High correlation between the results obtained for shortened (100 mm) and traditional full-length (3×250 mm) samples renders accelerated tests possible.
NASA Astrophysics Data System (ADS)
Harahap, Hamidah; Hayat, Nuim; Lubis, Marfuah
2017-07-01
Sugarcane waste is abundant sources of cellulose and it has potential to reutilize. Cellulose from sugarcane waste can be derived into nanocystalline cellulose (NCC) from crystalline region. The NCC as a filler has capability to reinforce natural rubber latex product. The crosslink in vulcanized natural rubber latex film influences several properties of product. In this work, we extracted NCC from sugarcane waste then added into natural rubber latex as filler modified alkanolamide (ALK) and also studied the crosslink of natural rubber latex films. NCC were produced from sugarcane waste by hydrolysis process with sulfuric acid 45%. The obtained NCC was characterized by using x-ray diffraction (XRD), transmission electron microscopy (TEM), and fourier transform infra red (FTIR). NCC was modified by alkanolamide and dispersed in water with filler concentration of 10%. Then the dispersion were added into latex system followed by pre-vulcanization at 70 °C. The films were prepared by coagulant dipping method and dried at 100 °C and 120 °C for 20 minutes. Characterization of NCC from sugarcane waste by using FTIR was done, it clearly showed the functional groups of cellulose. TEM showed the obtained NCC were rod-shaped with about 40-160 nm in diameter and several hundred nm in length, and XRD showed that the degree of crystalinity of NCC from sugarcane waste is 92.33%. The crosslink of natural rubber films were studied by measure the crosslink density for different filler loading by using swelling measurement with toluene solution. The result show that the crosslink density increased in line with amount of filler which added into the system, and also the crosslink density that obtained from vulcanization at 120 °C were higher than 100 °C.
3. OVERALL FRONTAL VIEW NORTH, SOUTH FACADES OF BUILDINGS 2 ...
3. OVERALL FRONTAL VIEW NORTH, SOUTH FACADES OF BUILDINGS 2 AND 3, RIGHT TO LEFT. NO. 2 HAS AN ALIQUIPPA FORGE SIGN. NO 3 IS THE DOUBLE BUILDING TO THE LEFT. - Vulcan Crucible Steel Company, 100 First Street, Aliquippa, Beaver County, PA
NASA Astrophysics Data System (ADS)
Patermann, S.; Altstädt, V.
2014-05-01
Thermoplastic vulcanizates (TPVs) combine the elastic properties of thermoset cross-linked rubbers with the melt processability of thermoplastics. The most representative examples of this class are the TPVs based on polypropylene (PP) and ethylene-propylenediene terpolymer rubber (EPDM). The PP/EPDM blends were produced by dynamic vulcanization in a continuous extrusion process. The influence of different peroxide concentrations was studied with regard to cross-link density, compression set, tensile strength/elongation at break and morphology. With increasing peroxide concentration, the cross-link density increases, leading to a reduction of the compression set by 50 %. The cross-linked blends show smaller dispersed EPDM particles than the uncured one. With a peroxide concentration between 0.2 and 0.6 % a maximum in tensile strength and elongation at break was found and with increasing peroxide concentration, the complex viscosity of the TPVs decreases. Compared to batch processes, the results show nearly the same trends.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, David Edward; Barber, John L.
From quantum chemistry simulations using density functional theory, we obtain the total electronic energy of an eight-atom sulfur chain as its end-to-end distance is extended until S–S bond rupture occurs. We find that a sulfur chain can be extended by about 40% beyond its nominally straight conformation, where it experiences rupture at an end-to-end tension of about 1.5 nN. Using this rupture force as the chain failure limit in an explicit polymer network simulation model (EPnet), we predict the tensile failure stress for sulfur crosslinked (vulcanized) natural rubber. Furthermore, quantitative agreement with published experimental data for the failure stress ismore » obtained in these simulations if we assume that only about 30% of the sulfur chains produce viable network crosslinks. Surprisingly, we also find that the failure stress of a rubber network does not scale linearly with the chain failure force limit.« less
NASA Astrophysics Data System (ADS)
Kinasih, N. A.; Fathurrohman, M. I.; Winarto, D. A.
2017-07-01
Epoxidized natural rubber (ENR) with different level of epoxidation (i.e. 10, 20, 30, 40 and 50 mol% indicated as ENR ENR10, ENR20, ENR30, ENR40 and ENR50, respectively) were prepared. They were then vulcanized by using efficient system vulcanization. The effect of epoxide content on curing characteristic, swelling and mechanical properties in N-pentane was investigated. The Attenuated Resonance Fourier Transform Infrared (ATR-FTIR) and H-Nuclear Magnetic Resonance (H-NMR) were used to determine the epoxidation level. Glass transition (Tg) of ENR samples was determined by using Direct Scanning Calorimetry (DSC). The result revealed that the resistance of ENR in N-pentane increased with increasing epoxidation level, which indicated by decreasing equilibrium mol uptake and diffusion coefficient. The compression set of ENR and aging resistance increased with increasing epoxide content, except ENR50 was due to ENR 50 have two Tg value. However, the value of hardness and tensile strength were not effected by epoxidation level.
A composite of hollow carbon nanospheres and sulfur-rich polymers for lithium-sulfur batteries
NASA Astrophysics Data System (ADS)
Zeng, Shao-Zhong; Yao, Yuechao; Zeng, Xierong; He, Qianjun; Zheng, Xianfeng; Chen, Shuangshuang; Tu, Wenxuan; Zou, Jizhao
2017-07-01
Lithium-sulfur batteries are the most promising candidates for future high-energy applications because of the unparalleled capacity of sulfur (1675 mAh g-1). However, lithium-sulfur batteries have limited cycle life and rate capability due to the dissolution of polysulfides and the extremely low electronic conductivity of sulfur. To solve these issues, various porous carbons including hollow carbon nanospheres (HCNs) have been used for improving the conductivity. However, these methods still suffer from polysulfides dissolution/loss owing to their weak physical adsorption to polysulfides. Herein, we introduced a covalent grafting route to composite the HCNs and the vulcanized trithiocyanuric acid (TTCA). The composite exhibits a high loading of the vulcanized TTCA by the HCNs with high surface area and large pore volume, and covalent bonds to sulfur, effectively depressing the dissolution of polysulfides. The first discharge capacity of the composite reaches 1430 mAh g-1 at 0.1 C and 1227 mAh g-1 at 0.2 C.
McGee, Kenneth A.; Gerlach, Terrance M.
1995-01-01
In Roman mythology, Vulcan, the god of fire, was said to have made tools and weapons for the other gods in his workshop at Olympus. Throughout history, volcanoes have frequently been identified with Vulcan and other mythological figures. Scientists now know that the “smoke" from volcanoes, once attributed by poets to be from Vulcan’s forge, is actually volcanic gas naturally released from both active and many inactive volcanoes. The molten rock, or magma, that lies beneath volcanoes and fuels eruptions, contains abundant gases that are released to the surface before, during, and after eruptions. These gases range from relatively benign low-temperature steam to thick hot clouds of choking sulfurous fume jetting from the earth. Water vapor is typically the most abundant volcanic gas, followed by carbon dioxide and sulfur dioxide. Other volcanic gases are hydrogen sulfide, hydrochloric acid, hydrogen, carbon monoxide, hydrofluoric acid, and other trace gases and volatile metals. The concentrations of these gas species can vary considerably from one volcano to the next.
NASA Astrophysics Data System (ADS)
Nagel, S. R.; Bellei, C.; Kneip, S.; Mangles, S. P. D.; Palmer, C.; Willingale, L.; Dangor, A. E.; Najmudin, Z.; Clarke, R. J.; Heathcote, R.; Henig, A.; Schreiber, J.; Saevert, A.; Kaluza, M.
2008-11-01
Electrons as well as ions can be accelerated to high energies (MeV) by high intensity laser interactions with solid targets. An overview of an experiment on the Vulcan laser (pulse length cτ˜150μm, energy on target ˜60 J), will be presented. In this experiment electron acceleration from thick overdense plasmas is investigated by conducting thickness scans using Au foil targets ranging from 10 to 100 μm. The electron spectra, of the most energetic electrons produced in the interaction, are measured along the laser direction and extend up to 40MeV. Surprisingly the electron acceleration depends on target thickness. Simultaneously rear surface proton beam profiles show a dependence of target thickness. Both effects are attributed to electron recirculation. In addition the effects of polarisation was investigated. A decrease in number and effective temperature of energetic electrons is observed for circular polarisation as compared to linear polarisation.
Hanson, David Edward; Barber, John L.
2017-11-20
From quantum chemistry simulations using density functional theory, we obtain the total electronic energy of an eight-atom sulfur chain as its end-to-end distance is extended until S–S bond rupture occurs. We find that a sulfur chain can be extended by about 40% beyond its nominally straight conformation, where it experiences rupture at an end-to-end tension of about 1.5 nN. Using this rupture force as the chain failure limit in an explicit polymer network simulation model (EPnet), we predict the tensile failure stress for sulfur crosslinked (vulcanized) natural rubber. Furthermore, quantitative agreement with published experimental data for the failure stress ismore » obtained in these simulations if we assume that only about 30% of the sulfur chains produce viable network crosslinks. Surprisingly, we also find that the failure stress of a rubber network does not scale linearly with the chain failure force limit.« less
Cathode catalyst for primary phosphoric fuel cells
NASA Technical Reports Server (NTRS)
Walsh, F.
1980-01-01
Alkylation of Vulcan XC-72 provided the most stable bond type for linking CoTAA to the surface of the carbon; this result is based on data obtained by cyclic voltammetry, pulse voltammetry and by release of 14C from bonded CoTAA. Half-cell tests at 100 C in 85% phosphoric acid showed that CoTAA bonded to the surface of carbon (Vulcan XC-72) via an alkylation procedure is a more active catalyst than is platinum based on a factor of two improvement in Tafel slope; dimeric CoTAA has catalytic activity equal to platinum. Half-cell tests also showed that bonded CoTAA catalysts do not suffer a loss in potential when air is used as a fuel rather than oxygen. Commercially available PTFE was shown to be stable for four months in 200 C 85% phosphoric acid based on lack of change in surface wetting properties, IR and physical characteristics. When stressed electrochemically in 150 C 85% phosphoric acid, PTFE also showed no changes after one month.
Crack Velocities in Natural Rubber.
1982-05-01
vulcanized natural rubber (3). The surprisingly low value for natural rubber was attributed to highly anisotropic elastic behavior at high strains...Dr. R.L. Rabie Hercules Incorporated WX-2, MS-952 Alleghany Ballistic Lab Los Alamos National Lab. P.O. Box 210 P.O. Box 1663 Washington, D.C. 21502
Benafan, O.; Padula, S. A.; Skorpenske, H. D.; ...
2014-10-02
Here we discuss a gripping capability that was designed, implemented, and tested for in situ neutron diffraction measurements during multiaxial loading and heating on the VULCAN engineering materials diffractometer at the spallation neutron source at Oak Ridge National Laboratory.
Space Radar Image of Rabaul Volcano, New Guinea
1999-05-01
This is a radar image of the Rabaul volcano on the island of New Britain, Papua, New Guinea taken almost a month after its September 19, 1994, eruption that killed five people and covered the town of Rabaul and nearby villages with up to 75 centimeters (30 inches) of ash. More than 53,000 people have been displaced by the eruption. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on its 173rd orbit on October 11, 1994. This image is centered at 4.2 degrees south latitude and 152.2 degrees east longitude in the southwest Pacific Ocean. The area shown is approximately 21 kilometers by 25 kilometers (13 miles by 15.5 miles). North is toward the upper right. The colors in this image were obtained using the following radar channels: red represents the L-band (horizontally transmitted and received); green represents the L-band (horizontally transmitted and vertically received); blue represents the C-band (horizontally transmitted and vertically received). Most of the Rabaul volcano is underwater and the caldera (crater) creates Blanche Bay, the semi-circular body of water that occupies most of the center of the image. Volcanic vents within the caldera are visible in the image and include Vulcan, on a peninsula on the west side of the bay, and Rabalanakaia and Tavurvur (the circular purple feature near the mouth of the bay) on the east side. Both Vulcan and Tavurvur were active during the 1994 eruption. Ash deposits appear red-orange on the image, and are most prominent on the south flanks of Vulcan and north and northwest of Tavurvur. A faint blue patch in the water in the center of the image is a large raft of floating pumice fragments that were ejected from Vulcan during the eruption and clog the inner bay. Visible on the east side of the bay are the grid-like patterns of the streets of Rabaul and an airstrip, which appears as a dark northwest-trending band at the right-center of the image. Ashfall and subsequent rains caused the collapse of most buildings in the town of Rabaul. Mudflows and flooding continue to pose serious threats to the town and surrounding villages. Volcanologists and local authorities expect to use data such as this radar image to assist them in identifying the mechanisms of the eruption and future hazardous conditions that may be associated with the vigorously active volcano. http://photojournal.jpl.nasa.gov/catalog/PIA01767
5. OBLIQUE VIEW OF HOIST, SHOWING REDUCTION GEARS AND BED ...
5. OBLIQUE VIEW OF HOIST, SHOWING REDUCTION GEARS AND BED FOR (MISSING) CLUTCH/DRIVE GEAR UNIT, LOOKING EAST (McNALLY DRYER AND COVER SHOWN IN EXTREME UPPER RIGHT BACKGROUND) - Buffalo Coal Mine, Vulcan Cable Hoist, Wishbone Hill, Southeast end, near Moose Creek, Sutton, Matanuska-Susitna Borough, AK
Critical Thinking: Rationality, and the Vulcanization of Students.
ERIC Educational Resources Information Center
Walters, Kerry S.
1990-01-01
Although critical thinking has become a pedagogical industry, its endorsement by educators is uncritical. The conventional critical thinking model assumes that only logical thinking is good thinking. However, good thinking also includes rational but nonlogical cognitive functions. To ignore them is to train students in only one aspect of thinking.…
Aqueous carbon black dispersions prepared with steam jet-cooked corn starch
USDA-ARS?s Scientific Manuscript database
The utilization of jet-cooked waxy and normal corn starch to prepare aqueous dispersions of hydrophobic carbon black (Vulcan XC-72R) is reported. Blending carbon black (CB) into aqueous jet-cooked dispersions of starch followed by high pressure homogenization produced stable aqueous carbon black di...
Air-stable ink for scalable, high-throughput layer deposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weil, Benjamin D; Connor, Stephen T; Cui, Yi
A method for producing and depositing air-stable, easily decomposable, vulcanized ink on any of a wide range of substrates is disclosed. The ink enables high-volume production of optoelectronic and/or electronic devices using scalable production methods, such as roll-to-roll transfer, fast rolling processes, and the like.
Development of design allowables data for adhesives for attaching reusable surface insulation
NASA Technical Reports Server (NTRS)
Owen, H. P.; Carroll, M. T.
1972-01-01
Results are presented from tests to establish design allowables data for the following room temperature vulcanizing (RTV) silicone rubber based adhesives: (1) General Electric's RTV-560; (2) Dow Corning's 93-046; and (3) Martin Marietta's SLA-561. These adhesives are being evaluated for attaching reusable surface insulation to space shuttle structure.
30 CFR 57.12088 - Splicing trailing cables.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Splicing trailing cables. 57.12088 Section 57... Underground Only § 57.12088 Splicing trailing cables. No splice, except a vulcanized splice or its equivalent, shall be made in a trailing cable within 25 feet of the machine unless the machine is equipped with a...
30 CFR 57.12088 - Splicing trailing cables.
Code of Federal Regulations, 2014 CFR
2014-07-01
... cable reel or other power feed cable payout-retrieval system. However, a temporary splice may be made to... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Splicing trailing cables. 57.12088 Section 57... Underground Only § 57.12088 Splicing trailing cables. No splice, except a vulcanized splice or its equivalent...
30 CFR 57.12088 - Splicing trailing cables.
Code of Federal Regulations, 2011 CFR
2011-07-01
... cable reel or other power feed cable payout-retrieval system. However, a temporary splice may be made to... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Splicing trailing cables. 57.12088 Section 57... Underground Only § 57.12088 Splicing trailing cables. No splice, except a vulcanized splice or its equivalent...
30 CFR 57.12088 - Splicing trailing cables.
Code of Federal Regulations, 2013 CFR
2013-07-01
... cable reel or other power feed cable payout-retrieval system. However, a temporary splice may be made to... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Splicing trailing cables. 57.12088 Section 57... Underground Only § 57.12088 Splicing trailing cables. No splice, except a vulcanized splice or its equivalent...
30 CFR 57.12088 - Splicing trailing cables.
Code of Federal Regulations, 2012 CFR
2012-07-01
... cable reel or other power feed cable payout-retrieval system. However, a temporary splice may be made to... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Splicing trailing cables. 57.12088 Section 57... Underground Only § 57.12088 Splicing trailing cables. No splice, except a vulcanized splice or its equivalent...
Embedded Carbon Nanotube Networks for Damage Precursor Detection
2014-01-01
3Thostenson, E. T.; Chou, T.-W. Carbon Nanotube Networks: Sensing of Distributed Strain and Damage for Life Prediction and Self - Healing . Advanced...3 Figure 2. Rubber dogbone mold...room temperature vulcanizing rubber to create the final mold. The rubber was mixed with Tin NW Catalyst at a 10:1 ratio. The viscous liquid rubber
Zhou, Yi-Ge; Chen, Jing-Jing; Wang, Feng-bin; Sheng, Zhen-Huan; Xia, Xing-Hua
2010-08-28
A one-step electrochemical approach to the synthesis of highly dispersed Pt nanoparticles on graphene has been proposed. The resultant Pt NPs@G nanocomposite shows higher electrocatalytic activity and long-term stability towards methanol electrooxidation than the Pt NPs@Vulcan.
Reinforcing Natural Rubber with Cellulose Nanofibrils Extracted from Bleached Eucalyptus Kraft Pulp
Chunmei Zhang; Tianliang Zhai; Ronald Sabo; Craig Clemons; Yi Dan; Lih-Sheng Turng
2014-01-01
Reinforced natural rubber (NR) nanocomposites were prepared by solution mixing, casting, and evaporation of pre-vulcanized natural rubber latex and an aqueous suspension of cellulose nanofibrils (CNFs) extracted from bleached eucalyptus kraft pulp. Scanning electron microscopy (SEM) images showed that there were no micro-scaled aggregates observed in the nanocomposites...
Liu, Haijing; Cao, Yinliang; Wang, Feng; Huang, Yaqin
2014-01-22
Novel hierarchical lamellar porous carbon (HLPC) with high BET specific surface area of 2730 m(2) g(-1) and doped by nitrogen atoms has been synthesized from the fish scale without any post-synthesis treatment, and applied to support the platinum (Pt) nanoparticle (NP) catalysts (Pt/HLPC). The Pt NPs could be highly dispersed on the porous surface of HLPC with a narrow size distribution centered at ca. 2.0 nm. The results of the electrochemical analysis reveal that the electrochemical active surface area (ECSA) of Pt/HLPC is larger than the Pt NP electrocatalyst supported on the carbon black (Pt/Vulcan XC-72). Compared with the Pt/Vulcan XC-72, the Pt/HLPC exhibits larger current density, lower overpotential, and enhanced catalytic activity toward the oxygen reduction reaction (ORR) through the direct four-electron pathway. The improved catalytic activity is mainly attributed to the high BET specific surface area, hierarchical porous structures and the nitrogen-doped surface property of HLPC, indicating the superiority of HLPC as a promising support material for the ORR electrocatalysts.
Chen, Yukun; Xu, Chuanhui; Cao, Liming; Wang, Yanpeng; Fang, Liming
2013-06-27
Polypropylene (PP)/ethylene-propylene-diene monomer (EPDM)/zinc dimethacrylate (ZDMA) blend (EPDM/PP ratio of 30/70) with remarkable extensibility was successfully prepared via peroxide dynamic vulcanization. The uniaxial tensile properties, crystallization behavior, structure, and morphology during stretching were investigated. The tensile process study showed that the PP/EPDM/ZDMA blend exhibited the rubbery-like behavior with an elongation beyond 600%. The ZDMA graft-product domain increased the compatibility and interfacial adhesion between rubber and PP phases, while it reduced the crystallinity of the PP phase. On the basis of TEM and SEM analyses, we found that the cross-linked rubber particles could be elongated and oriented along the tensile direction, whereas the ZDMA graft-product domain "encapsulated" rubber phase together, acting as a "bridge" between elongated rubber phases and the PP phase during uniaxial stretching. The stress could be effectively transferred from the PP phase to the numerous elongated rubber phases due to the excellent compatibility and interfacial adhesion between rubber and PP phases, resulting in the rubbery-like behavior.
Bulk and contact resistances of gas diffusion layers in proton exchange membrane fuel cells
NASA Astrophysics Data System (ADS)
Ye, Donghao; Gauthier, Eric; Benziger, Jay B.; Pan, Mu
2014-06-01
A multi-electrode probe is employed to distinguish the bulk and contact resistances of the catalyst layer (CL) and the gas diffusion layer (GDL) with the bipolar plate (BPP). Resistances are compared for Vulcan carbon catalyst layers (CL), carbon paper and carbon cloth GDL materials, and GDLs with microporous layers (MPL). The Vulcan carbon catalyst layer bulk resistance is 100 times greater than the bulk resistance of carbon paper GDL (Toray TG-H-120). Carbon cloth (CCWP) has bulk and contact resistances twice those of carbon paper. Compression of the GDL decreases the GDL contact resistance, but has little effect on the bulk resistance. Treatment of the GDL with polytetrafluoroethylene (PTFE) increases the contact resistance, but has little effect on the bulk resistance. A microporous layer (MPL) added to the GDL decreases the contact resistance, but has little effect on the bulk resistance. An equivalent circuit model shows that for channels less than 1 mm wide the contact resistance is the major source of electronic resistance and is about 10% of the total ohmic resistance associated with the membrane electrode assembly.
NASA Astrophysics Data System (ADS)
Gracia, Ismael; Ben Youcef, Hicham; Judez, Xabier; Oteo, Uxue; Zhang, Heng; Li, Chunmei; Rodriguez-Martinez, Lide M.; Armand, Michel
2018-06-01
Inverse vulcanization copolymers (p(S-DVB)) from the radical polymerization of elemental sulfur and divinylbenzene (DVB) have been studied as cathode active materials in poly(ethylene oxide) (PEO)-based all-solid-state Li-S cells. The Li-S cell comprising the optimized p(S-DVB) cathode (80:20 w/w S/DVB ratio) and lithium bis(fluorosulfonyl)imide/PEO (LiFSI/PEO) electrolyte shows high specific capacity (ca. 800 mAh g-1) and high Coulombic efficiency for 50 cycles. Most importantly, polysulfide (PS) shuttle is highly mitigated due to the strong interactions of PS species with polymer backbone in p(S-DVB). This is demonstrated by the stable cycling of the p(S-DVB)-based cell using lithium bis(trifluoromethanesulfonyl)imide (LiTFSI)/PEO electrolyte, where successful charging cannot be achieved even at the first cycle with plain elemental S-based cathode material due to the severe PS shuttle phenomenon. These results suggest that inverse vulcanization copolymers are promising alternatives to elemental sulfur for enhancing the electrochemical performance of PEO-based all-solid-state Li-S cells.
NASA Astrophysics Data System (ADS)
Alves, Leandro de Carvalho; Rubinger, Mayura Marques Magalhães; Tavares, Eder do Couto; Janczak, Jan; Pacheco, Elen Beatriz Acordi Vasques; Visconte, Leila Lea Yuan; Oliveira, Marcelo Ribeiro Leite
2013-09-01
The compounds (Bu4N)2[(4-RC6H4SO2NCS2)2] [Bu4N = tetrabutylammonium cation; R = H (1), F (2), Cl (3) and Br (4)] and (Ph4P)2[(4-RC6H4SO2NCS2)2]ṡH2O [Ph4P = tetraphenylphosphonium cation and R = I (5)] were synthesized by the reaction of the potassium dithiocarbimates (4-RC6H4SO2NCS2K2ṡ2H2O) with I2 and Bu4NBr or Ph4PCl. The IR data were consistent with the formation of the dithiocarbimatodisulfides anions. The NMR spectra showed the expected signals for the cations and anions in a 2:1 proportion. The structures of compounds 1-5 were determined by the single crystal X-ray diffraction. The compounds 2, 3 and 4 are isostructural and crystallise in the centrosymmetric space group C2/c of the monoclinic system. Compound 1 crystallises in the monoclinic system in the space group of P21/n and the compound 5 crystallises in the centrosymmetric space group P-1 of the triclinic system. The complex anions of compounds 2, 3 and 4 exhibit similar conformations having twofold symmetry, while in 1 and 5 the anions exhibit C1 symmetry. The activity of the new compounds in the vulcanization of the natural rubber was evaluated and compared to the commercial accelerators ZDMC, TBBS and TMTD. These studies confirm that the sulfonyldithiocarbimato disulfides anions are new vulcanization accelerators, being slower than the commercial accelerators, but producing a greater degree of crosslinking, and scorch time values compatible with good processing safety for industrial applications. The mechanical properties, stress and tear resistances were determined and compared to those obtained with the commercial accelerators.
Urban CO2 emissions metabolism: The Hestia Project
NASA Astrophysics Data System (ADS)
Gurney, K. R.; Razlivanov, I.; Zhou, Y.; Song, Y.
2011-12-01
A central expression of urban metabolism is the consumption of energy and the resulting environmental impact, particularly the emission of CO2 and other greenhouse gases. Quantification of energy and emissions has been performed for numerous cities but rarely has this been done in explicit space/time detail. Here, we present the Hestia Project, an effort aimed at building a high resolution (eg. building and road link-specific, hourly) fossil fuel CO2 emissions data product for the urban domain. A complete data product has been built for the city of Indianapolis and work is ongoing for the city of Los Angeles (Figure 1). The effort in Indianapolis is now part of a larger effort aimed at a convergent top-down/bottom-up assessment of greenhouse gas emissions, called INFLUX. Our urban-level quantification relies on a mixture of data and modeling structures. We start with the sector-specific Vulcan Project estimate at the mix of geocoded and county-wide levels. The Hestia aim is to distribute the Vulcan result in space and time. Two components take the majority of effort: buildings and onroad emissions. For the buildings, we utilize an energy building model which we constrain through lidar data, county assessor parcel data and GIS layers. For onroad emissions, we use a combination of traffic data and GIS road layers maintaining vehicle class information. Finally, all pointwise data in the Vulcan Project are transferred to our urban landscape and additional time distribution is performed. A key benefit of the approach taken in this study is the tracking and archiving of fuel and process-level detail (eg. combustion process, other pollutants), allowing for a more thorough understanding and analysis of energy throughputs in the urban environment. Next steps in this research from the metabolism perspective is to consider the carbon footprint of material goods and their lateral transfer in addition to the connection between electricity consumption and production.
Electron linear accelerator system for natural rubber vulcanization
NASA Astrophysics Data System (ADS)
Rimjaem, S.; Kongmon, E.; Rhodes, M. W.; Saisut, J.; Thongbai, C.
2017-09-01
Development of an electron accelerator system, beam diagnostic instruments, an irradiation apparatus and electron beam processing methodology for natural rubber vulcanization is underway at the Plasma and Beam Physics Research Facility, Chiang Mai University, Thailand. The project is carried out with the aims to improve the qualities of natural rubber products. The system consists of a DC thermionic electron gun, 5-cell standing-wave radio-frequency (RF) linear accelerator (linac) with side-coupling cavities and an electron beam irradiation apparatus. This system is used to produce electron beams with an adjustable energy between 0.5 and 4 MeV and a pulse current of 10-100 mA at a pulse repetition rate of 20-400 Hz. An average absorbed dose between 160 and 640 Gy is expected to be archived for 4 MeV electron beam when the accelerator is operated at 400 Hz. The research activities focus firstly on assembling of the accelerator system, study on accelerator properties and electron beam dynamic simulations. The resonant frequency of the RF linac in π/2 operating mode is 2996.82 MHz for the operating temperature of 35 °C. The beam dynamic simulations were conducted by using the code ASTRA. Simulation results suggest that electron beams with an average energy of 4.002 MeV can be obtained when the linac accelerating gradient is 41.7 MV/m. The rms transverse beam size and normalized rms transverse emittance at the linac exit are 0.91 mm and 10.48 π mm·mrad, respectively. This information can then be used as the input data for Monte Carlo simulations to estimate the electron beam penetration depth and dose distribution in the natural rubber latex. The study results from this research will be used to define optimal conditions for natural rubber vulcanization with different electron beam energies and doses. This is very useful for development of future practical industrial accelerator units.
Functionalized Materials From Elastomers to High Performance Thermoplastics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salazar, Laura Ann
Synthesis and incorporation of functionalized materials continues to generate significant research interest in academia and in industry. If chosen correctly, a functional group when incorporated into a polymer can deliver enhanced properties, such as adhesion, water solubility, thermal stability, etc. The utility of these new materials has been demonstrated in drug-delivery systems, coatings, membranes and compatibilizers. Two approaches exist to functionalize a material. The desired moiety can be added to the monomer either before or after polymerization. The polymers used range from low glass transition temperature elastomers to high glass transition temperature, high performance materials. One industrial example of themore » first approach is the synthesis of Teflon(reg. sign). Poly(tetrafluoroethylene) (PTFE or Teflon(reg. sign)) is synthesized from tetrafluoroethylene, a functionalized monomer. The resulting material has significant property differences from the parent, poly(ethylene). Due to the fluorine in the polymer, PTFE has excellent solvent and heat resistance, a low surface energy and a low coefficient of friction. This allows the material to be used in high temperature applications where the surface needs to be nonabrasive and nonstick. This material has a wide spread use in the cooking industry because it allows for ease of cooking and cleaning as a nonstick coating on cookware. One of the best examples of the second approach, functionalization after polymerization, is the vulcanization process used to make tires. Natural rubber (from the Hevea brasiliensis) has a very low glass transition temperature, is very tacky and would not be useful to make tires without synthetic alteration. Goodyear's invention was the vulcanization of polyisoprene by crosslinking the material with sulfur to create a rubber that was tough enough to withstand the elements of weather and road conditions. Due to the development of polymerization techniques to make cis-polyisoprene, natural rubber is no longer needed for the manufacturing of tires, but vulcanization is still utilized.« less
NASA Technical Reports Server (NTRS)
Mena-Werth, Jose
1998-01-01
The Vulcan Photometric Planet Search is the ground-based counterpart of Kepler Mission Proposal. The Kepler Proposal calls for the launch of telescope to look intently at a small patch of sky for four year. The mission is designed to look for extra-solar planets that transit sun-like stars. The Kepler Mission should be able to detect Earth-size planets. This goal requires an instrument and software capable of detecting photometric changes of several parts per hundred thousand in the flux of a star. The goal also requires the continuous monitoring of about a hundred thousand stars. The Kepler Mission is a NASA Discovery Class proposal similar in cost to the Lunar Prospector. The Vulcan Search is also a NASA project but based at Lick Observatory. A small wide-field telescope monitors various star fields successively during the year. Dozens of images, each containing tens of thousands of stars, are taken any night that weather permits. The images are then monitored for photometric changes of the order of one part in a thousand. These changes would reveal the transit of an inner-orbit Jupiter-size planet similar to those discovered recently in spectroscopic searches. In order to achieve a one part in one thousand photometric precision even the choice of a filter used in taking an exposure can be critical. The ultimate purpose of an filter is to increase the signal-to-noise ratio (S/N) of one's observation. Ideally, filters reduce the sky glow cause by street lights and, thereby, make the star images more distinct. The higher the S/N, the higher is the chance to observe a transit signal that indicates the presence of a new planet. It is, therefore, important to select the filter that maximizes the S/N.
Deep-towed CSEM survey of gas hydrates in the Gulf of Mexico
NASA Astrophysics Data System (ADS)
Kannberg, P.; Constable, S.
2017-12-01
Controlled source electromagnetic (CSEM) surveys are increasingly being used to remotely detect hydrate deposits in seafloor sediments. CSEM methods are sensitive to sediment pore space resistivity, such as when electrically resistive hydrate displaces the electrically conductive pore fluid, increasing the bulk resistivity of the sediment. In July 2017, a two-week research cruise using an upgraded and expanded "Vulcan" towed receiver system collected over 250 line km of data at four sites in the Gulf of Mexico (GoM) thought to have hydrate bearing sediments. Hydrate bearing horizons at the survey sites ranged from 400-700 m below seafloor. Modeling suggested an array with source receiver offsets of up to 1600 m would be needed to properly image the deep hydrate. A deep towed electromagnetic transmitter outputting 270 Amps was towed 100 m above seafloor. Six Vulcan receivers, each recording three-axis electric field data, were towed at 200 m intervals from 600-1600 m behind the transmitter. The four sites surveyed, Walker Ridge 313, Orca Basin, Mad Dog, and Green Canyon 955, are associated with the upcoming GOM^2 coring operation scheduled for 2020. Wells at WR313 and GC955 were logged as part of a joint industry drilling project in 2009 and will be used to ground truth our inversion results. In 2008, WR313 and GC955 were surveyed using traditional CSEM seafloor receivers, accompanied by a single prototype Vulcan towed receiver. This prior survey will allow comparison of results from a seafloor receiver survey with those from a towed receiver survey. Seismic data has been collected at all the sites, which will be used to constrain inversions. In addition to the four hydrate sites surveyed, two lines were towed over Green Knoll, a deep-water salt dome located between Mad Dog and GC955. Presented here are initial results from our recent cruise.
NASA Astrophysics Data System (ADS)
Plaza, C.; Schuur, E.; Maestre, F. T.
2015-12-01
Despite much recent research, high uncertainty persists concerning the extent to which global warming influences the rate of permafrost soil organic matter loss and how this affects the functioning of permafrost ecosystems and the net transfer of C to the atmosphere. This uncertainty continues, at least in part, because the processes that protect soil organic matter from decomposition and stabilize fresh plant-derived organic materials entering the soil are largely unknown. The objective of the VULCAN (VULnerability of soil organic CArboN to climate change in permafrost and dryland ecosystems) project is to gain a deeper insight into these processes, especially at the molecular level, and to explore potential implications in terms of permafrost ecosystem functioning and feedback to climate change. We will capitalize on a globally unique ecosystem warming experiment in Alaska, the C in Permafrost Experimental Heating Research (CiPEHR) project, which is monitoring soil temperature and moisture, thaw depth, water table depth, plant productivity, phenology, and nutrient status, and soil CO2 and CH4 fluxes. Soil samples have been collected from the CiPEHR experiment from strategic depths, depending on thaw depth, and allow us to examine effects related to freeze/thaw, waterlogging, and organic matter relocation along the soil profile. We will use physical fractionation methods to separate soil organic matter pools characterized by different preservation mechanisms of aggregation and mineral interaction. We will determine organic C and total N content, transformation rates, turnovers, ages, and structural composition of soil organic matter fractions by elemental analysis, stable and radioactive isotope techniques, and nuclear magnetic resonance tools. Acknowledgements: This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 654132. Web site: http://vulcan.comule.com
Nanocomposites of nitrile (NBR) rubber with multi-walled carbon nanotubes
NASA Astrophysics Data System (ADS)
Warasitthinon, Nuthathai
Nanotechnology offers the promise of creating new materials with enhanced performance. There are different kinds of fillers used in rubber nanocomposites, such as carbon black, silica, carbon fibers, and organoclays. Carbon nanotube reinforced elastomers have potential for improved rubber properties in aggressive environments. The first chapter is an introduction to the literature. The second chapter investigated the incorporation of multi-walled carbon nanotubes (MWCNTs) into rubber matrix for potential use in high temperature applications. The vulcanization kinetics of acrylonitrile butadiene rubber (NBR) reinforced with multi-walled carbon nanotubes was investigated. The vulcanized NBR rubber with different loading percentages of MWCNTs was also compared to NBR reinforced with carbon black N330. The optimum curing time at 170°C (T90) was found to decrease with increasing content of MWCNTs. Increased filler loading of both carbon black and MWCNTs gave higher modulus and strength. The MWCNTs filled materials gave better retention of modulus and tensile strength at high temperatures, but lower strength as compared to the carbon black filled samples. In the third chapter, carbon black (CB, 50phr) content in nitrile rubber (NBR) nanocomposites was partially replaced by multi-walled carbon nanotubes (MWCNTs). NBR/CB/CNTs nanocomposites with varying ratio of CB/CNTs (50/0 phr to 40/10 phr) were formulated via the melt-mixing method using an internal mixer. The reinforcing effect of single filler (CB) and mixture of fillers (CB and CNTs) on the properties of NBR nanocomposites was investigated. The cure kinetics and bound rubber content were analyzed using rheometry and solvent swelling method. In addition, mechanical behavior at both room temperature and high temperature (350°F/ 121°C) were examined. The scorch time and curing time values showed that there was no significant effect on the curing behavior of NBR nanocomposites after the partial replacement of CB with CNTs. It was observed that bound rubber content decreased with increase in CNT content for NBR/CB/CNTs nanocomposites above a loading of 1 phr CNT. In the fourth chapter, the effect of another carbon filler, fullerene, on the properties of HNBR was studied. Fullerenes are conductive and thermally stable due to their three dimensional aromaticity and high reactivity. In this work, the effect of fullerenes (C60) on the properties of HNBR rubber for potential use in aggressive environments was investigated. The vulcanized HNBR rubber with different filler loadings of fullerenes was compared with carbon black (N330). The static mechanical, dynamic mechanical and rheological behavior of the compounds was investigated, along with the vulcanization kinetics study. Increased filler loading of both carbon black and fullerene gave higher modulus and strength. The fullerene filled materials showed improved failure properties.
Mechanophores for Self-Healing Applications
2013-09-09
macroscopic failure. One of the first discovered mechanochemical reactions was the self - healing of vulcanized rubber . Damaging mechanical force...therefore have potential self - healing features. Using the serendipitous case of rubber as a model, mechanophores that produce reactive species under...Mechanophores for Self - Healing Applications Supramolecular polymers held together by hydrogen bonds make efficient self - healing systems. A rubber -like polymer
Field repair of AH-16 helicopter window cutting assemblies
NASA Technical Reports Server (NTRS)
Bement, L. J.
1984-01-01
The U.S. Army uses explosively actuated window cutting assemblies to provide emergency crew ground egress. Gaps between the system's explosive cords and acrylic windows caused a concern about functional reliability for a fleet of several hundred aircraft. A field repair method, using room temperature vulcanizing silicone compound (RTV), was developed and demonstrated to fill gaps as large as 0.250 inch.
Asphaltenes-based polymer nano-composites
Bowen, III, Daniel E
2013-12-17
Inventive composite materials are provided. The composite is preferably a nano-composite, and comprises an asphaltene, or a mixture of asphaltenes, blended with a polymer. The polymer can be any polymer in need of altered properties, including those selected from the group consisting of epoxies, acrylics, urethanes, silicones, cyanoacrylates, vulcanized rubber, phenol-formaldehyde, melamine-formaldehyde, urea-formaldehyde, imides, esters, cyanate esters, allyl resins.
Innovative Navigation Systems to Support Digital Geophysical Mapping
2004-02-01
9 Figure 8. Blackhawk/ Applanix GPS/INS System.................................................................10 Figure 9. Figure-Eight Traverse...Vulcan/LaserStation Line-of-sight laser Parsons Trimble INS/GPS DGPS and inertia guidance Blackhawk Applanix INS/GPS DGPS and inertia guidance...The Applanix Positioning and Orientation System for Land Survey (POS/LS) was used for the Phase I work. The system is similar to the Parsons
Tribology and Friction of Soft Materials: Mississippi State Case Study
2010-03-18
elastomers , foams, and fabrics. B. Develop internal state variable (ISV) material model. Model will be calibrated using database and verified...Rubbers Natural rubber Santoprene (Vulcanized Elastomer ) Styrene Butadiene Rubber (SBR) Foams Polypropylene Foam Polyurethane Foam Fabrics Kevlar...Axially symmetric model PC Disk PC Numerical Implementation in FEM Codes Experiment SEM Optical methods ISV Model Void Nucleation FEM Analysis
Bode, Helge B.; Zeeck, Axel; Plückhahn, Kirsten; Jendrossek, Dieter
2000-01-01
Streptomyces coelicolor 1A and Pseudomonas citronellolis were able to degrade synthetic high-molecular-weight poly(cis-1,4-isoprene) and vulcanized natural rubber. Growth on the polymers was poor but significantly greater than that of the nondegrading strain Streptomyces lividans 1326 (control). Measurement of the molecular weight distribution of the polymer before and after degradation showed a time-dependent increase in low-molecular-weight polymer molecules for S. coelicolor 1A and P. citronellolis, whereas the molecular weight distribution for the control (S. lividans 1326) remained almost constant. Three degradation products were isolated from the culture fluid of S. coelicolor 1A grown on vulcanized rubber and were identified as (6Z)-2,6-dimethyl-10-oxo-undec-6-enoic acid, (5Z)-6-methyl-undec-5-ene-2,9-dione, and (5Z,9Z)-6,10-dimethyl-pentadec-5,9-diene-2,13-dione. An oxidative pathway from poly(cis-1,4-isoprene) to methyl-branched diketones is proposed. It includes (i) oxidation of an aldehyde intermediate to a carboxylic acid, (ii) one cycle of β-oxidation, (iii) oxidation of the conjugated double bond resulting in a β-keto acid, and (iv) decarboxylation. PMID:10966376
2016-03-17
New Horizons views of the informally named Sputnik Planum on Pluto (top) and the informally named Vulcan Planum on Charon (bottom). Both scale bars measure 20 miles (32 kilometers) long; illumination is from the left in both instances. The Sputnik Planum view is centered at 11°N, 180°E, and covers the bright, icy, geologically cellular plains. Here, the cells are defined by a network of interconnected troughs that crisscross these nitrogen-ice plains. At right, in the upper image, the cellular plains yield to pitted plains of southern Sputnik Planum. This observation was obtained by the Ralph/Multispectral Visible Imaging Camera (MVIC) at a resolution of 1,050 feet (320 meters) per pixel. The Vulcan Planum view in the bottom panel is centered at 4°S, 4°E, and includes the "moated mountain" Clarke Mons just above the center of the image. As well as featuring impact craters and sinuous troughs, the water ice-rich plains display a range of surface textures, from smooth and grooved at left, to pitted and hummocky at right. This observation was obtained by the Long Range Reconnaissance Imager (LORRI) at a resolution of 525 feet (160 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA20535
Marzocca, A J; Cerveny, S; Salgueiro, W; Somoza, A; Gonzalez, L
2002-02-01
An experimental investigation was performed to study the effect on the free volume of the advance of the cross-linking reaction in a copolymer of styrene butadiene rubber by sulfur vulcanization. The dynamic modulus and loss tangent were evaluated over samples cured for different times at 433 K by dynamic mechanical tests over a range of frequencies between 5 and 80 Hz at temperatures between 200 and 300 K. Using the William-Landel-Ferry relationship, master curves were obtained at a reference temperature of 298 K and the coefficients c(0)(1) and c(0)(2) were evaluated. From these parameters the dependence of the free volume on the cure time is obtained. Positron annihilation lifetime spectroscopy was also used to estimate the size and number density of free volume sites in the material. The spectra were analyzed in terms of continuous distributions of free volume size. The results suggest an increase of the lower free volume size when cross linking takes place. Both techniques give similar results for the dependence of free volume on the time of cure of the polymer.
Spectroscopic investigation of nitrogen-functionalized carbon materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, Kevin N.; Christensen, Steven T.; Nordlund, Dennis
2016-04-07
Carbon materials are used in a diverse set of applications ranging from pharmaceuticals to catalysis. Nitrogen modification of carbon powders has shown to be an effective method for enhancing both surface and bulk properties of as-received material for a number of applications. Unfortunately, control of the nitrogen modification process is challenging and can limit the effectiveness and reproducibility of N-doped materials. Additionally, the assignment of functional groups to specific moieties on the surface of nitrogen-modified carbon materials is not straightforward. Herein, we complete an in-depth analysis of functional groups present at the surface of ion-implanted Vulcan and Graphitic Vulcan throughmore » the use of X-ray photoelectron spectroscopy (XPS) and near edge X-ray adsorption fine structure spectroscopy (NEXAFS). Our results show that regardless of the initial starting materials used, nitrogen ion implantation conditions can be tuned to increase the amount of nitrogen incorporation and to obtain both similar and reproducible final distributions of nitrogen functional groups. The development of a well-controlled/reproducible nitrogen implantation pathway opens the door for carbon supported catalyst architectures to have improved numbers of nucleation sites, decreased particle size, and enhanced catalyst-support interactions.« less
Development of ternary alloy cathode catalysts for phosphoric acid fuel cells: Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jalan, V.; Kosek, J.; Giner, J.
The overall objective of the program was the identification development and incorporation of high activity platinum ternary alloys on corrosion resistant supports, for use in advanced phosphoric acid fuel cells. Two high activity ternary alloys, Pr-Cr-Ce and Pt-Ni-Co, both supported on Vulcan XC-72, were identified during the course of the program. The Pr-Ni-Co system was selected for optimization, including preparation and evaluation on corrosion resistant supports such as 2700/degree/C heat-treated Vulcan XC-72 and 2700/degree/ heat-treated Black Pearls 2000. A series of tests identified optimum metal ratios, heat-treatment temperatures and heat-treatment atmospheres for the Pr-Ni-Co system. During characterization testing, it wasmore » discovered that approximately 50% of the nickel and cobalt present in the starting material could be removed, subsequent to alloy formation, without degrading performance. Extremely stable full cell performance was observed for the Pt-Ni-Co system during a 10,000 hour atmosphere pressure life test. Several theories are proposed to explain the enhancement in activity due to alloy formation. Recommendations are made for future research in this area. 62 refs., 23 figs., 27 tabs.« less
O-Ring Installation for Underwater Components and Applications
1982-04-15
cure is effected and the heat source removed. AGING -- To undergo changes in physical properties with age or lapse of time. AIR CHECKS -- Surface...the use of heat and pressure, resulting in greatly increased strength and elasticity of rubber -like materials. VULCANIZING AGENT -- A material that...Cross Section Dia -- Diameter EP, EPM, EPDM -- Ethylene-Propylene Rubber F or ’F -- Degrees Fahrenheit FED -- Federal Specification FPM -- Fluorocarbon
Waterproofing Underground Concrete Structures
1990-01-01
include Rubberized Asphalt with 42 Polyethylene Cover, Vulcanized Rubbers such as EPDM , Butyl, and Neoprene, Thermoplastics such as PVC, CPE, HDPE, and...welding. However., PVC sheets tend to shrink excessively and become brittle with increasing age . The rubber sheets that are used most often in...underground concrete structures are Butyl rubber and Ethylene. Propylene Diene Monomer ( EPDM ). The adhesives with which they must be sealed are not quite as
Schwabe, Samuel Heinrich (1789-1875)
NASA Astrophysics Data System (ADS)
Murdin, P.
2000-11-01
Born in Dessau, trained as a pharmacist. When he sold the family pharmacy he became financially independent and was able to turn to astronomy, erecting an astronomical observatory on top of his house, from which he made observations of the Moon, the Sun and the planets. Schwabe began a search for the planet Vulcan inside Mercury's orbit, hoping to find it amongst the sunspots that he observed and...
ERIC Educational Resources Information Center
Cunningham, J. Barton; MacGregor, James N.; Gibb, Jenny; Haar, Jarrod
2009-01-01
A central question in creativity concerns how insightful ideas emerge. Anecdotal examples of insightful scientific and technical discoveries include Goodyear's discovery of the vulcanization of rubber, and Mendeleev's realization that there may be gaps as he tried to arrange the elements into the Periodic Table. Although most people would regard…
NASA Astrophysics Data System (ADS)
Patia, H.; Eggins, S. M.; Arculus, R. J.; McKee, C. O.; Johnson, R. W.; Bradney, A.
2017-10-01
The eruptions that began at Rabaul Caldera on 19 September 1994 had two focal points, the vents Tavurvur and Vulcan, located 6 km apart on opposing sides of the caldera. Vulcan eruptives define a tight cluster of dacite compositions, whereas Tavurvur eruptives span an array from equivalent dacite compositions to mafic andesites. The eruption of geochemically and mineralogically identical dacites from both vents indicates sourcing from the same magma reservoir. This, together with previously reported H2O-CO2 volatile contents of dacite melt inclusions, a caldera-wide seismic low-velocity zone, and a seismically active caldera ring fault structure are consistent with the presence at 3-6 km depth of an extensive, tabular dacitic magma body having volume of about 15-150 km3. The Tavurvur andesites form a linear compositional array and have strongly bimodal phenocryst assemblages that reflect dacite hybridisation with a mafic basalt. The moderately large volume SO2 flux documented in the Tavurvur volcanic plume (and negligible SO2 flux in the Vulcan plume) combined with high dissolved S contents of basaltic melt inclusions trapped in olivine of Tavurvur eruptives, indicate that the amount of degassed basaltic magma was 0.1 km3 and suggest that the injection of this magma was confined to the Tavurvur-side (eastern to northeastern sector) of the caldera. Circumstantial evidence suggests that the eruption was triggered and evolved in response to a series of basaltic magma injections that may have commenced in 1971 and continued up until at least the start of the 1994 eruptions. The presence of zoned plagioclase phenocrysts reflecting older basalt-dacite interaction events (i.e. anorthite cores overgrown with thick andesine rims), evaluation of limited available data for the products of previous eruptions in 1878 and 1937-1943, and the episodic occurrence of major intra-caldera seismo-deformational events indicates that the shallow magma system at Rabaul Caldera is subjected to repeated mafic magma injections at intervals of several years to several decades.
Bonding of reusable surface insulation with low density silicone foams
NASA Technical Reports Server (NTRS)
Hiltz, A. A.; Hockridge, R. R.; Curtis, F. P.
1972-01-01
The development and evaluation of a reduced density, high reliable foamed bond strain isolation system for attaching reusable surface insulation to the space shuttle structure are reported. Included are data on virgin materials as well as on materials that received 100 cycles of exposure to 650 F for approximately 20 minutes per cycle. Room temperature vulcanizing silicon elastomers meet all the requirments for an adhesive bonding system.
Clam Shell Dredging in Lakes Pontchartrain and Maurepas, Louisiana. Volume 2. Public Comments.
1987-11-01
levels and pattern of distribution of polycyclic aromatic hydrocarbons , is presented, despite the fact that these compounds are identified . . as the...DEIS. Moreover, the DEIS implies that the potential for bioaccumulation of the pollutants present in Lake Ponchartrain is low except for a small...CHEMICAL AIR PRODUCTS SHELL OIL CO SHELL CHEMICAL CIBA GEIGY CORPORATION UNION TEXAS PETROLEUM SAVOIE INDUSTRIES SUNLAND SERVICES VULCAN MATERIAL
Wang, Tianlei; Liu, Meitang; Ma, Hongwen
2017-01-01
Supercapacitors have been one of the highest potential candidates for energy storage because of their significant advantages beyond rechargeable batteries in terms of large power density, short recharging time, and long cycle lifespan. In this work, Cu–Co sulfides with uniform flower-like structure have been successfully obtained via a traditional two-step hydrothermal method. The as-fabricated Cu–Co sulfide vulcanized from precursor (P–Cu–Co sulfide) is able to deliver superior specific capacitance of 592 F g−1 at 1 A g−1 and 518 F g−1 at 10 A g−1 which are surprisingly about 1.44 times and 2.39 times higher than those of Cu–Co oxide electrode, respectively. At the same time, excellent cycling stability of P–Cu–Co sulfide is indicated by 90.4% capacitance retention at high current density of 10 A g−1 after 3000 cycles. Because of the introduction of sulfur during the vulcanization process, these new developed sulfides can get more flexible structure and larger reaction surface area, and will own richer redox reaction sites between the interfaces of active material/electrolyte. The uniform flower-like P–Cu–Co sulfide electrode materials will have more potential alternatives for oxides electrode materials in the future. PMID:28590417
NASA Astrophysics Data System (ADS)
Stefanski, Douglas Lawrence
A finite volume method for solving the Reynolds Averaged Navier-Stokes (RANS) equations on unstructured hybrid grids is presented. Capabilities for handling arbitrary mixtures of reactive gas species within the unstructured framework are developed. The modeling of turbulent effects is carried out via the 1998 Wilcox k -- o model. This unstructured solver is incorporated within VULCAN -- a multi-block structured grid code -- as part of a novel patching procedure in which non-matching interfaces between structured blocks are replaced by transitional unstructured grids. This approach provides a fully-conservative alternative to VULCAN's non-conservative patching methods for handling such interfaces. In addition, the further development of the standalone unstructured solver toward large-eddy simulation (LES) applications is also carried out. Dual time-stepping using a Crank-Nicholson formulation is added to recover time-accuracy, and modeling of sub-grid scale effects is incorporated to provide higher fidelity LES solutions for turbulent flows. A switch based on the work of Ducros, et al., is implemented to transition from a monotonicity-preserving flux scheme near shocks to a central-difference method in vorticity-dominated regions in order to better resolve small-scale turbulent structures. The updated unstructured solver is used to carry out large-eddy simulations of a supersonic constrained mixing layer.
NASA Astrophysics Data System (ADS)
Sangari, Samra; Anita, Hill; Dumitru, Pavel
2004-03-01
There have been significant attempts to devulcanize waste elastomers to facilitate reusing these valuable resources in applications requiring the unique properties of rubber. The difficulty in recycling of elastomers has traditionally been with devulcanizing the elastomer without comprising its properties due to degradation of main chains. This research aimed to devulcanize model styrene-butadiene rubber (SBR) compounds, which had various amounts of poly-, di- and monosulfidic crosslinks using a mechanochemical process. Three model compounds were prepared using SBR using a laboratory two-roll mill. They were then vulcanized in a compression molding press at 140r C. The prepared vulcanized compounds were then ground and devulcanized in an internal mixer using a chemical mixture at a constant rotor speed and temperature. The crosslink density of the compounds before and after the devulcanization was calculated using volume-swelling measurements. The obtained data was used to establish the correlation between crosslink density of the compounds and the degree of devulcanization. The results showed that mechanochemical devulcanization caused a significant decrease in the crosslink density of the compounds by breaking the sulfidic linkages. The break up of polysulfidic crosslinks was predominant, meaning that mechanochemical process selectively affected different types of crosslinks.
NASA Astrophysics Data System (ADS)
Jaimes, M. D.; Martin, A.; Layer, P. W.
2013-05-01
Monogenetic vulcanism in the central part of Mexico includes the Chichinautzin Monogenetic Volcanic Field, located at the front of the Transmexican Volcanic Belt (TMVB), 300 km from the Mesoamerican trench. At least 220 volcanoes formed during the Pleistocene and Holocene. Most are scoria cones with associated lava flows, small shield volcanoes and lava domes; and cover an área of 2400 km2 (Martin Del Pozzo, 1982; Wallace and Carmichael, 1999; Velasco-Tapia and Verma, 2001; Velasco-Tapia, 2003). Previous studies in the area (paleomagnetic, geomorphologic, vulcanologic and radiometric) indicate that volcanism is less than 0.79 Ma (Bloomfield, 1973; Mooser et al., 1974; Herrero and Pal, 1978; Martin Del Pozzo et al., 1997; Siebe et al., 2004a). Our field studies include mapping and sampling of 50 lava flows associated with scoria cones, phreatomagmatic structures (2), lava flows without cones (2) and lava domes (5). Geomorphologic analyses, whole rock chemical analyse (FRX), petrographic and geochronologic (Ar-Ar) were carried out. We identified three zones with different eruptive styles: strombolian and violent strombolian to the north and south; and phreatomagmatic style only in the north. Samples are basaltic andesites to dacites. Geochronologic data is consistent with some of the relative ages according to the geomorphologic data and corresponds to three age groups.
Wang, Tianlei; Liu, Meitang; Ma, Hongwen
2017-06-07
Supercapacitors have been one of the highest potential candidates for energy storage because of their significant advantages beyond rechargeable batteries in terms of large power density, short recharging time, and long cycle lifespan. In this work, Cu-Co sulfides with uniform flower-like structure have been successfully obtained via a traditional two-step hydrothermal method. The as-fabricated Cu-Co sulfide vulcanized from precursor (P-Cu-Co sulfide) is able to deliver superior specific capacitance of 592 F g -1 at 1 A g -1 and 518 F g -1 at 10 A g -1 which are surprisingly about 1.44 times and 2.39 times higher than those of Cu-Co oxide electrode, respectively. At the same time, excellent cycling stability of P-Cu-Co sulfide is indicated by 90.4% capacitance retention at high current density of 10 A g -1 after 3000 cycles. Because of the introduction of sulfur during the vulcanization process, these new developed sulfides can get more flexible structure and larger reaction surface area, and will own richer redox reaction sites between the interfaces of active material/electrolyte. The uniform flower-like P-Cu-Co sulfide electrode materials will have more potential alternatives for oxides electrode materials in the future.
Cathode catalysts for primary phosphoric acid fuel cells
NASA Technical Reports Server (NTRS)
1981-01-01
Alkylation or carbon Vulcan XC-72, the support carbon, was shown to provide the most stable bond type for linking cobalt dehydrodibenzo tetraazannulene (CoTAA) to the surface of the carbon; this result is based on data obtained by cyclic voltammetry, pulse voltammetry and by release of 14C from bonded CoTAA. Half-cell tests at 100 C in 85% phosphoric acid showed that CoTAA bonded to the surface of carbon (Vulcan XC-72) via an alkylation procedure is a more active catalyst than is platinum based on a factor of two improvement in Tafel slope; dimeric CoTAA had catalytic activity equal to platinum. Half-cell tests also showed that bonded CoTAA catalysts do not suffer a loss in potential when air is used as a fuel rather than oxygen. Commercially available polytetrafluroethylene (PTFE) was shown to be unstable in the fuel cell environment with degradation occurring in 2000 hours or less. The PTFE was stressed at 200 C in concentrated phosphoric acid as well as electrochemically stressed in 150 C concentrated phosphoric acid; the surface chemistry of PTFE was observed to change significantly. Radiolabeled PTFE was prepared and used to verify that such chemical changes also occur in the primary fuel cell environment.
NASA Astrophysics Data System (ADS)
Surya, I.; Hayeemasae, N.; Ginting, M.
2018-03-01
The effects of alkanolamide (ALK) addition on cure characteristics, crosslink density and degree of filler dispersion of kaolin-filled natural rubber (NR) compounds were investigated. The kaolin filler was incorporated into NR compounds with a fixed loading, 30.0 phr. The ALK was prepared from Refined Bleached Deodorized Palm Stearin (RBDPS), a waste product of cooking oil production, and diethanolamine. The ALK is an oily material and added into the filled NR compounds as a rubber additive at different loadings, 0.0, 3.0, 5.0 and 7.0. The kaolin-filled NR compounds with and without ALK were vulcanized using a semi-efficient vulcanization system. It was found that ALK decreased the scorch and cure times and improved filler dispersion of the kaolin-filled NR compounds. The higher the ALK loading, the shorter were the scorch and cure times. It was also found that ALK increased the crosslink density of kaolin-filled NR compound up to 5.0 phr of loading. Due to its oily properties, The ALK acted as an internal plasticizer which decreased the minimum torque and improved the degree of kaolin dispersion in NR phases. The higher the ALK loading; the lower the minimum torque and better the filler dispersion.
Investigating the Origin of Seismic Swarms
NASA Astrophysics Data System (ADS)
Govoni, Aladino; Passarelli, Luigi; Braun, Thomas; Maccaferri, Francesco; Moretti, Milena; Lucente, Francesco Pio; Rivalta, Eleonora; Cesca, Simone; Hainzl, Sebastian; Woith, Heiko; De Gori, Pasquale; Dahm, Torsten; Chiarabba, Claudio; Margheriti, Lucia
2013-10-01
According to the U.S. Geological Survey's Earthquake Hazards Program, a seismic swarm is "a localized surge of earthquakes, with no one shock being conspicuously larger than all other shocks of the swarm. They might occur in a variety of geologic environments and are not known to be indicative of any change in the long-term seismic risk of the region in which they occur" (http://vulcan.wr.usgs.gov/Glossary/Seismicity/description_earthquakes.html).
Chemicals used in the rubber industry. An overview.
Fishbein, L
1983-01-01
Hundreds of chemicals illustrative of many structural and use categories are employed in the rubber industry. The present overview has centered on the structural features of a number of compounds representative of several select use categories, eg, vulcanizing agents, accelerators, antioxidants, antiozonants, and blowing agents, with focus on the nature of their impurities, their chemical degradation, and by-products, as well as on those chemicals that can be converted to N-nitrosamines.
An Automatic Baseline Regulation in a Highly Integrated Receiver Chip for JUNO
NASA Astrophysics Data System (ADS)
Muralidharan, P.; Zambanini, A.; Karagounis, M.; Grewing, C.; Liebau, D.; Nielinger, D.; Robens, M.; Kruth, A.; Peters, C.; Parkalian, N.; Yegin, U.; van Waasen, S.
2017-09-01
This paper describes the data processing unit and an automatic baseline regulation of a highly integrated readout chip (Vulcan) for JUNO. The chip collects data continuously at 1 Gsamples/sec. The Primary data processing which is performed in the integrated circuit can aid to reduce the memory and data processing efforts in the subsequent stages. In addition, a baseline regulator compensating a shift in the baseline is described.
Antiaccess / Area-Denial: Old Concepts, New Frontiers
2015-05-21
Vulcan’s Anvil: The American Civil War and the Foundation of the Operational Art (Fort Leavenworth, KS: U.S. Army Command and General Staff College, 2004...all elements of operational design and operational art , as well as all possible methods to exploit the operational environment considered to some...considerations in future military campaigns. Case Studies The Maginot Line Romantically dubbed the “Shield of France,” the Maginot Line included eighty-seven
Development of Fiber Reinforced Track Pad Materials
1986-04-01
Transfer and Vulcanization of Rubber , I.R.I. Monograph, Elsevier, 1971. 12 Bergstrom, E.W., " Wear Resistant Rubber Tank Track Pads," Rock Island Arsenal...Fracture Mechanics to Rubber Articles, Including Tyres ," Phil. Trans. R. Soc. Lond. A299,,189-202 (1981). 10 Gent, Fielding-Russell, Livingston, and...System for Rubber Bonded to Brass-Plated Steel Tyre Cord," NR Technology, vol 11, Part 2, 1980, pp 21-27. 16 Lindley, P.B., Engineering Design with
NASA Astrophysics Data System (ADS)
Eckhardt, Donald H.; Garrido Pestaña, José Luis
2014-06-01
The nineteenth century's quest for the missing matter (Vulcan) ended with the publication of Einstein's General Theory of Relativity. We contend that the current quest for the missing matter is parallel in its perseverance and in its ultimate futility. After setting the search for dark matter in its historic perspective, we critique extant dark matter models and offer alternative explanations -- derived from a Lorentz-invariant Lagrangian -- that will, at the very least, sow seeds of doubt about the existence of dark matter.
1987-05-19
of the accelerated vulcanizates. In the 1960s Campbell, Wise and Coran (52) developed characterization techniques to study the effects of compounding...34, Oae, S., Ed., Plenum Press, New York, 1977. 5. Coran , A.Y., "Vulcanization", in "Science and Technology of Rubber," Eirich, F.R., Ed., Academic Press...New York, 1978. 6. Coran , A.Y., Chemtech 106(1983). 7. Coleman, M.M., Shelton J.R. and Koenig, J.L., Ind. Eng. Chem., Prod. Res. Develop. 13, 155
NASA Astrophysics Data System (ADS)
Razavizadeh, Mahmoud; Jamshidi, Masoud
2016-01-01
Fiber to rubber adhesion is an important subject in rubber composite industry. It is well known that surface physical, mechanical and chemical treatments are effective methods to improve interfacial bonding. Ultra violet (UV) light irradiation is an efficient method which is used to increase interfacial interactions. In this research UV assisted chemical modification of PET fabric was used to increase its bonding to nitrile rubber (NBR). NBR is perfect selection to produce fuel and oil resistant rubber parts but it has weak bonding to fabrics. For this purpose at first, the PET fabric was carboxylated under UV irradiation and then methylenediphenyl diisocyanate (MDI) was reacted and grafted to carboxylated PET. T-peel test was used to evaluate PET fabric to NBR bonding strength. Attenuated total reflectance-Fourier transform infrared spectroscopy (FTIR-AT) was used to assess surface modifications of the PET fabrics. The chemical composition of the PET surfaces before and after carboxylation and MDI grafting was investigated by X-ray photoelectron spectroscopy (XPS). It was found that at vulcanizing temperature of 150 °C, carboxylation in contrary to MDI grafting, improved considerably PET to NBR adhesion. Finally effect of curing temperature on PET to NBR bonding strength was determined. It was found that increasing vulcanizing temperature to 170 °C caused considerable improvement (about 134%) in bonding strength.
BSM Delta qualification 2, volume 1
NASA Technical Reports Server (NTRS)
1994-01-01
This report, presented in three volumes, provides the results of a two-motor Delta Qualification 2 program conducted in 1993 to certify the following enhancements for incorporation into Booster Separation Motor (BSM) flight hardware: (1) vulcanized-in-place nozzle aft closure insulation; (2) new isostatic ATJ bulk graphite throat insert material; (3) adhesive EA 9394 for bonding the nozzle throat, igniter grain rod/centering insert/igniter case; (4) deletion of the igniter adapter insulator ring; (5) deletion of igniter adapter/igniter case interface RTV; and (6) deletion of Loctite from igniter retainer plate threads. The enhancements above directly resulted from (1) the BSM Total Quality Management (TQM) Team initiatives to enhance the BSM producibility, and (2) the necessity to qualify new throat insert and adhesive systems to replace existing materials that will not be available. Testing was completed at both the component and motor levels. Component testing was accomplished to screen candidate materials (e.g., throat materials, adhesive systems) and to optimize processes (e.g., aft closure insulator vulcanization approach) prior to their incorporation into the test motors. Motor testing - consisting of two motors, randomly selected by USBI's onsite quality personnel from production lot AAY, which were modified to accept the enhancements - were completed to provide the final qualification of the enhancements for incorporation into flight hardware. It is concluded that all of the enhancements herein tested are qualified to be incorporated into flight hardware for the BSM.
LeFevre, Gregory H; Portmann, Andrea C; Müller, Claudia E; Sattely, Elizabeth S; Luthy, Richard G
2016-07-05
2-Mercaptobenzothiazole (MBT) is a tire rubber vulcanizer found in potential sources of reclaimed water where it may come in contact with vegetation. In this work, we quantified the plant assimilation kinetics of MBT using Arabidopsis under hydroponic conditions. MBT depletion kinetics in the hydroponic medium with plants were second order (t1/2 = 0.52 to 2.4 h) and significantly greater than any abiotic losses (>18 times faster; p = 0.0056). MBT depletion rate was related to the initial exposure concentration with higher rates at greater concentrations from 1.6 μg/L to 147 μg/L until a potentially inhibitory level (1973 μg/L) lowered the assimilation rate. 9.8% of the initial MBT mass spike was present in the plants after 3 h and decreased through time. In-source LC-MS/MS fragmentation revealed that MBT was converted by Arabidopsis seedlings to multiple conjugated-MBT metabolites of differential polarity that accumulate in both the plant tissue and hydroponic medium; metabolite representation evolved temporally. Multiple novel MBT-derived plant metabolites were detected via LC-QTOF-MS analysis; proposed transformation products include glucose and amino acid conjugated MBT metabolites. Elucidating plant transformation products of trace organic contaminants has broad implications for water reuse because plant assimilation could be employed advantageously in engineered natural treatment systems, and plant metabolites in food crops could present an unintended exposure route to consumers.
NASA Astrophysics Data System (ADS)
Manzo-Robledo, A.; Costa, Natália J. S.; Philippot, K.; Rossi, Liane M.; Ramírez-Meneses, E.; Guerrero-Ortega, L. P. A.; Ezquerra-Quiroga, S.
2015-12-01
Oxidation of low-molecular weight alcohols as energy sources using metal nanoparticles has attracted considerable interest for use as a power source in portable electronic devices. In this work, a series of mono- and bimetallic nanoparticles based on palladium and nickel (Pd, Pd90Ni10, Pd50Ni50, Pd10Ni90, and Ni) have been synthesized from organometallic precursors, namely tris(dibenzylideneacetone) dipalladium(0), Pd2(dba)3, and bis(1,5-cyclooctadiene)nickel(0), Ni(cod)2. Well-defined metal particles in the nanometric scale from 4.2 to 6.3 nm were observed by transmission electron microscopy. The as-prepared nanoparticles were mixed with a carbon Vulcan matrix (10 % wt. of the catalyst in turn) for investigation as electrocatalysts in methanol oxidation reaction (MOR) in alkaline conditions. The i- E profiles from cyclic voltammetry for the monometallic systems indicated a redox process attributed only to palladium or nickel, as expected. With the bimetallic nanomaterials, the redox process and the i- E characteristics are functions of the amount of nickel associated to palladium. From a fundamental point of view, it has been established that the OH ions' interfacial interaction and the MOR kinetics are affected by the presence of nickel (decreasing the faradic current) as supported by the current versus potential profiles obtained as a function of methanol concentration and with temperature variation.
A Performance Comparison for Two Versions of the Vulcan Photometer
NASA Technical Reports Server (NTRS)
Borucki, W. J.; Caldwell, D. A.; Koch, D. G.; Jenkins, J. M.; Showen, R. L.
2001-01-01
Analysis of the images produced by the first version (V1) of the Vulcan photometer indicated that two major sources of noise were sky brightness and image motion. To reduce the effect of the sky brightness, a second version (V2) with a longer focal length and a larger format detector was developed and tested. The first version consisted of 15-centimeter (cm) focal length, F/1.5 Aerojet Delft reconnaissance lens, and a 2048 x 2048 format front-illuminated charged coupled device (CCD) with 9 microns micropixels (Mpixels). The second version used a 30-cm focal length, F/2.5 Kodak AeroEktar lens, and a 4096 x 4096 format CCD with 9 micro pixels. Both have a 49-square-degree field of view (FOV) but the area of the sky subtended by each pixel in the V2 version is one-fourth that of the V1 version. This modification substantially reduces the shot noise due to the sky background and allows fainter stars to be monitored for planetary transits. To remove the data gap and consequent signal-level change caused by flipping the photometer around the declination axis and to reduce image movement on the detector, several other modifications were incorporated. These include modifying the mount and stiffening the photometer and autoguider structures to reduce flexure. This paper compares the performance characteristics of each photometer and discusses tests to identify sources of systematic noise.
BSM Delta Qualification 2, volume 2
NASA Technical Reports Server (NTRS)
1994-01-01
This report, presented in three volumes, provides the results of a two-motor Delta Qualification 2 program conducted in 1993 to certify the following enhancements for incorporation into booster separation motor (BSM) flight hardware: vulcanized-in-place nozzle aft closure insulation; new iso-static ATJ bulk graphite throat insert material; adhesive EA 9394 for bonding the nozzle throat, igniter grain rod/centering insert/igniter case; deletion of the igniter adapter insulator ring; deletion of the igniter adapter/igniter case interface RTV; and deletion of loctite from igniter retainer plate threads. The enhancements above directly resulted from (1) the BSM total quality management (TQM) team initiatives to enhance the BSM producibility, and (2) the necessity to qualify new throat insert and adhesive systems to replace existing materials that will not be available. Testing was completed at both the component and motor levels. Component testing was accomplished to screen candidate materials (e.g., throat materials, adhesive systems) and to optimize processes (e.g., aft closure insulator vulcanization approach) prior to their incorporation into the test motors. Motor tests -- consisting of two motors, randomly selected by USBI's on-site quality personnel from production lot AAY, which were modified to accept the enhancements -- were completed to provide the final qualification of the enhancements for incorporation into flight hardware. Volume 2 details the environmental testing (vibration and shock) conducted at Marshall Space Flight Center (MSFC) to which the motors were subjected prior to static tests.
2001-10-01
SAE Rings, Sealing, Butadiene-Acrylonitrile ( NBR ), Rubber Fuel and Low Temperature Resistant 60 - 70 MIL-R-83248C Rubber , Fluorocarbon...KAPTON/TEFLON (COMPOSITE) WIRE I.I.10 34 VI. REFERENCE DOCUMENTS Non-Metallics MIL-HDBK-149B Military Standardization Hand Book Rubber ...ASTM D-1414 Standard Test Methods for Rubber O-Rings ASTM D-412 Type II Standard Test Methods for Vulcanized Rubber and Thermoplastic
Scramjet Combustor Simulations Using Reduced Chemical Kinetics for Practical Fuels
2003-12-01
the aerospace industry in reducing prototype and testing costs and the time needed to bring products to market . Accurate simulation of chemical...JP-8 kinetics and soot models into the UNICORN CFD code (Montgomery et al., 2003a) NSF Phase I and II SBIRs for development of a computer-assisted...divided by diameter QSS quasi-steady state REI Reaction Engineering International UNICORN UNsteady Ignition and COmbustion with ReactioNs VULCAN Viscous Upwind aLgorithm for Complex flow ANalysis
Validation of the NCC Code for Staged Transverse Injection and Computations for a RBCC Combustor
NASA Technical Reports Server (NTRS)
Ajmani, Kumud; Liu, Nan-Suey
2005-01-01
The NCC code was validated for a case involving staged transverse injection into Mach 2 flow behind a rearward facing step. Comparisons with experimental data and with solutions from the FPVortex code was then used to perform computations to study fuel-air mixing for the combustor of a candidate rocket based combined cycle engine geometry. Comparisons with a one-dimensional analysis and a three-dimensional code (VULCAN) were performed to assess the qualitative and quantitative performance of the NCC solver.
The Geology of Charon as Revealed by New Horizons
NASA Technical Reports Server (NTRS)
Moore, J. M.; Spenser, J. R.; Mckinnon, W. B.; Beyer, R. A.; Stern, S. A.; Ennico, K.; Olkin, C. B.; Weaver, H. A.; Young, L. A.
2017-01-01
Pluto's large moon Charon [radius 606 km; density = 1.70 g cm(exp. -3)] exhibits a striking variety of landscapes. Charon can be divided into two broad provinces separated by a roughly aligned assemblage of ridges and canyons, which span from east to west. North of this tectonic belt is rugged, cratered terrain (Oz Terra); south of it are smoother but geologically complex plains (Vulcan Planum). (All place names here are informal.) Relief exceeding 20 km is seen in limb profiles and stereo topography.
A Study of High Speed Friction
1978-09-30
SUPPLEMENTARY NOTES T~iEVIE, OIN’~S, F1,~ I.!,,_ C’ITANED IN THIS REPORT "Ic VlIM.S 0F~J’~Z ’ CONSTRU D AS AN ~-~CY.L!~t>AcoYY3. POLICY, OR DE - ~ION... grafite , iron, polycarbonate, poly- ethylene and woods metal. SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered) A study of high speed friction Final...nylon, D03, Rulon A, vulcanized fiber, constantan, zinc, bismuth, Delrin, solder, grafite , iron, polycarbo- nate, polyethylene and woods metal
Seo, Byeongho; Kang, Jonghyub; Jang, Sukhee; Kang, Yonggu; Kim, Wonho
2013-03-01
Nanoprene is made from chemically cross-linked rubber particles, and has many hydroxyl groups on the surface of the particles. It is speculated that the Nanoprene could reduce the silica-silica network formation by introducing hydrogen bonding between the silanol group of silica and the hydroxyl group of Nanoprene. In this study, the styrene-butadiene rubber (SBR)/silica compounds with two types of the Nanoprene (BM75OH, BM15OH) were evaluated and it could be well explained by the concept of the volume fraction of filler or the volume fraction of rubber. If the Nanoprene applied to the compound is considered as a kind of filler, the minimum torque values and bound rubber contents of the un-vulcanized compounds, the swelling ratio and the stress-strain relationship of the vulcanized compounds could be well explained by the volume fraction of filler (phi(F)). If Nanoprene is considered as a kind of rubber such as SBR, the properties such as peak tan delta, Payne effect, tan delta at 0 degrees C and 60 degrees C, and abrasion resistance could be well explained by the volume fraction of rubber (phi'(R)). However, the improvement of silica dispersion by addition of the Nanoprene particles in the compounds was not significant. The application of BM75OH as a polymer to the tread compound will be suitable for winter tires. In addition, the compound with BM15OH as an additive will be suitable as a tread compound for summer tires.
Chen, Yukun; Xu, Chuanhui; Liang, Xingquan; Cao, Liming
2013-09-12
This work demonstrates an approach of in situ reactive compatibilization between polypropylene (PP) and ethylene-propylene-diene monomer (EPDM) by using zinc dimethacrylate (ZDMA) as a compatibilizer and, simultaneously, as a very strong reinforcing agent. With the incorporation of 7phr ZDMA in the PP/EPDM (30/70, w/w) thermoplastic vulcanizate (TPV), the tensile strength, tear strength, elongation at break, and hardness of PP/EPDM/ZDMA TPV were increased from 5.3 MPa, 31.3 kN/m, 222%, and 78 up to 11.2 MPa, 64.2 kN/m, 396%, and 83, respectively. This tremendous reinforcing as well as the compatibilization effect of the ZDMA was understood by polymerization of ZDMA and ZDMA reacted with EPDM and PP during peroxide-induced dynamic vulcanization. A peculiar phase structure that rubber particles were surrounded and "bonded" by a thick transition zone that contained numerous of nanoparticles with dimensions of about 20-30 nm was observed from transmission electron microscopy. Scanning electron microscopy results confirmed that incorporation of ZDMA reduced the size of the cross-linked EPDM particles. Moreover, we found that the compatibilized TPV showed a higher tan δ peak temperature for EPDM phase and a lower tan δ peak temperature for PP phase. The suggested method for in situ reactive compatibilization of PP and EPDM offers routes to the design of new TPV-based technical products for diversified applications.
Biotechnological possibilities for waste tyre-rubber treatment.
Holst, O; Stenberg, B; Christiansson, M
1998-01-01
Every year large amounts of spent rubber material, mainly from rubber tyres, are discarded. Of the annual total global production of rubber material, which amounts to 16-17 million tonnes, approximately 65% is used for the production of tyres. About 250 millions spent car tyres are generated yearly in USA only. This huge amount of waste rubber material is an environmental problem of great concern. Various ways to remediate the problem have been proposed. Among these are road fillings and combustion in kilns. Spent tyres, however, comprise valuable material that could be recycled if a proper technique can be developed. One way of recycling old tyres is to blend ground spent rubber with virgin material followed by vulcanization. The main obstacle to this recycling is bad adhesion between the crumb and matrix of virgin rubber material due to little formation of interfacial sulphur crosslinks. Micro-organisms able to break sulphur-sulphur and sulphur-carbon bonds can be used to devulcanize waste rubber in order to make polymer chains on the surface more flexible and facilitate increased binding upon vulcanization. Several species belonging to both Bacteria and Archaea have this ability. Mainly sulphur oxidizing species, such as different species of the genus Thiobacillus and thermoacidophiles of the order of Sulfolobales, have been studied in this context. The present paper will give a background to the problem and an overview of the biotechnological possibilities for solutions of waste rubber as an environmental problem, focusing on microbial desulphurization.
Aveiro, L R; Da Silva, A G M; Candido, E G; Antonin, V S; Parreira, L S; Papai, R; Gaubeur, I; Silva, Fernando L; Lanza, M R V; Camargo, P H C; Santos, M C
2018-05-21
This work describes the electrochemical degradation of Reactive Black 5 (RB5) by two methods: electrochemical and photo-assisted electrochemical degradation with and without a Fenton reagent. Two anodes were used, Pt and boron-doped diamond (BDD, 2500 ppm), and the cathode was 3% MnO 2 nanoflowers (NFMnO 2 ) on a carbon gas diffusion electrode (GDE). An electrochemical cell without a divider with a GDE with 3% w/w NFMnO 2 /C supported on carbon Vulcan XC72 was used. The decolorization efficiency was monitored by UV-vis spectroscopy, and the degradation was monitored by Total Organic Carbon (TOC) analysis. For dissolution monitoring, aliquots (1 mL) were collected during the degradation. After 6 h of H 2 O 2 electrogeneration, the manganese concentration in the RB5 solution was only 23.1 ± 1.2 μg L -1 . It was estimated that approximately 60 μg L -1 (<0.2%) of manganese migrated from the GDE to the solution after 12 h of electrolysis, which indicated the good stability of the GDE. The photoelectro-Fenton-BDD (PEF-BDD) processes showed both the best color removal percentage (∼93%) and 91% of mineralization. The 3% NFMnO 2 /C GDE is promising for RB5 degradation. Copyright © 2018. Published by Elsevier Ltd.
Xu, Huihui; Liu, Zihou; Liu, Qingyang; Bei, Yiling; Zhu, Qingzeng
2018-01-01
α-Amine ketoximesilanes are proven to be effective crosslinkers in the preparation of ketone-oxime one-component room temperature vulcanized (RTV) silicone rubber without the use of toxic metal catalyst. This work aimed to investigate the hydrolysis kinetic of α-amine ketoximesilanes, which is vitally important for the preparation of RTV silicone rubber. Five kinds of α-amine ketoximesilanes, namely α-(N,N-diethyl)aminomethyltri(methylethylketoxime)silane (DEMOS), α-(N,N-di-n-butyl)aminomethyltri(methylethylketoxime)silane (DBMOS), α-(N-n-butyl)aminomethyltri(methylethylketoxime)silane (n-BMOS), α-(N-cyclohexyl)aminomethyltri(methylethylketoxime)silane (CMOS) and α-(β-aminomethyl)aminomethyltri(methylethylketoxime)silane (AEMOS), were successfully obtained and confirmed using Fourier transform infrared spectrometer (FT-IR) and hydrogen-1 nuclear magnetic resonance ( 1H NMR). Kinetics of hydrolysis reactions were measured by FT-IR and conductivity. Our results illustrated that the kinetic constant rates ranged from 12.2 × 10−4 s−1 to 7.6 × 10−4 s−1, with the decreasing order of DEMOS > n-BMOS > DBMOS > CMOS > AEMOS at the given temperature and humidity. Better performances of thermal stability could be achieved when using the α-amine ketoximesilanes as crosslinkers in the preparation of RTV silicon rubber than that of RTV silicone rubber with the use of methyltri(methylethylketoxime)silane (MOS) as a crosslinker and organic tin as a catalyst. PMID:29757263
Xu, Huihui; Liu, Zihou; Liu, Qingyang; Bei, Yiling; Zhu, Qingzeng
2018-05-13
α-Amine ketoximesilanes are proven to be effective crosslinkers in the preparation of ketone-oxime one-component room temperature vulcanized (RTV) silicone rubber without the use of toxic metal catalyst. This work aimed to investigate the hydrolysis kinetic of α-amine ketoximesilanes, which is vitally important for the preparation of RTV silicone rubber. Five kinds of α-amine ketoximesilanes, namely α-(N,N-diethyl)aminomethyltri(methylethylketoxime)silane (DEMOS), α-(N,N-di-n-butyl)aminomethyltri(methylethylketoxime)silane (DBMOS), α-(N-n-butyl)aminomethyltri(methylethylketoxime)silane (n-BMOS), α-(N-cyclohexyl)aminomethyltri(methylethylketoxime)silane (CMOS) and α-(β-aminomethyl)aminomethyltri(methylethylketoxime)silane (AEMOS), were successfully obtained and confirmed using Fourier transform infrared spectrometer (FT-IR) and hydrogen-1 nuclear magnetic resonance ( ¹H NMR). Kinetics of hydrolysis reactions were measured by FT-IR and conductivity. Our results illustrated that the kinetic constant rates ranged from 12.2 × 10 −4 s −1 to 7.6 × 10 −4 s −1 , with the decreasing order of DEMOS > n-BMOS > DBMOS > CMOS > AEMOS at the given temperature and humidity. Better performances of thermal stability could be achieved when using the α-amine ketoximesilanes as crosslinkers in the preparation of RTV silicon rubber than that of RTV silicone rubber with the use of methyltri(methylethylketoxime)silane (MOS) as a crosslinker and organic tin as a catalyst.
Platinum assisted by carbon quantum dots for methanol electro-oxidation
NASA Astrophysics Data System (ADS)
Pan, Dan; Li, Xingwei; Zhang, Aofeng
2018-01-01
Various types of fuel cells as clean and portable power sources show a great attraction, especially direct methanol fuel cell (DMFC) having high energy density, low operating temperature and convenient fuel storage. However, the preparation of low-cost Pt-based catalysts with satisfactory catalytic performance still faces many challenges for its commercialization on large scale. Here, Pt catalysts assisted by carbon quantum dots (CQDs) are reported. The synergistic effect of carbon quantum dots and Pt metals is similar to a bi-component catalyst, such as PtRu. First, carbon quantum dots derived from Vulcan XC-72 carbon black are synthesized by mixed acid etching. Then, carbon black (Vulcan XC-72) is soaked in carbon quantum dots solution for several days to obtain carbon black modified by carbon quantum dots (XC-72-CQDs). Finally, Pt catalysts are supported on XC-72-CQDs (Pt/XC-72-CQDs) through a simple chemical reduction method. For methanol electro-oxidation reaction, the catalytic performance of Pt/XC-72-CQDs is compared with commercial PtRu/C (30% Pt + 15% Ru). Results show that a typical product (Pt/XC-72-CQDs5) exhibits a better catalytic activity than PtRu/C. In cyclic voltammetry test, the specific activity of Pt/XC-72-CQDs5 is 1.06 mA cm-2 Pt and 477.6 mA mg-1 Pt, while that of PtRu/C is 0.77 mA cm-2 Pt and 280.6 mA mg-1 Pt.
Processing and Properties of Fire Resistant EPDM Rubber-Based Ceramifiable Composites
NASA Astrophysics Data System (ADS)
Anyszka, Rafał; Bieliński, Dariusz M.; Pędzich, Zbigniew; Zarzecka-Napierała, Magdalena; Imiela, Mateusz; Rybiński, Przemysław
2017-10-01
Low softening point temperature glassy frit, reinforcing silica, wollastonite and dicumyl peroxide were incorporated into ethylene-propylene-diene (EPDM) rubber matrix in different amounts in order to obtain ceramifiable composites. Kinetics of vulcanization of the mixes was measured. Mechanical properties, micromorphology, thermal properties and combustibility of the vulcanizates were studied as well as compression strength of the ceramic residue obtained after heat treatment. Studies show that optimal amount of glassy frit from the point of view of ceramification effectiveness in dispersed mineral phase is 40 % wt.
Preparation and Characterization of Natural Rubber/Organophilic Clay Nanocomposites
NASA Astrophysics Data System (ADS)
Gonzales-Fernandes, M.; Esper, F. J.; Silva-Valenzuela, M. G.; Martín-Cortés, G. R.; Valenzuela-Diaz, F. R.; Wiebeck, H.
Natural rubber/organophilic clay nanocomposites were prepared and characterized. A brown bentonite from Paraiba's State, Brazil was modified with a sodium salt and treated with quaternary ammonium salt hexadecyltrimethyl ammonium chloride. The clay in its natural state, after cation exchange with sodium and after organophilization was characterized by XRD, IR, SEM, thermal analysis. Nanocomposite samples were prepared containing 10 resin percent of organophilic clay. The vulcanized samples were analyzed by XRD, SEM. The nanocomposites obtained showed improvement in their mechanical properties in comparison with samples without clay.
Stream Lined Emission Particles Handling For Civil Engineering Purposes
NASA Astrophysics Data System (ADS)
Hrabovský, Leopold
2017-10-01
Exploitation of conveyor belts for building purposes has large meaning and order scientific potential, that are competently solve the situation in terms of engineering structure. Pocket conveyer is one of the possible structural solutions of belt conveyer transport, where loose substance is conveyed in closed slot of the belt conveyer. The slot emerges (forms) by mutual bringing (approaching) of edges of the belt conveyer together, which have vulcanized lengthwise parts. The lengthwise parts serve for the leading of the belt conveyer and its hanging on a special construction with a number of supporting discs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Semenov, V. V., E-mail: vvsemenov@iomc.ras.ru; Loginova, V. V.; Zolotareva, N. V.
A thin cobalt layer has been formed on the surface of p-aminobenzoic acid whiskers by chemical vapor deposition (CVD). The metallized crystals have been oriented in liquid polydimethylsiloxane rubber by applying a dc magnetic field. After vulcanization, the filler has been removed by processing in an alcohol solution of trifluoroacetic acid. The cobalt deposition on the surface of the organic compound and the properties of metallized whiskers are investigated by optical microscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM).
NASA Astrophysics Data System (ADS)
Mitryaeva, N. S.; Myshlyavtsev, A. V.; Akimenko, S. S.
2017-08-01
The paper studies the effect of ultrasonic processing on the vulcanizing, physical, mechanical and electrophysical properties of elastomeric compositions based on synthetic isoprene rubber. Microscopic studies of multi-wall carbon nanotubes samples before and after ultrasonic processing are carried out. Due to the research, the applied ultrasonic processing method provides splitting of bundles formed from multi-wall carbon nanotubes. This results in elastomeric material with increased strength and high electrical conductivity with a low concentration of nanofiller.
Betancourt, Luis E.; Guzman-Blas, Rolando; Luo, Si; ...
2016-11-19
A robust electrodeposition method consisting of the rotating disk slurry electrode (RoDSE) technique to obtain Au nanoparticles highly dispersed on a conductive carbonaceous support, i.e., Vulcan XC-72R, for ethanol electrooxidation reaction in alkaline media was developed. Ceria was used as a cocatalyst using a Ce(III)-EDTA impregnation method in order to enhance the catalytic activity and improve the catalyst’s overall stability. Furthermore, the RoDSE method used to obtain highly dispersed Au nanoparticles does not require the use of a reducing agent or stabilizing agent, and the noble-metal loading was controlled by the addition and tuning of the metal precursor concentration. Inductivelymore » coupled plasma and thermogravimetric analysis indicated that the Au loading in the catalyst was 9 %. We determined the particle size and characteristic Au fcc crystal facets by X-ray diffraction. The morphology of the catalyst was also investigated using electron microscopy techniques. In addition, X-ray absorption spectroscopy was used to corroborate the presence and identify the oxidation state of Ce in the system and to observe if there are any electronic interactions within the 8 % Au/CeO x/C system. Cyclic voltammetry of electrodeposited 9 % Au/C and Ce-promoted 8 % Au/C showed a higher catalytic current density for ethanol oxidation when compared with commercially available catalysts (20 % Au/C) of a higher precious metal loading. Additionally, we report a higher stability toward the ethanol electrooxidation process, which was corroborated by 1 mV/s linear sweep voltammetry and chronoamperometric studies.« less
Gately, Conor K; Hutyra, Lucy R; Wing, Ian Sue; Brondfield, Max N
2013-03-05
On-road transportation is responsible for 28% of all U.S. fossil-fuel CO2 emissions. Mapping vehicle emissions at regional scales is challenging due to data limitations. Existing emission inventories use spatial proxies such as population and road density to downscale national or state-level data. Such procedures introduce errors where the proxy variables and actual emissions are weakly correlated, and limit analysis of the relationship between emissions and demographic trends at local scales. We develop an on-road emission inventory product for Massachusetts-based on roadway-level traffic data obtained from the Highway Performance Monitoring System (HPMS). We provide annual estimates of on-road CO2 emissions at a 1 × 1 km grid scale for the years 1980 through 2008. We compared our results with on-road emissions estimates from the Emissions Database for Global Atmospheric Research (EDGAR), with the Vulcan Product, and with estimates derived from state fuel consumption statistics reported by the Federal Highway Administration (FHWA). Our model differs from FHWA estimates by less than 8.5% on average, and is within 5% of Vulcan estimates. We found that EDGAR estimates systematically exceed FHWA by an average of 22.8%. Panel regression analysis of per-mile CO2 emissions on population density at the town scale shows a statistically significant correlation that varies systematically in sign and magnitude as population density increases. Population density has a positive correlation with per-mile CO2 emissions for densities below 2000 persons km(-2), above which increasing density correlates negatively with per-mile emissions.
NASA Astrophysics Data System (ADS)
Engelmann, Sven; Meyer, Jan; Hentschke, Reinhard
2017-08-01
We study the thermal conductivity tensor in an atomistic model of vulcanized cis-1,4-polyisoprene (PI) rubber via molecular dynamics simulations. Our polymer force field is based on V. A. Harmandaris et al. [J. Chem. Phys. 116, 436 (2002), 10.1063/1.1416872], whereas the polymerization algorithm follows the description in J. Hager et al. [Macromolecules 48, 9039 (2015), 10.1021/acs.macromol.5b01864]. The polymer chains are chemically cross linked via sulfur bridges of adjustable cross-link density. A volume-conserving uniaxial strain of up to 200% is applied to the systems. The widely used GROMACS simulation package is adapted to allow using the Green-Kubo approach to calculate the thermal conductivity tensor components. Our analysis of the heat flux autocorrelation functions leads to the conclusion that the thermal conductivity in PI is governed by short-lived phonon modes at low wave numbers due to deformation of the monomers along the polymer backbone. Applying uniaxial strain causes increased orientation of monomers along the strain direction, which enhances the attendant thermal conductivity component. We find an exponential increase of the conductivity in stretch direction in terms of an attendant orientation order parameter. This is accompanied by a simultaneous decline of thermal conductivity in the orthogonal directions. Increase of the cross-link density only has a weak effect on thermal conductivity in the unstrained system, even at high cross-link density. In the strained system we do observed a rising thermal conductivity in the limit of high stress. This increase is attributed to enhanced coupling between chains rather than to their orientation.
Gain measurements and spatial coherence in neon-like x-ray lasers
NASA Astrophysics Data System (ADS)
Krishnan, J.; Cairns, C.; Dwivedi, L.; Holden, M.; Key, M. H.; Lewis, C. L. S.; MacPhee, A.; Neely, D.; Norreys, P. A.; Pert, G. J.; Ramsden, S. A.; Smith, C. G.; Tallents, G. J.; Zhang, J.
1995-05-01
Many of the applications with x-ray lasers require high quality output radiation with properties such as short wavelength and a high degree of coherence (longitudinal and spatial). Ne-like Yttrium (Z=39) is potentially a bright and monochromatic XUV lasing medium. The output at 15.5 nm is monochromatic due to the overlap of the J=2-1 and J=0-1 lines. A gain coefficient of 3±1 was obtained at 15.5 nm by irradiating 100 μm wide yttrium stripes at 6×1013 W/cm2 with 1.06 μm, 650 ps pulses from the Rutherford Appleton Laboratory VULCAN laser. We have investigated improving x-ray laser spatial coherence utilizing a series of amplifiers instead of the standard double target configuration. An ``injector-amplifier'' scheme was successfully demonstrated with the Ne-like Ge x-ray laser. A spatially small and coherent part of the 23 nm beam from the standard double target geometry has been relayed using a W/Si multilayer mirror onto a single or double target configuration situated at a distance of ˜1.5 m from the mirror and pumped by two 150 mm diameter beams of VULCAN laser. A beam ``foot-print monitor'' was employed with a flat mirror to relay 23 nm output onto a film pack to record the spatial variation of the x-ray laser beam. Analyzing the fringes obtained through a cross-wire placed in front of the beam shows that an increase in spatial coherence was achieved by adding amplifiers to the x-ray laser beam line.
BSA Delta Qualification 2, volume 3, book 1
NASA Technical Reports Server (NTRS)
1994-01-01
This report, presented in three volumes, provides the results of a two-motor Delta Qualification 2 program conducted in 1993 to certify the following enhancements for incorporation into booster separation motor (BSM) flight hardware: vulcanized-in-place nozzle aft closure insulation; new iso-static ATJ bulk graphite throat insert material; adhesive EA 9394 for bonding the nozzle throat, igniter grain rod/centering insert/igniter case; deletion of the igniter adapter insulator ring; deletion of the igniter adapter/igniter case interface RTV; and deletion of Loctite from igniter retainer plate threads. The enhancements above directly resulted from (1) the BSM total quality management (TQM) team initiatives to enhance the BSM producibility, and (2) the necessity to qualify new throat insert and adhesive systems to replace existing materials that will not be available. Testing was completed at both the component and motor levels. Component testing was accomplished to screen candidate materials (e.g., throat materials, adhesive systems) and to optimize processes (e.g., aft closure insulator vulcanization approach) prior to their incorporation into the test motors. Motor tests -- consisting of two motors, randomly selected by USBI's on-site quality personnel from production lot AAY, which were modified to accept the enhancements -- were completed to provide the final qualification of the enhancements for incorporation into flight hardware. Volume 3 book 1 provides supporting documentation to the analyses and plans of testing the two Delta Qualification units including thermal cycling planning/data acceptance records, environmental test procedures and pretest temperature conditioning history, Delta Qualification test plan, and specification SE0837 -- mix acceptance test specification.
Space Radar Image of Rabaul Volcano, New Guinea
NASA Technical Reports Server (NTRS)
1994-01-01
This is a radar image of the Rabaul volcano on the island of New Britain, Papua, New Guinea taken almost a month after its September 19, 1994, eruption that killed five people and covered the town of Rabaul and nearby villages with up to 75 centimeters (30 inches) of ash. More than 53,000 people have been displaced by the eruption. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on its 173rd orbit on October 11, 1994. This image is centered at 4.2 degrees south latitude and 152.2 degrees east longitude in the southwest Pacific Ocean. The area shown is approximately 21 kilometers by 25 kilometers (13 miles by 15.5 miles). North is toward the upper right. The colors in this image were obtained using the following radar channels: red represents the L-band (horizontally transmitted and received); green represents the L-band (horizontally transmitted and vertically received); blue represents the C-band (horizontally transmitted and vertically received). Most of the Rabaul volcano is underwater and the caldera (crater) creates Blanche Bay, the semi-circular body of water that occupies most of the center of the image. Volcanic vents within the caldera are visible in the image and include Vulcan, on a peninsula on the west side of the bay, and Rabalanakaia and Tavurvur (the circular purple feature near the mouth of the bay) on the east side. Both Vulcan and Tavurvur were active during the 1994 eruption. Ash deposits appear red-orange on the image, and are most prominent on the south flanks of Vulcan and north and northwest of Tavurvur. A faint blue patch in the water in the center of the image is a large raft of floating pumice fragments that were ejected from Vulcan during the eruption and clog the inner bay. Visible on the east side of the bay are the grid-like patterns of the streets of Rabaul and an airstrip, which appears as a dark northwest-trending band at the right-center of the image. Ashfall and subsequent rains caused the collapse of most buildings in the town of Rabaul. Mudflows and flooding continue to pose serious threats to the town and surrounding villages. Volcanologists and local authorities expect to use data such as this radar image to assist them in identifying the mechanisms of the eruption and future hazardous conditions that may be associated with the vigorously active volcano. Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v.(DLR), the major partner in science, operations and data processing of X-SAR.
Computational Fluid Dynamics Technology for Hypersonic Applications
NASA Technical Reports Server (NTRS)
Gnoffo, Peter A.
2003-01-01
Several current challenges in computational fluid dynamics and aerothermodynamics for hypersonic vehicle applications are discussed. Example simulations are presented from code validation and code benchmarking efforts to illustrate capabilities and limitations. Opportunities to advance the state-of-art in algorithms, grid generation and adaptation, and code validation are identified. Highlights of diverse efforts to address these challenges are then discussed. One such effort to re-engineer and synthesize the existing analysis capability in LAURA, VULCAN, and FUN3D will provide context for these discussions. The critical (and evolving) role of agile software engineering practice in the capability enhancement process is also noted.
Propagation in compressed matter of hot electrons created by short intense lasers
NASA Astrophysics Data System (ADS)
Batani, D.; Bernardinello, A.; Masella, V.; Pisani, F.; Koenig, M.; Krishnan, J.; Benuzzi, A.; Ellwi, S.; Hall, T.; Norreys, P.; Djaoui, A.; Neely, D.; Rose, S.; Fews, P.; Key, M.
1998-02-01
We performed the first experimental study of propagation in compressed matter of hot electrons created by a short pulse intense laser. The experiment has been carried out with the VULCAN laser at Rutherford compressing plastic targets with two ns laser beams at an intensity ⩾1014W/cm2. A CPA beam with an intensity ⩾1016W/cm2 irradiated the rear side of the target and created hot electrons propagating through the compressed matter. K-α emission was used as diagnostics of hot electron penetration by putting a chloride plastic layer inside the target.
Groundwater maintenance at the vulcan materials quarry in Chattanooga, Tennessee
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, R.L.
1985-01-01
The Vulcan Materials Shallowford Road Quarry in Chattanooga, Tennessee is the largest active limestone quarry in the state. Currently it covers some 35 hectares with highwalls up to 100 m. Production is predominately from Middle Ordovician Limestone of the Stones River Group. The upper 60 m consists of medium-bedded gray limestone of the Pond Springs Formation, while the lower 40 m are in Lower Ordovician dolomites and limestones belonging to the Mascot Formation of the Knox Group. The present quarry began in 1951 and has been in continuous operation since that time. For several years the influx of groundwater intomore » the quarry was so great that over 11,355 liters per minute had to be removed by a series of pumps. A source of much of the groundwater was thought to be from Friar Branch which flowed near the present quarry site. At low water, several sinkholes were observed in the bottom of the stream. Several attempts were made (unsuccessfully) to fill these sinks. On July 17, 1984, a 184 m trench was dug along the north side of Friar Branch and fifty-one sections of 1.2 m diameter pipe were placed in the trench. Each 4 m section was made water tight and the water from Friar branch was then diverted into the pipe. Bulldozers scraped the dry bed of Friar Branch in an attempt to locate all major cavities and sinkholes. These were filled with grout and the bed of the creek was covered with about 7 to 8 cm of crushed rock and rolled. The entire stream was sealed with grout and then the stream was returned to its original course. The results was a marked reduction in groundwater seepage into the quarry.« less
Soboleva, Tatyana; Malek, Kourosh; Xie, Zhong; Navessin, Titichai; Holdcroft, Steven
2011-06-01
The effects of carbon microstructure and ionomer loading on water vapor sorption and retention in catalyst layers (CLs) of PEM fuel cells are investigated using dynamic vapor sorption. Catalyst layers based on Ketjen Black and Vulcan XC-72 carbon blacks, which possess distinctly different surface areas, pore volumes, and microporosities, are studied. It is found that pores <20 nm diameter facilitate water uptake by capillary condensation in the intermediate range of relative humidities. A broad pore size distribution (PSD) is found to enhance water retention in Ketjen Black-based CLs whereas the narrower mesoporous PSD of Vulcan CLs is shown to have an enhanced water repelling action. Water vapor sorption and retention properties of CLs are correlated to electrochemical properties and fuel cell performance. Water sorption enhances electrochemical properties such as the electrochemically active surface area (ESA), double layer capacitance and proton conductivity, particularly when the ionomer content is very low. The hydrophilic properties of a CL on the anode and the cathode are adjusted by choosing the PSD of carbon and the ionomer content. It is shown that a reduction of ionomer content on either cathode or anode of an MEA does not necessarily have a significant detrimental effect on the MEA performance compared to the standard 30 wt % ionomer MEA. Under operation in air and high relative humidity, a cathode with a narrow pore size distribution and low ionomer content is shown to be beneficial due to its low water retention properties. In dry operating conditions, adequate ionomer content on the cathode is crucial, whereas it can be reduced on the anode without a significant impact on fuel cell performance. © 2011 American Chemical Society
Application of Lignin as Antioxidant in Styrene Butadiene Rubber Composite
NASA Astrophysics Data System (ADS)
Liu, Shusheng; Cheng, Xiansu
2010-11-01
Lignin isolated from enzymatic hydrolyzed cornstalks (EHL) is a renewable natural polymer, and rubber is one of the most important polymer materials. The application of EHL in rubber industry is of great significance. The influence of EHL and antioxidant RD on the vulcanizing characteristics, thermal oxidative aging stability under free condition, and water extraction resistance of styrene-butadiene rubber (SBR) were investigated. The effect of EHL/antioxidant D composite antioxidant on the thermal oxidative ageing of SBR was also evaluated. Results showed that the protection of SBR from thermal oxidative aging by EHL/antioxidant D composite antioxidant was superior to that of antioxidant D. This is because EHL molecules have hindered phenol group and have excellent auxiliary antioxidant role with antioxidant D. Moreover, the influence of EHL on the vulcanizing characteristics of SBR compounds was better than that of antioxidant RD, and EHL can reduce the cure rate and increase the optimum cure time. It is because that the EHL molecules have hindered phenol group and methoxy group, which can form a special structure to capture free radical and terminate the chain reaction. The retained tensile strength of SBR compounds with EHL was similar to that of the samples with antioxidant RD, while the retained elongation at break of SBR compounds with EHL was higher than that of the samples with antioxidant RD. In addition, the SBR compounds with EHL have a good water extraction resistance property, which was similar to the samples with antioxidant RD. This is because EHL have large molecular weight, good stability and low solubility in water. In conclusion, due to the low price, abundant resources, non-toxic and pollution-free, etc., EHL will have broad application prospect.
Formulation/cure technology for ultrahigh molecular weight silphenylene-siloxane polymers
NASA Technical Reports Server (NTRS)
Hundley, N. H.; Patterson, W. J.
1985-01-01
Molecular weights above one million were achieved for methylvinylsilphenylene-siloxane terpolymers using a two-stage polymerization technique which was successfully scaled up to 200 grams. The resulting polymer was vulcanized by two different formulations and compared to an identically formulated commercial methylvinyl silicone on the basis of ultimate strength, Young's modulus, percent elongation at failure, and tear strength. Relative thermal/oxidative stabilities of the elastomers were assessed by gradient and isothermal thermogravimetric analyses performed in both air and nitrogen. The experimental elastomer exhibited enhanced thermal/oxidative stability and possed equivalent or superior mechanical properties. The effect of variations in prepolymer molecular weight on mechanical properties was also investigated.
Detection of hydrogen dissolved in acrylonitrile butadiene rubber by 1H nuclear magnetic resonance
NASA Astrophysics Data System (ADS)
Nishimura, Shin; Fujiwara, Hirotada
2012-01-01
Rubber materials, which are used for hydrogen gas seal, can dissolve hydrogen during exposure in high-pressure hydrogen gas. Dissolved hydrogen molecules were detected by solid state 1H NMR of the unfilled vulcanized acrylonitrile butadiene rubber. Two signals were observed at 4.5 ppm and 4.8 ppm, which were assignable to dissolved hydrogen, in the 1H NMR spectrum of NBR after being exposed 100 MPa hydrogen gas for 24 h at room temperature. These signals were shifted from that of gaseous hydrogen molecules. Assignment of the signals was confirmed by quantitative estimation of dissolved hydrogen and peak area of the signals.
NASA Technical Reports Server (NTRS)
Bodechtel, J. (Principal Investigator)
1975-01-01
The author has identified the following significant results. The geological interpretation on data exhibiting the Italian peninsula led to the recognition of tectonic features which are explained by a clockwise rotation of various blocks along left-handed transform faults. These faults can be interpreted as resulting from shear due to main stress directed north-eastwards. A land use map of the mountainous regions of Italy was produced on a scale of 1:250,000. For the digital treatment of MSS-CCTs an image processing software was written in FORTRAN 4. The software package includes descriptive statistics and also classification algorithms.
Preparation And Analysis Of Specimens Of Ablative Materials
NASA Technical Reports Server (NTRS)
Solomon, William C.
1994-01-01
Procedure for chemical analysis of specimens of silicone-based ablative thermal-insulation materials SLA-561 and MA25 involves acid digestion of specimens to prepare them for analysis by inductively-coupled-plasma/atomic-emission spectroscopy (ICP/AES). In comparison with atomic-absorption spectroscopy (AAS), ICP/AES is faster and more accurate than AAS. Results of analyses stored in data base, used to trace variations in concentrations of chemical elements in materials during long-term storage, and used in timely manner in investigations of failures. Acid-digestion portion of procedure applied to other thermal-insulation materials containing room-temperature-vulcanizing silicones and enables instrumental analysis of these materials.
Study of Forebody Injection and Mixing with Application to Hypervelocity Airbreathing Propulsion
NASA Technical Reports Server (NTRS)
Axdahl, Erik; Kumar, Ajay; Wilhite, Alan
2012-01-01
The use of premixed, shock-induced combustion in the context of a hypervelocity, airbreathing vehicle requires effective injection and mixing of hydrogen fuel and air on the vehicle forebody. Three dimensional computational simulations of fuel injection and mixing from flush-wall and modified ramp and strut injectors are reported in this study. A well-established code, VULCAN, is used to conduct nonreacting, viscous, turbulent simulations on a flat plate at conditions relevant to a Mach 12 flight vehicle forebody. In comparing results of various fuel injection strategies, it is found that strut injection provides the greatest balance of performance between mixing efficiency and stream thrust potential.
NASA Technical Reports Server (NTRS)
Lawson, Gary; Poteat, Michael; Sosonkina, Masha; Baurle, Robert; Hammond, Dana
2016-01-01
In this work, several mini-apps have been created to enhance a real-world application performance, namely the VULCAN code for complex flow analysis developed at the NASA Langley Research Center. These mini-apps explore hybrid parallel programming paradigms with Message Passing Interface (MPI) for distributed memory access and either Shared MPI (SMPI) or OpenMP for shared memory accesses. Performance testing shows that MPI+SMPI yields the best execution performance, while requiring the largest number of code changes. A maximum speedup of 23X was measured for MPI+SMPI, but only 10X was measured for MPI+OpenMP.
An Experimental and CFD Study of a Supersonic Coaxial Jet
NASA Technical Reports Server (NTRS)
Cutler, A. D.; White, J. A.
2001-01-01
A supersonic coaxial jet facility is designed and experimental data are acquired suitable for the validation of CFD codes employed in the analysis of high-speed air-breathing engines. The center jet is of a light gas, the coflow jet is of air, and the mixing layer between them is compressible. The jet flow field is characterized using schlieren imaging, surveys with pitot, total temperature and gas sampling probes, and RELIEF velocimetry. VULCAN, a structured grid CFD code, is used to solve for the nozzle and jet flow, and the results are compared to the experiment for several variations of the kappa - omega turbulence model
Improvement of Mechanical Properties in Natural Rubber with Organic Fillers
NASA Astrophysics Data System (ADS)
Gonzales-Fernandes, M.; Bastos, Andrade C. G.; Esper, F. J.; Valenzuela-Diaz, F. R.; Wiebeck, H.
When added to polymeric matrices, organophilic clay transforms the performance of the resulting composites. A natural rubber matrix with different loads was prepared as bentonite chocolate B modified by sodification and treated with ammonium quaternary salt with cellulose charge, cardboard and palm fiber. After the mixture of natural rubber in a roller mill with the additives and subsequent addition of loads individually, plates were vulcanized for fabricating specimens. We measured the mechanical properties of traction and the interlayer distances analyzed by XRD. The aim of the paper is to show that the composite obtained improved in mechanical properties as compared to plates without the addition of loads.
NASA Astrophysics Data System (ADS)
Budiarto
2017-03-01
Study the influence of high concentrations of antioxidants N-isopropyl-N-phenyl-p-phenylenediamine (IPPD) and 2,2,4-trimethyl-1,2-dihydroquinoline (TMQ) and the mixing time of the vulcanization physical properties, thermal properties, mechanical properties and structure micro on natural rubber compound has been done. The purpose of this study is to compare the effect of anti-oxidants types IPPD and TMQ and mixing time of vulcanization of the physical properties, mechanical properties, microstructure and elemental composition of the synthesis of natural rubber compound. Processes of vulcanization with variations in the concentration of antioxidant IPPD and TMQ: 2, 3, and 4 grams and mixing time: 20, 30, and 40 minutes. Analysis characterization of physical properties and mechanical properties of natural rubber compound showed that the maturity value 0,499Nm (TMQ) and 0.489 Nm (IPPD), Mooney viscosity value of 26.7 (TMQ) and 20.8 (IPPD), the value of the elongation at break 583.75 % (IPPD), and 552.63% (TMQ) as well as the value of tensile strength of 28.108 M.Pa (TMQ), and 27.986 M.Pa (IPPD). Analysis of thermal properties of natural rubber compound antioxidant IPPD with DTA shows there are three endothermic peak on the curve that is temperature 405°C, 550°C and 660°C and tested by TGA showed that the curve of the total reduction in the sample are 81.745% and compound rubber antioxidant TMQ with the analysis of DTA also contained 3 endothermic peak at a temperature 397,21°C, 514,02°C, and 610,27°C and TGA analysis shows the curve of the total sample of 82.356% reduction. Gsi fun group analysis rubber-antioxidant compound IPPD / TMQ with FTIR spectrophotometer shows some typical infrared absorption peak at the wave number (1 / λ) 833-895 cm-1 for cluster / CH bonds, 1,313 cm-1 for group / single bond Si-O, 1368 cm-1 to g ugus / single bond CC, 1507 cm-1, for cluster / bond C = C, 1665 cm-1For cluster / bond-C = O, 2128 cm-1 is the group / bond CN single, 3371cm-1 for group-OH, 3506 cm-1 for cluster / CH3 bond and 3585 cm-1 showed the presence of vibration in the cluster / bond-NH. The results of morphological observation with SEM produces uneven surface (homogeneous) and are compatible at 2000 times magnification, as well as the test composition by EDX spectroscopy showed that the biggest element in the rubber compound is carbon and Zn, S, Ca, Si, Mg, Al, N. This shows that the natural rubber compound antioxidant IPPD / TMQ meet the standard of "Mechanical Properties of Industrial Tyre rubber Compounds".
NASA Astrophysics Data System (ADS)
Ramesan, M. T.; Abdu Raheem V., P.; Jayakrishnan, P.; Pradyumnan, P. P.
2014-10-01
Nanocomposites of NBR with manganous-tungstate nanoparticles were prepared through vulcanization process. The extent of interaction of nanoparticles with the polymer was studied by FTIR, SEM, XRD, TGA and AC conductivity. FTIR and XRD ascertain the interaction of NBR with MnWO4 nanoparticles. SEM analysis established that the nanopartilces were well dispersed in the macromolecular chain of NBR. The mechanical properties of the nanocomposites were studied as a function of filler loading. The nanocomposites exhibited enhanced thermal stability as seen in TGA. Conductivity and dielectric properties of nanocomposites increase with increase in concentration of MnWO4 nanoparticles (7phr) and thereafter the value decreases.
NASA Technical Reports Server (NTRS)
Thompson, J. E.; Wittman, J. W.; Reynard, K. A.
1976-01-01
Candidate polyphosphazene polymers were investigated to develop a fire-resistant, thermally stable and flexible open cell foam. The copolymers were prepared in several mole ratios of the substituent side chains and a (nominal) 40:60 derivative was selected for formulation studies. Synthesis of the polymers involved solution by polymerization of hexachlorophosphazene to soluble high molecular weight poly(dichlorophosphazene), followed by derivatization of the resultant polymer in a normal fashion to give polymers in high yield and high molecular weight. Small amounts of a cure site were incorporated into the polymer for vulcanization purposes. The poly(aryloxyphosphazenes) exhibited good thermal stability and the first polymer mentioned above exhibited the best thermal behavior of all the candidate polymers studied.
2005-12-14
KENNEDY SPACE CENTER, FLA. -- United Space Alliance technician Dell Chapman applies the glue (red) known as RTV, or room temperature vulcanization, to a strip of gap filler before installation on the orbiter Discovery, which is being processed in Orbiter Processing Facility Bay 3 at NASA’s Kennedy Space Center. This work is being performed due to two gap fillers that were protruding from the underside of Discovery on the first Return to Flight mission, STS-114. New installation procedures have been developed to ensure the gap fillers stay in place and do not pose any hazard during the shuttle's re-entry to the atmosphere. Discovery is the scheduled orbiter for the second space shuttle mission in the return-to-flight sequence.
Nematic elastomers: from a microscopic model to macroscopic elasticity theory.
Xing, Xiangjun; Pfahl, Stephan; Mukhopadhyay, Swagatam; Goldbart, Paul M; Zippelius, Annette
2008-05-01
A Landau theory is constructed for the gelation transition in cross-linked polymer systems possessing spontaneous nematic ordering, based on symmetry principles and the concept of an order parameter for the amorphous solid state. This theory is substantiated with help of a simple microscopic model of cross-linked dimers. Minimization of the Landau free energy in the presence of nematic order yields the neoclassical theory of the elasticity of nematic elastomers and, in the isotropic limit, the classical theory of isotropic elasticity. These phenomenological theories of elasticity are thereby derived from a microscopic model, and it is furthermore demonstrated that they are universal mean-field descriptions of the elasticity for all chemical gels and vulcanized media.
[Magician nature and human magician: on a fundamental analogy of alchemy].
Schott, Heinz
2010-01-01
This contribution discusses Paracelsism-influenced early-modern alchemy. There are notably two forms of analogy, each hierarchically arranged: a vertically ordered analogy ("as above, thus below") in which Nature is situated as mediator between God and man, and a horizontally ordered analogy ("as without, thus within") in which Nature's magic is regarded as a model for man, particularly expressed in the metaphor of "Vulcan" (smith) and doctor (e.g., Nature as inner healer). In alchemy the conventional "healing power of Nature" is pin-pointed: The doctor (as alchemist, magician) must unravel Nature's secrets and emulate her magic to perfect her work -particularly medicine production. Diagrams and historical depictions illustrate this.
Ethylenebisdithiocarbamates and ethylenethiourea: possible human health hazards.
Houeto, P; Bindoula, G; Hoffman, J R
1995-01-01
Humans are exposed to ethylenebisdithiocarbamates (EBDCs) from environmental sources. Exposure to EBDCs is chronic for workers in a variety of industries, where EBDCs are used for their properties as slimicides, vulcanization accelerators, antioxidants, and scavengers in waste-water treatment. EBDCs, and particularly the EBDC metabolite ethylenethiourea, have clearly defined, important toxic effects in various animal species, and there is reason to suspect they are carcinogenic in humans. In the absence of definitive information regarding human risk, further studies need to be done. In the interim, regular surveillance of workers with high levels of exposure to EBDCs, with specific attention to markers of thyroid and hepatic pathology, should be considered. Images p568-a PMID:7556009
P80 SRM low torque flex-seal development - thermal and chemical modeling of molding process
NASA Astrophysics Data System (ADS)
Descamps, C.; Gautronneau, E.; Rousseau, G.; Daurat, M.
2009-09-01
The development of the flex-seal component of the P80 nozzle gave the opportunity to set up new design and manufacturing process methods. Due to the short development lead time required by VEGA program, the usual manufacturing iterative tests work flow, which is usually time consuming, had to be enhanced in order to use a more predictive approach. A newly refined rubber vulcanization description was built up and identified on laboratory samples. This chemical model was implemented in a thermal analysis code. The complete model successfully supports the manufacturing processes. These activities were conducted with the support of ESA/CNES Research & Technologies and DGA (General Delegation for Armament).
Epoxy based nanocomposites with fully exfoliated unmodified clay: mechanical and thermal properties.
Li, Binghai; Zhang, Xiaohong; Gao, Jianming; Song, Zhihai; Qi, Guicun; Liu, Yiqun; Qiao, Jinliang
2010-09-01
The unmodified clay has been fully exfoliated in epoxy resin with the aid of a novel ultrafine full-vulcanized powdered rubber. Epoxy/rubber/clay nanocomposites with exfoliated morphology have been successfully prepared. The microstructures of the nanocomposites were characterized by means of X-ray diffraction and transmission electron microscopy. It was found that the unmodified clay was fully exfoliated and uniformly dispersed in the resulting nanocomposite. Characterizations of mechanical properties revealed that the impact strength of this special epoxy/rubber/clay nanocomposite increased up 107% over the neat epoxy resin. Thermal analyses showed that thermal stability of the nanocomposite was much better than that of epoxy nanocomposite based on organically modified clay.
A Pseudo-Temporal Multi-Grid Relaxation Scheme for Solving the Parabolized Navier-Stokes Equations
NASA Technical Reports Server (NTRS)
White, J. A.; Morrison, J. H.
1999-01-01
A multi-grid, flux-difference-split, finite-volume code, VULCAN, is presented for solving the elliptic and parabolized form of the equations governing three-dimensional, turbulent, calorically perfect and non-equilibrium chemically reacting flows. The space marching algorithms developed to improve convergence rate and or reduce computational cost are emphasized. The algorithms presented are extensions to the class of implicit pseudo-time iterative, upwind space-marching schemes. A full approximate storage, full multi-grid scheme is also described which is used to accelerate the convergence of a Gauss-Seidel relaxation method. The multi-grid algorithm is shown to significantly improve convergence on high aspect ratio grids.
Characterization of Adhesives for Attaching Reusable Surface Insulation on Space Shuttle Vehicles
NASA Technical Reports Server (NTRS)
Owen, H. P.; Carroll, M. T.
1973-01-01
An extensive development and testing program on adhesive systems shows that: (1) A closed cell silicone rubber sponge bonded to substrates with thin bond lines of glass filled adhesive exhibits density and modulus values approximately one third that of solid silicone adhesives; (2) utilization of glass or phenolic microballoons as fillers in silicone adhesives reduces density but increases moduli of the vulcanized materials; (3) the silicone elastomer based adhesives appear to be complex systems rather than homogeneous, isotropic materials. Tensile, shear, and compression properties plotted versus temperature verify this conjecture; and (4) constant strain-stress relaxation tests on glass-filled adhesive show that stress relaxation is most pronounced near the glass transition temperature.
Wanderings of the 'Simply Perfect' Burnham Telescope
NASA Astrophysics Data System (ADS)
Lattis, James
2017-08-01
S.W. Burnham's 6-inch Clark refractor, in service from 1870, quickly became famous as a potent double star catcher. It was the instrument he used for the site survey of Lick Observatory in 1879. Sold to Washburn Observatory, it travelled to Caroline Island with Edward Holden to search for Vulcan during the total solar eclipse of May 1883. Back in Madison, it was used by George Comstock for his measurements of refraction and aberration. In the late 1950s it was used at the Knuijt Observatory in Appleton, Wisconsin. Travels and transformations of this famous telescope have spread its parts widely as astronomical relics, and it even remains in active service today.
Recycling and Self-Healing of Polybenzoxazines with Dynamic Sulfide Linkages.
Arslan, Mustafa; Kiskan, Baris; Yagci, Yusuf
2017-07-12
In this work, a recycling and self-healing strategy for polybenzoxazines through both S-S bond cleavage-reformation reaction and supramolecular attractions is described. Both recyclable and self-healable polybenzoxazines can be prepared from low cost chemicals with a simple procedure in only 30 minutes. For this purpose, inverse vulcanization of poly(propylene oxide)benzoxazine (PPOB) and diallybenzoxazine (B-al) with elemental sulfur was performed at 185 °C. The obtained cross-linked polymer films exhibited thermally driven recycling ability up to 5 cycles. Moreover, the self-healing ability of a test specimen was shown. Spectral characterizations, thermal stability and fracture toughness of the films were investigated after each recycling.
NASA Astrophysics Data System (ADS)
Neto, Almir Oliveira; Dias, Ricardo R.; Tusi, Marcelo M.; Linardi, Marcelo; Spinacé, Estevam V.
PtRu/C, PtSn/C and PtSnRu/C electrocatalysts were prepared by the alcohol reduction process using ethylene glycol as the solvent and reduction agent and Vulcan Carbon XC72 as the support. The electrocatalysts were characterized by EDX, XRD and cyclic voltammetry. The electrochemical oxidation of methanol and ethanol were studied by chronoamperometry using a thin porous coating technique. The PtSn/C electrocatalyst prepared by this methodology showed superior performance compared to the PtRu/C and PtSnRu/C electrocatalysts for methanol and ethanol oxidation at room temperature.
[Health risk among workers employed in rubber footwear plant].
Szubert, Z; Wilczyńska, U; Sobala, W
2001-01-01
The aim of the study was to assess the health risk of workers performing specific jobs in the process of the rubber footwear production by defining the cause and length of temporary work disability, as well as mortality causes and level. The analysis was carried out in the groups of workers performing the following jobs: mixing, mill operation, pressing and vulcanizing (A); semi-product preparation and calendaring (B); finishing and sorting (C); production of polyvinyl chloride footwear (D); and auxiliary works (E). The sickness absence study covered all workers (208 men and 315 women) employed in a large rubber footwear company and performing all above-listed jobs in 1995. Standardized sick days ratio was used to analyze the risk of temporary work disability. Mortality rate was estimated on the basis of the results of the cohort study performed in the same company among workers who had worked at least three months during the years 1945-1985. The follow-up continued until 31 December 1997. The present study included sub-cohorts composed of 5628 men and 7197 women, performing jobs listed above. The results of both studies indicated the enhanced risk of cardiovascular diseases among workers employed in the basic phases of the production process. The increased risk of the diseases of the digestive system was observed in men and women employed in: finishing, sorting and packing of the products (group C); in men involved in mixing, pressing and vulcanizing (group A); and in women engaged in auxiliary works (group E). In addition, the enhanced risk of sickness absence due to the diseases of the respiratory, digestive, or genitourinary systems was related to the enhanced risk of death from malignant neoplasms in a given site. The analysis showed that the temporary work disability may be regarded as a parameter useful in early assessment of health effects of the work environmental hazards.
Lu, Yanan; Zhao, Shulin; Yang, Rui; Xu, Dongdong; Yang, Jing; Lin, Yue; Shi, Nai-En; Dai, Zhihui; Bao, Jianchun; Han, Min
2018-03-07
Development of cheap, highly active, and robust bimetallic nanocrystal (NC)-based nanohybrid (NH) electrocatalysts for oxygen reduction reaction (ORR) is helpful for advancing fuel cells or other renewable energy technologies. Here, four kinds of well-coupled Mn x Pd y (MnPd 3 , MnPd-Pd, Mn 2 Pd 3 , Mn 2 Pd 3 -Mn 11 Pd 21 )/C NHs have been synthesized by in situ integration of Mn x Pd y NCs with variable component ratios on pretreated Vulcan XC-72 C using the solvothermal method accompanied with annealing under Ar/H 2 atmosphere and used as electrocatalysts for ORR. Among them, the MnPd 3 /C NHs possess the unique "half-embedded and half-encapsulated" interfaces and exhibit the highest catalytic activity, which can compete with some currently reported non-Pt catalysts (e.g., Ag-Co nanoalloys, Pd 2 NiAg NCs, PdCo/N-doped porous C, G-Cu 3 Pd nanocomposites, etc.), and close to commercial Pt/C. Electrocatalytic dynamic measurements disclose that their ORR mechanism abides by the direct 4e - pathway. Moreover, their durability and methanol-tolerant capability are much higher than that of Pt/C. As revealed by spectroscopic and electrochemical analyses, the excellent catalytic performance of MnPd 3 /C NHs results from the proper component ratio of Mn and Pd and the strong interplay of their constituents, which not only facilitate to optimize the d-band center or the electronic structure of Pd but also induce the phase transformation of MnPd 3 active components and enhance their conductivity or interfacial electron transfer dynamics. This work demonstrates that MnPd 3 /C NHs are promising methanol-tolerant cathode electrocatalysts that may be employed in fuel cells or other renewable energy option.
2002 Monthly Carbon Dioxide Emissions from Mexico at a 10x10k Spatial Resolution
NASA Astrophysics Data System (ADS)
Mendoza, D. L.; Gurney, K. R.; Geethakumar, S.; Zhou, Y.; Sahni, N.
2009-12-01
The contribution of fossil fuel CO2 emissions to the total measured amount of CO2 in the Earth’s atmosphere remains an important component of carbon cycle science, particularly as efforts to understand the net exchange of carbon at the surface move to smaller scales. In order to reduce the uncertainty of this flux, researchers led by Purdue University have built a high-resolution fossil fuel CO2 flux inventory for the United States, called “Vulcan”. The Vulcan inventory quantifies emissions for the United States at 10km resolution every hour for the year 2002 and can be seen as a key component of a national assessment and verification system for greenhouse gas emissions and emissions mitigation. As part of the North American Carbon Project, the 2002 carbon dioxide emissions from Mexico are presented at the monthly temporal and municipality spatial scale. Mexico is of particular importance because of the scientific integration under the North American Carbon Program. Furthermore, Mexico has seen a notable growth in its population as well as migration toward urban centers and increasing energy requirements due in part to industrial intensification. The native resolution of the emissions is geolocated (lat/lon) for point sources, such as power plants, airports, and large industry. The emissions are estimated at the municipality level for residential and commercial sources, and allocated to roads for the mobile transport sector. Data sources include the National Emissions Inventory (NEI), Commission for Environmental Cooperation (CEC), and Carbon Monitoring for Action (CARMA). CO2 emissions are calculated from the 1999 NEI data by converting CO emissions using sector and process-dependent emission factors, and is scaled up to 2002 using statistics obtained from the Carbon Dioxide Information Analysis Center CDIAC. CEC and CARMA data, which encompass power plant emissions, are already in units of CO2. Emissions are regridded to 10x10k and 0.1x0.1 deg grids to enable atmospheric CO2 transport modeling. All economic sectors are analyzed, including power plants, commercial, residential, industrial, on-road, and non-road. Municipality and regional scale analysis is presented to explore the differences in economic and industrial development and need. Specific centers of high emissions are highlighted and analyzed in order to put into context the development and growth of certain economic sectors. The annualized emissions are compared to estimates by the International Energy Agency and found to be very similar although some discrepancies are expected due to the different methods of obtaining results. Vulcan reports process-based emissions while IEA reports fuel sales. The Vulcan output is also disaggregated by fuel type and comparisons with IEA are presented across economic sectors. A monthly product based on monthly sales is also presented. Sales by major fuel types (oil, natural gas, coal) are obtained from EIA data and those results shape the monthly cycle. These results are compared to a similar national studies, and similarities and differences are analyzed and discussed.
NASA Astrophysics Data System (ADS)
Ramesan, M. T.; Nihmath, A.; Francis, Joseph
2013-06-01
Rubber composite based on acrylonitrile butadiene rubber (NBR) reinforced with nano zinc sulphide (ZnS) have been prepared via vulcanization process and characterized by several techniques. Processing characteristics such as scorch time, optimum cure time decreases with increase in concentration of nano filler in acrylonitrile butadiene rubber. Mechanical properties such as tensile and tear strength increases with increase in concentration of nano filler up to 7 phr of loading thereafter the value decreases, whereas hardness, and flame resistance increases with the dosage of fillers. These enhanced properties are due to the homogenous dispersion of nano fillers in NBR matrix, which is evidenced from the structure that evaluated using X-ray diffraction (XRD) and scanning electron microscopy (SEM).
NASA Astrophysics Data System (ADS)
Marković, G.; Marinović-Cincović, M.; Tanasić, Lj.; Jovanović, V.; Samaržija-Jovanović, S.; Vukić, N.; Budinski-Simendić, J.
2011-12-01
The goal of this work was to study gamma irradiation ageing of rubber blends based on acrylonitrile butadiene rubber (NBR) and chlorosulphonated polyethylene rubber (CSM) reinforced by silica nano particles. The NBR/CSM compounds (50: 50, w/w) filled with different content of filler (0-100 phr) were crosslinked by sulfur. The vulcanization characteristics were assessed using the rheometer with an oscillating disk. The vulcanizates were prepared in a hydraulic press. The obtained materials were exposed to the different irradiation doses (100, 200, 300 and 400 kGy). The mechanical properties (hardness, modulus at 100% elongation, tensile strength and elongation at break) and swelling numbers were assessed before and after gamma irradiation ageing.
Health aspects of the curing of synthetic rubbers.
Fraser, D A; Rappaport, S
1976-01-01
A commonly used tread rubber formulation was cured in the laboratory under conditions simulating vulcanization in the Bag-O-Matic press. Volatile emissions were collected on charcoal and analyzed by combined GC-mass spectrometry. The compounds identified were either contaminants present in the raw material or reaction products. Some of these compounds were also identified in charcoal tube samples collected in the atmosphere of the industrial operations. Estimates based on the loss of weight of rubber during curing were used to predict airborne concentrations and compared to the concentrations actually found. The literature of the toxicity of raw materials and effluents was reviewed, and no acute or chronic toxicological effects would be anticipated. Information concerning potential carcinogenicity was not available and could not be evaluated. PMID:1026417
Leaching of zinc compound from rubber stoppers into the contents of automatic atropine injectors.
Ellin, R I; Kaminskis, A; Zvirblis, P; Sultan, W E; Shutz, M B; Matthews, R
1985-07-01
This report describes how a material within the cartridge of an automatic injector contaminated its contents. On prolonged storage, a formulation that contained atropine produced lethality in mice. The toxic material originated from zinc compounds that were present in the rubber stopper and plunger of the container and that subsequently leached into the formulation. The contents of cartridges that contained greater than or equal to 0.75 mg/mL of solubilized zinc were lethal to at least 20% of the mice tested; those that contained 0.42 mg/mL showed no lethality. The problem resulted from the physicochemical properties of the rubber, not the concentration of zinc used in the vulcanization process.
Gold nanorods-silicone hybrid material films and their optical limiting property
NASA Astrophysics Data System (ADS)
Li, Chunfang; Qi, Yanhai; Hao, Xiongwen; Peng, Xue; Li, Dongxiang
2015-10-01
As a kind of new optical limiting materials, gold nanoparticles have optical limiting property owing to their optical nonlinearities induced by surface plasmon resonance (SPR). Gold nanorods (GNRs) possess transversal SPR absorption and tunable longitudinal SPR absorption in the visible and near-infrared region, so they can be used as potential optical limiting materials against tunable laser pulses. In this letter, GNRs were prepared using seed-mediated growth method and surface-modified by silica coating to obtain good dispersion in polydimethylsiloxane prepolymers. Then the silicone rubber films doped with GNRs were prepared after vulcanization, whose optical limiting property and optical nonlinearity were investigated. The silicone rubber samples doped with more GNRs were found to exhibit better optical limiting performance.
Monsters in the sky. I mostri del cielo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maffei, P.
1980-01-01
The book treats astronomical objects and phenomena which remain unexplained or unproven by current investigators. Specific objects discussed include comets, satellite clouds surrounding the earth, tektites, the planet Vulcan (within the orbit of Mercury), Planet X (beyond Pluto), the Gum Nebula, planetary nebulae, supernovae, supernova remnants, transient X-ray sources, the possible extinction of the dinosaurs by an X-ray explosion and super-supernovae. Attention is also given to the star Eta Carinae, black holes, BL Lacertae objects, active galaxies, Markarian galaxies, N and compact galaxies, Seyfert galaxies, quasars, redshift anomalies, Stephan's quintet of galaxies, and intergalactic black holes or black dwarfs whichmore » may account for the mass necessary to bind together clusters of galaxies.« less
Single-Pulse Multi-Point Multi-Component Interferometric Rayleigh Scattering Velocimeter
NASA Technical Reports Server (NTRS)
Bivolaru, Daniel; Danehy, Paul M.; Lee, Joseph W.; Gaffney, Richard L., Jr.; Cutler, Andrew D.
2006-01-01
A simultaneous multi-point, multi-component velocimeter using interferometric detection of the Doppler shift of Rayleigh, Mie, and Rayleigh-Brillouin scattered light in supersonic flow is described. The system uses up to three sets of collection optics and one beam combiner for the reference laser light to form a single collimated beam. The planar Fabry-Perot interferometer used in the imaging mode for frequency detection preserves the spatial distribution of the signal reasonably well. Single-pulse multi-points measurements of up to two orthogonal and one non-orthogonal components of velocity in a Mach 2 free jet were performed to demonstrate the technique. The average velocity measurements show a close agreement with the CFD calculations using the VULCAN code.
3D Reacting Flow Analysis of LANTR Nozzles
NASA Astrophysics Data System (ADS)
Stewart, Mark E. M.; Krivanek, Thomas M.; Hemminger, Joseph A.; Bulman, M. J.
2006-01-01
This paper presents performance predictions for LANTR nozzles and the system implications for their use in a manned Mars mission. The LANTR concept is rocket thrust augmentation by injecting Oxygen into the nozzle to combust the Hydrogen exhaust of a Nuclear Thermal Rocket. The performance predictions are based on three-dimensional reacting flow simulations using VULCAN. These simulations explore a range of O2/H2 mixture ratios, injector configurations, and concepts. These performance predictions are used for a trade analysis within a system study for a manned Mars mission. Results indicate that the greatest benefit of LANTR will occur with In-Situ Resource Utilization (ISRU). However, Hydrogen propellant volume reductions may allow greater margins for fitting tanks within the launch vehicle where packaging issues occur.
Time-resolved measurements of the angular distribution of lasing at 23.6 nm in Ne-like germanium
NASA Astrophysics Data System (ADS)
Kodama, R.; Neely, D.; Dwivedi, L.; Key, M. H.; Krishnan, J.; Lewis, C. L. S.; O'Neill, D.; Norreys, P.; Pert, G. J.; Ramsden, S. A.; Tallents, G. J.; Uhomoibhi, J.; Zhang, J.
1992-06-01
The time dependence of the angular distribution of soft X-ray lasing at 23.6 nm in Ne-like germanium has been measured using a streak camera. Slabs of germanium have been irradiated over ≈ 22 mm length × 100 μm width with three line focussed beams of the SERC Rutherford Appleton Laboratory VULCAN laser at 1.06 μm wavelength. The laser beam sweeps in time towards the target surface plane and the divergence broadens with time. The change of the peak intensity pointing and the broadening of the profile with time are consistent with expectations of the time dependence of refraction and divergence due to density gradients in the plasma.
Lava Tubes as Martian Analog sites on Hawaii Island
NASA Astrophysics Data System (ADS)
Andersen, Christian; Hamilton, J. C.; Adams, M.
2013-10-01
The existence of geologic features similar to skylights seen in Mars Reconnaissance Orbiter HIRISE imagery suggest Martian lava tube networks. Along with pit craters, these features are evidence of a past era of vulcanism. If these were contemporary with the wet Mars eras, then it is suggestive that any Martian life may have retreated into these subsurface oases. Hawaii island has numerous lava tubes of differing ages, humidity, lengths and sizes that make ideal analog test environments for future Mars exploration. PISCES has surveyed multiple candidate sites during the past summer with a team of University of Hawaii at Hilo student interns. It should be noted that Lunar features have also been similarly discovered via Lunar Reconnaissance Orbiter LROC imagery.
Vulcanism, mercury-sensitized photo-reactions and abiogenetic synthesis - A theoretical treatment
NASA Technical Reports Server (NTRS)
Siegel, S. M.; Siegel, B. Z.
1976-01-01
Attention is called to the photodynamic and thermodynamic properties of Periodic Group IIb elements, most notably Hg, as they relate to ultra-violet sensitization in organic chemical reactions. The energy levels of 6 1P1 and 6 3P1 resonance states and the high vapor pressure (greater than 0.001 mm) of the metal at temperatures as low as 293 K bring Hg with the range of bond dissociation energies in most organic molecules and many inorganics. These capabilities considered together with recent evidence for Hg emission as a regular part of volcanic and geothermal processes provide the basis for a proposal that Hg-sensitized ultraviolet photo-reactions may have played a significant part in abiogenetic organic synthesis on the primative earth.
Contamination of injectable solutions with 2-mercaptobenzothiazole leached from rubber closures.
Reepmeyer, J C; Juhl, Y H
1983-11-01
An impurity, discovered in a sample of digoxin injectable solution commercially packaged in a syringe for single-dose delivery, was found to originate from the rubber closure of the syringe and was identified as 2-mercaptobenzothiazole, a common accelerator for rubber vulcanization. Several similarly packaged injectable solutions of a variety of drugs from various manufacturers were examined and over half contained 2-mercaptobenzothiazole. The compound was identified by UV spectrophotometry (including a pH-dependent shift in its absorbance maximum), by mass spectrometry, and by comparison with standard 2-mercaptobenzothiazole using silica gel and reverse-phase high-performance liquid chromatography (HPLC). The presence of this impurity in injectable solutions may have implications with regard to toxicity and may interfere with the assay of digoxin injectable solution by HPLC.
Microporous layer based on SiC for high temperature proton exchange membrane fuel cells
NASA Astrophysics Data System (ADS)
Lobato, Justo; Zamora, Héctor; Cañizares, Pablo; Plaza, Jorge; Rodrigo, Manuel Andrés
2015-08-01
This work reports the evaluation of Silicon Carbide (SiC) for its application in microporous layers (MPL) of HT-PEMFC electrodes and compares results with those obtained using conventional MPL based on Vulcan XC72. Influence of the support load on the MPL prepared with SiC was evaluated, and the MPL were characterized by XRD, Hg porosimetry and cyclic voltammetries. In addition, a short lifetest was carried out to evaluate performance in accelerated stress conditions. Results demonstrate that SiC is a promising alternative to carbonaceous materials because of its higher electrochemical and thermal stability and the positive effect on mass transfer associated to its different pore size distribution. Ohmic resistance is the most significant challenge to be overcome in further studies.
Utilization of Space Station for industrial thermophysical property measurements
NASA Astrophysics Data System (ADS)
Overfelt, Tony; Watkins, John
1996-03-01
The International Space Station represents the largest cooperative space project in history and will be industry's only reasonable access to the low-g environment for long duration R&D. Such access will provide unique and competitive capabilities to industry if private sector entities can commercially utilize the Space Station for their industrial research programs. The metal casting industry has identified the need for accurate thermophysical properties of molten alloys as a priority need. Research over the last decade has demonstrated that experimental techniques exist to containerlessly measure critical thermophysical and related properties of molten metals for improved process design. This paper describes the ``VULCAN'' concept, a proposed commercial instrument for thermophysical properties measurements on the Space Station. Finally, several issues regarding private sector utilization of the Space Station are also discussed.
NASA Astrophysics Data System (ADS)
Huang, Tianhua; Zheng, Anna; Zhan, Pengfei; Shi, Han; Li, Xiang; Guan, Yong; Wei, Dafu
2018-05-01
In this work, styrene/isoprene/butadiene integrated rubber (SIBR) was synthesized with n-butyllithium as the initiator and tetrahydrofuran as structure modifier in a co-rotating intermeshing twin-screw extruder. The content of diene in these terpolymers reached a surprising 70 wt% by feeding the monomers in two different sites of the twin-screw extruder. 1H-NMR, GPC and TEM results showed that the molecular structures of terpolymers changed with the variation of feeding site. Dynamic mechanical analysis of the vulcanized SIBR showed that the terpolymer had a wide glass transition region, which assured an excellent combination of high antiskid properties and low rolling resistance. Different from traditional solution polymerization, the present work provides a green approach to prepare the SIBR via bulk polymerization without solvent.
Study on the Aging Behaviors of Rubber Materials in Tension and Compression Loads
NASA Astrophysics Data System (ADS)
Jiang, Can; Wang, Hongyu; Ma, Xiaobing
Rubber materials are widely used in aviation, aerospace, shipbuilding, automobile and other military field. However, rubber materials are easy to aging, which largely restricts its using life. In working environment, due to the combined effect of heat and oxygen, vulcanized rubber will undergo degradation and crosslinking reaction which will cause elasticity decease and permanent deformation, so mostly rubber products are used under stress state. Due to the asymmetric structure and asymmetric stress distribution, mechanical stress may cause serious damage to molecular structure; therefore, this paper is aimed to analyze the aging behavior of rubber materials under tensile and compressive loadings, through analyzing experiment data, and adopting Gauss function to describe stress relaxation coefficient, to build an aging equation containing compression ratio parameter and aging time.
ASRM test report: Autoclave cure process development
NASA Technical Reports Server (NTRS)
Nachbar, D. L.; Mitchell, Suzanne
1992-01-01
ASRM insulated segments will be autoclave cured following insulation pre-form installation and strip wind operations. Following competitive bidding, Aerojet ASRM Division (AAD) Purchase Order 100142 was awarded to American Fuel Cell and Coated Fabrics Company, Inc. (Amfuel), Magnolia, AR, for subcontracted insulation autoclave cure process development. Autoclave cure process development test requirements were included in Task 3 of TM05514, Manufacturing Process Development Specification for Integrated Insulation Characterization and Stripwind Process Development. The test objective was to establish autoclave cure process parameters for ASRM insulated segments. Six tasks were completed to: (1) evaluate cure parameters that control acceptable vulcanization of ASRM Kevlar-filled EPDM insulation material; (2) identify first and second order impact parameters on the autoclave cure process; and (3) evaluate insulation material flow-out characteristics to support pre-form configuration design.
NASA Astrophysics Data System (ADS)
Rajesh, B.; Ravindranathan Thampi, K.; Bonard, J.-M.; Mathieu, H. J.; Xanthopoulos, N.; Viswanathan, B.
The electronically conducting hybrid material based on transition metal oxide and conducting polymer has been used as the catalyst support for Pt nanoparticles. The Pt nanoparticles loaded hybrid organic (polyaniline)-inorganic (vanadium pentoxide) composite has been used as the electrode material for methanol oxidation, a reaction of importance for the development of direct methanol fuel cells (DMFC). The hybrid material exhibited excellent electrochemical and thermal stability in comparison to the physical mixture of conducting polymer and transition metal oxide. The Pt nanoparticles loaded hybrid material exhibited high electrocatalytic activity and stability for methanol oxidation in comparison to the Pt supported on the Vulcan XC 72R carbon support. The higher activity and stability is attributed to the better CO tolerance of the composite material.
The role of oxide structure on copper wire to the rubber adhesion
NASA Astrophysics Data System (ADS)
Su, Yea-Yang; Shemenski, Robert M.
2000-07-01
Most metals have an oxide layer on the surface. However, the structure of the oxide varies with the matrix composition, and depends upon the environmental conditions. A bronze coating, nominal composition of 98.5% Cu and balance of Sn, is applied to steel wire for reinforcing pneumatic tire beads and to provide adhesion to rubber. This work studied the influence of copper oxides on the bronze coating on adhesion during vulcanization. To emphasize the oxide structures, electrolytic tough pitch (ETP) copper wire was used instead of the traditional bronze-coated tire bead wire. Experimental results confirmed the hypothesis that cuprous oxide (Cu 2O) could significantly improve bonding between copper wire and rubber, and demonstrated that the interaction between rubber and oxide layer on wire is an electrochemical reaction.
Yang, Sudong; Dong, Jing; Yao, Zhaohui; Shen, Chengmin; Shi, Xuezhao; Tian, Yuan; Lin, Shaoxiong; Zhang, Xiaogang
2014-01-01
To synthesize monodisperse palladium nanoparticles dispersed on reduced graphene oxide (RGO) sheets, we have developed an easy and scalable solvothermal reduction method from an organic solution system. The RGO-supported palladium nanoparticles with a diameter of 3.8 nm are synthesized in N-methyl-2-pyrrolidone (NMP) and in the presence of oleylamine and trioctylphosphine, which facilitates simultaneous reduction of graphene oxide and formation of Pd nanocrystals. So-produced Pd/RGO was tested for potential use as electrocatalyst for the electro-oxidation of formic acid. Pd/RGO catalyzes formic acid oxidation very well compared to Pd/Vulcan XC-72 catalyst. This synthesis method is a new way to prepare excellent electrocatalysts, which is of great significance in energy-related catalysis. PMID:24675779
Investigations into the mechanical and physical behavior of thermoplastic elastomers
NASA Astrophysics Data System (ADS)
Wright, Kathryn Janelle
This thesis describes investigations into the physical and mechanical characteristics of two commercial thermoplastic elastomer (TPE) systems. Both systems studied exhibit elastomeric behavior similar to more traditional crosslinked elastomers; however, in these TPEs non-conventional polymer architectures and morphologies are used to produce their elastomeric behavior. The two TPEs of interest are ethylene-propylene random copolymers and dynamically vulcanized blends of ethylene-propylene-diene monomer (EPDM) and isotactic polypropylene (iPP). Very few studies have examined the mechanical behavior of these materials in terms of their composition and morphology. As such, the primary goal of this research is to both qualitatively and quantitatively understand the influence of composition and morphology on mechanical behavior. In additional very little information is available that compares their performance with that of crosslinked elastomers. As a result, the secondary goal is to qualitatively compare the mechanical responses of these TPEs with that of their more traditional counterparts. The ethylene-propylene copolymers studied have very high comonomer contents and exhibit slow crystallization kinetics. Their morphology consists of nanoscale crystallites embedded in an amorphous rubbery matrix. These crystallites act as physical crosslinks that allow for elasticity. Slow crystallization causes subsequent changes in mechanical behavior that take place over days and even weeks. Physical responses (e.g., density, crystallization kinetics, and crystal structure) of five copolymer compositions are investigated. Mechanical responses (e.g., stiffness, ductility, yielding, and reversibility) are also examined. Finally, the influence of morphology on deformation is studied using in situ analytical techniques. The EPDM/iPP blends are dynamically vulcanized which produces a complex morphology consisting of chemically crosslinked EPDM domains embedded within a semicrystalline iPP matrix. Six compositions are investigated as a function of three parameters: major volume fraction, iPP molecular weight, and EPDM cure state. The influence of these parameters on morphology and resulting mechanical behavior is examined. This work culminates in the development of a morphological model to describe the steady-state reversibility of these EPDM/iPP blends. The model is then evaluated in terms of composition and cure state.
View of New Guinea Volcano as seen from STS-64
1994-09-20
STS064-116-055 (20 Sept. 1994) --- Near the end of its mission, the crew aboard space shuttle Discovery was able to document the beginning of the second day of activity of the Rabaul volcano, on the east end of New Britain. On the morning of Sept. 19, 1994, two volcanic cones on the opposite sides of the 6-kilometer sea crater had begun to erupt with very little warning. Discovery flew just east of the eruption roughly 24 hours after it started and near the peak of its activity. The eruption, which sent a plume up to over 60,000 feet into the atmosphere, caused over 50,000 people to evacuate the area. Because winds were light at the time of the eruption, most of the ash was deposited in a region within 20 kilometers of the eruption zone. This photo shows the large white billowing eruption plume is carried in a westerly direction by the weak prevailing winds. At the base of the eruption column is a layer of yellow-brown ash being distributed by lower level winds. A sharp boundary moving outward from the center of the eruption in the lower cloud is a pulse of laterally-moving ash which results from a volcanic explosion. Geologists theorize that the large white column and the lower gray cloud are likely from the two main vents on each side of the harbor. The cloud-covered island in the foreground is New Ireland. The bay and harbor of Rabaul are covered with a layer of ash, possibly partly infilled with volcanic material. Matupit Island and the airport runway have disappeared into the bay. More than a meter of ash has fallen upon the city of Rabaul. Up to five vents were reported to have erupted at once, including the cones Vulcan and Tavurvur, which are opposites of the harbor as well as new vents below the bay. Half of the Vulcan cone has collapsed into the sea. The extra day in space due to bad weather at the landing site afforded the crew the opportunity for both still and video coverage of the event. Photo credit: NASA or National Aeronautics and Space Administration
This Month in Astronomical History: Providing Context for the Advancement of Astronomy
NASA Astrophysics Data System (ADS)
Wilson, Teresa
2018-01-01
This Month in Astronomical History is a short (~500 word) illustrated column hosted on the AAS website (https://had.aas.org/resources/astro-history). Its mission is to highlight people and events that have shaped the development of astronomy to convey a historical context to current researchers, to provide a resource for education and public outreach programs seeking to incorporate a historical perspective, and to share the excitement of astronomy with the public. Knowing how the astronomical journey has proceeded thus far allows current professionals to map where to go next and how to get there. The column charts the first part of this journey by celebrating anniversaries of births, discoveries, and deaths, and the technological advances that made discoveries possible. A new “Further Reading” section encourages readers to pursue subjects in greater depth and strengthens the articles as classroom resources.In the months preceding the 21 August 2017 solar eclipse, the column featured astronomical bodies that come between Earth and the Sun: 2004 Venus transit, the 1878 solar eclipse, and the search for the hypothetical planet Vulcan. Venusian transits were an early but technically challenging way to measure the astronomical unit, now easily done with radar-ranging. Like this year’s event, eclipse chasing and citizen science were part of the 1878 experience. Newton’s Laws seemed to require a planet inside Mercury’s orbit, but General Relativity explained the behavior of Mercury without it. Studying each of these transiting bodies has expanded our knowledge and understanding of the universe differently. Transiting extrasolar planets remain to be explored in a future column. In September, an article on the discovery of Neptune followed the discussion of the non-existent Vulcan quite naturally and expanded on the brief mention of this event in relation to the discovery of Pluto. Suggestions for additional topics are always welcome.The Dudley Observatory supported This Month in Astronomical History through its 2017 Herbert C. Pollock Award. The author thanks the HAD Executive Committee for their careful review of each edition.
NASA Astrophysics Data System (ADS)
Campbell, K. B.
2013-12-01
The shape a city takes can have long-term impacts. The built environment is durable, and urban infrastructure is costly to alter post-construction, so decisions made early in a city's history have a lasting effect. Cities are some of the biggest aggregate sources of CO2 emissions but are also the areas with the lowest per capita emissions. Even though per capita emissions in urban areas are less than their rural counterparts, the variation in emissions across cities is drastic and understanding this variation can improve the way we build and plan cities. Research has been conducted on how density correlates with per capita emissions, but little has been done on how historical growth has influenced emissions. Using historical census data and the Vulcan Project's fossil fuel CO2 emissions data product, I investigate in greater detail whether historical population density in U.S. cities has had a significant impact on future CO2 emissions in the urban area and in the surrounding region. The census data includes all places that have reported a population of over 100,000 people in any decennial census between 1790 and 2000 and the land area the year that the city first crosses that 100,000-population threshold. This data is used to create the historical density measure. The Vulcan CO2 emissions data is broken down by sector. For this project I use the residential, commercial, and transportation (on road and non-road) emissions sectors on a 10x10km grid in 2002. I also control for regional variation in heating and cooling days, current urban density, average house age, median income, and variation in residential heating (gas, electric, fuel oil, and coal) as these are all known correlates of carbon dioxide emissions. Understanding if historical density better explains the variation in per capita carbon dioxide emissions across cities will help urban planners and city governments decide if it is appropriate to regulate growth during the initial boom of a city, a regulation that can be costly.
NASA Technical Reports Server (NTRS)
Brockmann, C. E. (Principal Investigator); Fernandez, A. C.
1973-01-01
The author has identified the following significant results. Bolivia is participating the Earth Resources Technology Satellite Program. Within this program many interesting sets of images were received which were evaluated in the Bolivian ERTS Program. One of the images was obtained in color of the central part of the Bolivian Altiplano. The color composite and black and white images were compared in order to evaluate which class of ERTS-1 product furnishes more information about specific topics. It was found that the color composites give far more information, about 50% more data, in hydrology, geomorphology, vulcanism, geology, soils, and vegetation than can be obtained from black and white images of the same scene. For this reason, the project is processing with preference color composites of the whole country.
NASA Astrophysics Data System (ADS)
Wu, W. L.; Chen, Z.
A phase-change energy-storage material, silicone rubber (SR) coated n-octadecane/poly (styrene-methyl methacrylate) (SR/OD/P(St-MMA)) microcapsule composites, was prepared by mixing SR and OD/P(St-MMA) microcapsules. The microcapsule content and silicone rubber coated method were investigated. The morphology and thermal properties of the composites were characterized by scanning electron microscopy (SEM), thermogravimetric analysis (TG), differential scanning calorimetry (DSC) and heat storage properties. The results showed that the thermal and mechanical properties of SR/OD/P(St-MMA) composites were excellent when the microcapsules were coated with room temperature vulcanized silicone rubber (RTVSR), of which content was 2 phr (per hundred rubber). The enthalpy value of the composites was 67.6 J g-1 and the composites were found to have good energy storage function.
Sketch on the structural geology and vulcanism in the Central High Plateau of the Bolivian Andes
NASA Technical Reports Server (NTRS)
Brockmann, C. E. (Principal Investigator)
1973-01-01
The author has identified the following significant results. The Earth Resources Technology Satellite Program has as an objective the development of tectonic maps for Bolivia. Maps were prepared using the images of ERTS-1 in a preliminary study of alignments observed and rapidly interpreted in images 1010-14033-3-4-5-6-7 on a scale of 1:1,000,000, and later verified on the ground with corresponding fault zones. This information was not shown on existing geologial maps. The ERTS-1 imagery was used in volcanology research for drawing the regional limits of volcanic formations as soon as the alignment and the extent of the volcanoes could be determined. The extensive coverage of ERTS-1 images provides an excellent opportunity for developing studies of regional structures.
Poly (ricinoleic acid) based novel thermosetting elastomer.
Ebata, Hiroki; Yasuda, Mayumi; Toshima, Kazunobu; Matsumura, Shuichi
2008-01-01
A novel bio-based thermosetting elastomer was prepared by the lipase-catalyzed polymerization of methyl ricinoleate with subsequent vulcanization. Some mechanical properties of the cured carbon black-filled polyricinoleate compounds were evaluated as a thermosetting elastomer. It was found that the carbon black-filled polyricinoleate compounds were readily cured by sulfur curatives to produce a thermosetting elastomer that formed a rubber-like sheet with a smooth and non-sticky surface. The curing behaviors and mechanical properties were dependent on both the molecular weight of the polyricinoleate and the amount of the sulfur curatives. Cured compounds consisting of polyricinoleate with a molecular weight of 100,800 showed good mechanical properties, such as a hardness of 48 A based on the durometer A measurements, a tensile strength at break of 6.91 MPa and an elongation at break of 350%.
Wang, Lei; Wang, Yueqing; Wu, Mingguang; Wei, Zengxi; Cui, Chunyu; Mao, Minglei; Zhang, Jintao; Han, Xiaopeng; Liu, Quanhui; Ma, Jianmin
2018-05-01
Zinc-air batteries with high-density energy are promising energy storage devices for the next generation of energy storage technologies. However, the battery performance is highly dependent on the efficiency of oxygen electrocatalyst in the air electrode. Herein, the N, F, and B ternary doped carbon fibers (TD-CFs) are prepared and exhibited higher catalytic properties via the efficient 4e - transfer mechanism for oxygen reduction in comparison with the single nitrogen doped CFs. More importantly, the primary and rechargeable Zn-air batteries using TD-CFs as air-cathode catalysts are constructed. When compared to batteries with Pt/C + RuO 2 and Vulcan XC-72 carbon black catalysts, the TD-CFs catalyzed batteries exhibit remarkable battery reversibility and stability over long charging/discharging cycles. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Development of a high-frequency and large-stroke fatigue testing system for rubber
NASA Astrophysics Data System (ADS)
Chen, Gang; Wu, Hao; Gao, Jianwen; Lin, Qiang
2017-04-01
The limited capabilities of current fatigue testing machines have resulted in studies on the fatigue behavior of rubber under large-displacement amplitude and high frequency being very sparse. In this study, a fatigue testing system that can carry out large-displacement amplitude and high-frequency fatigue tests on rubber was developed using a moving magnet voice coil motor (MMVCM) actuator, with finite element analysis applied to analyze the thrust of the MMVCM actuator. The results of a series of cyclic tension tests conducted on vulcanized natural rubber specimens using the developed fatigue testing system verify that it has high precision, low noise, large-stroke, and high-frequency characteristics. Further, the load frame with the developed MMVCM actuator is feasible for material testing, especially for large-stroke and high-frequency fatigue tests.
Christ, J. M.; Neyerlin, K. C.; Richards, R.; ...
2014-10-04
A rotating disk electrode (RDE) along with cyclic voltammetry (CV) and linear sweep voltammetry (LSV), were used to investigate the impact of two model compounds representing degradation products of Nafion and 3M perfluorinated sulfonic acid membranes on the electrochemical surface area (ECA) and oxygen reduction reaction (ORR) activity of polycrystalline Pt, nano-structured thin film (NSTF) Pt (3M), and Pt/Vulcan carbon (Pt/Vu) (TKK) electrodes. ORR kinetic currents (measured at 0.9 V and transport corrected) were found to decrease linearly with the log of concentration for both model compounds on all Pt surfaces studied. Ultimately, model compound adsorption effects on ECA weremore » more abstruse due to competitive organic anion adsorption on Pt surfaces superimposing with the hydrogen underpotential deposition (HUPD) region.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Datta, S.; Cheremishinoff, N.P.; Kresge, E.N.
1993-12-31
Rapid extrusion of EPDM elastomers require low viscosity and thus low molecular weights for the polymer. Efficient vulcanization of these elastomers requires network perfection and thus high molecular weights for the polymer. The benefits of these apparently mutually exclusive goals is important in uses of EPDM elastomers which require extrusion of profiles which are later cured. This paper shows that by introducing simultaneously asymmetry in the distribution of molecular weights, crystallinity and vulcanizable sites these apparently contradictory goals can be resolved. While these polymers cannot be made from a single Ziegler polymerization catalyst, the authors show the synthesis of thesemore » model EPDM polymers by blending polymers with very different molecular weights, ethylene and ENB contents. These blends can be rapidly extruded without melt fracture and can be cured to vulcanizates which have excellent tensile properties.« less
Regolith-Derived Heat Shield for Planetary Body Entry and Descent System with In Situ Fabrication
NASA Technical Reports Server (NTRS)
Hogue, Michael D.; Mueller, Robert P.; Rasky, Daniel; Hintze, Paul; Sibille, Laurent
2012-01-01
In this paper we will discuss a new mass-efficient and innovative way of protecting high-mass spacecraft during planetary Entry, Descent & Landing (EDL). Heat shields fabricated in situ can provide a thermal-protection system (TPS) for spacecraft that routinely enter a planetary atmosphere. By fabricating the heat shield with space resources from regolith materials available on moons and asteroids, it is possible to avoid launching the heat-shield mass from Earth. Two regolith processing and manufacturing methods will be discussed: 1) Compression and sintering of the regolith to yield low density materials; 2) Formulations of a High-temperature silicone RTV (Room Temperature Vulcanizing) compound are used to bind regolith particles together. The overall positive results of torch flame impingement tests and plasma arc jet testing on the resulting samples will also be discussed.
Sasiadek, M
1993-08-01
Cytogenetic studies of clinically healthy workers employed in the rubber industry showed an increase in chromosome aberrations (CAs), sister-chromatid exchanges (SCEs) and a decrease in proliferation indices (PIs). The aim of the present study was to establish, using the SCE and PI tests, genotoxic effects of hazardous chemicals in the rubber industry. An increase in mean SCEs in the lymphocytes of vulcanizers as compared to controls was observed. Since the PI in the exposed group was insignificantly decreased as compared to the controls, it could be concluded that the SCE test is the most sensitive cytogenetic test for the detection of a genotoxic effect of chemicals in the rubber industry. There was no evidence in the present study that the genotoxic effect of chemicals in the rubber industry was enhanced by cigarette smoking.
Stoica, Grigoreta M.; Stoica, Alexandru Dan; An, Ke; ...
2014-11-28
The problem of calculating the inverse pole figure (IPF) is analyzed from the perspective of the application of time-of flight neutron diffraction toin situmonitoring of the thermomechanical behavior of engineering materials. On the basis of a quasi-Monte Carlo (QMC) method, a consistent set of grain orientations is generated and used to compute the weighting factors for IPF normalization. The weighting factors are instrument dependent and were calculated for the engineering materials diffractometer VULCAN (Spallation Neutron Source, Oak Ridge National Laboratory). The QMC method is applied to face-centered cubic structures and can be easily extended to other crystallographic symmetries. Examples includemore » 316LN stainless steelin situloaded in tension at room temperature and an Al–2%Mg alloy, substantially deformed by cold rolling and in situannealed up to 653 K.« less
[Total analysis of organic rubber additives].
He, Wen-Xuan; Robert, Shanks; You, Ye-Ming
2010-03-01
In the present paper, after middle pressure chromatograph separation using both positive phase and reversed-phase conditions, the organic additives in ethylene-propylene rubber were identified by infrared spectrometer. At the same time, by using solid phase extraction column to maintain the main component-fuel oil in organic additves to avoid its interfering with minor compounds, other organic additves were separated and analysed by GC/Ms. In addition, the remaining active compound such as benzoyl peroxide was identified by CC/Ms, through analyzing acetone extract directly. Using the above mentioned techniques, soften agents (fuel oil, plant oil and phthalte), curing agent (benzoylperoxide), vulcanizing accelerators (2-mercaptobenzothiazole, ethyl thiuram and butyl thiuram), and antiagers (2, 6-Di-tert-butyl-4-methyl phenol and styrenated phenol) in ethylene-propylene rubber were identified. Although the technique was established in ethylene-propylene rubber system, it can be used in other rubber system.
NASA Astrophysics Data System (ADS)
Chen, Y.; Guan, J.; Hu, H.; Gao, H.; Zhang, L.
2016-07-01
A series of natural rubber/styrene butadiene rubber/polybutadiene rubber composites was prepared with nanometer silica and micron kaolin by a dry modification process, mechanical compounding, and mold vulcanization. Fourier transform infrared spectroscopy and a scanning electron microscope were used to investigate the structural changes and interfacial interactions in composites. The results showed that the "seesaw" structure was formed particularly with the incorporation of silica particles in the preparation process, which would be beneficial to the dispersibility of fillers in the rubber matrix. The kaolinite platelets were generally arranged in directional alignment. Kaolinite with smaller particle size and low-defect structure was more stable in preparation, but kaolinite with larger particle size and high defect structure tended to change the crystal structure. The composite prepared in this research exhibited excellent mechanical and thermal properties.
3D silicone rubber interfaces for individually tailored implants.
Stieghorst, Jan; Bondarenkova, Alexandra; Burblies, Niklas; Behrens, Peter; Doll, Theodor
2015-01-01
For the fabrication of customized silicone rubber based implants, e.g. cochlear implants or electrocortical grid arrays, it is required to develop high speed curing systems, which vulcanize the silicone rubber before it runs due to a heating related viscosity drop. Therefore, we present an infrared radiation based cross-linking approach for the 3D-printing of silicone rubber bulk and carbon nanotube based silicone rubber electrode materials. Composite materials were cured in less than 120 s and material interfaces were evaluated with scanning electron microscopy. Furthermore, curing related changes in the mechanical and cell-biological behaviour were investigated with tensile and WST-1 cell biocompatibility tests. The infrared absorption properties of the silicone rubber materials were analysed with fourier transform infrared spectroscopy in transmission and attenuated total reflection mode. The heat flux was calculated by using the FTIR data, emissivity data from the infrared source manufacturer and the geometrical view factor of the system.
Elliott, James R; Clement, Matthew Thomas
2015-05-01
This study examines an overlooked dynamic in sociological research on greenhouse gas emissions: how local areas appropriate the global carbon cycle for use and exchange purposes as they develop. Drawing on theories of place and space, we hypothesize that development differentially drives and spatially decouples use- and exchange-oriented emissions at the local level. To test our hypotheses, we integrate longitudinal, county-level data on residential and industrial emissions from the Vulcan Project with demographic, economic and environmental data from the U.S. Census Bureau and National Land Change Database. Results from spatial regression models with two-way fixed-effects indicate that alongside innovations and efficiencies capable of reducing environmentally harmful effects of development comes a spatial disarticulation between carbon-intensive production and consumption within as well as across societies. Implications for existing theory, methods and policy are discussed. Copyright © 2015 Elsevier Inc. All rights reserved.
Selective deuterium ion acceleration using the Vulcan petawatt laser
NASA Astrophysics Data System (ADS)
Krygier, A. G.; Morrison, J. T.; Kar, S.; Ahmed, H.; Alejo, A.; Clarke, R.; Fuchs, J.; Green, A.; Jung, D.; Kleinschmidt, A.; Najmudin, Z.; Nakamura, H.; Norreys, P.; Notley, M.; Oliver, M.; Roth, M.; Vassura, L.; Zepf, M.; Borghesi, M.; Freeman, R. R.
2015-05-01
We report on the successful demonstration of selective acceleration of deuterium ions by target-normal sheath acceleration (TNSA) with a high-energy petawatt laser. TNSA typically produces a multi-species ion beam that originates from the intrinsic hydrocarbon and water vapor contaminants on the target surface. Using the method first developed by Morrison et al. [Phys. Plasmas 19, 030707 (2012)], an ion beam with >99% deuterium ions and peak energy 14 MeV/nucleon is produced with a 200 J, 700 fs, > 10 20 W / cm 2 laser pulse by cryogenically freezing heavy water (D2O) vapor onto the rear surface of the target prior to the shot. Within the range of our detectors (0°-8.5°), we find laser-to-deuterium-ion energy conversion efficiency of 4.3% above 0.7 MeV/nucleon while a conservative estimate of the total beam gives a conversion efficiency of 9.4%.
Model-Invariant Hybrid Computations of Separated Flows for RCA Standard Test Cases
NASA Technical Reports Server (NTRS)
Woodruff, Stephen
2016-01-01
NASA's Revolutionary Computational Aerosciences (RCA) subproject has identified several smooth-body separated flows as standard test cases to emphasize the challenge these flows present for computational methods and their importance to the aerospace community. Results of computations of two of these test cases, the NASA hump and the FAITH experiment, are presented. The computations were performed with the model-invariant hybrid LES-RANS formulation, implemented in the NASA code VULCAN-CFD. The model- invariant formulation employs gradual LES-RANS transitions and compensation for model variation to provide more accurate and efficient hybrid computations. Comparisons revealed that the LES-RANS transitions employed in these computations were sufficiently gradual that the compensating terms were unnecessary. Agreement with experiment was achieved only after reducing the turbulent viscosity to mitigate the effect of numerical dissipation. The stream-wise evolution of peak Reynolds shear stress was employed as a measure of turbulence dynamics in separated flows useful for evaluating computations.
Curing system for high voltage cross linked cables
Bahder, George; Katz, Carlos; Bopp, Louis A.
1978-01-01
This invention makes extruded, vulcanized, high voltage cables insulated with thermosetting compounds at much higher rates of production and with superior insulation of reduced thickness and with reduced cavities or voids in the insulation. As the cable comes from an extruder, it passes into a curing chamber with a heat booster that quickly raises the insulation to a temperature at which it is cured much more quickly than with steam heating of the prior art. A high temperature liquid in contact with the insulation maintains the high temperature; and because of the greater curing heat, the cable can travel through the curing chamber at a faster rate and into a cooling tube where it contacts with a cooling liquid under high pressure. The insulation compound is treated to reduce the size of cavities; and the high pressure maintained by the curing and cooling mediums prevent expansion of cavities before the insulation is set.
Laccase/AuAg Hybrid Glucose Microfludic Fuel Cell
NASA Astrophysics Data System (ADS)
López-González, B.; Cuevas-Muñiz, F. M.; Guerra-Balcázar, M.; Déctor, A.; Arjona, N.; Ledesma-García, J.; Arriaga, L. G.
2013-12-01
In this work a hybrid microfluidic fuel cell was fabricated and evaluated with a AuAg/C bimetallic material for the anode and an enzymatic cathode. The cathodic catalyst was prepared adsorbing laccase and ABTS on Vulcan carbon (Lac-ABTS/C). This material was characterized by FTIR-ATR, the results shows the presence of absorption bands corresponding to the amide bounds. The electrochemical evaluation for the materials consisted in cyclic voltammetry (CV). The glucose electrooxidation reaction in AuAg/C occurs around - 0.3 V vs. NHE. Both electrocatalytic materials were placed in a microfluidic fuel cell. The fuel cell was fed with PBS pH 5 oxygen saturated solution in the cathodic compartment and 5 mM glucose + 0.3 M KOH in the anodic side. Several polarization curves were performed and the maximum power density obtained was 0.3 mWcm-2 .
Mitigation of Autoignition Due to Premixing in a Hypervelocity Flow Using Active Wall Cooling
NASA Technical Reports Server (NTRS)
Axdahl, Erik; Kumar, Ajay; Wilhite, Alan
2013-01-01
Preinjection of fuel on the forebody of an airbreathing vehicle is a proposed method to gain access to hypervelocity flight Mach numbers. However, this creates the possibility of autoignition either near the wall or in the core of the flow, thereby consuming fuel prematurely as well as increasing the amount of pressure drag on the vehicle. The computational fluid dynamics code VULCAN was used to conduct three dimensional simulations of the reacting flow in the vicinity of hydrogen injectors on a flat plate at conditions relevant to a Mach 12 notional flight vehicle forebody to determine the location where autoignition occurs. Active wall cooling strategies were formulated and simulated in response to regions of autoignition. It was found that tangential film cooling using hydrogen or helium were both able to nearly or completely eliminate wall autoignition in the flow domain of interest.
Encapsulant selection and durability testing experience
NASA Technical Reports Server (NTRS)
Cuddihy, E. F.
1985-01-01
The Flat Plate Solar Array Project (FSA) has established technically challenging cost and service life goals for photovoltaic modules. These goals are a cost of $70 sq m and an expected 30 years of service life in an outdoor weathering environment. out of the cost goal, $14 sq m is allocated for encapsulation materials, which includes the cost of a structural panel. At FSA's inception in 1975, the cumulative cost of encapsulation materials in popular use, such as room temperature vulcanized (RTV) silicones, aluminum panels, etc., greatly exceeded $14/sq m. Accordingly, it became necessary to identify and/or develop new materials and new material technologies to achieve the goals. Many of these new materials are low cost polymers that satisfy module engineering and encapsulation processing requirements but unfortunately are not intrinsically weather stable. This necessitates identifying lifetime and/or weathering deficiencies inherent in these low cost materials and developing specific approaches to enhancing weather stability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muttalib, Siti Nadzirah Abdul, E-mail: sitinadzirah.amn@gmail.com; Othman, Nadras, E-mail: srnadras@usm.my; Ismail, Hanafi, E-mail: ihanafi@usm.my
This paper reports on the effect of filler loading on properties of natural rubber (NR)/attapulgite (ATP) composites. The NR/ATP composites were prepared by latex compounding method. It is called as masterbatch. The masterbatch was subsequently added to the NR through melt mixing process. The vulcanized NR/ATP composites were subjected to mechanical, swelling and morphological tests. All the results were compared with NR/ATP composites prepared by conventional system. The composites from masterbatch method showed better results compared to composites prepared by conventional method. They have higher tensile properties, elongation at break and tear strength. The images captured through scanning electron microscopymore » test revealed the improvement of tensile strength in masterbatch NR/ATP composites. It can be seen clearly that masterbatch NR/ATP have better filler dispersion compared to conventional method NR/ATP composites.« less
Sonoelectrochemical one-pot synthesis of Pt - Carbon black nanocomposite PEMFC electrocatalyst.
Karousos, Dionysios S; Desdenakis, Kostantinos I; Sakkas, Petros M; Sourkouni, Georgia; Pollet, Bruno G; Argirusis, Christos
2017-03-01
Simultaneous electrocatalytic Pt-nanoparticle synthesis and decoration of Vulcan XC-72 carbon black substrate was achieved in a novel one-step-process, combining galvanostatic pulsed electrodeposition and pulsed ultrasonication with high power, low-frequency (20kHz) ultrasound. Aqueous chloroplatinic acid precursor baths, as well as carbon black suspensions in the former, were examined and decoration was proven by a combination of characterization methods, namely: dynamic light scattering, transmission electron microscopy, scanning electron microscopy with EDX-analysis and cyclic voltammetry. In particular, PVP was shown to have a beneficial stabilizing effect against free nanoparticle aggregation, ensuring narrow size distributions of the nanoparticles synthesized, but is also postulated to prevent the establishment of a strong metal-substrate interaction. Current pulse amplitude was identified as the most critical nanoparticle size-determining parameters, while only small size particles, under 10nm, appeared to be attached to carbon black. Copyright © 2016 Elsevier B.V. All rights reserved.
Common Ice Hockey Injuries and Treatment: A Current Concepts Review.
Mosenthal, William; Kim, Michael; Holzshu, Robert; Hanypsiak, Bryan; Athiviraham, Aravind
Injuries are common in ice hockey, a contact sport where players skate at high speeds on a sheet of ice and shoot a vulcanized rubber puck in excess of one hundred miles per hour. This article reviews the diagnoses and treatment of concussions, injuries to the cervical spine, and lower and upper extremities as they pertain to hockey players. Soft tissue injury of the shoulder, acromioclavicular joint separation, glenohumeral joint dislocation, clavicle fractures, metacarpal fractures, and olecranon bursitis are discussed in the upper-extremity section of the article. Lower-extremity injuries reviewed in this article include adductor strain, athletic pubalgia, femoroacetabular impingement, sports hernia, medial collateral and anterior cruciate ligament tears, skate bite, and ankle sprains. This review is intended to aid the sports medicine physician in providing optimal sports-specific care to allow their athlete to return to their preinjury level of performance.
Electrocatalytic activity of ZnS nanoparticles in direct ethanol fuel cells
NASA Astrophysics Data System (ADS)
Bredol, Michael; Kaczmarek, Michał; Wiemhöfer, Hans-Dieter
2014-06-01
Low temperature fuel cells consuming ethanol without reformation would be a major step toward the use of renewable energy sources from biomass. However, the necessary electrodes and electrocatalysts still are far from being perfect and suffer from various poisoning and deactivation processes. This work describes investigations on systems using carbon/ZnS-based electrocatalysts for ethanol oxidation in complete membrane electrode assemblies (MEAs). MEAs were built on Nafion membranes with active masses prepared from ZnS nanoparticles and Vulcan carbon support. Under operation, acetic acid and acetaldehyde were identified and quantified as soluble oxidation products, whereas the amount of CO2 generated could not be quantified directly. Overall conversion efficiencies of up to 25% were estimated from cells operated over prolonged time. From polarization curves, interrupt experiments and analysis of reaction products, mass transport problems (concentration polarization) and breakthrough losses were found to be the main deficiencies of the ethanol oxidation electrodes fabricated so far.
NASA Astrophysics Data System (ADS)
Hoang, Bao; Wong, Frankie; Redick, Tod; Masui, Hirokazu; Endo, Taishi; Toyoda, Kazuhiro; Cho, Mengu
2011-10-01
A series of electrostatic discharge (ESD) tests was performed on solar array test coupons consisting of Advanced Triple Junction InGaP2/InGaAs/Ge solar cells. The motivation for these tests was to evaluate the effects of ESD on solar array design without room temperature vulcanized (RTV) adhesive grout between the string-to-string parallel gaps. To investigate the threshold of permanently sustained secondary arcs, various combinations of gap width, load voltage and string current were tested in a vacuum chamber equipped with an electron beam gun. This ESD test program included the ESD test circuit with simulated panel coverglass flashover. Although ESD events did not result in permanent sustained arcs, the insulation resistance between strings was found to decrease as the number of secondary arcs accumulated in the gap.
NASA Astrophysics Data System (ADS)
Staszak, Maciej
2018-03-01
Following chapter presents short introductory description of rubber and rubber industry. The main problem of rubber industry is the way of the usage of spent tires. Furthermore very important group of problems arise considering the metal and nonmetal additives which are significant component of the vulcanized rubber. The key attention is dedicated to typical ways of rubber usage in utilization and recovery of metals from spent rubber materials concentrating specifically on used tires processing. The method of recovery of rare metals from rubber tires was described. The rubber debris finds widest use in the field of waste metal solutions processing. The environmental pollution caused by metals poses serious threat to humans. Several applications of the use of waste rubber debris to remove metals from environmental waters were described. Moreover, the agriculture usage of waste tire rubber debris is described, presenting systems where the rubber material can be useful as a soil replacement.
Study on cord/rubber interface at elevated temperatures by H-pull test method
NASA Astrophysics Data System (ADS)
Jamshidi, M.; Afshar, F.; Mohammadi, N.; Pourmahdian, S.
2005-08-01
Cords are used as reinforcing materials in rubber compounds. To increase cord/rubber interfacial adhesion, they are coated by an adhesive (usually based on resorcinol-formaldehyde-latex). These composites are used in many sectors such as tire and belt industries. Cord/rubber adhesion strength is an important aspect to determine the durability of system. Due to temperature increase during running tires, the adhesion energy becomes different from initial one. To study cord/rubber interface at elevated temperatures, H-adhesion test method was used. H-pull test is a simple method for adhesion evaluation at ambient temperature, so it is usually used for material quality control. In this research, cord/rubber systems were vulcanized at different temperatures and H-adhesion of samples were evaluated at elevated temperatures. Also cord/rubber interface was studied by ATR analyze to determine interfacial interactions kind.
Sulfur containing nanoporous materials, nanoparticles, methods and applications
Archer, Lynden A.; Navaneedhakrishnan, Jayaprakash
2018-01-30
Sulfur containing nanoparticles that may be used within cathode electrodes within lithium ion batteries include in a first instance porous carbon shape materials (i.e., either nanoparticle shapes or "bulk" shapes that are subsequently ground to nanoparticle shapes) that are infused with a sulfur material. A synthetic route to these carbon and sulfur containing nanoparticles may use a template nanoparticle to form a hollow carbon shape shell, and subsequent dissolution of the template nanoparticle prior to infusion of the hollow carbon shape shell with a sulfur material. Sulfur infusion into other porous carbon shapes that are not hollow is also contemplated. A second type of sulfur containing nanoparticle includes a metal oxide material core upon which is located a shell layer that includes a vulcanized polymultiene polymer material and ion conducting polymer material. The foregoing sulfur containing nanoparticle materials provide the electrodes and lithium ion batteries with enhanced performance.
In vitro progesterone release from γ-irradiated cross-linked polydimethylsiloxane
NASA Astrophysics Data System (ADS)
Mashak, Arezou; Taghizadeh, S. Mojtaba
2006-02-01
Instead of conventional method such as thermal cross-linking method, γ-irradiation is used to improve the properties of polydimethylsiloxane (PDMS) as a matrix containing progesterone. The thermal cross-linking of PDMS monolithic systems containing drug is deleterious to the drug. Usually, all drugs are unstable both at high vulcanizing temperature and in the presence of peroxide catalysts. This novel method is found to be effective for the stability of the controlled drug delivery systems. The PDMS (three medical grades) matrices were exposed to γ-irradiation in ambient conditions with total doses of 50, 75 and 100 kGy. The mechanical properties confirmed that the samples are cross-linked. It is found that the progesterone release rate is affected by irradiation treatment. It is deduced, however that there is no significant difference in the release profile of progesterone by increasing the irradiation dose from 50 to 100 kGy.
Corrosion-resistant catalyst supports for phosphoric acid fuel cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kosek, J.A.; Cropley, C.C.; LaConti, A.B.
High-surface-area carbon blacks such as Vulcan XC-72 (Cabot Corp.) and graphitized carbon blacks such as 2700{degree}C heat-treated Black Pearls 2000 (HTBP) (Cabot Corp.) have found widespread applications as catalyst supports in phosphoric acid fuel cells (PAFCs). However, due to the operating temperatures and pressures being utilized in PAFCs currently under development, the carbon-based cathode catalyst supports suffer from corrosion, which decreases the performance and life span of a PAFC stack. The feasibility of using alternative, low-cost, corrosion-resistant catalyst support (CRCS) materials as replacements for the cathode carbon support materials was investigated. The objectives of the program were to prepare high-surface-areamore » alternative supports and to evaluate the physical characteristics and the electrochemical stability of these materials. The O{sub 2} reduction activity of the platinized CRCS materials was also evaluated. 2 refs., 3 figs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorur, R.S.; Cherney, E.A.; Hackam, R.
1988-07-01
A comparative study of the ac (60 Hz) surface aging in a fog chamber is reported on cylindrical rod samples of high temperature vulcanized (HTV) silicone rubber and ethylene propylene diene monomer (EPDM) rubber containing various amounts of alumina trihydrate (ATH) and/or silica fillers. In low conductivity (250 ..mu..S/cm) fog, silicone rubber performed better than EPDM samples whereas in high conductivity (1000 ..mu..S/cm) fog, the order of performance was reversed. The mechanisms by which fillers impart tracking and erosion resistance to materials is discussed as influenced by the experimental conditions of the accelerated aging tests. Surface studies by ESCA (Electronmore » Spectroscopy for Chemical Analysis) demonstrate that the hydrophobicity of silicone rubber, despite the accumulation of surface contamination, can be attributed to migration of low molecular weight polymer chains and/or mobile fluids, such as silicone oil.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Deli; Yu, Yingchao; He, Huan
2015-02-24
We have developed a template-free procedure to synthesize Co3O4 hollow-structured nanoparticles on a Vulcan XC-72 carbon support. The material was synthesized via an impregnation–reduction method followed by air oxidation. In contrast to spherical particles, the hollow-structured Co3O4 nanoparticles exhibited excellent lithium storage capacity, rate capability, and cycling stability when used as the anode material in lithium-ion batteries. Electrochemical testing showed that the hollow-structured Co3O4 particles delivered a stable reversible capacity of about 880 mAh/g (near the theoretical capacity of 890 mAh/g) at a current density of 50 mA/g after 50 cycles. The superior electrochemical performance is attributed to its uniquemore » hollow structure, which combines nano- and microscale properties that facilitate electron transfer and enhance structural robustness.« less
Rapid insights from remote sensing in the geosciences
NASA Astrophysics Data System (ADS)
Plaza, Antonio
2015-03-01
The growing availability of capacity computing for atomistic materials modeling has encouraged the use of high-accuracy computationally intensive interatomic potentials, such as SNAP. These potentials also happen to scale well on petascale computing platforms. SNAP has a very general form and uses machine-learning techniques to reproduce the energies, forces, and stress tensors of a large set of small configurations of atoms, which are obtained using high-accuracy quantum electronic structure (QM) calculations. The local environment of each atom is characterized by a set of bispectrum components of the local neighbor density projected on to a basis of hyperspherical harmonics in four dimensions. The computational cost per atom is much greater than that of simpler potentials such as Lennard-Jones or EAM, while the communication cost remains modest. We discuss a variety of strategies for implementing SNAP in the LAMMPS molecular dynamics package. We present scaling results obtained running SNAP on three different classes of machine: a conventional Intel Xeon CPU cluster; the Titan GPU-based system; and the combined Sequoia and Vulcan BlueGene/Q. The growing availability of capacity computing for atomistic materials modeling has encouraged the use of high-accuracy computationally intensive interatomic potentials, such as SNAP. These potentials also happen to scale well on petascale computing platforms. SNAP has a very general form and uses machine-learning techniques to reproduce the energies, forces, and stress tensors of a large set of small configurations of atoms, which are obtained using high-accuracy quantum electronic structure (QM) calculations. The local environment of each atom is characterized by a set of bispectrum components of the local neighbor density projected on to a basis of hyperspherical harmonics in four dimensions. The computational cost per atom is much greater than that of simpler potentials such as Lennard-Jones or EAM, while the communication cost remains modest. We discuss a variety of strategies for implementing SNAP in the LAMMPS molecular dynamics package. We present scaling results obtained running SNAP on three different classes of machine: a conventional Intel Xeon CPU cluster; the Titan GPU-based system; and the combined Sequoia and Vulcan BlueGene/Q. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. Dept. of Energy's National Nuclear Security Admin. under Contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Zhou, Y.; Gurney, K. R.
2009-12-01
In order to advance the scientific understanding of carbon exchange with the land surface and contribute to sound, quantitatively-based U.S. climate change policy interests, quantification of greenhouse gases emissions drivers at fine spatial and temporal scales is essential. Quantification of fossil fuel CO2 emissions, the primary greenhouse gases, has become a key component to cost-effective CO2 emissions mitigation options and a carbon trading system. Called the ‘Hestia Project’, this pilot study generated CO2 emissions down to high spatial resolution and hourly scale for the greater Indianapolis region in the USA through the use of air quality and traffic monitoring data, remote sensing, GIS, and building energy modeling. The CO2 emissions were constructed from three data source categories: area, point, and mobile. For the area source emissions, we developed an energy consumption model using DOE/EIA survey data on building characteristics and energy consumption. With the Vulcan Project’s county-level CO2 emissions and simulated building energy consumption, we quantified the CO2 emissions for each individual building by allocating Vulcan emissions to roughly 50,000 structures in Indianapolis. The temporal pattern of CO2 emissions in each individual building was developed based on temporal patterns of energy consumption. The point sources emissions were derived from the EPA National Emissions Inventory data and effluent monitoring of electricity producing facilities. The mobile source CO2 emissions were estimated at the month/county scale using the Mobile6 combustion model and the National Mobile Inventory Model database. The month/county scale mobile source CO2 emissions were downscaled to the “native” spatial resolution of road segments every hour using a GIS road atlas and traffic monitoring data. The result is shown in Figure 1. The resulting urban-scale inventory can serve as a baseline of current CO2 emissions and should be of immediate use to city environmental managers and regional industry as they plan emission mitigation options and project future emission trends. The results obtained here will also be a useful comparison to atmospheric CO2 monitoring efforts from the top-down. Figure 1. Location of the study area, the building level and mobile CO2 emissions, and an enlarged example neighborhood
CO2 Emissions from the Los Angeles Basin During Spring of 2010 - Measurements vs. Model
NASA Astrophysics Data System (ADS)
Newman, S.; Jeong, S.; Fischer, M. L.; Xu, X.; Gurney, K. R.; Alvarez, S. L.; Rappenglueck, B.; Haman, C. L.; Lefer, B. L.; Miller, C. E.; Yung, Y. L.
2011-12-01
More than half of the world's population now lives in urban areas, contributing large fluxes of greenhouse gas to the atmosphere. Quantifying the spatiotemporal distribution of these emissions is critical for providing independent verification of future mitigation activities. We have used high precision measurements of CO2 and CO to determine the contribution of fossil fuel combustion (ffCO2 mixing ratio) to the total CO2 emissions in the Los Angeles basin during the CalNex-LA ground campaign of May-June 2010 in Pasadena. The ratio of COxs/CO2xs (the excess of each species above free tropospheric levels) varies significantly by time of day, giving a proxy for the fraction of ffCO2/CO2xs. Using an emission ratio for CO/CO2 for fossil fuel combustion of 0.011±0.002 (Wunch et al., 2009, Geophys Res Lett 36, L15810), we determined that burning of fossil fuels contributed ~50% overnight - 100% during midday of the total local contribution, resulting in ffCO2 of 13 - 23 ppm, respectively. These values compare very well with those calculated from Δ14C for measurements of two samples aggregated from 7-8 flask samples collected at 14:00 PST on alternate days during the first and second half of the CalNex-LA campaign: 17 and 24 ppm ffCO2, respectively. We then compared the measured values of ffCO2 with predictions combining a diurnally averaged version of the Vulcan 2.0 ffCO2 emission inventory (http://www.purdue.edu/eas/carbon/vulcan/index.php) and mesoscale transport computed with the Weather Research and Forecast (WRF) and Stochastic Time-Inverted Lagrangian Transport (STILT) models. To evaluate transport model uncertainty, we compared predicted and measured planetary boundary layer height (PBLH) and found WRF predictions compared favorably with ceilometer measurements made during the day at the Pasadena site. Initial comparison of the diurnal cycle of ffCO2 determined by the CO/CO2 ratios to that predicted with a temporally constant map of diurnal mean emissions shows the prediction to have a larger diurnal amplitude than the measurements, suggesting that the diurnal cycle of emitted ffCO2 compensates for daytime dilution in the PBL.
NASA Technical Reports Server (NTRS)
Drozda, Tomasz G.; Quinlan, Jesse R.; Pisciuneri, Patrick H.; Yilmaz, S. Levent
2012-01-01
Significant progress has been made in the development of subgrid scale (SGS) closures based on a filtered density function (FDF) for large eddy simulations (LES) of turbulent reacting flows. The FDF is the counterpart of the probability density function (PDF) method, which has proven effective in Reynolds averaged simulations (RAS). However, while systematic progress is being made advancing the FDF models for relatively simple flows and lab-scale flames, the application of these methods in complex geometries and high speed, wall-bounded flows with shocks remains a challenge. The key difficulties are the significant computational cost associated with solving the FDF transport equation and numerically stiff finite rate chemistry. For LES/FDF methods to make a more significant impact in practical applications a pragmatic approach must be taken that significantly reduces the computational cost while maintaining high modeling fidelity. An example of one such ongoing effort is at the NASA Langley Research Center, where the first generation FDF models, namely the scalar filtered mass density function (SFMDF) are being implemented into VULCAN, a production-quality RAS and LES solver widely used for design of high speed propulsion flowpaths. This effort leverages internal and external collaborations to reduce the overall computational cost of high fidelity simulations in VULCAN by: implementing high order methods that allow reduction in the total number of computational cells without loss in accuracy; implementing first generation of high fidelity scalar PDF/FDF models applicable to high-speed compressible flows; coupling RAS/PDF and LES/FDF into a hybrid framework to efficiently and accurately model the effects of combustion in the vicinity of the walls; developing efficient Lagrangian particle tracking algorithms to support robust solutions of the FDF equations for high speed flows; and utilizing finite rate chemistry parametrization, such as flamelet models, to reduce the number of transported reactive species and remove numerical stiffness. This paper briefly introduces the SFMDF model (highlighting key benefits and challenges), and discusses particle tracking for flows with shocks, the hybrid coupled RAS/PDF and LES/FDF model, flamelet generated manifolds (FGM) model, and the Irregularly Portioned Lagrangian Monte Carlo Finite Difference (IPLMCFD) methodology for scalable simulation of high-speed reacting compressible flows.
Kosor, Begüm Yerci; Artunç, Celal; Şahan, Heval
2015-07-01
A key factor of an implant-retained facial prosthesis is the success of the bonding between the substructure and the silicone elastomer. Little has been reported on the bonding of fiber reinforced composite (FRC) to silicone elastomers. Experimental FRC could be a solution for facial prostheses supported by light-activated aliphatic urethane acrylate, orthodontic acrylic resin, or commercially available FRCs. The purpose of this study was to evaluate the bonding of the experimental FRC, orthodontic acrylic resin, and light-activated aliphatic urethane acrylate to a commercially available high-temperature vulcanizing silicone elastomer. Shear and 180-degree peel bond strengths of 3 different substructures (experimental FRC, orthodontic acrylic resin, light-activated aliphatic urethane acrylate) (n=15) to a high-temperature vulcanizing maxillofacial silicone elastomer (M511) with a primer (G611) were assessed after 200 hours of accelerated artificial light-aging. The specimens were tested in a universal testing machine at a cross-head speed of 10 mm/min. Data were collected and statistically analyzed by 1-way ANOVA, followed by the Bonferroni correction and the Dunnett post hoc test (α=.05). Modes of failure were visually determined and categorized as adhesive, cohesive, or mixed and were statistically analyzed with the chi-squared goodness-of-fit test (α=.05). As the mean shear bond strength values were evaluated statistically, no difference was found among the experimental FRC, aliphatic urethane acrylate, and orthodontic acrylic resin subgroups (P>.05). The mean peel bond strengths of experimental fiber reinforced composite and aliphatic urethane acrylate were not found to be statistically different (P>.05). The mean value of the orthodontic acrylic resin subgroup peel bond strength was found to be statistically lower (P<.05). Shear test failure types were found to be statistically different (P<.05), whereas 180-degree peel test failure types were not found to be statistically significant (P>.05). Shear forces predominantly exhibited cohesive failure (64.4%), whereas peel forces predominantly exhibited adhesive failure (93.3%). The mean shear bond strengths of the experimental FRC and aliphatic urethane acrylate groups were not found to be statistically different (P>.05). The mean value of the 180-degree peel strength of the orthodontic acrylic resin group was found to be lower (P<.05). Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
New Guinea volcano (Rabaul) as seen from STS-64
1994-09-29
STS064-116-064 (20 Sept. 1994) --- Near the end of the mission, the crew aboard space shuttle Discovery was able to document the beginning of the second day of activity of the Rabaul volcano, on the east end of New Britain. On the morning of Sept. 19, 1994, two volcanic cones on the opposite sides of the 6-kilometer sea crater had begun to erupt with very little warning. Discovery flew just east of the eruption roughly 24 hours after it started and near the peak of its activity. New Ireland, the cloud-covered area in the foreground, lies just east of Rabaul harbor. The eruption, which sent a plume up to over 60,000 feet into the atmosphere, caused over 50,000 people to evacuate the area. Because winds were light at the time of the eruption, most of the ash was deposited in a region within 20 kilometers of the eruption zone. This photo shows the large white billowing eruption plume is carried in a westerly direction by the weak prevailing winds. At the base of the eruption column is a layer of yellow-brown ash being distributed by lower level winds. A sharp boundary moving outward from the center of the eruption in the lower cloud is a pulse of laterally-moving ash which results from a volcanic explosion. Geologists theorize that the large white column and the lower gray cloud are likely from the two main vents on each side of the harbor. The bay and harbor of Rabaul are covered with a layer of ash, possibly partly infilled with volcanic material. Matupit Island and the airport runway have disappeared into the bay. More than a meter of ash has fallen upon the city of Rabaul. Up to five vents were reported to have erupted at once, including the two cones Vulcan and Tavurvur, which are opposites of the harbor as well as new vents below the bay. Half of the Vulcan cone has collapsed into the sea. The extra day in space due to bad weather at the landing site afforded the crew the opportunity for both still and video coverage of the event. Photo credit: NASA or National Aeronautics and Space Administration
Fabrication of the HIAD Large-Scale Demonstration Assembly and Upcoming Mission Applications
NASA Technical Reports Server (NTRS)
Swanson, G. T.; Johnson, R. K.; Hughes, S. J.; Dinonno, J. M.; Cheatwood, F M.
2017-01-01
Over a decade of work has been conducted in the development of NASAs Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology. This effort has included multiple ground test campaigns and flight tests culminating in the HIAD projects second generation (Gen-2) deployable aeroshell system and associated analytical tools. NASAs HIAD project team has developed, fabricated, and tested inflatable structures (IS) integrated with flexible thermal protection system (F-TPS), ranging in diameters from 3-6m, with cone angles of 60 and 70 deg.In 2015, United Launch Alliance (ULA) announced that they will use a HIAD (10-12m) as part of their Sensible, Modular, Autonomous Return Technology (SMART) for their upcoming Vulcan rocket. ULA expects SMART reusability, coupled with other advancements for Vulcan, will substantially reduce the cost of access to space. The first booster engine recovery via HIAD is scheduled for 2024. To meet this near-term need, as well as future NASA applications, the HIAD team is investigating taking the technology to the 10-15m diameter scale.In the last year, many significant development and fabrication efforts have been accomplished, culminating in the construction of a large-scale inflatable structure demonstration assembly. This assembly incorporated the first three tori for a 12m Mars Human-Scale Pathfinder HIAD conceptual design that was constructed with the current state of the art material set. Numerous design trades and torus fabrication demonstrations preceded this effort. In 2016, three large-scale tori (0.61m cross-section) and six subscale tori (0.25m cross-section) were manufactured to demonstrate fabrication techniques using the newest candidate material sets. These tori were tested to evaluate durability and load capacity. This work led to the selection of the inflatable structures third generation (Gen-3) structural liner. In late 2016, the three tori required for the large-scale demonstration assembly were fabricated, and then integrated in early 2017. The design includes provisions to add the remaining four tori necessary to complete the assembly of the 12m Human-Scale Pathfinder HIAD in the event future project funding becomes available.This presentation will discuss the HIAD large-scale demonstration assembly design and fabrication per-formed in the last year including the precursor tori development and the partial-stack fabrication. Potential near-term and future 10-15m HIAD applications will also be discussed.
Fabrication of the HIAD Large-Scale Demonstration Assembly
NASA Technical Reports Server (NTRS)
Swanson, G. T.; Johnson, R. K.; Hughes, S. J.; DiNonno, J. M.; Cheatwood, F. M.
2017-01-01
Over a decade of work has been conducted in the development of NASA's Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology. This effort has included multiple ground test campaigns and flight tests culminating in the HIAD projects second generation (Gen-2) deployable aeroshell system and associated analytical tools. NASAs HIAD project team has developed, fabricated, and tested inflatable structures (IS) integrated with flexible thermal protection system (F-TPS), ranging in diameters from 3-6m, with cone angles of 60 and 70 deg.In 2015, United Launch Alliance (ULA) announced that they will use a HIAD (10-12m) as part of their Sensible, Modular, Autonomous Return Technology (SMART) for their upcoming Vulcan rocket. ULA expects SMART reusability, coupled with other advancements for Vulcan, will substantially reduce the cost of access to space. The first booster engine recovery via HIAD is scheduled for 2024. To meet this near-term need, as well as future NASA applications, the HIAD team is investigating taking the technology to the 10-15m diameter scale. In the last year, many significant development and fabrication efforts have been accomplished, culminating in the construction of a large-scale inflatable structure demonstration assembly. This assembly incorporated the first three tori for a 12m Mars Human-Scale Pathfinder HIAD conceptual design that was constructed with the current state of the art material set. Numerous design trades and torus fabrication demonstrations preceded this effort. In 2016, three large-scale tori (0.61m cross-section) and six subscale tori (0.25m cross-section) were manufactured to demonstrate fabrication techniques using the newest candidate material sets. These tori were tested to evaluate durability and load capacity. This work led to the selection of the inflatable structures third generation (Gen-3) structural liner. In late 2016, the three tori required for the large-scale demonstration assembly were fabricated, and then integrated in early 2017. The design includes provisions to add the remaining four tori necessary to complete the assembly of the 12m Human-Scale Pathfinder HIAD in the event future project funding becomes available.This presentation will discuss the HIAD large-scale demonstration assembly design and fabrication per-formed in the last year including the precursor tori development and the partial-stack fabrication. Potential near-term and future 10-15m HIAD applications will also be discussed.
Characterization of Hexsyn, a polyolefin rubber.
McMillin, C R
1987-07-01
Hexsyn is the Goodyear Tire and Rubber Company tradename for a polyolefin rubber synthesized from 1-hexene with 3-5% methylhexadiene as the source of residual double bonds for vulcanization. Under license from Goodyear, this same polymer has been manufactured by Lord Corporation for the hinge portion of finger joint prostheses using the tradename Bion. This rubber is currently licensed to the University of Akron and to the Cleveland Clinic Foundation for use in biomedical applications, and is being used primarily for biocompatible and highly fatigue resistant rubber components in ventricular assist and artificial heart systems. Results are presented from the physical, mechanical, and biological characterization of Hexsyn. Procedures are described for the synthesis, compounding, and post-molding extraction for Hexsyn. The physical testing of Hexsyn reported includes determinations of its density at 23 and 37 degrees C, initial hardness and hardness after aging in oxygen, blood, pseudoextracellular fluid and polyethylene glycol 600, typical molecular weights determined by gel permeation chromatography/low angle laser light scattering and intrinsic viscosity, thermal analyses by differential scanning calorimetry of Hexsyn gum, and vulcanized Hexsyn after exposure to blood and blood/fatigue conditions. Also reported are results of differential thermal analyses, thermomechanical analyses of virgin and annealed samples, and thermogravimetric analyses conducted in helium and in air. Dynamic mechanical analyses of Hexsyn include Clash-Berg and Rheovibron tests. Swelling was conducted to determine lot-to-lot and sheet-to-sheet variation for quality control and also a number of solvents were used so that the polymer-solvent interaction parameters could be determined. The permeability of Hexsyn to water, water vapor, and a variety of gases is reported. The permeability by contact angle measurements, refractive index, residual solvent analyses, migration of blood components into Hexsyn, melt rheology by Monsanto Rheometer, resistance to acids, and typical mold shrinkage for Hexsyn are reported. Mechanical testing of Hexsyn includes tensile strength, elongation, and tensile stress (modulus) at 23 and 37 degrees C and after conditions including exposure to blood, pseudoextracellular fluid, polyethylene glycol, oxygen, 100% relative humidity, and fatigue testing. Stress/strain calibration curves, flexural rigidity after aging in blood, tension set, compression set, stress relaxation, and the effect of repeated cycling on the elastic modulus are presented along with the results of Pico abrasion, skid resistance tests on wet concrete.(ABSTRACT TRUNCATED AT 400 WORDS)
Concept study for a Venus Lander Mission to Analyze Atmospheric and Surface Composition
NASA Astrophysics Data System (ADS)
Kumar, K.; Banks, M. E.; Benecchi, S. D.; Bradley, B. K.; Budney, C. J.; Clark, G. B.; Corbin, B. A.; James, P. B.; O'Brien, R. C.; Rivera-Valentin, E. G.; Saltman, A.; Schmerr, N. C.; Seubert, C. R.; Siles, J. V.; Stickle, A. M.; Stockton, A. M.; Taylor, C.; Zanetti, M.; JPL Team X
2011-12-01
We present a concept-level study of a New Frontiers class, Venus lander mission that was developed during Session 1 of NASA's 2011 Planetary Science Summer School, hosted by Team X at JPL. Venus is often termed Earth's sister planet, yet they have evolved in strikingly different ways. Venus' surface and atmosphere dynamics, and their complex interaction are poorly constrained. A lander mission to Venus would enable us to address a multitude of outstanding questions regarding the geological evolution of the Venusian atmosphere and crust. Our proposed mission concept, VenUs Lander for Composition ANalysis (VULCAN), is a two-component mission, consisting of a lander and a carrier spacecraft functioning as relay to transmit data to Earth. The total mission duration is 150 days, with primary science obtained during a 1-hour descent through the atmosphere and a 2-hour residence on the Venusian surface. In the atmosphere, the lander will provide new data on atmospheric evolution by measuring dominant and trace gas abundances, light stable isotopes, and noble gas isotopes with a neutral mass spectrometer. It will make important meteorological observations of mid-lower atmospheric dynamics with pressure and temperature sensors and obtain unprecedented, detailed imagery of surface geomorphology and properties with a descent Near-IR/VIS camera. A nepholometer will provide new constraints on the sizes of suspended particulate matter within the lower atmosphere. On the surface, the lander will quantitatively investigate the chemical and mineralogical evolution of the Venusian crust with a LIBS-Raman spectrometer. Planetary differentiation processes recorded in heavy elements will be evaluated using a gamma-ray spectrometer. The lander will also provide the first stereo images for evaluating the geomorphologic/volcanic evolution of the Venusian surface, as well as panoramic views of the sample site using multiple filters, and detailed images of unconsolidated material and rock textures from a microscopic imager. Our mission proposal will enable the construction of a unique Venus test facility that will attract a new generation of scientists to Venus science. With emphasis on flight heritage, we demonstrate our cost basis and risk mitigation strategies to ensure that the VULCAN mission can be conducted within the requirements and constraints of the New Frontiers Program.
Study of different nanostructured carbon supports for fuel cell catalysts
NASA Astrophysics Data System (ADS)
Mirabile Gattia, Daniele; Antisari, Marco Vittori; Giorgi, Leonardo; Marazzi, Renzo; Piscopiello, Emanuela; Montone, Amelia; Bellitto, Serafina; Licoccia, Silvia; Traversa, Enrico
Pt clusters were deposited by an impregnation process on three carbon supports: multi-wall carbon nanotubes (MWNT), single-wall carbon nanohorns (SWNH), and Vulcan XC-72 carbon black to investigate the effect of the carbon support structure on the possibility of reducing Pt loading on electrodes for direct methanol (DMFC) fuel cells without impairing performance. MWNT and SWNH were in-house synthesised by a DC and an AC arc discharge process between pure graphite electrodes, respectively. UV-vis spectrophotometry, scanning and transmission electron microscopy, X-ray diffraction, and cyclic voltammetry measurements were used to characterize the Pt particles deposited on the three carbon supports. A differential yield for Pt deposition, not strictly related to the surface area of the carbon support, was observed. SWNH showed the highest surface chemical activity toward Pt deposition. Pt deposited in different forms depending on the carbon support. Electrochemical characterizations showed that the Pt nanostructures deposited on MWNT are particularly efficient in the methanol oxidation reaction.
[Migrants from disposable gloves and residual acrylonitrile].
Wakui, C; Kawamura, Y; Maitani, T
2001-10-01
Disposable gloves made from polyvinyl chloride with and without di(2-ethylhexyl) phthalate (PVC-DEHP, PVC-NP), polyethylene (PE), natural rubber (NR) and nitrile-butadiene rubber (NBR) were investigated with respect to evaporation residue, migrated metals, migrants and residual acrylonitrile. The evaporation residue found in n-heptane was 870-1,300 ppm from PVC-DEHP and PVC-NP, which was due to the plasticizers. Most of the PE gloves had low evaporation residue levels and migrants, except for the glove designated as antibacterial, which released copper and zinc into 4% acetic acid. For the NR and NBR gloves, the evaporation residue found in 4% acetic acid was 29-180 ppm. They also released over 10 ppm of calcium and 6 ppm of zinc into 4% acetic acid, and 1.68-8.37 ppm of zinc di-ethyldithiocarbamate and zinc di-n-butyldithiocarbamate used as vulcanization accelerators into n-heptane. The acrylonitrile content was 0.40-0.94 ppm in NBR gloves.
A total petroleum system of the Browse Basin, Australia; Late Jurassic, Early Cretaceous-Mesozoic
Bishop, M.G.
1999-01-01
The Browse Basin Province 3913, offshore northern Australia, contains one important petroleum system, Late Jurassic, Early Cretaceous-Mesozoic. It is comprised of Late Jurassic through Early Cretaceous source rocks deposited in restricted marine environments and various Mesozoic reservoir rocks deposited in deep-water fan to fluvial settings. Jurassic age intraformational shales and claystones and Cretaceous regional claystones seal the reservoirs. Since 1967, when exploration began in this 105,000 km2 area, fewer than 40 wells have been drilled and only one recent oil discovery is considered potentially commercial. Prior to the most recent oil discovery, on the eastern side of the basin, a giant gas field was discovered in 1971, under a modern reef on the west side of the basin. Several additional oil and gas discoveries and shows were made elsewhere. A portion of the Vulcan sub-basin lies within Province 3913 where a small field, confirmed in 1987, produced 18.8 million barrels of oil (MMBO) up to 1995 and has since been shut in.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Zexing; Wang, Jie; Han, Lili
2016-01-19
Investigating active, stable, and low-cost materials for the oxygen reduction reaction is one of the key challenges in fuel-cell research. In this work, we describe the formation of N-doped carbon shell coated Co@CoO nanoparticles supported on Vulcan XC-72 carbon materials (Co@CoO@N–C/C) based on a simple supramolecular gel-assisted method. The double-shelled Co@CoO@N–C/C core–shell nanoparticles exhibit superior electrocatalytic activities for the oxygen reduction reaction compared to N-doped carbon and cobalt oxides, demonstrating the synergistic effect of the hybrid nanomaterials. Notably, the Co@CoO@N–C/C nanoparticles give rise to a comparable four-electron selectivity, long-term stability, and high methanol tolerance; all show a multi-fold improvement overmore » the commercial Pt/C catalyst. As a result, the progress is of great importance in exploring advanced non-precious metal-based electrocatalysts for fuel cell applications.« less
Bellucci, F S; Salmazo, L O; Budemberg, E R; da Silva, M R; Rodríguez-Pérez, M A; Nobre, M A L; Job, A E
2012-03-01
Single-phase polycrystalline mixed nickel-zinc ferrites belonging to Ni0.5Zn0.5Fe2O4 were prepared on a nanometric scale (mean crystallite size equal to 14.7 nm) by chemical synthesis named the modified poliol method. Ferrite nanopowder was then incorporated into a natural rubber matrix producing nanocomposites. The samples were investigated by means of infrared spectroscopy, X-ray diffraction, scanning electron microscopy and magnetic measurements. The obtained results suggest that the base concentration of nickel-zinc ferrite nanoparticles inside the polymer matrix volume greatly influences the magnetic properties of nanocomposites. A small quantity of nanoparticles, less than 10 phr, in the nanocomposite is sufficient to produce a small alteration in the semi-crystallinity of nanocomposites observed by X-ray diffraction analysis and it produces a flexible magnetic composite material with a saturation magnetization, a coercivity field and an initial magnetic permeability equal to 3.08 emu/g, 99.22 Oe and 9.42 x 10(-5) respectively.
NASA Astrophysics Data System (ADS)
Xu, Tiwen; Jia, Zhixin; Luo, Yuanfang; Jia, Demin; Peng, Zheng
2015-02-01
The epoxidized natural rubber (ENR) as an interfacial modifier was used to improve the mechanical and dynamical mechanical properties of NR/silica composites. In order to reveal the interaction mechanism between ENR and silica, the ENR/Silica model compound was prepared by using an open mill and the interfacial interaction of ENR with silica was investigated by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), X-ray diffraction (XRD) and stress-strain testing. The results indicated that the ring-opening reaction occurs between the epoxy groups of ENR chains and Si-OH groups on the silica surfaces and the covalent bonds are formed between two phases, which can improve the dispersion of silica in the rubber matrix and enhance the interfacial combination between rubber and silica. The ring-opening reaction occurs not only in vulcanization process but also in mixing process, meanwhile, the latter seems to be more important due to the simultaneous effects of mechanical force and temperature.
NASA Astrophysics Data System (ADS)
Suresh, C.; Srikrishna, P.
2017-07-01
Vacuum electronic devices operate with very high voltage differences between their sub-assemblies which are separated by very small distances. These devices also emit large amounts of heat that needs to be dissipated. Hence, there exists a requirement for high-voltage insulators with good thermal conductivity for voltage isolation and efficient heat dissipation. However, these voltage insulators are generally poor conductors of heat. In the present work, an effort has been made to obtain good high-voltage insulation materials with substantial improvement in their thermal conductivity. New mixtures of composites were formed by blending varying percentages (by volumes) of aluminum nitride powders with that of neat room-temperature vulcanizing (RTV) silicone elastomer compound. In this work, a thermal conductivity test setup has been devised for the quantification of the thermal conductivity of the insulators. The thermal conductivities and high-voltage isolation capabilities of various blended composites were quantified and were compared with that of neat RTV to evaluate the relative improvement.
NASA Astrophysics Data System (ADS)
Dai, Zhigao; Mei, Fei; Xiao, Xiangheng; Liao, Lei; Wu, Wei; Zhang, Yupeng; Ying, Jianjian; Wang, Lingbo; Ren, Feng; Jiang, Changzhong
2015-03-01
We have reported that the Ag nanostructure-based substrate is particularly suitable for surface-enhanced Raman scattering when it is coated with monolayer graphene, an optically transparent and chemistry-inertness material in the visible range. Ag bowtie nanoantenna arrays and Ag nanogrids were fabricated using plasma-assisted nanosphere lithography. Our measurements show that atmospheric sulfur containing compounds are powerless to break in the monolayer graphene to vulcanize the surfaces of the Ag bowtie nanoantenna arrays and Ag nanogrids by various means, including scanning electron microscopy (SEM) and x-ray photoelectron spectroscopy (XPS). Furthermore, the Ag nanostructure substrate coated with the monolayer graphene film shows a larger enhancement of Raman activity and the electromagnetic field than the uncoated substrate. Compared with those of bare Ag nanostructures, the averaged EFs of graphene-film-coated Ag nanostructures were estimated to be about 21 and 5 for Ag bowtie nanoantenna arrays and nanogrids after one month later in air, respectively. These observations are further supported by theoretical calculations.
Amey, E.B.; Kelly, T.D.
1996-01-01
The first factor determining recyclability is the composition of the material itself. Metals, for example, can be reused with little or no loss in quality. Paper and rubber, by this criterion, are less recyclable. Each time paper is recycled, some cellulose fibers are broken. Shorter fibers can mean weaker paper of perceived lower quality and value. Vulcanizing is an irreversible chemical process that precludes recycling rubber in its original form. Both materials may be reused in other applications often of lower value than the original one. To be recyclable, the discarded material must have a collection infrastructure at the source of waste generation, at a central collection site, or at curbside. The recovered material must also have a market. If it is priced noncompetitively or no market exists, if it does not meet specifications, or if it requires special technology investments which cannot be recovered through future sales, the recovered material may be stockpiled or discarded rather than recycled. ?? 1996 International Association for Mathematical Geology.
Design of Nanomaterial Synthesis by Aerosol Processes
Buesser, Beat; Pratsinis, Sotiris E.
2013-01-01
Aerosol synthesis of materials is a vibrant field of particle technology and chemical reaction engineering. Examples include the manufacture of carbon blacks, fumed SiO2, pigmentary TiO2, ZnO vulcanizing catalysts, filamentary Ni, and optical fibers, materials that impact transportation, construction, pharmaceuticals, energy, and communications. Parallel to this, development of novel, scalable aerosol processes has enabled synthesis of new functional nanomaterials (e.g., catalysts, biomaterials, electroceramics) and devices (e.g., gas sensors). This review provides an access point for engineers to the multiscale design of aerosol reactors for the synthesis of nanomaterials using continuum, mesoscale, molecular dynamics, and quantum mechanics models spanning 10 and 15 orders of magnitude in length and time, respectively. Key design features are the rapid chemistry; the high particle concentrations but low volume fractions; the attainment of a self-preserving particle size distribution by coagulation; the ratio of the characteristic times of coagulation and sintering, which controls the extent of particle aggregation; and the narrowing of the aggregate primary particle size distribution by sintering. PMID:22468598
NASA Technical Reports Server (NTRS)
Lawson, Gary; Sosonkina, Masha; Baurle, Robert; Hammond, Dana
2017-01-01
In many fields, real-world applications for High Performance Computing have already been developed. For these applications to stay up-to-date, new parallel strategies must be explored to yield the best performance; however, restructuring or modifying a real-world application may be daunting depending on the size of the code. In this case, a mini-app may be employed to quickly explore such options without modifying the entire code. In this work, several mini-apps have been created to enhance a real-world application performance, namely the VULCAN code for complex flow analysis developed at the NASA Langley Research Center. These mini-apps explore hybrid parallel programming paradigms with Message Passing Interface (MPI) for distributed memory access and either Shared MPI (SMPI) or OpenMP for shared memory accesses. Performance testing shows that MPI+SMPI yields the best execution performance, while requiring the largest number of code changes. A maximum speedup of 23 was measured for MPI+SMPI, but only 11 was measured for MPI+OpenMP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berardinelli, S.P.; Rusczek, R.A.; Mickelsen, R.L.
The National Institute for Occupational Safety and Health (NIOSH), in cooperation with Monsanto Chemical Company, conducted an on-site evaluation of chemical protective clothing at Monsanto's Nitro, West Virginia plant. The Monsanto plant manufactures additives for the rubber industry including antioxidants, pre-vulcanization inhibitors, accelerators, etc. This survey evaluated six raw materials that have a potential for skin absorption: aniline, cyclohexylamine, diisorpropylamine, tertiary butylamine, morpholine and carbon disulfide. Five generic glove materials were tested against these chemicals; nitrile, neoprene, polyvinylchloride, natural latex and natural rubber. The NIOSH chemical permeation portable test system was used to generate breakthrough time data. The results weremore » compared to permeation data reported in the literature that were obtained by using the ASTM F739-85 test method. The test data demonstrated that aniline has too low a vapor pressure for reliable analysis on the portable direct reading detectors used. The chemical permeation test system, however provided comparable, reliable permeation data for the other tested chemicals. Monsanto has used this data to better select chemical protective clothing for its intended use.« less
Thermal Stability and Flammability of Styrene-Butadiene Rubber-Based (SBR) Ceramifiable Composites
Anyszka, Rafał; Bieliński, Dariusz M.; Pędzich, Zbigniew; Rybiński, Przemysław; Imiela, Mateusz; Siciński, Mariusz; Zarzecka-Napierała, Magdalena; Gozdek, Tomasz; Rutkowski, Paweł
2016-01-01
Ceramifiable styrene-butadiene (SBR)-based composites containing low-softening-point-temperature glassy frit promoting ceramification, precipitated silica, one of four thermally stable refractory fillers (halloysite, calcined kaolin, mica or wollastonite) and a sulfur-based curing system were prepared. Kinetics of vulcanization and basic mechanical properties were analyzed and added as Supplementary Materials. Combustibility of the composites was measured by means of cone calorimetry. Their thermal properties were analyzed by means of thermogravimetry and specific heat capacity determination. Activation energy of thermal decomposition was calculated using the Flynn-Wall-Ozawa method. Finally, compression strength of the composites after ceramification was measured and their micromorphology was studied by scanning electron microscopy. The addition of a ceramification-facilitating system resulted in the lowering of combustibility and significant improvement of the thermal stability of the composites. Moreover, the compression strength of the mineral structure formed after ceramification is considerably high. The most promising refractory fillers for SBR-based ceramifiable composites are mica and halloysite. PMID:28773726
NASA Astrophysics Data System (ADS)
Bao, Le Quoc; Phan, Vu Hoang Giang; Khuyen, Nguyen Quang
2018-04-01
Polymer nanocomposites that based on combination of nanomaterials (such as nanoparticles, nanotubes, nanorods, nanofibers, and nanosheets) and polymeric matrices are receiving great attention in research and application. However, separate and homogenous dispersion rather than aggregates of nanoparticles into matrices meet big difficulty due to large interaction between nanoparticles. The poor dispersion leads to low properties of nanocomposites. In this study, we find out the appropriate method to separately disperse cerium oxides (CeO2) nanoparticles into natural rubber, aiming to increase mechanical properties of natural rubber. The SEM images were used to evaluate the dispersion of nano CeO2 in natural rubber matrix. The mechanical properties of nanocomposites were measured after vulcanization to investigate effects of nano CeO2 amount on prepared composite. The findings exhibited that the addition of CeO2 by dispersion of nano CeO2 in water via ultrasonication before mixing with rubber latex, significantly increase modulus, tear and wear resistance of natural rubber.
Kim, Jung Ho; Yu, Jong-Sung
2010-12-14
Hierarchical nanostructured erythrocyte-like hollow carbon (EHC) with a hollow hemispherical macroporous core of ca. 230 nm in diameter and 30-40 nm thick mesoporous shell was synthesized and explored as a cathode catalyst support in a proton exchange membrane fuel cell (PEMFC). The morphology control of EHC was successfully achieved using solid core/mesoporous shell (SCMS) silica template and different styrene/furfuryl alcohol mixture compositions by a nanocasting method. The EHC-supported Pt (20 wt%) cathodes prepared have demonstrated markedly enhanced catalytic activity towards oxygen reduction reactions (ORRs) and greatly improved PEMFC polarization performance compared to carbon black Vulcan XC-72 (VC)-supported ones, probably due to the superb structural characteristics of the EHC such as uniform size, well-developed porosity, large specific surface area and pore volume. In particular, Pt/EHC cathodes exhibited ca. 30-60% higher ORR activity than a commercial Johnson Matthey Pt catalyst at a low catalyst loading of 0.2 mg Pt cm(-2).
The shape-memory effect in ionic elastomers: fixation through ionic interactions.
González-Jiménez, Antonio; Malmierca, Marta A; Bernal-Ortega, Pilar; Posadas, Pilar; Pérez-Aparicio, Roberto; Marcos-Fernández, Ángel; Mather, Patrick T; Valentín, Juan L
2017-04-19
Shape-memory elastomers based on a commercial rubber cross-linked by both ionic and covalent bonds have been developed. The elastomeric matrix was a carboxylated nitrile rubber (XNBR) vulcanized with magnesium oxide (MgO) providing ionic interactions that form hierarchical structures. The so-named ionic transition is used as the unique thermal transition responsible for the shape-memory effect (SME) in these elastomers. These ionic interactions fix the temporary shape due to their behavior as dynamic cross-links with temperature changes. Covalent cross-links were incorporated with the addition of different proportions of dicumyl peroxide (DCP) to the ionic elastomer to establish and recover the permanent shape. In this article, the SME was modulated by modifying the degree of covalent cross-linking, while keeping the ionic contribution constant. In addition, different programming parameters, such as deformation temperature, heating/cooling rate, loading/unloading rate and percentage of tensile strain, were evaluated for their effects on shape-memory behavior.
1 MeV, 10 kW DC electron accelerator for industrial applications
NASA Astrophysics Data System (ADS)
Nayak, B.; Acharya, S.; Bhattacharjee, D.; Bakhtsingh, R. I.; Rajan, R.; Sharma, D. K.; Dewangan, S.; Sharma, V.; Patel, R.; Tiwari, R.; Benarjee, S.; Srivastava, S. K.
2016-03-01
Several modern applications of radiation processing like medical sterilization, rubber vulcanization, polymerization, cross-linking and pollution control from thermal power stations etc. require D.C. electron accelerators of energy ranging from a few hundred keVs to few MeVs and power from a few kilowatts to hundreds of kilowatts. To match these requirements, a 3 MeV, 30 kW DC electron linac has been developed at BARC, Mumbai and current operational experience of 1 MeV, 10 kW beam power will be described in this paper. The LINAC composed mainly of Electron Gun, Accelerating Tubes, Magnets, High Voltage source and provides 10 kW beam power at the Ti beam window stably after the scanning section. The control of the LINAC is fully automated. Here Beam Optics study is carried out to reach the preferential parameters of Accelerating as well as optical elements. Beam trials have been conducted to find out the suitable operation parameters of the system.
Qualification test of the Ross Double Planetary Mixer
NASA Technical Reports Server (NTRS)
Lueders, Kurt F.
1993-01-01
This test report describes the qualification test of the Ross Double Planetary Mixer used to mix room temperature vulcanized (RTV) silicone (Dow Corning 90-006-2) for the redesigned solid rocket motor (RSRM) nozzle joints. Testing was completed 18 June 1993 in the M-113A Nozzle Fabrication Facility at Thiokol Corporation, Space Operations, Brigham City, Utah. The Ross mixer provides better mixing and better control on temperature and humidity, resulting in better quality RTV and a longer usable pot life. The test began on 3 May 1993 and was stopped due to operator error during the tensile strength and elongation testing. Specimens were ruined without gathering any useful data. A 'no test' was declared, the problem was remedied, and the test was re-run with MSFC approval. The test was run and all pass/fail criteria were met, most with a considerable margin. The Ross Double Planetary Mixer met all certification objectives and is recommended for immediate use for mixing RTV silicone for RSRM nozzle joints.
NASA Astrophysics Data System (ADS)
Atwan, Mohammed H.; Macdonald, Charles L. B.; Northwood, Derek O.; Gyenge, Elod L.
Supported colloidal Au and Au-alloys (Au-Pt and Au-Pd, 1:1 atomic ratio) on Vulcan XC-72 (with 20 wt% metal load) were prepared by the Bönneman method. The electrocatalytic activity of the colloidal metals with respect to borohydride electro-oxidation for fuel cell applications was investigated by voltammetry on static and rotating electrodes, chronoamperometry, chronopotentiometry and fuel cell experiments. The fundamental electrochemical techniques showed that alloying Au, a metal that leads to the maximum eight-electron oxidation of BH 4 -, with Pd or Pt, well-known catalysts of dehydrogenation reactions, improved the electrode kinetics of BH 4 - oxidation. Fuel cell experiments corroborated the kinetic studies. Using 5 mg cm -2 colloidal metal load on the anode, it was found that Au-Pt was the most active catalyst giving a cell voltage of 0.47 V at 100 mA cm -2 and 333 K, while under identical conditions the cell voltage using colloidal Au was 0.17 V.
Design of nanomaterial synthesis by aerosol processes.
Buesser, Beat; Pratsinis, Sotiris E
2012-01-01
Aerosol synthesis of materials is a vibrant field of particle technology and chemical reaction engineering. Examples include the manufacture of carbon blacks, fumed SiO(2), pigmentary TiO(2), ZnO vulcanizing catalysts, filamentary Ni, and optical fibers, materials that impact transportation, construction, pharmaceuticals, energy, and communications. Parallel to this, development of novel, scalable aerosol processes has enabled synthesis of new functional nanomaterials (e.g., catalysts, biomaterials, electroceramics) and devices (e.g., gas sensors). This review provides an access point for engineers to the multiscale design of aerosol reactors for the synthesis of nanomaterials using continuum, mesoscale, molecular dynamics, and quantum mechanics models spanning 10 and 15 orders of magnitude in length and time, respectively. Key design features are the rapid chemistry; the high particle concentrations but low volume fractions; the attainment of a self-preserving particle size distribution by coagulation; the ratio of the characteristic times of coagulation and sintering, which controls the extent of particle aggregation; and the narrowing of the aggregate primary particle size distribution by sintering.
NASA Astrophysics Data System (ADS)
Ubaidillah; Imaduddin, Fitrian; Li, Yancheng; Amri Mazlan, Saiful; Sutrisno, Joko; Koga, Tsuyoshi; Yahya, Iwan; Choi, Seung-Bok
2016-11-01
This paper proposes a new type of magnetorheological elastomer (MRE) using rubber from waste tires and describes its performance characteristics. In this work, scrap tires were utilized as a primary matrix for the MRE without incorporation of virgin elastomers. The synthesis of the scrap tire based MRE adopted a high-temperature high-pressure sintering technique to achieve the reclaiming of vulcanized rubber. The material properties of the MRE samples were investigated through physical and viscoelastic examinations. The physical tests confirmed several material characteristics—microstructure, magnetic, and thermal properties-while the viscoelastic examination was conducted with a laboratory-made dynamic compression apparatus. It was observed from the viscoelastic examination that the proposed MRE has magnetic-field-dependent properties of the storage modulus, loss modulus, and loss tangent at different excitation frequencies and strain amplitudes. Specifically, the synthesized MRE showed a high zero field modulus, a reasonable MR effect under maximum applied current, and remarkable damping properties.
Effect of organo-clay on the dielectric relaxation response of silicone rubber
NASA Astrophysics Data System (ADS)
Gharavi, N.; Razzaghi-Kashani, M.; Golshan-Ebrahimi, N.
2010-02-01
Dielectric elastomers are light weight, low-cost, highly deformable and fast response smart materials capable of converting electrical energy into mechanical work or vice versa. Silicone rubber is a well-known dielectric elastomer which is used as actuator, and in order to enhance the efficiency of this smart material, compounding of silicone rubber with various fillers can be carried out. The effect of organically modified montmorillonite (OMMT) nano-clay on improvement of dielectric properties, actuation stress and its relaxation response was considered in this study. OMMT was dispersed in room temperature vulcanized (RTV) silicone rubber, and a composite film was cast. Using an in-house actuation set-up, it was shown that the actuation stress for a given electric field intensity is higher for composites than that for pristine silicone rubber. Also, the time-dependent actuation response of the samples was evaluated, and it was shown that the characteristic relaxation time of the actuation stress for composites is less than for the pristine rubber as a result of OMMT addition.
NASA Astrophysics Data System (ADS)
Morin, Jeremy Edward
In 1844 Charles Goodyear obtained U.S. Patent #3,633 for his "Gum Elastic Composition". In a published circular, which describes his patent for the sulfur vulcanization of gum elastic composition, he stated: "No degree of heat, without blaze, can melt it (rubber)... It resists the most powerful chemical reagents. Aquafortis (nitric acid), sulphuric acid, essential and common oils, turpentine and other solvents... ..." Goodyear's sulfur vulcanization of rubber fueled much of the industrial revolution and made transportation possible, as it exists today. In doing so, Goodyear created one of the most difficult materials to recycle. Rubber will not melt, dissolve, or lend itself to the usual methods of chemical decomposition. Ironically, Goodyear recognized this problem and in 1853 he patented the process of adding ground rubber to virgin material, now currently known as regrind blending. Today, scrap tires represent one of the most serious sources of pollution in the world. Studies estimate that there are roughly 2 billion scrap tires in U.S. landfills and more are being added at a rate of over 273 million tires per year. Current methods of recycling waste tires are crude, ineffective, and use rubber powder as a low cost filler instead of a new rubber. The groundwork for a very simple and effective method of producing high-quality rubber goods using 100% scrap rubber was discovered in 1944 by A. V. Tobolsky et al. This application, however, was not recognized until recently in our laboratory. The process as studied to date represents a method of creating quality, high-value added rubber goods with nothing other than heat and pressure. High pressure is required to obtain a void-free compaction of the rubber particles by forcing all of the free surfaces into intimate contact. High temperature then activates the chemical rearrangement, scission, and reformation of the chemical bonds thus providing new bridges between the once fractured interfaces. This occurs both within and between particles. The technique of high-pressure high-temperature sintering has worked on all types of thermoset materials. Typical mechanical properties for sintered SBR powder rubber are as follows: 1.3 MPa 100% Modulus, 12.0 MPa Tensile Strength and 300% Elongation at Break. The goal of this research is two-fold. First, to gain an understanding of the variables that control the process of high-pressure high-temperature sintering. Second, to study the factors governing the mechanism of fusion with the hope of controlling and exploiting this process so that tires can be recycled to produce high quality and high-value added products.
Amphiphilic semi-interpenetrating polymer networks using pulverized rubber
NASA Astrophysics Data System (ADS)
Shahidi, Nima
Scrap rubber materials provide a significant challenge to either reuse or safe disposal. Every year, millions of tires are discarded to landfills in the United States, consuming a staggering amount of land space, creating a high risk for large fires, breeding mosquitoes that spread diseases, and wasting the planet's natural resources. This situation cannot be sustained. The challenge of reusing scrap rubber materials is mainly due to the crosslinked structure of vulcanized rubber that prevent them from melting and further processing for reuse. The most feasible recycling approach is believed to be a process in which the vulcanized rubber is first pulverized into a fine powder and then incorporated into new products. The production of fine rubber particles is generally accomplished through the use of a cryogenic process that is costly. Therefore, development of a cost effective technology that utilizes a large quantity of the scrap rubber materials to produce high value added materials is an essential element in maintaining a sustainable solution to rubber recycling. In this research, a cost effective pulverization process, solid state shear extrusion (SSSE), was modified and used for continuous pulverization of the rubber into fine particles. In the modified SSSE process, pulverization takes place at high compressive shear forces and a controlled temperature. Furthermore, an innovative particle modification process was developed to enhance the chemical structure and surface properties of the rubber particles for manufacturing of high value added products. Modification of rubber particles was accomplished through the polymerization of a hydrophilic monomer mixture within the intermolecular structure of the hydrophobic rubber particles. The resulting composite particles are considered as amphiphilic particulate phase semi-interpenetrating polymer networks (PPSIPNs). The modified rubber particles are water dispersible and suitable for use in a variety of aqueous media applications such as additives to waterborne emulsions. This innovative process for the first time opened up the application of rubber particles in aqueous media. The kinetics of polymerization reaction of hydrophilic monomer mixture within the rubber particles was investigated based on the assumption of partitioning of acrylic acid monomer in the hydrophobic rubber particles. The produced PPSIPNs were used as additives to waterborne emulsions and the mechanical and physical properties of the prepared coatings were examined. It was observed that the PPSIPNs could be added in high quantities with an improvement in adhesion, enhancement of the impact strength, and hardness of the coatings. This approach aims to develop environmentally benign products from scrap rubber materials.
Quantification of fossil fuel CO2 at the building/street level for large US cities
NASA Astrophysics Data System (ADS)
Gurney, K. R.; Razlivanov, I. N.; Song, Y.
2012-12-01
Quantification of fossil fuel CO2 emissions from the bottom-up perspective is a critical element in emerging plans on a global, integrated, carbon monitoring system (CMS). A space/time explicit emissions data product can act as both a verification and planning system. It can verify atmospheric CO2 measurements (in situ and remote) and offer detailed mitigation information to management authorities in order to optimize the mix of mitigation efforts. Here, we present the Hestia Project, an effort aimed at building a high resolution (eg. building and road link-specific, hourly) fossil fuel CO2 emissions data product for the urban domain as a pilot effort to a CMS. A complete data product has been built for the city of Indianapolis and preliminary quantification has been completed for Los Angeles and Phoenix (see figure). The effort in Indianapolis is now part of a larger effort aimed at a convergent top-down/bottom-up assessment of greenhouse gas emissions, called INFLUX. Our urban-level quantification relies on a mixture of data and modeling structures. We start with the sector-specific Vulcan Project estimate at the mix of geocoded and county-wide levels. The Hestia aim is to distribute the Vulcan result in space and time. Two components take the majority of effort: buildings and onroad emissions. In collaboration with our INFLUX colleagues, we are transporting these high resolution emissions through an atmospheric transport model for a forward comparison of the Hestia data product with atmospheric measurements, collected on aircraft and cell towers. In preparation for a formal urban-scale inversion, these forward comparisons offer insights into both improving our emissions data product and measurement strategies. A key benefit of the approach taken in this study is the tracking and archiving of fuel and process-level detail (eg. combustion process, other pollutants), allowing for a more thorough understanding and analysis of energy throughputs in the urban environment. Quantification of fossil fuel emissions, however, is one piece in a larger conception of cities as complex dynamic socio-technological systems and the Hestia effort is at the very beginning stages of connecting to the large community of research approaching cities from other perspectives and utilizing other tools. Through analysis of the three cities for which we have quantified fossil fuel CO2 emissions and recognition of the current threads emerging in urban research, we are attempting to offer insight into understanding cities via the mechanistic quantification of energy and CO2 emissions.
MNASA as a Test for Carbon Fiber Thermal Barrier Development
NASA Technical Reports Server (NTRS)
Bauer, Paul; McCool, Alex (Technical Monitor)
2001-01-01
A carbon fiber rope thermal barrier is being evaluated as a replacement for the conventional room temperature vulcanizing (RTV) thermal barrier that is currently used to protect o-rings in Reusable Solid Rocket Motor (RSRM) nozzle joints. Performance requirements include its ability to cool any incoming, hot propellant gases that fill and pressurize the nozzle joints, filter slag and particulates, and to perform adequately in various joint assembly conditions as well as dynamic flight motion. Modified National Aeronautics and Space Administration (MNASA) motors, with their inherent and unique ability to replicate select RSRM internal environment features, were an integral step in the development path leading to full scale RSRM static test demonstration of the carbon fiber rope (CFR) joint concept. These 1/4 scale RSRM motors serve to bridge the gap between the other classes of subscale test motors (extremely small and moderate duration, or small scale and short duration) and the critical asset RSRM static test motors. A series of MNASA tests have been used to demonstrate carbon fiber rope performance and have provided rationale for implementation into a full-scale static motor and flight qualification.
NASA Astrophysics Data System (ADS)
Han, Mijeong; Kim, Hoonjung; Kim, Eunkyoung
2006-01-01
Nanocomposites were prepared from acrylonitrile-butadiene rubber (NBR), vinyl groups containing organically modified montmorillonite and additives, such as zinc oxide, stearic acid, and sulfur. The organically modified montmorillonites used in these nanocomposites were prepared by ion exchange reactions of N,N'-dimethylalkyl-(p-vinylbenzyl)-ammonium chlorides (DAVBAs, alkyl = octyl, dodecyl, and octadecyl) with sodium montmorillonite (Na+-MMT). NBR nanocomposites were obtained by controlling both the mixing and vulcanization conditions, by using a Brabender mixer and hot-press process. X-ray diffraction (XRD) analysis shows that, depending on the amount of montmorillonite that is added, both exfoliated and intercalated nanocomposite structures are formed. The NBR/DAVBA-MMT nanocomposites exhibit much higher mechanical properties (e.g., tensile strength, Young's modulus, 300% modulus, and hardness) as well as gas barrier properties as compared to NBR Na+-MMT or NBR composites generated from modified montmorillonites without vinyl groups. Consistent with the results of XRD, transmission electron microscopy (TEM) reveals that the intercalation and exfoliation structures of the nanocomposites coexist and that the DAVBA-MMT layers are well dispersed in NBR.
The status of food irradiation technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sivinski, J.S.
1989-01-01
Irradiation is a mature technology for many uses, such as medical product sterilization, crosslinking of plastics, application of coatings, stabilization of natural and synthetic rubbers prior to vulcanization, and in plant genetics. It also has many potential applications in the food and agriculture industries, especially in the postharvest activities associated with processing, storing, and distribution and in utilization and consumption. The safety of food irradiation has been thoroughly studied and established by distinguished scientists of international stature and unimpeachable credentials. Approximately 30 countries permit food irradiation and it is commercially used in 21. Parasites are of serious concern since theirmore » impact on human health and economic productivity is significant, especially in developing countries with sanitation and food control problems. Parasites in meat and fish can be rendered sterile or inactivated with irradiation, and the potential for improved human health is significant. The second area for immediate use of irradiation is in meeting plant quarantine requirements. The benefits described above and the approval of the scientific community are moving the technology toward greater utilization.« less
Craciun, Gabriela; Manaila, Elena; Stelescu, Maria Daniela
2016-01-01
The efficiency of polyfunctional monomers as cross-linking co-agents on the chemical properties of natural rubber vulcanized by electron beam irradiation was studied. The following polyfunctional monomers were used: trimethylolpropane-trimethacrylate, zinc-diacrylate, ethylene glycol dimethacrylate, triallylcyanurate and triallylisocyanurate. The electron beam treatment was done using irradiation doses in the range of 75 kGy–300 kGy. The gel fraction, crosslink density and effects of different aqueous solutions, by absorption tests, have been investigated as a function of polyfunctional monomers type and absorbed dose. The samples gel fraction and crosslink density were determined on the basis of equilibrium solvent-swelling measurements by applying the modified Flory–Rehner equation for tetra functional networks. The absorption tests were done in accordance with the SR ISI 1817:2015 using distilled water, acetic acid (10%), sodium hydroxide (1%), ethylic alcohol (96%), physiological serum (sodium chloride 0.9%) and glucose (glucose monohydrate 10%). The samples structure and morphology were investigated by Fourier Transform Infrared Spectroscopy and Scanning Electron Microscopy techniques. PMID:28774150
Hardness and compression resistance of natural rubber and synthetic rubber mixtures
NASA Astrophysics Data System (ADS)
Arguello, J. M.; Santos, A.
2016-02-01
This project aims to mechanically characterize through compression resistance and shore hardness tests, the mixture of hevea brasiliensis natural rubber with butadiene synthetic rubber (BR), styrene-butadiene rubber (SBR) and ethylene-propylene-diene monomer rubber (EPDM). For each of the studied mixtures were performed 10 tests, each of which increased by 10% the content of synthetic rubber in the mixture; each test consisted of carrying out five tests of compression resistance and five tests of shore hardness. The specimens were vulcanized on a temperature of 160°C, during an approximate time of 15 minutes, and the equipment used in the performance of the mechanical tests were a Shimadzu universal machine and a digital durometer. The results show that the A shore hardness increases directly proportional, with a linear trend, with the content of synthetic BR, SBR or EPDM rubber present in the mixture, being the EPDM the most influential. With respect to the compression resistance is observed that the content of BR or SBR increase this property directly proportional through a linear trend; while the EPDM content also increases but with a polynomial trend.
Park, Gayoung; Kim, Yun Hee; Kim, Dong Soo; Ko, Young Chun
2010-05-01
Morphology and vulcanizate properties of EPDM/SBR blends were investigated. AAHR (a mixture of aliphatic and aromatic hydrocarbon resins) was used as a compatibilizer and bis(3-triethoxysilylpropyl)tetrasulfide (TESPT) was used as a coupling agent. The vulcanizate properties and the morphological studies revealed that EPDM and SBR were incompatible, and the addition of AAHR was very effective to enhance the compatibility between EPDM and SBR. The weight percent of bound rubbers was increased with increasing SBR contents. The addition of an AAHR increased the amounts of bound rubbers, and hence the vulcanizate properties such as tear strength and fatigue resistance of the EPDM/SBR blends were improved. The dynamic mechanical analysis and the morphological studies revealed that the addition of TESPT increased the weight of bound rubbers and provided better dispersion of carbon black, resulting in good mechanical properties such as tear strength and fatigue resistance of the vulcanized EPDM/SBR blends. The smaller particle of zinc oxide (i.e., 50 nm > 100 nm > 1000 nm) yielded to the better blending properties of the polymer blend.
Abdel Hameed, R M; Medany, Shymaa S
2018-03-01
Nickel oxide nanoparticles were deposited on different carbon supports including activated Vulcan XC-72R carbon black (NiO/AC), multi-walled carbon nanotubes (NiO/MWCNTs), graphene (NiO/Gr) and graphite (NiO/Gt) through precipitation step followed by calcination at 400 °C. To determine the crystalline structure and morphology of prepared electrocatalysts, X-ray diffraction (XRD) and transmission electron microscopy (TEM) were employed. The electrocatalytic activity of NiO/carbon support electrocatalysts was investigated towards urea electro-oxidation reaction in NaOH solution using cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy. Urea oxidation peak current density was increased in the following order: NiO/AC < NiO/MWCNTs < NiO/Gr < NiO/Gt. Chronoamperometry test also showed an increased steady state oxidation current density for NiO/Gt in comparison to other electrocatalysts. The increased activity and stability of NiO/Gt electrocatalyst encourage the application of graphite as an efficient and cost-saving support to carry metal nanoparticles for urea electro-oxidation reaction. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sevilla, Marta; Lota, Grzegorz; Fuertes, Antonio B.
Highly graphitic carbon nanocoils were synthesised from the catalytic graphitization of carbon spherules obtained by the hydrothemal treatment of different saccharides (sucrose, glucose and starch). This nanostructured carbon was characterized by X-ray power diffraction, N 2 adsorption and microscopy techniques (SEM and TEM). The carbon nanocoils were used as a support for PtRu nanoparticles, which were well-dispersed over the carbon surface. This catalytic system was investigated for use as an electrocatalyst for methanol electrooxidation in an acid medium. The experiments were carried out at two working temperatures (25 °C and 60 °C). It was found that the carbon nanocoils supporting PtRu nanoparticles exhibit a high catalytic activity, which is even higher than that of conventional carbon supports (Vulcan XC-72R). We believe that the high electrocatalytic activity of the carbon nanocoils presented here is due to the combination of a good electrical conductivity, derived from their graphitic structure, and a wide porosity that allows the diffusional resistances of reactants/products to be minimized.
Effect of gamma irradiation on the properties of tyre cords
NASA Astrophysics Data System (ADS)
Aytaç, Ayşe; Şen, Murat; Deniz, Veli; Güven, Olgun
2007-12-01
Gamma irradiation of high tenacity Nylon 6.6 (Ny 66) and polyester (PET) tyre cords was investigated. The untreated and treated tyre cords with different twist levels were irradiated at different dose rates in air. The effects of irradiation on both Ny 66 and PET cords were not found to be depending on the twist levels of the cords. The changes in the mechanical and thermal properties with absorbed dose at two different dose rates were measured. The mechanical properties were observed to deteriorate with increasing dose for Ny 66 cords, whereas remained almost unchanged for PET cords both in greige and dipped forms. Hot shrinkage value for the greige Ny 66 cords was found to be improved, i.e. decreased. This decrease was much lower for greige PET than Ny 66 cords. It is concluded that PET cord has higher radiation resistance than Ny 66 cord and the effects of high energy irradiation on tyre cords have to be taken into consideration during tyre design if pre-vulcanization with high energy radiation is to be applied.
Chemical information obtained from Auger depth profiles by means of advanced factor analysis (MLCFA)
NASA Astrophysics Data System (ADS)
De Volder, P.; Hoogewijs, R.; De Gryse, R.; Fiermans, L.; Vennik, J.
1993-01-01
The advanced multivariate statistical technique "maximum likelihood common factor analysis (MLCFA)" is shown to be superior to "principal component analysis (PCA)" for decomposing overlapping peaks into their individual component spectra of which neither the number of components nor the peak shape of the component spectra is known. An examination of the maximum resolving power of both techniques, MLCFA and PCA, by means of artificially created series of multicomponent spectra confirms this finding unambiguously. Substantial progress in the use of AES as a chemical-analysis technique is accomplished through the implementation of MLCFA. Chemical information from Auger depth profiles is extracted by investigating the variation of the line shape of the Auger signal as a function of the changing chemical state of the element. In particular, MLCFA combined with Auger depth profiling has been applied to problems related to steelcord-rubber tyre adhesion. MLCFA allows one to elucidate the precise nature of the interfacial layer of reaction products between natural rubber vulcanized on a thin brass layer. This study reveals many interesting chemical aspects of the oxi-sulfidation of brass undetectable with classical AES.
Xu, X X; Ding, M H; Zhang, J X; Zheng, W; Li, L; Zheng, Y F
2013-11-01
In this article, a novel composite of copper (Cu) nanoparticles and polydimethiylsiloxane (PDMS) has been prepared and investigated for the potential application in Cu-containing intrauterine device. The Cu/PDMS composite with various mass fraction of Cu nanoparticles was fabricated via the hot vulcanizing process. The chemical structures and surface morphologies of the Cu/PDMS composites were characterized confirming the physical interaction between Cu nanoparticles and PDMS. The surface morphology observation using scanning electron microscope and atomic force microscope showed the agglomeration of Cu nanoparticles in PDMS matrix and the distribution of the agglomerations was more uniform with increased amount of Cu nanoparticles. The cupric ion release behaviors of the Cu/PDMS composites with different amounts of Cu nanoparticles were investigated in simulated uterine fluid at 37°C for 150 days. The corrosion morphologies of the Cu/PDMS composites were also characterized. Both the burst release rate of the cupric ion in the first few days and the steady release rate after 30-day immersion were improved. The cytotoxicity test has been done for the Cu/PDMS composites. Copyright © 2013 Wiley Periodicals, Inc.
Craciun, Gabriela; Manaila, Elena; Stelescu, Maria Daniela
2016-12-21
The efficiency of polyfunctional monomers as cross-linking co-agents on the chemical properties of natural rubber vulcanized by electron beam irradiation was studied. The following polyfunctional monomers were used: trimethylolpropane-trimethacrylate, zinc-diacrylate, ethylene glycol dimethacrylate, triallylcyanurate and triallylisocyanurate. The electron beam treatment was done using irradiation doses in the range of 75 kGy-300 kGy. The gel fraction, crosslink density and effects of different aqueous solutions, by absorption tests, have been investigated as a function of polyfunctional monomers type and absorbed dose. The samples gel fraction and crosslink density were determined on the basis of equilibrium solvent-swelling measurements by applying the modified Flory-Rehner equation for tetra functional networks. The absorption tests were done in accordance with the SR ISI 1817:2015 using distilled water, acetic acid (10%), sodium hydroxide (1%), ethylic alcohol (96%), physiological serum (sodium chloride 0.9%) and glucose (glucose monohydrate 10%). The samples structure and morphology were investigated by Fourier Transform Infrared Spectroscopy and Scanning Electron Microscopy techniques.
NASA Technical Reports Server (NTRS)
Bivolaru, Daniel; Cutler, Andrew D.; Danehy, Paul M.; Gaffney, Richard L.; Baurle, Robert a.
2009-01-01
This paper presents simultaneous measurements at multiple points of two orthogonal components of flow velocity using a single-shot interferometric Rayleigh scattering (IRS) technique. The measurements are performed on a large-scale Mach 1.6 (Mach 5.5 enthalpy) H2-air combustion jet during the 2007 test campaign in the Direct Connect Supersonic Combustion Test facility at NASA Langley Research Center. The measurements are performed simultaneously with CARS (Coherent Anti-stokes Raman Spectroscopy) using a combined CARS-IRS instrument with a common path 9-nanosecond pulsed, injection-seeded, 532-nm Nd:YAG laser probe pulse. The paper summarizes the measurements of velocities along the core of the vitiated air flow as well as two radial profiles. The average velocity measurement near the centerline at the closest point from the nozzle exit compares favorably with the CFD calculations using the VULCAN code. Further downstream, the measured axial velocity shows overall higher values than predicted with a trend of convergence at further distances. Larger discrepancies are shown in the radial profiles.
Polsky, Yarom
2014-05-23
This entry contains raw data files from experiments performed on the Vulcan beamline at the Spallation Neutron Source at Oak Ridge National Laboratory using a pressure cell. Cylindrical granite and marble samples were subjected to confining pressures of either 0 psi or approximately 2500 psi and internal pressures of either 0 psi, 1500 psi or 2500 psi through a blind axial hole at the center of one end of the sample. The sample diameters were 1.5" and the sample lengths were 6". The blind hole was 0.25" in diameter and 3" deep. One set of experiments measured strains at points located circumferentially around the center of the sample with identical radii to determine if there was strain variability (this would not be expected for a homogeneous material based on the symmetry of loading). Another set of experiments measured load variation across the radius of the sample at a fixed axial and circumferential location. Raw neutron diffraction intensity files and experimental parameter descriptions are included.
Convergent Geometry Foam Buffered Direct Drive Experiments*
NASA Astrophysics Data System (ADS)
Watt, R. G.; Wilson, D. C.; Hollis, R. V.; Gobby, P. L.; Chrien, R. E.; Mason, R. J.; Kopp, R. A.; Willi, O.; Iwase, A.; Barringer, L. H.; Gaillard, R.; Kalantar, D. H.; Lerche, R. A.; MacGowan, B.; Nelson, M.; Phillips, T.; Knauer, J. P.; McKenty, P. W.
1996-11-01
A serious concern for directly driven ICF implosions is the asymmetry imparted to the capsule by laser drive non-uniformities, particularly the ``early time imprint'' remaining despite the use of random phase plates and smoothing with spectral dispersion. The use of a foam buffer has been proposed as a means to reduce this imprint. Two types of convergent geometry tests of the technique to correct static nonuniformities have been studied to date; cylindrical implosions at the Trident and Vulcan lasers, and spherical implosions at the NOVA laser, all using 527 nm laser drive. Cylindrical implosions used end on x-ray backlighter imaging of inner surface disruption due an intentional hole in the drive footprint, using 50 mg/cc acyrlate foam with a thin Au preheat layer. Spherical implosions used 50 mg/cc polystyrene foam plus Au to study yield and imploded core symmetry of capsules with and without a foam buffer, in comparison to ``clean 1D'' calculations. For thick enough layers, all cases showed improvement. Details of the experiments and theoretical unpinnings will be shown. *Work performed under US DOE Contract No. W-7405-Eng-36.
NASA Astrophysics Data System (ADS)
Chutani, R.; Formosa, F.; de Labachelerie, M.; Badel, A.; Lanzetta, F.
2016-12-01
This paper describes the design, microfabrication and linear dynamic characterization of low frequency thick membranes as a potential technological solution for resonant micro-engines, for which classical pistons cannot be used. The proposed structure is called a hybrid fluid-membrane and consists of two thin flexible membranes that encapsulate an incompressible fluid. Lower frequency structures, compared to geometrically equivalent single layer membranes, are thus obtained. Each flexible membrane is based on a composite structure which comprises a silicon planar logarithmic spiral spring embedded in a room temperature vulcanization silicone polymer. Thus, the stiffness and sealing features are dissociated for a better design control. The developed realization and assembly process is demonstrated at the wafer level. The process involves the anodic bonding of multiple stacks of silicon/glass structures, fluid filling and sealing. Various dimensions of hybrid fluid-membranes are successfully fabricated. Their dynamic characterization underlines the agreement between experimental and theoretical results. The results provide the opportunity for the design and fabrication of low frequency membranes to match the dynamics requirements of micro-engines.
Hybrid microfluidic fuel cell based on Laccase/C and AuAg/C electrodes.
López-González, B; Dector, A; Cuevas-Muñiz, F M; Arjona, N; Cruz-Madrid, C; Arana-Cuenca, A; Guerra-Balcázar, M; Arriaga, L G; Ledesma-García, J
2014-12-15
A hybrid glucose microfluidic fuel cell composed of an enzymatic cathode (Laccase/ABTS/C) and an inorganic anode (AuAg/C) was developed and tested. The enzymatic cathode was prepared by adsorption of 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and Laccase on Vulcan XC-72, which act as a redox mediator, enzymatic catalyst and support, respectively. The Laccase/ABTS/C composite was characterised by Fourier Transform Infrared (FTIR) Spectroscopy, streaming current measurements (Zeta potential) and cyclic voltammetry. The AuAg/C anode catalyst was characterised by Transmission electron microscopy (TEM) and cyclic voltammetry. The hybrid microfluidic fuel cell exhibited excellent performance with a maximum power density value (i.e., 0.45 mW cm(-2)) that is the highest reported to date. The cell also exhibited acceptable stability over the course of several days. In addition, a Mexican endemic Laccase was used as the biocathode electrode and evaluated in the hybrid microfluidic fuel cell generating 0.5 mW cm(-2) of maximum power density. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Yost, V. H.
1997-01-01
During a walkdown of the Space Transportation System (STS) orbiter for the 82nd Space Shuttle flight (STS-82), technicians found several safety cables for bolts with missing or loose ferrules. Typically, two or three bolts are secured with a cable which passes through one of the holes in the head of each bolt and a ferrule is crimped on each end of the cable to prevent it from coming out of the holes. The purpose of the cable is to prevent bolts from rotating should they become untightened. Other bolts are secured with either a locking cable or wire which is covered with RTV and foam. The RTV and foam would have to be removed to inspect for missing or loose ferrules. To determine whether this was necessary, vibration and torque test fixtures and tests were made to determine whether or not bolts with missing or loose ferrules would unloosen. These tests showed they would not, and the RTV and foam was not removed.
Particle energization in magnetic reconnection in high-energy-density plasmas
NASA Astrophysics Data System (ADS)
Deng, W.; Fox, W.; Bhattacharjee, A.
2014-10-01
Significant particle energization is inferred to occur in many astrophysical environments and magnetic reconnection has been proposed to be the driver in many cases. Recent observation of magnetic reconnection in high-energy-density (HED) plasmas on the Vulcan, Omega and Shenguang laser facilities has opened up a new regime of reconnection study of great interest to laboratory and plasma astrophysics. In these experiments, plasma bubbles, excited by laser shots on solid targets and carrying magnetic fields, expand into one another, squeezing the opposite magnetic fields together to drive reconnection. 2D particle-in-cell (PIC) simulations have been performed to study the particle energization in such experiments. Two energization mechanisms have been identified. The first is a Fermi acceleration process between the expanding plasma bubbles, wherein the electromagnetic fields of the expanding plasma bounce particles, acting as moving walls. Particles can gain significant energy through multiple bounces between the bubbles. The second mechanism is a subsequent direct acceleration by electric field at the reconnection X-line when the bubbles collide into each other and drive reconnection.
Topographic Mapping of Pluto and Charon Using New Horizons Data
NASA Astrophysics Data System (ADS)
Schenk, P. M.; Beyer, R. A.; Moore, J. M.; Spencer, J. R.; McKinnon, W. B.; Howard, A. D.; White, O. M.; Umurhan, O. M.; Singer, K.; Stern, S. A.; Weaver, H. A.; Young, L. A.; Ennico Smith, K.; Olkin, C.; Horizons Geology, New; Geophysics Imaging Team
2016-06-01
New Horizons 2015 flyby of the Pluto system has resulted in high-resolution topographic maps of Pluto and Charon, the most distant objects so mapped. DEM's over ~30% of each object were produced at 100-300 m vertical and 300-800 m spatial resolutions, in hemispheric maps and high-resolution linear mosaics. Both objects reveal more relief than was observed at Triton. The dominant 800-km wide informally named Sputnik Planum bright ice deposit on Pluto lies in a broad depression 3 km deep, flanked by dispersed mountains 3-5 km high. Impact craters reveal a wide variety of preservation states from pristine to eroded, and long fractures are several km deep with throw of 0-2 km. Topography of this magnitude suggests the icy shell of Pluto is relatively cold and rigid. Charon has global relief of at least 10 km, including ridges of 2-3 km and troughs of 3-5 km of relief. Impact craters are up to 6 km deep. Vulcan Planum consists of rolling plains and forms a topographic moat along its edge, suggesting viscous flow.
Improvement of silicone rubber properties by addition of nano-SiO2 particles.
Wu, Lianfeng; Wang, Xianming; Ning, Liang; Han, Jianjun; Wan, Zhong; Lu, Min
2016-07-04
To improve the comprehensive performances of a one-part room temperature vulcanized silicone rubber(RTV-1 SiR), Nano-SiO2 particles are employed as the reinforcing agent. The SiO2/RTV-1 SiR composite is prepared using PDMS, ND42, D-60 and HMDS-modified SiO2 particles by mixing method. And then, the mechanical and electrical properties, including shear strength, tensile strength, hardness Shore A and volume resistivity, are investigated using experimental method. The addition of nano-SiO2 particles can improve the properties of the SiO2/RTV-1 SiR composite in different degrees. And, the incorporation of 25~30 phr nano-SiO2 particles is found to be reasonable for silicone rubber composite with the best comprehensive performances. The significant improvement of mechanical properties and electrical insulation of SiO2 may be contributed to the addition of modified nano-SiO2 particles. Additionally, the excellent comprehensive performances of SiO2/RTV-1 SiR composite guarantee a potential applications as electrical-insulating adhesives.
NASA Astrophysics Data System (ADS)
Dector, A.; Escalona-Villalpando, R. A.; Dector, D.; Vallejo-Becerra, V.; Chávez-Ramírez, A. U.; Arriaga, L. G.; Ledesma-García, J.
2015-08-01
This work presents a flexible and light air-breathing hybrid microfluidic fuel cell (HμFC) operated under biological conditions. A mixture of glucose oxidase, glutaraldehyde, multi-walled carbon nanotubes and vulcan carbon (GOx/VC-MWCNT-GA) was used as the bioanode. Meanwhile, integrating an air-exposed electrode (Pt/C) as the cathode enabled direct oxygen delivery from air. The microfluidic fuel cell performance was evaluated using glucose obtained from three different sources as the fuel: 5 mM glucose in phosphate buffer, human serum and human blood. For the last fuel, an open circuit voltage and maximum power density of 0.52 V and 0.20 mW cm-2 (at 0.38 V) were obtained respectively; meanwhile the maximum current density was 1.1 mA cm-2. Furthermore, the stability of the device was measured in terms of recovery after several polarization curves, showing excellent results. Although this air-breathing HμFC requires technological improvements before being tested in a biomedical device, it represents the best performance to date for a microfluidic fuel cell using human blood as glucose source.
Ferreira-Aparicio, Paloma
2009-09-01
The surface chemistry and the adsorption/desorption/exchange behavior of a proton-exchange membrane fuel cell catalyst are analyzed as a case study for the development of tailor-made support materials of enhanced performance and stability. By using H2, D2, and CO as probe molecules, the relevance of some surface functional groups of the catalyst support on several diffusion processes taking place during the adsorption is shown. Sulfonic groups associated with the vulcanized carbon black surface have been detected by means of spectroscopic techniques (X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy) and by analysis of the desorbed products during temperature-programmed desorption tests by mass spectrometry. Such hydrophilic species have been observed to favor proton surface mobility and exchange with Pt-adsorbed deuterium even in the presence of adsorbed CO. This behavior is relevant both for the proper characterization of these kinds of catalysts using adsorption probes and for the design of new surface-modified carbon supports, enabling alternative proton-transfer pathways throughout the catalytic layers toward the membrane.
Cao, Xiaodong; Xu, Chuanhui; Liu, Yuhong; Chen, Yukun
2013-01-30
A series of carboxylated styrene-butadiene rubber (XSBR)/cellulose nanocrystals (CNs) latex composites were successfully prepared. The vulcanization process, morphology, dynamic viscoelastic behavior, dynamic mechanical property, thermal and mechanical performance of the XSBR/CNs composites were investigated in detail. The results revealed that CNs were dispersed uniformly in the XSBR matrix and formed a strong filler-filler network. The dynamic mechanical analysis (DMA) showed that the glass transition temperature (T(g)) of XSBR matrix was shifted from 48.45 to 50.64 °C with 3 phr CNs, but decreased from 50.64 to 46.28 °C when further increasing CNs content up to 15 phr. The composites exhibited a significant enhancement in tensile strength (from 16.9 to 24.1 MPa) and tear strength (from 43.5 to 65.2 MPa) with loading CNs from 0 to 15 phr. In addition, the thermo-gravimetric analysis (TGA) showed that the temperature at 5% weight loss of the XSBR/CNs composites decreased slightly with an increase of the CNs content. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.
2015-01-01
The electrochemical reduction of highly oxidized unsupported graphene oxide nanosheets and its platinum electrodeposition was done by the rotating disk slurry electrode technique. Avoiding the use of a solid electrode, graphene oxide was electrochemically reduced in a slurry solution with a scalable process without the use of a reducing agent. Graphene oxide nanosheets were synthesized from carbon platelet nanofibers to obtain highly hydrophilic layers of less than 250 nm in width. The graphene oxide and electrochemically reduced graphene oxide/Pt (erGOx/Pt) hybrid materials were characterized through different spectroscopy and microscopy techniques. Pt nanoparticles with 100 facets, clusters, and atoms at erGOx were identified by high resolution transmission electron microscopy (HRTEM). Cyclic voltammetry was used to characterize the electrocatalytic activity of the highly dispersed erGOx/Pt hybrid material toward the oxidation of ammonia, which showed a 5-fold current density increase when compared with commercially available Vulcan/Pt 20%. This is in agreement with having Pt (100) facets present in the HRTEM images of the erGOx/Pt material. PMID:24417177
A Supersonic Argon/Air Coaxial Jet Experiment for Computational Fluid Dynamics Code Validation
NASA Technical Reports Server (NTRS)
Clifton, Chandler W.; Cutler, Andrew D.
2007-01-01
A non-reacting experiment is described in which data has been acquired for the validation of CFD codes used to design high-speed air-breathing engines. A coaxial jet-nozzle has been designed to produce pressure-matched exit flows of Mach 1.8 at 1 atm in both a center jet of argon and a coflow jet of air, creating a supersonic, incompressible mixing layer. The flowfield was surveyed using total temperature, gas composition, and Pitot probes. The data set was compared to CFD code predictions made using Vulcan, a structured grid Navier-Stokes code, as well as to data from a previous experiment in which a He-O2 mixture was used instead of argon in the center jet of the same coaxial jet assembly. Comparison of experimental data from the argon flowfield and its computational prediction shows that the CFD produces an accurate solution for most of the measured flowfield. However, the CFD prediction deviates from the experimental data in the region downstream of x/D = 4, underpredicting the mixing-layer growth rate.
CFD transient simulation of an isolator shock train in a scramjet engine
NASA Astrophysics Data System (ADS)
Hoeger, Troy Christopher
For hypersonic flight, the scramjet engine uses an isolator to contain the pre-combustion shock train formed by the pressure difference between the inlet and the combustion chamber. If this shock train were to reach the inlet, it would cause an engine unstart, disrupting the flow through the engine and leading to a loss of thrust and potential loss of the vehicle. Prior to this work, a Computational Fluid Dynamics (CFD) simulation of the isolator was needed for simulating and characterizing the isolator flow and for finding the relationship between back pressure and changes in the location of the leading edge of the shock train. In this work, the VULCAN code was employed with back pressure as an input to obtain the time history of the shock train leading location. Results were obtained for both transient and steady-state conditions. The simulation showed a relationship between back-to-inlet pressure ratios and final locations of the shock train. For the 2-D runs, locations were within one isolator duct height of experimental results while for 3-D runs, the results were within two isolator duct heights.
Graphitic biochar as a cathode electrocatalyst support for microbial fuel cells.
Huggins, Tyler M; Pietron, Jeremy J; Wang, Heming; Ren, Zhiyong Jason; Biffinger, Justin C
2015-11-01
Graphitic biochar (BC) was generated using high temperature gasification and alkaline post-treatment (BCw) of wood-based biomass. The BCw was evaluated as a manganese oxide electrocatalytic support (MnO/BCw) and microbial fuel cell (MFC) air cathode. Nano-structured MnO2 crystals were successfully immobilized on biomass-based graphitic sheets and characterized using physical, chemical, and electrochemical analyses. Cyclic voltammetry of MnO/BCw/Nafion inks showed electrochemical features typical of β-MnO2 with a current density of 0.9 mA cm(-2). BC showed satisfactory maximum power densities of 146.7 mW m(-2) (BCw) and 187.8 W m(-2) (MnO/BCw), compared with Vulcan Carbon (VC) (156.8 mW m(-2)) and manganese oxide VC composites (MnO/VC) (606.1 mW m(-2)). These materials were also tested as oxygen reduction reaction (ORR) catalysts for single chamber MFCs inoculated with anaerobic sludge. Our results demonstrate that BC can serve as an effective, low cost, and scalable material for MFC application. Published by Elsevier Ltd.
Hybrid Large-Eddy/Reynolds-Averaged Simulation of a Supersonic Cavity Using VULCAN
NASA Technical Reports Server (NTRS)
Quinlan, Jesse; McDaniel, James; Baurle, Robert A.
2013-01-01
Simulations of a supersonic recessed-cavity flow are performed using a hybrid large-eddy/Reynolds-averaged simulation approach utilizing an inflow turbulence recycling procedure and hybridized inviscid flux scheme. Calorically perfect air enters a three-dimensional domain at a free stream Mach number of 2.92. Simulations are performed to assess grid sensitivity of the solution, efficacy of the turbulence recycling, and the effect of the shock sensor used with the hybridized inviscid flux scheme. Analysis of the turbulent boundary layer upstream of the rearward-facing step for each case indicates excellent agreement with theoretical predictions. Mean velocity and pressure results are compared to Reynolds-averaged simulations and experimental data for each case and indicate good agreement on the finest grid. Simulations are repeated on a coarsened grid, and results indicate strong grid density sensitivity. Simulations are performed with and without inflow turbulence recycling on the coarse grid to isolate the effect of the recycling procedure, which is demonstrably critical to capturing the relevant shear layer dynamics. Shock sensor formulations of Ducros and Larsson are found to predict mean flow statistics equally well.
Relationship of uranium and other trace elements to post-Cretaceous vulcanism
Coats, Robert R.
1955-01-01
A regional study of the distribution of uranium, boron, tin, beryllium, niobium, lanthanum, lead, zirconium, lithium, and fluorine in 112 samples of Cenozoic volcanic rocks of predominately rhyolitic and dacitic composition has shown that the content of uranium has a significantly high positive correlation with that of niobium, beryllium, and fluorine, a lower but still significant positive correlation with lithium and tin, a significant negative correlation with boron and lanthanum, and no significant correlation with zirconium and lead. A study of the relation of content of the several elements to the geographic provenance shows significant variation with provenance for all these elements, except tin and lanthanum. On the basis of these variations and on patterns of consistency, five comagmatic provinces, one of which is divided into three sub-provinces, have been delimited, in part, on a map of the western United States. The patter of distribution of boron is significantly different from that of the other elements. The regional difference are perhaps best explained by structural control of the effectiveness of vertical transport.
Electron beams in research and technology
NASA Astrophysics Data System (ADS)
Mehnert, R.
1995-11-01
Fast electrons lose their energy by inelastic collisions with electrons of target molecules forming secondary electrons and excited molecules. Coulomb interaction of secondary electrons with valence electrons of neighboring molecules leads to the formation of radical cations, thermalized electrons, excited molecular states and radicals. The primary reactive species initiate chemical reactions in the materials irradiated. Polymer modifications using accelerated electrons such as cross-linking of cable insulation, tubes, pipes and moldings, vulcanization of elastomers, grafting of polymer surfaces, processing of foamed plastics and heat shrinkable materials have gained wide industrial acceptance. A steadily growing electron beam technology is curing of paints, lacquers, printing inks and functional coatings. Electron beam processing offers high productivity, the possibility to treat the materials at normal temperature and pressure, excellent process control and clean production conditions. On an industrial scale the most important application of fast electrons is curing of 100% reactive monomer/prepolymer systems. Mainly acrylates and epoxides are used to formulate functional coatings on substrates such as paper, foil, wood, fibre board and high pressure laminates. A survey is given about the reaction mechanism of curing, the characterization of cured coatings, and of some industrial application.
Fundamental Mixing and Combustion Experiments for Propelled Hypersonic Flight
NASA Technical Reports Server (NTRS)
Cutler, A. D.; Diskin, G. S.; Danehy, P. M.; Drummond, J. P.
2002-01-01
Two experiments have been conducted to acquire data for the validation of computational fluid dynamics (CFD) codes used in the design of supersonic combustors. The first experiment is a study of a supersonic coaxial jet into stagnant air in which the center jet is of a light gas, the coflow jet is of air, and the mixing layer between them is compressible. The jet flow field is characterized using schlieren imaging, surveys with Pitot, total temperature and gas sampling probes, and RELIEF velocimetry. VULCAN, a structured grid CFD code, is used to solve for the nozzle and jet flow. The second experiment is a study of a supersonic combustor consisting of a diverging duct with single downstream-angled wall injector. Entrance Mach number is 2 and enthalpy is nominally that of Mach 7 flight. Coherent anti-Stokes Raman spectroscopy (CARS) has been used to obtain nitrogen temperature in planes of the flow, and surface pressures and temperatures have also been acquired. Modern-design-of-experiment techniques have been used to maximize the quality of the data set.
Fabrication of Wood-Rubber Composites Using Rubber Compound as a Bonding Agent Instead of Adhesives
Shao, Dongwei; Xu, Min; Cai, Liping; Shi, Sheldon Q.
2016-01-01
Differing from the hot-pressing method in the manufacturing of traditional wood-rubber composites (WRCs), this study was aimed at fabricating WRCs using rubber processing to improve water resistance and mechanical properties. Three steps were used to make WRCs, namely, fiber-rubber mixing, tabletting, and the vulcanization molding process. Ninety-six WRC panels were made with wood fiber contents of 0%–50% at rotor rotational speeds of 15–45 rpm and filled coefficients of 0.55–0.75. Four regression equations, i.e., the tensile strength (Ts), elongation at break (Eb), hardness (Ha) and rebound resilience (Rr) as functions of fiber contents, rotational speed and filled coefficient, were derived and a nonlinear programming model were developed to obtain the optimum composite properties. Although the Ts, Eb and Rr of the panels were reduced, Ha was considerably increased by 17%–58% because of the wood fiber addition. Scanning electron microscope images indicated that fibers were well embedded in rubber matrix. The 24 h water absorption was only 1%–3%, which was much lower than commercial wood-based composites. PMID:28773591
The ac and dc performance of polymeric insulating materials under accelerated aging in a fog chamber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorur, R.S.; Cherney, E.A.; Hackam, R.
1988-10-01
The paper presents the results of the dc performance of polymeric insulating materials in a fog chamber. The materials evaluated in fog produced from low (250 ..mu..S/cm) and high (1000 ..mu..S/cm) conductivity water include cylindrical rod samples of high temperature vulcanized (HTV) silicone rubber and ethylene propylene diene monomer (EPDM) rubber containing various amounts of either alumina trihydrate (ATH) or silica fillers, or both. Comparison is made of material performance obtained with ac which was reported in an earlier study. In both low and high conductivity fog, the time to failure with ac and +dc was very similar, but amore » reduction by a factor of about four was observed in the time to failure with -dc. For both ac and dc, silicone rubber performed better than EPDM samples in low conductivity fog, while the order of performance was reversed in high conductivity fog. A theoretical model to determine the effect of dry band discharges on material is presented. Good agreement of the predicted behavior of materials with the experimental findings is shown.« less
Transport of energy by ultraintense laser-generated electrons in nail-wire targets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, T.; Lawrence Livermore National Laboratory, Livermore, California 94550; Key, M. H.
2009-11-15
Nail-wire targets (20 {mu}m diameter copper wires with 80 {mu}m hemispherical head) were used to investigate energy transport by relativistic fast electrons generated in intense laser-plasma interactions. The targets were irradiated using the 300 J, 1 ps, and 2x10{sup 20} W{center_dot}cm{sup -2} Vulcan laser at the Rutherford Appleton Laboratory. A spherically bent crystal imager, a highly ordered pyrolytic graphite spectrometer, and single photon counting charge-coupled device gave absolute Cu K{alpha} measurements. Results show a concentration of energy deposition in the head and an approximately exponential fall-off along the wire with about 60 {mu}m 1/e decay length due to resistive inhibition.more » The coupling efficiency to the wire was 3.3{+-}1.7% with an average hot electron temperature of 620{+-}125 keV. Extreme ultraviolet images (68 and 256 eV) indicate additional heating of a thin surface layer of the wire. Modeling using the hybrid E-PLAS code has been compared with the experimental data, showing evidence of resistive heating, magnetic trapping, and surface transport.« less
NASA Astrophysics Data System (ADS)
Yu, Yishan
The influence of various fillers, nucleating agents and ethylene propylene diene terpolymer (EPDM) additive on crystalline modification (alpha-, beta- and smectic forms) and crystalline orientation of polypropylene in die extrudates, melt spun filaments, thick rods, blow molded bottles and injection molded parts of isotactic polypropylene (PP), its blends/compounds and dynamically vulcanized polypropylene thermoplastic elastomers (TPEs) were experimentally studied under a range of cooling and processing conditions. The phenomena of crystallization, polymorphism and orientation in processing of both thin and thick samples (filaments, rods, bottles and injection molded parts) were simulated through transport laws incorporating polymer crystallization kinetics. Continuous cooling transformation (CCT) curves for the various material systems investigated were developed under quiescent and uniaxial stress conditions. We applied experimental data on polymorphism of thin sections to predict crystalline structure variation in thick parts. The predictions were consistent with experiments. For filaments, the polypropylene crystalline orientation-spinline stress relationship is generally similar for the neat PP, blends/compounds and TPEs. However, the blends and TPEs have much lower birefringence apparently due to a lack of orientation in the rubber phase. It was shown that the polypropylene contribution to the birefringence for the neat PP and its blends is the same at the same spinline stress. For bottles, the inflation pressures used have little effect on orientation of either polypropylene crystals or disc-shaped talc filler. The talc discs are highly oriented parallel to the bottle surface. For the bottles without talc, the orientation of polypropylene crystallographic axes are low. The polypropylene crystallographic b-axes in the talc filled bottles are more highly oriented. For injection molded parts, it was found that a low orientation layer exists between the part surface and an intermediate highly oriented layer in the parts of neat PP and its blends/compounds. The thickness of this layer increases as the injection pressure decreases. This layer was not formed in the TPE parts. This would seem to be associated with the TPEs exhibiting a yield stress in shear flow and not exhibiting fountain flow in mold filling. For all parts studied, the orientation characteristics of polypropylene crystallographic axes in the highly oriented layer are similar from sample to sample. The strong orientation of the c-axis parallel to the machine direction and the b-axis perpendicular to the machine direction are observed in the highly oriented layer. The talc discs in both the highly oriented layer and the intermediate position are highly oriented parallel to the part face due to melt flow. At intermediate position in the talc-filled parts, the polypropylene crystallographic (040) planes prefer to align themselves parallel to the part surface but are not so well oriented when the talc is absent.
Peering Into Distant Lands: The Geology of Pluto and Charon as Revealed by New Horizons
NASA Astrophysics Data System (ADS)
Umurhan, Orkan; Spencer, John; McKinnon, William; Weaver, Harold; Olkin, Cathy; Ennico, Kimberly; Young, Leslie; Moore, Jeffrey M.; Stern, S. Alan
2016-07-01
The New Horizons spacecraft's close-encounter with Pluto and Charon has revealed these two planetary bodies to have strikingly different surface appearances despite their similar densities and (presumed) compositions [1,2]. Pluto's surface landforms are varied but most appear to be a consequence of surface-atmosphere interactions and insolation mobilization of volatile ices. Pluto exhibits an abundance of valley systems that appear to be shaped by glacial dynamics involving N_{2} ice. N_{2} and (possibly) CO ice appears to be involved in solid-state convection in the 3-4 km deep, 900 km wide equatorial region called Sputnik Planum [3] with convection pattern size scales ranging from 15-40 km. Calculations involving known properties of volatiles under Pluto's current conditions show that Pluto's radiogenic heat loss is enough to power advection and convection of volatile ices. The Piri Planitia/Rupes complex, located in the uplands west of Sputnik Planum, appears to be a landform undergoing scarp retreat driven by the sublimation of CH_{4} gas. The prominent mountain ranges found on the western margin of Sputnik Planum, including Norgay and Hillary Montes, as well as the odd-looking mound features (possibly cryovolcanic) found to the south, like the 3-4 km high Wright Mons, are likely composed of H_{2}O ice and appear to be geologically young - as suggested by their light cratering and superposition relationships. What drives the formation and development of these Plutonian structures so late in Solar System history remains puzzling and is under investigation. While also harboring geologically varied features, Charon's terrain is heavily cratered and appears to be 4 Ga old and lacks obvious evidence of dynamic remolding by volatile transport. Oz Terra, in the northern portion of the encounter hemisphere, exhibits extremely rugged terrain with craters up to 240 km in diameter and a network of polygonal troughs as deep as 10 km. Oz Terra is separated from the southern smooth terrain called Vulcan Planum by a series of graben and tilted blocks indicative of a past and rather vigorous endogenic phase expressed through tectonism. The presence of 1 - 2 km high convex marginal scarps, some of which form moats around isolated mountains, suggests that a viscous fluid, possibly an ammonia/water mixture, was responsible for surfacing the plains of Vulcan Planum. Many young craters, including Nasreddin crater, show conspicuous light and dark rays - suggesting subsurface inhomogeneities. Speculations as to the geologic histories of these two bodies will be discussed. References [1] Stern, S. A. et al. (2015) Science, 350, 292. [2] Moore et al. (2016) Science, in press. [3] All place names on Pluto and Charon are informal.
NASA Technical Reports Server (NTRS)
Owen, H. P.; Carroll, M. T.
1973-01-01
The task consisted of conducting mechanical and thermal tests to establish design allowables data on a new room temperature vulcanizing (RTV) silicone adhesive, X3-6004. Low modulus, coupled with relatively low density and good low-temperature properties of this adhesive, places it in contention as a candidate for attaching reusable surface insulation on the space shuttle. Data obtained show that the modulus values of X3-6004 are significantly lower than those of RTV-560 and the other three adhesives characterized at test temperatures from 550 to -175 F. At -175, -200 and -270 F, the modulus of X3-6004 is approximately the same as GE RTV-560 and the other three silicone adhesives. The X3-6004 adhesive exhibits good processing properties. It has a 12 percent lower density than RTV-560. Although lower in overall strength properties as compared to the other adhesives in the program, X3-6004 has adequate adhesion to 2024T81 aluminum to compete as an adhesive for attaching reusable surface insulation. It does exhibit some tendency to revert and soften at temperatures above 350 F when in a confined area.
Influence of different components in a TPV PP/EPDM based with low hardness
NASA Astrophysics Data System (ADS)
Gheller, J.; Jacobi, M. M.
2014-05-01
Thermoplastic vulcanizates (TPVs) are a class of polymeric material obtained by dynamic vulcanization of an elastomer in a melted thermoplastic matrix. This work intend to evaluate different variables in the production of low hardness TPVs made of polypropylene (PP) and ethylene propylene rubber (EPDM), as well the optimization of the variables looking for TPVs with improved performance. In the Study I the influence of PP crystallinity were evaluated, in the Study II the effects of different amounts of dicumyl peroxide (DCP) were evaluated and in the Study III the amount of the phenolic resin were evaluated. This extended abstract presents, in a more detailed way, the results considering the curative phenolic resin content (Study III). The others results and discussions are briefly described in the results and discussions section. The compounds were obtained in a closed mixing chamber and their processability properties, swelling, hardness and tensile strength were evaluated. With the results obtained were possible to evaluate the influence of different ingredients in the TPVs properties. The results were discussed and presented looking for a better understanding of the influence of this variable in the final product, as well the correlation between then.
NASA Astrophysics Data System (ADS)
Patermann, Simone; Altstädt, Volker
2015-05-01
Thermoplastic vulcanizates (TPVs) combine the elastic properties of thermoset cross-linked rubbers with the melt processability of thermoplastics. The most representative examples of this class are the TPVs based on polypropylene (PP) and ethylene-propylene-diene terpolymer rubber (EPDM). The PP/EPDM blends were produced by dynamic vulcanization in a continuous extrusion process. The influence of different crosslinking systems was studied with regard to cross-link density, compression set, tensile strength/elongation at break and morphology. With increasing peroxide concentration, the cross-link density increases, leading to a reduction of the compression set by 50 %. The same improvement is only reachable with twice the concentration of phenolic resin. Only the peroxide cross-linked blends show smaller dispersed EPDM particles with increasing peroxide concentration. With a peroxide concentration between 0.2 and 0.5 wt. %, a maximum in tensile strength and elongation at break was found. For the phenolic resin cross-linked blends, the tensile strength stays almost constant with increasing phenolic resin concentration and the elongation at break shows best results at 0.5 wt. % phenolic resin. Compared to batch processes, the results show different values, but comparable trends.
Mutagenicity of airborne particulates in the rubber industry.
Barański, B; Indulski, J; Janik-Spiechowicz, E; Palus, J
1989-12-01
The aim of this work was to evaluate the mutagenic activity of airborne particulate matter in the rubber industry. Air was sucked through Whatman glass-fibre filters with Staplex pumps and adsorbed substances and fume particles were extracted with acetone or toluene for 2 h in a ultrasonic cleaner. After separation of the insoluble solid phase by filtration, solvent was evaporated at a temperature of 70 degrees C in an argon atmosphere. The residue was stored at -20 degrees C. Mutagenicity was determined by the Salmonella plate incorporation assay with the tester strain TA98 and activity is related either to the weight of aerosol (rev mg-1) or to the volume of atmospheric sample (rev m-3). The fumes emitted from the tyre tread line, calender feeding, and tyre vulcanizing processes, showed the highest mutagenic activity (55-211 rev mg-1, + S9). At these and at other workplaces (extruder mill, carbon black station, mixer loading), mutagenic activity related to the volume of air was in the range of 22-158 rev m-3, + S9. The results indicate the need to reduce and monitor mutagenic contamination in order to increase the safety of work in the rubber industry.
Stieghorst, Jan; Majaura, Daniel; Wevering, Hendrik; Doll, Theodor
2016-03-01
The direct fabrication of silicone-rubber-based individually shaped active neural implants requires high-speed-curing systems in order to prevent extensive spreading of the viscous silicone rubber materials during vulcanization. Therefore, an infrared-laser-based test setup was developed to cure the silicone rubber materials rapidly and to evaluate the resulting spreading in relation to its initial viscosity, the absorbed infrared radiation, and the surface tensions of the fabrication bed's material. Different low-adhesion materials (polyimide, Parylene-C, polytetrafluoroethylene, and fluorinated ethylenepropylene) were used as bed materials to reduce the spreading of the silicone rubber materials by means of their well-known weak surface tensions. Further, O2-plasma treatment was performed on the bed materials to reduce the surface tensions. To calculate the absorbed radiation, the emittance of the laser was measured, and the absorptances of the materials were investigated with Fourier transform infrared spectroscopy in attenuated total reflection mode. A minimum silicone rubber spreading of 3.24% was achieved after 2 s curing time, indicating the potential usability of the presented high-speed-curing process for the direct fabrication of thermal-curing silicone rubbers.
Wang, Youhong; Chen, Kunling; Xu, Chuanhui; Chen, Yukun
2015-09-10
In the presence of dicumyl peroxide (DCP), biobased thermoplastic vulcanizates (TPVs) composed of poly(lactic acid) (PLA) and epoxidized natural rubber (ENR) were prepared through dynamic vulcanization. Interfacial in situ compatibilization between PLA and ENR phases was confirmed by Fourier transform infrared spectroscopy (FT-IR). A novel "sea-sea" co-continuous phase in the PLA/ENR TPVs was observed through scanning electron microscopy (SEM) and differed from the typical "sea-island" morphology that cross-linked rubber particles dispersed in plastic matrix. A sharp, brittle-ductile transition occurred with 40 wt % of ENR, showing a significantly improved impact strength of 47 kJ/m(2), nearly 15 times that of the neat PLA and 2.6 times that of the simple blend with the same PLA/ENR ratio. Gel permeation chromatography (GPC) and dynamic mechanical analysis (DMA) results suggested that a certain amount of DCP was consumed in the PLA phase, causing a slight cross-linking or branching of PLA molecules. the effects of various DCP contents on the impact property were investigated. The toughening mechanism under impact testing was researched, and the influence factors for toughening were discussed.
Preparation of sulfonic acid-containing rubbers from natural rubber vulcanizates
NASA Astrophysics Data System (ADS)
Poonsawat, Worapong; Poompradub, Sirilux; Ngamcharussrivichai, Chawalit
2014-06-01
In this work, a series of sulfonic acid-containing rubbers were prepared by aqueous phase oxidation of natural rubber vulcanizates in the presence of hydrogen peroxide (H2O2) and formic acid (HCOOH). The starting vulcanizates were neatly prepared via an efficient vulcanization (EV) system by varying mass ratio of N-cyclohexyl-2-benzothiazole sulfonamide (CBS), as an accelerator, to sulfur. The oxidation conditions were controlled at the molar ratio of H2O2: HCOOH = 1:1, the concentration of H2O2 = 15 wt.%, the temperature = 50 °C, and the reaction time = 3 h. The rubber materials before and after the oxidation were characterized for their physicochemical properties by using Fourier transform infrared spectroscopy, bomb calorimetry, acid-base titration and swelling measurements. The results indicated the presence of sulfonic acid group in the oxidized rubbers, generated by the oxidative cleaves of sulfide crosslinks in the rubber vulcanizates. The oxidation decreased the sulfur content of the rubber in which the level of sulfur loss was determined by the CBS/sulfur ratio. Moreover, the acidity of the oxidized products was correlated with the amount of sulfur remaining.
NASA Astrophysics Data System (ADS)
Chhina, H.; Campbell, S.; Kesler, O.
The oxidation of carbon catalyst supports to carbon dioxide gas leads to degradation in catalyst performance over time in proton exchange membrane fuel cells (PEMFCs). The electrochemical stability of Pt supported on tungsten carbide has been evaluated on a carbon-based gas diffusion layer (GDL) at 80 °C and compared to that of HiSpec 4000™ Pt/Vulcan XC-72R in 0.5 M H 2SO 4. Due to other electrochemical processes occurring on the GDL, detailed studies were also performed on a gold mesh substrate. The oxygen reduction reaction (ORR) activity was measured both before and after accelerated oxidation cycles between +0.6 V and +1.8 V vs. RHE. Tafel plots show that the ORR activity remained high even after accelerated oxidation tests for Pt/tungsten carbide, while the ORR activity was extremely poor after accelerated oxidation tests for HiSpec 4000™. In order to make high surface area tungsten carbide, three synthesis routes were investigated. Magnetron sputtering of tungsten on carbon was found to be the most promising route, but needs further optimization.
NASA Astrophysics Data System (ADS)
Ismail, R.; Mahadi, Z. A.; Ishak, I. S.
2018-04-01
This paper presented the study on the effect of carbon black as filler to the mechanical properties of natural rubber for base isolation system. This study used the five formulations with the different amount of carbon black filler for every sample. The samples were tested for tensile, hardness and resilience test. The samples were cured or vulcanized at 1500C for 23 minutes for every formulation. The filler used in this study was the carbon black filler with type N660. The tensile test was done to determine the ability of the sample in term of the elongation with the load at break. The hardness test, it has been done to determine the ability of the sample to resist the load. This hardness was measured in the unit of IRHD. The resilience test was being done to determine the properties of the sample in term of rebound characteristics. The finding of this study showed that, the high the loading of carbon black filler, the high the tensile strength of the sample and the high the hardness of the sample. In term of resilience, it was inversely proportional to the loading of the carbon black filler.
NASA Astrophysics Data System (ADS)
Lu, Jinlin; Li, Yanhong; Li, Shengli; Jiang, San Ping
2016-02-01
In this article, sulfonic acid-grafted reduced graphene oxide (S-rGO) were synthesized using a one-pot method under mild conditions, and used as Pt catalyst supports to prepare Pt/S-rGO electrocatalysts through a self-assembly route. The structure, morphologies and physicochemical properties of S-rGO were examined in detail by techniques such as atomic force microscope (AFM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The S-rGO nanosheets show excellent solubility and stability in water and the average particle size of Pt nanoparticles supported on S-rGO is ~3.8 nm with symmetrical and uniform distribution. The electrocatalytic properties of Pt/S-rGO were investigated for methanol oxidation reaction (MOR) in direct methanol fuel cells (DMFCs). In comparison to Pt supported on high surface area Vulcan XC-72 carbon (Pt/VC) and Pt/rGO, the Pt/S-rGO electrocatalyst exhibits a much higher electrocatalytic activity, faster reaction kinetics and a better stability. The results indicate that Pt/S-rGO is a promising and effective electrocatalyst for MOR of DMFCs.
Ionic Modification Turns Commercial Rubber into a Self-Healing Material.
Das, Amit; Sallat, Aladdin; Böhme, Frank; Suckow, Marcus; Basu, Debdipta; Wiessner, Sven; Stöckelhuber, Klaus Werner; Voit, Brigitte; Heinrich, Gert
2015-09-23
Invented by Charles Goodyear, chemical cross-linking of rubbers by sulfur vulcanization is the only method by which modern automobile tires are manufactured. The formation of these cross-linked network structures leads to highly elastic properties, which substantially reduces the viscous properties of these materials. Here, we describe a simple approach to converting commercially available and widely used bromobutyl rubber (BIIR) into a highly elastic material with extraordinary self-healing properties without using conventional cross-linking or vulcanising agents. Transformation of the bromine functionalities of BIIR into ionic imidazolium bromide groups results in the formation of reversible ionic associates that exhibit physical cross-linking ability. The reversibility of the ionic association facilitates the healing processes by temperature- or stress-induced rearrangements, thereby enabling a fully cut sample to retain its original properties after application of the self-healing process. Other mechanical properties, such as the elastic modulus, tensile strength, ductility, and hysteresis loss, were found to be superior to those of conventionally sulfur-cured BIIR. This simple and easy approach to preparing a commercial rubber with self-healing properties offers unique development opportunities in the field of highly engineered materials, such as tires, for which safety, performance, and longer fatigue life are crucial factors.
NASA Astrophysics Data System (ADS)
Ginting, Nurlisa; Febriandy
2018-03-01
Toba’s Caldera is considered as a unique tourist destination as it was formed by the vulcanic eruption of Toba’s volcano, with Parbaba Village as its attraction. Geotourism, which consist of the administrator, education, uniqueness, accessibility, supporting facilities, and the increase of local people’s economy as it’s elements, is one of the concepts which can be implemented in this case. The objective of this research is to find a solution to increase natural tourist attraction in Parbaba village by making a tourist area development recommendation based on geotourism elements above. This research uses mix method, as the qualitative data will be collected by observation and interview with stakeholders, and the quantitative data will be collected by giving out 100 questionnaires to tourists and local people.The data then will be analyzed by using triangulation method. The result of this research is a concept of tourist attraction development recommendation. This research is expected to give benefits in the form of education and travel experience for tourist and also increases the economy of local people as a developer. The uniqueness element of this village is quite strong, whereas the supporting facilities are still lacking.
Lu, Jinlin; Li, Yanhong; Li, Shengli; Jiang, San Ping
2016-02-15
In this article, sulfonic acid-grafted reduced graphene oxide (S-rGO) were synthesized using a one-pot method under mild conditions, and used as Pt catalyst supports to prepare Pt/S-rGO electrocatalysts through a self-assembly route. The structure, morphologies and physicochemical properties of S-rGO were examined in detail by techniques such as atomic force microscope (AFM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The S-rGO nanosheets show excellent solubility and stability in water and the average particle size of Pt nanoparticles supported on S-rGO is ~3.8 nm with symmetrical and uniform distribution. The electrocatalytic properties of Pt/S-rGO were investigated for methanol oxidation reaction (MOR) in direct methanol fuel cells (DMFCs). In comparison to Pt supported on high surface area Vulcan XC-72 carbon (Pt/VC) and Pt/rGO, the Pt/S-rGO electrocatalyst exhibits a much higher electrocatalytic activity, faster reaction kinetics and a better stability. The results indicate that Pt/S-rGO is a promising and effective electrocatalyst for MOR of DMFCs.
Graf, Neil J; Bowser, Michael T
2013-10-07
Two different fabrication methods were employed to fabricate micropumps with different cross-sectional channel geometries. The first was to fabricate rectangular cross-sectional microchannel geometries using the well known fabrication method of replica molding (REM). The second, and far less utilized fabrication technique, was to create microchannel molds using an in-house fabricated handheld micro injection molding apparatus. The injection mold apparatus was designed for use with elastomeric room temperature vulcanization (RTV) polymers, as opposed to most other injection molding machines, which are designed for use with thermoplastic polymers. The injection mold's bottom plate was used as a microchannel molding template. The molding template was created by threading a small-diameter wire (150 μm or less) through the injection mold's bottom plate, with subsequent adhesion and smoothing of a thin piece of aluminum foil over the wire-raised injection mold template. When molded against, the template produced a rounded/Gaussian-shaped PDMS microchannel. The design of the injection mold will be presented, along with a direct comparison for micropump performance metrics such as flow rate, valving characteristics, and maximum backpressures attainable for each of the respective micropump channel geometries.
Takahata, Kenichi; Gianchandani, Yogesh B.
2008-01-01
This paper reports a micromachined capacitive pressure sensor intended for applications that require mechanical robustness. The device is constructed with two micromachined metal plates and an intermediate polymer layer that is soft enough to deform in a target pressure range. The plates are formed of micromachined stainless steel fabricated by batch-compatible micro-electro-discharge machining. A polyurethane room-temperature-vulcanizing liquid rubber of 38-μm thickness is used as the deformable material. This structure eliminates both the vacuum cavity and the associated lead transfer challenges common to micromachined capacitive pressure sensors. For frequency-based interrogation of the capacitance, passive inductor-capacitor tanks are fabricated by combining the capacitive sensor with an inductive coil. The coil has 40 turns of a 127-μm-diameter copper wire. Wireless sensing is demonstrated in liquid by monitoring the variation in the resonant frequency of the tank via an external coil that is magnetically coupled with the tank. The sensitivity at room temperature is measured to be 23-33 ppm/KPa over a dynamic range of 340 KPa, which is shown to match a theoretical estimation. Temperature dependence of the tank is experimentally evaluated. PMID:27879824
NASA Astrophysics Data System (ADS)
Panomsuwan, Gasidit; Chokradjaroen, Chayanaphat; Rujiravanit, Ratana; Ueno, Tomonaga; Saito, Nagahiro
2018-01-01
Carbon black nanoparticles (CB-NPs) have been synthesized from liquid benzene by a solution plasma method at room temperature and atmospheric pressure. The morphological observation by scanning electron microscopy revealed the agglomeration of aggregated fine particles. The synthesized CB-NPs were predominantly amorphous as confirmed by X-ray diffraction. The in vitro cytotoxicity of CB-NPs on the human lung fibroblast (MRC-5) cell line was assessed by the 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and systematically compared with those of two types of commercial carbon blacks (i.e., Vulcan XC-72 and Ketjenblack EC-600JD). Cell viabilities were studied at different concentrations of 32.5, 65, 125, and 250 µg/mL. It was found that the CB-NPs derived from solution plasma exhibited a lower cytotoxicity on the MRC-5 cells than the other two comparative carbon blacks. The viability of MRC-5 cells exposed to CB-NPs remained higher than 90% even at a high concentration of 250 µg/mL. This result preliminarily confirmed the biosafety and potential use of CB-NPs in the field of biological applications.
Development of Ternary and Quaternary Catalysts for the Electrooxidation of Glycerol
Artem, L. M.; Santos, D. M.; De Andrade, A. R.; Kokoh, K. B.; Ribeiro, J.
2012-01-01
This work consisted in the preparation of platinum-based catalysts supported on carbon (Vulcan XC-72) and investigation of their physicochemical and electrochemical properties. Catalysts of the C/Pt-Ni-Sn-Me (Me = Ru or Ir) type were prepared by the Pechini method at temperature of 350°C. Four different compositions were homemade: C/Pt60Sn10Ni30, C/Pt60Sn10Ni20Ru10, C/Pt60Sn10Ni10Ru20, and C/Pt60Sn10Ni10Ir20. These catalysts were electrochemically and physically characterized by cyclic voltammetry (CV), chronoamperometry (CA) in the presence of glycerol 1.0 mol dm−3, X-ray diffraction (XRD), and high-resolution transmission electron microscopy (HRTEM). XRD results showed the main peaks of face-centered cubic Pt. The particle sizes obtained from XRD and HRTEM experiments were close to values ranging from 3 to 8.5 nm. The CV results indicate behavior typical of Pt-based catalysts in acid medium. The CV and CA data reveal that quaternary catalysts present the highest current density for the electrooxidation of glycerol. PMID:22623905
LavaNet—Neural network development environment in a general mine planning package
NASA Astrophysics Data System (ADS)
Kapageridis, Ioannis Konstantinou; Triantafyllou, A. G.
2011-04-01
LavaNet is a series of scripts written in Perl that gives access to a neural network simulation environment inside a general mine planning package. A well known and a very popular neural network development environment, the Stuttgart Neural Network Simulator, is used as the base for the development of neural networks. LavaNet runs inside VULCAN™—a complete mine planning package with advanced database, modelling and visualisation capabilities. LavaNet is taking advantage of VULCAN's Perl based scripting environment, Lava, to bring all the benefits of neural network development and application to geologists, mining engineers and other users of the specific mine planning package. LavaNet enables easy development of neural network training data sets using information from any of the data and model structures available, such as block models and drillhole databases. Neural networks can be trained inside VULCAN™ and the results be used to generate new models that can be visualised in 3D. Direct comparison of developed neural network models with conventional and geostatistical techniques is now possible within the same mine planning software package. LavaNet supports Radial Basis Function networks, Multi-Layer Perceptrons and Self-Organised Maps.
Geodynamics in Modular Course System at Vienna High School
NASA Astrophysics Data System (ADS)
Pitzl-Reinbacher, Robert
2017-04-01
In Austria there are currently some major reforms concerning high school education underway. At our school, the Bundesgymnasium and Bundesrealgymnasium Draschestrasse, a school belonging to the Vienna Bilingual Schooling branch, we have developed a course system in which pupils can select courses and determine individually which areas of study they want to focus on. Specially devised courses have been developed which fit within the framework of natural and applied sciences but go beyond the basic curriculum in physics. Geodynamics is the title of one of these courses, with an emphasis on weather, climate and geodynamic processes of the earth's crust. The course „The restless earth" deals specifically with plate tectonics, vulcanism, formation of mountains and processes such as ocean currents and the physics involved. Apart from theoretical basics we use manifold media and approaches concerning visualization: graphics, map data taken from Google Maps, satellite pictures, and others. The knowledge acquired in this course is broadened and consolidated by means of excursions to the Vienna Natural History Museum where additional instructional materials and visual aids are on display. Based on this experience pupils are requested to hold presentations (individually or in groups) at the end of the course.
SO2-tolerant and H2O-promoting Pt/C catalysts for efficient NO removal via fixed-bed H2-SCR.
Tu, Baosheng; Shi, Nian; Sun, Wei; Cao, Limei; Yang, Ji
2017-01-01
In this paper, Pt supports on carbon black powder (Vulcan XC-72) were synthesized via a hydrothermal method for selective catalytic reduction (SCR) of NO with H 2 in the presence of 2 vol% O 2 over a wide temperature of 20-300 °C. The results showed that the 3 and 5 wt% Pt/C catalysts resulted in high NO conversion (>90 %) over a temperature range of 120 to 300 °C, and the maximum NO conversion of 98.6 % was achieved over 5 wt% Pt/C at 120 °C. Meanwhile, the influence of SO 2 and H 2 O on the catalyst performance of 3 wt% Pt/C was investigated. The catalysts exhibited good SO 2 poisoning resistance when the SO 2 concentration was lower than 260 ppm. Moreover, a positive effect on NO conversion was detected with the addition of 3 and 5 vol% H 2 O in the feed gas stream. Graphical abstract TEM image and good NO conversion performance of the Pt/C catalysts.
Deactivation of Pt/VC proton exchange membrane fuel cell cathodes by SO2, H2S and COS
NASA Astrophysics Data System (ADS)
Gould, Benjamin D.; Baturina, Olga A.; Swider-Lyons, Karen E.
Sulfur contaminants in air pose a threat to the successful operation of proton exchange membrane fuel cells (PEMFCs) via poisoning of the Pt-based cathodes. The deactivation behavior of commercial Pt on Vulcan carbon (Pt/VC) membrane electrode assemblies (MEAs) is determined when exposed to 1 ppm (dry) of SO 2, H 2S, or COS in air for 3, 12, and 24 h while held at a constant potential of 0.6 V. All the three sulfur compounds cause the same deactivation behavior in the fuel cell cathodes, and the polarization curves of the poisoned MEAs have the same decrease in performance. Sulfur coverages after multiple exposure times (3, 12, and 24 h) are determined by cyclic voltammetry (CV). As the exposure time to sulfur contaminants increases from 12 to 24 h, the sulfur coverage of the platinum saturates at 0.45. The sulfur is removed from the cathodes and their activity is partially restored both by cyclic voltammetry, as shown by others, and by successive polarization curves. Complete recovery of fuel cell performance is not achieved with either technique, suggesting that sulfur species permanently affect the surface of the catalyst.
Evaluation on carbon nanocapsules for supercapacitors using a titanium cavity electrode
NASA Astrophysics Data System (ADS)
Wu, Cheng-Yeou; Wu, Pu-Wei; Lin, Pang
We synthesize carbon nanocapsules (CNCs) by a flame combustion method and evaluate their potential as the electrode material for electrochemical double layer capacitor using a titanium cavity electrode (TCE). Identical process is conducted on commercially available carbonaceous materials such as Vulcan XC72R, Black Pearl 2000 (BP2000), multi-walled carbon nanotubes (MWCNTs), and active carbon (AC1100) for comparison purposes. Images from Scanning electron microscope and Transmission electron microscope on the CNCs demonstrate irregular-shaped particles in average size of 10-20 nm with graphene layers on perimeter compassing a hollow core. Electrochemical characterizations including cyclic voltammetry (CV), current reversal chronopotentiometry (CRC), and impedance spectroscopy are carried out in 1N H 2SO 4 to determine the specific capacitance and cycle life time. Among these samples, the BP2000 still delivers the highest specific capacitance in F g -1 but the CNCs demonstrate the largest value in μF cm 2. In addition, the CNCs exhibit impressive life time for 5000 cycles without notable degradation. Consistent results are obtained by CV, CRC, and impedance measurements, validating the TCE as a facile tool to perform reliable electrochemical evaluations.
NASA Astrophysics Data System (ADS)
Kung, Chih-Chien; Lin, Po-Yuan; Xue, Yuhua; Akolkar, Rohan; Dai, Liming; Yu, Xiong; Liu, Chung-Chiun
2014-06-01
A novel composite material of hierarchically structured platinum-ruthenium (PtRu) nanoparticles grown on large surface area three dimensional graphene foam (3D GF) is reported. 3D GF was incorporated with PtRu bimetallic nanoparticles as an electrochemical nanocatalyst for methanol and ethanol oxidation. PtRu/3D GF nanocatalyst showed a higher tolerance to poisoning by CO and exhibited improved catalytic activity for both methanol oxidation reaction (MOR) and ethanol oxidation reaction (EOR). Cyclic voltammetry (CV) results and long-term cycling stability tests demonstrated that GF provided a promising platform for the development of electrochemical nanocatalysts. Specifically, PtRu/3D GF nanocatalyst showed excellent catalytic activity toward MOR and EOR compared with PtRu/Graphene (Commercial graphene), PtRu/C (Vulcan XC-72R carbon), and PtRu alone. The crystal size of PtRu on 3D GF was reduced to 3.5 nm and its active surface area was enhanced to 186.2 m2 g-1. Consequently, the MOR and EOR rates were nearly doubled on PtRu/3D GF compared to those on PtRu/Graphene.
Najafabadi, Amin Taheri; Ng, Norvin; Gyenge, Előd
2016-07-15
Microbial fuel cells (MFCs) present promising options for environmentally sustainable power generation especially in conjunction with waste water treatment. However, major challenges remain including low power density, difficult scale-up, and durability of the cell components. This study reports enhanced biocurrent production in a membrane-free MFC, using graphene microsheets (GNs) as anode and MnOx catalyzed air cathode. The GNs are produced by ionic liquid assisted simultaneous anodic and cathodic electrochemical exfoliation of iso-molded graphite electrodes. The GNs produced by anodic exfoliation increase the MFC peak power density by over 300% compared to plain carbon cloth (i.e., 2.85Wm(-2) vs 0.66Wm(-2), respectively), and by 90% compared to conventional carbon black (i.e., Vulcan XC-72) anode. These results exceed previously reported power densities for graphene-containing MFC anodes. The fuel cell polarization results are corroborated by electrochemical impedance spectroscopy indicating three times lower charge transfer resistance for the GN anode. Material characterizations suggest that the best performing GN samples were of relatively smaller size (~500nm), with higher levels of ionic liquid induced surface functionalization during the electrochemical exfoliation process. Copyright © 2016 Elsevier B.V. All rights reserved.
In search of a signature of binary Kuiper Belt Objects in the Pluto-Charon crater population
NASA Astrophysics Data System (ADS)
Zangari, Amanda Marie; Parker, Alex; Singer, Kelsi N.; Stern, S. Alan; Young, Leslie; Olkin, Catherine B.; Ennico, Kimberly; Weaver, Harold A.; New Horizons Geology, Geophysics and Imaging Science Theme Team
2016-10-01
In July 2015, New Horizons flew by Pluto and Charon, allowing mapping of the encounter hemisphere at high enough resolution to produce crater counts from the surfaces of the pair. We investigate the distribution of craters in search of a signature of binary impactors. The Kuiper Belt -- especially the cold classical region -- has a large fraction of binary objects, many of which are close-in, equal-mass binaries. We will present results on how the distribution of craters seen on Pluto and Charon compares to a random distribution of single body impactors on the surfaces of each. Examining the surfaces of Pluto and Charon proves challenging due to resurfacing, and the presence of tectonic and other geographic features. For example, the informally-named Cthulhu region is among the oldest on Pluto, yet it abuts a craterless region millions of years young. On Charon, chastmata divide the surface into regions informally named Vulcan Planum and Oz terra. In our statistics, we pay careful attention to the boundaries of where craters may appear, and the dependence of our results on crater size. This work was supported by NASA's New Horizons project.
NASA Astrophysics Data System (ADS)
Forouzandeh, Farisa; Li, Xiaoan; Banham, Dustin W.; Feng, Fangxia; Joseph Kakanat, Abraham; Ye, Siyu; Birss, Viola
2018-02-01
In this study, the effect of surface functionalization on the electrochemical corrosion resistance of a high surface area, mesoporous colloid imprinted carbon powder (CIC), as well as microporous Vulcan carbon (VC, serving as the benchmark), was demonstrated, primarily for PEM fuel cell applications. CIC-22, which is highly hydrophilic and was synthesized with 22 nm silica colloid templates, and as-received, mildly hydrophobic, VC powders, were functionalized with 2,3,4,5,6-pentafluorophenyl (-PhF5) surface groups using a straightforward diazonium reduction reaction. These carbons were then subjected to corrosion testing, involving a potential cycling-step sequence in room temperature 0.5 M H2SO4. Using cyclic voltammetry and charge/time analysis, the double layer and pseudo-capacitive gravimetric charges of the carbons, prior to and after the application of these potential steps, were tracked in order to obtain information about surface area changes and the extent of carbon oxidation, respectively. It is shown that the corrosion resistance was improved by ca. 50-80% by surface functionalization, likely due to a combination of surface passivation (loss of carbon active sites) and increased surface hydrophobicity.
Improved oxygen reduction reaction catalyzed by Pt/Clay/Nafion nanocomposite for PEM fuel cells.
Narayanamoorthy, B; Datta, K K R; Eswaramoorthy, M; Balaji, S
2012-07-25
A novel Pt nanoparticle (Pt NP) embedded aminoclay/Nafion (Pt/AC/N) nanocomposite catalyst film was prepared for oxygen reduction reaction by sol-gel method. The prepared nanocomposite films were surface characterized using XRD and TEM and thermal stability was studied by TGA. The prepared film has firmly bound Pt NP and could exhibit an improved electro-reduction activity compared to vulcan carbon/Nafion supported Pt NP (Pt/VC/N). Moreover, the Pt/AC/N film possessed good stability in the acidic environment. The limiting current density of the Pt/AC/N film with 35.4 μg/cm(2) of Pt loading was found to be 4.2 mA/cm(2), which is 30% higher than that of the Pt/VC/N. The maximum H2O2 intermediate formation was found to be ∼1.6% and the reaction found to follow a four electron transfer mechanism. Accelerated durability test for 2000 potential cycles showed that ca. 78% of initial limiting current was retained. The results are encouraging for possible use of the Pt/AC/N as the free-standing electrocatalyst layer for polymer electrolyte membrane fuel cells.
NASA Astrophysics Data System (ADS)
Aaron, Doug; Yeom, Sinchul; Kihm, Kenneth D.; Ashraf Gandomi, Yasser; Ertugrul, Tugrul; Mench, Matthew M.
2017-10-01
Addition of carbon-based nanomaterials to operating flow batteries accomplishes vanadium redox flow battery performance improvement. Initial efforts focus on addition of both pristine graphene and vacuum-filtered reduced graphene oxide (rGO) film on carbon paper supporting electrodes. While the former is unable to withstand convective flow through the porous electrode, the latter shows measurable kinetic improvement, particularly when laid on the polymer electrolyte membrane (PEM) side of the electrode; in contrast to the kinetic performance gain, a deleterious impact on mass transport is observed. Based on this tradeoff, further improvement is realized using perforated rGO films placed on the PEM side of the electrodes. Poor mass transport in the dense rGO film prompts identification of a more uniform, passive deposition method. A suspension of rGO flakes or Vulcan carbon black (XC-72R), both boasting two orders-of-magnitude greater specific surface area than that of common carbon electrodes, is added to the electrolyte reservoirs and allowed to passively deposit on the carbon paper or carbon felt supporting electrodes. For common carbon felt electrodes, addition of rGO flakes or XC-72R enables a tripling of current density at the same 80% voltage efficiency.
NASA Astrophysics Data System (ADS)
Nytch, J.
2017-12-01
While the natural world has inspired works of visual art and music for centuries, examples of music being created as a direct expression of scientific processes or principles are relatively rare. In his 2013 work, Symphony No. 1: Formations, composer Jeffrey Nytch created a work that explicitly communicated the geologic history of the Rocky Mountain west through a musical composition. Commissioned by the Geological Society of America and premiered at the GSA's 125th Anniversary meeting, the symphony is more than merely inspired by the Rocky Mountains; rather, specific episodes of geologic history are depicted in the music. Moreover, certain processes such as metamorphosis, erosion, vulcanism, plate tectonics, and the relative duration of geologic time guided the structure and form of the music. This unique approach to musical composition allowed the work to play a novel and potent role in community engagement and education, both at the premiere performances in Colorado and subsequent performances of the symphony elsewhere. This project is thus a powerful example of how the arts can help illuminate scientific principles to the general public, in turn engaging them and helping to establish a more personal connection to the natural world around them.
NASA Astrophysics Data System (ADS)
Bee, Soo-Tueen; Sin, Lee Tin; Hoe, Tie Teck; Ratnam, C. T.; Bee, Soo Ling; Rahmat, A. R.
2018-05-01
The purpose of this work was to investigate the effects of montmorillonite (MMT) loading level and electron beam irradiation on the physical-mechanical properties and thermal stability of ethylene vinyl acetate (EVA)- devulcanised waste rubber blends. The addition of MMT particles has significantly increased the d-spacing and interchain separation of deflection peak (0 0 2) of MMT particles. This indicates that MMT particles have effectively intercalated in polymer matrix of EVA-devulcanised waste rubber blends. Besides, the application of electron beam irradiation dosages <150 kGy could also significantly induce the effective intercalation effect of MMT particles in polymer matrix by introducing crosslinking networks. The increasing of electron beam irradiation dosages up to 250 kGy has gradually increased the gel content of all EVA-devulcanized rubber blends by inducing the formation of crosslinking networks in polymer matrix. Also, the tensile strength of all EVA-devulcanized waste rubber blends was gradually increased when irradiated up to 150 kGy. This is due to the occurrence of crosslinking networks by irradiation could significantly provide reinforcement effect to polymer matrix by effectively transferring the stress applied on polymer matrix throughout the whole polymer matrix.
NASA Technical Reports Server (NTRS)
White, Jeffrey A.; Baurle, Robert A.; Fisher, Travis C.; Quinlan, Jesse R.; Black, William S.
2012-01-01
The 2nd-order upwind inviscid flux scheme implemented in the multi-block, structured grid, cell centered, finite volume, high-speed reacting flow code VULCAN has been modified to reduce numerical dissipation. This modification was motivated by the desire to improve the codes ability to perform large eddy simulations. The reduction in dissipation was accomplished through a hybridization of non-dissipative and dissipative discontinuity-capturing advection schemes that reduces numerical dissipation while maintaining the ability to capture shocks. A methodology for constructing hybrid-advection schemes that blends nondissipative fluxes consisting of linear combinations of divergence and product rule forms discretized using 4th-order symmetric operators, with dissipative, 3rd or 4th-order reconstruction based upwind flux schemes was developed and implemented. A series of benchmark problems with increasing spatial and fluid dynamical complexity were utilized to examine the ability of the candidate schemes to resolve and propagate structures typical of turbulent flow, their discontinuity capturing capability and their robustness. A realistic geometry typical of a high-speed propulsion system flowpath was computed using the most promising of the examined schemes and was compared with available experimental data to demonstrate simulation fidelity.
Fabrication of Wood-Rubber Composites Using Rubber Compound as a Bonding Agent Instead of Adhesives.
Shao, Dongwei; Xu, Min; Cai, Liping; Shi, Sheldon Q
2016-06-14
Differing from the hot-pressing method in the manufacturing of traditional wood-rubber composites (WRCs), this study was aimed at fabricating WRCs using rubber processing to improve water resistance and mechanical properties. Three steps were used to make WRCs, namely, fiber-rubber mixing, tabletting, and the vulcanization molding process. Ninety-six WRC panels were made with wood fiber contents of 0%-50% at rotor rotational speeds of 15-45 rpm and filled coefficients of 0.55-0.75. Four regression equations, i.e. , the tensile strength ( T s), elongation at break ( E b), hardness ( H a) and rebound resilience ( R r) as functions of fiber contents, rotational speed and filled coefficient, were derived and a nonlinear programming model were developed to obtain the optimum composite properties. Although the T s, E b and R r of the panels were reduced, H a was considerably increased by 17%-58% because of the wood fiber addition. Scanning electron microscope images indicated that fibers were well embedded in rubber matrix. The 24 h water absorption was only 1%-3%, which was much lower than commercial wood-based composites.
NASA Astrophysics Data System (ADS)
Liu, Zhaolin; Ling, Xing Yi; Su, Xiaodi; Lee, Jim Yang; Gan, Leong Ming
Nano-sized Pt and Pt sbnd Ru colloids are prepared by a microwave-assisted polyol process, and transferred to a toluene solution of decanthiol. Vulcan XC-72 is then added to the toluene solution to adsorb the thiolated Pt and Pt sbnd Ru colloids. Transmission electron microscopy examinations show nearly spherical particles and narrow size distributions for both supported and unsupported metals. The carbon-supported Pt and Pt sbnd Ru nanoparticles are activated by thermal treatment to remove the thiol stabilizing shell. All Pt and Pt sbnd Ru catalysts (except Pt 23sbnd Ru 77) give the X-ray diffraction pattern of a face-centered cubic (fcc) crystal structure, whereas the Pt 23sbnd Ru 77 alloy is more typical of the hexagonal close packed (hcp) structure. The electro-oxidation of liquid ethanol on these catalysts is investigated at room temperature by cyclic voltammetry. The results demonstrate that the alloy catalyst is catalytically more active than pure platinum. Preliminary tests on a single cell of a direct ethanol fuel cell (DEFC) indicate that a Pt 52sbnd Ru 48/C anode catalyst gives the best electrocatalytic performance among all the carbon-supported Pt and Pt sbnd Ru catalysts.
Performance Efficient Launch Vehicle Recovery and Reuse
NASA Technical Reports Server (NTRS)
Reed, John G.; Ragab, Mohamed M.; Cheatwood, F. McNeil; Hughes, Stephen J.; Dinonno, J.; Bodkin, R.; Lowry, Allen; Brierly, Gregory T.; Kelly, John W.
2016-01-01
For decades, economic reuse of launch vehicles has been an elusive goal. Recent attempts at demonstrating elements of launch vehicle recovery for reuse have invigorated a debate over the merits of different approaches. The parameter most often used to assess the cost of access to space is dollars-per-kilogram to orbit. When comparing reusable vs. expendable launch vehicles, that ratio has been shown to be most sensitive to the performance lost as a result of enabling the reusability. This paper will briefly review the historical background and results of recent attempts to recover launch vehicle assets for reuse. The business case for reuse will be reviewed, with emphasis on the performance expended to recover those assets, and the practicality of the most ambitious reuse concept, namely propulsive return to the launch site. In 2015, United Launch Alliance (ULA) announced its Sensible, Modular, Autonomous Return Technology (SMART) reuse plan for recovery of the booster module for its new Vulcan launch vehicle. That plan employs a non-propulsive approach where atmospheric entry, descent and landing (EDL) technologies are utilized. Elements of such a system have a wide variety of applications, from recovery of launch vehicle elements in suborbital trajectories all the way to human space exploration. This paper will include an update on ULA's booster module recovery approach, which relies on Hypersonic Inflatable Aerodynamic Decelerator (HIAD) and Mid-Air Retrieval (MAR) technologies, including its concept of operations (ConOps). The HIAD design, as well as parafoil staging and MAR concepts, will be discussed. Recent HIAD development activities and near term plans including scalability, next generation materials for the inflatable structure and heat shield, and gas generator inflation systems will be provided. MAR topics will include the ConOps for recovery, helicopter selection and staging, and the state of the art of parachute recovery systems using large parafoils for space asset recovery and high altitude deployment. The next proposed HIAD flight demonstration is called HULA (for HIAD on ULA), and will feature a 6m diameter HIAD. An update for the HULA concept will be provided in this paper. As proposed, this demonstration will fly as a secondary payload on an Atlas mission. The Centaur upper stage provides the reentry pointing, deorbit burn, and entry vehicle spin up. The flight test will culminate with a recovery of the HIAD using MAR. HULA will provide data from a Low Earth Orbit (LEO) return aeroheating environment that enables predictive model correlation and refinement. The resultant reduction in performance uncertainties should lead to design efficiencies that are increasingly significant at larger scales. Relevance to human scale Mars EDL using a HIAD will also be presented, and the applicability of the data generated from both HULA and SMART Vulcan flights, and its value for NASA's human exploration efforts will be discussed. A summary and conclusion will follow.
NASA Astrophysics Data System (ADS)
Shoushtari Zadeh Naseri, Aida; Jalali-Arani, Azam
2015-10-01
Rubber blends based on (styrene-butadiene rubber (SBR)/ethylene-propylene-diene monomer (EPDM)) with and without organoclay (OC) were prepared through a melt mixing process. The concentration ratio of the rubber phases (EPDM/SBR; 50/50 wt%) and the amount of the OC were kept constant. The samples were then vulcanized by means of gamma radiation using a Co-60 gamma source as well as sulfur cure system. The effect of absorbed dose on the formation of the crosslinks was confirmed by the Fourier transform infrared spectroscopy (FTIR). The effects of absorbed dose, sulfur cure system and OC on the gel content, and crosslink density were evaluated by the chemical tests. Applying the Charlesby-Pinner equation to estimate the radiation chemical yield, revealed that the use of OC in the blend caused 20% reduction in the degradation/crosslinking ratio. Employing the swelling test data, some thermodynamic parameters were determined. Using field emission scanning electron microscopy (FE-SEM) to investigate microstructure of the samples revealed a more homogeneous structure and also an increase in compatibility of the blend components in the sample cured by the irradiation in comparison to that cured by the sulfur curing system.
FTIR spectra and mechanical strength analysis of some selected rubber derivatives.
Gunasekaran, S; Natarajan, R K; Kala, A
2007-10-01
Rubber materials have wide range of commercial applications such as, infant diapers, famine hygiene products, drug delivery devices and incontinency products such as rubber tubes, tyres, etc. In the present work, studies on mechanical properties of some selected rubber materials viz., natural rubber (NR), styrene butadiene rubber (SBR), nitrile butadiene rubber (NBR) and ethylene propylene diene monomer (EPDM) have been carried out in three states viz., raw, vulcanized and reinforced. To enhance the quality of rubber elastomers, an attempt is made to prepare new elastomers called polyblends. In the present study an attempt is made to blend NR with NBR and with EPDM. We here report, a novel approach for the evaluation of various physico-mechanical properties such as mechanical strength, tensile strength, elongation and hardness. The method is simple, direct and fast and involves infrared spectral measurements for the evaluation of these properties. With the applications of modern infrared spectroscopy, the mechanical strength of these rubber materials have been analyzed by calculating the internal standards among the methyl and methylene group vibrational frequencies obtained from FTIR spectroscopy. Also the tensile strength measurements carried out by universal testing machine. The results pertaining physico-mechanical properties of the rubber derivatives undertaken in the present study obtained by IR-based method are in good agreement with data resulted from the standard methods.
FTIR spectra and mechanical strength analysis of some selected rubber derivatives
NASA Astrophysics Data System (ADS)
Gunasekaran, S.; Natarajan, R. K.; Kala, A.
2007-10-01
Rubber materials have wide range of commercial applications such as, infant diapers, famine hygiene products, drug delivery devices and incontinency products such as rubber tubes, tyres, etc. In the present work, studies on mechanical properties of some selected rubber materials viz., natural rubber (NR), styrene butadiene rubber (SBR), nitrile butadiene rubber (NBR) and ethylene propylene diene monomer (EPDM) have been carried out in three states viz., raw, vulcanized and reinforced. To enhance the quality of rubber elastomers, an attempt is made to prepare new elastomers called polyblends. In the present study an attempt is made to blend NR with NBR and with EPDM. We here report, a novel approach for the evaluation of various physico-mechanical properties such as mechanical strength, tensile strength, elongation and hardness. The method is simple, direct and fast and involves infrared spectral measurements for the evaluation of these properties. With the applications of modern infrared spectroscopy, the mechanical strength of these rubber materials have been analyzed by calculating the internal standards among the methyl and methylene group vibrational frequencies obtained from FTIR spectroscopy. Also the tensile strength measurements carried out by universal testing machine. The results pertaining physico-mechanical properties of the rubber derivatives undertaken in the present study obtained by IR-based method are in good agreement with data resulted from the standard methods.
Wang, Fang; Xu, Juan; Luo, Heyi; Wang, Jinggang; Wang, Qian
2009-10-12
Practical adhesion of rubber to aluminum is measured for various aluminum silanization treatments. In this study, 6-(3-triethoxysilylpropylamino)-1,3,5-triazine-2,4-dithiol (TES) was used as the coupling agent for preparing self-assembly monolayers (SAMs) on an aluminum surface. The structure and chemical composition of the SAMs were analyzed using Fourier transform infra-red spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). The changes in the surface features of the aluminum surface due to TES treatment were investigated by atomic force microscopy (AFM). The adhesive properties of the silanized aluminum surface and EPDM rubber have been evaluated by a T-peel strength test. The results suggested that the Si-O-Al bonding at aluminum TES interface existed and a TES self-assembly monolayer was formed on the aluminum surface. More than 6.0 KN/m adhesion strength is obtained when the aluminum is silanized with 2.5 mmol/dm(3) TES, cured at 160 degrees C and vulcanized with EPDM rubber at 160 degrees C for 30 min. It is suggested that the TES self-assembly monolayer is bound to aluminum through its ethoxysilyl functional group, and the thiol function group is strongly crosslinked to EPDM rubber, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendoza, D.; Gurney, Kevin R.; Geethakumar, Sarath
2013-04-01
In this study we present onroad fossil fuel CO2 emissions estimated by the Vulcan Project, an effort quantifying fossil fuel CO2 emissions for the U.S. in high spatial and temporal resolution. This high-resolution data, aggregated at the state-level and classified in broad road and vehicle type categories, is compared to a commonly used national-average approach. We find that the use of national averages incurs state-level biases for road groupings that are almost twice as large as for vehicle groupings. The uncertainty for all groups exceeds the bias, and both quantities are positively correlated with total state emissions. States with themore » largest emissions totals are typically similar to one another in terms of emissions fraction distribution across road and vehicle groups, while smaller-emitting states have a wider range of variation in all groups. Errors in reduction estimates as large as ±60% corresponding to ±0.2 MtC are found for a national-average emissions mitigation strategy focused on a 10% emissions reduction from a single vehicle class, such as passenger gas vehicles or heavy diesel trucks. Recommendations are made for reducing CO2 emissions uncertainty by addressing its main drivers: VMT and fuel efficiency uncertainty.« less
Benafan, O; Padula, S A; Skorpenske, H D; An, K; Vaidyanathan, R
2014-10-01
A gripping capability was designed, implemented, and tested for in situ neutron diffraction measurements during multiaxial loading and heating on the VULCAN engineering materials diffractometer at the spallation neutron source at Oak Ridge National Laboratory. The proposed capability allowed for the acquisition of neutron spectra during tension, compression, torsion, and/or complex loading paths at elevated temperatures. The design consisted of age-hardened, Inconel(®) 718 grips with direct attachment to the existing MTS load frame having axial and torsional capacities of 100 kN and 400 N·m, respectively. Internal cooling passages were incorporated into the gripping system for fast cooling rates during high temperature experiments up to ∼1000 K. The specimen mounting couplers combined a threaded and hexed end-connection for ease of sample installation/removal without introducing any unwanted loads. Instrumentation of this capability is documented in this work along with various performance parameters. The gripping system was utilized to investigate deformation in NiTi shape memory alloys under various loading/control modes (e.g., isothermal, isobaric, and cyclic), and preliminary results are presented. The measurements facilitated the quantification of the texture, internal strain, and phase fraction evolution in NiTi shape memory alloys under various loading/control modes.
NASA Astrophysics Data System (ADS)
Hemsri, S.; Thongpin, C.; Somkid, P.; Sae-arma, S.; Paiykaew, A.
2015-07-01
Novel blends based on wheat gluten (WG) and epoxidized natural rubber (ENR) were fabricated with different ENR contents of 10, 20 and 30 wt% in an internal mixer. Sulfur vulcanization was used to crosslink the ENR phase in the blends. Comparatively, blends of WG and natural rubber (WG/NR) were prepared in the same condition as the WG/ENR blends. Tensile mechanical properties and impact strength of the WG/ENR blends were investigated and compared with the WG/NR blends as well as pure WG. Moreover, water absorption of pure WG and the WG/ENR blends was also tested. As investigated by scanning electron microscopy (SEM), the results revealed more compatibility between WG and ENR compared with NR. The elongation at break, impact strength and water resistance of the WG/ENR blends were found to remarkably increase with respect to the pure WG. Thus, incorporation of ENR into WG could improve toughness and water resistance of WG. Furthermore, the effect of adding glycerol acting as a plasticizer on the mechanical properties and impact strength of the WG/ENR blends was also studied. The blends with glycerol-plasticized WG (WG-Gly/ENR) showed more homogeneous morphologies and superior results in the mechanical properties and impact strength compared with the WG/ENR blends.
Occupational exposure to coal tar pitch volatiles, benzo/a/pyrene and dust in tyre production.
Rogaczewska, T; Ligocka, D
1994-01-01
Occupational exposure to coal tar pitch volatiles (CTPVs), benzo/a/pyrene (BaP) and dust was evaluated by means of individual measurements carried out in 80 workers and by stationary measurements on 16 work-posts in two divisions of the tyre producing plant. Dust and coal tar pitch volatiles concentrations in the air were determinated by the gravimetric method, measured, in the case of CPTVs, benzene-soluble fraction (BSF) with ultrasonic extraction. Benzo/a/pyrene analysis was performed using high performance liquid chromato-graphy (HPLC) with a spectrofluorimetric detector. It was found that nearly all personal sampling results for BaP were within the range < 4 divided by 142 ng/m3, except for the exposure of workers employed at weighing the raw materials (3,470-6,060 ng/m3) in the Semiproducts Division. Attention should be paid to the recorded CTPVs concentrations (benzene solubles). About 56% of the Vulcanizing Division workers and about 90% of the Semiproducts Division workers were exposed to these substances at concentrations of over 0.2 mg/m3 (hygienic standard for benzene solubles in USA). Exposure to dust (of high respirable fraction percentage > 90%) which exceeded the admissible value (4 mg/m3) was found mainly only in the workers of the Semiproducts Division at some work-posts.
NASA Astrophysics Data System (ADS)
Wulandari, Asri; Asti Anggari, Ega; Dwiasih, Novi; Suyanto, Imam
2018-03-01
Very Low Frequency (VLF) measurement has been done at Pagerkandang Volcanic, Dieng Volcanic Complex (DVC) to examine the possible existence of conductive zones that related with geothermal manifestation. VLF – EM survey used tilt mode with T-VLF BRGM Iris Instrument operated with two frequencies, they are 22200 Hz from Japan (JJI) and 19800 Hz from Australia (NWC). There are five lines with distance between lines is 50 m, and distance between measure points is 20 m. The parameters measured from VLF method are tilt angle (%) and elliptisity (%). Data processed by tilt angle value with fraser and Karous – Hjelt filter used WinVLF program. Karous – Hjelt filter resulted current density contour to estimate lateral location from conductive and resistive zones. The conductive zone is interpreted as the area which have high current density value. This area located at eastern dan western of Pagerkandang Volcanic. The conductive zone related to geothermal manifestation as like as fumarol that appeared because presenced of normal fault. Whereas the resistive zone is interpreted as the area which have low current density value. This area spread almost in the middle of the Pagerkandang Volcanic. The resistive zone was caused by the high weathering in claystone.
Characterization of a novel anthropomorphic plastinated lung phantom
Yoon, Sungwon; Henry, Robert W.; Bouley, Donna M.; Bennett, N. Robert; Fahrig, Rebecca
2008-01-01
Phantoms are widely used during the development of new imaging systems and algorithms. For development and optimization of new imaging systems such as tomosynthesis, where conventional image quality metrics may not be applicable, a realistic phantom that can be used across imaging systems is desirable. A novel anthropomorphic lung phantom was developed by plastination of an actual pig lung. The plastinated phantom is characterized and compared with reference to in vivo images of the same tissue prior to plastination using high resolution 3D CT. The phantom is stable over time and preserves the anatomical features and relative locations of the in vivo sample. The volumes for different tissue types in the phantom are comparable to the in vivo counterparts, and CT numbers for different tissue types fall within a clinically useful range. Based on the measured CT numbers, the phantom cardiac tissue experienced a 92% decrease in bulk density and the phantom pulmonary tissue experienced a 78% decrease in bulk density compared to their in vivo counterparts. By-products in the phantom from the room temperature vulcanizing silicone and plastination process are also identified. A second generation phantom, which eliminates most of the by-products, is presented. Such anthropomorphic phantoms can be used to evaluate a wide range of novel imaging systems. PMID:19175148
Jones, Christopher P; Brenner, Ceri M; Stitt, Camilla A; Armstrong, Chris; Rusby, Dean R; Mirfayzi, Seyed R; Wilson, Lucy A; Alejo, Aarón; Ahmed, Hamad; Allott, Ric; Butler, Nicholas M H; Clarke, Robert J; Haddock, David; Hernandez-Gomez, Cristina; Higginson, Adam; Murphy, Christopher; Notley, Margaret; Paraskevoulakos, Charilaos; Jowsey, John; McKenna, Paul; Neely, David; Kar, Satya; Scott, Thomas B
2016-11-15
A small scale sample nuclear waste package, consisting of a 28mm diameter uranium penny encased in grout, was imaged by absorption contrast radiography using a single pulse exposure from an X-ray source driven by a high-power laser. The Vulcan laser was used to deliver a focused pulse of photons to a tantalum foil, in order to generate a bright burst of highly penetrating X-rays (with energy >500keV), with a source size of <0.5mm. BAS-TR and BAS-SR image plates were used for image capture, alongside a newly developed Thalium doped Caesium Iodide scintillator-based detector coupled to CCD chips. The uranium penny was clearly resolved to sub-mm accuracy over a 30cm(2) scan area from a single shot acquisition. In addition, neutron generation was demonstrated in situ with the X-ray beam, with a single shot, thus demonstrating the potential for multi-modal criticality testing of waste materials. This feasibility study successfully demonstrated non-destructive radiography of encapsulated, high density, nuclear material. With recent developments of high-power laser systems, to 10Hz operation, a laser-driven multi-modal beamline for waste monitoring applications is envisioned. Copyright © 2016. Published by Elsevier B.V.
Time of Flight based diagnostics for high energy laser driven ion beams
NASA Astrophysics Data System (ADS)
Scuderi, V.; Milluzzo, G.; Alejo, A.; Amico, A. G.; Booth, N.; Cirrone, G. A. P.; Doria, D.; Green, J.; Kar, S.; Larosa, G.; Leanza, R.; Margarone, D.; McKenna, P.; Padda, H.; Petringa, G.; Pipek, J.; Romagnani, L.; Romano, F.; Schillaci, F.; Borghesi, M.; Cuttone, G.; Korn, G.
2017-03-01
Nowadays the innovative high power laser-based ion acceleration technique is one of the most interesting challenges in particle acceleration field, showing attractive characteristics for future multidisciplinary applications, including medical ones. Nevertheless, peculiarities of optically accelerated ion beams make mandatory the development of proper transport, selection and diagnostics devices in order to deliver stable and controlled ion beams for multidisciplinary applications. This is the main purpose of the ELIMAIA (ELI Multidisciplinary Applications of laser-Ion Acceleration) beamline that will be realized and installed within 2018 at the ELI-Beamlines research center in the Czech Republic, where laser driven high energy ions, up to 60 MeV/n, will be available for users. In particular, a crucial role will be played by the on-line diagnostics system, recently developed in collaboration with INFN-LNS (Italy), consisting of TOF detectors, placed along the beamline (at different detection distances) to provide online monitoring of key characteristics of delivered beams, such as energy, fluence and ion species. In this contribution an overview on the ELIMAIA available ion diagnostics will be briefly given along with the preliminary results obtained during a test performed with high energy laser-driven proton beams accelerated at the VULCAN PW-laser available at RAL facility (U.K.).
Contact dermatitis caused by a new rubber compound detected in canvas shoes.
Hulstaert, Eva; Bergendorff, Ola; Persson, Christina; Goossens, An; Gilissen, Liesbeth; Engfeldt, Malin; Bruze, Magnus; Schuttelaar, Marie L; Meijer, Joost M; Lapeere, Hilde
2018-01-01
In 2015 and 2016, female patients in Flanders consulted a dermatologist because they developed skin lesions after wearing a specific brand of canvas shoes. To identify the culprit allergen in the shoes. Eighteen young females aged 14-22 years presented with itching and erythematous to purple-coloured eczematous lesions on both feet. They were patch tested by 10 dermatologists with the European baseline series. Some patients underwent testing with additional series. Pieces of the shoe fabrics were tested in 11 of 18 patients. Chemical analysis of the shoe materials was performed. Finally, patients were tested with a thin-layer chromatogram of the shoe extracts and dilutions of the suspected rubber compound. All 18 patients showed positive reactions to thiuram mix. Ten of 11 patients reacted to a piece of shoe fabric. Chemical analysis showed the presence of dimethylthiocarbamylbenzothiazole sulfide (DMTBS). No thiurams were detected. Four patients tested with the chromatogram developed positive reactions to DMTBS. Positive reactions to low concentrations were observed in the 4 patients tested with a DMTBS dilution series; one patient reacted to 0.00001% in acetone. DMTBS, the culprit allergen, is a component formed during rubber vulcanization that probably cross-reacts with the thiuram mix. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Suntako, R.
2018-01-01
Zinc oxide (ZnO) is widely used in rubber industry as a cure activator for rubber vulcanization. In this work, comparison of cure characteristic, mechanical properties, thermal conductivity and volume swell testing in oil no.1 and oil no.3 between natural rubber (NR) filled synthesized ZnO nanoparticles (sZnO) by precipitation method and NR filled conventional ZnO (cZnO). The particle size of sZnO is 41.50 nm and specific area of 27.92 m2/g, the particle size of cZnO is 312.92 nm and specific surface area of 1.35 m2/g. It has been found that NR filled sZnO not only improves rubber mechanical properties, volume swell testing but also improves thermal conductivity and better than NR filled cZnO. Thermal conductivity of NR filled sZnO increases by 10.34%, 12.90% and 20.00%, respectively when compared with NR filled cZnO in same loading content (various concentrations of ZnO at 5, 8 and 10 parts per hundred parts of rubber). This is due to small particle size and large specific surface area of sZnO which lead to an increase in crosslinking in rubber chain and enhance heat transfer performance.
NASA Astrophysics Data System (ADS)
Benafan, O.; Padula, S. A.; Skorpenske, H. D.; An, K.; Vaidyanathan, R.
2014-10-01
A gripping capability was designed, implemented, and tested for in situ neutron diffraction measurements during multiaxial loading and heating on the VULCAN engineering materials diffractometer at the spallation neutron source at Oak Ridge National Laboratory. The proposed capability allowed for the acquisition of neutron spectra during tension, compression, torsion, and/or complex loading paths at elevated temperatures. The design consisted of age-hardened, Inconel® 718 grips with direct attachment to the existing MTS load frame having axial and torsional capacities of 100 kN and 400 N.m, respectively. Internal cooling passages were incorporated into the gripping system for fast cooling rates during high temperature experiments up to ˜1000 K. The specimen mounting couplers combined a threaded and hexed end-connection for ease of sample installation/removal without introducing any unwanted loads. Instrumentation of this capability is documented in this work along with various performance parameters. The gripping system was utilized to investigate deformation in NiTi shape memory alloys under various loading/control modes (e.g., isothermal, isobaric, and cyclic), and preliminary results are presented. The measurements facilitated the quantification of the texture, internal strain, and phase fraction evolution in NiTi shape memory alloys under various loading/control modes.
NASA Astrophysics Data System (ADS)
Zhang, Yunmao; Liu, Yong; Liu, Weihua; Li, Xiying; Mao, Liqun
2017-06-01
This paper reports the convenient synthesis of honeycomb-like mesoporous nitrogen-doped carbon spheres (MNCS) using a self-assembly strategy that employs dopamine (DA) as a carbon and nitrogen precursor and a polystyrene-b-poly(ethylene oxide) (PS173-b-PEO170) diblock copolymer as a soft template. The MNCS have large BET surface areas of up to 554 m2 g-1 and high nitrogen contents of up to 6.9 wt%. The obtained MNCS are used as a support for Pt catalysts, which promote methanol oxidation in alkaline media. The MNCS-supported Pt (Pt/MNCS) catalyst has a larger electrochemically active surface area (ESA) (89.2 m2 g-1) than does a commercially available Vulcan XC-72R supported Pt/C catalyst. Compared to the Pt/C catalyst, Pt/MNCS displays a higher peak current density (1007 mA mg-1) and is more stable during methanol oxidation. These improvements are attributed to the honeycomb-like porous structure of the MNCS and the introduction of nitrogen to the carbon support. The MNCS effectively stabilize Pt nanoparticles and assuage the agglomeration of the nanoparticles, suggesting that MNCS are potential and promising application as electrocatalyst supports in alkaline direct methanol fuel cells.
A Review of Environmental Occurrence, Fate, Exposure, and Toxicity of Benzothiazoles.
Liao, Chunyang; Kim, Un-Jung; Kannan, Kurunthachalam
2018-05-01
Benzothiazole and its derivatives (BTs) are high production volume chemicals that have been used for several decades in a large number of industrial and consumer products, including vulcanization accelerators, corrosion inhibitors, fungicides, herbicides, algicides, and ultraviolet (UV) light stabilizers. Several benzothiazole derivatives are used commercially, and widespread use of these chemicals has led to ubiquitous occurrence in diverse environmental compartments. BTs have been reported to be dermal sensitizers, respiratory tract irritants, endocrine disruptors, carcinogens, and genotoxicants. This article reviews occurrence and fate of a select group of BTs in the environment, as well as human exposure and toxicity. BTs have frequently been found in various environmental matrices at concentrations ranging from sub-ng/L (surface water) to several tens of μg/g (indoor dust). The use of BTs in a number of consumer products, especially in rubber products, has resulted in widespread human exposure. BTs undergo chemical, biological, and photolytic degradation in the environment, creating several transformation products. Of these, 2-thiocyanomethylthio-benzothiazole (2-SCNMeS-BTH) has been shown to be the most toxic. Epidemiological studies have shown excess risks of cancers, including bladder cancer, lung cancer, and leukemia, among rubber factory workers, particularly those exposed to 2-mercapto-benzothiazole (2-SH-BTH). Human exposure to BTs continues to be a concern.
Polyisoprene matrix for progesterone release: in vitro and in vivo studies.
Heredia, V; Bianco, I D; Tríbulo, H; Tríbulo, R; Seoane, M Ferro; Faudone, S; Cuffini, S L; Demichelis, N A; Schalliol, H; Beltramo, D M
2009-12-01
Latex, a polyisoprene (PI) hydrophobic elastomer, was evaluated in vitro and in vivo as a matrix for intravaginal steroid hormone delivery. Matrices containing hormone were prepared by swelling latex in chloroform that contained soluble progesterone (P4). In vitro studies demonstrate that P4 release from PI follows a zero order model during at least 100 h and depends on initial load up to 10 mg cm(-2). The release of P4 from a PI matrix was found to be two times faster than from a polydimethylsiloxane (PDMS) matrix. FT-IR and X-ray powder diffraction analysis of P4 polymorphs show that when nucleated in PDMS, the hormone crystallizes only in alpha-form while in latex, crystallizes as a mixture of alpha- and beta-form. In vivo studies show that devices with a PI matrix containing 0.5 g of P4 are effective to reach plasma levels above 1 ng ml(-1) that are needed to synchronize estrous in cattle. Altogether, the results show that PI, a vulcanized polymer with a carbon-carbon backbone, can be used as a new matrix for the intravaginal administration of progesterone with improved release profile than silicone and that the matrix can influence the crystalline state of the hormone.
Graf, Neil J.
2013-01-01
Two different fabrication methods were employed to fabricate micropumps with different cross-sectional channel geometries. The first was to fabricate rectangular cross-sectional microchannel geometries using the well known fabrication method of replica molding (REM).1 The second, and far less utilized fabrication technique, was to create microchannel molds using an in-house fabricated handheld micro injection molding apparatus. The injection mold apparatus was designed for use with elastomeric room temperature vulcanization (RTV) polymers, as opposed to most other injection molding machines, which are designed for use with thermoplastic polymers. The injection mold’s bottom plate was used as a microchannel molding template. The molding template was created by threading a small-diameter wire (150 μm or less) through the injection mold’s bottom plate, with subsequent adhesion and smoothing of a thin piece of aluminum foil over the wire-raised injection mold template. When molded against, the template produced a rounded/Gaussian-shaped PDMS microchannel. The design of the injection mold will be presented, along with a direct comparison for micropump performance metrics such as flow rate, valving characteristics, and maximum backpressures attainable for each of the respective micropump channel geometries. PMID:23917263
Non-thermal plasma for air and water remediation.
Hashim, Siti Aiasah; Samsudin, Farah Nadia Dayana Binti; Wong, Chiow San; Abu Bakar, Khomsaton; Yap, Seong Ling; Mohd Zin, Mohd Faiz
2016-09-01
A modular typed dielectric barrier discharge (DBD) device is designed and tested for air and water remediation. The module is made of a number of DBD tubes that can be arranged in series or parallel. Each of the DBD tubes comprises inner electrode enclosed with dielectric barrier and arranged as such to provide a gap for the passage of gases. Non-thermal plasma generated in the gap effectively creates gaseous chemical reactions. Its efficacy in the remediation of gas stream containing high NOx, similar to diesel emission and wastewater containing latex, are presented. A six tubes DBD module has successfully removed more than 80% of nitric oxide from the gas stream. In another arrangement, oxygen was fed into a two tubes DBD to generate ozone for treatment of wastewater. Samples of wastewater were collected from a treatment pond of a rubber vulcanization pilot plant. The water pollution load was evaluated by the chemical oxygen demand (COD) and biological oxygen demand (BOD5) values. Preliminary results showed some improvement (about 13%) on the COD after treatment and at the same time had increased the BOD5 by 42%. This results in higher BOD5/COD ratio after ozonation which indicate better biodegradability of the wastewater. Copyright © 2016 Elsevier Inc. All rights reserved.
Du, Dajiang; Asaoka, Teruo; Shinohara, Makoto; Kageyama, Tomonori; Ushida, Takashi; Furukawa, Katsuko Sakai
2015-01-01
Porous ceramic scaffolds with shapes matching the bone defects may result in more efficient grafting and healing than the ones with simple geometries. Using computer-assisted microstereolithography (MSTL), we have developed a novel gelcasting indirect MSTL technology and successfully fabricated two scaffolds according to CT images of rabbit femur. Negative resin molds with outer 3D dimensions conforming to the femur and an internal structure consisting of stacked meshes with uniform interconnecting struts, 0.5 mm in diameter, were fabricated by MSTL. The second mold type was designed for cortical bone formation. A ceramic slurry of beta-tricalcium phosphate (β-TCP) with room temperature vulcanization (RTV) silicone as binder was cast into the molds. After the RTV silicone was completely cured, the composite was sintered at 1500°C for 5 h. Both gross anatomical shape and the interpenetrating internal network were preserved after sintering. Even cortical structure could be introduced into the customized scaffolds, which resulted in enhanced strength. Biocompatibility was confirmed by vital staining of rabbit bone marrow mesenchymal stromal cells cultured on the customized scaffolds for 5 days. This fabrication method could be useful for constructing bone substitutes specifically designed according to local anatomical defects. PMID:26504839
Millán, María; Zamora, Héctor; Rodrigo, Manuel A; Lobato, Justo
2017-02-22
PtCo alloy catalysts for high temperature PEMFCs (protonic exchange membrane fuel cells) were synthesized on a novel noncarbonaceous support (SiCTiC) using the impregnation method with NaBH 4 as the reducing agent at different synthesis temperatures to evaluate the effect of this variable on their physicochemical and electrochemical properties. The catalysts were characterized by inductively coupled plasma optical emission spectrometry, scanning electron microscopy-energy dispersive X-ray spectroscopy, X-ray diffraction, transmission electron microscope-energy dispersive X-ray,and temperature-programmed reduction. In addition, the electrochemical characterization (i.e., cyclic voltammetry, oxygen reduction reaction, and chronoamperometry) was carried out with a rotating disk electrode. For the cyclic voltammetry investigation, 400 cycles were performed in hot phosphoric acid and a half-cell to evaluate the stability of the synthesized catalysts. The catalyst synthesized on SiCTiC exhibited excellent durability compared to the catalyst synthesized on a Vulcan support. In addition, all synthesized catalysts exhibited better catalytic activity than that of the PtCo/C catalysts. The best results were observed for the catalyst synthesized at 80 °C due to its shorter Pt-Pt nearest-neighbor and higher alloy degree. Finally, a preliminary stability test was conducted in an HT-PEMFC, and promising results in terms of stability and performance were observed.
Fang, Baizeng; Kim, Jung Ho; Kim, Minsik; Kim, Minwoo; Yu, Jong-Sung
2009-03-07
Hierarchical nanostructured spherical carbon with hollow macroporous core in combination with mesoporous shell has been explored to support Pt cathode catalyst with high metal loading in proton exchange membrane fuel cell (PEMFC). The hollow core-mesoporous shell carbon (HCMSC) has unique structural characteristics such as large specific surface area and mesoporous volume, ensuring uniform dispersion of the supported high loading (60 wt%) Pt nanoparticles with small particle size, and well-developed three-dimensionally interconnected hierarchical porosity network, facilitating fast mass transport. The HCMSC-supported Pt(60 wt%) cathode catalyst has demonstrated markedly enhanced catalytic activity toward oxygen reduction and greatly improved PEMFC polarization performance compared with carbon black Vulcan XC-72 (VC)-supported ones. Furthermore, the HCMSC-supported Pt(40 wt%) or Pt(60 wt%) outperforms the HCMSC-supported Pt(20 wt%) even at a low catalyst loading of 0.2 mg Pt cm(-2) in the cathode, which is completely different from the VC-supported Pt catalysts. The capability of supporting high loading Pt is supposed to accelerate the commercialization of PEMFC due to the anticipated significant reduction in the amount of catalyst support required, diffusion layer thickness and fabricating cost of the supported Pt catalyst electrode.
Progress in radiation processing of polymers
NASA Astrophysics Data System (ADS)
Chmielewski, Andrzej G.; Haji-Saeid, Mohammad; Ahmed, Shamshad
2005-07-01
Modification in polymeric structure of plastic material can be brought either by conventional chemical means or by exposure to ionization radiation from ether radioactive sources or highly accelerated electrons. The prominent drawbacks of chemical cross-linking typically involve the generation of noxious fumes and by products of peroxide degradation. Both the irradiation sources have their merits and limitations. Increased utilization of electron beams for modification and enhancement of polymer materials has been in particular witnessed over the past 40 years. The paper highlights several recent cases of EB utilization to improve key properties of selected plastic products. In paper is provided a survey of radiation processing methods of industrial interest, encompassing technologies which are already commercially well established, through developments in the active R&D stage which show pronounced promise for future commercial use. Radiation cross-linking technologies discussed include: application in cable and wire, application in rubber tyres, radiation vulcanization of rubber latex, development of radiation crosslinked SiC fiber, polymer recycling, development of gamma compatible pp, hydrogels etc. Over the years, remarkable advancement has been achieved in radiation processing of natural polymers. Role of radiation in improving the processing of temperature of PCL for use as biodegradable polymer, in accelerated breakdown of cellulose into viscose and enhancement in yields of chitin/chitosan from sea-food waste, is described.
NASA Astrophysics Data System (ADS)
Giltrap, Samuel; Stuart, Nick; Robinson, Tim; Armstrong, Chris; Hicks, George; Eardley, Sam; Gumbrell, Ed; Smith, Roland
2016-10-01
Here we report on the development of an optical levitation based x-ray and proton source, motivated by the requirement for a debris free, high spatial resolution, and low EMP source for x-ray radiography and proton production. Research at Imperial College has led to the development of a feedback controlled optical levitation trap which is capable of holding both solid (Glass beads) and liquid (silicon based oil) micro-targets ( 3-10um). The optical levitation trap has been successfully fielded in a high-intensity laser interaction experiment at Imperial College London and at the Vulcan Petawatt Laser system at the Rutherford Appleton Laboratory (RAL). Here we report on the results from that RAL run including; an x-ray source size of 10-15um with very good spherical symmetry when compared to wire targets, secondly very low EMP signal from isolated levitated targets (9 times less RF signal than a comparable wire target). At Imperial College we were also able to record an x-ray energy spectrum which produced an electron temperature of 0.48KeV, and performed interferometry of a shock evolving into a blast wave off an optically levitated droplet which allowed us to infer the electron density within the shock front.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milani, G., E-mail: gabriele.milani@polimi.it; Hanel, T.; Donetti, R.
The paper is aimed at studying the possible interaction between two different accelerators (DPG and TBBS) in the chemical kinetic of Natural Rubber (NR) vulcanized with sulphur. The same blend with several DPG and TBBS concentrations is deeply analyzed from an experimental point of view, varying the curing temperature in the range 150-180°C and obtaining rheometer curves with a step of 10°C. In order to study any possible interaction between the two accelerators –and eventually evaluating its engineering relevance-rheometer data are normalized by means of the well known Sun and Isayev normalization approach and two output parameters are assumed asmore » meaningful to have an insight into the possible interaction, namely time at maximum torque and reversion percentage. Two different numerical meta-models, which belong to the family of the so-called response surfaces RS are compared. The first is linear against TBBS and DPG and therefore well reproduces no interaction between the accelerators, whereas the latter is a non-linear RS with bilinear term. Both RS are deduced from standard best fitting of experimental data available. It is found that, generally, there is a sort of interaction between TBBS and DPG, but that the error introduced making use of a linear model (no interaction) is generally lower than 10%, i.e. fully acceptable from an engineering standpoint.« less
NASA Astrophysics Data System (ADS)
Taewattana, Rapiphan; Jubsilp, Chanchira; Suwanmala, Phiriyatorn; Rimdusit, Sarawut
2018-04-01
Three types of ultrafine fully vulcanized powdered rubbers (UFRs), i.e. natural rubber (NR), carboxylated nitrile-butadiene rubber (XNBR), and carboxylated styrene-butadiene rubber (XSBR) were prepared by combined technology between gamma irradiation for crosslinking and spray drying. The effects of doses in a range of 0-250 kGy on swelling ratio, crosslink density, and thermal stability of UFRs were investigated. Smaller particle size of UFRs was obtained at higher dose. A decrease in the swelling ratio and an increase in crosslink density were well corresponded to crosslinking effect related with absorbed dose. The increase in dose was also found to improve thermal performance of URFs. The influence of irradiated UFRs on impact resistance and glass transition temperature (Tg) of polybenzoxazine composites was also evaluated. The highest impact resistance of the composites belonged to the composite filled with irradiated UFXNBR at 200 kGy. While the significantly enhanced Tg of the composite was obtained by an addition of irradiated UFRs with higher doses, i.e. Tg = 173 °C for the composite filled with irradiated UFXNBR at 250 kGy. As a consequence, the UFRs can be used to effectively modify thermal and mechanical properties, especially impact resistance of polybenzoxazine composites.
Gromiec, Jan P; Wesołowski, Wiktor; Brzeźnicki, Sławomir; Wróblewska-Jakubowska, Krystyna; Kucharska, Małgorzata
2002-12-01
Several hundred chemical compounds were found in workroom environments in the rubber industry, but most of the published exposure data relate to the production of tyres; information from the "non-tyre" sections are very limited, if any. This study was carried out to identify chemical substances and measure their air concentrations in the repair shop of a brown coal mine in which damaged rubber conveyor belts were repaired. GC-MS and HPLC analysis of stationary air samples resulted in identification of aliphatic and aromatic hydrocarbons to C12, PAHs, alcohols, phenols, ketones, heterocyclic nitrogen and sulfur compounds. Quantitative evaluation of occupational exposure included determination of organic compound vapours collected on charcoal (GC-MSD), polycyclic aromatic hydrocarbons (HPLC), N-nitrosoamines and other amines (GC-NPD) and DNPH derivatives of aldehydes (HPLC) in the breathing zone of workers representing all job titles. The concentrations of investigated compounds were very low. Carcinogenic substances: N-nitrosoamines, benzene, PAHs were not present in workroom air in concentrations exceeding limits of detection of the analytical methods being applied; concentrations of methylisobutylketone, tetrachloroethylene, naphtha, aromatic hydrocarbons, phthalates and aldehydes were much lower than the respective occupational exposure limit values. The results indicate much lower exposure than that reported in the production of tyres and other fabricated rubber products.
Karanjkar, Pranav U.; Burt, Samuel P.; Chen, Xiaoli; ...
2016-09-12
Tetrahydropyran-2-methanol undergoes selective C–O–C hydrogenolysis to produce 1,6-hexanediol using a bifunctional RhRe (reducible metal with an oxophilic promoter) catalyst supported on Vulcan XC-72 carbon (VXC) with >90% selectivity. This RhRe/VXC catalyst is stable over 40 h of reaction in a continuous flow fixed bed reactor. The hydrogenolysis activity of RhRe/VXC is two orders-of-magnitude higher than that of RhRe supported on Norit Darco 12X40 activated carbon (NDC). STEM–EDS analysis reveals that, compared to the RhRe/VXC catalyst, the Re and Rh component metals are segregated on the surface of the low activity RhRe/NDC catalyst, suggesting that Rh and Re in close proximitymore » (“bimetallic” particles) are required for an active hydrogenolysis catalyst. Differences in metal distribution on the carbon surfaces are, in turn, linked to the properties of the carbons: NDC has both a higher surface area and surface oxygen content. Thus, the low areal density of Rh and Re precursors on the high area NDC and/or interactions of the precursors with its O functional groups may interfere with the formation of the bimetallic species required for an active catalyst.« less
NASA Astrophysics Data System (ADS)
Mohammed Reffai, Syed Ismail Syed; Chatterjee, Tuhin; Naskar, Kinsuk
2018-07-01
This paper reports the heat and oil resistant hydrogenated acrylonitrile butadiene rubber (HNBR)/Polyamide 12 (PA12) blends prepared by electron beam irradiation. Electron beam irradiated blends are characterized by processing behaviour like thermoplastic at elevated temperature and performance properties of vulcanized rubber at ambient temperature. In the present work, a new class of blends based on Hydrogenated acrylonitrile butadiene rubber (HNBR) and polyamide (PA12) has been developed. The blends are cured with different radiation dosage at a fixed blend ratio (70:30) of (HNBR/PA12). The blend having the 75 kGy shows the highest level of mechanical properties as well as superior thermal stability. Dynamic mechanical analysis (DMA) also demonstrates the tanδ values of all the blends are lower and the storage modules are higher for HE-75 kGy blend system compared to other blend system. Heat aging, oil aging, oil swelling and cross-link density study have also been carried out in details to understand the performance behaviour of these blends at service condition (150 °C). These blends are considered to find potential application in automotive sector especially for automotive under-the-hood-applications.
NASA Technical Reports Server (NTRS)
Benafan, Othmane
2012-01-01
The deformation and transformation mechanisms of polycrystalline Ni49.9Ti50.1 and Ni50.3Ti29.7Hf20 (in at.%) shape memory alloys were investigated by combined experimental and modeling efforts aided by an in situ neutron diffraction technique at stress and temperature. The thermomechanical response of the low temperature martensite, the high temperature austenite phases, and changes between these two states during thermomechanical cycling were probed and reported. In the cubic austenite phase, stress-induced martensite, deformation twinning and slip processes were observed which helped in constructing a deformation map that contained the limits over which each of the identified mechanisms was dominant. Deformation of the monoclinic martensitic phase was also investigated where the microstructural changes (texture, lattice strains, and phase fractions) during room-temperature deformation and subsequent thermal cycling were compared to the bulk macroscopic response. When cycling between these two phases, the evolution of inelastic strains, along with the shape setting procedures were examined and used for the optimization of the transformation properties as a function of deformation levels and temperatures. Finally, this work was extended to the development of multiaxial capabilities at elevated temperatures for the in situ neutron diffraction measurements of shape memory alloys on the VULCAN Diffractometer at Oak Ridge National Laboratory.
2017-07-14
In July 2015, NASA's New Horizons spacecraft sent home the first close-up pictures of Pluto and its moons. Using actual New Horizons data and digital elevation models of Pluto and its largest moon, Charon, mission scientists created flyover movies that offer spectacular new perspectives of the many unusual features that were discovered and which have reshaped our views of the Pluto system -- from a vantage point even closer than a ride on New Horizons itself. The flight over Charon begins high over the hemisphere New Horizons saw on its closest approach, then descends over the deep, wide canyon of Serenity Chasma. The view moves north, passing over Dorothy Gale crater and the dark polar hood of Mordor Macula. The flight then turns back south, covering the northern terrain of Oz Terra before ending over the relatively flat equatorial plains of Vulcan Planum and the "moated mountains" of Clarke Montes. (Note that all feature names are informal.) The topographic relief is exaggerated by a factor of 2 to 3 in these movies to emphasize topography; the surface colors have also been enhanced to bring out detail. Digital mapping and rendering were performed by Paul Schenk and John Blackwell of the Lunar and Planetary Institute in Houston. A video is available at https://photojournal.jpl.nasa.gov/catalog/PIA21864
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lall, Pradeep; Zhang, Hao; Davis, J Lynn
The energy efficiency of light-emitting diode (LED) technology compared to incandescent light bulbs has triggered an increased focus on solid state luminaries for a variety of lighting applications. Solid-state lighting (SSL) utilizes LEDs, for illumination through the process of electroluminescence instead of heating a wire filament as seen with traditional lighting. The fundamental differences in the construction of LED and the incandescent lamp results in different failure modes including lumen degradation, chromaticity shift and drift in the correlated color temperature. The use of LED-based products for safety-critical and harsh environment applications necessitates the characterization of the failure mechanisms and modes.more » In this paper, failure mechanisms and color stability has been studied for commercially available vertical structured thin film LED (VLED) under harsh environment conditions with and without the presence of contaminants. The VLED used for the study was mounted on a ceramic starboard in order to connect it to the current source. Contamination sources studied include operation in the vicinity of vulcanized rubber and adhesive epoxies in the presence of temperature and humidity. Performance of the VLEDs has been quantified using the measured luminous flux and color shift of the VLEDs subjected to both thermal and humidity stresses under a forward current bias of 350 mA. Results indicate that contamination can result in pre-mature luminous flux degradation and color shift in LEDs.« less
NASA Astrophysics Data System (ADS)
Horiguchi, Genki; Chikaoka, Yu; Shiroishi, Hidenobu; Kosaka, Shinpei; Saito, Morihiro; Kameta, Naohiro; Matsuda, Naoki
2018-04-01
In the preparation of metallic nanoparticles by conventional solution plasma (SP) techniques, unstable plasma emission becomes an issue when the voltage and frequency of the waves applied between two electrodes placed in solution are lowered to avoid the boiling of the solution. In this study, we confirm that, in the presence of microbubbles, plasma is generated stably at low voltage (440 V) and low frequency (50-100 Hz) and small-size (≤10 nm) Pt nanoparticles (PtNPs) are synthesized in succession using a flow cell. The smallest PtNPs, ∼3.3 nm in diameter, are obtained using half-wave rectification, a tungsten wire anode, and a platinum wire cathode. The PtNPs are characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, and thermogravimeter-differential thermal analysis. The oxygen reduction reaction (ORR) is investigated in 0.1 M HClO4 solution on carbon-supported PtNPs using a rotating ring-disk electrode. The catalytic activities per initial electrochemical active surface area of the carbon-supported PtNPs synthesized employing the low-voltage, low-frequency (LVLF)-SP technique is higher than that of the commercially available 20 wt% Pt on Vulcan XC-72R. These results indicate that the LVLF-SP technique is a promising approach to producing carbon-supported PtNPs that catalyze ORR with low energy consumption.
Mutsuga, M; Wakui, C; Kawamura, Y; Maitani, T
2002-11-01
In Japan, disposable gloves made from nitrile-butadiene rubber (NBR) are frequently used in contact with foods. In a previous paper, we investigated substances migrating from various gloves made of polyvinyl chloride, polyethylene, natural rubber and NBR. Zinc di-n-butyldithiocarbamate (ZDBC), diethyldithiocarbamate (ZDEC) used as vulcanization accelerators, di(2-ethylhexyl)phthalate (DEHP) used as a plasticizer and many unknown compounds that migrated from NBR gloves into n-heptane were detected by GC/MS. In this paper, six unknown compounds were obtained from one kind of NBR glove by n-hexane extraction and each was isolated by silica gel chromatography. From the results of NMR and mass spectral analysis of the six unknown compounds, their structures are proposed as 1,4-dione-2,5-bis(1,1-dimethylpropyl)cyclohexadiene (1), 2-(1,1-dimethylethyl)-4-(1,1,3,3-tetra methylbutyl)phenol (2), 2,6-bis(1,1-dimethylethyl)-4-(1,1,3,3-tetramethylbutyl)phenol (3), 2,4-bis(1,1,3,3-tetramethylbutyl)phenol (4), 2-(1,1-dimethylethyl)4,6-bis(1,1,3,3-tetramethylbutyl)phenol (5) and 2,4,6-tris(1,1,3,3-tetramethylbutyl)phenol (6). Compound 1 was observed in five of the seven kinds of NBR gloves, and compounds 2-4 and 6, which are not listed in Chemical Abstract (CA), were present in four kinds of gloves.
Stability of carbon electrodes for aqueous lithium-air secondary batteries
NASA Astrophysics Data System (ADS)
Ohkuma, Hirokazu; Uechi, Ichiro; Matsui, Masaki; Takeda, Yasuo; Yamamoto, Osamu; Imanishi, Nobuyuki
2014-01-01
The air electrode performance of various carbon materials, such as Ketjen black (KB), acetylene black (AB and AB-S), Vulcan XC-72R (VX), and vapor grown carbon fiber (VGCF) with and without La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) catalyst were examined in an aqueous solution of saturated LiOH with 10 M LiCl in the current density range 0.2-2.0 mA cm-2. The best performance for oxygen reduction and evolution reactions was observed for the KB electrode, which has the highest surface area among the carbon materials examined. A steady over-potential of 0.2 V was obtained for the oxygen reduction reaction using the KB electrode without the catalyst, while the over-potential was 0.15 V for KB with the LSCF catalyst at 2.0 mA cm-2. The over-potentials for the oxygen evolution reaction were slightly higher than those for the oxygen reduction reaction, and gradually increased with the polarization period. Analysis of the gas in the cell after polarization above 0.4 V revealed the evolution of a small amount of CO during the oxygen evolution reaction by the decomposition of carbon in the electrode. The amount of CO evolved was significantly decreased by the addition of LSCF to the carbon electrode.
Studies on Stress-Strain Relationships of Polymeric Materials Used in Space Applications
NASA Technical Reports Server (NTRS)
Jana, Sadhan C.; Freed, Alan
2002-01-01
A two-year research plan was undertaken in association with Polymers Branch, NASA Glenn Research Center, to carry out experimental and modeling work relating stress and strain behavior of polymeric materials, especially elastomers and vulcanized rubber. An experimental system based on MTS (Mechanical Testing and Simulation) A/T-4 test facility environment has been developed for a broader range of polymeric materials in addition to a design of laser compatible temperature control chamber for online measurements of various strains. Necessary material processing has been accomplished including rubber compounding and thermoplastic elastomer processing via injection molding. A broad suite of testing methodologies has been identified to reveal the complex non-linear mechanical behaviors of rubbery materials when subjected to complex modes of deformation. This suite of tests required the conceptualization, design and development of new specimen geometries, test fixtures, and test systems including development of a new laser based technique to measure large multi-axial deformations. Test data has been generated for some of these new fixtures and has revealed some complex coupling effects generated during multi-axial deformations. In addition, fundamental research has been conducted concerning the foundation principles of rubber thermodynamics and resulting theories of rubber elasticity. Studies have been completed on morphological properties of several thermoplastic elastomers. Finally, a series of steps have been identified to further advance the goals of NASA's ongoing effort.
Nb doped TiO2 as a Cathode Catalyst Support Material for Polymer Electrolyte Membrane Fuel Cells
NASA Astrophysics Data System (ADS)
O'Toole, Alexander W.
In order to reduce the emissions of greenhouse gases and reduce dependence on the use of fossil fuels, it is necessary to pursue alternative sources of energy. Transportation is a major contributor to the emission of greenhouse gases due to the use of fossil fuels in the internal combustion engine. To reduce emission of these pollutants into the atmosphere, research is needed to produce alternative solutions for vehicle transportation. Low temperature polymer electrolyte membrane fuel cells are energy conversion devices that provide an alternative to the internal combustion engine, however, they still have obstacles to overcome to achieve large scale implementation. T he following work presents original research with regards to the development of Nb doped TiO2 as a cathode catalyst support material for low temperature polymer electrolyte membrane fuel cells. The development of a new process to synthesize nanoparticles of Nb doped TiO2 with controlled compositions is presented as well as methods to scale up the process and optimize the synthesis for the aforementioned application. In addition to this, comparison of both electrochemical activity and durability with current state of the art Pt on high surface area carbon black (Vulcan XC-72) is investigated. Effects of the strong metal-support interaction on the electrochemical behavior of these materials is also observed and discussed.
NASA Astrophysics Data System (ADS)
Whelan, M.; LaFranchi, B. W.; Bambha, R.; Michelsen, H. A.; Fischer, M. L.; Graven, H. D.; Baker, I. T.; Guilderson, T.; Campbell, J. E.
2016-12-01
Direct measurement and attribution of carbon exchange over urban areas is challenging because of the heterogeneity of the landscape and errors introduced by flux source partitioning. One important contribution to uncertainty is the influence of the urban biosphere on the regional carbon budget. Atmospheric observations of carbonyl sulfide (COS) are an emerging tool for estimating gross primary productivity: COS is consumed in plant leaves by parallel pathways to CO2 uptake, without the additional complexity of an analogous respiration term. This study makes use of COS measurements to better understand fluctuations in total CO2 concentrations over an urban region due to the balance of photosynthesis and respiration. In situ ground-based observations of trace gas concentrations were made from a tower in Livermore, CA, USA, and interpreted with WRF-STILT back trajectories and gridded data sets (e.g. VULCAN, a new anthropogenic COS inventory), supplemented with biosphere models (SiB, CASA-GFED3). CO2, 14CO2, and CO observations were used to first parse the contribution of fossil fuel emissions to total CO2. Changes in the remainder CO2 was differentiated as the sum of biosphere components with associated uncertainties. This approach could be used to better validate carbon emissions reduction measures and ecosytem-based carbon capture projects on the regional scale.
In-situ formation of solidified hydrogen thin-membrane targets using a pulse tube cryocooler
NASA Astrophysics Data System (ADS)
Astbury, S.; Bedacht, S.; Brummitt, P.; Carroll, D.; Clarke, R.; Crisp, S.; Hernandez-Gomez, C.; Holligan, P.; Hook, S.; Merchan, J. S.; Neely, D.; Ortner, A.; Rathbone, D.; Rice, P.; Schaumann, G.; Scott, G.; Spindloe, C.; Spurdle, S.; Tebartz, A.; Tomlinson, S.; Wagner, F.; Borghesi, M.; Roth, M.; Tolley, M. K.
2016-04-01
An account is given of the Central Laser Facility's work to produce a cryogenic hydrogen targetry system using a pulse tube cryocooler. Due to the increasing demand for low Z thin laser targets, CLF (in collaboration with TUD) have been developing a system which allows the production of solid hydrogen membranes by engineering a design which can achieve this remotely; enabling the gas injection, condensation and solidification of hydrogen without compromising the vacuum of the target chamber. A dynamic sealing mechanism was integrated which allows targets to be grown and then remotely exposed to open vacuum for laser interaction. Further research was conducted on the survivability of the cryogenic targets which concluded that a warm gas effect causes temperature spiking when exposing the solidified hydrogen to the outer vacuum. This effect was shown to be mitigated by improving the pumping capacity of the environment and reducing the minimum temperature obtainable on the target mount. This was achieved by developing a two-stage radiation shield encased with superinsulating blanketing; reducing the base temperature from 14 ± 0.5 K to 7.2 ± 0.2 K about the coldhead as well as improving temperature control stability following the installation of a high-performance temperature controller and sensor apparatus. The system was delivered experimentally and in July 2014 the first laser shots were taken upon hydrogen targets in the Vulcan TAP facility.
NASA Astrophysics Data System (ADS)
Shao, Yuyan; Zhang, Sheng; Kou, Rong; Wang, Xiqing; Wang, Chongmin; Dai, Sheng; Viswanathan, Vilayanur; Liu, Jun; Wang, Yong; Lin, Yuehe
We report a durable electrocatalyst support, highly graphitized mesoporous carbon (GMPC), for oxygen reduction in polymer electrolyte membrane (PEM) fuel cells. GMPC is prepared through graphitizing the self-assembled soft-template mesoporous carbon (MPC) under high temperature. Heat-treatment at 2800 °C greatly improves the degree of graphitization while most of the mesoporous structures and the specific surface area of MPC are retained. GMPC is then noncovalently functionalized with poly(diallyldimethylammonium chloride) (PDDA) and loaded with Pt nanoparticles by reducing Pt precursor (H 2PtCl 6) in ethylene glycol. Pt nanoparticles of ∼3.0 nm in diameter are uniformly dispersed on GMPC. Compared to Pt supported on Vulcan XC-72 carbon black (Pt/XC-72), Pt/GMPC exhibits a higher mass activity towards oxygen reduction reaction (ORR) and the mass activity retention (in percentage) is improved by a factor of ∼2 after 44 h accelerated degradation test under the potential step (1.4-0.85 V) electrochemical stressing condition which focuses on support corrosion. The enhanced activity and durability of Pt/GMPC are attributed to the graphitic structure of GMPC which is more resistant to corrosion. These findings demonstrate that GMPC is a promising oxygen reduction electrocatalyst support for PEM fuel cells. The approach reported in this work provides a facile, eco-friendly promising strategy for synthesizing stable metal nanoparticles on hydrophobic support materials.
The triumph and tragedy of James Baxler Bean, MD, DDS (1834-1870).
Christen, Arden G; Christen, Joan A
2003-03-01
In 1863, James Baxter Bean, a Southern physician and dentist, invented the interdental splint. This device was used to treat hundreds of Confederate soldiers who had received gun shot-related facial and jaw injuries during the Civil War. Made of vulcanized India-rubber, the splint provided a dramatic breakthrough in the treatment of maxillofacial wounds. In an Atlanta, Georgia hospital, Dr. Bean utilized his invention by establishing the first ward devoted exclusively to the treatment of jaw fractures. He also invented an apparatus that manufactured and administered nitrous oxide. Additionally, Bean's groundwork in casting aluminum as a denture base material led to Taggart's later invention (in 1907) of the casting machine. After the Civil War, Dr. Bean became a highly successful dentist, practicing in Baltimore, Maryland. In the fall of 1870, at age 36, Bean, representing the Smithsonian Institution in Washington, D.C., traveled to Europe to gather geological specimens. A short time after arriving, Bean decided to climb Mont Blanc with ten other men. The entire group perished in a raging 8-day snow storm on the mountain peak. This tragedy, a compelling drama, is legendary in the annals of mountaineering history. After Dr. Bean's passing, his wife lost her sanity and subsequently died. Later, the death of the couple's only child, Chapin, sadly ended the family line. Although his life was cut short, Bean's contributions to dentistry have been significant and far-reaching.
Autonomic self-healing in epoxidized natural rubber.
Rahman, Arifur; Sartore, Luciana; Bignotti, Fabio; Di Landro, Luca
2013-02-01
The development of polymers that can repair damage autonomously would be useful to improve the lifetime of polymeric materials. To date, limited attention has been dedicated to developing elastomers with autonomic self-healing ability, which can recover damages without need for an external or internal source of healing agents. This work investigates the self-healing behavior of epoxidized natural rubber (ENR) with two different epoxidation levels (25 and 50 mol % epoxidation) and of the corresponding unfunctionalized rubber, cis-1,4-polyisoprene (PISP). A self-adhesion assisted self-healing behavior was revealed by T-peel tests on slightly vulcanized rubbers. A higher epoxidation level was found to enhance self-healing. Self-healing of rubbers following ballistic damages was also investigated. A pressurized air flow test setup was used to evaluate the self-healing of ballistic damages in rubbers. Microscope (OM, SEM, and TEM) analyses were carried out to provide further evidence of healing in the impact zones. Self-healing of ballistic damages was observed only in ENR with 50 mol % epoxidation and it was found to be influenced significantly by the cross-link density. Finally, self-healing of ballistic damages was also observed in ENR50/PISP blends only when the content of the healing component (i.e., ENR50) was at least 25 wt %. From an analysis of the results, it was concluded that a synergistic effect between interdiffusion and interaction among polar groups leads to self-healing in ENR.
Xin, Le; Yang, Fan; Qiu, Yang; ...
2016-08-25
Nanoscale graphenes were used as cathode catalyst supports in proton exchange membrane fuel cells (PEMFCs). Surface-initiated polymerization that covalently bonds polybenzimidazole (PBI) polymer on the surface of graphene supports enables the uniform distribution of the Pt nanoparticles, as well as allows the sealing of the unterminated carbon bonds usually present on the edge of graphene from the chemical reduction of graphene oxide. The nanographene effectively shortens the length of channels and pores for O 2 diffusion/water dissipation and significantly increases the primary pore volume. Further addition of p-phenyl sulfonic functional graphitic carbon particles as spacers, increases the specific volume ofmore » the secondary pores and greatly improves O 2 mass transport within the catalyst layers. The developed composite cathode catalyst of Pt/PBI-nanographene (50 wt%) + SO 3H-graphitic carbon black demonstrates a higher beginning of life (BOL) PEMFC performance as compared to both Pt/PBI-nanographene (50 wt%) and Pt/PBI-graphene (50 wt%) + SO 3H-graphitic carbon black (GCB). Accelerated stress tests show excellent support durability compared to that of traditional Pt/Vulcan XC72 catalysts, when subjected to 10,000 cycles from 1.0 V to 1.5 V. As a result, this study suggests the promise of using PBI-nanographene + SO 3H-GCB hybrid supports in fuel cells to achieve the 2020 DOE targets for transportation applications.« less
Shimada, Kunio; Saga, Norihiko
2016-01-01
Sensors are essential to the fulfillment of every condition of haptic technology, and they need simultaneously to sense shear stress as well as normal force, and temperature. They also must have a strong and simple structure, softness, and large extension. To achieve these conditions simultaneously, we enhanced the sensitivity of sensors utilizing natural rubber (NR)-latex through the application of electrolytic polymerization focused on the isoprene C=C bonds in natural rubbers such as NR-latex, and then applied a magnetic field and magnetic compound fluid (MCF) as magnetically responsive fluid. When an electric field alone was used in the rubber, the effect of electrolytic polymerization was very small compared to the effect in well-known conductive polymer solution such as plastic. The MCF developed by Shimada in 2001 involved magnetite and metal particles, and acts as a filler in NR-latex. By utilizing the magnetic, electric fields and the MCF, we aligned the electrolytically polymerized C=C along the magnetic field line with the magnetic clusters formed by the aggregation of magnetite and metal particles so as to enhance the effect of electrolytic polymerization. We then demonstrated the effectiveness of the new method of rubber vulcanization on the sensitivity of the rubber by experimentally investigating its electric and dynamic characteristics. PMID:27649210
Reinforcement of natural rubber latex using lignocellulosic nanofibers isolated from spinifex grass.
Hosseinmardi, Alireza; Annamalai, Pratheep K; Wang, Lianzhou; Martin, Darren; Amiralian, Nasim
2017-07-13
Reinforcement of natural rubber (NR) using nanofillers often results in an enhancement of the tensile strength, but at the expense of elongation at break and toughness. In this study, with the objective of strengthening NR without compromising its compliance, we investigate the reinforcement efficiency of a series of cellulose nanofibers (CNF) with variations in residual hemicellulose, lignin and therefore surface chemistry. Different types of high aspect ratio CNF isolated from Triodia pungens (T. pungens), an Australian arid grass commonly known as spinifex, were added at 0.1-2 wt% loadings into a pre-vulcanized NR latex. CNF/NR nanocomposites then were benchmarked against NR nanocomposites incorporating a well-known wood-derived CNF. It was found that the presence of residual lignin and hemicellulose, and the pretreatment with a deep eutectic solvent, a mixture of choline chloride and urea (CCU), could increase the compatibility of CNF with the NR matrix, while still enabling stability and handling of the colloidal latex mixture. Incorporation of 0.5 and 0.1 wt% of the sodium hydroxide treated CNF and choline chloride/urea treated CNF into the NR latex showed respectively 11 and 17% enhancement in tensile stress, and importantly without compromising viscoelastic properties; while addition of 0.1 wt% wood-derived CNF resulted in 18% decrease in both tensile stress and strain coupled with more pronounced latex stiffening.
Paganoto, Giordano T.; Santos, Deise M.; Guimarães, Marco C. C.; Carneiro, Maria Tereza W. D.
2017-01-01
This paper is consisted in the synthesis of platinum-based electrocatalysts supported on carbon (Vulcan XC-72) and investigation of the addition of gallium in their physicochemical and electrochemical properties toward ethanol oxidation reaction (EOR). PtGa/C electrocatalysts were prepared through thermal decomposition of polymeric precursor method at a temperature of 350°C. Six different compositions were homemade: Pt50Ga50/C, Pt60Ga40/C, Pt70Ga30/C, Pt80Ga20/C, Pt90Ga10/C, and Pt100/C. These electrocatalysts were electrochemically characterized by cyclic voltammetry (CV), chronoamperometry (CA), chronopotentiometry (CP), and electrochemical impedance spectroscopy (EIS) in the presence and absence of ethanol 1.0 mol L−1. Thermogravimetric analysis (TGA), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and transmission electron microscopy (TEM) were also carried out for a physicochemical characterization of those materials. XRD results showed the main peaks of face-centered cubic Pt. The particle sizes obtained from XRD and TEM analysis range from 7.2 nm to 12.9 nm. The CV results indicate behavior typical of Pt-based electrocatalysts in acid medium. The CV, EIS, and CA data reveal that the addition of up to 31% of gallium to the Pt highly improves catalytic activity on EOR response when compared to Pt100/C. PMID:28466065
3D Analysis of Fuel Cell Electrocatalyst Degradation on Alternate Carbon Supports.
Sneed, Brian T; Cullen, David A; Reeves, Kimberly S; Dyck, Ondrej E; Langlois, David A; Mukundan, Rangachary; Borup, Rodney L; More, Karren L
2017-09-06
Understanding the mechanisms associated with Pt/C electrocatalyst degradation in proton exchange membrane fuel cell (PEMFC) cathodes is critical for the future development of higher-performing materials; however, there is a lack of information regarding Pt coarsening under PEMFC operating conditions within the cathode catalyst layer. We report a direct and quantitative 3D study of Pt dispersions on carbon supports (high surface area carbon (HSAC), Vulcan XC-72, and graphitized carbon) with varied surface areas, graphitic character, and Pt loadings ranging from 5 to 40 wt %. This is accomplished both before and after catalyst-cycling accelerated stress tests (ASTs) through observations of the cathode catalyst layer of membrane electrode assemblies. Electron tomography results show Pt nanoparticle agglomeration occurs predominantly at junctions and edges of aggregated graphitized carbon particles, leading to poor Pt dispersion in the as-prepared catalysts and increased coalescence during ASTs. Tomographic reconstructions of Pt/HSAC show much better initial Pt dispersions, less agglomeration, and less coarsening during ASTs in the cathode. However, a large loss of the electrochemically active surface area (ECSA) is still observed and is attributed to accelerated Pt dissolution and nanoparticle coalescence. Furthermore, a strong correlation between Pt particle/agglomerate size and measured ECSA is established and is proposed as a more useful metric than average crystallite size in predicting degradation behavior across different catalyst systems.
3D Analysis of Fuel Cell Electrocatalyst Degradation on Alternate Carbon Supports
Sneed, Brian T.; Cullen, David A.; Reeves, Kimberly S.; ...
2017-08-15
Understanding the mechanisms associated with Pt/C electrocatalyst degradation in proton exchange membrane fuel cell (PEMFC) cathodes is critical for the future development of higher-performing materials; however, there is a lack of information regarding Pt coarsening under PEMFC operating conditions within the cathode catalyst layer. We report a direct and quantitative 3D study of Pt dispersions on carbon supports (high surface area carbon (HSAC), Vulcan XC-72, and graphitized carbon) with varied surface areas, graphitic character, and Pt loadings ranging from 5 to 40 wt %. This is accomplished both before and after catalyst-cycling accelerated stress tests (ASTs) through observations of themore » cathode catalyst layer of membrane electrode assemblies. Electron tomography results show Pt nanoparticle agglomeration occurs predominantly at junctions and edges of aggregated graphitized carbon particles, leading to poor Pt dispersion in the as-prepared catalysts and increased coalescence during ASTs. Tomographic reconstructions of Pt/HSAC show much better initial Pt dispersions, less agglomeration, and less coarsening during ASTs in the cathode. However, a large loss of the electrochemically active surface area (ECSA) is still observed and is attributed to accelerated Pt dissolution and nanoparticle coalescence. Moreover, a strong correlation between Pt particle/agglomerate size and measured ECSA is established and is proposed as a more useful metric than average crystallite size in predicting degradation behavior across different catalyst systems.« less
NASA Astrophysics Data System (ADS)
Panić, V. V.; Dekanski, A. B.; Stevanović, R. M.
Hydrous ruthenium oxide/carbon black nanocomposites were prepared by impregnation of the carbon blacks by differently aged inorganic RuO 2 sols, i.e. of different particle size. Commercial Black Pearls 2000 ® (BP) and Vulcan ® XC-72 R (XC) carbon blacks were used. Capacitive properties of BP/RuO 2 and XC/RuO 2 composites were investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) in H 2SO 4 solution. Capacitance values and capacitance distribution through the composite porous layer were found different if high- (BP) and low- (XC) surface-area carbons are used as supports. The aging time (particle size) of Ru oxide sol as well as the concentration of the oxide solid phase in the impregnating medium influenced the capacitive performance of prepared composites. While the capacitance of BP-supported oxide decreases with the aging time, the capacitive ability of XC-supported oxide is promoted with increasing oxide particle size. The increase in concentration of the oxide solid phase in the impregnating medium caused an improvement of charging/discharging characteristics due to pronounced pseudocapacitance contribution of the increasing amount of inserted oxide. The effects of these variables in the impregnation process on the energy storage capabilities of prepared nanocomposites are envisaged as a result of intrinsic way of population of the pores of carbon material by hydrous Ru oxide particle.
Yang, Jun; Xie, Ying; Wang, Ruihong; Jiang, Baojiang; Tian, Chungui; Mu, Guang; Yin, Jie; Wang, Bo; Fu, Honggang
2013-07-24
The synergistic effect of WC and Pd has large benefit for ethanol electrooxidation. The small-sized Pd nanoparticles (NPs) decorated tungsten carbide on graphene (Pd-WC/GN) will be a promising anode catalyst for the direct ethanol fuel cells. The density functional theory (DFT) calculations reveal that the strong interaction exists at the interface between Pd and WC, which induces the electron transfer from WC to Pd. Fortunately, the nanoscale architecture of Pd-WC/GN has been successfully fabricated in our experiments. X-ray photoelectron spectrum further confirms the existence of electron transfer from WC to Pd in a Pd-WC/GN nanohybrid. Notably, electrochemical tests show that the Pd-WC/GN catalyst exhibits low onset potential, a large electrochemical surface area, high activity, and stability for ethanol electrooxidation in alkaline solution compared with Pd/graphene and Pd/commercial Vulcan 72R carbon catalysts. The enhancement can be attributed to the synergistic effect of Pd and WC on graphene. At the interface between Pd and WC, the electron transfer from WC to Pd leads to the increased electron densities of surface Pd, which is available for weakening adsorption of intermediate oxygen-containing species such as CO and activating catalyst. Meanwhile, the increased tungsten oxide induced by electron transfer can facilitate the effective removal of intermediate species adsorbed on the Pd surface through a bifunctional mechanism or hydrogen spillover effect.
Improving the efficiency of x-ray lasers
NASA Astrophysics Data System (ADS)
Tallents, Gregory J.; Zeitoun, Philippe; Behjat, A.; Demir, A.; Holden, M.; Krishnan, J.; Lewis, Ciaran L. S.; MacPhee, Andrew G.; Warwick, P. J.; Nantel, Marc; Jamelot, Gerard; Rus, Bedrich; Jaegle, Pierre; Klisnick, Annie; Goedtkindt, P.; Carillon, Antoine; Fill, Ernst E.; Li, Yuelin; Pretzler, Georg; Schloegl, Dieter; Steingruber, Juergen; Neely, David; Norreys, Peter A.; Key, Michael H.; Zhang, Jie; Pert, Geoffrey J.; Healy, S. B.; Plowes, J. A.
1995-09-01
Current successful approaches for achieving soft x-ray lasing typically require pumping laser pulses of duration approximately ns and energy approximately kJ (collisionally pumped schemes) or approximately ps pulses and powers of approximately several TW (recombination-pumped schemes). For applications, it is important to improve the efficiency of soft x-ray lasers and so reduce the required power of pumping lasers. The effect of pre- pulse on neon-like collisionally pumped lasers has been investigated using the LULI laser (Ecole Polytechnique, France). A small pre-pulse level approximately 10-3 of the main pulse energy was found to increase the J equals 0 minus 1 neon-like zinc laser output at 21 nm by an order-of-magnitude with a comparable increase in efficiency. A double pumping laser pulse on neon-like yttrium lasing output at 15 nm obtained with the VULCAN laser (Rutherford Appleton Laboratory, England) was also found to increase the x-ray lasing efficiency. With adiabatically cooled recombination lasing, it is shown that approximately 2 ps pulses are optimum for achieving the desired ionization balance for lasing output. The possibility of achieving recombination lasing at short wavelengths on lithium-like ions with longer pulse lasers has been investigated using the ASTERIX laser (Max-Planck Quantenoptik, Germany). These results are presented and interpreted to provide possible directions for improving the efficiency of x-ray lasers.
Comparative study of different carbon-supported Fe2O3-Pt catalysts for oxygen reduction reaction.
Tellez-Cruz, M M; Padilla-Islas, M A; Pérez-González, M; Solorza-Feria, O
2017-11-01
One of the challenges in electrocatalysis is the adequate dispersion of the catalyst on an appropriate porous support matrix, being up to now the most commonly used the carbon-based supports. To overcome this challenge, carbon supports must first be functionalized to guide the catalyst's nucleation, thereby, improving the dispersion and allowing the use of smaller amount of the catalyst material to achieve a higher electrochemically active surface area. This study present the effect of functionalized Vulcan carbon XC72 (FVC) and functionalized Black Pearl carbon (FBPC) as supports on the catalytic activity of decorated Fe 2 O 3 with Pt. Both carbons were functionalized with HNO 3 and subsequently treated with ethanolamine. Fe 2 O 3 nanoparticles were synthesized by chemical reduction and decorated with platinum by epitaxial growth. Pt and Fe 2 O 3 structural phases were identified by XRD and XPS; the Pt content was measured by XPS, and results showed to a high Pt content in Fe 2 O 3 -Pt/FBPC. TEM micrographs reveal nanoparticles with an average size of 2 nm in both supported catalysts. The Fe 2 O 3 -Pt/FVC catalyst presents the highest specific activity and mass activity, 0.21 mA cm -2 Pt and 140 mA mg Pt -1 , respectively, associated to the appropriate distribution of platinum on the Fe 2 O 3 nanoparticles.
Shimada, Kunio; Saga, Norihiko
2016-09-18
Sensors are essential to the fulfillment of every condition of haptic technology, and they need simultaneously to sense shear stress as well as normal force, and temperature. They also must have a strong and simple structure, softness, and large extension. To achieve these conditions simultaneously, we enhanced the sensitivity of sensors utilizing natural rubber (NR)-latex through the application of electrolytic polymerization focused on the isoprene C=C bonds in natural rubbers such as NR-latex, and then applied a magnetic field and magnetic compound fluid (MCF) as magnetically responsive fluid. When an electric field alone was used in the rubber, the effect of electrolytic polymerization was very small compared to the effect in well-known conductive polymer solution such as plastic. The MCF developed by Shimada in 2001 involved magnetite and metal particles, and acts as a filler in NR-latex. By utilizing the magnetic, electric fields and the MCF, we aligned the electrolytically polymerized C=C along the magnetic field line with the magnetic clusters formed by the aggregation of magnetite and metal particles so as to enhance the effect of electrolytic polymerization. We then demonstrated the effectiveness of the new method of rubber vulcanization on the sensitivity of the rubber by experimentally investigating its electric and dynamic characteristics.
3D Analysis of Fuel Cell Electrocatalyst Degradation on Alternate Carbon Supports
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sneed, Brian T.; Cullen, David A.; Reeves, Kimberly S.
Understanding the mechanisms associated with Pt/C electrocatalyst degradation in proton exchange membrane fuel cell (PEMFC) cathodes is critical for the future development of higher-performing materials; however, there is a lack of information regarding Pt coarsening under PEMFC operating conditions within the cathode catalyst layer. We report a direct and quantitative 3D study of Pt dispersions on carbon supports (high surface area carbon (HSAC), Vulcan XC-72, and graphitized carbon) with varied surface areas, graphitic character, and Pt loadings ranging from 5 to 40 wt %. This is accomplished both before and after catalyst-cycling accelerated stress tests (ASTs) through observations of themore » cathode catalyst layer of membrane electrode assemblies. Electron tomography results show Pt nanoparticle agglomeration occurs predominantly at junctions and edges of aggregated graphitized carbon particles, leading to poor Pt dispersion in the as-prepared catalysts and increased coalescence during ASTs. Tomographic reconstructions of Pt/HSAC show much better initial Pt dispersions, less agglomeration, and less coarsening during ASTs in the cathode. However, a large loss of the electrochemically active surface area (ECSA) is still observed and is attributed to accelerated Pt dissolution and nanoparticle coalescence. Moreover, a strong correlation between Pt particle/agglomerate size and measured ECSA is established and is proposed as a more useful metric than average crystallite size in predicting degradation behavior across different catalyst systems.« less
Space shuttle development Motor No. 9 (DM-9), volume 1
NASA Technical Reports Server (NTRS)
Garecht, Diane M.
1990-01-01
The results obtained during the December 23, 1987 static firing of the DM-9 test article are presented. The DM-9 full-scale static test article employed redesigned solid rocket motor (RSRM) field joint capture feature hardware with J-seal insulation configuration, and nozzle-to-case joint radial bolt design with bonded insulation configuration. The nozzle incorporated RSRM components, including a thicker cowl with involuted outer boot ring. The nozzle employed redundant and verifiable seals in all five joints, and room temperature vulcanization backfill in three joints. With very few exceptions, the DM-9 test article was flight configuration. The test was conducted under extreme weather conditions: temperature of 25 F and wind at 15 to 20 mph. Ballistics performance values were within specification requirements. The RSRM field joint (J-seal) insulation configuration functioned as predicted with no indication of hot gases reaching the capture feature O-rings. There was a blowhole in the polysulfide adhesive in the nozzle-to-case joint, but no evidence of hot gases past the wiper O-ring. Nozzle design changes appeared to perform nominally, with the exception of the outer boot ring, which suffered partial structural breakup late in the test. Field joint heaters maintained the controlling resistance temperature device temperature within the specified requirements during heater operation. The thrust vector control system operated properly. The redesigned water deluge system, temperature conditioning equipment, and other test support equipment performed as planned.
Heating in short-pulse laser-driven cone-capped wire targets
NASA Astrophysics Data System (ADS)
Mason, R. J.; Wei, M.; King, J.; Beg, F.; Stephens, R. B.
2007-11-01
The 2-D implicit hybrid simulation code e-PLAS has been used to study heating in cone-capped copper wire targets. The code e-PLAS tracks collisional particle-in-cell (PIC) electrons traversing background plasma of collisional Eulerian cold electron and ion fluids. It computes E- and B-fields by the Implicit Moment Method [1,2]. In recent experiments [3] at the Vulcan laser facility, sub- picosecond laser pulses at 1.06 μm, and 4.0 x 10^20 W/cm^2 intensity were focused into thin-walled (˜10 μm) cones attached to copper wires. The wire diameter was varied from 10-40 μm with a typical length of 1 mm. We characterize heating of the wires as a function of their diameters and length, and relate modifications of this heating to changes in the assumed laser-generated hot electron spectrum and directivity. As in recent nail experiments [4], the cones can serve as reservoirs for hot electrons, diverting them from passage down the wires. [1] R. J. Mason, and C. Cranfill, IEEE Trans. Plasma Sci. PS-14, 45 (1986). [2] R. J. Mason, J. Comp. Phys. 71, 429 (1987). [3] J. King et al., to be submitted to Phys. Rev. Lett.. [4] R. J. Mason, M. Wei, F. Beg, R. Stephens, and C. Snell, in Proc. of ICOPS07, Albuquerque, NM, June 17-22, 2007, Talk 7D4.
Schuttelaar, Marie L; Meijer, Joost M; Engfeldt, Malin; Lapeere, Hilde; Goossens, An; Bruze, Magnus; Persson, Christina; Bergendorff, Ola
2018-01-01
During rubber vulcanization, new compounds can be formed. To report a case of allergic shoe dermatitis in which the search for the allergen ultimately led to the identification of dimethylthiocarbamylbenzothiazole sulfide (DMTBS). A female presented with eczema on her feet after wearing Sperry Top Sider® canvas sneakers. Patch testing was performed with the European baseline series, additional series, shoe materials, and extracts of shoe materials. Thin-layer chromatography (TLC) was performed for additional patch testing, and high-performance liquid chromatography and gas chromatography-mass spectometry were used for chemical analysis. Positive reactions were found to thiuram mix (+), tetramethylthiuram monosulfide (TMTM) (+), shoe material (+), and shoe extracts in eth. (++) and acetone (+). The extracts did not contain TMTM or other components of thiuram mix. TLC strips yielded a positive reaction (+) to one spot, whereas chemical analysis gave a negative result. Thereafter, a similar sneaker from another patient with shoe dermatitis was analysed, and DMBTS was identified. New extracts of the shoe of our first patient were then also shown to contain DMTBS. DMTBS as culprit allergen was confirmed by positive patch testing with a dilution series with DMTBS. DMBTS was identified as the culprit allergen in shoe dermatitis, giving rise to compound allergy. The positive reaction to TMTM was considered to represent cross-reactivity. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Shepherd, Lara D; Perrie, Leon R; Brownsey, Patrick J
2007-11-01
In the Southern Hemisphere there has been little phylogeographical investigation of forest refugia sites during the last glacial. Hooker's spleenwort, Asplenium hookerianum, is a fern that is found throughout New Zealand. It is strongly associated with forest and is a proxy for the survival of woody vegetation during the last glacial maximum. DNA sequence data from the chloroplast trnL-trnF locus were obtained from 242 samples, including c. 10 individuals from each of 21 focal populations. Most populations contained multiple, and in many cases unique, haplotypes, including those neighbouring formerly glaciated areas, while the predominant inference from nested clade analysis was restricted gene flow with isolation by distance. These results suggest that A. hookerianum survived the last glacial maximum in widespread populations of sufficient size to retain the observed phylogeography, and therefore that the sheltering woody vegetation must have been similarly abundant. This is consistent with palynological interpretations for the survival in New Zealand of thermophilous forest species at considerably smaller distances from the ice sheets than recorded for the Northern Hemisphere. Eastern and central North Island populations of A. hookerianum were characterized by a different subset of haplotypes to populations from the remainder of the country. A similar east-west phylogeographical pattern has been detected in a diverse array of taxa, and has previously been attributed to recurrent vulcanism in the central North Island.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Figueroa, Victor G.; Lopez, Carlos; Nicolette, Vernon F.
2010-10-01
For certification, packages used for the transportation of plutonium by air must survive the hypothetical thermal environment specified in 10CFR71.74(a)(5). This regulation specifies that 'the package must be exposed to luminous flames from a pool fire of JP-4 or JP-5 aviation fuel for a period of at least 60 minutes.' This regulation was developed when jet propellant (JP) 4 and 5 were the standard jet fuels. However, JP-4 and JP-5 currently are of limited availability in the United States of America. JP-4 is very hard to obtain as it is not used much anymore. JP-5 may be easier to getmore » than JP-4, but only through a military supplier. The purpose of this paper is to illustrate that readily-available JP-8 fuel is a possible substitute for the aforementioned certification test. Comparisons between the properties of the three fuels are given. Results from computer simulations that compared large JP-4 to JP-8 pool fires using Sandia's VULCAN fire model are shown and discussed. Additionally, the Container Analysis Fire (CAFE) code was used to compare the thermal response of a large calorimeter exposed to engulfing fires fueled by these three jet propellants. The paper then recommends JP-8 as an alternate fuel that complies with the thermal environment implied in 10CFR71.74.« less
NASA Astrophysics Data System (ADS)
Chankrachang, M.; Limphirat, W.; Yongyingsakthavorn, P.; Nontakaew, U.; Tohsan, A.
2017-09-01
A study of sulfidic linkages formed in natural rubber (NR) latex medical gloves by using X-ray Absorption Near Edge Structure (XANES) is presented in this paper. The NR latex compound was prepared by using prevulcanization method, that is, it was prevulcanized at room temperature for 24 hrs before utilization. After the 24 hrs of prevulcanization, the latex film samples were obtained by dipping process. The dipped films were subjected to vulcanize at 110°C for 5 to 25 min. It was observed that after the compound was prevulcanized for 24 hrs, polysulfidic linkages were mainly formed in the sample. It was however found that after curing at 110°C for 5-25 min, the polysulfidic linkages are tended to change into disulfide linkages. Especially, in the case of 25 minutes cured sample, disulfide linkages are found to be the main linkages. In term of tensile strength, it was observed that when cure time increased from 5 - 10 min, tensile strengths were also increased. But when the cure time of the film is 25 minutes, tensile strength was slightly dropped. The dropped of tensile strength when cure time is longer than 10 minutes can be ascribed to a degradation of polysulfidic and disulfidic linkages during curing. Therefore, by using XANES analysis, it was found to be very useful to understand the cure characteristic, thus it can be very helpful to optimize cure time and tensile properties of the product.
Highly active carbon supported Pd cathode catalysts for direct formic acid fuel cells
NASA Astrophysics Data System (ADS)
Mikolajczuk-Zychora, A.; Borodzinski, A.; Kedzierzawski, P.; Mierzwa, B.; Mazurkiewicz-Pawlicka, M.; Stobinski, L.; Ciecierska, E.; Zimoch, A.; Opałło, M.
2016-12-01
One of the drawbacks of low-temperature fuel cells is high price of platinum-based catalysts used for the electroreduction of oxygen at the cathode of the fuel cell. The aim of this work is to develop the palladium catalyst that will replace commonly used platinum cathode catalysts. A series of palladium catalysts for oxygen reduction reaction (ORR) were prepared and tested on the cathode of Direct Formic Acid Fuel Cell (DFAFC). Palladium nanoparticles were deposited on the carbon black (Vulcan) and on multiwall carbon nanotubes (MWCNTs) surface by reduction of palladium(II) acetate dissolved in ethanol. Hydrazine was used as a reducing agent. The effect of functionalization of the carbon supports on the catalysts physicochemical properties and the ORR catalytic activity on the cathode of DFAFC was studied. The supports were functionalized by treatment in nitric acid for 4 h at 80 °C. The structure of the prepared catalysts has been characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD), transmission electron microscope (TEM) and cyclic voltammetry (CV). Hydrophilicity of the catalytic layers was determined by measuring contact angles of water droplets. The performance of the prepared catalysts has been compared with that of the commercial 20 wt.% Pt/C (Premetek) catalyst. The maximum power density obtained for the best palladium catalyst, deposited on the surface of functionalized carbon black, is the same as that for the commercial Pt/C (Premetek). Palladium is cheaper than platinum, therefore the developed cathode catalyst is promising for future applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Betancourt, Luis E.; Guzman-Blas, Rolando; Luo, Si
A robust electrodeposition method consisting of the rotating disk slurry electrode (RoDSE) technique to obtain Au nanoparticles highly dispersed on a conductive carbonaceous support, i.e., Vulcan XC-72R, for ethanol electrooxidation reaction in alkaline media was developed. Ceria was used as a cocatalyst using a Ce(III)-EDTA impregnation method in order to enhance the catalytic activity and improve the catalyst’s overall stability. Furthermore, the RoDSE method used to obtain highly dispersed Au nanoparticles does not require the use of a reducing agent or stabilizing agent, and the noble-metal loading was controlled by the addition and tuning of the metal precursor concentration. Inductivelymore » coupled plasma and thermogravimetric analysis indicated that the Au loading in the catalyst was 9 %. We determined the particle size and characteristic Au fcc crystal facets by X-ray diffraction. The morphology of the catalyst was also investigated using electron microscopy techniques. In addition, X-ray absorption spectroscopy was used to corroborate the presence and identify the oxidation state of Ce in the system and to observe if there are any electronic interactions within the 8 % Au/CeO x/C system. Cyclic voltammetry of electrodeposited 9 % Au/C and Ce-promoted 8 % Au/C showed a higher catalytic current density for ethanol oxidation when compared with commercially available catalysts (20 % Au/C) of a higher precious metal loading. Additionally, we report a higher stability toward the ethanol electrooxidation process, which was corroborated by 1 mV/s linear sweep voltammetry and chronoamperometric studies.« less
Generation and Transport of Hot Electrons in Cone-Wire Targets
NASA Astrophysics Data System (ADS)
Beg, Farhat
2009-11-01
We present results from a series of experiments where cone-wire targets in various configurations were employed both to assess hot electron coupling efficiency, and to reveal the source temperature of the hot electrons. Initial experiments were performed on the Vulcan petawatt laser at the Rutherford Appleton Laboratory and Titan laser at the Lawrence Livermore National Laboratory. Results with aluminum cones joined to Cu wires of diameters from 10 to 40 μm show that the laser coupling efficiency to electron energy within the wire is proportional to the cross sectional area of the wire. In addition, coupling into the wire was observed to decrease with the laser prepulse and cone-wall thickness. More recently, this study was extended, using the OMEGA EP laser. The resulting changes in coupling energy give indications of the scaling as we approach FI-relevant conditions. Requirements for FI scale fast ignition cone parameters: tip thickness, wall thickness, laser prepulse and laser pulse length, will be discussed. In collaboration with T. Yabuuchi, T. Ma, D. Higginson, H. Sawada, J. King, M.H. Key, K.U. Akli, Al Elsholz, D. Batani, H. Chen, R.R. Freeman, L. Gizzi, J. Green, S. Hatchett, D. Hey, P. Jaanimagi, J. Koch, K. L. Lancaster, D.Larson, A.J. MacKinnon, H. McLean, A. MacPhee, P.A. Norreys, P.K Patel, R. B. Stephens, W. Theobald, R. Town, M. Wei, S. Wilks, Roger Van Maren, B. Westover and L. VanWoerkom.
NASA Astrophysics Data System (ADS)
Dembinska, Beata; Kiliszek, Malgorzata; Elzanowska, Hanna; Pisarek, Marcin; Kulesza, Pawel J.
2013-12-01
Electrocatalytic activity of carbon (Vulcan XC-72) supported selenium-modified ruthenium, RuSex/C, nanoparticles for reduction of oxygen was enhanced through intentional decoration with iridium nanostructures (dimensions, 2-3 nm). The catalytic materials were characterized in oxygenated 0.5 mol dm-3 H2SO4 using cyclic and rotating ring disk voltammetric techniques as well as using transmission electron microscopy and scanning electron microscopy equipped with X-ray dispersive analyzer. Experiments utilizing gas diffusion electrode aimed at mimicking conditions existing in the low-temperature fuel cell. Upon application of our composite catalytic system, the reduction of oxygen proceeded at more positive potentials, and higher current densities were observed when compared to the behavior of the simple iridium-free system (RuSex/C) investigated under the analogous conditions. The enhancement effect was more pronounced than that one would expect from simple superposition of voltammetric responses for the oxygen reduction at RuSex/C and iridium nanostructures studied separately. Nanostructured iridium acted here as an example of a powerful catalyst for the reduction of H2O2 (rather than O2) and, when combined with such a moderate catalyst as ruthenium-selenium (for O2 reduction), it produced an integrated system of increased electrocatalytic activity in the oxygen reduction process. The proposed system retained its activity in the presence of methanol that could appear in a cathode compartment of alcohol fuel cell.
NASA Astrophysics Data System (ADS)
Anderson, Laura E.; Namnabat, Soha; Char, Kookheon; Glass, Richard; Norwood, Robert A.; Pyun, Jeffrey
2016-09-01
Current trends in technology development demand increased miniaturization and higher level integration of electronic and photonic components. Such needs arise in emerging imaging systems, optoelectronic devices, optical interconnects and photonic integrated circuits. Compact, integrated photonics requires high refractive index materials, which primarily comprise crystalline and amorphous semiconductors, as well as chalcogenide glasses, which can possess refractive indices higher than 4 and good infrared transparency. There is currently no high refractive index (n 2 or above) that has the low cost production and ease of processing available in optical polymers. Such polymers would potentially cover applications that are not convenient or possible with crystalline and vitreous semiconductors. Examples of such applications include micro lens arrays for image sensors, optical adhesives for bonding and antireflection coatings, and high contrast optical waveguides. While much of the focus has been in the telecommunications transparency regions, significant new opportunities exist for a polymer which is capable of transmitting efficiently in the MWIR region. While there are polymers that have been synthesized with refractive indices as high as 1.75, these polymers are generally conjugated and incorporate heteroatoms such as sulfur or metals, and generally have complex and expensive syntheses. Here we report on new chalcogenide based copolymers with very high refractive index (n 2) that also have good optical transmission properties in the near-, short- and mid-wave infrared up to 5µm. These polymers are rich in sulfur, have low hydrogen content and were made using inverse vulcanization.
Ibáñez-Redín, Gisela; Silva, Tiago Almeida; Vicentini, Fernando Campanhã; Fatibello-Filho, Orlando
2018-09-01
Carbon Black (CB) has acquired a prominent position as a carbon nanomaterial for the development of electrochemical sensors and biosensors due to its low price and extraordinary electrochemical and physical properties. These properties are highly dependent on the surface chemistry and thus, the effect of functionalization has been widely studied for different applications. Meanwhile, the influence of CB functionalization over its properties for electroanalytical applications is still being poorly explored. In this study, we describe the use of chemically functionalized CB Vulcan XC 72R for the development of sensitive electrochemical biosensors. The chemical pre-treatment increased the material wettability by raising the concentration of surface oxygenated functional groups verified from elemental analysis and FTIR measurements. In addition, it was observed an enhancement of almost 100-fold on the electron transfer rate constant (k 0 ) related to unfunctionalized CB, confirming a remarkable improvement of the electrocatalytic properties. Finally, we constructed a Tyrosinase (Tyr) biosensor based on functionalized CB and dihexadecylphosphate (DHP) for the determination of catechol in water samples. The resulting device displayed an excellent stability with a limit of detection of 8.7 × 10 -8 mol L -1 and a sensitivity of 539 mA mol -1 L. Our results demonstrate that functionalized CB provides an excellent platform for biosensors development. Copyright © 2018 Elsevier Inc. All rights reserved.
Fossilization of melanosomes via sulfurization.
McNamara, Maria E; van Dongen, Bart E; Lockyer, Nick P; Bull, Ian D; Orr, Patrick J
2016-05-01
Fossil melanin granules (melanosomes) are an important resource for inferring the evolutionary history of colour and its functions in animals. The taphonomy of melanin and melanosomes, however, is incompletely understood. In particular, the chemical processes responsible for melanosome preservation have not been investigated. As a result, the origins of sulfur-bearing compounds in fossil melanosomes are difficult to resolve. This has implications for interpretations of original colour in fossils based on potential sulfur-rich phaeomelanosomes. Here we use pyrolysis gas chromatography mass spectrometry (Py-GCMS), fourier transform infrared spectroscopy (FTIR) and time of flight secondary ion mass spectrometry (ToF-SIMS) to assess the mode of preservation of fossil microstructures, confirmed as melanosomes based on the presence of melanin, preserved in frogs from the Late Miocene Libros biota (NE Spain). Our results reveal a high abundance of organosulfur compounds and non-sulfurized fatty acid methyl esters in both the fossil tissues and host sediment; chemical signatures in the fossil tissues are inconsistent with preservation of phaeomelanin. Our results reflect preservation via the diagenetic incorporation of sulfur, i.e. sulfurization (natural vulcanization), and other polymerization processes. Organosulfur compounds and/or elevated concentrations of sulfur have been reported from melanosomes preserved in various invertebrate and vertebrate fossils and depositional settings, suggesting that preservation through sulfurization is likely to be widespread. Future studies of sulfur-rich fossil melanosomes require that the geochemistry of the host sediment is tested for evidence of sulfurization in order to constrain interpretations of potential phaeomelanosomes and thus of original integumentary colour in fossils.
NASA Astrophysics Data System (ADS)
Sun, S.; Halseid, M. Chojak; Heinen, M.; Jusys, Z.; Behm, R. J.
The electrooxidation of ethanol on a Pt/Vulcan catalyst was investigated in model studies by on-line differential electrochemical mass spectrometry (DEMS) over a wide range of reaction temperatures (23-100 °C). Potentiodynamic and potentiostatic measurements of the Faradaic current and the CO 2 formation rate, performed at 3 bar overpressure under well-defined transport and diffusion conditions reveal significant effects of temperature, potential and ethanol concentration on the total reaction activity and on the selectivity for the pathway toward complete oxidation to CO 2. The latter pathway increasingly prevails at higher temperature, lower concentration and lower potentials (∼90% current efficiency for CO 2 formation at 100 °C, 0.01 M, 0.48 V), while at higher ethanol concentrations (0.1 M), higher potentials or lower temperatures the current efficiency for CO 2 formation drops, reaching values of a few percent at room temperature. These trends result in a significantly higher apparent activation barrier for complete oxidation to CO 2 (68 ± 2 kJ mol -1 at 0.48 V, 0.1 M) compared to that of the overall ethanol oxidation reaction determined from the Faradaic current (42 ± 2 kJ mol -1 at 0.48 V, 0.1 M). The mechanistic implications of these results and the importance of relevant reaction and mass transport conditions in model studies for reaction predictions in fuel cell applications are discussed.
Saiwari, Sitisaiyidah; van Hoek, Johannes W; Dierkes, Wilma K; Reuvekamp, Louis E A M; Heideman, Geert; Blume, Anke; Noordermeer, Jacques W M
2016-08-24
As a means to decrease the amount of waste tires and to re-use tire rubber for new tires, devulcanization of ground passenger car tires is a promising process. Being an established process for NR and EPDM, earlier work has shown that for ground passenger car tire rubber with a relatively high amount of SBR, a devulcanization process can be formulated, as well. This was proven for a laboratory-scale batch process in an internal mixer, using diphenyl disulfide as the devulcanization aid and powder-sized material. In this paper, the devulcanization process for passenger car tire rubber is upscaled from 15 g per batch and transformed into a continuous process in a co-rotating twin screw extruder with a capacity of 2 kg/h. As SBR is rather sensitive to devulcanization process conditions, such as thermal and mechanical energy input, the screw design was based on a low shear concept. A granulate with particle sizes from 1-3.5 mm was chosen for purity, as well as economic reasons. The devulcanization process conditions were fine-tuned in terms of: devulcanization conditions (time/temperature profile, concentration of devulcanization aid), extruder parameters (screw configuration, screw speed, fill factor) and ancillary equipment (pre-treatment, extrudate handling). The influence of these parameters on the devulcanization efficiency and the quality of the final product will be discussed. The ratio of random to crosslink scission as determined by a Horikx plot was taken for the evaluation of the process and material. A best practice for continuous devulcanization will be given.
Molecular films associated with LDEF
NASA Technical Reports Server (NTRS)
Crutcher, E. R.; Warner, K. J.
1992-01-01
The molecular films deposited on the surface of the Long Duration Exposure Facility (LDEF) originated from the paints and room-temperature-vulcanized (RTV) silicone materials intentionally used on the satellite and not from residual contaminants. The high silicone content of most of the films and the uniformity of the films indicates a homogenization process in the molecular deposition and suggests a chemically most favored composition for the final film. The deposition on interior surfaces and vents indicated multiple bounce trajectories or repeated deposition-reemission cycles. Exterior surface deposits indicated a significant return flux. Ultraviolet light exposure was required to fix the deposited film as is indicated by the distribution of the films on interior surfaces and the thickness of films at the vent locations. Thermal conditions at the time of exposure to ultraviolet light seems to be an important factor in the thickness of the deposit. Sunrise facing (ram direction) surfaces always had the thicker film. These were the coldest surfaces at the time of their exposure to ultraviolet light. The films have a layered structure suggesting cyclic deposition. As many as 34 distinct layers were seen in the films. The cyclic nature of the deposition and the chemical uniformity of the film one layer to the next suggest an early deposition of the films though there is evidence for the deposition of molecular films throughout the nearly six year exposure of the satellite. A final 'spray' of an organic material associated with water soluble salts occurred very late in the mission. This may have been the result of one of the shuttle dump activities.
High-resolution mapping of motor vehicle carbon dioxide emissions
NASA Astrophysics Data System (ADS)
McDonald, Brian C.; McBride, Zoe C.; Martin, Elliot W.; Harley, Robert A.
2014-05-01
A fuel-based inventory for vehicle emissions is presented for carbon dioxide (CO2) and mapped at various spatial resolutions (10 km, 4 km, 1 km, and 500 m) using fuel sales and traffic count data. The mapping is done separately for gasoline-powered vehicles and heavy-duty diesel trucks. Emission estimates from this study are compared with the Emissions Database for Global Atmospheric Research (EDGAR) and VULCAN. All three inventories agree at the national level within 5%. EDGAR uses road density as a surrogate to apportion vehicle emissions, which leads to 20-80% overestimates of on-road CO2 emissions in the largest U.S. cities. High-resolution emission maps are presented for Los Angeles, New York City, San Francisco-San Jose, Houston, and Dallas-Fort Worth. Sharp emission gradients that exist near major highways are not apparent when emissions are mapped at 10 km resolution. High CO2 emission fluxes over highways become apparent at grid resolutions of 1 km and finer. Temporal variations in vehicle emissions are characterized using extensive day- and time-specific traffic count data and are described over diurnal, day of week, and seasonal time scales. Clear differences are observed when comparing light- and heavy-duty vehicle traffic patterns and comparing urban and rural areas. Decadal emission trends were analyzed from 2000 to 2007 when traffic volumes were increasing and a more recent period (2007-2010) when traffic volumes declined due to recession. We found large nonuniform changes in on-road CO2 emissions over a period of 5 years, highlighting the importance of timely updates to motor vehicle emission inventories.
Zhang, Shiming; Liu, Bin; Chen, Shengli
2013-11-14
A Fe/N co-doped ternary nanocarbon hybrid, with uniform bamboo-like carbon nanotubes (CNTs) in situ grown on/between the single/few-layer graphene sheets interspaced by carbon nanosphere aggregates, was prepared through a one-pot heat treatment of a precursor mixture containing graphene oxide, Vulcan XC-72 carbon nanospheres, nitrogen rich melamine and small amounts of Fe ions. Physical characterization including electron microscopic images, N2 adsorption-desorption isotherms, pore size distribution, XPS, XRD, Mössbauer spectra, and EDX revealed that the 0-D/1-D/2-D ternary hybrid architecture not only offered an optimized morphology for high dispersion of each nanocarbon moiety, while the carbon nanosphere interspaced graphene sheets have provided a platform for efficient reaction between Fe ions and melamine molecules, resulting in uniform nucleation and growth of CNTs and formation of high density Fe-N coordination assemblies that have been believed to be the active centers for the oxygen reduction reaction (ORR) in carbon-based nonprecious metal electrocatalysts. In the absence of graphene oxides or carbon nanospheres, a similar heat treatment was found to result in large amounts of elemental Fe and Fe carbides and entangled CNTs with wide diameter distributions. As a result, the ternary Fe/N-doped nanocarbon hybrid exhibits ORR activity much higher than the Fe-N doped single or binary nanocarbon materials prepared under similar heat treatment conditions, and approaching that of the state-of-the-art carbon-supported platinum catalyst (Pt/C) in acidic media, as well as superior stability and methanol tolerance to Pt/C.
NASA Astrophysics Data System (ADS)
De Marco, M.; Krása, J.; Cikhardt, J.; Pfeifer, M.; Krouský, E.; Margarone, D.; Ahmed, H.; Borghesi, M.; Kar, S.; Giuffrida, L.; Vrana, R.; Velyhan, A.; Limpouch, J.; Korn, G.; Weber, S.; Velardi, L.; Delle Side, D.; Nassisi, V.; Ullschmied, J.
2016-06-01
A target irradiated with a high power laser pulse, blows off a large amount of charge and as a consequence the target itself becomes a generator of electromagnetic pulses (EMP) owing to high return current flowing to the ground through the target holder. The first measurement of the magnetic field induced by the neutralizing current reaching a value of a few kA was performed with the use of an inductive target probe at the PALS Laser Facility (Cikhardt et al. Rev. Sci. Instrum. 85 (2014) 103507). A full description of EMP generation should contain information on the spatial distribution and temporal variation of the electromagnetic field inside and outside of the interaction chamber. For this reason, we consider the interaction chamber as a resonant cavity in which different modes of EMP oscillate for hundreds of nanoseconds, until the EMP is transmitted outside through the glass windows and EM waves are attenuated. Since the experimental determination of the electromagnetic field distribution is limited by the number of employed antennas, a mapping of the electromagnetic field has to be integrated with numerical simulations. Thus, this work reports on a detailed numerical mapping of the electromagnetic field inside the interaction chamber at the PALS Laser Facility (covering a frequency spectrum from 100 MHz to 3 GHz) using the commercial code COMSOL Multiphysics 5.2. Moreover we carried out a comparison of the EMP generated in the parallelepiped-like interaction chamber used in the Vulcan Petawatt Laser Facility at the Rutherford Appleton Laboratory, against that produced in the spherical interaction chamber of PALS.
Zeng, Shuaibo; Li, Ligui; Xie, Lihong; Zhao, Dengke; Wang, Nan; Chen, Shaowei
2017-09-11
Low electrical conductivity and a lack of chemical confinement are two major factors that limit the rate performances and cycling stabilities of cathode materials in lithium-sulfur (Li-S) batteries. Herein, sulfur is copolymerized with poly(m-aminothiophenol) (PMAT) nanoplates through inverse vulcanization to form the highly crosslinked copolymer cp(S-PMAT) in which approximately 80 wt % of the feed sulfur is bonded chemically to the thiol groups of PMAT. A cp(S-PMAT)/C-based cathode exhibits a high discharge capacity of 1240 mAh g -1 at 0.1 C and remarkable rate capacities of 880 mAh g -1 at 1 C and 600 mAh g -1 at 5 C. Moreover, it can retain a capacity of 495 mAh g -1 after 1000 deep discharge-charge cycles at 2 C; this corresponds to a retention of 66.9 % and a decay rate of only 0.040 % per cycle. Such a remarkable rate performance is attributed to the highly conductive pathways of PMAT nanoplates, and the excellent cycling stability is ascribed mainly to the chemical confinement of sulfur through a large number of stable covalent bonds between sulfur and the thiol groups of PMAT. The results suggest that this strategy is a viable paradigm for the design and engineering of conducting polymers with reactive functional groups as effective electrode materials for high-performance Li-S batteries. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
RTV silicone rubber surface modification for cell biocompatibility by negative-ion implantation
NASA Astrophysics Data System (ADS)
Zheng, Chenlong; Wang, Guangfu; Chu, Yingjie; Xu, Ya; Qiu, Menglin; Xu, Mi
2016-03-01
A negative cluster ion implantation system was built on the injector of a GIC4117 tandem accelerator. Next, the system was used to study the surface modification of room temperature vulcanization silicone rubber (RTV SR) for cell biocompatibility. The water contact angle was observed to decrease from 117.6° to 99.3° as the C1- implantation dose was increased to 1 × 1016 ions/cm2, and the effects of C1-, C2- and O1- implantation result in only small differences in the water contact angle at 3 × 1015 ions/cm2. These findings indicate that the hydrophilicity of RTV SR improves as the dose is increased and that the radiation effect has a greater influence than the doping effect on the hydrophilicity. There are two factors influence hydrophilicity of RTV: (1) based on the XPS and ATR-FTIR results, it can be inferred that ion implantation breaks the hydrophobic functional groups (Sisbnd CH3, Sisbnd Osbnd Si, Csbnd H) of RTV SR and generates hydrophilic functional groups (sbnd COOH, sbnd OH, Sisbnd (O)x (x = 3,4)). (2) SEM reveals that the implanted surface of RTV SR appears the micro roughness such as cracks and wrinkles. The hydrophilicity should be reduced due to the lotus effect (Zhou Rui et al., 2009). These two factors cancel each other out and make the C-implantation sample becomes more hydrophilic in general terms. Finally, cell culture demonstrates that negative ion-implantation is an effective method to improve the cell biocompatibility of RTV SR.
Baturina, Olga; Lu, Qin; Xu, Feng; ...
2016-11-10
The effect of support on electrocatalytic activity of Cu nanoparticles (NPs) towards CO 2 electroreduction to hydrocarbon fuels (CH 4 and C 2H 4) is investigated for three types of nanostructured carbons: single wall carbon nanotubes (SWNT), graphene (GP) and onion-like carbon (OLC). Cu/SWNT, Cu/GP and Cu/OLC composite catalysts are synthesized and characterized by X-Ray diffraction analysis, transmission electron microscopy and electrochemical surface area measurements. Electrocatalytic activities of the synthesized materials, as measured in an electrochemical cell connected to a gas chromatograph, are compared to that of Cu NPs supported on Vulcan carbon. All four catalysts demonstrate higher activity towardsmore » C 2H 4 generation vs CH 4, with production of the latter mostly suppressed on Cu NPs supported on nanostructured substrates. Onset potentials for C 2H 4 vs CH 4 generation are shifted positively by 200 mV for Cu/SWNT, Cu/GP, and Cu/OLC catalysts. The Cu/OLC catalyst is found to be superior to the other two nanostructured catalysts in terms of stability, activity and selectivity towards C 2H 4 generation. Its faradaic efficiency reached 60% at -1.8 V vs Ag/AgCl. The enhanced activity and stability of Cu/OLC catalyst can be attributed to the unique catalyst design, wherein a shell of OLC surrounds the Cu NPs such that the outer layer acts as a filter that protects the Cu surface from adsorption of undesirable species, enhances its electrocatalytic performance, and improves its viability in CO 2 electroreduction reaction.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baturina, Olga; Lu, Qin; Xu, Feng
The effect of support on electrocatalytic activity of Cu nanoparticles (NPs) towards CO 2 electroreduction to hydrocarbon fuels (CH 4 and C 2H 4) is investigated for three types of nanostructured carbons: single wall carbon nanotubes (SWNT), graphene (GP) and onion-like carbon (OLC). Cu/SWNT, Cu/GP and Cu/OLC composite catalysts are synthesized and characterized by X-Ray diffraction analysis, transmission electron microscopy and electrochemical surface area measurements. Electrocatalytic activities of the synthesized materials, as measured in an electrochemical cell connected to a gas chromatograph, are compared to that of Cu NPs supported on Vulcan carbon. All four catalysts demonstrate higher activity towardsmore » C 2H 4 generation vs CH 4, with production of the latter mostly suppressed on Cu NPs supported on nanostructured substrates. Onset potentials for C 2H 4 vs CH 4 generation are shifted positively by 200 mV for Cu/SWNT, Cu/GP, and Cu/OLC catalysts. The Cu/OLC catalyst is found to be superior to the other two nanostructured catalysts in terms of stability, activity and selectivity towards C 2H 4 generation. Its faradaic efficiency reached 60% at -1.8 V vs Ag/AgCl. The enhanced activity and stability of Cu/OLC catalyst can be attributed to the unique catalyst design, wherein a shell of OLC surrounds the Cu NPs such that the outer layer acts as a filter that protects the Cu surface from adsorption of undesirable species, enhances its electrocatalytic performance, and improves its viability in CO 2 electroreduction reaction.« less
Effect of organo clay on curing, mechanical and dielectric properties of NR/SBR blends
NASA Astrophysics Data System (ADS)
Ravikumar, K.; Joseph, Reji; Ravichandran, K.
2018-04-01
Natural rubber (NR) and styrene butadiene rubber (SBR) based elastomeric blends reinforced with organically modified Sodium bentonite clay were prepared by two roll mills. Vulcanization parameters such as minimum and maximum torque values scorch and cure times are measured by Oscillating Disc Rheometer. Mechanical properties such as Tensile strength, modulus at 100%, 200% and 300% elongation and elongation at break and Hardness were measured by Universal testing machine and Durometer Shore A hardness meter respectively. Dielectric properties such as dielectric constant (ε’), dissipation factor (tanδ) and volume resistivity (ρv) were measured at room temperature. The curing studies show that torque values are increasing in NR/SBR blends by increase NR content. The scorch and optimum cure time in NR/SBR blends reinforced organo modified clay was found through increase in the SBR content. This may be due to better processing safety of the NR/SBR blends reinforced with organo modified clay. Mechanical properties show that addition of SBR in blends, tensile strength, elongation modulus increases, but 100% modulus slightly increases and no change was observed in Hardness. Dielectric studies show that dielectric constant of NR and SBR rubbers are almost same, it may due to their non-polar nature. But addition of SBR in NR/SBR blend, dielectric constant gradually increases and maximum value observed at 50/50 ratio. But no considerable change was observed in dissipation factor. Frequency dependant resistivity shows that volume resistivity was not changed with respect to frequency up to 3.5 kHz and beyond that the frequency dependence resistivity was found.
Determination of Hydrophobic Contact Angle of Epoxy Resin Compound Silicon Rubber and Silica
NASA Astrophysics Data System (ADS)
Syakur, Abdul; Hermawan; Sutanto, Heri
2017-04-01
Epoxy resin is a thermosetting polymeric material which is very good for application of high voltage outdoor insulator in electrical power system. This material has several advantages, i.e. high dielectric strength, light weight, high mechanical strength, easy to blend with additive, and easy maintenance if compared to that of porcelain and glass outdoor insulators which are commonly used. However, this material also has several disadvantages, i.e. hydrophilic property, very sensitive to aging and easily degraded when there is a flow of contaminants on its surface. The research towards improving the performance of epoxy resin insulation materials were carried out to obtain epoxy resin insulating material with high water repellent properties and high surface tracking to aging. In this work, insulating material was made at room temperature vulcanization, with material composition: Diglycidyl Ether Bisphenol A (DGEBA), Metaphenylene Diamine (MPDA) as hardener with stoichiometric value of unity, and nanosilica mixed with Silicon Rubber (SiR) with 10% (RTV21), 20% (RTV22), 30% (RTV23), 40% (RTV24) and 50% (RTV25) variation. The usage of nanosilica and Silicon Rubber (SIR) as filler was expected to provide hydrophobic properties and was able to increase the value of surface tracking of materials. The performance of the insulator observed were contact angle of hydrophobic surface materials. Tests carried out using Inclined Plane Tracking procedure according to IEC 60-587: 1984 with Ammonium Chloride (NH4Cl) as contaminants flowed using peristaltic pumps. The results show that hydrophobic contact angle can be determined from each sample, and RTV25 has maximum contact angle among others.
Saiwari, Sitisaiyidah; van Hoek, Johannes W.; Dierkes, Wilma K.; Reuvekamp, Louis E.A.M.; Heideman, Geert; Blume, Anke; Noordermeer, Jacques W.M.
2016-01-01
As a means to decrease the amount of waste tires and to re-use tire rubber for new tires, devulcanization of ground passenger car tires is a promising process. Being an established process for NR and EPDM, earlier work has shown that for ground passenger car tire rubber with a relatively high amount of SBR, a devulcanization process can be formulated, as well. This was proven for a laboratory-scale batch process in an internal mixer, using diphenyl disulfide as the devulcanization aid and powder-sized material. In this paper, the devulcanization process for passenger car tire rubber is upscaled from 15 g per batch and transformed into a continuous process in a co-rotating twin screw extruder with a capacity of 2 kg/h. As SBR is rather sensitive to devulcanization process conditions, such as thermal and mechanical energy input, the screw design was based on a low shear concept. A granulate with particle sizes from 1–3.5 mm was chosen for purity, as well as economic reasons. The devulcanization process conditions were fine-tuned in terms of: devulcanization conditions (time/temperature profile, concentration of devulcanization aid), extruder parameters (screw configuration, screw speed, fill factor) and ancillary equipment (pre-treatment, extrudate handling). The influence of these parameters on the devulcanization efficiency and the quality of the final product will be discussed. The ratio of random to crosslink scission as determined by a Horikx plot was taken for the evaluation of the process and material. A best practice for continuous devulcanization will be given. PMID:28773843
On the mobility of iron particles embedded in elastomeric silicone matrix
NASA Astrophysics Data System (ADS)
Rabindranath, R.; Böse, H.
2013-02-01
In this contribution the rheological and magnetorheological properties of different polydimethylsiloxane (PDMS) based magnetorheological elastomers (MRE) are presented and discussed. In order to investigate the mobility of the iron particles with respect to the rheological characteristics, the iron particles were silanized with vinyltrimethoxysilane to enable a reaction between the modified particle and the cross-linking agent of the silicone elastomer. In addition, the vinyl-functionalized particles were further modified by the coupling of the superficial vinyl groups with a long-chain hydride terminated PDMS, which enables a reaction pathway with the vinyl terminated PDMS. On the other hand, the iron particles were treated with surfactants such as fatty acids, calcium and aluminum soaps, respectively, prior to vulcanization in order to increase the mobility of the iron particles in the elastomeric matrix. It was found, that both, the modification with the long-chain hydride terminated PDMS as well as the treatment with surfactants lead to an increase of the storage modulus G', the loss modulus G" and the loss factor tan δ in the magnetic field. It is concluded that both modifications, the coupling with long-chain hydride terminated PDMS as well as the treatment with surfactants, provide a greater mobility of the iron particles and hence a greater friction represented by the increase of the loss factor tan δ. Consequently it is assumed that untreated iron particles are less mobile in the rubber matrix due to covalent bonding with the silicone components, most likely due to the reaction of the hydroxyl groups on the metal surface with the silane groups of the cross-linking agent.
A Handbook of Descriptive and Practical Astronomy
NASA Astrophysics Data System (ADS)
Chambers, George Frederick
2010-06-01
Book I. A Sketch of the Solar System: 1. The sun; 2. The planets; 3. Vulcan; 4. Mercury; 5. Venus; 6. The earth; 7. The moon; 8. Mars; 9. The minor planets; 10. Jupiter; 11. Saturn; 12. Uranus; 13. Neptune; Book II. Eclipses and their Associated Phenomena: 1. General outlines; 2. Eclipses of the sun; 3. The total eclipse of the sun of July 28, 1851; 4. The annular eclipse of the sun of March 14-15, 1858; 5. The total eclipse of the sun of July 18, 1860; 6. Historical notices; 7. Eclipses of the moon; 8. Suggestions for observing annular eclipses of the sun; 9. Transits of the inferior planets; 10. Occultations; Book III. The Tides: 1. Introduction; 2. Local disturbing influences; Book IV. Miscellaneous Astronomical Phenomena: 1. Variation in the obliquity of the ecliptic; 2. Aberration; 3. Refraction; Book V. Comets: 1. General remarks; 2. Periodic comets; 3. Remarkable comets; 4. Cometary statistics; 5. Historical notices; Book VI. Chronological Astronomy: 1. What time is; 2. Hours; 3. Means of measuring time; 4. The Dominical or Sunday letter; 5. Tables for the conversion of time; Book VII. The Starry Heavens: 1. The Pole-Star; 2. Double stars; 3. Variable stars; 4. Clusters and nebulae; 5. The Milky Way; 6. The constellations; Book VIII. Astronomical Instruments: 1. Telescopes; 2. Telescope stands; 3. The equatorial; 4. The transit instrument; 5. Other astronomical instruments; 6. History of the telescope; Book IX. A Sketch of the History of Astronomy; Book X. Meteoric Astronomy: 1. Classification of the subject; 2. The origin of aërolites; 3. Shooting stars; Appendices; Index.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Fan; Xin, Le; Uzunoglu, Aytekin
In making a catalyst ink, the interaction between Nafion ionomer and catalyst support are the key factors that directly affect both ionic conductivity and electronic conductivity of the catalyst layer in a membrane electrode assembly (MEA). One of the major aims of this investigation is to understand the behavior of the catalyst support, Vulcan XC-72 (XC-72) aggregates, in the existence of the Nafion ionomer in a catalyst ink to fill the knowledge gap of the interaction of these components. The dispersion of catalyst ink not only depends on the solvent, but also depends on the interaction of Nafion and carbonmore » particles in the ink. The interaction of Nafion ionomer particles and XC-72 catalyst aggregates in liquid media was studied using ultra small angle x-ray scattering (USAXS) and cryogenic TEM techniques. Carbon black XC-72) and functionalized carbon black systems were introduced to study the interaction behaviors. A multiple curve fitting was used to extract the particle size and size distribution from scattering data. The results suggest that the particle size and size distribution of each system changed significantly in Nafion + XC-72 system, Nafion + NH2-XC72 system, and Nafion + SO3H-XC-72 system, which indicates that an interaction among these components (i.e. ionomer particles and XC-72 aggregates) exists. The cryogenic TEM, which allows for the observation the size of particles in a liquid, was used to validate the scattering results and shows excellent agreement.« less
A landscape character assessment of three terraced areas in Campania region, Italy
NASA Astrophysics Data System (ADS)
Gravagnuolo, Antonia; Ronza, Maria; Di Martino, Ferdinando; De Rosa, Fortuna
2017-04-01
Agricultural terraces represent the territorial structure of many cultural landscapes in the Campania region, Italy. Historic urban/rural settlements and hydraulic-agrarian systems have been developed on mountains and hills, producing diverse cultural landscapes depending on the specific geological, pedological and geomorphological characteristics, which influenced the character and functions of terraces. These unique landscapes are multi-functional and provide many ecosystem services: provisioning (food, water retention, building materials); regulating and maintenance (hydrogeological stability, soil fertility, protection from soil erosion, maintenance of genetic diversity, habitat); cultural services (heritage and traditional knowledge conservation, tourism and recreation, spiritual experience, education, aesthetic quality). Three terraced landscapes in Campania are analysed, which present a rich diversity in the geological structure and formal/functional characteristics: the Roccamonfina vulcanic area, a highly fertile and lapillous soil; the Monte di Bulgheria, a clay-rich area; and finally the well-known UNESCO World Heritage site of the Amalfi Coast, a calcareous, steep rock faced area. A landscape character assessment of the three sites is processed, identifying the biophysical structure of the sites, natural systems and land use, and cultural and anthropic elements. Terraced landscapes in Campania can be regenerated, taking again an active social and economic role for the society, enhancing their multifunctionality as a key source of wellbeing. Ecosystem services are mapped and evaluated to assess benefits and costs in a multidimensional framework. Spatial analysis in GIS environment supports this process, providing a decision-support tool for mapping and assessment of terraced landscapes, to convert their actual and potential value into a resource of economic sustainable development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karan, Hiroko I.; Sasaki, Kotaro; Kuttiyiel, Kurian
2012-05-04
A new type of electrocatalyst with a core–shell structure that consists of a platinum monolayer shell placed on an iridium–rhenium nanoparticle core or platinum and palladium bilayer shell deposited on that core has been prepared and tested for electrocatalytic activity for the oxygen reduction reaction. Carbon-supported iridium–rhenium alloy nanoparticles with several different molar ratios of Ir to Re were prepared by reducing metal chlorides dispersed on Vulcan carbon with hydrogen gas at 400 °C for 1 h. These catalysts showed specific electrocatalytic activity for oxygen reduction reaction comparable to that of platinum. The activities of Pt ML/Pd ML/Ir 2Re 1,more » Pt ML/Pd 2layers/Ir 2Re 1, and Pt ML/Pd 2layers/Ir 7Re 3 catalysts were, in fact, better than that of conventional platinum electrocatalysts, and their mass activities exceeded the 2015 DOE target. Our density functional theory calculations revealed that the molar ratio of Ir to Re affects the binding strength of adsorbed OH and, thereby, the O 2 reduction activity of the catalysts. The maximum specific activity was found for an intermediate OH binding energy with the corresponding catalyst on the top of the volcano plot. The monolayer concept facilitates the use of much less platinum than in other approaches. Finally, the results with the Pt ML/Pd ML/Ir 2Re electrocatalyst indicate that it is a promising alternative to conventional Pt electrocatalysts in low-temperature fuel cells.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narayanamoorthy, B.; Kumar, B.V.V.S. Pavan; Eswaramoorthy, M.
2014-07-01
Highlights: • Supportless Pt nanonetwork (Pt NN) synthesized by novel template free one step method as per our earlier reported procedure. • Electrocatalytic activity of Pt NN studied taking oxygen reduction reaction in acid medium. • Kinetic and thermodynamic parameters were deduced under hydrodynamic conditions. • ORR mechanistic pathway was proposed based on kinetic rate constants. • ADT analysis found enhanced stability (5000 cycles) for Pt NN than Pt NN/VC and reported Pt/C. - Abstract: The reduction reaction of molecular oxygen (ORR) was investigated using supportless Pt nanonetwork (Pt NN) electrocatalyst in sulfuric acid medium. Pt NN was prepared bymore » template free borohydride reduction. The transmission electron microscope images revealed a network like nano-architecture having an average cluster size of 30 nm. The electrochemical characterization of supportless and Vulcan carbon supported Pt NN (Pt NN/VC) was carried out using rotating disc and ring disc electrodes at various temperatures. Kinetic and thermodynamic parameters were estimated under hydrodynamic conditions and compared with Pt NN/VC and reported Pt/C catalysts. The accelerated durability test revealed that supportless Pt NN is quite stable for 5000 potential cycles with 22% reduction in electrochemical surface area (ECSA). While the initial limiting current density has in fact increased by 11.6%, whereas Pt NN/VC suffered nearly 55% loss in ECSA and 13% loss in limiting current density confirming an enhanced stability of supportless Pt NN morphology for ORR compared to conventional Pt/C ORR catalysts in acid medium.« less
Novel carbon nanostructures as catalyst support for polymer electrolyte membrane fuel cells
NASA Astrophysics Data System (ADS)
Natarajan, Sadesh Kumar
Polymer electrolyte membrane fuel cell (PEMFC) technology has advanced rapidly in recent years, with one of active area focused on improving the long-term performance of carbon supported catalysts, which has been recognized as one of the most important issues to be addressed for the commercialization of PEMFCs. The central part of a PEMFC is the membrane electrode assembly (MEA) which consists of two electrodes (anode and cathode) and a cation exchange membrane. These electrodes are commonly made of carbon black (most often, Vulcan XC-72) supported on carbon paper or carbon cloth backings. It is the primary objective of this thesis to prepare and investigate carbon nanostructures (CNS, licensed to Hydrogen Research Institute -- IRH, Quebec, Canada), the carbon material with more graphite component like carbon nanotubes (CNTs) for use as catalyst support in PEMFCs. High energy ball-milling of activated carbon along with transition metal catalysts under hydrogen atmosphere, followed by heat-treatment leads to nanocrystalline structures of carbon called CNS. However, CNS formed in the quartz tube after heat-treatment is inevitably accompanied by many impurities such as metal particles, amorphous carbon and other carbon nanoparticules. Such impurities are a serious impediment to detailed characterization of the properties of nanostructures. In addition, since the surface of CNS is itself rather inert, it is difficult to control the homogeneity and size distribution of Pt nanoparticules. In this thesis work, we demonstrated a novel mean to purify and functionalize CNS via acid-oxidation under reflux conditions. To investigate and quantify these nanostructures X-ray diffraction, electrical conductivity measurements, specific surface area measurements, thermogravimetric analysis, X-ray photoelectron spectroscopy and transmission electron microscopy studies were used. Cyclic voltammetry studies were performed on different samples to derive estimates for the relationship between the composition of the acid mixture and their influence in producing high density of surface functional groups. Such surface functionalization on CNS enhances the reactivity, improves the specificity and provides an avenue for Pt deposition. It was also shown that a 1:1 mixture of 7.5 M sulphuric acid and 15 M nitric acid have generated higher composition of non-acidic functional groups over other acid compositions discussed in this thesis. In this thesis, we also demonstrated a novel method to deposit and disperse platinum clusters on carbon nanotubes via a chemically specific nucleation mechanism. To investigate and quantify these platinized CNS X-ray diffraction, thermogravimetric analysis, atomic adsorption spectroscopy and high resolution transmission electron microscopy were used. An average Pt cluster size of 4 nm was dispersed homogeneously on CNS that was functionalized with the method described above. The corrosive nature of carbon support material is a crucial issue for the commercialization of PEMFC systems. Therefore, electrochemical oxidations of Pt/CNS compared with Pt/C were studied in this thesis with the aim to understand their durability as catalyst support in PEMFCs. The surface oxidation of the catalyst materials has been compared following potentiostatic treatments up to 200 h under condition simulating the PEMFC cathode environment (80°C, nitrogen purged 0.5 M sulphuric acid, and a constant potential of 1.2 V). The degradation of Pt catalysts and the carbon support was also evaluated by measuring the cell voltage at constant load after different oxidation intervals at 1.2 V. The agglomeration of Pt catalyst particles and the changes in surface functional groups of the carbon material at different intervals of electrochemical oxidation was evaluated using X-ray diffraction and thermogravimetric studies. The subsequent electrochemical characterization at different treatment time intervals by both the above methods suggests that CNS is electrochemically more stable than Vulcan XC-72 with less surface oxide formation and Pt surface area loss without sacrificing catalytic activity. (Abstract shortened by UMI.)
Response of organic matter quality in permafrost soils to warming
NASA Astrophysics Data System (ADS)
Plaza, C.; Pegoraro, E.; Schuur, E.
2016-12-01
Global warming is predicted to thaw large quantities of the perennially frozen organic matter stored in northern permafrost soils. Upon thaw, this organic matter will be exposed to lateral export to water bodies and to microbial decomposition, which may exacerbate climate change by releasing significant amounts of greenhouse gases. To gain an insight into these processes, we investigated how the quality of permafrost soil organic matter responded to five years of warming. In particular, we sampled control and experimentally warmed soils in 2009 and 2013 from an experiment established in 2008 in a moist acidic tundra ecosystem in Healy, Alaska. We examined surface organic (0 to 15 cm), deep organic (15 to 35 cm), and mineral soil layers (35 to 55 cm) separately by means of stable isotope analysis (δ13C and δ15N) and solid-state 13C nuclear magnetic resonance. Compared to the control, the experimental warming did not affect the isotopic and molecular composition of soil organic matter across the depth profile. However, we did find significant changes with time. In particular, in the surface organic layer, δ13C decreased and alkyl/O-alkyl ratio increased from 2009 to 2013, which indicated variations in soil organic sources (e.g., changes in vegetation) and accelerated decomposition. In the deep organic layer, we found a slight increase in δ15N with time. In the mineral layer, δ13C values decreased slightly, whereas alkyl C/O-alkyl ratio increased, suggesting a preferential loss of relatively more degraded organic matter fractions probably by lateral transport by water flowing through the soil. Acknowledgements: This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 654132. Web site: http://vulcan.comule.com
NASA Astrophysics Data System (ADS)
Wellons, Matthew S.
The design, synthesis, and characterization of magnetic alloy nanoparticles, supported formic acid oxidation catalysts, and superhard intermetallic composites are presented. Ferromagnetic equatomic alloy nanoparticles of FePt, FePd, and CoPt were synthesized utilizing single-source heteronuclear organometallic precursors supported on an inert water-soluble matrix. Direct conversion of the precursor-support composite to supported ferromagnetic nanoparticles occurs under elevated temperatures and reducing conditions with metal-ion reduction and minimal nanoparticle coalescence. Nanoparticles were easily extracted from the support by addition of water and characterized in structure and magnetic properties. Palladium and platinum based nanoparticles were synthesized with microwave-based and chemical metal-ion reduction strategies, respectively, and tested for catalytic performance in a direct formic acid fuel cell (DFAFC). A study of palladium carbide nanocomposites with various carbonaceous supports was conducted and demonstrated strong activity comparable to commercially available palladium black, but poor catalytic longevity. Platinum-lead alloy nanocomposites synthesized with chemical reduction and supported on Vulcan carbon demonstrated strong activity, excellent catalytic longevity, and were subsequently incorporated into a prototype DFAFC. A new method for the synthesis of superhard ceramics on polymer substrates called Confined Plasma Chemical Deposition (CPCD) was developed. The CPCD method utilizes a tuned Free Electron Laser to selectively decompose the single-source precursor, Re(CO)4(B3H8), in a plasma-like state resulting in the superhard intermetallic ReB2 deposited on polymer substrates. Extension of this method to the synthesis of other hard of superhard ceramics; WB4, RuB2, and B4C was demonstrated. These three areas of research show new synthetic methods and novel materials of technological importance, resulting in a substantial advance in their respective fields.
Thermal Barrier/Seal for Extreme Temperature Applications
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M.; Dunlap, Patrick H., Jr.; Phelps, Jack; Bauer, Paul; Bond, Bruce; McCool, Alex (Technical Monitor)
2002-01-01
Large solid rocket motors, as found on the Space Shuttle, are fabricated in segments for manufacturing considerations, bolted together, and sealed using conventional Viton O-ring seals. Similarly the nine large solid rocket motor nozzles are assembled from several different segments, bolted together, and sealed at six joint locations using conventional O-ring seals. The 5500 F combustion gases are generally kept a safe distance away from the seals by thick layers of phenolic or rubber insulation. Joint-fill compounds, including RTV (room temperature vulcanized compound) and polysulfide filler, are used to fill the joints in the insulation to prevent a direct flow-path to the O-rings. Normally these two stages of protection are enough to prevent a direct flow-path of the 900-psi hot gases from reaching the temperature-sensitive O-ring seals. However, in the current design 1 out of 15 Space Shuttle solid rocket motors experience hot gas effects on the Joint 6 wiper (sacrificial) O-rings. Also worrisome is the fact that joints have experienced heat effects on materials between the RTV and the O-rings, and in two cases O-rings have experienced heat effects. These conditions lead to extensive reviews of the post-flight conditions as part of the effort to monitor flight safety. We have developed a braided carbon fiber thermal barrier to replace the joint fill compounds in the Space Shuttle solid rocket motor nozzles to reduce the incoming 5500 F combustion gas temperature and permit only cool (approximately 100 F) gas to reach the temperature-sensitive O-ring seals. Implementation of this thermal barrier provides more robust, consistent operation with shorter turn around times between Shuttle launches.
EO-1 Prototyping for Environmental Applications
NASA Astrophysics Data System (ADS)
Campbell, P. K.; Middleton, E.; Ungar, S.; Zhang, Q.; Ong, L.; Huemmrich, K. F.
2009-12-01
The Earth Observing One (EO-1) Mission, launched in November, 2000 as part of NASA’s New Millennium Program, is in it’s eight year of operation. From the start it was recognized that a key criteria for evaluating the EO-1 technology and outlining future Earth science mission needs is the ability of the technology to characterize terrestrial surface state and processes. EO-1 is participating in a broad range of investigations, demonstrating the utility of imaging spectroscopy in applications relating to forestry, agriculture, species discrimination, invasive species, desertification, land-use, vulcanization, fire management, homeland security, natural and anthropogenic hazards and disaster assessments and has provided characterization for a variety of instruments on EOS platforms. By generating a high spectral and spatial resolution data set for the corral reefs and islands, it is contributing for realizing the goals of the National Decadal survey and providing an excellent platform for testing strategies to be employed in the HyspIRI mission. The EO1 Mission Science Office (MSO) is developing tools and prototypes for new science products, addressing the HyspIRI goals to assess vegetation status and health and provide vegetation spectral bio-indicators and biophysical parameters such as LAI and fAPAR at <100 m spatial resolution. These are being used to resolve variability in heterogeneous areas (e.g. agriculture, narrow shapes, urban and developed lands) and for managed ecosystems less than 10 km2. A set of invariable reference targets (e.g. sun, moon, deserts, Antarctica) are being characterised to allow cross-calibration of current and future EO sensors, comparison of land products generated by multiple sensors and retroactive processing of time series data. Such products are needed to develop Science Requirements for the next generation of hyperspectral satellite sensors and to address global societal needs.
Evolution of the radiation processing industry
NASA Astrophysics Data System (ADS)
Cleland, Marshall R.
2013-04-01
Early investigations of the effects of treating materials with ionizing radiations began in 1894 with the irradiation of gases at atmospheric pressure using cathode rays from a Crookes gas-discharge tube, in 1895 with the discovery of X-rays emitted from a Crookes tube, and in 1896 with the discovery of radioactivity in uranium. In 1897, small electrically charged particles were detected and identified in the gas discharges inside Crookes tubes. These particles were then named electrons. During the next three decades, it was found that these novel forms of energy could produce ions to initiate chemical reactions in some gases and liquids. By 1921, it had also been shown that insects, parasites and bacteria could be killed by treatment with ionizing radiation. In 1925, a high-vacuum tube with a thermionic cathode and a thin metallic anode was developed to produce electron beams in air by using accelerating potentials up to 250 kilovolts. That unique apparatus was the precursor of the many types of electron accelerators that have been developed since then for a variety of industrial applications. In 1929, the vulcanization of natural rubber without using any chemical additives was achieved by irradiation with electrons from a 250 kilovolt accelerator. In 1939, several liquid monomers were polymerized by treatment with gamma rays from radioactive nuclides. These early results were not exploited before the end of World War II because intense sources of ionizing radiation were not available then. Shortly after that war, there was increased interest in developing the peaceful uses of atomic energy, which included the chemical and biological effects of radiation exposures. Many uses that have been developed since then are described briefly in this paper. These industrial applications are now producing billions of US dollars in revenue every year.
NASA Astrophysics Data System (ADS)
Silvestri, M.; Musacchio, M.; Buongiorno, M. F.; Amici, S.; Piscini, A.
2015-12-01
LP DAAC released the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Emissivity Database (GED) datasets on April 2, 2014. The database was developed by the National Aeronautics and Space Administration's (NASA) Jet Propulsion Laboratory (JPL), California Institute of Technology. The database includes land surface emissivities derived from ASTER data acquired over the contiguous United States, Africa, Arabian Peninsula, Australia, Europe, and China. In this work we compare ground measurements of emissivity acquired by means of Micro-FTIR (Fourier Thermal Infrared spectrometer) instrument with the ASTER emissivity map extract from ASTER-GED and the emissivity obtained by using single ASTER data. Through this analysis we want to investigate differences existing between the ASTER-GED dataset (average from 2000 to 2008 seasoning independent) and fall in-situ emissivity measurement. Moreover the role of different spatial resolution characterizing ASTER and MODIS, 90mt and 1km respectively, by comparing them with in situ measurements. Possible differences can be due also to the different algorithms used for the emissivity estimation, Temperature and Emissivity Separation algorithm for ASTER TIR band( Gillespie et al, 1998) and the classification-based emissivity method (Snyder and al, 1998) for MODIS. In-situ emissivity measurements have been collected during dedicated fields campaign on Mt. Etna vulcano and Solfatara of Pozzuoli. Gillespie, A. R., Matsunaga, T., Rokugawa, S., & Hook, S. J. (1998). Temperature and emissivity separation from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images. IEEE Transactions on Geoscience and Remote Sensing, 36, 1113-1125. Snyder, W.C., Wan, Z., Zhang, Y., & Feng, Y.-Z. (1998). Classification-based emissivity for land surface temperature measurement from space. International Journal of Remote Sensing, 19, 2753-2574.
Study of storage capacity in various carbon/graphene-based solid-state supercapacitors
NASA Astrophysics Data System (ADS)
Subramaniam, C. K.; Boopalan, G.
2014-09-01
Solid-state electrochemical double-layer capacitor (SEDLC) forms excellent energy storage device for high-power applications. They are highly reliable, with no electrolyte leaks, and can be packaged to suit various applications. The electrode material can be activated carbon to graphene. These can have a range of particle size, surface area, pore size and pore distribution for charge storage. The emphasis will be to optimize the graphene to carbon blend in the electrodes which would provide appreciable storage density of the SEDLC. We can use perfluorosulfonic acid polymer as the solid electrolyte in the SEDLC assembly. They have high ionic conductivity, good thermal stability, and mechanical strength. They also have excellent long-term chemical stability. Carbon is widely used for many practical applications, especially for the adsorption of ions and molecules, as it is possible to synthesize one-, two- or three-dimensional (1-, 2-, or 3-D) carbons. Some of the problems in activated carbon like varying micro or mesopores, poor ion mobility due to varying pore distribution, low electrical conductivity, can be overcome using graphene and blends of graphene with carbon of the right pore dimension and distribution. Graphene in various structural nomenclatures have been used by various groups for charge storage. Graphene nanoplates (GNP), with narrow mesopore distributions have been effectively used for SEDLCs. SEDLCs assembled with GNP and blends of GNP with Vulcan XC and solid polymer electrolyte like Nafion show exceptional performance. The cyclic voltammetric studies show that they support high scan rates with substantial smaller capacitance drop as we increase scan rates. Optimization of the electrode structure in terms of blend percentage, binder content and interface character in the frequency and time domain provides excellent insight into the double-layer interface.
Evolution of the radiation processing industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cleland, Marshall R.
2013-04-19
Early investigations of the effects of treating materials with ionizing radiations began in 1894 with the irradiation of gases at atmospheric pressure using cathode rays from a Crookes gas-discharge tube, in 1895 with the discovery of X-rays emitted from a Crookes tube, and in 1896 with the discovery of radioactivity in uranium. In 1897, small electrically charged particles were detected and identified in the gas discharges inside Crookes tubes. These particles were then named electrons. During the next three decades, it was found that these novel forms of energy could produce ions to initiate chemical reactions in some gases andmore » liquids. By 1921, it had also been shown that insects, parasites and bacteria could be killed by treatment with ionizing radiation. In 1925, a high-vacuum tube with a thermionic cathode and a thin metallic anode was developed to produce electron beams in air by using accelerating potentials up to 250 kilovolts. That unique apparatus was the precursor of the many types of electron accelerators that have been developed since then for a variety of industrial applications. In 1929, the vulcanization of natural rubber without using any chemical additives was achieved by irradiation with electrons from a 250 kilovolt accelerator. In 1939, several liquid monomers were polymerized by treatment with gamma rays from radioactive nuclides. These early results were not exploited before the end of World War II because intense sources of ionizing radiation were not available then. Shortly after that war, there was increased interest in developing the peaceful uses of atomic energy, which included the chemical and biological effects of radiation exposures. Many uses that have been developed since then are described briefly in this paper. These industrial applications are now producing billions of US dollars in revenue every year.« less
CFD Analysis of Mixing Characteristics of Several Fuel Injectors at Hypervelocity Flow Conditions
NASA Technical Reports Server (NTRS)
Drozda, Tomasz G.; Drummond, J. Philip; Baurle, Robert A.
2016-01-01
CFD analysis is presented of the mixing characteristics and performance of three fuel injectors at hypervelocity flow conditions. The calculations were carried out using the VULCAN-CFD solver and Reynolds-Averaged Simulations (RAS). The high Mach number flow conditions match those proposed for the planned experiments conducted as a part of the Enhanced Injection and Mixing Project (EIMP) at the NASA Langley Research Center. The EIMP aims to investigate scramjet fuel injection and mixing physics, improve the understanding of underlying physical processes, and develop enhancement strategies and functional relationships relevant to flight Mach numbers greater than eight. Because of the high Mach number flow considered, the injectors consist of a fuel placement device, a strut; and a fluidic vortical mixer, a ramp. These devices accomplish the necessary task of distributing and mixing fuel into the supersonic cross-flow albeit via different strategies. Both of these devices were previously studied at lower flight Mach numbers where they exhibited promising performance in terms of mixing efficiency and total pressure recovery. For comparison, a flush-wall injector is also included. This type of injector generally represents the simplest method of introducing fuel into a scramjet combustor, however, at high flight Mach number conditions, the dynamic pressure needed to induce sufficient fuel penetration may be difficult to achieve along with other requirements such as achieving desired levels of fuel-to-air mixing at the required equivalence ratio. The three injectors represent the baseline configurations planned for the experiments. The current work discusses the mixing flow field behavior and differences among the three fuel injectors, mixing performance as described by the mixing efficiency and the total pressure recovery, and performance considerations based on the thrust potential.
Shinozaki, Kazuma; Zack, Jason W.; Pylypenko, Svitlana; ...
2015-09-17
Platinum electrocatalysts supported on high surface area and Vulcan carbon blacks (Pt/HSC, Pt/V) were characterized in rotating disk electrode (RDE) setups for electrochemical area (ECA) and oxygen reduction reaction (ORR) area specific activity (SA) and mass specific activity (MA) at 0.9 V. Films fabricated using several ink formulations and film-drying techniques were characterized for a statistically significant number of independent samples. The highest quality Pt/HSC films exhibited MA 870 ± 91 mA/mgPt and SA 864 ± 56 μA/cm 2 Pt while Pt/V had MA 706 ± 42 mA/mgPt and SA 1120 ± 70 μA/cm 2 Pt when measured in 0.1more » M HClO 4, 20 mV/s, 100 kPa O 2 and 23±2°C. An enhancement factor of 2.8 in themeasured SA was observable on eliminating Nafion ionomer and employing extremely thin, uniform films (~4.5 μg/cm 2 Pt) of Pt/HSC. The ECA for Pt/HSC (99 ± 7 m2/gPt) and Pt/V (65 ± 5 m 2/gPt) were statistically invariant and insensitive to film uniformity/thickness/fabrication technique; accordingly, enhancements in MA are wholly attributable to increases in SA. Impedance measurements coupled with scanning electron microscopy were used to de-convolute the losses within the catalyst layer and ascribed to the catalyst layer resistance, oxygen diffusion, and sulfonate anion adsorption/blocking. The ramifications of these results for proton exchange membrane fuel cells have also been examined.« less
NASA Astrophysics Data System (ADS)
Oreshenko, Maria; Lavie, Baptiste; Grimm, Simon L.; Tsai, Shang-Min; Malik, Matej; Demory, Brice-Olivier; Mordasini, Christoph; Alibert, Yann; Benz, Willy; Quanz, Sascha P.; Trotta, Roberto; Heng, Kevin
2017-09-01
We analyze the emission spectrum of the hot Jupiter WASP-12b using our HELIOS-R retrieval code and HELIOS-K opacity calculator. When interpreting Hubble and Spitzer data, the retrieval outcomes are found to be prior-dominated. When the prior distributions of the molecular abundances are assumed to be log-uniform, the volume mixing ratio of HCN is found to be implausibly high. A VULCAN chemical kinetics model of WASP-12b suggests that chemical equilibrium is a reasonable assumption even when atmospheric mixing is implausibly rigorous. Guided by (exo)planet formation theory, we set Gaussian priors on the elemental abundances of carbon, oxygen, and nitrogen with the Gaussian peaks being centered on the measured C/H, O/H, and N/H values of the star. By enforcing chemical equilibrium, we find substellar O/H and stellar to slightly superstellar C/H for the dayside atmosphere of WASP-12b. The superstellar carbon-to-oxygen ratio is just above unity, regardless of whether clouds are included in the retrieval analysis, consistent with Madhusudhan et al. Furthermore, whether a temperature inversion exists in the atmosphere depends on one’s assumption for the Gaussian width of the priors. Our retrieved posterior distributions are consistent with the formation of WASP-12b in a solar-composition protoplanetary disk, beyond the water iceline, via gravitational instability or pebble accretion (without core erosion) and migration inward to its present orbital location via a disk-free mechanism, and are inconsistent with both in situ formation and core accretion with disk migration, as predicted by Madhusudhan et al. We predict that the interpretation of James Webb Space Telescope WASP-12b data will not be prior-dominated.
NASA Astrophysics Data System (ADS)
Pech-Pech, I. E.; Gervasio, Dominic F.; Godínez-Garcia, A.; Solorza-Feria, O.; Pérez-Robles, J. F.
2015-02-01
Silver (Ag) nanoparticles enriched with platinum (Pt) and palladium (Pd) on their surfaces (Ag@Pt0.1Pd0.1) are supported on Vulcan XC-72 carbon (C) to form a new catalyst (Ag@Pt0.1Pd0.1/C) for the oxygen reduction reaction (ORR) in acid electrolytes. This catalyst is prepared in one pot by reducing Ag and then Pt and Pd metal salts with sodium borohydride in the presence of trisodium citrate then adding XC-72 while applying intense ultrasound. The metallic Ag@Pt0.1Pd0.1 nanoparticles contain 2 weight percent of Pt, are spherical and have an average size less than 10 nm as determined by X-ray diffraction (XRD) and transmission electron microscopy (TEM). At the ORR potentials, Ag nanoparticles on carbon (Ag/C) rapidly lose Ag by dissolution and show no more catalytic activity for the ORR than the carbon support, whereas Ag@Pt0.1Pd0.1/C is a stable catalyst and exhibits 1.4 and 1.6 fold greater specific activity, also 3.6 and 2.8 fold greater mass activity for ORR in 0.5 M H2SO4 solution than comparable Pt/C and Pt0.5Pd0.5/C catalysts with the same Pt loading as determined for thin-films of these catalysts on a rotating-disk electrode (TF-RDE). Using silver nanoparticles increases Pt utilization and therefore decreases Pt-loading and cost of a catalyst for a proton exchange membrane fuel cell (PEMFC) electrode.
Bambagioni, Valentina; Bianchini, Claudio; Chen, Yanxin; Filippi, Jonathan; Fornasiero, Paolo; Innocenti, Massimo; Lavacchi, Alessandro; Marchionni, Andrea; Oberhauser, Werner; Vizza, Francesco
2012-07-01
Pd nanoparticles have been generated by performing an electroless procedure on a mixed ceria (CeO(2))/carbon black (Vulcan XC-72) support. The resulting material, Pd-CeO(2)/C, has been characterized by means of transmission electron microscopy (TEM), inductively coupled plasma atomic emission spectroscopy (ICP-AES), and X-ray diffraction (XRD) techniques. Electrodes coated with Pd-CeO(2)/C have been scrutinized for the oxidation of ethanol in alkaline media in half cells as well as in passive and active direct ethanol fuel cells (DEFCs). Membrane electrode assemblies have been fabricated using Pd-CeO(2)/C anodes, proprietary Fe-Co cathodes, and Tokuyama anion-exchange membranes. The monoplanar passive and active DEFCs have been fed with aqueous solutions of 10 wt% ethanol and 2 M KOH, supplying power densities as high as 66 mW cm(-2) at 25 °C and 140 mW cm(-2) at 80 °C. A comparison with a standard anode electrocatalyst containing Pd nanoparticles (Pd/C) has shown that, at even metal loading and experimental conditions, the energy released by the cells with the Pd-CeO(2)/C electrocatalyst is twice as much as that supplied by the cells with the Pd/C electrocatalyst. A cyclic voltammetry study has shown that the co-support ceria contributes to the remarkable decrease of the onset oxidation potential of ethanol. It is proposed that ceria promotes the formation at low potentials of species adsorbed on Pd, Pd(I)-OH(ads), that are responsible for ethanol oxidation. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Anderson, Lauren; Governato, F.; Karcher, M.; Quinn, T.; Wadsley, J.
2017-07-01
The sources that reionized the universe are still unknown, but likely candidates are faint but numerous galaxies. In this paper, we present results from running a high-resolution, uniform volume simulation, the Vulcan, to predict the number densities of undetectable, faint galaxies and their escape fractions of ionizing radiation, fesc, during reionization. Our approach combines a high spatial resolution, a realistic treatment of feedback and hydroprocesses, a strict threshold for minimum number of resolution elements per galaxy, and a converged measurement of fesc. We calibrate our physical model using a novel approach to create realistic galaxies at z = 0, so the simulation is predictive at high redshifts. With this approach, we can (1) robustly predict the evolution of the galaxy UV luminosity function at faint magnitudes down to MUV ˜ -15, two magnitudes fainter than observations, and (2) estimate fesc over a large range of galaxy masses based on the detailed stellar and gas distributions in resolved galaxies. We find steep faint end slopes, implying high number densities of faint galaxies, and the dependence of fesc on the UV magnitude of a galaxy, given by the power law: log fesc = (0.51 ± 0.04)MUV + 7.3 ± 0.8, with the faint population having fesc ˜ 35 per cent. Convolving the UV luminosity function with fesc(MUV), we find an ionizing emissivity that is (1) dominated by the faintest galaxies and (2) reionizes the universe at the appropriate rate, consistent with observational constraints of the ionizing emissivity and the optical depth to the decoupling surface τes, without the need for additional sources of ionizing radiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oreshenko, Maria; Lavie, Baptiste; Grimm, Simon L.
We analyze the emission spectrum of the hot Jupiter WASP-12b using our HELIOS-R retrieval code and HELIOS-K opacity calculator. When interpreting Hubble and Spitzer data, the retrieval outcomes are found to be prior-dominated. When the prior distributions of the molecular abundances are assumed to be log-uniform, the volume mixing ratio of HCN is found to be implausibly high. A VULCAN chemical kinetics model of WASP-12b suggests that chemical equilibrium is a reasonable assumption even when atmospheric mixing is implausibly rigorous. Guided by (exo)planet formation theory, we set Gaussian priors on the elemental abundances of carbon, oxygen, and nitrogen with themore » Gaussian peaks being centered on the measured C/H, O/H, and N/H values of the star. By enforcing chemical equilibrium, we find substellar O/H and stellar to slightly superstellar C/H for the dayside atmosphere of WASP-12b. The superstellar carbon-to-oxygen ratio is just above unity, regardless of whether clouds are included in the retrieval analysis, consistent with Madhusudhan et al. Furthermore, whether a temperature inversion exists in the atmosphere depends on one’s assumption for the Gaussian width of the priors. Our retrieved posterior distributions are consistent with the formation of WASP-12b in a solar-composition protoplanetary disk, beyond the water iceline, via gravitational instability or pebble accretion (without core erosion) and migration inward to its present orbital location via a disk-free mechanism, and are inconsistent with both in situ formation and core accretion with disk migration, as predicted by Madhusudhan et al. We predict that the interpretation of James Webb Space Telescope WASP-12b data will not be prior-dominated.« less
Regional Topographic Properties of Pluto and Charon from New Horizons
NASA Astrophysics Data System (ADS)
Schenk, P.; Beyer, R. A.; Moore, J. M.; Spencer, J. R.; McKinnon, W. B.; Weaver, H. A., Jr.; Young, L. A.; Olkin, C.; Ennico Smith, K.; Stern, A.
2016-12-01
Topographic mapping was among the high priority observations for both Pluto and Charon, and as a result these are the best characterized icy bodies outside of Ceres and the Saturn system in terms of topography. Roughly 30-40% of each body was mapped in stereo, resulting in high-quality DEM mapping coverage of both at vertical resolutions of 100-500 m and spatial scales of 300-800 m. On Charon, stereo mapping reveals the rolling topography of Vulcan Planum and its marginal "moat" depressed several hundred meters. The older cratered plains are also broken into large blocks 100-300 km across, separated by extensional troughs 1-3 km deep. Total relief across Charon exceeds 15 km, making it one of the most rugged midsize icy bodies outside Iapetus. Pluto is divided into several distinct geologic provinces, each with its own topographic character. The globally highest features are the elevated bladed terrain plateaus standing 2-3 km high. Cratered plains to the northwest have low relief of a few hundred meters, except for 2-3 km deep unmodified extensional fractures. Etched or eroded plains to the east have local relief of 2-3 km. The most dominant feature is the 3-km deep elliptical basin associated with the nitrogen-rich ice plains of Sputnik Planitia (informally named). This depression most obviously resembles large impact basins on other bodies, most notably Hellas basin on Mars and Caloris basin on Mercury. The basin has a raised rim in some quadrants but is very ancient and eroded and primary impact textures are now lost. Nonetheless, a low-velocity oblique impact remains the most likely explanation for this feature, leaving a depression that became the focus for subsequent volatile ice accumulation.
Could US mayors achieve the entire US Paris climate target?
NASA Astrophysics Data System (ADS)
Gurney, K. R.; Huang, J.; Hutchins, M.; Liang, J.
2017-12-01
After the recent US Federal Administration announcement not to adhere to the Paris Accords, 359 mayors (and counting) in the US pledged to maintain their commitments, reducing emissions within their jurisdictions by 26-28% from their 2005 levels by the year 2025. While important, this leaves a large portion of the US landscape, and a large amount of US emissions, outside of the Paris commitment. With Federal US policy looking unlikely to change, could additional effort by US cities overcome the gap in national policy and achieve the equivalent US national Paris commitment? How many cities would be required and how deep would reductions need to be? Up until now, this question could not be reliably resolved due to lack of data at the urban scale. Here, we answer this question with new data - the Vulcan V3.0 FFCO2 emissions data product - through examination of the total US energy related CO2 emissions from cities. We find that the top 500 urban areas in the US could meet the national US commitment to the Paris Accords with a reduction of roughly 30% below their 2015 levels by the year 2025. This is driven by the share of US emissions emanating from cities, particularly the largest cohort. Indeed, as the number of urban areas taking on CO2 reduction targets grows, the less the reduction burden on any individual city. In this presentation, we provide an analysis of US urban CO2 emissions and US climate policy, accounting for varying definitions of urban areas, emitting sectors and the tradeoff between the number of policy-active cities and the CO2 reduction burden.
Economic status, smoking, occupational exposure to rubber, and lung cancer: a case-cohort study.
Li, Ke; Yu, Shunzhang
2002-05-01
Recent studies tend consistently to confirm the presence of a moderate excess risk of lung cancer in the rubber industry. However, the agent responsible for the excess of lung cancer is still obscure. Also, analyses without regard to the modifying effects of sex, economic status, and smoking habit are less than satisfactory. To explore these questions, we have conducted a case-cohort study using the data of 51 lung cancer deaths in 1973-1997 and a random sample (sub-cohort) of 188 from among 1598 subjects in a rubber factory in Shanghai, China. We computed the risks of lung cancer by economic status, smoking habit, coal fumes in home, and year of first employment. We assessed lung cancer risks for occupational exposures, unadjusted and adjusted for economic status and smoking. After confounding effects of smoking and economic status were controlled, we found that rate ratios were 1.43 (95% confidence interval (CI) 0.43-4.69), 1.79 (95% CI 0.64-5.03), and 3.76 (95% CI 1.44-9.86) for 1-14, 15-29, and 30-45 exposure-years in curing department, respectively. The data showed significant trends in increased risk of lung cancer with duration of exposure in tire-curing department (score test for trend:, P = 0.004). However, in front rubber processing (weighing and mixing, calendering, extruding, and milling), no significant excess risk of lung cancer was found. If it can be confirmed that nitrosamines are mainly generated in back rubber processing (curing and vulcanizing), it would be reasonable to conclude that excess risk of lung cancer in rubber industry is attributable, at least partially, to exposure to nitrosamines.
NASA Astrophysics Data System (ADS)
Chen, Y.; Gu, Y. J.; Hung, S. H.
2014-12-01
Based on finite-frequency theory and cross-correlation teleseismic relative traveltime data from the USArray, Canadian National Seismograph Network (CNSN) and Canadian Rockies and Alberta Network (CRANE), we present a new tomographic model of P-wave velocity perturbations for the lithosphere and upper mantle beneath the Cordillera-cration transition region in southwestern Canada. The inversion procedure properly accounts for the finite-volume sensitivities of measured travel time residuals, and the resulting model shows a greater resolution of upper mantle velocity heterogeneity beneath the study area than earlier approaches based on the classical ray-theoretical approach. Our model reveals a lateral change of P velocities from -0.5% to 0.5% down to ~200-km depth in a 50-km wide zone between the Alberta Basin and the foothills of the Rocky Mountains, which suggests a sharp structural gradient along the Cordillera deformation front. The stable cratonic lithosphere, delineated by positive P-velocity perturbations of 0.5% and greater, extends down to a maximum depth of ~180 km beneath the Archean Loverna Block (LB). In comparison, the mantle beneath the controversial Medicine Hat Block (MHB) exhibits significantly higher velocities in the uppermost mantle and a shallower (130-150 km depth) root, generally consistent with the average depth of the lithosphere-asthenosphere boundary beneath Southwest Western Canada Sedimentary Basin (WCSB). The complex shape of the lithospheric velocities under the MHB may be evidence of extensive erosion or a partial detachment of the Precambrian lithospheric root. Furthermore, distinct high velocity anomalies in LB and MHB, which are separated by 'normal' mantle block beneath the Vulcan structure (VS), suggest different Archean assembly and collision histories between these two tectonic blocks.