NASA Astrophysics Data System (ADS)
Papathoma-Köhle, Maria
2016-08-01
The assessment of the physical vulnerability of elements at risk as part of the risk analysis is an essential aspect for the development of strategies and structural measures for risk reduction. Understanding, analysing and, if possible, quantifying physical vulnerability is a prerequisite for designing strategies and adopting tools for its reduction. The most common methods for assessing physical vulnerability are vulnerability matrices, vulnerability curves and vulnerability indicators; however, in most of the cases, these methods are used in a conflicting way rather than in combination. The article focuses on two of these methods: vulnerability curves and vulnerability indicators. Vulnerability curves express physical vulnerability as a function of the intensity of the process and the degree of loss, considering, in individual cases only, some structural characteristics of the affected buildings. However, a considerable amount of studies argue that vulnerability assessment should focus on the identification of these variables that influence the vulnerability of an element at risk (vulnerability indicators). In this study, an indicator-based methodology (IBM) for mountain hazards including debris flow (Kappes et al., 2012) is applied to a case study for debris flows in South Tyrol, where in the past a vulnerability curve has been developed. The relatively "new" indicator-based method is being scrutinised and recommendations for its improvement are outlined. The comparison of the two methodological approaches and their results is challenging since both methodological approaches deal with vulnerability in a different way. However, it is still possible to highlight their weaknesses and strengths, show clearly that both methodologies are necessary for the assessment of physical vulnerability and provide a preliminary "holistic methodological framework" for physical vulnerability assessment showing how the two approaches may be used in combination in the future.
Tavares, Alexandre Oliveira; Barros, José Leandro; Santos, Angela
2017-04-01
This study presents a new multidimensional methodology for tsunami vulnerability assessment that combines the morphological, structural, social, and tax component of vulnerability. This new approach can be distinguished from previous methodologies that focused primarily on the evaluation of potentially affected buildings and did not use tsunami numerical modeling. The methodology was applied to the Figueira da Foz and Vila do Bispo municipalities in Portugal. For each area, the potential tsunami-inundated areas were calculated considering the 1755 Lisbon tsunami, which is the greatest disaster caused by natural hazards that ever occurred in Portugal. Furthermore, the four components of the vulnerability were calculated to obtain a composite vulnerability index. This methodology enables us to differentiate the two areas in their vulnerability, highlighting the characteristics of the territory components. This methodology can be a starting point for the creation of a local assessment framework at the municipal scale related to tsunami risk. In addition, the methodology is an important support for the different local stakeholders. © 2016 Society for Risk Analysis.
Performance-based methodology for assessing seismic vulnerability and capacity of buildings
NASA Astrophysics Data System (ADS)
Shibin, Lin; Lili, Xie; Maosheng, Gong; Ming, Li
2010-06-01
This paper presents a performance-based methodology for the assessment of seismic vulnerability and capacity of buildings. The vulnerability assessment methodology is based on the HAZUS methodology and the improved capacitydemand-diagram method. The spectral displacement ( S d ) of performance points on a capacity curve is used to estimate the damage level of a building. The relationship between S d and peak ground acceleration (PGA) is established, and then a new vulnerability function is expressed in terms of PGA. Furthermore, the expected value of the seismic capacity index (SCev) is provided to estimate the seismic capacity of buildings based on the probability distribution of damage levels and the corresponding seismic capacity index. The results indicate that the proposed vulnerability methodology is able to assess seismic damage of a large number of building stock directly and quickly following an earthquake. The SCev provides an effective index to measure the seismic capacity of buildings and illustrate the relationship between the seismic capacity of buildings and seismic action. The estimated result is compared with damage surveys of the cities of Dujiangyan and Jiangyou in the M8.0 Wenchuan earthquake, revealing that the methodology is acceptable for seismic risk assessment and decision making. The primary reasons for discrepancies between the estimated results and the damage surveys are discussed.
Howe, Peter D.; Yarnal, Brent; Coletti, Alex; Wood, Nathan J.
2013-01-01
Natural hazards and climate change present growing challenges to community water system (CWS) managers, who are increasingly turning to vulnerability assessments to identify, prioritize, and adapt to risks. Effectively assessing CWS vulnerability requires information and participation from various sources, one of which is stakeholders. In this article, we present a deliberative risk-ranking methodology, the participatory vulnerability scoping diagram (P-VSD), which allows rapid assessment and integration of multiple stakeholder perspectives of vulnerability. This technique is based on methods of deliberative risk evaluation and the vulnerability scoping diagram. The goal of the methodology is to engage CWS managers and stakeholders collectively to provide qualitative contextual risk rankings as a first step in a vulnerability assessment. We conduct an initial assessment using a case study of CWS in two U.S. counties, sites with broadly similar exposures but differences in population, land use, and other social sensitivity factors. Results demonstrate that CWS managers and stakeholders in the two case study communities all share the belief that their CWS are vulnerable to hazards but differ in how this vulnerability manifests itself in terms of the exposure, sensitivity, and adaptive capacity of the system.
Climate change vulnerability for species-Assessing the assessments.
Wheatley, Christopher J; Beale, Colin M; Bradbury, Richard B; Pearce-Higgins, James W; Critchlow, Rob; Thomas, Chris D
2017-09-01
Climate change vulnerability assessments are commonly used to identify species at risk from global climate change, but the wide range of methodologies available makes it difficult for end users, such as conservation practitioners or policymakers, to decide which method to use as a basis for decision-making. In this study, we evaluate whether different assessments consistently assign species to the same risk categories and whether any of the existing methodologies perform well at identifying climate-threatened species. We compare the outputs of 12 climate change vulnerability assessment methodologies, using both real and simulated species, and validate the methods using historic data for British birds and butterflies (i.e. using historical data to assign risks and more recent data for validation). Our results show that the different vulnerability assessment methods are not consistent with one another; different risk categories are assigned for both the real and simulated sets of species. Validation of the different vulnerability assessments suggests that methods incorporating historic trend data into the assessment perform best at predicting distribution trends in subsequent time periods. This study demonstrates that climate change vulnerability assessments should not be used interchangeably due to the poor overall agreement between methods when considering the same species. The results of our validation provide more support for the use of trend-based rather than purely trait-based approaches, although further validation will be required as data become available. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Möller, Thomas; Bellin, Knut; Creutzburg, Reiner
2015-03-01
The aim of this paper is to show the recent progress in the design and prototypical development of a software suite Copra Breeder* for semi-automatic generation of test methodologies and security checklists for IT vulnerability assessment in small and medium-sized enterprises.
W. Devine; C. Aubry; J. Miller; K. Potter; A. Bower
2012-01-01
This guide provides a step-by-step description of the methodology used to apply the Forest Tree Genetic Risk Assessment System (ForGRAS; Potter and Crane 2010) to the tree species of the Pacific Northwest in a recent climate change vulnerability assessment (Devine et al. 2012). We describe our modified version of the ForGRAS model, and we review the modelâs basic...
Volcanic risk assessment: Quantifying physical vulnerability in the built environment
NASA Astrophysics Data System (ADS)
Jenkins, S. F.; Spence, R. J. S.; Fonseca, J. F. B. D.; Solidum, R. U.; Wilson, T. M.
2014-04-01
This paper presents structured and cost-effective methods for assessing the physical vulnerability of at-risk communities to the range of volcanic hazards, developed as part of the MIA-VITA project (2009-2012). An initial assessment of building and infrastructure vulnerability has been carried out for a set of broadly defined building types and infrastructure categories, with the likelihood of damage considered separately for projectile impact, ash fall loading, pyroclastic density current dynamic pressure and earthquake ground shaking intensities. In refining these estimates for two case study areas: Kanlaon volcano in the Philippines and Fogo volcano in Cape Verde, we have developed guidelines and methodologies for carrying out physical vulnerability assessments in the field. These include identifying primary building characteristics, such as construction material and method, as well as subsidiary characteristics, for example the size and prevalence of openings, that may be important in assessing eruption impacts. At-risk buildings around Kanlaon were found to be dominated by timber frame buildings that exhibit a high vulnerability to pyroclastic density currents, but a low vulnerability to failure from seismic shaking. Around Fogo, the predominance of unreinforced masonry buildings with reinforced concrete slab roofs suggests a high vulnerability to volcanic earthquake but a low vulnerability to ash fall loading. Given the importance of agriculture for local livelihoods around Kanlaon and Fogo, we discuss the potential impact of infrastructure vulnerability for local agricultural economies, with implications for volcanic areas worldwide. These methodologies and tools go some way towards offering a standardised approach to carrying out future vulnerability assessments for populated volcanic areas.
Gallina, Valentina; Torresan, Silvia; Critto, Andrea; Sperotto, Anna; Glade, Thomas; Marcomini, Antonio
2016-03-01
This paper presents a review of existing multi-risk assessment concepts and tools applied by organisations and projects providing the basis for the development of a multi-risk methodology in a climate change perspective. Relevant initiatives were developed for the assessment of multiple natural hazards (e.g. floods, storm surges, droughts) affecting the same area in a defined timeframe (e.g. year, season, decade). Major research efforts were focused on the identification and aggregation of multiple hazard types (e.g. independent, correlated, cascading hazards) by means of quantitative and semi-quantitative approaches. Moreover, several methodologies aim to assess the vulnerability of multiple targets to specific natural hazards by means of vulnerability functions and indicators at the regional and local scale. The overall results of the review show that multi-risk approaches do not consider the effects of climate change and mostly rely on the analysis of static vulnerability (i.e. no time-dependent vulnerabilities, no changes among exposed elements). A relevant challenge is therefore to develop comprehensive formal approaches for the assessment of different climate-induced hazards and risks, including dynamic exposure and vulnerability. This requires the selection and aggregation of suitable hazard and vulnerability metrics to make a synthesis of information about multiple climate impacts, the spatial analysis and ranking of risks, including their visualization and communication to end-users. To face these issues, climate impact assessors should develop cross-sectorial collaborations among different expertise (e.g. modellers, natural scientists, economists) integrating information on climate change scenarios with sectorial climate impact assessment, towards the development of a comprehensive multi-risk assessment process. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sahoo, Madhumita; Sahoo, Satiprasad; Dhar, Anirban; Pradhan, Biswajeet
2016-10-01
Groundwater vulnerability assessment has been an accepted practice to identify the zones with relatively increased potential for groundwater contamination. DRASTIC is the most popular secondary information-based vulnerability assessment approach. Original DRASTIC approach considers relative importance of features/sub-features based on subjective weighting/rating values. However variability of features at a smaller scale is not reflected in this subjective vulnerability assessment process. In contrast to the subjective approach, the objective weighting-based methods provide flexibility in weight assignment depending on the variation of the local system. However experts' opinion is not directly considered in the objective weighting-based methods. Thus effectiveness of both subjective and objective weighting-based approaches needs to be evaluated. In the present study, three methods - Entropy information method (E-DRASTIC), Fuzzy pattern recognition method (F-DRASTIC) and Single parameter sensitivity analysis (SA-DRASTIC), were used to modify the weights of the original DRASTIC features to include local variability. Moreover, a grey incidence analysis was used to evaluate the relative performance of subjective (DRASTIC and SA-DRASTIC) and objective (E-DRASTIC and F-DRASTIC) weighting-based methods. The performance of the developed methodology was tested in an urban area of Kanpur City, India. Relative performance of the subjective and objective methods varies with the choice of water quality parameters. This methodology can be applied without/with suitable modification. These evaluations establish the potential applicability of the methodology for general vulnerability assessment in urban context.
NASA Astrophysics Data System (ADS)
Kienberger, S.; Lang, S.; Zeil, P.
2009-05-01
The assessment of vulnerability has moved to centre-stage of the debate between different scientific disciplines related to climate change and disaster risk management. Composed by a combination of social, economical, physical and environmental factors the assessment implies combining different domains as well as quantitative with qualitative data and makes it therefore a challenge to identify an integrated metric for vulnerability. In this paper we define vulnerability in the context of climate change, targeting the hazard "flood". The developed methodology is being tested in the Salzach river catchment in Austria, which is largely prone to floods. The proposed methodology allows the spatial quantification of vulnerability and the identification of vulnerability units. These units build upon the geon concept which acts as a framework for the regionalization of continuous spatial information according to defined parameters of homogeneity. Using geons, we are capable of transforming singular domains of information on specific systemic components to policy-relevant, conditioned information. Considering the fact that vulnerability is not directly measurable and due to its complex dimension and social construction an expert-based approach has been chosen. Established methodologies such as Multicriteria Decision Analysis, Delphi exercises and regionalization approaches are being integrated. The method not only enables the assessment of vulnerability independent from administrative boundaries, but also applies an aggregation mode which reflects homogenous vulnerability units. This supports decision makers to reflect on complex issues such as vulnerability. Next to that, the advantage is to decompose the units to their underlying domains. Feedback from disaster management experts indicates that the approach helps to improve the design of measures aimed at strengthening preparedness and mitigation. From this point of view, we reach a step closer towards validation of the proposed method, comprising critical user-oriented aspects like adequateness, practicability and usability of the provided results in general.
Groundwater vulnerability and risk mapping using GIS, modeling and a fuzzy logic tool.
Nobre, R C M; Rotunno Filho, O C; Mansur, W J; Nobre, M M M; Cosenza, C A N
2007-12-07
A groundwater vulnerability and risk mapping assessment, based on a source-pathway-receptor approach, is presented for an urban coastal aquifer in northeastern Brazil. A modified version of the DRASTIC methodology was used to map the intrinsic and specific groundwater vulnerability of a 292 km(2) study area. A fuzzy hierarchy methodology was adopted to evaluate the potential contaminant source index, including diffuse and point sources. Numerical modeling was performed for delineation of well capture zones, using MODFLOW and MODPATH. The integration of these elements provided the mechanism to assess groundwater pollution risks and identify areas that must be prioritized in terms of groundwater monitoring and restriction on use. A groundwater quality index based on nitrate and chloride concentrations was calculated, which had a positive correlation with the specific vulnerability index.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuccaro, G.; Cacace, F.; Albanese, V.
The paper describes technical and functional surveys on COM buildings (Mixed Operative Centre). This activity started since 2005, with the contribution of both Italian Civil Protection Department and the Regions involved. The project aims to evaluate the efficiency of COM buildings, checking not only structural, architectonic and functional characteristics but also paying attention to surrounding real estate vulnerability, road network, railways, harbours, airports, area morphological and hydro-geological characteristics, hazardous activities, etc. The first survey was performed in eastern Sicily, before the European Civil Protection Exercise 'EUROSOT 2005'. Then, since 2006, a new survey campaign started in Abruzzo, Molise, Calabria andmore » Puglia Regions. The more important issue of the activity was the vulnerability assessment. So this paper deals with a more refined vulnerability evaluation technique by means of the SAVE methodology, developed in the 1st task of SAVE project within the GNDT-DPC programme 2000-2002 (Zuccaro, 2005); the SAVE methodology has been already successfully employed in previous studies (i.e. school buildings intervention programme at national scale; list of strategic public buildings in Campania, Sicilia and Basilicata). In this paper, data elaborated by SAVE methodology are compared with expert evaluations derived from the direct inspections on COM buildings. This represents a useful exercise for the improvement either of the survey forms or of the methodology for the quick assessment of the vulnerability.« less
Vulnerability assessments as a political creation: tsunami management in Portugal.
Pronk, Maartje; Maat, Harro; Crane, Todd A
2017-10-01
Vulnerability assessments are a cornerstone of contemporary disaster research. This paper shows how research procedures and the presentation of results of vulnerability assessments are politically filtered. Using data from a study of tsunami risk assessment in Portugal, the paper demonstrates that approaches, measurement instruments, and research procedures for evaluating vulnerability are influenced by institutional preferences, lines of communication, or lack thereof, between stakeholder groups, and available technical expertise. The institutional setting and the pattern of stakeholder interactions form a filter, resulting in a particular conceptualisation of vulnerability, affecting its operationalisation via existing methods and technologies and its institutional embedding. The Portuguese case reveals a conceptualisation that is aligned with perceptions prevalent in national government bureaucracies and the exclusion of local stakeholders owing to selected methodologies and assessment procedures. The decisions taken by actors involved in these areas affect how vulnerability is assessed, and ultimately which vulnerability reduction policies will be recommended in the appraisal. © 2017 The Author(s). Disasters © Overseas Development Institute, 2017.
Vulnerability Assessments in Support of the Climate Ready ...
As part of the Climate Ready Estuaries (CRE) program, the Global Change Research Program (GCRP) in the National Center for Environmental Assessment, Office of Research and Development at the U.S. Environmental Protection Agency has prepared this draft report exploring a new methodology for climate change vulnerability assessments using San Francisco Bay’s salt marsh and mudflat ecosystems as a demonstration. N/A
[Research advances in vulnerability assessment of natural ecosystem response to climate change].
Zhao, Hui-xia; Wu, Shao-hong; Jiang, Lu-guang
2007-02-01
Climate change with global warming as the sign has been caught great attention by the governments, international organizations, and scientists in the world. Human society and natural ecosystem are both exposed to climate change, and more and more people are waked up by its increasing harm. Vulnerability analysis and assessment are the key and basis for adapting and mitigating climate change, being the highlight in the research fields of climate change and ecology in recent years. The vulnerability assessment of climate change is being carried out in various research fields and on different scales, and much progress has been made. This paper introduced the concept of vulnerability, and summarized the research progress in vulnerability assessment of climate change, with the focus on the frame and methodology of vulnerability assessment of natural ecosystem response to climate change. The existed problems and future prospects in this research area were also discussed.
Review Article: A comparison of flood and earthquake vulnerability assessment indicators
NASA Astrophysics Data System (ADS)
de Ruiter, Marleen C.; Ward, Philip J.; Daniell, James E.; Aerts, Jeroen C. J. H.
2017-07-01
In a cross-disciplinary study, we carried out an extensive literature review to increase understanding of vulnerability indicators used in the disciplines of earthquake- and flood vulnerability assessments. We provide insights into potential improvements in both fields by identifying and comparing quantitative vulnerability indicators grouped into physical and social categories. Next, a selection of index- and curve-based vulnerability models that use these indicators are described, comparing several characteristics such as temporal and spatial aspects. Earthquake vulnerability methods traditionally have a strong focus on object-based physical attributes used in vulnerability curve-based models, while flood vulnerability studies focus more on indicators applied to aggregated land-use classes in curve-based models. In assessing the differences and similarities between indicators used in earthquake and flood vulnerability models, we only include models that separately assess either of the two hazard types. Flood vulnerability studies could be improved using approaches from earthquake studies, such as developing object-based physical vulnerability curve assessments and incorporating time-of-the-day-based building occupation patterns. Likewise, earthquake assessments could learn from flood studies by refining their selection of social vulnerability indicators. Based on the lessons obtained in this study, we recommend future studies for exploring risk assessment methodologies across different hazard types.
Cyber / Physical Security Vulnerability Assessment Integration
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDonald, Douglas G.; Simpkins, Bret E.
Abstract Both physical protection and cyber security domains offer solutions for the discovery of vulnerabilities through the use of various assessment processes and software tools. Each vulnerability assessment (VA) methodology provides the ability to identify and categorize vulnerabilities, and quantifies the risks within their own areas of expertise. Neither approach fully represents the true potential security risk to a site and/or a facility, nor comprehensively assesses the overall security posture. The technical approach to solving this problem was to identify methodologies and processes that blend the physical and cyber security assessments, and develop tools to accurately quantify the unaccounted formore » risk. SMEs from both the physical and the cyber security domains developed the blending methodologies, and cross trained each other on the various aspects of the physical and cyber security assessment processes. A local critical infrastructure entity volunteered to host a proof of concept physical/cyber security assessment, and the lessons learned have been leveraged by this effort. The four potential modes of attack an adversary can use in approaching a target are; Physical Only Attack, Cyber Only Attack, Physical Enabled Cyber Attack, and the Cyber Enabled Physical Attack. The Physical Only and the Cyber Only pathway analysis are two of the most widely analyzed attack modes. The pathway from an off-site location to the desired target location is dissected to ensure adversarial activity can be detected and neutralized by the protection strategy, prior to completion of a predefined task. This methodology typically explores a one way attack from the public space (or common area) inward towards the target. The Physical Enabled Cyber Attack and the Cyber Enabled Physical Attack are much more intricate. Both scenarios involve beginning in one domain to affect change in the other, then backing outward to take advantage of the reduced system effectiveness, before penetrating further into the defenses. The proper identification and assessment of the overlapping areas (and interaction between these areas) in the VA process is necessary to accurately assess the true risk.« less
Security Events and Vulnerability Data for Cybersecurity Risk Estimation.
Allodi, Luca; Massacci, Fabio
2017-08-01
Current industry standards for estimating cybersecurity risk are based on qualitative risk matrices as opposed to quantitative risk estimates. In contrast, risk assessment in most other industry sectors aims at deriving quantitative risk estimations (e.g., Basel II in Finance). This article presents a model and methodology to leverage on the large amount of data available from the IT infrastructure of an organization's security operation center to quantitatively estimate the probability of attack. Our methodology specifically addresses untargeted attacks delivered by automatic tools that make up the vast majority of attacks in the wild against users and organizations. We consider two-stage attacks whereby the attacker first breaches an Internet-facing system, and then escalates the attack to internal systems by exploiting local vulnerabilities in the target. Our methodology factors in the power of the attacker as the number of "weaponized" vulnerabilities he/she can exploit, and can be adjusted to match the risk appetite of the organization. We illustrate our methodology by using data from a large financial institution, and discuss the significant mismatch between traditional qualitative risk assessments and our quantitative approach. © 2017 Society for Risk Analysis.
MOLECULAR GENETIC TOOLS FOR ASSESSING THE STATUS AND VULNERABILITY OF AQUATIC RESOURCES
Development of ecological indicators that efficiently capture the present condition and project future vulnerabilities of biological resources is critical to sound environmental management. For this reason, the ORD's Ecological Research Program is developing genetic methodologies...
NASA Astrophysics Data System (ADS)
Torresan, S.; Critto, A.; Rizzi, J.; Marcomini, A.
2012-07-01
Sea level rise, changes in storms and wave climate as a consequence of global climate change are expected to increase the size and magnitude of flooded and eroding coastal areas, thus having profound impacts on coastal communities and ecosystems. River deltas, beaches, estuaries and lagoons are considered particularly vulnerable to the adverse effects of climate change, which should be studied at the regional/local scale. This paper presents a regional vulnerability assessment (RVA) methodology developed to analyse site-specific spatial information on coastal vulnerability to the envisaged effects of global climate change, and assist coastal communities in operational coastal management and conservation. The main aim of the RVA is to identify key vulnerable receptors (i.e. natural and human ecosystems) in the considered region and localize vulnerable hot spot areas, which could be considered as homogeneous geographic sites for the definition of adaptation strategies. The application of the RVA methodology is based on a heterogeneous subset of bio-geophysical and socio-economic vulnerability indicators (e.g. coastal topography, geomorphology, presence and distribution of vegetation cover, location of artificial protection), which are a measure of the potential harm from a range of climate-related impacts (e.g. sea level rise inundation, storm surge flooding, coastal erosion). Based on a system of numerical weights and scores, the RVA provides relative vulnerability maps that allow to prioritize more vulnerable areas and targets of different climate-related impacts in the examined region and to support the identification of suitable areas for human settlements, infrastructures and economic activities, providing a basis for coastal zoning and land use planning. The implementation, performance and results of the methodology for the coastal area of the North Adriatic Sea (Italy) are fully described in the paper.
NASA Astrophysics Data System (ADS)
Chen, Shih-Kai; Hsieh, Chih-Heng; Tsai, Cheng-Bin
2017-04-01
Aquifer vulnerability assessment is considered to be an effective tool in controlling potential pollution which is critical for groundwater management. The Choushui River alluvial fan, located in central Taiwan, is an agricultural area with complex crop patterns and various irrigation schemes, which increased the difficulties in groundwater resource management. The aim of this study is to propose an integrated methodology to assess shallow groundwater vulnerability by including land-use impact on groundwater potential pollution. The original groundwater vulnerability methodology, DRASTIC, was modified by adding a land-use parameter in order to assess groundwater vulnerability under intense agricultural activities. To examine the prediction capacity of pollution for the modified DRASTIC model, various risk categories of contamination potentials were compared with observed nitrate-N obtained from groundwater monitoring network. It was found that for the original DRASTIC vulnerability map, some areas with low nitrate-N concentrations are covered within the high vulnerability areas, especially in the northern part of mid-fan areas, where rice paddy is the main crop and planted for two crop seasons per year. The low nitrate-N contamination potential of rice paddies may be resulted from the denitrification in the reduced root zone. By reducing the rating for rice paddies, the modified model was proved to be capable of increasing the precise of prediction in study area. The results can provide a basis for groundwater monitoring network design and effective preserve measures formulation in the mixed agricultural area. Keyword:Aquifer Vulnerability, Groundwater, DRASTIC, Nitrate-N
NASA Astrophysics Data System (ADS)
Michellier, Caroline; Kervyn, François; Tréfon, Théodore; Wolff, Eléonore
2013-04-01
GeoRisCA is a project which aims at studying the geo-risk in the Kivu region (DRC, Rwanda, Burundi), in order to support risk management. The approach developed in GeoRisCA combines methodologies from various disciplines, which will allow the analyses of seismic, volcanic and mass-movement hazards and the vulnerability assessment of the threatened elements. Vulnerability is a complex concept which is commonly defined as the susceptibility of the population, the infrastructures and the natural ecosystems to suffer from damages if a hazard occurs. The densely populated area extended from the North Kivu province in Democratic Republic of the Congo (DRC) to North Burundi and East Rwanda is vulnerable to several geohazards, such as landslides triggered by geodynamical processes (climate, seismicity, volcanism) and possibly worsen by anthropic actions. Located in the East African rift valley, the region is also characterized by a strong seismicity, with increasing people and infrastructure exposed. In addition, east DRC hosts the two most active African volcanoes: Nyiragongo and Nyamulagira. Their activity can have serious impacts, as in 2002 when Nyiragongo directly endangers the ~800.000 inhabitants of Goma city, located ~15 km to the south. Linked to passive volcanic degassing, SO2 and CO2 discharge may also increase the population vulnerability(morbidity, mortality). Focusing specifically on this region, the vulnerability assessment methodology developed in GeoRisCA takes into account "exposure to perturbations" and "adaptive capacity or resilience" of the vulnerable systems. On one hand, the exposure is identified as the potential degree of loss of a given element or set of elements at risk; i.e., the susceptibility of people, infrastructures and buildings with respect to a hazard (social vulnerability). It focuses mainly on land use, and on demographic and socio-economic factors that increase or attenuate the impacts of hazards events on local populations. On the other hand, the resilience of the individual, the household, the community, is its adaptive capacity to absorb disturbance and reorganize into a fully functioning system by anticipation, response, adaptation and recovery. A key contribution of GeoRisCA project is to assess the vulnerability to different geohazards by integrating geographic and time variability. This methodology takes into account the specificities highlighted at the regional and the local scale (urban sites). And it also considers that the vulnerability evolves with time, e.g. due to improved education, increased income, denser social networks and evolution of coping mechanisms. Using the above described methodology, one of the main objective of GeoRisCA is to developed vulnerability maps that, once associated with geohazards data, will provide decision making tools for existing preparedness and mitigation institutions.
Assessment of composite index methods for agricultural vulnerability to climate change.
Wiréhn, Lotten; Danielsson, Åsa; Neset, Tina-Simone S
2015-06-01
A common way of quantifying and communicating climate vulnerability is to calculate composite indices from indicators, visualizing these as maps. Inherent methodological uncertainties in vulnerability assessments, however, require greater attention. This study examines Swedish agricultural vulnerability to climate change, the aim being to review various indicator approaches for assessing agricultural vulnerability to climate change and to evaluate differences in climate vulnerability depending on the weighting and summarizing methods. The reviewed methods are evaluated by being tested at the municipal level. Three weighting and summarizing methods, representative of climate vulnerability indices in general, are analysed. The results indicate that 34 of 36 method combinations differ significantly from each other. We argue that representing agricultural vulnerability in a single composite index might be insufficient to guide climate adaptation. We emphasize the need for further research into how to measure and visualize agricultural vulnerability and into how to communicate uncertainties in both data and methods. Copyright © 2015 Elsevier Ltd. All rights reserved.
Assessments of species' vulnerability to climate change: From pseudo to science
Wade, Alisa A.; Hand, Brian K.; Kovach, Ryan; Muhlfeld, Clint C.; Waples, Robin S.; Luikart, Gordon
2017-01-01
Climate change vulnerability assessments (CCVAs) are important tools to plan for and mitigate potential impacts of climate change. However, CCVAs often lack scientific rigor, which can ultimately lead to poor conservation prioritization and associated ecological and economic costs. We discuss the need to improve comparability and consistency of CCVAs and either validate their findings or improve assessment of CCVA uncertainty and sensitivity to methodological assumptions.
Sehgal, Vinay Kumar; Dhakar, Rajkumar
2016-03-01
The study presents a methodology to assess and map agricultural drought vulnerability during main kharif crop season at local scale and compare its intra-seasonal variations. A conceptual model of vulnerability based on variables of exposure, sensitivity, and adaptive capacity was adopted, and spatial datasets of key biophysical factors contributing to vulnerability were generated using remote sensing and GIS for Rajasthan State of India. Hazard exposure was based on frequency and intensity of gridded standardized precipitation index (SPI). Agricultural sensitivity was based on soil water holding capacity as well as on frequency and intensity of normalized difference vegetation index (NDVI)-derived trend adjusted vegetation condition index (VCITadj). Percent irrigated area was used as a measure of adaptive capacity. Agricultural drought vulnerability was derived separately for early, mid, late, and whole kharif seasons by composting rating of factors using linear weighting scheme and pairwise comparison of multi-criteria evaluation. The regions showing very low to extreme rating of hazard exposure, drought sensitivity, and agricultural vulnerability were identified at all four time scales. The results indicate that high to extreme vulnerability occurs in more than 50% of net sown area in the state and such areas mostly occur in western, central, and southern parts. The higher vulnerability is on account of non-irrigated croplands, moderate to low water holding capacity of sandy soils, resulting in higher sensitivity, and located in regions with high probability of rainfall deficiency. The mid and late season vulnerability has been found to be much higher than that during early and whole season. Significant correlation of vulnerability rating with food grain productivity, drought recurrence period, crop area damaged in year 2009 and socioeconomic indicator of human development index (HDI) proves the general soundness of methodology. Replication of this methodology in other areas is expected to lead to better preparedness and mitigation-oriented management of droughts.
VuWiki: An Ontology-Based Semantic Wiki for Vulnerability Assessments
NASA Astrophysics Data System (ADS)
Khazai, Bijan; Kunz-Plapp, Tina; Büscher, Christian; Wegner, Antje
2014-05-01
The concept of vulnerability, as well as its implementation in vulnerability assessments, is used in various disciplines and contexts ranging from disaster management and reduction to ecology, public health or climate change and adaptation, and a corresponding multitude of ideas about how to conceptualize and measure vulnerability exists. Three decades of research in vulnerability have generated a complex and growing body of knowledge that challenges newcomers, practitioners and even experienced researchers. To provide a structured representation of the knowledge field "vulnerability assessment", we have set up an ontology-based semantic wiki for reviewing and representing vulnerability assessments: VuWiki, www.vuwiki.org. Based on a survey of 55 vulnerability assessment studies, we first developed an ontology as an explicit reference system for describing vulnerability assessments. We developed the ontology in a theoretically controlled manner based on general systems theory and guided by principles for ontology development in the field of earth and environment (Raskin and Pan 2005). Four key questions form the first level "branches" or categories of the developed ontology: (1) Vulnerability of what? (2) Vulnerability to what? (3) What reference framework was used in the vulnerability assessment?, and (4) What methodological approach was used in the vulnerability assessment? These questions correspond to the basic, abstract structure of the knowledge domain of vulnerability assessments and have been deduced from theories and concepts of various disciplines. The ontology was then implemented in a semantic wiki which allows for the classification and annotation of vulnerability assessments. As a semantic wiki, VuWiki does not aim at "synthesizing" a holistic and overarching model of vulnerability. Instead, it provides both scientists and practitioners with a uniform ontology as a reference system and offers easy and structured access to the knowledge field of vulnerability assessments with the possibility for any user to retrieve assessments using specific research criteria. Furthermore, Vuwiki can serve as a collaborative knowledge platform that allows for the active participation of those generating and using the knowledge represented in the wiki.
Groundwater vulnerability to climate change: A review of the assessment methodology.
Aslam, Rana Ammar; Shrestha, Sangam; Pandey, Vishnu Prasad
2018-01-15
Impacts of climate change on water resources, especially groundwater, can no longer be hidden. These impacts are further exacerbated under the integrated influence of climate variability, climate change and anthropogenic activities. The degree of impact varies according to geographical location and other factors leading systems and regions towards different levels of vulnerability. In the recent past, several attempts have been made in various regions across the globe to quantify the impacts and consequences of climate and non-climate factors in terms of vulnerability to groundwater resources. Firstly, this paper provides a structured review of the available literature, aiming to critically analyse and highlight the limitations and knowledge gaps involved in vulnerability (of groundwater to climate change) assessment methodologies. The effects of indicator choice and the importance of including composite indicators are then emphasised. A new integrated approach for the assessment of groundwater vulnerability to climate change is proposed to successfully address those limitations. This review concludes that the choice of indicator has a significant role in defining the reliability of computed results. The effect of an individual indicator is also apparent but the consideration of a combination (variety) of indicators may give more realistic results. Therefore, in future, depending upon the local conditions and scale of the study, indicators from various groups should be chosen. Furthermore, there are various assumptions involved in previous methodologies, which limit their scope by introducing uncertainty in the calculated results. These limitations can be overcome by implementing the proposed approach. Copyright © 2017 Elsevier B.V. All rights reserved.
Putting vulnerability to climate change on the map: a review of approaches, benefits, and risks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Preston, Benjamin L
2011-01-01
There is growing demand among stakeholders across public and private institutions for spatially-explicit information regarding vulnerability to climate change at the local scale. However, the challenges associated with mapping the geography of climate change vulnerability are non-trivial, both conceptually and technically, suggesting the need for more critical evaluation of this practice. Here, we review climate change vulnerability mapping in the context of four key questions that are fundamental to assessment design. First, what are the goals of the assessment? A review of published assessments yields a range of objective statements that emphasize problem orientation or decision-making about adaptation actions. Second,more » how is the assessment of vulnerability framed? Assessments vary with respect to what values are assessed (vulnerability of what) and the underlying determinants of vulnerability that are considered (vulnerability to what). The selected frame ultimately influences perceptions of the primary driving forces of vulnerability as well as preferences regarding management alternatives. Third, what are the technical methods by which an assessment is conducted? The integration of vulnerability determinants into a common map remains an emergent and subjective practice associated with a number of methodological challenges. Fourth, who participates in the assessment and how will it be used to facilitate change? Assessments are often conducted under the auspices of benefiting stakeholders, yet many lack direct engagement with stakeholders. Each of these questions is reviewed in turn by drawing on an illustrative set of 45 vulnerability mapping studies appearing in the literature. A number of pathways for placing vulnerability« less
A systematic review of dynamics in climate risk and vulnerability assessments
NASA Astrophysics Data System (ADS)
Jurgilevich, Alexandra; Räsänen, Aleksi; Groundstroem, Fanny; Juhola, Sirkku
2017-01-01
Understanding climate risk is crucial for effective adaptation action, and a number of assessment methodologies have emerged. We argue that the dynamics of the individual components in climate risk and vulnerability assessments has received little attention. In order to highlight this, we systematically reviewed 42 sub-national climate risk and vulnerability assessments. We analysed the assessments using an analytical framework with which we evaluated (1) the conceptual approaches to vulnerability and exposure used, (2) if current or future risks were assessed, and (3) if and how changes over time (i.e. dynamics) were considered. Of the reviewed assessments, over half addressed future risks or vulnerability; and of these future-oriented studies, less than 1/3 considered both vulnerability and exposure dynamics. While the number of studies that include dynamics is growing, and while all studies included socio-economic aspects, often only biophysical dynamics was taken into account. We discuss the challenges of assessing socio-economic and spatial dynamics, particularly the poor availability of data and methods. We suggest that future-oriented studies assessing risk dynamics would benefit from larger stakeholder involvement, discussion of the assessment purpose, the use of multiple methods, inclusion of uncertainty/sensitivity analyses and pathway approaches.
NASA Astrophysics Data System (ADS)
Elias, E.; Reyes, J. J.; Steele, C. M.; Rango, A.
2017-12-01
Assessing vulnerability of agricultural systems to climate variability and change is vital in securing food systems and sustaining rural livelihoods. Farmers, ranchers, and forest landowners rely on science-based, decision-relevant, and localized information to maintain production, ecological viability, and economic returns. This contribution synthesizes a collection of research on the future of agricultural production in the American Southwest (SW). Research was based on a variety of geospatial methodologies and datasets to assess the vulnerability of rangelands and livestock, field crops, specialty crops, and forests in the SW to climate-risk and change. This collection emerged from the development of regional vulnerability assessments for agricultural climate-risk by the U.S. Department of Agriculture (USDA) Climate Hub Network, established to deliver science-based information and technologies to enable climate-informed decision-making. Authors defined vulnerability differently based on their agricultural system of interest, although each primarily focuses on biophysical systems. We found that an inconsistent framework for vulnerability and climate risk was necessary to adequately capture the diversity, variability, and heterogeneity of SW landscapes, peoples, and agriculture. Through the diversity of research questions and methodologies, this collection of articles provides valuable information on various aspects of SW vulnerability. All articles relied on geographic information systems technology, with highly variable levels of complexity. Agricultural articles used National Agricultural Statistics Service data, either as tabular county level summaries or through the CropScape cropland raster datasets. Most relied on modeled historic and future climate information, but with differing assumptions regarding spatial resolution and temporal framework. We assert that it is essential to evaluate climate risk using a variety of complementary methodologies and perspectives. In addition, we found that spatial analysis supports informed adaptation, within and outside the SW United States. The persistence and adaptive capacity of agriculture in the water-limited Southwest serves as an instructive example and may offer solutions to reduce future climate risk.
Water resources vulnerability assessment in the Adriatic Sea region: the case of Corfu Island.
Kanakoudis, Vasilis; Tsitsifli, Stavroula; Papadopoulou, Anastasia; Cencur Curk, Barbara; Karleusa, Barbara
2017-09-01
Cross-border water resources management and protection is a complicated task to achieve, lacking a common methodological framework. Especially in the Adriatic region, water used for drinking water supply purposes pass from many different countries, turning its management into a hard task to achieve. During the DRINKADRIA project, a common methodological framework has been developed, for efficient and effective cross-border water supply and resources management, taking into consideration different resources types (surface and groundwater) emphasizing in drinking water supply intake. The common methodology for water resources management is based on four pillars: climate characteristics and climate change, water resources availability, quality, and security. The present paper assesses both present and future vulnerability of water resources in the Adriatic region, with special focus on Corfu Island, Greece. The results showed that climate change is expected to impact negatively on water resources availability while at the same time, water demand is expected to increase. Water quality problems will be intensified especially due to land use changes and salt water intrusion. The analysis identified areas where water resources are more vulnerable, allowing decision makers develop management strategies.
Population vulnerability to storm surge flooding in coastal Virginia, USA.
Liu, Hua; Behr, Joshua G; Diaz, Rafael
2016-07-01
This study aims to assess the vulnerability of populations to storm surge flooding in 12 coastal localities of Virginia, USA. Population vulnerability is assessed by way of 3 physical factors (elevation, slope, and storm surge category), 3 built-up components (road availability, access to hospitals, and access to shelters), and 3 household conditions (storm preparedness, financial constraints to recovering from severe weather events, and health fragility). Fuzzy analysis is used to generate maps illustrating variation in several types of population vulnerability across the region. When considering physical factors and household conditions, the most vulnerable neighborhoods to sea level rise and storm surge flooding are largely found in urban areas. However, when considering access to critical infrastructure, we find rural residents to be more vulnerable than nonrural residents. These detailed assessments can inform both local and state governments in catastrophic planning. In addition, the methodology may be generalized to assess vulnerability in other coastal corridors and communities. The originality is highlighted by evaluating socioeconomic conditions at refined scale, incorporating a broader range of human perceptions and predispositions, and employing a geoinformatics approach combining physical, built-up, and socioeconomic conditions for population vulnerability assessment. Integr Environ Assess Manag 2016;12:500-509. © 2015 SETAC. © 2015 SETAC.
NASA Astrophysics Data System (ADS)
Scaini, C.; Felpeto, A.; Martí, J.; Carniel, R.
2014-05-01
This paper presents a GIS-based methodology to estimate damages produced by volcanic eruptions. The methodology is constituted by four parts: definition and simulation of eruptive scenarios, exposure analysis, vulnerability assessment and estimation of expected damages. Multi-hazard eruptive scenarios are defined for the Teide-Pico Viejo active volcanic complex, and simulated through the VORIS tool. The exposure analysis identifies the elements exposed to the hazard at stake and focuses on the relevant assets for the study area. The vulnerability analysis is based on previous studies on the built environment and complemented with the analysis of transportation and urban infrastructures. Damage assessment is performed associating a qualitative damage rating to each combination of hazard and vulnerability. This operation consists in a GIS-based overlap, performed for each hazardous phenomenon considered and for each element. The methodology is then automated into a GIS-based tool using an ArcGIS® program. Given the eruptive scenarios and the characteristics of the exposed elements, the tool produces expected damage maps. The tool is applied to the Icod Valley (North of Tenerife Island) which is likely to be affected by volcanic phenomena in case of eruption from both the Teide-Pico Viejo volcanic complex and North-West basaltic rift. Results are thematic maps of vulnerability and damage that can be displayed at different levels of detail, depending on the user preferences. The aim of the tool is to facilitate territorial planning and risk management in active volcanic areas.
A new approach to flood vulnerability assessment for historic buildings in England
NASA Astrophysics Data System (ADS)
Stephenson, V.; D'Ayala, D.
2014-05-01
The recent increase in frequency and severity of flooding in the UK has led to a shift in the perception of risk associated with flood hazards. This has extended to the conservation community, and the risks posed to historic structures that suffer from flooding are particularly concerning for those charged with preserving and maintaining such buildings. In order to fully appraise the risks in a manner appropriate to the complex issue of preservation, a new methodology is presented here that studies the nature of the vulnerability of such structures, and places it in the context of risk assessment, accounting for the vulnerable object and the subsequent exposure of that object to flood hazards. The testing of the methodology is carried out using three urban case studies and the results of the survey analysis provide guidance on the development of fragility curves for historic structures exposed to flooding. This occurs through appraisal of vulnerability indicators related to building form, structural and fabric integrity, and preservation of architectural and archaeological values. Key findings of the work include determining the applicability of these indicators to fragility analysis, and the determination of the relative vulnerability of the three case study sites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arrieta, Gabriela, E-mail: tonina1903@hotmail.com; Requena, Ignacio, E-mail: requena@decsai.ugr.es; Toro, Javier, E-mail: jjtoroca@unal.edu.co
Treatment and final disposal of Municipal Solid Waste can have a significant role in the generation of negative environmental impacts. As a prevention strategy, such activities are subjected to the process of Environmental Impact Assessment (EIA). Still, the follow-up of Environmental Management Plans or mitigation measures is limited, for one due to a lack of methodological approaches. In searching for possibilities, the University of Granada (Spain) developed a diagnostic methodology named EVIAVE, which allows one to quantify, by means of indexes, the environmental impact of landfills in view of their location and the conditions of exploitation. EVIAVE is applicable withinmore » the legal framework of the European Union and can be adapted to the environmental and legal conditions of other countries. This study entails its adaptation in Colombia, for the follow-up and control of the EIA process for landfills. Modifications involved inclusion of the environmental elements flora and fauna, and the evaluation of the environmental descriptors in agreement with the concept of vulnerability. The application of the modified EVIAVE in Colombian landfills allowed us to identify the elements affected by the operating conditions and maintenance. It may be concluded that this methodology is viable and effective for the follow-up and environmental control of EIA processes for landfills, and to analyze the associated risks, as it takes into account related environmental threats and vulnerabilities. - Highlights: • A modified methodology is used to monitor and follow-up environmental impacts in landfills. • The improved methodology includes the Vulnerability of Flora and Fauna to evaluate environmental impact of landfills. • The methodology serves to identify and evaluate the sources of risk generated in the construction and siting of landfills. • Environmental vulnerability indicators improve effectiveness of the control and follow-up phases of landfill management. • The follow-up of environmental management plans may help diminish the implementation gap in Environmental Impact Assessment.« less
An Integrated Approach for Urban Earthquake Vulnerability Analyses
NASA Astrophysics Data System (ADS)
Düzgün, H. S.; Yücemen, M. S.; Kalaycioglu, H. S.
2009-04-01
The earthquake risk for an urban area has increased over the years due to the increasing complexities in urban environments. The main reasons are the location of major cities in hazard prone areas, growth in urbanization and population and rising wealth measures. In recent years physical examples of these factors are observed through the growing costs of major disasters in urban areas which have stimulated a demand for in-depth evaluation of possible strategies to manage the large scale damaging effects of earthquakes. Understanding and formulation of urban earthquake risk requires consideration of a wide range of risk aspects, which can be handled by developing an integrated approach. In such an integrated approach, an interdisciplinary view should be incorporated into the risk assessment. Risk assessment for an urban area requires prediction of vulnerabilities related to elements at risk in the urban area and integration of individual vulnerability assessments. However, due to complex nature of an urban environment, estimating vulnerabilities and integrating them necessities development of integrated approaches in which vulnerabilities of social, economical, structural (building stock and infrastructure), cultural and historical heritage are estimated for a given urban area over a given time period. In this study an integrated urban earthquake vulnerability assessment framework, which considers vulnerability of urban environment in a holistic manner and performs the vulnerability assessment for the smallest administrative unit, namely at neighborhood scale, is proposed. The main motivation behind this approach is the inability to implement existing vulnerability assessment methodologies for countries like Turkey, where the required data are usually missing or inadequate and decision makers seek for prioritization of their limited resources in risk reduction in the administrative districts from which they are responsible. The methodology integrates socio-economical, structural, coastal, ground condition, organizational vulnerabilities, as well as accessibility to critical services within the framework. The proposed framework has the following eight components: Seismic hazard analysis, soil response analysis, tsunami inundation analysis, structural vulnerability analysis, socio-economic vulnerability analysis, accessibility to critical services, GIS-based integrated vulnerability assessment, and visualization of vulnerabilities in 3D virtual city model The integrated model for various vulnerabilities obtained for the urban area is developed in GIS environment by using individual vulnerability assessments for considered elements at risk and serve for establishing the backbone of the spatial decision support system. The stages followed in the model are: Determination of a common mapping unit for each aspect of urban earthquake vulnerability, formation of a geo-database for the vulnerabilities, evaluation of urban vulnerability based on multi attribute utility theory with various weighting algorithms, mapping of the evaluated integrated earthquake risk in geographic information systems (GIS) in the neighborhood scale. The framework is also applicable to larger geographical mapping scales, for example, the building scale. When illustrating the results in building scale, 3-D visualizations with remote sensing data is used so that decision-makers can easily interpret the outputs. The proposed vulnerability assessment framework is flexible and can easily be applied to urban environments at various geographical scales with different mapping units. The obtained total vulnerability maps for the urban area provide a baseline for the development of risk reduction strategies for the decision makers. Moreover, as several aspects of elements at risk for an urban area is considered through vulnerability analyses, effect on changes in vulnerability conditions on the total can easily be determined. The developed approach also enables decision makers to monitor temporal and spatial changes in the urban environment due to implementation of risk reduction strategies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toro, Javier, E-mail: jjtoroca@unal.edu.co; Duarte, Oscar, E-mail: ogduartev@unal.edu.co; Requena, Ignacio, E-mail: requena@decsai.ugr.es
The concept of vulnerability has been used to describe the susceptibility of physical, biotic, and social systems to harm or hazard. In this sense, it is a tool that reduces the uncertainties of Environmental Impact Assessment (EIA) since it does not depend exclusively on the value assessments of the evaluator, but rather is based on the environmental state indicators of the site where the projects or activities are being carried out. The concept of vulnerability thus reduces the possibility that evaluators will subjectively interpret results, and be influenced by outside interests and pressures during projects. However, up until now, EIAmore » has been hindered by a lack of effective methods. This research study analyzes the concept of vulnerability, defines Vulnerability Importance and proposes its inclusion in qualitative EIA methodology. The method used to quantify Vulnerability Importance is based on a set of environmental factors and indicators that provide a comprehensive overview of the environmental state. The results obtained in Colombia highlight the usefulness and objectivity of this method since there is a direct relation between this value and the environmental state of the departments analyzed. - Research Highlights: Black-Right-Pointing-Pointer The concept of vulnerability could be considered defining Vulnerability Importance included in qualitative EIA methodology. Black-Right-Pointing-Pointer The use of the concept of environmental vulnerability could reduce the subjectivity of qualitative methods of EIA. Black-Right-Pointing-Pointer A method to quantify the Vulnerability Importance proposed provides a comprehensive overview of the environmental state. Black-Right-Pointing-Pointer Results in Colombia highlight the usefulness and objectivity of this method.« less
NASA Astrophysics Data System (ADS)
Sperotto, Anna; Torresan, Silvia; Gallina, Valentina; Coppola, Erika; Critto, Andrea; Marcomini, Antonio
2015-04-01
Global climate change is expected to affect the intensity and frequency of extreme events (e.g. heat waves, drought, heavy precipitations events) leading to increasing natural disasters and damaging events (e.g. storms, pluvial floods and coastal flooding) worldwide. Especially in urban areas, disasters risks can be exacerbated by changes in exposure and vulnerability patterns (i.e. urbanization, population growth) and should be addressed by adopting a multi-disciplinary approach. A Regional Risk Assessment (RRA) methodology integrating climate and environmental sciences with bottom-up participative processes was developed and applied to the urban territory of the municipality of Venice in order to evaluate the potential consequences of climate change on pluvial flood risk in urban areas. Based on the consecutive analysis of hazard, exposure, vulnerability and risks, the RRA methodology is a screening risk tool to identify and prioritize major elements at risk (e.g. residential, commercial areas and infrastructures) and to localize sub-areas that are more likely to be affected by flood risk due to heavy precipitation events, in the future scenario (2041-2050). From the early stages of its development and application, the RRA followed a bottom-up approach to select and score site-specific vulnerability factors (e.g. slope, permeability of the soil, past flooded areas) and to consider the requests and perspectives of local stakeholders of the North Adriatic region, by means of interactive workshops, surveys and discussions. The main outputs of the assessment are risk and vulnerability maps and statistics aimed at increasing awareness about the potential effect of climate change on pluvial flood risks and at identifying hot-spot areas where future adaptation actions should be required to decrease physical-environmental vulnerabilities or building resilience and coping capacity of human society to climate change. The overall risk assessment methodology and the results of its application to the territory of the municipality of Venice will be here presented and discussed.
NASA Astrophysics Data System (ADS)
Anandhi, Aavudai; Kannan, Narayanan
2018-02-01
Water is an essential natural resource. Among many stressors, altered climate is exerting pressure on water resource systems, increasing its demand and creating a need for vulnerability assessments. The overall objective of this study was to develop a novel tool that can translate a theoretical concept (vulnerability of water resources (VWR)) to an operational framework mainly under altered temperature and precipitation, as well as for population change (smaller extent). The developed tool had three stages and utilized a novel systems thinking approach. Stage-1: Translating theoretical concept to characteristics identified from studies; Stage-2: Operationalizing characteristics to methodology in VWR; Stage-3: Utilizing the methodology for development of a conceptual modeling tool for VWR: WR-VISTA (Water Resource Vulnerability assessment conceptual model using Indicators selected by System's Thinking Approach). The specific novelties were: 1) The important characteristics in VWR were identified in Stage-1 (target system, system components, scale, level of detail, data source, frameworks, and indicator); 2) WR-VISTA combined two vulnerability assessments frameworks: the European's Driver-Pressure-State-Impact-Response framework (DPSIR) and the Intergovernmental Panel on Climate Change's framework (IPCC's); and 3) used systems thinking approaches in VWR for indicator selection. The developed application was demonstrated in Kansas (overlying the High Plains region/Ogallala Aquifer, considered the "breadbasket of the world"), using 26 indicators with intermediate level of detail. Our results indicate that the western part of the state is vulnerable from agricultural water use and the eastern part from urban water use. The developed tool can be easily replicated to other regions within and outside the US.
Key concepts and methods in social vulnerability and adaptive capacity
Daniel J. Murphy; Carina Wyborn; Laurie Yung; Daniel R. Williams
2015-01-01
National forests have been asked to assess how climate change will impact nearby human communities. To assist their thinking on this topic, we examine the concepts of social vulnerability and adaptive capacity with an emphasis on a range of theoretical and methodological approaches. This analysis is designed to help researchers and decision-makers select appropriate...
A Methodology for Assessing the Seismic Vulnerability of Highway Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cirianni, Francis; Leonardi, Giovanni; Scopelliti, Francesco
2008-07-08
Modern society is totally dependent on a complex and articulated infrastructure network of vital importance for the existence of the urban settlements scattered on the territory. On these infrastructure systems, usually indicated with the term lifelines, are entrusted numerous services and indispensable functions of the normal urban and human activity.The systems of the lifelines represent an essential element in all the urbanised areas which are subject to seismic risk. It is important that, in these zones, they are planned according to opportune criteria based on two fundamental assumptions: a) determination of the best territorial localization, avoiding, within limits, the placesmore » of higher dangerousness; b) application of constructive technologies finalized to the reduction of the vulnerability.Therefore it is indispensable that in any modern process of seismic risk assessment the study of the networks is taken in the rightful consideration, to be integrated with the traditional analyses of the buildings.The present paper moves in this direction, dedicating particular attention to one kind of lifeline: the highway system, proposing a methodology of analysis finalized to the assessment of the seismic vulnerability of the system.« less
Vulnerability Assessments in Support of the Climate Ready ...
As part of the Climate Ready Estuaries (CRE) program, the Global Change Research Program (GCRP) in the National Center for Environmental Assessment, Office of Research and Development at the U.S. Environmental Protection Agency has prepared a report exploring a new methodology for climate change vulnerability assessments using Massachusetts Bays’ salt marsh ecosystem as a demonstration. The aim is to synthesize place-based information on the potential implications of climate change for key ecosystem processes in each estuary, in a form that will enable managers to undertake management adaptation planning.
The classification and assessment of vulnerability of man-land system of oasis city in arid area
NASA Astrophysics Data System (ADS)
Gao, Chao; Lei, Jun; Jin, Fengjun
2013-12-01
Oasis city system is the center of the man-land relationship in arid area and it is the most influential spatial and temporal multiple dynamic system. Oasis city system is not only the largest area where artificial disturbances occur at a regional scale but also the most concentrated area of human activity in arid area. In this study, we developed an applicable and convenient method to assess vulnerability of man-land system of oasis cities with vulnerability indicator system, respectively evaluating the sensitivity, adaptability and vulnerability of the eco-environment system, the economic system and the social system. The results showed that the sensitivity and vulnerability of oasis cities in Xinjiang, China have significant differences while their adaptability does little. In order to find the inherent differences in the vulnerability of oasis cities, triangle methodology has been adopted to divide Xinjiang oasis cities into five types. Some adaptive developing policies specific for individual cities are also proposed based on their vulnerability type and constraining factors.
NASA Astrophysics Data System (ADS)
Stephenson, V.; D'Ayala, D.
2013-10-01
The recent increase in frequency and severity of flooding in the UK has led to a shift in the perception of risk associated with flood hazards. This has extended to the conservation community, and the risks posed to historic structures that suffer from flooding are particularly concerning for those charged with preserving and maintaining such buildings. In order to fully appraise the risks in a manner appropriate to the complex issue of preservation, a new methodology is proposed that studies the nature of vulnerability of such structures, and places it in the context of risk assessment, accounting for the vulnerable object and the subsequent exposure of that object to flood hazards. The testing of the methodology is carried out using three urban case studies and the results of the survey analysis provide key findings and guidance on the development of fragility curves for historic structures exposed to flooding. This occurs through appraisal of key vulnerability indicators related to building form, structural and fabric integrity, and preservation of architectural and archaeological values. This in turn facilitates the production of strategies for mitigating and managing the losses threatened by such extreme climate events.
NASA Astrophysics Data System (ADS)
Shen, Jing; Lu, Hongwei; Zhang, Yang; Song, Xinshuang; He, Li
2016-05-01
As ecosystem management is a hotspot and urgent topic with increasing population growth and resource depletion. This paper develops an urban ecosystem vulnerability assessment method representing a new vulnerability paradigm for decision makers and environmental managers, as it's an early warning system to identify and prioritize the undesirable environmental changes in terms of natural, human, economic and social elements. The whole idea is to decompose a complex problem into sub-problem, and analyze each sub-problem, and then aggregate all sub-problems to solve this problem. This method integrates spatial context of Geographic Information System (GIS) tool, multi-criteria decision analysis (MCDA) method, ordered weighted averaging (OWA) operators, and socio-economic elements. Decision makers can find out relevant urban ecosystem vulnerability assessment results with different vulnerable attitude. To test the potential of the vulnerability methodology, it has been applied to a case study area in Beijing, China, where it proved to be reliable and consistent with the Beijing City Master Plan. The results of urban ecosystem vulnerability assessment can support decision makers in evaluating the necessary of taking specific measures to preserve the quality of human health and environmental stressors for a city or multiple cities, with identifying the implications and consequences of their decisions.
Probabilistic seismic vulnerability and risk assessment of stone masonry structures
NASA Astrophysics Data System (ADS)
Abo El Ezz, Ahmad
Earthquakes represent major natural hazards that regularly impact the built environment in seismic prone areas worldwide and cause considerable social and economic losses. The high losses incurred following the past destructive earthquakes promoted the need for assessment of the seismic vulnerability and risk of the existing buildings. Many historic buildings in the old urban centers in Eastern Canada such as Old Quebec City are built of stone masonry and represent un-measurable architectural and cultural heritage. These buildings were built to resist gravity loads only and generally offer poor resistance to lateral seismic loads. Seismic vulnerability assessment of stone masonry buildings is therefore the first necessary step in developing seismic retrofitting and pre-disaster mitigation plans. The objective of this study is to develop a set of probability-based analytical tools for efficient seismic vulnerability and uncertainty analysis of stone masonry buildings. A simplified probabilistic analytical methodology for vulnerability modelling of stone masonry building with systematic treatment of uncertainties throughout the modelling process is developed in the first part of this study. Building capacity curves are developed using a simplified mechanical model. A displacement based procedure is used to develop damage state fragility functions in terms of spectral displacement response based on drift thresholds of stone masonry walls. A simplified probabilistic seismic demand analysis is proposed to capture the combined uncertainty in capacity and demand on fragility functions. In the second part, a robust analytical procedure for the development of seismic hazard compatible fragility and vulnerability functions is proposed. The results are given by sets of seismic hazard compatible vulnerability functions in terms of structure-independent intensity measure (e.g. spectral acceleration) that can be used for seismic risk analysis. The procedure is very efficient for conducting rapid vulnerability assessment of stone masonry buildings. With modification of input structural parameters, it can be adapted and applied to any other building class. A sensitivity analysis of the seismic vulnerability modelling is conducted to quantify the uncertainties associated with each of the input parameters. The proposed methodology was validated for a scenario-based seismic risk assessment of existing buildings in Old Quebec City. The procedure for hazard compatible vulnerability modelling was used to develop seismic fragility functions in terms of spectral acceleration representative of the inventoried buildings. A total of 1220 buildings were considered. The assessment was performed for a scenario event of magnitude 6.2 at distance 15km with a probability of exceedance of 2% in 50 years. The study showed that most of the expected damage is concentrated in the old brick and stone masonry buildings.
NASA Astrophysics Data System (ADS)
Tahri, Meryem; Maanan, Mohamed; Hakdaoui, Mustapha
2016-04-01
This paper shows a method to assess the vulnerability of coastal risks such as coastal erosion or submarine applying Fuzzy Analytic Hierarchy Process (FAHP) and spatial analysis techniques with Geographic Information System (GIS). The coast of the Mohammedia located in Morocco was chosen as the study site to implement and validate the proposed framework by applying a GIS-FAHP based methodology. The coastal risk vulnerability mapping follows multi-parametric causative factors as sea level rise, significant wave height, tidal range, coastal erosion, elevation, geomorphology and distance to an urban area. The Fuzzy Analytic Hierarchy Process methodology enables the calculation of corresponding criteria weights. The result shows that the coastline of the Mohammedia is characterized by a moderate, high and very high level of vulnerability to coastal risk. The high vulnerability areas are situated in the east at Monika and Sablette beaches. This technical approach is based on the efficiency of the Geographic Information System tool based on Fuzzy Analytical Hierarchy Process to help decision maker to find optimal strategies to minimize coastal risks.
Examining social, physical, and environmental dimensions of tornado vulnerability in Texas.
Siebeneck, Laura
2016-01-01
To develop a vulnerability model that captures the social, physical, and environmental dimensions of tornado vulnerability of Texas counties. Guided by previous research and methodologies proposed in the hazards and emergency management literature, a principle components analysis is used to create a tornado vulnerability index. Data were gathered from open source information available through the US Census Bureau, American Community Surveys, and the Texas Natural Resources Information System. Texas counties. The results of the model yielded three indices that highlight geographic variability of social vulnerability, built environment vulnerability, and tornado hazard throughout Texas. Further analyses suggest that counties with the highest tornado vulnerability include those with high population densities and high tornado risk. This article demonstrates one method for assessing statewide tornado vulnerability and presents how the results of this type of analysis can be applied by emergency managers towards the reduction of tornado vulnerability in their communities.
NASA Astrophysics Data System (ADS)
Mancini, F.; Ceppi, C.; Christopulos, V.
2013-12-01
Literature concerning the risk assessment procedures after extreme meteorological events is generally focused on the establishing of relationship between actual severe weather conditions and impact detected over the involved zones. Such an events are classified on the basis of measurements and observation able to assess the magnitude of phenomena or on the basis of related effects on the affected area, the latter being deeply connected with the overall physical vulnerability. However such assessment almost never do consider scenario about expected extreme event and possible pattern of urbanization at the time of impact and nor the spatial and temporal uncertainty of phenomena are taken into account. The drawn of future scenario about coastal vulnerability to marine processes is therefore difficult. This work focuses the study case of the Metropoli Terra di Bari (metropolitan area of Bari, Apulia, Italy) where a coastal vulnerability analysis due to climate changes expected on the basis of expert opinions coming from the scientific community was carried out. Several possible impacts on the coastal environments were considered, in particular sea level rise inundation, flooding due to storm surge and coastal erosion. For such a purpose the methodology base on SRES (Special Report on Emission Scenario) produced by the IPCC (Intergovernmental Panel on Climate Change) was adopted after a regionalization procedure as carried out by Verburgh and others (2006) at the European scale. The open source software SLEUTH, base on the cellular automate principle, was used and the reliability of obtained scenario verified through the Monte Carlo method. Once these scenario were produced, a GIS-based multicriteria methodology was implemented to evaluate the vulnerability of the urbanized coastal area of interest. Several vulnerability maps related are therefore available for different scenario able to consider the degree of hazards and potential development of the typology and extent of urban settlements. The vulnerability assessments under different scenario could represent a suitable tool in the designing of risk mitigation strategies under uncertain scenario of hazard.
NASA Astrophysics Data System (ADS)
Kempf, Scott; Schäfer, Frank K.; Cardone, Tiziana; Ferreira, Ivo; Gerené, Sam; Destefanis, Roberto; Grassi, Lilith
2016-12-01
During recent years, the state-of-the-art risk assessment of the threat posed to spacecraft by micrometeoroids and space debris has been expanded to the analysis of failure modes of internal spacecraft components. This method can now be used to perform risk analyses for satellites to assess various failure levels - from failure of specific sub-systems to catastrophic break-up. This new assessment methodology is based on triple-wall ballistic limit equations (BLEs), specifically the Schäfer-Ryan-Lambert (SRL) BLE, which is applicable for describing failure threshold levels for satellite components following a hypervelocity impact. The methodology is implemented in the form of the software tool Particle Impact Risk and vulnerability Analysis Tool (PIRAT). During a recent European Space Agency (ESA) funded study, the PIRAT functionality was expanded in order to provide an interface to ESA's Concurrent Design Facility (CDF). The additions include a geometry importer and an OCDT (Open Concurrent Design Tool) interface. The new interface provides both the expanded geometrical flexibility, which is provided by external computer aided design (CAD) modelling, and an ease of import of existing data without the need for extensive preparation of the model. The reduced effort required to perform vulnerability analyses makes it feasible for application during early design phase, at which point modifications to satellite design can be undertaken with relatively little extra effort. The integration of PIRAT in the CDF represents the first time that vulnerability analyses can be performed in-session in ESA's CDF and the first time that comprehensive vulnerability studies can be applied cost-effectively in early design phase in general.
Dunford, R; Harrison, P A; Jäger, J; Rounsevell, M D A; Tinch, R
Addressing climate change vulnerability requires an understanding of both the level of climate impacts and the capacity of the exposed population to cope. This study developed a methodology for allowing users to explore vulnerability to changes in ecosystem services as a result of climatic and socio-economic changes. It focuses on the vulnerability of Europe across multiple sectors by combining the outputs of a regional integrated assessment (IA) model, the CLIMSAVE IA Platform, with maps of coping capacity based on the five capitals approach. The presented methodology enables stakeholder-derived socio-economic futures to be represented within a quantitative integrated modelling framework in a way that changes spatially and temporally with the socio-economic storyline. Vulnerability was mapped for six key ecosystem services in 40 combined climate and socio-economic scenarios. The analysis shows that, whilst the north and west of Europe are generally better placed to cope with climate impacts than the south and east, coping could be improved in all areas. Furthermore, whilst the lack of coping capacity in dystopian scenarios often leads to greater vulnerability, there are complex interactions between sectors that lead to patterns of vulnerability that vary spatially, with scenario and by sector even within the more utopian futures.
Costa Gondim, João José; de Oliveira Albuquerque, Robson; Clayton Alves Nascimento, Anderson; García Villalba, Luis Javier; Kim, Tai-Hoon
2016-01-01
Concerns about security on Internet of Things (IoT) cover data privacy and integrity, access control, and availability. IoT abuse in distributed denial of service attacks is a major issue, as typical IoT devices’ limited computing, communications, and power resources are prioritized in implementing functionality rather than security features. Incidents involving attacks have been reported, but without clear characterization and evaluation of threats and impacts. The main purpose of this work is to methodically assess the possible impacts of a specific class–amplified reflection distributed denial of service attacks (AR-DDoS)–against IoT. The novel approach used to empirically examine the threat represented by running the attack over a controlled environment, with IoT devices, considered the perspective of an attacker. The methodology used in tests includes that perspective, and actively prospects vulnerabilities in computer systems. This methodology defines standardized procedures for tool-independent vulnerability assessment based on strategy, and the decision flows during execution of penetration tests (pentests). After validation in different scenarios, the methodology was applied in amplified reflection distributed denial of service (AR-DDoS) attack threat assessment. Results show that, according to attack intensity, AR-DDoS saturates reflector infrastructure. Therefore, concerns about AR-DDoS are founded, but expected impact on abused IoT infrastructure and devices will be possibly as hard as on final victims. PMID:27827931
Costa Gondim, João José; de Oliveira Albuquerque, Robson; Clayton Alves Nascimento, Anderson; García Villalba, Luis Javier; Kim, Tai-Hoon
2016-11-04
Concerns about security on Internet of Things (IoT) cover data privacy and integrity, access control, and availability. IoT abuse in distributed denial of service attacks is a major issue, as typical IoT devices' limited computing, communications, and power resources are prioritized in implementing functionality rather than security features. Incidents involving attacks have been reported, but without clear characterization and evaluation of threats and impacts. The main purpose of this work is to methodically assess the possible impacts of a specific class-amplified reflection distributed denial of service attacks (AR-DDoS)-against IoT. The novel approach used to empirically examine the threat represented by running the attack over a controlled environment, with IoT devices, considered the perspective of an attacker. The methodology used in tests includes that perspective, and actively prospects vulnerabilities in computer systems. This methodology defines standardized procedures for tool-independent vulnerability assessment based on strategy, and the decision flows during execution of penetration tests (pentests). After validation in different scenarios, the methodology was applied in amplified reflection distributed denial of service (AR-DDoS) attack threat assessment. Results show that, according to attack intensity, AR-DDoS saturates reflector infrastructure. Therefore, concerns about AR-DDoS are founded, but expected impact on abused IoT infrastructure and devices will be possibly as hard as on final victims.
Assessing the Climate Resilience of Transport Infrastructure Investments in Tanzania
NASA Astrophysics Data System (ADS)
Hall, J. W.; Pant, R.; Koks, E.; Thacker, S.; Russell, T.
2017-12-01
Whilst there is an urgent need for infrastructure investment in developing countries, there is a risk that poorly planned and built infrastructure will introduce new vulnerabilities. As climate change increases the magnitudes and frequency of natural hazard events, incidence of disruptive infrastructure failures are likely to become more frequent. Therefore, it is important that infrastructure planning and investment is underpinned by climate risk assessment that can inform adaptation planning. Tanzania's rapid economic growth is placing considerable strain on the country's transportation infrastructure (roads, railways, shipping and aviation); especially at the port of Dar es Salaam and its linking transport corridors. A growing number of natural hazard events, in particular flooding, are impacting the reliability of this already over-used network. Here we report on new methodology to analyse vulnerabilities and risks due to failures of key locations in the intermodal transport network of Tanzania, including strategic connectivity to neighboring countries. To perform the national-scale risk analysis we will utilize a system-of-systems methodology. The main components of this general risk assessment, when applied to transportation systems, include: (1) Assembling data on: spatially coherent extreme hazards and intermodal transportation networks; (2) Intersecting hazards with transport network models to initiate failure conditions that trigger failure propagation across interdependent networks; (3) Quantifying failure outcomes in terms of social impacts (customers/passengers disrupted) and/or macroeconomic consequences (across multiple sectors); and (4) Simulating, testing and collecting multiple failure scenarios to perform an exhaustive risk assessment in terms of probabilities and consequences. The methodology is being used to pinpoint vulnerability and reduce climate risks to transport infrastructure investments.
Enhancement of global flood damage assessments using building material based vulnerability curves
NASA Astrophysics Data System (ADS)
Englhardt, Johanna; de Ruiter, Marleen; de Moel, Hans; Aerts, Jeroen
2017-04-01
This study discusses the development of an enhanced approach for flood damage and risk assessments using vulnerability curves that are based on building material information. The approach draws upon common practices in earthquake vulnerability assessments, and is an alternative for land-use or building occupancy approach in flood risk assessment models. The approach is of particular importance for studies where there is a large variation in building material, such as large scale studies or studies in developing countries. A case study of Ethiopia is used to demonstrate the impact of the different methodological approaches on direct damage assessments due to flooding. Generally, flood damage assessments use damage curves for different land-use or occupancy types (i.e. urban or residential and commercial classes). However, these categories do not necessarily relate directly to vulnerability of damage by flood waters. For this, the construction type and building material may be more important, as is used in earthquake risk assessments. For this study, we use building material classification data of the PAGER1 project to define new building material based vulnerability classes for flood damage. This approach will be compared to the widely applied land-use based vulnerability curves such as used by De Moel et al. (2011). The case of Ethiopia demonstrates and compares the feasibility of this novel flood vulnerability method on a country level which holds the potential to be scaled up to a global level. The study shows that flood vulnerability based on building material also allows for better differentiation between flood damage in urban and rural settings, opening doors to better link to poverty studies when such exposure data is available. Furthermore, this new approach paves the road to the enhancement of multi-risk assessments as the method enables the comparison of vulnerability across different natural hazard types that also use material-based vulnerability curves. Finally, this approach allows for more accuracy in estimating losses as a result of direct damages. 1 http://earthquake.usgs.gov/data/pager/
Community-level climate change vulnerability research: trends, progress, and future directions
NASA Astrophysics Data System (ADS)
McDowell, Graham; Ford, James; Jones, Julie
2016-03-01
This study systematically identifies, characterizes, and critically evaluates community-level climate change vulnerability assessments published over the last 25 years (n = 274). We find that while the field has advanced considerably in terms of conceptual framing and methodological approaches, key shortcomings remain in how vulnerability is being studied at the community-level. We argue that vulnerability research needs to more critically engage with the following: methods for evaluating future vulnerability, the relevance of vulnerability research for decision-making, interdependencies between social and ecological systems, attention to researcher / subject power dynamics, critical interpretation of key terms, and consideration of the potentially positive opportunities presented by a changing climate. Addressing these research needs is necessary for generating knowledge that supports climate-affected communities in navigating the challenges and opportunities ahead.
Busico, Gianluigi; Kazakis, Nerantzis; Colombani, Nicolò; Mastrocicco, Micòl; Voudouris, Konstantinos; Tedesco, Dario
2017-12-31
Groundwater vulnerability and risk assessment are worldwide tools in supporting groundwater protection and land planning. In this study, we used three of these different methodologies applied to the Campanian Plain located in southern Italy: SINTACS, AVI and LOS. However, their capability to describe the observed chemical pollution of the area has resulted quite poor. For such a reason, a modified SINTACS method has been then implemented in the area in order to get a more reliable view of groundwater vulnerability. NO 3 - and SO 4 2- from more than 400 monitoring wells were used for specific vulnerability assessment. Land use was chosen as key parameter to infer the risk of groundwater pollution in our area. The new methodology seems to show a higher correlation with observed NO 3 - concentrations and a more reliable identification of aquifer's pollution hot spots. The main sources of NO 3 - were found in sub-urban areas, where vulnerability and risk are higher than in other areas. Otherwise due to reducing conditions triggered by the presence of elevated sedimentary organic matter and peat, concentrations below agricultural areas were lower than in sub-urban areas. The SO 4 2- specific vulnerability map showed a positive correlation with observed concentrations, due to geogenic and anthropogenic SO 4 2- sources present in the area. The combination of both NO 3 - and SO 4 2- derived risk maps becomes essential to improve the conceptual model of aquifer pollution in this severely anthropized area. The application of this new and original approach shed light on the strengths and weaknesses of each of the described previous methods and clearly showed how anthropogenic activities have to be taken into account in the assessment process. Copyright © 2017 Elsevier B.V. All rights reserved.
The SAMCO Web-platform for resilience assessment in mountainous valleys impacted by landslide risks.
NASA Astrophysics Data System (ADS)
Grandjean, Gilles; Thomas, Loic; Bernardie, Severine
2016-04-01
The ANR-SAMCO project aims to develop a proactive resilience framework enhancing the overall resilience of societies on the impacts of mountain risks. The project aims to elaborate methodological tools to characterize and measure ecosystem and societal resilience from an operative perspective on three mountain representative case studies. To achieve this objective, the methodology is split in several points: (1) the definition of the potential impacts of global environmental changes (climate system, ecosystem e.g. land use, socio-economic system) on landslide hazards, (2) the analysis of these consequences in terms of vulnerability (e.g. changes in the location and characteristics of the impacted areas and level of their perturbation) and (3) the implementation of a methodology for quantitatively investigating and mapping indicators of mountain slope vulnerability exposed to several hazard types, and the development of a GIS-based demonstration platform available on the web. The strength and originality of the SAMCO project lies in the combination of different techniques, methodologies and models (multi-hazard assessment, risk evolution in time, vulnerability functional analysis, and governance strategies) that are implemented in a user-oriented web-platform, currently in development. We present the first results of this development task, architecture and functions of the web-tools, the case studies database showing the multi-hazard maps and the stakes at risks. Risk assessment over several area of interest in Alpine or Pyrenean valleys are still in progress, but the first analyses are presented for current and future periods for which climate change and land-use (economical, geographical and social aspects) scenarios are taken into account. This tool, dedicated to stakeholders, should be finally used to evaluate resilience of mountainous regions since multiple scenarios can be tested and compared.
Source Code Vulnerability Assessment Methodology
2008-09-01
Information Sciences Directorate’s (CISD) Center for Intrusion Detection Monitoring and Protection ( CIMP ) to reverse engineer tools captured by...application terminates. It is possible, however, to write past the buffer boundary in a controlled way such that the value for EIP can be overwritten with...vulnerability is widely known and has been exploited in the past . This work provides a proof-of-concept for the ARL/SLAD CAM and exploit development process
NASA Astrophysics Data System (ADS)
Park, C.; Cho, M.; Lee, D.
2017-12-01
Landslide vulnerability assessment methodology of urban area is proposed with urban structure and building charateristics which can consider total damage cost of climate impacts. We used probabilistic analysis method for modeling rainfall-induced shallow landslide susceptibility by slope stability analysis and Monte Carlo simulations. And We combined debris flows with considering spatial movements under topographical condition and built environmental condition. Urban vulnerability of landslide is assessed by two categories: physical demages and urban structure aspect. Physical vulnerability is related to buildings, road, other ubran infra. Urban structure vulnerability is considered a function of the socio-economic factors, trigger factor of secondary damage, and preparedness level of the local government. An index-based model is developed to evaluate the life and indirect damage under landslide as well as the resilience ability against disasters. The analysis was performed in a geographic information system (GIS) environment because GIS can deal efficiently with a large volume of spatial data. The results of the landslide susceptibility assessment were compared with the landslide inventory, and the proposed approach demonstrated good predictive performance. The general trend found in this study indicates that the higher population density areas under a weaker fiscal condition that are located at the downstream of mountainous areas are more vulnerable than the areas in opposite conditions.
Comparative studies of groundwater vulnerability assessment
NASA Astrophysics Data System (ADS)
Maria, Rizka
2018-02-01
Pollution of groundwater is a primary issue because aquifers are susceptible to contamination from land use and anthropogenic impacts. Groundwater susceptibility is intrinsic and specific. Intrinsic vulnerability refers to an aquifer that is susceptible to pollution and to the geological and hydrogeological features. Vulnerability assessment is an essential step in assessing groundwater contamination. This approach provides a visual analysis for helping planners and decision makers to achieve the sustainable management of water resources. Comparative studies are applying different methodologies to result in the basic evaluation of the groundwater vulnerability. Based on the comparison of methods, there are several advantages and disadvantages. SI can be overlaid on DRASTIC and Pesticide DRASTIC to extract the divergence in sensitivity. DRASTIC identifies low susceptibility and underestimates the pollution risk while Pesticide DRASTIC and SI represents better risk and is recommended for the future. SINTACS method generates very high vulnerability zones with surface waters and aquifer interactions. GOD method could be adequate for vulnerability mapping in karstified carbonate aquifers at small-moderate scales, and EPIK method can be used for large scale. GOD method is suitable for designing large area such as land management while DRASTIC has good accuracy and more real use in geoenvironmental detailed studies.
Protection of agriculture against drought in Slovenia based on vulnerability and risk assessment
NASA Astrophysics Data System (ADS)
Dovžak, M.; Stanič, S.; Bergant, K.; Gregorič, G.
2012-04-01
Past and recent extreme events, like earthquakes, extreme droughts, heat waves, flash floods and volcanic eruptions continuously remind us that natural hazards are an integral component of the global environment. Despite rapid improvement of detection techniques many of these events evade long-term or even mid-term prediction and can thus have disastrous impacts on affected communities and environment. Effective mitigation and preparedness strategies will be possible to develop only after gaining the understanding on how and where such hazards may occur, what causes them, what circumstances increase their severity, and what their impacts may be and their study has the recent years emerged as under the common title of natural hazard management. The first step in natural risk management is risk identification, which includes hazard analysis and monitoring, vulnerability analysis and determination of the risk level. The presented research focuses on drought, which is at the present already the most widespread as well as still unpredictable natural hazard. Its primary aim was to assess the frequency and the consequences of droughts in Slovenia based on drought events in the past, to develop methodology for drought vulnerability and risk assessment that can be applied in Slovenia and wider in South-Eastern Europe, to prepare maps of drought risk and crop vulnerability and to guidelines to reduce the vulnerability of the crops. Using the amounts of plant available water in the soil, slope inclination, solar radiation, land use and irrigation infrastructure data sets as inputs, we obtained vulnerability maps for Slovenia using GIS-based multi-criteria decision analysis with a weighted linear combination of the input parameters. The weight configuration was optimized by comparing the modelled crop damage to the assessed actual damage, which was available for the extensive drought case in 2006. Drought risk was obtained quantitatively as a function of hazard and vulnerability and presented in the same way as the vulnerability, as a GIS-based map. Risk maps show geographic regions in Slovenia where droughts pose a major threat to the agriculture and together with the vulnerability maps provide the basis for drought management, in particular for the appropriate mitigation and response actions in specific regions. The developed methodology is expected to be applied to the entire region of South-Eastern Europe within the initiative of the Drought Management Centre for Southeastern Europe.
Conserve, Donaldson F; Jennings, Larissa; Aguiar, Carolina; Shin, Grace; Handler, Lara; Maman, Suzanne
2017-02-01
Introduction This systematic narrative review examined the empirical evidence on the effectiveness of mobile health (mHealth) behavioural interventions designed to increase the uptake of HIV testing among vulnerable and key populations. Methods MEDLINE/PubMed, Embase, Web of Science, and Global Health electronic databases were searched. Studies were eligible for inclusion if they were published between 2005 and 2015, evaluated an mHealth intervention, and reported an outcome relating to HIV testing. We also reviewed the bibliographies of retrieved studies for other relevant citations. The methodological rigor of selected articles was assessed, and narrative analyses were used to synthesize findings from mixed methodologies. Results A total of seven articles met the inclusion criteria. Most mHealth interventions employed a text-messaging feature and were conducted in middle- and high-income countries. The methodological rigor was moderate among studies. The current literature suggests that mHealth interventions can have significant positive effects on HIV testing initiation among vulnerable and key populations, as well as the general public. In some cases, null results were observed. Qualitative themes relating to the use of mobile technologies to increase HIV testing included the benefits of having low-cost, confidential, and motivational communication. Reported barriers included cellular network restrictions, poor linkages with physical testing services, and limited knowledge of appropriate text-messaging dose. Discussion MHealth interventions may prove beneficial in reducing the proportion of undiagnosed persons living with HIV, particularly among vulnerable and key populations. However, more rigorous and tailored interventions are needed to assess the effectiveness of widespread use.
Conserve, Donaldson F.; Jennings, Larissa; Aguiar, Carolina; Shin, Grace; Handler, Lara; Maman, Suzanne
2016-01-01
Objective This systematic narrative review examined the empirical evidence on the effectiveness of mobile health (mHealth) behavioral interventions designed to increase uptake of HIV testing among vulnerable and key populations. Methods MEDLINE/PubMed, Embase, Web of Science, and Global Health electronic databases were searched. Studies were eligible for inclusion if they were published between 2005 and 2015, evaluated an mHealth intervention, and reported an outcome relating to HIV testing. We also reviewed the bibliographies of retrieved studies for other relevant citations. The methodological rigor of selected articles was assessed, and narrative analyses were used to synthesize findings from mixed methodologies. Results A total of seven articles met the inclusion criteria. Most mHealth interventions employed a text-messaging feature and were conducted in middle- and high-income countries. The methodological rigor was moderate among studies. The current literature suggests that mHealth interventions can have significant positive effects on HIV testing initiation among vulnerable and key populations, as well as the general public. In some cases, null results were observed. Qualitative themes relating to use of mobile technologies to increase HIV testing included the benefits of having low-cost, confidential, and motivational communication. Reported barriers included cellular network restrictions, poor linkages with physical testing services, and limited knowledge of appropriate text-messaging dose. Conclusions MHealth interventions may prove beneficial in reducing the proportion of undiagnosed persons living with HIV, particularly among vulnerable and key populations. However, more rigorous and tailored intervention trials are needed to assess the effectiveness of widespread use. PMID:27056905
Satellite vulnerability to space debris - an improved 3D risk assessment methodology
NASA Astrophysics Data System (ADS)
Grassi, Lilith; Tiboldo, Francesca; Destefanis, Roberto; Donath, Thérèse; Winterboer, Arne; Evans, Leanne; Janovsky, Rolf; Kempf, Scott; Rudolph, Martin; Schäfer, Frank; Gelhaus, Johannes
2014-06-01
The work described in the present paper, performed as a part of the P2 project, presents an enhanced method to evaluate satellite vulnerability to micrometeoroids and orbital debris (MMOD), using the ESABASE2/Debris tool (developed under ESA contract). Starting from the estimation of induced failures on spacecraft (S/C) components and from the computation of lethal impacts (with an energy leading to the loss of the satellite), and considering the equipment redundancies and interactions between components, the debris-induced S/C functional impairment is assessed. The developed methodology, illustrated through its application to a case study satellite, includes the capability to estimate the number of failures on internal components, overcoming the limitations of current tools which do not allow propagating the debris cloud inside the S/C. The ballistic limit of internal equipment behind a sandwich panel structure is evaluated through the implementation of the Schäfer Ryan Lambert (SRL) Ballistic Limit Equation (BLE). The analysis conducted on the case study satellite shows the S/C vulnerability index to be in the range of about 4% over the complete mission, with a significant reduction with respect to the results typically obtained with the traditional analysis, which considers as a failure the structural penetration of the satellite structural panels. The methodology has then been applied to select design strategies (additional local shielding, relocation of components) to improve S/C protection with respect to MMOD. The results of the analyses conducted on the improved design show a reduction of the vulnerability index of about 18%.
Execution of a self-directed risk assessment methodology to address HIPAA data security requirements
NASA Astrophysics Data System (ADS)
Coleman, Johnathan
2003-05-01
This paper analyzes the method and training of a self directed risk assessment methodology entitled OCTAVE (Operationally Critical Threat Asset and Vulnerability Evaluation) at over 170 DOD medical treatment facilities. It focuses specifically on how OCTAVE built interdisciplinary, inter-hierarchical consensus and enhanced local capabilities to perform Health Information Assurance. The Risk Assessment Methodology was developed by the Software Engineering Institute at Carnegie Mellon University as part of the Defense Health Information Assurance Program (DHIAP). The basis for its success is the combination of analysis of organizational practices and technological vulnerabilities. Together, these areas address the core implications behind the HIPAA Security Rule and can be used to develop Organizational Protection Strategies and Technological Mitigation Plans. A key component of OCTAVE is the inter-disciplinary composition of the analysis team (Patient Administration, IT staff and Clinician). It is this unique composition of analysis team members, along with organizational and technical analysis of business practices, assets and threats, which enables facilities to create sound and effective security policies. The Risk Assessment is conducted in-house, and therefore the process, results and knowledge remain within the organization, helping to build consensus in an environment of differing organizational and disciplinary perspectives on Health Information Assurance.
Augmenting Probabilistic Risk Assesment with Malevolent Initiators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curtis Smith; David Schwieder
2011-11-01
As commonly practiced, the use of probabilistic risk assessment (PRA) in nuclear power plants only considers accident initiators such as natural hazards, equipment failures, and human error. Malevolent initiators are ignored in PRA, but are considered the domain of physical security, which uses vulnerability assessment based on an officially specified threat (design basis threat). This paper explores the implications of augmenting and extending existing PRA models by considering new and modified scenarios resulting from malevolent initiators. Teaming the augmented PRA models with conventional vulnerability assessments can cost-effectively enhance security of a nuclear power plant. This methodology is useful for operatingmore » plants, as well as in the design of new plants. For the methodology, we have proposed an approach that builds on and extends the practice of PRA for nuclear power plants for security-related issues. Rather than only considering 'random' failures, we demonstrated a framework that is able to represent and model malevolent initiating events and associated plant impacts.« less
NASA Astrophysics Data System (ADS)
You, W. J.; Zhang, Y. L.
2015-08-01
Huaihe River is one of the seven largest rivers in China, in which floods occurred frequently. Disasters cause huge casualties and property losses to the basin, and also make it famous for high social vulnerability to floods. Based on the latest social-economic data, the index system of social vulnerability to floods was constructed, and Catastrophe theory method was used in the assessment process. The conclusion shows that social vulnerability as a basic attribute attached to urban environment, with significant changes from city to city across the Huaihe River basin. Different distribution characteristics are present in population, economy, flood prevention vulnerability. It is important to make further development of social vulnerability, which will play a positive role in disaster prevention, improvement of comprehensive ability to respond to disasters.
2017-11-01
The Under-body Blast Methodology (UBM) for the Test and Evaluation (T&E) program was established to provide a capability for the US Army Test and... Evaluation Command to assess the vulnerability of vehicles to under-body blast. Finite element (FE) models are part of the current UBM for T&E methodology...Methodology (UBM) for the Test and Evaluation (T&E) program was established to provide a capability for the US Army Test and Evaluation Command
NASA Astrophysics Data System (ADS)
Hung, Hung-Chih; Wu, Ju-Yu; Hung, Chih-Hsuan
2017-04-01
1. Background Asia-Pacific region is one of the most vulnerable areas of the world to climate-related hazards and extremes due to rapid urbanization and over-development in hazard-prone areas. It is thus increasingly recognized that the management of land use and reduction of hazard risk are inextricably linked. This is especially critical from the perspective of integrated river basin management. A range of studies has targeted existing vulnerability assessments. However, limited attention has been paid to the cumulative effects of multiple vulnerable factors and their dynamics faced by local communities. This study proposes a novel methodology to access the changing cumulative vulnerability to climate-related hazards, and to examine the relationship between the attraction factors relevant to the general process of urbanization and vulnerability variability with a focus on a river basin management unit. 2. Methods and data The methods applied in this study include three steps. First, using Intergovernmental Panel on Climate Change's (IPCC) approach, a Cumulative Vulnerability Assessment Framework (CVAF) is built with a goal to characterize and compare the vulnerability to climate-related hazards within river basin regions based on a composition of multiple indicators. We organize these indicator metrics into three categories: (1) hazard exposure; (2) socioeconomic sensitivity, and (3) adaptive capacity. Second, the CVAF is applied by combining a geographical information system (GIS)-based spatial statistics technique with a multicriteria decision analysis (MCDA) to assess and map the changing cumulative vulnerability, comparing conditions in 1996 and 2006 in Danshui River Basin, Taiwan. Third, to examine the affecting factors of vulnerability changing, we develop a Vulnerability Changing Model (VCM) using four attraction factors to reflect how the process of urban developments leads to vulnerability changing. The factors are transport networks, land uses, production values of industries, and infrastructures. We then conduct a regression analysis to test the VCM. To illustrate the proposed methodology, the data are collected from the National Science and Technology Center for Disaster Reduction, Taiwan as well as the National Land Use Investigation and official census statistics. 3. Results and policy implications Results of CVAF analysis demonstrate heterogeneous patterns of vulnerability in the region, and highlight trends of long-term changes. The vulnerable areas unfold as clustered patterns and spatial analogues across regions, rather than randomly distributed. Highest cumulative vulnerability is concentrated in densely populated and downstream reaches (such as Taipei City) of the Danshui River in both time periods. When examining the VCM, it indicates that upper stream and more remote areas generally show low vulnerability, increases are observed in some areas between 1996 and 2006 due to land use intensification, industrial and infrastructure expansion. These findings suggest that land use planning should consider the socioeconomic progression and infrastructure investment factors that contribute to urban sprawl and address current as well as future urban developments vulnerable to hazard risk transmission. The cumulative vulnerability assessment, mapping methods and modelling presented here can be applied to other climate change and hazard risks to highlight priority areas for further investigation and contribute towards improving river basin management.
A framework for sea level rise vulnerability assessment for southwest U.S. military installations
Chadwick, B.; Flick, Reinhard; Helly, J.; Nishikawa, Tracy; Pei, Fang Wang; O'Reilly, W.; Guza, R.; Bromirski, Peter; Young, A.; Crampton, W.; Wild, B.; Canner, I.
2011-01-01
We describe an analysis framework to determine military installation vulnerabilities under increases in local mean sea level as projected over the next century. The effort is in response to an increasing recognition of potential climate change ramifications for national security and recommendations that DoD conduct assessments of the impact on U.S. military installations of climate change. Results of the effort described here focus on development of a conceptual framework for sea level rise vulnerability assessment at coastal military installations in the southwest U.S. We introduce the vulnerability assessment in the context of a risk assessment paradigm that incorporates sources in the form of future sea level conditions, pathways of impact including inundation, flooding, erosion and intrusion, and a range of military installation specific receptors such as critical infrastructure and training areas. A unique aspect of the methodology is the capability to develop wave climate projections from GCM outputs and transform these to future wave conditions at specific coastal sites. Future sea level scenarios are considered in the context of installation sensitivity curves which reveal response thresholds specific to each installation, pathway and receptor. In the end, our goal is to provide a military-relevant framework for assessment of accelerated SLR vulnerability, and develop the best scientifically-based scenarios of waves, tides and storms and their implications for DoD installations in the southwestern U.S.
Threat Assessment and Remediation Analysis (TARA)
2014-10-01
of countermeasure selection strategies that prescribe the application of countermeasures based on level of risk tolerance. This paper outlines the...catalog data, which are discussed later in this paper . The methodology can be described as conjoined trade studies, where the first trade identifies and...ranks vulnerabilities based on assessed risk, and the second identifies and selects countermeasures based on assessed utility and cost. This paper
Seismic retrofit benefit considering statewide transportation assessment.
DOT National Transportation Integrated Search
2015-06-01
The purpose of this study was to identify and demonstrate a methodology to prioritize bridges for : retrofit in the State of Oregon. Given the limited resources available, retrofitting all vulnerable bridges in the foreseeable : future would not be i...
NASA Astrophysics Data System (ADS)
Weigel, A. M.; Griffin, R.; Gallagher, D.
2015-12-01
Storm surge has enough destructive power to damage buildings and infrastructure, erode beaches, and threaten human life across large geographic areas, hence posing the greatest threat of all the hurricane hazards. The United States Gulf of Mexico has proven vulnerable to hurricanes as it has been hit by some of the most destructive hurricanes on record. With projected rises in sea level and increases in hurricane activity, there is a need to better understand the associated risks for disaster mitigation, preparedness, and response. GIS has become a critical tool in enhancing disaster planning, risk assessment, and emergency response by communicating spatial information through a multi-layer approach. However, there is a need for a near real-time method of identifying areas with a high risk of being impacted by storm surge. Research was conducted alongside Baron, a private industry weather enterprise, to facilitate automated modeling and visualization of storm surge inundation and vulnerability on a near real-time basis. This research successfully automated current flood hazard mapping techniques using a GIS framework written in a Python programming environment, and displayed resulting data through an Application Program Interface (API). Data used for this methodology included high resolution topography, NOAA Probabilistic Surge model outputs parsed from Rich Site Summary (RSS) feeds, and the NOAA Census tract level Social Vulnerability Index (SoVI). The development process required extensive data processing and management to provide high resolution visualizations of potential flooding and population vulnerability in a timely manner. The accuracy of the developed methodology was assessed using Hurricane Isaac as a case study, which through a USGS and NOAA partnership, contained ample data for statistical analysis. This research successfully created a fully automated, near real-time method for mapping high resolution storm surge inundation and vulnerability for the Gulf of Mexico, and improved the accuracy and resolution of the Probabilistic Storm Surge model.
NASA Astrophysics Data System (ADS)
Gemitzi, Alexandra; Petalas, Christos; Tsihrintzis, Vassilios A.; Pisinaras, Vassilios
2006-03-01
The assessment of groundwater vulnerability to pollution aims at highlighting areas at a high risk of being polluted. This study presents a methodology, to estimate the risk of an aquifer to be polluted from concentrated and/or dispersed sources, which applies an overlay and index method involving several parameters. The parameters are categorized into three factor groups: factor group 1 includes parameters relevant to the internal aquifer system’s properties, thus determining the intrinsic aquifer vulnerability to pollution; factor group 2 comprises parameters relevant to the external stresses to the system, such as human activities and rainfall effects; factor group 3 incorporates specific geological settings, such as the presence of geothermal fields or salt intrusion zones, into the computation process. Geographical information systems have been used for data acquisition and processing, coupled with a multicriteria evaluation technique enhanced with fuzzy factor standardization. Moreover, besides assigning weights to factors, a second set of weights, i.e., order weights, has been applied to factors on a pixel by pixel basis, thus allowing control of the level of risk in the vulnerability determination and the enhancement of local site characteristics. Individual analysis of each factor group resulted in three intermediate groundwater vulnerability to pollution maps, which were combined in order to produce the final composite groundwater vulnerability map for the study area. The method has been applied in the region of Eastern Macedonia and Thrace (Northern Greece), an area of approximately 14,000 km2. The methodology has been tested and calibrated against the measured nitrate concentration in wells, in the northwest part of the study area, providing results related to the aggregation and weighting procedure.
Dawson, David A; Purnell, Phil; Roelich, Katy; Busch, Jonathan; Steinberger, Julia K
2014-11-04
Renewable energy technologies, necessary for low-carbon infrastructure networks, are being adopted to help reduce fossil fuel dependence and meet carbon mitigation targets. The evolution of these technologies has progressed based on the enhancement of technology-specific performance criteria, without explicitly considering the wider system (global) impacts. This paper presents a methodology for simultaneously assessing local (technology) and global (infrastructure) performance, allowing key technological interventions to be evaluated with respect to their effect on the vulnerability of wider infrastructure systems. We use exposure of low carbon infrastructure to critical material supply disruption (criticality) to demonstrate the methodology. A series of local performance changes are analyzed; and by extension of this approach, a method for assessing the combined criticality of multiple materials for one specific technology is proposed. Via a case study of wind turbines at both the material (magnets) and technology (turbine generators) levels, we demonstrate that analysis of a given intervention at different levels can lead to differing conclusions regarding the effect on vulnerability. Infrastructure design decisions should take a systemic approach; without these multilevel considerations, strategic goals aimed to help meet low-carbon targets, that is, through long-term infrastructure transitions, could be significantly jeopardized.
Groundwater pollution risk assessment. Application to different carbonate aquifers in south Spain
NASA Astrophysics Data System (ADS)
Jimenez Madrid, A.; Martinez Navarrete, C.; Carrasco Cantos, F.
2009-04-01
Water protection has been considered one of the most important environmental goals in the European politics since the 2000/60/CE Water Framework Directive came into force in 2000, and more specifically in 2006 with the 2006/118/CE Directive on groundwater protection. As one of the necessary requirements to tackle groundwater protection, a pollution risk assessment has been made through the analysis of both the existing hazard human activities map and the intrinsic aquifer vulnerability map, by applying the methodologies proposed by COST Action 620 in an experimental study site in south Spain containing different carbonated aquifers, which supply 8 towns ranging from 2000 to 2500 inhabitants. In order to generate both maps it was necessary to make a field inventory over a 1:10000 topographic base map, followed by Geographic Information System (GIS) processing. The outcome maps show a clear spatial distribution of both pollution risk and intrinsic vulnerability of the carbonated aquifers studied. As a final result, a map of the intensity of groundwater pollution risk is presented, representing and important base for the development of a proper methodology for the protection of groundwater resources for human consumption protection. Keywords. Hazard, Vulnerability, Risk, SIG, Protection
NASA Astrophysics Data System (ADS)
Sudmeier-Rieux, Karen; Dubois, Jerome; Jaboyedoff, Michel
2010-05-01
This paper describes a methodology for assessing and quantifying vulnerability and resilience of mountain communities in Eastern Nepal increasingly affected by landslides and flooding. We are interested in improving our understanding of the complex interactions between land use, landslides and multiple dimensions of risk, vulnerability and resilience to better target risk management strategies. Our approach is based on assessing underlying social, ecological and physical factors that cause vulnerability and on the other hand, those resources and capacities that increase resilience. Increasing resilience to disasters is frequently used by NGOs, governments and donors as the main goal of disaster risk reduction policies and practices. If we are to increase resilience to disasters, we need better guidance and tools for defining, assessing and monitoring its parameters. To do so, we are establishing a methodology for quantifying and mapping an index of resilience to compare resilience factors between households and communities based on interdisciplinary research methods: remote sensing, GIS, qualitative and quantitative risk assessments, participatory risk mapping, household questionnaires and focus groups discussions. Our study applied this methodology to several communities in Eastern Nepal where small, frequent landslides are greatly affecting rural lives and livelihoods. These landslides are not captured by headlines or official statistics but are examples of cumulative, hidden disasters, which are impacting everyday life and rural poverty in the Himalayas. Based on experience, marginalized populations are often aware of the physical risks and the limitations of their land. However, they continue to live in dangerous places out of necessity and for the economic or infrastructure opportunities offered. We compare two communities in Nepal, both affected by landslides but with different land use, migration patterns, education levels, social networks, risk reduction and coping strategies. Stone quarrying and road construction, offering economic opportunities, are aggravating landslide problems. The villages are faced with a delicate balance between economic development and physical risk in this fragile terrain. Based on our comparison, we discern which factors contribute to vulnerability and resilience, while drawing conclusions about the limitations of these concepts for developing risk management strategies. Our goal is to keep this method relatively simple, low cost and useful to decision-makers and communities for managing and designing integrated development and risk management approaches under changing climate conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Huaiyong, E-mail: huaiyongshao@163.com; Center for Global Change and Earth Observations, Michigan State University, East Lansing 48823, MI; Sun, Xiaofei
The Chinese government has conducted the Returning Grazing Land to Grassland Project (RGLGP) across large portions of grasslands from western China since 2003. In order to explore and understand the impact in the grassland's eco-environment during the RGLGP, we utilized Projection Pursuit Model (PPM) and Geographic Information System (GIS) to develop a spatial assessment model to examine the ecological vulnerability of the grassland. Our results include five indications: (1) it is practical to apply the spatial PPM on ecological vulnerability assessment for the grassland. This methodology avoids creating an artificial hypothesis, thereby providing objective results that successfully execute a multi-indexmore » assessment process and analysis under non-linear systems in eco-environments; (2) the spatial PPM is not only capable of evaluating regional eco-environmental vulnerability in a quantitative way, but also can quantitatively demonstrate the degree of effect in each evaluation index for regional eco-environmental vulnerability; (3) the eco-environment of the Xianshui River Basin falls into the medium range level. The normalized difference vegetation index (NDVI) and land use cover and change (LUCC) crucially influence the Xianshui River Basin's eco-environmental vulnerability. Generally, in the Xianshui River Basin, regional eco-environmental conditions improved during 2000 and 2010. The RGLGP positively affected NDVI and LUCC structure, thereby promoting the enhancement of the regional eco-environment; (4) the Xianshui River Basin divides its ecological vulnerability across different levels; therefore our study investigates three ecological regions and proposes specific suggestions for each in order to assist in eco-environmental protection and rehabilitation; and lastly that (5) the spatial PPM established by this study has the potential to be applied on all types of grassland eco-environmental vulnerability assessments under the RGLGP and under the similar conditions in the Returning Agriculture Land to Forest Project (RALFP). However, when establishing an eco-environmental vulnerability assessment model, it is necessary to choose suitable evaluation indexes in accordance with regional eco-environmental characteristics. - Highlights: • We present a method for regional eco-environmental vulnerability assessment. • The method combines Projection Pursuit Model with Geographic Information System. • The Returning Grazing Land to Grassland Project is crucial to environment recovery. • The method is more objective to assess regional eco-environmental vulnerability.« less
Wood, Nathan J.; Good, James W.; Goodwin, Robert F.
2002-01-01
Research suggests that the Pacific Northwest could experience catastrophic earthquakes and tsunamis in the near future, posing a significant threat to the numerous ports and harbors along the coast. A collaborative, multiagency initiative is underway to increase the resiliency of Pacific Northwest ports and harbors to these hazards, involving Oregon Sea Grant, Washington Sea Grant, the National Oceanic and Atmospheric Administration Coastal Services Center, and the U.S. Geological Survey Center for Science Policy. One element of this research, planning, and outreach initiative is a natural hazard mitigation and emergency preparedness planning process that combines technical expertise with local stakeholder values and perceptions. This paper summarizes and examines one component of the process, the vulnerability assessment methodology, used in the pilot port and harbor community of Yaquina River, Oregon, as a case study of assessing vulnerability at the local level. In this community, stakeholders were most concerned with potential life loss and other nonstructural vulnerability issues, such as inadequate hazard awareness, communication, and response logistics, rather than structural issues, such as damage to specific buildings or infrastructure.
Development of hazard-compatible building fragility and vulnerability models
Karaca, E.; Luco, N.
2008-01-01
We present a methodology for transforming the structural and non-structural fragility functions in HAZUS into a format that is compatible with conventional seismic hazard analysis information. The methodology makes use of the building capacity (or pushover) curves and related building parameters provided in HAZUS. Instead of the capacity spectrum method applied in HAZUS, building response is estimated by inelastic response history analysis of corresponding single-degree-of-freedom systems under a large number of earthquake records. Statistics of the building response are used with the damage state definitions from HAZUS to derive fragility models conditioned on spectral acceleration values. Using the developed fragility models for structural and nonstructural building components, with corresponding damage state loss ratios from HAZUS, we also derive building vulnerability models relating spectral acceleration to repair costs. Whereas in HAZUS the structural and nonstructural damage states are treated as if they are independent, our vulnerability models are derived assuming "complete" nonstructural damage whenever the structural damage state is complete. We show the effects of considering this dependence on the final vulnerability models. The use of spectral acceleration (at selected vibration periods) as the ground motion intensity parameter, coupled with the careful treatment of uncertainty, makes the new fragility and vulnerability models compatible with conventional seismic hazard curves and hence useful for extensions to probabilistic damage and loss assessment.
NASA Astrophysics Data System (ADS)
Idier, D.; Poumadère, M.; Vinchon, C.; Romieu, E.; Oliveros, C.
2009-04-01
1-INTRODUCTION Climate change is considered in the latest reports of the Intergovernmental Panel on Climate Change IPCC (2007) as unequivocal. Induced vulnerability of the system is defined as "the combination of sensitivity to climatic variations, probability of adverse effects, and adaptive capacity". Substantial methodological challenges remain, in particular estimating the risk of adverse climate change impacts and interpreting relative vulnerability across diverse situations. As stated by the IPCC, the "coastal systems should be considered vulnerable to changes in climate". In these areas, amongst the most serious impacts of sea-level rise (Nicholls, 1996) are erosion and marine inundation. Thus, the coast of metropolitan France, being composed of 31% sandy coasts, is potentially vulnerable, as it has been qualitatively assessed on the pilot coasts of Aquitaine and Languedoc-Roussillon in the RESPONSE project (Vinchon et al., 2008). Within the ANR VULSACO project (VULnerability of SAndy COast to climate change and anthropic pressure), the present day erosion tendencies as well as the potentially future erosion trends are investigated. The main objectives are to: (1) assess indicators of vulnerability to climate change for low-lying linear sandy coastal systems, from the shore to the hinterland, facing undergoing climate change and anthropic pressure until the 2030s; and (2) identify the aggravating or improving effect of human pressure on this vulnerability. This second issue is sometimes considered as a main driver of coastal risks. The methodology proposed in the project considers anthropic adaptation (or not) by putting decision makers in front of potential modifications of the physical system, to study the decision process and the choice of adaptation (or not). The coastal system is defined by its morphology, its physical characteristics and its land use. The time scales will range from short-term (days to weeks, e.g. time scale of extreme events) to medium-term (decades), whereas the space scales range from several tens of meters to several tens of kilometers. The project is based on the study of representative coastal units: 4 sites characterised by low-lying linear sandy beaches but different, representative, hydrodynamic and socio-economic environments. These sites are located in: Mediterranean Sea (Lido of Sète), Atlantic coast (Truc Vert beach and Noirmoutier island) and English channel coast (Est of Dunkerque). Each of these sites is studied following the same methodology, on both the physical and socio-economic dimensions, the aim being to identify vulnerability indicators regarding climate change and anthropic pressure. 2 - METHODOLOGY The work is based on the following methodology, for every site: 1) The compartments of the unit are defined: shoreface, coastline, backshore, hinterland, from a physical and socio-economical point of view. 2) The available data are analysed in order to provide some information on the present trend of the coastal unit, regarding climate change and anthropic pressure, but also to support the model validation. 3) The vulnerability is studied. On one hand, the socio-economic dimension is assessed and, in a risk governance perspective, stake holders are identified and involved. This part of the project combines the study of social perceptions of dangers along with a deliberative workshop. On the other hand, numerical models of the physical behaviour of shoreface and coastline are applied. The selected models cover a time scale from short-term (storm time scale) to long-term (decades). Then, vulnerability can be studied: the vulnerability of coast/beach is defined and studied based on in-situ observations and model results. Most of these models needs some forcing conditions (waves at the boundary of the computational domains for instance). The present day conditions can be potentially modified by climate change. However, the model and literature review on climate change show that the few prediction of wave conditions available for the future deal mainly with the significant wave height, and not so much with the wave direction or period. To compensate this lack of knowledge, a sensitivity study is done to get information on the possible changes within the next decades (2030). It consists in studying the influence of a modification in the characteristics of the present day forcing conditions(like waves) within a reasonable magnitude order. 4) The anthropic pressure is taken into account as a modulator of the physical vulnerability. In each context, participative techniques are used to involve representatives of the main stakeholder groups into decision-making simulations. The scenario of a storm in 2030 is adopted to provide structured interactions during the workshop. Along with socio-economic projections, this simulation relies upon a fictive journal article written on the basis of the model outputs. These methodological choices aim at better understanding how decisions are made by stake holders dealing with risks and scientific uncertainty. Some applied results on the study sites will be presented at the EGU. ACKNOWLEDGEMENTS The VULSACO project is financially supported by the ANR (French National Research Agency) within the Vulnérabilité-Milieux-Climat programm.
Coastal vulnerability assessment with the use of environmental and socio-economic indicators
NASA Astrophysics Data System (ADS)
Alexandrakis, George; Petrakis, Stelios; Vousdoukas, Mixalis; Ghionis, George; Hatziyanni, Eleni; Kampanis, Nikolaos
2014-05-01
Climate change has significant repercussions on the natural environment, triggering obvious changes in the natural processes that have a severe socio-economic impact on the coastal zone; where a great number of human activities are concentrated. So far, the estimation of coastal vulnerability was based primarily on the natural processes and less on socio-economic variables, which would assist in the identification of vulnerable areas. The present investigation proposes a methodology to examine the vulnerability of a highly touristic area in the Island of Crete to an expected sea level rise of up to ~40 cm by the year 2100, according to the A1B scenario of IPCC 2007. The methodology includes the combination of socio-economic indicators into a GIS-based coastal vulnerability index for wave-induced erosion. This approach includes three sub-indices that contribute equally to the overall index. The sub-indices refer to coastal forcing, socio-economic and coastal characteristics. All variables are ranked on a 1-5 scale with 5 indicating higher vulnerability. The socio-economic sub-index includes, as indicators, the population of the study area, cultural heritage sites, transport networks, land use and protection measures. The coastal forcing sub-index includes the frequency of extreme events, while the Coastal Vulnerability Index includes the geological variables (coastal geomorphology, historical coastline changes, and regional coastal slope) and the variables representing the marine processes (relative sea level rise, mean significant wave height, and tidal range). The main difficulty for the estimation of the index lies in assessing and ranking the socio-economic indicators. The whole approach was tested and validated through field and desktop studies, using as a case study the Elouda bay, Crete Isl., an area of high cultural and economic value, which combines monuments from ancient and medieval times, with a very high touristic development since the 1970s.
NASA Astrophysics Data System (ADS)
Pasi, Riccardo; Viavattene, Christophe; La Loggia, Goffredo
2016-04-01
Natural hazards damage assets and infrastructure inducing disruptions to urban functions and key daily services. These disruptions may be short or long with a variable spatial scale of impact. From an urban planning perspective, measuring these disruptions and their consequences at an urban scale is fundamental in order to develop more resilient cities. Whereas the assessment of physical vulnerabilities and direct damages is commonly addressed, new methodologies for assessing the systemic vulnerability at the urban scale are required to reveal these disruptions and their consequences. Physical and systemic vulnerability should be measured in order to reflect the multifaceted fragility of cities in the face of external stress, both in terms of the natural/built environment and socio-economic sphere. Additionally, a systemic approach allows the consideration of vulnerability across different spatial scales, as impacts may vary and be transmitted across local, regional or national levels. Urban systems are spatially distributed and the nature of this can have significant effects on flood impacts. The proposed approach identifies the vulnerabilities of flooding within urban contexts, including both in terms of single elementary units (buildings, infrastructures, people, etc.) and systemic functioning (urban functions and daily life networks). Direct losses are appraised initially using conventional methodologies (e.g. depth-damage functions). This aims to both understand the spatial distribution of physical vulnerability and associated losses and, secondly, to identify the most vulnerable building types and ways to improve the physical adaptation of our cities, proposing changes to building codes, design principles and other municipal regulation tools. The subsequent systemic approach recognises the city as a collection of sub-systems or functional units (such as neighbourhoods and suburbs) providing key daily services for inhabitants (e.g. healthcare facilities, schools, administration offices, food shops, leisure and cultural services etc.) and which are interconnected through transport networks. Moreover, each city is part of broader systems - which may or may not follow administrative boundaries - and, as such, need to be connected to its wider surroundings, in a multi-scalar perspective. The systemic analysis, herein limited to residential households, evaluates the presence, the distribution among functional units and the redundancy of key daily services. As such, systemic interdependences between neighbourhoods/suburbs and municipalities emerge, highlighting how systemic vulnerability spreads beyond the flooded areas. This aims to understand which planning patterns and existing mixed-use developments are more flood resilient (thereby informing future urban development/regeneration) and which infrastructure and assets have a key role within the urban system (and have therefore to be prioritised for protection). The methodology is currently developed through an extensive use of Geographic Information Systems (GIS) and applied to an Italian case study (Noale municipality, Venice). Current developments and on-going issues in its application and in the data collection (including the use of aerial survey data) will be discussed in the presentation.
Volcanic hazard assessment in western Europe
NASA Astrophysics Data System (ADS)
Chester, David K.; Dibben, Christopher J. L.; Duncan, Angus M.
2002-06-01
Volcanology has been in the past and in many respects remains a subject dominated by pure research grounded in the earth sciences. Over the past 30 years a paradigm shift has occurred in hazard assessment which has been aided by significant changes in the social theory of natural hazards and the first-hand experience gained in the 1990s by volcanologists working on projects conceived during the International Decade for Natural Disaster Reduction (IDNDR). Today much greater stress is placed on human vulnerability, the potential for marginalisation of disadvantaged individuals and social groups, and the requirement to make applied volcanology sensitive to the characteristics of local demography, economy, culture and politics. During the IDNDR a methodology, broadly similar to environmental impact analysis, has emerged as the preferred method for studying human vulnerability and risk assessment in volcanically active regions. The characteristics of this new methodology are discussed and the progress which has been made in innovating it on the European Union laboratory volcanoes located in western Europe is reviewed. Furnas (São Miguel, Azores) and Vesuvius in Italy are used as detailed case studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pavlickova, Katarina; Vyskupova, Monika, E-mail: vyskupova@fns.uniba.sk
Cumulative environmental impact assessment deals with the occasional use in practical application of environmental impact assessment process. The main reasons are the difficulty of cumulative impact identification caused by lack of data, inability to measure the intensity and spatial effect of all types of impacts and the uncertainty of their future evolution. This work presents a method proposal to predict cumulative impacts on the basis of landscape vulnerability evaluation. For this purpose, qualitative assessment of landscape ecological stability is conducted and major vulnerability indicators of environmental and socio-economic receptors are specified and valuated. Potential cumulative impacts and the overall impactmore » significance are predicted quantitatively in modified Argonne multiple matrixes while considering the vulnerability of affected landscape receptors and the significance of impacts identified individually. The method was employed in the concrete environmental impact assessment process conducted in Slovakia. The results obtained in this case study reflect that this methodology is simple to apply, valid for all types of impacts and projects, inexpensive and not time-consuming. The objectivity of the partial methods used in this procedure is improved by quantitative landscape ecological stability evaluation, assignment of weights to vulnerability indicators based on the detailed characteristics of affected factors, and grading impact significance. - Highlights: • This paper suggests a method proposal for cumulative impact prediction. • The method includes landscape vulnerability evaluation. • The vulnerability of affected receptors is determined by their sensitivity. • This method can increase the objectivity of impact prediction in the EIA process.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Danneels, Jeffrey John
2005-03-01
Concerns about acts of terrorism against critical infrastructures have been on the rise for several years. Critical infrastructures are those physical structures and information systems (including cyber) essential to the minimum operations of the economy and government. The President's Commission on Critical Infrastructure Protection (PCCIP) probed the security of the nation's critical infrastructures. The PCCIP determined the water infrastructure is highly vulnerable to a range of potential attacks. In October 1997, the PCCIP proposed a public/private partnership between the federal government and private industry to improve the protection of the nation's critical infrastructures. In early 2000, the EPA partnered withmore » the Awwa Research Foundation (AwwaRF) and Sandia National Laboratories to create the Risk Assessment Methodology for Water Utilities (RAM-W{trademark}). Soon thereafter, they initiated an effort to create a template and minimum requirements for water utility Emergency Response Plans (ERP). All public water utilities in the US serving populations greater than 3,300 are required to undertaken both a vulnerability assessment and the development of an emergency response plan. This paper explains the initial steps of RAM-W{trademark} and then demonstrates how the security risk assessment is fundamental to the ERP. During the development of RAM-W{trademark}, Sandia performed several security risk assessments at large metropolitan water utilities. As part of the scope of that effort, ERPs at each utility were reviewed to determine how well they addressed significant vulnerabilities uncovered during the risk assessment. The ERP will contain responses to other events as well (e.g. natural disasters) but should address all major findings in the security risk assessment.« less
NASA Astrophysics Data System (ADS)
Salek, Mansour; Levison, Jana; Parker, Beth; Gharabaghi, Bahram
2018-06-01
Road salt is pervasively used throughout Canada and in other cold regions during winter. For cities relying exclusively on groundwater, it is important to plan and minimize the application of salt accordingly to mitigate the adverse effects of high chloride concentrations in water supply aquifers. The use of geospatial data (road network, land use, Quaternary and bedrock geology, average annual recharge, water-table depth, soil distribution, topography) in the DRASTIC methodology provides an efficient way of distinguishing salt-vulnerable areas associated with groundwater supply wells, to aid in the implementation of appropriate management practices for road salt application in urban areas. This research presents a GIS-based methodology to accomplish a vulnerability analysis for 12 municipal water supply wells within the City of Guelph, Ontario, Canada. The chloride application density (CAD) value at each supply well is calculated and related to the measured groundwater chloride concentrations and further combined with soil media and aquifer vadose- and saturated-zone properties used in DRASTIC. This combined approach, CAD-DRASTIC, is more accurate than existing groundwater vulnerability mapping methods and can be used by municipalities and other water managers to further improve groundwater protection related to road salt application.
A Robustness Testing Campaign for IMA-SP Partitioning Kernels
NASA Astrophysics Data System (ADS)
Grixti, Stephen; Lopez Trecastro, Jorge; Sammut, Nicholas; Zammit-Mangion, David
2015-09-01
With time and space partitioned architectures becoming increasingly appealing to the European space sector, the dependability of partitioning kernel technology is a key factor to its applicability in European Space Agency projects. This paper explores the potential of the data type fault model, which injects faults through the Application Program Interface, in partitioning kernel robustness testing. This fault injection methodology has been tailored to investigate its relevance in uncovering vulnerabilities within partitioning kernels and potentially contributing towards fault removal campaigns within this domain. This is demonstrated through a robustness testing case study of the XtratuM partitioning kernel for SPARC LEON3 processors. The robustness campaign exposed a number of vulnerabilities in XtratuM, exhibiting the potential benefits of using such a methodology for the robustness assessment of partitioning kernels.
Satellite Vulnerability to Space Debris- An Improved 3D Risk Assessment Methodology
NASA Astrophysics Data System (ADS)
Grassi, Lilith; Destefanis, Roberto; Tiboldo, Francesca; Donath, Therese; Winterboer, Arne; Evand, Leanne; Janovsky, Rolf; Kempf, Scott; Rudolph, Martin; Schafer, Frank; Gelhaus, Johannes
2013-08-01
The work described in the present paper, performed as a part of the PÇ-ROTECT project, presents an enhanced method to evaluate satellite vulnerability to micrometeoroids and orbital debris (MMOD), using the ESABASE2/Debris tool (developed under ESA contract). Starting from the estimation of induced failures on spacecraft (S/C) components and from the computation of lethal impacts (with an energy leading to the loss of the satellite), and considering the equipment redundancies and interactions between components, the debris-induced S/C functional impairment is assessed. The developed methodology, illustrated through its application to a case study satellite, includes the capability to estimate the number of failures on internal components, overcoming the limitations of current tools which do not allow propagating the debris cloud inside the S/C. The ballistic limit of internal equipment behind a sandwich panel structure is evaluated through the implementation of the Schäfer Ryan Lambert (SRL) Ballistic Limit Equation (BLE).
Integrated assessment of urban vulnerability and resilience. Case study: Targu Ocna town, Romania
NASA Astrophysics Data System (ADS)
Grozavu, Adrian; Bănică, Alexandru
2015-04-01
Vulnerability assessment frequently emphasizes the internal fragility of a system in relation to a given hazard, when compared to similar systems or to a reference standard. This internal fragility, either biophysical or structural, may affect the ability to predict, to prepare for and cope with or to recover from the manifestation of a risk phenomenon. Thus, the vulnerability is highly related to resilience and adaptability. There is no single methodology for vulnerability and resilience analysis, their assessment can only be made by identifying and integrating indicators which are compatible with the analysis level and the geographic, economic and social features of a certain area. An integrated model of evaluating vulnerability and resilience capacity is being proposed in this paper for Targu Ocna, a small mining settlement in the Eastern Carpathians of Romania, that became in the last years a tourist town and acts within the surrounding territory as a dynamic local pole. Methodologically, the following steps and operations were considered: identifying potential hazards, identifying elements at risk, identifying proper indicators and integrating them in order to evaluate the general vulnerability and resilience. The inventory of elements at risk (the number of people potentially affected, residential or other functionalities buildings, roads and other infrastructure elements etc.) was made based on General Urban Plan, topographic maps (scale 1:5000), ortophotos from 2003 and 2008 and field mapping and researches. Further on, several vulnerability indicators were identified and included within the analytical approach: dependency ratio, income, quality of the habitat and technical urban facilities, environment quality showing differentiated sensitivity. Issues such as preparedness and preventive measures (priority areas within the risk prevention plans), coping ability (networks' geometry and connectivity, emergency utilities and services accessibility) and the recovering capacity (the time needed to reestablish functions after a disastrous event) were also taken into account. The selected indicators were mathematically processed (standardized and normalized) in order to maximize their relevance and to unitary express the results in the spread 0-1. Then a grid with a cell size of 100 x 100 m was created in order to spatialize vulnerability indicators, that were calculated as the average vulnerability of the exposed elements in each cell. All identified indicators have been processed within a cluster analysis that permitted the identification of similar areas in terms of vulnerabilities. Finally, a general index was obtained by the integration of all vulnerability factors in an equation based on the geometric mean. The results of the study could provide a reference basis to substantiate local correctly prioritized decisions for reducing vulnerability by mitigation and adaptation measures in order to avoid significant damages when risks materialise.
As part of the Climate Ready Estuaries (CRE) program, the Global Change Research Program (GCRP) in the National Center for Environmental Assessment, Office of Research and Development at the U.S. Environmental Protection Agency has prepared a report exploring a new methodology fo...
As part of the Climate Ready Estuaries (CRE) program, the Global Change Research Program (GCRP) in the National Center for Environmental Assessment, Office of Research and Development at the U.S. Environmental Protection Agency has prepared a report exploring a new methodology fo...
Multi-hazard risk analysis related to hurricanes
NASA Astrophysics Data System (ADS)
Lin, Ning
Hurricanes present major hazards to the United States. Associated with extreme winds, heavy rainfall, and storm surge, landfalling hurricanes often cause enormous structural damage to coastal regions. Hurricane damage risk assessment provides the basis for loss mitigation and related policy-making. Current hurricane risk models, however, often oversimplify the complex processes of hurricane damage. This dissertation aims to improve existing hurricane risk assessment methodology by coherently modeling the spatial-temporal processes of storm landfall, hazards, and damage. Numerical modeling technologies are used to investigate the multiplicity of hazards associated with landfalling hurricanes. The application and effectiveness of current weather forecasting technologies to predict hurricane hazards is investigated. In particular, the Weather Research and Forecasting model (WRF), with Geophysical Fluid Dynamics Laboratory (GFDL)'s hurricane initialization scheme, is applied to the simulation of the wind and rainfall environment during hurricane landfall. The WRF model is further coupled with the Advanced Circulation (AD-CIRC) model to simulate storm surge in coastal regions. A case study examines the multiple hazards associated with Hurricane Isabel (2003). Also, a risk assessment methodology is developed to estimate the probability distribution of hurricane storm surge heights along the coast, particularly for data-scarce regions, such as New York City. This methodology makes use of relatively simple models, specifically a statistical/deterministic hurricane model and the Sea, Lake and Overland Surges from Hurricanes (SLOSH) model, to simulate large numbers of synthetic surge events, and conducts statistical analysis. The estimation of hurricane landfall probability and hazards are combined with structural vulnerability models to estimate hurricane damage risk. Wind-induced damage mechanisms are extensively studied. An innovative windborne debris risk model is developed based on the theory of Poisson random measure, substantiated by a large amount of empirical data. An advanced vulnerability assessment methodology is then developed, by integrating this debris risk model and a component-based pressure damage model, to predict storm-specific or annual damage to coastal residential neighborhoods. The uniqueness of this vulnerability model lies in its detailed description of the interaction between wind pressure and windborne debris effects over periods of strong winds, which is a major mechanism leading to structural failures during hurricanes.
NASA Astrophysics Data System (ADS)
Boori, Mukesh S.; Choudhary, Komal; Kupriyanov, Alexander; Sugimoto, Atsuko; Evers, Mariele
2016-10-01
The aim of this research work is to understand natural and environmental vulnerability situation and its cause such as intensity, distribution and socio-economic effect in the Indigirka River basin, Eastern Siberia, Russia. This paper identifies, assess and classify natural and environmental vulnerability using landscape pattern from multidisciplinary approach, based on remote sensing and Geographical Information System (GIS) techniques. A model was developed by following thematic layers: land use/cover, vegetation, wetland, geology, geomorphology and soil in ArcGIS 10.2 software. According to numerical results vulnerability classified into five levels: low, sensible, moderate, high and extreme vulnerability by mean of cluster principal. Results are shows that in natural vulnerability maximum area covered by moderate (29.84%) and sensible (38.61%) vulnerability and environmental vulnerability concentrated by moderate (49.30%) vulnerability. So study area has at medial level vulnerability. The results found that the methodology applied was effective enough in the understanding of the current conservation circumstances of the river basin in relation to their environment with the help of remote sensing and GIS. This study is helpful for decision making for eco-environmental recovering and rebuilding as well as predicting the future development.
Threat Assessment & Remediation Analysis (TARA): Methodology Description Version 1.0
2011-10-01
collectively support this practice. v Table of Contents 1 Introduction...4 1.3.2.3 Common Vulnerability Scoring System (CVSS) ........................................ 4 1.3.2.4 Microsoft Threat Modeling ...6 2.1.1.3 Eliminate Implausible TTPs ........................................................................ 6 2.1.1.4 Apply Scoring Model
Coastal vulnerability assessment of Puducherry coast, India using analytical hierarchical process
NASA Astrophysics Data System (ADS)
Mani Murali, R.; Ankita, M.; Amrita, S.; Vethamony, P.
2013-03-01
Increased frequency of natural hazards such as storm surge, tsunami and cyclone, as a consequence of change in global climate, is predicted to have dramatic effects on the coastal communities and ecosystems by virtue of the devastation they cause during and after their occurrence. The tsunami of December 2004 and the Thane cyclone of 2011 caused extensive human and economic losses along the coastline of Puducherry and Tamil Nadu. The devastation caused by these events highlighted the need for vulnerability assessment to ensure better understanding of the elements causing different hazards and to consequently minimize the after-effects of the future events. This paper advocates an Analytical Hierarchical Process (AHP) based approach to coastal vulnerability studies as an improvement to the existing methodologies for vulnerability assessment. The paper also encourages the inclusion of socio-economic parameters along with the physical parameters to calculate the coastal vulnerability index using AHP derived weights. Seven physical-geological parameters (slope, geomorphology, elevation, shoreline change, sea level rise, significant wave height and tidal range) and four socio-economic factors (population, Land-use/Land-cover (LU/LC), roads and location of tourist places) are considered to measure the Physical Vulnerability Index (PVI) as well as the Socio-economic Vulnerability Index (SVI) of the Puducherry coast. Based on the weights and scores derived using AHP, vulnerability maps are prepared to demarcate areas with very low, medium and high vulnerability. A combination of PVI and SVI values are further utilized to compute the Coastal Vulnerability Index (CVI). Finally, the various coastal segments are grouped into the 3 vulnerability classes to obtain the final coastal vulnerability map. The entire coastal extent between Muthiapet and Kirumampakkam as well as the northern part of Kalapet is designated as the high vulnerability zone which constitutes 50% of the coastline. The region between the southern coastal extent of Kalapet and Lawspet is the medium vulnerability zone and the rest 25% is the low vulnerability zone. The results obtained, enable to identify and prioritize the more vulnerable areas of the region to further assist the government and the residing coastal communities in better coastal management and conservation.
NASA Astrophysics Data System (ADS)
Mani Murali, R.; Ankita, M.; Amrita, S.; Vethamony, P.
2013-12-01
As a consequence of change in global climate, an increased frequency of natural hazards such as storm surges, tsunamis and cyclones, is predicted to have dramatic affects on the coastal communities and ecosystems by virtue of the devastation they cause during and after their occurrence. The tsunami of December 2004 and the Thane cyclone of 2011 caused extensive human and economic losses along the coastline of Puducherry and Tamil Nadu. The devastation caused by these events highlighted the need for vulnerability assessment to ensure better understanding of the elements causing different hazards and to consequently minimize the after- effects of the future events. This paper demonstrates an analytical hierarchical process (AHP)-based approach to coastal vulnerability studies as an improvement to the existing methodologies for vulnerability assessment. The paper also encourages the inclusion of socio-economic parameters along with the physical parameters to calculate the coastal vulnerability index using AHP-derived weights. Seven physical-geological parameters (slope, geomorphology, elevation, shoreline change, sea level rise, significant wave height and tidal range) and four socio-economic factors (population, land use/land cover (LU/LC), roads and location of tourist areas) are considered to measure the physical vulnerability index (PVI) as well as the socio-economic vulnerability index (SVI) of the Puducherry coast. Based on the weights and scores derived using AHP, vulnerability maps are prepared to demarcate areas with very low, medium and high vulnerability. A combination of PVI and SVI values are further utilized to compute the coastal vulnerability index (CVI). Finally, the various coastal segments are grouped into the 3 vulnerability classes to obtain the coastal vulnerability map. The entire coastal extent between Muthiapet and Kirumampakkam as well as the northern part of Kalapet is designated as the high vulnerability zone, which constitutes 50% of the coastline. The region between the southern coastal extent of Kalapet and Lawspet is the medium vulnerability zone and the remaining 25% is the low vulnerability zone. The results obtained enable the identification and prioritization of the more vulnerable areas of the region in order to further assist the government and the residing coastal communities in better coastal management and conservation.
Coastal vulnerability: climate change and natural hazards perspectives
NASA Astrophysics Data System (ADS)
Romieu, E.; Vinchon, C.
2009-04-01
Introduction Studying coastal zones as a territorial concept (Integrated coastal zone management) is an essential issue for managers, as they have to consider many different topics (natural hazards, resources management, tourism, climate change…). The recent approach in terms of "coastal vulnerability" studies (since the 90's) is the main tool used nowadays to help them in evaluating impacts of natural hazards on coastal zones, specially considering climate change. This present communication aims to highlight the difficulties in integrating this concept in risk analysis as it is usually practiced in natural hazards sciences. 1) Coastal vulnerability as a recent issue The concept of coastal vulnerability mainly appears in the International panel on climate change works of 1992 (IPCC. 2001), where it is presented as essential for climate change adaptation. The concept has been defined by a common methodology which proposes the assessment of seven indicators, in regards to a sea level rise of 1m in 2100: people affected, people at risk, capital value at loss, land at loss, wetland at loss, potential adaptation costs, people at risk assuming this adaptation. Many national assessments have been implemented (Nicholls, et al. 1995) and a global assessment was proposed for three indicators (Nicholls, et al. 1999). The DINAS-Coast project reuses this methodology to produce the DIVA-tool for coastal managers (Vafeidis, et al. 2004). Besides, many other methodologies for national or regional coastal vulnerability assessments have been developed (review by (UNFCCC. 2008). The use of aggregated vulnerability indicators (including geomorphology, hydrodynamics, climate change…) is widespread: the USGS coastal vulnerability index is used worldwide and was completed by a social vulnerability index (Boruff, et al. 2005). Those index-based methods propose a vulnerability mapping which visualise indicators of erosion, submersion and/or socio economic sensibility in coastal zones. This concept is a great tool for policy makers to help managing their action and taking into account climate change (McFadden, et al. 2006). However, in those approaches, vulnerability is the output itself (cost of effective impacts, geomorphologic impacts…), but is not integrated it in a risk analysis. Furthermore, those studies emerged from a climatic perspective, which leads to consider climate change as a hazard or pressure whereas risk studies commonly consider hazards such as erosion and flooding, where climate change modifies the drivers of the hazard. 2) The natural hazards and socio economic perspectives In order to reduce impacts of natural hazards, decision makers need a complete risk assessment (probability of losses). Past studies on natural risks (landslide, earthquake...) highlighted the pertinence of defining risk as a combination of : (1)hazard occurrence and intensity, (2) exposition and (3)vulnerability of assets and population to this hazard (e.g. Douglas. 2007, Sarewitz, et al. 2003). Following the Renn and Klinke risk assessment frame, high uncertainties associated with coastal risks considering climatic and anthropic change highlights the importance of working on that concept of "vulnerability" (Klinke and Renn. 2002). Past studies on vulnerability assessment showed a frequently mentioned gap between "impact based" and "human based" points of view. It is nowadays a great issue for natural risk sciences. Many research efforts in FP7 projects such as MOVE and ENSURE focus on integrating the different dimensions of vulnerability (Turner, et al. 2003, Birkmann. 2006). Coastal risk studies highlight another issue of concern. We previously detailed the different use of the term "vulnerability" in the coastal context, quite different of the "natural risk's" use. Interaction of social, economic and physical sciences is considered within two french research projects (Vulsaco, Miseeva), in order to identify the vulnerability of a system to flooding or erosion (i.e. its characteristics that create potential harm), and integrate them in a risk assessment. Global change is considered by modifications of hazard, anthropogenic pressure and exposition, in order to point out possible modification of vulnerabilities. 3) Learning from both perspectives Coastal vulnerability in its "end in itself" and climate change dimension is a widespread tool for decision makers but it can be inadequate when vulnerability is a component of risk. This is mainly due to the consideration of climate change as a "hazard", so that coastal vulnerability is seen as the possible adverse impacts of climate change. As a matter of fact, this concept is clearly well considered by managers, who feel deeply concerned by climate change. However, coastal risk managers would gain in considering climate change more like a driver able to modify existing hazards than like the pressure in itself. Using this concept could lead to new perspectives of coastal risk mitigation for decision makers (social vulnerability, risk perception…), learning from other disciplines and sciences thanks to research projects such as MOVE (FP7). Acknowledgements The authors would like to thank the BRGM coastal team for rich discussions and fruitful collaborations in coastal vulnerability studies, more specially Déborah Idier for animating the Vulsaco project and Manuel Garcin for his work on tsunamis in Sri Lanka. They are also grateful to the MISEEVA and MOVE teams, which are doing some great trans-disciplinary work. References Birkmann, J., 2006. Measuring vulnerability to Natural Hazards : towards disaster resilient societies. United Nations University Press. Boruff, B. J., Emrich, C., Cutter, S. L., 2005. Erosion hazard vulnerability of US coastal counties. Journal of Coastal Research. 21, 932-942. Douglas, J., 2007. Physical vulnerability modelling in natural hazard risk assessment. Natural Hazards and Earth System Sciences. 7, 283-288. IPCC, 2001. Climate change 2001 : synthesis report. A contribution of working groups I, II and III to the Third Assesment Report of the Intergovernmental Panel on Climate Change. Klinke, A. and Renn, O., 2002. A new approach to risk evaluation and management : risk based, precaution based and discourse based strategies. Risk Analysis. 22, 1071-1094. McFadden, L., Nicholls, R.J., Penning-Rowsell, E. (Eds.), 2006. Managing coastal vulnerability. Elsevier Science. Nicholls, R. J., Hoozemans, F. M. J., Marchand, M., 1999. Increasing flood risk and wetland losses due to global sea-level rise: regional and global analyses. Global Environmental Change, Part A: Human and Policy Dimensions. 9, S69-S87. Nicholls, R. J., Leatherman, S. P., Volonte, C. R., 1995. Impacts and responses to sea-level rise; qualitative and quantitative assessments; Potential impacts of accelerated sea-level rise on developing countries. Journal of Coastal Research. Special issue 14, 26-43. Sarewitz, D., Pielke, R., Keykhah, M., 2003. Vulnerability and Risk: Some Thoughts from a Political and Policy Perspective. Risk Analysis. 23, 805-810. Turner, B. L.,II, Kasperson, R. E., Matson, P. A., McCarthy, J. J., Corell, R. W., Christensen, L., Eckley, N., Kasperson, J. X., Luers, A., Martello, M. L., Polsky, C., Pulsipher, A., Schiller, A., 2003. A framework for vulnerability analysis in sustainability science. Proceedings of the National Academy of Sciences, USA. 100, 8074-8079. UNFCCC, 2008. Compendium on methods and tools to evaluate impacts of vulnerability and adaptation to climate change. Vafeidis, A., Nicholls, R., McFadden, L., 2004. Developing a database for global vulnerability analysis of coastal zones: The DINAS-COAST project and the DIVA tool.
Multi-Hazard Vulnerability Assessment Along the Coast of Visakhapatnam, North-East Coast of India
NASA Astrophysics Data System (ADS)
Vivek, G.; Grinivasa Kumar, T.
2016-08-01
The current study area is coastal zone of Visakhapatnam, district of Andhra Pradesh along the coast of India. This area is mostly vulnerable to many disasters such as storms, cyclone, flood, tsunami and erosion. This area is considered as cyclone prone area because of frequently occurrence of the cyclones in this area. Recently the two tropical cyclones that formed in the Bay of Bengal are Hudhud (October 13, 2014) and Phylin (October 11, 2013), has caused devastating impacts on the eastern coast and shows that the country has lack of preparedness to cyclone, storm surge and related natural hazards. The multi-hazard vulnerability maps prepared here are a blended and combined overlay of multiple hazards those affecting the coastal zone. The present study aims to develop a methodology for coastal multi-hazard vulnerability assessment. This study carried out using parameters like probability of coastal slope, tsunami arrival height, future sea level rise, coastal erosion and tidal range. The multi-hazard vulnerability maps prepared by overlaying of multi hazards those affecting the coastal zone. Multi-hazard vulnerability maps further reproduced as risk maps with the land use information. The decision making tools presented here can provide a useful information during the disaster for the evacuation process and to evolve a management strategy.
DOT National Transportation Integrated Search
2012-01-01
In Florida, low elevations can make transportation infrastructure in coastal and low-lying areas potentially vulnerable to sea level rise (SLR). Becuase global SLR forecasts lack precision at local or regional scales, SLR forecasts or scenarios for p...
SAMCO: Society Adaptation for coping with Mountain risks in a global change COntext
NASA Astrophysics Data System (ADS)
Grandjean, Gilles; Bernardie, Severine; Malet, Jean-Philippe; Puissant, Anne; Houet, Thomas; Berger, Frederic; Fort, Monique; Pierre, Daniel
2013-04-01
The SAMCO project aims to develop a proactive resilience framework enhancing the overall resilience of societies on the impacts of mountain risks. The project aims to elaborate methodological tools to characterize and measure ecosystem and societal resilience from an operative perspective on three mountain representative case studies. To achieve this objective, the methodology is split in several points with (1) the definition of the potential impacts of global environmental changes (climate system, ecosystem e.g. land use, socio-economic system) on landslide hazards, (2) the analysis of these consequences in terms of vulnerability (e.g. changes in the location and characteristics of the impacted areas and level of their perturbation) and (3) the implementation of a methodology for quantitatively investigating and mapping indicators of mountain slope vulnerability exposed to several hazard types, and the development of a GIS-based demonstration platform. The strength and originality of the SAMCO project will be to combine different techniques, methodologies and models (multi-hazard assessment, risk evolution in time, vulnerability functional analysis, and governance strategies) and to gather various interdisciplinary expertises in earth sciences, environmental sciences, and social sciences. The multidisciplinary background of the members could potentially lead to the development of new concepts and emerging strategies for mountain hazard/risk adaptation. Research areas, characterized by a variety of environmental, economical and social settings, are severely affected by landslides, and have experienced significant land use modifications (reforestation, abandonment of traditional agricultural practices) and human interferences (urban expansion, ski resorts construction) over the last century.
Security Risk Assessment Process for UAS in the NAS CNPC Architecture
NASA Technical Reports Server (NTRS)
Iannicca, Dennis C.; Young, Dennis P.; Thadani, Suresh K.; Winter, Gilbert A.
2013-01-01
This informational paper discusses the risk assessment process conducted to analyze Control and Non-Payload Communications (CNPC) architectures for integrating civil Unmanned Aircraft Systems (UAS) into the National Airspace System (NAS). The assessment employs the National Institute of Standards and Technology (NIST) Risk Management framework to identify threats, vulnerabilities, and risks to these architectures and recommends corresponding mitigating security controls. This process builds upon earlier work performed by RTCA Special Committee (SC) 203 and the Federal Aviation Administration (FAA) to roadmap the risk assessment methodology and to identify categories of information security risks that pose a significant impact to aeronautical communications systems. A description of the deviations from the typical process is described in regards to this aeronautical communications system. Due to the sensitive nature of the information, data resulting from the risk assessment pertaining to threats, vulnerabilities, and risks is beyond the scope of this paper.
Security Risk Assessment Process for UAS in the NAS CNPC Architecture
NASA Technical Reports Server (NTRS)
Iannicca, Dennis Christopher; Young, Daniel Paul; Suresh, Thadhani; Winter, Gilbert A.
2013-01-01
This informational paper discusses the risk assessment process conducted to analyze Control and Non-Payload Communications (CNPC) architectures for integrating civil Unmanned Aircraft Systems (UAS) into the National Airspace System (NAS). The assessment employs the National Institute of Standards and Technology (NIST) Risk Management framework to identify threats, vulnerabilities, and risks to these architectures and recommends corresponding mitigating security controls. This process builds upon earlier work performed by RTCA Special Committee (SC) 203 and the Federal Aviation Administration (FAA) to roadmap the risk assessment methodology and to identify categories of information security risks that pose a significant impact to aeronautical communications systems. A description of the deviations from the typical process is described in regards to this aeronautical communications system. Due to the sensitive nature of the information, data resulting from the risk assessment pertaining to threats, vulnerabilities, and risks is beyond the scope of this paper
1979-09-01
KEY WORDS (Continue on revmrem elde It necmmemry and Identity by block number) Target Descriptions GIFT Code C0MGE0M Descriptions FASTGEN Code...which accepts the COMGEOM target description and 1 2 produces the shotline data is the GIFT ’ code. The GIFT code evolved 3 4 from and has...the COMGEOM/ GIFT methodology, while the Navy and Air Force use the PATCH/SHOTGEN-FASTGEN methodology. Lawrence W. Bain, Mathew J. Heisinger
ELER software - a new tool for urban earthquake loss assessment
NASA Astrophysics Data System (ADS)
Hancilar, U.; Tuzun, C.; Yenidogan, C.; Erdik, M.
2010-12-01
Rapid loss estimation after potentially damaging earthquakes is critical for effective emergency response and public information. A methodology and software package, ELER-Earthquake Loss Estimation Routine, for rapid estimation of earthquake shaking and losses throughout the Euro-Mediterranean region was developed under the Joint Research Activity-3 (JRA3) of the EC FP6 Project entitled "Network of Research Infrastructures for European Seismology-NERIES". Recently, a new version (v2.0) of ELER software has been released. The multi-level methodology developed is capable of incorporating regional variability and uncertainty originating from ground motion predictions, fault finiteness, site modifications, inventory of physical and social elements subjected to earthquake hazard and the associated vulnerability relationships. Although primarily intended for quasi real-time estimation of earthquake shaking and losses, the routine is also equally capable of incorporating scenario-based earthquake loss assessments. This paper introduces the urban earthquake loss assessment module (Level 2) of the ELER software which makes use of the most detailed inventory databases of physical and social elements at risk in combination with the analytical vulnerability relationships and building damage-related casualty vulnerability models for the estimation of building damage and casualty distributions, respectively. Spectral capacity-based loss assessment methodology and its vital components are presented. The analysis methods of the Level 2 module, i.e. Capacity Spectrum Method (ATC-40, 1996), Modified Acceleration-Displacement Response Spectrum Method (FEMA 440, 2005), Reduction Factor Method (Fajfar, 2000) and Coefficient Method (ASCE 41-06, 2006), are applied to the selected building types for validation and verification purposes. The damage estimates are compared to the results obtained from the other studies available in the literature, i.e. SELENA v4.0 (Molina et al., 2008) and ATC-55 (Yang, 2005). An urban loss assessment exercise for a scenario earthquake for the city of Istanbul is conducted and physical and social losses are presented. Damage to the urban environment is compared to the results obtained from similar software, i.e. KOERILoss (KOERI, 2002) and DBELA (Crowley et al., 2004). The European rapid loss estimation tool is expected to help enable effective emergency response, on both local and global level, as well as public information.
NASA Astrophysics Data System (ADS)
Grozavu, Adrian; Ciprian Margarint, Mihai; Catalin Stanga, Iulian
2013-04-01
In the last three or four decades, vulnerability evolved from physical fragility meanings to a more complex concept, being a key element of risk assessment. In landslide risk assessment, there are a large series of studies regarding landslide hazard, but far fewer researches focusing on vulnerability measurement. Furthermore, there is still no unitary understanding on the methodological framework, neither any internationally agreed standard for landslide vulnerability measurements. The omnipresent common element is the existence of elements at risk, but while some approaches are limited to exposure, other focus on the degree of losses (human injuries, material damages and monetary losses, structural dysfunctions etc.). These losses are differently assessed using both absolute and relative values on qualitative or quantitative scales and they are differently integrated to provide a final vulnerability value. This study aims to assess vulnerability to landslides at local level using an indicator-based model applied to urban areas and tested for Husi town (Eastern Romania). The study region is characterized by permeable and impermeable alternating sedimentary rocks, monoclinal geological structure and hilly relief with impressive cuestas, continental temperate climate, and precipitation of about 500 mm/year, rising to 700 m and even more in some rainy years. The town is a middle size one (25000 inhabitants) and it had an ascending evolution in the last centuries, followed by an increasing human pressure on lands. Methodologically, the first step was to assess the landslide susceptibility and to identify in this way those regions within which any asset would be exposed to landslide hazards. Landslide susceptibility was assessed using the logistic regression approach, taking into account several quantitative and qualitative factors (elements of geology, morphometry, rainfall, land use etc.). The spatial background consisted in the Digital Elevation Model and all derived maps (slope, aspect, shading), realized based on the topographical plans and maps (1:1000, 1:5000). The second step was to realize the spatial inventory of elements at risk (vector format), based on the General Urban Plan (1:5000), the orthorectified aerial images (2009, resolution: 0.5 meters) and field investigations. All elements have been classified using attribute databases: residential buildings (single or multiple dwellings), other buildings according to their functionality, main and secondary roads, special transport network etc. Data about population have been added in order to assess the intrinsic value of each element and the number of potentially affected peoples. The study also took into account issues as preparedness and preventive measures (risk prevention plans, reinforcing structures, draining wells etc.), coping ability (network geometry and connectivity, emergency services accessibility) and recovering capacity (e.g. the existence of insurance policies). According to their importance and functionality, a distinct rank (ri … rn) was assigned to each element at risk (i1…in) showing the level of vulnerability. The rank values were assigned mainly on the expert knowledge and they range from 1 (limited damages, no affected people) to 5 (several households and people affected, dysfunctions in the urban system). The vulnerability index (Vi) was obtained combining the rank with the role of vulnerability factors (Fi), according to their degree of influence: the number of people that would be affected, the potential material and economic damages, the relationship with the neighboring exposed elements, the existence of the preventing, coping and recovering measures etc. Thus, the general equation of vulnerability has the form of weighted geometric mean: Vi=ri•Fi = ri•(w1F1 • w2F2 • … • wmFm). It must be noted that the weighting coefficients (wi) have subunitary or supraunitary value according to their role in diminishing or increasing the vulnerability level. The general vulnerability index (GVI) was obtained through a final transformation that was done to limit the spread of variation between zero (minimum vulnerability) and one (maximum vulnerability): GVIi = Vi/Vmax. In this form, the elements at risk are individually inventoried and spatialized in vector format as points, lines, polygons, each one having its own vulnerability value, but the results can be used only at the precise local level (both by practitioners and decision makers). To allow a more profound interpretation, the general vulnerability index was spatialized in two distinct ways: (1) creating a raster with a standard pixel size (e.g. 20 x 20 m, 50 x 50 m) and calculating the average vulnerability of the exposed elements in each pixel; (2) choosing a interpolation method (e.g. krigging) that would allow to integrate the spatial autocorrelation of the elements at risk and to obtain an output raster at the same resolution with the susceptibility map and a further risk assessment.
Carbon Fiber Risk Analysis. [conference
NASA Technical Reports Server (NTRS)
1979-01-01
The scope and status of the effort to assess the risks associated with the accidental release of carbon/graphite fibers from civil aircraft is presented. Vulnerability of electrical and electronic equipment to carbon fibers, dispersal of carbon fibers, effectiveness of filtering systems, impact of fiber induced failures, and risk methodology are among the topics covered.
NASA Astrophysics Data System (ADS)
Nazemi, A.; Zaerpour, M.
2016-12-01
Current paradigm for assessing the vulnerability of water resource systems to changing streamflow conditions often involves a cascade application of climate and hydrological models to project the future states of streamflow regime, entering to a given water resource system. It is widely warned, however, that the overall uncertainty in this "top-down" modeling enterprise can be large due to the limitations in representing natural and anthropogenic processes that affect future streamflow variability and change. To address this, various types of stress-tests are suggested to assess the vulnerability of water resources systems under a wide range of possible changes in streamflow conditions. The scope of such "bottom-up" assessments can go well beyond top-down projections and therefore provide a basis for monitoring different response modes, under which water resource systems become vulnerable. Despite methodological differences, all bottom-up assessments are equipped with a systematic sampling procedure, with which different possibilities for future climate and/or streamflow conditions can be realized. Regardless of recent developments, currently available streamflow sampling algorithms are still limited, particularly in regional contexts, for which accurate representation of spatiotemporal dependencies in streamflow regime are of major importance. In this presentation, we introduce a new development that enables handling temporal and spatial dependencies in regional streamflow regimes through a unified stochastic reconstruction algorithm. We demonstrate the application of this algorithm accross various Canadian regions. By considering a real-world regional water resources system, we show how the new multi-site reconstruction algorithm can extend the practical utility of bottom-up vulnerability assessment and improve quantifying the associated risk in natural and anthropogenic water systems under unknown future conditions.
Ki, Seo Jin; Ray, Chittaranjan; Hantush, Mohamed M
2015-06-15
A large-scale leaching assessment tool not only illustrates soil (or groundwater) vulnerability in unmonitored areas, but also can identify areas of potential concern for agrochemical contamination. This study describes the methodology of how the statewide leaching tool in Hawaii modified recently for use with pesticides and volatile organic compounds can be extended to the national assessment of soil vulnerability ratings. For this study, the tool was updated by extending the soil and recharge maps to cover the lower 48 states in the United States (US). In addition, digital maps of annual pesticide use (at a national scale) as well as detailed soil properties and monthly recharge rates (at high spatial and temporal resolutions) were used to examine variations in the leaching (loads) of pesticides for the upper soil horizons. Results showed that the extended tool successfully delineated areas of high to low vulnerability to selected pesticides. The leaching potential was high for picloram, medium for simazine, and low to negligible for 2,4-D and glyphosate. The mass loadings of picloram moving below 0.5 m depth increased greatly in northwestern and central US that recorded its extensive use in agricultural crops. However, in addition to the amount of pesticide used, annual leaching load of atrazine was also affected by other factors that determined the intrinsic aquifer vulnerability such as soil and recharge properties. Spatial and temporal resolutions of digital maps had a great effect on the leaching potential of pesticides, requiring a trade-off between data availability and accuracy. Potential applications of this tool include the rapid, large-scale vulnerability assessments for emerging contaminants which are hard to quantify directly through vadose zone models due to lack of full environmental data. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ge, Long; Tian, Jin-hui; Li, Xiu-xia; Song, Fujian; Li, Lun; Zhang, Jun; Li, Ge; Pei, Gai-qin; Qiu, Xia; Yang, Ke-hu
2016-01-01
Because of the methodological complexity of network meta-analyses (NMAs), NMAs may be more vulnerable to methodological risks than conventional pair-wise meta-analysis. Our study aims to investigate epidemiology characteristics, conduction of literature search, methodological quality and reporting of statistical analysis process in the field of cancer based on PRISMA extension statement and modified AMSTAR checklist. We identified and included 102 NMAs in the field of cancer. 61 NMAs were conducted using a Bayesian framework. Of them, more than half of NMAs did not report assessment of convergence (60.66%). Inconsistency was assessed in 27.87% of NMAs. Assessment of heterogeneity in traditional meta-analyses was more common (42.62%) than in NMAs (6.56%). Most of NMAs did not report assessment of similarity (86.89%) and did not used GRADE tool to assess quality of evidence (95.08%). 43 NMAs were adjusted indirect comparisons, the methods used were described in 53.49% NMAs. Only 4.65% NMAs described the details of handling of multi group trials and 6.98% described the methods of similarity assessment. The median total AMSTAR-score was 8.00 (IQR: 6.00–8.25). Methodological quality and reporting of statistical analysis did not substantially differ by selected general characteristics. Overall, the quality of NMAs in the field of cancer was generally acceptable. PMID:27848997
Vinhaes, Márcio Costa; de Oliveira, Stefan Vilges; Reis, Priscilleyne Ouverney; de Lacerda Sousa, Ana Carolina; Silva, Rafaella Albuquerque E; Obara, Marcos Takashi; Bezerra, Cláudia Mendonça; da Costa, Veruska Maia; Alves, Renato Vieira; Gurgel-Gonçalves, Rodrigo
2014-09-01
Despite the dramatic reduction in Trypanosoma cruzi vectorial transmission in Brazil, acute cases of Chagas disease (CD) continue to be recorded. The identification of areas with greater vulnerability to the occurrence of vector-borne CD is essential to prevention, control, and surveillance activities. In the current study, data on the occurrence of domiciliated triatomines in Brazil (non-Amazonian regions) between 2007 and 2011 were analyzed. Municipalities' vulnerability was assessed based on socioeconomic, demographic, entomological, and environmental indicators using multi-criteria decision analysis (MCDA). Overall, 2275 municipalities were positive for at least one of the six triatomine species analyzed (Panstrongylus megistus, Triatoma infestans, Triatoma brasiliensis, Triatoma pseudomaculata, Triatoma rubrovaria, and Triatoma sordida). The municipalities that were most vulnerable to vector-borne CD were mainly in the northeast region and exhibited a higher occurrence of domiciliated triatomines, lower socioeconomic levels, and more extensive anthropized areas. Most of the 39 new vector-borne CD cases confirmed between 2001 and 2012 in non-Amazonian regions occurred within the more vulnerable municipalities. Thus, MCDA can help to identify the states and municipalities that are most vulnerable to the transmission of T. cruzi by domiciliated triatomines, which is critical for directing adequate surveillance, prevention, and control activities. The methodological approach and results presented here can be used to enhance CD surveillance in Brazil. Copyright © 2014 Elsevier B.V. All rights reserved.
Mapping the groundwater vulnerability for pollution at the pan African scale.
Ouedraogo, Issoufou; Defourny, Pierre; Vanclooster, Marnik
2016-02-15
We estimated vulnerability and pollution risk of groundwater at the pan-African scale. We therefore compiled the most recent continental scale information on soil, land use, geology, hydrogeology and climate in a Geographical Information System (GIS) at a resolution of 15 km × 15 km and at the scale of 1:60,000,000. The groundwater vulnerability map was constructed by means of the DRASTIC method. The map reveals that groundwater is highly vulnerable in Central and West Africa, where the watertable is very low. In addition, very low vulnerability is found in the large sedimentary basins of the African deserts where groundwater is situated in very deep aquifers. The groundwater pollution risk map is obtained by overlaying the DRASTIC vulnerability map with land use. The northern, central and western part of the African continent is dominated by high pollution risk classes and this is very strongly related to shallow groundwater systems and the development of agricultural activities. Subsequently, we performed a sensitivity analysis to evaluate the relative importance of each parameter on groundwater vulnerability and pollution risk. The sensitivity analysis indicated that the removal of the impact of vadose zone, the depth of the groundwater, the hydraulic conductivity and the net recharge causes a large variation in the mapped vulnerability and pollution risk. The mapping model was validated using nitrate concentration data of groundwater as a proxy of pollution risk. Pan-African concentration data were inferred from a meta-analysis of literature data. Results shows a good match between nitrate concentration and the groundwater pollution risk classes. The pan African assessment of groundwater vulnerability and pollution risk is expected to be of particular value for water policy and for designing groundwater resources management programs. We expect, however, that this assessment can be strongly improved when better pan African monitoring data related to groundwater pollution will be integrated in the assessment methodology. Copyright © 2015 Elsevier B.V. All rights reserved.
Vulnerability of European freshwater catchments to climate change.
Markovic, Danijela; Carrizo, Savrina F; Kärcher, Oskar; Walz, Ariane; David, Jonathan N W
2017-09-01
Climate change is expected to exacerbate the current threats to freshwater ecosystems, yet multifaceted studies on the potential impacts of climate change on freshwater biodiversity at scales that inform management planning are lacking. The aim of this study was to fill this void through the development of a novel framework for assessing climate change vulnerability tailored to freshwater ecosystems. The three dimensions of climate change vulnerability are as follows: (i) exposure to climate change, (ii) sensitivity to altered environmental conditions and (iii) resilience potential. Our vulnerability framework includes 1685 freshwater species of plants, fishes, molluscs, odonates, amphibians, crayfish and turtles alongside key features within and between catchments, such as topography and connectivity. Several methodologies were used to combine these dimensions across a variety of future climate change models and scenarios. The resulting indices were overlaid to assess the vulnerability of European freshwater ecosystems at the catchment scale (18 783 catchments). The Balkan Lakes Ohrid and Prespa and Mediterranean islands emerge as most vulnerable to climate change. For the 2030s, we showed a consensus among the applied methods whereby up to 573 lake and river catchments are highly vulnerable to climate change. The anthropogenic disruption of hydrological habitat connectivity by dams is the major factor reducing climate change resilience. A gap analysis demonstrated that the current European protected area network covers <25% of the most vulnerable catchments. Practical steps need to be taken to ensure the persistence of freshwater biodiversity under climate change. Priority should be placed on enhancing stakeholder cooperation at the major basin scale towards preventing further degradation of freshwater ecosystems and maintaining connectivity among catchments. The catchments identified as most vulnerable to climate change provide preliminary targets for development of climate change conservation management and mitigation strategies. © 2017 John Wiley & Sons Ltd.
Developing a Methodology to Assess Children's Perceptions of the Tropical Environment
ERIC Educational Resources Information Center
Sorin, Reesa; Gordon, Iain J.
2013-01-01
Australia holds some of the most unique, diverse and vulnerable ecosystems in the world, ranging from marine, coral reefs, to the arid and semi-arid outback, to tropical rainforests. Young children's perceptions of, and attitudes to their environment carry with them into adulthood, determining their capacity to learn about and interact with their…
Seaside, Oregon, Tsunami Vulnerability Assessment Pilot Study
NASA Astrophysics Data System (ADS)
Dunbar, P. K.; Dominey-Howes, D.; Varner, J.
2006-12-01
The results of a pilot study to assess the risk from tsunamis for the Seaside-Gearhart, Oregon region will be presented. To determine the risk from tsunamis, it is first necessary to establish the hazard or probability that a tsunami of a particular magnitude will occur within a certain period of time. Tsunami inundation maps that provide 100-year and 500-year probabilistic tsunami wave height contours for the Seaside-Gearhart, Oregon, region were developed as part of an interagency Tsunami Pilot Study(1). These maps provided the probability of the tsunami hazard. The next step in determining risk is to determine the vulnerability or degree of loss resulting from the occurrence of tsunamis due to exposure and fragility. The tsunami vulnerability assessment methodology used in this study was developed by M. Papathoma and others(2). This model incorporates multiple factors (e.g. parameters related to the natural and built environments and socio-demographics) that contribute to tsunami vulnerability. Data provided with FEMA's HAZUS loss estimation software and Clatsop County, Oregon, tax assessment data were used as input to the model. The results, presented within a geographic information system, reveal the percentage of buildings in need of reinforcement and the population density in different inundation depth zones. These results can be used for tsunami mitigation, local planning, and for determining post-tsunami disaster response by emergency services. (1)Tsunami Pilot Study Working Group, Seaside, Oregon Tsunami Pilot Study--Modernization of FEMA Flood Hazard Maps, Joint NOAA/USGS/FEMA Special Report, U.S. National Oceanic and Atmospheric Administration, U.S. Geological Survey, U.S. Federal Emergency Management Agency, 2006, Final Draft. (2)Papathoma, M., D. Dominey-Howes, D.,Y. Zong, D. Smith, Assessing Tsunami Vulnerability, an example from Herakleio, Crete, Natural Hazards and Earth System Sciences, Vol. 3, 2003, p. 377-389.
The physical vulnerability of elements at risk: a methodology based on fluid and classical mechanics
NASA Astrophysics Data System (ADS)
Mazzorana, B.; Fuchs, S.; Levaggi, L.
2012-04-01
The impacts of the flood events occurred in autumn 2011 in the Italian regions Liguria and Tuscany revived the engagement of the public decision makers to enhance in synergy flood control and land use planning. In this context, the design of efficient flood risk mitigation strategies and their subsequent implementation critically relies on a careful vulnerability analysis of both, the immobile and mobile elements at risk potentially exposed to flood hazards. Based on fluid and classical mechanics notions we developed computation schemes enabling for a dynamic vulnerability and risk analysis facing a broad typological variety of elements at risk. The methodological skeleton consists of (1) hydrodynamic computation of the time-varying flood intensities resulting for each element at risk in a succession of loading configurations; (2) modelling the mechanical response of the impacted elements through static, elasto-static and dynamic analyses; (3) characterising the mechanical response through proper structural damage variables and (4) economic valuation of the expected losses as a function of the quantified damage variables. From a computational perspective we coupled the description of the hydrodynamic flow behaviour and the induced structural modifications of the elements at risk exposed. Valuation methods, suitable to support a correct mapping from the value domains of the physical damage variables to the economic loss values are discussed. In such a way we target to complement from a methodological perspective the existing, mainly empirical, vulnerability and risk assessment approaches to refine the conceptual framework of the cost-benefit analysis. Moreover, we aim to support the design of effective flood risk mitigation strategies by diminishing the main criticalities within the systems prone to flood risk.
NASA Astrophysics Data System (ADS)
González, F. I.; Leveque, R. J.; Hatheway, D.; Metzger, N.
2011-12-01
Risk is defined in many ways, but most are consistent with Crichton's [1999] definition based on the ''risk triangle'' concept and the explicit identification of three risk elements: ''Risk is the probability of a loss, and this depends on three elements: hazard, vulnerability, and exposure. If any of these three elements in risk increases or decreases, then the risk increases or decreases respectively." The World Meteorological Organization, for example, cites Crichton [1999] and then defines risk as [WMO, 2008] Risk = function (Hazard x Vulnerability x Exposure) while the Asian Disaster Reduction Center adopts the more general expression [ADRC, 2005] Risk = function (Hazard, Vulnerability, Exposure) In practice, probabilistic concepts are invariably invoked, and at least one of the three factors are specified as probabilistic in nature. The Vulnerability and Exposure factors are defined in multiple ways in the relevant literature; but the Hazard factor, which is the focus of our presentation, is generally understood to deal only with the physical aspects of the phenomena and, in particular, the ability of the phenomena to inflict harm [Thywissen, 2006]. A Hazard factor can be estimated by a methodology known as Probabilistic Tsunami Hazard Assessment (PTHA) [González, et al., 2009]. We will describe the PTHA methodology and provide an example -- the results of a previous application to Seaside, OR. We will also present preliminary results for a PTHA of Crescent City, CA -- a pilot project and coastal modeling/mapping effort funded by the Federal Emergency Management Agency (FEMA) Region IX office as part of the new California Coastal Analysis and Mapping Project (CCAMP). CCAMP and the PTHA in Crescent City are being conducted under the nationwide FEMA Risk Mapping, Assessment, and Planning (Risk MAP) Program which focuses on providing communities with flood information and tools they can use to enhance their mitigation plans and better protect their citizens.
NASA Astrophysics Data System (ADS)
Hung, Hung-Chih; Liu, Yi-Chung; Chien, Sung-Ying
2015-04-01
1. Background Major portions of areas in Asia are expected to increase exposure and vulnerability to climate change and weather extremes due to rapid urbanization and overdevelopment in hazard-prone areas. To prepare and confront the potential impacts of climate change and related hazard risk, many countries have implemented programs of integrated river basin management. This has led to an impending challenge for the police-makers in many developing countries to build effective mechanism to assess how the vulnerability distributes over river basins, and to understand how the local vulnerability links to climatic (climate-related) hazard damages and risks. However, the related studies have received relatively little attention. This study aims to examine whether geographic localities characterized by high vulnerability experience significantly more damages owing to onset weather extreme events at the river basin level, and to explain what vulnerability factors influence these damages or losses. 2. Methods and data An indicator-based assessment framework is constructed with the goal of identifying composite indicators (including exposure, biophysical, socioeconomic, land-use and adaptive capacity factors) that could serve as proxies for attributes of local vulnerability. This framework is applied by combining geographical information system (GIS) techniques with multicriteria decision analysis (MCDA) to evaluate and map integrated vulnerability to climatic hazards across river basins. Furthermore, to explain the relationship between vulnerability factors and disaster damages, we develop a disaster damage model (DDM) based on existing disaster impact theory. We then synthesize a Zero-Inflated Poisson regression model with a Tobit regression analysis to identify and examine how the disaster impacts and vulnerability factors connect to typhoon disaster damages and losses. To illustrate the proposed methodology, the study collects data on the vulnerability attributes of the Kaoping, Tsengwen, and Taimali River basins in southern Taiwan, and on the disaster impacts and damages in these river basins due to Typhoon Morakot in 2009. The data was offered by the National Science and Technology Center for Disaster Reduction, Taiwan, as well as collected from the National Land Use Investigation, official census statistics and questionnaire surveys. 3. Results We use an MCDA to create a composite vulnerability index, and this index is incorporated into a GIS analysis to demonstrate the results of integrated vulnerability assessment throughout the river basins. Results of the vulnerability assessment indicate that the most vulnerable areas are almost all situated in the regions of middle and upper reaches of the river basins. Through the examining of DDM, it shows that the vulnerability factors play a critical role in determining disaster damages. Findings also present that the losses and casualties caused by Typhoon Morakot increase with elevation, urban and agricultural developments, proximity to rivers, and decrease with levels of income and adaptive capacity. Finally, we propose the adaptive options for minimizing vulnerability and risk, as well as for integrated river basin governance.
Socio-economic vulnerability to natural hazards - proposal for an indicator-based model
NASA Astrophysics Data System (ADS)
Eidsvig, U.; McLean, A.; Vangelsten, B. V.; Kalsnes, B.; Ciurean, R. L.; Argyroudis, S.; Winter, M.; Corominas, J.; Mavrouli, O. C.; Fotopoulou, S.; Pitilakis, K.; Baills, A.; Malet, J. P.
2012-04-01
Vulnerability assessment, with respect to natural hazards, is a complex process that must consider multiple dimensions of vulnerability, including both physical and social factors. Physical vulnerability refers to conditions of physical assets, and may be modeled by the intensity and magnitude of the hazard, the degree of physical protection provided by the natural and built environment, and the physical robustness of the exposed elements. Social vulnerability refers to the underlying factors leading to the inability of people, organizations, and societies to withstand impacts from the natural hazards. Social vulnerability models can be used in combination with physical vulnerability models to estimate both direct losses, i.e. losses that occur during and immediately after the impact, as well as indirect losses, i.e. long-term effects of the event. Direct impact of a landslide typically includes casualties and damages to buildings and infrastructure while indirect losses may e.g. include business closures or limitations in public services. The direct losses are often assessed using physical vulnerability indicators (e.g. construction material, height of buildings), while indirect losses are mainly assessed using social indicators (e.g. economical resources, demographic conditions). Within the EC-FP7 SafeLand research project, an indicator-based method was proposed to assess relative socio-economic vulnerability to landslides. The indicators represent the underlying factors which influence a community's ability to prepare for, deal with, and recover from the damage associated with landslides. The proposed model includes indicators representing demographic, economic and social characteristics as well as indicators representing the degree of preparedness and recovery capacity. Although the model focuses primarily on the indirect losses, it could easily be extended to include more physical indicators which account for the direct losses. Each indicator is individually ranked from 1 (lowest vulnerability) to 5 (highest vulnerability) and weighted, based on its overall degree of influence. The indicator weights range from 1 (least influential) to 3 (most influential) and have been selected on the basis of expert judgment. The final vulnerability score is taken as the weighted average of the individual indicators. The method was applied for locations in Norway, Greece, France, Andorra and Romania. The purpose of the case studies was to compare vulnerability levels and to test and possibly improve the methodology. In the case studies, similar vulnerability scores were obtained for the locations in Norway, Andorra and France. A higher vulnerability score was obtained for the location in Greece, while the highest vulnerability score was obtained for the location in Romania. The higher score for the locations in Greece and Romania are mainly due to economic conditions and conditions regarding preparedness and recovery.
NASA Astrophysics Data System (ADS)
Ronco, P.; Gallina, V.; Torresan, S.; Zabeo, A.; Semenzin, E.; Critto, A.; Marcomini, A.
2014-07-01
In recent years, the frequency of catastrophes induced by natural hazard has increased and flood events in particular have been recognized as one of the most threatening water-related disasters. Severe floods have occurred in Europe over the last decade causing loss of life, displacement of people and heavy economic losses. Flood disasters are growing as a consequence of many factors, both climatic and non-climatic. Indeed, the current increase of water-related disasters can be mainly attributed to the increase of exposure (increase elements potentially at risk in floodplains area) and vulnerability (i.e. economic, social, geographic, cultural, and physical/environmental characteristics of the exposure). Besides these factors, the strong effect of climate change is projected to radically modify the usual pattern of the hydrological cycle by intensifying the frequency and severity of flood events both at local, regional and global scale. Within this context, it becomes urgent and dramatically relevant the need of promoting and developing effective and pro-active strategies, tools and actions which allow to assess and (possibly) to reduce the flood risks that threats different relevant receptors. Several methodologies to assess the risk posed by water-related natural hazards have been proposed so far, but very few of them can be adopted to implement the last European Flood Directive (FD). The present study is intended to introduce and present a state-of-the-art Regional Risk Assessment (RRA) methodology to evaluate the benefits of risk prevention in terms of reduced environmental risks due to floods. The methodology, developed within the recently phased out FP7-KULTURisk Project (Knowledge-based approach to develop a cULTUre of Risk prevention - KR) is flexible and can be adapted to different case studies (i.e. large rivers, alpine/mountain catchments, urban areas and coastal areas) and spatial scales (i.e. from the large river to the urban scale). The FD compliant KR-RRA methodology is based on the concept of risk being function of hazard, exposure and vulnerability. It integrates the outputs of various hydrodynamics models (hazard) with sito-specific bio-geophysical and socio-economic indicators (e.g. slope, land cover, population density, economic activities) to develop tailored risk indexes and GIS-based maps for each of the selected targets (i.e. people, buildings, infrastructures, agriculture, natural and semi-natural systems, cultural heritages) in the considered region, by comparing the baseline scenario with alternative scenarios, where different structural and/or non-structural mitigation measures are planned. As demonstrated in the companion paper (Part 2, Ronco et al., 2014), risk maps, along with related statistics, allow to identify and prioritize relative hotspots and targets which are more likely to be affected by flood and support the development of relevant and strategic adaptation and prevention measures to minimizing flood impacts. Moreover, the outputs of the RRA methodology can be used for the economic evaluation of different damages (e.g. tangible costs, intangible costs) and for the social assessment considering the benefits of the human dimension of vulnerability (i.e. adaptive and coping capacity).
NASA Astrophysics Data System (ADS)
Ronco, P.; Gallina, V.; Torresan, S.; Zabeo, A.; Semenzin, E.; Critto, A.; Marcomini, A.
2014-12-01
In recent years, the frequency of catastrophes induced by natural hazards has increased, and flood events in particular have been recognized as one of the most threatening water-related disasters. Severe floods have occurred in Europe over the last decade, causing loss of life, displacement of people and heavy economic losses. Flood disasters are growing in frequency as a consequence of many factors, both climatic and non-climatic. Indeed, the current increase of water-related disasters can be mainly attributed to the increase of exposure (elements potentially at risk in flood-prone area) and vulnerability (i.e. economic, social, geographic, cultural and physical/environmental characteristics of the exposure). Besides these factors, the undeniable effect of climate change is projected to strongly modify the usual pattern of the hydrological cycle by intensifying the frequency and severity of flood events at the local, regional and global scale. Within this context, the need for developing effective and pro-active strategies, tools and actions which allow one to assess and (possibly) to reduce the flood risks that threatens different relevant receptors becomes urgent. Several methodologies to assess the risk posed by water-related natural hazards have been proposed so far, but very few of them can be adopted to implement the last European Flood Directive (FD). This paper is intended to introduce and present a state-of-the-art Regional Risk Assessment (RRA) methodology to appraise the risk posed by floods from a physical-environmental perspective. The methodology, developed within the recently completed FP7-KULTURisk Project (Knowledge-based approach to develop a cULTUre of Risk prevention - KR) is flexible and can be adapted to different case studies (i.e. plain rivers, mountain torrents, urban and coastal areas) and spatial scales (i.e. from catchment to the urban scale). The FD compliant KR-RRA methodology is based on the concept of risk being function of hazard, exposure and vulnerability. It integrates the outputs of various hydrodynamic models with site-specific bio-geophysical and socio-economic indicators (e.g. slope, land cover, population density, economic activities etc.) to develop tailored risk indexes and GIS-based maps for each of the selected receptors (i.e. people, buildings, infrastructure, agriculture, natural and semi-natural systems, cultural heritage) in the considered region. It further compares the baseline scenario with alternative scenarios, where different structural and/or non-structural mitigation measures are planned and eventually implemented. As demonstrated in the companion paper (Part 2, Ronco et al., 2014), risk maps, along with related statistics, allow one to identify and classify, on a relative scale, areas at risk which are more likely to be affected by floods and support the development of strategic adaptation and prevention measures to minimizing flood impacts. In addition, the outcomes of the RRA can be eventually used for a further socio-economic assessment, considering the tangible and intangible costs as well as the human dimension of vulnerability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sahoo, Satiprasad; Dhar, Anirban, E-mail: anirban.dhar@gmail.com; Kar, Amlanjyoti
Environmental management of an area describes a policy for its systematic and sustainable environmental protection. In the present study, regional environmental vulnerability assessment in Hirakud command area of Odisha, India is envisaged based on Grey Analytic Hierarchy Process method (Grey–AHP) using integrated remote sensing (RS) and geographic information system (GIS) techniques. Grey–AHP combines the advantages of classical analytic hierarchy process (AHP) and grey clustering method for accurate estimation of weight coefficients. It is a new method for environmental vulnerability assessment. Environmental vulnerability index (EVI) uses natural, environmental and human impact related factors, e.g., soil, geology, elevation, slope, rainfall, temperature, windmore » speed, normalized difference vegetation index, drainage density, crop intensity, agricultural DRASTIC value, population density and road density. EVI map has been classified into four environmental vulnerability zones (EVZs) namely: ‘low’, ‘moderate’ ‘high’, and ‘extreme’ encompassing 17.87%, 44.44%, 27.81% and 9.88% of the study area, respectively. EVI map indicates that the northern part of the study area is more vulnerable from an environmental point of view. EVI map shows close correlation with elevation. Effectiveness of the zone classification is evaluated by using grey clustering method. General effectiveness is in between “better” and “common classes”. This analysis demonstrates the potential applicability of the methodology. - Highlights: • Environmental vulnerability zone identification based on Grey Analytic Hierarchy Process (AHP) • The effectiveness evaluation by means of a grey clustering method with support from AHP • Use of grey approach eliminates the excessive dependency on the experience of experts.« less
NASA Astrophysics Data System (ADS)
Cankaya, Zeynep Ceren; Suzen, Mehmet Lutfi; Yalciner, Ahmet Cevdet; Kolat, Cagil; Zaytsev, Andrey; Aytore, Betul
2016-07-01
Istanbul is a mega city with various coastal utilities located on the northern coast of the Sea of Marmara. At Yenikapı, there are critical vulnerable coastal utilities, structures, and active metropolitan life. Fishery ports, commercial ports, small craft harbors, passenger terminals of intercity maritime transportation, waterfront commercial and/or recreational structures with residential/commercial areas and public utility areas are some examples of coastal utilization that are vulnerable to marine disasters. Therefore, the tsunami risk in the Yenikapı region is an important issue for Istanbul. In this study, a new methodology for tsunami vulnerability assessment for areas susceptible to tsunami is proposed, in which the Yenikapı region is chosen as a case study. Available datasets from the Istanbul Metropolitan Municipality and Turkish Navy are used as inputs for high-resolution GIS-based multi-criteria decision analysis (MCDA) evaluation of tsunami risk in Yenikapı. Bathymetry and topography database is used for high-resolution tsunami numerical modeling where the tsunami hazard, in terms of coastal inundation, is deterministically computed using the NAMI DANCE numerical code, considering earthquake worst case scenarios. In order to define the tsunami human vulnerability of the region, two different aspects, vulnerability at location and evacuation resilience maps were created using the analytical hierarchical process (AHP) method of MCDA. A vulnerability at location map is composed of metropolitan use, geology, elevation, and distance from shoreline layers, whereas an evacuation resilience map is formed by slope, distance within flat areas, distance to buildings, and distance to road networks layers. The tsunami risk map is then computed by the proposed new relationship which uses flow depth maps, vulnerability at location maps, and evacuation resilience maps.
Global Vulnerability Assessment in Santa María Tixmadeje, Estado de México, México
NASA Astrophysics Data System (ADS)
Monroy Salazar, S.; Novelo-Casanova, D. A.
2010-12-01
Santa María Tixmadejé (SMT), Estado de México, Mexico is a town located very close to the Acambay-Tixmadejé fault. This fault is located in the middle of the Trans Volcanic Belt in the center of the Mexican territory and generated a large seismic event in 1912 with magnitude 6.9 which combined with the local vulnerability, caused a disaster. In this work we measure the different vulnerabilities of the SMT community: structural, economical, social and educational. In addition, we determinate the total vulnerability, by summing all estimated vulnerabilities, for the critical facilities identified in this town. Vulnerability was determined using the methodology proposed by National Oceanic Atmospheric Administration (NOAA) and by Disaster Prevention National Center (CENAPRED). Besides, we considered a minimum sample statistically significant of the total houses with a random sampling for our survey. Our results indicate that 50% of the critical facilities have high and very high and the other 50% between low and moderate level of total vulnerability. The results for independent vulnerabilities are as follows: (1) Near to 75% of the community has high and very high level of social vulnerability and the range for the another 25% is between low and moderate; (2) About 43% of the community has high and very high economical vulnerability and 57% low and moderate; (3) Approximately 38% of the population has high and very high educational vulnerability. The 62% present low and moderate vulnerability; and (4) About 42% of the community has very high structural vulnerability and 58% between low and moderate.
Latin hypercube approach to estimate uncertainty in ground water vulnerability
Gurdak, J.J.; McCray, J.E.; Thyne, G.; Qi, S.L.
2007-01-01
A methodology is proposed to quantify prediction uncertainty associated with ground water vulnerability models that were developed through an approach that coupled multivariate logistic regression with a geographic information system (GIS). This method uses Latin hypercube sampling (LHS) to illustrate the propagation of input error and estimate uncertainty associated with the logistic regression predictions of ground water vulnerability. Central to the proposed method is the assumption that prediction uncertainty in ground water vulnerability models is a function of input error propagation from uncertainty in the estimated logistic regression model coefficients (model error) and the values of explanatory variables represented in the GIS (data error). Input probability distributions that represent both model and data error sources of uncertainty were simultaneously sampled using a Latin hypercube approach with logistic regression calculations of probability of elevated nonpoint source contaminants in ground water. The resulting probability distribution represents the prediction intervals and associated uncertainty of the ground water vulnerability predictions. The method is illustrated through a ground water vulnerability assessment of the High Plains regional aquifer. Results of the LHS simulations reveal significant prediction uncertainties that vary spatially across the regional aquifer. Additionally, the proposed method enables a spatial deconstruction of the prediction uncertainty that can lead to improved prediction of ground water vulnerability. ?? 2007 National Ground Water Association.
Comparison of empirical and numerical methods for the assessment of coastal vulnerability to erosion
NASA Astrophysics Data System (ADS)
Kokkinos, Dimitris; Prinos, Panagiotis
2017-04-01
Assessing the vulnerability to erosion is an important step in order to identify the prone areas and propose an adaptation policy to climate change in coastal areas. In this paper two coastal areas at the Northern part of the Aegean Sea are selected to examine their vulnerability to erosion. The first case is Lesbos Island where the most common feature is pocket beaches and the second one is the coast of Thrace composed by long sandy beaches. In both case studies, the same simplified methodology proposed by Mendoza and Jimenez (2009) is used, which links the vulnerability to erosion with morphodynamic parameters such as beach retreat and beach width. The key parameter for the vulnerability assessment is the beach retreat. For its calculation two different approaches are used and compared. The first approach divides the eroded volume with the eroded depth and it is based on an empirical formula, derived for the Greek seas from the CCSEAWAVS project (Kokkinos et al, 2014), which links the eroded volume with JA parameter, a beach erosion predictor proposed by Jimenez (1993). The sediment fall velocity, the beach slope and the wave characteristics are the only necessary parameters to calculate JA. The second approach is based on the results derived from the numerical model Xbeach (Roelvink et al., 2009), which is an open source, state-of the-art, two-dimensional model including the hydrodynamic processes of short and long wave transformation, wave-induced setup, overwash, inundation, as well as the morphodynamic processes of bed load and suspended sediment transport, dune face avalanching, bed update and breaching. The results indicate that the area of Thrace is very prone to erosion at the eastern and western part of the study area, while the Island of Lesbos appears to have very low vulnerability. The application of this methodology with the two different approaches aims to generate useful information about the vulnerability to erosion, to examine the reliability of the empirical approach and to support studies for an adaptation policy to climate change. References: Jiménez, J.A., Sánchez-Arcilla, A., Stive, M.J.F., (1993), "Discussion on prediction of storm/normal beach profiles" Journal of Waterway Port, Coast. & Oc. Eng., 19(4): 466-468. Kokkinos D., Prinos P., Galiatsatou G., Jimenez J.A. (2014), "Estimation of Erosion Potential and Erosion Vulnerability Indices in the study sites" CCSEAWAVS, Report-Deliverable 4.2, THALES research project (In Greek) Mendoza, E.T. and Jiménez, J.A, (2009) "Regional geomorphic vulnerability analysis to storms for Catalan beaches", P. I. Civil Eng-Mar. En., 162(3): 127-135 Roelvink D., Reniers A., Van Dongeren A., De Vries J.T., McCall R., Lescinski J. (2009), "Modelling storm impacts on beaches, dunes and barrier islands", Coast. Eng., 56: 1133-1152
NASA Astrophysics Data System (ADS)
Teferra, A.; Watson, C.; Douglas, E. M.
2016-12-01
The Metro Boston region, an area whose civic leaders have been at the forefront of climate resilience initiatives in recent years, is finalizing a flood vulnerability assessment of food distribution center sites located north of Boston, with the support of the University of Massachusetts Boston and the American Geophysical Union's Thriving Earth Exchange program. The community-scientist collaboration emerged because of the need for more local analyses of the area to inform climate resiliency policy and planning actions for the region. A significant amount of the metro region's food supply passes through two major distribution centers in the cities of Everett and Chelsea, just north of the Mystic River. The Metropolitan Area Planning Council (MAPC), on behalf of the Metro Boston Climate Preparedness Taskforce, is working with Chris Watson and Ellen Douglas of UMass Boston to build on existing analyses of the region's food system and climate vulnerabilities and to develop a report identifying flood risk exposure to the sites. The analysis brings in dynamic modeling techniques that incorporate storm surge and sea level rise projections under different climate scenarios, and aims to align methodologies with those of other regional analyses, such as Climate Ready Boston and the City of Cambridge's Vulnerability Assessment. The study is helping to inform MAPC's and the Metro Boston Climate Preparedness Taskforce's understanding of this critical food distribution infrastructure, illustrate the larger regional implications of climate impacts on food distribution in the Greater Boston area, and guide the development of site-specific strategies for addressing identified vulnerabilities.
NASA Astrophysics Data System (ADS)
Gallina, Valentina; Torressan, Silvia; Zabeo, Alex; Critto, Andrea; Glade, Thomas; Marcomini, Antonio
2015-04-01
Climate change is expected to pose a wide range of impacts on natural and human systems worldwide, increasing risks from long-term climate trends and disasters triggered by weather extremes. Accordingly, in the future, one region could be potentially affected by interactions, synergies and trade-offs of multiple hazards and impacts. A multi-risk risk approach is needed to effectively address multiple threats posed by climate change across regions and targets supporting decision-makers toward a new paradigm of multi-hazard and risk management. Relevant initiatives have been already developed for the assessment of multiple hazards and risks affecting the same area in a defined timeframe by means of quantitative and semi-quantitative approaches. Most of them are addressing the relations of different natural hazards, however, the effect of future climate change is usually not considered. In order to fill this gap, an advanced multi-risk methodology was developed at the Euro-Mediterranean Centre on Climate Change (CMCC) for estimating cumulative impacts related to climate change at the regional (i.e. sub-national) scale. This methodology was implemented into an assessment tool which allows to scan and classify quickly natural systems and human assets at risk resulting from different interacting hazards. A multi-hazard index is proposed to evaluate the relationships of different climate-related hazards (e.g. sea-level rise, coastal erosion, storm surge) occurring in the same spatial and temporal area, by means of an influence matrix and the disjoint probability function. Future hazard scenarios provided by regional climate models are used as input for this step in order to consider possible effects of future climate change scenarios. Then, the multi-vulnerability of different exposed receptors (e.g. natural systems, beaches, agricultural and urban areas) is estimated through a variety of vulnerability indicators (e.g. vegetation cover, sediment budget, % of urbanization), tailored case by case to different sets of natural hazards and elements at risk. Finally, the multi-risk assessment integrates the multi-hazard with the multi-vulnerability index of exposed receptors, providing a relative ranking of areas and targets potentially affected by multiple risks in the considered region. The methodology was applied to the North Adriatic coast (Italy) producing a range of GIS-based multi-hazard, exposure, multi-vulnerability and multi-risk maps that can be used by policy-makers to define risk management and adaptation strategies. Results show that areas affected by higher multi-hazard scores are located close to the coastline where all the investigated hazards are present. Multi-vulnerability assumes relatively high scores in the whole case study, showing that beaches, wetlands, protected areas and river mouths are the more sensible targets. The final estimate of multi-risk for coastal municipalities provides useful information for local public authorities to set future priorities for adaptation and define future plans for shoreline and coastal management in view of climate change.
French, Megan; Alem, Natalie; Edwards, Stephen J; Blanco Coariti, Efraín; Cauthin, Helga; Hudson-Edwards, Karen A; Luyckx, Karen; Quintanilla, Jorge; Sánchez Miranda, Oscar
2017-10-01
Assessing water sources for drinking and irrigation along with community vulnerability, especially in developing and rural regions, is important for reducing risk posed by poor water quality and limited water availability and accessibility. We present a case study of rural mining-agricultural communities in the Lake Poopó Basin, one of the poorest regions on the Bolivian Altiplano. Here, relatively low rainfall, high evaporation, salinization and unregulated mining activity have contributed to environmental degradation and water issues, which is a situation facing many Altiplano communities. Social data from 72 households and chemical water quality data from 27 surface water and groundwater sites obtained between August 2013 and July 2014 were used to develop locally relevant vulnerability assessment methodologies and ratings with respect to water availability and quality, and Chemical Water Quality Hazard Ratings to assess water quality status. Levels of natural and mining-related contamination in many waters (CWQHR ≥ 6; 78% of assessed sites) mean that effective remediation would be challenging and require substantial investment. Although waters of fair to good chemical quality (CWQHR ≤ 5; 22% of assessed sites) do exist, treatment may still be required depending on use, and access issues remain problematic. There is a need to comply with water quality legislation, improve and maintain basic water supply and storage infrastructure, build and operate water and wastewater treatment plants, and adequately and safely contain and treat mine waste. This study serves as a framework that could be used elsewhere for assessing and mitigating water contamination and availability affecting vulnerable populations.
NASA Astrophysics Data System (ADS)
French, Megan; Alem, Natalie; Edwards, Stephen J.; Blanco Coariti, Efraín; Cauthin, Helga; Hudson-Edwards, Karen A.; Luyckx, Karen; Quintanilla, Jorge; Sánchez Miranda, Oscar
2017-10-01
Assessing water sources for drinking and irrigation along with community vulnerability, especially in developing and rural regions, is important for reducing risk posed by poor water quality and limited water availability and accessibility. We present a case study of rural mining-agricultural communities in the Lake Poopó Basin, one of the poorest regions on the Bolivian Altiplano. Here, relatively low rainfall, high evaporation, salinization and unregulated mining activity have contributed to environmental degradation and water issues, which is a situation facing many Altiplano communities. Social data from 72 households and chemical water quality data from 27 surface water and groundwater sites obtained between August 2013 and July 2014 were used to develop locally relevant vulnerability assessment methodologies and ratings with respect to water availability and quality, and Chemical Water Quality Hazard Ratings to assess water quality status. Levels of natural and mining-related contamination in many waters (CWQHR ≥ 6; 78% of assessed sites) mean that effective remediation would be challenging and require substantial investment. Although waters of fair to good chemical quality (CWQHR ≤ 5; 22% of assessed sites) do exist, treatment may still be required depending on use, and access issues remain problematic. There is a need to comply with water quality legislation, improve and maintain basic water supply and storage infrastructure, build and operate water and wastewater treatment plants, and adequately and safely contain and treat mine waste. This study serves as a framework that could be used elsewhere for assessing and mitigating water contamination and availability affecting vulnerable populations.
The KULTURisk Regional Risk Assessment methodology for flood risk: the case of Sihl river in Zurich
NASA Astrophysics Data System (ADS)
Ronco, Paolo; Bullo, Martina; Gallina, Valentina; Torresan, Silvia; Critto, Andrea; Zabeo, Alex; Semenzin, Elena; Buchecker, Matthias; Marcomini, Antonio
2014-05-01
In recent years, the frequency of catastrophes induced by natural hazard has increased and flood events in particular have been recognized as one of the most threatening water-related disasters. Severe floods have occurred in Europe over the last decade causing loss of life, displacement of people and heavy economic losses. Flood disasters are growing as a consequence of many factors both climatic and non-climatic. Indeed, the current increase of water-related disasters can be mainly attributed to the increase of exposure (elements potentially at risk in floodplains area) and vulnerability (i.e. economic, social, geographic, cultural, and physical/environmental characteristics of the exposure). Besides these factors, the strong effect of climate change is projected to radically modify the usual pattern of the hydrological cycle by intensifying the frequency and severity of flood events both at local, regional and global scale. Within this context, it is necessary to develop effective and pro-active strategies, tools and actions which allow to assess and (possibly) to reduce the risk of floods. In light of the recent European Flood Directive (FD), the KULTURisk-FP7 Project developed a state-of-the-art Regional Risk Assessment (RRA) methodology for assessing the risk imposed by floods events. The KULTURisk RRA methodology is based on the concept of risk being function of hazard, exposure and vulnerability. It is a flexible that can be adapted to different case studies (i.e. large rivers, alpine/mountain catchments, urban areas and coastal areas) and spatial scales (i.e. from the large river to the urban scale) that integrates the outputs of various hydrodynamics models (hazard) with sito-specific geophysical and socio-economic indicators (exposure and vulnerability factors such as land cover, slope, soil permeability, population density, economic activities, etc.). The main outputs of the methodology are GIS-based risk maps that identify and prioritize relative hot-spot areas and targets at risk (i.e. people, buildings, infrastructures, agriculture, natural and semi-natural systems, cultural heritages) in the considered region by comparing the baseline scenario with alternative scenarios, where different structural and/or non-structural mitigation measures are planned. Risk maps, along with related statistics, provide crucial information about flood risk pattern, and allow the development of relevant and strategic mitigation and prevention measures to minimizing flood risk in urban areas. The present study applied and validated the KULTURisk RRA methodology to the Sihl river case study in Zurich (Switzerland). Through a tuning process of the methodology to the site-specific context and features, flood related risks have been assessed for different receptors lying on the Sihl river valley, which represents a typical case of river flooding in urban area. The total risk maps obtained under a 300 years return period scenario (selected as the reference one) have highlighted that the area is associated with the lower class of risk. Moreover, the relative risk is higher in Zurich city centre, in the few residential areas around the city centre and within the districts that rely just beside to the Sihl river course.
Hazard Interactions and Interaction Networks (Cascades) within Multi-Hazard Methodologies
NASA Astrophysics Data System (ADS)
Gill, Joel; Malamud, Bruce D.
2016-04-01
Here we combine research and commentary to reinforce the importance of integrating hazard interactions and interaction networks (cascades) into multi-hazard methodologies. We present a synthesis of the differences between 'multi-layer single hazard' approaches and 'multi-hazard' approaches that integrate such interactions. This synthesis suggests that ignoring interactions could distort management priorities, increase vulnerability to other spatially relevant hazards or underestimate disaster risk. We proceed to present an enhanced multi-hazard framework, through the following steps: (i) describe and define three groups (natural hazards, anthropogenic processes and technological hazards/disasters) as relevant components of a multi-hazard environment; (ii) outline three types of interaction relationship (triggering, increased probability, and catalysis/impedance); and (iii) assess the importance of networks of interactions (cascades) through case-study examples (based on literature, field observations and semi-structured interviews). We further propose visualisation frameworks to represent these networks of interactions. Our approach reinforces the importance of integrating interactions between natural hazards, anthropogenic processes and technological hazards/disasters into enhanced multi-hazard methodologies. Multi-hazard approaches support the holistic assessment of hazard potential, and consequently disaster risk. We conclude by describing three ways by which understanding networks of interactions contributes to the theoretical and practical understanding of hazards, disaster risk reduction and Earth system management. Understanding interactions and interaction networks helps us to better (i) model the observed reality of disaster events, (ii) constrain potential changes in physical and social vulnerability between successive hazards, and (iii) prioritise resource allocation for mitigation and disaster risk reduction.
Application and Validation of Concept Maturity Assessment Framework
2011-03-01
process. The following chapter will discuss a proposed methodology for validation of the concept maturity framwork and its Concept Evaluation and...of each contractor‟s conceptual solution and any gaps in information that may have been overlooked. The organization also commented that the... conceptual and does not have a specific system tied to it is often vulnerable to losing interest and potentially funding from decision makers. However
NASA Astrophysics Data System (ADS)
Ahmed, Ammar; Arthur, Craig; Edwards, Mark
2010-06-01
Bulk electricity transmission lines are linear assets that can be very exposed to wind effects, particularly where they traverse steep topography or open coastal terrain in cyclonic regions. Interconnected nature of the lattice type towers and conductors also, present complex vulnerabilities. These relate to the direction of wind attack to the conductors and the cascading failure mechanisms in which the failure of a single tower has cascading effects on neighbouring towers. Such behaviour is exacerbated by the finely tuned nature of tower design which serves to minimize cost and reserve strength at design wind speeds. There is a clear need to better quantify the interdependent vulnerabilities of these critical infrastructure assets in the context of the severe wind hazard. This paper presents a novel methodology developed for the Critical Infrastructure Protection Modelling and Analysis (CIPMA) capability for assessing local wind speeds and the likelihood of tower failure for a range of transmission tower and conductor types. CIPMA is a program managed by the Federal Attorney-General's Department and Geoscience Australia is leading the technical development. The methodology then involves the development of heuristically derived vulnerability models that are consistent with Australian industry experience and full-scale static tower testing results, considering isolated tower loss along with three interdependent failure mechanisms to give overall likelihoods of failure.
Semeraro, Teodoro; Mastroleo, Giovanni; Aretano, Roberta; Facchinetti, Gisella; Zurlini, Giovanni; Petrosillo, Irene
2016-03-01
A significant threat to the natural and cultural heritage of Mediterranean natural protected areas (NPAs) is related to uncontrolled fires that can cause potential damages related to the loss or a reduction of ecosystems. The assessment and mapping of the vulnerability to fire can be useful to reduce landscape damages and to establish priority areas where it is necessary to plan measures to reduce the fire vulnerability. To this aim, a methodology based on an interactive computer-based system has been proposed in order to support NPA's management authority for the identification of vulnerable hotspots to fire through the selection of suitable indicators that allow discriminating different levels of sensitivity (e.g. Habitat relevance, Fragmentation, Fire behavior, Ecosystem Services, Vegetation recovery after fire) and stresses (agriculture, tourism, urbanization). In particular, a multi-criteria analysis based on Fuzzy Expert System (FES) integrated in a GIS environment has been developed in order to identify and map potential "hotspots" of fire vulnerability, where fire protection measures can be undertaken in advance. In order to test the effectiveness of this approach, this approach has been applied to the NPA of Torre Guaceto (Apulia Region, southern Italy). The most fire vulnerable areas are the patch of century-old forest characterized by high sensitivity and stress, and the wetlands and century-old olive groves due to their high sensitivity. The GIS fuzzy expert system provides evidence of its potential usefulness for the effective management of natural protected areas and can help conservation managers to plan and intervene in order to mitigate the fire vulnerability in accordance with conservation goals. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toro, Javier, E-mail: jjtoroca@unal.edu.co; Requena, Ignacio, E-mail: requena@decsai.ugr.es; Duarte, Oscar, E-mail: ogduartev@unal.edu.co
In environmental impact assessment, qualitative methods are used because they are versatile and easy to apply. This methodology is based on the evaluation of the strength of the impact by grading a series of qualitative attributes that can be manipulated by the evaluator. The results thus obtained are not objective, and all too often impacts are eliminated that should be mitigated with corrective measures. However, qualitative methodology can be improved if the calculation of Impact Importance is based on the characteristics of environmental factors and project activities instead on indicators assessed by evaluators. In this sense, this paper proposes themore » inclusion of the vulnerability of environmental factors and the potential environmental impact of project activities. For this purpose, the study described in this paper defined Total Impact Importance and specified a quantification procedure. The results obtained in the case study of oil drilling in Colombia reflect greater objectivity in the evaluation of impacts as well as a positive correlation between impact values, the environmental characteristics at and near the project location, and the technical characteristics of project activities. -- Highlights: • Concept of vulnerability has been used to calculate the importance impact assessment. • This paper defined Total Impact Importance and specified a quantification procedure. • The method includes the characteristics of environmental and project activities. • The application has shown greater objectivity in the evaluation of impacts. • Better correlation between impact values, environment and the project has been shown.« less
NASA Astrophysics Data System (ADS)
Lucena-Frédou, Flávia; Kell, Laurie; Frédou, Thierry; Gaertner, Daniel; Potier, Michel; Bach, Pascal; Travassos, Paulo; Hazin, Fábio; Ménard, Frédéric
2017-06-01
Productivity and Susceptibility Analysis (PSA) is a methodology for evaluating the vulnerability of a stock based on its biological productivity and susceptibility to fishing. In this study, we evaluated the vulnerability of 60 stocks of tuna, billfishes and other teleosts caught by the tuna longline fleets operating in the South Atlantic and Indian Ocean using a semi-quantitative PSA. We (a) evaluated the vulnerability of the species in the study areas; (b) compared the vulnerability of target and non-target species and oceans; (c) analyzed the sensitivity of data entry; and (d) compared the results of the PSA to other fully quantitative assessment methods. Istiophoridae exhibited the highest scores for vulnerability. The top 10 species at risk were: Atlantic Istiophorus albicans; Indian Ocean Istiompax indica; Atlantic Makaira nigricans and Thunnus alalunga; Indian Ocean Xiphias gladius; Atlantic T. albacares, Gempylus serpens, Ranzania laevis and X. gladius; and Indian Ocean T. alalunga. All species considered at high risk were targeted or were commercialized bycatch, except for the Atlantic G. serpens and R. laevis which were discarded, and may be considered as a false positive. Those species and others at high risk should be prioritized for further assessment and/or data collection. Most species at moderate risk were bycatch species kept for sale. Conversely, species classified at low risk were mostly discarded. Overall, species at high risk were overfished and/or subjected to overfishing. Moreover, all species considered to be within extinction risk (Critically Endangered, Endangered and Vulnerable) were in the high-risk category. The good concordance between approaches corroborates the results of our analysis. PSA is not a replacement for traditional stock assessments, where a stock is assessed at regular intervals to provide management advice. It is of importance, however, where there is uncertainty about catches and life history parameters, since it can identify species at risk, and where management action and data collection is required, e.g. for many species at high and most at moderate risk in the South Atlantic and Indian oceans.
Carayon, Pascale; Li, Yaqiong; Kelly, Michelle M.; DuBenske, Lori L.; Xie, Anping; McCabe, Brenna; Orne, Jason; Cox, Elizabeth D.
2014-01-01
Human factors and ergonomics methods are needed to redesign healthcare processes and support patient-centered care, in particular for vulnerable patients such as hospitalized children. We implemented and evaluated a stimulated recall methodology for collective confrontation in the context of family-centered rounds. Five parents and five healthcare team members reviewed video records of their bedside rounds, and were then interviewed using the stimulated recall methodology to identify work system barriers and facilitators in family-centered rounds. The evaluation of the methodology was based on a survey of the participants, and a qualitative analysis of interview data in light of the work system model of Smith and Carayon (1989; 2000). Positive survey feedback from the participants was received. The stimulated recall methodology identified barriers and facilitators in all work system elements. Participatory ergonomics methods such as the stimulated recall methodology allow a range of participants, including parents and children, to participate in healthcare process improvement. PMID:24894378
A risk assessment framework for irrigated agriculture under climate change
NASA Astrophysics Data System (ADS)
Ronco, P.; Zennaro, F.; Torresan, S.; Critto, A.; Santini, M.; Trabucco, A.; Zollo, A. L.; Galluccio, G.; Marcomini, A.
2017-12-01
In several regions, but especially in semi-arid areas, raising frequency, duration and intensity of drought events, mainly driven by climate change dynamics, are expected to dramatically reduce the current stocks of freshwater resources, limiting crop development and yield especially where agriculture largely depends on irrigation. The achievement of an affordable and sustainable equilibrium between available water resources and irrigation demand is essentially related to the planning and implementation of evidence-based adaptation strategies and actions. The present study proposed a state-of-the art conceptual framework and computational methodology to assess the potential water scarcity risk, due to changes in climate trends and variability, on irrigated croplands. The model has been tested over the irrigated agriculture of Puglia Region, a semi-arid territory with the largest agricultural production in Southern Italy. The methodology, based on the Regional Risk Assessment (RRA) approach, has been applied within a scenario-based hazard framework. Regional climate projections, under alternative greenhouse gas concentration scenarios (RCP4.5 and RCP8.5) and for two different timeframes, 2021-2050 and 2041-2070 compared to the baseline 1976-2005 period, have been used to drive hydrological simulations of river inflow to the most important reservoirs serving irrigation purposes in Puglia. The novelty of the proposed RRA-based approach does not simply rely on the concept of risk as combination of hazard, exposure and vulnerability, but rather elaborates detailed (scientific and conceptual) framing and computational description of these factors, to produce risk spatial pattern maps and related statistics distinguishing the most critical areas (risk hot spots).. The application supported the identification of the most affected areas (i.e. Capitanata Reclamation Consortia under RCP8.5 2041-2070 scenario), crops (fruit trees and vineyards), and, finally, the vulnerability pattern of irrigation systems and networks. The implemented assessment singled out future perspectives of water scarcity risk levels for irrigated agriculture by the administrative extent where individual bodies are in charge of the coordination of public and private irrigation activities (i.e. Reclamation Consortia). Based on the outcomes of the proposed methodology, tailored and knowledge-based adaptation strategies and related actions can be developed, to reduce the risk at both agronomic level (i.e. preferring crops with low vulnerability score, as olive groves) and at structural level (i.e. differentiating the water stocks and supplies and reducing losses and inefficiencies).
Multi -risk assessment at a national level in Georgia
NASA Astrophysics Data System (ADS)
Tsereteli, Nino; Varazanashvili, Otar; Amiranashvili, Avtandil; Tsereteli, Emili; Elizbarashvili, Elizbar; Saluqvadze, Manana; Dolodze, Jemal
2013-04-01
Work presented here was initiated by national GNSF project " Reducing natural disasters multiple risk: a positive factor for Georgia development " and two international projects: NATO SFP 983038 "Seismic hazard and Rusk assessment for Southern Caucasus-eastern Turkey Energy Corridors" and EMME " Earthquake Model for Middle east Region". Methodology for estimation of "general" vulnerability, hazards and multiple risk to natural hazards (namely, earthquakes, landslides, snow avalanches, flash floods, mudflows, drought, hurricanes, frost, hail) where developed for Georgia. The electronic detailed databases of natural disasters were created. These databases contain the parameters of hazardous phenomena that caused natural disasters. The magnitude and intensity scale of the mentioned disasters are reviewed and the new magnitude and intensity scales are suggested for disasters for which the corresponding formalization is not yet performed. The associated economic losses were evaluated and presented in monetary terms for these hazards. Based on the hazard inventory, an approach was developed that allowed for the calculation of an overall vulnerability value for each individual hazard type, using the Gross Domestic Product per unit area (applied to population) as the indicator for elements at risk exposed. The correlation between estimated economic losses, physical exposure and the magnitude for each of the six types of hazards has been investigated in detail by using multiple linear regression analysis. Economic losses for all past events and historical vulnerability were estimated. Finally, the spatial distribution of general vulnerability was assessed, and the expected maximum economic loss was calculated as well as a multi-risk map was set-up.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDonald, Douglas G.; Clements, Samuel L.; Patrick, Scott W.
Securing high value and critical assets is one of the biggest challenges facing this nation and others around the world. In modern integrated systems, there are four potential modes of attack available to an adversary: • physical only attack, • cyber only attack, • physical-enabled cyber attack, • cyber-enabled physical attack. Blended attacks involve an adversary working in one domain to reduce system effectiveness in another domain. This enables the attacker to penetrate further into the overall layered defenses. Existing vulnerability assessment (VA) processes and software tools which predict facility vulnerabilities typically evaluate the physical and cyber domains separately. Vulnerabilitiesmore » which result from the integration of cyber-physical control systems are not well characterized and are often overlooked by existing assessment approaches. In this paper, we modified modification of the timely detection methodology, used for decades in physical security VAs, to include cyber components. The Physical and Cyber Risk Analysis Tool (PACRAT) prototype illustrates an integrated vulnerability assessment that includes cyber-physical interdependencies. Information about facility layout, network topology, and emplaced safeguards is used to evaluate how well suited a facility is to detect, delay, and respond to attacks, to identify the pathways most vulnerable to attack, and to evaluate how often safeguards are compromised for a given threat or adversary type. We have tested the PACRAT prototype on critical infrastructure facilities and the results are promising. Future work includes extending the model to prescribe the recommended security improvements via an automated cost-benefit analysis.« less
NASA Astrophysics Data System (ADS)
Bird, Neil; Benabdallah, Sihem; Gouda, Nadine; Hummel, Franz; La Jeunesse, Isabelle; Meyer, Swen; Soddu, Antonino; Woess-Gallasch, Susanne
2014-05-01
A work package in the FP-7 funded CLIMB Project - Climate Induced Changes on the Hydrology of Mediterranean Basins Reducing Uncertainty and Quantifying Risk through an Integrated Monitoring and Modeling System had the goal of assessing socioeconomic vulnerability in two super-sites in future climates (2040-2070). The work package had deliverables to describe of agricultural adaptation measures appropriate to each site under future water availability scenarios and assess the risk of income losses due to water shortages in agriculture. The FAO model AQUACROP was used to estimate losses of agricultural productivity and indicate possible adaptation strategies. The presentation will focus on two interesting crops which show extreme vulnerability to expected changes in climate; irrigated lettuce in Sardinia and irrigated tomatoes in Tunisia. Modelling methodology, results and possible adaptation strategies will be presented.
Classification of aquifer vulnerability using K-means cluster analysis
NASA Astrophysics Data System (ADS)
Javadi, S.; Hashemy, S. M.; Mohammadi, K.; Howard, K. W. F.; Neshat, A.
2017-06-01
Groundwater is one of the main sources of drinking and agricultural water in arid and semi-arid regions but is becoming increasingly threatened by contamination. Vulnerability mapping has been used for many years as an effective tool for assessing the potential for aquifer pollution and the most common method of intrinsic vulnerability assessment is DRASTIC (Depth to water table, net Recharge, Aquifer media, Soil media, Topography, Impact of vadose zone and hydraulic Conductivity). An underlying problem with the DRASTIC approach relates to the subjectivity involved in selecting relative weightings for each of the DRASTIC factors and assigning rating values to ranges or media types within each factor. In this study, a clustering technique is introduced that removes some of the subjectivity associated with the indexing method. It creates a vulnerability map that does not rely on fixed weights and ratings and, thereby provides a more objective representation of the system's physical characteristics. This methodology was applied to an aquifer in Iran and compared with the standard DRASTIC approach using the water quality parameters nitrate, chloride and total dissolved solids (TDS) as surrogate indicators of aquifer vulnerability. The proposed method required only four of DRASTIC's seven factors - depth to groundwater, hydraulic conductivity, recharge value and the nature of the vadose zone, to produce a superior result. For nitrate, chloride, and TDS, respectively, the clustering approach delivered Pearson correlation coefficients that were 15, 22 and 5 percentage points higher than those obtained for the DRASTIC method.
NASA Astrophysics Data System (ADS)
Zemtsov, Stepan; Baburin, Vyacheslav; Goryachko, Mariya; Krylenko, Inna; Yumina, Natalya
2013-04-01
In 2012, an integrated damage from floods in Russia was about 1 billion euros, floods have caused the death of over 200 people. It is one of the most pressing scientific topics, but most of the works devoted to natural risks assessment. The main purpose of this work is to estimate the influence of dangerous hydrological phenomena (e.g. floods, underflooding and surges) on society, using vulnerability and damage assessment techniques. The objectives are to examine domestic and foreign methodologies, to integrate them and to test on specific Russian territory. Foreign training was organized at UNU-EHS (Bonn, Germany). Three different methods were used for each stage of research. The first part of the research was devoted to estimation of potential damage for population and economy of the Baltic Sea coastal zones. The authors used a model, which takes into account direct damage (loss of life, destruction of buildings, etc.) as well as indirect effects of the first, second, etc. orders (loss of profits, loss of the budget, etc.). A database, based on satellite images, maps, yearbooks of Russian Statistical Service and reports of entities, has been prepared. The database is a matrix, in which the rows are coastal zones, and the columns are given indicators: number of people in port areas (people), cost of fixed assets (million rubles), investment (million rubles.), revenue / profit (million rubles.), etc. The authors identified zones with different depth of flooding, using satellite images, and calculated the direct and indirect costs, using the methodology of EMERCOM. Maximum direct potential damage for the Baltic coast is about 15,7 billion euros, but indirect damage is more than 25,5 billion euros. The second part of research was devoted to vulnerability assessment of coastal municipalities of Krasnodar Region. A database, as a matrix of 252 parameters from 2007 to 2009 for 14 coastal municipalities, was developed. The parameters were divided into several blocks according to UNU-EHS methodology: 'exposure' and 'vulnerability', consisting of 'susceptibility', 'coping capacity' and 'adaptive capacity'. Relevant indicators for each block were selected and verified by statistical methods. The authors estimated the share of people potentially exposed to flooding with the help of geographic information system. The authors, using the technique of World Risk Index (2011), calculated sub-indices for each block, and made the maps. Areas with the highest socio-economic risks were identified on the Azov and the Black sea coast: Slavyansky, Krymsky, Krasnoarmeysky, Temryuksky and Primorsko-Akhtarsky municipal districts. On the third stage, the main purpose was to integrate and use both approaches in evaluation of socio-economic risks on micro-geographical level for different categories of the population and different industries (agriculture, utilities, etc.), using 'field' data. Field study was conducted in Slavyansky municipal district of Krasnodar region and included opinion polls, special interviews with businessmen and authorities, collection of municipal statistics and data from companies, etc. Vulnerability maps, speed evacuation maps, maps of possible locations of warning systems and maps of high insurance risks were developed. Proposals for improvement of legislation for coastal zones were prepared. The conducted research has shown the importance of both social ('vulnerability'), and economic ('damage') components of risk assessment. Using the previously discussed methods individually does not bring desired results because of deficiencies of Russian statistics. It is essential for accurate risk assessment to use an 'ensemble' of methods (statistical, field observations, etc.) on micro geographic level. The work has a practical importance for improving safety of local communities.
20th Annual Systems Engineering Conference, Thursday, Volume 4
2017-10-26
Daniel Dault, Air Force Research Lab 19809 Physics Based Modeling & Simulation For Shock and Vulnerability Assessments - Navy Enhanced Sierra...19811 Version 1.0 of the New INCOSE Competency Framework u Mr. Don Gelosh 19515 A Proposed Engineering Training Framework and Competency Methodology...nonlinearity ▪ QEV, Transient, Frequency Domain ▪ Inverse Methods Capability ▪ Coupled Physics ▪ Fluids: nemo, aero and sigma ▪ Thermal (unidirection): fuego
NASA Astrophysics Data System (ADS)
Puissant, Anne; Cioloboc, Florin; Schlosser, Arnaud; Gazo, Aurelien; Martin, Brice; Malet, Jean-Philippe
2016-04-01
Over the last decades and centuries, mountain landscapes have experiment natural and man-made landcover/use changes with mainly the development of tourism activities and the reduction of agro-pastoral activities. These transformations have directly influenced the spatial organization of mountain landscapes. To better anticipate the future exposure of the territory to natural hazards, decision-makers need retrospective analyses of the past changes. In the frame of the SAMCO project, whose objective is to propose mountain risk assessment methodologies in the context of global changes, this research presents a retrospective analysis of land cover/use changes (from 1948 to 2013) in the Vars catchment (French South Alps) submitted to several natural hazards (rockfall, landslide, and flood). Database of elements at risk has been built for five dates and evolution of vulnerability is performed through a versatile GIS-based analysis tool developed for the estimation of vulnerability indicators (physical, economical, social) at a fine scale (1:5000). Results allow identifying several areas with different trajectories of vulnerability which can be use as input data for risk analysis and define future trends.
NASA Astrophysics Data System (ADS)
Birkmann, J.; Solecki, W. D.
2016-12-01
Understanding conditions and dynamics of household vulnerability and risk is key for building community resilience. Two different methodological approaches of vulnerability, risk and resilience assessment for selected global megacities are presented to address this research issue. First, an indicator-based approach was executed to compare susceptibility, coping and adaptive capacities for Lagos, Kolkata, Lagos, London, New York, and Tokyo on a neighborhood by neighborhood scale. Second, a household survey that has been conducted in Kolkata, Lagos, and New York to explore specific features of susceptibility, risk management capacities and transformations within at risk neighborhoods. The results of both methods underscore the dynamics of vulnerability. Lessons learned for disaster risk management and urban planning are derived, particularly in terms of defining priorities for a more inclusive and resilient urban development, and transformative adaptation. The findings also provide opportunity to critically review the potential outcomes of the New Urban Agenda (outcome of UN-Habitat III). The research has been undertaken within a larger international research team in the Belmont funded project Transformation of Urban Coasts.
ERIC Educational Resources Information Center
Conley-Ware, Lakita D.
2010-01-01
This research addresses a real world cyberspace problem, where currently no cross industry standard methodology exists. The goal is to develop a model for identification and detection of vulnerabilities and threats of cyber-crime or cyber-terrorism where cyber-technology is the vehicle to commit the criminal or terrorist act (CVCT). This goal was…
Sanchez, E Y; Represa, S; Mellado, D; Balbi, K B; Acquesta, A D; Colman Lerner, J E; Porta, A A
2018-06-15
The potential impact of a technological accident can be assessed by risk estimation. Taking this into account, the latent or potential condition can be warned and mitigated. In this work we propose a methodology to estimate risk of technological hazards, focused on two components. The first one is the processing of meteorological databases to define the most probably and conservative scenario of study, and the second one, is the application of a local social vulnerability index to classify the population. In this case of study, the risk was estimated for a hypothetical release of liquefied ammonia in a meat-packing industry in the city of La Plata, Argentina. The method consists in integrating the simulated toxic threat zone with ALOHA software, and the layer of sociodemographic classification of the affected population. The results show the areas associated with higher risks of exposure to ammonia, which are worth being addressed for the prevention of disasters in the region. Advantageously, this systemic approach is methodologically flexible as it provides the possibility of being applied in various scenarios based on the available information of both, the exposed population and its meteorology. Furthermore, this methodology optimizes the processing of the input data and its calculation. Copyright © 2018 Elsevier B.V. All rights reserved.
Tsunami Hazard, Vulnerability and Risk assessment for the coast of Oman
NASA Astrophysics Data System (ADS)
Gonzalez, Mauricio; Aniel-Quiroga, Íñigo; Aguirre-Ayerbe, Ignacio; Álvarez-Gómez, José Antonio; MArtínez, Jara; Gonzalez-Riancho, Pino; Fernandez, Felipe; Medina, Raúl; Al-Yahyai, Sultan
2016-04-01
Tsunamis are relatively infrequent phenomena representing a greater threat than earthquakes, hurricanes and tornadoes, and causing the loss of thousands of human lives and extensive damage to coastal infrastructures around the world. Advances in the understanding and prediction of tsunami impacts allow the development of new methodologies in this field. This work presents the methodology that has been followed for developing the tsunami hazard, vulnerability and risk assessment for the coast of Oman, including maps containing the results of the process. Oman is located in the south eastern corner of the Arabian Peninsula and of the Arabian plate, in front of the Makran Subduction Zone (MSZ), which is the major source of earthquakes in the eastern border of the Arabian plate and Oman (Al-Shaqsi, 2012). There are at least three historical tsunamis assigned to seismic origin in the MSZ (Heidarzadeh et al., 2008; Jordan, 2008). These events show the high potential for tsunami generation of the MSZ, being one of the most tsunamigenic zones in the Indian Ocean. For the tsunami hazard assessment, worst potential cases have been selected, as well as the historical case of 1945, when an 8.1 earthquake generated a tsunami affecting the coast of Oman, and prompting 4000 casualties in the countries of the area. These scenarios have been computationally simulated in order to get tsunami hazard maps, including flooding maps. These calculations have been carried out at national and local scale, in 9 municipalities all along the coast of Oman, including the cities of Sohar, Wudam, Sawadi, Muscat, Quriyat, Sur, Masirah, Al Duqm, and Salalah. Using the hazard assessment as input, this work presents as well an integrated framework for the tsunami vulnerability and risk assessment carried out in the Sultanate of Oman. This framework considers different dimensions (human, structural) and it is developed at two different spatial resolutions, national and local scale. The national vulnerability assessment is carried out for the entire Oman coastal area comprising 30 coastal wilayats, whereas the local sensitivity assessment is performed for the 9 coastal study areas. This work also connects vulnerability-risk assessment results to site-specific and target-oriented risk reduction measures. Results identify high risk areas along the coast of Oman in which measures for risk reduction are proposed. The identification and prioritization of mitigation measures were supported by a panel of local and international experts developed during a Risk Assessment Workshop held in Oman and a handbook containing the mitigation measures at national and local scales was developed and delivered to the stakeholders. We would like to thank the Ministry of Transport and Communications of the Government of the Sultanate of Oman (MOTC), Directorate General of Meteorology and Air Navigation (DGMAN), Public Authority for Civil Aviation (PACA), for supporting and funding this project and the collaboration of the IOC-UNESCO personnel. The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 603839 (Project ASTARTE - Assessment, Strategy and Risk Reduction for Tsunamis in Europe).
Towards environmental health equity in health impact assessment: innovations and opportunities.
Buse, Chris G; Lai, Valerie; Cornish, Katie; Parkes, Margot W
2018-06-18
As global environmental change drives inequitable health outcomes, novel health equity assessment methodologies are increasingly required. We review literatures on equity-focused HIA to clarify how equity is informing HIA practice, and to surface innovations for assessing health equity in relation to a range of exposures across geographic and temporal scales. A narrative review of the health equity and HIA literatures analysed English articles published between 2003 and 2017 across PubMed, PubMed Central, Biomed Central and Ovid Medline. Title and abstract reviews of 849 search results yielded 89 articles receiving full text review. Considerations of equity in HIA increased over the last 5 years, but equity continues to be conflated with health disparities rather than their root causes (i.e. inequities). Lessons from six literatures to inform future HIA practice are described: HIA for healthy cities, climate change vulnerability assessment, cumulative health risk assessment, intersectionality-based policy analysis, corporate health impact assessment and global health impact assessment. Academic reporting on incorporating equity in HIA practice has been limited. Nonetheless, significant methodological advancements are being made to examine the health equity implications of multiple environmental exposures.
The performance of social marketing in reaching the poor and vulnerable in AIDS control programmes.
Price, N
2001-09-01
The article reviews evidence on the impact and effectiveness of condom social marketing programmes (CSMPs) in reaching the poor and vulnerable with information, services and products in the context of HIV/AIDS/STD prevention and control. Ideally, the success of CSMPs would be judged by whether they contribute to sustained improvements in sexual health outcomes at the population level. Given methodological and attribution difficulties, intermediary criteria are employed to assess effectiveness and impact, focusing on changes in behaviour (including condom use) among poor and vulnerable groups, and access by the poor and vulnerable to condoms, services and information. It remains difficult to reach definitive conclusions about the extent to which CSMPs meet the sexual health needs of the poor and vulnerable, due largely to reliance on sales data for CSMP monitoring and evaluation. CSMPs (like many health programme strategies) have traditionally collected little information on client profiles, health-seeking behaviour, condom use effectiveness, and supply-side issues. Recent data indicate that CSMPs are unlikely to be pro-poor in their early stages, in terms of the distribution of benefits, but as CSMPs mature, then inequities in access diminish, followed by reduced inequities in condom use. The paper assesses the extent to which social marketing is effective in improving access for the poor and vulnerable using a number of variables. In terms of economic access, it is evident that low-income groups are particularly sensitive to CSMP price increases, and that a cost-recovery focus excludes the poorest. Convenience is significantly improved for those who can afford to pay, and CSMPs appear to be addressing social and regulatory constraints to access. Conventional CSMP monitoring systems make it difficult to assess the effectiveness of behavioural change IEC strategies, although data on this dimension of the social marketing approach are beginning to emerge.
A Preliminary Assessment of Social Vulnerability in Ganga-Brahmaputra-Meghna Delta
NASA Astrophysics Data System (ADS)
Hazra, Sugata; Islam, Nabiul
2017-04-01
The Ganga-Brahmaputra-Meghna (GBM) Delta has a high population density and is exposed to rapid environmental changes making it one of the most stressed deltas in the world. The low-lying coastal areas of the Ganga-Brahmaputra-Meghna (GBM) Delta comprise 19 coastal districts of Bangladesh and two districts in India with significant land areas within 5 meters of sea level has a population of more than 50 million people at an average population density of 1100 people/km2. This population is exposed to a range of hazards such as severe cyclones, coastal erosion, and salinization, exacerbated by climate change and subsidence which imply severe stress on the resource dependent community of this region. This situation is further complicated by poverty and limited social well-being such as poor access to education/ health/ drinking water/ sanitation facilities, and lack of food and energy security. Thus assessing social vulnerability can help to understand which communities are susceptible to environmental change and guide adaptation actions to address these threats. This preliminary study aims to construct a socio-economic index by assessing the social vulnerability of coastal communities of GBM Delta taking consistent and common secondary data from the Census of India and the Bangladesh Bureau of Statisticsand applyinga Principle Component Analysis(PCA) methodology. Several statistical tests like Kaiser-Meyer-Olkin (KMO) have also been used to assess the appropriateness of using PCA. Among the selected common indicators, five major components are found to explain majority of the total variation of social vulnerability across the delta: (1) poverty, (2) dependency ratio, (3) agriculture dependency, (4) lack of sanitation and (5) existence of mud houses. The most important observation is the existence of a social vulnerability gradient across the coast. In other words, socially marginalised and vulnerable communities are found on the Delta margin in both India and Bangladesh. Several coastal sub-districts(Blocks in India, Upazila in Bangladesh) like Manpura, Basanti, Koyra, Teknaf, Sandeshkhali-II have maximum social vulnerability and have the potential to be adversely affected by environmental change, whereas several more inland sub-districts like Barrackpur-I, II, Panchlaish, Kotwali, Double Mooring have a comparatively low social vulnerability.This preliminary analysis of spatial variation of social vulnerability in the GBM delta suggests that a more intensive study of vulnerability and risk is required under a range of scenarios of climatic and socio-economic changes. The present study is a part of joint GBM delta study taken up by DECCMA (Deltas, Vulnerability & Climate Change: Migration & Adaptation) project as part of the Collaborative ADAPTATION Research Initiative in Africa and Asia (CARIAA), with financial support from the UK Government's Department for International Development (DFID) and the International Development Research Centre (IDRC), Canada.
2013-01-01
Background As a result of changes in climatic conditions and greater resistance to insecticides, many regions across the globe, including Colombia, have been facing a resurgence of vector-borne diseases, and dengue fever in particular. Timely information on both (1) the spatial distribution of the disease, and (2) prevailing vulnerabilities of the population are needed to adequately plan targeted preventive intervention. We propose a methodology for the spatial assessment of current socioeconomic vulnerabilities to dengue fever in Cali, a tropical urban environment of Colombia. Methods Based on a set of socioeconomic and demographic indicators derived from census data and ancillary geospatial datasets, we develop a spatial approach for both expert-based and purely statistical-based modeling of current vulnerability levels across 340 neighborhoods of the city using a Geographic Information System (GIS). The results of both approaches are comparatively evaluated by means of spatial statistics. A web-based approach is proposed to facilitate the visualization and the dissemination of the output vulnerability index to the community. Results The statistical and the expert-based modeling approach exhibit a high concordance, globally, and spatially. The expert-based approach indicates a slightly higher vulnerability mean (0.53) and vulnerability median (0.56) across all neighborhoods, compared to the purely statistical approach (mean = 0.48; median = 0.49). Both approaches reveal that high values of vulnerability tend to cluster in the eastern, north-eastern, and western part of the city. These are poor neighborhoods with high percentages of young (i.e., < 15 years) and illiterate residents, as well as a high proportion of individuals being either unemployed or doing housework. Conclusions Both modeling approaches reveal similar outputs, indicating that in the absence of local expertise, statistical approaches could be used, with caution. By decomposing identified vulnerability “hotspots” into their underlying factors, our approach provides valuable information on both (1) the location of neighborhoods, and (2) vulnerability factors that should be given priority in the context of targeted intervention strategies. The results support decision makers to allocate resources in a manner that may reduce existing susceptibilities and strengthen resilience, and thus help to reduce the burden of vector-borne diseases. PMID:23945265
Support mechanisms for oil spill accident response in costal lagoon areas (Ria de Aveiro, Portugal)
NASA Astrophysics Data System (ADS)
Oliveira, Eduardo R.; Silveira, Bruno; Alves, Fátima L.
2014-10-01
Oil spill accidents can be caused by several risk factors associated to maritime transport and port activities, which cannot always be predicted or controlled. Therefore, it is essential to support prevention and contingency plans, whose effectiveness is crucial to produce adequate responses and minimize resulting impacts. Ria de Aveiro (Portugal) is a wide coastal lagoon, within a densely populated area, representing a concentration of important biodiversity resources and several economic activities. This paper presents alternative methodologies to support the optimization of civil protection assets in the occurrence of oil spill events and the results of their application on a section area of the Aveiro Lagoon, using an established geographic information system database containing crucial data. The presented methodologies are based on the Environmental Sensitivity Index developed by the North American National Oceanic and Atmospheric Administration (USA) and the Global Vulnerability Index which were applied on the Bay of Biscay (Spain). However, during the development of this work, neither of these methodologies was considered to entirely assess the study area in its full extent, which led to the need to adapt and define a bespoke approach. The introduced changes include extra categories in shoreline classification, an adapted physical vulnerability index for coastal lagoons, differentiated aspects for highly protected status areas, qualitative assessment of socioeconomic features and an access and operability index created to support emergency operation response. The resulting maps are the subject of analysis, in which considerations regarding control and cleanup methods are introduced, together with guidelines for further integration in local risk management strategies.
Identifying typical patterns of vulnerability: A 5-step approach based on cluster analysis
NASA Astrophysics Data System (ADS)
Sietz, Diana; Lüdeke, Matthias; Kok, Marcel; Lucas, Paul; Carsten, Walther; Janssen, Peter
2013-04-01
Specific processes that shape the vulnerability of socio-ecological systems to climate, market and other stresses derive from diverse background conditions. Within the multitude of vulnerability-creating mechanisms, distinct processes recur in various regions inspiring research on typical patterns of vulnerability. The vulnerability patterns display typical combinations of the natural and socio-economic properties that shape a systems' vulnerability to particular stresses. Based on the identification of a limited number of vulnerability patterns, pattern analysis provides an efficient approach to improving our understanding of vulnerability and decision-making for vulnerability reduction. However, current pattern analyses often miss explicit descriptions of their methods and pay insufficient attention to the validity of their groupings. Therefore, the question arises as to how do we identify typical vulnerability patterns in order to enhance our understanding of a systems' vulnerability to stresses? A cluster-based pattern recognition applied at global and local levels is scrutinised with a focus on an applicable methodology and practicable insights. Taking the example of drylands, this presentation demonstrates the conditions necessary to identify typical vulnerability patterns. They are summarised in five methodological steps comprising the elicitation of relevant cause-effect hypotheses and the quantitative indication of mechanisms as well as an evaluation of robustness, a validation and a ranking of the identified patterns. Reflecting scale-dependent opportunities, a global study is able to support decision-making with insights into the up-scaling of interventions when available funds are limited. In contrast, local investigations encourage an outcome-based validation. This constitutes a crucial step in establishing the credibility of the patterns and hence their suitability for informing extension services and individual decisions. In this respect, working at the local level provides a clear advantage since, to a large extent, limitations in globally available observational data constrain such a validation on the global scale. Overall, the five steps are outlined in detail in order to facilitate and motivate the application of pattern recognition in other research studies concerned with vulnerability analysis, including future applications to different vulnerability frameworks. Such applications could promote the refinement of mechanisms in specific contexts and advance methodological adjustments. This would further increase the value of identifying typical patterns in the properties of socio-ecological systems for an improved understanding and management of the relation between these systems and particular stresses.
NASA Astrophysics Data System (ADS)
Doummar, Joanna; Kassem, Assaad
2017-04-01
In the framework of a three-year PEER (USAID/NSF) funded project, flow in a Karst system in Lebanon (Assal) dominated by snow and semi arid conditions was simulated and successfully calibrated using an integrated numerical model (MIKE-She 2016) based on high resolution input data and detailed catchment characterization. Point source infiltration and fast flow pathways were simulated by a bypass function and a high conductive lens respectively. The approach consisted of identifying all the factors used in qualitative vulnerability methods (COP, EPIK, PI, DRASTIC, GOD) applied in karst systems and to assess their influence on recharge signals in the different hydrological karst compartments (Atmosphere, Unsaturated zone and Saturated zone) based on the integrated numerical model. These parameters are usually attributed different weights according to their estimated impact on Groundwater vulnerability. The aim of this work is to quantify the importance of each of these parameters and outline parameters that are not accounted for in standard methods, but that might play a role in the vulnerability of a system. The spatial distribution of the detailed evapotranspiration, infiltration, and recharge signals from atmosphere to unsaturated zone to saturated zone was compared and contrasted among different surface settings and under varying flow conditions (e.g., in varying slopes, land cover, precipitation intensity, and soil properties as well point source infiltration). Furthermore a sensitivity analysis of individual or coupled major parameters allows quantifying their impact on recharge and indirectly on vulnerability. The preliminary analysis yields a new methodology that accounts for most of the factors influencing vulnerability while refining the weights attributed to each one of them, based on a quantitative approach.
Del Giudice, G; Padulano, R; Siciliano, D
2016-01-01
The lack of geometrical and hydraulic information about sewer networks often excludes the adoption of in-deep modeling tools to obtain prioritization strategies for funds management. The present paper describes a novel statistical procedure for defining the prioritization scheme for preventive maintenance strategies based on a small sample of failure data collected by the Sewer Office of the Municipality of Naples (IT). Novelty issues involve, among others, considering sewer parameters as continuous statistical variables and accounting for their interdependences. After a statistical analysis of maintenance interventions, the most important available factors affecting the process are selected and their mutual correlations identified. Then, after a Box-Cox transformation of the original variables, a methodology is provided for the evaluation of a vulnerability map of the sewer network by adopting a joint multivariate normal distribution with different parameter sets. The goodness-of-fit is eventually tested for each distribution by means of a multivariate plotting position. The developed methodology is expected to assist municipal engineers in identifying critical sewers, prioritizing sewer inspections in order to fulfill rehabilitation requirements.
NASA Astrophysics Data System (ADS)
Mucciarelli, M.; Contri, P.; Monachesi, G.; Calvano, G.; Gallipoli, M.
- The seismic vulnerability of existing buildings is usually estimated according to procedures based on checklists of main structural features. The relationship with damage is then assessed using experience from past events. An approach used in seismology for the evaluation of site amplification, based on horizontal-to-vertical ratio of weak motion and microtremors, has been applied to the structural field. This methodology provides an alternative, promising tool towards a quick and reliable estimate of seismic vulnerability. The advantages are:• The measurements are quick, simple and stable. They are non-invasive and do not affect at all, even temporarily, the functions housed in the buildings studied.• The site effect and the soil structure interaction are explicitly accounted for in the vulnerability estimate, when they are excluded in the traditional approaches.• The relationship with damage is established using meaningful physical parameters related to the construction technology, instead of adimensional, normalised indexes. The procedure has been applied to several case histories of buildings damaged in the recent Umbria-Marche earthquake which occurred in Italy in 1997. The same model has been applied to different structures (brick/stone masonry and infilled r.c. frames), on different geological conditions and under very different seismic loads. Using this combined site/building approach, it was possible to explain very sharp variations in the damage pattern.
Economic vulnerability of timber resources to forest fires
Francisco Rodriguez y Silva; Juan Ramon Molina; Armando Gonzalez-Caban; Miguel Angel Herrera Machuca
2012-01-01
The temporal-spatial planning of activities for a territorial fire management program requires knowing the value of forest ecosystems. In this paper we extend to and apply the economic valuation principle to the concept of economic vulnerability and present a methodology for the economic valuation of the forest production ecosystems. The forest vulnerability is...
Individual Day-to-Day Process of Social Anxiety in Vulnerable College Students
ERIC Educational Resources Information Center
Campbell, Cynthia G.; Bierman, Karen L.; Molenaar, Peter C. M.
2016-01-01
Transitions requiring the creation of new social networks may be challenging for individuals vulnerable to social anxiety, which may hinder successful adjustment. Using person-specific methodology, this study examined social anxiety in vulnerable university freshman away from home during their first semester of college to understand how day-to-day…
Rickles, Michael; Rebeiro, Peter F; Sizemore, Lindsey; Juarez, Paul; Mutter, Mitchell; Wester, Carolyn; McPheeters, Melissa
2018-05-17
Knowing which factors contribute to county-level vulnerability to a human immunodeficiency virus (HIV)/hepatitis C virus (HCV) outbreak, and which counties are most vulnerable, guides public health and clinical interventions. We therefore examined the impact of locally available indicators related to the opioid epidemic on prior national models of HIV/HCV outbreak vulnerability. Tennessee's 95 counties were the study sample. Predictors from 2012 and 2013 were used, mirroring prior methodology from the US Centers for Disease Control and Prevention (CDC). Acute HCV incidence was the proxy measure of county-level vulnerability. Seventy-eight predictors were identified as potentially predictive for HIV/HCV vulnerability. We used multiple dimension reduction techniques to determine predictors for inclusion and Poisson regression to generate a composite index score ranking county-level vulnerability for HIV/HCV. There was overlap of high-risk counties with the national analysis (25 of 41 counties). The distribution of vulnerability reinforces earlier research indicating that eastern Tennessee is at particularly high risk but also demonstrates that the entire state has high vulnerability. Prior research placed Tennessee among the top states for opioid prescribing, acute HCV infection, and greatest risk for an HIV/HCV outbreak. Given this confluence of risk, the Tennessee Department of Health expanded upon prior work to include more granular, local data, including on opioid prescribing. We also explored nonfatal and fatal overdoses. The more complete statewide view of risk generated, not only in eastern counties but also in the western corridor, will enable local officials to monitor vulnerability and better target resources.
2015-04-01
escarpments, relic sediment fans off river mouths , and submarine canyons (courtesy of the Coastal Data Information Program http://cdip.ucsd.edu...with the Source- Pathway-Receptor model. In other words , the question should specify the source of the vulnerability, the receptor that is impacted...works and other infrastructure, renewable and subsistence resources, tourism , recreation, transportation functions, cultural resources, agriculture
Full annual cycle climate change vulnerability assessment for migratory birds
Culp, Leah A.; Cohen, Emily B.; Scarpignato, Amy L.; Thogmartin, Wayne E.; Marra, Peter P.
2017-01-01
Climate change is a serious challenge faced by all plant and animal species. Climate change vulnerability assessments (CCVAs) are one method to assess risk and are increasingly used as a tool to inform management plans. Migratory animals move across regions and continents during their annual cycles where they are exposed to diverse climatic conditions. Climate change during any period and in any region of the annual cycle could influence survival, reproduction, or the cues used to optimize timing of migration. Therefore, CCVAs for migratory animals best estimate risk when they include climate exposure during the entire annual cycle. We developed a CCVA incorporating the full annual cycle and applied this method to 46 species of migratory birds breeding in the Upper Midwest and Great Lakes (UMGL) region of the United States. Our methodology included background risk, climate change exposure × climate sensitivity, adaptive capacity to climate change, and indirect effects of climate change. We compiled information about migratory connectivity between breeding and stationary non-breeding areas using literature searches and U.S. Geological Survey banding and re-encounter data. Climate change exposure (temperature and moisture) was assessed using UMGL breeding season climate and winter climate from non-breeding regions for each species. Where possible, we focused on non-breeding regions known to be linked through migratory connectivity. We ranked 10 species as highly vulnerable to climate change and two as having low vulnerability. The remaining 34 species were ranked as moderately vulnerable. In general, including non-breeding data provided more robust results that were highly individualistic by species. Two species were found to be highly vulnerable throughout their annual cycle. Projected drying will have the greatest effect during the non-breeding season for species overwintering in Mexico and the Caribbean. Projected temperature increases will have the greatest effect during the breeding season in UMGL as well as during the non-breeding season for species overwintering in South America. We provide a model for adaptive management of migratory animals in the face of projected climate change, including identification of priority species, research needs, and regions within non-breeding ranges for potential conservation partnerships.
Analysis of economic vulnerability to flash floods in urban areas of Castilla y León (Spain)
NASA Astrophysics Data System (ADS)
Aroca-Jimenez, Estefanía; Bodoque, Jose Maria; García, Juan Antonio; Diez-Herrero, Andres
2017-04-01
The growth of exposed population to floods, the expansion in allocation of economical activities to flood-prone areas and the rise of extraordinary event frequency over the last few decades, have resulted in an increase of flash flood-related casualties and economic losses. The increase in these losses at an even higher rate than the increase of magnitude and frequency of extreme events, underline that the vulnerability of societies exposed is a key aspect to be considered. Vulnerability is defined as the conditions determined by physical, social, economic and environmental factors or processes which increase the susceptibility of a community to the impact of hazards such as floods, being flash floods one of the natural hazards with the greatest capacity to generate risk. In recent years, numerous papers have deal with the assessment of the social dimension of vulnerability. However, economic factors are often a neglected aspect in traditional risk assessments which mainly focus on structural measures and flood damage models. In this context, the aim of this research is to identify those economic characteristics which render people vulnerable to flash flood hazard, and consider whether these characteristics are identifiable as local patterns at regional level. The result of this task is an Economic Vulnerability Index (EVI) based on susceptibility profiles of the population per township. These profiles are obtained by Hierarchical Segmentation and Latent Class Cluster Analysis of economic information provided by different public institutional databases. The methodology proposed here is implemented in the region of Castilla y León (94,230 km2), placed in Central-Northern Spain. Townships included in this study meet two requirements: i) urban areas are potentially affected by flash floods (i.e. villages are crossed by rivers or streams with a longitudinal slope higher than 0.01 m m-1); ii) urban areas are affected by an area with low or exceptional probability of flooding (as provided by Directive 2007/60/EC of 23 October 2007 on the assessment and management of flood risks) according with the preliminary assessment of flood risk made by water authorities.
NASA Astrophysics Data System (ADS)
Carlier, Benoit; Puissant, Anne; Dujarric, Constance
2017-04-01
Vulnerability assessment together with hazard exposure is generally accepted as the two main steps of risk analysis. If quantitative methods to estimate hazard exposure are now well-defined, it is not the case regarding vulnerability assessment. Vulnerability is a complex concept involving a variety of disciplines from physical and socio-economic sciences (i.e. engineering, economics, social and health sciences etc.). Currently, two opposite trends exist: the 'physical' approach in which vulnerability is analysed as potential impacts (i.e. structural and functional) on the elements at risk (building, network, land cover); and the 'social' approach in which vulnerability is a combination of socio-economic variables determining people's ability to anticipate before a catastrophic event, to react during it, and to recover after it. For a complete analysis of vulnerability it is essential to combine these two approaches but in reality few works exists. The objective of this research is to improve the Potential Damage Index (PDI), detailed in Puissant el al. (2013), originally developed to assess physical injury, structural and functional consequences of landslide hazard, by including socio-economic characteristics of population information. Data from the French Census data (INSEE, 2012) and a survey on risk perception (100 questionnaires obtained between 2014 and 2015/16) were used to propose an overall index taking into account the three main phases of risk management: preparedness, crisis management and recovery. This new index called Global Potential Damage Index (GPDI) is applied on the Upper Guil Catchment to assess potential torrential floods hazard in the context of the French funded project SAMCO (Society Adaptation for coping with Mountain risks in a global change Context). Results of the PDI are compared with the GPDI and show significant differences. GPDI scores mapping are lower than PDI scores indicating that resilient population may qualify results obtained for physical consequences. In GPDI the social and institutional component is expressed by a unique value applied for the overall stakes of a same community. Consequently, socio-economics differences between Upper Guil catchments communities are highlighted and make results easily understandable for local manager.
Somali Bantu refugees in southwest Idaho: assessment using participatory research.
Springer, Pamela J; Black, Mikal; Martz, Kim; Deckys, Cathy; Soelberg, Terri
2010-01-01
The Somali Bantu represent a subset of African refugees, many of whom are preliterate with no native written language. This population presents significant challenges for nurses and other healthcare providers. A community-based participatory research project using qualitative techniques to combine community and cultural assessment was conducted over 18 months. A thorough description of methodology and results are provided. The results of the assessment are discussed as well as implications for healthcare providers. The findings indicate that this is a vulnerable population, with limited resources placing them at high risk for health disparities. Further research should focus on obtaining actual health data.
Using HAZUS-MH for modelling past coastal flooding events in Japan
NASA Astrophysics Data System (ADS)
Robinson, T.; Charvet, I.; Gunasekera, R.
2012-04-01
In regions at risk from natural hazards, the ability to pre-determine the vulnerability and exposure of buildings (residential, commercial, industrial and government) from multiple hazard scenarios, allows policy makers and businesses to put forward appropriate policies, planning and intervention methods to mitigate the financial impact. For this purpose, a number of catastrophe models have been developed to provide the decision makers with quantitative risk assessments based on science and engineering knowledge. One of the most sophisticated open source models currently available is HAZUS-MH. The software is a powerful tool for analysing potential losses from floods, hurricane winds, and earthquakes. It was initially designed by FEMA to work with US datasets and has proven to be a great resource for disaster management at both national and local level in order to plan and increase the awareness of the recovery process after a natural disaster. Methodologies have been introduced to export the HAZUS-MH model for global applications. However, currently the international community have been slow to act on this technology breakthrough. The applications of this project will focus on adapting the HAZUS-HM model to provide a reliable vulnerability assessment of Japan's building stock from tsunami flooding. A review of the different methodologies will be carried out and presented as guidance on the best practice. The numerical assessment reports will be compared to real scenarios based on field observations, financial bulletins and government reports. A sensitivity analysis will be carried out on the generation of bespoke datasets based on the quality and density of the available regional data. These results will be compared against results using proxy US datasets. In addition, the significance of regional building standards and practices will be incorporated into the model through the development of new damage functions. The level of confidence and sensitivity (building stock, vulnerability functions) of the results will be used in order to quantify the ability of the tool (and user) to accurately predict building damage and financial loss.
NASA Astrophysics Data System (ADS)
Ponce-Pacheco, A. B.; Novelo-Casanova, D. A.; Espinosa-Campos, O.; Rodriguez, F.; Huerta-Parra, M.; Reyes-Pimentel, T.; Benitez-Olivares, I.
2010-12-01
On February 5, 2010, occurred a fracture on a wall of the artificial water channel called “La Compañía (CC)” in the section of the municipality of Valle de Chalco Solidaridad (VCS), Estado de Mexico, Mexico. The dimensions of this fracture were 70m length, 20m wide and 5m height, and cause severe wastewater flooding that affected surrounding communities. This area was also impacted by a similar event in 2000 and 2005. In this study, we assess the social, economic, structural, and physical vulnerability to floods, earthquakes, subsidence, and landslides hazards in the communities of El Triunfo, San Isidro and Avandaro of VCS. This area is located in soil of the old Chalco Lake, and in recent decades has experienced a large population growth. Due to urban development and the overexploitation of aquifers, the zone is also exposed to subsidence up to 40 cm per year. For these reasons, CC is at present, well above ground level. In this research, we applied the methodology developed by the National Oceanic and Atmospheric Administration (NOAA) to assess vulnerability. As a first step, we established the level of exposure of the communities to the four main hazards. We also analyzed the economic and social vulnerability of the area using data collected from a field survey. From the total family houses in the studied communities, we estimated a minimum sample statistically significant and the households from this sample were selected randomly. We defined five levels of vulnerability: very low, low, moderate, high, and very high. Our results indicate that San Isidro is the community with the highest level of structural vulnerability, as for the physical vulnerability it was found that the homes most affected by flooding are those located close to CC but we did not found a direct relationship between the physical vulnerability and structural vulnerability. The main hazard to which the zone of study is exposed is flooding because its period of recurrence is about five years. About 83% of families have a high level of economic vulnerability. Regarding the structural vulnerability, approximately 25% of the structures have high, and 39% moderate vulnerability. These results indicate that the community has a low standard for living and the resilience is very low. Considering an overall vulnerability estimated by summing the results of the four types of analyzed vulnerabilities, we found that 53% of the sampled population has moderate vulnerability, 34% low, about 2% very low, 10% high and less than 1% very high.
Construction of an integrated social vulnerability index in urban areas prone to flash flooding
NASA Astrophysics Data System (ADS)
Aroca-Jimenez, Estefania; Bodoque, Jose Maria; Garcia, Juan Antonio; Diez-Herrero, Andres
2017-09-01
Among the natural hazards, flash flooding is the leading cause of weather-related deaths. Flood risk management (FRM) in this context requires a comprehensive assessment of the social risk component. In this regard, integrated social vulnerability (ISV) can incorporate spatial distribution and contribution and the combined effect of exposure, sensitivity and resilience to total vulnerability, although these components are often disregarded. ISV is defined by the demographic and socio-economic characteristics that condition a population's capacity to cope with, resist and recover from risk and can be expressed as the integrated social vulnerability index (ISVI). This study describes a methodological approach towards constructing the ISVI in urban areas prone to flash flooding in Castilla y León (Castile and León, northern central Spain, 94 223 km2, 2 478 376 inhabitants). A hierarchical segmentation analysis (HSA) was performed prior to the principal components analysis (PCA), which helped to overcome the sample size limitation inherent in PCA. ISVI was obtained from weighting vulnerability factors based on the tolerance statistic. In addition, latent class cluster analysis (LCCA) was carried out to identify spatial patterns of vulnerability within the study area. Our results show that the ISVI has high spatial variability. Moreover, the source of vulnerability in each urban area cluster can be identified from LCCA. These findings make it possible to design tailor-made strategies for FRM, thereby increasing the efficiency of plans and policies and helping to reduce the cost of mitigation measures.
NASA Astrophysics Data System (ADS)
Guzman, Diego; Mohor, Guilherme; Câmara, Clarissa; Mendiondo, Eduardo
2017-04-01
Researches from around the world relate global environmental changes with the increase of vulnerability to extreme events, such as heavy and scarce precipitations - floods and droughts. Hydrological disasters have caused increasing losses in recent years. Thus, risk transfer mechanisms, such as insurance, are being implemented to mitigate impacts, finance the recovery of the affected population, and promote the reduction of hydrological risks. However, among the main problems in implementing these strategies, there are: First, the partial knowledge of natural and anthropogenic climate change in terms of intensity and frequency; Second, the efficient risk reduction policies require accurate risk assessment, with careful consideration of costs; Third, the uncertainty associated with numerical models and input data used. The objective of this document is to introduce and discuss the feasibility of the application of Hydrological Risk Transfer Models (HRTMs) as a strategy of adaptation to global climate change. The article shows the development of a methodology for the collective and multi-sectoral vulnerability management, facing the hydrological risk in the long term, under an insurance funds simulator. The methodology estimates the optimized premium as a function of willingness to pay (WTP) and the potential direct loss derived from hydrological risk. The proposed methodology structures the watershed insurance scheme in three analysis modules. First, the hazard module, which characterizes the hydrologic threat from the recorded series input or modelled series under IPCC / RCM's generated scenarios. Second, the vulnerability module calculates the potential economic loss for each sector1 evaluated as a function of the return period "TR". Finally, the finance module determines the value of the optimal aggregate premium by evaluating equiprobable scenarios of water vulnerability; taking into account variables such as the maximum limit of coverage, deductible, reinsurance schemes, and incentives for risk reduction. The methodology tested by members of the Integrated Nucleus of River Basins (NIBH) (University of Sao Paulo (USP) School of Engineering of São Carlos (EESC) - Brazil) presents an alternative to the analysis and planning of insurance funds, aiming to mitigate the impacts of hydrological droughts and stream flash floods. The presented procedure is especially important when information relevant to studies and the development and implementation of insurance funds are difficult to access and of complex evaluation. A sequence of academic applications has been made in Brazil under the South American context, where the market of hydrological insurance has a low penetration compared to developed economies and insurance markets more established as the United States and Europe, producing relevant information and demonstrating the potential of the methodology in development.
NASA Astrophysics Data System (ADS)
Hornborg, Sara; Svensson, Mikael; Nilsson, Per; Ziegler, Friederike
2013-11-01
Overexploitation of fish stocks causes concern not only to fisheries managers and conservation biologists, but also engages seafood consumers; more integrated product perspectives would be useful. This could be provided by life cycle assessment (LCA); however, further complements of present LCA methodology are needed to assess seafood production, one being by-catch impacts. We studied the scientific rationale behind using the IUCN Red List of Threatened Species™ for assessment of impacts relating to fish species’ vulnerability. For this purpose, the current Red List status of marine fish in Sweden was compared to the advice given in fisheries as well as key life history traits known to indicate sensitivity to high fishing pressure. Further, we quantified the amount of threatened fish (vulnerable, endangered, or critically endangered) that was discarded in demersal trawl fisheries on the Swedish west coast. The results showed that not only did the national Red List of marine fish have a high consistency with advice given in fisheries and indices of vulnerability, the different fishing practices studied were also found to have vastly different amounts of threatened fish discarded per kilo landing. The suggested approach is therefore promising as a carrier of aggregated information on the extent to which seafood production interferes with conservation priorities, in particular for species lacking adequate stock assessment. To enable extensive product comparisons, it is important to increase coverage of fish species by the global IUCN Red List, and to reconsider the appropriate assessment unit (species or stocks) in order to avoid false alarms.
Hornborg, Sara; Svensson, Mikael; Nilsson, Per; Ziegler, Friederike
2013-11-01
Overexploitation of fish stocks causes concern not only to fisheries managers and conservation biologists, but also engages seafood consumers; more integrated product perspectives would be useful. This could be provided by life cycle assessment (LCA); however, further complements of present LCA methodology are needed to assess seafood production, one being by-catch impacts. We studied the scientific rationale behind using the IUCN Red List of Threatened Species™ for assessment of impacts relating to fish species' vulnerability. For this purpose, the current Red List status of marine fish in Sweden was compared to the advice given in fisheries as well as key life history traits known to indicate sensitivity to high fishing pressure. Further, we quantified the amount of threatened fish (vulnerable, endangered, or critically endangered) that was discarded in demersal trawl fisheries on the Swedish west coast. The results showed that not only did the national Red List of marine fish have a high consistency with advice given in fisheries and indices of vulnerability, the different fishing practices studied were also found to have vastly different amounts of threatened fish discarded per kilo landing. The suggested approach is therefore promising as a carrier of aggregated information on the extent to which seafood production interferes with conservation priorities, in particular for species lacking adequate stock assessment. To enable extensive product comparisons, it is important to increase coverage of fish species by the global IUCN Red List, and to reconsider the appropriate assessment unit (species or stocks) in order to avoid false alarms.
NASA Astrophysics Data System (ADS)
Vacquie, Laure; Houet, Thomas
2016-04-01
In the last century, European mountain landscapes have experienced significant transformations. Natural and anthropogenic changes, climate changes, touristic and industrial development, socio-economic interactions, and their implications in terms of LUCC (land use and land cover changes) have directly influenced the spatial organization and vulnerability of mountain landscapes. This study is conducted as part of the SAMCO project founded by the French National Science Agency (ANR). It aims at developing a methodological approach, combining various tools, modelling platforms and methods, to identify vulnerable regions to landslide hazards accounting for futures LUCC. It presents an integrated approach combining participative scenarios and a LULC changes simulation models to assess the combined effects of LUCC and climate change on landslide risks in the Cauterets valley (French Pyrenees Mountains) up to 2100. Through vulnerability and risk mapping, the objective is to gather information to support landscape planning and implement land use strategies with local stakeholders for risk management. Four contrasting scenarios are developed and exhibit contrasting trajectories of socio-economic development. Prospective scenarios are based on national and international socio-economic contexts relying on existing assessment reports. The methodological approach integrates knowledge from local stakeholders to refine each scenario during their construction and to reinforce their plausibility and relevance by accounting for local specificities, e.g. logging and pastoral activities, touristic development, urban planning, etc. A process-based model, the Forecasting Scenarios for Mountains (ForeSceM) model, developed on the Dinamica Ego modelling platform is used to spatially allocate futures LUCC for each prospective scenario. Concurrently, a spatial decision support tool, i.e. the SYLVACCESS model, is used to identify accessible areas for forestry in scenario projecting logging activities. The method results in the development of LULC maps providing insights into a range of alternative futures using a scope of socio-economic and environmental conditions. A landslides assessment model, the ALICE model is then used as a final tool to analyze the potential impacts of simulated LUCC on landslide risks and the consequences in terms of vulnerability, e.g. changes in disaster risk allocation or characterization, degree of perturbation. This assessment intends to provide insights onto the potential future development of the valley to help identify areas at stake and to guide decision makers to help the risk management. Preliminary results show strong differences of futures land use and land cover maps that have significant influence on landslides hazards.
Seismic hazard and risk assessment for large Romanian dams situated in the Moldavian Platform
NASA Astrophysics Data System (ADS)
Moldovan, Iren-Adelina; Popescu, Emilia; Otilia Placinta, Anica; Petruta Constantin, Angela; Toma Danila, Dragos; Borleanu, Felix; Emilian Toader, Victorin; Moldoveanu, Traian
2016-04-01
Besides periodical technical inspections, the monitoring and the surveillance of dams' related structures and infrastructures, there are some more seismic specific requirements towards dams' safety. The most important one is the seismic risk assessment that can be accomplished by rating the dams into seismic risk classes using the theory of Bureau and Ballentine (2002), and Bureau (2003), taking into account the maximum expected peak ground motions at the dams site - values obtained using probabilistic hazard assessment approaches (Moldovan et al., 2008), the structures vulnerability and the downstream risk characteristics (human, economical, historic and cultural heritage, etc) in the areas that might be flooded in the case of a dam failure. Probabilistic seismic hazard (PSH), vulnerability and risk studies for dams situated in the Moldavian Platform, starting from Izvorul Muntelui Dam, down on Bistrita and following on Siret River and theirs affluent will be realized. The most vulnerable dams will be studied in detail and flooding maps will be drawn to find the most exposed downstream localities both for risk assessment studies and warnings. GIS maps that clearly indicate areas that are potentially flooded are enough for these studies, thus giving information on the number of inhabitants and goods that may be destroyed. Geospatial servers included topography is sufficient to achieve them, all other further studies are not necessary for downstream risk assessment. The results will consist of local and regional seismic information, dams specific characteristics and locations, seismic hazard maps and risk classes, for all dams sites (for more than 30 dams), inundation maps (for the most vulnerable dams from the region) and possible affected localities. The studies realized in this paper have as final goal to provide the local emergency services with warnings of a potential dam failure and ensuing flood as a result of an large earthquake occurrence, allowing further public training for evacuation. The work is supported from PNII/PCCA 2013 Project DARING 69/2014, financed by UEFISCDI, Romania. Bureau GJ (2003) "Dams and appurtenant facilities" Earthquake Engineering Handbook, CRS Press, WF Chen, and C Scawthorn (eds.), Boca Raton, pp. 26.1-26.47. Bureau GJ and Ballentine GD (2002) "A comprehensive seismic vulnerability and loss assessment of the State of Carolina using HAZUS. Part IV: Dam inventory and vulnerability assessment methodology", 7th National Conference on Earthquake Engineering, July 21-25, Boston, Earthquake Engineering Research Institute, Oakland, CA. Moldovan IA, Popescu E, Constantin A (2008), "Probabilistic seismic hazard assessment in Romania: application for crustal seismic active zones", Romanian Journal of Physics, Vol.53, Nos. 3-4
Assessment of Adolescent Neurotoxicity: Rationale and Methodological Considerations
Spear, Linda Patia
2007-01-01
This introduction to the special issue of Neurotoxicology and Teratology on “Risk of neurobehavioral toxicity in adolescence” begins by broadly considering the ontogeny and phylogeny of adolescence, and the potential value of animal models of adolescence. Major findings from the emerging neuroscience of adolescence are then highlighted to establish the importance of studies of adolescent neurotoxicity. A variety of methodological issues that are of particular relevance to adolescent exposures are then discussed. These include consideration of pharmacokinetic factors, inclusion of other-aged comparison group(s), and issues involving timing, route of administration, and exposure-induced alterations in growth rate. Despite such methodological challenges, research to determine whether adolescence is a time of increased vulnerability (or greater resiliency) to specific drugs and environmental toxicants is progressing rapidly, as exemplified by the work presented in the articles of this special issue. PMID:17222532
NASA Astrophysics Data System (ADS)
Nachtnebel, Hans-Peter; Wesemann, Johannes; Herrnegger, Mathew; Senoner, Tobias; Schulz, Karsten
2015-04-01
Climate and Land Use Change can have severe impacts on natural water resources needed for domestic, agricultural and industrial water use. In order to develop adaptation strategies, it is necessary to assess the present and future vulnerability of the water resources on the basis of water quantity, water quality and adaptive capacity indicators. Therefore a methodological framework was developed within the CC-Ware project and a detailed assessment was performed for Austria. The Water Exploitation Index (WEI) is introduced as a quantitative indicator. It is defined as the ratio between the water demand and the water availability. Water availability is assessed by a high resolution grid-based water balance model, utilizing the meteorological information from bias corrected regional climate models. The demand term can be divided into domestic, agricultural and industrial water demand and is assessed on the water supply association level. The Integrated Groundwater Pollution Load Index (GWPLI) represents an indicator for areas at risk regarding water quality, considering agricultural loads (nitrate pollution loads), potential erosion and potential risks from landfills. Except for the landfills, the information for the current situation is based on the CORINE Landcover data. Future changes were predicted utilizing the PRELUDE land use scenarios. Since vulnerability is also dependent on the adaptive capacity of a system, the Adaptive Capacity Index is introduced. The Adaptive Capacity Index thereby combines the Ecosystem Service Index (ESSI), which represents three water related ecosystem services (Water Provision, Water Quantity Regulation and Water Quality Regulation) and the regional economic capacity expressed by the gross value added. On the basis of these indices, the Overall Vulnerability of the water resources can be determined for the present and the future. For Austria the different indices were elaborated. Maps indicating areas of different levels of vulnerability were developed. A comparison with existing data (River Basin Management Plan and Groundwater Chemistry Regulation) shows a good agreement between the elaborated maps and observations for the present state. The Overall Vulnerability is very low and low for most parts of Austria, especially in the forested alpine region. Bigger cities like Vienna, Graz and Linz show medium vulnerabilities, due to the high water demand and low ecosystem services. Only in the north-eastern and south-eastern part of the country some water supply associations with high and very high overall vulnerability exist. Groundwater recharge is quite small in these regions and the water quality is limited due to intense agriculture and possible threats through landfills. The developed framework allows an evaluation of water quantity and quality vulnerabilities for large scales for the present and the future. Including ecosystem services and gross value added an overall vulnerability can be determined.
Comparison of environmental and socio-economic domains of vulnerability to flood hazards
NASA Astrophysics Data System (ADS)
Leidel, M.; Kienberger, S.; Lang, S.; Zeil, P.
2009-04-01
Socio-economic and environmental based vulnerability models have been developed within the research context of the FP6 project BRAHMATWINN. The conceptualisation of vulnerability has been defined in the project and is characterised as a function of sensitivity and adaptive capacity, where sensitivity is used to refer to systems that are susceptible to the impacts of environmental stress. Adaptive capacity is used to refer to systems or resources available to communities that could help them adapt or cope with the adverse consequences of environmental stresses in the recovery phase. In a wider context the approach reflects the wider objective and conceptualizations of the IPCC (Intergovernmental Panel on Climate Change) framework, where vulnerability is characterized as a component of overall risk. A methodology has been developed which delineates spatial units of vulnerability (VULNUS). These units share a specific common characteristic and allow the independent spatial modelling of a complex phenomena independent from administrative units and raster based approaches. An increasing detail of spatial data and complex decision problems require flexible means for scaled spatial representations, for mapping the dynamics and constant changes, and delivering the crucial information. Automated techniques of object-based image analysis (OBIA, Lang & Blaschke, 2006), capable of integrating a virtually unlimited set of spatial data sets, try to match the information extraction with our world view. To account for that, a flexible concept of manageable units is required. The term geon was proposed by Lang (2008) to describe generic spatial objects that are homogenous in terms of a varying spatial phenomena under the influence of, and partly controlled by, policy actions. The geon concept acts as a framework for the regionalization of continuous spatial information according to defined parameters of homogeneity. It is flexible in terms of a certain perception of a problem (specific policy realm, specific hazard domain, etc.). In this study, vulnerability units have been derived as a specific instance of a geon set within an area exposed to flood risk. Using geons, we are capable of transforming singular domains of information on specific systemic components to policy-relevant, conditioned information (Kienberger et al., 2008; Tiede & Lang, 2007). According to the work programme socio-economic vulnerabilities have been modelled for the Salzach catchment. A specific set of indicators has been developed with a strong stakeholder orientation. Next to that, and to allow an easier integration within the aimed development of Water Resource Response Units (WRRUs) the environmental domain of vulnerability has additionally been modelled. We present the results of the socio-economic and environmental based approach to model vulnerability. The research methodology utilises census as well as land use/land cover data to derive and assess vulnerability. As a result, spatial units have been identified which represent common characteristics of socio-economic environmental vulnerability. The results show the spatially explicit vulnerability and its underlying components sensitivity and adaptive capacity for socio-economic and environmental domains and discuss differences. Within the test area, the Salzach River catchment in Austria, primarily urban areas adjacent to water courses are highly vulnerable. It can be stated that the delineation of vulnerability units that integrates all dimensions of sustainability are a prerequisite for a holistic and thus adaptive integrated water management approach. Indeed, such units constitute the basis for future dynamic vulnerability assessments, and thus for the assessment of uncertainties due to climate change. Kienberger, S., S. Lang & D. Tiede (2008): Socio-economic vulnerability units - modelling meaningful spatial units. In: Proceedings of the GIS Research UK 16th Annual conference GISRUK 2008, Manchester. Lang, S. (2008): Object-based image analysis for remote sensing applications: modeling reality - dealing with complexity. In: Blaschke, T., S. Lang & G. Hay (eds.): Object-Based Image Analysis - Spatial concepts for knowledge-driven remote sensing applications. New York: Springer, 3-28. Lang, S. & T. Blaschke (2006) Bridging remote sensing and GIS - what are the most supportive pillars? In: S: Lang & T. Blaschke (eds.): International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences vol. XXXVI-4/C42. CD-ROM and online at www.isprs.org. Tiede D. & S .Lang (2007): Analytical 3D views and virtual globes - putting analytical results into spatial context. ISPRS, ICA, DGfK - Joint Workshop: Visualization and Exploration of Geospatial Data, Stuttgart
A Comparative Analysis of Disaster Risk, Vulnerability and Resilience Composite Indicators.
Beccari, Benjamin
2016-03-14
In the past decade significant attention has been given to the development of tools that attempt to measure the vulnerability, risk or resilience of communities to disasters. Particular attention has been given to the development of composite indices to quantify these concepts mirroring their deployment in other fields such as sustainable development. Whilst some authors have published reviews of disaster vulnerability, risk and resilience composite indicator methodologies, these have been of a limited nature. This paper seeks to dramatically expand these efforts by analysing 106 composite indicator methodologies to understand the breadth and depth of practice. An extensive search of the academic and grey literature was undertaken for composite indicator and scorecard methodologies that addressed multiple/all hazards; included social and economic aspects of risk, vulnerability or resilience; were sub-national in scope; explained the method and variables used; focussed on the present-day; and, had been tested or implemented. Information on the index construction, geographic areas of application, variables used and other relevant data was collected and analysed. Substantial variety in construction practices of composite indicators of risk, vulnerability and resilience were found. Five key approaches were identified in the literature, with the use of hierarchical or deductive indices being the most common. Typically variables were chosen by experts, came from existing statistical datasets and were combined by simple addition with equal weights. A minimum of 2 variables and a maximum of 235 were used, although approximately two thirds of methodologies used less than 40 variables. The 106 methodologies used 2298 unique variables, the most frequently used being common statistical variables such as population density and unemployment rate. Classification of variables found that on average 34% of the variables used in each methodology related to the social environment, 25% to the disaster environment, 20% to the economic environment, 13% to the built environment, 6% to the natural environment and 3% were other indices. However variables specifically measuring action to mitigate or prepare for disasters only comprised 12%, on average, of the total number of variables in each index. Only 19% of methodologies employed any sensitivity or uncertainty analysis and in only a single case was this comprehensive. A number of potential limitations of the present state of practice and how these might impact on decision makers are discussed. In particular the limited deployment of sensitivity and uncertainty analysis and the low use of direct measures of disaster risk, vulnerability and resilience could significantly limit the quality and reliability of existing methodologies. Recommendations for improvements to indicator development and use are made, as well as suggested future research directions to enhance the theoretical and empirical knowledge base for composite indicator development.
A Comparative Analysis of Disaster Risk, Vulnerability and Resilience Composite Indicators
Beccari, Benjamin
2016-01-01
Introduction: In the past decade significant attention has been given to the development of tools that attempt to measure the vulnerability, risk or resilience of communities to disasters. Particular attention has been given to the development of composite indices to quantify these concepts mirroring their deployment in other fields such as sustainable development. Whilst some authors have published reviews of disaster vulnerability, risk and resilience composite indicator methodologies, these have been of a limited nature. This paper seeks to dramatically expand these efforts by analysing 106 composite indicator methodologies to understand the breadth and depth of practice. Methods: An extensive search of the academic and grey literature was undertaken for composite indicator and scorecard methodologies that addressed multiple/all hazards; included social and economic aspects of risk, vulnerability or resilience; were sub-national in scope; explained the method and variables used; focussed on the present-day; and, had been tested or implemented. Information on the index construction, geographic areas of application, variables used and other relevant data was collected and analysed. Results: Substantial variety in construction practices of composite indicators of risk, vulnerability and resilience were found. Five key approaches were identified in the literature, with the use of hierarchical or deductive indices being the most common. Typically variables were chosen by experts, came from existing statistical datasets and were combined by simple addition with equal weights. A minimum of 2 variables and a maximum of 235 were used, although approximately two thirds of methodologies used less than 40 variables. The 106 methodologies used 2298 unique variables, the most frequently used being common statistical variables such as population density and unemployment rate. Classification of variables found that on average 34% of the variables used in each methodology related to the social environment, 25% to the disaster environment, 20% to the economic environment, 13% to the built environment, 6% to the natural environment and 3% were other indices. However variables specifically measuring action to mitigate or prepare for disasters only comprised 12%, on average, of the total number of variables in each index. Only 19% of methodologies employed any sensitivity or uncertainty analysis and in only a single case was this comprehensive. Discussion: A number of potential limitations of the present state of practice and how these might impact on decision makers are discussed. In particular the limited deployment of sensitivity and uncertainty analysis and the low use of direct measures of disaster risk, vulnerability and resilience could significantly limit the quality and reliability of existing methodologies. Recommendations for improvements to indicator development and use are made, as well as suggested future research directions to enhance the theoretical and empirical knowledge base for composite indicator development. PMID:27066298
Revealing the underlying drivers of disaster risk: a global analysis
NASA Astrophysics Data System (ADS)
Peduzzi, Pascal
2017-04-01
Disasters events are perfect examples of compound events. Disaster risk lies at the intersection of several independent components such as hazard, exposure and vulnerability. Understanding the weight of each component requires extensive standardisation. Here, I show how footprints of past disastrous events were generated using GIS modelling techniques and used for extracting population and economic exposures based on distribution models. Using past event losses, it was possible to identify and quantify a wide range of socio-politico-economic drivers associated with human vulnerability. The analysis was applied to about nine thousand individual past disastrous events covering earthquakes, floods and tropical cyclones. Using a multiple regression analysis on these individual events it was possible to quantify each risk component and assess how vulnerability is influenced by various hazard intensities. The results show that hazard intensity, exposure, poverty, governance as well as other underlying factors (e.g. remoteness) can explain the magnitude of past disasters. Analysis was also performed to highlight the role of future trends in population and climate change and how this may impacts exposure to tropical cyclones in the future. GIS models combined with statistical multiple regression analysis provided a powerful methodology to identify, quantify and model disaster risk taking into account its various components. The same methodology can be applied to various types of risk at local to global scale. This method was applied and developed for the Global Risk Analysis of the Global Assessment Report on Disaster Risk Reduction (GAR). It was first applied on mortality risk in GAR 2009 and GAR 2011. New models ranging from global assets exposure and global flood hazard models were also recently developed to improve the resolution of the risk analysis and applied through CAPRA software to provide probabilistic economic risk assessments such as Average Annual Losses (AAL) and Probable Maximum Losses (PML) in GAR 2013 and GAR 2015. In parallel similar methodologies were developed to highlitght the role of ecosystems for Climate Change Adaptation (CCA) and Disaster Risk Reduction (DRR). New developments may include slow hazards (such as e.g. soil degradation and droughts), natech hazards (by intersecting with georeferenced critical infrastructures) The various global hazard, exposure and risk models can be visualized and download through the PREVIEW Global Risk Data Platform.
Dickin, Sarah K.; Schuster-Wallace, Corinne J.; Elliott, Susan J.
2013-01-01
The Water-associated Disease Index (WADI) was developed to identify and visualize vulnerability to different water-associated diseases by integrating a range of social and biophysical determinants in map format. In this study vulnerability is used to encompass conditions of exposure, susceptibility, and differential coping capacity to a water-associated health hazard. By assessing these conditions, the tool is designed to provide stakeholders with an integrated and long-term understanding of subnational vulnerabilities to water-associated disease and contribute to intervention strategies to reduce the burden of illness. The objective of this paper is to describe and validate the WADI tool by applying it to dengue. A systemic ecohealth framework that considers links between people, the environment and health was applied to identify secondary datasets, populating the index with components including climate conditions, land cover, education status and water use practices. Data were aggregated to create composite indicators of exposure and of susceptibility in a Geographic Information System (GIS). These indicators were weighted by their contribution to dengue vulnerability, and the output consisted of an overall index visualized in map format. The WADI was validated in this Malaysia case study, demonstrating a significant association with dengue rates at a sub-national level, and illustrating a range of factors that drive vulnerability to the disease within the country. The index output indicated high vulnerability to dengue in urban areas, especially in the capital Kuala Lumpur and surrounding region. However, in other regions, vulnerability to dengue varied throughout the year due to the influence of seasonal climate conditions, such as monsoon patterns. The WADI tool complements early warning models for water-associated disease by providing upstream information for planning prevention and control approaches, which increasingly require a comprehensive and geographically broad understanding of vulnerability for implementation. PMID:23667642
Recruiting vulnerable populations into research: a systematic review of recruitment interventions.
UyBico, Stacy J; Pavel, Shani; Gross, Cary P
2007-06-01
Members of vulnerable populations are underrepresented in research studies. To evaluate and synthesize the evidence regarding interventions to enhance enrollment of vulnerable populations into health research studies. Studies were identified by searching MEDLINE, the Web of Science database, personal sources, hand searching of related journals, and article references. Studies that contained data on recruitment interventions for vulnerable populations (minority, underserved, poor, rural, urban, or inner city) and for which the parent study (study for which recruitment was taking place) was an intervention study were included. A total of 2,648 study titles were screened and 48 articles met inclusion criteria, representing 56 parent studies. Two investigators extracted data from each study. African Americans were the most frequently targeted population (82% of the studies), while 46% targeted Hispanics/Latinos. Many studies assessed 2 or more interventions, including social marketing (82% of studies), community outreach (80%), health system recruitment (52%), and referrals (28%). The methodologic rigor varied substantially. Only 40 studies (71%) incorporated a control group and 21% used statistical analysis to compare interventions. Social marketing, health system, and referral recruitment were each found to be the most successful intervention about 35-45% of the studies in which they were attempted, while community outreach was the most successful intervention in only 2 of 16 studies (13%) in which it was employed. People contacted as a result of social marketing were no less likely to enroll than people contacted through other mechanisms. Further work with greater methodologic rigor is needed to identify evidence-based strategies for increasing minority enrollment in research studies; community outreach, as an isolated strategy, may be less successful than other strategies.
Recruiting Vulnerable Populations into Research: A Systematic Review of Recruitment Interventions
UyBico, Stacy J.; Pavel, Shani
2007-01-01
Background Members of vulnerable populations are underrepresented in research studies. Objective To evaluate and synthesize the evidence regarding interventions to enhance enrollment of vulnerable populations into health research studies. Data sources Studies were identified by searching MEDLINE, the Web of Science database, personal sources, hand searching of related journals, and article references. Studies that contained data on recruitment interventions for vulnerable populations (minority, underserved, poor, rural, urban, or inner city) and for which the parent study (study for which recruitment was taking place) was an intervention study were included. A total of 2,648 study titles were screened and 48 articles met inclusion criteria, representing 56 parent studies. Two investigators extracted data from each study. Results African Americans were the most frequently targeted population (82% of the studies), while 46% targeted Hispanics/Latinos. Many studies assessed 2 or more interventions, including social marketing (82% of studies), community outreach (80%), health system recruitment (52%), and referrals (28%). The methodologic rigor varied substantially. Only 40 studies (71%) incorporated a control group and 21% used statistical analysis to compare interventions. Social marketing, health system, and referral recruitment were each found to be the most successful intervention about 35–45% of the studies in which they were attempted, while community outreach was the most successful intervention in only 2 of 16 studies (13%) in which it was employed. People contacted as a result of social marketing were no less likely to enroll than people contacted through other mechanisms. Conclusions Further work with greater methodologic rigor is needed to identify evidence-based strategies for increasing minority enrollment in research studies; community outreach, as an isolated strategy, may be less successful than other strategies. PMID:17375358
Seismic and Restoration Assessment of Monumental Masonry Structures
Asteris, Panagiotis G.; Douvika, Maria G.; Apostolopoulou, Maria; Moropoulou, Antonia
2017-01-01
Masonry structures are complex systems that require detailed knowledge and information regarding their response under seismic excitations. Appropriate modelling of a masonry structure is a prerequisite for a reliable earthquake-resistant design and/or assessment. However, modelling a real structure with a robust quantitative (mathematical) representation is a very difficult, complex and computationally-demanding task. The paper herein presents a new stochastic computational framework for earthquake-resistant design of masonry structural systems. The proposed framework is based on the probabilistic behavior of crucial parameters, such as material strength and seismic characteristics, and utilizes fragility analysis based on different failure criteria for the masonry material. The application of the proposed methodology is illustrated in the case of a historical and monumental masonry structure, namely the assessment of the seismic vulnerability of the Kaisariani Monastery, a byzantine church that was built in Athens, Greece, at the end of the 11th to the beginning of the 12th century. Useful conclusions are drawn regarding the effectiveness of the intervention techniques used for the reduction of the vulnerability of the case-study structure, by means of comparison of the results obtained. PMID:28767073
Seismic and Restoration Assessment of Monumental Masonry Structures.
Asteris, Panagiotis G; Douvika, Maria G; Apostolopoulou, Maria; Moropoulou, Antonia
2017-08-02
Masonry structures are complex systems that require detailed knowledge and information regarding their response under seismic excitations. Appropriate modelling of a masonry structure is a prerequisite for a reliable earthquake-resistant design and/or assessment. However, modelling a real structure with a robust quantitative (mathematical) representation is a very difficult, complex and computationally-demanding task. The paper herein presents a new stochastic computational framework for earthquake-resistant design of masonry structural systems. The proposed framework is based on the probabilistic behavior of crucial parameters, such as material strength and seismic characteristics, and utilizes fragility analysis based on different failure criteria for the masonry material. The application of the proposed methodology is illustrated in the case of a historical and monumental masonry structure, namely the assessment of the seismic vulnerability of the Kaisariani Monastery, a byzantine church that was built in Athens, Greece, at the end of the 11th to the beginning of the 12th century. Useful conclusions are drawn regarding the effectiveness of the intervention techniques used for the reduction of the vulnerability of the case-study structure, by means of comparison of the results obtained.
Application of Remote Sensing for Forest Management in Nepal
NASA Astrophysics Data System (ADS)
Bajracharya, B.; Matin, M. A.
2016-12-01
Large area of the Hindu Kush Himalayan (HKH) region is covered by forest that is playing a vital role to address the challenges of climate change and livelihood options for a growing population. Effective management of forest cover needs establishment of regular monitoring system for forest. Supporting REDD assessment needs reliable baseline assessment of forest biomass and its monitoring at multiple scale. Adaptation of forest to climate change needs understanding vulnerability of forests and dependence of local communities on these forest. We present here different forest monitoring products developed under the SERVIR-Himalaya programme to address these issues. Landsat 30 meter images were used for decadal land cover change assessment and annual forest change hotspot monitoring. Methodology developed for biomass estimation at national and sub-national level biomass estimation. Decision support system was developed for analysis of forest vulnerability and dependence and selection of adaptation options based on resource availability. These products are forming the basis for development of an integrated system that will be very useful for comprehensive forest monitoring and long term strategy development for sustainable forest management.
Application of crowd-sourced data to multi-scale evolutionary exposure and vulnerability models
NASA Astrophysics Data System (ADS)
Pittore, Massimiliano
2016-04-01
Seismic exposure, defined as the assets (population, buildings, infrastructure) exposed to earthquake hazard and susceptible to damage, is a critical -but often neglected- component of seismic risk assessment. This partly stems from the burden associated with the compilation of a useful and reliable model over wide spatial areas. While detailed engineering data have still to be collected in order to constrain exposure and vulnerability models, the availability of increasingly large crowd-sourced datasets (e. g. OpenStreetMap) opens up the exciting possibility to generate incrementally evolving models. Integrating crowd-sourced and authoritative data using statistical learning methodologies can reduce models uncertainties and also provide additional drive and motivation to volunteered geoinformation collection. A case study in Central Asia will be presented and discussed.
A Multihazard Regional Level Impact Assessment for South Asia
NASA Astrophysics Data System (ADS)
Amarnath, Giriraj; Alahacoon, Niranga; Aggarwal, Pramod; Smakhtin, Vladimir
2016-04-01
To prioritize climate adaptation strategies, there is a need for quantitative and systematic regional-level assessments which are comparable across multiple climatic hazard regimes. Assessing which countries in a region are most vulnerable to climate change requires analysis of multiple climatic hazards including: droughts, floods, extreme temperature as well as rainfall and sea-level rise. These five climatic hazards, along with population densities were modelled using GIS which enabled a summary of associated human exposure and agriculture losses. A combined index based on hazard, exposure and adaptive capacity is introduced to identify areas of extreme risks. The analysis results in population climate hazard exposure defined as the relative likelihood that a person in a given location was exposed to a given climate-hazard event in a given period of time. The study presents a detailed and coherent approach to fine-scale climate hazard mapping and identification of risks areas for the regions of South Asia that, for the first time, combines the following unique features: (a) methodological consistency across different climate-related hazards, (b) assessment of total exposure on population and agricultural losses, (c) regional-level spatial coverage, and (d) development of customized tools using ArcGIS toolbox that allow assessment of changes in exposure over time and easy replacement of existing datasets with a newly released or superior datasets. The resulting maps enable comparison of the most vulnerable regions in South Asia to climate-related hazards and is among the most urgent of policy needs. Subnational areas (regions/districts/provinces) most vulnerable to climate change impacts in South Asia are documented. The approach involves overlaying climate hazard maps, sensitivity maps, and adaptive capacity maps following the vulnerability assessment framework of the United Nations' Intergovernmental Panel on Climate Change (IPCC). The study used data on the spatial distribution of various climate-related hazards in 1,398 subnational areas of Bangladesh, Bhutan, India, Nepal, Pakistan and Sri Lanka. An analysis of country-level population exposure showed that approximately 750 million people are affected from combined climate-hazards. Of the affected population 72% are in India, followed by 12% each from Bangladesh and Pakistan. Due in part to the economic importance of agriculture, it was found to be most vulnerable and exposed to climate extremes. An analysis of individual hazards indicates that floods and droughts) are the dominant hazards impacting agricultural areas followed by extreme rainfall, extreme temperature and sea-level rise. Based on this vulnerability assessment, all the regions of Bangladesh and the Indian States in Andhra Pradesh, Bihar, Maharashtra, Karnataka and Orissa; Ampara, Puttalam, Trincomalee, Mannar and Batticaloa in Sri Lanka; Sind and Baluchistan in Pakistan; Central and East Nepal; and the transboundary river basins of Indus, Ganges and Brahmaputra are among the most vulnerable regions in South Asia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barszez, Anne-Marie; Camelbeeck, Thierry; Plumier, Andre
Northwest Europe is a region in which damaging earthquakes exist. Assessing the risks of damages is useful, but this is not an easy work based on exact science.In this paper, we propose a general tool for a first level assessment of seismic risks (rapid diagnosis). General methodological aspects are presented. For a given building, the risk is represented by a volume in a multi-dimensional space. This space is defined by axes representing the main parameters that have an influence on the risk. We notably express the importance of including a parameter to consider the specific value of cultural heritage.Then wemore » apply the proposed tool to analyze and compare methods of seismic risk assessment used in Belgium. They differ by the spatial scale of the studied area. Study cases for the whole Belgian Territory and for part of cities in Liege and Mons (Be) aim also to give some sense of the overall risk in Belgium.« less
Dhakar, Rajkumar; Sarath Chandran, M A; Nagar, Shivani; Visha Kumari, V
2017-11-23
A new methodology for crop-growth stage-specific assessment of agricultural drought risk under a variable sowing window is proposed for the soybean crop. It encompasses three drought indices, which include Crop-Specific Drought Index (CSDI), Vegetation Condition Index (VCI), and Standardized Precipitation Evapotranspiration Index (SPEI). The unique features of crop-growth stage-specific nature and spatial and multi-scalar coverage provide a comprehensive assessment of agricultural drought risk. This study was conducted in 10 major soybean-growing districts of Madhya Pradesh state of India. These areas contribute about 60% of the total soybean production for the country. The phenophase most vulnerable to agricultural drought was identified (germination and flowering in our case) for each district across four sowing windows. The agricultural drought risk was quantified at various severity levels (moderate, severe, and very severe) for each growth stage and sowing window. Validation of the proposed new methodology also yielded results with a high correlation coefficient between percent probability of agricultural drought risk and yield risk (r = 0.92). Assessment by proximity matrix yielded a similar statistic. Expectations for the proposed methodology are better mitigation-oriented management and improved crop contingency plans for planners and decision makers.
Wild, Verina; Carina, Fourie; Frouzakis, Regula; Clarinval, Caroline; Fässler, Margrit; Elger, Bernice; Gächter, Thomas; Leu, Agnes; Spirig, Rebecca; Kleinknecht, Michael; Radovanovic, Dragana; Mouton Dorey, Corine; Burnand, Bernard; Vader, John-Paul; Januel, Jean-Marie; Biller-Andorno, Nikola; The IDoC Group
2015-01-01
The starting point of the interdisciplinary project "Assessing the impact of diagnosis related groups (DRGs) on patient care and professional practice" (IDoC) was the lack of a systematic ethical assessment for the introduction of cost containment measures in healthcare. Our aim was to contribute to the methodological and empirical basis of such an assessment. Five sub-groups conducted separate but related research within the fields of biomedical ethics, law, nursing sciences and health services, applying a number of complementary methodological approaches. The individual research projects were framed within an overall ethical matrix. Workshops and bilateral meetings were held to identify and elaborate joint research themes. Four common, ethically relevant themes emerged in the results of the studies across sub-groups: (1.) the quality and safety of patient care, (2.) the state of professional practice of physicians and nurses, (3.) changes in incentives structure, (4.) vulnerable groups and access to healthcare services. Furthermore, much-needed data for future comparative research has been collected and some early insights into the potential impact of DRGs are outlined. Based on the joint results we developed preliminary recommendations related to conceptual analysis, methodological refinement, monitoring and implementation.
NASA Astrophysics Data System (ADS)
Marti, Joan; Bartolini, Stefania; Becerril, Laura
2016-04-01
VeTOOLS is a project funded by the European Commission's Humanitarian Aid and Civil Protection department (ECHO), and aims at creating an integrated software platform specially designed to assess and manage volcanic risk. The project facilitates interaction and cooperation between scientists and Civil Protection Agencies in order to share, unify, and exchange procedures, methodologies and technologies to effectively reduce the impacts of volcanic disasters. The project aims at 1) improving and developing volcanic risk assessment and management capacities in active volcanic regions; 2) developing universal methodologies, scenario definitions, response strategies and alert protocols to cope with the full range of volcanic threats; 4) improving quantitative methods and tools for vulnerability and risk assessment; and 5) defining thresholds and protocols for civil protection. With these objectives, the VeTOOLS project points to two of the Sendai Framework resolutions for implementing it: i) Provide guidance on methodologies and standards for risk assessments, disaster risk modelling and the use of data; ii) Promote and support the availability and application of science and technology to decision-making, and offers a good example on how a close collaboration between science and civil protection is an effective way to contribute to DRR. European Commission ECHO Grant SI2.695524
Gómez, Aina G; Ondiviela, Bárbara; Puente, Araceli; Juanes, José A
2015-05-15
This work presents a standard and unified procedure for assessment of environmental risks at the contaminant source level in port aquatic systems. Using this method, port managers and local authorities will be able to hierarchically classify environmental hazards and proceed with the most suitable management actions. This procedure combines rigorously selected parameters and indicators to estimate the environmental risk of each contaminant source based on its probability, consequences and vulnerability. The spatio-temporal variability of multiple stressors (agents) and receptors (endpoints) is taken into account to provide accurate estimations for application of precisely defined measures. The developed methodology is tested on a wide range of different scenarios via application in six European ports. The validation process confirms its usefulness, versatility and adaptability as a management tool for port water quality in Europe and worldwide. Copyright © 2015 Elsevier Ltd. All rights reserved.
Gu, Qian; Koenig, Lane; Faerberg, Jennifer; Steinberg, Caroline Rossi; Vaz, Christopher; Wheatley, Mary P
2014-06-01
To explore the impact of the Hospital Readmissions Reduction Program (HRRP) on hospitals serving vulnerable populations. Medicare inpatient claims to calculate condition-specific readmission rates. Medicare cost reports and other sources to determine a hospital's share of duals, profit margin, and characteristics. Regression analyses and projections were used to estimate risk-adjusted readmission rates and financial penalties under the HRRP. Findings were compared across groups of hospitals, determined based on their share of duals, to assess differential impacts of the HRRP. Both patient dual-eligible status and a hospital's dual-eligible share of Medicare discharges have a positive impact on risk-adjusted hospital readmission rates. Under current Centers for Medicare and Medicaid Service methodology, which does not adjust for socioeconomic status, high-dual hospitals are more likely to have excess readmissions than low-dual hospitals. As a result, HRRP penalties will disproportionately fall on high-dual hospitals, which are more likely to have negative all-payer margins, raising concerns of unintended consequences of the program for vulnerable populations. Policies to reduce hospital readmissions must balance the need to ensure continued access to quality care for vulnerable populations. © Health Research and Educational Trust.
Gu, Qian; Koenig, Lane; Faerberg, Jennifer; Steinberg, Caroline Rossi; Vaz, Christopher; Wheatley, Mary P
2014-01-01
Objective To explore the impact of the Hospital Readmissions Reduction Program (HRRP) on hospitals serving vulnerable populations. Data Sources/Study Setting Medicare inpatient claims to calculate condition-specific readmission rates. Medicare cost reports and other sources to determine a hospital's share of duals, profit margin, and characteristics. Study Design Regression analyses and projections were used to estimate risk-adjusted readmission rates and financial penalties under the HRRP. Findings were compared across groups of hospitals, determined based on their share of duals, to assess differential impacts of the HRRP. Principal Findings Both patient dual-eligible status and a hospital's dual-eligible share of Medicare discharges have a positive impact on risk-adjusted hospital readmission rates. Under current Centers for Medicare and Medicaid Service methodology, which does not adjust for socioeconomic status, high-dual hospitals are more likely to have excess readmissions than low-dual hospitals. As a result, HRRP penalties will disproportionately fall on high-dual hospitals, which are more likely to have negative all-payer margins, raising concerns of unintended consequences of the program for vulnerable populations. Conclusions Policies to reduce hospital readmissions must balance the need to ensure continued access to quality care for vulnerable populations. PMID:24417309
Hazard interactions and interaction networks (cascades) within multi-hazard methodologies
NASA Astrophysics Data System (ADS)
Gill, Joel C.; Malamud, Bruce D.
2016-08-01
This paper combines research and commentary to reinforce the importance of integrating hazard interactions and interaction networks (cascades) into multi-hazard methodologies. We present a synthesis of the differences between multi-layer single-hazard approaches and multi-hazard approaches that integrate such interactions. This synthesis suggests that ignoring interactions between important environmental and anthropogenic processes could distort management priorities, increase vulnerability to other spatially relevant hazards or underestimate disaster risk. In this paper we proceed to present an enhanced multi-hazard framework through the following steps: (i) description and definition of three groups (natural hazards, anthropogenic processes and technological hazards/disasters) as relevant components of a multi-hazard environment, (ii) outlining of three types of interaction relationship (triggering, increased probability, and catalysis/impedance), and (iii) assessment of the importance of networks of interactions (cascades) through case study examples (based on the literature, field observations and semi-structured interviews). We further propose two visualisation frameworks to represent these networks of interactions: hazard interaction matrices and hazard/process flow diagrams. Our approach reinforces the importance of integrating interactions between different aspects of the Earth system, together with human activity, into enhanced multi-hazard methodologies. Multi-hazard approaches support the holistic assessment of hazard potential and consequently disaster risk. We conclude by describing three ways by which understanding networks of interactions contributes to the theoretical and practical understanding of hazards, disaster risk reduction and Earth system management. Understanding interactions and interaction networks helps us to better (i) model the observed reality of disaster events, (ii) constrain potential changes in physical and social vulnerability between successive hazards, and (iii) prioritise resource allocation for mitigation and disaster risk reduction.
NASA Astrophysics Data System (ADS)
Molnar, Gabor; Kutics, Karoly
2013-04-01
Located in Western Hungary, Lake Balaton (LB) is one of the shallowest large lakes of the world. The catchment area including the lake is 5775 km2, only 10 times more than the lake surface area of 593 km2. This relatively small catchment area and the relatively dry climate results in high vulnerability of the lake water budget to any hydro-meteorological changes. Due to the combined effects of planned water quality protection measures (refer to adjoining article on LB water quality) water quality was not as serious a concern over the last 15 years. However, a new and potentially more damaging threat, decreasing water level started to emerge in 2000. The natural water budget was negative half of the time, i.e. 6 years in the last 12 years. It hadn't occurred in the previous 80 years, since 1921, the year from which detailed meteorological data on the area are available. This new phenomenon raised and continues to raise serious sustainability concerns in the Lake Balaton area requiring better understanding of climatic changes and their foreseen impacts on hydrological and ecological processes that would lead decision makers to formulate the appropriate vulnerability and adaptation policies. Based on the common methodologies of the EULAKES project, present state of the hydrological conditions was analyzed as well as qualitative vulnerability assessment carried out to the area. Using the climate scenarios developed by the project partner Austrian Institute of Technology, calculations on water budget changes was possible. It is estimated that by the middle of the 21st century the lake will experience a drastic drop in the inflow and, accompanied by the increased evaporation, it is likely that years without outflow and serious drops in water-level would occur. The increased frequency of unfavorable water deficit will cause not only ecological, but also socio-economic conflicts in the multipurpose usage of the lake. Therefore, a qualitative vulnerability assessment was completed with a similar methodology applied in partner lakes of the EULAKES project. Based on the assessment through a participatory process involving a broad group of stakeholders the possible management options were gathered and tested as the alternatives to improve the water balance of the lake.
Cyber and Physical Security Vulnerability Assessment for IoT-Based Smart Homes
2018-01-01
The Internet of Things (IoT) is an emerging paradigm focusing on the connection of devices, objects, or “things” to each other, to the Internet, and to users. IoT technology is anticipated to become an essential requirement in the development of smart homes, as it offers convenience and efficiency to home residents so that they can achieve better quality of life. Application of the IoT model to smart homes, by connecting objects to the Internet, poses new security and privacy challenges in terms of the confidentiality, authenticity, and integrity of the data sensed, collected, and exchanged by the IoT objects. These challenges make smart homes extremely vulnerable to different types of security attacks, resulting in IoT-based smart homes being insecure. Therefore, it is necessary to identify the possible security risks to develop a complete picture of the security status of smart homes. This article applies the operationally critical threat, asset, and vulnerability evaluation (OCTAVE) methodology, known as OCTAVE Allegro, to assess the security risks of smart homes. The OCTAVE Allegro method focuses on information assets and considers different information containers such as databases, physical papers, and humans. The key goals of this study are to highlight the various security vulnerabilities of IoT-based smart homes, to present the risks on home inhabitants, and to propose approaches to mitigating the identified risks. The research findings can be used as a foundation for improving the security requirements of IoT-based smart homes. PMID:29518023
Cyber and Physical Security Vulnerability Assessment for IoT-Based Smart Homes.
Ali, Bako; Awad, Ali Ismail
2018-03-08
The Internet of Things (IoT) is an emerging paradigm focusing on the connection of devices, objects, or "things" to each other, to the Internet, and to users. IoT technology is anticipated to become an essential requirement in the development of smart homes, as it offers convenience and efficiency to home residents so that they can achieve better quality of life. Application of the IoT model to smart homes, by connecting objects to the Internet, poses new security and privacy challenges in terms of the confidentiality, authenticity, and integrity of the data sensed, collected, and exchanged by the IoT objects. These challenges make smart homes extremely vulnerable to different types of security attacks, resulting in IoT-based smart homes being insecure. Therefore, it is necessary to identify the possible security risks to develop a complete picture of the security status of smart homes. This article applies the operationally critical threat, asset, and vulnerability evaluation (OCTAVE) methodology, known as OCTAVE Allegro, to assess the security risks of smart homes. The OCTAVE Allegro method focuses on information assets and considers different information containers such as databases, physical papers, and humans. The key goals of this study are to highlight the various security vulnerabilities of IoT-based smart homes, to present the risks on home inhabitants, and to propose approaches to mitigating the identified risks. The research findings can be used as a foundation for improving the security requirements of IoT-based smart homes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pollet, J.
2006-07-01
This session starts by providing an overview of typical DCS (Distributed Control Systems) and SCADA (Supervisory Control and Data Acquisition) architectures, and exposes cyber security vulnerabilities that vendors never admit, but are found through a comprehensive cyber testing process. A complete assessment process involves testing all of the layers and components of a SCADA or DCS environment, from the perimeter firewall all the way down to the end devices controlling the process, including what to look for when conducting a vulnerability assessment of real-time control systems. The following systems are discussed: 1. Perimeter (isolation from corporate IT or other non-criticalmore » networks) 2. Remote Access (third Party access into SCADA or DCS networks) 3. Network Architecture (switch, router, firewalls, access controls, network design) 4. Network Traffic Analysis (what is running on the network) 5. Host Operating Systems Hardening 6. Applications (how they communicate with other applications and end devices) 7. End Device Testing (PLCs, RTUs, DCS Controllers, Smart Transmitters) a. System Discovery b. Functional Discovery c. Attack Methodology i. DoS Tests (at what point does the device fail) ii. Malformed Packet Tests (packets that can cause equipment failure) iii. Session Hijacking (do anything that the operator can do) iv. Packet Injection (code and inject your own SCADA commands) v. Protocol Exploitation (Protocol Reverse Engineering / Fuzzing) This paper will provide information compiled from over five years of conducting cyber security testing on control systems hardware, software, and systems. (authors)« less
Chen, Qian; Ding, Mingjun; Yang, Xuchao; Hu, Kejia; Qi, Jiaguo
2018-05-25
The increase in the frequency and intensity of extreme heat events, which are potentially associated with climate change in the near future, highlights the importance of heat health risk assessment, a significant reference for heat-related death reduction and intervention. However, a spatiotemporal mismatch exists between gridded heat hazard and human exposure in risk assessment, which hinders the identification of high-risk areas at finer scales. A human settlement index integrated by nighttime light images, enhanced vegetation index, and digital elevation model data was utilized to assess the human exposure at high spatial resolution. Heat hazard and vulnerability index were generated by land surface temperature and demographic and socioeconomic census data, respectively. Spatially explicit assessment of heat health risk and its driving factors was conducted in the Yangtze River Delta (YRD), east China at 250 m pixel level. High-risk areas were mainly distributed in the urbanized areas of YRD, which were mostly driven by high human exposure and heat hazard index. In some less-urbanized cities and suburban and rural areas of mega-cities, the heat health risks are in second priority. The risks in some less-developed areas were high despite the low human exposure index because of high heat hazard and vulnerability index. This study illustrated a methodology for identifying high-risk areas by combining freely available multi-source data. Highly urbanized areas were considered hotspots of high heat health risks, which were largely driven by the increasing urban heat island effects and population density in urban areas. Repercussions of overheating were weakened due to the low social vulnerability in some central areas benefitting from the low proportion of sensitive population or the high level of socioeconomic development. By contrast, high social vulnerability intensifies heat health risks in some less-urbanized cities and suburban areas of mega-cities.
Combining operational models and data into a dynamic vessel risk assessment tool for coastal regions
NASA Astrophysics Data System (ADS)
Fernandes, R.; Braunschweig, F.; Lourenço, F.; Neves, R.
2015-07-01
The technological evolution in terms of computational capacity, data acquisition systems, numerical modelling and operational oceanography is supplying opportunities for designing and building holistic approaches and complex tools for newer and more efficient management (planning, prevention and response) of coastal water pollution risk events. A combined methodology to dynamically estimate time and space variable shoreline risk levels from ships has been developed, integrating numerical metocean forecasts and oil spill simulations with vessel tracking automatic identification systems (AIS). The risk rating combines the likelihood of an oil spill occurring from a vessel navigating in a study area - Portuguese Continental shelf - with the assessed consequences to the shoreline. The spill likelihood is based on dynamic marine weather conditions and statistical information from previous accidents. The shoreline consequences reflect the virtual spilled oil amount reaching shoreline and its environmental and socio-economic vulnerabilities. The oil reaching shoreline is quantified with an oil spill fate and behaviour model running multiple virtual spills from vessels along time. Shoreline risks can be computed in real-time or from previously obtained data. Results show the ability of the proposed methodology to estimate the risk properly sensitive to dynamic metocean conditions and to oil transport behaviour. The integration of meteo-oceanic + oil spill models with coastal vulnerability and AIS data in the quantification of risk enhances the maritime situational awareness and the decision support model, providing a more realistic approach in the assessment of shoreline impacts. The risk assessment from historical data can help finding typical risk patterns, "hot spots" or developing sensitivity analysis to specific conditions, whereas real time risk levels can be used in the prioritization of individual ships, geographical areas, strategic tug positioning and implementation of dynamic risk-based vessel traffic monitoring.
Tsunami vulnerability analysis in the coastal town of Catania, Sicily: methodology and results
NASA Astrophysics Data System (ADS)
Pagnoni, Gianluca; Tinti, Stefano; Gallazzi, Sara; Tonini, Roberto; Zaniboni, Filippo
2010-05-01
Catania lies on the eastern coast of Sicily and is one of the most important towns in Sicily as regards history, tourism and industry. Recent analyses conducted in the frame of the project TRANSFER have shown that it is exposed not only to tsunamis generated locally, but also to distant tsunamis generated in the western Hellenic arc. In the frame of the European project SCHEMA different scenarios covering local sources such as the 11 January 1693 event and the 1908 case as well as remote sources such as the 365 AD tsunami have been explored through numerical modelling in order to assess the vulnerability of the area to tsunami attacks. One of the primary outcomes of the scenario analysis is the quantification of the inundation zones (location, extension along the coast and landward). Taking the modelling results on flooding as input data, the analysis has focussed on the geomorphological characteristics of the coasts and on the buildings and infrastructure typology to make evaluation of the vulnerability level of the Catania area. The coast to the south of the harbour of Catania is low and characterized by a mild slope: topography reaches the altitude of 10 m between 300-750 m distance from the shoreline. Building density is low, and generally tourist structures prevail on residential houses. The zone north of the harbour is high-coast, with 10 m isoline usually close to the coastline, and little possibility for flood to penetrate deep inland. Here there are three small marinas with the corresponding services and infrastructure around, and the city quarters consists of residential buildings. Vulnerability assessment has been carried out by following the methodology developed by the SCHEMA consortium, distinguishing between primary (type and material) and secondary criteria (e.g. ground, age, foundation, orientation, etc.) for buildings, and by adopting a building damage matrix, basically depending on building type and water inundation depth. Data needed for such analysis have been retrieved from satellite images such as Google and validated through ad hoc local surveys with the collaboration of the local civil protection agency.
Repp, Kimberly K; Hawes, Eva; Rees, Kathleen J; Vorderstrasse, Beth; Mohnkern, Sue
2018-06-07
Conducting a large-scale Community Assessment for Public Health Emergency Response (CASPER) in a geographically and linguistically diverse county presents significant methodological challenges that require advance planning. The Centers for Disease Control and Prevention (CDC) has adapted methodology and provided a toolkit for a rapid needs assessment after a disaster. The assessment provides representative data of the sampling frame to help guide effective distribution of resources. This article describes methodological considerations and lessons learned from a CASPER exercise conducted by Washington County Public Health in June 2016 to assess community emergency preparedness. The CDC's CASPER toolkit provides detailed guidance for exercises in urban areas where city blocks are well defined with many single family homes. Converting the exercise to include rural areas with challenging geographical terrain, including accessing homes without public roads, required considerable adjustments in planning. Adequate preparations for vulnerable populations with English linguistic barriers required additional significant resources. Lessons learned are presented from the first countywide CASPER exercise in Oregon. Approximately 61% of interviews were completed, and 85% of volunteers reported they would participate in another CASPER exercise. Results from the emergency preparedness survey will be presented elsewhere. This experience indicates the most important considerations for conducting a CASPER exercise are oversampling clusters, overrecruiting volunteers, anticipating the actual cost of staff time, and ensuring timely language services are available during the event.
NASA Astrophysics Data System (ADS)
Fijani, Elham; Nadiri, Ata Allah; Asghari Moghaddam, Asghar; Tsai, Frank T.-C.; Dixon, Barnali
2013-10-01
Contamination of wells with nitrate-N (NO3-N) poses various threats to human health. Contamination of groundwater is a complex process and full of uncertainty in regional scale. Development of an integrative vulnerability assessment methodology can be useful to effectively manage (including prioritization of limited resource allocation to monitor high risk areas) and protect this valuable freshwater source. This study introduces a supervised committee machine with artificial intelligence (SCMAI) model to improve the DRASTIC method for groundwater vulnerability assessment for the Maragheh-Bonab plain aquifer in Iran. Four different AI models are considered in the SCMAI model, whose input is the DRASTIC parameters. The SCMAI model improves the committee machine artificial intelligence (CMAI) model by replacing the linear combination in the CMAI with a nonlinear supervised ANN framework. To calibrate the AI models, NO3-N concentration data are divided in two datasets for the training and validation purposes. The target value of the AI models in the training step is the corrected vulnerability indices that relate to the first NO3-N concentration dataset. After model training, the AI models are verified by the second NO3-N concentration dataset. The results show that the four AI models are able to improve the DRASTIC method. Since the best AI model performance is not dominant, the SCMAI model is considered to combine the advantages of individual AI models to achieve the optimal performance. The SCMAI method re-predicts the groundwater vulnerability based on the different AI model prediction values. The results show that the SCMAI outperforms individual AI models and committee machine with artificial intelligence (CMAI) model. The SCMAI model ensures that no water well with high NO3-N levels would be classified as low risk and vice versa. The study concludes that the SCMAI model is an effective model to improve the DRASTIC model and provides a confident estimate of the pollution risk.
Renaud, Fabrice G.; Kloos, Julia; Walz, Yvonne; Rhyner, Jakob
2017-01-01
West Africa has been described as a hotspot of climate change. The reliance on rain-fed agriculture by over 65% of the population means that vulnerability to climatic hazards such as droughts, rainstorms and floods will continue. Yet, the vulnerability and risk levels faced by different rural social-ecological systems (SES) affected by multiple hazards are poorly understood. To fill this gap, this study quantifies risk and vulnerability of rural communities to drought and floods. Risk is assessed using an indicator-based approach. A stepwise methodology is followed that combines participatory approaches with statistical, remote sensing and Geographic Information System techniques to develop community level vulnerability indices in three watersheds (Dano, Burkina Faso; Dassari, Benin; Vea, Ghana). The results show varying levels of risk profiles across the three watersheds. Statistically significant high levels of mean risk in the Dano area of Burkina Faso are found whilst communities in the Dassari area of Benin show low mean risk. The high risk in the Dano area results from, among other factors, underlying high exposure to droughts and rainstorms, longer dry season duration, low caloric intake per capita, and poor local institutions. The study introduces the concept of community impact score (CIS) to validate the indicator-based risk and vulnerability modelling. The CIS measures the cumulative impact of the occurrence of multiple hazards over five years. 65.3% of the variance in observed impact of hazards/CIS was explained by the risk models and communities with high simulated disaster risk generally follow areas with high observed disaster impacts. Results from this study will help disaster managers to better understand disaster risk and develop appropriate, inclusive and well integrated mitigation and adaptation plans at the local level. It fulfills the increasing need to balance global/regional assessments with community level assessments where major decisions against risk are actually taken and implemented. PMID:28248969
A Coupled Community-Level Assessment of Social and Physical Vulnerability to Hurricane Disasters
NASA Astrophysics Data System (ADS)
Kim, J. H.; Sutley, E. J.; Chowdhury, A. G.; Hamideh, S.
2017-12-01
A significant portion of the U.S. building inventory exists in hurricane- and flood-prone regions. The accompanying storm surge and rising water levels often result in the inundation of residential homes, particularly those occupied by low income households and forcing displacement. In order to mitigate potential damages, a popular design technique is to elevate the structure using piers or piles to above the base flood elevation. This is observed for single-family and multi-family homes, including manufactured homes and post-disaster temporary housing, albeit at lower elevations. Although this design alleviates potential flood damage, it affects the wind-structure interaction by subjecting the structure to higher wind speeds due to its increased height and also having a path for the wind to pass underneath the structure potentially creating new vulnerabilities to wind loading. The current ASCE 7 Standard (2016) does not include a methodology for addressing the modified aerodynamics and estimating wind loads for elevated structures, and thus the potential vulnerability during high wind events is unaccounted for in design. Using experimentally measured wind pressures on elevated and non-elevated residential building models, tax data, and census data, a coupled vulnerability assessment is performed at the community-level. Galveston, Texas is selected as the case study community. Using the coupled assessment model, a hindcast of 2008 Hurricane Ike is used for predicting physical damage and household dislocation. The predicted results are compared with the actual outcomes of the 2008 hurricane disaster. Recommendations are made (1) for code adoption based on the experimentally measured wind loads, and (2) for mitigation actions and policies that would could decrease population dislocation and promote recovery.
Integrated technology rotor/flight research rotor hub concept definition
NASA Technical Reports Server (NTRS)
Dixon, P. G. C.
1983-01-01
Two variations of the helicopter bearingless main rotor hub concept are proposed as bases for further development in the preliminary design phase of the Integrated Technology Rotor/Flight Research Rotor (ITR/FRR) program. This selection was the result of an evaluation of three bearingless hub concepts and two articulated hub concepts with elastomeric bearings. The characteristics of each concept were evaluated by means of simplified methodology. These characteristics included the assessment of stability, vulnerability, weight, drag, cost, stiffness, fatigue life, maintainability, and reliability.
Jacobs, Rachel H.; Reinecke, Mark A.; Gollan, Jackie K.; Kane, Peter
2008-01-01
We summarize and integrate research on cognitive vulnerability to depression among children and adolescents. We first review prospective longitudinal studies of the most researched cognitive vulnerability factors (attributional style, dysfunctional attitudes, and self-perception) and depression among youth. We next review research on information processing biases in youth. We propose that the integration of these two literatures will result in a more adequate test of cognitive vulnerability models. Last, we outline a program of research addressing methodological, statistical, and scientific limitations in the cognitive vulnerability literature. PMID:18068882
Li, Daiqing; Zhang, Chen; Pizzol, Lisa; Critto, Andrea; Zhang, Haibo; Lv, Shihai; Marcomini, Antonio
2014-04-01
The rapid industrial development and urbanization processes that occurred in China over the past 30years has increased dramatically the consumption of natural resources and raw materials, thus exacerbating the human pressure on environmental ecosystems. In result, large scale environmental pollution of soil, natural waters and urban air were recorded. The development of effective industrial planning to support regional sustainable economy development has become an issue of serious concern for local authorities which need to select safe sites for new industrial settlements (i.e. industrial plants) according to assessment approaches considering cumulative impacts, synergistic pollution effects and risks of accidental releases. In order to support decision makers in the development of efficient and effective regional land-use plans encompassing the identification of suitable areas for new industrial settlements and areas in need of intervention measures, this study provides a spatial regional risk assessment methodology which integrates relative risk assessment (RRA) and socio-economic assessment (SEA) and makes use of spatial analysis (GIS) methodologies and multicriteria decision analysis (MCDA) techniques. The proposed methodology was applied to the Chinese region of Hulunbeier which is located in eastern Inner Mongolia Autonomous Region, adjacent to the Republic of Mongolia. The application results demonstrated the effectiveness of the proposed methodology in the identification of the most hazardous and risky industrial settlements, the most vulnerable regional receptors and the regional districts which resulted to be the most relevant for intervention measures since they are characterized by high regional risk and excellent socio-economic development conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Funk, Daniel
2016-04-01
The successful provision of from seasonal to decadal (S2D) climate service products to sector-specific users is dependent on specific problem characteristics and individual user needs and decision-making processes. Climate information requires an impact on decision making to have any value (Rodwell and Doblas-Reyes, 2006). For that reason the knowledge of sector-specific vulnerabilities to S2D climate variability is very valuable information for both, climate service producers and users. In this context a concept for a vulnerability assessment framework was developed to (i) identify climate events (and especially their temporal scales) critical for sector-specific problems to assess the basic requirements for an appropriate climate-service product development; and to (ii) assess the potential impact or value of related climate information for decision-makers. The concept was developed within the EUPORIAS project (European Provision of Regional Impacts Assessments on Seasonal and Decadal Timescales) based on ten project-related case-studies from different sectors all over Europe. In the prevalent stage the framework may be useful as preliminary assessment or 'quick-scan' of the vulnerability of specific systems to climate variability in the context of S2D climate service provision. The assessment strategy of the framework is user-focused, using predominantly a bottom-up approach (vulnerability as state) but also a top-down approach (vulnerability as outcome) generally based on qualitative data (surveys, interviews, etc.) and literature research for system understanding. The starting point of analysis is a climate-sensitive 'critical situation' of the considered system which requires a decision and is defined by the user. From this basis the related 'critical climate conditions' are assessed and 'climate information needs' are derived. This mainly refers to the critical period of time of the climate event or sequence of events. The relevant period of time of problem-specific critical climate conditions may be assessed by the resilience of the system of concern, the response time of an interconnected system (i.e. top-down approach using a bottom-up methodology) or alternatively, by the critical time-frame of decision-making processes (bottom-up approach). This approach counters the challenges for a vulnerability assessment of economic sectors to S2D climate events which originate from the inherent role of climate for economic sectors: climate may affect economic sectors as hazard, resource, production- or regulation factor. This implies, that climate dependencies are often indirect and nonlinear. Consequently, climate events which are critical for affected systems do not necessarily correlate with common climatological extremes. One important output of the framework is a classification system of 'climate-impact types' which classifies sector-specific problems in a systemic way. This system proves to be promising because (i) it reflects and thus differentiates the cause for the climate relevance of a specific problem (compositions of buffer factors); (ii) it integrates decision-making processes which proved to be a significant factor; (iii) it indicates a potential usability of S2D climate service products and thus integrates coping options, and (vi) it is a systemic approach which goes beyond the established 'snap-shot' of vulnerability assessments.
Vulnerability assessment at a national level in Georgia
NASA Astrophysics Data System (ADS)
Tsereteli, N.; Arabidze, V.; Varazanashvili, O.; Gugeshashvili, T.
2012-04-01
Vulnerability assessment at a national level in Georgia Nino Tsereteli, Vakhtang Arabidze, Otar Varazanashvili, Tengiz Gugeshashvili The risk always exists when cities are built on. Population growth in cities and urbanization in natural hazard-prone zones leads to infrastructure expansion. The goal of the society is to construct natural hazards resistant infrastructure and minimize the expected losses. This is a complicated task as there is always knowledge deficiency on real seismic hazard and vulnerability. Assessment of vulnerability is vital in risk analysis, as vulnerability is defined in many different ways. Work presented here mostly deals with assessment of infrastructure's and population vulnerability at national level in Georgia. This work was initiated by NATO SFP project "seismic Hazard and Risk Assessment for Southern Caucasus - Eastern Turkey Energy Corridors" and the two work packages WP4 (seismic risk) and WP5 (city scenarios) of risk module of EMME (Earthquake Model of the Middle East Region) project. First step was creation databases (inventory) of elements at risk in GIS. Element at risk were the buildings, population, pipelines. The inventories was studied and Created in GIS for the following categories: Building material, number of stories, number of entrances, condition of building, building period. For pipelines pipe tipe (continous or segmented), material, pipe diameter. Very important is to estimate the initial cost of building for assessment of economic losses. From this purpose the attempt was done and the algorithm of this estimation were prepared taking into account obtained the inventory. Build quality, reliability and durability are of special importance to corresponding state agencies and include different aesthetic, engineering, practical, social, technological and economical aspects. The necessity that all of these aspects satisfy existing normative requirements becomes evident as the building and structures come into exploitation. The long term usage of building is very complex. It relates to the reliability and durability of buildings. The long term usage and durability of a building is determined by the concept of depreciation. Depreciation of an entire building is calculated by summing the products of individual construction unit' depreciation rates and the corresponding value of these units within the building. This method of calculation is based on an assumption that depreciation is proportional to the building's (constructions) useful life. We used this methodology to create a matrix, which provides a way to evaluate the depreciation rates of buildings with different type and construction period and to determine their corresponding value. Finely some attempt was done to investigate how these structures were damaged by various hazards. In other words vulnerability curves were constrained on the basis on the relation between various hazard intensities and damage data.
NASA Astrophysics Data System (ADS)
Jouannic, G.; Kolli, Z.; Legendre, T.; Marchetti, M.; Gastaud, P.; Gargani, J.; Lermet, R.; Augeard, C.; Felts, D.; Arki, F.
2015-12-01
Recent studies have shown that the national flood risk exposure is high in France, with one fourth of the total population and a third of jobs located in risk areas. In this context, a global vulnerability assessment methodology is currently being developed in France to bring adequate tools for local territories to manage flood risk. This study addresses the question of the quantification, the qualification and the choice of these vulnerability indicators for a given territory. This work aims to propose a classification of nearly 40 of these indicators in terms of their relative impacts on the risk level estimated on two territories: Chalon-sur-Saône (Saône river) Garonne estuary (Garonne and Dordogne rivers, and Atlantic ocean) Through these cases study, 3 different spatial scales have been compared: the Prés-Saint-Jean district inside Chalon (0.6 km²), the city of Ambès (28.8 km²) and Chalon with its suburbs (72.2 km²). A principal component analysis (PCA) was applied and indicated a threshold in terms of urban impacts between the different flood scenarios. On Chalon, the PCA discriminates 2 groups of flood and highlighted a threshold between T20 and T50. A partial least-square regression (PLS) was computed to make predictions on vulnerability indicators values modelled on new flood scenarios. Their results were is useful to identify the most relevant vulnerability indicators as a function of their flood exposure. These statistical analysis aims to highlight the relationship between a variable of exposure level (hydrologic impact: water levels and flow velocity) with spatialized vulnerability indicators in a 100 m grid (e.g., population, job, etc.). Finally, to get a hierarchy of variables depending on their impact on the risk level, an ANOVA was computed. The selection of variables was performed with a stepwise selection to assess contributions of each dependant variable on the F-statistic as they are added to or removed from the model.
Castell, S; Akmatov, M K; Obi, N; Flesh-Janys, D; Nieters, A; Kemmling, Y; Pessler, F; Krause, G
2014-11-01
Large scale population-based studies focusing on infectious diseases are scarce. This may be explained by methodological obstacles concerning ascertainment of data on infectious diseases requiring, e.g. collection of data on relatively short-termed symptoms and/or collection of biosamples for pathogen identification during a narrow time window. In the German National Cohort (GNC), a novel self-administered questionnaire will be used in addition to biosampling to collect data on selected infectious diseases and symptoms. The aim of this study was to evaluate in Pretest 2 of the GNC newly added items on self-assessed vulnerability to several infectious diseases and to assess test-retest reliability of the questionnaire. The study was conducted in two study centres (Hamburg and Hanover) during Pretest 2 of the GNC. A self-administered paper questionnaire was applied. In Hamburg, participants were asked to fill in the questionnaire during their regular visit at the study centre. For test-retest reliability, participants in Hanover filled in the same questionnaire at home twice. To evaluate agreement, item-related percentage agreement and kappa (κ) were calculated. In addition, we computed Bennet's S and Krippendorf's alpha (α). Items on self-assessed vulnerability to infections were evaluated by comparing them with the corresponding self-reported frequency of infections. An explanatory factor analysis was applied to construct the scores of self-reported infection frequency and self-assessed vulnerability to infections. The evaluation of the internal consistency of the five-item instrument of self-assessed vulnerability to infections resulted in a Cronbach's α of 0.78. The factor analysis yielded evidence of one factor. The factor was divided into three groups (lowest quintile classified as "less prone to infections" compared to peers; second, middle and fourth quintiles classified as "similarly prone to infections" and highest quintile classified as "more prone to infections"). Participants classified as "less prone to infections" reported fewer infections than participants classified as "more prone to infections". Spearman's correlation of the two scores (self-reported infection frequency and self-assessed vulnerability to infection) was 0.50 (p < 0.0001). For quantifying reliability, 88 participants with a median time of 8 days between filling in both questionnaires could be included in the analysis; for items sensitive to disease occurrence between both questionnaires only participants with no relevant disease in this time interval were included (n = 75). The weighted κ ranged between 0.65 and 0.87 for the items on infectious disease frequency in the last 12 months, for items on symptom frequency in the past 12 months between 0.77 and 0.90, and for items on vulnerability compared to peers between 0.68 and 0.76. A five-item instrument on self-assessed vulnerability to infections seems to be promising, but requires further evaluation. Overall, the questionnaire on self-reported infectious diseases used in Pretest 2 of the GNC is a moderately reliable instrument and, thus, can be applied in future studies on infectious diseases.
Flood vulnerability evaluation in complex urban areas
NASA Astrophysics Data System (ADS)
Giosa, L.; Pascale, S.; Sdao, F.; Sole, A.; Cantisani, A.
2009-04-01
This paper deals the conception, the development and the subsequent validation of an integrated numerical model for the assessment of systemic vulnerability in complex and urbanized areas, subject to flood risk. The proposed methodology is based on the application of the concept of "systemic vulnerability", the model is a mathematician-decisional model action to estimate the vulnerability of complex a territorial system during a flood event. The model uses a group of "pressure pointers" in order to define, qualitatively and quantitatively, the influence exercised on the territorial system from factors like as those physicists, social, economic, etc.. The model evaluates the exposure to the flood risk of the elements that belong to a system. The proposed model, which is based on the studies of Tamura et al., 2000; Minciardi et al., 2004; Pascale et al., 2008; considers the vulnerability not as a characteristic of a particular element at risk, but as a peculiarity of a complex territorial system, in which the different elements are reciprocally linked in a functional way. The proposed model points out the elements with the major functional lost and that make the whole system critical. This characteristic makes the proposed model able to support a correct territorial planning and a suitable management of the emergency following natural disasters such as floods. The proposed approach was tested on the study area in the city of Potenza, southern Italy.
Steen, Valerie; Sofaer, Helen R.; Skagen, Susan K.; Ray, Andrea J.; Noon, Barry R
2017-01-01
Species distribution models (SDMs) are commonly used to assess potential climate change impacts on biodiversity, but several critical methodological decisions are often made arbitrarily. We compare variability arising from these decisions to the uncertainty in future climate change itself. We also test whether certain choices offer improved skill for extrapolating to a changed climate and whether internal cross-validation skill indicates extrapolative skill. We compared projected vulnerability for 29 wetland-dependent bird species breeding in the climatically dynamic Prairie Pothole Region, USA. For each species we built 1,080 SDMs to represent a unique combination of: future climate, class of climate covariates, collinearity level, and thresholding procedure. We examined the variation in projected vulnerability attributed to each uncertainty source. To assess extrapolation skill under a changed climate, we compared model predictions with observations from historic drought years. Uncertainty in projected vulnerability was substantial, and the largest source was that of future climate change. Large uncertainty was also attributed to climate covariate class with hydrological covariates projecting half the range loss of bioclimatic covariates or other summaries of temperature and precipitation. We found that choices based on performance in cross-validation improved skill in extrapolation. Qualitative rankings were also highly uncertain. Given uncertainty in projected vulnerability and resulting uncertainty in rankings used for conservation prioritization, a number of considerations appear critical for using bioclimatic SDMs to inform climate change mitigation strategies. Our results emphasize explicitly selecting climate summaries that most closely represent processes likely to underlie ecological response to climate change. For example, hydrological covariates projected substantially reduced vulnerability, highlighting the importance of considering whether water availability may be a more proximal driver than precipitation. However, because cross-validation results were correlated with extrapolation results, the use of cross-validation performance metrics to guide modeling choices where knowledge is limited was supported.
Assessing tsunami vulnerability, an example from Herakleio, Crete
NASA Astrophysics Data System (ADS)
Papathoma, M.; Dominey-Howes, D.; Zong, Y.; Smith, D.
Recent tsunami have caused massive loss of life, destruction of coastal infrastructures and disruption to economic activity. To date, tsunami hazard studies have concentrated on determining the frequency and magnitude of events and in the production of simplistic flood maps. In general, such maps appear to have assumed a uniform vulnerability of population, infrastructure and business. In reality however, a complex set of factors interact to produce a pattern of vulnerability that varies spatially and temporally. A new vulnerability assessment approach is described, that incorporates multiple factors (e.g. parameters relating to the natural and built environments and socio-demographics) that contribute to tsunami vulnerability. The new methodology is applied on a coastal segment in Greece and, in particular, in Crete, westof the city of Herakleio. The results are presented within a Geographic Information System (GIS). The application of GIS ensures the approach is novel for tsunami studies, since it permits interrogation of the primary database by several different end-users. For example, the GIS may be used: (1) to determine immediate post-tsunami disaster response needs by the emergency services; (2) to preplan tsunami mitigation measures by disaster planners; (3) as a tool for local planning by the municipal authorities or; (4) as a basis for catastrophe modelling by insurance companies. We show that population density varies markedly with the time of the year and that 30% of buildings within the inundation zone are only single story thus increasing the vulnerability of their occupants. Within the high inundation depth zone, 11% of buildings are identified as in need of reinforcement and this figure rises to 50% within the medium inundation depth zone. 10% of businesses are located within the high inundation depth zone and these may need to consider their level of insurance cover to protect against primary building damage, contents loss and business interruption losses.
Steen, Valerie; Sofaer, Helen R; Skagen, Susan K; Ray, Andrea J; Noon, Barry R
2017-11-01
Species distribution models (SDMs) are commonly used to assess potential climate change impacts on biodiversity, but several critical methodological decisions are often made arbitrarily. We compare variability arising from these decisions to the uncertainty in future climate change itself. We also test whether certain choices offer improved skill for extrapolating to a changed climate and whether internal cross-validation skill indicates extrapolative skill. We compared projected vulnerability for 29 wetland-dependent bird species breeding in the climatically dynamic Prairie Pothole Region, USA. For each species we built 1,080 SDMs to represent a unique combination of: future climate, class of climate covariates, collinearity level, and thresholding procedure. We examined the variation in projected vulnerability attributed to each uncertainty source. To assess extrapolation skill under a changed climate, we compared model predictions with observations from historic drought years. Uncertainty in projected vulnerability was substantial, and the largest source was that of future climate change. Large uncertainty was also attributed to climate covariate class with hydrological covariates projecting half the range loss of bioclimatic covariates or other summaries of temperature and precipitation. We found that choices based on performance in cross-validation improved skill in extrapolation. Qualitative rankings were also highly uncertain. Given uncertainty in projected vulnerability and resulting uncertainty in rankings used for conservation prioritization, a number of considerations appear critical for using bioclimatic SDMs to inform climate change mitigation strategies. Our results emphasize explicitly selecting climate summaries that most closely represent processes likely to underlie ecological response to climate change. For example, hydrological covariates projected substantially reduced vulnerability, highlighting the importance of considering whether water availability may be a more proximal driver than precipitation. However, because cross-validation results were correlated with extrapolation results, the use of cross-validation performance metrics to guide modeling choices where knowledge is limited was supported.
NASA Astrophysics Data System (ADS)
Sakala, E.; Fourie, F.; Gomo, M.; Coetzee, H.
2018-01-01
In the last 20 years, the popular mineral systems approach has been used successfully for the exploration of various mineral commodities at various scales owing to its scientific soundness, cost effectiveness and simplicity in mapping the critical processes required for the formation of deposits. In the present study this approach was modified for the assessment of groundwater vulnerability. In terms of the modified approach, water drives the pollution migration processes, with various analogies having been derived from the mineral systems approach. The modified approach is illustrated here by the discussion of a case study of acid mine drainage (AMD) pollution in the Witbank, Ermelo and Highveld coalfields of the Mpumalanga and KwaZulu-Natal Provinces in South Africa. Many AMD cases have been reported in these provinces in recent years and are a cause of concern for local municipalities, mining and environmental agencies. In the Witbank, Ermelo and Highveld coalfields, several areas have been mined out while mining has not yet started in others, hence the need to identify groundwater regions prone to AMD pollution in order to avoid further impacts on the groundwater resources. A knowledge-based fuzzy expert system was built using vulnerability factors (energy sources, ligands sources, pollutant sources, transportation pathways and traps) to generate a groundwater vulnerability model of the coalfields. Highly vulnerable areas were identified in Witbank coalfield and the eastern part of the Ermelo coalfield which are characterised by the presence of AMD sources, good subsurface transport coupled with poor AMD pollution trapping properties. The results from the analysis indicate significant correlations between model values and both groundwater sulphate concentrations as well as pH. This shows that the proposed approach can indeed be used as an alternative to traditional methods of groundwater vulnerability assessment. The methodology only considers the AMD pollution attenuation and migration at a regional scale and does not account for local-scale sources of pollution and attenuation. Further research to refine the approach may include the incorporation of groundwater flow direction, rock-pollution reaction time, and temporal datasets for the future prediction of groundwater vulnerability. The approach may be applied to other coalfields to assess its robustness to changing hydrogeological conditions.
NASA Astrophysics Data System (ADS)
Aroca Jimenez, Estefanía; Bodoque del Pozo, Jose Maria; Garcia Martin, Juan Antonio; Diez Herrero, Andres
2016-04-01
The increasing evidence of anthropogenic climate change, the respective intensification of extreme events as well as the increase in human exposure to natural hazards and their vulnerability show that the enhancement of strategies on how to reduce disaster risk and promote adaptation to extreme events is critical to increase resilience. Growing economic losses, high numbers of casualties and the disruption of livelihoods in various places of the world, at an even higher rate than the increase of magnitude and frequency of extreme events, underline that the vulnerability of societies exposed is a key aspect to be considered. Social vulnerability characterizes the predisposition of society to be afflicted by hazards such as floods, being flash floods one of the hazards with the greatest capacity to generate risk. Despite its importance, social vulnerability is often a neglected aspect of traditional risk assessments which mainly focus on economic and structural measures. The aim of this research is to identify those social characteristics which render people vulnerable to flash flood hazards, and consider whether these characteristics are identifiable as local patterns at regional level. The result of this task is a Social Susceptibility Index (SSI) based on susceptibility profiles of the population per township. These profiles are obtained by Hierarchical Segmentation and Latent Class Analysis of demographic and socio-economic information provided by different public organisms. By adding exposure information to SSI, a Social and Infraestructure Flood Vulnerability Index (SIFVI) is created. The methodology proposed here is implemented in the region of Castilla y León (94,226 km2). Townships that are included in this study meet two requirements: i) city centres are affected by an area where potential significant flash-flood risk exists (i.e. villages are crossed by rivers with a longitudinal slope higher than 0.01); ii) city centres are affected by an area with low or exceptional probability of flooding (as provided by Directive 2007/60/EC of 23 october 2007 on the assessment and management of flood risks) acording with the preliminary assessment of flood risk made by water authorities. This analysis of social vulnerability to flash floods means an advance in relation to disaster risk reduction allowing for grouping urban areas with similar resilience. With regard to the above, strengthening of resilience is one of the most important foundation of risk mitigation.
How useful are Swiss flood insurance data for flood vulnerability assessments?
NASA Astrophysics Data System (ADS)
Röthlisberger, Veronika; Bernet, Daniel; Zischg, Andreas; Keiler, Margreth
2015-04-01
The databases of Swiss flood insurance companies build a valuable but to date rarely used source of information on physical flood vulnerability. Detailed insights into the Swiss flood insurance system are crucial for using the full potential of the different databases for research on flood vulnerability. Insurance against floods in Switzerland is a federal system, the modalities are manly regulated on cantonal level. However there are some common principles that apply throughout Switzerland. First of all coverage against floods (and other particular natural hazards) is an integral part of every fire insurance policy for buildings or contents. This coupling of insurance as well as the statutory obligation to insure buildings in most of the cantons and movables in some of the cantons lead to a very high penetration. Second, in case of damage, the reinstatement costs (value as new) are compensated and third there are no (or little) deductible and co-pay. High penetration and the fact that the compensations represent a large share of the direct, tangible losses of the individual policy holders make the databases of the flood insurance companies a comprehensive and therefore valuable data source for flood vulnerability research. Insurance companies not only store electronically data about losses (typically date, amount of claims payment, cause of damage, identity of the insured object or policyholder) but also about insured objects. For insured objects the (insured) value and the details on the policy and its holder are the main feature to record. On buildings the insurance companies usually computerize additional information such as location, volume, year of construction or purpose of use. For the 19 (of total 26) cantons with a cantonal monopoly insurer the data of these insurance establishments have the additional value to represent (almost) the entire building stock of the respective canton. Spatial referenced insurance data can be used for many aspects of vulnerability and resilience assessments. For instance, the collation of insurance loss data with event documentations containing information on flood intensity allows to develop damage curves. Flood damage curves are fundamental for many risk analysis methodologies but to date only few are published and the spatial and temporal scope of their applicability is subject of discussion. Another possibility of using insurance data lies in the field of assessment exposure, where the analysis of comprehensive insurance portfolio data can improve the understanding of the physical but also the socio-economical vulnerability of a society. The poster spotlights key opportunities and challenges scientists are facing when using insurance data for flood vulnerability assessments.
Anthropic Risk Assessment on Biodiversity
NASA Astrophysics Data System (ADS)
Piragnolo, M.; Pirotti, F.; Vettore, A.; Salogni, G.
2013-01-01
This paper presents a methodology for risk assessment of anthropic activities on habitats and species. The method has been developed for Veneto Region, in order to simplify and improve the quality of EIA procedure (VINCA). Habitats and species, animals and plants, are protected by European Directive 92/43/EEC and 2009/147/EC but they are subject at hazard due to pollution produced by human activities. Biodiversity risks may conduct to deterioration and disturbance in ecological niches, with consequence of loss of biodiversity. Ecological risk assessment applied on Natura 2000 network, is needed to best practice of management and monitoring of environment and natural resources. Threats, pressure and activities, stress and indicators may be managed by geodatabase and analysed using GIS technology. The method used is the classic risk assessment in ecological context, and it defines the natural hazard as influence, element of risk as interference and vulnerability. Also it defines a new parameter called pressure. It uses risk matrix for the risk analysis on spatial and temporal scale. The methodology is qualitative and applies the precautionary principle in environmental assessment. The final product is a matrix which excludes the risk and could find application in the development of a territorial information system.
Understanding National Models for Climate Assessments
NASA Astrophysics Data System (ADS)
Dave, A.; Weingartner, K.
2017-12-01
National-level climate assessments have been produced or are underway in a number of countries. These efforts showcase a variety of approaches to mapping climate impacts onto human and natural systems, and involve a variety of development processes, organizational structures, and intended purposes. This presentation will provide a comparative overview of national `models' for climate assessments worldwide, drawing from a geographically diverse group of nations with varying capacities to conduct such assessments. Using an illustrative sampling of assessment models, the presentation will highlight the range of assessment mandates and requirements that drive this work, methodologies employed, focal areas, and the degree to which international dimensions are included for each nation's assessment. This not only allows the U.S. National Climate Assessment to be better understood within an international context, but provides the user with an entry point into other national climate assessments around the world, enabling a better understanding of the risks and vulnerabilities societies face.
Transparent Global Seismic Hazard and Risk Assessment
NASA Astrophysics Data System (ADS)
Smolka, Anselm; Schneider, John; Pinho, Rui; Crowley, Helen
2013-04-01
Vulnerability to earthquakes is increasing, yet advanced reliable risk assessment tools and data are inaccessible to most, despite being a critical basis for managing risk. Also, there are few, if any, global standards that allow us to compare risk between various locations. The Global Earthquake Model (GEM) is a unique collaborative effort that aims to provide organizations and individuals with tools and resources for transparent assessment of earthquake risk anywhere in the world. By pooling data, knowledge and people, GEM acts as an international forum for collaboration and exchange, and leverages the knowledge of leading experts for the benefit of society. Sharing of data and risk information, best practices, and approaches across the globe is key to assessing risk more effectively. Through global projects, open-source IT development and collaborations with more than 10 regions, leading experts are collaboratively developing unique global datasets, best practice, open tools and models for seismic hazard and risk assessment. Guided by the needs and experiences of governments, companies and citizens at large, they work in continuous interaction with the wider community. A continuously expanding public-private partnership constitutes the GEM Foundation, which drives the collaborative GEM effort. An integrated and holistic approach to risk is key to GEM's risk assessment platform, OpenQuake, that integrates all above-mentioned contributions and will become available towards the end of 2014. Stakeholders worldwide will be able to calculate, visualise and investigate earthquake risk, capture new data and to share their findings for joint learning. Homogenized information on hazard can be combined with data on exposure (buildings, population) and data on their vulnerability, for loss assessment around the globe. Furthermore, for a true integrated view of seismic risk, users can add social vulnerability and resilience indices to maps and estimate the costs and benefits of different risk management measures. The following global data, models and methodologies will be available in the platform. Some of these will be released to the public already before, such as the ISC-GEM global instrumental catalogue (released January 2013). Datasets: • Global Earthquake History Catalogue [1000-1903] • Global Instrumental Catalogue [1900-2009] • Global Geodetic Strain Rate Model • Global Active Fault Database • Tectonic Regionalisation • Buildings and Population Database • Earthquake Consequences Database • Physical Vulnerability Database • Socio-Economic Vulnerability and Resilience Indicators Models: • Seismic Source Models • Ground Motion (Attenuation) Models • Physical Exposure Models • Physical Vulnerability Models • Composite Index Models (social vulnerability, resilience, indirect loss) The aforementioned models developed under the GEM framework will be combined to produce estimates of hazard and risk at a global scale. Furthermore, building on many ongoing efforts and knowledge of scientists worldwide, GEM will integrate state-of-the-art data, models, results and open-source tools into a single platform that is to serve as a "clearinghouse" on seismic risk. The platform will continue to increase in value, in particular for use in local contexts, through contributions and collaborations with scientists and organisations worldwide.
6 CFR 27.215 - Security vulnerability assessments.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 6 Domestic Security 1 2010-01-01 2010-01-01 false Security vulnerability assessments. 27.215... FACILITY ANTI-TERRORISM STANDARDS Chemical Facility Security Program § 27.215 Security vulnerability...-risk, the facility must complete a Security Vulnerability Assessment. A Security Vulnerability...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brigantic, Robert T.; Betzsold, Nick J.; Bakker, Craig KR
In this presentation we overview a methodology for dynamic security risk quantification and optimal resource allocation of security assets for high profile venues. This methodology is especially applicable to venues that require security screening operations such as mass transit (e.g., train or airport terminals), critical infrastructure protection (e.g., government buildings), and largescale public events (e.g., concerts or professional sports). The method starts by decomposing the three core components of risk -- threat, vulnerability, and consequence -- into their various subcomponents. For instance, vulnerability can be decomposed into availability, accessibility, organic security, and target hardness and each of these can bemore » evaluated against the potential threats of interest for the given venue. Once evaluated, these subcomponents are rolled back up to compute the specific value for the vulnerability core risk component. Likewise, the same is done for consequence and threat, and then risk is computed as the product of these three components. A key aspect of our methodology is dynamically quantifying risk. That is, we incorporate the ability to uniquely allow the subcomponents and core components, and in turn, risk, to be quantified as a continuous function of time throughout the day, week, month, or year as appropriate.« less
Assessing the risk posed by natural hazards to infrastructures
NASA Astrophysics Data System (ADS)
Eidsvig, Unni Marie K.; Kristensen, Krister; Vidar Vangelsten, Bjørn
2017-03-01
This paper proposes a model for assessing the risk posed by natural hazards to infrastructures, with a focus on the indirect losses and loss of stability for the population relying on the infrastructure. The model prescribes a three-level analysis with increasing level of detail, moving from qualitative to quantitative analysis. The focus is on a methodology for semi-quantitative analyses to be performed at the second level. The purpose of this type of analysis is to perform a screening of the scenarios of natural hazards threatening the infrastructures, identifying the most critical scenarios and investigating the need for further analyses (third level). The proposed semi-quantitative methodology considers the frequency of the natural hazard, different aspects of vulnerability, including the physical vulnerability of the infrastructure itself, and the societal dependency on the infrastructure. An indicator-based approach is applied, ranking the indicators on a relative scale according to pre-defined ranking criteria. The proposed indicators, which characterise conditions that influence the probability of an infrastructure malfunctioning caused by a natural event, are defined as (1) robustness and buffer capacity, (2) level of protection, (3) quality/level of maintenance and renewal, (4) adaptability and quality of operational procedures and (5) transparency/complexity/degree of coupling. Further indicators describe conditions influencing the socio-economic consequences of the infrastructure malfunctioning, such as (1) redundancy and/or substitution, (2) cascading effects and dependencies, (3) preparedness and (4) early warning, emergency response and measures. The aggregated risk estimate is a combination of the semi-quantitative vulnerability indicators, as well as quantitative estimates of the frequency of the natural hazard, the potential duration of the infrastructure malfunctioning (e.g. depending on the required restoration effort) and the number of users of the infrastructure. Case studies for two Norwegian municipalities are presented for demonstration purposes, where risk posed by adverse weather and natural hazards to primary road, water supply and power networks is assessed. The application examples show that the proposed model provides a useful tool for screening of potential undesirable events, contributing to a targeted reduction of the risk.
Modeling climate change impact in hospitality sector, using building resources consumption signature
NASA Astrophysics Data System (ADS)
Pinto, Armando; Bernardino, Mariana; Silva Santos, António; Pimpão Silva, Álvaro; Espírito Santo, Fátima
2016-04-01
Hotels are one of building types that consumes more energy and water per person and are vulnerable to climate change because in the occurrence of extreme events (heat waves, water stress) same failures could compromise the hotel services (comfort) and increase energy cost or compromise the landscape and amenities due to water use restrictions. Climate impact assessments and the development of adaptation strategies require the knowledge about critical climatic variables and also the behaviour of building. To study the risk and vulnerability of buildings and hotels to climate change regarding resources consumption (energy and water), previous studies used building energy modelling simulation (BEMS) tools to study the variation in energy and water consumption. In general, the climate change impact in building is evaluated studying the energy and water demand of the building for future climate scenarios. But, hotels are complex buildings, quite different from each other and assumption done in simplified BEMS aren't calibrated and usually neglect some important hotel features leading to projected estimates that do not usually match hotel sector understanding and practice. Taking account all uncertainties, the use of building signature (statistical method) could be helpful to assess, in a more clear way, the impact of Climate Change in the hospitality sector and using a broad sample. Statistical analysis of the global energy consumption obtained from bills shows that the energy consumption may be predicted within 90% confidence interval only with the outdoor temperature. In this article a simplified methodology is presented and applied to identify the climate change impact in hospitality sector using the building energy and water signature. This methodology is applied to sixteen hotels (nine in Lisbon and seven in Algarve) with four and five stars rating. The results show that is expect an increase in water and electricity consumption (manly due to the increase in cooling) and a decrease in gas consumption (for heating). The hotels in Algarve are more vulnerable than Lisbon hotels.
Ambekar, Atul; Rao, Ravindra; Agrawal, Alok; Goyal, Shrigopal; Mishra, Ashwani; Kishore, Kunal; Mukherjee, Debashis; Albertin, Cristina
2015-01-01
Studies from developed countries document the presence of injecting drug use among females and significantly higher vulnerabilities and risks as compared with male injecting drug users (IDUs). Studies comparing vulnerabilities and drug use patterns between female and male IDUs are not available for developing countries. The aim of the study was to assess the drug use pattern and related HIV vulnerabilities among female IDUs and compare these findings with those from male IDUs from four states of Northeast India. The study used data collected as part of a nationwide study of drug use pattern and related HIV vulnerabilities among IDUs. Ninety-eight female and 202 male IDUs accessing services from harm reduction sites across the four states of Northeast region of India were chosen through random sampling methodology. Drug use pattern, injecting practices, and knowledge of HIV were assessed using a structured questionnaire. Significantly higher proportion of female IDUs was uneducated, unemployed, reported their occupation as sex workers, and switched to injecting drug use faster as compared with male IDUs. Female IDUs practicing sex work differed significantly from those who did not with respect to frequency of daily injections, choice of drugs injected, and concomitant use of non-injecting drugs. More than half of female IDUs initiated sharing within the first month of injecting. The study demonstrates that female IDUs differ from male IDUs in their drug use pattern, initiation into injection as well as injecting behavior, which would be an important consideration during designing of female-specific interventions.
Leighton, Caroline; Botto, Alberto; Silva, Jaime R; Jiménez, Juan Pablo; Luyten, Patrick
2017-01-01
Research on the potential role of gene-environment interactions (GxE) in explaining vulnerability to psychopathology in humans has witnessed a shift from a diathesis-stress perspective to differential susceptibility approaches. This paper critically reviews methodological issues and trends in this body of research. Databases were screened for studies of GxE in the prediction of personality traits, behavior, and mental health disorders in humans published between January 2002 and January 2015. In total, 315 papers were included. Results showed that 34 candidate genes have been included in GxE studies. Independent of the type of environment studied (early or recent life events, positive or negative environments), about 67-83% of studies have reported significant GxE interactions, which is consistent with a social susceptibility model. The percentage of positive results does not seem to differ depending on the gene studied, although publication bias might be involved. However, the number of positive findings differs depending on the population studied (i.e., young adults vs. older adults). Methodological considerations limit the ability to draw strong conclusions, particularly as almost 90% ( n = 283/315) of published papers are based on samples from North America and Europe, and about 70% of published studies (219/315) are based on samples that were also used in other reports. At the same time, there are clear indications of methodological improvements over time, as is shown by a significant increase in longitudinal and experimental studies as well as in improved minimum genotyping. Recommendations for future research, such as minimum quality assessment of genes and environmental factors, specifying theoretical models guiding the study, and taking into account of cultural, ethnic, and lifetime perspectives, are formulated.
A Preliminary Tsunami vulnerability analysis for Bakirkoy district in Istanbul
NASA Astrophysics Data System (ADS)
Tufekci, Duygu; Lutfi Suzen, M.; Cevdet Yalciner, Ahmet; Zaytsev, Andrey
2016-04-01
Resilience of coastal utilities after earthquakes and tsunamis has major importance for efficient and proper rescue and recovery operations soon after the disasters. Vulnerability assessment of coastal areas under extreme events has major importance for preparedness and development of mitigation strategies. The Sea of Marmara has experienced numerous earthquakes as well as associated tsunamis. There are variety of coastal facilities such as ports, small craft harbors, and terminals for maritime transportation, water front roads and business centers mainly at North Coast of Marmara Sea in megacity Istanbul. A detailed vulnerability analysis for Yenikapi region and a detailed resilience analysis for Haydarpasa port in Istanbul have been studied in previously by Cankaya et al., (2015) and Aytore et al., (2015) in SATREPS project. In this study, the methodology of vulnerability analysis under tsunami attack given in Cankaya et al., (2015) is modified and applied to Bakirkoy district of Istanbul. Bakirkoy district is located at western part of Istanbul and faces to the North Coast of Marmara Sea from 28.77oE to 28.89oE. High resolution spatial dataset of Istanbul Metropolitan Municipality (IMM) is used and analyzed. The bathymetry and topography database and the spatial dataset containing all buildings/structures/infrastructures in the district are collated and utilized for tsunami numerical modeling and following vulnerability analysis. The tsunami parameters from deterministically defined worst case scenarios are computed from the simulations using tsunami numerical model NAMI DANCE. The vulnerability assessment parameters in the district according to vulnerability and resilience are defined; and scored by implementation of a GIS based TVA with appropriate MCDA methods. The risk level is computed using tsunami intensity (level of flow depth from simulations) and TVA results at every location in Bakirkoy district. The preliminary results are presented and discussed. Acknowledgements: Partial support by Japan-Turkey Joint Research Project by JICA on earthquakes and tsunamis in Marmara Region in (JICA SATREPS - MarDiM Project), 603839 ASTARTE Project of EU, UDAP-C-12-14 project of AFAD, Turkey, 108Y227, 113M556, 213M534 projects of TUBITAK Turkey, RAPSODI (CONCERT_Dis-021) of CONCERT-Japan Joint Call and Istanbul Metropolitan Municipality are acknowledged.
NASA Astrophysics Data System (ADS)
Masure, P.
2003-04-01
The GEMITIS method has been implemented since 1995 into a global and integrated Risk Reduction Strategy for improving the seismic risk-assessment effectiveness in urban areas, including the generation of crisis scenarios and mid- to long term- seismic impact assessment. GEMITIS required us to provide more precise definitions of notions in common use by natural-hazard specialists, such as elements at risk and vulnerability. Until then, only the physical and human elements had been considered, and analysis of their vulnerability referred to their fragility in the face of aggression by nature. We have completed this approach by also characterizing the social and cultural vulnerability of a city and its inhabitants, and, with a wider scope, the functional vulnerability of the "urban system". This functional vulnerability depends upon the relations between the system elements (weak links in chains, functional relays, and defense systems) and upon the city's relations with the outside world (interdependence). Though well developed in methods for evaluating industrial risk (fault-tree analysis, event-tree analysis, multiple defense barriers, etc.), this aspect had until now been ignored by the "hard-science" specialists working on natural hazards. Based on the implementation of an Urban System Exposure methodology, we were able to identify specific human, institutional, or functional vulnerability factors for each urban system, which until had been very little discussed by risk-analysis and civil-protection specialists. In addition, we have defined the new concept of "main stakes" of the urban system, ranked by order of social value (or collective utility). Obviously, vital or strategic issues must be better resistant or protected against natural hazards than issues of secondary importance. The ranking of exposed elements of a city in terms of "main stakes" provides a very useful guide for adapting vulnerability studies and for orienting preventive actions. For this, GEMITIS is based on a systemic approach of the city and on value analysis of exposed elements. It facilitates a collective expertise for the definition of a preventive action plan based on the participation of the main urban actors (crisis preparedness, construction, land-use, etc.).
NASA Technical Reports Server (NTRS)
Antle, John M.; Valdivia, Roberto O.; Boote, Kenneth J.; Janssen, Sander; Jones, James W.; Porter, Cheryl H.; Rosenzweig, Cynthia; Ruane, Alexander C.; Thorburn, Peter J.
2015-01-01
This chapter describes methods developed by the Agricultural Model Intercomparison and Improvement Project (AgMIP) to implement a transdisciplinary, systems-based approach for regional-scale (local to national) integrated assessment of agricultural systems under future climate, biophysical, and socio-economic conditions. These methods were used by the AgMIP regional research teams in Sub-Saharan Africa and South Asia to implement the analyses reported in their respective chapters of this book. Additional technical details are provided in Appendix 1.The principal goal that motivates AgMIP's regional integrated assessment (RIA) methodology is to provide scientifically rigorous information needed to support improved decision-making by various stakeholders, ranging from local to national and international non-governmental and governmental organizations.
Martial Arts and Socially Vulnerable Youth. An Analysis of Flemish Initiatives
ERIC Educational Resources Information Center
Theeboom, Marc; De Knop, Paul; Wylleman, Paul
2008-01-01
Notwithstanding the lack of empirical support for its positive socio-psychological effects, numerous educators and welfare workers make use of martial arts in their work with socially vulnerable youth. Using qualitative methodology, the aims, approaches and personal experiences were analysed of teachers and co-ordinators involved in specific…
Nadeau, Christopher P.; Fuller, Angela K.
2016-01-01
Conservation organizations worldwide are investing in climate change vulnerability assessments. Most vulnerability assessment methods focus on either landscape features or species traits that can affect a species vulnerability to climate change. However, landscape features and species traits likely interact to affect vulnerability. We compare a landscape-based assessment, a trait-based assessment, and an assessment that combines landscape variables and species traits for 113 species of birds, herpetofauna, and mammals in the northeastern United States. Our aim is to better understand which species traits and landscape variables have the largest influence on assessment results and which types of vulnerability assessments are most useful for different objectives. Species traits were most important for determining which species will be most vulnerable to climate change. The sensitivity of species to dispersal barriers and the species average natal dispersal distance were the most important traits. Landscape features were most important for determining where species will be most vulnerable because species were most vulnerable in areas where multiple landscape features combined to increase vulnerability, regardless of species traits. The interaction between landscape variables and species traits was important when determining how to reduce climate change vulnerability. For example, an assessment that combines information on landscape connectivity, climate change velocity, and natal dispersal distance suggests that increasing landscape connectivity may not reduce the vulnerability of many species. Assessments that include landscape features and species traits will likely be most useful in guiding conservation under climate change.
Inostroza, Luis; Palme, Massimo; de la Barrera, Francisco
2016-01-01
Climate change will worsen the high levels of urban vulnerability in Latin American cities due to specific environmental stressors. Some impacts of climate change, such as high temperatures in urban environments, have not yet been addressed through adaptation strategies, which are based on poorly supported data. These impacts remain outside the scope of urban planning. New spatially explicit approaches that identify highly vulnerable urban areas and include specific adaptation requirements are needed in current urban planning practices to cope with heat hazards. In this paper, a heat vulnerability index is proposed for Santiago, Chile. The index was created using a GIS-based spatial information system and was constructed from spatially explicit indexes for exposure, sensitivity and adaptive capacity levels derived from remote sensing data and socio-economic information assessed via principal component analysis (PCA). The objective of this study is to determine the levels of heat vulnerability at local scales by providing insights into these indexes at the intra city scale. The results reveal a spatial pattern of heat vulnerability with strong variations among individual spatial indexes. While exposure and adaptive capacities depict a clear spatial pattern, sensitivity follows a complex spatial distribution. These conditions change when examining PCA results, showing that sensitivity is more robust than exposure and adaptive capacity. These indexes can be used both for urban planning purposes and for proposing specific policies and measures that can help minimize heat hazards in highly dynamic urban areas. The proposed methodology can be applied to other Latin American cities to support policy making.
Palme, Massimo; de la Barrera, Francisco
2016-01-01
Climate change will worsen the high levels of urban vulnerability in Latin American cities due to specific environmental stressors. Some impacts of climate change, such as high temperatures in urban environments, have not yet been addressed through adaptation strategies, which are based on poorly supported data. These impacts remain outside the scope of urban planning. New spatially explicit approaches that identify highly vulnerable urban areas and include specific adaptation requirements are needed in current urban planning practices to cope with heat hazards. In this paper, a heat vulnerability index is proposed for Santiago, Chile. The index was created using a GIS-based spatial information system and was constructed from spatially explicit indexes for exposure, sensitivity and adaptive capacity levels derived from remote sensing data and socio-economic information assessed via principal component analysis (PCA). The objective of this study is to determine the levels of heat vulnerability at local scales by providing insights into these indexes at the intra city scale. The results reveal a spatial pattern of heat vulnerability with strong variations among individual spatial indexes. While exposure and adaptive capacities depict a clear spatial pattern, sensitivity follows a complex spatial distribution. These conditions change when examining PCA results, showing that sensitivity is more robust than exposure and adaptive capacity. These indexes can be used both for urban planning purposes and for proposing specific policies and measures that can help minimize heat hazards in highly dynamic urban areas. The proposed methodology can be applied to other Latin American cities to support policy making. PMID:27606592
Kauffman, L.J.; Chapelle, F.H.
2010-01-01
A process-based methodology was used to compare the vulnerability of public supply wells tapping seven study areas in four hydrologically distinct regional aquifers to volatile organic compound (VOC) contamination. This method considers (1) contributing areas and travel times of groundwater flowpaths converging at individual supply wells, (2) the oxic and/or anoxic conditions encountered along each flowpath, and (3) the combined effects of hydrodynamic dispersion and contaminant- and oxic/anoxic-specific biodegradation. Contributing areas and travel times were assessed using particle tracks generated from calibrated regional groundwater flow models. These results were then used to estimate VOC concentrations relative to an unspecified initial concentration (C/C0) at individual public supply wells. The results show that the vulnerability of public supply wells to VOC contamination varies widely between different regional aquifers. Low-recharge rates, long travel times, and the predominantly oxic conditions characteristic of Basin and Range aquifers in the western United States leads to lower vulnerability to VOCs, particularly to petroleum hydrocarbons such as benzene and toluene. On the other hand, high recharge rates and short residence times characteristic of the glacial aquifers of the eastern United States leads to greater vulnerability to VOCs. These differences lead to distinct patterns of C/C0 values estimated for public supply wells characteristic of each aquifer, information that can be used by resource managers to develop monitoring plans based on relative vulnerability, to locate new public supply wells, or to make land-use management decisions. Journal compilation ?? 2010 National Ground Water Association. No claim to original US government works.
Structural vulnerability assessment using reliability of slabs in avalanche area
NASA Astrophysics Data System (ADS)
Favier, Philomène; Bertrand, David; Eckert, Nicolas; Naaim, Mohamed
2013-04-01
Improvement of risk assessment or hazard zoning requires a better understanding of the physical vulnerability of structures. To consider natural hazard issue such as snow avalanches, once the flow is characterized, highlight on the mechanical behaviour of the structure is a decisive step. A challenging approach is to quantify the physical vulnerability of impacted structures according to various avalanche loadings. The main objective of this presentation is to introduce methodology and outcomes regarding the assessment of vulnerability of reinforced concrete buildings using reliability methods. Reinforced concrete has been chosen as it is one of the usual material used to build structures exposed to potential avalanche loadings. In avalanche blue zones, structures have to resist to a pressure up to 30kPa. Thus, by providing systematic fragility relations linked to the global failure of the structure, this method may serve the avalanche risk assessment. To do so, a slab was numerically designed. It represented the avalanche facing wall of a house. Different configuration cases of the element in stake have been treated to quantify numerical aspects of the problem, such as the boundary conditions or the mechanical behaviour of the structure. The structure is analysed according to four different limit states, semi-local and global failures are considered to describe the slab behaviour. The first state is attained when cracks appear in the tensile zone, then the two next states are described consistent with the Eurocode, the final state is the total collapse of the structure characterized by the yield line theory. Failure probability is estimated in accordance to the reliability framework. Monte Carlo simulations were conducted to quantify the fragility to different loadings. Sensitivity of models in terms of input distributions were defined with statistical tools such as confidence intervals and Sobol's indexes. Conclusion and discussion of this work are established to well determine contributions, limits and future needs or developments of the research. First of all, this study provides spectrum of fragility curves of reinforced concrete structures which could be used to improve risk assessment. Second, the influence of the failure criterion picked up in this survey are discussed. Then, the weight of the statistical distribution choice is analysed. Finally, the limit between vulnerability and fragility relations is set up to establish the boundary use of our approach.
A comprehensive risk assessment framework for offsite transportation of inflammable hazardous waste.
Das, Arup; Gupta, A K; Mazumder, T N
2012-08-15
A framework for risk assessment due to offsite transportation of hazardous wastes is designed based on the type of event that can be triggered from an accident of a hazardous waste carrier. The objective of this study is to design a framework for computing the risk to population associated with offsite transportation of inflammable and volatile wastes. The framework is based on traditional definition of risk and is designed for conditions where accident databases are not available. The probability based variable in risk assessment framework is substituted by a composite accident index proposed in this study. The framework computes the impacts due to a volatile cloud explosion based on TNO Multi-energy model. The methodology also estimates the vulnerable population in terms of disability adjusted life years (DALY) which takes into consideration the demographic profile of the population and the degree of injury on mortality and morbidity sustained. The methodology is illustrated using a case study of a pharmaceutical industry in the Kolkata metropolitan area. Copyright © 2012 Elsevier B.V. All rights reserved.
Building Loss Estimation for Earthquake Insurance Pricing
NASA Astrophysics Data System (ADS)
Durukal, E.; Erdik, M.; Sesetyan, K.; Demircioglu, M. B.; Fahjan, Y.; Siyahi, B.
2005-12-01
After the 1999 earthquakes in Turkey several changes in the insurance sector took place. A compulsory earthquake insurance scheme was introduced by the government. The reinsurance companies increased their rates. Some even supended operations in the market. And, most important, the insurance companies realized the importance of portfolio analysis in shaping their future market strategies. The paper describes an earthquake loss assessment methodology that can be used for insurance pricing and portfolio loss estimation that is based on our work esperience in the insurance market. The basic ingredients are probabilistic and deterministic regional site dependent earthquake hazard, regional building inventory (and/or portfolio), building vulnerabilities associated with typical construction systems in Turkey and estimations of building replacement costs for different damage levels. Probable maximum and average annualized losses are estimated as the result of analysis. There is a two-level earthquake insurance system in Turkey, the effect of which is incorporated in the algorithm: the national compulsory earthquake insurance scheme and the private earthquake insurance system. To buy private insurance one has to be covered by the national system, that has limited coverage. As a demonstration of the methodology we look at the case of Istanbul and use its building inventory data instead of a portfolio. A state-of-the-art time depent earthquake hazard model that portrays the increased earthquake expectancies in Istanbul is used. Intensity and spectral displacement based vulnerability relationships are incorporated in the analysis. In particular we look at the uncertainty in the loss estimations that arise from the vulnerability relationships, and at the effect of the implemented repair cost ratios.
Methodological factors conducting research with incarcerated persons with diabetes.
Reagan, Louise; Shelton, Deborah
2016-02-01
The aim of this study was to describe methodological issues specific to conducting research with incarcerated vulnerable populations who have diabetes. Much has been written about the ethical and logistical challenges of conducting research with vulnerable incarcerated populations. However, conducting research with incarcerated persons with diabetes is associated with additional issues related to research design, measurement, sampling and recruitment, and data collection procedures. A cross-sectional study examining the relationships of diabetes knowledge, illness representation and self-care behaviors with glycemic control in 124 incarcerated persons was conducted and serves as the basis for describing methodological factors for the conduct of research with an incarcerated population with diabetes. Within this incarcerated population with diabetes, sampling bias due to gender inequity, recruitment of participants not using insulin, self-reported vision impairment, and a lack of standardized instruments especially for measuring diabetes self-care were methodological challenges. Clinical factors that serve as potential barriers for study conduct were identified as risk for hypoglycemia due to insulin timing and other activities. Conducting research with incarcerated persons diagnosed with diabetes requires attention to a set of methodological concerns above and beyond that of the ethical and legal regulations for protecting the rights of this vulnerable population. To increase opportunities for conducting rigorous as well as facility- and patient-friendly research, researchers need to blend their knowledge of diabetes with an understanding of prison rules and routines. Copyright © 2015 Elsevier Inc. All rights reserved.
The Maternal Adversity, Vulnerability and Neurodevelopment Project: Theory and Methodology
O’Donnell, Katherine A; Gaudreau, Hélène; Colalillo, Sara; Steiner, Meir; Atkinson, Leslie; Moss, Ellen; Goldberg, Susan; Karama, Sherif; Matthews, Stephen G; Lydon, John E; Silveira, Patricia P; Wazana, Ashley D; Levitan, Robert D; Sokolowski, Marla B; Kennedy, James L; Fleming, Alison; Meaney, Michael J
2014-01-01
Objective: To describe the theory and methodology of the multi-wave, prospective Maternal Adversity, Vulnerability and Neurodevelopment (MAVAN) study. The goal of MAVAN is to examine the pre- and postnatal influences, and their interaction, in determining individual differences in mental health. Method: MAVAN is a community-based, birth cohort study of pregnant Canadian mothers and their offspring. Dyads are assessed longitudinally, with multiple assessments of both mother and child in home and laboratory across the child’s development. Study measures, including assessments of cognitive and emotional function, are described. The study uses a candidate gene approach to examine gene–environment interdependence in specific developmental outcomes. Finally, the study includes measures of both brain-based phenotypes and metabolism to explore comorbidities associated with child obesity. One of the unique features of the MAVAN protocol is the extensive measures of the mother–child interaction. The relation between these measures will be discussed. Results: Evidence from the MAVAN project shows interesting results about maternal care, families, and child outcomes. In our review, preliminary analyses showing the correlations between measures of maternal care are reported. As predicted, early evidence suggests that maternal care measures are positively correlated, over time. Conclusions: This review provides evidence for the feasibility and value of laboratory-based measures embedded within a longitudinal birth cohort study. Though retention of the samples has been a challenge of MAVAN, they are within a comparable range to other studies of this nature. Indeed, the trade-off of somewhat greater participant burden has allowed for a rich database. The results yielded from the MAVAN project will not only describe typical development but also possible targets for intervention. Understanding certain endophenotypes will shed light on the pathogenesis of various mental and physical disorders, as well as their interrelation. PMID:25565695
NASA Astrophysics Data System (ADS)
Terzi, Stefano; Torresan, Silvia; Schneiderbauer, Stefan
2017-04-01
Keywords: Climate change, mountain regions, multi-risk assessment, climate change adaptation. Climate change has already led to a wide range of impacts on the environment, the economy and society. Adaptation actions are needed to cope with the impacts that have already occurred (e.g. storms, glaciers melting, floods, droughts) and to prepare for future scenarios of climate change. Mountain environment is particularly vulnerable to the climate changes due to its exposure to recent climate warming (e.g. water regime changes, thawing of permafrost) and due to the high degree of specialization of both natural and human systems (e.g. alpine species, valley population density, tourism-based economy). As a consequence, the mountain local governments are encouraged to undertake territorial governance policies to climate change, considering multi-risks and opportunities for the mountain economy and identifying the best portfolio of adaptation strategies. This study aims to provide a literature review of available qualitative and quantitative tools, methodological guidelines and best practices to conduct multi-risk assessments in the mountain environment within the context of climate change. We analyzed multi-risk modelling and assessment methods applied in alpine regions (e.g. event trees, Bayesian Networks, Agent Based Models) in order to identify key concepts (exposure, resilience, vulnerability, risk, adaptive capacity), climatic drivers, cause-effect relationships and socio-ecological systems to be integrated in a comprehensive framework. The main outcomes of the review, including a comparison of existing techniques based on different criteria (e.g. scale of analysis, targeted questions, level of complexity) and a snapshot of the developed multi-risk framework for climate change adaptation will be here presented and discussed.
Riparian erosion vulnerability model based on environmental features.
Botero-Acosta, Alejandra; Chu, Maria L; Guzman, Jorge A; Starks, Patrick J; Moriasi, Daniel N
2017-12-01
Riparian erosion is one of the major causes of sediment and contaminant load to streams, degradation of riparian wildlife habitats, and land loss hazards. Land and soil management practices are implemented as conservation and restoration measures to mitigate the environmental problems brought about by riparian erosion. This, however, requires the identification of vulnerable areas to soil erosion. Because of the complex interactions between the different mechanisms that govern soil erosion and the inherent uncertainties involved in quantifying these processes, assessing erosion vulnerability at the watershed scale is challenging. The main objective of this study was to develop a methodology to identify areas along the riparian zone that are susceptible to erosion. The methodology was developed by integrating the physically-based watershed model MIKE-SHE, to simulate water movement, and a habitat suitability model, MaxEnt, to quantify the probability of presences of elevation changes (i.e., erosion) across the watershed. The presences of elevation changes were estimated based on two LiDAR-based elevation datasets taken in 2009 and 2012. The changes in elevation were grouped into four categories: low (0.5 - 0.7 m), medium (0.7 - 1.0 m), high (1.0 - 1.7 m) and very high (1.7 - 5.9 m), considering each category as a studied "species". The categories' locations were then used as "species location" map in MaxEnt. The environmental features used as constraints to the presence of erosion were land cover, soil, stream power index, overland flow, lateral inflow, and discharge. The modeling framework was evaluated in the Fort Cobb Reservoir Experimental watershed in southcentral Oklahoma. Results showed that the most vulnerable areas for erosion were located at the upper riparian zones of the Cobb and Lake sub-watersheds. The main waterways of these sub-watersheds were also found to be prone to streambank erosion. Approximatively 80% of the riparian zone (streambank included) has up to 30% probability to experience erosion greater than 1.0 m. By being able to identify the most vulnerable areas for stream and riparian sediment mobilization, conservation and management practices can be focused on areas needing the most attention and resources. Copyright © 2017 Elsevier Ltd. All rights reserved.
A probabilistic seismic risk assessment procedure for nuclear power plants: (II) Application
Huang, Y.-N.; Whittaker, A.S.; Luco, N.
2011-01-01
This paper presents the procedures and results of intensity- and time-based seismic risk assessments of a sample nuclear power plant (NPP) to demonstrate the risk-assessment methodology proposed in its companion paper. The intensity-based assessments include three sets of sensitivity studies to identify the impact of the following factors on the seismic vulnerability of the sample NPP, namely: (1) the description of fragility curves for primary and secondary components of NPPs, (2) the number of simulations of NPP response required for risk assessment, and (3) the correlation in responses between NPP components. The time-based assessment is performed as a series of intensity-based assessments. The studies illustrate the utility of the response-based fragility curves and the inclusion of the correlation in the responses of NPP components directly in the risk computation. ?? 2011 Published by Elsevier B.V.
Assessing the security vulnerabilities of correctional facilities
NASA Astrophysics Data System (ADS)
Spencer, Debra D.; Morrison, G. Steve
1998-12-01
The National Institute of Justice has tasked their satellite facility at Sandia National Laboratories and their Southeast Regional Technology Center in Charleston, South Carolina to devise new procedures and tools for helping correctional facilities to assess their security vulnerabilities. Thus, a team is visiting selected correctional facilities and performing vulnerability assessments. A vulnerability assessment helps identify the easiest paths for inmate escape, for introduction of contraband such as drugs or weapons, for unexpected intrusion from outside of the facility, and for the perpetration of violent acts on other inmates and correctional employees. In addition, the vulnerability assessment helps to quantify the security risks for the facility. From these assessments will come better procedures for performing vulnerability assessments in general at other correctional facilities, as well as the development of tools to assist with the performance of such vulnerability assessments.
Yang, Weichao; Xu, Kui; Lian, Jijian; Bin, Lingling; Ma, Chao
2018-05-01
Flood is a serious challenge that increasingly affects the residents as well as policymakers. Flood vulnerability assessment is becoming gradually relevant in the world. The purpose of this study is to develop an approach to reveal the relationship between exposure, sensitivity and adaptive capacity for better flood vulnerability assessment, based on the fuzzy comprehensive evaluation method (FCEM) and coordinated development degree model (CDDM). The approach is organized into three parts: establishment of index system, assessment of exposure, sensitivity and adaptive capacity, and multiple flood vulnerability assessment. Hydrodynamic model and statistical data are employed for the establishment of index system; FCEM is used to evaluate exposure, sensitivity and adaptive capacity; and CDDM is applied to express the relationship of the three components of vulnerability. Six multiple flood vulnerability types and four levels are proposed to assess flood vulnerability from multiple perspectives. Then the approach is applied to assess the spatiality of flood vulnerability in Hainan's eastern area, China. Based on the results of multiple flood vulnerability, a decision-making process for rational allocation of limited resources is proposed and applied to the study area. The study shows that multiple flood vulnerability assessment can evaluate vulnerability more completely, and help decision makers learn more information about making decisions in a more comprehensive way. In summary, this study provides a new way for flood vulnerability assessment and disaster prevention decision. Copyright © 2018 Elsevier Ltd. All rights reserved.
Lippman, Sheri A; Kerrigan, Deanna; Chinaglia, Magda; Díaz, Juan
2007-06-01
In a country where quality HIV/AIDS prevention and care has been foremost on the national agenda, Brazil's extensive and diverse borders are one of the last unstudied potential hotbeds of HIV vulnerability. We carried out a rapid assessment of HIV-related services and the social context of HIV/AIDS at the Brazilian borders including current governmental and community response. The assessment was implemented in six frontier municipalities using the WHO's strategic approach methodology, which combines existing epidemiologic data with field-based qualitative data collection techniques, including observation of service delivery points and in-depth interviews and focus groups with local leaders, providers, and community members, in order to recommend context-specific HIV prevention strategies. This paper focuses on the qualitative findings regarding the role of the social context in shaping HIV vulnerability at the Brazilian borders. We documented a profound lack of governmental structure and response to HIV/AIDS at the borders as well as a notable absence of social cohesion and mobilization among the diverse population groups and communities situated at the borders with regard to HIV/AIDS. The weak governmental and community response is situated within a larger socio-political context of economic inequity and social division, which must be addressed if an effective response to HIV can be developed at Brazil's international borders. Possibilities for encouraging a collective response among the diverse border populations are explored.
Safe teleradiology: information assurance as project planning methodology.
Collmann, Jeff; Alaoui, Adil; Nguyen, Dan; Lindisch, David
2005-01-01
The Georgetown University Medical Center Department of Radiology used a tailored version of OCTAVE, a self-directed information security risk assessment method, to design a teleradiology system that complied with the regulation implementing the security provisions of the Health Insurance Portability and Accountability Act (HIPAA) of 1996. The system addressed threats to and vulnerabilities in the privacy and security of protected health information. By using OCTAVE, Georgetown identified the teleradiology program's critical assets, described threats to the assurance of those assets, developed and ran vulnerability scans of a system pilot, evaluated the consequences of security breaches, and developed a risk management plan to mitigate threats to program assets, thereby implementing good information assurance practices. This case study illustrates the basic point that prospective, comprehensive planning to protect the privacy and security of an information system strategically benefits program management as well as system security.
Comparison analysis on vulnerability of metro networks based on complex network
NASA Astrophysics Data System (ADS)
Zhang, Jianhua; Wang, Shuliang; Wang, Xiaoyuan
2018-04-01
This paper analyzes the networked characteristics of three metro networks, and two malicious attacks are employed to investigate the vulnerability of metro networks based on connectivity vulnerability and functionality vulnerability. Meanwhile, the networked characteristics and vulnerability of three metro networks are compared with each other. The results show that Shanghai metro network has the largest transport capacity, Beijing metro network has the best local connectivity and Guangzhou metro network has the best global connectivity, moreover Beijing metro network has the best homogeneous degree distribution. Furthermore, we find that metro networks are very vulnerable subjected to malicious attacks, and Guangzhou metro network has the best topological structure and reliability among three metro networks. The results indicate that the proposed methodology is feasible and effective to investigate the vulnerability and to explore better topological structure of metro networks.
Multi-level significance of vulnerability indicators. Case study: Eastern Romania
NASA Astrophysics Data System (ADS)
Stanga, I. C.; Grozavu, A.
2012-04-01
Vulnerability assessment aims, most frequently, to emphasize internal fragility of a system comparing to a reference standard, to similar systems or in relation to a given hazard. Internal fragility, either biophysical or structural, may affect the capacity to predict, to prepare for, to cope with or to recover from a disaster. Thus, vulnerability is linked to resilience and adaptive capacity. From local level to global one, vulnerability factors and corresponding indicators are different and their significance must be tested and validated in a well-structured conceptual and methodological framework. In this paper, the authors aim to show the real vulnerability of rural settlements in Eastern Romania in a multi-level approach. The research area, Tutova Hills, counts about 3421 sq.km and more than 200.000 inhabitants in 421 villages characterized by deficient accessibility, lack of endowments, subsistential agriculture, high pressure on natural environment (especially on forest and soil resources), poverty and aging process of population. Factors that could influence the vulnerability of these rural settlements have been inventoried and assigned into groups through a cluster analysis: habitat and technical urban facilities, infrastructure, economical, social and demographical indicators, environment quality, management of emergency situations etc. Firstly, the main difficulty was to convert qualitative variable in quantitative indicators and to standardize all values to make possible mathematical and statistical processing of data. Secondly, the great variability of vulnerability factors, their different measuring units and their high amplitude of variation require different method of standardization in order to obtain values between zero (minimum vulnerability) and one (maximum vulnerability). Final vulnerability indicators were selected and integrated in a general scheme, according to their significance resulted from an appropriate factor analysis: linear and logistic regression, varimax rotation, multiple-criteria decision analysis, weight of evidence, multi-criteria evaluation method etc. The approach started from the local level which allows a functional and structural analysis and was progressively translated to an upper level and to a spatial analysis. The model shows that changing the level of analysis diminishes the functional significance of some indicators and increases the capacity of discretization in the case of others, highlighting the spatial and functional complexity of vulnerability.
77 FR 28894 - Maritime Vulnerability Self-Assessment Tool
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-16
... DEPARTMENT OF HOMELAND SECURITY Transportation Security Administration Maritime Vulnerability Self... maritime vulnerability self- assessment tool. SUMMARY: The Transportation Security Administration (TSA... conducting vulnerability assessments became available and usage of the TMSARM has dropped off considerably...
Climate vulnerability of drinking water supplies
NASA Astrophysics Data System (ADS)
Selmeczi, Pál; Homolya, Emese; Rotárné Szalkai, Ágnes
2016-04-01
Extreme weather conditions in Hungary led to difficulties in drinking water management on diverse occasions in the past. Due to reduced water resources and the coexisting high demand for drinking water in dry summer periods the availability of a number of water supplies became insufficient therefore causing limitations in water access. In some other cases, as a result of floods and flash floods over karstic areas evolving in consequence of excessive precipitation, several water supplies had to be excluded in order to avoid the risk of infections. More frequent occurrence of extreme weather conditions and further possible changes in the future induce the necessity for an analysis of the vulnerability of drinking water resources to climate change. Since 95% of the total drinking water supply in Hungary originates from subsurface layers, significance of groundwater resources is outstanding. The aim of our work carried out in the frames of the NAGiS (National Adaptation Geo-information System) project was to build up a methodology for the study and determination of the vulnerability of drinking water supplies to climate. The task covered analyses of climatic parameters influencing drinking water supplies principally and hydrogeological characteristics of the geological media that significantly determines vulnerability. Effects on drinking water resources and their reduction or exclusion may imply societal and economic consequences therefore we extended the analyses to the investigation of possibilities concerning the adaptation capacity to changed conditions. We applied the CIVAS (Climate Impact and Vulnerability Assessment Scheme) model developed in the frames of the international climate research project CLAVIER (Climate Change and Variability: Impact on Central and Eastern Europe) to characterize climate vulnerability of drinking water supplies. The CIVAS model, being based on the combined evaluation of exposure, sensitivity and adaptability, provides a unified methodical scheme to quantitative climatic impact assessment. We investigate the effects of climate change in the integrated context of exposure, sensitivity, impact, adaptive capacity and vulnerability, thus apart from the expected environmental changes societal and economic processes are also taken into account. Climate vulnerability has been determined on the basis of the distribution and categorisation of the chosen indicators. Further effects, independent of climate change and caused by anthropogenic activity, result in similar phenomena. It is often difficult to differentiate between natural and anthropogenic effects that occur simultaneously therefore in the analyses of vulnerability anthropogenic activity is needed to be taken into account. We determined climate vulnerability using data of two different climate models and for two separate future time periods. Results on the basis of both climate model projections suggest that a considerable number of regions in the area under investigation appear to be vulnerable to climate change to a certain extent and vulnerability intensifies to the end of the 21th century.
Criticality of iron and its principal alloying elements.
Nuss, Philip; Harper, E M; Nassar, N T; Reck, Barbara K; Graedel, T E
2014-04-01
Because modern technology depends on reliable supplies of a wide variety of materials and because of increasing concern about those supplies, a comprehensive methodology was created to quantify the degree of criticality of the metals of the periodic table. In this paper, we apply this methodology to iron and several of its main alloying elements (i.e., vanadium, chromium, manganese, and niobium). These elements represent the basic metals of any industrial society and are vital for national security and economic well-being. Assessments relating to the dimensions of criticality - supply risk, vulnerability to supply restriction, and environmental implications - for 2008 are made on the global level and for the United States. Evaluations of each of the multiple indicators are presented, with aggregate results plotted in "criticality space", together with Monte Carlo simulation-derived "uncertainty cloud" estimates. Iron has the lowest supply risk, primarily because of its widespread geological occurrence. Vanadium displays the highest cradle-to-gate environmental implications, followed by niobium, chromium, manganese, and iron. Chromium and manganese, both essential in steel making, display the highest vulnerability to supply restriction, largely because substitution or substitution at equal performance is not possible for all end-uses. From a comprehensive perspective, we regard the overall criticality as low for iron and modest for the alloying elements we evaluated.
Yang, Heejung; Kim, Hyun Woo; Kwon, Yong Soo; Kim, Ho Kyong; Sung, Sang Hyun
2017-09-01
Anthocyanins are potent antioxidant agents that protect against many degenerative diseases; however, they are unstable because they are vulnerable to external stimuli including temperature, pH and light. This vulnerability hinders the quality control of anthocyanin-containing berries using classical high-performance liquid chromatography (HPLC) analytical methodologies based on UV or MS chromatograms. To develop an alternative approach for the quality assessment and discrimination of anthocyanin-containing berries, we used MS spectral data acquired in a short analytical time rather than UV or MS chromatograms. Mixtures of anthocyanins were separated from other components in a short gradient time (5 min) due to their higher polarity, and the representative MS spectrum was acquired from the MS chromatogram corresponding to the mixture of anthocyanins. The chemometric data from the representative MS spectra contained reliable information for the identification and relative quantification of anthocyanins in berries with good precision and accuracy. This fast and simple methodology, which consists of a simple sample preparation method and short gradient analysis, could be applied to reliably discriminate the species and geographical origins of different anthocyanin-containing berries. These features make the technique useful for the food industry. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Assessment of seismic risk in Tashkent, Uzbekistan and Bishkek, Kyrgyz Republic
Erdik, M.; Rashidov, T.; Safak, E.; Turdukulov, A.
2005-01-01
The impact of earthquakes in urban centers prone to disastrous earthquakes necessitates the analysis of associated risk for rational formulation of contingency plans and mitigation strategies. In urban centers the seismic risk is best quantified and portrayed through the preparation of 'Earthquake damage and Loss Scenarios'. The components of such scenarios are the assessment of the hazard, inventories and the vulnerabilities of elements at risk. For the development of earthquake risk scenario in Tashkent-Uzbekistan and Bishkek-Kyrgyzstan an approach based on spectral displacements is utilized. This paper will present the important features of a comprehensive study, highlight the methodology, discuss the results and provide insights to the future developments. ?? 2005 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Odbert, H. M.; Aspinall, W.; Phillips, J.; Jenkins, S.; Wilson, T. M.; Scourse, E.; Sheldrake, T.; Tucker, P.; Nakeshree, K.; Bernardara, P.; Fish, K.
2015-12-01
Societies rely on critical services such as power, water, transport networks and manufacturing. Infrastructure may be sited to minimise exposure to natural hazards but not all can be avoided. The probability of long-range transport of a volcanic plume to a site is comparable to other external hazards that must be considered to satisfy safety assessments. Recent advances in numerical models of plume dispersion and stochastic modelling provide a formalized and transparent approach to probabilistic assessment of hazard distribution. To understand the risks to critical infrastructure far from volcanic sources, it is necessary to quantify their vulnerability to different hazard stressors. However, infrastructure assets (e.g. power plantsand operational facilities) are typically complex systems in themselves, with interdependent components that may differ in susceptibility to hazard impact. Usually, such complexity means that risk either cannot be estimated formally or that unsatisfactory simplifying assumptions are prerequisite to building a tractable risk model. We present a new approach to quantifying risk by bridging expertise of physical hazard modellers and infrastructure engineers. We use a joint expert judgment approach to determine hazard model inputs and constrain associated uncertainties. Model outputs are chosen on the basis of engineering or operational concerns. The procedure facilitates an interface between physical scientists, with expertise in volcanic hazards, and infrastructure engineers, with insight into vulnerability to hazards. The result is a joined-up approach to estimating risk from low-probability hazards to critical infrastructure. We describe our methodology and show preliminary results for vulnerability to volcanic hazards at a typical UK industrial facility. We discuss our findings in the context of developing bespoke assessment of hazards from distant sources in collaboration with key infrastructure stakeholders.
49 CFR 15.5 - Sensitive security information.
Code of Federal Regulations, 2010 CFR
2010-10-01
... requirements of Federal law. (5) Vulnerability assessments. Any vulnerability assessment directed, created... security requirements of Federal law that could reveal a security vulnerability, including the identity of... Guard responsible for conducting vulnerability assessments, security boardings, or engaged in operations...
A researcher's journey: Exploring a sensitive topic with vulnerable women.
Marsh, Christine A; Browne, Jenny; Taylor, Jan; Davis, Deborah
2017-02-01
The conduct of research regardless of the subject or methods employed brings responsibilities and challenges. These are greater when dealing with sensitive topics and vulnerable groups and therefore researchers must navigate a range of complex issues and make choices in relation to practical, ethical and philosophical concerns. While literature dealing with research methodologies and research design may assist to some degree, it cannot provide a clear pathway or template as each research project must respond to a unique set of circumstances. We can however, also learn from sharing our stories and critical reflections on our research processes. The purpose of this article is to highlight the practical and methodological issues arising from researching a sensitive topic with vulnerable women experiencing an Assumption of Care. Research involving topics that are deeply personal and private combined with a vulnerable population can be complex and challenging for the researcher. Although some issues were anticipated from the literature, others encountered in this study were unexpected. Special considerations and prerequisites were necessary to build mutual trust and share power with women who had experienced an Assumption of Care at birth. Narrative Inquiry was a good methodological fit for this study as it privileged the voices of women and insisted that their experiences be considered within the context of their lives. Although Narrative Inquiry is a suitable choice for researching sensitive topics with vulnerable women specific considerations are still required to ensure the benefits of this research for both participants and researchers. Family and Community Service (FACS) have now replaced the formerly known Department of Community Services (DoCS) and in consideration of the timing of this study this article uses the terminology as DoCS. Copyright © 2016 Australian College of Midwives. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagener, Thorsten; Mann, Michael; Crane, Robert
2014-04-29
This project focuses on uncertainty in streamflow forecasting under climate change conditions. The objective is to develop easy to use methodologies that can be applied across a range of river basins to estimate changes in water availability for realistic projections of climate change. There are three major components to the project: Empirical downscaling of regional climate change projections from a range of Global Climate Models; Developing a methodology to use present day information on the climate controls on the parameterizations in streamflow models to adjust the parameterizations under future climate conditions (a trading-space-for-time approach); and Demonstrating a bottom-up approach tomore » establishing streamflow vulnerabilities to climate change. The results reinforce the need for downscaling of climate data for regional applications, and further demonstrates the challenges of using raw GCM data to make local projections. In addition, it reinforces the need to make projections across a range of global climate models. The project demonstrates the potential for improving streamflow forecasts by using model parameters that are adjusted for future climate conditions, but suggests that even with improved streamflow models and reduced climate uncertainty through the use of downscaled data, there is still large uncertainty is the streamflow projections. The most useful output from the project is the bottom-up vulnerability driven approach to examining possible climate and land use change impacts on streamflow. Here, we demonstrate an inexpensive and easy to apply methodology that uses Classification and Regression Trees (CART) to define the climate and environmental parameters space that can produce vulnerabilities in the system, and then feeds in the downscaled projections to determine the probability top transitioning to a vulnerable sate. Vulnerabilities, in this case, are defined by the end user.« less
NASA Astrophysics Data System (ADS)
Shin, K. H.; Kim, K. H.; Ki, S. J.; Lee, H. G.
2017-12-01
The vulnerability assessment tool at a Tier 1 level, although not often used for regulatory purposes, helps establish pollution prevention and management strategies in the areas of potential environmental concern such as soil and ground water. In this study, the Neural Network Pattern Recognition Tool embedded in MATLAB was used to allow the initial screening of soil and groundwater pollution based on data compiled across about 1000 previously contaminated sites in Korea. The input variables included a series of parameters which were tightly related to downward movement of water and contaminants through soil and ground water, whereas multiple classes were assigned to the sum of concentrations of major pollutants detected. Results showed that in accordance with diverse pollution indices for soil and ground water, pollution levels in both media were strongly modulated by site-specific characteristics such as intrinsic soil and other geologic properties, in addition to pollution sources and rainfall. However, classification accuracy was very sensitive to the number of classes defined as well as the types of the variables incorporated, requiring careful selection of input variables and output categories. Therefore, we believe that the proposed methodology is used not only to modify existing pollution indices so that they are more suitable for addressing local vulnerability, but also to develop a unique assessment tool to support decision making based on locally or nationally available data. This study was funded by a grant from the GAIA project(2016000560002), Korea Environmental Industry & Technology Institute, Republic of Korea.
Occupational Noise and Ischemic Heart Disease: A Systematic Review
Dzhambov, Angel M; Dimitrova, Donka D
2016-01-01
Noise exposure might be a risk factor for ischemic heart disease (IHD). Unlike residential exposure, however, evidence for occupational noise is limited. Given that high-quality quantitative synthesis of existing data is highly warranted for occupational safety and policy, we aimed at conducting a systematic review and meta-analysis of the risks of IHD morbidity and mortality because of occupational noise exposure. We carried out a systematic search in MEDLINE, EMBASE, and on the Internet since April 2, 2015, in English, Spanish, Russian, and Bulgarian. A quality-scoring checklist was developed a priori to assess different sources of methodological bias. A qualitative data synthesis was performed. Conservative assumptions were applied when appropriate. A meta-analysis was not feasible because of unresolvable methodological discrepancies between the studies. On the basis of five studies, there was some evidence to suggest higher risk of IHD among workers exposed to objectively assessed noise >75–80 dB for <20 years (supported by one high, one moderate, and one low quality study, opposed by one high and one moderate quality study). Three moderate and two low quality studies out of six found self-rated exposure to be associated with higher risk of IHD, and only one moderate quality study found no effect. Out of four studies, a higher mortality risk was suggested by one moderate quality study relying on self-rated exposure and one of high-quality study using objective exposure. Sensitivity analyses showed that at higher exposures and in some vulnerable subgroups, such as women, the adverse effects were considerably stronger. Despite methodological discrepancies and limitations of the included studies, occupational noise appeared to be a risk factor for IHD morbidity. Results suggested higher risk for IHD mortality only among vulnerable subgroups. Workers exposed to high occupational noise should be considered at higher overall risk of IHD. PMID:27569404
Multi-dimensional flood vulnerability assessment using data envelopment analysis
NASA Astrophysics Data System (ADS)
Zahid, Zalina; Saharizan, Nurul Syuhada; Hamzah, Paezah; Hussin, Siti Aida Sheikh; Khairi, Siti Shaliza Mohd
2017-11-01
Malaysia has been greatly impacted by flood during monsoon seasons. Even though flood prone areas are well identified, assessment on the vulnerability of the disaster is lacking. Assessment of flood vulnerability, defined as the potential for loss when a disaster occurs, is addressed in this paper. The focus is on the development of flood vulnerability measurement in 11 states in Peninsular Malaysia using a non-parametric approach of Data Envelopment Analysis. Scores for three dimensions of flood vulnerability (Population Vulnerability, Social Vulnerability and Biophysical) were calculated using secondary data of selected input and output variables across an 11-year period from 2004 to 2014. The results showed that Johor and Pahang were the most vulnerable to flood in terms of Population Vulnerability, followed by Kelantan, the most vulnerable to flood in terms of Social Vulnerability and Kedah, Pahang and Terengganu were the most vulnerable to flood in terms of Biophysical Vulnerability among the eleven states. The results also showed that the state of Johor, Pahang and Kelantan to be most vulnerable across the three dimensions. Flood vulnerability assessment is important as it provides invaluable information that will allow the authority to identify and develop plans for flood mitigation and to reduce the vulnerability of flood at the affected regions.
NASA Astrophysics Data System (ADS)
González-Riancho, P.; Aliaga, B.; Hettiarachchi, S.; González, M.; Medina, R.
2014-12-01
After several tsunami events with disastrous consequences around the world, coastal countries have realized the need to be prepared to minimize human mortality and damage to coastal infrastructures, livelihoods and resources. The international scientific community is striving to develop and validate methodologies for tsunami hazard and vulnerability and risk assessments. The vulnerability of coastal communities is usually assessed through the definition of sets of indicators based on previous literature and/or post-tsunami reports, as well as on the available data for the study site. The aim of this work is to validate in light of past tsunami events the indicators currently proposed by the scientific community to measure human vulnerability, to improve their definition and selection as well as to analyse their validity for different country development profiles. The events analyzed are the 2011 Great Tohoku tsunami, the 2010 Chilean tsunami, the 2009 Samoan tsunami and the 2004 Indian Ocean tsunami. The results obtained highlight the need for considering both permanent and temporal human exposure, the former requiring some hazard numerical modelling while the latter is related to site-specific livelihoods, cultural traditions and gender roles. The most vulnerable age groups are the elderly adults and the children, the former having much higher mortality rates. Female mortality is not always higher than male and not always related to dependency issues. Higher numbers of disabled people do not always translate into higher numbers of victims. Besides, it is clear that mortality is not only related to the characteristics of the population but also the buildings. A high correlation has been found between the affected buildings and the number of victims, being very high for completely damaged buildings. Distance to the sea, building materials and expected water depths are highly determining factors regarding the type of damage in buildings.
NASA Astrophysics Data System (ADS)
González-Riancho, P.; Aliaga, B.; Hettiarachchi, S.; González, M.; Medina, R.
2015-07-01
After several tsunami events with disastrous consequences around the world, coastal countries have realized the need to be prepared to minimize human mortality and damage to coastal infrastructures, livelihoods and resources. The international scientific community is striving to develop and validate methodologies for tsunami hazard and vulnerability and risk assessments. The vulnerability of coastal communities is usually assessed through the definition of sets of indicators based on previous literature and/or post-tsunami reports, as well as on the available data for the study site. The aim of this work is to validate, in light of past tsunami events, the indicators currently proposed by the scientific community to measure human vulnerability, to improve their definition and selection as well as to analyse their validity for different country development profiles. The events analysed are the 2011 Great Tohoku tsunami, the 2010 Chilean tsunami, the 2009 Samoan tsunami and the 2004 Indian Ocean tsunami. The results obtained highlight the need for considering both permanent and temporal human exposure, the former requiring some hazard numerical modelling, while the latter is related to site-specific livelihoods, cultural traditions and gender roles. The most vulnerable age groups are the elderly and children, the former having much higher mortality rates. Female mortality is not always higher than male mortality and not always related to dependency issues. Higher numbers of disabled people do not always translate into higher numbers of victims. Besides, it is clear that mortality is not only related to the characteristics of the population but also of the buildings. A high correlation has been found between the affected buildings and the number of victims, being very high for completely damaged buildings. Distance to the sea, building materials and expected water depths are important determining factors regarding the type of damage to buildings.
NASA Astrophysics Data System (ADS)
Hagedorn, B.; Ruane, M.; Clark, N.
2017-12-01
In California, the overuse of synthetic fertilizers and manure in agriculture have caused nitrate (NO3) to be one of the state's most widespread groundwater pollutants. Given that nitrogen fertilizer applications have steadily increased since the 1950s and given that soil percolation and recharge transit times in California can exceed timescales of decades, the nitrate impact on groundwater resources is likely a legacy for years and even decades to come. This study presents a methodology for groundwater vulnerability assessment that operates independently of difficult-to-constrain soil and aquifer property data (i.e., saturated thickness, texture, porosity, conductivity, etc.), but rather utilizes groundwater age and, more importantly, groundwater mixing information to illustrate actual vulnerability at the water table. To accomplish this, the modern (i.e., less than 60-year old) water proportion (MWP) in groundwater mixtures is computed via lumped parameter modeling of chemical tracer (i.e., 3H, 14C and 3Hetrit) data. These MWPs are then linked to groundwater dissolved oxygen (DO) values to describe the risk for soil zone-derived nitrate to accumulate in the saturated zone. Preliminary studies carried out for 71 wells in California's South Coast Range-Coastal (SCRC) study unit reveal MWP values derived from binary dispersion models of 3.24% to 21.8%. The fact that high MWPs generally coincide with oxic (DO ≥1.5 mg/L) groundwater conditions underscores the risk towards increased groundwater NO3 pollution for many of the tested wells. These results support the conclusion that best agricultural management and policy objectives should incorporate groundwater vulnerability models that are developed at the same spatial scale as the decision making.
Vulnerability of Forests in India: A National Scale Assessment.
Sharma, Jagmohan; Upgupta, Sujata; Jayaraman, Mathangi; Chaturvedi, Rajiv Kumar; Bala, Govindswamy; Ravindranath, N H
2017-09-01
Forests are subjected to stress from climatic and non-climatic sources. In this study, we have reported the results of inherent, as well as climate change driven vulnerability assessments for Indian forests. To assess inherent vulnerability of forests under current climate, we have used four indicators, namely biological richness, disturbance index, canopy cover, and slope. The assessment is presented as spatial profile of inherent vulnerability in low, medium, high and very high vulnerability classes. Fourty percent forest grid points in India show high or very high inherent vulnerability. Plantation forests show higher inherent vulnerability than natural forests. We assess the climate change driven vulnerability by combining the results of inherent vulnerability assessment with the climate change impact projections simulated by the Integrated Biosphere Simulator dynamic global vegetation model. While 46% forest grid points show high, very high, or extremely high vulnerability under future climate in the short term (2030s) under both representative concentration pathways 4.5 and 8.5, such grid points are 49 and 54%, respectively, in the long term (2080s). Generally, forests in the higher rainfall zones show lower vulnerability as compared to drier forests under future climate. Minimizing anthropogenic disturbance and conserving biodiversity can potentially reduce forest vulnerability under climate change. For disturbed forests and plantations, adaptive management aimed at forest restoration is necessary to build long-term resilience.
Vulnerability of Forests in India: A National Scale Assessment
NASA Astrophysics Data System (ADS)
Sharma, Jagmohan; Upgupta, Sujata; Jayaraman, Mathangi; Chaturvedi, Rajiv Kumar; Bala, Govindswamy; Ravindranath, N. H.
2017-09-01
Forests are subjected to stress from climatic and non-climatic sources. In this study, we have reported the results of inherent, as well as climate change driven vulnerability assessments for Indian forests. To assess inherent vulnerability of forests under current climate, we have used four indicators, namely biological richness, disturbance index, canopy cover, and slope. The assessment is presented as spatial profile of inherent vulnerability in low, medium, high and very high vulnerability classes. Fourty percent forest grid points in India show high or very high inherent vulnerability. Plantation forests show higher inherent vulnerability than natural forests. We assess the climate change driven vulnerability by combining the results of inherent vulnerability assessment with the climate change impact projections simulated by the Integrated Biosphere Simulator dynamic global vegetation model. While 46% forest grid points show high, very high, or extremely high vulnerability under future climate in the short term (2030s) under both representative concentration pathways 4.5 and 8.5, such grid points are 49 and 54%, respectively, in the long term (2080s). Generally, forests in the higher rainfall zones show lower vulnerability as compared to drier forests under future climate. Minimizing anthropogenic disturbance and conserving biodiversity can potentially reduce forest vulnerability under climate change. For disturbed forests and plantations, adaptive management aimed at forest restoration is necessary to build long-term resilience.
NASA Astrophysics Data System (ADS)
Liliana Ciurean, Roxana; Hussin, Haydar; Glade, Thomas; van Westen, Cees; Papathoma-Köhle, Maria
2015-04-01
In physical vulnerability assessments, selection of working tools and methods is dependent not only on practical applications or decision question and data availability, but also on the scale of investigation. The aim of this study is to implement and compare two methodologies for assessing vulnerability of buildings in Fella River Basin (Friuli-Venezia Giulia, Italy). In this region, a major rainfall event in August 2003 triggered more than a thousand debris flows and floods resulting in two casualties. Damages to buildings, communication and transport infrastructure exceeded 400 million euros of monetary losses. The approaches considered are developed based on two methods of estimating debris-flow intensities: (1) for the regional and local scale, the behavior and run-out of the flow event was reconstructed using numerical debris flow modeling (Flow-R and Flow2D, respectively) to generate physical outputs (extension, depth, impact pressure, velocities) and determine the areas where elements at risk can be impacted; (2) for the local scale, a second method uses orthophoto documentation acquired shortly after the 2003 event for determining the location of the debris deposition and its depth at each impacted building. An extensive building inventory comprising information about the material of construction, occupancy type and use was compiled by desktop mapping and field work. The significance of the calculated intensity values were investigated in terms of resulting physical damages which were quantified for each affected structure as the ratio between the monetary loss and the reconstruction value. Different empirical vulnerability curves were obtained as functions of debris flow depth and impact pressure, respectively. The obtained curves were lastly compared with existing ones from the literature and sources of uncertainty from data input and the models employed were studied and discussed. The results of this study can be applied to further local consequence analysis and risk calculations, but can also been applied in other regions worldwide where respective data are available.
MID-ATLANTIC REGIONAL VULNERABILITY ASSESSMENT
ORD's Regional Vulnerability Assessment (REVA) Program is developing and demonstrating approaches to assess current and future environmental vulnerabilities so that risk management activities can be targeted. The sister program to EMA.P (Environmental Monitoring Assessment Progr...
ERIC Educational Resources Information Center
Kim, Kyung Hi
2014-01-01
This research, based on a case study of vulnerable children in Korea, used a mixed methods transformative approach to explore strategies to support and help disadvantaged children. The methodological approach includes three phases: a mixed methods contextual analysis, a qualitative dominant analysis based on Sen's capability approach and critical…
Rockfall vulnerability assessment for masonry buildings
NASA Astrophysics Data System (ADS)
Mavrouli, Olga
2015-04-01
The methodologies for the quantitative risk assessment vary in function of the application scale and the available data. For fragmental rockfalls, risk calculation requires data for the expected damage of the exposed elements due to potential rock block impacts with a range of trajectories, magnitudes and intensities. Although the procedures for the quantification of the rock block characteristics in terms of magnitude-frequency relationships are well established, there are few methodologies for the calculation of the vulnerability, and these are usually empirical or judgmental. The response of buildings to rock block impacts using analytical methods has been mainly realised so far for reinforced concrete buildings, and some fragility curves have been calculated with the results, indicating the potential damage for a range of rock block characteristics. Masonry buildings, as a common structural typology in mountainous areas, are in many cases impacted by rock blocks during rockfalls. Their response presents some peculiarities in comparison with reinforced-concrete structures given the non-homogeneity and variability of the compound materials (blocks and mortar), their orthotropy, low strength in tension, the statically indeterminate load-bearing system and the non-monolithic connections. To this purpose, analytical procedures which are specifically adapted to masonry structures should be used for the evaluation of the expected damage due to rock impacts. In this contribution we discuss the application of the analytical approach for the assessment of the expected damage in rockfall prone areas and the simulation assumptions that can be made concerning the materials, geometry, loading and the relevant simplifications. The amount of uncertainties introduced during their analytical simulation is high due to the dispersion of the data for material mechanical properties and the construction techniques and quality and thus a probabilistic assessment is suggested. The random nature of the rockfall as far as it concerns the magnitude and the intensity of the rock blocks can also be introduced using parametric analyses.
Combining operational models and data into a dynamic vessel risk assessment tool for coastal regions
NASA Astrophysics Data System (ADS)
Fernandes, R.; Braunschweig, F.; Lourenço, F.; Neves, R.
2016-02-01
The technological evolution in terms of computational capacity, data acquisition systems, numerical modelling and operational oceanography is supplying opportunities for designing and building holistic approaches and complex tools for newer and more efficient management (planning, prevention and response) of coastal water pollution risk events. A combined methodology to dynamically estimate time and space variable individual vessel accident risk levels and shoreline contamination risk from ships has been developed, integrating numerical metocean forecasts and oil spill simulations with vessel tracking automatic identification systems (AIS). The risk rating combines the likelihood of an oil spill occurring from a vessel navigating in a study area - the Portuguese continental shelf - with the assessed consequences to the shoreline. The spill likelihood is based on dynamic marine weather conditions and statistical information from previous accidents. The shoreline consequences reflect the virtual spilled oil amount reaching shoreline and its environmental and socio-economic vulnerabilities. The oil reaching shoreline is quantified with an oil spill fate and behaviour model running multiple virtual spills from vessels along time, or as an alternative, a correction factor based on vessel distance from coast. Shoreline risks can be computed in real time or from previously obtained data. Results show the ability of the proposed methodology to estimate the risk properly sensitive to dynamic metocean conditions and to oil transport behaviour. The integration of meteo-oceanic + oil spill models with coastal vulnerability and AIS data in the quantification of risk enhances the maritime situational awareness and the decision support model, providing a more realistic approach in the assessment of shoreline impacts. The risk assessment from historical data can help finding typical risk patterns ("hot spots") or developing sensitivity analysis to specific conditions, whereas real-time risk levels can be used in the prioritization of individual ships, geographical areas, strategic tug positioning and implementation of dynamic risk-based vessel traffic monitoring.
Mining Bug Databases for Unidentified Software Vulnerabilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dumidu Wijayasekara; Milos Manic; Jason Wright
2012-06-01
Identifying software vulnerabilities is becoming more important as critical and sensitive systems increasingly rely on complex software systems. It has been suggested in previous work that some bugs are only identified as vulnerabilities long after the bug has been made public. These vulnerabilities are known as hidden impact vulnerabilities. This paper discusses the feasibility and necessity to mine common publicly available bug databases for vulnerabilities that are yet to be identified. We present bug database analysis of two well known and frequently used software packages, namely Linux kernel and MySQL. It is shown that for both Linux and MySQL, amore » significant portion of vulnerabilities that were discovered for the time period from January 2006 to April 2011 were hidden impact vulnerabilities. It is also shown that the percentage of hidden impact vulnerabilities has increased in the last two years, for both software packages. We then propose an improved hidden impact vulnerability identification methodology based on text mining bug databases, and conclude by discussing a few potential problems faced by such a classifier.« less
Buotte, Polly C; Peterson, David L; McKelvey, Kevin S; Hicke, Jeffrey A
2016-03-15
Natural resource vulnerability to climate change can depend on the climatology and ecological conditions at a particular site. Here we present a conceptual framework for incorporating spatial variability in natural resource vulnerability to climate change in a regional-scale assessment. The framework was implemented in the first regional-scale vulnerability assessment conducted by the US Forest Service. During this assessment, five subregional workshops were held to capture variability in vulnerability and to develop adaptation tactics. At each workshop, participants answered a questionnaire to: 1) identify species, resources, or other information missing from the regional assessment, and 2) describe subregional vulnerability to climate change. Workshop participants divided into six resource groups; here we focus on wildlife resources. Participants identified information missing from the regional assessment and multiple instances of subregional variability in climate change vulnerability. We provide recommendations for improving the process of capturing subregional variability in a regional vulnerability assessment. We propose a revised conceptual framework structured around pathways of climate influence, each with separate rankings for exposure, sensitivity, and adaptive capacity. These revisions allow for a quantitative ranking of species, pathways, exposure, sensitivity, and adaptive capacity across subregions. Rankings can be used to direct the development and implementation of future regional research and monitoring programs. The revised conceptual framework is equally applicable as a stand-alone model for assessing climate change vulnerability and as a nested model within a regional assessment for capturing subregional variability in vulnerability. Copyright © 2015 Elsevier Ltd. All rights reserved.
Infrastructure Vulnerability Assessment Model (I-VAM).
Ezell, Barry Charles
2007-06-01
Quantifying vulnerability to critical infrastructure has not been adequately addressed in the literature. Thus, the purpose of this article is to present a model that quantifies vulnerability. Vulnerability is defined as a measure of system susceptibility to threat scenarios. This article asserts that vulnerability is a condition of the system and it can be quantified using the Infrastructure Vulnerability Assessment Model (I-VAM). The model is presented and then applied to a medium-sized clean water system. The model requires subject matter experts (SMEs) to establish value functions and weights, and to assess protection measures of the system. Simulation is used to account for uncertainty in measurement, aggregate expert assessment, and to yield a vulnerability (Omega) density function. Results demonstrate that I-VAM is useful to decisionmakers who prefer quantification to qualitative treatment of vulnerability. I-VAM can be used to quantify vulnerability to other infrastructures, supervisory control and data acquisition systems (SCADA), and distributed control systems (DCS).
NASA Astrophysics Data System (ADS)
Studer, Mirjam S.; Abiven, Samuel; González Domínguez, Beatriz R.; Hagedorn, Frank; Reisser, Moritz; Walthert, Lorenz; Zimmermann, Stephan; Niklaus, Pascal A.
2016-04-01
It is still largely unknown what drives the vulnerability of soil organic carbon (SOC) stocks to climate change, i.e. the likelihood of a soil to loose its SOC along with the change in environmental conditions. Our objective is to assess the SOC vulnerability of Swiss forest soils and identify its potential drivers: climate (temperature, soil moisture), soil (clay content, pH) and landscape (slope, aspect) properties. Fifty-four sites were selected for balanced spatial and driver magnitudes distribution. We measured the SOC characteristics (content and radiocarbon) and studied the C decomposition by laboratory soil incubations (details in Part I, abstract by B. González Domínguez). In order to assess the current SOC pool distribution and its radiocarbon signatures, we extended the Rothamsted Carbon (RothC) model with radiocarbon (14C) isotope modelling (RothCiso). The RothC model distinguishes four active SOC pools, decomposable and resistant plant material, microbial biomass and humified organic matter, and an inert SOC pool (Jenkinson 1990). The active pools are decomposed and mineralized to CO2 by first order kinetics. The RothCiso assigns all pools a 14C signature, based on the atmospheric 14C concentrations of the past century (plant C inputs) and their turnover. Currently we constrain the model with 14C signatures measured on the 54 fresh and their corresponding archived bulk soil samples, taken 12-24 years before. We were able to reproduce the measured radiocarbon concentrations of the SOC with the RothCiso and first results indicate, that the assumption of an inert SOC pool, that is radiocarbon dead, is not appropriate. In a second step we will compare the SOC mean residence time assessed by the two methodological approaches - incubation (C efflux based) and modelling (C stock based) - and relate it to the environmental drivers mentioned above. With the combination of the two methodological approaches and 14C analysis we hope to gain more insights into the source of the C lost along with climate change - is it "young" C from active pools with high turnover (e.g. plant material) or is it rather "old" C that was stabilized in pools with slow turnover (e.g. "humified" or stabilized organic matter)? This will enable us to judge if the C losses observed in the incubation experiments are relevant for longer time scales (decades) and could not be easily compensated for by increased C inputs. Thus, the SOC vulnerability to climate change will be rated based on the amount and source of C lost and compared with climate, soil and landscape properties to gain insights on the drivers of the SOC vulnerability on a regional scale. References Jenkinson, D. S. (1990). The turnover of organic carbon and nitrogen in soil. Phil. Trans. R. Soc. Lond. B, 329, 361-368.
Seismic risk assessment of Navarre (Northern Spain)
NASA Astrophysics Data System (ADS)
Gaspar-Escribano, J. M.; Rivas-Medina, A.; García Rodríguez, M. J.; Benito, B.; Tsige, M.; Martínez-Díaz, J. J.; Murphy, P.
2009-04-01
The RISNA project, financed by the Emergency Agency of Navarre (Northern Spain), aims at assessing the seismic risk of the entire region. The final goal of the project is the definition of emergency plans for future earthquakes. With this purpose, four main topics are covered: seismic hazard characterization, geotechnical classification, vulnerability assessment and damage estimation to structures and exposed population. A geographic information system is used to integrate, analyze and represent all information colleted in the different phases of the study. Expected ground motions on rock conditions with a 90% probability of non-exceedance in an exposure time of 50 years are determined following a Probabilistic Seismic Hazard Assessment (PSHA) methodology that includes a logic tree with different ground motion and source zoning models. As the region under study is located in the boundary between Spain and France, an effort is required to collect and homogenise seismological data from different national and regional agencies. A new homogenised seismic catalogue, merging data from Spanish, French, Catalonian and international agencies and establishing correlations between different magnitude scales, is developed. In addition, a new seismic zoning model focused on the study area is proposed. Results show that the highest ground motions on rock conditions are expected in the northeastern part of the region, decreasing southwards. Seismic hazard can be expressed as low-to-moderate. A geotechnical classification of the entire region is developed based on surface geology, available borehole data and morphotectonic constraints. Frequency-dependent amplification factors, consistent with code values, are proposed. The northern and southern parts of the region are characterized by stiff and soft soils respectively, being the softest soils located along river valleys. Seismic hazard maps including soil effects are obtained by applying these factors to the seismic hazard maps on rock conditions (for the same probability level). Again, the highest hazard is found in the northeastern part of the region. The lowest hazard is obtained along major river valleys The vulnerability assessment of the Navarra building stock is accomplished using as proxy a combination of building age, location, number of floors and the implantation of building codes. Field surveys help constraining the extent of traditional and technological construction types. The vulnerability characterization is carried out following three methods: European Macroseismic Scale (EMS 98), RISK UE vulnerability index and the capacity spectrum method implemented in Hazus. Vulnerability distribution maps for each Navarrean municipality are provided, adapted to the EMS98 vulnerability classes. The vulnerability of Navarre is medium to high, except for recent urban, highly populated developments. For each vulnerability class and expected ground motion, damage distribution is estimated by means of damage probability matrixes. Several damage indexes, embracing relative and absolute damage estimates, are used. Expected average damage is low. Whereas the largest amounts of damaged structures are found in big cities, the highest percentages are obtained in some muniucipalities of northeastern Navarre. Additionally, expected percentages and amounts of affected persons by earthquake damage are calculated for each municipality. Expected amounts of affected people are low, reflecting the low expected damage degree.
Coping with seismic vulnerability: small manufacturing firms in western Athens.
Sapountzaki, Kalliopi
2005-06-01
This paper attempts to contribute to international discourse on the responsibility of macro structures (economic and political) and private agencies for the production and distribution of vulnerability. It does so by focusing on an individual economic entity, small manufacturing firms (SMFs), in a specific location, western Athens, Greece. By evaluating the losses that SMFs sustained in the earthquake of 7 September 1999, the paper points to variations in vulnerability levels among such firms and highlights the 'sources' of vulnerability they confront. Furthermore, the SMF recovery cycle is systematically monitored in parallel with relevant public policies and state reactions to private recovery methods. The analysis illustrates processes that externalise recovery costs, alter the relationship between physical and socio-economic vulnerability and shift the vulnerability load from macro structures to individual agencies or vice versa. It is based on two methodological approaches: the division of vulnerability into three constituent components (exposure, resistance and resilience); and the conceptual split between producers and carriers of vulnerability.
Flood Risk in Motozintla de Mendoza, Chiapas: An Approximation
NASA Astrophysics Data System (ADS)
Rodriguez, F.; Novelo-Casanova, D. A.
2012-12-01
The town of Motozintla de Mendoza (15o 22' N and 92o 15' W) is located southern Chiapas, Mexico, and it is highly exposed to flood hazards. This community has suffered the impact of two disaster events due to this natural hazard in less than ten years, the first one in 1998 and the second one in 2005. The objective of this research is to assess the level of flood risk in the community of Motozintla. The methodology consisted of four steps: (1) Identification of the level of flood hazard; (2) Vulnerability assessment considering weighted variables according to their level of incidence on the local risk conditions; (3) Preparation of risk matrices for each area exposed to floods; and 4) Cartographic representation and spatial analysis of the results. We obtained a Geographical Information System (GIS) map for each group of analyzed vulnerabilities (structural, public services, socio-economic, existing plans in case of contingencies, and risk perception) and one map associated to global vulnerability (overposing of all estimated vulnerabilities). These maps demonstrates that the local conditions of structural vulnerability have a high incidence in the generation of risk, differing from the lack of public basic services, which although unfavorable for the population, it is not a deciding factor for preserving life or housing. Another interesting result is that the lack of preparation of the community to face a disaster generates a higher risk level than the other analyzed socioeconomic conditions. The global vulnerability allowed us to determine with greater detail the flood risk levels in the community. Our results indicate that the area in Motozintla with the highest level of flood risk is located in the margins of the Xelajú river, particularly the region that was flooded in 2005, which is precisely the area where the rivers Xelajú, Allende and La Mina meet and the river flow increases. Unfortunately, the northeasters part of this zone had been populated by people that was relocated by the local government due to past flooding events. For these reasons, it is necessary to make urgent decisions for disaster mitigation measures based on results from scientific research and models for territorial planning.
NASA Astrophysics Data System (ADS)
de Ruiter, Marleen; Ward, Philip; Daniell, James; Aerts, Jeroen
2017-04-01
In a cross-discipline study, an extensive literature review has been conducted to increase the understanding of vulnerability indicators used in both earthquake- and flood vulnerability assessments, and to provide insights into potential improvements of earthquake and flood vulnerability assessments. It identifies and compares indicators used to quantitatively assess earthquake and flood vulnerability, and discusses their respective differences and similarities. Indicators have been categorized into Physical- and Social categories, and further subdivided into (when possible) measurable and comparable indicators. Physical vulnerability indicators have been differentiated to exposed assets such as buildings and infrastructure. Social indicators are grouped in subcategories such as demographics, economics and awareness. Next, two different vulnerability model types have been described that use these indicators: index- and curve-based vulnerability models. A selection of these models (e.g. HAZUS) have been described, and compared on several characteristics such as temporal- and spatial aspects. It appears that earthquake vulnerability methods are traditionally strongly developed towards physical attributes at an object scale and used in vulnerability curve models, whereas flood vulnerability studies focus more on indicators applied to aggregated land-use scales. Flood risk studies could be improved using approaches from earthquake studies, such as incorporating more detailed lifeline and building indicators, and developing object-based vulnerability curve assessments of physical vulnerability, for example by defining building material based flood vulnerability curves. Related to this, is the incorporation of time of the day based building occupation patterns (at 2am most people will be at home while at 2pm most people will be in the office). Earthquake assessments could learn from flood studies when it comes to the refined selection of social vulnerability indicators. Based on the lessons obtained in this study, we recommend future studies to further explore cross-hazard studies.
NASA Astrophysics Data System (ADS)
Wiegand, Matthias; Seeber, Christoph; Hartmann, Heike; Xiang, Wei; King, Lorenz
2010-05-01
The Three Gorges dam construction was completed in 2006. Besides the international media, also the responsible authorities and various scholarly communities pay close attention to potential and actual environmental impacts related to the impoundment and development activities. The geo-environment within the Three Gorges region is highly conducive to landslides. Consequently, a scientific monitoring and risk mitigation system was established and is still under development. Risk analysis with regard to gravity driven mass movements is highly complex and strongly site specific - several aspects hamper a universal methodology applicable for landslide risk and site assessment. The interdisciplinary Sino-German Yangtze-Project Research co-operation aims, among others, to support the sustainable cultivation of the newly developed ecosystems within the Yangtze catchments. Land use change and increasing population growth are causing severe pressure on the scarce land resources. Landslides are acknowledged as important threat, hence vulnerability of certain landscape components have to be identified, quantified and monitored. A nested quantitative approach for vulnerability analysis is developed. The applied risk and vulnerability model understands risk as the product of hazard and vulnerability. Whereas vulnerability is characterized by: mass movement intensity and susceptibility of the respective element at risk. The watershed of Xiangxi river serves as study area. In general, catchment approaches intent and proved to be a functional geographical unit for successful integrated resources management. Several limitations with regard to data accessibility, availability and accuracy have to be considered due to restrictions of feasible scales. Comprehensive large-scale site investigations are confined to training areas for model calibration and validation. Remote sensing potentials are utilised for land use/ land cover change analysis and localization of selected elements. Dwellings and road infrastructure, chosen as high priorities, are captured based on various data like: high resolution satellite imagery, topographic information and field investigation. Currently demographic data is available only at administrative county level - therefore buildings will serve as spatial proxy for population density. Elements at risk will be classified into categories and susceptibility factors will be identified for sampled groups. The envisaged model defines the susceptibility of a certain element at risk not only by the element itself - it assumes that the specific susceptibility is also strongly influenced by the particular surroundings. The susceptibility of a certain building, as for instance, will be defined by the structure type and condition, and in addition or as proxy, specific site characteristics like: slope angle and aspect, soil type and erodibility, lithology, proximity to streams, proximity to the Three Gorges reservoir, depth to groundwater, land use change and dissect intensity, if feasible. Each factor with potential influence on susceptibility will go through a GIS based factor weighting procedure as part of the quantitative vulnerability model. Holistic, "cross scale integrated" vulnerability assessment models need to integrate environmental, social/ cultural and economic aspects. Therefore the proposed vulnerability assessment model must be seen as a starting point for a conceptual framework, and might serve as stimulus to local disaster- and resources management systems. Furthermore the GIS based model enables the opportunity to be linked and refined within the local spatial data infrastructure initiatives.
6 CFR 27.240 - Review and approval of security vulnerability assessments.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 6 Domestic Security 1 2010-01-01 2010-01-01 false Review and approval of security vulnerability... of security vulnerability assessments. (a) Review and Approval. The Department will review and approve in writing all Security Vulnerability Assessments that satisfy the requirements of § 27.215...
An assessment of streamflow vulnerability to climate using ...
Identifying regions with similar hydrology is useful for assessing water quality and quantity across the U.S., especially areas that are difficult or costly to monitor. For example, hydrologic landscapes (HLs) have been used to map streamflow variability and assess the spatial distribution of climatic response in Oregon, Alaska, and the Pacific Northwest. HLs have also been applied to assess historic and projected climatic impacts across the Western U.S. In this project, we summarized (1) the HL classification methodology and (2) the utility of using HLs as a tool to classify the vulnerability of streams to climatic changes in the Western U.S. During the HL classification process, we analyzed climate, seasonality, aquifer permeability, terrain, and soil permeability as the primary hydrologic drivers (and precipitation intensity as a secondary driver) associated with large scale hydrologic processes (storage, conveyance, and flow of water into or out of the watershed) in the West. We derived the dominant hydrologic pathways (surface runoff or deep or shallow groundwater) from the HL classification of different catchments to test our hypotheses: 1) Changes in climate will have greater impacts on streamflow in catchments dominated by surface runoff. 2) Catchments historically fed by surface runoff from winter snowmelt in the spring will experience greater impact if precipitation falls as rain instead of snow. We calculated S* (precipitation surplus, which includes
Vulnerability Assessment and Adaptation Framework, Third Edition
DOT National Transportation Integrated Search
2017-11-01
The Federal Highway Administrations (FHWAs) Vulnerability Assessment and Adaptation Framework (the Framework), third edition, is a manual to help transportation agencies and their partners assess the vulnerability of transportation infrastructu...
Staudinger, Michelle D.; Hilberg, Laura; Janowiak, Maria; Swanton, C.O.
2016-01-01
The objectives of this Chapter are to describe climate change vulnerability, it’s components, the range of assessment methods being implemented regionally, and examples of training resources and tools. Climate Change Vulnerability Assessments (CCVAs) have already been conducted for numerous Regional Species of Greatest Conservation Need and their dependent 5 habitats across the Northeast and Midwest. This chapter provides a synthesis of different assessment frameworks, information on the locations (e.g., States) where vulnerability assessments were conducted, lists of individual species and habitats with their respective vulnerability rankings, and a comparison of how vulnerability rankings were determined among studies.
Gerassi, Lara; Edmond, Tonya; Nichols, Andrea
2017-06-01
The study of sex trafficking, prostitution, sex work, and sexual exploitation is associated with many methodological issues and challenges. Researchers' study designs must consider the many safety issues related to this vulnerable and hidden population. Community advisory boards and key stakeholder involvement are essential to study design to increase safety of participants, usefulness of study aims, and meaningfulness of conclusions. Nonrandomized sampling strategies are most often utilized when studying exploited women and girls, which have the capacity to provide rich data and require complex sampling and recruitment methods. This article reviews the current methodological issues when studying this marginalized population as well as strategies to address challenges while working with the community in order to bring about social change. The authors also discuss their own experiences in collaborating with community organizations to conduct research in this field.
Gerassi, Lara; Edmond, Tonya; Nichols, Andrea
2016-01-01
The study of sex trafficking, prostitution, sex work, and sexual exploitation is associated with many methodological issues and challenges. Researchers’ study designs must consider the many safety issues related to this vulnerable and hidden population. Community advisory boards and key stakeholder involvement are essential to study design to increase safety of participants, usefulness of study aims, and meaningfulness of conclusions. Nonrandomized sampling strategies are most often utilized when studying exploited women and girls, which have the capacity to provide rich data and require complex sampling and recruitment methods. This article reviews the current methodological issues when studying this marginalized population as well as strategies to address challenges while working with the community in order to bring about social change. The authors also discuss their own experiences in collaborating with community organizations to conduct research in this field. PMID:28824337
Climate change & extreme weather vulnerability assessment framework.
DOT National Transportation Integrated Search
2012-12-01
The Federal Highway Administrations (FHWAs) Climate Change and Extreme Weather Vulnerability : Assessment Framework is a guide for transportation agencies interested in assessing their vulnerability : to climate change and extreme weather event...
A. Paige Fischer; Travis Paveglio; Matthew Carroll; Daniel Murphy; Hannah Brenkert-Smith
2013-01-01
Public land management agencies have incorporated the concept of vulnerability into protocols for assessing and planning for climate change impacts on public forests and grasslands. However, resource managers and planners have little guidance for how to address the social aspects of vulnerability in these assessments and plans. Failure to assess social vulnerability to...
Reducing Vulnerability of Ports and Harbors to Earthquake and Tsunami Hazards
Wood, Nathan J.; Good, James W.; Goodwin, Robert F.
2002-01-01
Recent scientific research suggests the Pacific Northwest could experience catastrophic earthquakes in the near future, both from distant and local sources, posing a significant threat to coastal communities. Damage could result from numerous earthquake-related hazards, such as severe ground shaking, soil liquefaction, landslides, land subsidence/uplift, and tsunami inundation. Because of their geographic location, ports and harbors are especially vulnerable to these hazards. Ports and harbors, however, are important components of many coastal communities, supporting numerous activities critical to the local and regional economy and possibly serving as vital post-event, response-recovery transportation links. A collaborative, multi-year initiative is underway to increase the resiliency of Pacific Northwest ports and harbors to earthquake and tsunami hazards, involving Oregon Sea Grant (OSG), Washington Sea Grant (WSG), the National Oceanic and Atmospheric Administration Coastal Services Center (CSC), and the U.S. Geological Survey Center for Science Policy (CSP). Specific products of this research, planning, and outreach initiative include a regional stakeholder issues and needs assessment, a community-based mitigation planning process, a Geographic Information System (GIS) — based vulnerability assessment methodology, an educational web-site and a regional data archive. This paper summarizes these efforts, including results of two pilot port-harbor community projects, one in Yaquina Bay, Oregon and the other in Sinclair Inlet, Washington. Finally, plans are outlined for outreach to other port and harbor communities in the Pacific Northwest and beyond, using "getting started" workshops and a web-based tutorial.
Assessing urban adaptive capacity to climate change.
Araya-Muñoz, Dahyann; Metzger, Marc J; Stuart, Neil; Wilson, A Meriwether W; Alvarez, Luis
2016-12-01
Despite the growing number of studies focusing on urban vulnerability to climate change, adaptive capacity, which is a key component of the IPCC definition of vulnerability, is rarely assessed quantitatively. We examine the capacity of adaptation in the Concepción Metropolitan Area, Chile. A flexible methodology based on spatial fuzzy modelling was developed to standardise and aggregate, through a stepwise approach, seventeen indicators derived from widely available census statistical data into an adaptive capacity index. The results indicate that all the municipalities in the CMA increased their level of adaptive capacity between 1992 and 2002. However, the relative differences between municipalities did not change significantly over the studied timeframe. Fuzzy overlay allowed us to standardise and to effectively aggregate indicators with differing ranges and granularities of attribute values into an overall index. It also provided a conceptually sound and reproducible means of exploring the interplay of many indicators that individually influence adaptive capacity. Furthermore, it captured the complex, aggregated and continued nature of the adaptive capacity, favouring to deal with gaps of data and knowledge associated with the concept of adaptive capacity. The resulting maps can help identify municipalities where adaptive capacity is weak and identify which components of adaptive capacity need strengthening. Identification of these capacity conditions can stimulate dialogue amongst policymakers and stakeholders regarding how to manage urban areas and how to prioritise resources for urban development in ways that can also improve adaptive capacity and thus reduce vulnerability to climate change. Copyright © 2016 Elsevier Ltd. All rights reserved.
A Review of Methodologies on Vulnerability Assessment of Buildings to Tsunami Damage
NASA Astrophysics Data System (ADS)
Gunasekera, R.; Rosetto, T.; Tabuchi, S.; Suppasri, A.; Futami, T.; Scott, I.; Maegawa, H.
2012-04-01
The infrequency, suddenness and violence tsunamis has led to a lack of knowledge on tsunami and lack of data available for the calibration of numerical models particularly in relation to tsunami damage. Therefore, there are very few tsunami structural vulnerability studies available. Of the available literature, most of these started after the disastrous 2004 Indian Ocean event. Most of fragility curves have been developed in some areas struck by the 2004 tsunami, which are very different in architecture and engineering respect to the US, Japanese or European ones. This review aims to highlight the strengths and weaknesses of current knowledge on tsunami fragility by critically assessing several fragility curves based on post tsunami damage surveys in Chile, Japan (including initial findings of the March 2011 event), Samoa, Sri Lanka and Thailand. It is observed that there is no consensus on how to derive tsunami fragility curves. Most of the examined relationships are seen to relate to residential buildings, and, due to the location of recent tsunami occurrences, they mostly represent non-engineered buildings (i.e. all use data from Thailand, Sri Lanka, Samoa, or Sumatra), which limits their usefulness. In the absence of a good understanding of tsunami actions on buildings most existing fragility relationships adopt inundation depth as the hazard parameter in the vulnerability function, which does not account for the other components of onshore flow contributing to tsunami loads on buildings, such as flow velocity.
Identifying Future Disease Hot Spots: Infectious Disease Vulnerability Index.
Moore, Melinda; Gelfeld, Bill; Okunogbe, Adeyemi; Paul, Christopher
2017-06-01
Recent high-profile outbreaks, such as Ebola and Zika, have illustrated the transnational nature of infectious diseases. Countries that are most vulnerable to such outbreaks might be higher priorities for technical support. RAND created the Infectious Disease Vulnerability Index to help U.S. government and international agencies identify these countries and thereby inform programming to preemptively help mitigate the spread and effects of potential transnational outbreaks. The authors employed a rigorous methodology to identify the countries most vulnerable to disease outbreaks. They conducted a comprehensive review of relevant literature to identify factors influencing infectious disease vulnerability. Using widely available data, the authors created an index for identifying potentially vulnerable countries and then ranked countries by overall vulnerability score. Policymakers should focus on the 25 most-vulnerable countries with an eye toward a potential "disease belt" in the Sahel region of Africa. The infectious disease vulnerability scores for several countries were better than what would have been predicted on the basis of economic status alone. This suggests that low-income countries can overcome economic challenges and become more resilient to public health challenges, such as infectious disease outbreaks.
Zamboni, Lucila M
2017-12-01
A systematic literature review on quantitative methods to assess community resilience was conducted following Institute of Medicine and Patient-Centered Outcomes Research Institute standards. Community resilience is the ability of a community to bounce back or return to normal after a disaster strikes, yet there is no agreement on what this actually means. All studies reviewed addressed natural disasters, but the methodological approaches can be applied to technological disasters, epidemics, and terrorist attacks. Theoretical frameworks consider the association between vulnerability, resilience, and preparedness, yet these associations vary across frameworks. Because of this complexity, indexes based on composite indicators are the predominant methodological tool used to assess community resilience. Indexes identify similar dimensions but observe resilience at both the individual and geographical levels, reflecting a lack of agreement on what constitutes a community. A consistent, cross-disciplinary metric for community resilience would allow for identifying areas to apply short-term versus long-term interventions. A comparable metric for assessing geographic units in multiple levels and dimensions is an opportunity to identify regional strengths and weaknesses, develop timely targeted policy interventions, improve policy evaluation instruments, and grant allocation formulas design. (Disaster Med Public Health Preparedness. 2017;11:756-763).
A user exposure based approach for non-structural road network vulnerability analysis
Jin, Lei; Wang, Haizhong; Yu, Le; Liu, Lin
2017-01-01
Aiming at the dense urban road network vulnerability without structural negative consequences, this paper proposes a novel non-structural road network vulnerability analysis framework. Three aspects of the framework are mainly described: (i) the rationality of non-structural road network vulnerability, (ii) the metrics for negative consequences accounting for variant road conditions, and (iii) the introduction of a new vulnerability index based on user exposure. Based on the proposed methodology, a case study in the Sioux Falls network which was usually threatened by regular heavy snow during wintertime is detailedly discussed. The vulnerability ranking of links of Sioux Falls network with respect to heavy snow scenario is identified. As a result of non-structural consequences accompanied by conceivable degeneration of network, there are significant increases in generalized travel time costs which are measurements for “emotionally hurt” of topological road network. PMID:29176832
Social impact assessment in mining projects in Northern Finland: Comparing practice to theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suopajärvi, Leena, E-mail: leena.suopajarvi@ulapland.fi
The paper discusses social impact assessments (SIA) for mining projects in light of the international principles and guidelines for such assessments and the academic literature in the field. The data consist of environmental impact assessment (EIA) programmes and reports for six mining projects that have started up in northern Finland in the 2000s. A first observation is that the role of the SIAs in the EIA programmes and reports studied was quite minor: measured in number of pages, the assessments account for three or four percent of the total. This study analyses the data collection, research methodology and conceptual premisesmore » used in the SIAs. It concludes that the assessments do not fully meet the high standards of the international principles and guidelines set out for them: for example, elderly men are over-represented in the data and no efforts were made to identify and bring to the fore vulnerable groups. Moreover, the reliability of the assessments is difficult to gauge, because the qualitative methods are not described and where quantitative methods were used, details such as non-response rates to questionnaires are not discussed. At the end of the paper, the SIAs are discussed in terms of Jürgen Habermas' theory of knowledge interests, with the conclusion that the assessments continue the empirical analytical tradition of the social sciences and exhibit a technical knowledge interest. -- Highlights: • Paper investigates social impact assessments in Finnish mining projects. • Role of social impact assessment is minor in whole EIA-process. • Mining SIAs give the voice for elderly men, vulnerable groups are not identified. • Assessment of SIAs is difficult because of lacking transparency in reporting. • SIAs belong to empirical analytical tradition with technical knowledge interest.« less
Economic vulnerability of timber resources to forest fires.
y Silva, Francisco Rodríguez; Molina, Juan Ramón; González-Cabán, Armando; Machuca, Miguel Ángel Herrera
2012-06-15
The temporal-spatial planning of activities for a territorial fire management program requires knowing the value of forest ecosystems. In this paper we extend to and apply the economic valuation principle to the concept of economic vulnerability and present a methodology for the economic valuation of the forest production ecosystems. The forest vulnerability is analyzed from criteria intrinsically associated to the forest characterization, and to the potential behavior of surface fires. Integrating a mapping process of fire potential and analytical valuation algorithms facilitates the implementation of fire prevention planning. The availability of cartography of economic vulnerability of the forest ecosystems is fundamental for budget optimization, and to help in the decision making process. Published by Elsevier Ltd.
Social vulnerability assessment: a growing practice in Europe?
NASA Astrophysics Data System (ADS)
Tapsell, S.; McC arthy, S.
2012-04-01
This paper builds upon work on social vulnerability from the CapHaz-Net consortium, an ongoing research project funded by the European Commission in its 7th Framework Programme. The project focuses on the social dimensions of natural hazards, as well as on regional practices of risk prevention and management, and aims at improving the resilience of European societies to natural hazards, paying particular attention to social capacity building. The topic of social vulnerability is one of seven themes being addressed in the project. There are various rationales for examining the relevance of social vulnerability to natural hazards. Vulnerability assessment has now been accepted as a requirement for the effective development of emergency management capability, and assessment of social vulnerability has been recognised as being integral to understanding the risk to natural hazards. The aim of our research was to examine social vulnerability, how it might be understood in the context of natural hazards in Europe, and how social vulnerability can be addressed to increase social capacity. The work comprised a review of research on social vulnerability to different natural hazards within Europe and included concepts and definitions of social vulnerability (and related concepts), the purpose of vulnerability assessment and who decides who is vulnerable, different approaches to assessing or measuring social vulnerability (such as the use of 'classical' quantitative vulnerability indicators and qualitative community-based approaches, along with the advantages and disadvantages of both), conceptual frameworks for assessing social vulnerability and three case studies of social vulnerability studies within Europe: flash floods in the Italian Alps, fluvial flooding in Germany and heat waves in Spain. The review reveals variable application of social vulnerability analysis across Europe and there are indications why this might be the case. Reasons could range from the scale of country policy and the particular risk management focus to the smaller scale risk management perceptions of the analysis techniques employed being to resource expensive, difficult to interpret or to operationalise. This paper will provide a context with some empirical examples to perhaps explain the growing popularity of concepts such as resilience and capacity building which lie more comfortably with policy makers and risk managers as concepts which focus on the solution rather than identifying a problem by assessing social vulnerability.
Towards a robust methodology to assess coastal impacts and adaptation policies for Europe
NASA Astrophysics Data System (ADS)
Vousdoukas, Michalis; Voukouvalas, Evangelos; Mentaschi, Lorenzo; Feyen, Luc
2016-04-01
The present contribution aims to present preliminary results from efforts towards (i) the development of the integrated risk assessment tool LISCoAsT for Europe (Large scale Integrated Sea-level and Coastal Assessment Tool); (ii) the assessment of coastal risk along the European coastline in view of climate change; and (iii) the development and application of a robust methodology to evaluate adaptation options for the European coastline under climate change scenarios. The overall approach builds on the disaster risk methodology proposed by the IPCC SREX (2012) report, defining risk as the combination of hazard, exposure and vulnerability. Substantial effort has been put in all the individual components of the risk assessment chain, including: (1) the development of dynamic scenarios of catastrophic coastal hazards (e.g., storm surges, sea-level rise) in view of climate change; (2) quantification, mapping and forecasting exposure and vulnerability in coastal areas; (3) carrying out a bottom-up, highly disaggregated assessment of climate impacts on coastal areas in Europe in view of global warming; (4) estimating the costs and assessing the effectiveness of different adaptation options. Projections indicate that, by the end of this century, sea levels in Europe will rise on average between 45 and 70 cm; while projections of coastal hazard showed that for some European regions, the increased storminess can be an additional significant driver of further risk. Projections of increasing extreme storm surge levels (SSL) were even more pronounced under the business-as-usual RCP8.5 concentration pathway, in particular along the Northern Europe coastline. The above are also reflected in the coastal impact projections, which show a significant increase in the expected annual damage (EAD) from coastal flooding. The present EAD for Europe of 800 million €/year is projected to increase up to 2.4 and 3.2 billion €/year by 2040 under RCP 4.5 and 8.5, respectively, and to 11.2 and 18.3 billion €/year by 2100 under RCP 4.5 and 8.5, respectively (values correspond to a medium ice-sheet behavior scenario). The projected Expected Annual Number of People forced to relocate because of RSLR by the year 2100 is 22,000 and 35,000 for RCP4.5 and RCP8.5, respectively. Finally, the expected annual number of people affected by coastal flooding in Europe is projected to increase from presently 27,000 to 67,000 and 197,000 under RCP 4.5 and 8.5, respectively by 2040, and to 81,000 and 295,000 under RCP 4.5 and 8.5, respectively by 2100. Apart from improving the impact assessment approach, the main current priority is to advance further towards the evaluation of coastal adaptation and risk reduction strategies.
NASA Astrophysics Data System (ADS)
Ayub, R.; Obenour, D. R.; Keyworth, A. J.; Genereux, D. P.; Mahinthakumar, K.
2016-12-01
Groundwater contamination by nutrients (nitrogen and phosphorus) is a major concern in water table aquifers that underlie agricultural areas in the mid-Atlantic Coastal Plain of the United States. High nutrient concentrations leaching into shallow groundwater can lead to human health problems and eutrophication of receiving surface waters. Liquid manure from concentrated animal feeding operations (CAFOs) stored in open-air lagoons and applied to spray fields can be a significant source of nutrients to groundwater, along with septic waste. In this study, we developed a model-based methodology for source apportionment and vulnerability assessment using sparse groundwater quality sampling measurements for Duplin County, North Carolina (NC), obtained by the NC Department of Environmental Quality (NC DEQ). This model provides information relevant to management by estimating the nutrient transport through the aquifer from different sources and addressing the uncertainty of nutrient contaminant propagation. First, the zones of influence (dependent on nutrient pathways) for individual groundwater monitoring wells were identified using a two-dimensional vertically averaged groundwater flow and transport model incorporating geologic uncertainty for the surficial aquifer system. A multiple linear regression approach is then applied to estimate the contribution weights for different nutrient source types using the nutrient measurements from monitoring wells and the potential sources within each zone of influence. Using the source contribution weights and their uncertainty, a probabilistic vulnerability assessment of the study area due to nutrient contamination is performed. Knowledge of the contribution of different nutrient sources to contamination at receptor locations (e.g., private wells, municipal wells, stream beds etc.) will be helpful in planning and implementation of appropriate mitigation measures.
NASA Astrophysics Data System (ADS)
Brand, B. D.; McMullin-Messier, P. A.; Schlegel, M. E.
2014-12-01
'Map your Hazards' is an educational module developed within the NSF Interdisciplinary Teaching about Earth for a Sustainable Future program (InTeGrate). The module engages students in place-based explorations of natural hazards, social vulnerability, and the perception of natural hazards and risk. Students integrate geoscience and social science methodologies to (1) identify and assess hazards, vulnerability and risk within their communities; (2) distribute, collect and evaluate survey data (designed by authors) on the knowledge, risk perception and preparedness within their social networks; and (3) deliver a PPT presentation to local stakeholders detailing their findings and recommendations for development of a prepared, resilient community. 'Map your Hazards' underwent four rigorous assessments by a team of geoscience educators and external review before being piloted in our classrooms. The module was piloted in a 300-level 'Volcanoes and Society' course at Boise State University, a 300-level 'Environmental Sociology' course at Central Washington University, and a 100-level 'Natural Disasters and Environmental Geology' course at the College of Western Idaho. In all courses students reported a fascination with learning about the hazards around them and identifying the high risk areas in their communities. They were also surprised at the low level of knowledge, inaccurate risk perception and lack of preparedness of their social networks. This successful approach to engaging students in an interdisciplinary, place-based learning environment also has the broad implications of raising awareness of natural hazards (survey participants are provided links to local hazard and preparedness information). The data and preparedness suggestions can be shared with local emergency managers, who are encouraged to attend the student's final presentations. All module materials are published at serc.carleton.edu/integrate/ and are appropriate to a wide range of classrooms.
NASA Astrophysics Data System (ADS)
Haer, T.; Botzen, W.; Aerts, J.
2016-12-01
In the last four decades the global population living in the 1/100 year-flood zone has doubled from approximately 500 million to a little less than 1 billion people. Urbanization in low lying -flood prone- cities further increases the exposed assets, such as buildings and infrastructure. Moreover, climate change will further exacerbate flood risk in the future. Accurate flood risk assessments are important to inform policy-makers and society on current- and future flood risk levels. However, these assessment suffer from a major flaw in the way they estimate flood vulnerability and adaptive behaviour of individuals and governments. Current flood risk projections commonly assume that either vulnerability remains constant, or try to mimic vulnerability through incorporating an external scenario. Such a static approach leads to a misrepresentation of future flood risk, as humans respond adaptively to flood events, flood risk communication, and incentives to reduce risk. In our study, we integrate adaptive behaviour in a large-scale European flood risk framework through an agent-based modelling approach. This allows for the inclusion of heterogeneous agents, which dynamically respond to each other and a changing environment. We integrate state-of-the-art flood risk maps based on climate scenarios (RCP's), and socio-economic scenarios (SSP's), with government and household agents, which behave autonomously based on (micro-)economic behaviour rules. We show for the first time that excluding adaptive behaviour leads to a major misrepresentation of future flood risk. The methodology is applied to flood risk, but has similar implications for other research in the field of natural hazards. While more research is needed, this multi-disciplinary study advances our understanding of how future flood risk will develop.
NASA Astrophysics Data System (ADS)
Khouakhi, A.; Snoussi, M.
2013-12-01
In the context of coastal vulnerability to climate change and human impacts, integrated coastal zone management (ICZM) is an increasingly relevant process for the sustainable development of coastal areas, in which scientific input plays a vital role. In the Mediterranean Basin, projected increases in sea level rise and in the magnitude and frequency of extreme weather events pose a major challenge for the management of low-lying coastal ecosystems and human settlements. The bay of Al Hoceima is one of the least studied and largest low-lying coastal areas of the Moroccan Mediterranean coast, and is exposed to the effects of sea level rise and storms. The coast is also a touristic area and one of the most important economic assets in the region. Physical coastal vulnerability assessments, determination of setback lines, and evaluation of coastal aquifer vulnerability to sea level rise are among the principal tools used to help decision makers in such a context. Here we quantified, in the context of sea level rise: (1) the physical vulnerability of the coastline, by developing a standard index methodology based on the five most relevant physical indices for local-scale vulnerability analysis, for a total of 822 50m/50m coastal cells; (2) coastal setback lines, based on shoreline evolutionary trends adjusted to sea level rise scenarios using a digital shoreline Analysis System (DSAS); and (3) the vulnerability to sea water intrusion in the coastal aquifer, using a modified GALDIT index (ground water occurrence, aquifer hydraulic conductivity, depth to groundwater level above the sea; distance from the shore; impact of existing status of sea water intrusion in the area; and thickness of the aquifer), following an integrated GIS approach. We find that 41% of the studied coastline is highly vulnerable to the effects of sea level rise and extreme weather events; 60% of the coastline is in retreat (with rates varying between -2m and -0.2m/y), 30% is in dynamic equilibrium (rates of -0.2 to +0.2m/y), and 10% is gradually prograding (with accretion rates of +0.2 to +0.8m/y). Setback line analysis indicates a potential retreat of the coastline of up to -90m by 2050 in the most vulnerable sectors. We find that the aquifer is subject to a moderate to high risk for at least half of its total area, and that for an assumed sea level rise of 0.5 m, the vulnerable surface area will increase by up to two times. The assessment of coastal erosion under different scenarios of sea level rise showed that, if no action is taken, most of the beaches are likely to disappear from the coupled effects of erosion and inundation. These findings will have direct repercussions for coastal development programs over both the short and long terms. The final results aim to provide coastal managers with tools to help the implementation of ICZM.
Tsunami Vulnerability Assessment In Greece Using Gis
NASA Astrophysics Data System (ADS)
Papathoma, M.; Dominey-Howes, D.; Zong, Y.; Smith, D.
A new methodology is described that uses GIS (Geographical Information System)to determine tsunami vulnerability at different spatial and temporal scales. The method- ology is based on the construction of a GIS database, which may be used by different end-users and under varying hazard scenarios. Primary data are collected for a range of parameters that relate to the natural environment, land use, the built environment, the local economy and services, as well as socio-economic parameters. The methodol- ogy permits interrogation of the primary datasets by several different end-user groups. For example, the GIS may be used: (1) by the emergency services in order to locate large numbers of casualties, to organise the immediate post-tsunami disaster response and to design evacuation routes; (2) by insurance companies in order to set the premi- ums of individual buildings and businesses and (3) by the municipal authorities as a tool for local planning (planning regulations, relocation of buildings). The results of two applications of the methodology in Greece are presented. The first application in Herakleio (Crete) relates to the impact that the 1650AD tsunami would have in the area under the current circumstances. The worse case scenario for the second application is based on the 1963 tsunami, which affected the coastal segment west of Aeghio in Peloponnese. The two case studies provide valuable information for civil protection, disaster management and planning.
Persons with intellectual disabilities in the criminal justice system: review of issues.
Jones, Jessica
2007-12-01
Although the vast majority of individuals with intellectual disabilities (ID) are law-abiding citizens, there is a small percentage with offending behaviour that is considered antisocial, socially inappropriate, or defined as illegal. It has long been recognised that individuals with ID or mental-health needs who break the law should be dealt with differently from the general population. There have been an increasing number of empirical studies in this area; however, these have been plagued by various definitional and methodological issues. Prevalence estimates of offenders with ID are complicated by diagnostic variations and inconsistencies in the criminal justice process. International studies have shown a large range, from 2% to 40%, depending on methodological approaches. The following review will highlight the salient issues including prevalence of offending, characteristics of offenders, vulnerabilities within the legal system, assessment, and a brief overview of intervention and treatment approaches.
6 CFR 27.210 - Submissions schedule.
Code of Federal Regulations, 2010 CFR
2010-01-01
... in any subsequent Federal Register notice. (2) Security Vulnerability Assessment. Unless otherwise notified, a covered facility must complete and submit a Security Vulnerability Assessment within 90... Department's approval of the facility's Site Security Plan. (2) Security Vulnerability Assessment. Unless...
NASA Astrophysics Data System (ADS)
Valentina, Gallina; Silvia, Torresan; Anna, Sperotto; Elisa, Furlan; Andrea, Critto; Antonio, Marcomini
2014-05-01
Nowadays, the challenge for coastal stakeholders and decision makers is to incorporate climate change in land and policy planning in order to ensure a sustainable integrated coastal zone management aimed at preserve coastal environments and socio-economic activities. Consequently, an increasing amount of information on climate variability and its impact on human and natural ecosystem is requested. Climate risk services allows to bridge the gap between climate experts and decision makers communicating timely science-based information about impacts and risks related to climate change that could be incorporated into land planning, policy and practice. Within the CLIM-RUN project (FP7), a participatory Regional Risk Assessment (RRA) methodology was applied for the evaluation of water-related hazards in coastal areas (i.e. pluvial flood and sea-level rise inundation risks) taking into consideration future climate change scenarios in the case study of the North Adriatic Sea for the period 2040-2050. Specifically, through the analysis of hazard, exposure, vulnerability and risk and the application of Multi-Criteria Decision Analysis (MCDA), the RRA methodology allowed to identify and prioritize targets (i.e. residential and commercial-industrial areas, beaches, infrastructures, wetlands, agricultural typology) and sub-areas that are more likely to be affected by pluvial flood and sea-level rise impacts in the same region. From the early stages of the climate risk services development and application, the RRA followed a bottom-up approach taking into account the needs, knowledge and perspectives of local stakeholders dealing with the Integrated Coastal Zone Management (ICZM), by means of questionnaires, workshops and focus groups organized within the project. Specifically, stakeholders were asked to provide their needs in terms of time scenarios, geographical scale and resolution, choice of receptors, vulnerability factors and thresholds that were considered in the implementation of the RRA methodology. The main output of the analysis are climate risk products produced with the DEcision support SYstem for COastal climate change impact assessment (DESYCO) and represented by GIS-based maps and statistics of hazard, exposure, physical and environmental vulnerability, risk and damage. These maps are useful to transfer information about climate change impacts to stakeholders and decision makers, to allow the classification and prioritization of areas that are likely to be affected by climate change impacts more severely than others in the same region, and therefore to support the identification of suitable areas for infrastructure, economic activities and human settlements toward the development of regional adaptation plans. The climate risk products and the results of North Adriatic case study will be here presented and discussed.
Schenk, Katie D
2009-07-01
Children affected by HIV in their families and communities face multiple risks to their health, education and psychosocial wellbeing. Community interventions for children who have been orphaned or rendered vulnerable take many forms, including educational assistance, home-based care, legal protection and psychosocial support. Despite a recent influx of funding for programme implementation, there exists little evidence to inform policymakers about whether their investments are improving the lives of vulnerable children and meeting key benchmarks including the Millennium Development Goals. This paper reviews the current evidence base on evaluations of community interventions for orphans and vulnerable children (OVC) in high HIV-prevalence African settings, focusing on studies' methodologies. Sources reviewed include published research studies and evidence from the unpublished programmatic "grey literature" located through database and internet searches. A total of 21 studies, varying in scope and generalisability, were identified. Interventions reviewed address children's wellbeing through various strategies within their communities. Evaluation methodologies reflect quantitative and qualitative approaches, including surveys (with and without baseline or comparison data), costing studies, focus groups, interviews, case studies, and participatory review techniques. Varied study methodologies reflect diverse research questions, various intervention types, and the challenges associated with evaluating complex interventions; highlighting the need to broaden the research paradigm in order to build the evidence base by including quasi-experimental and process evaluation approaches, and seeking further insights through participatory qualitative methodologies and costing studies. Although findings overall indicate the value of community interventions in effecting measurable improvements in child and family wellbeing, the quality and rigour of evidence is varied. A strategic research agenda is urgently needed to inform resource allocation and programme management decisions. Immediate imperatives include building local technical capacity to conduct quantitative and qualitative evaluation research, and strengthening monitoring and evaluation systems to collect process and outcome data (including costing) on key support models. Donors and implementers must support the collection of sound empirical evidence to inform the development and scale-up of OVC programmes.
Vulnerability assessment and risk perception: the case of the Arieş River Middle Basin
NASA Astrophysics Data System (ADS)
Ozunu, Al.; Botezan, C.
2012-04-01
Vulnerability assessment is influenced by a number of factors, including risk perception. This paper investigates the vulnerability of people living in the middle basin of the Aries river region, a former mining area, to natural and technologic hazards. The mining industry lead to significant environmental changes, which combined with the social problems caused by its decline (high unemployment rate, low income and old age) raised the level of the vulnerability in the area. This case study is unique, as it includes an evaluation of risk perception and its influence on the social vulnerability and resilience of local communities to disasters. Key words: vulnerability assessment, natural hazards, social vulnerability, risk perception
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Prashant, E-mail: prashantkumar@csio.res.in; Academy of Scientific and Innovative Research—CSIO, Chandigarh 160030; Bansod, Baban K.S.
2015-02-15
Groundwater vulnerability maps are useful for decision making in land use planning and water resource management. This paper reviews the various groundwater vulnerability assessment models developed across the world. Each model has been evaluated in terms of its pros and cons and the environmental conditions of its application. The paper further discusses the validation techniques used for the generated vulnerability maps by various models. Implicit challenges associated with the development of the groundwater vulnerability assessment models have also been identified with scientific considerations to the parameter relations and their selections. - Highlights: • Various index-based groundwater vulnerability assessment models havemore » been discussed. • A comparative analysis of the models and its applicability in different hydrogeological settings has been discussed. • Research problems of underlying vulnerability assessment models are also reported in this review paper.« less
Munns, Ailsa; Toye, Christine; Hegney, Desley; Kickett, Marion; Marriott, Rhonda; Walker, Roz
2017-10-01
Participatory action research (PAR) is a credible, culturally appropriate methodology that can be used to effect collaborative change within vulnerable populations. This PAR study was undertaken in a Western Australian metropolitan setting to develop and evaluate the suitability, feasibility and effectiveness of an Aboriginal peer-led home visiting programme. A secondary aim, addressed in this paper, was to explore and describe research methodology used for the study and provide recommendations for its implementation in other similar situations. PAR using action learning sets was employed to develop the parent support programme and data addressing the secondary, methodological aim were collected through focus groups using semi-structured and unstructured interview schedules. Findings were addressed throughout the action research process to enhance the research process. The themes that emerged from the data and addressed the methodological aim were the need for safe communication processes; supportive engagement processes and supportive organisational processes. Aboriginal peer support workers (PSWs) and community support agencies identified three important elements central to their capacity to engage and work within the PAR methodology. This research has provided innovative data, highlighting processes and recommendations for child health nurses to engage with the PSWs, parents and community agencies to explore culturally acceptable elements for an empowering methodology for peer-led home visiting support. There is potential for this nursing research to credibly inform policy development for Aboriginal child and family health service delivery, in addition to other vulnerable population groups. Child health nurses/researchers can use these new understandings to work in partnership with Aboriginal communities and families to develop empowering and culturally acceptable strategies for developing Aboriginal parent support for the early years. Impact Statement Child health nurses and Aboriginal communities can collaborate through participatory action research to develop peer-led support for the early years. Indigenous Australian peoples are people who identify as Aboriginal or Torres Strait Islander. Respectfully, throughout this paper, they will be described as Aboriginal.
6 CFR 27.225 - Site security plans.
Code of Federal Regulations, 2010 CFR
2010-01-01
... meet the following standards: (1) Address each vulnerability identified in the facility's Security Vulnerability Assessment, and identify and describe the security measures to address each such vulnerability; (2... updates, revises or otherwise alters its Security Vulnerability Assessment pursuant to § 27.215(d), the...
Grief interventions for people bereaved by suicide: A systematic review.
Linde, Katja; Treml, Julia; Steinig, Jana; Nagl, Michaela; Kersting, Anette
2017-01-01
Adaption to the loss of a loved one due to suicide can be complicated by feelings of guilt, shame, responsibility, rejection, and stigmatization. Therefore people bereaved by suicide have an increased risk for developing complicated grief which is related to negative physical and mental disorders and an increased risk for suicidal behavior. Grief interventions are needed for this vulnerable population. The aim of this systematic review was to provide an overview of the current state of evidence concerning the effectiveness of interventions that focus on grief for people bereaved by suicide. We conducted a systematic literature search using PubMed, Web of Science, and PsycINFO for articles published up until November 2016. Relevant papers were identified and methodological quality was assessed by independent raters. A narrative synthesis was conducted. Seven intervention studies met the inclusion criteria. Two interventions were based on cognitive-behavioral approaches, four consisted of bereavement groups, and one utilized writing therapy. As five of the seven interventions were effective in reducing grief intensity on at least one outcome measure, there is some evidence that they are beneficial. Bereavement groups tend to be effective in lowering the intensity of uncomplicated grief, as are writing interventions in lowering suicide-specific aspects of grief. Cognitive-behavioral programs were helpful for a subpopulation of people who had high levels of suicidal ideation. On average, methodological quality was low so the evidence for benefits is not robust. The stability of treatment effects could not be determined as follow-up assessments are rare. Generalizability is limited due to homogeneous enrollments of mainly female, white, middle-aged individuals. People bereaved by suicide are especially vulnerable to developing complicated grief. Therefore, grief therapies should be adapted to and evaluated in this population. Prevention of complicated grief may be successful in populations of high risk individuals.
7 CFR 1730.27 - Vulnerability and Risk Assessment (VRA).
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 11 2013-01-01 2013-01-01 false Vulnerability and Risk Assessment (VRA). 1730.27... Requirements § 1730.27 Vulnerability and Risk Assessment (VRA). (a) Each borrower with an approved RUS electric...'s system, and records of such additional assessments shall be maintained by the borrower. (b) Each...
7 CFR 1730.27 - Vulnerability and Risk Assessment (VRA).
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 11 2011-01-01 2011-01-01 false Vulnerability and Risk Assessment (VRA). 1730.27... Requirements § 1730.27 Vulnerability and Risk Assessment (VRA). (a) Each borrower with an approved RUS electric...'s system, and records of such additional assessments shall be maintained by the borrower. (b) Each...
7 CFR 1730.27 - Vulnerability and Risk Assessment (VRA).
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 11 2012-01-01 2012-01-01 false Vulnerability and Risk Assessment (VRA). 1730.27... Requirements § 1730.27 Vulnerability and Risk Assessment (VRA). (a) Each borrower with an approved RUS electric...'s system, and records of such additional assessments shall be maintained by the borrower. (b) Each...
7 CFR 1730.27 - Vulnerability and Risk Assessment (VRA).
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 11 2014-01-01 2014-01-01 false Vulnerability and Risk Assessment (VRA). 1730.27... Requirements § 1730.27 Vulnerability and Risk Assessment (VRA). (a) Each borrower with an approved RUS electric...'s system, and records of such additional assessments shall be maintained by the borrower. (b) Each...
Rempel, Robert S; Hornseth, Megan L
2017-01-01
Climate change is a global concern, requiring international strategies to reduce emissions, however, climate change vulnerability assessments are often local in scope with assessment areas restricted to jurisdictional boundaries. In our study we explored tools and impediments to understanding and responding to the effects of climate change on vulnerability of migratory birds from a binational perspective. We apply and assess the utility of a Climate Change Vulnerability Index on 3 focal species using distribution or niche modeling frameworks. We use the distributional forecasts to explore possible changes to jurisdictional conservation responsibilities resulting from shifting distributions for: eastern meadowlark (Sturnella magna), wood thrush (Hylocichla mustelina), and hooded warbler (Setophaga citrina). We found the Climate Change Vulnerability Index to be a well-organized approach to integrating numerous lines of evidence concerning effects of climate change, and provided transparency to the final assessment of vulnerability. Under this framework, we identified that eastern meadowlark and wood thrush are highly vulnerable to climate change, but hooded warbler is less vulnerable. Our study revealed impediments to assessing and modeling vulnerability to climate change from a binational perspective, including gaps in data or modeling for climate exposure parameters. We recommend increased cross-border collaboration to enhance the availability and resources needed to improve vulnerability assessments and development of conservation strategies. We did not find evidence to suggest major shifts in jurisdictional responsibility for the 3 focal species, but results do indicate increasing responsibility for these birds in the Canadian Provinces. These Provinces should consider conservation planning to help ensure a future supply of necessary habitat for these species.
2017-01-01
Climate change is a global concern, requiring international strategies to reduce emissions, however, climate change vulnerability assessments are often local in scope with assessment areas restricted to jurisdictional boundaries. In our study we explored tools and impediments to understanding and responding to the effects of climate change on vulnerability of migratory birds from a binational perspective. We apply and assess the utility of a Climate Change Vulnerability Index on 3 focal species using distribution or niche modeling frameworks. We use the distributional forecasts to explore possible changes to jurisdictional conservation responsibilities resulting from shifting distributions for: eastern meadowlark (Sturnella magna), wood thrush (Hylocichla mustelina), and hooded warbler (Setophaga citrina). We found the Climate Change Vulnerability Index to be a well-organized approach to integrating numerous lines of evidence concerning effects of climate change, and provided transparency to the final assessment of vulnerability. Under this framework, we identified that eastern meadowlark and wood thrush are highly vulnerable to climate change, but hooded warbler is less vulnerable. Our study revealed impediments to assessing and modeling vulnerability to climate change from a binational perspective, including gaps in data or modeling for climate exposure parameters. We recommend increased cross-border collaboration to enhance the availability and resources needed to improve vulnerability assessments and development of conservation strategies. We did not find evidence to suggest major shifts in jurisdictional responsibility for the 3 focal species, but results do indicate increasing responsibility for these birds in the Canadian Provinces. These Provinces should consider conservation planning to help ensure a future supply of necessary habitat for these species. PMID:28225817
2017-07-01
ER D C/ CE RL T R- 17 -2 5 Army Environmental Quality Technology An Evaluation of Methods for Assessing Vulnerability of Army...Evaluation of Methods for Assessing Vulnerability of Army Installations to Impacts of Climate Change on Listed and At-Risk Species Matthew G. Hohmann...their suitability for informing BRAC-related evaluations. Three recently developed methods for assessing the vulnerability of Army installations to
NASA Astrophysics Data System (ADS)
Coca-Domínguez, Oswaldo; Ricaurte-Villota, Constanza; Morales-Giraldo, David; Rangel-Buitrago, Nelson
2014-05-01
Analysis of hazards and vulnerability associated to coastal erosion along coastlines is a first issue in order to establish plans for adaptation to climate change in coastal areas. La Barra Town, Buenaventura (Pacific ocean of Colombia) and Providence - Santa Catalina Islands (Colombian Caribbean) were selected to develop a detailed analysis of coastal erosion hazard and vulnerability from different perspectives: i) physical (hazard) , ii) social , iii) conservation approach and iv) cultural heritage (Raizal). The analysis was made by a semi quantitative approximation method, applying variables associated with the intrinsic coastal zone properties (i.e. type of beach, exposure of the coast to waves, etc.). Coastal erosion data and associated variables as well land use; conservation and heritage data were used to carry out a further detailed analysis of the human - structural vulnerability and exposure to hazards. The data shows erosion rates close to -17 m yr-1 in La Barra Town (highlighting their critical condition and urgent relocation process), while in some sectors of Providence Island, such as Old Town, erosion rate was -5 m yr-1. The observed erosion process affects directly the land use and the local and regional economy. The differences between indexes and the structural and physical vulnerability as well the use of methodological variables are presented in the context of each region. In this work, all the information was worked using a GIS environment since this allows editing and updating the information continuously. The application of this methodology generates useful information in order to promote risk management as well prevention, mitigation and reduction plans. In both areas the adaptation must be a priority strategy to be considered, including relocation alternatives and sustainable protection with the support of studies of uses and future outlooks in the coast. The methodology is framed into the use of GIS tools and it highlights their benefits in the analysis of information.
The socio-economic dimension of flood risk assessment: insights of KULTURisk framework
NASA Astrophysics Data System (ADS)
Giupponi, Carlo; Gain, Animesh; Mojtahed, Vahid; Balbi, Stefano
2013-04-01
The approaches for vulnerability and risk assessment have found different and often contrasting solutions by various schools of thought. The two most prominent communities in this field are: climate change adaptation (CCA), and disaster risk reduction (DRR). Although those communities have usually in common the aim of reducing socio-economic vulnerability and risk to natural hazards, they have usually referred to different definitions and conceptualizations. For example, the DRR community has always driven more emphasis on the concept of risk and vulnerability is considered as a physical/environmental input for the quantification of risk, while the CCA research stream, mainly under the auspices of the Intergovernmental Panel on Climate Change (IPCC), considered vulnerability as an output deriving from social conditions and processes such as adaptation or maladaptation. Recently, with the publication of the IPCC Special Report on extreme events and disasters (IPCC-SREX), the notions of vulnerability and risk are somehow integrated in order to jointly consider both climate change adaptation and disaster risk management. The IPCC-SREX indeed is expected to significantly contribute to find common language and methodological approaches across disciplines and, therefore, the opportunity emerges for proposing new operational solutions, consistent with the most recent evolution of concepts and terminology. Based on the development of the IPCC Report, the KULTURisk project developed an operational framework to support integrated assessment and decision support through the combination of contributions from diverse disciplinary knowledge, with emphasis on the social and economic dimensions. KIRAF (KULTURisk Integrated Risk Assessment Framework) is specifically aimed at comprehensively evaluate the benefits of risk mitigation measures with consideration of the dynamic context deriving from the consideration of climatic changes and their effects on natural disasters, within the policy framework of climate change adaptation (CCA). Three main innovations are proposed with respect to the current state of the art: (1) to include the social capacities of reducing risk, (2) to go beyond the estimation direct tangible costs, and (3) to provide an operational solution for decision support to assess risks, impacts and the benefits of plausible risk reduction measures, compatible with both the DRR and the CCA literatures. As stated above, the proposed framework is the inclusion of social capacities (adaptive and coping capacities) in the process of translating risk into a comprehensive cost matrix considering not only direct tangible costs (damages), but also the three other components deriving from the combination of tangible/intangible and direct/indirect costs. The proposed KIRAF approach is thus expected to provide: 1) an operational basis for multidisciplinary integration; 2) a flexible reference to deal with heterogeneous case studies and potentially various types of hazards; and 3) a means to support the assessment of alternative risk prevention measures including consideration of social and cultural dimensions.
A Preliminary Tsunami Vulnerability Analysis for Yenikapi Region in Istanbul
NASA Astrophysics Data System (ADS)
Ceren Cankaya, Zeynep; Suzen, Lutfi; Cevdet Yalciner, Ahmet; Kolat, Cagil; Aytore, Betul; Zaytsev, Andrey
2015-04-01
One of the main requirements during post disaster recovery operations is to maintain proper transportation and fluent communication at the disaster areas. Ports and harbors are the main transportation hubs which must work with proper performance at all times especially after the disasters. Resilience of coastal utilities after earthquakes and tsunamis have major importance for efficient and proper rescue and recovery operations soon after the disasters. Istanbul is a mega city with its various coastal utilities located at the north coast of the Sea of Marmara. At Yenikapi region of Istanbul, there are critical coastal utilities and vulnerable coastal structures and critical activities occur daily. Fishery ports, commercial ports, small craft harbors, passenger terminals of intercity maritime transportation, water front commercial and/or recreational structures are some of the examples of coastal utilization which are vulnerable against marine disasters. Therefore their vulnerability under tsunami or any other marine hazard to Yenikapi region of Istanbul is an important issue. In this study, a methodology of vulnerability analysis under tsunami attack is proposed with the applications to Yenikapi region. In the study, high resolution (1m) GIS database of Istanbul Metropolitan Municipality (IMM) is used and analyzed by using GIS implementation. The bathymetry and topography database and the vector dataset containing all buildings/structures/infrastructures in the study area are obtained for tsunami numerical modeling for the study area. GIS based tsunami vulnerability assessment is conducted by applying the Multi-criteria Decision Making Analysis (MCDA). The tsunami parameters from deterministically defined worst case scenarios are computed from the simulations using tsunami numerical model NAMI DANCE. The vulnerability parameters in the region due to two different classifications i) vulnerability of buildings/structures and ii) vulnerability of (human) evacuation are defined and scored. The risk level is computed using tsunami intensity (level of flow depth from simulations) and vulnerability (structural and human-based) at each node in Yenikapi. The results are presented at high resolution (1m) and discussed. Acknowledgements: Partial support by EU 603839 ASTARTE Project, UDAP-C-12-14 of AFAD of Turkey, 108Y227 and 113M556 of TUBITAK Turkey, RAPSODI (CONCERT_Dis-021) of CONCERT-Japan Joint Call, 2011K140210 of DPT, Istanbul Metropolitan Municipality, Japan-Turkey Joint Research Project by JICA on earthquakes and tsunamis in Marmara Region by SATREPS are acknowledged.
[AIDS and pauperization: principal concepts and empirical evidence].
Bastos, F I; Szwarcwald, C L
2000-01-01
This paper discusses methodologies for analyzing relations between social inequalities, marginalization, prejudice, and vulnerability to HIV/AIDS, highlighting current difficulties and alternative research strategies. It also reviews the international and Brazilian literature, emphasizing: economic and macropolitical dimensions in the spread of HIV/AIDS; the role of drug policies and consumption; gender inequalities and prejudice; racial/ethnic inequalities and prejudice; and interaction with other STIs and their relationship to poverty; HIV/AIDS and health care standards, especially access to antiretroviral therapy; and human rights violations. Despite current methodological dilemmas in analyzing relations between psychosocial, cultural, and sociopolitical variables and vulnerability to HIV/AIDS and the limited Brazil literature, such themes merit further investigation, addressing Brazilian social and cultural specificities and profiting from recently developed research strategies.
NASA Astrophysics Data System (ADS)
Meyer, Ina; Eder, Brigitte; Hama, Michiko; Leitner, Markus
2016-04-01
Risks associated with climate change are mostly still understood and analyzed in a sector- or hazard-specific and rarely in a systemic, dynamic and scenario-based manner. In addition, socio-economic trends are often neglected in local vulnerability and risk assessments although they represent potential key determinants of risk and vulnerability. The project ARISE (Adaptation and Decision Support via Risk Management Through Local Burning Embers) aims at filling this gap by applying a participatory approach to socio-economic scenario building as building block of a local vulnerability assessment and risk management tool. Overall, ARISE aims at developing a decision support system for climate-sensitive iterative risk management as a key adaptation tool for the local level using Lienz in the East-Tyrol as a test-site City. One central building block is participatory socio-economic scenario building that - together with regionalized climate change scenarios - form a centrepiece in the process-oriented assessment of climate change risks and vulnerability. Major vulnerabilities and risks may stem from the economic performance, the socio-economic or socio-demographic developments or changes in asset exposition and not from climate change impacts themselves. The IPCC 5th assessment report underlines this and states that for most economic sectors, the impact of climate change may be small relative to the impacts of other driving forces such as changes in population growth, age, income, technology, relative prices, lifestyle, regulation, governance and many other factors in the socio-economy (Arent et al., 2014). The paper presents the methodology, process and results with respect to the building of long-term local socio-economic scenarios for the City of Lienz and the surrounding countryside. Scenarios were developed in a participatory approach using a scenario workshop that involved major stakeholders from the region. Participatory approaches are increasingly recognized as an important element in management and decision-making as problems in today's world are complex and require knowledge from many different domains and disciplines. Participation is also said to be a process of collective learning that changes the way people think and act which is a relevant point in forming appropriate region-specific climate adaptation strategies. The scenarios are based on an analysis of data on recent states and trends in major local sector developments concerning absolute and relative employment and value creation as well as on distinct socio-demographic developments in the region. Categories discussed in the scenario workshop cover inter alia institutions and governance, demographics, production and demand, markets, value-chains and trade, scientific and technological innovations, education and health. The derived stakeholder-based socio-economic scenarios were, in a second step, matched with the Shared Socio-economic reference Pathways (SSPs) in order to frame the locally produced scenarios with global narratives. Both strains were, in a third step, combined and backed-up by scientific literature in order to build the local socio-economic scenarios that served as background information in the analysis of risks, vulnerability and appropriate adaptation measures in the case-study region.
Nitrate contamination risk assessment in groundwater at regional scale
NASA Astrophysics Data System (ADS)
Daniela, Ducci
2016-04-01
Nitrate groundwater contamination is widespread in the world, due to the intensive use of fertilizers, to the leaking from the sewage network and to the presence of old septic systems. This research presents a methodology for groundwater contamination risk assessment using thematic maps derived mainly from the land-use map and from statistical data available at the national institutes of statistic (especially demographic and environmental data). The potential nitrate contamination is considered as deriving from three sources: agricultural, urban and periurban. The first one is related to the use of fertilizers. For this reason the land-use map is re-classified on the basis of the crop requirements in terms of fertilizers. The urban source is the possibility of leaks from the sewage network and, consequently, is linked to the anthropogenic pressure, expressed by the population density, weighted on the basis of the mapped urbanized areas of the municipality. The periurban sources include the un-sewered areas, especially present in the periurban context, where illegal sewage connections coexist with on-site sewage disposal (cesspools, septic tanks and pit latrines). The potential nitrate contamination map is produced by overlaying the agricultural, urban and periurban maps. The map combination process is very easy, being an algebraic combination: the output values are the arithmetic average of the input values. The groundwater vulnerability to contamination can be assessed using parametric methods, like DRASTIC or easier, like AVI (that involves a limited numbers of parameters). In most of cases, previous documents produced at regional level can be used. The pollution risk map is obtained by combining the thematic maps of the potential nitrate contamination map and the groundwater contamination vulnerability map. The criterion for the linkages of the different GIS layers is very easy, corresponding to an algebraic combination. The methodology has been successfully applied in a large flat area of southern Italy, with high concentrations in NO3.
Bitter, Neis A; Roeg, Diana P K; van Nieuwenhuizen, Chijs; van Weeghel, Jaap
2015-07-22
There is an increasing amount of evidence for the effectiveness of rehabilitation interventions for people with severe mental illness (SMI). In the Netherlands, a rehabilitation methodology that is well known and often applied is the Comprehensive Approach to Rehabilitation (CARe) methodology. The overall goal of the CARe methodology is to improve the client's quality of life by supporting the client in realizing his/her goals and wishes, handling his/her vulnerability and improving the quality of his/her social environment. The methodology is strongly influenced by the concept of 'personal recovery' and the 'strengths case management model'. No controlled effect studies have been conducted hitherto regarding the CARe methodology. This study is a two-armed cluster randomized controlled trial (RCT) that will be executed in teams from three organizations for sheltered and supported housing, which provide services to people with long-term severe mental illness. Teams in the intervention group will receive the multiple-day CARe methodology training from a specialized institute and start working according the CARe Methodology guideline. Teams in the control group will continue working in their usual way. Standardized questionnaires will be completed at baseline (T0), and 10 (T1) and 20 months (T2) post baseline. Primary outcomes are recovery, social functioning and quality of life. The model fidelity of the CARe methodology will be assessed at T1 and T2. This study is the first controlled effect study on the CARe methodology and one of the few RCTs on a broad rehabilitation method or strength-based approach. This study is relevant because mental health care organizations have become increasingly interested in recovery and rehabilitation-oriented care. The trial registration number is ISRCTN77355880 .
Preston, Benjamin L.; King, Anthony Wayne; Mei, Rui; ...
2016-02-11
Agricultural enterprises are vulnerable to the effects of climate variability and change. Improved understanding of the determinants of vulnerability and adaptive capacity in agricultural systems is important for projecting and managing future climate risk. At present, three analytical tools dominate methodological approaches to understanding agroecological vulnerability to climate: process-based crop models, empirical crop models, and integrated assessment models. A common weakness of these approaches is their limited treatment of socio-economic conditions and human agency in modeling agroecological processes and outcomes. This study proposes a framework that uses spatial cluster analysis to generate regional socioecological typologies that capture geographic variance inmore » regional agricultural production and enable attribution of that variance to climatic, topographic, edaphic, and socioeconomic components. This framework was applied to historical corn production (1986-2010) in the U.S. Gulf of Mexico region as a testbed. The results demonstrate that regional socioeconomic heterogeneity is an important driving force in human dominated ecosystems, which we hypothesize, is a function of the link between socioeconomic conditions and the adaptive capacity of agricultural systems. Meaningful representation of future agricultural responses to climate variability and change is contingent upon understanding interactions among biophysical conditions, socioeconomic conditions, and human agency their incorporation in predictive models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Preston, Benjamin L.; King, Anthony Wayne; Mei, Rui
Agricultural enterprises are vulnerable to the effects of climate variability and change. Improved understanding of the determinants of vulnerability and adaptive capacity in agricultural systems is important for projecting and managing future climate risk. At present, three analytical tools dominate methodological approaches to understanding agroecological vulnerability to climate: process-based crop models, empirical crop models, and integrated assessment models. A common weakness of these approaches is their limited treatment of socio-economic conditions and human agency in modeling agroecological processes and outcomes. This study proposes a framework that uses spatial cluster analysis to generate regional socioecological typologies that capture geographic variance inmore » regional agricultural production and enable attribution of that variance to climatic, topographic, edaphic, and socioeconomic components. This framework was applied to historical corn production (1986-2010) in the U.S. Gulf of Mexico region as a testbed. The results demonstrate that regional socioeconomic heterogeneity is an important driving force in human dominated ecosystems, which we hypothesize, is a function of the link between socioeconomic conditions and the adaptive capacity of agricultural systems. Meaningful representation of future agricultural responses to climate variability and change is contingent upon understanding interactions among biophysical conditions, socioeconomic conditions, and human agency their incorporation in predictive models.« less
Castanedo, S; Juanes, J A; Medina, R; Puente, A; Fernandez, F; Olabarrieta, M; Pombo, C
2009-10-01
A methodology has been developed to carry out an integrated oil spill vulnerability index, V, for coastal environments. This index takes into account the main physical, biological and socio-economical characteristics by means of three intermediate indexes. Three different integration methods (worst-case, average and survey-based) along with ESI-based vulnerability scores, V(ESI), proposed for the Cantabrian coast during the Prestige oil spill, have been analyzed and compared in terms of agreement between the classifications obtained with each one for this coastal area. Results of this study indicate that the use of the worst-case index, V(R), leads to a conservative ranking, with a very poor discrimination which is not helpful in coastal oil spill risk management. Due to the homogeneity of this coastal stretch, the rest of the methods, V(I), V(M) and V(ESI), provide similar classifications. However, V(M) and V(I) give more flexibility allowing three indexes for each coastal segment and including socio-economic aspects. Finally, the V(I) procedure is proposed here as the more advisable as using this index promotes the public participation that is a key element in the implementation of Integrated Coastal Zone Management (IZCM).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vyakaranam, Bharat GNVSR; Vallem, Mallikarjuna R.; Nguyen, Tony B.
The vulnerability of large power systems to cascading failures and major blackouts has become evident since the Northeast blackout in 1965. Based on analyses of the series of cascading blackouts in the past decade, the research community realized the urgent need to develop better methods, tools, and practices for performing cascading-outage analysis and for evaluating mitigations that are easily accessible by utility planning engineers. PNNL has developed the Dynamic Contingency Analysis Tool (DCAT) as an open-platform and publicly available methodology to help develop applications that aim to improve the capabilities of power planning engineers to assess the impact and likelihoodmore » of extreme contingencies and potential cascading events across their systems and interconnections. DCAT analysis will help identify potential vulnerabilities and allow study of mitigation solutions to reduce the risk of cascading outages in technically sound and effective ways. Using the DCAT capability, we examined the impacts of various load conditions to identify situations in which the power grid may encounter cascading outages that could lead to potential blackouts. This paper describes the usefulness of the DCAT tool and how it helps to understand potential impacts of load demand on cascading failures on the power system.« less
Tsunami vulnerability assessment in the western coastal belt in Sri Lanka
NASA Astrophysics Data System (ADS)
Ranagalage, M. M.
2017-12-01
26th December 2004 tsunami disaster has caused massive loss of life, damage to coastal infrastructures and disruption to economic activities in the coastal belt of Sri Lanka. Tsunami vulnerability assessment is a requirement for disaster risk and vulnerability reduction. It plays a major role in identifying the extent and level of vulnerabilities to disasters within the communities. There is a need for a clearer understanding of the disaster risk patterns and factors contributing to it in different parts of the coastal belt. The main objective of this study is to investigate tsunami vulnerability assessment of Moratuwa Municipal council area in Sri Lanka. We have selected Moratuwa area due to considering urbanization pattern and Tsunami hazards of the country. Different data sets such as one-meter resolution LiDAR data, orthophoto, population, housing data and road layer were employed in this study. We employed tsunami vulnerability model for 1796 housing units located there, for a tsunami scenario with a maximum run-up 8 meters. 86% of the total land area affected by the tsunami in 8 meters scenarios. Additionally, building population has been used to estimate population in different vulnerability levels. The result shows that 32% of the buildings have extremely critical vulnerability level, 46% have critical vulnerability level, 22% have high vulnerability level, and 1% have a moderate vulnerability. According to the population estimation model results, 18% reside building with extremely critical vulnerability, 43% with critical vulnerability, 36% with high vulnerability and 3% belong to moderate vulnerability level. The results of the study provide a clear picture of tsunami vulnerability. Outcomes of this analysis can use as a valuable tool for urban planners to assess the risk and extent of disaster risk reduction which could be achieved via suitable mitigation measures to manage the coastal belt in Sri Lanka.
Assessing climate-sensitive ecosystems in the southeastern United States
Costanza, Jennifer; Beck, Scott; Pyne, Milo; Terando, Adam; Rubino, Matthew J.; White, Rickie; Collazo, Jaime
2016-08-11
Climate change impacts ecosystems in many ways, from effects on species to phenology to wildfire dynamics. Assessing the potential vulnerability of ecosystems to future changes in climate is an important first step in prioritizing and planning for conservation. Although assessments of climate change vulnerability commonly are done for species, fewer have been done for ecosystems. To aid regional conservation planning efforts, we assessed climate change vulnerability for ecosystems in the Southeastern United States and Caribbean.First, we solicited input from experts to create a list of candidate ecosystems for assessment. From that list, 12 ecosystems were selected for a vulnerability assessment that was based on a synthesis of available geographic information system (GIS) data and literature related to 3 components of vulnerability—sensitivity, exposure, and adaptive capacity. This literature and data synthesis comprised “Phase I” of the assessment. Sensitivity is the degree to which the species or processes in the ecosystem are affected by climate. Exposure is the likely future change in important climate and sea level variables. Adaptive capacity is the degree to which ecosystems can adjust to changing conditions. Where available, GIS data relevant to each of these components were used. For example, we summarized observed and projected climate, protected areas existing in 2011, projected sea-level rise, and projected urbanization across each ecosystem’s distribution. These summaries were supplemented with information in the literature, and a short narrative assessment was compiled for each ecosystem. We also summarized all information into a qualitative vulnerability rating for each ecosystem.Next, for 2 of the 12 ecosystems (East Gulf Coastal Plain Near-Coast Pine Flatwoods and Nashville Basin Limestone Glade and Woodland), the NatureServe Habitat Climate Change Vulnerability Index (HCCVI) framework was used as an alternative approach for assessing vulnerability. Use of the HCCVI approach comprised “Phase II” of the assessment. This approach uses summaries of GIS data and models to develop a series of numeric indices for components of vulnerability. We incorporated many of the data sources used in Phase I, but added the results of several other data sources, including climate envelope modeling and vegetation dynamics modeling. The results of Phase II were high and low numeric vulnerability ratings for mid-century and the end of century for each ecosystem. The high and low ratings represented the potential range of vulnerability scores owing to uncertainties in future climate conditions and ecosystem effects.Of the 12 ecosystems assessed in the first approach, five were rated as having high vulnerability (Caribbean Coastal Mangrove, Caribbean Montane Wet Elfin Forest, East Gulf Coastal Plain Southern Loess Bluff Forest, Edwards Plateau Limestone Shrubland, and Nashville Basin Limestone Glade and Woodland). Six ecosystems had medium vulnerability, and one ecosystem had low vulnerability. For the two ecosystems assessed with both approaches, vulnerability ratings generally agreed. The assessment concluded by comparing the two approaches, identifying critical research needs, and making suggestions for future ecosystem vulnerability assessments in the Southeast and beyond. Research needs include reducing uncertainty in the degree of climate exposure likely in the future, as well as acquiring more information on how climate might affect biotic interactions and hydrologic processes. Ideally, a comprehensive vulnerability assessment would include both the narrative summaries that resulted from the synthesis in Phase I, as well as a numeric index that incorporates uncertainty as in Phase II.
Assessing the effects of urbanization and climate change on groundwater management in China
NASA Astrophysics Data System (ADS)
Hua, S.; Zheng, C.
2017-12-01
Groundwater is expected to be more vulnerable in the future due to climate change coupled with rapid urbanization. Thus, protecting future groundwater resources under the impact of urbanization and climate change is necessary towards more sustainable groundwater resource development. This study is intended to shed lights on how water managers may plan for the adverse effects of urbanization and climate change on groundwater quality. A new approach is presented in which the groundwater vulnerability under future climate change scenarios is employed as a constraint to urban expansion. An original form of the Land Transformation Model (LTM) and a revised LTM simulation are applied to model the urbanization. The results indicated that there would be a notable and uneven urban growth between 2010 and 2050. Future groundwater vulnerability is expected to shift significantly under future climate change scenarios. The results of the revised LTM project more urban expansion in the central regions of China, while those of the original LTM project urban expansion in throughout China, although the two projections have the same areas of expansion. The urban expansion simulated by the original LTM follows the historical trend under the drivers of socioeconomic, political and geographic factors. However, the revised LTM drives the urban expansion to the regions with relatively lower groundwater vulnerability, in contrast to the historical trend. This study demonstrates that the integration of LTM and future groundwater vulnerability in the urban planning can better protect the groundwater resource and promote more sustainable socioeconomic development. The methodology developed in this study provides water managers and city planners a useful groundwater management tool for mitigating the risks associated with rapid urbanization and climate change.
Expanding the Security Dimension of Surety
DOE Office of Scientific and Technical Information (OSTI.GOV)
SENGLAUB, MICHAEL E.
1999-10-01
A small effort was conducted at Sandia National Laboratories to explore the use of a number of modern analytic technologies in the assessment of terrorist actions and to predict trends. This work focuses on Bayesian networks as a means of capturing correlations between groups, tactics, and targets. The data that was used as a test of the methodology was obtained by using a special parsing algorithm written in JAVA to create records in a database from information articles captured electronically. As a vulnerability assessment technique the approach proved very useful. The technology also proved to be a valuable development mediummore » because of the ability to integrate blocks of information into a deployed network rather than waiting to fully deploy only after all relevant information has been assembled.« less
Sustainable Food Security Measurement: A Systemic Methodology
NASA Astrophysics Data System (ADS)
Findiastuti, W.; Singgih, M. L.; Anityasari, M.
2017-04-01
Sustainable food security measures how a region provides food for its people without endangered the environment. In Indonesia, it was legally measured in Food Security and Vulnerability (FSVA). However, regard to sustainable food security policy, the measurement has not encompassed the environmental aspect. This will lead to lack of environmental aspect information for adjusting the next strategy. This study aimed to assess Sustainable Food security by encompassing both food security and environment aspect using systemic eco-efficiency. Given existing indicator of cereal production level, total emission as environment indicator was generated by constructing Causal Loop Diagram (CLD). Then, a stock-flow diagram was used to develop systemic simulation model. This model was demonstrated for Indonesian five provinces. The result showed there was difference between food security order with and without environmental aspect assessment.
NASA Astrophysics Data System (ADS)
Legro, J. R.; Abi-Samra, N. C.; Tesche, F. M.
1985-05-01
In addition to the initial transients designated as fast transient high-altitude EMP (HEMP) and intermediate time EMP, electromagnetic signals are also perceived at times from seconds to hundreds of seconds after a high-altitude nuclear burst. This signal was defined by the term magnetohydrodynamic-electromagnetic pulse (MHD-EMP). The MHD-EMP phenomena was detected in actual weapon tests and predicted from theoretical models. A preliminary research effort to investigate the nature and coupling of the MHD-EMP environments to electric power systems documented the construction of approximate system response network models, and the development of a unified methodology to assess equipment and systematic vulnerability are defined. The MHD-EMP environment is compared to a qualitatively similar natural event, the electromagnetic environment produced by geomagnetic storms.
Incorporating Social Determinants into a Groundwater Risk Framework
NASA Astrophysics Data System (ADS)
Simpson, M.; Allen, D. M.; Journeay, M.; Korteling, B.
2009-12-01
The remediation of polluted groundwater is often very costly, therefore water managers utilize various proactive measures, such as wellhead protection planning, to prevent contamination events. With limited available resources, it is essential to prioritize where these measures are introduced; systematic and integrated methodologies of assessing risk to groundwater can be utilized for this prioritization. To quantify the resistance of the physical system to pollution, Aquifer Vulnerability is commonly mapped for the area of interest. This information is useful for focusing monitoring efforts and identifying data gaps, but is a relative measure of contaminant risk. To more accurately assess the probability of contamination, an inventory of hazards can be integrated with intrinsic vulnerability of the physical system. This Threat indicator links land-use with chemicals and quantifies the risk based on the toxicity and environmental fate of these substances. Local knowledge of the quantity stored and likelihood of release can be utilized to further assess these threats. Both of these steps form part of an existing frameworks for assessing risk to groundwater. In this study, a groundwater risk framework is developed and tested in two study areas; Pender Island and the Lower Fraser Valley in British Columbia, Canada. Enhancements of a basic groundwater risk framework include not only incorporating points sources such as septic systems, landfills and fuel storage, but also various social determinants of risk. These social determinants include the Resistance of a community, which represents the planning and protection initiatives designed to safeguard the resource. These include items such as land-use planning that consider groundwater vulnerability and best management practices enforced by local governments. The ability to recover following an event is the Capacity of a community; indicators include the presence or absence of spill response plans, treatment systems or an alternative supply of water. The determinant of Loss quantifies the financial impact of this work. This indicator may be altered in future applications to include loss associated with human health and/or that stemming from a reduction in ecosystem health.
NASA Astrophysics Data System (ADS)
Huggel, C.
2012-04-01
Impacts of climate change are observed and projected across a range of ecosystems and economic sectors, and mountain regions thereby rank among the hotspots of climate change. The Andes are considered particularly vulnerable to climate change, not only due to fragile ecosystems but also due to the high vulnerability of the population. Natural resources such as water systems play a critical role and are observed and projected to be seriously affected. Adaptation to climate change impacts is therefore crucial to contain the negative effects on the population. Adaptation projects require information on the climate and affected socio-environmental systems. There is, however, generally a lack of methodological guidelines how to generate the necessary scientific information and how to communicate to implementing governmental and non-governmental institutions. This is particularly important in view of the international funds for adaptation such as the Green Climate Fund established and set into process at the UNFCCC Conferences of the Parties in Cancun 2010 and Durban 2011. To facilitate this process international and regional organizations (World Bank and Andean Community) and a consortium of research institutions have joined forces to develop and define comprehensive methodologies for baseline and climate change impact assessments for the Andes, with an application potential to other mountain regions (AndesPlus project). Considered are the climatological baseline of a region, and the assessment of trends based on ground meteorological stations, reanalysis data, and satellite information. A challenge is the scarcity of climate information in the Andes, and the complex climatology of the mountain terrain. A climate data platform has been developed for the southern Peruvian Andes and is a key element for climate data service and exchange. Water resources are among the key livelihood components for the Andean population, and local and national economy, in particular for agriculture and hydropower. The retreat of glaciers as one of the clearest signal of climate change represents a problem for water supply during the long dry season. Hydrological modeling, using data from the few gauging stations and complemented by satellite precipitation data, is needed to generate baseline and climate impact information. Food security is often considered threatened due to climate change impacts, in the Andes for instance by droughts and cold spells that seriously affect high-elevation food systems. Eventually, methodologies are compiled and developed for analyzing risks from natural hazards and disasters. The vulnerabilities and risks for all types of climate impacts need to be reflected by analyzing the local and regional social, cultural, political and economic context. To provide the necessary references and information the project AndesPlus has developed a web-based knowledge and information platform. The highly interdisciplinary process of the project should contribute to climate impact and adaptation information services, needed to meet the challenges of adaptation.
Montgomery, Katherine
2014-01-01
Despite concerns around the use of technology-based interventions, they are increasingly being employed by social workers as a direct practice methodology to address the mental health needs of vulnerable clients. Researchers have highlighted the importance of using innovative technologies within social work practice, yet little has been done to summarize the evidence and collectively assess findings. In this systematic review, we describe accounts of technology-based mental health interventions delivered by social workers over the past 10 years. Results highlight the impacts of these tools and summarize advantages and disadvantages to utilizing technologies as a method for delivering or facilitating interventions. PMID:25321935
Ramsey, Alex T; Montgomery, Katherine
2014-10-01
Despite concerns around the use of technology-based interventions, they are increasingly being employed by social workers as a direct practice methodology to address the mental health needs of vulnerable clients. Researchers have highlighted the importance of using innovative technologies within social work practice, yet little has been done to summarize the evidence and collectively assess findings. In this systematic review, we describe accounts of technology-based mental health interventions delivered by social workers over the past 10 years. Results highlight the impacts of these tools and summarize advantages and disadvantages to utilizing technologies as a method for delivering or facilitating interventions.
Extending Vulnerability Assessment to Include Life Stages Considerations
Hodgson, Emma E.; Essington, Timothy E.; Kaplan, Isaac C.
2016-01-01
Species are experiencing a suite of novel stressors from anthropogenic activities that have impacts at multiple scales. Vulnerability assessment is one tool to evaluate the likely impacts that these stressors pose to species so that high-vulnerability cases can be identified and prioritized for monitoring, protection, or mitigation. Commonly used semi-quantitative methods lack a framework to explicitly account for differences in exposure to stressors and organism responses across life stages. Here we propose a modification to commonly used spatial vulnerability assessment methods that includes such an approach, using ocean acidification in the California Current as an illustrative case study. Life stage considerations were included by assessing vulnerability of each life stage to ocean acidification and were used to estimate population vulnerability in two ways. We set population vulnerability equal to: (1) the maximum stage vulnerability and (2) a weighted mean across all stages, with weights calculated using Lefkovitch matrix models. Vulnerability was found to vary across life stages for the six species explored in this case study: two krill–Euphausia pacifica and Thysanoessa spinifera, pteropod–Limacina helicina, pink shrimp–Pandalus jordani, Dungeness crab–Metacarcinus magister and Pacific hake–Merluccius productus. The maximum vulnerability estimates ranged from larval to subadult and adult stages with no consistent stage having maximum vulnerability across species. Similarly, integrated vulnerability metrics varied greatly across species. A comparison showed that some species had vulnerabilities that were similar between the two metrics, while other species’ vulnerabilities varied substantially between the two metrics. These differences primarily resulted from cases where the most vulnerable stage had a low relative weight. We compare these methods and explore circumstances where each method may be appropriate. PMID:27416031
Extending Vulnerability Assessment to Include Life Stages Considerations.
Hodgson, Emma E; Essington, Timothy E; Kaplan, Isaac C
2016-01-01
Species are experiencing a suite of novel stressors from anthropogenic activities that have impacts at multiple scales. Vulnerability assessment is one tool to evaluate the likely impacts that these stressors pose to species so that high-vulnerability cases can be identified and prioritized for monitoring, protection, or mitigation. Commonly used semi-quantitative methods lack a framework to explicitly account for differences in exposure to stressors and organism responses across life stages. Here we propose a modification to commonly used spatial vulnerability assessment methods that includes such an approach, using ocean acidification in the California Current as an illustrative case study. Life stage considerations were included by assessing vulnerability of each life stage to ocean acidification and were used to estimate population vulnerability in two ways. We set population vulnerability equal to: (1) the maximum stage vulnerability and (2) a weighted mean across all stages, with weights calculated using Lefkovitch matrix models. Vulnerability was found to vary across life stages for the six species explored in this case study: two krill-Euphausia pacifica and Thysanoessa spinifera, pteropod-Limacina helicina, pink shrimp-Pandalus jordani, Dungeness crab-Metacarcinus magister and Pacific hake-Merluccius productus. The maximum vulnerability estimates ranged from larval to subadult and adult stages with no consistent stage having maximum vulnerability across species. Similarly, integrated vulnerability metrics varied greatly across species. A comparison showed that some species had vulnerabilities that were similar between the two metrics, while other species' vulnerabilities varied substantially between the two metrics. These differences primarily resulted from cases where the most vulnerable stage had a low relative weight. We compare these methods and explore circumstances where each method may be appropriate.
Potik, David; Peles, Einat; Abramsohn, Yahli; Adelson, Miriam; Schreiber, Shaul
2014-01-01
The relationship between vulnerable attachment style, psychopathology, drug abuse, and retention in treatment among patients in methadone maintenance treatment (MMT) was examined by the Vulnerable Attachment Style Questionnaire (VASQ), the Symptom Checklist-90 (SCL-90), and drug abuse urine tests. After six years, retention in treatment and repeated urine test results were studied. Patients with vulnerable attachment style (a high VASQ score) had higher rates of drug abuse and higher psychopathology levels compared to patients with secure attachment style, especially on the interpersonal sensitivity, anxiety, hostility, phobic anxiety, and paranoid ideation scales. Drug abstinence at baseline was related to retention in treatment and to higher rates of drug abstinence after six years in MMT, whereas a vulnerable attachment style could not predict drug abstinence and retention in treatment. Clinical Implications concerning treatment of drug abusing populations and methodological issues concerning the VASQ's subscales are also discussed.
Evolution of vulnerability of communities facing repeated hazards
Guikema, Seth D.; Zhu, Laiyin; Igusa, Takeru
2017-01-01
The decisions that individuals make when recovering from and adapting to repeated hazards affect a region’s vulnerability in future hazards. As such, community vulnerability is not a static property but rather a dynamic property dependent on behavioral responses to repeated hazards and damage. This paper is the first of its kind to build a framework that addresses the complex interactions between repeated hazards, regional damage, mitigation decisions, and community vulnerability. The framework enables researchers and regional planners to visualize and quantify how a community could evolve over time in response to repeated hazards under various behavioral scenarios. An illustrative example using parcel-level data from Anne Arundel County, Maryland—a county that experiences fairly frequent hurricanes—is presented to illustrate the methodology and to demonstrate how the interplay between individual choices and regional vulnerability is affected by the region’s hurricane experience. PMID:28953893
Social Skills Deficits in a Virtual Environment Among Spanish Children With ADHD.
García-Castellar, Rosa; Jara-Jiménez, Pilar; Sánchez-Chiva, Desirée; Mikami, Amori Y
2018-06-01
Research assessing the social skills of children with ADHD has predominantly relied upon North American samples. In addition, most existing work has been conducted using methodology that fails to use a controlled peer stimulus; such methods may be more vulnerable to cultural influence. We examined the social skills of 52 Spanish children (ages 8-12) with and without ADHD using a controlled Chat Room Task, which simulates a virtual social environment where peers' responses are held constant, so that participants' social skills may be assessed. After statistical control of typing and reading comprehension skills, Spanish children with ADHD gave fewer prosocial comments and had greater difficulty remembering central details from the conversation between the peers, relative to comparison children. The virtual Chat Room Task may be useful to assess social skills deficits using a controlled paradigm, resulting in the identification of common social deficiencies cross-culturally.
Mountain torrents: Quantifying vulnerability and assessing uncertainties
Totschnig, Reinhold; Fuchs, Sven
2013-01-01
Vulnerability assessment for elements at risk is an important component in the framework of risk assessment. The vulnerability of buildings affected by torrent processes can be quantified by vulnerability functions that express a mathematical relationship between the degree of loss of individual elements at risk and the intensity of the impacting process. Based on data from the Austrian Alps, we extended a vulnerability curve for residential buildings affected by fluvial sediment transport processes to other torrent processes and other building types. With respect to this goal to merge different data based on different processes and building types, several statistical tests were conducted. The calculation of vulnerability functions was based on a nonlinear regression approach applying cumulative distribution functions. The results suggest that there is no need to distinguish between different sediment-laden torrent processes when assessing vulnerability of residential buildings towards torrent processes. The final vulnerability functions were further validated with data from the Italian Alps and different vulnerability functions presented in the literature. This comparison showed the wider applicability of the derived vulnerability functions. The uncertainty inherent to regression functions was quantified by the calculation of confidence bands. The derived vulnerability functions may be applied within the framework of risk management for mountain hazards within the European Alps. The method is transferable to other mountain regions if the input data needed are available. PMID:27087696
Mapping Water Vulnerability of the Yangtze River Basin: 1994-2013.
Sun, Fengyun; Kuang, Wenhui; Xiang, Weining; Che, Yue
2016-11-01
A holistic understanding of the magnitude and long-term trend of water vulnerability is essential for making management decisions in a given river basin. Existing procedures to assess the spatiotemporal dynamic of water vulnerability in complex mega-scale river basins are inadequate; a new method named ensemble hydrologic assessment was proposed in this study, which allows collection of data and knowledge about many aspects of water resources to be synthesized in a useful way for vulnerability assessment. The objective of this study is to illustrate the practical utility of such an integrated approach in examining water vulnerability in the Yangtze River Basin. Overall, the results demonstrated that the ensemble hydrologic assessment model could largely explain the spatiotemporal evolution of water vulnerability. This paper improves understanding of the status and trends of water resources in the Yangtze River Basin.
Polly C. Buotte; David L. Peterson; Kevin S. McKelvey; Jeffrey A. Hicke
2016-01-01
Natural resource vulnerability to climate change can depend on the climatology and ecological conditions at a particular site. Here we present a conceptual framework for incorporating spatial variability in natural resource vulnerability to climate change in a regional-scale assessment. The framework was implemented in the first regional-scale vulnerability...
Risk assessment by dynamic representation of vulnerability, exploitation, and impact
NASA Astrophysics Data System (ADS)
Cam, Hasan
2015-05-01
Assessing and quantifying cyber risk accurately in real-time is essential to providing security and mission assurance in any system and network. This paper presents a modeling and dynamic analysis approach to assessing cyber risk of a network in real-time by representing dynamically its vulnerabilities, exploitations, and impact using integrated Bayesian network and Markov models. Given the set of vulnerabilities detected by a vulnerability scanner in a network, this paper addresses how its risk can be assessed by estimating in real-time the exploit likelihood and impact of vulnerability exploitation on the network, based on real-time observations and measurements over the network. The dynamic representation of the network in terms of its vulnerabilities, sensor measurements, and observations is constructed dynamically using the integrated Bayesian network and Markov models. The transition rates of outgoing and incoming links of states in hidden Markov models are used in determining exploit likelihood and impact of attacks, whereas emission rates help quantify the attack states of vulnerabilities. Simulation results show the quantification and evolving risk scores over time for individual and aggregated vulnerabilities of a network.
Tsunami evacuation analysis, modelling and planning: application to the coastal area of El Salvador
NASA Astrophysics Data System (ADS)
Gonzalez-Riancho, Pino; Aguirre-Ayerbe, Ignacio; Aniel-Quiroga, Iñigo; Abad Herrero, Sheila; González Rodriguez, Mauricio; Larreynaga, Jeniffer; Gavidia, Francisco; Quetzalcoalt Gutiérrez, Omar; Álvarez-Gómez, Jose Antonio; Medina Santamaría, Raúl
2014-05-01
Advances in the understanding and prediction of tsunami impacts allow the development of risk reduction strategies for tsunami-prone areas. Conducting adequate tsunami risk assessments is essential, as the hazard, vulnerability and risk assessment results allow the identification of adequate, site-specific and vulnerability-oriented risk management options, with the formulation of a tsunami evacuation plan being one of the main expected results. An evacuation plan requires the analysis of the territory and an evaluation of the relevant elements (hazard, population, evacuation routes, and shelters), the modelling of the evacuation, and the proposal of alternatives for those communities located in areas with limited opportunities for evacuation. Evacuation plans, which are developed by the responsible authorities and decision makers, would benefit from a clear and straightforward connection between the scientific and technical information from tsunami risk assessments and the subsequent risk reduction options. Scientifically-based evacuation plans would translate into benefits for the society in terms of mortality reduction. This work presents a comprehensive framework for the formulation of tsunami evacuation plans based on tsunami vulnerability assessment and evacuation modelling. This framework considers (i) the hazard aspects (tsunami flooding characteristics and arrival time), (ii) the characteristics of the exposed area (people, shelters and road network), (iii) the current tsunami warning procedures and timing, (iv) the time needed to evacuate the population, and (v) the identification of measures to improve the evacuation process, such as the potential location for vertical evacuation shelters and alternative routes. The proposed methodological framework aims to bridge the gap between risk assessment and risk management in terms of tsunami evacuation, as it allows for an estimation of the degree of evacuation success of specific management options, as well as for the classification and prioritization of the gathered information, in order to formulate an optimal evacuation plan. The framework has been applied to the El Salvador case study through the project "Tsunami Hazard and Risk Assessment in El Salvador", funded by AECID during the period 2009-12, demonstrating its applicability to site-specific response times and population characteristics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moss, R. H.; Blohm, A. J.; Delgado, A.
2015-08-15
U.S. government agencies are now directed to assess the vulnerability of their operations and facilities to climate change and to develop adaptation plans to increase their resilience. Specific guidance on methods is still evolving based on the many different available frameworks. Agencies have been experimenting with these frameworks and approaches. This technical paper synthesizes lessons and insights from a series of research case studies conducted by the investigators at facilities of the U.S. Department of Energy and the Department of Defense. The purpose of the paper is to solicit comments and feedback from interested program managers and analysts before finalmore » conclusions are published. The paper describes the characteristics of a systematic process for prioritizing needs for adaptation planning at individual facilities and examines requirements and methods needed. It then suggests a framework of steps for vulnerability assessments at Federal facilities and elaborates on three sets of methods required for assessments, regardless of the detailed framework used. In a concluding section, the paper suggests a roadmap to further develop methods to support agencies in preparing for climate change. The case studies point to several preliminary conclusions; (1) Vulnerability assessments are needed to translate potential changes in climate exposure to estimates of impacts and evaluation of their significance for operations and mission attainment, in other words into information that is related to and useful in ongoing planning, management, and decision-making processes; (2) To increase the relevance and utility of vulnerability assessments to site personnel, the assessment process needs to emphasize the characteristics of the site infrastructure, not just climate change; (3) A multi-tiered framework that includes screening, vulnerability assessments at the most vulnerable installations, and adaptation design will efficiently target high-risk sites and infrastructure; (4) Vulnerability assessments can be connected to efforts to improve facility resilience to motivate participation; and (5) Efficient, scalable methods for vulnerability assessment can be developed, but additional case studies and evaluation are required.« less
Estimation of Vulnerability Functions for Debris Flows Using Different Intensity Parameters
NASA Astrophysics Data System (ADS)
Akbas, S. O.; Blahut, J.; Luna, B. Q.; Sterlacchini, S.
2009-04-01
In landslide risk research, the majority of past studies have focused on hazard analysis, with only few targeting the concept of vulnerability. When debris flows are considered, there is no consensus or even modest agreement on a generalized methodology to estimate physical vulnerability of the affected buildings. Very few quantitative relationships have been proposed between intensities and vulnerability values. More importantly, in most of the existing relationships, information on process intensity is often missing or only described semi-quantitatively. However, robust assessment of vulnerabilities along with the associated uncertainties is of utmost importance from a quantitative risk analysis point of view. On the morning of 13th July 2008, after more than two days of intense rainfall, several debris and mud flows were released in the central part of Valtellina, an Italian alpine valley in Lombardy Region. One of the largest muddy-debris flows occurred in Selvetta, a fraction of Colorina municipality. The result was the complete destruction of two buildings, and damage at varying severity levels to eight others. The authors had the chance to gather detailed information about the event, by conducting extensive field work and interviews with local inhabitants, civil protection teams, and officials. In addition to the data gathered from the field studies, the main characteristics of the debris flow have been estimated using numerical and empirical approaches. The extensive data obtained from Selvetta event gave an opportunity to develop three separate empirical vulnerability curves, which are functions of deposition height, debris flow velocity, and pressure, respectively. Deposition heights were directly obtained from field surveys, whereas the velocity and pressure values were back-calculated using the finite difference program FLO2D. The vulnerability was defined as the ratio between the monetary loss and the reconstruction value. The monetary losses were obtained from official RASDA documents, which were compiled for claim purposes. For each building, the approximate reconstruction value was calculated according to the building type and size, using the official data given in the Housing Prices Index prepared by the Engineers and Architects of Milan. The resulting vulnerability curves were compared to those in the literature, and among themselves. Specific recommendations were given regarding the most suitable parameter to be used for characterizing the intensity of debris flows within the context of physical vulnerability.
Probabilistic tsunami hazard assessment at Seaside, Oregon, for near-and far-field seismic sources
Gonzalez, F.I.; Geist, E.L.; Jaffe, B.; Kanoglu, U.; Mofjeld, H.; Synolakis, C.E.; Titov, V.V.; Areas, D.; Bellomo, D.; Carlton, D.; Horning, T.; Johnson, J.; Newman, J.; Parsons, T.; Peters, R.; Peterson, C.; Priest, G.; Venturato, A.; Weber, J.; Wong, F.; Yalciner, A.
2009-01-01
The first probabilistic tsunami flooding maps have been developed. The methodology, called probabilistic tsunami hazard assessment (PTHA), integrates tsunami inundation modeling with methods of probabilistic seismic hazard assessment (PSHA). Application of the methodology to Seaside, Oregon, has yielded estimates of the spatial distribution of 100- and 500-year maximum tsunami amplitudes, i.e., amplitudes with 1% and 0.2% annual probability of exceedance. The 100-year tsunami is generated most frequently by far-field sources in the Alaska-Aleutian Subduction Zone and is characterized by maximum amplitudes that do not exceed 4 m, with an inland extent of less than 500 m. In contrast, the 500-year tsunami is dominated by local sources in the Cascadia Subduction Zone and is characterized by maximum amplitudes in excess of 10 m and an inland extent of more than 1 km. The primary sources of uncertainty in these results include those associated with interevent time estimates, modeling of background sea level, and accounting for temporal changes in bathymetry and topography. Nonetheless, PTHA represents an important contribution to tsunami hazard assessment techniques; viewed in the broader context of risk analysis, PTHA provides a method for quantifying estimates of the likelihood and severity of the tsunami hazard, which can then be combined with vulnerability and exposure to yield estimates of tsunami risk. Copyright 2009 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Padowski, Julie C.; Gorelick, Steven M.; Thompson, Barton H.; Rozelle, Scott; Fendorf, Scott
2015-10-01
Global freshwater vulnerability is a product of environmental and human dimensions, however, it is rarely assessed as such. Our approach identifies freshwater vulnerability using four broad categories: endowment, demand, infrastructure, and institutions, to capture impacts on natural and managed water systems within the coupled human-hydrologic environment. These categories are represented by 19 different endogenous and exogenous characteristics affecting water supply vulnerability. By evaluating 119 lower per capita income countries (<10 725), we find that every nation experiences some form of vulnerability. Institutional vulnerability is experienced most commonly, occurring in 44 nations, and 23 countries suffer deficiencies in all four categories. Of these highly vulnerable countries, Jordan is the most vulnerable, reporting the greatest number of characteristics (5 of 19) at critical vulnerability levels, with Yemen and Djibouti nearly as vulnerable. Surprising similarities in vulnerability were also found among geographically disparate nations such as Vietnam, Sri Lanka, and Guatemala. Determining shared patterns of freshwater vulnerability provides insights into why water supply vulnerabilities are manifested in human-water systems at the national scale.
6 CFR 27.235 - Alternative security program.
Code of Federal Regulations, 2010 CFR
2010-01-01
... submit an ASP in lieu of a Security Vulnerability Assessment, Site Security Plan, or both. (2) Tier 1... Tier 3 facilities may not submit an ASP in lieu of a Security Vulnerability Assessment. (b) The... Security Vulnerability Assessment or using the procedure specified in § 27.245 if the ASP is intended to...
Integrating Science and Management to Assess Forest Ecosystem Vulnerability to Climate Change
Leslie A. Brandt; Patricia R. Butler; Stephen D. Handler; Maria K. Janowiak; P. Danielle Shannon; Christopher W. Swanston
2017-01-01
We developed the ecosystem vulnerability assessment approach (EVAA) to help inform potential adaptation actions in response to a changing climate. EVAA combines multiple quantitative models and expert elicitation from scientists and land managers. In each of eight assessment areas, a panel of local experts determined potential vulnerability of forest ecosystems to...
A support system for assessing local vulnerability to weather and climate
Coletti, Alex; Howe, Peter D.; Yarnal, Brent; Wood, Nathan J.
2013-01-01
The changing number and nature of weather- and climate-related natural hazards is causing more communities to need to assess their vulnerabilities. Vulnerability assessments, however, often require considerable expertise and resources that are not available or too expensive for many communities. To meet the need for an easy-to-use, cost-effective vulnerability assessment tool for communities, a prototype online vulnerability assessment support system was built and tested. This prototype tool guides users through a stakeholder-based vulnerability assessment that breaks the process into four easy-to-implement steps. Data sources are integrated in the online environment so that perceived risks—defined and prioritized qualitatively by users—can be compared and discussed against the impacts that past events have had on the community. The support system is limited in scope, and the locations of the case studies do not provide a sufficiently broad range of sample cases. The addition of more publically available hazard databases combined with future improvements in the support system architecture and software will expand opportunities for testing and fully implementing the support system.
Implications of climate change for wetland-dependent birds in the Prairie Pothole Region
Steen, Valerie; Skagen, Susan K.; Melcher, Cynthia P.
2016-01-01
The habitats and food resources required to support breeding and migrant birds dependent on North American prairie wetlands are threatened by impending climate change. The North American Prairie Pothole Region (PPR) hosts nearly 120 species of wetland-dependent birds representing 21 families. Strategic management requires knowledge of avian habitat requirements and assessment of species most vulnerable to future threats. We applied bioclimatic species distribution models (SDMs) to project range changes of 29 wetland-dependent bird species using ensemble modeling techniques, a large number of General Circulation Models (GCMs), and hydrological climate covariates. For the U.S. PPR, mean projected range change, expressed as a proportion of currently occupied range, was −0.31 (± 0.22 SD; range − 0.75 to 0.16), and all but two species were projected to lose habitat. Species associated with deeper water were expected to experience smaller negative impacts of climate change. The magnitude of climate change impacts was somewhat lower in this study than earlier efforts most likely due to use of different focal species, varying methodologies, different modeling decisions, or alternative GCMs. Quantification of the projected species-specific impacts of climate change using species distribution modeling offers valuable information for vulnerability assessments within the conservation planning process.
Assessing the seismic risk potential of South America
Jaiswal, Kishor; Petersen, Mark D.; Harmsen, Stephen; Smoczyk, Gregory M.
2016-01-01
We present here a simplified approach to quantifying regional seismic risk. The seismic risk for a given region can be inferred in terms of average annual loss (AAL) that represents long-term value of earthquake losses in any one year caused from a long-term seismic hazard. The AAL are commonly measured in the form of earthquake shaking-induced deaths, direct economic impacts or indirect losses caused due to loss of functionality. In the context of South American subcontinent, the analysis makes use of readily available public data on seismicity, population exposure, and the hazard and vulnerability models for the region. The seismic hazard model was derived using available seismic catalogs, fault databases, and the hazard methodologies that are analogous to the U.S. Geological Survey’s national seismic hazard mapping process. The Prompt Assessment of Global Earthquakes for Response (PAGER) system’s direct empirical vulnerability functions in terms of fatality and economic impact were used for performing exposure and risk analyses. The broad findings presented and the risk maps produced herein are preliminary, yet they do offer important insights into the underlying zones of high and low seismic risks in the South American subcontinent. A more detailed analysis of risk may be warranted by engaging local experts, especially in some of the high risk zones identified through the present investigation.
Livelihood Vulnerability Assessment Of Farmers and Nomads in Eastern Ecotone of Tibetan Plateau
NASA Astrophysics Data System (ADS)
Yan, J.; Zhang, Y.
2011-12-01
Livelihood vulnerability assessment provides a scientific basis for anti-poverty of people and regional sustainable development in vulnerable area. Although there are massive discussions on concept of vulnerability, it is still difficult to make it quantitative and to carry out comprehensive appraise. Vulnerability assessments based on sustainable livelihood frame are widely accepted in case studies for attentions to vulnerable groups. However, these case studies are always on regional scale and never reflect how climate change affects people's livelihood and adaptive capability of people. It is necessary to seek vulnerable assessment index system and means based on livelihood process of local people. This paper develops a livelihood vulnerability assessment index system on the basis of sustainable livelihood framework and appraises livelihood vulnerability values of 11 townships, using data of 879 sample households. Livelihood vulnerability assessment index system reflects main risks, livelihood assets and adaptation strategies of local people and government. The results show that livelihood vulnerability level of plateau region is higher than that of mountain to plateau region and mountain gorge region. Manzhang Township in plateau region is the most vulnerable township and nomads there cannot cope with risks of climate change, meadow degeneration and herbs degradation. Upper part of mountain to plateau region and the whole plateau region have high livelihood vulnerability values and local nomads would not cope with risks if no measures are taken by government. The driving forces of livelihood vulnerability include strikes of risks and deficiency of livelihood assets and adaptive capability. Farmers and nomads in high mountain gorge region and lower part of mountain to plateau region can cope with these risks, meanwhile, there are more employment opportunities in second and tertiary industries are needed to help them realize livelihood diversification. Therefore, plateau region and upper part of mountain to plateau region is vulnerable region and active steps should be taken by government to strengthen adaptive capabilities of farmers and nomads. Government relief should shift from improvement of natural assets to improvement of human assets and financial assets, such as technique training, hospitalization insurance, animal disease prevention and treatment, low interest or interest-free loan, restoring gazing areas to grassland in black beach, restoring other degraded pastures.
Marine water quality under climate change conditions/scenarios
NASA Astrophysics Data System (ADS)
Rizzi, Jonathan; Torresan, Silvia; Critto, Andrea; Zabeo, Alex; Brigolin, Daniele; Carniel, Sandro; Pastres, Roberto; Marcomini, Antonio
2016-04-01
The increase of sea temperature and the changes in marine currents are generating impacts on coastal waters such as changes in water biogeochemical and physical parameters (e.g. primary production, pH, salinity) leading to progressive degradation of the marine environment. With the main aim of analysing the potential impacts of climate change on coastal water quality, a Regional Risk Assessment (RRA) methodology was developed and applied to coastal marine waters of the North Adriatic (i.e. coastal water bodies of the Veneto and Friuli Venezia Giulia regions, Italy). RRA integrates the outputs of regional models providing information on macronutrients (i.e. dissolved inorganic nitrogen e reactive phosphorus), dissolved oxygen, pH, salinity and temperature, etc., under future climate change scenarios with site-specific environmental and socio-economic indicators (e.g. biotic index, presence and extension of seagrasses, presence of aquaculture). The presented approach uses Geographic Information Systems to manage, analyse, and visualize data and employs Multi-Criteria Decision Analysis for the integration of stakeholders preferences and experts judgments into the evaluation process. RRA outputs are hazard, exposure, vulnerability, risk and damage maps useful for the identification and prioritization of hot-spot areas and vulnerable targets in the considered region. Therefore, the main aim of this contribution is to apply the RRA methodology to integrate, visualize, and rank according to spatial distribution, physical and chemical data concerning the coastal waters of the North Adriatic Sea in order to predict possible changes of the actual water quality.
Gardezi, Maaz; Arbuckle, J Gordon
2017-11-29
Potential climate-change-related impacts to agriculture in the upper Midwest pose serious economic and ecological risks to the U.S. and the global economy. On a local level, farmers are at the forefront of responding to the impacts of climate change. Hence, it is important to understand how farmers and their farm operations may be more or less vulnerable to changes in the climate. A vulnerability index is a tool commonly used by researchers and practitioners to represent the geographical distribution of vulnerability in response to global change. Most vulnerability assessments measure objective adaptive capacity using secondary data collected by governmental agencies. However, other scholarship on human behavior has noted that sociocultural and cognitive factors, such as risk perceptions and perceived capacity, are consequential for modulating people's actual vulnerability. Thus, traditional assessments can potentially overlook people's subjective perceptions of changes in climate and extreme weather events and the extent to which people feel prepared to take necessary steps to cope with and respond to the negative effects of climate change. This article addresses this knowledge gap by: (1) incorporating perceived adaptive capacity into a vulnerability assessment; (2) using spatial smoothing to aggregate individual-level vulnerabilities to the county level; and (3) evaluating the relationships among different dimensions of adaptive capacity to examine whether perceived capacity should be integrated into vulnerability assessments. The result suggests that vulnerability assessments that rely only on objective measures might miss important sociocognitive dimensions of capacity. Vulnerability indices and maps presented in this article can inform engagement strategies for improving environmental sustainability in the region. © 2017 Society for Risk Analysis.
NASA Astrophysics Data System (ADS)
Ettinger, Susanne; Mounaud, Loïc; Magill, Christina; Yao-Lafourcade, Anne-Françoise; Thouret, Jean-Claude; Manville, Vern; Negulescu, Caterina; Zuccaro, Giulio; De Gregorio, Daniela; Nardone, Stefano; Uchuchoque, Juan Alexis Luque; Arguedas, Anita; Macedo, Luisa; Manrique Llerena, Nélida
2016-10-01
The focus of this study is an analysis of building vulnerability through investigating impacts from the 8 February 2013 flash flood event along the Avenida Venezuela channel in the city of Arequipa, Peru. On this day, 124.5 mm of rain fell within 3 h (monthly mean: 29.3 mm) triggering a flash flood that inundated at least 0.4 km2 of urban settlements along the channel, affecting more than 280 buildings, 23 of a total of 53 bridges (pedestrian, vehicle and railway), and leading to the partial collapse of sections of the main road, paralyzing central parts of the city for more than one week. This study assesses the aspects of building design and site specific environmental characteristics that render a building vulnerable by considering the example of a flash flood event in February 2013. A statistical methodology is developed that enables estimation of damage probability for buildings. The applied method uses observed inundation height as a hazard proxy in areas where more detailed hydrodynamic modeling data is not available. Building design and site-specific environmental conditions determine the physical vulnerability. The mathematical approach considers both physical vulnerability and hazard related parameters and helps to reduce uncertainty in the determination of descriptive parameters, parameter interdependency and respective contributions to damage. This study aims to (1) enable the estimation of damage probability for a certain hazard intensity, and (2) obtain data to visualize variations in damage susceptibility for buildings in flood prone areas. Data collection is based on a post-flood event field survey and the analysis of high (sub-metric) spatial resolution images (Pléiades 2012, 2013). An inventory of 30 city blocks was collated in a GIS database in order to estimate the physical vulnerability of buildings. As many as 1103 buildings were surveyed along the affected drainage and 898 buildings were included in the statistical analysis. Univariate and bivariate analyses were applied to better characterize each vulnerability parameter. Multiple corresponding analyses revealed strong relationships between the "Distance to channel or bridges", "Structural building type", "Building footprint" and the observed damage. Logistic regression enabled quantification of the contribution of each explanatory parameter to potential damage, and determination of the significant parameters that express the damage susceptibility of a building. The model was applied 200 times on different calibration and validation data sets in order to examine performance. Results show that 90% of these tests have a success rate of more than 67%. Probabilities (at building scale) of experiencing different damage levels during a future event similar to the 8 February 2013 flash flood are the major outcomes of this study.
[Vulnerability of eco-economy in northern slope region of Tianshan Mountains].
Wu, Jian-zhai; Li, Bo; Zhang, Xin-shi; Zhao, Wen-wu; Jiang, Guang-hui
2008-04-01
Based on the theoretical meaning of vulnerability, a vulnerability assessment of eco-econom in fifteen counties in the northern slope region of Tianshan Mountains was conducted. The ecosystem services change to land use was regarded as the impact, and based on the fourteen indices from resource holding, society development, and economy development statistic data, the adaptive ability was evaluated by using the methods of analytic hierarchy process (AHP) and fuzzy synthetic evaluation. On the basis of assessment results of impact and adaptive capacity, the fifteen counties were divided into five classes under the assessment principles, and the district with higher-class number was of more vulnerability. The first class included Usu City and Changji City, the second class included Hutubi County, Miquan County, Fukang City, Jimsar County, Qitai County and Mori Kazak Autonomous County, the third class included Karamay City and Urumqi City, the fourth class included Kuitun City and Shawan County, and the fifth class included Jinghe County, Shihezi City and Manas County. The vulnerability reflected the level of eco-environment change and socioeconomic development, and the vulnerability assessment could be a good way to ensure the sustainable development. Aiming to decrease the vulnerability, various districts belonging to different class of vulnerability should establish relevant tactics according to the vulnerability factors to accelerate the region's sustainable development.
Zhang, Yang; Shen, Jing; Li, Yu
2018-01-01
Assessing and quantifying atmospheric vulnerability is a key issue in urban environmental protection and management. This paper integrated the Analytical hierarchy process (AHP), fuzzy synthesis evaluation and Geographic Information System (GIS) spatial analysis into an Exposure-Sensitivity-Adaptive capacity (ESA) framework to quantitatively assess atmospheric environment vulnerability in the Beijing-Tianjin-Hebei (BTH) region with spatial and temporal comparisons. The elaboration of the relationships between atmospheric environment vulnerability and indices of exposure, sensitivity, and adaptive capacity supports enable analysis of the atmospheric environment vulnerability. Our findings indicate that the atmospheric environment vulnerability of 13 cities in the BTH region exhibits obvious spatial heterogeneity, which is caused by regional diversity in exposure, sensitivity, and adaptive capacity indices. The results of atmospheric environment vulnerability assessment and the cause analysis can provide guidance to pick out key control regions and recognize vulnerable indicators for study sites. The framework developed in this paper can also be replicated at different spatial and temporal scales using context-specific datasets to support environmental management. PMID:29342852
Zhang, Yang; Shen, Jing; Li, Yu
2018-01-13
Assessing and quantifying atmospheric vulnerability is a key issue in urban environmental protection and management. This paper integrated the Analytical hierarchy process (AHP), fuzzy synthesis evaluation and Geographic Information System (GIS) spatial analysis into an Exposure-Sensitivity-Adaptive capacity (ESA) framework to quantitatively assess atmospheric environment vulnerability in the Beijing-Tianjin-Hebei (BTH) region with spatial and temporal comparisons. The elaboration of the relationships between atmospheric environment vulnerability and indices of exposure, sensitivity, and adaptive capacity supports enable analysis of the atmospheric environment vulnerability. Our findings indicate that the atmospheric environment vulnerability of 13 cities in the BTH region exhibits obvious spatial heterogeneity, which is caused by regional diversity in exposure, sensitivity, and adaptive capacity indices. The results of atmospheric environment vulnerability assessment and the cause analysis can provide guidance to pick out key control regions and recognize vulnerable indicators for study sites. The framework developed in this paper can also be replicated at different spatial and temporal scales using context-specific datasets to support environmental management.
Storey, Jennifer E; Strand, Susanne
2017-01-01
This study investigated the influence of victim vulnerability factors and gender on risk assessment for intimate partner violence (IPV). 867 cases of male and female perpetrated IPV investigated by Swedish police officers using the Brief Spousal Assault Form for the Evaluation of Risk (B-SAFER) were examined. For male-to-female IPV, victim vulnerability factors were associated with summary risk judgments and risk management recommendations. For female-to-male IPV, vulnerability factors were more often omitted, and consistent associations were not found between vulnerability factors, summary risk judgments, and risk management. Results indicate that B-SAFER victim vulnerability factors can assist in assessing male-to-female IPV risk. Further research is necessary to examine the use of B-SAFER victim vulnerability factors for female-to-male IPV, as results showed victim vulnerability factors to be less relevant to officers' decision making, particularly their management recommendations. However, several variables external to the B-SAFER, such as the availability of management strategies may account for these findings.
Durocher, Evelyne; Chung, Ryoa; Rochon, Christiane; Hunt, Matthew
2016-07-01
Vulnerability is a central concept in humanitarian aid. Discussions of vulnerability in disaster response literature and guidelines for humanitarian aid range from considerations of a universal human vulnerability, to more nuanced examinations of how particular characteristics render individuals more or less at risk. Despite its frequent use, there is a lack of clarity about how vulnerability is conceptualized and how it informs operational priorities in humanitarian assistance. Guided by interpretive description methodology, we draw on the feminist taxonomy of vulnerability presented by Mackenzie, Rogers and Dodds (2014) to examine perspectives of 24 expatriate and Haitian decision-makers and health professionals interviewed between May 2012 and March 2013. The analysis explores concepts of vulnerability and equity in relation to the humanitarian response following the 2010 earthquake in Haiti. Participants' conceptualizations of vulnerability included consideration for inherent vulnerabilities related to individual characteristics (e.g. being a woman or disabled) and situational vulnerabilities related to particular circumstances such as having less access to health care resources or basic necessities. Participants recognized that vulnerabilities could be exacerbated by socio-political structures but felt ill-equipped to address these. The use of the taxonomy and a set of questions inspired by Hurst's (2008) approach to identifying and reducing vulnerability can guide the analysis of varied sources of vulnerability and open discussions about how and by whom vulnerabilities should be addressed in humanitarian responses. More research is required to inform how humanitarian responders could balance addressing acute vulnerability with consideration of systemic and pre-existing circumstances that underlie much of the vulnerability experienced following an acute disaster.
Chung, Ryoa; Rochon, Christiane; Hunt, Matthew
2016-01-01
Vulnerability is a central concept in humanitarian aid. Discussions of vulnerability in disaster response literature and guidelines for humanitarian aid range from considerations of a universal human vulnerability, to more nuanced examinations of how particular characteristics render individuals more or less at risk. Despite its frequent use, there is a lack of clarity about how vulnerability is conceptualized and how it informs operational priorities in humanitarian assistance. Guided by interpretive description methodology, we draw on the feminist taxonomy of vulnerability presented by Mackenzie, Rogers and Dodds (2014) to examine perspectives of 24 expatriate and Haitian decision-makers and health professionals interviewed between May 2012 and March 2013. The analysis explores concepts of vulnerability and equity in relation to the humanitarian response following the 2010 earthquake in Haiti. Participants’ conceptualizations of vulnerability included consideration for inherent vulnerabilities related to individual characteristics (e.g. being a woman or disabled) and situational vulnerabilities related to particular circumstances such as having less access to health care resources or basic necessities. Participants recognized that vulnerabilities could be exacerbated by socio-political structures but felt ill-equipped to address these. The use of the taxonomy and a set of questions inspired by Hurst’s (2008) approach to identifying and reducing vulnerability can guide the analysis of varied sources of vulnerability and open discussions about how and by whom vulnerabilities should be addressed in humanitarian responses. More research is required to inform how humanitarian responders could balance addressing acute vulnerability with consideration of systemic and pre-existing circumstances that underlie much of the vulnerability experienced following an acute disaster. PMID:27617037
Wu, Xiaoyu; Li, Bin; Ma, Chuanming
2018-05-01
This study assesses vulnerability of groundwater to pollution in Beihai City, China, as a support of groundwater resource protection. The assessment result not only objectively reflects potential possibility of groundwater to contamination but also provides scientific basis for the planning and utilization of groundwater resources. This study optimizes the parameters consisting of natural factors and human factors upon the DRASTIC model and modifies the ratings of these parameters, based on the local environmental conditions for the study area. And a weight of each parameter is assigned by the analytic hierarchy process (AHP) to reduce the subjectivity of humans to vulnerability assessment. The resulting scientific ratings and weights of modified DRASTIC model (AHP-DRASTLE model) contribute to obtain the more realistic assessment of vulnerability of groundwater to contaminant. The comparison analysis validates the accuracy and rationality of the AHP-DRASTLE model and shows it suits the particularity of the study area. The new assessment method (AHP-DRASTLE model) can provide a guide for other scholars to assess the vulnerability of groundwater to contamination. The final vulnerability map for the AHP-DRASTLE model shows four classes: highest (2%), high (29%), low (55%), and lowest (14%). The vulnerability map serves as a guide for decision makers on groundwater resource protection and land use planning at the regional scale and that it is adapted to a specific area.
NASA Astrophysics Data System (ADS)
Baldi, B.; Guastaldi, E.; Rossetto, R.
2009-04-01
During the characterization of the Apuan Alps groundwater body ( "Corpo Idrico Sotterraneo Significativo", briefly CISS) (Regione Toscana, 2007) the intrinsic vulnerability has been evaluated for Carrara hydrogeological system (Northern Tuscany, Italy) by means of COP method, developed within COST 620 European Action (Zwalhlen, 2003). This system is both characterized by large data availability and it is considered an highly risky zone since groundwater protection problems (turbidity of the tapped spring waters and hydrocarbons contamination) and anthropic activity (marble quarries). The study area, 20 Km2large, has high relief energy, with elevations ranging from 5 to 1700 m amsl in almost 5 km. Runoff is scarce except during heavy rainfall; due to the presence of carbonate rocks infiltration is high: groundwater discharge at 155-255 m amsl. The area is located in the north-western part of Apuan Alps Metamorphic Complex, characterized by carbonate and non-carbonate rocks belonging to the non-metamorphic Tuscan Units (Carnic-Oligocene), Mesozoic Succession, Middle-Triassic Succession, and metamorphic Paleozoic rocks. The main geological structure of the area is the Carrara Syncline, constituted prevalently by dolostones, marbles and cherty limestones. These carbonate formations define several moderately to highly productive hydrogeological units, characterized by fissured and karst flow. Hydrogeological system may be subdivided in two different subsets, because of both geo-structural set up and area conformation. However, these are hydrogeologically connected since anisotropy and fractures of karst groundwater. The southern boundary of Carrara hydrogeological system shows important dammed springs, defined by low productive units of Massa Unit (Cambriano?-Carnic). COP methodology for evaluating intrinsic vulnerability of karst groundwater is based on three main factors for the definition of vulnerability itself: COPIndex = C (flow Concentration) *O (Overlying layers) *P (Precipitation). In this way it is possible to estimate the natural grade of groundwater protection (O factor), determined by both soils properties and vadose zone lithology, and then evaluate how this protection could be modified by infiltration processes (diffused or concentrated, C factor) and climatic conditions (P factor). Factor elaborations have been calculated by study area discretization by means of raster grid with square cells, 100 m large, yielding the values distribution of sub-factor for each factor, and then the spatial distribution of intrinsic vulnerability, as result of geoprocessing and map analysis raster techniques in software ESRI ArcInfo® 9.1. Results shows in the study area: 1) Medium and high values of vulnerability classes; 2) Areas with high vulnerability located in zones with low O protection index and moderate protection reduction; 3) C factor contributes to the high vulnerability where superficial cover supports more the infiltration than the run-off (slope between 8 and 31%); 4) Low vulnerability grade areas are either inside unproductive hydrogeological units, or with thick superficial covers. Comparing these results with previous study, the distribution obtained by COP methodology shows larger variations between very high and high vulnerability area distribution. Most of the first areas are located in the central part of hydrogeological system, near to the main spring, and also in northern areas, where there is a swallow hole. This result yields a more precautionary scenario for particularly sensitive are characterized by high anthropogenic activity (marble quarry). Moreover, the vulnerability of such area is confirmed by both natural tracers (Lycopodium clavatum; Baldi, 2004) and environmental isotopes (2H, 3H, 18O; Doveri, 2005). This methodology allowed adding further information about intrinsic vulnerability of a hydrological contest very sensitive to anthropogenic pressures, and it is important for water resource as well. Such vulnerability map highlights higher vulnerability areas than those showed in previous studies, demonstrating that relying on just one methodology may lead to underestimation of groundwater protection level, especially in karst systems where anthropogenic contexts are developed. References Baldi, B., 2004. Studio idrogeologico dei bacini marmiferi carraresi mediante l'utilizzo di spore di Lycopodium clavatum. Rapporto Finale. Università degli studi di Pisa, Comune di Carrara (rapporto interno). Regione Toscana, 2007. Rapporto sull'attività svolta per la Convenzione tra la Regione Toscana ed il Centro di GeoTecnologie dell'Università degli Studi di Siena. "Studio idrogeologico prototipale del corpo idrico sotterraneo significativo dell'acquifero carbonatico delle Alpi Apuane, Monti d'Oltre Serchio e Santa Maria del Giudice". 10 Settembre 2007. Doveri, M., 2005. Studio idrogeologico e idrogeochimico dei sistemi acquiferi del Bacino del Torrente Carrione e dell'antistante piana costiera. Tesi di dottorato, Università degli Studi di Pisa. Zwalhlen, F., 2003. Vulnerability and risk mapping for the protection of carbonate (karst) aquifers, final report COST Action 620. European Commission, Directorate-General for Research, EUR 20912: p. 183-200.
Vulnerability Situations associated with Flash Flood Casualties in the United States
NASA Astrophysics Data System (ADS)
Terti, G.; Ruin, I.; Anquetin, S.; Gourley, J. J.
2015-12-01
In the United States (U.S.) flash flooding (FF hereafter) is one of the leading cause of weather-related deaths. Because FF events can be distinguished from riverine floods by their fast response to rainfall and resulting impacts signature, analyzing FF-specific impact datasets seems a good way to identify the juxtaposition of social and physical circumstances leading to those impacts. This communication focuses on conceptual and methodological developments allowing testing hypotheses on FF-specific vulnerability factors through the analysis of human impact datasets. We hypothesize that the intersection of the spatio-temporal context of the FF phenomena with the distribution of people and their characteristics across space and time reveals various paths of vulnerability through the expression of different accidents' circumstances (i.e., vehicle-related, inside buildings, open-air, campsites). We argue that vulnerability and the resulting impacts vary dynamically throughout the day according to the location/situation under concern. In order to test FF-specific contextual vulnerability factors at the scale of the continental US, 1075 fatalities reported between 1996 and 2014 in the Storm Data publication of the U.S. National Climatic Data Center (NCDC) are analyzed to statistically explore the timing, the duration and the location of the FF event, and the age and gender of the victims and the circumstance (i.e. location/activity) of their death. In this objective, a re-classification of the individual fatality circumstances and a discretization of the time in qualitative time-steps are performed to obtain possible trends and patterns in the occurrence of fatalities in certain circumstances and time (e.g., day vs night). The findings highlight the importance of situation-specific assessment of FF fatalities to guide the development of FF-specific vulnerability and impacts prediction modeling. Such analysis can provide valuable knowledge when the National Weather Service issues FF warning and emergencies. This is because targeted warnings can be communicated when we can relate the location of risky incidents in space (e.g., roads, campsites, mobile homes) with specific vulnerable groups (e.g., certain age groups, gender).
NASA Astrophysics Data System (ADS)
Armaroli, Clara; Perini, Luisa; Calabrese, Lorenzo; Ciavola, Paolo; Salerno, Giovanni
2014-05-01
In the last years a large number of catastrophic events have occurred along worldwide coastlines (e.g.: 2012 Super-storm Sandy, US East Coast). European countries have to face similar calamities such as those caused by the recent Xaver cyclone (December 2013). The Emilia-Romagna coastline, Italy, along the North Adriatic Sea, is affected by storms that cause extensive damages. The coast has low elevations, is highly urbanised and there is a massive presence of defence structures. The area is micro-tidal (neap/spring tide ranges = 0.4/0.8 m), low energetic (65% Hs<=1 m) but subjected to significant surge levels (1 year return period = 0.85 m). Therefore an evaluation of the vulnerability of the coastal area is an urgent matter. The Regional Geological Survey has completed an analysis of three scenarios of damage produced by the concurrent happening of a marine storm and high surge levels (1-in-1, 10, 100 year return period) and high spring tidal levels (+0.45 m MSL). Wave heights were used to calculate run-up values along the whole coastline (on 187 equally spaced profiles extracted from LIDAR datasets). The result is a list of ten typology of different levels of damage obtained through the comparison between the computed water levels, for each scenario and along each profile, and the topography/human occupation of the coast. The assessment reveals that 60% of the coastline is vulnerable to the 1-in-1 year return period scenario, thus even modal meteorological conditions can generate significant losses. A comparison was made between the produced typologies and the actual damage caused by a recent storm and the correspondence is almost identical, underlining that the method is reliable. Because the above-mentioned methodology is only punctual, the Geological Survey has started a different evaluation of the areal extension of inundations. The methodology considers the concurrent happening of the same return period storms but in terms of wave set-up only (not including run-up) plus surge levels (extracted from the literature) plus high spring tide level. To find the extension of inundated areas and the intrusion distance of marine water inland, the Cost-Distance tool of ArcGIS was used. The tool is able to evaluate the contribution of each "cell", in which the coast has been divided (from LIDAR data), to avoid or favour the water movement inland, considering its location with respect to the shoreline, its elevation above MSL and the elevation/location of nearby cells. It does not account for water infiltration and terrain roughness, therefore, to avoid getting unrealistic results, an attenuation artifice was introduced: the maximum water level surface, calculated for each return period, is projected inland following a sloping plane. The intrusion distance is determined by the intersection of the oblique water surface and the ground. This artifice, together with the Cost-Distance tool, produces consistent results if compared to observed inundations with similar return periods. A further implementation of coastal vulnerability assessment will be performed through numerical modelling and Bayesian approaches (RISC-KIT EU Project, www.risckit.eu, GA 603458).
Seismic Risk Assessment of Italian Seaports Using GIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartolomei, Anna; Corigliano, Mirko; Lai, Carlo G.
Seaports are crucial elements in the export and import of goods and/or on the flow of travellers in the tourism industry of many industrialised nations included Italy. Experience gained from recent earthquakes (e.g. 1989 Loma Prieta in USA, 1995 Hyogoken-Nanbu and 2003 Tokachi-Oki in Japan) have dramatically demonstrated the seismic vulnerability of seaport structures and the severe damage that can be caused by ground shaking. In Italy, the Department of Civil Protection has funded a research project to develop a methodology for the seismic design of new marginal wharves and assessment of existing structures at seaports located in areas ofmore » medium or high seismicity. This paper shows part of the results of this research project, currently underway, with particular reference to the seismic risk assessment through an interactive, geographically referenced database (GIS). Standard risk assessment have been carried out for the Gioia Tauro port in Calabria (Italy) using the empirical curves implemented by the National Institute of Building Sciences (NIBS, 2004)« less
78 FR 43863 - Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-22
... verifying that cleared contractors mitigate and ensuring identified security vulnerabilities. This public... information in ISFD. In turn, this will allow DSS to better tailor vulnerability assessments and other..., prior to annual vulnerability assessments, so that accurate information is continually maintained in...
Stamm, John F.; Poteet, Mary F.; Symstad, Amy J.; Musgrove, MaryLynn; Long, Andrew J.; Mahler, Barbara J.; Norton, Parker A.
2015-12-18
Flora and fauna that rely on springflow from Edwards and Madison aquifer sites were assessed for vulnerability to projected climate change on the basis of the Climate Change Vulnerability Index (CCVI). The CCVI is determined by the exposure of a species to climate, the sensitivity of the species, and the ability of the species to cope with climate change. Sixteen species associated with springs and groundwater were assessed in the Balcones Escarpment region. The Barton Springs salamander (Eurycea sosorum) was scored as highly vulnerable with moderate confidence. Nine species—three salamanders, a fountain darter (Etheostoma fonticola), three insects, and two amphipods—were scored as moderately vulnerable. The remaining six species—four vascular plants, the Barton cavesnail (Stygopyrgus bartonensis), and a cave shrimp—were scored as not vulnerable/presumed stable (not vulnerable and evidence does not support change in abundance or range of the species). Vulnerability of eight species associated with streams that receive springflow from the Madison aquifer in the Black Hills was assessed. Of these, the American dipper (Cinclus mexicanus) and the lesser yellow lady’s slipper (Cypripedium parviflorum) were scored as moderately vulernable with high confidence. The dwarf scouringrush (Equisetum scirpoides) and autumn willow (Salix serissima) were also scored as moderately vulnerable with moderate to low confidence, respectively. Other species were assessed as not vulnerable/presumed stable or not vulnerable/increase likely (not vulnerable and evidence supporting an increase in abundance or range of the species). Lower vulnerability scores for the Black Hills species in comparison to the Balcones Escarpment species reflect lower endemicity, higher projected springflow than in the historical period, and high thermal tolerance of many of the species for the Black Hills. Importantly, climate change vulnerability scores differed substantially for Edwards aquifer species when RRAWFLOW model projections were included, resulting in increased vulnerability scores for 12 of the 16 species.
NASA Astrophysics Data System (ADS)
Wei, Yanqiang; Wang, Shijin; Fang, Yiping; Nawaz, Zain
2017-10-01
Animal husbandry is a dominant and traditional source of livelihood and income in the Qinghai-Tibetan Plateau. The Qinghai-Tibetan Plateau is the third largest snow covered area in China and is one of the main snow disaster regions in the world. It is thus imperative to urgently address the issue of vulnerability of the animal husbandry sector to snow disasters for disaster mitigation and adaptation under growing risk of these disasters as a result of future climate change. However, there is very few literature reported on the vulnerability of animal husbandry in the Qinghai-Tibetan Plateau. This assessment aims at identifying vulnerability of animal husbandry at spatial scale and to identify the reasons for vulnerability for adaptive planning and disaster mitigation. First, historical snow disaster characteristics have been analyzed and used for the spatial weight for vulnerability assessment. Second, indicator-based vulnerability assessment model and indicator system have been established. We combined risk of snow hazard, sensitivity of livestock to disaster, physical exposure to disaster, and community capacity to adapt to snow disaster in an integrated vulnerability index. Lastly, vulnerability of animal husbandry to snow disaster on the Qinghai-Tibetan Plateau has been evaluated. Results indicate that high vulnerabilities are mainly concentrated in the eastern and central plateau and that vulnerability decreases gradually from the east to the west. Due to global warming, the vulnerability trend has eased to some extent during the last few decades. High livestock density exposure to blizzard-prone regions and shortages of livestock barn and forage are the main reasons of high vulnerability. The conclusion emphasizes the important role of the local government and community to help local pastoralists for reducing vulnerability to snow disaster and frozen hazard. The approaches presented in this paper can be used for snow disaster mitigation, resilience enhancement and effectively reducing vulnerability to natural hazards in other regions.
NASA Astrophysics Data System (ADS)
Knouz, Najat; Boudhar, Abdelghani; Bachaoui, El Mostafa
2016-04-01
Fresh water is the condition of all life on Earth for its vital role in the survival of living beings and in the social, economic and technological development. The Groundwater, as the surface water, is increasingly threatened by agricultural and industrial pollution. In this respect, the groundwater vulnerability assessment to pollution is a very valuable tool for resource protection, management of its quality and uses it in a sustainable way. The main objective of this study is the evaluation of groundwater vulnerability to pollution of the study area, Beni Amir, located in the first irrigated perimeter of Morocco, Tadla, using the DRASTIC method (depth to water, net recharge, aquifer media, soil media, Topography, impact of Vadose zone and hydraulic conductivity), and assessing the impact of each parameter on the DRASTIC vulnerability index by a sensitivity analysis. This study also highlights the role of geographic information systems (GIS) in assessing vulnerability. The Vulnerability index is calculated as the sum of product of ratings and weights assigned to each of the parameter DRASTIC. The results revealed four vulnerability classes, 7% of the study area has a high vulnerability, 31% are moderately vulnerable, 57% have a low vulnerability and 5% are of very low vulnerability.
Fisher, Marisa H; Shivers, Carolyn M; Josol, Cynde K
2018-06-05
Although it is well-known that individuals with intellectual and developmental disabilities (IDD) are socially vulnerable, the field lacks valid assessments to identify risk factors for victimization. Parents/caregivers of 428 individuals with IDD (ages 12-53) completed the social vulnerability questionnaire (SVQ), a measure developed to assess specific aspects of social vulnerability among individuals with various forms of IDD. This study examined the psychometric structure of the SVQ (exploratory and confirmatory factor analysis), and the utility of the factors of the SVQ as predictors of diagnostic category (through discriminate function analysis). Results provide psychometric support for use of the SVQ and its factors for further research and as part of a clinical assessment battery to assess social vulnerability and to develop interventions.
NASA Astrophysics Data System (ADS)
Valente, Marco; Milani, Gabriele
2017-07-01
Many existing reinforced concrete buildings in Southern Europe were built (and hence designed) before the introduction of displacement based design in national seismic codes. They are obviously highly vulnerable to seismic actions. In such a situation, simplified methodologies for the seismic assessment and retrofitting of existing structures are required. In this study, a displacement based procedure using non-linear static analyses is applied to a four-story existing RC frame. The aim is to obtain an estimation of its overall structural inadequacy as well as the effectiveness of a specific retrofitting intervention by means of GFRP laminates and RC jacketing. Accurate numerical models are developed within a displacement based approach to reproduce the seismic response of the RC frame in the original configuration and after strengthening.
Impact of hydrogeological factors on groundwater salinization due to ocean-surge inundation
NASA Astrophysics Data System (ADS)
Yang, Jie; Zhang, Huichen; Yu, Xuan; Graf, Thomas; Michael, Holly A.
2018-01-01
Ocean surges cause seawater inundation of coastal inland areas. Subsequently, seawater infiltrates into coastal aquifers and threatens the fresh groundwater resource. The severity of resulting salinization can be affected by hydrogeological factors including aquifer properties and hydrologic conditions, however, little research has been done to assess these effects. To understand the impacts of hydrogeological factors on groundwater salinization, we numerically simulated an ocean-surge inundation event on a two-dimensional conceptual coastal aquifer using a coupled surface-subsurface approach. We varied model permeability (including anisotropy), inland hydraulic gradient, and recharge rate. Three salinization-assessment indicators were developed, based on flushing time, depth of salt penetration, and a combination of the two, weighted flushing time, with which the impact of hydrogeological factors on groundwater vulnerability to salinization were quantitatively assessed. The vulnerability of coastal aquifers increases with increasing isotropic permeability. Low horizontal permeability (kx) and high vertical permeability (kz) lead to high aquifer vulnerability, and high kx and low kz lead to low aquifer vulnerability. Vulnerability decreases with increasing groundwater hydraulic gradient and increasing recharge rate. Additionally, coastal aquifers with a low recharge rate (R ≤ 300 mm yr-1) may be highly vulnerable to ocean-surge inundation. This study shows how the newly introduced indicators can be used to quantitatively assess coastal aquifer vulnerability. The results are important for global vulnerability assessment of coastal aquifers to ocean-surge inundation.
Open Ocean Assessments for Management in the GEF Transboundary Waters Assessment Project (TWAP)
NASA Astrophysics Data System (ADS)
Fischer, A. S.; Alverson, K. D.
2010-12-01
A methodology for a thematic and scientifically-credible assessment of Open Ocean waters as a part of the Global Environment Facility (GEF) Transboundary Waters Assessment Project (TWAP) has been developed in the last 18 months by the Intergovernmental Oceanographic Commission of UNESCO, and is presented for feedback and comment. While developed to help the GEF International Waters focal area target investment to manage looming environmental threats in interlinked freshwater and marine systems (a very focused decision support system), the assessment methodology could contribute to other assessment and management efforts in the UN system and elsewhere. Building on a conceptual framework that describes the relationships between human systems and open ocean natural systems, and on mapping of the human impact on the marine environment, the assessment will evaluate and make projections on a thematic basis, identifying key metrics, indices, and indicators. These themes will include the threats on key ecosystem services of climate change through sea level rise, changed stratification, warming, and ocean acidification; vulnerabilities of ecosystems, habitats, and living marine resources; the impact and sustainability of fisheries; and pollution. Global-level governance arrangements will also be evaluated, with an eye to identifying scope for improved global-level management. The assessment will build on sustained ocean observing systems, model projections, and an assessment of scientific literature, as well as tools for combining knowledge to support identification of priority concerns and in developing scenarios for management. It will include an assessment of key research and observing needs as one way to deal with the scientific uncertainty inherent in such an exercise, and to better link policy and science agendas.
Cyber Security Threats to Safety-Critical, Space-Based Infrastructures
NASA Astrophysics Data System (ADS)
Johnson, C. W.; Atencia Yepez, A.
2012-01-01
Space-based systems play an important role within national critical infrastructures. They are being integrated into advanced air-traffic management applications, rail signalling systems, energy distribution software etc. Unfortunately, the end users of communications, location sensing and timing applications often fail to understand that these infrastructures are vulnerable to a wide range of security threats. The following pages focus on concerns associated with potential cyber-attacks. These are important because future attacks may invalidate many of the safety assumptions that support the provision of critical space-based services. These safety assumptions are based on standard forms of hazard analysis that ignore cyber-security considerations This is a significant limitation when, for instance, security attacks can simultaneously exploit multiple vulnerabilities in a manner that would never occur without a deliberate enemy seeking to damage space based systems and ground infrastructures. We address this concern through the development of a combined safety and security risk assessment methodology. The aim is to identify attack scenarios that justify the allocation of additional design resources so that safety barriers can be strengthened to increase our resilience against security threats.
Vulnerability of populations and man-made facilities to seismic hazards
NASA Astrophysics Data System (ADS)
Badal, J.; Vazquez-Prada, M.; Gonzalez, A.; Chourak, M.; Samardzhieva, E.; Zhang, Z.
2003-04-01
Earthquakes become major societal risks when they impinge on vulnerable populations. According to the available worldwide data during the twentieth century (NEIC Catalog of Earthquakes 1980-1999), almost half a thousand of earthquakes resulted in more than 1,615,000 human victims. Besides human casualty levels, destructive earthquakes frequently inflict huge economic losses. An additional problem of very different nature, but also worthy of being considered in a damage and loss analysis, is the direct cost associated with the damages derived from a strong seismic impact. We focus our attention on both aspects to their rapid quantitative assessment, and to lessen the earthquake disaster in areas affected by relatively strong earthquakes. Our final goal is the knowledge of potential losses from earthquakes to forward national programs in emergency management, and consequently the minimization of the life loss due to earthquakes, and to aid in response and recovery tasks. For this purpose we follow a suitable and comprehensible methodology for risk-based loss analysis, and simulate the occurence of a seismic event in densely populated areas of Spain.
Cyber situational awareness and differential hardening
NASA Astrophysics Data System (ADS)
Dwivedi, Anurag; Tebben, Dan
2012-06-01
The advent of cyber threats has created a need for a new network planning, design, architecture, operations, control, situational awareness, management, and maintenance paradigms. Primary considerations include the ability to assess cyber attack resiliency of the network, and rapidly detect, isolate, and operate during deliberate simultaneous attacks against the network nodes and links. Legacy network planning relied on automatic protection of a network in the event of a single fault or a very few simultaneous faults in mesh networks, but in the future it must be augmented to include improved network resiliency and vulnerability awareness to cyber attacks. Ability to design a resilient network requires the development of methods to define, and quantify the network resiliency to attacks, and to be able to develop new optimization strategies for maintaining operations in the midst of these newly emerging cyber threats. Ways to quantify resiliency, and its use in visualizing cyber vulnerability awareness and in identifying node or link criticality, are presented in the current work, as well as a methodology of differential network hardening based on the criticality profile of cyber network components.
A concept analysis of women's vulnerability during pregnancy, birth and the postnatal period.
Briscoe, Lesley; Lavender, Tina; McGowan, Linda
2016-10-01
To report an analysis of the concept of vulnerability associated with pregnancy, birth and the postnatal period. The concept of vulnerability during childbirth is complex and the term, 'to be vulnerable' frequently attains a vague application. Analysis about vulnerability is needed to guide policy, practice, education and research. Clarity around the concept has the potential to improve outcomes for women. Concept analysis. Searches were conducted in CINAHL, EMBASE, PubMed, Psychinfo, MEDLINE, MIDIRS and ASSIA and limited to between January 2000 - June 2014. Data were collected over 12 months during 2014. This concept analysis drew on Morse's qualitative methods. Vulnerability during pregnancy, birth and the postnatal period can be defined by three main attributes: (a) Threat; (b) Barrier; and (c) Repair. Key attributes have the potential to influence outcome for women. Inseparable sub-attributes such as mother and baby attachment, the woman's free will and choice added a level of complexity about the concept. This concept analysis has clarified how the term vulnerability is currently understood and used in relation to pregnancy, birth and the postnatal period. Vulnerability should be viewed as a complex phenomenon rather than a singular concept. A 'vulnerability journey plan' has the potential to identify how reparative interventions may develop the woman's capacity for resilience and influence the degree of vulnerability experienced. Methodology based around complex theory should be explored in future work about vulnerability. © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Živanović, Vladimir; Jemcov, Igor; Dragišić, Veselin; Atanacković, Nebojša
2017-04-01
Delineation of sanitary protection zones of groundwater source is a comprehensive and multidisciplinary task. Uniform methodology for protection zoning for various type of aquifers is not established. Currently applied methods mostly rely on horizontal groundwater travel time toward the tapping structure. On the other hand, groundwater vulnerability assessment methods evaluate the protective function of unsaturated zone as an important part of groundwater source protection. In some particular cases surface flow might also be important, because of rapid transfer of contaminants toward the zones with intense infiltration. For delineation of sanitary protection zones three major components should be analysed: vertical travel time through unsaturated zone, horizontal travel time through saturated zone and surface water travel time toward intense infiltration zones. Integrating the aforementioned components into one time-dependent model represents a basis of presented method for delineation of groundwater source protection zones in rocks and sediments of different porosity. The proposed model comprises of travel time components of surface water, as well as groundwater (horizontal and vertical component). The results obtained using the model, represent the groundwater vulnerability as the sum of the surface and groundwater travel time and corresponds to the travel time of potential contaminants from the ground surface to the tapping structure. This vulnerability assessment approach do not consider contaminant properties (intrinsic vulnerability) although it can be easily improved for evaluating the specific groundwater vulnerability. This concept of the sanitary protection zones was applied at two different type of aquifers: karstic aquifer of catchment area of Blederija springs and "Beli Timok" source of intergranular shallow aquifer. The first one represents a typical karst hydrogeological system with part of the catchment with allogenic recharge, and the second one, the groundwater source within shallow intergranular alluvial aquifer, dominantly recharged by river bank filtration. For sanitary protection zones delineation, the applied method has shown the importance of introducing all travel time components equally. In the case of the karstic source, the importance of the surface flow toward ponor zones has been emphasized, as a consequence of rapid travel time of water in relation to diffuse infiltration from autogenic part. When it comes to the shallow intergranular aquifer, the character of the unsaturated zone gets more prominent role in the source protection, as important buffer of the vertical movement downward. The applicability of proposed method has been shown regardless of the type of the aquifer, and at the same time intelligible results of the delineated sanitary protection zones are possible to validate with various methods. Key words: groundwater protection zoning, time dependent model, karst aquifer, intergranular aquifer, groundwater source protection
Calibration of groundwater vulnerability mapping using the generalized reduced gradient method.
Elçi, Alper
2017-12-01
Groundwater vulnerability assessment studies are essential in water resources management. Overlay-and-index methods such as DRASTIC are widely used for mapping of groundwater vulnerability, however, these methods mainly suffer from a subjective selection of model parameters. The objective of this study is to introduce a calibration procedure that results in a more accurate assessment of groundwater vulnerability. The improvement of the assessment is formulated as a parameter optimization problem using an objective function that is based on the correlation between actual groundwater contamination and vulnerability index values. The non-linear optimization problem is solved with the generalized-reduced-gradient (GRG) method, which is numerical algorithm based optimization method. To demonstrate the applicability of the procedure, a vulnerability map for the Tahtali stream basin is calibrated using nitrate concentration data. The calibration procedure is easy to implement and aims the maximization of correlation between observed pollutant concentrations and groundwater vulnerability index values. The influence of each vulnerability parameter in the calculation of the vulnerability index is assessed by performing a single-parameter sensitivity analysis. Results of the sensitivity analysis show that all factors are effective on the final vulnerability index. Calibration of the vulnerability map improves the correlation between index values and measured nitrate concentrations by 19%. The regression coefficient increases from 0.280 to 0.485. It is evident that the spatial distribution and the proportions of vulnerability class areas are significantly altered with the calibration process. Although the applicability of the calibration method is demonstrated on the DRASTIC model, the applicability of the approach is not specific to a certain model and can also be easily applied to other overlay-and-index methods. Copyright © 2017 Elsevier B.V. All rights reserved.
Calibration of groundwater vulnerability mapping using the generalized reduced gradient method
NASA Astrophysics Data System (ADS)
Elçi, Alper
2017-12-01
Groundwater vulnerability assessment studies are essential in water resources management. Overlay-and-index methods such as DRASTIC are widely used for mapping of groundwater vulnerability, however, these methods mainly suffer from a subjective selection of model parameters. The objective of this study is to introduce a calibration procedure that results in a more accurate assessment of groundwater vulnerability. The improvement of the assessment is formulated as a parameter optimization problem using an objective function that is based on the correlation between actual groundwater contamination and vulnerability index values. The non-linear optimization problem is solved with the generalized-reduced-gradient (GRG) method, which is numerical algorithm based optimization method. To demonstrate the applicability of the procedure, a vulnerability map for the Tahtali stream basin is calibrated using nitrate concentration data. The calibration procedure is easy to implement and aims the maximization of correlation between observed pollutant concentrations and groundwater vulnerability index values. The influence of each vulnerability parameter in the calculation of the vulnerability index is assessed by performing a single-parameter sensitivity analysis. Results of the sensitivity analysis show that all factors are effective on the final vulnerability index. Calibration of the vulnerability map improves the correlation between index values and measured nitrate concentrations by 19%. The regression coefficient increases from 0.280 to 0.485. It is evident that the spatial distribution and the proportions of vulnerability class areas are significantly altered with the calibration process. Although the applicability of the calibration method is demonstrated on the DRASTIC model, the applicability of the approach is not specific to a certain model and can also be easily applied to other overlay-and-index methods.
(Non-) robustness of vulnerability assessments to climate change: An application to New Zealand.
Fernandez, Mario Andres; Bucaram, Santiago; Renteria, Willington
2017-12-01
Assessments of vulnerability to climate change are a key element to inform climate policy and research. Assessments based on the aggregation of indicators have a strong appeal for their simplicity but are at risk of over-simplification and uncertainty. This paper explores the non-robustness of indicators-based assessments to changes in assumptions on the degree of substitution or compensation between indicators. Our case study is a nationwide assessment for New Zealand. We found that the ranking of geographic areas is sensitive to different parameterisations of the aggregation function, that is, areas that are categorised as highly vulnerable may switch to the least vulnerable category even with respect to the same climate hazards and population groups. Policy implications from the assessments are then compromised. Though indicators-based approaches may help on identifying drivers of vulnerability, there are weak grounds to use them to recommend mitigation or adaptation decisions given the high level of uncertainty because of non-robustness. Copyright © 2017 Elsevier Ltd. All rights reserved.
Vulnerability of schools to floods in Nyando River catchment, Kenya.
Ochola, Samuel O; Eitel, Bernhard; Olago, Daniel O
2010-07-01
This paper assesses the vulnerability of schools to floods in the Nyando River catchment (3,600 km(2)) in western Kenya and identifies measures needed to reduce this vulnerability. It surveys 130 schools in the lower reaches, where flooding is a recurrent phenomenon. Of the primary schools assessed, 40% were vulnerable, 48% were marginally vulnerable and 12% were not vulnerable. Of the secondary schools, 8% were vulnerable, 73% were marginally vulnerable and 19% were not vulnerable. Vulnerability to floods is due to a lack of funds, poor building standards, local topography, soil types and inadequate drainage. The Constituencies Development Fund (CDF), established in 2003, provides financial support to cover school construction and reconstruction costs; CDF Committees are expected to adopt school building standards. In an effort to promote safe and resilient construction and retrofitting to withstand floods, this paper presents vulnerability reduction strategies and recommendations for incorporating minimum standards in the on-going Primary School Infrastructure Programme Design.
Finlay, I G; George, R
2011-03-01
Battin et al examined data on deaths from physician-assisted suicide (PAS) in Oregon and on PAS and voluntary euthanasia (VE) in The Netherlands. This paper reviews the methodology used in their examination and questions the conclusions drawn from it-namely, that there is for the most part 'no evidence of heightened risk' to vulnerable people from the legalisation of PAS or VE. This critique focuses on the evidence about PAS in Oregon. It suggests that vulnerability to PAS cannot be categorised simply by reference to race, gender or other socioeconomic status and that the impetus to seek PAS derives from factors, including emotional state, reactions to loss, personality type and situation and possibly to PAS contagion, all factors that apply across the social spectrum. It also argues, on the basis of official reports from the Oregon Health Department on the working of the Oregon Death with Dignity Act since 2008, that, contrary to the conclusions drawn by Battin et al, the highest resort to PAS in Oregon is among the elderly and, on the basis of research published since Battin et al reported, that there is reason to believe that some terminally ill patients in Oregon are taking their own lives with lethal drugs supplied by doctors despite having had depression at the time when they were assessed and cleared for PAS.
Comparison and Evaluation of Global Scale Studies of Vulnerability and Risks to Climate Change
NASA Astrophysics Data System (ADS)
Muccione, Veruska; Allen, Simon K.; Huggel, Christian; Birkmann, Joern
2015-04-01
Understanding the present and future distribution of different climate change impacts and vulnerability to climate change is a central subject in the context of climate justice and international climate policy. Commonly, it is claimed that poor countries that contributed little to anthropogenic climate change are those most affected and most vulnerable to climate change. Such statements are backed by a number of global-scale vulnerability studies, which identified poor countries as most vulnerable. However, some studies have challenged this view, likewise highlighting the high vulnerability of richer countries. Overall, no consensus has been reached so far about which concept of vulnerability should be applied and what type of indicators should be considered. Furthermore, there is little agreement which specific countries are most vulnerable. This is a major concern in view of the need to inform international climate policy, all the more if such assessments should contribute to allocate climate adaptation funds as was invoked at some instances. We argue that next to the analysis of who is most vulnerable, it is also important to better understand and compare different vulnerability profiles assessed in present global studies. We perform a systematic literature review of global vulnerability assessments with the scope to highlight vulnerability distribution patterns. We then compare these distributions with global risk distributions in line with revised and adopted concepts by most recent IPCC reports. It emerges that improved differentiation of key drivers of risk and the understanding of different vulnerability profiles are important contributions, which can inform future adaptation policies at the regional and national level. This can change the perspective on, and basis for distributional issues in view of climate burden share, and therefore can have implications for UNFCCC financing instruments (e.g. Green Climate Fund). However, in order to better compare traditional vulnerability distributions with more recent conceptualisation of risks, more research should be devoted to global assessments of climate change risk distributions.
An holistic view on aquifer vulnerability based on a distinction of different types of vulnerability
NASA Astrophysics Data System (ADS)
De Luca, Domenico Antonio; Lasagna, Manuela; Franchino, Elisa
2016-04-01
AN HOLISTIC VIEW ON AQUIFER VULNERABILITY BASED ON A DISTINCTION OF DIFFERENT TYPES OF VULNERABILITY D.A. De Luca1 , M. Lasagna1, E. Franchino1 1Department of Earth Sciences, University of Turin The concept of vulnerability is certainly useful in the field of groundwater protection. Nevertheless, within the scientific community, the definition of groundwater vulnerability is still debatable and not clear and conclusive. This is probably due to the fact that researchers often have very different experiences and education. A positive effect of it is a constant exchange of ideas, but there are also negative consequences and difficulties in deepening the issue. The different approaches are very important but they are usable only if the concept of vulnerability is standardized: thus, for the sake of clarity, a number of definitions should be laid down, based on the different types of vulnerability. These definitions can then provide the necessary holistic view for the aquifer vulnerability assessment. Nowadays vulnerability methods focus on the degree of vulnerability and the parameters needed for its evaluation, often neglecting to clarify what is the type of vulnerability the proposed methods are referred. The type of vulnerability, indeed, is both logically and hierarchically superior to the degree of vulnerability. More specifically the type of vulnerability represents the evaluation of the hydrogeological conditions considered in the vulnerability assessment and able to influence the way in which the contamination can take place. Currently the only distinction, based on of the type of vulnerability, is referred to intrinsic and specific vulnerability. Intrinsic vulnerability assesses the susceptibility of the receptor based on the natural properties of the land and subsurface; specific vulnerability also includes properties of the analyzed contaminant. This distinction is useful but not exhaustive. In addition to this, e.g., a distinction of vertical vulnerability and lateral (or horizontal) vulnerability could be very useful; generally parametric vulnerability methods only take into account the protection degree offered by the overlying lithology, considering a vertical travel pathway for the contaminant. These methods normally neglect horizontal pathway (pollution transport in groundwater according to the hydraulic gradient), so we can have an underestimation of the possible vulnerability. The distinction, the analysis and the definition of different types of vulnerability might be positive to stimulate discussion and have a number of advantages, such as: - to improve the clarity of the conditions of employment of a method, benefiting above all end-users and stakeholders; - to improve the ability to compare methods for the assessment of the degree of vulnerability; - to improve the ability to verify the effectiveness of the proposed methods.
Grøn, Lone
2016-12-01
This paper is based on an ethnographic fieldwork aimed at exploring ethnographically how vulnerability in old age is perceived and experienced in contemporary Denmark. The fieldwork showed remarkable differences between two phases of the fieldwork: the first addressing vulnerability from the "outside" through group interviews with professionals, leaders and older people who were not (yet) vulnerable; and the second from the "inside" through more in depth fieldwork with older people who in diverse ways could be seen as vulnerable. After a short introduction to anthropological and social gerontological literature on characteristics of "Western" aging: medicalization, successful, healthy and active aging, I present findings from both phases of this ethnographic fieldwork arguing that the ethnographic approach reveals the composite and complex nature of vulnerability in old age and the constant interactions between first, second and third person perspectives. Through these methodological and analytical moves a complex and empirically tenable understanding of vulnerability in old age has emerged which 1. moves beyond rigid dichotomies that have characterized the study of old age, 2. integrates individual experience, social interaction and the structural and discursive context into the analysis, and 3. reveals the complex interplay between vulnerability and agency in diverse situations and settings of old age. Copyright © 2016 Elsevier Inc. All rights reserved.
Thompson, Laura M.; Staudinger, Michelle D.; Carter, Shawn L.
2015-09-29
A secretarial order identified climate adaptation as a critical performance objective for future management of U.S. Department of the Interior (DOI) lands and resources in response to global change. Vulnerability assessments can inform climate adaptation planning by providing insight into what natural resources are most at risk and why. Three components of vulnerability—exposure, sensitivity, and adaptive capacity—were defined by the Intergovernmental Panel on Climate Change (IPCC) as necessary for identifying climate adaptation strategies and actions. In 2011, the DOI requested all internal bureaus report ongoing or completed vulnerability assessments about a defined range of assessment targets or climate-related threats. Assessment targets were defined as freshwater resources, landscapes and wildlife habitat, native and cultural resources, and ocean health. Climate-related threats were defined as invasive species, wildfire risk, sea-level rise, and melting ice and permafrost. Four hundred and three projects were reported, but the original DOI survey did not specify that information be provided on exposure, sensitivity, and adaptive capacity collectively as part of the request, and it was unclear which projects adhered to the framework recommended by the IPCC. Therefore, the U.S. Geological Survey National Climate Change and Wildlife Science Center conducted a supplemental survey to determine how frequently each of the three vulnerability components was assessed. Information was categorized for 124 of the 403 reported projects (30.8 percent) based on the three vulnerability components, and it was discovered that exposure was the most common component assessed (87.9 percent), followed by sensitivity (68.5 percent) and adaptive capacity (33.1 percent). The majority of projects did not fully assess vulnerability; projects focused on landscapes/wildlife habitats and sea-level rise were among the minority that simultaneously addressed all three vulnerability components. To maintain consistency with the IPCC definition of vulnerability, DOI may want to focus initial climate adaptation planning only on the outcomes of studies that comprehensively address vulnerability as inclusive of exposure, sensitivity, and adaptive capacity. Although the present study results are preliminary and used an unstructured survey design, they illustrate the importance of a comprehensive and consistent vulnerability definition and of using information on vulnerability components in DOI surveys to ensure relevant data are used to identify adaptation options.
NASA Astrophysics Data System (ADS)
Medellín, G.; Brinkkemper, J. A.; Torres-Freyermuth, A.; Appendini, C. M.; Mendoza, E. T.; Salles, P.
2016-01-01
We present a downscaling approach for the study of wave-induced extreme water levels at a location on a barrier island in Yucatán (Mexico). Wave information from a 30-year wave hindcast is validated with in situ measurements at 8 m water depth. The maximum dissimilarity algorithm is employed for the selection of 600 representative cases, encompassing different combinations of wave characteristics and tidal level. The selected cases are propagated from 8 m water depth to the shore using the coupling of a third-generation wave model and a phase-resolving non-hydrostatic nonlinear shallow-water equation model. Extreme wave run-up, R2%, is estimated for the simulated cases and can be further employed to reconstruct the 30-year time series using an interpolation algorithm. Downscaling results show run-up saturation during more energetic wave conditions and modulation owing to tides. The latter suggests that the R2% can be parameterized using a hyperbolic-like formulation with dependency on both wave height and tidal level. The new parametric formulation is in agreement with the downscaling results (r2 = 0.78), allowing a fast calculation of wave-induced extreme water levels at this location. Finally, an assessment of beach vulnerability to wave-induced extreme water levels is conducted at the study area by employing the two approaches (reconstruction/parameterization) and a storm impact scale. The 30-year extreme water level hindcast allows the calculation of beach vulnerability as a function of return periods. It is shown that the downscaling-derived parameterization provides reasonable results as compared with the numerical approach. This methodology can be extended to other locations and can be further improved by incorporating the storm surge contributions to the extreme water level.
NASA Astrophysics Data System (ADS)
Ghiglieri, Giorgio; Barbieri, Giulio; Vernier, Antonio; Carletti, Alberto; Demurtas, Nicola; Pinna, Rosanna; Pittalis, Daniele
2009-12-01
SummaryThe paper describes the methodological and innovative approach, which aims to evaluate the potential risk of nitrate pollution in aquifers from agricultural practices by combining intrinsic aquifer vulnerability to contamination, according to the SINTACS R5 method, with agricultural nitrates hazard assessment, according to the IPNOA index. The proposed parametric model adopts a geographically based integrated evaluation system, comprising qualitative and semi-quantitative indicators. In some cases, the authors have modified this model, revising and adjusting scores and weights of the parameter to account for the different environmental conditions, and calibrating accordingly. The method has been successfully implemented and validated in the pilot area of the Alghero coastal plain (northwestern Sardinia, Italy) where aquifers with high productivity are present. The classes with a major score (high potential risk) are in the central part of the plain, in correspondence with the most productive aquifers, where most actual or potential pollution sources are concentrated. These are mainly represented by intensive agricultural activities, by industrial agglomerate and diffused urbanisation. For calibrating the model and optimizing and/or weighting the examined factors, the modelling results were validated by comparison with groundwater quality data, in particular nitrate content, and with the potential pollution sources census data. The parametric method is a popular approach to groundwater vulnerability assessment, in contrast to groundwater flow model and statistical method ones: it is, indeed, relatively inexpensive and straightforward, and use data commonly available or that can be estimated. The zoning of nitrate vulnerable areas provides regional authorities with a useful decision support tool for planning land-use properly managing groundwater and combating and/or mitigating desertification processes. However, a careful validation of the results is indispensable for reliable application.
[Health vulnerability mapping in the Community of Madrid (Spain)].
Ramasco-Gutiérrez, Milagros; Heras-Mosteiro, Julio; Garabato-González, Sonsoles; Aránguez-Ruiz, Emiliano; Aguirre Martín-Gil, Ramón
The Public Health General Directorate of Madrid has developed a health vulnerability mapping methodology to assist regional social health teams in health planning, prioritisation and intervention based on a model of social determinants of health and an equity approach. This process began with the selection of areas with the worst social indicators in health vulnerability. Then, key stakeholders of the region jointly identified priority areas of intervention and developed a consensual plan of action. We present the outcomes of this experience and its connection with theoretical models of asset-based community development, health-integrated georeferencing systems and community health interventions. Copyright © 2016 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.
Vulnerability and seismic damage scenarios for Barcelona (Spain) by using GIS
NASA Astrophysics Data System (ADS)
Lantada, N.; Pujades, L. G.; Barbat, A.
2003-04-01
An integrated GIS-based analysis (using ArcView GIS) is performed in order to estimate damage scenarios for VI, VII and VIII EMS-98 seismic intensities in Barcelona (Spain). The analysis of vulnerability and damage of individual buildings is performed according to a simplified method developed by Giovanazzi and Lagomarsino at the University of Genoa (Italy). An index of average vulnerability is associated to each building typology, which may be refined on the basis of behaviour modifiers. The index allows identification of an analytical relationship between seismic input (intensity) and damage, described by a binomial distribution. This methodology, which is based on the EMS-98 building typologies and preserves the compatibility with preceding methods, is applied to the two main residential building typologies of Barcelona, that is, unreinforced masonry and reinforced concrete buildings. Then, the specific residential buildings of Barcelona are classified in different groups characterized by a similar seismic behaviour. Therefore, all buildings belonging to each typology are cast in the most probable class according to vulnerability. In this way, the average vulnerability index is associated to each building typology of Barcelona and it is refined later on the basis of behaviour modifiers, linked to the number of stories, the year of construction and their state of maintenance. The ability of GIS tools to store, manage, analyse, and display the large amount of spatial and tabular data involved in this study allows to map average vulnerability indexes, and damage for the entire city. That is, vulnerability and damage scenarios. The obtained results show a high vulnerability and high expected seismic damage. For a VI degree of intensity, the maximum expected damage is in the range 15-30 % in the oldest zones of the city, the downtown, while for intensity VII it is in the range 45-60%. The developed GIS tool involves a friendly interface that allows new models and database information to be included in the same framework. As a new step to the seismic risk assessment, and in addition to the building characteristics, the destination of the building, as well as the essential buildings, and the density of population for census zones, have been included in the GIS database. Combining this information with the previous damage maps we will be able to obtain more complete damage scenarios including, deaths, injuries, and homeless.
Perez-Brumer, Amaya G.; Reisner, Sari L.; McLean, Sarah A.; Silva-Santisteban, Alfonso; Huerta, Leyla; Mayer, Kenneth H.; Sanchez, Jorge; Clark, Jesse L.; Mimiaga, Matthew J.; Lama, Javier R.
2017-01-01
Abstract Introduction: In Peru, transgender women (TW) experience unique vulnerabilities for HIV infection due to factors that limit access to, and quality of, HIV prevention, treatment and care services. Yet, despite recent advances in understanding factors associated with HIV vulnerability among TW globally, limited scholarship has examined how Peruvian TW cope with this reality and how existing community-level resilience strategies are enacted despite pervasive social and economic exclusion facing the community. Addressing this need, our study applies the understanding of social capital as a social determinant of health and examines its relationship to HIV vulnerabilities to TW in Peru. Methods: Using qualitative methodology to provide an in-depth portrait, we assessed (1) intersections between social marginalization, social capital and HIV vulnerabilities; and (2) community-level resilience strategies employed by TW to buffer against social marginalization and to link to needed HIV-related services in Peru. Between January and February 2015, 48 TW participated (mean age = 29, range = 18–44) in this study that included focus group discussions and demographic surveys. Analyses were guided by an immersion crystallization approach and all coding was conducted using Dedoose Version 6.1.18. Results: Themes associated with HIV vulnerability included experiences of multilevel stigma and limited occupational opportunities that placed TW at risk for, and limited their engagement with, existing HIV services. Emergent resiliency-based strategies included peer-to-peer and intergenerational knowledge sharing, supportive clinical services (e.g. group-based clinic attendance) and emotional support through social cohesion (i.e. feeling part of a community). Conclusion: This study highlights the importance of TW communities as support structures that create and deploy social resiliency-based strategies aimed at deterring and mitigating the impact of social vulnerabilities to discrimination, marginalization and HIV risk for individual TW in Peru. Public health strategies seeking to provide HIV prevention, treatment and care for this population will benefit from recognizing existing social capital within TW communities and incorporating its strengths within HIV prevention interventions. At the intersection of HIV vulnerabilities and collective agency, dimensions of bridging and bonding social capital emerged as resiliency strategies used by TW to access needed healthcare services in Peru. Fostering TW solidarity and peer support are key components to ensure acceptability and sustainability of HIV prevention and promotion efforts. PMID:28362064
Perez-Brumer, Amaya G; Reisner, Sari L; McLean, Sarah A; Silva-Santisteban, Alfonso; Huerta, Leyla; Mayer, Kenneth H; Sanchez, Jorge; Clark, Jesse L; Mimiaga, Matthew J; Lama, Javier R
2017-02-28
In Peru, transgender women (TW) experience unique vulnerabilities for HIV infection due to factors that limit access to, and quality of, HIV prevention, treatment and care services. Yet, despite recent advances in understanding factors associated with HIV vulnerability among TW globally, limited scholarship has examined how Peruvian TW cope with this reality and how existing community-level resilience strategies are enacted despite pervasive social and economic exclusion facing the community. Addressing this need, our study applies the understanding of social capital as a social determinant of health and examines its relationship to HIV vulnerabilities to TW in Peru. Using qualitative methodology to provide an in-depth portrait, we assessed (1) intersections between social marginalization, social capital and HIV vulnerabilities; and (2) community-level resilience strategies employed by TW to buffer against social marginalization and to link to needed HIV-related services in Peru. Between January and February 2015, 48 TW participated (mean age = 29, range = 18-44) in this study that included focus group discussions and demographic surveys. Analyses were guided by an immersion crystallization approach and all coding was conducted using Dedoose Version 6.1.18. Themes associated with HIV vulnerability included experiences of multilevel stigma and limited occupational opportunities that placed TW at risk for, and limited their engagement with, existing HIV services. Emergent resiliency-based strategies included peer-to-peer and intergenerational knowledge sharing, supportive clinical services (e.g. group-based clinic attendance) and emotional support through social cohesion (i.e. feeling part of a community). This study highlights the importance of TW communities as support structures that create and deploy social resiliency-based strategies aimed at deterring and mitigating the impact of social vulnerabilities to discrimination, marginalization and HIV risk for individual TW in Peru. Public health strategies seeking to provide HIV prevention, treatment and care for this population will benefit from recognizing existing social capital within TW communities and incorporating its strengths within HIV prevention interventions. At the intersection of HIV vulnerabilities and collective agency, dimensions of bridging and bonding social capital emerged as resiliency strategies used by TW to access needed healthcare services in Peru. Fostering TW solidarity and peer support are key components to ensure acceptability and sustainability of HIV prevention and promotion efforts.
CONFU: Configuration Fuzzing Testing Framework for Software Vulnerability Detection
Dai, Huning; Murphy, Christian; Kaiser, Gail
2010-01-01
Many software security vulnerabilities only reveal themselves under certain conditions, i.e., particular configurations and inputs together with a certain runtime environment. One approach to detecting these vulnerabilities is fuzz testing. However, typical fuzz testing makes no guarantees regarding the syntactic and semantic validity of the input, or of how much of the input space will be explored. To address these problems, we present a new testing methodology called Configuration Fuzzing. Configuration Fuzzing is a technique whereby the configuration of the running application is mutated at certain execution points, in order to check for vulnerabilities that only arise in certain conditions. As the application runs in the deployment environment, this testing technique continuously fuzzes the configuration and checks “security invariants” that, if violated, indicate a vulnerability. We discuss the approach and introduce a prototype framework called ConFu (CONfiguration FUzzing testing framework) for implementation. We also present the results of case studies that demonstrate the approach’s feasibility and evaluate its performance. PMID:21037923
[Vulnerability assessment on the coastal wetlands in the Yangtze Estuary under sea-level rise].
Cui, Li-Fang; Wang, Ning; Ge, Zhen-Ming; Zhang, Li-Quan
2014-02-01
To study the response of coastal wetlands to climate change, assess the impacts of climate change on the coastal wetlands and formulate feasible and practical mitigation strategies are the important prerequisite for securing coastal ecosystems. In this paper, the possible impacts of sea level rise caused by climate change on the coastal wetlands in the Yangtze Estuary were analyzed by the Source-Pathway-Receptor-Consequence (SPRC) model and IPCC definition on the vulnerability. An indicator system for vulnerability assessment was established, in which sea-level rise rate, subsidence rate, habitat elevation, inundation threshold of habitat and sedimentation rate were selected as the key indicators. A quantitatively spatial assessment method based on the GIS platform was established by quantifying each indicator, calculating the vulnerability index and grading the vulnerability index for the assessment of coastal wetlands in the Yangtze Estuary under the scenarios of sea-level rise. The vulnerability assessments on the coastal wetlands in the Yangtze Estuary in 2030 and 2050 were performed under two sea-level rise scenarios (the present sea-level rise trend over recent 30 years and IPCC A1F1 scenario). The results showed that with the projection in 2030 under the present trend of sea-level rise (0.26 cm x a(-1)), 6.6% and 0.1% of the coastal wetlands were in the low and moderate vulnerabilities, respectively; and in 2050, 9.8% and 0.2% of the coastal wetlands were in low and moderate vulnerabilities, respectively. With the projection in 2030 under the A1F1 scenario (0.59 cm x a(-1)), 9.0% and 0.1% of the coastal wetlands were in the low and moderate vulnerabilities, respectively; and in 2050, 9.5%, 1.0% and 0.3% of the coastal wetlands were in the low, moderate and high vulnerabilities, respectively.
NASA Astrophysics Data System (ADS)
Huan, Huan; Wang, Jinsheng; Lai, Desheng; Teng, Yanguo; Zhai, Yuanzheng
2015-05-01
Well vulnerability assessment is essential for groundwater source protection. A quantitative approach to assess well vulnerability in a well capture zone is presented, based on forward solute transport modeling. This method was applied to three groundwater source areas (Jiuzhan, Hadawan and Songyuanhada) in Jilin City, northeast China. The ratio of the maximum contaminant concentration at the well to the released concentration at the contamination source ( c max/ c 0) was determined as the well vulnerability indicator. The results indicated that well vulnerability was higher close to the pumping well. The well vulnerability in each groundwater source area was low. Compared with the other two source areas, the cone of depression at Jiuzhan resulted in higher spatial variability of c max/ c 0 and lower minimum c max/ c 0 by three orders of magnitude. Furthermore, a sensitivity analysis indicated that the denitrification rate in the aquifer was the most sensitive with respect to well vulnerability. A process to derive a NO3-N concentration at the pumping well is presented, based on determining the maximum nitrate loading limit to satisfy China's drinking-water quality standards. Finally, the advantages, disadvantages and prospects for improving the precision of this well vulnerability assessment approach are discussed.
Zhang, Yang; Shen, Jing; Li, Yu
2018-02-01
This paper presents an atmospheric vulnerability assessment framework based on CAMx that should be helpful to assess potential impacts of changes in human, atmospheric environment, and social economic elements of atmospheric vulnerability. It is also a useful and effective tool that can provide policy-guidance for environmental protection and management to reduce the atmospheric vulnerability. The developed framework was applied to evaluate the atmospheric environment vulnerability of 13 cities in the Beijing-Tianjin-Hebei (BTH) region for verification. The results indicated that regional disparity of the atmospheric vulnerability existed in the study site. More specifically, the central and southern regions show more atmospheric environment vulnerability than the northern regions. The impact factors of atmospheric environment vulnerability in the BTH region mainly derived from increasing population press, frequently unfavorable meteorological conditions, extensive economic growth of secondary industry, increased environmental pollution, and accelerating population aging. The framework shown in this paper is an interpretative and heuristic tool for a better understanding of atmospheric vulnerability. This framework can also be replicated at different spatial and temporal scales using context-specific datasets to straightly support environmental managers with decision-making. Copyright © 2017 Elsevier Ltd. All rights reserved.
Drought vulnerability assessment: The case of wheat farmers in Western Iran
NASA Astrophysics Data System (ADS)
Zarafshani, Kiumars; Sharafi, Lida; Azadi, Hossein; Hosseininia, Gholamhossein; De Maeyer, Philippe; Witlox, Frank
2012-12-01
Drought, as a natural and slow-onset phenomenon, creates numerous damages to agricultural communities. As a drought prone area in the Middle East, Iran has currently launched a crisis management approach to mitigate the harmful impacts of drought. However, thus far studies indicate that effective drought management strategies should be designed based upon vulnerability management which can increase farmers' ability to challenge the impacts. The purpose of this study was to assess drought vulnerability across three drought intensities (very high, extremely high, and critical) areas in Western Iran. Accordingly, a survey study was applied and 370 wheat farmers who all experienced drought during 2007-2009 were selected through a multi-stage stratified random sampling method. Face to face interviews were used to collect data on vulnerability indices from the farmers. Me-Bar and Valdez's vulnerability formula was applied to assess the vulnerability of wheat farmers during drought. Results revealed that the farmers' vulnerability is influenced mainly by economic, socio-cultural, psychological, technical, and infrastructural factors. The results also indicated that the farmers in Sarpole-Zahab township were most vulnerable compared to those in the Kermanshah township as the least vulnerable. Accordingly, some conclusions and recommendations are drawn for both policy-makers and practitioners who often must prioritize limited resources in the design vulnerability-reducing interventions.
2018-01-01
The shallow groundwater of the multi-layered sedimentary basin aquifer of southwestern Nigeria was assessed based on its intrinsic vulnerability property. The vulnerability evaluation involves determining the protective cover and infiltration condition of the unsaturated zone in the basin. This was achieved using the PI (P stands for protective cover effectiveness of the overlying lithology and I indicates the degree of infiltration bypass) vulnerability method of the European vulnerability approach. The PI method specifically measures the protection cover and the degree to which the protective cover is bypassed. Intrinsic parameters assessed were the subsoil, lithology, topsoil, recharge and fracturing for the protective cover. The saturated hydraulic conductivity of topsoil, infiltration processes and the lateral surface and subsurface flow were evaluated for the infiltration bypassed. The results show moderate to very low vulnerability areas. Low vulnerability areas were characterised by lithology with massive sandstone and limestone, subsoils of sandy loam texture, high slopes and high depth to water table. The moderate vulnerability areas were characterised by high rainfall and high recharge, low water table, unconsolidated sandstones and alluvium lithology. The intrinsic vulnerability properties shown in vulnerability maps will be a useful tool in planning and monitoring land use activities that can be of impact in groundwater pollution.
Chemical facility vulnerability assessment project.
Jaeger, Calvin D
2003-11-14
Sandia National Laboratories, under the direction of the Office of Science and Technology, National Institute of Justice, conducted the chemical facility vulnerability assessment (CFVA) project. The primary objective of this project was to develop, test and validate a vulnerability assessment methodology (VAM) for determining the security of chemical facilities against terrorist or criminal attacks (VAM-CF). The project also included a report to the Department of Justice for Congress that in addition to describing the VAM-CF also addressed general observations related to security practices, threats and risks at chemical facilities and chemical transport. In the development of the VAM-CF Sandia leveraged the experience gained from the use and development of VAs in other areas and the input from the chemical industry and Federal agencies. The VAM-CF is a systematic, risk-based approach where risk is a function of the severity of consequences of an undesired event, the attack potential, and the likelihood of adversary success in causing the undesired event. For the purpose of the VAM-CF analyses Risk is a function of S, L(A), and L(AS), where S is the severity of consequence of an event, L(A) is the attack potential and L(AS) likelihood of adversary success in causing a catastrophic event. The VAM-CF consists of 13 basic steps. It involves an initial screening step, which helps to identify and prioritize facilities for further analysis. This step is similar to the prioritization approach developed by the American Chemistry Council (ACC). Other steps help to determine the components of the risk equation and ultimately the risk. The VAM-CF process involves identifying the hazardous chemicals and processes at a chemical facility. It helps chemical facilities to focus their attention on the most critical areas. The VAM-CF is not a quantitative analysis but, rather, compares relative security risks. If the risks are deemed too high, recommendations are developed for measures to reduce the risk. This paper will briefly discuss the CFVA project and VAM-CF process.
IMPACT2C: Quantifying projected impacts under 2°C warming
NASA Astrophysics Data System (ADS)
Jacob, D.; Kotova, L.; Impact2C Team
2012-04-01
Political discussions on the European goal to limit global warming to 2°C demand, that information is provided to society by the best available science on projected impacts and possible benefits. The new project IMPACT2C is supported by the European Commission's 7th Framework Programme as a 4 year large-scale integrating project. IMPACT2C is coordinated by the Climate Service Center, Helmholtz-Zentrum Geesthacht. IMPACT2C enhances knowledge, quantifies climate change impacts, and adopts a clear and logical structure, with climate and impacts modelling, vulnerabilities, risks and economic costs, as well as potential responses, within a pan-European sector based analysis. The project utilises a range of models within a multi-disciplinary international expert team and assesses effects on water, energy, infrastructure, coasts, tourism, forestry, agriculture, ecosystems services, and health and air quality-climate interactions. IMPACT2C introduces key innovations. First, harmonised socio-economic assumptions/scenarios will be used, to ensure that both individual and cross-sector assessments are aligned to the 2°C (1.5°C) scenario for both impacts and adaptation, e.g. in relation to land-use pressures between agriculture and forestry. Second, it has a core theme of uncertainty, and will develop a methodological framework integrating the uncertainties within and across the different sectors, in a consistent way. In so doing, analysis of adaptation responses under uncertainty will be enhanced. Finally, a cross-sectoral perspective is adopted to complement the sector analysis. A number of case studies will be developed for particularly vulnerable areas, subject to multiple impacts (e.g. the Mediterranean), with the focus being on cross-sectoral interactions (e.g. land use competition) and cross-cutting themes (e.g. cities). The project also assesses climate change impacts in some of the world's most vulnerable regions: Bangladesh, Africa (Nile and Niger basins), and the Maldives. An overview about the scientific goals and the structure of IMPACT2C will be presented.
NASA Astrophysics Data System (ADS)
Rohat, Guillaume; Flacke, Johannes; Dao, Hy
2016-04-01
It is by now widely acknowledged that future social vulnerability to climate change depends on both future climate state and future socio-economic conditions. Nevertheless, while most of the vulnerability assessments are using climate projections, the integration of socio-economic projections into the assessment of vulnerabilities has been very limited. Up to now, the vast majority of vulnerability assessments has been using current socio-economic conditions, hence has failed to consider the influence of socio-economic developments in the construction of vulnerability. To enhance the use of socio-economic projections into climate change impacts, adaptation and vulnerability assessments, the climate change research community has been recently involved in the development of a new model for creating scenarios that integrate future changes in climate as well as in society, known under the name of the new scenario framework for climate change research. This theoretical framework is made of a set of alternative futures of socio-economic developments (known as shared socio-economic pathways - SSPs), a set of hypothesis about future climate policies (known as shared policy assumptions - SPAs) and a set of greenhouse gas concentration trajectories (known as representative concentration pathways - RCPs), which are all combined into a scenario matrix architecture (SMA) whose aim is to facilitate the use of this framework. Despite calls by the climate change research community for the use of this conceptual framework in impacts, adaptation and vulnerability research, its use and its assessment has been very limited. Focusing on case-studies (i.e. specific cities as well as specific climate impacts and their associated human exposures and vulnerabilities), the study presented here will attempt to operationalize this theoretical framework for the assessment of future social vulnerability in large urban areas. A particular attention will be paid to less advanced and more vulnerable countries in the global south. We will discuss how this framework can be implemented for large urban agglomerations. To do so, we will examine: (i) by what means globally-developed SSPs can be extended into sector-specific and location-specific socio-economic development scenarios, (ii) in what manner the quantification of key socio-economic indicators (in accordance with the different SSPs), coupled with regional climate projections under different RCPs, can lead to a quantitative and reliable assessment of the evolution of future social vulnerability, and (iii) to which extent the SMA, i.e. the combination of extended SSPs, regional climate projections (under different RCPs) and various locally-developed SPAs, can answer some of the key questions regarding climate change adaptation policies, from a vulnerability perspective.
Software Vulnerability Taxonomy Consolidation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polepeddi, Sriram S.
2004-12-07
In today's environment, computers and networks are increasing exposed to a number of software vulnerabilities. Information about these vulnerabilities is collected and disseminated via various large publicly available databases such as BugTraq, OSVDB and ICAT. Each of these databases, individually, do not cover all aspects of a vulnerability and lack a standard format among them, making it difficult for end-users to easily compare various vulnerabilities. A central database of vulnerabilities has not been available until today for a number of reasons, such as the non-uniform methods by which current vulnerability database providers receive information, disagreement over which features of amore » particular vulnerability are important and how best to present them, and the non-utility of the information presented in many databases. The goal of this software vulnerability taxonomy consolidation project is to address the need for a universally accepted vulnerability taxonomy that classifies vulnerabilities in an unambiguous manner. A consolidated vulnerability database (CVDB) was implemented that coalesces and organizes vulnerability data from disparate data sources. Based on the work done in this paper, there is strong evidence that a consolidated taxonomy encompassing and organizing all relevant data can be achieved. However, three primary obstacles remain: lack of referencing a common ''primary key'', un-structured and free-form descriptions of necessary vulnerability data, and lack of data on all aspects of a vulnerability. This work has only considered data that can be unambiguously extracted from various data sources by straightforward parsers. It is felt that even with the use of more advanced, information mining tools, which can wade through the sea of unstructured vulnerability data, this current integration methodology would still provide repeatable, unambiguous, and exhaustive results. Though the goal of coalescing all available data, which would be of use to system administrators, software developers and vulnerability researchers is not yet achieved, this work has resulted in the most exhaustive collection of vulnerability data to date.« less
Integrated flash flood vulnerability assessment: Insights from East Attica, Greece
NASA Astrophysics Data System (ADS)
Karagiorgos, Konstantinos; Thaler, Thomas; Heiser, Micha; Hübl, Johannes; Fuchs, Sven
2016-10-01
In the framework of flood risk assessment, vulnerability is a key concept to assess the susceptibility of elements at risk. Besides the increasing amount of studies on flash floods available, in-depth information on vulnerability in Mediterranean countries was missing so far. Moreover, current approaches in vulnerability research are driven by a divide between social scientists who tend to view vulnerability as representing a set of socio-economic factors, and natural scientists who view vulnerability in terms of the degree of loss to an element at risk. Further, vulnerability studies in response to flash flood processes are rarely answered in the literature. In order to close this gap, this paper implemented an integrated vulnerability approach focusing on residential buildings exposed to flash floods in Greece. In general, both physical and social vulnerability was comparable low, which is interpreted as a result from (a) specific building regulations in Greece as well as general design principles leading to less structural susceptibility of elements at risk exposed, and (b) relatively low economic losses leading to less social vulnerability of citizens exposed. The population show high risk awareness and coping capacity to response to natural hazards event and in the same time the impact of the events are quite low, because of the already high use of local protection measures. The low vulnerability score for East Attica can be attributed especially to the low physical vulnerability and the moderate socio-economic well-being of the area. The consequence is to focus risk management strategies mainly in the reduction of the social vulnerability. By analysing both physical and social vulnerability an attempt was made to bridge the gap between scholars from sciences and humanities, and to integrate the results of the analysis into the broader vulnerability context.
Foden, Wendy B; Butchart, Stuart H M; Stuart, Simon N; Vié, Jean-Christophe; Akçakaya, H Resit; Angulo, Ariadne; DeVantier, Lyndon M; Gutsche, Alexander; Turak, Emre; Cao, Long; Donner, Simon D; Katariya, Vineet; Bernard, Rodolphe; Holland, Robert A; Hughes, Adrian F; O'Hanlon, Susannah E; Garnett, Stephen T; Sekercioğlu, Cagan H; Mace, Georgina M
2013-01-01
Climate change will have far-reaching impacts on biodiversity, including increasing extinction rates. Current approaches to quantifying such impacts focus on measuring exposure to climatic change and largely ignore the biological differences between species that may significantly increase or reduce their vulnerability. To address this, we present a framework for assessing three dimensions of climate change vulnerability, namely sensitivity, exposure and adaptive capacity; this draws on species' biological traits and their modeled exposure to projected climatic changes. In the largest such assessment to date, we applied this approach to each of the world's birds, amphibians and corals (16,857 species). The resulting assessments identify the species with greatest relative vulnerability to climate change and the geographic areas in which they are concentrated, including the Amazon basin for amphibians and birds, and the central Indo-west Pacific (Coral Triangle) for corals. We found that high concentration areas for species with traits conferring highest sensitivity and lowest adaptive capacity differ from those of highly exposed species, and we identify areas where exposure-based assessments alone may over or under-estimate climate change impacts. We found that 608-851 bird (6-9%), 670-933 amphibian (11-15%), and 47-73 coral species (6-9%) are both highly climate change vulnerable and already threatened with extinction on the IUCN Red List. The remaining highly climate change vulnerable species represent new priorities for conservation. Fewer species are highly climate change vulnerable under lower IPCC SRES emissions scenarios, indicating that reducing greenhouse emissions will reduce climate change driven extinctions. Our study answers the growing call for a more biologically and ecologically inclusive approach to assessing climate change vulnerability. By facilitating independent assessment of the three dimensions of climate change vulnerability, our approach can be used to devise species and area-specific conservation interventions and indices. The priorities we identify will strengthen global strategies to mitigate climate change impacts.
Foden, Wendy B.; Butchart, Stuart H. M.; Stuart, Simon N.; Vié, Jean-Christophe; Akçakaya, H. Resit; Angulo, Ariadne; DeVantier, Lyndon M.; Gutsche, Alexander; Turak, Emre; Cao, Long; Donner, Simon D.; Katariya, Vineet; Bernard, Rodolphe; Holland, Robert A.; Hughes, Adrian F.; O’Hanlon, Susannah E.; Garnett, Stephen T.; Şekercioğlu, Çagan H.; Mace, Georgina M.
2013-01-01
Climate change will have far-reaching impacts on biodiversity, including increasing extinction rates. Current approaches to quantifying such impacts focus on measuring exposure to climatic change and largely ignore the biological differences between species that may significantly increase or reduce their vulnerability. To address this, we present a framework for assessing three dimensions of climate change vulnerability, namely sensitivity, exposure and adaptive capacity; this draws on species’ biological traits and their modeled exposure to projected climatic changes. In the largest such assessment to date, we applied this approach to each of the world’s birds, amphibians and corals (16,857 species). The resulting assessments identify the species with greatest relative vulnerability to climate change and the geographic areas in which they are concentrated, including the Amazon basin for amphibians and birds, and the central Indo-west Pacific (Coral Triangle) for corals. We found that high concentration areas for species with traits conferring highest sensitivity and lowest adaptive capacity differ from those of highly exposed species, and we identify areas where exposure-based assessments alone may over or under-estimate climate change impacts. We found that 608–851 bird (6–9%), 670–933 amphibian (11–15%), and 47–73 coral species (6–9%) are both highly climate change vulnerable and already threatened with extinction on the IUCN Red List. The remaining highly climate change vulnerable species represent new priorities for conservation. Fewer species are highly climate change vulnerable under lower IPCC SRES emissions scenarios, indicating that reducing greenhouse emissions will reduce climate change driven extinctions. Our study answers the growing call for a more biologically and ecologically inclusive approach to assessing climate change vulnerability. By facilitating independent assessment of the three dimensions of climate change vulnerability, our approach can be used to devise species and area-specific conservation interventions and indices. The priorities we identify will strengthen global strategies to mitigate climate change impacts. PMID:23950785
Fatemi, Farin; Ardalan, Ali; Aguirre, Benigno; Mansouri, Nabiollah; Mohammadfam, Iraj
2017-04-10
Industrial chemical accidents have been increased in developing countries. Assessing the human vulnerability in the residents of industrial areas is necessary for reducing the injuries and causalities of chemical hazards. The aim of this study was to explore the key indicators for the assessment of human vulnerability in the residents living near chemical installations. The indicators were established in the present study based on the Fuzzy Delphi method (FDM) and Fuzzy Analytic Hierarchy Process (FAHP). The reliability of FDM and FAHP was calculated. The indicators of human vulnerability were explored in two sets of social and physical domains. Thirty-five relevant experts participated in this study during March-July 2015. According to experts, the top three indicators of human vulnerability according to the FDM and FAHP were vulnerable groups, population density, and awareness. Detailed sub-vulnerable groups and awareness were developed based on age, chronic or severe diseases, disability, first responders, and residents, respectively. Each indicator and sub-indicator was weighted and ranked and had an acceptable consistency ratio. The importance of social vulnerability indicators are about 7 times more than physical vulnerability indicators. Among the extracted indicators, vulnerable groups had the highest weight and the greatest impact on human vulnerability. however, further research is needed to investigate the applicability of established indicators and generalizability of the results to other studies. Fuzzy Delphi; Fuzzy AHP; Human vulnerability; Chemical hazards.
Fatemi, Farin; Ardalan, Ali; Aguirre, Benigno; Mansouri, Nabiollah; Mohammadfam, Iraj
2017-01-01
Introduction: Industrial chemical accidents have been increased in developing countries. Assessing the human vulnerability in the residents of industrial areas is necessary for reducing the injuries and causalities of chemical hazards. The aim of this study was to explore the key indicators for the assessment of human vulnerability in the residents living near chemical installations. Methods: The indicators were established in the present study based on the Fuzzy Delphi method (FDM) and Fuzzy Analytic Hierarchy Process (FAHP). The reliability of FDM and FAHP was calculated. The indicators of human vulnerability were explored in two sets of social and physical domains. Thirty-five relevant experts participated in this study during March-July 2015. Results: According to experts, the top three indicators of human vulnerability according to the FDM and FAHP were vulnerable groups, population density, and awareness. Detailed sub-vulnerable groups and awareness were developed based on age, chronic or severe diseases, disability, first responders, and residents, respectively. Each indicator and sub-indicator was weighted and ranked and had an acceptable consistency ratio. Conclusions: The importance of social vulnerability indicators are about 7 times more than physical vulnerability indicators. Among the extracted indicators, vulnerable groups had the highest weight and the greatest impact on human vulnerability. however, further research is needed to investigate the applicability of established indicators and generalizability of the results to other studies. Key words: Fuzzy Delphi; Fuzzy AHP; Human vulnerability; Chemical hazards PMID:28480124
Intrinsic vulnerability assessment of Sette Comuni Plateau aquifer (Veneto Region, Italy).
Cucchi, Franco; Franceschini, Giuliana; Zini, Luca; Aurighi, Marina
2008-09-01
Maps illustrating the different degrees of vulnerability within a given area are integral to environmental protection and management policies. The assessment of the intrinsic vulnerability of karst areas is difficult since the type and stage of karst development and the related underground discharge behavior are difficult to determine and quantify. Geographic Information Systems techniques are applied to the evaluation of the vulnerability of an aquifer in the alpine karst area of the Sette Comuni Plateau, in the Veneto Region of northern Italy. The water resources of the studied aquifer are of particular importance to the local communities. This aquifer must therefore be protected from both inappropriate use as well as possible pollution. The SINTACS and SINTACS P(RO) K(ARST) vulnerability assessment methods have been utilized here to create the vulnerability map. SINTACS P(RO) K(ARST) is an adaptation of the parametric managerial model (SINTACS) to karst hydrostructures. The vulnerability map reveals vast zones (81% of the analyzed areas) with a high degree of vulnerability. The presence of well-developed karst structures in these highly vulnerable areas facilitate water percolation, thereby enhancing the groundwater vulnerability risk. Only 1.5 of the studied aquifer have extremely high-vulnerability levels, however these areas include all of the major springs utilized for human consumption. This vulnerability map of the Sette Comuni Plateau aquifer is an indispensable tool for both the effective management of water resources and as support to environmental planning in the Sette Comuni Plateau area.
NASA Astrophysics Data System (ADS)
Najihah, R.; Effendi, D. M.; Hairunnisa, M. A.; Masiri, K.
2014-02-01
The catastrophic Indian Ocean tsunami of 26 December 2004 raised a number of questions for scientist and politicians on how to deal with the tsunami risk and assessment in coastal regions. This paper discusses the challenges in tsunami vulnerability assessment and presents the result of tsunami disaster mapping and vulnerability assessment study for West Coast of Peninsular Malaysia. The spatial analysis was carried out using Geographical Information System (GIS) technology to demarcate spatially the tsunami affected village's boundary and suitable disaster management program can be quickly and easily developed. In combination with other thematic maps such as road maps, rail maps, school maps, and topographic map sheets it was possible to plan the accessibility and shelter to the affected people. The tsunami vulnerability map was used to identify the vulnerability of villages/village population to tsunami. In the tsunami vulnerability map, the intensity of the tsunami was classified as hazard zones based on the inundation level in meter (contour). The approach produced a tsunami vulnerability assessment map consists of considering scenarios of plausible extreme, tsunami-generating events, computing the tsunami inundation levels caused by different events and scenarios and estimating the possible range of casualties for computing inundation levels. The study provides an interactive means to identify the tsunami affected areas after the disaster and mapping the tsunami vulnerable village before for planning purpose were the essential exercises for managing future disasters.
Wade, Alisa A.; Hand, Brian K.; Kovach, Ryan; Luikart, Gordon; Whited, Diane; Muhlfeld, Clint C.
2016-01-01
Climate change vulnerability assessments (CCVAs) are valuable tools for assessing species’ vulnerability to climatic changes, yet failure to include measures of adaptive capacity and to account for sources of uncertainty may limit their effectiveness. Here, we provide a more comprehensive CCVA approach that incorporates all three elements used for assessing species’ climate change vulnerability: exposure, sensitivity, and adaptive capacity. We illustrate our approach using case studies of two threatened salmonids with different life histories – anadromous steelhead trout (Oncorhynchus mykiss) and non-anadromous bull trout (Salvelinus confluentus) – within the Columbia River Basin, USA. We identified general patterns of high vulnerability in low-elevation and southernmost habitats for both species. However, vulnerability rankings varied widely depending on the factors (climate, habitat, demographic, and genetic) included in the CCVA and often differed for the two species at locations where they were sympatric. Our findings illustrate that CCVA results are highly sensitive to data inputs and that spatial differences can complicate multi-species conservation. Our results highlight how CCVAs should be considered within a broader conceptual and computational framework for refining hypotheses, guiding research, and comparing plausible scenarios of species’ vulnerability for ongoing and projected climate change.
THE US EPA'S REGIONAL VULNERABILITY ASSESSMENT PROGRAM: A RESEARCH STRATEGY FOR 2001-2006
The goal of ORD's Regional Vulnerability Assessment (ReVA) Program is to develop all
approach to quantifying regional ecological vulnerabilities so that risk management activities can be targeted and prioritized. ReVA's focus is, to develop a set of methods that are applica...
6 CFR 27.240 - Review and approval of security vulnerability assessments.
Code of Federal Regulations, 2014 CFR
2014-01-01
... CHEMICAL FACILITY ANTI-TERRORISM STANDARDS Chemical Facility Security Program § 27.240 Review and approval of security vulnerability assessments. (a) Review and Approval. The Department will review and... 6 Domestic Security 1 2014-01-01 2014-01-01 false Review and approval of security vulnerability...
6 CFR 27.240 - Review and approval of security vulnerability assessments.
Code of Federal Regulations, 2011 CFR
2011-01-01
... CHEMICAL FACILITY ANTI-TERRORISM STANDARDS Chemical Facility Security Program § 27.240 Review and approval of security vulnerability assessments. (a) Review and Approval. The Department will review and... 6 Domestic Security 1 2011-01-01 2011-01-01 false Review and approval of security vulnerability...
6 CFR 27.240 - Review and approval of security vulnerability assessments.
Code of Federal Regulations, 2013 CFR
2013-01-01
... CHEMICAL FACILITY ANTI-TERRORISM STANDARDS Chemical Facility Security Program § 27.240 Review and approval of security vulnerability assessments. (a) Review and Approval. The Department will review and... 6 Domestic Security 1 2013-01-01 2013-01-01 false Review and approval of security vulnerability...
6 CFR 27.240 - Review and approval of security vulnerability assessments.
Code of Federal Regulations, 2012 CFR
2012-01-01
... CHEMICAL FACILITY ANTI-TERRORISM STANDARDS Chemical Facility Security Program § 27.240 Review and approval of security vulnerability assessments. (a) Review and Approval. The Department will review and... 6 Domestic Security 1 2012-01-01 2012-01-01 false Review and approval of security vulnerability...
Using fuzzy logic to determine the vulnerability of marine species to climate change.
Jones, Miranda C; Cheung, William W L
2018-02-01
Marine species are being impacted by climate change and ocean acidification, although their level of vulnerability varies due to differences in species' sensitivity, adaptive capacity and exposure to climate hazards. Due to limited data on the biological and ecological attributes of many marine species, as well as inherent uncertainties in the assessment process, climate change vulnerability assessments in the marine environment frequently focus on a limited number of taxa or geographic ranges. As climate change is already impacting marine biodiversity and fisheries, there is an urgent need to expand vulnerability assessment to cover a large number of species and areas. Here, we develop a modelling approach to synthesize data on species-specific estimates of exposure, and ecological and biological traits to undertake an assessment of vulnerability (sensitivity and adaptive capacity) and risk of impacts (combining exposure to hazards and vulnerability) of climate change (including ocean acidification) for global marine fishes and invertebrates. We use a fuzzy logic approach to accommodate the variability in data availability and uncertainties associated with inferring vulnerability levels from climate projections and species' traits. Applying the approach to estimate the relative vulnerability and risk of impacts of climate change in 1074 exploited marine species globally, we estimated their index of vulnerability and risk of impacts to be on average 52 ± 19 SD and 66 ± 11 SD, scaling from 1 to 100, with 100 being the most vulnerable and highest risk, respectively, under the 'business-as-usual' greenhouse gas emission scenario (Representative Concentration Pathway 8.5). We identified 157 species to be highly vulnerable while 294 species are identified as being at high risk of impacts. Species that are most vulnerable tend to be large-bodied endemic species. This study suggests that the fuzzy logic framework can help estimate climate vulnerabilities and risks of exploited marine species using publicly and readily available information. © 2017 John Wiley & Sons Ltd.
Huan, Huan; Wang, Jinsheng; Zhai, Yuanzheng; Xi, Beidou; Li, Juan; Li, Mingxiao
2016-04-15
It has been proved that groundwater vulnerability assessment is an effective tool for groundwater protection. Nowadays, quantitative assessment methods for specific vulnerability are scarce due to limited cognition of complicated contaminant fate and transport processes in the groundwater system. In this paper, process-based simulation model for specific vulnerability to nitrate using 1D flow and solute transport model in the unsaturated vadose zone is presented for groundwater resource protection. For this case study in Jilin City of northeast China, rate constants of denitrification and nitrification as well as adsorption constants of ammonium and nitrate in the vadose zone were acquired by laboratory experiments. The transfer time at the groundwater table t50 was taken as the specific vulnerability indicator. Finally, overall vulnerability was assessed by establishing the relationship between groundwater net recharge, layer thickness and t50. The results suggested that the most vulnerable regions of Jilin City were mainly distributed in the floodplain of Songhua River and Mangniu River. The least vulnerable areas mostly appear in the second terrace and back of the first terrace. The overall area of low, relatively low and moderate vulnerability accounted for 76% of the study area, suggesting the relatively low possibility of suffering nitrate contamination. In addition, the sensitivity analysis showed that the most sensitive factors of specific vulnerability in the vadose zone included the groundwater net recharge rate, physical properties of soil medium and rate constants of nitrate denitrification. By validating the suitability of the process-based simulation model for specific vulnerability and comparing with index-based method by a group of integrated indicators, more realistic and accurate specific vulnerability mapping could be acquired by the process-based simulation model acquiring. In addition, the advantages, disadvantages, constraint conditions and applying prospects of the quantitative approach for specific vulnerability assessment were discussed. Copyright © 2016 Elsevier B.V. All rights reserved.
CALTRANS CLIMATE CHANGE VULNERABILITY ASSESSMENTS
DOT National Transportation Integrated Search
2018-01-01
The following report was developed for the California Department of Transportation (Caltrans) to summarize a vulnerability assessment conducted for assets in Caltrans District 4. The assessment was developed to specifically identify the potential eff...
NASA Astrophysics Data System (ADS)
Allen, Simon; Awasthi, Kirtiman; Ballesteros, Juan Antonio; Frey, Holger; Huggel, Christian; Kahn, Mustafa; Linsbauer, Andreas; Rohrer, Mario; Ruiz-Villanueva, Virginia; Salzmann, Nadine; Schauwecker, Simone; Stoffel, Markus
2014-05-01
High mountain environments are particularly susceptible to changes in atmospheric temperature and precipitation patterns, owing to the sensitivity of cryospheric components to melting conditions, and the importance of rainfall and river runoff for sustaining crops and livelihoods. The Himalayan state of Himachal Pradesh (population ca. 6 mil.) is the initial focus of a joint program between the governments of India and Switzerland aiming to build scientific capacity to understand the threat, and plan for adaptation to climate change in the Himalaya. Here we focus on the cryosphere, and provide an overview of the integrated framework we will follow to assess future water resource vulnerability from changes in runoff, and assess future disaster risk from mass movement and flood hazards. At this early stage of our project, we aim to identify key methodological steps, data requirements, and related challenges. The initial implementation of our framework will be centered on the Kullu district. Core and integrative components of both the traditional climate vulnerability framework (eg., IPCC AR4), and the vulnerability and risk concepts of the disaster risk management community (eg., IPCC SREX 2012) include the assessment of sensitivity, exposure, and adaptive capacity. Sensitivity to water vulnerability in the Kullu district requires the quantification of current and future water resource usage at the block or community level, using metrics such as total irrigated land area, total electricity usage, population density and birth rates. Within the disaster risk framework, sensitivity to mass movement and flood hazards will be determined based on factors such as population density and demographics (notably age and gender), strength of building materials etc. Projected temperature and precipitation data from regional climate model output will be used to model changes in melt water runoff and streamflow, determining the exposure of communities and natural systems to future changes in water quantity and quality. For disaster risk assessment, the goal is to identify the intersection of potential mass movement and flood hazards, with exposed people, resources, and assets. Base level information is required on glacier area and volume, mass balance, glacial lake distribution, surface topography, information on snow cover, duration, and snow water equivalent, and gauge measurements on river and stream flows. Where instrumental data is lacking, information of past hydrological regimes and evidence of mass movement can be derived from documentary records (archival reports), from geological indicators (i.e. palaeofloods: sedimentary and biological records over centennial to millennial scales), and from botanical sources (i.e. dendrogeomorphology). The adaptive capacity to face the challenges associated with a changing cryosphere in the Kullu district will require economic, political, and knowledge capacity to plan, prepare, and respond to issues of water quantity and quality, and disaster risk associated with mass movement and flood hazard. Socio-economic information to be assessed includes economic metrics, literacy rates, and population demographic factors such as gender, age, and religion. These same factors largely determine a communities capacity to anticipate, respond to, and recover from disasters.
[Assessment of eco-environmental vulnerability of Hainan Island, China].
Huang, Bao-rong; Ouyang, Zhi-yun; Zhang, Hui-zhi; Zhang, Li-hua; Zheng, Hua
2009-03-01
Based on the assessment method of environmental vulnerability constructed by SOPAC and UNEP, this paper constructed an indicator system from three sub-themes including hazard, resistance, and damage to assess the eco-environmental vulnerability of Hainan Island. The results showed that Hainan Island was suffering a middling level eco-environmental hazard, and the main hazards came from some intensive human activities such as intensive agriculture, mass tourism, mining, and a mass of solid wastes thrown by islanders and tourists. Some geographical characters such as larger land area, larger altitude range, integrated geographical form, and abundant habitat types endowed Hainan Island higher resistance to environmental hazards. However, disturbed by historical accumulative artificial and natural hazards, the Island ecosystem had showed serious ecological damage, such as soil degradation and biodiversity loss. Comprehensively considered hazard, resistance, damage, and degradation, the comprehensive environmental vulnerability of the Island was at a middling level. Some indicators showed lower vulnerability, but some showed higher vulnerability.
NASA Astrophysics Data System (ADS)
Kesuma, D. A.; Purwanto, P.; Putranto, T. T.; Rahmani, T. P. D.
2017-06-01
The increase in human population as well as area development in Salatiga Groundwater Basin, Central Java Province, will increase the potency of groundwater contamination in that area. Groundwater quality, especially the shallow groundwater, is very vulnerable to the contamination from industrial waste, fertilizer/agricultural waste, and domestic waste. The first step in the conservation of groundwater quality is by conducting the mapping of the groundwater vulnerability zonation against the contamination. The result of this research was groundwater vulnerability map which showed the areas vulnerable to the groundwater contamination. In this study, groundwater vulnerability map was assessed based on the DRASTIC Method and was processed spatially using Geographic Information System. The DRASTIC method is used to assess the level of groundwater vulnerability based on weighting on seven parameters, which are: depth to the water table (D), recharge (R), aquifer material (A), soil media (S), topography (T), impact of vadose zone (I), and hydraulic conductivity (C). The higher the DRASTIC Index will result in the higher vulnerability level of groundwater contamination in that area. The DRASTIC Indexes in the researched area were 85 - 100 (low vulnerability level), 101 -120 (low to moderate vulnerability level), 121 - 140 (moderate vulnerability level), 141 - 150, (moderate to high vulnerability level), and 151 - 159 (high vulnerability level). The output of this study can be used by local authority as a tool for consideration to arrange the policy for sustainable area development, especially the development in an area affecting the quality of Salatiga Groundwater Basin.
Study on the Groundwater Vulnerability Assessment in Sanjiang Plain in Northeast China
NASA Astrophysics Data System (ADS)
Tang, Y.; Tang, W. K.; Liu, C.
2012-12-01
The Sanjiang Plain is located in eastern part of China's Heilongjiang Province.It's total area is 109 000 km2, with cultivated land area being 3.6677 million hm2. It is a major national commodity grain base. Rice planting area in Sanjiang Plain has been increasing year by year. Groundwater exploitation is increasing rapidly as a result of rapid increase of paddy field area. It is necessary to research and analyze spatial diversity of groundwater pollution vulnerability for Sanjiang Plain, so as to fulfill the goal of integrated planning, rational utilization of land and water resource, avoiding or minimizing groundwater contamination, and protecting grain security of China. Based on the commonly used DRASTIC method internationally, and according to hydrogeology, land use and other characteristics of Sanjiang Plain, this paper establishes groundwater vulnerability assessment index system. Since the Sanjiang Plain is an area that gives priority to agriculture, and impact of agricultural land and agricultural activity on groundwater vulnerability can not be ignored. Two indicators of agricultural land use rate (L) and population density (P) are increased in the DRASTC index system, the remaining 5 indicators are groundwater depth (D), aquifer net recharge(R), aquifer media type (A), soil type(S), aquifer hydraulic conductivity (C). Taking ArcGis as a calculation analysis platform to assess groundwater vulnerability of the Sanjiang Plain, by using hierarchical analysis method of the fuzzy mathematics method to calculate each index weigh of evaluation vulnerability. This paper applies 6 levels of assessment standard as follows: vulnerability index DI <2 stands for not vulnerable; 2
A systematic review of socio-economic assessments in support of coastal zone management (1992-2011).
Le Gentil, Eric; Mongruel, Rémi
2015-02-01
Cooperation between the social and natural sciences has become essential in order to encompass all the dimensions of coastal zone management. Socio-economic approaches are increasingly recommended to complement integrated assessment in support of these initiatives. A systematic review of the academic literature was carried out in order to analyze the main types of socio-economic assessments used to inform the coastal zone management process as well as their effectiveness. A corpus of 1682 articles published between 1992 and 2011 was identified by means of the representative coverage approach, from which 170 were selected by applying inclusion/exclusion criteria and then classified using a content analysis methodology. The percentage of articles that mention the use of socio-economic assessment in support of coastal zone management initiatives is increasing but remains relatively low. The review examines the links between the issues addressed by integrated assessments and the chosen analytical frameworks as well as the various economic assessment methods which are used in the successive steps of the coastal zone management process. The results show that i) analytical frameworks such as 'risk and vulnerability', 'DPSIR', 'valuation', 'ecosystem services' and 'preferences' are likely to lead to effective integration of social sciences in coastal zone management research while 'integration', 'sustainability' and 'participation' remain difficult to operationalize, ii) risk assessments are insufficiently implemented in developing countries, and iii) indicator systems in support of multi-criteria analyses could be used during more stages of the coastal zone management process. Finally, it is suggested that improved collaboration between science and management would require that scientists currently involved in coastal zone management processes further educate themselves in integrated assessment approaches and participatory methodologies. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Zhiqiang; Jiang, Jingyi; Ma, Qing
2016-12-01
Climate change is affecting every aspect of human activities, especially the agriculture. In China, extreme drought events caused by climate change have posed a great threat to food safety. In this work we aimed to study the drought risk of maize in the farming-pastoral ecotone in Northern China based on physical vulnerability assessment. The physical vulnerability curve was constructed from the relationship between drought hazard intensity index and yield loss rate. The risk assessment of agricultural drought was conducted from the drought hazard intensity index and physical vulnerability curve. The probability distribution of drought hazard intensity index decreased from south-west to north-east and increased from south-east to north-west along the rainfall isoline. The physical vulnerability curve had a reduction effect in three parts of the farming-pastoral ecotone in Northern China, which helped to reduce drought hazard vulnerability on spring maize. The risk of yield loss ratio calculated based on physical vulnerability curve was lower compared with the drought hazard intensity index, which suggested that the capacity of spring maize to resist and adapt to drought is increasing. In conclusion, the farming-pastoral ecotone in Northern China is greatly sensitive to climate change and has a high probability of severe drought hazard. Risk assessment of physical vulnerability can help better understand the physical vulnerability to agricultural drought and can also promote measurements to adapt to climate change.
Effective peer education in HIV: defining factors that maximise success.
Lambert, Steven M; Debattista, Joseph; Bodiroza, Aleksandar; Martin, Jack; Staunton, Shaun; Walker, Rebecca
2013-08-01
Background Peer education is considered an effective health promotion and education strategy, particularly to populations traditionally resistant to conventional forms of health information dissemination. This has made it very applicable to HIV education and prevention, where those who are affected or at risk are often amongst the most vulnerable in society. However, there still remains uncertainty as to the reasons for its effectiveness, what constitutes an effective methodology and why a consistent methodology can often result in widely variable outcomes. Between 2008 and 2010, three separate reviews of peer education were undertaken across more than 30 countries in three distinct geographical regions across the globe. The reviews sought to identify determinants of the strengths and weaknesses inherent in approaches to peer education, particularly targeting young people and the most at-risk populations. By assessing the implementation of peer education programs across a variety of social environments, it was possible to develop a contextual understanding for peer education's effectiveness and provide a picture of the social, cultural, political, legal and geographic enablers and disablers to effective peer education. Several factors were significant contributors to program success, not as strategies of methodology, but as elements of the social, cultural, political and organisational context in which peer education was situated. Contextual elements create environments supportive of peer education. Consequently, adherence to a methodology or strategy without proper regard to its situational context rarely contributes to effective peer education.
Sîrodoev, Igor; Koeppel, Sonja; Denisov, Nickolai; Sîrodoev, Ghennadi
2013-01-01
Vulnerability to climate change of the Moldavian part of the Dniester river was assessed as the function of exposure, sensitivity, and adaptive capacity of its basin's natural and socioeconomic systems. As a spatial “scale” of the assessment, Moldova's administrative-territorial units (ATUs) were selected. The exposure assessment was based on the climatic analysis of baseline (1971–2000) temperature and precipitation and projections of their changes in 2021–2050, separately for cold and warm periods. The sensitivity assessment included physiographical and socioeconomic characteristics, described by a set of specific indicators. The adaptive capacity was expressed by general economic and agricultural indicators, taking into consideration the medical provision and housing conditions. Through a ranking approach, the relative vulnerability of each ATU was calculated by summing its sensitivity and adaptive capacity ranks; the latter were obtained as combinations of their primary indicator ranks, arranged in an increasing and decreasing order, respectively. Due to lack of sound knowledge on these components' importance in overall assessment of vulnerability, their weights were taken as conventionally equal. Mapping of vulnerability revealed that ATUs neighboring to municipalities are the most vulnerable and need special attention in climate change adaptation. The basin's “hotspots” were discussed with public participation. PMID:23766677
Sun, F; Chen, J; Tong, Q; Zeng, S
2007-01-01
Management of drinking water safety is changing towards an integrated risk assessment and risk management approach that includes all processes in a water supply system from catchment to consumers. However, given the large number of water supply systems in China and the cost of implementing such a risk assessment procedure, there is a necessity to first conduct a strategic screening analysis at a national level. An integrated methodology of risk assessment and screening analysis is thus proposed to evaluate drinking water safety of a conventional water supply system. The violation probability, indicating drinking water safety, is estimated at different locations of a water supply system in terms of permanganate index, ammonia nitrogen, turbidity, residual chlorine and trihalomethanes. Critical parameters with respect to drinking water safety are then identified, based on which an index system is developed to prioritize conventional water supply systems in implementing a detailed risk assessment procedure. The evaluation results are represented as graphic check matrices for the concerned hazards in drinking water, from which the vulnerability of a conventional water supply system is characterized.
Modelling the elements of country vulnerability to earthquake disasters.
Asef, M R
2008-09-01
Earthquakes have probably been the most deadly form of natural disaster in the past century. Diversity of earthquake specifications in terms of magnitude, intensity and frequency at the semicontinental scale has initiated various kinds of disasters at a regional scale. Additionally, diverse characteristics of countries in terms of population size, disaster preparedness, economic strength and building construction development often causes an earthquake of a certain characteristic to have different impacts on the affected region. This research focuses on the appropriate criteria for identifying the severity of major earthquake disasters based on some key observed symptoms. Accordingly, the article presents a methodology for identification and relative quantification of severity of earthquake disasters. This has led to an earthquake disaster vulnerability model at the country scale. Data analysis based on this model suggested a quantitative, comparative and meaningful interpretation of the vulnerability of concerned countries, and successfully explained which countries are more vulnerable to major disasters.
Reece, Joshua Steven; Noss, Reed F; Oetting, Jon; Hoctor, Tom; Volk, Michael
2013-01-01
Species face many threats, including accelerated climate change, sea level rise, and conversion and degradation of habitat from human land uses. Vulnerability assessments and prioritization protocols have been proposed to assess these threats, often in combination with information such as species rarity; ecological, evolutionary or economic value; and likelihood of success. Nevertheless, few vulnerability assessments or prioritization protocols simultaneously account for multiple threats or conservation values. We applied a novel vulnerability assessment tool, the Standardized Index of Vulnerability and Value, to assess the conservation priority of 300 species of plants and animals in Florida given projections of climate change, human land-use patterns, and sea level rise by the year 2100. We account for multiple sources of uncertainty and prioritize species under five different systems of value, ranging from a primary emphasis on vulnerability to threats to an emphasis on metrics of conservation value such as phylogenetic distinctiveness. Our results reveal remarkable consistency in the prioritization of species across different conservation value systems. Species of high priority include the Miami blue butterfly (Cyclargus thomasi bethunebakeri), Key tree cactus (Pilosocereus robinii), Florida duskywing butterfly (Ephyriades brunnea floridensis), and Key deer (Odocoileus virginianus clavium). We also identify sources of uncertainty and the types of life history information consistently missing across taxonomic groups. This study characterizes the vulnerabilities to major threats of a broad swath of Florida's biodiversity and provides a system for prioritizing conservation efforts that is quantitative, flexible, and free from hidden value judgments.
V-DRASTIC: Using visualization to engage policymakers in groundwater vulnerability assessment
NASA Astrophysics Data System (ADS)
Bojórquez-Tapia, Luis A.; Cruz-Bello, Gustavo M.; Luna-González, Laura; Juárez, Lourdes; Ortiz-Pérez, Mario A.
2009-06-01
SummaryGroundwater vulnerability mapping is increasingly being used to design aquifer protection and management strategies. This paper presents a dynamic visualization method to groundwater vulnerability mapping. This method—called V-DRASTIC—extends the capacities of DRASTIC, an overlay/index technique that has been applied worldwide to evaluate the condition of hydrogeological factors and determine groundwater vulnerability at regional scales. V-DRASTIC is based upon psychophysics' principles (a theory that describes the people's response to a stimulus) to generate alternative groundwater vulnerability categorization schemes. These are used as inputs in a fuzzy pattern recognition procedure to enable planners, decision makers and stakeholders identify which scheme conveys meaningful information regarding groundwater vulnerability across a territory. V-DRASTIC was applied in the groundwater vulnerability assessment of two urban watersheds in Mexico.
Development and implementation of a Bayesian-based aquifer vulnerability assessment in Florida
Arthur, J.D.; Wood, H.A.R.; Baker, A.E.; Cichon, J.R.; Raines, G.L.
2007-01-01
The Florida Aquifer Vulnerability Assessment (FAVA) was designed to provide a tool for environmental, regulatory, resource management, and planning professionals to facilitate protection of groundwater resources from surface sources of contamination. The FAVA project implements weights-of-evidence (WofE), a data-driven, Bayesian-probabilistic model to generate a series of maps reflecting relative aquifer vulnerability of Florida's principal aquifer systems. The vulnerability assessment process, from project design to map implementation is described herein in reference to the Floridan aquifer system (FAS). The WofE model calculates weighted relationships between hydrogeologic data layers that influence aquifer vulnerability and ambient groundwater parameters in wells that reflect relative degrees of vulnerability. Statewide model input data layers (evidential themes) include soil hydraulic conductivity, density of karst features, thickness of aquifer confinement, and hydraulic head difference between the FAS and the watertable. Wells with median dissolved nitrogen concentrations exceeding statistically established thresholds serve as training points in the WofE model. The resulting vulnerability map (response theme) reflects classified posterior probabilities based on spatial relationships between the evidential themes and training points. The response theme is subjected to extensive sensitivity and validation testing. Among the model validation techniques is calculation of a response theme based on a different water-quality indicator of relative recharge or vulnerability: dissolved oxygen. Successful implementation of the FAVA maps was facilitated by the overall project design, which included a needs assessment and iterative technical advisory committee input and review. Ongoing programs to protect Florida's springsheds have led to development of larger-scale WofE-based vulnerability assessments. Additional applications of the maps include land-use planning amendments and prioritization of land purchases to protect groundwater resources. ?? International Association for Mathematical Geology 2007.
This report describes methods for quantitative regional assessment developed by the Regional Vulnerability Assessment (ReVA) program. The goal of ReVA is to develop regional-scale assessments of the magnitude, extent, distribution, and uncertainty of current and anticipated envir...
Improving satellite vulnerability assessment to untrackable orbital debris
NASA Astrophysics Data System (ADS)
Welty, Nathan; Schaefer, Frank; Rudolph, Martin; Destefanis, Roberto; Grassi, Lilith
2012-07-01
The projected growth in the untrackable orbital debris population will place an increased emphasis on satellite vulnerability assessments during both design and mission operations. This study presents an enhanced method for assessing satellite vulnerability to untrackable orbital debris that expands on traditional practices. By looking beyond structural penetration of the spacecraft, the method predicts the survivability of individual components and the associated degradation of system functionality resulting from untrackable debris impacts. A new risk assessment tool, the Particle Impact Risk and Vulnerability Assessment Tool (PIRAT), has been developed based on this method and is also presented here. It interfaces with both the NASA ORDEM2000 and ESA MASTER-2009 debris models and has been validated against the benchmark test cases from the Inter-Agency Space Debris Coordination Committee (IADC). This study concludes with an example vulnerability assessment using PIRAT for a generic Earth observation satellite in a Sun-synchronous low-Earth orbit. The results illustrate the additional insight provided by this method that can be used to improve the robustness of future satellite designs and mitigate the overall mission risk posed by untrackable orbital debris.
A systematic review of the cost and cost-effectiveness of electronic discharge communications
Sevick, Laura K; Esmail, Rosmin; Tang, Karen; Lorenzetti, Diane L; Ronksley, Paul; James, Matthew; Santana, Maria; Ghali, William A; Clement, Fiona
2017-01-01
Background The transition between acute care and community care can be a vulnerable period in a patients’ treatment due to the potential for postdischarge adverse events. The vulnerability of this period has been attributed to factors related to the miscommunication between hospital-based and community-based physicians. Electronic discharge communication has been proposed as one solution to bridge this communication gap. Prior to widespread implementation of these tools, the costs and benefits should be considered. Objective To establish the cost and cost-effectiveness of electronic discharge communications compared with traditional discharge systems for individuals who have completed care with one provider and are transitioning care to a new provider. Methods We conducted a systematic review of the published literature, using best practices, to identify economic evaluations/cost analyses of electronic discharge communication tools. Inclusion criteria were: (1) economic analysis and (2) electronic discharge communication tool as the intervention. Quality of each article was assessed, and data were summarised using a component-based analysis. Results One thousand unique abstracts were identified, and 57 full-text articles were assessed for eligibility. Four studies met final inclusion criteria. These studies varied in their primary objectives, methodology, costs reported and outcomes. All of the studies were of low to good quality. Three of the studies reported a cost-effectiveness measure ranging from an incremental daily cost of decreasing average discharge note completion by 1 day of $0.331 (2003 Canadian), a cost per page per discharge letter of €9.51 and a dynamic net present value of €31.1 million for a 5-year implementation of the intervention. None of the identified studies considered clinically meaningful patient or quality outcomes. Discussion Economic analyses of electronic discharge communications are scarcely reported, and with inconsistent methodology and outcomes. Further studies are needed to understand the cost-effectiveness and value for patient care. PMID:28674136
Grief interventions for people bereaved by suicide: A systematic review
Steinig, Jana; Nagl, Michaela; Kersting, Anette
2017-01-01
Background Adaption to the loss of a loved one due to suicide can be complicated by feelings of guilt, shame, responsibility, rejection, and stigmatization. Therefore people bereaved by suicide have an increased risk for developing complicated grief which is related to negative physical and mental disorders and an increased risk for suicidal behavior. Grief interventions are needed for this vulnerable population. The aim of this systematic review was to provide an overview of the current state of evidence concerning the effectiveness of interventions that focus on grief for people bereaved by suicide. Methods We conducted a systematic literature search using PubMed, Web of Science, and PsycINFO for articles published up until November 2016. Relevant papers were identified and methodological quality was assessed by independent raters. A narrative synthesis was conducted. Results Seven intervention studies met the inclusion criteria. Two interventions were based on cognitive-behavioral approaches, four consisted of bereavement groups, and one utilized writing therapy. As five of the seven interventions were effective in reducing grief intensity on at least one outcome measure, there is some evidence that they are beneficial. Bereavement groups tend to be effective in lowering the intensity of uncomplicated grief, as are writing interventions in lowering suicide-specific aspects of grief. Cognitive-behavioral programs were helpful for a subpopulation of people who had high levels of suicidal ideation. Limitation On average, methodological quality was low so the evidence for benefits is not robust. The stability of treatment effects could not be determined as follow-up assessments are rare. Generalizability is limited due to homogeneous enrollments of mainly female, white, middle-aged individuals. Conclusions People bereaved by suicide are especially vulnerable to developing complicated grief. Therefore, grief therapies should be adapted to and evaluated in this population. Prevention of complicated grief may be successful in populations of high risk individuals. PMID:28644859
Furlan, Elisa; Torresan, Silvia; Critto, Andrea; Marcomini, Antonio
2018-03-15
In the last few decades the health of marine ecosystems has been progressively endangered by the anthropogenic presence. Natural and human-made pressures, as well as climate change effects, are posing increasing threats on marine areas, triggering alteration of biological, chemical and physical processes. Planning of marine areas has become a challenge for decision makers involved in the design of sustainable management options. In order to address threats posed by climate drivers in combination with local to regional anthropogenic pressures affecting marine ecosystems and activities, a multi-hazard assessment methodology was developed and applied to the Adriatic Sea for the reference scenario 2000-2015. Through a four-stages process based on the consecutive analysis of hazard, exposure, vulnerability and risk the methodology allows a semi-quantitative evaluation of the relative risk from anthropogenic and natural sources to multiple endpoints, thus supporting the identification and ranking of areas and targets more likely to be at risk. Resulting output showed that the higher relative hazard scores are linked to exogenic pressures (e.g. sea surface temperature variation) while the lower ones resulted from endogenic and more localized stressors (e.g. abrasion, nutrient input). Relatively very high scores were observed for vulnerability over the whole case study for almost all the considered pressures, showing seagrasses meadows, maërl and coral beds as the most susceptible targets. The approach outlined in this study provides planners and decision makers a quick-screening tool to evaluate progress towards attaining a good environmental status and to identify marine areas where management actions and adaptation strategies would be best targeted. Moreover, by focusing on risks induced by land-based drivers, resulting output can support the design of infrastructures for reducing pressures on the sea, contributing to improve the land-sea interface management. Copyright © 2017 Elsevier B.V. All rights reserved.
Onyango, Esther Achieng; Sahin, Oz; Awiti, Alex; Chu, Cordia; Mackey, Brendan
2016-11-11
Malaria is one of the key research concerns in climate change-health relationships. Numerous risk assessments and modelling studies provide evidence that the transmission range of malaria will expand with rising temperatures, adversely impacting on vulnerable communities in the East African highlands. While there exist multiple lines of evidence for the influence of climate change on malaria transmission, there is insufficient understanding of the complex and interdependent factors that determine the risk and vulnerability of human populations at the community level. Moreover, existing studies have had limited focus on the nature of the impacts on vulnerable communities or how well they are prepared to cope. In order to address these gaps, a systems approach was used to present an integrated risk and vulnerability assessment framework for studies of community level risk and vulnerability to malaria due to climate change. Drawing upon published literature on existing frameworks, a systems approach was applied to characterize the factors influencing the interactions between climate change and malaria transmission. This involved structural analysis to determine influential, relay, dependent and autonomous variables in order to construct a detailed causal loop conceptual model that illustrates the relationships among key variables. An integrated assessment framework that considers indicators of both biophysical and social vulnerability was proposed based on the conceptual model. A major conclusion was that this integrated assessment framework can be implemented using Bayesian Belief Networks, and applied at a community level using both quantitative and qualitative methods with stakeholder engagement. The approach enables a robust assessment of community level risk and vulnerability to malaria, along with contextually relevant and targeted adaptation strategies for dealing with malaria transmission that incorporate both scientific and community perspectives.
Forest climate change Vulnerability and Adaptation Assessment in Himalayas
NASA Astrophysics Data System (ADS)
Chitale, V. S.; Shrestha, H. L.; Agarwal, N. K.; Choudhurya, D.; Gilani, H.; Dhonju, H. K.; Murthy, M. S. R.
2014-11-01
Forests offer an important basis for creating and safeguarding more climate-resilient communities over Hindu Kush Himalayan region. The forest ecosystem vulnerability assessment to climate change and developing knowledge base to identify and support relevant adaptation strategies is realized as an urgent need. The multi scale adaptation strategies portray increasing complexity with the increasing levels in terms of data requirements, vulnerability understanding and decision making to choose a particular adaptation strategy. We present here how such complexities could be addressed and adaptation decisions could be either directly supported by open source remote sensing based forestry products or geospatial analysis and modelled products. The forest vulnerability assessment under climate change scenario coupled with increasing forest social dependence was studied using IPCC Landscape scale Vulnerability framework in Chitwan-Annapurna Landscape (CHAL) situated in Nepal. Around twenty layers of geospatial information on climate, forest biophysical and forest social dependence data was used to assess forest vulnerability and associated adaptation needs using self-learning decision tree based approaches. The increase in forest fires, evapotranspiration and reduction in productivity over changing climate scenario was observed. The adaptation measures on enhancing productivity, improving resilience, reducing or avoiding pressure with spatial specificity are identified to support suitable decision making. The study provides spatial analytical framework to evaluate multitude of parameters to understand vulnerabilities and assess scope for alternative adaptation strategies with spatial explicitness.
Climate change vulnerability assessment in Georgia
Binita KC; J. Marshall Shepherd; Cassandra Johnson Gaither
2015-01-01
Climate change is occurring in the Southeastern United States, and one manifestation is changes in frequency and intensity of extreme events. A vulnerability assessment is performed in the state of Georgia (United States) at the county level from 1975 to 2012 in decadal increments. Climate change vulnerability is typically measured as a function of exposure to physical...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-14
... community water system serving a population of more than 3,300 people to conduct a vulnerability assessment... of the vulnerability assessment. These requirements are mandatory under the statute. EPA will use the information collected under this ICR to determine whether community water systems have conducted vulnerability...
NASA Astrophysics Data System (ADS)
Delavar, M. R.; Moradi, M.; Moshiri, B.
2015-12-01
Nowadays, urban areas are threatened by a number of natural hazards such as flood, landslide and earthquake. They can cause huge damages to buildings and human beings which necessitates disaster mitigation and preparation. One of the most important steps in disaster management is to understand all impacts and effects of disaster on urban facilities. Given that hospitals take care of vulnerable people reaction of hospital buildings against earthquake is vital. In this research, the vulnerability of hospital buildings against earthquake is analysed. The vulnerability of buildings is related to a number of criteria including age of building, number of floors, the quality of materials and intensity of the earthquake. Therefore, the problem of seismic vulnerability assessment is a multi-criteria assessment problem and multi criteria decision making methods can be used to address the problem. In this paper a group multi criteria decision making model is applied because using only one expert's judgments can cause biased vulnerability maps. Sugeno integral which is able to take into account the interaction among criteria is employed to assess the vulnerability degree of buildings. Fuzzy capacities which are similar to layer weights in weighted linear averaging operator are calculated using particle swarm optimization. Then, calculated fuzzy capacities are included into the model to compute a vulnerability degree for each hospital.
Kattaa, Bassam; Al-Fares, Walid; Al Charideh, Abdul Rahman
2010-05-01
Vulnerability assessment to delineate areas that are more susceptible to contamination from anthropogenic sources has become an important element for sensible resource management and landuse planning. This contribution aims at estimating aquifer vulnerability by applying the RISKE model in Banyas Catchment Area (BCA), Tartous Prefecture, west Syria. An additional objective is to demonstrate the combined use of the RISKE model and a geographical information system (GIS) as an effective method for groundwater pollution risk assessment. The RISKE model uses five environmental parameters (Rock of aquifer media, Infiltration, Soil media, Karst, and Epikarst) to characterize the hydro-geological setting and evaluate aquifer vulnerability. The elevated eastern and low western part of the study area was dominated by high vulnerability classes, while the middle part was characterized by moderate vulnerability classes. Based on the vulnerability analysis, it was found that 2% and 39% of BCA is under low and high vulnerability to groundwater contamination, respectively, while more than 52% and 5% of the area of BCA can be designated as an area of moderate and very high vulnerability to groundwater contamination, respectively. The GIS technique has provided an efficient environment for analyses and high capabilities of handling a large amount of spatial data. Copyright 2009 Elsevier Ltd. All rights reserved.
Rautureau, S; Dufour, B; Durand, B
2011-04-01
Besides farming, trade of livestock is a major component of agricultural economy. However, the networks generated by live animal movements are the major support for the propagation of infectious agents between farms, and their structure strongly affects how fast a disease may spread. Structural characteristics may thus be indicators of network vulnerability to the spread of infectious disease. The method proposed here is based upon the analysis of specific subnetworks: the giant strongly connected components (GSCs). Their existence, size and geographic extent are used to assess network vulnerability. Their disappearance when targeted nodes are removed allows studying how network vulnerability may be controlled under emergency conditions. The method was applied to the cattle trade network in France, 2005. Giant strongly connected components were present and widely spread all over the country in yearly, monthly and weekly networks. Among several tested approaches, the most efficient way to make GSCs disappear was based on the ranking of nodes by decreasing betweenness centrality (the proportion of shortest paths between nodes on which a specific node lies). Giant strongly connected components disappearance was obtained after removal of <1% of network nodes. Under emergency conditions, suspending animal trade activities in a small subset of holdings may thus allow to control the spread of an infectious disease through the animal trade network. Nodes representing markets and dealers were widely affected by these simulated control measures. This confirms their importance as 'hubs' for infectious diseases spread. Besides emergency conditions, specific sensitization and preventive measures should be dedicated to this population. © 2010 Blackwell Verlag GmbH.
Ecosystem Vulnerability Review: Proposal of an Interdisciplinary Ecosystem Assessment Approach
NASA Astrophysics Data System (ADS)
Weißhuhn, Peter; Müller, Felix; Wiggering, Hubert
2018-06-01
To safeguard the sustainable use of ecosystems and their services, early detection of potentially damaging changes in functional capabilities is needed. To support a proper ecosystem management, the analysis of an ecosystem's vulnerability provide information on its weaknesses as well as on its capacity to recover after suffering an impact. However, the application of the vulnerability concept to ecosystems is still an emerging topic. After providing background on the vulnerability concept, we summarize existing ecosystem vulnerability research on the basis of a systematic literature review with a special focus on ecosystem type, disciplinary background, and more detailed definition of the ecosystem vulnerability components. Using the Web of ScienceTM Core Collection, we overviewed the literature from 1991 onwards but used the 5 years from 2011 to 2015 for an in-depth analysis, including 129 articles. We found that ecosystem vulnerability analysis has been applied most notably in conservation biology, climate change research, and ecological risk assessments, pinpointing a limited spreading across the environmental sciences. It occurred primarily within marine and freshwater ecosystems. To avoid confusion, we recommend using the unambiguous term ecosystem vulnerability rather than ecological, environmental, population, or community vulnerability. Further, common ground has been identified, on which to define the ecosystem vulnerability components exposure, sensitivity, and adaptive capacity. We propose a framework for ecosystem assessments that coherently connects the concepts of vulnerability, resilience, and adaptability as different ecosystem responses. A short outlook on the possible operationalization of the concept by ecosystem vulnerabilty indices, and a conclusion section complete the review.
Ecosystem Vulnerability Review: Proposal of an Interdisciplinary Ecosystem Assessment Approach.
Weißhuhn, Peter; Müller, Felix; Wiggering, Hubert
2018-06-01
To safeguard the sustainable use of ecosystems and their services, early detection of potentially damaging changes in functional capabilities is needed. To support a proper ecosystem management, the analysis of an ecosystem's vulnerability provide information on its weaknesses as well as on its capacity to recover after suffering an impact. However, the application of the vulnerability concept to ecosystems is still an emerging topic. After providing background on the vulnerability concept, we summarize existing ecosystem vulnerability research on the basis of a systematic literature review with a special focus on ecosystem type, disciplinary background, and more detailed definition of the ecosystem vulnerability components. Using the Web of Science TM Core Collection, we overviewed the literature from 1991 onwards but used the 5 years from 2011 to 2015 for an in-depth analysis, including 129 articles. We found that ecosystem vulnerability analysis has been applied most notably in conservation biology, climate change research, and ecological risk assessments, pinpointing a limited spreading across the environmental sciences. It occurred primarily within marine and freshwater ecosystems. To avoid confusion, we recommend using the unambiguous term ecosystem vulnerability rather than ecological, environmental, population, or community vulnerability. Further, common ground has been identified, on which to define the ecosystem vulnerability components exposure, sensitivity, and adaptive capacity. We propose a framework for ecosystem assessments that coherently connects the concepts of vulnerability, resilience, and adaptability as different ecosystem responses. A short outlook on the possible operationalization of the concept by ecosystem vulnerabilty indices, and a conclusion section complete the review.
Hydrologic vulnerability of tribal reservation lands across the U.S.
NASA Astrophysics Data System (ADS)
Jones, C., Jr.; Leibowitz, S. G.; Sawicz, K. A.; Comeleo, R. L.; Stratton, L. E.
2017-12-01
We apply the hydrologic landscapes (HL) concept to assess the hydrologic vulnerability to climate of the United States (U.S.) with special emphasis on tribal lands. The basic assumption of the HL approach is that catchments that share similar physical and climatic characteristics are expected to have similar hydrologic characteristics. We map climate vulnerability by integrating a retrospective analysis of historical climate and hydrology into the HL approach, comparing this baseline of variability with future projections of temperature, precipitation, potential evapotranspiration, snow accumulation, climatic moisture, surplus water, and seasonality of the water surplus. Projections that are not within two standard deviations of the historical decadal average contribute to the vulnerability index for each metric. This allows stakeholders and/or water resource managers to understand the potential impacts of future conditions. The resulting vulnerability maps show that temperature and potential evapotranspiration are consistently projected to have high vulnerability indices across the U.S. including all tribal reservations. Precipitation vulnerability is not as spatially-uniform as temperature. Most areas with snow are projected to experience significant changes in future snow accumulation. The seasonality vulnerability map shows that mountainous areas in the West are most prone to changes in seasonality. This paper illustrates how the HL approach can help assess climatic and hydrologic vulnerability for disadvantaged groups across the U.S. By combining the HL concept and climate vulnerability analyses, we provide an approach that can assist tribal resource managers to perform vulnerability assessments and adaptation plans, which is a major priority for the tribes nationwide.
Van Herpe, Tom; Gielen, Marijke; Vanhonsebrouck, Koen; Wouters, Pieter J; Van den Berghe, Greet; De Moor, Bart; Mesotten, Dieter
2011-01-01
Background: The glycemic penalty index (GPI) is a measure to assess blood glucose (BG) control in critically ill adult patients but needs to be adapted for children and infants. Method: The squared differences between a clinical expertise penalty function and the corresponding polynomial function are minimized for optimization purposes. The average of all penalties (individually assigned to all BG readings) represents the patient-specific GPI. Results: Penalization in the hypoglycemic range is more severe than in the hyperglycemic range as the developing brains of infants and children may be more vulnerable to hypoglycemia. Similarly, hypoglycemia is also more heavily penalized in infants than in children. Conclusions: Extending the adult GPI toward the age-specific GPI is an important methodological step. Long-term clinical studies are needed to determine the clinically acceptable GPI cut-off level. PMID:21527105
Environmental compatibility of closed landfills - assessing future pollution hazards.
Laner, David; Fellner, Johann; Brunner, Paul H
2011-01-01
Municipal solid waste landfills need to be managed after closure. This so-called aftercare comprises the treatment and monitoring of residual emissions as well as the maintenance and control of landfill elements. The measures can be terminated when a landfill does not pose a threat to the environment any more. Consequently, the evaluation of landfill environmental compatibility includes an estimation of future pollution hazards as well as an assessment of the vulnerability of the affected environment. An approach to assess future emission rates is presented and discussed in view of long-term environmental compatibility. The suggested method consists (a) of a continuous model to predict emissions under the assumption of constant landfill conditions, and (b) different scenarios to evaluate the effects of changing conditions within and around the landfill. The model takes into account the actual status of the landfill, hence different methods to gain information about landfill characteristics have to be applied. Finally, assumptions, uncertainties, and limitations of the methodology are discussed, and the need for future research is outlined.
An Architecture, System Engineering, and Acquisition Approach for Space System Software Resiliency
NASA Astrophysics Data System (ADS)
Phillips, Dewanne Marie
Software intensive space systems can harbor defects and vulnerabilities that may enable external adversaries or malicious insiders to disrupt or disable system functions, risking mission compromise or loss. Mitigating this risk demands a sustained focus on the security and resiliency of the system architecture including software, hardware, and other components. Robust software engineering practices contribute to the foundation of a resilient system so that the system "can take a hit to a critical component and recover in a known, bounded, and generally acceptable period of time". Software resiliency must be a priority and addressed early in the life cycle development to contribute a secure and dependable space system. Those who develop, implement, and operate software intensive space systems must determine the factors and systems engineering practices to address when investing in software resiliency. This dissertation offers methodical approaches for improving space system resiliency through software architecture design, system engineering, increased software security, thereby reducing the risk of latent software defects and vulnerabilities. By providing greater attention to the early life cycle phases of development, we can alter the engineering process to help detect, eliminate, and avoid vulnerabilities before space systems are delivered. To achieve this objective, this dissertation will identify knowledge, techniques, and tools that engineers and managers can utilize to help them recognize how vulnerabilities are produced and discovered so that they can learn to circumvent them in future efforts. We conducted a systematic review of existing architectural practices, standards, security and coding practices, various threats, defects, and vulnerabilities that impact space systems from hundreds of relevant publications and interviews of subject matter experts. We expanded on the system-level body of knowledge for resiliency and identified a new software architecture framework and acquisition methodology to improve the resiliency of space systems from a software perspective with an emphasis on the early phases of the systems engineering life cycle. This methodology involves seven steps: 1) Define technical resiliency requirements, 1a) Identify standards/policy for software resiliency, 2) Develop a request for proposal (RFP)/statement of work (SOW) for resilient space systems software, 3) Define software resiliency goals for space systems, 4) Establish software resiliency quality attributes, 5) Perform architectural tradeoffs and identify risks, 6) Conduct architecture assessments as part of the procurement process, and 7) Ascertain space system software architecture resiliency metrics. Data illustrates that software vulnerabilities can lead to opportunities for malicious cyber activities, which could degrade the space mission capability for the user community. Reducing the number of vulnerabilities by improving architecture and software system engineering practices can contribute to making space systems more resilient. Since cyber-attacks are enabled by shortfalls in software, robust software engineering practices and an architectural design are foundational to resiliency, which is a quality that allows the system to "take a hit to a critical component and recover in a known, bounded, and generally acceptable period of time". To achieve software resiliency for space systems, acquirers and suppliers must identify relevant factors and systems engineering practices to apply across the lifecycle, in software requirements analysis, architecture development, design, implementation, verification and validation, and maintenance phases.
Andrade, Milena Marília Nogueira de; Szlafsztein, Claudio Fabian
2018-07-15
The vulnerability of cities and communities in the Amazon to flooding and flash flooding is increasing. The effects of extreme events on populations vary across landscapes, causing vulnerability to differ spatially. Traditional vulnerability studies in Brazil and across the world have used the vulnerability index for the country and, more recently, municipality scales. The vulnerability dimensions are exposure, sensitivity, and adaptive capacity. For each of these dimensions, there is a group of indicators that constitutes a vulnerability index using quantitative data. Several vulnerability assessments have used sensitivity and exposure analyses and, recently, adaptive capacity has been considered. The Geographical Information Systems (GIS) analysis allows spatial regional modeling using quantitative vulnerability indicators. This paper presents a local-scale vulnerability assessment in an urban Amazonian area, Santarém City, using interdisciplinary methods. Data for exposure and sensitivity were gathered by remote sensing and census data, respectively. However, adaptive capacity refers to local capacities, whether infrastructural or not, and the latter were gathered by qualitative participatory methods. For the mixed data used to study adaptive capacity, we consider tangible components for countable infrastructure that can cope with hazards, and intangible components that reflect social activities based on risk perceptions and collective action. The results indicate that over 80% of the area is highly or moderately vulnerable to flooding and flash flooding. Exposure and adaptive capacity were determinants of the results. Lower values of adaptive capacity play a significant role in vulnerability enhancement. Copyright © 2018 Elsevier B.V. All rights reserved.
Seismic vulnerability and damage of Italian historical centres: A case study in the Campania region
NASA Astrophysics Data System (ADS)
Formisano, Antonio; Chieffo, Nicola; Fabbrocino, Francesco; Landolfo, Raffaele
2017-07-01
The preservation of masonry buildings typical of Italian historical centres represents a very pressing dilemma founded on recovery need of the urban fabric original character. In the paper, based on a methodology developed by some of the Authors on building aggregates, the seismic vulnerability estimation of some masonry compounds in the heart of the town of San PotitoSannitico (Caserta, Italy) is presented and compared to the results achieved from applying the basic literature method for isolated constructions. Finally, the damage scenario of inspected buildings has been shown by highlighting clearly the influence of different positions of structural units on the damages that masonry aggregates suffer under different grade earthquakes, leading to individuate the most vulnerable buildings.
NASA Astrophysics Data System (ADS)
Guillard-Gonçalves, C.; Zêzere, J. L.; Pereira, S.; Garcia, R. A. C.
2016-02-01
This study offers a semi-quantitative assessment of the physical vulnerability of buildings to landslides in a Portuguese municipality (Loures), as well as the quantitative landslide risk analysis computed as the product of the landslide hazard by the vulnerability and the economic value of the buildings. The hazard was assessed by combining the spatiotemporal probability and the frequency-magnitude relationship of the landslides. The physical vulnerability assessment was based on an inquiry of a pool of European landslide experts and a sub-pool of landslide experts who know the study area, and the answers' variability was assessed with standard deviation. The average vulnerability of the basic geographic entities was compared by changing the map unit and applying the vulnerability to all the buildings of a test site, the inventory of which was listed on the field. The economic value was calculated using an adaptation of the Portuguese Tax Services approach, and the risk was computed for different landslide magnitudes and different spatiotemporal probabilities. As a rule, the vulnerability values given by the sub-pool of experts who know the study area are higher than those given by the European experts, namely for the high-magnitude landslides. The obtained vulnerabilities vary from 0.2 to 1 as a function of the structural building types and the landslide magnitude, and are maximal for 10 and 20 m landslide depths. However, the highest risk was found for the landslides that are 3 m deep, because these landslides combine a relatively high frequency in the Loures municipality with a substantial potential damage.
Hacke, Uwe G; Venturas, Martin D; MacKinnon, Evan D; Jacobsen, Anna L; Sperry, John S; Pratt, R Brandon
2015-01-01
The standard centrifuge method has been frequently used to measure vulnerability to xylem cavitation. This method has recently been questioned. It was hypothesized that open vessels lead to exponential vulnerability curves, which were thought to be indicative of measurement artifact. We tested this hypothesis in stems of olive (Olea europea) because its long vessels were recently claimed to produce a centrifuge artifact. We evaluated three predictions that followed from the open vessel artifact hypothesis: shorter stems, with more open vessels, would be more vulnerable than longer stems; standard centrifuge-based curves would be more vulnerable than dehydration-based curves; and open vessels would cause an exponential shape of centrifuge-based curves. Experimental evidence did not support these predictions. Centrifuge curves did not vary when the proportion of open vessels was altered. Centrifuge and dehydration curves were similar. At highly negative xylem pressure, centrifuge-based curves slightly overestimated vulnerability compared to the dehydration curve. This divergence was eliminated by centrifuging each stem only once. The standard centrifuge method produced accurate curves of samples containing open vessels, supporting the validity of this technique and confirming its utility in understanding plant hydraulics. Seven recommendations for avoiding artefacts and standardizing vulnerability curve methodology are provided. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
NASA Astrophysics Data System (ADS)
Post, J.; Zosseder, K.; Wegscheider, S.; Steinmetz, T.; Mück, M.; Strunz, G.; Riedlinger, T.; Anwar, H. Z.; Birkmann, J.; Gebert, N.
2009-04-01
Risk and vulnerability assessment is an important component of an effective End-to-End Tsunami Early Warning System and therefore contributes significantly to disaster risk reduction. Risk assessment is a key strategy to implement and design adequate disaster prevention and mitigation measures. The knowledge about expected tsunami hazard impacts, exposed elements, their susceptibility, coping and adaptation mechanisms is a precondition for the development of people-centred warning structures, local specific response and recovery policy planning. The developed risk assessment and its components reflect the disaster management cycle (disaster time line) and cover the early warning as well as the emergency response phase. Consequently the components hazard assessment, exposure (e.g. how many people/ critical facilities are affected?), susceptibility (e.g. are the people able to receive a tsunami warning?), coping capacity (are the people able to evacuate in time?) and recovery (are the people able to restore their livelihoods?) are addressed and quantified. Thereby the risk assessment encompasses three steps: (i) identifying the nature, location, intensity and probability of potential tsunami threats (hazard assessment); (ii) determining the existence and degree of exposure and susceptibility to those threats; and (iii) identifying the coping capacities and resources available to address or manage these threats. The paper presents results of the research work, which is conducted in the framework of the GITEWS project and the Joint Indonesian-German Working Group on Risk Modelling and Vulnerability Assessment. The assessment methodology applied follows a people-centred approach to deliver relevant risk and vulnerability information for the purposes of early warning and disaster management. The analyses are considering the entire coastal areas of Sumatra, Java and Bali facing the Sunda trench. Selected results and products like risk maps, guidelines, decision support information and other GIS products will be presented. The focus of the products is on the one hand to provide relevant risk assessment products as decision support to issue a tsunami warning within the early warning stage. On the other hand the maps and GIS products shall provide relevant information to enable local decision makers to act adequately concerning their local risks. It is shown that effective prevention and mitigation measures can be designed based on risk assessment results and information especially when used pro-active and beforehand a disaster strikes. The conducted hazard assessment provides the probability of an area to be affected by a tsunami threat divided into two ranked impact zones. The two divided impact zones directly relate to tsunami warning levels issued by the Early Warning Center and consequently enable the local decision maker to base their planning (e.g. evacuation) accordingly. Within the tsunami hazard assessment several hundred pre-computed tsunami scenarios are analysed. This is combined with statistical analysis of historical event data. Probabilities of tsunami occurrence considering probabilities of different earthquake magnitudes, occurrences of specific wave heights at coast and spatial inundation probability are computed. Hazard assessment is then combined with a comprehensive vulnerability assessment. Here deficits in e.g. people's ability to receive and understand a tsunami warning and deficits in their ability to respond adequately (evacuate on time) are quantified and are visualized for the respective coastal areas. Hereby socio-economic properties (determining peoples ability to understand a warning and to react) are combined with environmental conditions (land cover, slope, population density) to calculate the time needed to evacuate (reach a tsunami safe area derived through the hazard assessment). This is implemented using a newly developed GIS cost-distance weighting approach. For example, the amount of people affected in a certain area is dependent on expected tsunami intensity, inundated area, estimated tsunami arrival time and available time for evacuation. Referring to the Aceh 2004 Tsunami, an estimated amount of people affected (dead/injured) of 21000 for Kabubaten Aceh Jaya and 85000 for Kab. Banda Aceh is in a comparable range with reported values of 19661 and 78417 (JICA 2005) respectively. Hence the established methodology provides reliable estimates of people affected and people's ability to reach a safe area. Based on the spatial explicit detection of e.g. high tsunami risk areas (and the assessed root causes therefore), specific disaster risk reduction and early warning strategies can be designed. For example additional installation of technical warning dissemination device, community based preparedness and awareness programmes (education), structural and non-structural measures (e.g. land use conversion, coastal engineering), effective evacuation, contingency and household recovery aid planning can be employed and/or optimized within high tsunami risk areas as a first priority. In the context of early warning, spatially distributed information like degree of expected hazard impact, exposure of critical facilities (e.g. hospitals, schools), potential people dead/injured depending on available response times, location of safe and shelter areas can be disseminated and used for decision making. Keywords: Tsunami risk, hazard and vulnerability assessment, early warning, tsunami mitigation and prevention, Indonesia
NASA Astrophysics Data System (ADS)
Marín, Ana Isabel; Mudarra, Matías; Andreo, Bartolomé
2016-04-01
Delineation of protection zones for water supply and implementation of proper land-use practices in surrounding areas are crucial aspects for a sustainable use of valuable drinking water resources. This is even more important in karst aquifers, which are particularly sensitive to contamination, having a very low self-cleaning capacity due to their structure and hydrological behavior. Consequently, specific methodologies adapted to the particular characteristics of karst media are necessary. In this work, an approach for protection zoning of the pilot site of Auta karst spring (southern Spain) is proposed, based on the application of COP+K method for contamination vulnerability and validation of results by natural (organic) tracers of infiltration (NO3-, TOC, intrinsic fluorescence) and by a dye tracer test conducted on June, 2011 (injecting 500 mg uranine). The aquifer drained by Auta spring (8.5 km2) presents a complex geological structure, formed by Jurassic dolostones and limestones highly folded and fractured. Recharge takes place by the infiltration of rainfall through karst landforms and also by losses in an adjacent river when it flows over the carbonate outcrops (dye injection point). Drainage is mainly through several springs located at the southwest, including Auta spring and 5 overflow springs. The source vulnerability map obtained by applying COP+K method can be adopted as the baseline to delineate the protection zones, through the conversion from vulnerability classes to degrees of protection. Dye tracer test and natural tracers of infiltration corroborate that aquifer sectors influenced by the river can be extremely vulnerable to pollution, but also well-developed exokarst features. In fact, slight evidences of pollution have been detected during the study period, with relatively-high NO3- contents and high fluorescence linked to bacteriological activity in Auta spring water. The jointly use of natural and artificial tracers constitute a reliable and effective procedure for validating vulnerability mapping of karst systems and springs used for water supply. This procedure is meant to implement and to complement protection zone mapping, particularly in countries lacking guidelines for protecting the water resources of karst aquifers.
Welch, Vivian; Petticrew, Mark; Ueffing, Erin; Benkhalti Jandu, Maria; Brand, Kevin; Dhaliwal, Bharbhoor; Kristjansson, Elizabeth; Smylie, Janet; Wells, George Anthony; Tugwell, Peter
2012-01-01
Tackling health inequities both within and between countries remains high on the agenda of international organizations including the World Health Organization and local, regional and national governments. Systematic reviews can be a useful tool to assess effects on equity in health status because they include studies conducted in a variety of settings and populations. This study aims to describe the extent to which the impacts of health interventions on equity in health status are considered in systematic reviews, describe methods used, and assess the implications of their equity related findings for policy, practice and research. We conducted a methodology study of equity assessment in systematic reviews. Two independent reviewers extracted information on the reporting and analysis of impacts of health interventions on equity in health status in a group of 300 systematic reviews collected from all systematic reviews indexed in one month of MEDLINE, using a pre-tested data collection form. Any differences in data extraction were resolved by discussion. Of the 300 systematic reviews, 224 assessed the effectiveness of interventions on health outcomes. Of these 224 reviews, 29 systematic reviews assessed effects on equity in health status using subgroup analysis or targeted analyses of vulnerable populations. Of these, seven conducted subgroup analyses related to health equity which were reported in insufficient detail to judge their credibility. Of these 29 reviews, 18 described implications for policy and practice based on assessment of effects on health equity. The quality and completeness of reporting should be enhanced as a priority, because without this policymakers and practitioners will continue lack the evidence base they need to inform decision-making about health inequity. Furthermore, there is a need to develop methods to systematically consider impacts on equity in health status that is currently lacking in systematic reviews.
NASA Astrophysics Data System (ADS)
Tellman, B.; Schwarz, B.; Kuhn, C.; Pandey, B.; Schank, C.; Sullivan, J.; Mahtta, R.; Hammet, L.
2016-12-01
21 million people are exposed to flooding every year, and that number is expected to more than double by 2030 due to climate, land use, and demographic change. Cloud to Street, a mission driven science organization, is working to make big and real time data more meaningful to understand both biophysical and social vulnerability to flooding in this changing world. This talk will showcase the science and practice we have built of integrated social and biophysical flood vulnerability assessments based on our work in Uttarakhand, India and Senegal, in conjunction with nonprofits and development banks. We will show developments of our global historical flood database, detected from MODIS and Landsat satellites, used to power machine learning flood exposure models in Google Earth Engine's API. Demonstrating the approach, we will also showcase new approaches in social vulnerability science, from developing data-driven social vulnerability indices in India, to deriving predictive models that explain the social conditions that lead to disproportionate flood damage and fatality in the US. While this talk will draw on examples of completed vulnerability assessments, we will also discuss the possible future for place-based "living" flood vulnerability assessments that are updated each time satellites circle the earth or people add crowd-sourced observations about flood events and social conditions.
Vulnerability assessment of atmospheric environment driven by human impacts.
Zhang, Yang; Shen, Jing; Ding, Feng; Li, Yu; He, Li
2016-11-15
Atmospheric environment quality worsening is a substantial threat to public health worldwide, and in many places, air pollution due to the intensification of the human activity is increasing dramatically. However, no studies have been investigated the integration of vulnerability assessment and atmospheric environment driven by human impacts. The objective of this study was to identify and prioritize the undesirable environmental changes as an early warning system for environment managers and decision makers in term of human, atmospheric environment, and social economic elements. We conduct a vulnerability assessment method of atmospheric environment associated with human impact, this method integrates spatial context of Geographic Information System (GIS) tool, multi-criteria decision analysis (MCDA) method, ordered weighted averaging (OWA) operators under the Exposure-Sensitivity- Adaptive Capacity (ESA) framework. Decision makers can find out relevant vulnerability assessment results with different vulnerable attitudes. In the Beijing-Tianjin-Hebei (BTH) region, China, we further applied this developed method and proved it to be reliable and consistent with the China Environmental Status Bulletin. Results indicate that the vulnerability of atmospheric environment in the BTH region is not optimistic, and environment managers should do more about air pollution. Thus, the most appropriate strategic decision and development program of city or state can be picked out assisting by the vulnerable results. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Swanston, C.; Janowiak, M.; Handler, S.; Butler, P.; Brandt, L.; Iverson, L.; Thompson, F.; Ontl, T.; Shannon, D.
2016-12-01
Forest ecosystem vulnerability assessments are rapidly becoming an integral component of forest management planning, in which there is increasing public expectation that even near-term activities explicitly incorporate information about anticipated climate impacts and risks. There is a clear desire among forest managers for targeted assessments that address critical questions about species and ecosystem vulnerabilities while delivering this information in an accessible format. We developed the Ecosystem Vulnerability Assessment Approach (EVAA), which combines multiple quantitative models, expert elicitation from scientists and land managers, and a templated report structure oriented to natural resource managers. The report structure includes relevant information on the contemporary landscape, past climate, future climate projections, impact model results, and a transparent vulnerability assessment of species and ecosystems. We have used EVAA in seven ecoregional assessments covering 246 million acres of forestland across the upper Midwest and Northeast (www.forestadaptation.org; five published, two in review). We convened a panel of local forest ecology and management experts in each assessment area to examine projected climate effects on system drivers, stressors, and dominant species, as well as the current adaptive capacity of the major ecoregional forest ecosystems. The panels provided a qualitative assessment of the vulnerability of forest ecosystems to climate change over the next century. Over 130 authors from dozens of organizations collaborated on these peer-reviewed assessment publications, which are delivered to thousands of stakeholders through live and recorded webinars, online briefs, and in-person trainings and seminars. The assessments are designed to be used with the Adaptation Workbook (www.adaptationworkbook.org), a planning tool that works at multiple scales and has generated more than 200 real-world forest adaptation demonstration projects.
A System for Assessing Vulnerability of Species (SAVS) to Climate Change
Karen E. Bagne; Megan M. Friggens; Deborah M. Finch
2011-01-01
Sustained conservation of species requires integration of future climate change effects, but few tools exist to assist managers. The System for Assessing Vulnerability of Species (SAVS) identifies the relative vulnerability or resilience of vertebrate species to climate change. Designed for managers, the SAVS is an easily applied tool that uses a questionnaire of 22...
NASA Astrophysics Data System (ADS)
Anh, N. K.; Liou, Y. A.; Li, M. H.
2016-12-01
The motivation for this study is assessment of the eco-environment vulnerability based on four independent determinants: hydro-meteorology, topography, land resources, and human activities. An assessment framework is proposed to assess the vulnerable eco-environment by using 16 variables with 6 of them constructed from Landsat 8 satellite images. The remaining variables were extracted from digital maps. Each variable was evaluated and spatially mapped with the aid of an analytical hierarchy process (AHP) and geographical information system (GIS). The Thua Thien - Hue Province that has been experiencing natural disasters and urbanization in the recent decades is selected as our study area. An eco-environmental vulnerability map is assorted into six vulnerable levels consisting of potential, slight, light, medium, heavy, and very heavy vulnerabilities, representing 14%, 27%, 17%, 26%, 13%, 3% of the study area, respectively. It is found that heavy and very heavy vulnerable areas appear mainly in the low and medium lands with high intensification of social-economic activities and often suffer from flooding. Tiny percentages of medium and heavy vulnerable levels occur in high land areas probably caused by agricultural practices in highlands, slash and burn cultivation and removal of natural forests with new plantation forests and these regions are usually influenced by landslides, flash flooding. Based on our results, three ecological zones requiring different development and protection solutions are proposed to restore local eco-environment toward sustainable development. Our findings support the idea that eco-environmental vulnerability is driven by anthropogenic processes and enhanced by natural disaster in the Thua Thien-Hue Province.
Addressing uncertainty in vulnerability assessments [Chapter 5
Linda Joyce; Molly Cross; Evan Girvatz
2011-01-01
This chapter addresses issues and approaches for dealing with uncertainty specifically within the context of conducting climate change vulnerability assessments (i.e., uncertainties related to identifying and modeling the sensitivities, levels of exposure, and adaptive capacity of the assessment targets).
Reece, Joshua Steven; Noss, Reed F.; Oetting, Jon; Hoctor, Tom; Volk, Michael
2013-01-01
Species face many threats, including accelerated climate change, sea level rise, and conversion and degradation of habitat from human land uses. Vulnerability assessments and prioritization protocols have been proposed to assess these threats, often in combination with information such as species rarity; ecological, evolutionary or economic value; and likelihood of success. Nevertheless, few vulnerability assessments or prioritization protocols simultaneously account for multiple threats or conservation values. We applied a novel vulnerability assessment tool, the Standardized Index of Vulnerability and Value, to assess the conservation priority of 300 species of plants and animals in Florida given projections of climate change, human land-use patterns, and sea level rise by the year 2100. We account for multiple sources of uncertainty and prioritize species under five different systems of value, ranging from a primary emphasis on vulnerability to threats to an emphasis on metrics of conservation value such as phylogenetic distinctiveness. Our results reveal remarkable consistency in the prioritization of species across different conservation value systems. Species of high priority include the Miami blue butterfly (Cyclargus thomasi bethunebakeri), Key tree cactus (Pilosocereus robinii), Florida duskywing butterfly (Ephyriades brunnea floridensis), and Key deer (Odocoileus virginianus clavium). We also identify sources of uncertainty and the types of life history information consistently missing across taxonomic groups. This study characterizes the vulnerabilities to major threats of a broad swath of Florida’s biodiversity and provides a system for prioritizing conservation efforts that is quantitative, flexible, and free from hidden value judgments. PMID:24260447
Tuberville, Tracey D; Andrews, Kimberly M; Sperry, Jinelle H; Grosse, Andrew M
2015-10-01
Climate change threatens biodiversity globally, yet it can be challenging to predict which species may be most vulnerable. Given the scope of the problem, it is imperative to rapidly assess vulnerability and identify actions to decrease risk. Although a variety of tools have been developed to assess climate change vulnerability, few have been evaluated with regard to their suitability for certain taxonomic groups. Due to their ectothermic physiology, low vagility, and strong association with temporary wetlands, reptiles and amphibians may be particularly vulnerable relative to other groups. Here, we evaluate use of the NatureServe Climate Change Vulnerability Index (CCVI) to assess a large suite of herpetofauna from the Sand Hills Ecoregion of the southeastern United States. Although data were frequently lacking for certain variables (e.g., phenological response to climate change, genetic variation), sufficient data were available to evaluate all 117 species. Sensitivity analyses indicated that results were highly dependent on size of assessment area and climate scenario selection. In addition, several ecological traits common in, but relatively unique to, herpetofauna are likely to contribute to their vulnerability and need special consideration during the scoring process. Despite some limitations, the NatureServe CCVI was a useful tool for screening large numbers of reptile and amphibian species. We provide general recommendations as to how the CCVI tool's application to herpetofauna can be improved through more specific guidance to the user regarding how to incorporate unique physiological and behavioral traits into scoring existing sensitivity factors and through modification to the assessment tool itself.
NASA Astrophysics Data System (ADS)
Tuberville, Tracey D.; Andrews, Kimberly M.; Sperry, Jinelle H.; Grosse, Andrew M.
2015-10-01
Climate change threatens biodiversity globally, yet it can be challenging to predict which species may be most vulnerable. Given the scope of the problem, it is imperative to rapidly assess vulnerability and identify actions to decrease risk. Although a variety of tools have been developed to assess climate change vulnerability, few have been evaluated with regard to their suitability for certain taxonomic groups. Due to their ectothermic physiology, low vagility, and strong association with temporary wetlands, reptiles and amphibians may be particularly vulnerable relative to other groups. Here, we evaluate use of the NatureServe Climate Change Vulnerability Index (CCVI) to assess a large suite of herpetofauna from the Sand Hills Ecoregion of the southeastern United States. Although data were frequently lacking for certain variables (e.g., phenological response to climate change, genetic variation), sufficient data were available to evaluate all 117 species. Sensitivity analyses indicated that results were highly dependent on size of assessment area and climate scenario selection. In addition, several ecological traits common in, but relatively unique to, herpetofauna are likely to contribute to their vulnerability and need special consideration during the scoring process. Despite some limitations, the NatureServe CCVI was a useful tool for screening large numbers of reptile and amphibian species. We provide general recommendations as to how the CCVI tool's application to herpetofauna can be improved through more specific guidance to the user regarding how to incorporate unique physiological and behavioral traits into scoring existing sensitivity factors and through modification to the assessment tool itself.
Assessing the social vulnerability to malaria in Rwanda.
Bizimana, Jean-Pierre; Twarabamenye, Emmanuel; Kienberger, Stefan
2015-01-07
Since 2004, malaria interventions in Rwanda have resulted in substantial decline of malaria incidence. However, this achievement is fragile as potentials for local malaria transmissions remain. The risk of getting malaria infection is partially explained by social conditions of vulnerable populations. Since vulnerability to malaria is both influenced by social and environmental factors, its complexity cannot be measured by a single value. The aim of this paper is, therefore, to apply a composite indicator approach for assessing social vulnerability to malaria in Rwanda. This assessment informs the decision-makers in targeting malaria interventions and allocating limited resources to reduce malaria burden in Rwanda. A literature review was used to conceptualize the social vulnerability to malaria and to select the appropriate vulnerability indicators. Indicators used in the index creation were classified into susceptibility and lack of resilience vulnerability domains. The main steps followed include selection of indicators and datasets, imputation of missing values, descriptive statistics, normalization and weighting of indicators, local sensitivity analysis and indicators aggregation. Correlation analysis helped to empirically evidence the association between the indicators and malaria incidence. The high values of social vulnerability to malaria are found in Gicumbi, Rusizi, Nyaruguru and Gisagara, and low values in Muhanga, Nyarugenge, Kicukiro and Nyanza. The most influential susceptibility indicators to increase malaria are population change (r = 0.729), average number of persons per bedroom (r = 0.531), number of households affected by droughts and famines (r = 0.591), and area used for irrigation (r = 0.611). The bed net ownership (r = -0.398) and poor housing wall materials (0.378) are the lack of resilience indicators that significantly correlate with malaria incidence. The developed composite index social vulnerability to malaria indicates which indicators need to be addressed and in which districts. The results from this study are salient for public health policy- and decision makers in malaria control in Rwanda and timely support the national integrated malaria initiative. Future research development should focus on spatial explicit vulnerability assessment by combining environmental and social drivers to achieve an integrated and complete assessment of vulnerability to malaria.
Ruger, Jennifer Prah; Lazar, Christina M
2012-01-01
Drug abuse and transmission of HIV during pregnancy are public health problems that adversely affect pregnant women, their children and surrounding communities. Programs that address this vulnerable population have the ability to be cost-effective due to resulting cost savings for mother, child and society. Economic evaluations of programs that address these issues are an important tool to better understand the costs of services and create sustainable healthcare systems. This study critically examined economic evaluations of drug abuse treatment and HIV prevention programs in pregnant women. A systematic review was conducted using the criteria recommended by the Panel on Cost-Effectiveness in Health and Medicine and the British Medical Journal (BMJ) checklist for economic evaluations. The search identified 6 economic studies assessing drug abuse treatment for pregnant women, and 12 economic studies assessing programs that focus on prevention of mother-to-child transmission (PMTCT) of HIV. Results show that many programs for drug abuse treatment and PMTCT among pregnant women are cost-effective or even cost-saving. This study identified several shortcomings in methodology and lack of standardization of current economic evaluations. Efforts to address methodological challenges will help make future studies more comparable and have more influence on policy makers, clinicians and the public. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Liss, Alexander
Extreme weather events, such as heat waves and cold spells, cause substantial excess mortality and morbidity in the vulnerable elderly population, and cost billions of dollars. The accurate and reliable assessment of adverse effects of extreme weather events on human health is crucial for environmental scientists, economists, and public health officials to ensure proper protection of vulnerable populations and efficient allocation of scarce resources. However, the methodology for the analysis of large national databases is yet to be developed. The overarching objective of this dissertation is to examine the effect of extreme weather on the elderly population of the Conterminous US (ConUS) with respect to seasonality in temperature in different climatic regions by utilizing heterogeneous high frequency and spatio-temporal resolution data. To achieve these goals the author: 1) incorporated dissimilar stochastic high frequency big data streams and distinct data types into the integrated data base for use in analytical and decision support frameworks; 2) created an automated climate regionalization system based on remote sensing and machine learning to define climate regions for the Conterminous US; 3) systematically surveyed the current state of the art and identified existing gaps in the scientific knowledge; 4) assessed the dose-response relationship of exposure to temperature extremes on human health in relatively homogeneous climate regions using different statistical models, such as parametric and non-parametric, contemporaneous and asynchronous, applied to the same data; 5) assessed seasonal peak timing and synchronization delay of the exposure and the disease within the framework of contemporaneous high frequency harmonic time series analysis and modification of the effect by the regional climate; 6) modeled using hyperbolic functional form non-linear properties of the effect of exposure to extreme temperature on human health. The proposed climate regionalization method algorithmically forms eight climatically homogeneous regions for Conterminous US from satellite Remote Sensing inputs. The relative risk of hospitalizations due to extreme ambient temperature varied across climatic regions. Difference in regional hospitalization rates suggests presence of an adaptation effect to a prevailing climate. In various climatic regions the hospitalizations peaked earlier than the peak of exposure. This suggests disproportionally high impact of extreme weather events, such as cold spells or heat waves when they occur early in the season. These findings provide an insight into the use of high frequency disjoint data sets for the assessment of the magnitude, timing, synchronization and non-linear properties of adverse health consequences due to exposure to extreme weather events to the elderly in defined climatic regions. These findings assist in the creation of decision support frameworks targeting preventions and adaptation strategies such as improving infrastructure, providing energy assistance, education and early warning notifications for the vulnerable population. This dissertation offers a number of methodological innovations for the assessment of the high frequency spatio-temporal and non-linear impacts of extreme weather events on human health. These innovations help to ensure an improved protection of the elderly population, aid policy makers in the development of efficient disaster prevention strategies, and facilitate more efficient allocation of scarce resources.
Rethinking vulnerability analysis and governance with emphasis on a participatory approach.
Rossignol, Nicolas; Delvenne, Pierre; Turcanu, Catrinel
2015-01-01
This article draws on vulnerability analysis as it emerged as a complement to classical risk analysis, and it aims at exploring its ability for nurturing risk and vulnerability governance actions. An analysis of the literature on vulnerability analysis allows us to formulate a three-fold critique: first, vulnerability analysis has been treated separately in the natural and the technological hazards fields. This separation prevents vulnerability from unleashing the full range of its potential, as it constrains appraisals into artificial categories and thus already closes down the outcomes of the analysis. Second, vulnerability analysis focused on assessment tools that are mainly quantitative, whereas qualitative appraisal is a key to assessing vulnerability in a comprehensive way and to informing policy making. Third, a systematic literature review of case studies reporting on participatory approaches to vulnerability analysis allows us to argue that participation has been important to address the above, but it remains too closed down in its approach and would benefit from embracing a more open, encompassing perspective. Therefore, we suggest rethinking vulnerability analysis as one part of a dynamic process between opening-up and closing-down strategies, in order to support a vulnerability governance framework. © 2014 Society for Risk Analysis.
NASA Astrophysics Data System (ADS)
Guillard-Gonçalves, C.; Zêzere, J. L.; Pereira, S.; Garcia, R. A. C.
2015-09-01
This study offers a semi-quantitative assessment of the physical vulnerability of buildings to landslides in the Loures municipality, as well as an analysis of the landslide risk computed as the product of the vulnerability by the economic value of the buildings and by the landslide hazard. The physical vulnerability assessment, which was based on a questionnaire sent to a pool of Portuguese and European researchers, and the assessment of the subjectivity of their answers are innovative contributions of this work. The generalization of the vulnerability to the smallest statistical subsection was validated by changing the map unit and applying the vulnerability to all the buildings of a test site (approximately 800 buildings), which were inventoried during fieldwork. The economic value of the buildings of the Loures municipality was calculated using an adaptation of the Portuguese Tax Services formula. The hazard was assessed by combining the susceptibility of the slopes, the spatio-temporal probability and the frequency-magnitude relationship of the landslide. Finally, the risk was mapped for different landslide magnitudes and different spatio-temporal probabilities. The highest landslide risk was found for the landslide with a depth of 3 m in the landslide body, and a height of 1m in the landslide foot.
NASA Astrophysics Data System (ADS)
Anantha Rao, D.; Naik, Pradeep K.; Jain, Sunil K.; Vinod Kumar, K.; Dhanamjaya Rao, E. N.
2018-06-01
Assessment of groundwater vulnerability to pollution is an essential pre-requisite for better planning of an area. We present the groundwater vulnerability assessment in parts of the Yamuna Nagar District, Haryana State, India in an area of about 800 km2, considered to be a freshwater zone in the foothills of the Siwalik Hill Ranges. Such areas in the Lower Himalayas form good groundwater recharge zones, and should always be free from contamination. But, the administration has been trying to promote industrialization along these foothill zones without actually assessing the environmental consequences such activities may invite in the future. GIS-DRASTIC model has been used with field based data inputs for studying the vulnerability assessment. But, we find that inclusion electrical conductivity (EC) as a model parameter makes it more robust. Therefore, we rename it as GIS-DRASTIC-EC model. The model identifies three vulnerability zones such as low, moderate and high with an areal extent of 5%, 80% and 15%, respectively. On the basis of major chemical parameters alone, the groundwater in the foothill zones apparently looks safe, but analysis with the help of GIS-DRASTIC-EC model gives a better perspective of the groundwater quality in terms of identifying the vulnerable areas.
NASA Astrophysics Data System (ADS)
Jayanimitta, M. E.; Puspasari, D. A.; Widyahantari, R.; Kristina, D.; Ratnaningtyas, T.; Setionurjaya, A.; Anindita, Y. A.
2018-02-01
Vulnerability Assessment is usually used for assessing the ability of an area on facing disaster. In previous studies, the study of Vulnerability Assessment applied only quantitative method to show the vulnerability level. Therefore, this study attempts to add information reviews using qualitative method. Kemijen City Village is one of the administrative areas in the northern part of Semarang City affected by climate change. The residents have to adapt it by renovating and elevating their houses and other infrastructures to avoid floods. There are some development programs held by government, NGOs, and corporations such as Banger Polder Development, PLPBK, etc. It is interesting to know how big the vulnerability level of Kemijen on facing flood disasters, then how the projects can affect local adaptive capacity. To answer it, this research uses mixed-method approach. Vulnerability Assessment uses quantitative method by scoring indicators of Exposure, Sensitivity, and Adaptive Capacity, while the development impact uses qualitative method. The data were collected through interviews and FGD conducted in Joint Studio Course between Diponegoro University and University of Hawaii in October 2016. Non-physical programs such as community empowerment have more positive impacts on local adaptive capacity in Kemijen. Community participation is important for environmental sustainability that can not be done in a short time to educate the people.
Integrated assessment in the Mediterranean: the CIRCE case studies
NASA Astrophysics Data System (ADS)
Goodess, C. M.; Agnew, M. D.; Hemming, D.; Giannakopoulos, C.
2012-04-01
The heterogeneous nature of the Mediterranean environment, combined with a wide diversity of economic, social and cultural identities, make this region particularly amenable to integrated research on climate change impacts, vulnerabilities, and adaptive response. Within the framework of the EU FP7 CIRCE project, eleven case-study locations were selected to reflect three generic environments (urban, rural and coastal), to quantify current and future climate change and to assess the potential consequences to human communities and ecosystems at the regional to local scale. The case studies (Athens, Beirut, Alexandria, Tuscany, Apulia, Tel Hadya, Judean Foothills, Gulf of Valencia, Gulf of Oran, Gulf of Gabes, West Nile Delta) were chosen to reflect the east-west and north-south contrasts across the Mediterranean, using common selection criteria. A rigorous common framework, referred to as the CIRCE Case studies Integrating Framework was developed to facilitate a structured and systematic basis for identifying and selecting indicators. Within this framework, climate dynamics is viewed as a key driver of changes in social and biogeophysical systems and is modulated by the inherent dynamics of these systems. The top-down, indicator-based approach was complemented by a bottom-up approach involving local and regional stakeholders. A participatory level of involvement was aimed for, with stakeholder dialogue on an informal basis throughout the project, culminating in a series of more formal regional stakeholder workshops. Identification and construction of physical and socio-economic indicators was the most challenging and time-consuming aspect of the case-study work. A detailed set of selection criteria was defined and the process of reviewing and refining indicators was iterative. Nonetheless, a number of data and methodological challenges were encountered. Despite these issues, indicator linkages diagrams provided a useful preparatory stage for structuring the integrated assessment for each case study. In the first and major assessment stage, impacts and vulnerability due to exposure to hazards associated with current and recent climate variability and change were explored using observed data. This then provided the context for considering future changes. The latter work was based on climate projections derived from the CIRCE global and regional climate model simulations which have the main novel characteristic of incorporating coupling between the Mediterranean Sea and atmosphere. Natural and human systems in all eleven case studies were found to be vulnerable to current climate variability and change as well as to social dynamics or drivers. The climate projections of increases in mean and extreme high temperature and decreases in precipitation are considered to be robust, although there is uncertainty with regards to the magnitude of change. They indicate that all case studies will experience continuing and increasing vulnerability to climate change in the absence of mitigation or adaptation. Projections for other extreme weather events, such as heavy precipitation and flooding, are highly uncertain, but any increase in such events would further increase vulnerability. At the same time, social dynamics and drivers such as population growth (at least in the short term and in the southern Mediterranean) are likely to further increase vulnerability.
Progress in atherosclerotic plaque imaging
Soloperto, Giulia; Casciaro, Sergio
2012-01-01
Cardiovascular diseases are the primary cause of mortality in the industrialized world, and arterial obstruction, triggered by rupture-prone atherosclerotic plaques, lead to myocardial infarction and cerebral stroke. Vulnerable plaques do not necessarily occur with flow-limiting stenosis, thus conventional luminographic assessment of the pathology fails to identify unstable lesions. In this review we discuss the currently available imaging modalities used to investigate morphological features and biological characteristics of the atherosclerotic plaque. The different imaging modalities such as ultrasound, magnetic resonance imaging, computed tomography, nuclear imaging and their intravascular applications are illustrated, highlighting their specific diagnostic potential. Clinically available and upcoming methodologies are also reviewed along with the related challenges in their clinical translation, concerning the specific invasiveness, accuracy and cost-effectiveness of these methods. PMID:22937215
Strengthening the evidence base for health programming in humanitarian crises.
Ager, A; Burnham, G; Checchi, F; Gayer, M; Grais, R F; Henkens, M; Massaquoi, M B F; Nandy, R; Navarro-Colorado, C; Spiegel, P
2014-09-12
Given the growing scale and complexity of responses to humanitarian crises, it is important to develop a stronger evidence base for health interventions in such contexts. Humanitarian crises present unique challenges to rigorous and effective research, but there are substantial opportunities for scientific advance. Studies need to focus where the translation of evidence from noncrisis scenarios is not viable and on ethical ways of determining what happens in the absence of an intervention. Robust methodologies suited to crisis settings have to be developed and used to assess interventions with potential for delivery at scale. Strengthening research capacity in the low- to middle-income countries that are vulnerable to crises is also crucial. Copyright © 2014, American Association for the Advancement of Science.
Das, Iswar; Kumar, Gaurav; Stein, Alfred; Bagchi, Arunabha; Dadhwal, Vinay K
2011-07-01
Little is known about the quantitative vulnerability analysis to landslides as not many attempts have been made to assess it comprehensively. This study assesses the spatio-temporal vulnerability of elements at risk to landslides in a stochastic framework. The study includes buildings, persons inside buildings, and traffic as elements at risk to landslides. Building vulnerability is the expected damage and depends on the position of a building with respect to the landslide hazard at a given time. Population and vehicle vulnerability are the expected death toll in a building and vehicle damage in space and time respectively. The study was carried out in a road corridor in the Indian Himalayas that is highly susceptible to landslides. Results showed that 26% of the buildings fall in the high and very high vulnerability categories. Population vulnerability inside buildings showed a value >0.75 during 0800 to 1000 hours and 1600 to 1800 hours in more buildings that other times of the day. It was also observed in the study region that the vulnerability of vehicle is above 0.6 in half of the road stretches during 0800 hours to 1000 hours and 1600 to 1800 hours due to high traffic density on the road section. From this study, we conclude that the vulnerability of an element at risk to landslide is a space and time event, and can be quantified using stochastic modeling. Therefore, the stochastic vulnerability modeling forms the basis for a quantitative landslide risk analysis and assessment.
BROAD-SCALE ASSESSMENT OF WETLAND VULNERABILITY USING GIS AND LANDSCAPE-ECOLOGICAL METRICS
Landscape-ecological indicators of ecosystem integrity are increasingly being sought for use in habitat suitability assessments, habitat vulnerability assessments, and as a means to set goals for restoration projects. We utilized currently available information from the Arkansas...
Risk assessment for tephra dispersal and sedimentation: the example of four Icelandic volcanoes
NASA Astrophysics Data System (ADS)
Biass, Sebastien; Scaini, Chiara; Bonadonna, Costanza; Smith, Kate; Folch, Arnau; Höskuldsson, Armann; Galderisi, Adriana
2014-05-01
In order to assist the elaboration of proactive measures for the management of future Icelandic volcanic eruptions, we developed a new approach to assess the impact associated with tephra dispersal and sedimentation at various scales and for multiple sources. Target volcanoes are Hekla, Katla, Eyjafjallajökull and Askja, selected for their high probabilities of eruption and/or their high potential impact. We combined stratigraphic studies, probabilistic strategies and numerical modelling to develop comprehensive eruption scenarios and compile hazard maps for local ground deposition and regional atmospheric concentration using both TEPHRA2 and FALL3D models. New algorithms for the identification of comprehensive probability density functions of eruptive source parameters were developed for both short and long-lasting activity scenarios. A vulnerability assessment of socioeconomic and territorial aspects was also performed at both national and continental scales. The identification of relevant vulnerability indicators allowed for the identification of the most critical areas and territorial nodes. At a national scale, the vulnerability of economic activities and the accessibility to critical infrastructures was assessed. At a continental scale, we assessed the vulnerability of the main airline routes and airports. Resulting impact and risk were finally assessed by combining hazard and vulnerability analysis.
Watters, Anna J; Gotlib, Ian H; Harris, Anthony W F; Boyce, Philip M; Williams, Leanne M
2013-09-05
Unaffected relatives (URs) of individuals with major depressive disorder (MDD) are biologically more vulnerable to depression. We compare healthy URs and controls at the level of phenotype (symptoms and functioning) and endophenotype (negative emotion bias), and further investigate the interrelation between these and the contribution of environmental early life stress. URs (n=101), identified using Family History Screen interview methods and matched controls completed written and interview questions assessing symptoms of depression and anxiety, negative cognitive style, life functioning and early life stress. Biases in emotion processing were measured using a facial expression of emotion identification paradigm. Compared to controls, URs reported higher levels of depression and anxiety, a stronger negative cognitive bias, and poorer functioning and lower satisfaction with life. URs were slower to correctly identify fear and sad facial expressions. A slower response time to identify sad faces was correlated with lower quality of life in the social domain. Early life stress (ELS) did not contribute significantly to any outcome. The methodology relies on accurate reporting of participants' own psychiatric history and that of their family members. The degree of vulnerability varies among URs. A family history of depression accounts for subtle differences in symptom levels and functioning without a necessary role of ELS. A negative emotion bias in processing emotion may be one vulnerability marker for MDD. Biological markers may affect functioning measures before symptoms at the level of experience. Copyright © 2013 Elsevier B.V. All rights reserved.
2018-01-01
Climate change has been identified as the primary threat to the integrity and functioning of ecosystems in this century, although there is still much uncertainty about its effects and the degree of vulnerability for different ecosystems to this threat. Here we propose a new methodological approach capable of measuring and mapping the resilience of terrestrial ecosystems at large scales based on their climatic niche. To do this, we used high spatial resolution remote sensing data and ecological niche modeling techniques to calculate and spatialize the resilience of three stable states of ecosystems in South America: forest, savanna, and grassland. Also, we evaluated the sensitivity of ecosystems to climate stress, the likelihood of exposure to non-analogous climatic conditions, and their respective adaptive capacities in the face of climate change. Our results indicate that forests, the most productive and biodiverse terrestrial ecosystems on the earth, are more vulnerable to climate change than savannas or grasslands. Forests showed less resistance to climate stress and a higher chance of exposure to non-analogous climatic conditions. If this scenario occurs, the forest ecosystems would have less chance of adaptation compared to savannas or grasslands because of their narrow climate niche. Therefore, we can conclude that a possible consolidation of non-analogous climatic conditions would lead to a loss of resilience in the forest ecosystem, significantly increasing the chance of a critical transition event to another stable state with a lower density of vegetation cover (e.g., savanna or grassland). PMID:29554132
Integrated Risk Assessment to Natural Hazards in Motozintla, Chiapas, Mexico
NASA Astrophysics Data System (ADS)
Novelo-Casanova, D. A.
2012-12-01
An integrated risk assessment includes the analysis of all components of individual constituents of risk such as baseline study, hazard identification and categorization, hazard exposure, and vulnerability. Vulnerability refers to the inability of people, organizations, and societies to withstand adverse impacts from multiple stressors to which they are exposed. These impacts are due to characteristics inherent in social interactions, institutions, and systems of cultural values. Thus, social vulnerability is a pre-existing condition that affects a society's ability to prepare for and recover from a disruptive event. Risk is the probability of a loss, and this loss depends on three elements: hazard, exposure, and vulnerability. Thus, risk is the estimated impact that a hazard event would have on people, services, facilities, structures and assets in a community. In this work we assess the risk to natural hazards in the community of Motozintla located in southern Mexico in the state of Chiapas (15.37N, 92.25W) with a population of about 20 000 habitants. Due to its geographical and geological location, this community is continuously exposed to many different natural hazards (earthquakes, landslides, volcanic eruptions, and floods). To determine the level of exposure of the community to natural hazards, we developed integrated studies and analysis of seismic microzonation, landslide and flood susceptibility as well as volcanic impact using standard methodologies. Social vulnerability was quantified from data obtained from local families interviews. Five variables were considered: household structure quality and design, availability of basic public services, family economic conditions, existing family plans for disaster preparedness, and risk perception.The number of families surveyed was determined considering a sample statistically significant. The families that were interviewed were selected using the simple random sampling technique with replacement. With these procedure, each household was chosen randomly and entirely by chance with the same probability of being chosen at any stage during the sampling process. To facilitate our interpretation, all results were spatially analyzed using a Geographical Information System (GIS). Our results indicate that the community of Motozintla is higly exposed to floods, landslides and earthquakes and to a lesser extent to the impact of a volcanic eruption. The locality has a high level of structural vulnerability to the main identified hazards (floods and landslides). About 70% of the families has a daily income below 11 USD. Approximately 66% of the population does not know any existing Civil Protection Plan. Another major observation is that the community organization for disaster prevention is practically nonexistent. These natural and social conditions indicate that the community of Motozintla has a very high level of risk to natural hazards. This research will support decision makers in Mexico, and particularly from the sate of Chiapas, in the development of an integrated comprenhensive natural hazards mitigation and prevention program in this region.
Network Vulnerability Assessment of the U.S. Crude Pipeline Infrastructure
2012-09-01
56 Clanton, “Oklahoma Oil Hub Helps Keep Oil Prices from Going Higher.” 57 Donald Furgeson, John Mahoney , and Brett Warfield...Vulnerability Assessment Matrix of the COTH.58 58 Furgeson, Mahoney , and Warfield, Security...Steinhäusler et al., “Security Risks to the Oil and Gas Industry: Terrorist Capabilities.” 71 Furgeson, Mahoney , and Warfield, Security Vulnerability
Tsunami risk zoning in south-central Chile
NASA Astrophysics Data System (ADS)
Lagos, M.
2010-12-01
The recent 2010 Chilean tsunami revealed the need to optimize methodologies for assessing the risk of disaster. In this context, modern techniques and criteria for the evaluation of the tsunami phenomenon were applied in the coastal zone of south-central Chile as a specific methodology for the zoning of tsunami risk. This methodology allows the identification and validation of a scenario of tsunami hazard; the spatialization of factors that have an impact on the risk; and the zoning of the tsunami risk. For the hazard evaluation, different scenarios were modeled by means of numerical simulation techniques, selecting and validating the results that better fit with the observed tsunami data. Hydrodynamic parameters of the inundation as well as physical and socioeconomic vulnerability aspects were considered for the spatialization of the factors that affect the tsunami risk. The tsunami risk zoning was integrated into a Geographic Information System (GIS) by means of multicriteria evaluation (MCE). The results of the tsunami risk zoning show that the local characteristics and their location, together with the concentration of poverty levels, establish spatial differentiated risk levels. This information builds the basis for future applied studies in land use planning that tend to minimize the risk levels associated to the tsunami hazard. This research is supported by Fondecyt 11090210.
Climate Change Impacts and Vulnerability Assessment in Industrial Complexes
NASA Astrophysics Data System (ADS)
Lee, H. J.; Lee, D. K.
2016-12-01
Climate change has recently caused frequent natural disasters, such as floods, droughts, and heat waves. Such disasters have also increased industrial damages. We must establish climate change adaptation policies to reduce the industrial damages. It is important to make accurate vulnerability assessment to establish climate change adaptation policies. Thus, this study aims at establishing a new index to assess vulnerability level in industrial complexes. Most vulnerability indices have been developed with subjective approaches, such as the Delphi survey and the Analytic Hierarchy Process(AHP). The subjective approaches rely on the knowledge of a few experts, which provokes the lack of the reliability of the indices. To alleviate the problem, we have designed a vulnerability index incorporating objective approaches. We have investigated 42 industrial complex sites in Republic of Korea (ROK). To calculate weights of variables, we used entropy method as an objective method integrating the Delphi survey as a subjective method. Finally, we found our method integrating both subjective method and objective method could generate result. The integration of the entropy method enables us to assess the vulnerability objectively. Our method will be useful to establish climate change adaptation policies by reducing the uncertainties of the methods based on the subjective approaches.