Developing the European Center of Competence on VVER-type nuclear power reactors
NASA Astrophysics Data System (ADS)
Geraskin, Nikolay; Pironkov, Lyubomir; Kulikov, Evgeny; Glebov, Vasily
2017-09-01
This paper presents the results of the European educational projects CORONA and CORONA-II which are dedicated to preserving and further developing nuclear knowledge and competencies in the area of VVER-type nuclear power reactors technologies (Water-Water Energetic Reactor, WWER or VVER). The development of the European Center of Competence for VVER-technology is focused on master's degree programmes. The specifics of a systematic approach to training in the area of VVER-type nuclear power reactors technologies are analysed. This paper discusses enhancement of the training opportunities of the European Center that have arisen from advances in methodology and distance education. With a special attention paid to the European Nuclear Education Network (ENEN), the possibilities of further development of the international cooperation between European countries and educational institutions are examined.
Developing the European Center of Competence on VVER-Type Nuclear Power Reactors
ERIC Educational Resources Information Center
Geraskin, Nikolay; Pironkov, Lyubomir; Kulikov, Evgeny; Glebov, Vasily
2017-01-01
This paper presents the results of the European educational projects CORONA and CORONA-II which are dedicated to preserving and further developing nuclear knowledge and competencies in the area of VVER-type nuclear power reactors technologies (Water-Water Energetic Reactor, WWER or VVER). The development of the European Center of Competence for…
MEASUREMENTS OF THE CONFINEMENT LEAKTIGHTNESS AT THE KOLA NUCLEAR POWER STATION (UNIT 2) IN RUSSIA
DOE Office of Scientific and Technical Information (OSTI.GOV)
GREENE,G.A.; GUPPY,J.G.
1998-08-01
This is the final report on the INSP project entitled, ``Kola Confinement Leaktightness'' conducted by BNL under the authorization of Project Work Plan WBS 1.2.2.1. This project was initiated in February 1993 to assist the Russians to reduce risks associated with the continued operation of older Soviet-designed nuclear power plants, specifically the Kola VVER-440/230 Units 1 and 2, through upgrades in the confinement performance to reduce the uncontrolled leakage rate. The major technical objective of this-project was to improve the leaktightness of the Kola NPP VVER confinement boundaries, through the application of a variety of sealants to penetrations, doors andmore » hatches, seams and surfaces, to the extent that current technology permitted. A related objective was the transfer, through training of Russian staff, of the materials application procedures to the staff of the Kola NPP. This project was part of an overall approach to minimizing uncontrolled releases from the Kola NPP VVER440/230s in the event of a serious accident, and to thereby significantly mitigate the consequences of such an accident. The US provided materials, application technology, and applications equipment for application of sealant materials, surface coatings, potting materials and gaskets, to improve the confinement leaktightness of the Kola VVER-440/23Os. The US provided for training of Russian personnel in the applications technology.« less
Multiple recycle of REMIX fuel at VVER-1000 operation in closed fuel cycle
NASA Astrophysics Data System (ADS)
Alekseev, P. N.; Bobrov, E. A.; Chibinyaev, A. V.; Teplov, P. S.; Dudnikov, A. A.
2015-12-01
The basic features of loading the VVER-1000 core with a new variant of REMIX fuel (REgenerated MIXture of U-Pu oxides) are considered during its multiple recycle in a closed nuclear fuel cycle. The fuel composition is produced on the basis of the uranium-plutonium regenerate extracted at processing the spent nuclear fuel (SNF) from a VVER-1000, depleted uranium, and the fissionable material: 235U as a part of highly enriched uranium (HEU) from warheads superfluous for defense purposes or 233U accumulated in thorium blankets of fusion (electronuclear) neutron sources or fast reactors. Production of such a fuel assumes no use of natural uranium in addition. When converting a part of the VVER-1000 reactors to the closed fuel cycle based on the REMIX technology, the consumption of natural uranium decreases considerably, and there is no substantial degradation of the isotopic composition of plutonium or change in the reactor-safety characteristics at the passage from recycle to recycle.
Multiple recycle of REMIX fuel at VVER-1000 operation in closed fuel cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alekseev, P. N.; Bobrov, E. A., E-mail: evgeniybobrov89@rambler.ru; Chibinyaev, A. V.
2015-12-15
The basic features of loading the VVER-1000 core with a new variant of REMIX fuel (REgenerated MIXture of U–Pu oxides) are considered during its multiple recycle in a closed nuclear fuel cycle. The fuel composition is produced on the basis of the uranium–plutonium regenerate extracted at processing the spent nuclear fuel (SNF) from a VVER-1000, depleted uranium, and the fissionable material: {sup 235}U as a part of highly enriched uranium (HEU) from warheads superfluous for defense purposes or {sup 233}U accumulated in thorium blankets of fusion (electronuclear) neutron sources or fast reactors. Production of such a fuel assumes no usemore » of natural uranium in addition. When converting a part of the VVER-1000 reactors to the closed fuel cycle based on the REMIX technology, the consumption of natural uranium decreases considerably, and there is no substantial degradation of the isotopic composition of plutonium or change in the reactor-safety characteristics at the passage from recycle to recycle.« less
NASA Astrophysics Data System (ADS)
Arkadov, G. V.; Zhukavin, A. P.; Kroshilin, A. E.; Parshikov, I. A.; Solov'ev, S. L.; Shishov, A. V.
2014-10-01
The article describes the "Virtual Digital VVER-Based Nuclear Power Plant" computerized system comprising a totality of verified initial data (sets of input data for a model intended for describing the behavior of nuclear power plant (NPP) systems in design and emergency modes of their operation) and a unified system of new-generation computation codes intended for carrying out coordinated computation of the variety of physical processes in the reactor core and NPP equipment. Experiments with the demonstration version of the "Virtual Digital VVER-Based NPP" computerized system has shown that it is in principle possible to set up a unified system of computation codes in a common software environment for carrying out interconnected calculations of various physical phenomena at NPPs constructed according to the standard AES-2006 project. With the full-scale version of the "Virtual Digital VVER-Based NPP" computerized system put in operation, the concerned engineering, design, construction, and operating organizations will have access to all necessary information relating to the NPP power unit project throughout its entire lifecycle. The domestically developed commercial-grade software product set to operate as an independently operating application to the project will bring about additional competitive advantages in the modern market of nuclear power technologies.
NASA Astrophysics Data System (ADS)
Shchelik, S. V.; Pavlov, A. S.
2013-07-01
Results of work on restoring the service properties of filtering material used in the high-temperature reactor coolant purification system of a VVER-1000 reactor are presented. A quantitative assessment is given to the effect from subjecting a high-temperature sorbent to backwashing operations carried out with the use of regular capacities available in the design process circuit in the first years of operation of Unit 3 at the Kalinin nuclear power plant. Approaches to optimizing this process are suggested. A conceptual idea about comprehensively solving the problem of achieving more efficient and safe operation of the high-temperature active water treatment system (AWT-1) on a nuclear power industry-wide scale is outlined.
VVER Reactor Safety in Eastern Europe and Former Soviet Union
NASA Astrophysics Data System (ADS)
Papadopoulou, Demetra
2012-02-01
VVER Soviet-designed reactors that operate in Eastern Europe and former Soviet republics have heightened international concern for years due to major safety deficiencies. The governments of countries with VVER reactors have invested millions of dollars toward improving the safety of their nuclear power plants. Most of these reactors will continue to operate for the foreseeable future since they provide urgently-needed electrical power. Given this situation, this paper assesses the radiological consequences of a major nuclear accident in Eastern Europe. The paper also chronicles the efforts launched by the international nuclear community to improve the safety of the reactors and notes the progress made so far through extensive collaborative efforts in Armenia, Bulgaria, the Czech Republic, Hungary, Kazakhstan, Lithuania, Russia, Slovakia, and Ukraine to reduce the risks of nuclear accidents. Western scientific and technical staff collaborated with these countries to improve the safety of their reactor operations by strengthening the ability of the regulator to perform its oversight function, installing safety equipment and technologies, investing time in safety training, and working diligently to establish an enduring safety culture. Still, continued safety improvement efforts are necessary to ensure safe operating practices and achieve timely phase-out of older plants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savander, V. I.; Shumskiy, B. E., E-mail: borisshumskij@yandex.ru; Pinegin, A. A.
The possibility of decreasing the vapor fraction at the VVER-1200 fuel assembly outlet by shaping the axial power density field is considered. The power density field was shaped by axial redistribution of the concentration of the burnable gadolinium poison in the Gd-containing fuel rods. The mathematical modeling of the VVER-1200 core was performed using the NOSTRA computer code.
Modernization of existing VVER-1000 surveillance programs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kochkin, V.; Erak, D.; Makhotin, D.
2011-07-01
According to generally accepted world practice, evaluation of the reactor pressure vessel (RPV) material behavior during operation is carried out using tests of surveillance specimens. The main objective of the surveillance program consists in insurance of safe RPV operation during the design lifetime and lifetime-extension period. At present, the approaches of pressure vessels residual life validation based on the test results of their surveillance specimens have been developed and introduced in Russia and are under consideration in other countries where vodo-vodyanoi energetichesky reactors- (VVER-) 1000 are in operation. In this case, it is necessary to ensure leading irradiation of surveillancemore » specimens (as compared to the pressure vessel wall) and to provide uniformly irradiated specimen groups for mechanical testing. Standard surveillance program of VVER-1000 has several significant shortcomings and does not meet these requirements. Taking into account program of lifetime extension of VVER-1000 operating in Russia, it is necessary to carry out upgrading of the VVER-1000 surveillance program. This paper studies the conditions of a surveillance specimen's irradiation and upgrading of existing sets to provide monitoring and prognosis of RPV material properties for extension of the reactor's lifetime up to 60 years or more. (authors)« less
PRIZMA predictions of in-core detection indications in the VVER-1000 reactor
NASA Astrophysics Data System (ADS)
Kandiev, Yadgar Z.; Kashayeva, Elena A.; Malyshin, Gennady N.; Modestov, Dmitry G.; Khatuntsev, Kirill E.
2014-06-01
The paper describes calculations which were done by the PRIZMA code(1) to predict indications of in-core rhodium detectors in the VVER-1000 reactor for some core fragments with allowance for fuel and rhodium burnout.
Development of data base with mechanical properties of un- and pre-irradiated VVER cladding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asmolov, V.; Yegorova, L.; Kaplar, E.
1998-03-01
Analysis of recent RIA test with PWR and VVER high burnup fuel, performed at CABRI, NSRR, IGR reactors has shown that the data base with mechanical properties of the preirradiated cladding is necessary to interpret the obtained results. During 1997 the corresponding cycle of investigations for VVER clad material was performed by specialists of NSI RRC KI and RIAR in cooperation with NRC (USA), IPSN (France) in two directions: measurements of mechanical properties of Zr-1%Nb preirradiated cladding versus temperature and strain rate; measurements of failure parameters for gas pressurized cladding tubes. Preliminary results of these investigations are presented in thismore » paper.« less
NASA Astrophysics Data System (ADS)
Tyapkov, V. F.
2014-07-01
The secondary coolant circuit water chemistry with metering amines began to be put in use in Russia in 2005, and all nuclear power plant units equipped with VVER-1000 reactors have been shifted to operate with this water chemistry for the past seven years. Owing to the use of water chemistry with metering amines, the amount of products from corrosion of structural materials entering into the volume of steam generators has been reduced, and the flow-accelerated corrosion rate of pipelines and equipment has been slowed down. The article presents data on conducting water chemistry in nuclear power plant units with VVER-1000 reactors for the secondary coolant system equipment made without using copper-containing alloys. Statistical data are presented on conducting ammonia-morpholine and ammonia-ethanolamine water chemistries in new-generation operating power units with VVER-1000 reactors with an increased level of pH. The values of cooling water leaks in turbine condensers the tube system of which is made of stainless steel or titanium alloy are given.
Three-dimensional pin-to-pin analyses of VVER-440 cores by the MOBY-DICK code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lehmann, M.; Mikolas, P.
1994-12-31
Nuclear design for the Dukovany (EDU) VVER-440s nuclear power plant is routinely performed by the MOBY-DICK system. After its implementation on Hewlett Packard series 700 workstations, it is able to perform routinely three-dimensional pin-to-pin core analyses. For purposes of code validation, the benchmark prepared from EDU operational data was solved.
Engineering Margin Factors Used in the Design of the VVER Fuel Cycles
NASA Astrophysics Data System (ADS)
Lizorkin, M. P.; Shishkov, L. K.
2017-12-01
The article describes methods for determination of the engineering margin factors currently used to estimate the uncertainties of the VVER reactor design parameters calculated via the KASKAD software package developed at the National Research Center Kurchatov Institute. These margin factors ensure the meeting of the operating (design) limits and a number of other restrictions under normal operating conditions.
Issues of intergranular embrittlement of VVER-type nuclear reactors pressure vessel materials
NASA Astrophysics Data System (ADS)
Zabusov, O.
2016-04-01
In light of worldwide tendency to extension of service life of operating nuclear power plants - VVER-type in the first place - recently a special attention is concentrated on phenomena taking place in reactor pressure vessel materials that are able to lead to increased level of mechanical characteristics degradation (resistibility to brittle fracture) during long term of operation. Formerly the hardening mechanism of degradation (increase in the yield strength under influence of irradiation) mainly had been taken into consideration to assess pressure vessel service life limitations, but when extending the service life up to 60 years and more the non-hardening mechanism (intergranular embrittlement of the steels) must be taken into account as well. In this connection NRC “Kurchatov Institute” has initiated a number of works on investigations of this mechanism contribution to the total embrittlement of reactor pressure vessel steels. The main results of these investigations are described in this article. Results of grain boundary phosphorus concentration measurements in specimens made of first generation of VVER-type pressure vessels materials as well as VVER-1000 surveillance specimens are presented. An assessment of non-hardening mechanism contribution to the total ductile-to- brittle transition temperature shift is given.
NASA Astrophysics Data System (ADS)
Kuleshova, E. A.; Gurovich, B. A.; Maltsev, D. A.; Frolov, A. S.; Bukina, Z. V.; Fedotova, S. V.; Saltykov, M. A.; Krikun, E. V.; Erak, D. Yu; Zhurko, D. A.; Safonov, D. V.; Zhuchkov, G. M.
2018-04-01
This study was carried out to evaluate the possibility of 1st generation VVER-440 reactors lifetime extension by recovery re-annealing with the respect to base metal (BM). Comprehensive studies of the structure and properties of BM templates (samples cut from the inner surface of the shells in beltline region) of operating VVER-440 reactor (after primary standard recovery annealing 475 °C/150 h and subsequent long-term re-irradiation within reactor pressure vessel (RPV)) were conducted. These templates were also subjected to laboratory re-annealing 475 °C/150 h. TEM, SEM and APT studies of BM after laboratory re-annealing revealed significant recovery of radiation-induced hardening elements (Cu-rich precipitates and dislocation loops). Simultaneously a process of strong phosphorus accumulation at grain boundaries occurs since annealing temperature corresponds to the maximum reversible temper brittleness development. The latter is not observed for VVER-440 weld metal (WM). Comparative assessment of the properties return level for the beltline BM templates after recovery re-annealing 475 °C/150 h showed that it does not reach the one typical for beltline WM after the same annealing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samohyl, P.
The application of the LBB requires also fatigue flaw growth assessment. This analysis was performed for PWR nuclear power plants types VVER 440/230, VVER 440/213c, VVER 1000/320. Respecting that these NPP`s were designed according to Russian codes that differ from US codes it was needed to compare these approaches. Comparison with our experimental data was accomplished, too. Margins of applicability of the US methods and their modifications for the materials used for construction of Czech and Slovak NPP`s are shown. Computer code accomplishing the analysis according to described method is presented. Some measurement and calculations show that thermal stratifications inmore » horizontal pipelines can lead to additive loads that are not negligible and can be dangerous. An attempt to include these loads induced by steady-state stratification was made.« less
Preparation macroconstants to simulate the core of VVER-1000 reactor
NASA Astrophysics Data System (ADS)
Seleznev, V. Y.
2017-01-01
Dynamic model is used in simulators of VVER-1000 reactor for training of operating staff and students. As a code for the simulation of neutron-physical characteristics is used DYNCO code that allows you to perform calculations of stationary, transient and emergency processes in real time to a different geometry of the reactor lattices [1]. To perform calculations using this code, you need to prepare macroconstants for each FA. One way of getting macroconstants is to use the WIMS code, which is based on the use of its own 69-group macroconstants library. This paper presents the results of calculations of FA obtained by the WIMS code for VVER-1000 reactor with different parameters of fuel and coolant, as well as the method of selection of energy groups for further calculation macroconstants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carbajo, J.J.
2005-05-27
The purpose of this report is to quantify the differences between mixed oxide (MOX) and low-enriched uranium (LEU) fuels and to assess in reasonable detail the potential impacts of MOX fuel use in VVER-1000 nuclear power plants in Russia. This report is a generic tool to assist in the identification of plant modifications that may be required to accommodate receiving, storing, handling, irradiating, and disposing of MOX fuel in VVER-1000 reactors. The report is based on information from work performed by Russian and U.S. institutions. The report quantifies each issue, and the differences between LEU and MOX fuels are describedmore » as accurately as possible, given the current sources of data.« less
Transmutation of actinides in power reactors.
Bergelson, B R; Gerasimov, A S; Tikhomirov, G V
2005-01-01
Power reactors can be used for partial short-term transmutation of radwaste. This transmutation is beneficial in terms of subsequent storage conditions for spent fuel in long-term storage facilities. CANDU-type reactors can transmute the main minor actinides from two or three reactors of the VVER-1000 type. A VVER-1000-type reactor can operate in a self-service mode with transmutation of its own actinides.
NASA Astrophysics Data System (ADS)
Tomarov, G. V.; Povarov, V. P.; Shipkov, A. A.; Gromov, A. F.; Kiselev, A. N.; Shepelev, S. V.; Galanin, A. V.
2015-02-01
Specific features relating to development of the information-analytical system on the problem of flow-accelerated corrosion of pipeline elements in the secondary coolant circuit of the VVER-440-based power units at the Novovoronezh nuclear power plant are considered. The results from a statistical analysis of data on the quantity, location, and operating conditions of the elements and preinserted segments of pipelines used in the condensate-feedwater and wet steam paths are presented. The principles of preparing and using the information-analytical system for determining the lifetime to reaching inadmissible wall thinning in elements of pipelines used in the secondary coolant circuit of the VVER-440-based power units at the Novovoronezh NPP are considered.
The in-depth safety assessment (ISA) pilot projects in Ukraine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kot, C. A.
1998-02-10
Ukraine operates pressurized water reactors of the Soviet-designed type, VVER. All Ukrainian plants are currently operating with annually renewable permits until they update their safety analysis reports (SARs). After approval of the SARS by the Ukrainian Nuclear Regulatory Authority, the plants will be granted longer-term operating licenses. In September 1995, the Nuclear Regulatory Authority and the Government Nuclear Power Coordinating Committee of Ukraine issued a new contents requirement for the safety analysis reports of VVERs in Ukraine. It contains requirements in three major areas: design basis accident (DBA) analysis, probabilistic risk assessment (PRA), and beyond design-basis accident (BDBA) analysis. Themore » DBA requirements are an expanded version of the older SAR requirements. The last two requirements, on PRA and BDBA, are new. The US Department of Energy (USDOE), through the International Nuclear Safety Program (INSP), has initiated an assistance and technology transfer program to Ukraine to assist their nuclear power stations in developing a Western-type technical basis for the new SARS. USDOE sponsored In-Depth Safety Assessments (ISAs) have been initiated at three pilot nuclear reactor units in Ukraine, South Ukraine Unit 1, Zaporizhzhya Unit 5, and Rivne Unit 1. USDOE/INSP have structured the ISA program in such a way as to provide maximum assistance and technology transfer to Ukraine while encouraging and supporting the Ukrainian plants to take the responsibility and initiative and to perform the required assessments.« less
Radiotoxicity and decay heat power of spent nuclear fuel of VVER type reactors at long-term storage.
Bergelson, B R; Gerasimov, A S; Tikhomirov, G V
2005-01-01
Radiotoxicity and decay heat power of the spent nuclear fuel of VVER-1000 type reactors are calculated during storage time up to 300,000 y. Decay heat power of radioactive waste (radwaste) determines parameters of the heat removal system for the safe storage of spent nuclear fuel. Radiotoxicity determines the radiological hazard of radwaste after its leakage and penetration into the environment.
Methodological studies on the VVER-440 control assembly calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hordosy, G.; Kereszturi, A.; Maraczy, C.
1995-12-31
The control assembly regions of VVER-440 reactors are represented by 2-group albedo matrices in the global calculations of the KARATE code system. Some methodological aspects of calculating albedo matrices with the COLA transport code are presented. Illustrations are given how these matrices depend on the relevant parameters describing the boron steel and steel regions of the control assemblies. The calculation of the response matrix for a node consisting of two parts filled with different materials is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kryanev, A. V.; Udumyan, D. K.; Kurchenkov, A. Yu., E-mail: s327@vver.kiae.ru
2014-12-15
Problems associated with determining the power distribution in the VVER-440 core on the basis of a neutron-physics calculation and data from in-core monitors are considered. A new mathematical scheme is proposed for this on the basis of a metric analysis. In relation to the existing mathematical schemes, the scheme in question improves the accuracy and reliability of the resulting power distribution.
Embrittlement of low copper VVER 440 surveillance samples neutron-irradiated to high fluences
NASA Astrophysics Data System (ADS)
Miller, M. K.; Russell, K. F.; Kocik, J.; Keilova, E.
2000-11-01
An atom probe tomography microstructural characterization of low copper (0.06 at.% Cu) surveillance samples from a VVER 440 reactor has revealed manganese and silicon segregation to dislocations and other ultrafine features in neutron-irradiated base and weld materials (fluences 1×10 25 m-2 and 5×10 24 m-2, E>0.5 MeV, respectively). The results indicate that there is an additional mechanism of embrittlement during neutron irradiation that manifests itself at high fluences.
CFD Analysis of Coolant Flow in VVER-440 Fuel Assemblies with the Code ANSYS CFX 10.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toth, Sandor; Legradi, Gabor; Aszodi, Attila
2006-07-01
From the aspect of planning the power upgrading of nuclear reactors - including the VVER-440 type reactor - it is essential to get to know the flow field in the fuel assembly. For this purpose we have developed models of the fuel assembly of the VVER-440 reactor using the ANSYS CFX 10.0 CFD code. At first a 240 mm long part of a 60 degrees segment of the fuel pin bundle was modelled. Implementing this model a sensitivity study on the appropriate meshing was performed. Based on the development of the above described model, further models were developed: a 960more » mm long part of a 60-degree-segment and a full length part (2420 mm) of the fuel pin bundle segment. The calculations were run using constant coolant properties and several turbulence models. The impacts of choosing different turbulence models were investigated. The results of the above-mentioned investigations are presented in this paper. (authors)« less
Isothermal and thermal-mechanical fatigue of VVER-440 reactor pressure vessel steels
NASA Astrophysics Data System (ADS)
Fekete, Balazs; Trampus, Peter
2015-09-01
The fatigue life of the structural materials 15Ch2MFA (CrMoV-alloyed ferritic steel) and 08Ch18N10T (CrNi-alloyed austenitic steel) of VVER-440 reactor pressure vessel under completely reserved total strain controlled low cycle fatigue tests were investigated. An advanced test facility was developed for GLEEBLE-3800 physical simulator which was able to perform thermomechanical fatigue experiments under in-service conditions of VVER nuclear reactors. The low cycle fatigue results were evaluated with the plastic strain based Coffin-Manson law, and plastic strain energy based model as well. It was shown that both methods are able to predict the fatigue life of reactor pressure vessel steels accurately. Interrupted fatigue tests were also carried out to investigate the kinetic of the fatigue evolution of the materials. On these samples microstructural evaluation by TEM was performed. The investigated low cycle fatigue behavior can provide reference for remaining life assessment and lifetime extension analysis.
ISP33 standard problem on the PACTEL facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Purhonen, H.; Kouhia, J.; Kalli, H.
ISP33 is the first OECD/NEA/CSNI standard problem related to VVER type of pressurized water reactors. The reference reactor of the PACTEL test facility, which was used to carry out the ISP33 experiment, is the VVER-440 reactor, two of which are located near the Finnish city of Loviisa. The objective of the ISP33 test was to study the natural circulation behaviour of VVER-440 reactors at different coolant inventories. Natural circulation was considered as a suitable phenomenon to focus on by the first VVER related ISP due to its importance in most accidents and transients. The behaviour of the natural circulation wasmore » expected to be different compared to Western type of PWRs as a result of the effect of horizontal steam generators and the hot leg loop seals. This ISP was conducted as a blind problem. The experiment was started at full coolant inventory. Single-phase natural circulation transported the energy from the core to the steam generators. The inventory was then reduced stepwise at about 900 s intervals draining 60 kg each time from the bottom of the downcomer. the core power was about 3.7% of the nominal value. The test was terminated after the cladding temperatures began to rise. ATHLET, CATHARE, RELAP5 (MODs 3, 2.5 and 2), RELAP4/MOD6, DINAMIKA and TECH-M4 codes were used in 21 pre- and 20 posttest calculations submitted for the ISP33.« less
VVER-440 and VVER-1000 reactor dosimetry benchmark - BUGLE-96 versus ALPAN VII.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duo, J. I.
2011-07-01
Document available in abstract form only, full text of document follows: Analytical results of the vodo-vodyanoi energetichesky reactor-(VVER-) 440 and VVER-1000 reactor dosimetry benchmarks developed from engineering mockups at the Nuclear Research Inst. Rez LR-0 reactor are discussed. These benchmarks provide accurate determination of radiation field parameters in the vicinity and over the thickness of the reactor pressure vessel. Measurements are compared to calculated results with two sets of tools: TORT discrete ordinates code and BUGLE-96 cross-section library versus the newly Westinghouse-developed RAPTOR-M3G and ALPAN VII.0. The parallel code RAPTOR-M3G enables detailed neutron distributions in energy and space in reducedmore » computational time. ALPAN VII.0 cross-section library is based on ENDF/B-VII.0 and is designed for reactor dosimetry applications. It uses a unique broad group structure to enhance resolution in thermal-neutron-energy range compared to other analogous libraries. The comparison of fast neutron (E > 0.5 MeV) results shows good agreement (within 10%) between BUGLE-96 and ALPAN VII.O libraries. Furthermore, the results compare well with analogous results of participants of the REDOS program (2005). Finally, the analytical results for fast neutrons agree within 15% with the measurements, for most locations in all three mockups. In general, however, the analytical results underestimate the attenuation through the reactor pressure vessel thickness compared to the measurements. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryukhin, V. V., E-mail: bryuhin@yandex.ru; Kurakin, K. Yu.; Uvakin, M. A.
The article covers the uncertainty analysis of the physical calculations of the VVER reactor core for different meshes of the reference values of the feedback parameters (FBP). Various numbers of nodes of the parametric axes of FBPs and different ranges between them are investigated. The uncertainties of the dynamic calculations are analyzed using RTS RCCA ejection as an example within the framework of the model with the boundary conditions at the core inlet and outlet.
3D neutronic codes coupled with thermal-hydraulic system codes for PWR, and BWR and VVER reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langenbuch, S.; Velkov, K.; Lizorkin, M.
1997-07-01
This paper describes the objectives of code development for coupling 3D neutronics codes with thermal-hydraulic system codes. The present status of coupling ATHLET with three 3D neutronics codes for VVER- and LWR-reactors is presented. After describing the basic features of the 3D neutronic codes BIPR-8 from Kurchatov-Institute, DYN3D from Research Center Rossendorf and QUABOX/CUBBOX from GRS, first applications of coupled codes for different transient and accident scenarios are presented. The need of further investigations is discussed.
The prospect of nuclear energy in Türkiye especially after Fukushima accident
NASA Astrophysics Data System (ADS)
Şahin, Sümer
2014-09-01
Türkiye considers since mid-50's to use nuclear electricity, but Government and bureaucracy have continuously postponed reactor construction. However, since 2010 the case has gained a real shape. Official agreement has been signed for the construction of 4 units of Russian VVER type reactors with installed power of 4×1200 MWel. It is expected that they will begin to deliver electricity early 20's. Further negotiations are being conducted with Japanese Mitsubashi and French AREVA. The target is to have nuclear electricity by 2023 at the 100th anniversary of Turkish Republic. Turkish Nuclear Energy Strategy aims; • Decrease country's dependency on foreign suppliers of energy sources • Provide fuel supply mix diversification • Utilization of environmentally friendly energy production technologies Possess advanced and prestigious power generation technologies.
Study of PRIMAVERA steel samples by a positron annihilation spectroscopy technique
NASA Astrophysics Data System (ADS)
Grafutin, V.; Ilyukhina, O.; Krsjak, V.; Burcl, R.; Hähner, P.; Erak, D.; Zeman, A.
2010-11-01
In the present article, a positron annihilation spectroscopy investigation of VVER-440/230 weld materials is discussed. Important characteristics of metals such as Fermi energy, concentration of electrons in the conduction band, size and concentration of defects were experimentally determined for three model materials with higher level of copper (0.16 wt.%) and phosphorus (0.027-0.038 wt.%). The impact of neutron irradiation and subsequent annealing on crystal lattice parameters was investigated. The experiments with the angular correlation of positron annihilation radiation (ACAR) complement the published positron annihilation spectroscopy (PAS) studies of the radiation treated VVER materials as well as previous experiments on PRIMAVERA materials. The availability of the experimental reactor to prepare strong 64Cu positron sources provided for unique experimental conditions, such as good resolution of spectra (0.4 mrad) and reasonable short time of measurement (36 h). The present paper aims to contribute to further understanding of RPV (reactor pressure vessel) steels behaviour under irradiation conditions as well as annealing recovery procedures, which have already been applied at several VVER NPP units in Europe.
NASA Astrophysics Data System (ADS)
Gavrilov, A. V.; Kritskii, V. G.; Rodionov, Yu. A.; Berezina, I. G.
2013-07-01
Certain features of the effect of boric acid in the reactor coolant of nuclear power installations equipped with a VVER-440 reactor on mass transfer in the reactor core are considered. It is determined that formation of boric acid polyborate complexes begins under field conditions at a temperature of 300°C when the boric acid concentration is equal to around 0.065 mol/L (4 g/L). Operations for decontaminating the reactor coolant system entail a growth of corrosion product concentration in the coolant, which gives rise to formation of iron borates in the zones where subcooled boiling of coolant takes place and to the effect of axial offset anomalies. A model for simulating variation of pressure drop in a VVER-440 reactor's core that has invariable parameters during the entire fuel campaign is developed by additionally taking into account the concentrations of boric acid polyborate complexes and the quantity of corrosion products (Fe, Ni) represented by the ratio of their solubilities.
Simulation of hydrostatic water level measuring system for pressure vessels with the ATHLET-code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hampel, R.; Vandreier, B.; Kaestner, W.
1996-11-01
The static and dynamic behavior of measuring systems determine the value indicated by the measuring systems in relation to the true operating conditions. This paper demonstrates the necessity to involve the behavior of measuring systems in accident analysis with the thermohydraulic code ATHLET (developed by GRS Germany) by the example of hydrostatic water level measurement for horizontal steam generators on NPP (VVER). The modelling of a comparison vessel for the level measuring system with high sensitivity and a limited range of measurement (narrow-range level measuring system) by using ATHLET components and the checking of the function of the module weremore » realized. A good correspondence (maximal deviation 3%) between the measured and calculated narrow-range water level by the module was obtained for a realized post calculation of a measured operational transient in a NPP (VVER). The research carried out was sponsored by the Federal Ministry for Research and Technology within the projects {open_quotes}Basic research of process and system behaviour of NPP, control technique for accident management{close_quotes} (Project number 150 0855/7) and the project RS 978. The research work appertains to the theoretic and experimental work of institute {open_quotes}Institut fuer ProzeBtechnik, ProzeBautomatisierung und MeBtechnik (IPM){close_quotes} for accident analysis and accident management.« less
Calculation with MCNP of capture photon flux in VVER-1000 experimental reactor.
Töre, Candan; Ortego, Pedro
2005-01-01
The aim of this study is to obtain by Monte Carlo method the high energy photon flux due to neutron capture in the internals and vessel layers of the experimental reactor LR-0 located in REZ, Czech Republic, and loaded with VVER-1000 fuel. The calclated neutron, photon and photon to neutron flux ratio are compared with experimental measurements performed with a multi-parameter stilbene detector. The results show clear underestimation of photon flux in downcomer and some overestimation at vessel surface and 1/4 thickness but a good fitting for deeper points in vessel.
NASA Astrophysics Data System (ADS)
Ivanov, Yu. A.
2007-12-01
An analytical review is given of Russian and foreign measurement instruments employed in a system for automatically monitoring the water chemistry of the reactor coolant circuit and used in the development of projects of nuclear power stations equipped with VVER-1000 reactors and the nuclear station project AES 2006. The results of experience gained from the use of such measurement instruments at nuclear power stations operating in Russia and abroad are presented.
Safety system augmentation at Russian nuclear power plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scerbo, J.A.; Satpute, S.N.; Donkin, J.Y.
1996-12-31
This paper describes the design and procurement of a Class IE DC power supply system to upgrade plant safety at the Kola Nuclear Power Plant (NPP). Kola NPP is located above the Arctic circle at Polyarnie Zorie, Murmansk, Russia. Kola NPP consists of four units. Units 1 and 2 have VVER-440/230 type reactors: Units 3 and 4 have VVER-440/213 type reactors. The VVER-440 reactor design is similar to the pressurized water reactor design used in the US. This project provided redundant, Class 1E DC station batteries and DC switchboards for Kola NPP, Units 1 and 2. The new DC powermore » supply system was designed and procured in compliance with current nuclear design practices and requirements. Technical issues that needed to be addressed included reconciling the requirements in both US and Russian codes and satisfying the requirements of the Russian nuclear regulatory authority. Close interface with ATOMENERGOPROEKT (AEP), the Russian design organization, KOLA NPP plant personnel, and GOSATOMNADZOR (GAN), the Russian version of US Nuclear Regulatory Commission, was necessary to develop a design that would assure compliance with current Russian design requirements. Hence, this project was expected to serve as an example for plant upgrades at other similar VVER-440 nuclear plants. In addition to technical issues, the project needed to address language barriers and the logistics of shipping equipment to a remote section of the Former Soviet Union (FSU). This project was executed by Burns and Roe under the sponsorship of the US DOE as part of the International Safety Program (INSP). The INSP is a comprehensive effort, in cooperation with partners in other countries, to improve nuclear safety worldwide. A major element within the INSP is the improvement of the safety of Soviet-designed nuclear reactors.« less
NASA Astrophysics Data System (ADS)
Kuleshova, E. A.; Gurovich, B. A.; Bukina, Z. V.; Frolov, A. S.; Maltsev, D. A.; Krikun, E. V.; Zhurko, D. A.; Zhuchkov, G. M.
2017-07-01
This work summarizes and analyzes our recent research results on the effect of irradiation temperature within the range of (50-400)°C on microstructure and properties of 15Kh2NMFAA class 1 steel (VVER-1000 reactor pressure vessel (RPV) base metal). The paper considers the influence of accelerated irradiation with different temperature up to different fluences on the carbide and irradiation-induced phases, radiation defects, yield strength changes and critical brittleness temperature shift (ΔTK) as well as on changes of the fraction of brittle intergranular fracture and segregation processes in the steel. Low temperature irradiation resulted solely in formation of radiation defects - dislocation loops of high number density, the latter increased with increase in irradiation temperature while their size decreased. In this regard high embrittlement rate observed at low temperature irradiation is only due to the hardening mechanism of radiation embrittlement. Accelerated irradiation at VVER-1000 RPV operating temperature (∼300 °C) caused formation of radiation-induced precipitates and dislocation loops, as well as some increase in phosphorus grain boundary segregation. The observed ΔTK shift being within the regulatory curve for VVER-1000 RPV base metal is due to both hardening and non-hardening mechanisms of radiation embrittlement. Irradiation at elevated temperature caused more intense phosphorus grain boundary segregation, but no formation of radiation-induced precipitates or dislocation loops in contrast to irradiation at 300 °C. Carbide transformations observed only after irradiation at 400 °C caused increase in yield strength and, along with a contribution of the non-hardening mechanism, resulted in the lowest ΔTK shift in the studied range of irradiation temperature and fluence.
The prospect of nuclear energy in Türkiye especially after Fukushima accident
DOE Office of Scientific and Technical Information (OSTI.GOV)
Şahin, Sümer, E-mail: ssahin@atilim.edu.tr
2014-09-30
Türkiye considers since mid-50's to use nuclear electricity, but Government and bureaucracy have continuously postponed reactor construction. However, since 2010 the case has gained a real shape. Official agreement has been signed for the construction of 4 units of Russian VVER type reactors with installed power of 4×1200 MW{sub el}. It is expected that they will begin to deliver electricity early 20's. Further negotiations are being conducted with Japanese Mitsubashi and French AREVA. The target is to have nuclear electricity by 2023 at the 100{sup th} anniversary of Turkish Republic. Turkish Nuclear Energy Strategy aims; • Decrease country's dependency onmore » foreign suppliers of energy sources • Provide fuel supply mix diversification • Utilization of environmentally friendly energy production technologies Possess advanced and prestigious power generation technologies.« less
NASA Astrophysics Data System (ADS)
Tomarov, G. V.; Povarov, V. P.; Shipkov, A. A.; Gromov, A. F.; Budanov, V. A.; Golubeva, T. N.
2015-03-01
Matters concerned with making efficient use of the information-analytical system on the flow-accelerated corrosion problem in setting up in-service examination of the metal of pipeline elements operating in the secondary coolant circuit of the VVER-440-based power units at the Novovoronezh NPP are considered. The principles used to select samples of pipeline elements in planning ultrasonic thickness measurements for timely revealing metal thinning due to flow-accelerated corrosion along with reducing the total amount of measurements in the condensate-feedwater path are discussed.
Post-Test Analysis of 11% Break at PSB-VVER Experimental Facility using Cathare 2 Code
NASA Astrophysics Data System (ADS)
Sabotinov, Luben; Chevrier, Patrick
The best estimate French thermal-hydraulic computer code CATHARE 2 Version 2.5_1 was used for post-test analysis of the experiment “11% upper plenum break”, conducted at the large-scale test facility PSB-VVER in Russia. The PSB rig is 1:300 scaled model of VVER-1000 NPP. A computer model has been developed for CATHARE 2 V2.5_1, taking into account all important components of the PSB facility: reactor model (lower plenum, core, bypass, upper plenum, downcomer), 4 separated loops, pressurizer, horizontal multitube steam generators, break section. The secondary side is represented by recirculation model. A large number of sensitivity calculations has been performed regarding break modeling, reactor pressure vessel modeling, counter current flow modeling, hydraulic losses, heat losses. The comparison between calculated and experimental results shows good prediction of the basic thermal-hydraulic phenomena and parameters such as pressures, temperatures, void fractions, loop seal clearance, etc. The experimental and calculation results are very sensitive regarding the fuel cladding temperature, which show a periodical nature. With the applied CATHARE 1D modeling, the global thermal-hydraulic parameters and the core heat up have been reasonably predicted.
NASA Astrophysics Data System (ADS)
Tikhomirov, Georgy; Bahdanovich, Rynat; Pham, Phu
2017-09-01
Precise calculation of energy release in a nuclear reactor is necessary to obtain the correct spatial power distribution and predict characteristics of burned nuclear fuel. In this work, previously developed method for calculation neutron-capture reactions - capture component - contribution in effective energy release in a fuel core of nuclear reactor is discussed. The method was improved and implemented to the different models of VVER-1000 reactor developed for MCU 5 and MCNP 4 computer codes. Different models of equivalent cell and fuel assembly in the beginning of fuel cycle were calculated. These models differ by the geometry, fuel enrichment and presence of burnable absorbers. It is shown, that capture component depends on fuel enrichment and presence of burnable absorbers. Its value varies for different types of hot fuel assemblies from 3.35% to 3.85% of effective energy release. Average capture component contribution in effective energy release for typical serial fresh fuel of VVER-1000 is 3.5%, which is 7 MeV/fission. The method will be used in future to estimate the dependency of capture energy on fuel density, burn-up, etc.
The role of PRA in the safety assessment of VVER Nuclear Power Plants in Ukraine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kot, C.
1999-05-10
Ukraine operates thirteen (13) Soviet-designed pressurized water reactors, VVERS. All Ukrainian plants are currently operating with annually renewable permits until they update their safety analysis reports (SARs), in accordance with new SAR content requirements issued in September 1995, by the Nuclear Regulatory Authority and the Government Nuclear Power Coordinating Committee of Ukraine. The requirements are in three major areas: design basis accident (DBA) analysis, probabilistic risk assessment (PRA), and beyond design-basis accident (BDBA) analysis. The last two requirements, on PRA and BDBA, are new, and the DBA requirements are an expanded version of the older SAR requirements. The US Departmentmore » of Energy (USDOE), as part of its Soviet-Designed Reactor Safety activities, is providing assistance and technology transfer to Ukraine to support their nuclear power plants (NPPs) in developing a Western-type technical basis for the new SARs. USDOE sponsored In-Depth Safety Assessments (ISAs) are in progress at three pilot nuclear reactor units in Ukraine, South Ukraine Unit 1, Zaporizhzhya Unit 5, and Rivne Unit 1, and a follow-on study has been initiated at Khmenytskyy Unit 1. The ISA projects encompass most areas of plant safety evaluation, but the initial emphasis is on performing a detailed, plant-specific Level 1 Internal Events PRA. This allows the early definition of the plant risk profile, the identification of risk significant accident sequences and plant vulnerabilities and provides guidance for the remainder of the safety assessments.« less
Water chemistry of the secondary circuit at a nuclear power station with a VVER power reactor
NASA Astrophysics Data System (ADS)
Tyapkov, V. F.; Erpyleva, S. F.
2017-05-01
Results of implementation of the secondary circuit organic amine water chemistry at Russian nuclear power plant (NPP) with VVER-1000 reactors are presented. The requirements for improving the reliability, safety, and efficiency of NPPs and for prolonging the service life of main equipment items necessitate the implementation of new technologies, such as new water chemistries. Data are analyzed on the chemical control of power unit coolant for quality after the changeover to operation with the feed of higher amines, such as morpholine and ethanolamine. Power units having equipment containing copper alloy components were converted from the all-volatile water chemistry to the ethanolamine or morpholine water chemistry with no increase in pH of the steam generator feedwater. This enables the iron content in the steam generator feedwater to be decreased from 6-12 to 2.0-2.5 μg/dm3. It is demonstrated that pH of high-temperature water is among the basic factors controlling erosion and corrosion wear of the piping and the ingress of corrosion products into NPP steam generators. For NPP power units having equipment whose construction material does not include copper alloys, the water chemistries with elevated pH of the secondary coolant are adopted. Stable dosing of correction chemicals at these power units maintains pH25 of 9.5 to 9.7 in the steam generator feedwater with a maximum iron content of 2 μg/dm3 in the steam generator feedwater.
Absolute determination of power density in the VVER-1000 mock-up on the LR-0 research reactor.
Košt'ál, Michal; Švadlenková, Marie; Milčák, Ján
2013-08-01
The work presents a detailed comparison of calculated and experimentally determined net peak areas of selected fission products gamma lines. The fission products were induced during a 2.5 h irradiation on the power level of 9.5 W in selected fuel pins of the VVER-1000 Mock-Up. The calculations were done with deterministic and stochastic (Monte Carlo) methods. The effects of different nuclear data libraries used for calculations are discussed as well. The Net Peak Area (NPA) may be used for the determination of fission density across the mock-up. This fission density is practically identical to power density. Copyright © 2013 Elsevier Ltd. All rights reserved.
Test case for VVER-1000 complex modeling using MCU and ATHLET
NASA Astrophysics Data System (ADS)
Bahdanovich, R. B.; Bogdanova, E. V.; Gamtsemlidze, I. D.; Nikonov, S. P.; Tikhomirov, G. V.
2017-01-01
The correct modeling of processes occurring in the fuel core of the reactor is very important. In the design and operation of nuclear reactors it is necessary to cover the entire range of reactor physics. Very often the calculations are carried out within the framework of only one domain, for example, in the framework of structural analysis, neutronics (NT) or thermal hydraulics (TH). However, this is not always correct, as the impact of related physical processes occurring simultaneously, could be significant. Therefore it is recommended to spend the coupled calculations. The paper provides test case for the coupled neutronics-thermal hydraulics calculation of VVER-1000 using the precise neutron code MCU and system engineering code ATHLET. The model is based on the fuel assembly (type 2M). Test case for calculation of power distribution, fuel and coolant temperature, coolant density, etc. has been developed. It is assumed that the test case will be used for simulation of VVER-1000 reactor and in the calculation using other programs, for example, for codes cross-verification. The detailed description of the codes (MCU, ATHLET), geometry and material composition of the model and an iterative calculation scheme is given in the paper. Script in PERL language was written to couple the codes.
Extension of the Bgl Broad Group Cross Section Library
NASA Astrophysics Data System (ADS)
Kirilova, Desislava; Belousov, Sergey; Ilieva, Krassimira
2009-08-01
The broad group cross-section libraries BUGLE and BGL are applied for reactor shielding calculation using the DOORS package based on discrete ordinates method and multigroup approximation of the neutron cross-sections. BUGLE and BGL libraries are problem oriented for PWR or VVER type of reactors respectively. They had been generated by collapsing the problem independent fine group library VITAMIN-B6 applying PWR and VVER one-dimensional radial model of the reactor middle plane using the SCALE software package. The surveillance assemblies (SA) of VVER-1000/320 are located on the baffle above the reactor core upper edge in a region where geometry and materials differ from those of the middle plane and the neutron field gradient is very high which would result in a different neutron spectrum. That is why the application of the fore-mentioned libraries for the neutron fluence calculation in the region of SA could lead to an additional inaccuracy. This was the main reason to study the necessity for an extension of the BGL library with cross-sections appropriate for the SA region. Comparative analysis of the neutron spectra of the SA region calculated by the VITAMIN-B6 and BGL libraries using the two-dimensional code DORT have been done with purpose to evaluate the BGL applicability for SA calculation.
Temperature measuring analysis of the nuclear reactor fuel assembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urban, F., E-mail: jozef.bereznai@stuba.sk, E-mail: zdenko.zavodny@stuba.sk; Kučák, L., E-mail: jozef.bereznai@stuba.sk, E-mail: zdenko.zavodny@stuba.sk; Bereznai, J., E-mail: jozef.bereznai@stuba.sk, E-mail: zdenko.zavodny@stuba.sk
2014-08-06
Study was based on rapid changes of measured temperature values from the thermocouple in the VVER 440 nuclear reactor fuel assembly. Task was to determine origin of fluctuations of the temperature values by experiments on physical model of the fuel assembly. During an experiment, heated water was circulating in the system and cold water inlet through central tube to record sensitivity of the temperature sensor. Two positions of the sensor was used. First, just above the central tube in the physical model fuel assembly axis and second at the position of the thermocouple in the VVER 440 nuclear reactor fuelmore » assembly. Dependency of the temperature values on time are presented in the diagram form in the paper.« less
Uranium oxide fuel cycle analysis in VVER-1000 with VISTA simulation code
NASA Astrophysics Data System (ADS)
Mirekhtiary, Seyedeh Fatemeh; Abbasi, Akbar
2018-02-01
The VVER-1000 Nuclear power plant generates about 20-25 tons of spent fuel per year. In this research, the fuel transmutation of Uranium Oxide (UOX) fuel was calculated by using of nuclear fuel cycle simulation system (VISTA) code. In this simulation, we evaluated the back end components fuel cycle. The back end component calculations are Spent Fuel (SF), Actinide Inventory (AI) and Fission Product (FP) radioisotopes. The SF, AI and FP values were obtained 23.792178 ton/y, 22.811139 ton/y, 0.981039 ton/y, respectively. The obtained value of spent fuel, major actinide, and minor actinide and fission products were 23.8 ton/year, 22.795 ton/year, 0.024 ton/year and 0.981 ton/year, respectively.
NASA Astrophysics Data System (ADS)
Ozhigov, L. S.; Voevodin, V. N.; Mitrofanov, A. S.; Vasilenko, R. L.
2016-10-01
Investigation objects were metal templates, which were cut during the repair of welding junction no. 111 (header to the steam generator shell) on a power-generating unit with VVER-1000 of the South-Ukraine NPP, and substances of mud depositions collected from walls of this junction. Investigations were carried out using metallography, optical microscopy, and scanning electron microscopy with energy dispersion microanalysis by an MMO-1600-AT metallurgical microscope and a JEOL JSM-7001F scanning electron microscope with the Shottky cathode. As a result of investigations in corrosion pits and mud depositions in the area of welding junction no. 111, iron and copper-enriched particles were revealed. It is shown that, when contacting with the steel header surface, these particles can form microgalvanic cells causing reactions of iron dissolution and the pit corrosion of metal. Nearby corrosion pits in metal are microcracks, which can be effect of the stress state of metal under corrosion pits along with revealed effects of twinning. The hypothesis is expressed that pitting corrosion of metal occurred during the first operation period of the power-generating unit in the ammonia water chemistry conditions (WCC). The formation of corrosion pits and nucleating cracks from them was stopped with the further operation under morpholine WCC. The absence of macrocracks in metal of templates verifies that, during operation, welding junction no. 111 operated under load conditions not exceeding the permissible ones by design requirements. The durability of the welding junction of the header to the steam generator shell significantly depends on the technological schedule of chemical cleaning and steam generator shut-down cooling.
A custom-tailored FAMOS burn-up meter for VVER 440 fuel assemblies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simon, G.G.; Golochtchapov, S.; Glazov, A.G.
1995-12-31
The FAMOS fuel assembly monitoring system had been originally developed for monitoring irradiated fuel assemblies of the Karlsruhe Nuclear Research Center concentrating on neutron detection systems for special applications.The measurements in the past had demonstrated that FAMOS can perform precise measurements to control or measure with accuracy the main physical parameters of spent fuel. The FAMOS 3 system is specialized for burn-up determination of fuel assemblies. Thus it is possible to take into account the burn-up for the purposes of storage and transportation. The Kola NPP VVER 440 requirements necessitated developing an especially adopted FAMOS 3 system. In addition tomore » the passive neutron measurement, a gross gamma detection and a boron concentration monitoring system are implemented. The new system was constructed as well as tested in laboratory experiments. The monitoring system has been delivered to the customer and is ready for use.« less
NASA Astrophysics Data System (ADS)
Zizin, M. N.; Ivanov, L. D.
2013-12-01
In the present paper, an attempt is made to analyze the accuracy of calculating the effectiveness of the VVER-1000 reactor scram system by means of the inverted solution of the kinetics equation (ISKE). In the numerical studies in the intellectual ShIPR software system, the actuation of the reactor scram system with the possible jamming of one of the two most effective rods is simulated. First, the connection of functionals calculated in the space-time computation in different approximations with the kinetics equation is considered on the theoretical level. The formulas are presented in a manner facilitating their coding. Then, the results of processing of several such functions by the ISKE are presented. For estimating the effectiveness of the VVER-1000 reactor scram system, it is proposed to use the measured currents of ionization chambers (IC) jointly with calculated readings of IC imitators. In addition, the integral of the delayed neutron (DN) generation rate multiplied by the adjoint DN source over the volume of the reactor, calculated for the instant of time when insertion of safety rods ends, is used. This integral is necessary for taking into account the spatial reactivity effects. Reasonable agreement was attained for the considered example between the effectiveness of the scram system evaluated by this method and the values obtained by steady-state calculations as the difference of the reciprocal effective multiplication factors with withdrawn and inserted control rods. This agreement was attained with the use of eight-group DN parameters.
Computer-assisted innovations in craniofacial surgery.
Rudman, Kelli; Hoekzema, Craig; Rhee, John
2011-08-01
Reconstructive surgery for complex craniofacial defects challenges even the most experienced surgeons. Preoperative reconstructive planning requires consideration of both functional and aesthetic properties of the mandible, orbit, and midface. Technological innovations allow for computer-assisted preoperative planning, computer-aided manufacturing of patient-specific implants (PSIs), and computer-assisted intraoperative navigation. Although many case reports discuss computer-assisted preoperative planning and creation of custom implants, a general overview of computer-assisted innovations is not readily available. This article reviews innovations in computer-assisted reconstructive surgery including anatomic considerations when using PSIs, technologies available for preoperative planning, work flow and process of obtaining a PSI, and implant materials available for PSIs. A case example follows illustrating the use of this technology in the reconstruction of an orbital-frontal-temporal defect with a PSI. Computer-assisted reconstruction of complex craniofacial defects provides the reconstructive surgeon with innovative options for challenging reconstructive cases. As technology advances, applications of computer-assisted reconstruction will continue to expand. © Thieme Medical Publishers.
The current state, main problems and directions in improving water chemistry at NPSs
NASA Astrophysics Data System (ADS)
Tyapkov, V. F.; Sharafutdinov, R. B.
2007-05-01
An analysis of the current state of managing water-chemistry (WC) at Russian nuclear power plants with type-VVER and-RBMK reactors presently in operation is presented. The main directions for improvement of WC are shown.
Additive manufacturing technology in reconstructive surgery.
Fuller, Scott C; Moore, Michael G
2016-10-01
Technological advances have been part and parcel of modern reconstructive surgery, in that practitioners of this discipline are continually looking for innovative ways to perfect their craft and improve patient outcomes. We are currently in a technological climate wherein advances in computers, imaging, and science have coalesced with resulting innovative breakthroughs that are not merely limited to improved outcomes and enhanced patient care, but may provide novel approaches to training the next generation of reconstructive surgeons. New developments in software and modeling platforms, imaging modalities, tissue engineering, additive manufacturing, and customization of implants are poised to revolutionize the field of reconstructive surgery. The interface between technological advances and reconstructive surgery continues to expand. Additive manufacturing techniques continue to evolve in an effort to improve patient outcomes, decrease operative time, and serve as instructional tools for the training of reconstructive surgeons.
NASA Astrophysics Data System (ADS)
Varga, Kálmán; Hirschberg, Gábor; Németh, Zoltán; Myburg, Gerrit; Schunk, János; Tilky, Péter
2001-10-01
In the case of intact fuel claddings, the predominant source of radioactivity in the primary circuits of water-cooled nuclear reactors is the activation of corrosion products in the core. The most important corrosion product radionuclides in the primary coolant of pressurized water reactors (PWRs) are 60Co, 58Co, 51Cr, 54Mn, 59Fe (as well as 110mAg in some Soviet-made VVER-type reactor). The second part of this series is focused on the complex studies of the formation and build-up of 60Co-containing species on an austenitic stainless steel type 08X18H10T (GOST 5632-61) and magnetite-covered carbon steel often to be used in Soviet-planned VVERs. The kinetics and mechanism of the cobalt accumulation were studied by a combination (coupling) of an in situ radiotracer method and voltammetry in a model solution of the primary circuit coolant. In addition, independent techniques such as X-ray photoelectron spectroscopic (XPS) and ICP-OES are also used to analyze the chemical state of Co species in the passive layer formed on stainless steel as well as the chemical composition of model solution. The experimental results have revealed that: (i) The passive behavior of the austenitic stainless steel at open-circuit conditions, the slightly alkaline pH and the reducing water chemistry can be considered to be optimal to minimize the 60Co contamination. (ii) The highly potential dependent deposition of various Co-oxides at E>1.10 V (vs. RHE) offers a unique possibility to elaborate a novel electrochemical method for the decrease or removal of cobalt traces from borate-containing coolants contaminated with 60Co and/or 58Co radionuclides.
Transportation and storage of MOX and LEU assemblies at the Balakovo Nuclear Power Plant
DOT National Transportation Integrated Search
2001-01-01
The VVER-1000-type Balakovo Nuclear Power Plant has been chosen to dispose of the : plutonium created as part of Russian weapons program. The plutonium will be converted to mixed-oxide : (MOX), fabricated into assemblies and loaded into the reactor. ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kushnikov, V.
1996-05-01
The Russian strategy for radioactive waste and plutonium management is based on the concept of the closed fuel cycle that has been adopted in Russia, and, to a great degree, falls under the jurisdiction of the existing Russian nuclear energy structures. From its very beginning, Russian atomic energy policy was based on finding the most effective method of developing the new fuel direction with the maximum possible utilization of the energy potential from the fission of heavy atoms and the achievement of fuel self-sufficiency through the recycling of secondary fuel. Although there can be no doubt about the importance ofmore » economic considerations (for the future), concerns for the safety of the environment are currently of the utmost importance. In this context, spent NPP fuel can be viewed as a waste to be buried only if there is persuasive evidence that such an approach is both economically and environmentally sound. The production of I GW of energy per year is accompanied by the accumulation of up to 800-1000 kg of highly radioactive fission products and approximately 250 kg of plutonium. Currently, spent fuel from the VVER 100 and the RBNK reactors contains approximately 25 tons of plutonium. There is an additional 30 tons of fuel-grade plutonium in the form of purified oxide, separated from spent fuels used in VVER440 reactors and other power production facilities, as well as approximately 100 tons of weapons-grade plutonium from dismantled warheads. The spent fuel accumulates significant amounts of small actinoids - neptunium americium, and curium. Science and technology have not yet found technical solutions for safe and secure burial of non-reprocessed spent fuel with such a broad range of products, which are typically highly radioactive and will continue to pose a threat for hundreds of thousands of years.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ezsoel, G.; Guba, A.; Perneczky, L.
Results of a small-break loss-of-coolant accident experiment, conducted on the PMK-2 integral-type test facility are presented. The experiment simulated a 1% break in the cold leg of a VVER-440-type reactor. The main phenomena of the experiment are discussed, and in the case of selected events, a more detailed interpretation with the help of measured void fraction, obtained by a special measurement device, is given. Two thermohydraulic computer codes, RELAP5 and ATHLET, are used for posttest calculations. The aim of these calculations is to investigate the code capability for modeling natural circulation phenomena in VVER-440-type reactors. Therefore, the results of themore » experiment and both calculations are compared. Both codes predict most of the transient events well, with the exception that RELAP5 fails to predict the dryout period in the core. In the experiment, the hot- and cold-leg loop-seal clearing is accompanied by natural circulation instabilities, which can be explained by means of the ATHLET calculation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zizin, M. N.; Zimin, V. G.; Zizina, S. N., E-mail: zizin@adis.vver.kiae.ru
2010-12-15
The ShIPR intellectual code system for mathematical simulation of nuclear reactors includes a set of computing modules implementing the preparation of macro cross sections on the basis of the two-group library of neutron-physics cross sections obtained for the SKETCH-N nodal code. This library is created by using the UNK code for 3D diffusion computation of first VVER-1000 fuel loadings. Computation of neutron fields in the ShIPR system is performed using the DP3 code in the two-group diffusion approximation in 3D triangular geometry. The efficiency of all groups of control rods for the first fuel loading of the third unit ofmore » the Kalinin Nuclear Power Plant is computed. The temperature, barometric, and density effects of reactivity as well as the reactivity coefficient due to the concentration of boric acid in the reactor were computed additionally. Results of computations are compared with the experiment.« less
NASA Astrophysics Data System (ADS)
Zizin, M. N.; Zimin, V. G.; Zizina, S. N.; Kryakvin, L. V.; Pitilimov, V. A.; Tereshonok, V. A.
2010-12-01
The ShIPR intellectual code system for mathematical simulation of nuclear reactors includes a set of computing modules implementing the preparation of macro cross sections on the basis of the two-group library of neutron-physics cross sections obtained for the SKETCH-N nodal code. This library is created by using the UNK code for 3D diffusion computation of first VVER-1000 fuel loadings. Computation of neutron fields in the ShIPR system is performed using the DP3 code in the two-group diffusion approximation in 3D triangular geometry. The efficiency of all groups of control rods for the first fuel loading of the third unit of the Kalinin Nuclear Power Plant is computed. The temperature, barometric, and density effects of reactivity as well as the reactivity coefficient due to the concentration of boric acid in the reactor were computed additionally. Results of computations are compared with the experiment.
Dependency of the Reynolds number on the water flow through the perforated tube
DOE Office of Scientific and Technical Information (OSTI.GOV)
Závodný, Zdenko, E-mail: zdenko.zavodny@stuba.sk; Bereznai, Jozef, E-mail: jozef.bereznai@stuba.sk; Urban, František
Safe and effective loading of nuclear reactor fuel assemblies demands qualitative and quantitative analysis of the relationship between the coolant temperature in the fuel assembly outlet, measured by the thermocouple, and the mean coolant temperature profile in the thermocouple plane position. It is not possible to perform the analysis directly in the reactor, so it is carried out using measurements on the physical model, and the CFD fuel assembly coolant flow models. The CFD models have to be verified and validated in line with the temperature and velocity profile obtained from the measurements of the cooling water flowing in themore » physical model of the fuel assembly. Simplified physical model with perforated central tube and its validated CFD model serve to design of the second physical model of the fuel assembly of the nuclear reactor VVER 440. Physical model will be manufactured and installed in the laboratory of the Institute of Energy Machines, Faculty of Mechanical Engineering of the Slovak University of Technology in Bratislava.« less
On the equilibrium isotopic composition of the thorium-uranium-plutonium fuel cycle
NASA Astrophysics Data System (ADS)
Marshalkin, V. Ye.; Povyshev, V. M.
2016-12-01
The equilibrium isotopic compositions and the times to equilibrium in the process of thorium-uranium-plutonium oxide fuel recycling in VVER-type reactors using heavy water mixed with light water are estimated. It is demonstrated thEhfat such reactors have a capacity to operate with self-reproduction of active isotopes in the equilibrium mode.
On the equilibrium isotopic composition of the thorium–uranium–plutonium fuel cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshalkin, V. Ye., E-mail: marshalkin@vniief.ru; Povyshev, V. M.
2016-12-15
The equilibrium isotopic compositions and the times to equilibrium in the process of thorium–uranium–plutonium oxide fuel recycling in VVER-type reactors using heavy water mixed with light water are estimated. It is demonstrated thEhfat such reactors have a capacity to operate with self-reproduction of active isotopes in the equilibrium mode.
ERIC Educational Resources Information Center
Lovheim, Daniel
2010-01-01
This article analyses the introduction and, later on, reconstruction of compulsory school technology in Sweden 1975-1995. It focuses on two curricular reforms and different attempts to increase the legitimacy of technology as a school subject. The article builds upon theories from science studies and the term boundary-work is used to analyse the…
Three-Dimensional Printing: Custom-Made Implants for Craniomaxillofacial Reconstructive Surgery
Matias, Mariana; Zenha, Horácio; Costa, Horácio
2017-01-01
Craniomaxillofacial reconstructive surgery is a challenging field. First it aims to restore primary functions and second to preserve craniofacial anatomical features like symmetry and harmony. Three-dimensional (3D) printed biomodels have been widely adopted in medical fields by providing tactile feedback and a superior appreciation of visuospatial relationship between anatomical structures. Craniomaxillofacial reconstructive surgery was one of the first areas to implement 3D printing technology in their practice. Biomodeling has been used in craniofacial reconstruction of traumatic injuries, congenital disorders, tumor removal, iatrogenic injuries (e.g., decompressive craniectomies), orthognathic surgery, and implantology. 3D printing has proven to improve and enable an optimization of preoperative planning, develop intraoperative guidance tools, reduce operative time, and significantly improve the biofunctional and the aesthetic outcome. This technology has also shown great potential in enriching the teaching of medical students and surgical residents. The aim of this review is to present the current status of 3D printing technology and its practical and innovative applications, specifically in craniomaxillofacial reconstructive surgery, illustrated with two clinical cases where the 3D printing technology was successfully used. PMID:28523082
Photogrammetry for rapid prototyping: development of noncontact 3D reconstruction technologies
NASA Astrophysics Data System (ADS)
Knyaz, Vladimir A.
2002-04-01
An important stage of rapid prototyping technology is generating computer 3D model of an object to be reproduced. Wide variety of techniques for 3D model generation exists beginning with manual 3D models generation and finishing with full-automated reverse engineering system. The progress in CCD sensors and computers provides the background for integration of photogrammetry as an accurate 3D data source with CAD/CAM. The paper presents the results of developing photogrammetric methods for non-contact spatial coordinates measurements and generation of computer 3D model of real objects. The technology is based on object convergent images processing for calculating its 3D coordinates and surface reconstruction. The hardware used for spatial coordinates measurements is based on PC as central processing unit and video camera as image acquisition device. The original software for Windows 9X realizes the complete technology of 3D reconstruction for rapid input of geometry data in CAD/CAM systems. Technical characteristics of developed systems are given along with the results of applying for various tasks of 3D reconstruction. The paper describes the techniques used for non-contact measurements and the methods providing metric characteristics of reconstructed 3D model. Also the results of system application for 3D reconstruction of complex industrial objects are presented.
Breeding of 233U in the thorium-uranium fuel cycle in VVER reactors using heavy water
NASA Astrophysics Data System (ADS)
Marshalkin, V. E.; Povyshev, V. M.
2015-12-01
A method is proposed for achieving optimal neutron kinetics and efficient isotope transmutation in the 233U-232Th oxide fuel of water-moderated reactors with variable water composition (D2O, H2O) that ensures breeding of the 233U and 235U isotopes. The method is comparatively simple to implement.
Advances in Bioprinting Technologies for Craniofacial Reconstruction.
Visscher, Dafydd O; Farré-Guasch, Elisabet; Helder, Marco N; Gibbs, Susan; Forouzanfar, Tymour; van Zuijlen, Paul P; Wolff, Jan
2016-09-01
Recent developments in craniofacial reconstruction have shown important advances in both the materials and methods used. While autogenous tissue is still considered to be the gold standard for these reconstructions, the harvesting procedure remains tedious and in many cases causes significant donor site morbidity. These limitations have subsequently led to the development of less invasive techniques such as 3D bioprinting that could offer possibilities to manufacture patient-tailored bioactive tissue constructs for craniofacial reconstruction. Here, we discuss the current technological and (pre)clinical advances of 3D bioprinting for use in craniofacial reconstruction and highlight the challenges that need to be addressed in the coming years. Copyright © 2016 Elsevier Ltd. All rights reserved.
Li, Jingsi; Wang, Huan; Chen, Xiangfei; Yin, Zuowei; Shi, Yuechun; Lu, Yanqing; Dai, Yitang; Zhu, Hongliang
2009-03-30
In this paper we report, to the best of our knowledge, the first experimental realization of distributed feedback (DFB) semiconductor lasers based on reconstruction-equivalent-chirp (REC) technology. Lasers with different lasing wavelengths are achieved simultaneously on one chip, which shows a potential for the REC technology in combination with the photonic integrated circuits (PIC) technology to be a possible method for monolithic integration, in that its fabrication is as powerful as electron beam technology and the cost and time-consuming are almost the same as standard holographic technology.
Applications of Computer Technology in Complex Craniofacial Reconstruction.
Day, Kristopher M; Gabrick, Kyle S; Sargent, Larry A
2018-03-01
To demonstrate our use of advanced 3-dimensional (3D) computer technology in the analysis, virtual surgical planning (VSP), 3D modeling (3DM), and treatment of complex congenital and acquired craniofacial deformities. We present a series of craniofacial defects treated at a tertiary craniofacial referral center utilizing state-of-the-art 3D computer technology. All patients treated at our center using computer-assisted VSP, prefabricated custom-designed 3DMs, and/or 3D printed custom implants (3DPCI) in the reconstruction of craniofacial defects were included in this analysis. We describe the use of 3D computer technology to precisely analyze, plan, and reconstruct 31 craniofacial deformities/syndromes caused by: Pierre-Robin (7), Treacher Collins (5), Apert's (2), Pfeiffer (2), Crouzon (1) Syndromes, craniosynostosis (6), hemifacial microsomia (2), micrognathia (2), multiple facial clefts (1), and trauma (3). In select cases where the available bone was insufficient for skeletal reconstruction, 3DPCIs were fabricated using 3D printing. We used VSP in 30, 3DMs in all 31, distraction osteogenesis in 16, and 3DPCIs in 13 cases. Utilizing these technologies, the above complex craniofacial defects were corrected without significant complications and with excellent aesthetic results. Modern 3D technology allows the surgeon to better analyze complex craniofacial deformities, precisely plan surgical correction with computer simulation of results, customize osteotomies, plan distractions, and print 3DPCI, as needed. The use of advanced 3D computer technology can be applied safely and potentially improve aesthetic and functional outcomes after complex craniofacial reconstruction. These techniques warrant further study and may be reproducible in various centers of care.
Experimental study of burnout in channels with twisted fuel rods
NASA Astrophysics Data System (ADS)
Bol'Shakov, V. V.; Bashkirtsev, S. M.; Kobzar', L. L.; Morozov, A. G.
2007-05-01
The results of experimental studies of pressure drop and critical heat flux in the models of fuel assemblies (FAs) with fuel rod simulators twisted relative to the longitudinal axis and a three-ray cross section are considered. The experimental data are compared to the results obtained with the use of techniques adopted for design calculations with fuel rod bundles of type-VVER reactors.
Heuristic rules embedded genetic algorithm for in-core fuel management optimization
NASA Astrophysics Data System (ADS)
Alim, Fatih
The objective of this study was to develop a unique methodology and a practical tool for designing loading pattern (LP) and burnable poison (BP) pattern for a given Pressurized Water Reactor (PWR) core. Because of the large number of possible combinations for the fuel assembly (FA) loading in the core, the design of the core configuration is a complex optimization problem. It requires finding an optimal FA arrangement and BP placement in order to achieve maximum cycle length while satisfying the safety constraints. Genetic Algorithms (GA) have been already used to solve this problem for LP optimization for both PWR and Boiling Water Reactor (BWR). The GA, which is a stochastic method works with a group of solutions and uses random variables to make decisions. Based on the theories of evaluation, the GA involves natural selection and reproduction of the individuals in the population for the next generation. The GA works by creating an initial population, evaluating it, and then improving the population by using the evaluation operators. To solve this optimization problem, a LP optimization package, GARCO (Genetic Algorithm Reactor Code Optimization) code is developed in the framework of this thesis. This code is applicable for all types of PWR cores having different geometries and structures with an unlimited number of FA types in the inventory. To reach this goal, an innovative GA is developed by modifying the classical representation of the genotype. To obtain the best result in a shorter time, not only the representation is changed but also the algorithm is changed to use in-core fuel management heuristics rules. The improved GA code was tested to demonstrate and verify the advantages of the new enhancements. The developed methodology is explained in this thesis and preliminary results are shown for the VVER-1000 reactor hexagonal geometry core and the TMI-1 PWR. The improved GA code was tested to verify the advantages of new enhancements. The core physics code used for VVER in this research is Moby-Dick, which was developed to analyze the VVER by SKODA Inc. The SIMULATE-3 code, which is an advanced two-group nodal code, is used to analyze the TMI-1.
40 CFR 63.42 - Program requirements governing construction or reconstruction of major sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... construction or reconstruction of major sources. 63.42 Section 63.42 Protection of Environment ENVIRONMENTAL... POLLUTANTS FOR SOURCE CATEGORIES Requirements for Control Technology Determinations for Major Sources in... achievable control technology emission limitation for new sources. [61 FR 68400, Dec. 27, 1996, as amended at...
Gougoutas, Alexander J; Bastidas, Nicholas; Bartlett, Scott P; Jackson, Oksana
2015-12-01
Microvascular reconstruction of the pediatric mandible, particularly when necessitated by severe, congenital hypoplasia, presents a formidable challenge. Complex cases, however, may be simplified by computer-aided design/computer-aided manufacturing (CAD/CAM) assisted surgical planning. This series represents the senior authors' preliminary experiences with CAD/CAM assisted, microvascular reconstruction of the pediatric mandible. Presented are two patients with hemifacial/bifacial microsomia, both with profound mandibular hypoplasia, who underwent CAD/CAM assisted reconstruction of their mandibles with vascularized fibula flaps. Surgical techniques, CAD/CAM routines employed, complications, and long-term outcomes are reported. Successful mandibular reconstructions were achieved in both patients with centralization of their native mandibles and augmentation of deficient mandibular subunits. No long-term complications were observed. CAD/CAM technology can be utilized in pediatric mandibular reconstruction, and is particularly beneficial in cases of profound, congenital hypoplasia requiring extensive, multi-planar, bony reconstructions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
[From Wolff law, Ilizarov technology to natural reconstruction theory].
Zang, Jian-cheng; Qin, Si-He
2013-04-01
Wolff law was an adaptable principle of bone, Tension-Stress Principle was equal to Distraction Osteogenesis or Distraction Tissue Regeneration, The Natural Reconstruction theory was a new orthopedic perspective proposed by Prof. QIN after deformity correction using Ilizarov technology. The thought about their relationship originated from a social phenomena, that the crowds and the confusion about export choice in Beijing's subway. Ilizarov technology and Wolff law were one concept related to Mechanics, and the former is completely in line with the latter. In other words, Ilizarov technology is an extension of Wolff law, is a repeated process of micro-trauma and continuous repair of bone trabecular initiated by moden engineering, just trabecular formed along the tension-stress direction. With adjustment of mechanical force,doctor can control the process of fracture healing and bone remolding to a certain extent. Natural Reconstruction theory enlarged the defined range of Wolff law obviously. Not only guided orthopedics clinical and basic research,but also related to the dialectical thinking of the doctor-patient relationship in sociology. There was an inevitable connection among Wolff law, Ilizarov technology and Natural Reconstruction theory. The history of discovery and understanding was a continuous process of thinking,practice and integration.
VERS: a virtual environment for reconstructive surgery planning
NASA Astrophysics Data System (ADS)
Montgomery, Kevin N.
1997-05-01
The virtual environment for reconstructive surgery (VERS) project at the NASA Ames Biocomputation Center is applying virtual reality technology to aid surgeons in planning surgeries. We are working with a craniofacial surgeon at Stanford to assemble and visualize the bone structure of patients requiring reconstructive surgery either through developmental abnormalities or trauma. This project is an extension of our previous work in 3D reconstruction, mesh generation, and immersive visualization. The current VR system, consisting of an SGI Onyx RE2, FakeSpace BOOM and ImmersiveWorkbench, Virtual Technologies CyberGlove and Ascension Technologies tracker, is currently in development and has already been used to visualize defects preoperatively. In the near future it will be used to more fully plan the surgery and compute the projected result to soft tissue structure. This paper presents the work in progress and details the production of a high-performance, collaborative, and networked virtual environment.
Fast data reconstructed method of Fourier transform imaging spectrometer based on multi-core CPU
NASA Astrophysics Data System (ADS)
Yu, Chunchao; Du, Debiao; Xia, Zongze; Song, Li; Zheng, Weijian; Yan, Min; Lei, Zhenggang
2017-10-01
Imaging spectrometer can gain two-dimensional space image and one-dimensional spectrum at the same time, which shows high utility in color and spectral measurements, the true color image synthesis, military reconnaissance and so on. In order to realize the fast reconstructed processing of the Fourier transform imaging spectrometer data, the paper designed the optimization reconstructed algorithm with OpenMP parallel calculating technology, which was further used for the optimization process for the HyperSpectral Imager of `HJ-1' Chinese satellite. The results show that the method based on multi-core parallel computing technology can control the multi-core CPU hardware resources competently and significantly enhance the calculation of the spectrum reconstruction processing efficiency. If the technology is applied to more cores workstation in parallel computing, it will be possible to complete Fourier transform imaging spectrometer real-time data processing with a single computer.
3D bioprinting for reconstructive surgery: Principles, applications and challenges.
Jessop, Zita M; Al-Sabah, Ayesha; Gardiner, Matthew D; Combellack, Emman; Hawkins, Karl; Whitaker, Iain S
2017-09-01
Despite the increasing laboratory research in the growing field of 3D bioprinting, there are few reports of successful translation into surgical practice. This review outlines the principles of 3D bioprinting including software and hardware processes, biocompatible technological platforms and suitable bioinks. The advantages of 3D bioprinting over traditional tissue engineering techniques in assembling cells, biomaterials and biomolecules in a spatially controlled manner to reproduce native tissue macro-, micro- and nanoarchitectures are discussed, together with an overview of current progress in bioprinting tissue types relevant for plastic and reconstructive surgery. If successful, this platform technology has the potential to biomanufacture autologous tissue for reconstruction, obviating the need for donor sites or immunosuppression. The biological, technological and regulatory challenges are highlighted, with strategies to overcome these challenges by using an integrated approach from the fields of engineering, biomaterial science, cell biology and reconstructive microsurgery. Copyright © 2017. Published by Elsevier Ltd.
The algorithm of central axis in surface reconstruction
NASA Astrophysics Data System (ADS)
Zhao, Bao Ping; Zhang, Zheng Mei; Cai Li, Ji; Sun, Da Ming; Cao, Hui Ying; Xing, Bao Liang
2017-09-01
Reverse engineering is an important technique means of product imitation and new product development. Its core technology -- surface reconstruction is the current research for scholars. In the various algorithms of surface reconstruction, using axis reconstruction is a kind of important method. For the various reconstruction, using medial axis algorithm was summarized, pointed out the problems existed in various methods, as well as the place needs to be improved. Also discussed the later surface reconstruction and development of axial direction.
Breeding of {sup 233}U in the thorium–uranium fuel cycle in VVER reactors using heavy water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshalkin, V. E., E-mail: marshalkin@vniief.ru; Povyshev, V. M.
A method is proposed for achieving optimal neutron kinetics and efficient isotope transmutation in the {sup 233}U–{sup 232}Th oxide fuel of water-moderated reactors with variable water composition (D{sub 2}O, H{sub 2}O) that ensures breeding of the {sup 233}U and {sup 235}U isotopes. The method is comparatively simple to implement.
NASA Astrophysics Data System (ADS)
Vegh, János; Kiss, Sándor; Lipcsei, Sándor; Horvath, Csaba; Pos, István; Kiss, Gábor
2010-10-01
The paper deals with two recently developed, high-precision nuclear measurement systems installed at the VVER-440 units of the Hungarian Paks NPP. Both developments were motivated by the reactor power increase to 108%, and by the planned plant service time extension. The first part describes the RMR start-up reactivity measurement system with advanced services. High-precision picoampere meters were installed at each reactor unit and measured ionization chamber current signals are handled by a portable computer providing data acquisition and online reactivity calculation service. Detailed offline evaluation and analysis of reactor start-up measurements can be performed on the portable unit, too. The second part of the paper describes a new reactor noise diagnostics system using state-of-the-art data acquisition hardware and signal processing methods. Details of the new reactor noise measurement evaluation software are also outlined. Noise diagnostics at Paks NPP is a standard tool for core anomaly detection and for long-term noise trend monitoring. Regular application of these systems is illustrated by real plant data, e.g., results of standard reactivity measurements during a reactor startup session are given. Noise applications are also illustrated by real plant measurements; results of core anomaly detection are presented.
Design issues concerning Iran`s Bushehr nuclear power plant VVER-1000 conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carson, C.F.
On January 8, 1995, the Atomic Energy Organization of Iran (AEOI) signed a contract for $800 million with the Russian Federation Ministry for Atomic Energy (Minatom) to complete Bushehr nuclear power plant (BNPP) unit 1. The agreement called for a Russian VVER-1000/320 pressurized water reactor (PWR) to be successfully installed into the existing German-built BNPP facilities in 5 yr. System design differences, bomb damage, and environmental exposure are key issues with which Minatom must contend in order to fulfill the contract. The AEOI under the Shah of Iran envisioned Bushehr as the first of many nuclear power plants, with Iranmore » achieving 24 GW(electric) by 1993 and 34 GW(electric) by 2000. Kraftwerk Union AG (KWU) began construction of the two-unit plant near the Persian Gulf town of Halileh in 1975. Unit 1 was {approx}80% complete and unit 2 was {approx}50% complete when construction was interrupted by the 1979 Iranian Islamic revolution. Despite repeated AEOI attempts to lure KWU and other companies back to Iran to complete the plant, Western concerns about nuclear proliferation in Iran and repeated bombings of the plant during the 1980-1988 Iran-Iraq war dissuaded Germany from resuming construction.« less
Recent development on computer aided tissue engineering--a review.
Sun, Wei; Lal, Pallavi
2002-02-01
The utilization of computer-aided technologies in tissue engineering has evolved in the development of a new field of computer-aided tissue engineering (CATE). This article reviews recent development and application of enabling computer technology, imaging technology, computer-aided design and computer-aided manufacturing (CAD and CAM), and rapid prototyping (RP) technology in tissue engineering, particularly, in computer-aided tissue anatomical modeling, three-dimensional (3-D) anatomy visualization and 3-D reconstruction, CAD-based anatomical modeling, computer-aided tissue classification, computer-aided tissue implantation and prototype modeling assisted surgical planning and reconstruction.
Holographic Subsurface Radar Technique for Nondestructive Testing of Dielectric Structures
NASA Astrophysics Data System (ADS)
Ivashov, S. I.; Bugaev, A. S.; Zhuravlev, A. V.; Razevig, V. V.; Chizh, M. A.; Ivashov, A. I.
2018-02-01
Holographic subsurface radar method is compared with the conventional technology of impulse radars. Basic relationships needed for the reconstruction of complex microwave holograms are presented. Possible applications of the proposed technology are discussed. Diagnostics of polyurethane foam coatings of spacecrafts is used as an example of the efficiency of holographic subsurface radars. Results of reconstruction of complex and amplitude microwave holograms are compared. It is demonstrated that the image quality that results from reconstruction of complex microwave holograms is higher than the image quality obtained with the aid of amplitude holograms.
JPRS Report, Science & Technology, China.
1987-07-07
Detector Response , Projection Sampling on the Contrast of CT Reconstructed Images (Qu Jianxiong; ZHONGGUO KEXUE JISHU DAXUE XUEBAO, No 3, Sep 86) 5...Plan’ Update 92 Hunan Soft Sciences Research Association 92 Burgeoning Technology Market .92 Radioactive Waste Depots Set...DETECTOR RESPONSE , PROJECTION SAMPLING ON THE CONTRAST OF CT RECONSTRUCTED IMAGES Hefei ZHONGGUO KEXUE JISHU DAXUE XUEBAO [JOURNAL OF CHINA
Wan, Kelvin H; Chong, Kelvin K L; Young, Alvin L
2015-12-08
Post-traumatic orbital reconstruction remains a surgical challenge and requires careful preoperative planning, sound anatomical knowledge and good intraoperative judgment. Computer-assisted technology has the potential to reduce error and subjectivity in the management of these complex injuries. A systematic review of the literature was conducted to explore the emerging role of computer-assisted technologies in post-traumatic orbital reconstruction, in terms of functional and safety outcomes. We searched for articles comparing computer-assisted procedures with conventional surgery and studied outcomes on diplopia, enophthalmos, or procedure-related complications. Six observational studies with 273 orbits at a mean follow-up of 13 months were included. Three out of 4 studies reported significantly fewer patients with residual diplopia in the computer-assisted group, while only 1 of the 5 studies reported better improvement in enophthalmos in the assisted group. Types and incidence of complications were comparable. Study heterogeneities limiting statistical comparison by meta-analysis will be discussed. This review highlights the scarcity of data on computer-assisted technology in orbital reconstruction. The result suggests that computer-assisted technology may offer potential advantage in treating diplopia while its role remains to be confirmed in enophthalmos. Additional well-designed and powered randomized controlled trials are much needed.
Zhao, Linping; Patel, Pravin K; Cohen, Mimis
2012-07-01
Computer aided design and manufacturing (CAD/CAM) technology today is the standard in manufacturing industry. The application of the CAD/CAM technology, together with the emerging 3D medical images based virtual surgical planning (VSP) technology, to craniomaxillofacial reconstruction has been gaining increasing attention to reconstructive surgeons. This article illustrates the components, system and clinical management of the VSP and CAD/CAM technology including: data acquisition, virtual surgical and treatment planning, individual implant design and fabrication, and outcome assessment. It focuses primarily on the technical aspects of the VSP and CAD/CAM system to improve the predictability of the planning and outcome.
Lee, Z-Hye; Avraham, Tomer; Monaco, Casian; Patel, Ashish A; Hirsch, David L; Levine, Jamie P
2018-05-01
Mandibular defects involving the condyle represent a complex reconstructive challenge for restoring proper function of the temporomandibular joint (TMJ) because it requires precise bone graft alignment for full restoration of joint function. The use of computer-aided design and manufacturing (CAD/CAM) technology can aid in accurate reconstruction of mandibular condyle defects with a vascularized free fibula flap without the need for additional adjuncts. The purpose of this study was to analyze clinical and functional outcomes after reconstruction of mandibular condyle defects using only a free fibula graft with the help of virtual surgery techniques. A retrospective review was performed to identify all patients who underwent mandibular reconstruction with only a free fibula flap without any TMJ adjuncts after a total condylectomy. Three-dimensional modeling software was used to plan and execute reconstruction for all patients. From 2009 through 2014, 14 patients underwent reconstruction of mandibular defects involving the condyle with the aid of virtual surgery technology. The average age was 38.7 years (range, 11 to 77 yr). The average follow-up period was 2.6 years (range, 0.8 to 4.2 yr). Flap survival was 100% (N = 14). All patients reported improved facial symmetry, adequate jaw opening, and normal dental occlusion. In addition, they achieved good functional outcomes, including normal intelligible speech and the tolerance of a regular diet with solid foods. Maximal interincisal opening range for all patients was 25 to 38 mm with no lateral deviation or subjective joint pain. No patient had progressive joint hypomobility or condylar migration. One patient had ankylosis, which required release. TMJ reconstruction poses considerable challenges in bone graft alignment for full restoration of joint function. The use of CAD/CAM technology can aid in accurate reconstruction of mandibular condyle defects with a vascularized free fibula flap through precise planning and intraoperative manipulation with optimal functional outcomes. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Recent Developments in the Treatment of Ankle and Subtalar Instability
Sugimoto, Kazuya
2017-01-01
It was nearly a centenary ago that severe ankle sprain was recognized as an injury of the ankle ligament(s). With the recent technological advances and tools in imaging and surgical procedures, the management of ankle sprains - including subtalar injuries - has drastically improved. The repair or reconstruction of ankle ligaments is getting more anatomical and less invasive than previously. More specifically, ligamentous reconstruction with tendon graft has been the gold standard in the management of severely damaged ligament, however, it does not reproduce the original ultrastructure of the ankle ligaments. The anatomical ligament structure of a ligament comprises a ligament with enthesis at both ends and the structure should also exhibit proprioceptive function. To date, it remains impossible to reconstruct a functionally intact and anatomical ligament. Cooperation of the regenerative medicine and surgical technology in expected to improve reconstructions of the ankle ligament, however, we need more time to develop a technology in reproducing the ideal ligament complex. PMID:28979582
3D Printing: current use in facial plastic and reconstructive surgery.
Hsieh, Tsung-Yen; Dedhia, Raj; Cervenka, Brian; Tollefson, Travis T
2017-08-01
To review the use of three-dimensional (3D) printing in facial plastic and reconstructive surgery, with a focus on current uses in surgical training, surgical planning, clinical outcomes, and biomedical research. To evaluate the limitations and future implications of 3D printing in facial plastic and reconstructive surgery. Studies reviewed demonstrated 3D printing applications in surgical planning including accurate anatomic biomodels, surgical cutting guides in reconstruction, and patient-specific implants fabrication. 3D printing technology also offers access to well tolerated, reproducible, and high-fidelity/patient-specific models for surgical training. Emerging research in 3D biomaterial printing have led to the development of biocompatible scaffolds with potential for tissue regeneration in reconstruction cases involving significant tissue absence or loss. Major limitations of utilizing 3D printing technology include time and cost, which may be offset by decreased operating times and collaboration between departments to diffuse in-house printing costs SUMMARY: The current state of the literature shows promising results, but has not yet been validated by large studies or randomized controlled trials. Ultimately, further research and advancements in 3D printing technology should be supported as there is potential to improve resident training, patient care, and surgical outcomes.
Experimental investigations on airborne gravimetry based on compressed sensing.
Yang, Yapeng; Wu, Meiping; Wang, Jinling; Zhang, Kaidong; Cao, Juliang; Cai, Shaokun
2014-03-18
Gravity surveys are an important research topic in geophysics and geodynamics. This paper investigates a method for high accuracy large scale gravity anomaly data reconstruction. Based on the airborne gravimetry technology, a flight test was carried out in China with the strap-down airborne gravimeter (SGA-WZ) developed by the Laboratory of Inertial Technology of the National University of Defense Technology. Taking into account the sparsity of airborne gravimetry by the discrete Fourier transform (DFT), this paper proposes a method for gravity anomaly data reconstruction using the theory of compressed sensing (CS). The gravity anomaly data reconstruction is an ill-posed inverse problem, which can be transformed into a sparse optimization problem. This paper uses the zero-norm as the objective function and presents a greedy algorithm called Orthogonal Matching Pursuit (OMP) to solve the corresponding minimization problem. The test results have revealed that the compressed sampling rate is approximately 14%, the standard deviation of the reconstruction error by OMP is 0.03 mGal and the signal-to-noise ratio (SNR) is 56.48 dB. In contrast, the standard deviation of the reconstruction error by the existing nearest-interpolation method (NIPM) is 0.15 mGal and the SNR is 42.29 dB. These results have shown that the OMP algorithm can reconstruct the gravity anomaly data with higher accuracy and fewer measurements.
Experimental Investigations on Airborne Gravimetry Based on Compressed Sensing
Yang, Yapeng; Wu, Meiping; Wang, Jinling; Zhang, Kaidong; Cao, Juliang; Cai, Shaokun
2014-01-01
Gravity surveys are an important research topic in geophysics and geodynamics. This paper investigates a method for high accuracy large scale gravity anomaly data reconstruction. Based on the airborne gravimetry technology, a flight test was carried out in China with the strap-down airborne gravimeter (SGA-WZ) developed by the Laboratory of Inertial Technology of the National University of Defense Technology. Taking into account the sparsity of airborne gravimetry by the discrete Fourier transform (DFT), this paper proposes a method for gravity anomaly data reconstruction using the theory of compressed sensing (CS). The gravity anomaly data reconstruction is an ill-posed inverse problem, which can be transformed into a sparse optimization problem. This paper uses the zero-norm as the objective function and presents a greedy algorithm called Orthogonal Matching Pursuit (OMP) to solve the corresponding minimization problem. The test results have revealed that the compressed sampling rate is approximately 14%, the standard deviation of the reconstruction error by OMP is 0.03 mGal and the signal-to-noise ratio (SNR) is 56.48 dB. In contrast, the standard deviation of the reconstruction error by the existing nearest-interpolation method (NIPM) is 0.15 mGal and the SNR is 42.29 dB. These results have shown that the OMP algorithm can reconstruct the gravity anomaly data with higher accuracy and fewer measurements. PMID:24647125
High quality digital holographic reconstruction on analog film
NASA Astrophysics Data System (ADS)
Nelsen, B.; Hartmann, P.
2017-05-01
High quality real-time digital holographic reconstruction, i.e. at 30 Hz frame rates, has been at the forefront of research and has been hailed as the holy grail of display systems. While these efforts have produced a fascinating array of computer algorithms and technology, many applications of reconstructing high quality digital holograms do not require such high frame rates. In fact, applications such as 3D holographic lithography even require a stationary mask. Typical devices used for digital hologram reconstruction are based on spatial-light-modulator technology and this technology is great for reconstructing arbitrary holograms on the fly; however, it lacks the high spatial resolution achievable by its analog counterpart, holographic film. Analog holographic film is therefore the method of choice for reconstructing highquality static holograms. The challenge lies in taking a static, high-quality digitally calculated hologram and effectively writing it to holographic film. We have developed a theoretical system based on a tunable phase plate, an intensity adjustable high-coherence laser and a slip-stick based piezo rotation stage to effectively produce a digitally calculated hologram on analog film. The configuration reproduces the individual components, both the amplitude and phase, of the hologram in the Fourier domain. These Fourier components are then individually written on the holographic film after interfering with a reference beam. The system is analogous to writing angularly multiplexed plane waves with individual component phase control.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hep, J.; Konecna, A.; Krysl, V.
2011-07-01
This paper describes the application of effective source in forward calculations and the adjoint method to the solution of fast neutron fluence and activation detector activities in the reactor pressure vessel (RPV) and RPV cavity of a VVER-440 reactor. Its objective is the demonstration of both methods on a practical task. The effective source method applies the Boltzmann transport operator to time integrated source data in order to obtain neutron fluence and detector activities. By weighting the source data by time dependent decay of the detector activity, the result of the calculation is the detector activity. Alternatively, if the weightingmore » is uniform with respect to time, the result is the fluence. The approach works because of the inherent linearity of radiation transport in non-multiplying time-invariant media. Integrated in this way, the source data are referred to as the effective source. The effective source in the forward calculations method thereby enables the analyst to replace numerous intensive transport calculations with a single transport calculation in which the time dependence and magnitude of the source are correctly represented. In this work, the effective source method has been expanded slightly in the following way: neutron source data were performed with few group method calculation using the active core calculation code MOBY-DICK. The follow-up neutron transport calculation was performed using the neutron transport code TORT to perform multigroup calculations. For comparison, an alternative method of calculation has been used based upon adjoint functions of the Boltzmann transport equation. Calculation of the three-dimensional (3-D) adjoint function for each required computational outcome has been obtained using the deterministic code TORT and the cross section library BGL440. Adjoint functions appropriate to the required fast neutron flux density and neutron reaction rates have been calculated for several significant points within the RPV and RPV cavity of the VVER-440 reacto rand located axially at the position of maximum power and at the position of the weld. Both of these methods (the effective source and the adjoint function) are briefly described in the present paper. The paper also describes their application to the solution of fast neutron fluence and detectors activities for the VVER-440 reactor. (authors)« less
Reactor Dosimetry State of the Art 2008
NASA Astrophysics Data System (ADS)
Voorbraak, Wim; Debarberis, Luigi; D'Hondt, Pierre; Wagemans, Jan
2009-08-01
Oral session 1: Retrospective dosimetry. Retrospective dosimetry of VVER 440 reactor pressure vessel at the 3rd unit of Dukovany NPP / M. Marek ... [et al.]. Retrospective dosimetry study at the RPV of NPP Greifswald unit 1 / J. Konheiser ... [et al.]. Test of prototype detector for retrospective neutron dosimetry of reactor internals and vessel / K. Hayashi ... [et al.]. Neutron doses to the concrete vessel and tendons of a magnox reactor using retrospective dosimetry / D. A. Allen ... [et al.]. A retrospective dosimetry feasibility study for Atucha I / J. Wagemans ... [et al.]. Retrospective reactor dosimetry with zirconium alloy samples in a PWR / L. R. Greenwood and J. P. Foster -- Oral session 2: Experimental techniques. Characterizing the Time-dependent components of reactor n/y environments / P. J. Griffin, S. M. Luker and A. J. Suo-Anttila. Measurements of the recoil-ion response of silicon carbide detectors to fast neutrons / F. H. Ruddy, J. G. Seidel and F. Franceschini. Measurement of the neutron spectrum of the HB-4 cold source at the high flux isotope reactor at Oak Ridge National Laboratory / J. L. Robertson and E. B. Iverson. Feasibility of cavity ring-down laser spectroscopy for dose rate monitoring on nuclear reactor / H. Tomita ... [et al.]. Measuring transistor damage factors in a non-stable defect environment / D. B. King ... [et al.]. Neutron-detection based monitoring of void effects in boiling water reactors / J. Loberg ... [et al.] -- Poster session 1: Power reactor surveillance, retrospective dosimetry, benchmarks and inter-comparisons, adjustment methods, experimental techniques, transport calculations. Improved diagnostics for analysis of a reactor pulse radiation environment / S. M. Luker ... [et al.]. Simulation of the response of silicon carbide fast neutron detectors / F. Franceschini, F. H. Ruddy and B. Petrović. NSV A-3: a computer code for least-squares adjustment of neutron spectra and measured dosimeter responses / J. G. Williams, A. P. Ribaric and T. Schnauber. Agile high-fidelity MCNP model development techniques for rapid mechanical design iteration / J. A. Kulesza.Extension of Raptor-M3G to r-8-z geometry for use in reactor dosimetry applications / M. A. Hunter, G. Longoni and S. L. Anderson. In vessel exposure distributions evaluated with MCNP5 for Atucha II / J. M. Longhino, H. Blaumann and G. Zamonsky. Atucha I nuclear power plant azimutal ex-vessel flux profile evaluation / J. M. Longhino ... [et al.]. UFTR thermal column characterization and redesign for maximized thermal flux / C. Polit and A. Haghighat. Activation counter using liquid light-guide for dosimetry of neutron burst / M. Hayashi ... [et al.]. Control rod reactivity curves for the annular core research reactor / K. R. DePriest ... [et al.]. Specification of irradiation conditions in VVER-440 surveillance positions / V. Kochkin ... [et al.]. Simulations of Mg-Ar ionisation and TE-TE ionisation chambers with MCNPX in a straightforward gamma and beta irradiation field / S. Nievaart ... [et al.]. The change of austenitic stainless steel elements content in the inner parts of VVER-440 reactor during operation / V. Smutný, J. Hep and P. Novosad. Fast neutron environmental spectrometry using disk activation / G. Lövestam ... [et al.]. Optimization of the neutron activation detector location scheme for VVER-lOOO ex-vessel dosimetry / V. N. Bukanov ... [et al.]. Irradiation conditions for surveillance specimens located into plane containers installed in the WWER-lOOO reactor of unit 2 of the South-Ukrainian NPP / O. V. Grytsenko. V. N. Bukanov and S. M. Pugach. Conformity between LRO mock-ups and VVERS NPP RPV neutron flux attenuation / S. Belousov. Kr. Ilieva and D. Kirilova. FLUOLE: a new relevant experiment for PWR pressure vessel surveillance / D. Beretz ... [et al.]. Transport of neutrons and photons through the iron and water layers / M. J. Kost'ál ... [et al.]. Condition evaluation of spent nuclear fuel assemblies from the first-generation nuclear-powered submarines by gamma scanning / A. F. Usatyi. L. A. Serdyukova and B. S. Stepennov -- Oral session 3: Power plant surveillance. Upgraded neutron dosimetry procedure for VVER-440 surveillance specimens / V. Kochkin ... [et al.]. Neutron dosimetry on the full-core first generation VVER-440 aimed to reactor support structure load evaluation / P. Borodkin ... [et al.]. Ex-vessel neutron dosimetry programs for PWRs in Korea / C. S. Yoo. B. C. Kim and C. C. Kim. Comparison of irradiation conditions of VVER-1000 reactor pressure vessel and surveillance specimens for various core loadings / V. N. Bukanov ... [et al.]. Re-evaluation of dosimetry in the new surveillance program for the Loviisa 1 VVER-440 reactor / T. Serén -- Oral session 4: Benchmarks, intercomparisons and adjustment methods. Determination of the neutron parameter's uncertainties using the stochastic methods of uncertainty propagation and analysis / G. Grégoire ... [et al.].Covariance matrices for calculated neutron spectra and measured dosimeter responses / J. G. Williams ... [et al.]. The role of dosimetry at the high flux reactor / S. C. van der Marek ... [et al.]. Calibration of a manganese bath relative to Cf-252 nu-bar / D. M. Gilliam, A. T. Yue and M. Scott Dewey. Major upgrade of the reactor dosimetry interpretation methodology used at the CEA: general principle / C. Destouches ... [et al.] -- Oral session 5: power plant surveillance. The role of ex-vessel neutron dosimetry in reactor vessel surveillance in South Korea / B.-C. Kim ... [et al.]. Spanish RPV surveillance programmes: lessons learned and current activities / A. Ballesteros and X. Jardí. Atucha I nuclear power plant extended dosimetry and assessment / H. Blaumann ... [et al.]. Monitoring of radiation load of pressure vessels of Russian VVER in compliance with license amendments / G. Borodkin ... [et al.] -- Poster session 2: Test reactors, accelerators and advanced systems; cross sections, nuclear data, damage correlations. Two-dimensional mapping of the calculated fission power for the full-size fuel plate experiment irradiated in the advanced test reactor / G. S. Chang and M. A. Lillo. The radiation safety information computational center: a resource for reactor dosimetry software and nuclear data / B. L. Kirk. Irradiated xenon isotopic ratio measurement for failed fuel detection and location in fast reactor / C. Ito, T. Iguchi and H. Harano. Characterization of dosimetry of the BMRR horizontal thimble tubes and broad beam facility / J.-P. Hu, R. N. Reciniello and N. E. Holden. 2007 nuclear data review / N. E. Holden. Further dosimetry studies at the Rhode Island nuclear science / R. N. Reciniello ... [et al.]. Characterization of neutron fields in the experimental fast reactor Joyo MK-III core / S. Maeda ... [et al.]. Measuring [symbol]Li(n, t) and [symbol]B(n, [symbol]) cross sections using the NIST alpha-gamma apparatus / M. S. Dewey ... [et al.]. Improvement of neutron/gamma field evaluation for restart of JMTR / Y. Nagao ... [et al.]. Monitoring of the irradiated neutron fluence in the neutron transmutation doping process of HANARO / M.-S. Kim and S.-J. Park.Training reactor VR-l neutron spectrum determination / M. Vins, A. Kolros and K. Katovsky. Differential cross sections for gamma-ray production by 14 MeV neutrons on iron and bismuth / V. M. Bondar ... [et al.]. The measurements of the differential elastic neutron cross-sections of carbon for energies from 2 to 133 ke V / O. Gritzay ... [et al.]. Determination of neutron spectrum by the dosimetry foil method up to 35 Me V / S. P. Simakov ... [et al.]. Extension of the BGL broad group cross section library / D. Kirilova, S. Belousov and Kr. Ilieva. Measurements of neutron capture cross-section for tantalum at the neutron filtered beams / O. Gritzayand V. Libman. Measurements of microscopic data at GELINA in support of dosimetry / S. Kopecky ... [et al.]. Nuclide guide and international chart of nuclides - 2008 / T. Golashvili -- Oral session 6: Test reactors, accelerators and advanced systems. Neutronic analyses in support of the HFIR beamline modifications and lifetime extension / I. Remec and E. D. Blakeman. Characterization of neutron test facilities at Sandia National Laboratories / D. W. Vehar ... [et al.]. LYRA irradiation experiments: neutron metrology and dosimetry / B. Acosta and L. Debarberis. Calculated neutron and gamma-ray spectra across the prismatic very high temperature reactor core / J. W. Sterbentz. Enhancement of irradiation capability of the experimental fast reactor joyo / S. Maeda ... [et al.]. Neutron spectrum analyses by foil activation method for high-energy proton beams / C. H. Pyeon ... [et al.] -- Oral session 7: Cross sections, nuclear data, damage correlations. Investigation of new reaction cross-section evaluations in order to update and extend the IRDF-2002 reactor dosimetry library / É. M. Zsolnay, H. J. Nolthenius and A. L. Nichols. A novel approach towards DPA calculations / A. Hogenbirk and D. F. Da Cruz. A new ENDFIB-VII.O based multigroup cross-section library for reactor dosimetry / F. A. Alpan and S. L. Anderson. Activities at the NEA for dosimetry applications / H. Henriksson and I. Kodeli. Validation and verification of covariance data from dosimetry reaction cross-section evaluations / S. Badikov. Status of the neutron cross section standards / A. D. Carlson -- Oral session 8: transport calculations. A dosimetry assessment for the core restraint of an advanced gas cooled reactor / D. A. Thornton ... [et al.]. Neutron dosimetry study in the region of the support structure of a VVER-1000 type reactor / G. Borodkin ... [et al.]. SNS moderator poison design and experiment validation of the moderator performance / W. Lu ... [et al.]. Analysis of OSIRIS in-core surveillance dosimetry for GONDOLE steel irradiation program by using TRIPOLI-4 Monte Carlo code / Y. K. Lee and F. Malouch.Reactor dosimetry applications using RAPTOR-M3G: a new parallel 3-D radiation transport code / G. Longoni and S. L. Anderson.
NASA Astrophysics Data System (ADS)
Marshalkin, V. E.; Povyshev, V. M.
2015-12-01
A method for joint utilization of non-weapons-grade plutonium and highly enriched uranium in the thorium-uranium—plutonium oxide fuel of a water-moderated reactor with a varying water composition (D2O, H2O) is proposed. The method is characterized by efficient breeding of the 233U isotope and safe reactor operation and is comparatively simple to implement.
Decay heat power of spent nuclear fuel of power reactors with high burnup at long-term storage
NASA Astrophysics Data System (ADS)
Ternovykh, Mikhail; Tikhomirov, Georgy; Saldikov, Ivan; Gerasimov, Alexander
2017-09-01
Decay heat power of actinides and fission products from spent nuclear fuel of power VVER-1000 type reactors at long-term storage is calculated. Two modes of storage are considered: mode in which single portion of actinides or fission products is loaded in storage facility, and mode in which actinides or fission products from spent fuel of one VVER reactor are added every year in storage facility during 30 years and then accumulated nuclides are stored without addition new nuclides. Two values of fuel burnup 40 and 70 MW·d/kg are considered for the mode of storage of single fuel unloading. For the mode of accumulation of spent fuel with subsequent storage, one value of burnup of 70 MW·d/kg is considered. Very long time of storage 105 years accepted in calculations allows to simulate final geological disposal of radioactive wastes. Heat power of fission products decreases quickly after 50-100 years of storage. The power of actinides decreases very slow. In passing from 40 to 70 MW·d/kg, power of actinides increases due to accumulation of higher fraction of 244Cm. These data are important in the back end of fuel cycle when improved cooling system of the storage facility will be required along with stronger radiation protection during storage, transportation and processing.
Hölgye, Z; Filgas, R
2006-04-01
Airborne effluents of 5 stacks (stacks 1-5) of three nuclear power plants, with 9 pressurized water reactors VVER of 4,520 MWe total power, were searched for transuranium isotopes in different time periods. The search started in 1985. The subject of this work is a presentation of discharge data for the period of 1998-2003 and a final evaluation. It was found that 238Pu, 239,240Pu, 241Am, 242Cm, and 244Cm can be present in airborne effluents. Transuranium isotope contents in most of the quarterly effluent samples from stacks 2, 4 and 5 were not measurable. Transuranium isotopes were present in the effluents from stack l during all 9 years of the study and from stack 3 since the 3rd quarter of 1996 as a result of a defect in the fuel cladding. A relatively high increase of transuranium isotopes in effluents from stack 3 occurred in the 3rd quarter of 1999, and a smaller increase occurred in the 3rd quarter of 2003. In each instance 242Cm prevailed in the transuranium isotope mixtures. 238Pu/239,240Pu, 241Am/239,240Pu, 242Cm/239,240Pu, and 244Cm/239,240Pu ratios in fuel for different burn-up were calculated, and comparison of these ratios in fuel and effluents was performed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sienicki, J.J.
A fast running and simple computer code has been developed to calculate pressure loadings inside light water reactor containments/confinements under loss-of-coolant accident conditions. PACER was originally developed to calculate containment/confinement pressure and temperature time histories for loss-of-coolant accidents in Soviet-designed VVER reactors and is relevant to the activities of the US International Nuclear Safety Center. The code employs a multicompartment representation of the containment volume and is focused upon application to early time containment phenomena during and immediately following blowdown. PACER has been developed for FORTRAN 77 and earlier versions of FORTRAN. The code has been successfully compiled and executedmore » on SUN SPARC and Hewlett-Packard HP-735 workstations provided that appropriate compiler options are specified. The code incorporates both capabilities built around a hardwired default generic VVER-440 Model V230 design as well as fairly general user-defined input. However, array dimensions are hardwired and must be changed by modifying the source code if the number of compartments/cells differs from the default number of nine. Detailed input instructions are provided as well as a description of outputs. Input files and selected output are presented for two sample problems run on both HP-735 and SUN SPARC workstations.« less
Comparison of ENDF/B-VII.1 and JEFF-3.2 in VVER-1000 operational data calculation
NASA Astrophysics Data System (ADS)
Frybort, Jan
2017-09-01
Safe operation of a nuclear reactor requires an extensive calculational support. Operational data are determined by full-core calculations during the design phase of a fuel loading. Loading pattern and design of fuel assemblies are adjusted to meet safety requirements and optimize reactor operation. Nodal diffusion code ANDREA is used for this task in case of Czech VVER-1000 reactors. Nuclear data for this diffusion code are prepared regularly by lattice code HELIOS. These calculations are conducted in 2D on fuel assembly level. There is also possibility to calculate these macroscopic data by Monte-Carlo Serpent code. It can make use of alternative evaluated libraries. All calculations are affected by inherent uncertainties in nuclear data. It is useful to see results of full-core calculations based on two sets of diffusion data obtained by Serpent code calculations with ENDF/B-VII.1 and JEFF-3.2 nuclear data including also decay data library and fission yields data. The comparison is based directly on fuel assembly level macroscopic data and resulting operational data. This study illustrates effect of evaluated nuclear data library on full-core calculations of a large PWR reactor core. The level of difference which results exclusively from nuclear data selection can help to understand the level of inherent uncertainties of such full-core calculations.
Cone beam computed tomography in veterinary dentistry.
Van Thielen, Bert; Siguenza, Francis; Hassan, Bassam
2012-01-01
The purpose of this study was to assess the feasibility of cone beam computed tomography (CBCT) in imaging dogs and cats for diagnostic dental veterinary applications. CBCT scans of heads of six dogs and two cats were made. Dental panoramic and multi-planar reformatted (MPR) para-sagittal reconstructions were created using specialized software. Image quality and visibility of anatomical landmarks were subjectively assessed by two observers. Good image quality was obtained for the MPR para-sagittal reconstructions through multiple teeth. The image quality of the panoramic reconstructions of dogs was moderate while the panoramic reconstructions of cats were poor since the images were associated with an increased noise level. Segmental panoramic reconstructions of the mouth seem to be useful for studying the dental anatomy especially in dogs. The results of this study using human dental CBCT technology demonstrate the potential of this scanning technology in veterinary medicine. Unfortunately, the moderate image quality obtained with the CBCT technique reported here seems to be inferior to the diagnostic image quality obtained from 2-dimensional dental radiographs. Further research is required to optimize scanning and reconstruction protocols for veterinary applications.
3D-Printing Technologies for Craniofacial Rehabilitation, Reconstruction, and Regeneration.
Nyberg, Ethan L; Farris, Ashley L; Hung, Ben P; Dias, Miguel; Garcia, Juan R; Dorafshar, Amir H; Grayson, Warren L
2017-01-01
The treatment of craniofacial defects can present many challenges due to the variety of tissue-specific requirements and the complexity of anatomical structures in that region. 3D-printing technologies provide clinicians, engineers and scientists with the ability to create patient-specific solutions for craniofacial defects. Currently, there are three key strategies that utilize these technologies to restore both appearance and function to patients: rehabilitation, reconstruction and regeneration. In rehabilitation, 3D-printing can be used to create prostheses to replace or cover damaged tissues. Reconstruction, through plastic surgery, can also leverage 3D-printing technologies to create custom cutting guides, fixation devices, practice models and implanted medical devices to improve patient outcomes. Regeneration of tissue attempts to replace defects with biological materials. 3D-printing can be used to create either scaffolds or living, cellular constructs to signal tissue-forming cells to regenerate defect regions. By integrating these three approaches, 3D-printing technologies afford the opportunity to develop personalized treatment plans and design-driven manufacturing solutions to improve aesthetic and functional outcomes for patients with craniofacial defects.
3D-Printing Technologies for Craniofacial Rehabilitation, Reconstruction, and Regeneration
Nyberg, Ethan L.; Farris, Ashley L.; Hung, Ben P.; Dias, Miguel; Garcia, Juan R.; Dorafshar, Amir H.; Grayson, Warren L.
2016-01-01
The treatment of craniofacial defects can present many challenges due to the variety of tissue-specific requirements and the complexity of anatomical structures in that region. 3D-printing technologies provide clinicians, engineers and scientists with the ability to create patient-specific solutions for craniofacial defects. Currently, there are 3 key strategies that utilize these technologies to restore both appearance and function to patients: rehabilitation, reconstruction and regeneration. In rehabilitation, 3D-printing can be used to create prostheses to replace or cover damaged tissues. Reconstruction, through plastic surgery, can also leverage 3D-printing technologies to create custom cutting guides, fixation devices, practice models and implanted medical devices to improve patient outcomes. Regeneration of tissue attempts to replace defects with biological materials. 3D-printing can be used to create either scaffolds or living, cellular constructs to signal tissue-forming cells to regenerate defect regions. By integrating these three approaches, 3D-printing technologies afford the opportunity to develop personalized treatment plans and design-driven manufacturing solutions to improve aesthetic and functional outcomes for patients with craniofacial defects. PMID:27295184
Guo, Ying; Shan, Jing; Zhang, Tianyu
2017-08-01
Although ear reconstruction technology has been highly developed in recent years, hair growth on the reconstructed ear has plagued both surgeons and patients. In this paper, the authors introduce a clinical application of intense pulsed light depilation in total auricular reconstruction. From August 2012 to August 2013, 27 patients (28 ears) suffering from congenital microtia were treated by intense pulsed light depilation (650-950-nm filter, initial fluence of 14-16 J/cm 2 and gradually increased, pulse width of 30-50 ms, spot size of 20 × 30 mm 2 , intervals of 6-8 weeks, a total of four sessions) either before or after auricular reconstruction. According to the treatment situation at diagnosis, the patients were divided into two groups: the preoperative group and the postoperative group. There were no differences between the two groups in terms of age or initial fluence for hair removal; however, there were less treatments in the former than in the latter group (preoperative group 4.1 ± 0.3, postoperative group 4.7 ± 0.7, F = 9.10, P = 0.006), and the maximum fluence used for hair removal was lower in the former than in the latter group (preoperative group 18-20 J/cm 2 , postoperative group 19-22 J/cm 2 , F = 22.31, P < 0.001). After follow-up for ≥4-6 months, the effective rate was 100% in the preoperative group, and the effective rate was 80% in the postoperative group. Intense pulsed light depilation technology is a reasonable complementary approach to total auricular reconstruction. And preoperative depilation is recommended over postoperative depilation. The non-invasive modern photonic technology can resolve the problem of postoperative residual hair on the reconstructed auricle, improving auricular shape and increasing patient satisfaction. In addition, an adequately set preoperative hair removal area can provide surface skin that is most similar to normal auricle skin for auricular reconstruction.
Ettinger, Kyle S; Alexander, Amy E; Arce, Kevin
2018-04-10
Virtual surgical planning (VSP), computer-aided design and computer-aided modeling, and 3-dimensional printing are 3 distinct technologies that have become increasingly used in head and neck oncology and microvascular reconstruction. Although each of these technologies has long been used for treatment planning in other surgical disciplines, such as craniofacial surgery, trauma surgery, temporomandibular joint surgery, and orthognathic surgery, its widespread use in head and neck reconstructive surgery remains a much more recent event. In response to the growing trend of VSP being used for the planning of fibular free flaps in head and neck reconstruction, some surgeons have questioned the technology's implementation based on its inadequacy in addressing other reconstructive considerations beyond hard tissue anatomy. Detractors of VSP for head and neck reconstruction highlight its lack of capability in accounting for multiple reconstructive factors, such as recipient vessel selection, vascular pedicle reach, need for dead space obliteration, and skin paddle perforator location. It is with this premise in mind that the authors report on a straightforward technique for anatomically localizing peroneal artery perforators during VSP for osteocutaneous fibular free flaps in which bone and a soft tissue skin paddle are required for ablative reconstruction. The technique allows for anatomic perforator localization during the VSP session based solely on data existent at preoperative computed tomographic angiography (CTA); it does not require any modifications to preoperative clinical workflows. It is the authors' presumption that many surgeons in the field are unaware of this planning capability within the context of modern VSP for head and neck reconstruction. The primary purpose of this report is to introduce and further familiarize surgeons with the technique of CTA perforator localization as a method of improving intraoperative fidelity for VSP of osteocutaneous fibular free flaps. Copyright © 2018. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Guo, Kai; Xie, Yongjie; Ye, Hu; Zhang, Song; Li, Yunfei
2018-04-01
Due to the uncertainty of stratospheric airship's shape and the security problem caused by the uncertainty, surface reconstruction and surface deformation monitoring of airship was conducted based on laser scanning technology and a √3-subdivision scheme based on Shepard interpolation was developed. Then, comparison was conducted between our subdivision scheme and the original √3-subdivision scheme. The result shows our subdivision scheme could reduce the shrinkage of surface and the number of narrow triangles. In addition, our subdivision scheme could keep the sharp features. So, surface reconstruction and surface deformation monitoring of airship could be conducted precisely by our subdivision scheme.
Reconstructed imaging of acoustic cloak using time-lapse reversal method
NASA Astrophysics Data System (ADS)
Zhou, Chen; Cheng, Ying; Xu, Jian-yi; Li, Bo; Liu, Xiao-jun
2014-08-01
We proposed and investigated a solution to the inverse acoustic cloak problem, an anti-stealth technology to make cloaks visible, using the time-lapse reversal (TLR) method. The TLR method reconstructs the image of an unknown acoustic cloak by utilizing scattered acoustic waves. Compared to previous anti-stealth methods, the TLR method can determine not only the existence of a cloak but also its exact geometric information like definite shape, size, and position. Here, we present the process for TLR reconstruction based on time reversal invariance. This technology may have potential applications in detecting various types of cloaks with different geometric parameters.
NASA Astrophysics Data System (ADS)
Guo, Zhenyan; Song, Yang; Yuan, Qun; Wulan, Tuya; Chen, Lei
2017-06-01
In this paper, a transient multi-parameter three-dimensional (3D) reconstruction method is proposed to diagnose and visualize a combustion flow field. Emission and transmission tomography based on spatial phase-shifted technology are combined to reconstruct, simultaneously, the various physical parameter distributions of a propane flame. Two cameras triggered by the internal trigger mode capture the projection information of the emission and moiré tomography, respectively. A two-step spatial phase-shifting method is applied to extract the phase distribution in the moiré fringes. By using the filtered back-projection algorithm, we reconstruct the 3D refractive-index distribution of the combustion flow field. Finally, the 3D temperature distribution of the flame is obtained from the refractive index distribution using the Gladstone-Dale equation. Meanwhile, the 3D intensity distribution is reconstructed based on the radiation projections from the emission tomography. Therefore, the structure and edge information of the propane flame are well visualized.
Three-Dimensional Anatomic Evaluation of the Anterior Cruciate Ligament for Planning Reconstruction
Hoshino, Yuichi; Kim, Donghwi; Fu, Freddie H.
2012-01-01
Anatomic study related to the anterior cruciate ligament (ACL) reconstruction surgery has been developed in accordance with the progress of imaging technology. Advances in imaging techniques, especially the move from two-dimensional (2D) to three-dimensional (3D) image analysis, substantially contribute to anatomic understanding and its application to advanced ACL reconstruction surgery. This paper introduces previous research about image analysis of the ACL anatomy and its application to ACL reconstruction surgery. Crucial bony landmarks for the accurate placement of the ACL graft can be identified by 3D imaging technique. Additionally, 3D-CT analysis of the ACL insertion site anatomy provides better and more consistent evaluation than conventional “clock-face” reference and roentgenologic quadrant method. Since the human anatomy has a complex three-dimensional structure, further anatomic research using three-dimensional imaging analysis and its clinical application by navigation system or other technologies is warranted for the improvement of the ACL reconstruction. PMID:22567310
Auricular reconstruction for microtia: Part II. Surgical techniques.
Walton, Robert L; Beahm, Elisabeth K
2002-07-01
Reconstruction of the microtic ear represents one of the most demanding challenges in reconstructive surgery. In this review the two most commonly used techniques for ear reconstruction, the Brent and Nagata techniques, are addressed in detail. Unique to this endeavor, the originator of each technique has been allowed to submit representative case material and to address the pros and cons of the other's technique. What follows is a detailed, insightful overview of microtia reconstruction, as a state of the art. The review then details commonly encountered problems in ear reconstruction and pertinent technical points. Finally, a glimpse into the future is offered with an accounting of the advances made in tissue engineering as this technology applies to auricular reconstruction.
NASA Astrophysics Data System (ADS)
Nevinitsa, V. A.; Dudnikov, A. A.; Blandinskiy, V. Yu.; Balanin, A. L.; Alekseev, P. N.; Titarenko, Yu. E.; Batyaev, V. F.; Pavlov, K. V.; Titarenko, A. Yu.
2015-12-01
A subcritical molten salt reactor with an external neutron source is studied computationally as a facility for incineration and transmutation of minor actinides from spent nuclear fuel of reactors of VVER-1000 type and for producing 233U from 232Th. The reactor configuration is chosen, the requirements to be imposed on the external neutron source are formulated, and the equilibrium isotopic composition of heavy nuclides and the key parameters of the fuel cycle are calculated.
Optimization of the water chemistry of the primary coolant at nuclear power plants with VVER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barmin, L. F.; Kruglova, T. K.; Sinitsyn, V. P.
2005-01-15
Results of the use of automatic hydrogen-content meter for controlling the parameter of 'hydrogen' in the primary coolant circuit of the Kola nuclear power plant are presented. It is shown that the correlation between the 'hydrogen' parameter in the coolant and the 'hydrazine' parameter in the makeup water can be used for controlling the water chemistry of the primary coolant system, which should make it possible to optimize the water chemistry at different power levels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshalkin, V. E., E-mail: marshalkin@vniief.ru; Povyshev, V. M.
A method for joint utilization of non-weapons-grade plutonium and highly enriched uranium in the thorium–uranium—plutonium oxide fuel of a water-moderated reactor with a varying water composition (D{sub 2}O, H{sub 2}O) is proposed. The method is characterized by efficient breeding of the {sup 233}U isotope and safe reactor operation and is comparatively simple to implement.
The basic features of a closed fuel cycle without fast reactors
NASA Astrophysics Data System (ADS)
Bobrov, E. A.; Alekseev, P. N.; Teplov, P. S.
2017-01-01
In this paper the basic features of a closed fuel cycle with thermal reactors are considered. The three variants of multiple Pu and U recycling in VVER reactors was investigated. The comparison of MOX and REMIX fuel approaches for closed fuel cycle with thermal reactors is presented. All variants make possible to recycle several times the total amount of Pu and U obtained from spent fuel. The reported study was funded by RFBR according to the research project № 16-38-00021
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalugin, A. V., E-mail: Kalugin-AV@nrcki.ru; Tebin, V. V.
The specific features of calculation of the effective multiplication factor using the Monte Carlo method for weakly coupled and non-asymptotic multiplying systems are discussed. Particular examples are considered and practical recommendations on detection and Monte Carlo calculation of systems typical in numerical substantiation of nuclear safety for VVER fuel management problems are given. In particular, the problems of the choice of parameters for the batch mode and the method for normalization of the neutron batch, as well as finding and interpretation of the eigenvalue spectrum for the integral fission matrix, are discussed.
Harless, Christin A; Jacobson, Steven R
2016-05-01
Reported complication rates of implant-based breast reconstruction in the literature exceed 50%, with mastectomy skin flap necrosis reported to occur in up to 25% of cases. Laser-assisted indocyanine green angiography (LA-ICGA) technology allows the surgeon to optimize preservation of the mastectomy skin flap while avoiding skin necrosis. The purpose of this study was to determine if outcomes of breast reconstruction are beneficially affected by using LA-ICGA. A total 269 consecutive women (467 breast reconstructions) undergoing implant-based breast reconstruction from 2008 to 2013 were examined. The complication rates of those who underwent reconstruction prior to the implementation of LA-ICGA were compared with those who were reconstructed after implementation of LA-ICGA. A total of 254 consecutive breast reconstructions were performed prior to implementation of LA-ICGA, and 213 breasts were reconstructed with the use of LA-ICGA. After implementation of LA-ICGA System, the rate of mastectomy skin flap necrosis decreased by 86% (6.7% versus 0.9%, p = 0.02). The overall complication rate prior to LA-ICGA was 13.8% compared with 6.6% with the use of LA-ICGA (p = 0.01). After LA-ICGA was incorporated, the percentage of patients undergoing single-stage reconstruction increased from 12% to 32% (p = <0.001). Implementation of LA-ICGA provides the surgeon with an objective assessment of mastectomy flap perfusion resulting in a trend toward overall reduction in complications as well as an 86% decrease in the rate of subsequent skin necrosis. The objective assessment of mastectomy flap perfusion allows the surgeon to tailor breast reconstruction intraoperatively, in real-time, adjusting for the individual patient's mastectomy flap perfusion. © 2016 Wiley Periodicals, Inc.
[Graphic reconstruction of anatomic surfaces].
Ciobanu, O
2004-01-01
The paper deals with the graphic reconstruction of anatomic surfaces in a virtual 3D setting. Scanning technologies and soft provides a greater flexibility in the digitization of surfaces and a higher resolution and accuracy. An alternative cheap method for the reconstruction of 3D anatomic surfaces is presented in connection with some studies and international projects developed by Medical Design research team.
Review of advanced catheter technologies in radiation oncology brachytherapy procedures
Zhou, Jun; Zamdborg, Leonid; Sebastian, Evelyn
2015-01-01
The development of new catheter and applicator technologies in recent years has significantly improved treatment accuracy, efficiency, and outcomes in brachytherapy. In this paper, we review these advances, focusing on the performance of catheter imaging and reconstruction techniques in brachytherapy procedures using magnetic resonance images and electromagnetic tracking. The accuracy of catheter reconstruction, imaging artifacts, and other notable properties of plastic and titanium applicators in gynecologic treatments are reviewed. The accuracy, noise performance, and limitations of electromagnetic tracking for catheter reconstruction are discussed. Several newly developed applicators for accelerated partial breast irradiation and gynecologic treatments are also reviewed. New hypofractionated high dose rate treatment schemes in prostate cancer and accelerated partial breast irradiation are presented. PMID:26203277
Reconstructing the Pupils Attitude towards Technology-Survey
ERIC Educational Resources Information Center
Ardies, Jan; De Maeyer, Sven; Gijbels, David
2013-01-01
In knowledge based economies technological literacy is gaining interest. Technological literacy correlates with attitude towards technology. When measuring technological literacy as an outcome of education, the attitudinal dimension has to be taken into account. This requires a valid, reliable instrument that should be as concise as possible, in…
Chatterjee, Abhishek; Krishnan, Naveen M; Van Vliet, Michael M; Powell, Stephen G; Rosen, Joseph M; Ridgway, Emily B
2013-05-01
Laser-assisted indocyanine green angiography is a U.S. Food and Drug Administration-approved technology used to assess tissue viability and perfusion. Its use in plastic and reconstructive surgery to assess flap perfusion in autologous breast reconstruction is relatively new. There have been no previous studies evaluating the cost-effectiveness of this new technology compared with the current practice of clinical judgment in evaluating tissue perfusion and viability in free autologous breast reconstruction in patients who have undergone mastectomy. A comprehensive literature review was performed to identify the complication rate of the most common complications with and without laser-assisted indocyanine green angiography in free autologous breast reconstruction after mastectomy. These probabilities were combined with Medicare Current Procedural Terminology provider reimbursement codes (cost) and utility estimates for common complications from a survey of 10 plastic surgeons to fit into a decision model to evaluate the cost-effectiveness of laser-assisted indocyanine green angiography. The decision model revealed a baseline cost difference of $773.66 and a 0.22 difference in the quality-adjusted life-years, yielding an incremental cost-utility ratio of $3516.64 per quality-adjusted life year favoring laser-assisted indocyanine green angiography. Sensitivity analysis showed that using laser-assisted indocyanine green angiography was more cost-effective when the complication rate without using laser-assisted indocyanine green angiography (clinical judgment alone) was 4 percent or higher. The authors' study demonstrates that laser-assisted indocyanine green angiography is a cost-effective technology under the most stringent acceptable thresholds when used in immediate free autologous breast reconstruction.
Three-Dimensional Printing in Plastic and Reconstructive Surgery: A Systematic Review.
Bauermeister, Adam J; Zuriarrain, Alexander; Newman, Martin I
2016-11-01
Increasingly affordable three-dimensional (3D) printing technologies now make it possible for surgeons to create highly customizable patient-tailored products. This process provides the potential to produce individualized artificial and biologic implants, regenerative scaffolds, and cell-specific replacement tissue and organs. The combination of accurate volumetric analysis and production of 3D printed biologic materials are evolving techniques that demonstrate great promise in achieving an accurate and naturally appearing anthropomorphic reconstruction. This systematic review summarizes the current published literature and known ongoing research on 3D printing in the field of plastic and reconstructive surgery (PRS). Three medical databases (PubMed, Ovid MEDLINE, and Google Scholar) as well as recent news articles and university websites were searched using PRS and industry-related search terms. Inclusion criteria consisted of any publication or reputable news or academic article in electronic or printed media directly studying or commenting on the use of 3D printing technology in relation to PRS. The current literature was critically appraised, and quality of selected articles was assessed and manually filtered for relevance by 2 reviewers. A total of 1092 articles were identified from the aforementioned sources discussing 3D printing in medicine. The 3D printing in relation to biologic and surgical applications was discussed in 226 articles. Within this subset, 103 articles were included in the review. Of those selected, 5 were pertinent to surgical planning, training, and patient education; 4 to upper extremity and hand prosthetics; 24 to bone and craniomaxillofacial (CMF) reconstruction; 10 to breast reconstruction; 20 to nose, ear, and cartilage reconstruction; 20 to skin; and finally 20 involving overlapping general topics in 3D printing and PRS. The 3D printing provides the ability to construct complex individualized implants that not only improve patient outcomes but also increase economic feasibility. The technology offers a potential level of accessibility that is paramount for remote and resource-limited locations where health care is most often limited. The 3D printing-based technologies will have an immense impact on the reconstruction of traumatic injuries, facial and limb prosthetic development, as well as advancements in biologic and synthetic implants.
Space Archaeology: Attribute, Object, Task and Method
NASA Astrophysics Data System (ADS)
Wang, Xinyuan; Guo, Huadong; Luo, Lei; Liu, Chuansheng
2017-04-01
Archaeology takes the material remains of human activity as the research object, and uses those fragmentary remains to reconstruct the humanistic and natural environment in different historical periods. Space Archaeology is a new branch of the Archaeology. Its study object is the humanistic-natural complex including the remains of human activities and living environments on the earth surface. The research method, space information technologies applied to this complex, is an innovative process concerning archaeological information acquisition, interpretation and reconstruction, and to achieve the 3-D dynamic reconstruction of cultural heritages by constructing the digital cultural-heritage sphere. Space archaeology's attribute is highly interdisciplinary linking several areas of natural and social and humanities. Its task is to reveal the history, characteristics, and patterns of human activities in the past, as well as to understand the evolutionary processes guiding the relationship between human and their environment. This paper summarizes six important aspects of space archaeology and five crucial recommendations for the establishment and development of this new discipline. The six important aspects are: (1) technologies and methods for non-destructive detection of archaeological sites; (2) space technologies for the protection and monitoring of cultural heritages; (3) digital environmental reconstruction of archaeological sites; (4) spatial data storage and data mining of cultural heritages; (5) virtual archaeology, digital reproduction and public information and presentation system; and (6) the construction of scientific platform of digital cultural-heritage sphere. The five key recommendations for establishing the discipline of Space Archaeology are: (1) encouraging the full integration of the strengths of both archaeology and museology with space technology to promote the development of space technologies' application for cultural heritages; (2) a new disciplinary framework for guiding current researches on space technologies for cultural heritages required; (3) the large cultural heritages desperately need to carrying out the key problems research of the theory-technology-application integration to obtain essential and overall scientific understanding of heritages; (4) focusing planning and implementation of major scientific programs on earth observation for cultural heritage, including those relevant to the development of theory and methods, technology combination and applicability, impact assessments and virtual reconstruction; and (5) taking full advantage of cultural heritages and earth observation sciences to strengthen space archaeology for improvements and refinements in both disciplinary practices and theoretical development. Several case studies along the ancient Silk Road were given to demonstrate the potential benefits of space archaeology.
Iyer, Rajiv R; Wu, Adela; Macmillan, Alexandra; Musavi, Leila; Cho, Regina; Lopez, Joseph; Jallo, George I; Dorafshar, Amir H; Ahn, Edward S
2018-01-01
Cranial vault remodeling surgery for craniosynostosis carries the potential risk of dural venous sinus injury given the extensive bony exposure. Identification of the dural venous sinuses can be challenging in patients with craniosynostosis given the lack of accurate surface-localizing landmarks. Computer-aided design and manufacturing (CAD/CAM) has allowed surgeons to pre-operatively plan these complex procedures in an effort to increase reconstructive efficiency. An added benefit of this technology is the ability to intraoperatively map the dural venous sinuses based on pre-operative imaging. We utilized CAD/CAM technology to intraoperatively map the dural venous sinuses for patients undergoing reconstructive surgery for craniosynostosis in an effort to prevent sinus injury, increase operative efficiency, and enhance patient safety. Here, we describe our experience utilizing this intraoperative technology in pediatric patients with craniosynostosis. We retrospectively reviewed the charts of children undergoing reconstructive surgery for craniosynostosis using CAD/CAM surgical planning guides at our institution between 2012 and 2016. Data collected included the following: age, gender, type of craniosynostosis, estimated blood loss, sagittal sinus deviation from the sagittal suture, peri-operative outcomes, and hospital length of stay. Thirty-two patients underwent reconstructive cranial surgery for craniosynostosis, with a median age of 11 months (range, 7-160). Types of synostosis included metopic (6), unicoronal (6), sagittal (15), lambdoid (1), and multiple suture (4). Sagittal sinus deviation from the sagittal suture was maximal in unicoronal synostosis patients (10.2 ± 0.9 mm). All patients tolerated surgery well, and there were no occurrences of sagittal sinus, transverse sinus, or torcular injury. The use of CAD/CAM technology allows for accurate intraoperative dural venous sinus localization during reconstructive surgery for craniosynostosis and enhances operative efficiency and surgeon confidence while minimizing the risk of patient morbidity.
Bosch, Carles; Martínez, Albert; Masachs, Nuria; Teixeira, Cátia M; Fernaud, Isabel; Ulloa, Fausto; Pérez-Martínez, Esther; Lois, Carlos; Comella, Joan X; DeFelipe, Javier; Merchán-Pérez, Angel; Soriano, Eduardo
2015-01-01
The fine analysis of synaptic contacts is usually performed using transmission electron microscopy (TEM) and its combination with neuronal labeling techniques. However, the complex 3D architecture of neuronal samples calls for their reconstruction from serial sections. Here we show that focused ion beam/scanning electron microscopy (FIB/SEM) allows efficient, complete, and automatic 3D reconstruction of identified dendrites, including their spines and synapses, from GFP/DAB-labeled neurons, with a resolution comparable to that of TEM. We applied this technology to analyze the synaptogenesis of labeled adult-generated granule cells (GCs) in mice. 3D reconstruction of dendritic spines in GCs aged 3-4 and 8-9 weeks revealed two different stages of dendritic spine development and unexpected features of synapse formation, including vacant and branched dendritic spines and presynaptic terminals establishing synapses with up to 10 dendritic spines. Given the reliability, efficiency, and high resolution of FIB/SEM technology and the wide use of DAB in conventional EM, we consider FIB/SEM fundamental for the detailed characterization of identified synaptic contacts in neurons in a high-throughput manner.
Bosch, Carles; Martínez, Albert; Masachs, Nuria; Teixeira, Cátia M.; Fernaud, Isabel; Ulloa, Fausto; Pérez-Martínez, Esther; Lois, Carlos; Comella, Joan X.; DeFelipe, Javier; Merchán-Pérez, Angel; Soriano, Eduardo
2015-01-01
The fine analysis of synaptic contacts is usually performed using transmission electron microscopy (TEM) and its combination with neuronal labeling techniques. However, the complex 3D architecture of neuronal samples calls for their reconstruction from serial sections. Here we show that focused ion beam/scanning electron microscopy (FIB/SEM) allows efficient, complete, and automatic 3D reconstruction of identified dendrites, including their spines and synapses, from GFP/DAB-labeled neurons, with a resolution comparable to that of TEM. We applied this technology to analyze the synaptogenesis of labeled adult-generated granule cells (GCs) in mice. 3D reconstruction of dendritic spines in GCs aged 3–4 and 8–9 weeks revealed two different stages of dendritic spine development and unexpected features of synapse formation, including vacant and branched dendritic spines and presynaptic terminals establishing synapses with up to 10 dendritic spines. Given the reliability, efficiency, and high resolution of FIB/SEM technology and the wide use of DAB in conventional EM, we consider FIB/SEM fundamental for the detailed characterization of identified synaptic contacts in neurons in a high-throughput manner. PMID:26052271
Supersonic Flight Dynamics Test: Trajectory, Atmosphere, and Aerodynamics Reconstruction
NASA Technical Reports Server (NTRS)
Kutty, Prasad; Karlgaard, Christopher D.; Blood, Eric M.; O'Farrell, Clara; Ginn, Jason M.; Shoenenberger, Mark; Dutta, Soumyo
2015-01-01
The Supersonic Flight Dynamics Test is a full-scale flight test of a Supersonic Inflatable Aerodynamic Decelerator, which is part of the Low Density Supersonic Decelerator technology development project. The purpose of the project is to develop and mature aerodynamic decelerator technologies for landing large mass payloads on the surface of Mars. The technologies include a Supersonic Inflatable Aerodynamic Decelerator and Supersonic Parachutes. The first Supersonic Flight Dynamics Test occurred on June 28th, 2014 at the Pacific Missile Range Facility. This test was used to validate the test architecture for future missions. The flight was a success and, in addition, was able to acquire data on the aerodynamic performance of the supersonic inflatable decelerator. This paper describes the instrumentation, analysis techniques, and acquired flight test data utilized to reconstruct the vehicle trajectory, atmosphere, and aerodynamics. The results of the reconstruction show significantly higher lofting of the trajectory, which can partially be explained by off-nominal booster motor performance. The reconstructed vehicle force and moment coefficients fall well within pre-flight predictions. A parameter identification analysis indicates that the vehicle displayed greater aerodynamic static stability than seen in pre-flight computational predictions and ballistic range tests.
Application of CFX-10 to the Investigation of RPV Coolant Mixing in VVER Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moretti, Fabio; Melideo, Daniele; Terzuoli, Fulvio
2006-07-01
Coolant mixing phenomena occurring in the pressure vessel of a nuclear reactor constitute one of the main objectives of investigation by researchers concerned with nuclear reactor safety. For instance, mixing plays a relevant role in reactivity-induced accidents initiated by de-boration or boron dilution events, followed by transport of a de-borated slug into the vessel of a pressurized water reactor. Another example is constituted by temperature mixing, which may sensitively affect the consequences of a pressurized thermal shock scenario. Predictive analysis of mixing phenomena is strongly improved by the availability of computational tools able to cope with the inherent three-dimensionality ofmore » such problem, like system codes with three-dimensional capabilities, and Computational Fluid Dynamics (CFD) codes. The present paper deals with numerical analyses of coolant mixing in the reactor pressure vessel of a VVER-1000 reactor, performed by the ANSYS CFX-10 CFD code. In particular, the 'swirl' effect that has been observed to take place in the downcomer of such kind of reactor has been addressed, with the aim of assessing the capability of the codes to predict that effect, and to understand the reasons for its occurrence. Results have been compared against experimental data from V1000CT-2 Benchmark. Moreover, a boron mixing problem has been investigated, in the hypothesis that a de-borated slug, transported by natural circulation, enters the vessel. Sensitivity analyses have been conducted on some geometrical features, model parameters and boundary conditions. (authors)« less
Prehistoric cooking versus accurate palaeotemperature records in shell midden constituents.
Müller, Peter; Staudigel, Philip T; Murray, Sean T; Vernet, Robert; Barusseau, Jean-Paul; Westphal, Hildegard; Swart, Peter K
2017-06-15
The reconstruction of pre-depositional cooking treatments used by prehistoric coastal populations for processing aquatic faunal resources is often difficult in archaeological shell midden assemblages. Besides limiting our knowledge of various social, cultural, economic and technological aspects of shell midden formation, unknown pre-depositional cooking techniques can also introduce large errors in palaeoclimate reconstructions as they can considerably alter the geochemical proxy signatures in calcareous skeletal structures such as bivalve shells or fish otoliths. Based on experimental and archaeological data, we show that carbonate clumped-isotope thermometry can be used to detect and reconstruct prehistoric processing methods in skeletal aragonite from archaeological shell midden assemblages. Given the temperature-dependent re-equilibration of clumped isotopes in aragonitic carbonates, this allows specific processing, cooking or trash dispersal strategies such as boiling, roasting, or burning to be differentiated. Besides permitting the detailed reconstruction of cultural or technological aspects of shell midden formation, this also allows erroneous palaeoclimate reconstructions to be avoided as all aragonitic shells subjected to pre-historic cooking methods show a clear alteration of their initial oxygen isotopic composition.
Experience with the Use of Prebent Plates for the Reconstruction of Mandibular Defects
Salgueiro, Martin I.; Stevens, Mark R.
2010-01-01
Bending of large titanium plates for mandibular reconstruction is a tedious task. This is usually done by trial and error over an intraoperatively bent template. By means of rapid prototype technology, accurate three-dimensional models can be obtained. Using these models, it is possible to design, obtain, and adapt custom hardware for individual surgical cases. Reductions of operating room time when using this technology have been reported from 17% to 60%, with an average of 20%. This translates to reduction of cost and risks, improving the overall surgical outcome. The purpose of this article is to establish the indications and contraindication for the use three-dimensional models and prebent plates. We present our experience with five cases in which prebent reconstruction plates were used for mandibular reconstruction. No significant complications occurred, and satisfactory results were achieved in all cases. We found that the models required to obtain the hardware are extremely accurate, have multiple reported applications, and represent a valuable surgical tool in the planning and execution of reconstructive surgery. PMID:22132258
NASA Astrophysics Data System (ADS)
Makisha, Nikolay; Gogina, Elena
2017-11-01
Protection of water bodies has a strict dependence on reliable operation of engineering systems and facilities for water supply and sewage. The majority of these plants and stations has been constructed in 1970-1980's in accordance with rules and regulations of that time. So now most of them require reconstruction due to serious physical or/and technological wear. The current condition of water supply and sewage systems and facilities frequently means a hidden source of serious danger for normal life support and ecological safety of cities and towns. The article reveals an obtained experience and modern approaches for reconstruction of waste water and sludge treatment plants that proved their efficiency even if applied in limited conditions such as area limits, investments limits. The main directions of reconstruction: overhaul repair and partial modernization of existing facilities on the basis of initial project; - restoration and modernization of existing systems on the basis on the current documents and their current condition; upgrade of waste water treatment plants (WWTPs) performance on the basis of modern technologies and methods; reconstruction of sewage systems and facilities and treatment quality improvement.
Yoon, Young-Gyu; Dai, Peilun; Wohlwend, Jeremy; Chang, Jae-Byum; Marblestone, Adam H; Boyden, Edward S
2017-01-01
We here introduce and study the properties, via computer simulation, of a candidate automated approach to algorithmic reconstruction of dense neural morphology, based on simulated data of the kind that would be obtained via two emerging molecular technologies-expansion microscopy (ExM) and in-situ molecular barcoding. We utilize a convolutional neural network to detect neuronal boundaries from protein-tagged plasma membrane images obtained via ExM, as well as a subsequent supervoxel-merging pipeline guided by optical readout of information-rich, cell-specific nucleic acid barcodes. We attempt to use conservative imaging and labeling parameters, with the goal of establishing a baseline case that points to the potential feasibility of optical circuit reconstruction, leaving open the possibility of higher-performance labeling technologies and algorithms. We find that, even with these conservative assumptions, an all-optical approach to dense neural morphology reconstruction may be possible via the proposed algorithmic framework. Future work should explore both the design-space of chemical labels and barcodes, as well as algorithms, to ultimately enable routine, high-performance optical circuit reconstruction.
USSR Report, Science and Technology Policy.
1987-05-28
rate on the basis of the priority allocation of capital investments in the technical retooling and reconstruction of existing production. Their...development, as well as in the drafting of proposals for reconstruction and for the creation of new capacities for series production. The comparison...of variants of reconstruction of an ore dressing combine, which was made in USSR Gosplan departments on the basis of the analysis of the efficiency
Yano, Kenji; Taminato, Mifue; Nomori, Michiko; Hosokawa, Ko
2017-01-01
Background: Autologous breast reconstruction can be performed for breasts with ptosis to a certain extent, but if patients desire to correct ptosis, mastopexy of the contralateral breast is indicated. However, accurate prediction of post-mastopexy breast shape is difficult to make, and symmetrical breast reconstruction requires certain experience. We have previously reported the use of three-dimensional (3D) imaging and printing technologies in deep inferior epigastric artery perforator (DIEP) flap breast reconstruction. In the present study, these technologies were applied to the reconstruction of breasts with ptosis. Methods: Eight breast cancer patients with ptotic breasts underwent two-stage unilateral DIEP flap breast reconstruction. In the initial surgery, tissue expander (TE) placement and contralateral mastopexy are performed simultaneously. Four to six months later, 3D bilateral breast imaging is performed after confirming that the shape of the contralateral breast (post-mastopexy) is somewhat stabilized, and a 3D-printed breast mold is created based on the mirror image of the shape of the contralateral breast acquired using analytical software. Then, DIEP flap surgery is performed, where the breast mold is used to determine the required flap volume and to shape the breast mound. Results: All flaps were engrafted without any major perioperative complications during both the initial and DIEP flap surgeries. Objective assessment of cosmetic outcome revealed that good breast symmetry was achieved in all cases. Conclusions: The method described here may allow even inexperienced surgeons to achieve reconstruction of symmetrical, non-ptotic breasts with ease and in a short time. While the requirement of two surgeries is a potential disadvantage, our method will be particularly useful in cases involving TEs, i.e., delayed reconstruction or immediate reconstruction involving significant skin resection. PMID:29184728
Rapid prototyping-assisted maxillofacial reconstruction.
Peng, Qian; Tang, Zhangui; Liu, Ousheng; Peng, Zhiwei
2015-05-01
Rapid prototyping (RP) technologies have found many uses in dentistry, and especially oral and maxillofacial surgery, due to its ability to promote product development while at the same time reducing cost and depositing a part of any degree of complexity theoretically. This paper provides an overview of RP technologies for maxillofacial reconstruction covering both fundamentals and applications of the technologies. Key fundamentals of RP technologies involving the history, characteristics, and principles are reviewed. A number of RP applications to the main fields of oral and maxillofacial surgery, including restoration of maxillofacial deformities and defects, reduction of functional bone tissues, correction of dento-maxillofacial deformities, and fabrication of maxillofacial prostheses, are discussed. The most remarkable challenges for development of RP-assisted maxillofacial surgery and promising solutions are also elaborated.
Ciobanu, O
2009-01-01
The objective of this study was to obtain three-dimensional (3D) images and to perform biomechanical simulations starting from DICOM images obtained by computed tomography (CT). Open source software were used to prepare digitized 2D images of tissue sections and to create 3D reconstruction from the segmented structures. Finally, 3D images were used in open source software in order to perform biomechanic simulations. This study demonstrates the applicability and feasibility of open source software developed in our days for the 3D reconstruction and biomechanic simulation. The use of open source software may improve the efficiency of investments in imaging technologies and in CAD/CAM technologies for implants and prosthesis fabrication which need expensive specialized software.
Maximizing results for lipofilling in facial reconstruction.
Barret, Juan P; Sarobe, Neus; Grande, Nelida; Vila, Delia; Palacin, Jose M
2009-07-01
Lipostructure (also known as structural fat grafts, lipofilling, or fat grafting) has become a technique with a good reputation and reproducible results. The application of this technology in patients undergoing reconstruction is a novel surgical alternative. Obtaining good results in this patient population is very difficult, but the application of small fat grafts with a strict Coleman technique produces long-term cosmetic effects. Adult-derived stem cells have been pointed out as important effectors of this regenerative technology, and future research should focus in this direction.
Li, Xiucan; Wang, Yiguo; Zhao, Yongfei; Liu, Jianheng; Xiao, Songhua; Mao, Keya
2017-11-15
MINI: A 3D printing technology is proposed for reconstructing multilevel cervical spine (C2-C4) after resection of metastatic papillary thyroid carcinoma. The personalized porous implant printed in Ti6AL4V provided excellent physicochemical properties and biological performance, including biocompatibility, osteogenic activity, and bone ingrowth effect. A unique case report. A three-dimensional (3D) printing technology is proposed for reconstructing multilevel cervical spine (C2-C4) after resection of metastatic papillary thyroid carcinoma in a middle-age female patient. Papillary thyroid carcinoma is a malignant neoplasm with a relatively favorable prognosis. A metastatic lesion in multilevel cervical spine (C2-C4) destroys neurological functions and causes local instability. Radical excision of the metastasis and reconstruction of the cervical vertebrae sequence conforms with therapeutic principles, whereas the special-shaped multilevel upper-cervical spine requires personalized implants. 3D printing is an additive manufacturing technology that produces personalized products by accurately layering material under digital model control via a computer. Reporting of this recent technology for reconstructing multilevel cervical spine (C2-C4) is rare in the literature. Anterior-posterior surgery was performed in one stage. Radical resection of the metastatic lesion (C2-C4) and thyroid gland, along with insertion of a personalized implant manufactured by 3D printing technology, were performed to rebuild the cervical spine sequences. The porous implant was printed in Ti6AL4V with perfect physicochemical properties and biological performance, such as biocompatibility and osteogenic activity. Finally, lateral mass screw fixation was performed via a posterior approach. Patient neurological function gradually improved after the surgery. The patient received 11/17 on the Japanese Orthopedic Association scale and ambulated with a personalized skull-neck-thorax orthosis on postoperative day 11. She received radioiodine I therapy. The plane x-rays and computed tomography revealed no implant displacement or subsidence at the 12-month follow-up mark. The presented case substantiates the use of 3D printing technology, which enables the personalization of products to solve unconventional problems in spinal surgery. 5.
Development of 3D microwave imaging technology for damage assessment of concrete bridge.
DOT National Transportation Integrated Search
2003-11-01
An innovative microwave 3-dimensional (3D) sub-surface imaging technology is developed for : detecting and quantitatively assessing internal damage of concrete structures. This technology is : based on reconstruction of dielectric profile (image) of ...
Sun, J; Wang, T; Li, Z D; Shao, Y; Zhang, Z Y; Feng, H; Zou, D H; Chen, Y J
2017-12-01
To reconstruct a vehicle-bicycle-cyclist crash accident and analyse the injuries using 3D laser scanning technology, multi-rigid-body dynamics and optimized genetic algorithm, and to provide biomechanical basis for the forensic identification of death cause. The vehicle was measured by 3D laser scanning technology. The multi-rigid-body models of cyclist, bicycle and vehicle were developed based on the measurements. The value range of optimal variables was set. A multi-objective genetic algorithm and the nondominated sorting genetic algorithm were used to find the optimal solutions, which were compared to the record of the surveillance video around the accident scene. The reconstruction result of laser scanning on vehicle was satisfactory. In the optimal solutions found by optimization method of genetic algorithm, the dynamical behaviours of dummy, bicycle and vehicle corresponded to that recorded by the surveillance video. The injury parameters of dummy were consistent with the situation and position of the real injuries on the cyclist in accident. The motion status before accident, damage process by crash and mechanical analysis on the injury of the victim can be reconstructed using 3D laser scanning technology, multi-rigid-body dynamics and optimized genetic algorithm, which have application value in the identification of injury manner and analysis of death cause in traffic accidents. Copyright© by the Editorial Department of Journal of Forensic Medicine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gordienko, P. V., E-mail: gorpavel@vver.kiae.ru; Kotsarev, A. V.; Lizorkin, M. P.
2014-12-15
The procedure of recovery of pin-by-pin energy-release fields for the BIPR-8 code and the algorithm of the BIPR-8 code which is used in nodal computation of the reactor core and on which the recovery of pin-by-pin fields of energy release is based are briefly described. The description and results of the verification using the module of recovery of pin-by-pin energy-release fields and the TVS-M program are given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nevinitsa, V. A., E-mail: Neviniza-VA@nrcki.ru; Dudnikov, A. A.; Blandinskiy, V. Yu.
2015-12-15
A subcritical molten salt reactor with an external neutron source is studied computationally as a facility for incineration and transmutation of minor actinides from spent nuclear fuel of reactors of VVER-1000 type and for producing {sup 233}U from {sup 232}Th. The reactor configuration is chosen, the requirements to be imposed on the external neutron source are formulated, and the equilibrium isotopic composition of heavy nuclides and the key parameters of the fuel cycle are calculated.
Rezaeian, M; Kamali, J
2017-01-01
Dual-purpose casks can be utilized for dry interim storage and transportation of the highly radioactive spent fuel assemblies (SFAs) of Bushehr Nuclear Power Plant (NPP). Criticality safety analysis was carried out using the MCNP code for the cask containing 12, 18, or 19 SFAs. The basket materials of borated stainless steel and Boral (Al-B 4 C) were investigated, and the minimum required receptacle pitch of the basket was determined. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chen, T N; Yin, X T; Li, X G; Zhao, J; Wang, L; Mu, N; Ma, K; Huo, K; Liu, D; Gao, B Y; Feng, H; Li, F
2018-05-08
Objective: To explore the clinical and teaching application value of virtual reality technology in preoperative planning and intraoperative guide of glioma located in central sulcus region. Method: Ten patients with glioma in the central sulcus region were proposed to surgical treatment. The neuro-imaging data, including CT, CTA, DSA, MRI, fMRI were input to 3dgo sczhry workstation for image fusion and 3D reconstruction. Spatial relationships between the lesions and the surrounding structures on the virtual reality image were obtained. These images were applied to the operative approach design, operation process simulation, intraoperative auxiliary decision and the training of specialist physician. Results: Intraoperative founding of 10 patients were highly consistent with preoperative simulation with virtual reality technology. Preoperative 3D reconstruction virtual reality images improved the feasibility of operation planning and operation accuracy. This technology had not only shown the advantages for neurological function protection and lesion resection during surgery, but also improved the training efficiency and effectiveness of dedicated physician by turning the abstract comprehension to virtual reality. Conclusion: Image fusion and 3D reconstruction based virtual reality technology in glioma resection is helpful for formulating the operation plan, improving the operation safety, increasing the total resection rate, and facilitating the teaching and training of the specialist physician.
Low-Cost 3D Printing Orbital Implant Templates in Secondary Orbital Reconstructions.
Callahan, Alison B; Campbell, Ashley A; Petris, Carisa; Kazim, Michael
Despite its increasing use in craniofacial reconstructions, three-dimensional (3D) printing of customized orbital implants has not been widely adopted. Limitations include the cost of 3D printers able to print in a biocompatible material suitable for implantation in the orbit and the breadth of available implant materials. The authors report the technique of low-cost 3D printing of orbital implant templates used in complex, often secondary, orbital reconstructions. A retrospective case series of 5 orbital reconstructions utilizing a technique of 3D printed orbital implant templates is presented. Each patient's Digital Imaging and Communications in Medicine data were uploaded and processed to create 3D renderings upon which a customized implant was designed and sent electronically to printers open for student use at our affiliated institutions. The mock implants were sterilized and used intraoperatively as a stencil and mold. The final implant material was chosen by the surgeons based on the requirements of the case. Five orbital reconstructions were performed with this technique: 3 tumor reconstructions and 2 orbital fractures. Four of the 5 cases were secondary reconstructions. Molded Medpor Titan (Stryker, Kalamazoo, MI) implants were used in 4 cases and titanium mesh in 1 case. The stenciled and molded implants were adjusted no more than 2 times before anchored in place (mean 1). No case underwent further revision. The technique and cases presented demonstrate 1) the feasibility and accessibility of low-cost, independent use of 3D printing technology to fashion patient-specific implants in orbital reconstructions, 2) the ability to apply this technology to the surgeon's preference of any routinely implantable material, and 3) the utility of this technique in complex, secondary reconstructions.
Bischel, Alexander; Stratis, Andreas; Bosmans, Hilde; Jacobs, Reinhilde; Gassner, Eva-Maria; Puelacher, Wolfgang; Pauwels, Ruben
2017-01-01
Objectives: The objective of this study was to determine how iterative reconstruction technology (IRT) influences contrast and spatial resolution in ultralow-dose dentomaxillofacial CT imaging. Methods: A polymethyl methacrylate phantom with various inserts was scanned using a reference protocol (RP) at CT dose index volume 36.56 mGy, a sinus protocol at 18.28 mGy and ultralow-dose protocols (LD) at 4.17 mGy, 2.36 mGy, 0.99 mGy and 0.53 mGy. All data sets were reconstructed using filtered back projection (FBP) and the following IRTs: adaptive statistical iterative reconstructions (ASIRs) (ASIR-50, ASIR-100) and model-based iterative reconstruction (MBIR). Inserts containing line-pair patterns and contrast detail patterns for three different materials were scored by three observers. Observer agreement was analyzed using Cohen's kappa and difference in performance between the protocols and reconstruction was analyzed with Dunn's test at α = 0.05. Results: Interobserver agreement was acceptable with a mean kappa value of 0.59. Compared with the RP using FBP, similar scores were achieved at 2.36 mGy using MBIR. MIBR reconstructions showed the highest noise suppression as well as good contrast even at the lowest doses. Overall, ASIR reconstructions did not outperform FBP. Conclusions: LD and MBIR at a dose reduction of >90% may show no significant differences in spatial and contrast resolution compared with an RP and FBP. Ultralow-dose CT and IRT should be further explored in clinical studies. PMID:28059562
Davy-Jow, Stephanie Lynn; Lees, Duncan M B; Russell, Sean
2013-01-10
Full-body 3D virtual reconstructions were generated using 3D technology and anthropometry following the death of a young girl, allegedly from severe malnutrition as a result of abuse and neglect. Close range laser scanning, in conjunction with full colour digital texture photography, was used to document the child's condition shortly after death in order to demonstrate the number and pattern of injuries and to be able to demonstrate her condition forensically. Full-body digital reconstructions were undertaken to illustrate the extent of the malnutrition by comparing the processed post mortem scans with reconstructed images at normal weight for height and age. This is the first known instance of such an investigative tool. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
[Impact of digital technology on clinical practices: perspectives from surgery].
Zhang, Y; Liu, X J
2016-04-09
Digital medical technologies or computer aided medical procedures, refer to imaging, 3D reconstruction, virtual design, 3D printing, navigation guided surgery and robotic assisted surgery techniques. These techniques are integrated into conventional surgical procedures to create new clinical protocols that are known as "digital surgical techniques". Conventional health care is characterized by subjective experiences, while digital medical technologies bring quantifiable information, transferable data, repeatable methods and predictable outcomes into clinical practices. Being integrated into clinical practice, digital techniques facilitate surgical care by improving outcomes and reducing risks. Digital techniques are becoming increasingly popular in trauma surgery, orthopedics, neurosurgery, plastic and reconstructive surgery, imaging and anatomic sciences. Robotic assisted surgery is also evolving and being applied in general surgery, cardiovascular surgery and orthopedic surgery. Rapid development of digital medical technologies is changing healthcare and clinical practices. It is therefore important for all clinicians to purposefully adapt to these technologies and improve their clinical outcomes.
Integration of real-time 3D capture, reconstruction, and light-field display
NASA Astrophysics Data System (ADS)
Zhang, Zhaoxing; Geng, Zheng; Li, Tuotuo; Pei, Renjing; Liu, Yongchun; Zhang, Xiao
2015-03-01
Effective integration of 3D acquisition, reconstruction (modeling) and display technologies into a seamless systems provides augmented experience of visualizing and analyzing real objects and scenes with realistic 3D sensation. Applications can be found in medical imaging, gaming, virtual or augmented reality and hybrid simulations. Although 3D acquisition, reconstruction, and display technologies have gained significant momentum in recent years, there seems a lack of attention on synergistically combining these components into a "end-to-end" 3D visualization system. We designed, built and tested an integrated 3D visualization system that is able to capture in real-time 3D light-field images, perform 3D reconstruction to build 3D model of the objects, and display the 3D model on a large autostereoscopic screen. In this article, we will present our system architecture and component designs, hardware/software implementations, and experimental results. We will elaborate on our recent progress on sparse camera array light-field 3D acquisition, real-time dense 3D reconstruction, and autostereoscopic multi-view 3D display. A prototype is finally presented with test results to illustrate the effectiveness of our proposed integrated 3D visualization system.
Oh, Ji-Hyeon
2018-12-01
With the development of computer-aided design/computer-aided manufacturing (CAD/CAM) technology, it has been possible to reconstruct the cranio-maxillofacial defect with more accurate preoperative planning, precise patient-specific implants (PSIs), and shorter operation times. The manufacturing processes include subtractive manufacturing and additive manufacturing and should be selected in consideration of the material type, available technology, post-processing, accuracy, lead time, properties, and surface quality. Materials such as titanium, polyethylene, polyetheretherketone (PEEK), hydroxyapatite (HA), poly-DL-lactic acid (PDLLA), polylactide-co-glycolide acid (PLGA), and calcium phosphate are used. Design methods for the reconstruction of cranio-maxillofacial defects include the use of a pre-operative model printed with pre-operative data, printing a cutting guide or template after virtual surgery, a model after virtual surgery printed with reconstructed data using a mirror image, and manufacturing PSIs by directly obtaining PSI data after reconstruction using a mirror image. By selecting the appropriate design method, manufacturing process, and implant material according to the case, it is possible to obtain a more accurate surgical procedure, reduced operation time, the prevention of various complications that can occur using the traditional method, and predictive results compared to the traditional method.
Reconstruction of Micropattern Detector Signals using Convolutional Neural Networks
NASA Astrophysics Data System (ADS)
Flekova, L.; Schott, M.
2017-10-01
Micropattern gaseous detector (MPGD) technologies, such as GEMs or MicroMegas, are particularly suitable for precision tracking and triggering in high rate environments. Given their relatively low production costs, MPGDs are an exemplary candidate for the next generation of particle detectors. Having acknowledged these advantages, both the ATLAS and CMS collaborations at the LHC are exploiting these new technologies for their detector upgrade programs in the coming years. When MPGDs are utilized for triggering purposes, the measured signals need to be precisely reconstructed within less than 200 ns, which can be achieved by the usage of FPGAs. In this work, we present a novel approach to identify reconstructed signals, their timing and the corresponding spatial position on the detector. In particular, we study the effect of noise and dead readout strips on the reconstruction performance. Our approach leverages the potential of convolutional neural network (CNNs), which have recently manifested an outstanding performance in a range of modeling tasks. The proposed neural network architecture of our CNN is designed simply enough, so that it can be modeled directly by an FPGA and thus provide precise information on reconstructed signals already in trigger level.
Francaviglia, Natale; Maugeri, Rosario; Odierna Contino, Antonino; Meli, Francesco; Fiorenza, Vito; Costantino, Gabriele; Giammalva, Roberto Giuseppe; Iacopino, Domenico Gerardo
2017-01-01
Cranioplasty represents a challenge in neurosurgery. Its goal is not only plastic reconstruction of the skull but also to restore and preserve cranial function, to improve cerebral hemodynamics, and to provide mechanical protection of the neural structures. The ideal material for the reconstructive procedures and the surgical timing are still controversial. Many alloplastic materials are available for performing cranioplasty and among these, titanium still represents a widely proven and accepted choice. The aim of our study was to present our preliminary experience with a "custom-made" cranioplasty, using electron beam melting (EBM) technology, in a series of ten patients. EBM is a new sintering method for shaping titanium powder directly in three-dimensional (3D) implants. To the best of our knowledge this is the first report of a skull reconstruction performed by this technique. In a 1-year follow-up no postoperative complications have been observed and good clinical and esthetic outcomes were achieved. Costs higher than those for other types of titanium mesh, a longer production process, and the greater expertise needed for this technique are compensated by the achievement of most complex skull reconstructions with a shorter operative time.
Research of cartographer laser SLAM algorithm
NASA Astrophysics Data System (ADS)
Xu, Bo; Liu, Zhengjun; Fu, Yiran; Zhang, Changsai
2017-11-01
As the indoor is a relatively closed and small space, total station, GPS, close-range photogrammetry technology is difficult to achieve fast and accurate indoor three-dimensional space reconstruction task. LIDAR SLAM technology does not rely on the external environment a priori knowledge, only use their own portable lidar, IMU, odometer and other sensors to establish an independent environment map, a good solution to this problem. This paper analyzes the Google Cartographer laser SLAM algorithm from the point cloud matching and closed loop detection. Finally, the algorithm is presented in the 3D visualization tool RViz from the data acquisition and processing to create the environment map, complete the SLAM technology and realize the process of indoor threedimensional space reconstruction
Secondary reconstruction of maxillofacial trauma.
Castro-Núñez, Jaime; Van Sickels, Joseph E
2017-08-01
Craniomaxillofacial trauma is one of the most complex clinical conditions in contemporary maxillofacial surgery. Vital structures and possible functional and esthetic sequelae are important considerations following this type of trauma and intervention. Despite the best efforts of the primary surgery, there are a group of patients that will have poor outcomes requiring secondary reconstruction to restore form and function. The purpose of this study is to review current concepts on secondary reconstruction to the maxillofacial complex. The evaluation of a posttraumatic patient for a secondary reconstruction must include an assessment of the different subunits of the upper face, middle face, and lower face. Virtual surgical planning and surgical guides represent the most important innovations in secondary reconstruction over the past few years. Intraoperative navigational surgery/computed-assisted navigation is used in complex cases. Facial asymmetry can be corrected or significantly improved by segmentation of the computerized tomography dataset and mirroring of the unaffected side by means of virtual surgical planning. Navigational surgery/computed-assisted navigation allows for a more precise surgical correction when secondary reconstruction involves the replacement of extensive anatomical areas. The use of technology can result in custom-made replacements and prebent plates, which are more stable and resistant to fracture because of metal fatigue. Careful perioperative evaluation is the key to positive outcomes of secondary reconstruction after trauma. The advent of technological tools has played a capital role in helping the surgical team perform a given treatment plan in a more precise and predictable manner.
Wyles, Cody C; Taunton, Michael J; Jacobson, Steven R; Tran, Nho V; Sierra, Rafael J; Trousdale, Robert T
2015-01-01
Wound necrosis is a potentially devastating complication of complex knee reconstruction. Laser-assisted indocyanine green angiography (LA-ICGA) is a technology that has been described in the plastic surgery literature to provide an objective assessment of skin perfusion in the operating room. This novel technology uses a plasma protein bound dye (ICG) and a camera unit that is calibrated to view the frequency emitted by the dye. The intention of this technology is to offer real-time visualization of blood flow to skin and soft tissue in a way that might help surgeons make decisions about closure or coverage of a surgical site based on blood flow, potentially avoiding soft tissue reconstruction while preventing skin necrosis or wound breakdown after primary closures, but its efficacy is untested in the setting of complex TKA. The purpose of this study was to evaluate perfusion borders and tension ischemia in a series of complex knee reconstructions to guide optimal wound management. Beginning in mid-2011, an LA-ICGA system was used to evaluate soft tissue viability in knee reconstruction procedures that were considered high risk for wound complications. Seven patients undergoing complex primary or revision TKA from 2011 to 2013 were included. These patients were chosen as a convenience sample of knee reconstruction procedures for which we obtained consultation with the plastic surgery service. The perfusion of skin and soft tissue coverage was evaluated intraoperatively for all patients with the LA-ICGA system, and the information was used to guide wound management. Followup was at a mean of 9 months (range, 6-17 months), no patients were lost to followup, and the main study endpoint was uneventful healing of the surgical incision. All seven closures went on to heal without necrosis. One patient, however, was subsequently revised for a deep periprosthetic infection 4 months after their knee reconstruction and underwent flap coverage at the time of that revision. Implementation of LA-ICGA provides an objective intraoperative assessment of soft tissue perfusion. This technology may help guide the surgeon's decisions about wound closure in real-time to accommodate the perfusion challenges unique to each patient. Specifically, patients with medical risk factors for poor perfusion or wound healing (such as diabetes, peripheral vascular disease, tobacco use, corticosteroid therapy, infection) or anatomical/surgical risk factors (ie, previous surgery about the reconstruction site, trauma wounds, or reconstruction of severe deformity) may benefit from objective intraoperative information regarding perfusion of the wound site. Furthermore, LA-ICGA could be used to prospectively evaluate the physiologic impact of different wound closure techniques. Level IV, therapeutic study. See Guidelines for Authors for a complete description of levels of evidence.
Problems in modernization of automation systems at coal preparation plants
NASA Astrophysics Data System (ADS)
Myshlyaev, L. P.; Lyakhovets, M. V.; Venger, K. G.; Leontiev, I. A.; Makarov, G. V.; Salamatin, A. S.
2018-05-01
The factors influencing the process of modernization (reconstruction) of the automation systems at coal preparation plants are described. Problems such as heterogeneity of existing and developed systems, planning of reconstruction of a technological complex without taking into account modernization of automated systems, commissioning without stopping the existing technological complex, as well as problems of conducting procurement procedures are discussed. The option of stage-by-stage start-up and adjustment works in the conditions of modernization of systems without long stops of the process equipment is offered.
Reconstructing the Antikythera Mechanism
NASA Astrophysics Data System (ADS)
Freeth, Tony
The Antikythera Mechanism is a geared astronomical calculating machine from ancient Greece. The extraordinary nature of this device has become even more apparent in recent years as a result of research under the aegis of the Antikythera Mechanism Research Project (AMRP) - an international collaboration of scientists, historians, museum staff, engineers, and imaging specialists. Though many questions still remain, we may now be close to reconstructing the complete machine. As a technological artifact, it is unique in the ancient world. Its brilliant design conception means that it is a landmark in the history of science and technology.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Maximum achievable control technology... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES Requirements for Control Technology Determinations...
The Design of PSB-VVER Experiments Relevant to Accident Management
NASA Astrophysics Data System (ADS)
Nevo, Alessandro Del; D'Auria, Francesco; Mazzini, Marino; Bykov, Michael; Elkin, Ilya V.; Suslov, Alexander
Experimental programs carried-out in integral test facilities are relevant for validating the best estimate thermal-hydraulic codes(1), which are used for accident analyses, design of accident management procedures, licensing of nuclear power plants, etc. The validation process, in fact, is based on well designed experiments. It consists in the comparison of the measured and calculated parameters and the determination whether a computer code has an adequate capability in predicting the major phenomena expected to occur in the course of transient and/or accidents. University of Pisa was responsible of the numerical design of the 12 experiments executed in PSB-VVER facility (2), operated at Electrogorsk Research and Engineering Center (Russia), in the framework of the TACIS 2.03/97 Contract 3.03.03 Part A, EC financed (3). The paper describes the methodology adopted at University of Pisa, starting form the scenarios foreseen in the final test matrix until the execution of the experiments. This process considers three key topics: a) the scaling issue and the simulation, with unavoidable distortions, of the expected performance of the reference nuclear power plants; b) the code assessment process involving the identification of phenomena challenging the code models; c) the features of the concerned integral test facility (scaling limitations, control logics, data acquisition system, instrumentation, etc.). The activities performed in this respect are discussed, and emphasis is also given to the relevance of the thermal losses to the environment. This issue affects particularly the small scaled facilities and has relevance on the scaling approach related to the power and volume of the facility.
NASA Astrophysics Data System (ADS)
Hirschberg, Gábor; Baradlai, Pál; Varga, Kálmán; Myburg, Gerrit; Schunk, János; Tilky, Péter; Stoddart, Paul
Formation, presence and deposition of corrosion product radionuclides (such as 60Co, 51Cr, 54Mn, 59Fe and/or 110mAg) in the primary circuits of water-cooled nuclear reactors (PWRs) throw many obstacles in the way of normal operation. During the course of the work presented in this series, accumulations of such radionuclides have been studied at austenitic stainless steel type 08X18H10T (GOST 5632-61) surfaces (this austenitic stainless steel corresponds to AISI 321). Comparative experiments have been performed on magnetite-covered carbon steel (both materials are frequently used in some Soviet VVER type PWRs). For these laboratory-scale investigations a combination of the in situ radiotracer `thin gap' method and voltammetry is considered to be a powerful tool due to its high sensitivity towards the detection of the submonolayer coverages of corrosion product radionuclides. An independent technique (XPS) is also used to characterize the depth distribution and chemical state of various contaminants in the passive layer formed on austenitic stainless steel. In the first part of the series the accumulation of 110mAg has been investigated. Potential dependent sorption of Ag + ions (cementation) is found to be the predominant process on austenitic steel, while in the case of magnetite-covered carbon steel the silver species are mainly depleted in the form of Ag 2O. The XPS depth profile of Ag gives an evidence about the embedding of metallic silver into the entire passive layer of the austenitic stainless steel studied.
Near real-time digital holographic microscope based on GPU parallel computing
NASA Astrophysics Data System (ADS)
Zhu, Gang; Zhao, Zhixiong; Wang, Huarui; Yang, Yan
2018-01-01
A transmission near real-time digital holographic microscope with in-line and off-axis light path is presented, in which the parallel computing technology based on compute unified device architecture (CUDA) and digital holographic microscopy are combined. Compared to other holographic microscopes, which have to implement reconstruction in multiple focal planes and are time-consuming the reconstruction speed of the near real-time digital holographic microscope can be greatly improved with the parallel computing technology based on CUDA, so it is especially suitable for measurements of particle field in micrometer and nanometer scale. Simulations and experiments show that the proposed transmission digital holographic microscope can accurately measure and display the velocity of particle field in micrometer scale, and the average velocity error is lower than 10%.With the graphic processing units(GPU), the computing time of the 100 reconstruction planes(512×512 grids) is lower than 120ms, while it is 4.9s using traditional reconstruction method by CPU. The reconstruction speed has been raised by 40 times. In other words, it can handle holograms at 8.3 frames per second and the near real-time measurement and display of particle velocity field are realized. The real-time three-dimensional reconstruction of particle velocity field is expected to achieve by further optimization of software and hardware. Keywords: digital holographic microscope,
NASA Astrophysics Data System (ADS)
Proskuryakov, K. N.
2017-11-01
Created new scientific direction: “Diagnosis, prognosis and prevention of vibration - acoustic resonances in the nuclear power plant (NPP) equipment. The possibility of using methods for calculating and analyzing electric oscillation systems in the study of the properties of acoustic systems with a two-phase medium is proved, based on the similarity of the differential equations describing the state of these systems. Is shown that the developed methods can be used to predict and prevent the occurrence of vibration - acoustic resonances in the NPP equipment. Is shown that the volume of pressurizer at NPPs with VVER and PWR as well as boiling water reactor that exploded at Japan’s NPP Fukushima Daiichi is a Helmholtz resonator, which contain water and steam volumes and able many times increases the impact on them of outside periodic oscillations. Paper presents most important results published long before the severe accidents at NPPs Three Mile Island (TMI), Chernobyl and Fukushima Daiichi that could be used for the prediction of a severe accident scenario, identification of measuring data and process control in order to minimize the damage. Worked out results also could be useful in another industrial technologies based on applications of single and two-phase flows.
Improved Reconstruction of Radio Holographic Signal for Forward Scatter Radar Imaging
Hu, Cheng; Liu, Changjiang; Wang, Rui; Zeng, Tao
2016-01-01
Forward scatter radar (FSR), as a specially configured bistatic radar, is provided with the capabilities of target recognition and classification by the Shadow Inverse Synthetic Aperture Radar (SISAR) imaging technology. This paper mainly discusses the reconstruction of radio holographic signal (RHS), which is an important procedure in the signal processing of FSR SISAR imaging. Based on the analysis of signal characteristics, the method for RHS reconstruction is improved in two parts: the segmental Hilbert transformation and the reconstruction of mainlobe RHS. In addition, a quantitative analysis of the method’s applicability is presented by distinguishing between the near field and far field in forward scattering. Simulation results validated the method’s advantages in improving the accuracy of RHS reconstruction and imaging. PMID:27164114
[The characteristics of computer simulation of traffic accidents].
Zou, Dong-Hua; Liu, Ning-Guo; Chen, Jian-Guo; Jin, Xian-Long; Zhang, Xiao-Yun; Zhang, Jian-Hua; Chen, Yi-Jiu
2008-12-01
To reconstruct the collision process of traffic accident and the injury mode of the victim by computer simulation technology in forensic assessment of traffic accident. Forty actual accidents were reconstructed by stimulation software and high performance computer based on analysis of the trace evidences at the scene, damage of the vehicles and injury of the victims, with 2 cases discussed in details. The reconstruction correlated very well in 28 cases, well in 9 cases, and suboptimal in 3 cases with the above parameters. Accurate reconstruction of the accident would be helpful for assessment of the injury mechanism of the victims. Reconstruction of the collision process of traffic accident and the injury mechanism of the victim by computer simulation is useful in traffic accident assessment.
ERIC Educational Resources Information Center
Hansen, Klaus-Henning
1997-01-01
Raises the question of the philosophical base of a liberal technology education, assuming that it cannot be provided simply by an engineer's perspective. Suggests a series of questions for reconstructing the cultural meaning of technology and a structural model that shows how meaning is generated through a variety of social relationships;…
Luck, Joshua; Billingsley, Michael L.; Heyes, Richard; Smith, Oliver J.; Mosahebi, Afshin; Khoussa, Abu; Abu-Sittah, Ghassan; Hachach-Haram, Nadine
2018-01-01
Summary: Augmented reality (AR) is defined as “a technology that superimposes a computer-generated image on a user’s view of the real world, thus providing a composite view.”1 This case report describes how emerging AR telesurgery technologies may be used to facilitate international surgeon–surgeon collaboration and training. Here, we illustrate how a remote surgeon in Beirut, Lebanon, was able to offer assistance to a surgeon in Gaza, Palestine, during a complex hand reconstruction case following a bomb-blast injury in an 18-year-old male. We discuss the implications of AR technology on the future of global surgery and how it may be used to reduce structural inequities in access to safe surgical care. PMID:29707463
Advances in imaging technologies for planning breast reconstruction
Mohan, Anita T.
2016-01-01
The role and choice of preoperative imaging for planning in breast reconstruction is still a disputed topic in the reconstructive community, with varying opinion on the necessity, the ideal imaging modality, costs and impact on patient outcomes. Since the advent of perforator flaps their use in microsurgical breast reconstruction has grown. Perforator based flaps afford lower donor morbidity by sparing the underlying muscle provide durable results, superior cosmesis to create a natural looking new breast, and are preferred in the context of radiation therapy. However these surgeries are complex; more technically challenging that implant based reconstruction, and leaves little room for error. The role of imaging in breast reconstruction can assist the surgeon in exploring or confirming flap choices based on donor site characteristics and presence of suitable perforators. Vascular anatomical studies in the lab have provided the surgeon a foundation of knowledge on location and vascular territories of individual perforators to improve our understanding for flap design and safe flap harvest. The creation of a presurgical map in patients can highlight any abnormal or individual anatomical variance to optimize flap design, intraoperative decision-making and execution of flap harvest with greater predictability and efficiency. This article highlights the role and techniques for preoperative planning using the newer technologies that have been adopted in reconstructive clinical practice: computed tomographic angiography (CTA), magnetic resonance angiography (MRA), laser-assisted indocyanine green fluorescence angiography (LA-ICGFA) and dynamic infrared thermography (DIRT). The primary focus of this paper is on the application of CTA and MRA imaging modalities. PMID:27047790
Numerical reconstruction and injury biomechanism in a car-pedestrian crash accident.
Zou, Dong-Hua; Li, Zheng-Dong; Shao, Yu; Feng, Hao; Chen, Jian-Guo; Liu, Ning-Guo; Huang, Ping; Chen, Yi-Jiu
2012-12-01
To reconstruct a car-pedestrian crash accident using numerical simulation technology and explore the injury biomechanism as forensic evidence for injury identification. An integration of multi-body dynamic, finite element (FE), and classical method was applied to a car-pedestrian crash accident. The location of the collision and the details of the traffic accident were determined by vehicle trace verification and autopsy. The accident reconstruction was performed by coupling the three-dimensional car behavior from PC-CRASH with a MADYMO dummy model. The collision FE models of head and leg, developed from CT scans of human remains, were loaded with calculated dummy collision parameters. The data of the impact biomechanical responses were extracted in terms of von Mises stress, relative displacement, strain and stress fringes. The accident reconstruction results were identical with the examined ones and the biomechanism of head and leg injuries, illustrated through the FE methods, were consistent with the classical injury theories. The numerical simulation technology is proved to be effective in identifying traffic accidents and exploring of injury biomechanism.
Antonello, M.; Baibussinov, B.; Benetti, P.; ...
2013-01-15
Liquid Argon Time Projection Chamber (LAr TPC) detectors offer charged particle imaging capability with remarkable spatial resolution. Precise event reconstruction procedures are critical in order to fully exploit the potential of this technology. In this paper we present a new, general approach to 3D reconstruction for the LAr TPC with a practical application to the track reconstruction. The efficiency of the method is evaluated on a sample of simulated tracks. We present also the application of the method to the analysis of stopping particle tracks collected during the ICARUS T600 detector operation with the CNGS neutrino beam.
Principles of definitive soft tissue coverage with flaps.
Levin, L Scott
2008-01-01
Despite the emergence of negative pressure wound therapy with reticulated open cell foam (NPWT/ROCF) as delivered by V.A.C.(R) Therapy (KCI, San Antonio, TX) for orthopaedic trauma, vascularized tissue transfer whether it be pedicle, free, or tissue transfer using the operating microscope or as an island, remains the mainstay of soft tissue reconstruction for orthopaedic traumatology. The critisism of microvascular procedures has been that they are lengthy, costly, and required technical expertise to perform. While technical skills are required, microsurgical care has evolved into a routine operation with high degrees of success in experienced hand. The problem that still remains is access to surgeons who are interested in soft tissue reconstruction and can perform definitive coverage with flaps. There is a need in the orthopaedic community to solve the problem of lack of flap surgeons and as a result, NPWT/ROCF has been touted as the answer to flap reconstruction. NPWT/ROCF is an important addition to soft tissue reconstruction but it serves as a bridge rather than definitive coverage in many hands. Just as wound technology is evolving with tissue substitutes, growth factors and NPWT/ROCF flaps technology continues to advance with new perforator flaps and local regional flaps, particularly the sural flap, coming on line as mainstays of soft tissue reconstruction.
NASA Astrophysics Data System (ADS)
Li, Dong; Wei, Zhen; Song, Dawei; Sun, Wenfeng; Fan, Xiaoyan
2016-11-01
With the development of space technology, the number of spacecrafts and debris are increasing year by year. The demand for detecting and identification of spacecraft is growing strongly, which provides support to the cataloguing, crash warning and protection of aerospace vehicles. The majority of existing approaches for three-dimensional reconstruction is scattering centres correlation, which is based on the radar high resolution range profile (HRRP). This paper proposes a novel method to reconstruct the threedimensional scattering centre structure of target from a sequence of radar ISAR images, which mainly consists of three steps. First is the azimuth scaling of consecutive ISAR images based on fractional Fourier transform (FrFT). The later is the extraction of scattering centres and matching between adjacent ISAR images using grid method. Finally, according to the coordinate matrix of scattering centres, the three-dimensional scattering centre structure is reconstructed using improved factorization method. The three-dimensional structure is featured with stable and intuitive characteristic, which provides a new way to improve the identification probability and reduce the complexity of the model matching library. A satellite model is reconstructed using the proposed method from four consecutive ISAR images. The simulation results prove that the method has gotten a satisfied consistency and accuracy.
Severe accident skyshine radiation analysis by MCNP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eurajoki, T.
1994-12-31
If a severe accident with a considerable core damage occurs at a nuclear power plant whose containment top is remarkably thin compared with the walls, the radiation transported through the top and scattered in air may cause high dose rates at the power plant area. Noble gases and other fission products released to the containment act as sources. The dose rates caused by skyshine have been calculated by MCNP3A for the Loviisa nuclear power plant (two-unit, 445-MW VVER) for the outside area and inside some buildings, taking the attenuation in the roofs of the buildings into account.
Tarsitano, Achille; Battaglia, Salvatore; Crimi, Salvatore; Ciocca, Leonardo; Scotti, Roberto; Marchetti, Claudio
2016-07-01
The design and manufacture of patient-specific mandibular reconstruction plates, particularly in combination with cutting guides, has created many new opportunities for the planning and implementation of mandibular reconstruction. Although this surgical method is being used more widely and the outcomes appear to be improved, the question of the additional cost has to be discussed. To evaluate the cost generated by the management of this technology, we studied a cohort of patients treated for mandibular neoplasms. The population was divided into two groups of 20 patients each who were undergoing a 'traditional' freehand mandibular reconstruction or a computer-aided design/computer-aided manufacturing (CAD-CAM) mandibular reconstruction. Data concerning operation time, complications, and days of hospitalisation were used to evaluate costs related to the management of these patients. The mean operating time for the CAD-CAM group was 435 min, whereas that for the freehand group was 550.5 min. The total difference in terms of average time gain was 115.5 min. No microvascular complication occurred in the CAD-CAM group; two complications (10%) were observed in patients undergoing freehand reconstructions. The mean overall lengths of hospital stay were 13.8 days for the CAD-CAM group and 17 days for the freehand group. Finally, considering that the institutional cost per minute of theatre time is €30, the money saved as a result of the time gained was €3,450. This cost corresponds approximately to the total price of the CAD-CAM surgery. In conclusion, we believe that CAD-CAM technology for mandibular reconstruction will become a widely used reconstructive method and that its cost will be covered by gains in terms of surgical time, quality of reconstruction, and reduced complications. Copyright © 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
A Convex Formulation for Magnetic Particle Imaging X-Space Reconstruction.
Konkle, Justin J; Goodwill, Patrick W; Hensley, Daniel W; Orendorff, Ryan D; Lustig, Michael; Conolly, Steven M
2015-01-01
Magnetic Particle Imaging (mpi) is an emerging imaging modality with exceptional promise for clinical applications in rapid angiography, cell therapy tracking, cancer imaging, and inflammation imaging. Recent publications have demonstrated quantitative mpi across rat sized fields of view with x-space reconstruction methods. Critical to any medical imaging technology is the reliability and accuracy of image reconstruction. Because the average value of the mpi signal is lost during direct-feedthrough signal filtering, mpi reconstruction algorithms must recover this zero-frequency value. Prior x-space mpi recovery techniques were limited to 1d approaches which could introduce artifacts when reconstructing a 3d image. In this paper, we formulate x-space reconstruction as a 3d convex optimization problem and apply robust a priori knowledge of image smoothness and non-negativity to reduce non-physical banding and haze artifacts. We conclude with a discussion of the powerful extensibility of the presented formulation for future applications.
Learning to perform ear reconstruction.
Wilkes, Gordon H
2009-08-01
Learning how to perform ear reconstruction is very difficult. There are no standardized teaching methods. This has resulted in many ear reconstructions being suboptimal. Learning requires a major commitment by the surgeon. Factors to be seriously considered by those considering performing this surgery are (1) commitment, (2) aptitude, (3) training methods available, (4) surgical skills and experience, and (5) additional equipment needs. Unless all these factors are addressed in a surgeon's decision to perform this form of reconstruction, the end result will be compromised, and patient care will not be optimized. It is hoped that considering these factors and following this approach will result in a higher quality of aesthetic result. The future of ear reconstruction lies in the use of advanced digital technologies and tissue engineering. Copyright Thieme Medical Publishers.
[Application of Fourier transform profilometry in 3D-surface reconstruction].
Shi, Bi'er; Lu, Kuan; Wang, Yingting; Li, Zhen'an; Bai, Jing
2011-08-01
With the improvement of system frame and reconstruction methods in fluorescent molecules tomography (FMT), the FMT technology has been widely used as an important experimental tool in biomedical research. It is necessary to get the 3D-surface profile of the experimental object as the boundary constraints of FMT reconstruction algorithms. We proposed a new 3D-surface reconstruction method based on Fourier transform profilometry (FTP) method under the blue-purple light condition. The slice images were reconstructed using proper image processing methods, frequency spectrum analysis and filtering. The results of experiment showed that the method properly reconstructed the 3D-surface of objects and has the mm-level accuracy. Compared to other methods, this one is simple and fast. Besides its well-reconstructed, the proposed method could help monitor the behavior of the object during the experiment to ensure the correspondence of the imaging process. Furthermore, the method chooses blue-purple light section as its light source to avoid the interference towards fluorescence imaging.
Forensic Facial Reconstruction: The Final Frontier.
Gupta, Sonia; Gupta, Vineeta; Vij, Hitesh; Vij, Ruchieka; Tyagi, Nutan
2015-09-01
Forensic facial reconstruction can be used to identify unknown human remains when other techniques fail. Through this article, we attempt to review the different methods of facial reconstruction reported in literature. There are several techniques of doing facial reconstruction, which vary from two dimensional drawings to three dimensional clay models. With the advancement in 3D technology, a rapid, efficient and cost effective computerized 3D forensic facial reconstruction method has been developed which has brought down the degree of error previously encountered. There are several methods of manual facial reconstruction but the combination Manchester method has been reported to be the best and most accurate method for the positive recognition of an individual. Recognition allows the involved government agencies to make a list of suspected victims'. This list can then be narrowed down and a positive identification may be given by the more conventional method of forensic medicine. Facial reconstruction allows visual identification by the individual's family and associates to become easy and more definite.
NASA Astrophysics Data System (ADS)
Gonet, Andrzej; Stryczek, Stanisław; Brudnik, Krzysztof
2012-11-01
Safety pillars are made around mines as a protection measure. This is especially important in salt mines where the surrounding waters are most hazardous. Without maintaining safe conditions the mine may be water-flooded as it was the case in one of the Polish mine "Wapno". An original technology linking pipeline injection and hole injection methods has been used for the reconstruction of a safety pillar in the Salt Mine "Wieliczka". This solution turned out to be successful when on 13 April 1992 the mine was saved from flooding after a disastrous water flux to the transverse working Mina. The presented technology can be efficiently used in various mines at the stage of designing, though their exploitation to the closing stage.
Computer-Aided Process Planning for the Layered Fabrication of Porous Scaffold Matrices
NASA Astrophysics Data System (ADS)
Starly, Binil
Rapid Prototyping (RP) technology promises to have a tremendous impact on the design and fabrication of porous tissue replacement structures for applications in tissue engineering and regenerative medicine. The layer-by-layer fabrication technology enables the design of patient-specific medical implants and complex structures for diseased tissue replacement strategies. Combined with advancements in imaging modalities and bio-modeling software, physicians can engage themselves in advanced solutions for craniofacial and mandibular reconstruction. For example, prior to the advancement of RP technologies, solid titanium parts used as implants for mandibular reconstruction were fashioned out of molding or CNC-based machining processes (Fig. 3.1). Titanium implants built using this process are often heavy, leading to increased patient discomfort. In addition, the Young's modulus of titanium is almost five times that of healthy cortical bone resulting in stress shielding effects [1,2]. With the advent of CAD/CAM-based tools, the virtual reconstruction of the implants has resulted in significant design improvements. The new generation of implants can be porous, enabling the in-growth of healthy bone tissue for additional implant fixation and stabilization. Newer implants would conform to the external shape of the defect site that is intended to be filled in. More importantly, the effective elastic modulus of the implant can be designed to match that of surrounding tissue. Ideally, the weight of the implant can be designed to equal the weight of the tissue that is being replaced resulting in increased patient comfort. Currently, such porous structures for reconstruction can only be fabricated using RP-based metal fabrication technologies such as Electron Beam Melting (EBM), Selective Laser Sintering (SLS®), and 3D™ Printing processes.
Study of Threat Scenario Reconstruction based on Multiple Correlation
NASA Astrophysics Data System (ADS)
Yuan, Xuejun; Du, Jing; Qin, Futong; Zhou, Yunyan
2017-10-01
The emergence of intrusion detection technology has solved many network attack problems, ensuring the safety of computer systems. However, because of the isolated output alarm information, large amount of data, and mixed events, it is difficult for the managers to understand the deep logic relationship between the alarm information, thus they cannot deduce the attacker’s true intentions. This paper presents a method of online threat scene reconstruction to handle the alarm information, which reconstructs of the threat scene. For testing, the standard data set is used.
The Future School: Designing for Student Success.
ERIC Educational Resources Information Center
Ruck, Gary
1993-01-01
Three themes of change in school planning are the future school, outsourcing, and the reconstruction of existing facilities to accommodate technological and philosophical potential. Describes the technology and the house concept at a middle school and renovations at an elementary school. (MLF)
Azuma, Masaki; Yanagawa, Toru; Ishibashi-Kanno, Naomi; Uchida, Fumihiko; Ito, Takaaki; Yamagata, Kenji; Hasegawa, Shogo; Sasaki, Kaoru; Adachi, Koji; Tabuchi, Katsuhiko; Sekido, Mitsuru; Bukawa, Hiroki
2014-10-23
Recently, medical rapid prototyping (MRP) models, fabricated with computer-aided design and computer-aided manufacture (CAD/CAM) techniques, have been applied to reconstructive surgery in the treatment of head and neck cancers. Here, we tested the use of preoperatively manufactured reconstruction plates, which were produced using MRP models. The clinical efficacy and esthetic outcome of using these products in mandibular reconstruction was evaluated. A series of 28 patients with malignant oral tumors underwent unilateral segmental resection of the mandible and simultaneous mandibular reconstruction. Twelve patients were treated with prebent reconstruction plates that were molded to MRP mandibular models designed with CAD/CAM techniques and fabricated on a combined powder bed and inkjet head three-dimensional printer. The remaining 16 patients were treated using conventional reconstruction methods. The surgical and esthetic outcomes of the two groups were compared by imaging analysis using post-operative panoramic tomography. The mandibular symmetry in patients receiving the MRP-model-based prebent plates was significantly better than that in patients receiving conventional reconstructive surgery. Patients with head and neck cancer undergoing reconstructive surgery using a prebent reconstruction plate fabricated according to an MRP mandibular model showed improved mandibular contour compared to patients undergoing conventional mandibular reconstruction. Thus, use of this new technology for mandibular reconstruction results in an improved esthetic outcome with the potential for improved quality of life for patients.
Mendez, Bernardino M; Chiodo, Michael V; Patel, Parit A
2015-07-01
Virtual surgical planning using three-dimensional (3D) printing technology has improved surgical efficiency and precision. A limitation to this technology is that production of 3D surgical models requires a third-party source, leading to increased costs (up to $4000) and prolonged assembly times (averaging 2-3 weeks). The purpose of this study is to evaluate the feasibility, cost, and production time of customized skull models created by an "in-office" 3D printer for craniofacial reconstruction. Two patients underwent craniofacial reconstruction with the assistance of "in-office" 3D printing technology. Three-dimensional skull models were created from a bioplastic filament with a 3D printer using computed tomography (CT) image data. The cost and production time for each model were measured. For both patients, a customized 3D surgical model was used preoperatively to plan split calvarial bone grafting and intraoperatively to more efficiently and precisely perform the craniofacial reconstruction. The average cost for surgical model production with the "in-office" 3D printer was $25 (cost of bioplastic materials used to create surgical model) and the average production time was 14 hours. Virtual surgical planning using "in office" 3D printing is feasible and allows for a more cost-effective and less time consuming method for creating surgical models and guides. By bringing 3D printing to the office setting, we hope to improve intraoperative efficiency, surgical precision, and overall cost for various types of craniofacial and reconstructive surgery.
Update of patient-specific maxillofacial implant.
Owusu, James A; Boahene, Kofi
2015-08-01
Patient-specific implant (PSI) is a personalized approach to reconstructive and esthetic surgery. This is particularly useful in maxillofacial surgery in which restoring the complex three-dimensional (3D) contour can be quite challenging. In certain situations, the best results can only be achieved with implants custom-made to fit a particular need. Significant progress has been made over the past decade in the design and manufacture of maxillofacial PSIs. Computer-aided design (CAD)/computer-aided manufacturing (CAM) technology is rapidly advancing and has provided new options for fabrication of PSIs with better precision. Maxillofacial PSIs can now be designed using preoperative imaging data as input into CAD software. The designed implant is then fabricated using a CAM technique such as 3D printing. This approach increases precision and decreases or completely eliminates the need for intraoperative modification of implants. The use of CAD/CAM-produced PSIs for maxillofacial reconstruction and augmentation can significantly improve contour outcomes and decrease operating time. CAD/CAM technology allows timely and precise fabrication of maxillofacial PSIs. This approach is gaining increasing popularity in maxillofacial reconstructive surgery. Continued advances in CAD technology and 3D printing are bound to improve the cost-effectiveness and decrease the production time of maxillofacial PSIs.
Wen, Xiaopeng; Gao, Shan; Feng, Jinteng; Li, Shuo; Gao, Rui; Zhang, Guangjian
2018-01-08
As 3D printing technology emerge, there is increasing demand for a more customizable implant in the repair of chest-wall bony defects. This article aims to present a custom design and fabrication method for repairing bony defects of the chest wall following tumour resection, which utilizes three-dimensional (3D) printing and rapid-prototyping technology. A 3D model of the bony defect was generated after acquiring helical CT data. A customized prosthesis was then designed using computer-aided design (CAD) and mirroring technology, and fabricated using titanium-alloy powder. The mechanical properties of the printed prosthesis were investigated using ANSYS software. The yield strength of the titanium-alloy prosthesis was 950 ± 14 MPa (mean ± SD), and its ultimate strength was 1005 ± 26 MPa. The 3D finite element analyses revealed that the equivalent stress distribution of each prosthesis was unifrom. The symmetry and reconstruction quality contour of the repaired chest wall was satisfactory. No rejection or infection occurred during the 6-month follow-up period. Chest-wall reconstruction with a customized titanium-alloy prosthesis is a reliable technique for repairing bony defects.
Application of Digital Diagnosis and Treatment Technique in Benign Mandibular Diseases.
Ju, Rui; Zeng, Wei; Lian, Xiaotian; Chen, Gang; Yin, Huaqiang; Tang, Wei
2018-05-01
To explore the feasibility of preoperative planning for treatment of benign mandibular lesions (BML) using digital technologies such as three-dimensional (3D) reconstruction, measurement, visualization as well as image contrast and design of neural positioning protection template (NPPT) in combination with 3D printing technology in the BML diagnosis and treatment. The 3D models of BML and inferior alveolar nerves (IAN) of 10 BML patients were reconstructed based on their digital imaging and communications in medicine (DICOM) data using MIMICS16.0 software. The models were used to visualize lesions and nerve contrast measurement and guide design of personalized NPPT and osteotomy after operation modality was determined in order to achieve accurate, minimally invasive operation with shortened intraoperative time. Intraoperative NPPT application could accurately locate lesions and their scope and assist osteotomy. The measurement results were consistent with those of preoperative reconstruction and measurement. The BML were curetted completely without damage IAN. The 10 BML patients had no numbness and other discomforts in the lower lip and mandibular teeth after operation. The digital diagnosis and treatment technology is an effective method for functional treatment of BML patients and its application could achieve personalized, minimally invasive and precise treatment and save intraoperation time.
Mandibular reconstruction after cancer: an in-house approach to manufacturing cutting guides.
Bosc, R; Hersant, B; Carloni, R; Niddam, J; Bouhassira, J; De Kermadec, H; Bequignon, E; Wojcik, T; Julieron, M; Meningaud, J-P
2017-01-01
The restoration of mandibular bone defects after cancer can be facilitated by computer-assisted preoperative planning. The aim of this study was to assess an in-house manufacturing approach to customized cutting guides for use in the reconstruction of the mandible with osteocutaneous free flaps. A retrospective cohort study was performed, involving 18 patients who underwent mandibular reconstruction with a fibula free flap at three institutions during the period July 2012 to March 2015. A single surgeon designed and manufactured fibula and mandible cutting guides using a computer-aided design process and three-dimensional (3D) printing technology. The oncological outcomes, production parameters, and quality of the reconstructions performed for each patient were recorded. Computed tomography scans were acquired after surgery, and these were compared with the preoperative 3D models. Eighteen consecutive patients with squamous cell carcinoma underwent surgery and then reconstruction using this customized in-house surgical approach. The lengths of the fibula bone segments and the angle measurements in the simulations were similar to those of the postoperative volume rendering (P=0.61). The ease of access to 3D printing technology has enabled the computer-aided design and manufacturing of customized cutting guides for oral cancer treatment without the need for input from external laboratories. Copyright © 2016 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Penrose high-dynamic-range imaging
NASA Astrophysics Data System (ADS)
Li, Jia; Bai, Chenyan; Lin, Zhouchen; Yu, Jian
2016-05-01
High-dynamic-range (HDR) imaging is becoming increasingly popular and widespread. The most common multishot HDR approach, based on multiple low-dynamic-range images captured with different exposures, has difficulties in handling camera and object movements. The spatially varying exposures (SVE) technology provides a solution to overcome this limitation by obtaining multiple exposures of the scene in only one shot but suffers from a loss in spatial resolution of the captured image. While aperiodic assignment of exposures has been shown to be advantageous during reconstruction in alleviating resolution loss, almost all the existing imaging sensors use the square pixel layout, which is a periodic tiling of square pixels. We propose the Penrose pixel layout, using pixels in aperiodic rhombus Penrose tiling, for HDR imaging. With the SVE technology, Penrose pixel layout has both exposure and pixel aperiodicities. To investigate its performance, we have to reconstruct HDR images in square pixel layout from Penrose raw images with SVE. Since the two pixel layouts are different, the traditional HDR reconstruction methods are not applicable. We develop a reconstruction method for Penrose pixel layout using a Gaussian mixture model for regularization. Both quantitative and qualitative results show the superiority of Penrose pixel layout over square pixel layout.
Ma, X J; Tao, L; Chen, X; Li, W; Peng, Z Y; Chen, Y; Jin, J; Zhang, X L; Xiong, Q F; Zhong, Z L; Chen, X F
2015-02-13
Three-dimensional (3D) reconstruction and rapid prototyping technology (RPT) of multislice spiral computed tomography angiography (CTA) was applied to prepare physical models of the heart and ventricular septal defects of tetralogy of Fallot (ToF) patients in order to explore their applications in the diagnosis and treatment of this complex heart disease. CTA data of 35 ToF patients were collected to prepare l:l 3D solid models using digital 3D reconstruction and RPT, and the resultant models were used intraoperatively as reference. The operations of all 35 patients were completed under the guidance of the 3D solid model, without difficulty. Intraoperative findings of the patients were consistent with the morphological and size changes of the 3D solid model, and no significant differences were found between the patches obtained from the 3D solid model and the actual intraoperative measurements (t = 0.83, P = 0.412). 3D reconstruction and RPT of multislice spiral CTA can accurately and intuitively reflect the anatomy of ventricular septal defects in ToF patients, providing the foundation for a solid model of the complex congenital heart.
Mahalingam, Vasudevan D; Behbahani-Nejad, Nilofar; Horine, Storm V; Olsen, Tyler J; Smietana, Michael J; Wojtys, Edward M; Wellik, Deneen M; Arruda, Ellen M; Larkin, Lisa M
2015-03-01
The use of autografts versus allografts for anterior cruciate ligament (ACL) reconstruction is controversial. The current popular options for ACL reconstruction are patellar tendon or hamstring autografts, yet advances in allograft technologies have made allogeneic grafts a favorable option for repair tissue. Despite this, the mismatched biomechanical properties and risk of osteoarthritis resulting from the current graft technologies have prompted the investigation of new tissue sources for ACL reconstruction. Previous work by our lab has demonstrated that tissue-engineered bone-ligament-bone (BLB) constructs generated from an allogeneic cell source develop structural and functional properties similar to those of native ACL and vascular and neural structures that exceed those of autologous patellar tendon grafts. In this study, we investigated the effectiveness of our tissue-engineered ligament constructs fabricated from autologous versus allogeneic cell sources. Our preliminary results demonstrate that 6 months postimplantation, our tissue-engineered auto- and allogeneic BLB grafts show similar histological and mechanical outcomes indicating that the autologous grafts are a viable option for ACL reconstruction. These data indicate that our tissue-engineered autologous ligament graft could be used in clinical situations where immune rejection and disease transmission may preclude allograft use.
Indocyanine green-based fluorescent angiography in breast reconstruction
Chae, Michael P.; Rozen, Warren Matthew
2016-01-01
Background Fluorescent angiography (FA) has been useful for assessing blood flow and assessing tissue perfusion in ophthalmology and other surgical disciplines for decades. In plastic surgery, indocyanine green (ICG) dye-based FA is a relatively novel imaging technology with high potential in various applications. We review the various FA detector systems currently available and critically appraise its utility in breast reconstruction. Methods A review of the published English literature dating from 1950 to 2015 using databases, such as PubMed, Medline, Web of Science, and EMBASE was undertaken. Results In comparison to the old fluorescein dye, ICG has a superior side effect profile and can be accurately detected by various commercial devices, such as SPY Elite (Novadaq, Canada), FLARE (Curadel LLC, USA), PDE-Neo (Hamamatsu Photonics, Japan), Fluobeam 800 (Fluoptics, France), and IC-View (Pulsion Medical Systems AG, Germany). In breast reconstruction, ICG has established as a safer, more accurate tracer agent, in lieu of the traditional blue dyes, for detection of sentinel lymph nodes with radioactive isotopes (99m-Technetium). In prosthesis-based breast reconstruction, intraoperative assessment of the mastectomy skin flap to guide excision of hypoperfused areas translates to improved clinical outcomes. Similarly, in autologous breast reconstructions, FA can be utilized to detect poorly perfused areas of the free flap, evaluate microvascular anastomosis for patency, and assess SIEA vascular territory for use as an alternative free flap with minimal donor site morbidity. Conclusions ICG-based FA is a novel, useful tool for various applications in breast reconstruction. More studies with higher level of evidence are currently lacking to validate this technology. PMID:27047782
NASA Astrophysics Data System (ADS)
Tomarov, G. V.; Shipkov, A. A.
2011-03-01
The main stages and processes through which deposits are generated, migrate, and precipitate in the metal-secondary coolant system of power units at nuclear power plants are analyzed and determined. It is shown that substances produced by the mechanism of general erosion-corrosion are the main source of the ionic-colloid form of iron, which is the main component of deposits in a steam generator. Ways for controlling the formation of deposits in a nuclear power plant's steam generator are proposed together with methods for estimating their efficiency.
Advances in the management of orbital fractures.
Nguyen, P N; Sullivan, P
1992-01-01
Great progress has been made in both the basic science and the clinical knowledge base used in orbital reconstruction. With this, increasing complex orbital reconstructive problems are better managed. The diagnosis, treatment plan, and the actual reconstruction have evolved to a higher level. Several areas of progress are of note: the greater appreciation of the intimate relation between the bony orbit's shape and the position of the globe; application of computer technology in orbital injuries; effect of rigid fixation on autogenous and alloplastic graft; and the use of advanced biocompatible synthetic materials in orbital reconstruction. Although this progress has great impact on treatment of orbital injuries, there are many unanswered challenges in the treatment of the fragile frame of the window to the human soul.
Setuain, Igor; González-Izal, Miriam; Alfaro, Jesús; Gorostiaga, Esteban; Izquierdo, Mikel
2015-12-01
Handball is one of the most challenging sports for the knee joint. Persistent biomechanical and jumping capacity alterations can be observed in athletes with an anterior cruciate ligament (ACL) injury. Commonly identified jumping biomechanical alterations have been described by the use of laboratory technologies. However, portable and easy-to-handle technologies that enable an evaluation of jumping biomechanics at the training field are lacking. To analyze unilateral/bilateral acceleration and orientation jumping performance differences among elite male handball athletes with or without previous ACL reconstruction via a single inertial sensor unit device. Case control descriptive study. At the athletes' usual training court. Twenty-two elite male (6 ACL-reconstructed and 16 uninjured control players) handball players were evaluated. The participants performed a vertical jump test battery that included a 50-cm vertical bilateral drop jump, a 20-cm vertical unilateral drop jump, and vertical unilateral countermovement jump maneuvers. Peak 3-dimensional (X, Y, Z) acceleration (m·s(-2)), jump phase duration and 3-dimensional orientation values (°) were obtained from the inertial sensor unit device. Two-tailed t-tests and a one-way analysis of variance were performed to compare means. The P value cut-off for significance was set at P < .05. The ACL-reconstructed male athletes did not show any significant (P < .05) residual jumping biomechanical deficits regarding the measured variables compared with players who had not suffered this knee injury. A dominance effect was observed among non-ACL reconstructed controls but not among their ACL-reconstructed counterparts (P < .05). Elite male handball athletes with previous ACL reconstruction demonstrated a jumping biomechanical profile similar to control players, including similar jumping performance values in both bilateral and unilateral jumping maneuvers, several years after ACL reconstruction. These findings are in agreement with previous research showing full functional restoration of abilities in top-level male athletes after ACL reconstruction, rehabilitation and subsequent return to sports at the previous level. Copyright © 2015 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.
Novelli, Giorgio; Gramegna, Marco; Tonellini, Gabriele; Valente, Gabriella; Boni, Pietro; Bozzetti, Alberto; Sozzi, Davide
2016-09-01
Osteoblastoma is a benign tumor of bone, representing less than 1% of bone tumors. Craniomaxillofacial localizations account for up to 15% of the total and frequently involve the posterior mandible. Endo-orbital localization is very rare, with most occurring in young patients. Very few of these tumors become malignant. Orbital localization requires radical removal of the tumor followed by careful surgical reconstruction of the orbit to avoid subsequent aesthetic or functional problems. Here, we present a clinical case of this condition and describe a surgical protocol that uses and integrates state-of-the art technologies to achieve orbital reconstruction.
ERIC Educational Resources Information Center
Martin, Charys M.; Roach, Victoria A.; Nguyen, Ngan; Rice, Charles L.; Wilson, Timothy D.
2013-01-01
The use of three-dimensional (3D) models for education, pre-operative assessment, presurgical planning, and measurement have become more prevalent. With the increase in prevalence of 3D models there has also been an increase in 3D reconstructive software programs that are used to create these models. These software programs differ in…
Tsai, Ming-June; Wu, Ching-Tsai
2014-05-06
This study aimed to establish surgical guiding techniques for completing mandible lesion resection and reconstruction of the mandible defect area with fibula sections in one surgery by applying additive manufacturing technology, which can reduce the surgical duration and enhance the surgical accuracy and success rate. A computer assisted mandible reconstruction planning (CAMRP) program was used to calculate the optimal cutting length and number of fibula pieces and design the fixtures for mandible cutting, registration, and arrangement of the fibula segments. The mandible cutting and registering fixtures were then generated using an additive manufacturing system. The CAMRP calculated the optimal fibula cutting length and number of segments based on the location and length of the defective portion of the mandible. The mandible cutting jig was generated according to the boundary surface of the lesion resection on the mandible STL model. The fibular cutting fixture was based on the length of each segment, and the registered fixture was used to quickly arrange the fibula pieces into the shape of the defect area. In this study, the mandibular lesion was reconstructed using registered fibular sections in one step, and the method is very easy to perform. The application of additive manufacturing technology provided customized models and the cutting fixtures and registered fixtures, which can improve the efficiency of clinical application. This study showed that the cutting fixture helped to rapidly complete lesion resection and fibula cutting, and the registered fixture enabled arrangement of the fibula pieces and allowed completion of the mandible reconstruction in a timely manner. Our method can overcome the disadvantages of traditional surgery, which requires a long and different course of treatment and is liable to cause error. With the help of optimal cutting planning by the CAMRP and the 3D printed mandible resection jig and fibula cutting fixture, this all-in-one process of mandible reconstruction furnishes many benefits in this field by enhancing the accuracy of surgery, shortening the operation duration, reducing the surgical risk, and resulting in a better mandible appearance of the patients after surgery.
2014-01-01
Background This study aimed to establish surgical guiding techniques for completing mandible lesion resection and reconstruction of the mandible defect area with fibula sections in one surgery by applying additive manufacturing technology, which can reduce the surgical duration and enhance the surgical accuracy and success rate. Methods A computer assisted mandible reconstruction planning (CAMRP) program was used to calculate the optimal cutting length and number of fibula pieces and design the fixtures for mandible cutting, registration, and arrangement of the fibula segments. The mandible cutting and registering fixtures were then generated using an additive manufacturing system. The CAMRP calculated the optimal fibula cutting length and number of segments based on the location and length of the defective portion of the mandible. The mandible cutting jig was generated according to the boundary surface of the lesion resection on the mandible STL model. The fibular cutting fixture was based on the length of each segment, and the registered fixture was used to quickly arrange the fibula pieces into the shape of the defect area. In this study, the mandibular lesion was reconstructed using registered fibular sections in one step, and the method is very easy to perform. Results and conclusion The application of additive manufacturing technology provided customized models and the cutting fixtures and registered fixtures, which can improve the efficiency of clinical application. This study showed that the cutting fixture helped to rapidly complete lesion resection and fibula cutting, and the registered fixture enabled arrangement of the fibula pieces and allowed completion of the mandible reconstruction in a timely manner. Our method can overcome the disadvantages of traditional surgery, which requires a long and different course of treatment and is liable to cause error. With the help of optimal cutting planning by the CAMRP and the 3D printed mandible resection jig and fibula cutting fixture, this all-in-one process of mandible reconstruction furnishes many benefits in this field by enhancing the accuracy of surgery, shortening the operation duration, reducing the surgical risk, and resulting in a better mandible appearance of the patients after surgery. PMID:24885749
Tao, Li; Zhu, Kun; Zhu, Jungao; Xu, Xiaohan; Lin, Chen; Ma, Wenjun; Lu, Haiyang; Zhao, Yanying; Lu, Yuanrong; Chen, Jia-Er; Yan, Xueqing
2017-07-07
With the development of laser technology, laser-driven proton acceleration provides a new method for proton tumor therapy. However, it has not been applied in practice because of the wide and decreasing energy spectrum of laser-accelerated proton beams. In this paper, we propose an analytical model to reconstruct the spread-out Bragg peak (SOBP) using laser-accelerated proton beams. Firstly, we present a modified weighting formula for protons of different energies. Secondly, a theoretical model for the reconstruction of SOBPs with laser-accelerated proton beams has been built. It can quickly calculate the number of laser shots needed for each energy interval of the laser-accelerated protons. Finally, we show the 2D reconstruction results of SOBPs for laser-accelerated proton beams and the ideal situation. The final results show that our analytical model can give an SOBP reconstruction scheme that can be used for actual tumor therapy.
Plastic and Reconstructive Surgery in Global Health: Let’s Reconstruct Global Surgery
2017-01-01
Summary: Since the inception of the Lancet Commission in 2013 and consequent prioritization of Global Surgery at the World Health Assembly, international surgical outreach efforts have increased and become more synergistic. Plastic surgeons have been involved in international outreach for decades, and there is now a demand to collaborate and address local need in an innovative way. The aim of this article was to summarize new developments in plastic and reconstructive surgery in global health, to unify our approach to international outreach. Specifically, 5 topics are explored: current models in international outreach, benefits and concerns, the value of research, the value of international surgical outreach education, and the value of technology. A “Let’s Reconstruct Global Surgery” network has been formed using Facebook as a platform to unite plastic and reconstructive surgeons worldwide who are interested in international outreach. The article concludes with actionable recommendations from each topic. PMID:28507847
Cell- and Gene-Based Therapeutic Strategies for Periodontal Regenerative Medicine
Rios, Hector F.; Lin, Zhao; Oh, BiNa; Park, Chan Ho; Giannobile, William V.
2012-01-01
Inflammatory periodontal diseases are a leading cause of tooth loss and are linked to multiple systemic conditions, such as cardiovascular disease and stroke. Reconstruction of the support and function of affected tooth-supporting tissues represents an important therapeutic endpoint for periodontal regenerative medicine. An improved understanding of periodontal biology coupled with current advances in scaffolding matrices has introduced novel treatments that use cell and gene therapy to enhance periodontal tissue reconstruction and its biomechanical integration. Cell and gene delivery technologies have the potential to overcome limitations associated with existing periodontal therapies, and may provide a new direction in sustainable inflammation control and more predictable tissue regeneration of supporting alveolar bone, periodontal ligament, and cementum. This review provides clinicians with the current status of these early-stage and emerging cell- and gene-based therapeutics in periodontal regenerative medicine, and introduces their future application in clinical periodontal treatment. The paper concludes with prospects on the application of cell and gene tissue engineering technologies for reconstructive periodontology. PMID:21284553
Tuomi, Jukka T; Björkstrand, Roy V; Pernu, Mikael L; Salmi, Mika V J; Huotilainen, Eero I; Wolff, Jan E H; Vallittu, Pekka K; Mäkitie, Antti A
2017-03-01
Custom-designed patient-specific implants and reconstruction plates are to date commonly manufactured using two different additive manufacturing (AM) technologies: direct metal laser sintering (DMLS) and electron beam melting (EBM). The purpose of this investigation was to characterize the surface structure and to assess the cytotoxicity of titanium alloys processed using DMLS and EBM technologies as the existing information on these issues is scarce. "Processed" and "polished" DMLS and EBM disks were assessed. Microscopic examination revealed titanium alloy particles and surface flaws on the processed materials. These surface flaws were subsequently removed by polishing. Surface roughness of EBM processed titanium was higher than that of DMLS processed. The cytotoxicity results of the DMLS and EBM discs were compared with a "gold standard" commercially available titanium mandible reconstruction plate. The mean cell viability for all discs was 82.6% (range, 77.4 to 89.7) and 83.3% for the control reconstruction plate. The DMLS and EBM manufactured titanium plates were non-cytotoxic both in "processed" and in "polished" forms.
Elloumi-Hannachi, I; Yamato, M; Okano, T
2010-01-01
Cell sheet technology (CST) is based on the use of thermoresponsive polymers, poly(N-isopropylacrylamide) (PIPAAm). The surface of PIPAAms is formulated in such a way as to make its typical thickness <100 nm. In this review, we first focus on how the methods of PIPAAm-grafted surface preparations and functionalization are important to be able to harvest a functional cell sheet, to be further transplanted. Then, we present aspects of tissue mimics and three-dimensional reconstruction of a tissue in vitro. Finally, we give an overview of clinical applications and clinically relevant animal experimentations of the technology, such as cardiomyopathy, visual acuity, periodonty, oesophageal ulcerations and type 1 diabetes.
From Wheatstone to Cameron and beyond: overview in 3-D and 4-D imaging technology
NASA Astrophysics Data System (ADS)
Gilbreath, G. Charmaine
2012-02-01
This paper reviews three-dimensional (3-D) and four-dimensional (4-D) imaging technology, from Wheatstone through today, with some prognostications for near future applications. This field is rich in variety, subject specialty, and applications. A major trend, multi-view stereoscopy, is moving the field forward to real-time wide-angle 3-D reconstruction as breakthroughs in parallel processing and multi-processor computers enable very fast processing. Real-time holography meets 4-D imaging reconstruction at the goal of achieving real-time, interactive, 3-D imaging. Applications to telesurgery and telemedicine as well as to the needs of the defense and intelligence communities are also discussed.
Career development resource: urology.
Gormley, E Ann
2012-07-01
Urology has always been seen as being on the cutting edge of technology and this has been especially prevalent in the past 10 to 15 years with a move to robotic surgery, increased use of laser technology, and stem cell research leading to organ regeneration. Urology has a number of subspecialties including pediatrics, urologic oncology, renal transplantation, male infertility and andrology, calculi, female urology, neurourology, and trauma and reconstruction. Urologists have a wide array of practice options ranging from performing major oncologic procedures with extensive reconstruction to having an office-based practice and performing endoscopic cases with everything else in between. Subspecialization is becoming increasingly more organized and regulated. Copyright © 2012 Elsevier Inc. All rights reserved.
Okolo, Brando; Popp, Uwe
2018-01-01
Additive manufacturing (AM) is rapidly gaining acceptance in the healthcare sector. Three-dimensional (3D) virtual surgical planning, fabrication of anatomical models, and patient-specific implants (PSI) are well-established processes in the surgical fields. Polyetheretherketone (PEEK) has been used, mainly in the reconstructive surgeries as a reliable alternative to other alloplastic materials for the fabrication of PSI. Recently, it has become possible to fabricate PEEK PSI with Fused Filament Fabrication (FFF) technology. 3D printing of PEEK using FFF allows construction of almost any complex design geometry, which cannot be manufactured using other technologies. In this study, we fabricated various PEEK PSI by FFF 3D printer in an effort to check the feasibility of manufacturing PEEK with 3D printing. Based on these preliminary results, PEEK can be successfully used as an appropriate biomaterial to reconstruct the surgical defects in a “biomimetic” design. PMID:29713642
Honigmann, Philipp; Sharma, Neha; Okolo, Brando; Popp, Uwe; Msallem, Bilal; Thieringer, Florian M
2018-01-01
Additive manufacturing (AM) is rapidly gaining acceptance in the healthcare sector. Three-dimensional (3D) virtual surgical planning, fabrication of anatomical models, and patient-specific implants (PSI) are well-established processes in the surgical fields. Polyetheretherketone (PEEK) has been used, mainly in the reconstructive surgeries as a reliable alternative to other alloplastic materials for the fabrication of PSI. Recently, it has become possible to fabricate PEEK PSI with Fused Filament Fabrication (FFF) technology. 3D printing of PEEK using FFF allows construction of almost any complex design geometry, which cannot be manufactured using other technologies. In this study, we fabricated various PEEK PSI by FFF 3D printer in an effort to check the feasibility of manufacturing PEEK with 3D printing. Based on these preliminary results, PEEK can be successfully used as an appropriate biomaterial to reconstruct the surgical defects in a "biomimetic" design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mench, A; Lipnharski, I; Carranza, C
Purpose: New radiation dose reduction technologies are emerging constantly in the medical imaging field. The latest of these technologies, iterative reconstruction (IR) in CT, presents the ability to reduce dose significantly and hence provides great opportunity for CT protocol optimization. However, without effective analysis of image quality, the reduction in radiation exposure becomes irrelevant. This work explores the use of postmortem subjects as an image quality assessment medium for protocol optimizations in abdominal CT. Methods: Three female postmortem subjects were scanned using the Abdomen-Pelvis (AP) protocol at reduced minimum tube current and target noise index (SD) settings of 12.5, 17.5,more » 20.0, and 25.0. Images were reconstructed using two strengths of iterative reconstruction. Radiologists and radiology residents from several subspecialties were asked to evaluate 8 AP image sets including the current facility default scan protocol and 7 scans with the parameters varied as listed above. Images were viewed in the soft tissue window and scored on a 3-point scale as acceptable, borderline acceptable, and unacceptable for diagnosis. The facility default AP scan was identified to the reviewer while the 7 remaining AP scans were randomized and de-identified of acquisition and reconstruction details. The observers were also asked to comment on the subjective image quality criteria they used for scoring images. This included visibility of specific anatomical structures and tissue textures. Results: Radiologists scored images as acceptable or borderline acceptable for target noise index settings of up to 20. Due to the postmortem subjects’ close representation of living human anatomy, readers were able to evaluate images as they would those of actual patients. Conclusion: Postmortem subjects have already been proven useful for direct CT organ dose measurements. This work illustrates the validity of their use for the crucial evaluation of image quality during CT protocol optimization, especially when investigating the effects of new technologies.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-19
..., or Use I. National Technology Transfer and Advancement Act J. Executive Order 12898: Federal Actions... and Advancement Act Section 12(d) of the National Technology Transfer and Advancement Act of 1995... information claimed to be confidential business information (CBI) or other information whose disclosure is...
Perestroyka in the Soviet Union. Occasional Paper No. 128.
ERIC Educational Resources Information Center
Makhmoutov, Mirza Ismail
This document presents the point of view that although socialism has produced benefits for the USSR, Soviet society has undertaken its own radical reconstruction. History shows that the natural basis of changes in every society tends to be objective technological revolutions. The first technological revolution was agrarian. The second was…
Lee, K; Kim, M; Kim, K
2018-05-11
Skin surface evaluation has been studied using various imaging techniques. However, all these studies had limited impact because they were performed using visual exam only. To improve on this scenario with haptic feedback, we propose 3D reconstruction of the skin surface using a single image. Unlike extant 3D skin surface reconstruction algorithms, we utilize the local texture and global curvature regions, combining the results for reconstruction. The first entails the reconstruction of global curvature, achieved by bilateral filtering that removes noise on the surface while maintaining the edge (ie, furrow) to obtain the overall curvature. The second entails the reconstruction of local texture, representing the fine wrinkles of the skin, using an advanced form of bilateral filtering. The final image is then composed by merging the two reconstructed images. We tested the curvature reconstruction part by comparing the resulting curvatures with measured values from real phantom objects while local texture reconstruction was verified by measuring skin surface roughness. Then, we showed the reconstructed result of our proposed algorithm via the reconstruction of various real skin surfaces. The experimental results demonstrate that our approach is a promising technology to reconstruct an accurate skin surface with a single skin image. We proposed 3D skin surface reconstruction using only a single camera. We highlighted the utility of global curvature, which has not been considered important in the past. Thus, we proposed a new method for 3D reconstruction that can be used for 3D haptic palpation, dividing the concepts of local and global regions. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Real-time quasi-3D tomographic reconstruction
NASA Astrophysics Data System (ADS)
Buurlage, Jan-Willem; Kohr, Holger; Palenstijn, Willem Jan; Joost Batenburg, K.
2018-06-01
Developments in acquisition technology and a growing need for time-resolved experiments pose great computational challenges in tomography. In addition, access to reconstructions in real time is a highly demanded feature but has so far been out of reach. We show that by exploiting the mathematical properties of filtered backprojection-type methods, having access to real-time reconstructions of arbitrarily oriented slices becomes feasible. Furthermore, we present , software for visualization and on-demand reconstruction of slices. A user of can interactively shift and rotate slices in a GUI, while the software updates the slice in real time. For certain use cases, the possibility to study arbitrarily oriented slices in real time directly from the measured data provides sufficient visual and quantitative insight. Two such applications are discussed in this article.
NASA Astrophysics Data System (ADS)
Burov, V. A.; Zotov, D. I.; Rumyantseva, O. D.
2014-07-01
A two-step algorithm is used to reconstruct the spatial distributions of the acoustic characteristics of soft biological tissues-the sound velocity and absorption coefficient. Knowing these distributions is urgent for early detection of benign and malignant neoplasms in biological tissues, primarily in the breast. At the first stage, large-scale distributions are estimated; at the second step, they are refined with a high resolution. Results of reconstruction on the base of model initial data are presented. The principal necessity of preliminary reconstruction of large-scale distributions followed by their being taken into account at the second step is illustrated. The use of CUDA technology for processing makes it possible to obtain final images of 1024 × 1024 samples in only a few minutes.
Ferrario, Damien; Grychtol, Bartłomiej; Adler, Andy; Solà, Josep; Böhm, Stephan H; Bodenstein, Marc
2012-11-01
Lung and cardiovascular monitoring applications of electrical impedance tomography (EIT) require localization of relevant functional structures or organs of interest within the reconstructed images. We describe an algorithm for automatic detection of heart and lung regions in a time series of EIT images. Using EIT reconstruction based on anatomical models, candidate regions are identified in the frequency domain and image-based classification techniques applied. The algorithm was validated on a set of simultaneously recorded EIT and CT data in pigs. In all cases, identified regions in EIT images corresponded to those manually segmented in the matched CT image. Results demonstrate the ability of EIT technology to reconstruct relevant impedance changes at their anatomical locations, provided that information about the thoracic boundary shape (and electrode positions) are used for reconstruction.
The Convolutional Visual Network for Identification and Reconstruction of NOvA Events
DOE Office of Scientific and Technical Information (OSTI.GOV)
Psihas, Fernanda
In 2016 the NOvA experiment released results for the observation of oscillations in the vμ and ve channels as well as ve cross section measurements using neutrinos from Fermilab’s NuMI beam. These and other measurements in progress rely on the accurate identification and reconstruction of the neutrino flavor and energy recorded by our detectors. This presentation describes the first application of convolutional neural network technology for event identification and reconstruction in particle detectors like NOvA. The Convolutional Visual Network (CVN) Algorithm was developed for identification, categorization, and reconstruction of NOvA events. It increased the selection efficiency of the ve appearancemore » signal by 40% and studies show potential impact to the vμ disappearance analysis.« less
NASA Astrophysics Data System (ADS)
Jardin, A.; Mazon, D.; Malard, P.; O'Mullane, M.; Chernyshova, M.; Czarski, T.; Malinowski, K.; Kasprowicz, G.; Wojenski, A.; Pozniak, K.
2017-08-01
The tokamak WEST aims at testing ITER divertor high heat flux component technology in long pulse operation. Unfortunately, heavy impurities like tungsten (W) sputtered from the plasma facing components can pollute the plasma core by radiation cooling in the soft x-ray (SXR) range, which is detrimental for the energy confinement and plasma stability. SXR diagnostics give valuable information to monitor impurities and study their transport. The WEST SXR diagnostic is composed of two new cameras based on the Gas Electron Multiplier (GEM) technology. The WEST GEM cameras will be used for impurity transport studies by performing 2D tomographic reconstructions with spectral resolution in tunable energy bands. In this paper, we characterize the GEM spectral response and investigate W density reconstruction thanks to a synthetic diagnostic recently developed and coupled with a tomography algorithm based on the minimum Fisher information (MFI) inversion method. The synthetic diagnostic includes the SXR source from a given plasma scenario, the photoionization, electron cloud transport and avalanche in the detection volume using Magboltz, and tomographic reconstruction of the radiation from the GEM signal. Preliminary studies of the effect of transport on the W ionization equilibrium and on the reconstruction capabilities are also presented.
MR fingerprinting Deep RecOnstruction NEtwork (DRONE).
Cohen, Ouri; Zhu, Bo; Rosen, Matthew S
2018-09-01
Demonstrate a novel fast method for reconstruction of multi-dimensional MR fingerprinting (MRF) data using deep learning methods. A neural network (NN) is defined using the TensorFlow framework and trained on simulated MRF data computed with the extended phase graph formalism. The NN reconstruction accuracy for noiseless and noisy data is compared to conventional MRF template matching as a function of training data size and is quantified in simulated numerical brain phantom data and International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology phantom data measured on 1.5T and 3T scanners with an optimized MRF EPI and MRF fast imaging with steady state precession (FISP) sequences with spiral readout. The utility of the method is demonstrated in a healthy subject in vivo at 1.5T. Network training required 10 to 74 minutes; once trained, data reconstruction required approximately 10 ms for the MRF EPI and 76 ms for the MRF FISP sequence. Reconstruction of simulated, noiseless brain data using the NN resulted in a RMS error (RMSE) of 2.6 ms for T 1 and 1.9 ms for T 2 . The reconstruction error in the presence of noise was less than 10% for both T 1 and T 2 for SNR greater than 25 dB. Phantom measurements yielded good agreement (R 2 = 0.99/0.99 for MRF EPI T 1 /T 2 and 0.94/0.98 for MRF FISP T 1 /T 2 ) between the T 1 and T 2 estimated by the NN and reference values from the International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology phantom. Reconstruction of MRF data with a NN is accurate, 300- to 5000-fold faster, and more robust to noise and dictionary undersampling than conventional MRF dictionary-matching. © 2018 International Society for Magnetic Resonance in Medicine.
Widmann, G; Juranek, D; Waldenberger, F; Schullian, P; Dennhardt, A; Hoermann, R; Steurer, M; Gassner, E-M; Puelacher, W
2017-08-01
Dose reduction on CT scans for surgical planning and postoperative evaluation of midface and orbital fractures is an important concern. The purpose of this study was to evaluate the variability of various low-dose and iterative reconstruction techniques on the visualization of orbital soft tissues. Contrast-to-noise ratios of the optic nerve and inferior rectus muscle and subjective scores of a human cadaver were calculated from CT with a reference dose protocol (CT dose index volume = 36.69 mGy) and a subsequent series of low-dose protocols (LDPs I-4: CT dose index volume = 4.18, 2.64, 0.99, and 0.53 mGy) with filtered back-projection (FBP) and adaptive statistical iterative reconstruction (ASIR)-50, ASIR-100, and model-based iterative reconstruction. The Dunn Multiple Comparison Test was used to compare each combination of protocols (α = .05). Compared with the reference dose protocol with FBP, the following statistically significant differences in contrast-to-noise ratios were shown (all, P ≤ .012) for the following: 1) optic nerve: LDP-I with FBP; LDP-II with FBP and ASIR-50; LDP-III with FBP, ASIR-50, and ASIR-100; and LDP-IV with FBP, ASIR-50, and ASIR-100; and 2) inferior rectus muscle: LDP-II with FBP, LDP-III with FBP and ASIR-50, and LDP-IV with FBP, ASIR-50, and ASIR-100. Model-based iterative reconstruction showed the best contrast-to-noise ratio in all images and provided similar subjective scores for LDP-II. ASIR-50 had no remarkable effect, and ASIR-100, a small effect on subjective scores. Compared with a reference dose protocol with FBP, model-based iterative reconstruction may show similar diagnostic visibility of orbital soft tissues at a CT dose index volume of 2.64 mGy. Low-dose technology and iterative reconstruction technology may redefine current reference dose levels in maxillofacial CT. © 2017 by American Journal of Neuroradiology.
Detterbeck, Andreas; Hofmeister, Michael; Hofmann, Elisabeth; Haddad, Daniel; Weber, Daniel; Hölzing, Astrid; Zabler, Simon; Schmid, Matthias; Hiller, Karl-Heinz; Jakob, Peter; Engel, Jens; Hiller, Jochen; Hirschfelder, Ursula
2016-07-01
To examine the relative usefulness and suitability of magnetic resonance imaging (MRI) in daily clinical practice as compared to various technologies of computed tomography (CT) in addressing questions of orthodontic interest. Three blinded raters evaluated 2D slices and 3D reconstructions created from scans of two pig heads. Five imaging modalities were used, including three CT technologies-multislice (MSCT), cone-beam CT (CBCT), and industrial (µCT)-and two MRI protocols with different scan durations. Defined orthodontic parameters were rated one by one on the 2D slices and the 3D reconstructions, followed by final overall ratings for each modality. A mixed linear model was used for statistical analysis. Based on the 2D slices, the parameter of visualizing tooth-germ topography did not yield any significantly different ratings for MRI versus any of the CT scans. While some ratings for the other parameters did involve significant differences, how these should be interpreted depends greatly on the relevance of each parameter. Based on the 3D reconstructions, the only significant difference between technologies was noted for the parameter of visualizing root-surface morphology. Based on the final overall ratings, the imaging performance of the standard MRI protocol was noninferior to the performance of the three CT technologies. On comparing the imaging performance of MRI and CT scans, it becomes clear that MRI has a huge potential for applications in daily clinical practice. Given its additional benefits of a good contrast ratio and complete absence of ionizing radiation, further studies are needed to explore this clinical potential in greater detail.
Cryo-Electron Tomography for Structural Characterization of Macromolecular Complexes
Cope, Julia; Heumann, John; Hoenger, Andreas
2011-01-01
Cryo-electron tomography (cryo-ET) is an emerging 3-D reconstruction technology that combines the principles of tomographic 3-D reconstruction with the unmatched structural preservation of biological material embedded in vitreous ice. Cryo-ET is particularly suited to investigating cell-biological samples and large macromolecular structures that are too polymorphic to be reconstructed by classical averaging-based 3-D reconstruction procedures. This unit aims to make cryo-ET accessible to newcomers and discusses the specialized equipment required, as well as the relevant advantages and hurdles associated with sample preparation by vitrification and cryo-ET. Protocols describe specimen preparation, data recording and 3-D data reconstruction for cryo-ET, with a special focus on macromolecular complexes. A step-by-step procedure for specimen vitrification by plunge freezing is provided, followed by the general practicalities of tilt-series acquisition for cryo-ET, including advice on how to select an area appropriate for acquiring a tilt series. A brief introduction to the underlying computational reconstruction principles applied in tomography is described, along with instructions for reconstructing a tomogram from cryo-tilt series data. Finally, a method is detailed for extracting small subvolumes containing identical macromolecular structures from tomograms for alignment and averaging as a means to increase the signal-to-noise ratio and eliminate missing wedge effects inherent in tomographic reconstructions. PMID:21842467
Recent advances in reconstructing microbial secondary metabolites biosynthesis in Aspergillus spp.
He, Yi; Wang, Bin; Chen, Wanping; Cox, Russell J; He, Jingren; Chen, Fusheng
High throughput genome sequencing has revealed a multitude of potential secondary metabolites biosynthetic pathways that remain cryptic. Pathway reconstruction coupled with genetic engineering via heterologous expression enables discovery of novel compounds, elucidation of biosynthetic pathways, and optimization of product yields. Apart from Escherichia coli and yeast, fungi, especially Aspergillus spp., are well known and efficient heterologous hosts. This review summarizes recent advances in heterologous expression of microbial secondary metabolite biosynthesis in Aspergillus spp. We also discuss the technological challenges and successes in regard to heterologous host selection and DNA assembly behind the reconstruction of microbial secondary metabolite biosynthesis. Copyright © 2018 Elsevier Inc. All rights reserved.
Region of interest processing for iterative reconstruction in x-ray computed tomography
NASA Astrophysics Data System (ADS)
Kopp, Felix K.; Nasirudin, Radin A.; Mei, Kai; Fehringer, Andreas; Pfeiffer, Franz; Rummeny, Ernst J.; Noël, Peter B.
2015-03-01
The recent advancements in the graphics card technology raised the performance of parallel computing and contributed to the introduction of iterative reconstruction methods for x-ray computed tomography in clinical CT scanners. Iterative maximum likelihood (ML) based reconstruction methods are known to reduce image noise and to improve the diagnostic quality of low-dose CT. However, iterative reconstruction of a region of interest (ROI), especially ML based, is challenging. But for some clinical procedures, like cardiac CT, only a ROI is needed for diagnostics. A high-resolution reconstruction of the full field of view (FOV) consumes unnecessary computation effort that results in a slower reconstruction than clinically acceptable. In this work, we present an extension and evaluation of an existing ROI processing algorithm. Especially improvements for the equalization between regions inside and outside of a ROI are proposed. The evaluation was done on data collected from a clinical CT scanner. The performance of the different algorithms is qualitatively and quantitatively assessed. Our solution to the ROI problem provides an increase in signal-to-noise ratio and leads to visually less noise in the final reconstruction. The reconstruction speed of our technique was observed to be comparable with other previous proposed techniques. The development of ROI processing algorithms in combination with iterative reconstruction will provide higher diagnostic quality in the near future.
Tropospheric wet refractivity tomography using multiplicative algebraic reconstruction technique
NASA Astrophysics Data System (ADS)
Xiaoying, Wang; Ziqiang, Dai; Enhong, Zhang; Fuyang, K. E.; Yunchang, Cao; Lianchun, Song
2014-01-01
Algebraic reconstruction techniques (ART) have been successfully used to reconstruct the total electron content (TEC) of the ionosphere and in recent years be tentatively used in tropospheric wet refractivity and water vapor tomography in the ground-based GNSS technology. The previous research on ART used in tropospheric water vapor tomography focused on the convergence and relaxation parameters for various algebraic reconstruction techniques and rarely discussed the impact of Gaussian constraints and initial field on the iteration results. The existing accuracy evaluation parameters calculated from slant wet delay can only evaluate the resultant precision of the voxels penetrated by slant paths and cannot evaluate that of the voxels not penetrated by any slant path. The paper proposes two new statistical parameters Bias and RMS, calculated from wet refractivity of the total voxels, to improve the deficiencies of existing evaluation parameters and then discusses the effect of the Gaussian constraints and initial field on the convergence and tomography results in multiplicative algebraic reconstruction technique (MART) to reconstruct the 4D tropospheric wet refractivity field using simulation method.
The Economics of Prepectoral Breast Reconstruction.
Glasberg, Scot Bradley
2017-12-01
The world of breast reconstruction over the last several years has seen a dramatic shift in focus to discussion and the application of placing tissue expanders and implants back into the prepectoral space. Although this technique failed during the early advent of breast reconstruction, newer technologies such as advances in fat grafting, improved acellular dermal matrices, better methods of assessing breast flap viability, and enhanced implants appear to have set the stage for the resurgence and positive early results seen with this technique. The main benefits of a switch to prepectoral breast reconstruction clinically appears to be less associated pain, lower incidence of animation deformities, and its associated symptoms as well as presumably better aesthetics. Early data suggest that the results are extremely promising and early adopters have attempted to define the ideal patients for prepectoral breast reconstruction. As with any new operative procedure, an assessment of finances and costs are crucial to its successful implementation. Although current data are minimal, this article attempts to build the fundamentals of an economic model that exhibits and displays potential savings through the use of prepectoral breast reconstruction.
Titanium template for scaphoid reconstruction.
Haefeli, M; Schaefer, D J; Schumacher, R; Müller-Gerbl, M; Honigmann, P
2015-06-01
Reconstruction of a non-united scaphoid with a humpback deformity involves resection of the non-union followed by bone grafting and fixation of the fragments. Intraoperative control of the reconstruction is difficult owing to the complex three-dimensional shape of the scaphoid and the other carpal bones overlying the scaphoid on lateral radiographs. We developed a titanium template that fits exactly to the surfaces of the proximal and distal scaphoid poles to define their position relative to each other after resection of the non-union. The templates were designed on three-dimensional computed tomography reconstructions and manufactured using selective laser melting technology. Ten conserved human wrists were used to simulate the reconstruction. The achieved precision measured as the deviation of the surface of the reconstructed scaphoid from its virtual counterpart was good in five cases (maximal difference 1.5 mm), moderate in one case (maximal difference 3 mm) and inadequate in four cases (difference more than 3 mm). The main problems were attributed to the template design and can be avoided by improved pre-operative planning, as shown in a clinical case. © The Author(s) 2014.
Latest advances in molecular imaging instrumentation.
Pichler, Bernd J; Wehrl, Hans F; Judenhofer, Martin S
2008-06-01
This review concentrates on the latest advances in molecular imaging technology, including PET, MRI, and optical imaging. In PET, significant improvements in tumor detection and image resolution have been achieved by introducing new scintillation materials, iterative image reconstruction, and correction methods. These advances enabled the first clinical scanners capable of time-of-flight detection and incorporating point-spread-function reconstruction to compensate for depth-of-interaction effects. In the field of MRI, the most important developments in recent years have mainly been MRI systems with higher field strengths and improved radiofrequency coil technology. Hyperpolarized imaging, functional MRI, and MR spectroscopy provide molecular information in vivo. A special focus of this review article is multimodality imaging and, in particular, the emerging field of combined PET/MRI.
Iris recognition via plenoptic imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santos-Villalobos, Hector J.; Boehnen, Chris Bensing; Bolme, David S.
Iris recognition can be accomplished for a wide variety of eye images by using plenoptic imaging. Using plenoptic technology, it is possible to correct focus after image acquisition. One example technology reconstructs images having different focus depths and stitches them together, resulting in a fully focused image, even in an off-angle gaze scenario. Another example technology determines three-dimensional data for an eye and incorporates it into an eye model used for iris recognition processing. Another example technology detects contact lenses. Application of the technologies can result in improved iris recognition under a wide variety of scenarios.
ERIC Educational Resources Information Center
Chen, Jin-Shan
2011-01-01
This paper examines the reflective practices of integrating informational technology into English curriculum of an EFL (English as a foreign language) teacher in Taiwan over a decade. The teaching experiences have been reconstructed and represented through first person narrative inquiry, highlighting the conflicts the teacher encountered, the…
Mobile Inverted Constructivism: Education of Interaction Technology in Social Media
ERIC Educational Resources Information Center
Chai, Jia-Xiang; Fan, Kuo-Kuang
2016-01-01
The combination of social media and invert teaching is a new path to inverting interation technology education and reconstructing the curriculum of context. In this paper, based on the theory of constructivism learning, a model named Mobile Inverted Constructivism (MIC) is provided. Moreover, in view of the functional quality of social media in…
Supersonic Flight Dynamics Test 2: Trajectory, Atmosphere, and Aerodynamics Reconstruction
NASA Technical Reports Server (NTRS)
Karlgaard, Christopher D.; O'Farrell, Clara; Ginn, Jason M.; Van Norman, John W.
2016-01-01
The Supersonic Flight Dynamics Test is a full-scale flight test of aerodynamic decelerator technologies developed by the Low Density Supersonic Decelerator technology demonstration project. The purpose of the project is to develop and mature aerodynamic decelerator technologies for landing large-mass payloads on the surface of Mars. The technologies include a Supersonic Inflatable Aerodynamic Decelerator and supersonic parachutes. The first Supersonic Flight Dynamics Test occurred on June 28th, 2014 at the Pacific Missile Range Facility. The purpose of this test was to validate the test architecture for future tests. The flight was a success and, in addition, was able to acquire data on the aerodynamic performance of the supersonic inflatable decelerator. The Supersonic Disksail parachute developed a tear during deployment. The second flight test occurred on June 8th, 2015, and incorporated a Supersonic Ringsail parachute which was redesigned based on data from the first flight. Again, the inflatable decelerator functioned as predicted but the parachute was damaged during deployment. This paper describes the instrumentation, analysis techniques, and acquired flight test data utilized to reconstruct the vehicle trajectory, main motor thrust, atmosphere, and aerodynamics.
Ni, Jianlong; Li, Dichen; Mao, Mao; Dang, Xiaoqian; Wang, Kunzheng; He, Jiankang; Shi, Zhibin
2018-02-01
To explore a method of bone tunnel placement for anterior cruciate ligament (ACL) reconstruction based on 3-dimensional (3D) printing technology and to assess its accuracy. Twenty human cadaveric knees were scanned by thin-layer computed tomography (CT). To obtain data on bones used to establish a knee joint model by computer software, customized bone anchors were installed before CT. The reference point was determined at the femoral and tibial footprint areas of the ACL. The site and direction of the bone tunnels of the femur and tibia were designed and calibrated on the knee joint model according to the reference point. The resin template was designed and printed by 3D printing. Placement of the bone tunnels was accomplished by use of templates, and the cadaveric knees were scanned again to compare the concordance of the internal opening of the bone tunnels and reference points. The twenty 3D printing templates were designed and printed successfully. CT data analysis between the planned and actual drilled tunnel positions showed mean deviations of 0.57 mm (range, 0-1.5 mm; standard deviation, 0.42 mm) at the femur and 0.58 mm (range, 0-1.5 mm; standard deviation, 0.47 mm) at the tibia. The accuracy of bone tunnel placement for ACL reconstruction in cadaveric adult knees based on 3D printing technology is high. This method can improve the accuracy of bone tunnel placement for ACL reconstruction in clinical sports medicine. Copyright © 2017 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
3D Printing Technology in Planning Thumb Reconstructions with Second Toe Transplant.
Zang, Cheng-Wu; Zhang, Jian-Lei; Meng, Ze-Zu; Liu, Lin-Feng; Zhang, Wen-Zhi; Chen, Yong-Xiang; Cong, Rui
2017-05-01
To report preoperative planning using 3D printing to plan thumb reconstructions with second toe transplant. Between December 2013 and October 2015, the thumbs of five patients with grade 3 thumb defects were reconstructed using a wrap-around flap and second toe transplant aided by 3D printing technology. CT scans of hands and feet were analyzed using Boholo surgical simulator software (www.boholo.com). This allowed for the creation of a mirror image of the healthy thumb using the uninjured thumb. Using 3D images of the reconstructed thumb, a model of the big toe and the second toe was created to understand the dimensions of the donor site. This model was also used to repair the donor site defect by designing appropriate iliac bone and superficial circumflex iliac artery flaps. The polylactic acid model of the donor toes and reconstructed thumb was produced using 3D printing. Surgically, the wrap-around flap of the first dorsal metatarsal artery and vein combined with the joint and bone of the second toe was based upon the model donor site. Sensation was reconstructed by anastomosing the dorsal nerve of the foot and the plantar digital nerve of the great toe. Patients commenced exercises 2 weeks after surgery. All reconstructed thumbs survived, although partial flap necrosis occurred in one case. This was managed with regular dressing changes. Patients were followed up for 3-15 months. The lengths of the reconstructed thumbs are 34-49 mm. The widths of the thumb nail beds are 16-19 mm, and the thickness of the digital pulp is 16-20 mm. The thumb opposition function was 0-1.5 cm; the extension angle was 5°-20° (mean, 16°), and the angle of flexion was 38°-55° (mean, 47°). Two-point discrimination was 9-11 mm (mean, 9.6 mm). The reconstructed thumbs had good appearance, function and sensation. Based on the criteria set forth by the Standard on Approval of Reconstructed Thumb and Finger Functional Assessment of the Chinese Medical Association, the results were considered excellent for four cases and good for one case. The success rate was 100%. When planning a wrap-around flap and second toe transplant to reconstruct a thumb, both the donor and recipient sites can be modeled using 3D printing. This can shorten the operative time by supplying digital and accurate schematics for the operation. It can also optimize the function and appearance of the reconstructed thumb while minimizing damage to the donor site. © 2017 Chinese Orthopaedic Association and John Wiley & Sons Australia, Ltd.
Thomas, Thaddeus P.; Anderson, Donald D.; Willis, Andrew R.; Liu, Pengcheng; Frank, Matthew C.; Marsh, J. Lawrence; Brown, Thomas D.
2011-01-01
Reconstructing highly comminuted articular fractures poses a difficult surgical challenge, akin to solving a complicated three-dimensional (3D) puzzle. Pre-operative planning using CT is critically important, given the desirability of less invasive surgical approaches. The goal of this work is to advance 3D puzzle solving methods toward use as a pre-operative tool for reconstructing these complex fractures. Methodology for generating typical fragmentation/dispersal patterns was developed. Five identical replicas of human distal tibia anatomy, were machined from blocks of high-density polyetherurethane foam (bone fragmentation surrogate), and were fractured using an instrumented drop tower. Pre- and post-fracture geometries were obtained using laser scans and CT. A semi-automatic virtual reconstruction computer program aligned fragment native (non-fracture) surfaces to a pre-fracture template. The tibias were precisely reconstructed with alignment accuracies ranging from 0.03-0.4mm. This novel technology has potential to significantly enhance surgical techniques for reconstructing comminuted intra-articular fractures, as illustrated for a representative clinical case. PMID:20924863
Improved Range Estimation Model for Three-Dimensional (3D) Range Gated Reconstruction
Chua, Sing Yee; Guo, Ningqun; Tan, Ching Seong; Wang, Xin
2017-01-01
Accuracy is an important measure of system performance and remains a challenge in 3D range gated reconstruction despite the advancement in laser and sensor technology. The weighted average model that is commonly used for range estimation is heavily influenced by the intensity variation due to various factors. Accuracy improvement in term of range estimation is therefore important to fully optimise the system performance. In this paper, a 3D range gated reconstruction model is derived based on the operating principles of range gated imaging and time slicing reconstruction, fundamental of radiant energy, Laser Detection And Ranging (LADAR), and Bidirectional Reflection Distribution Function (BRDF). Accordingly, a new range estimation model is proposed to alleviate the effects induced by distance, target reflection, and range distortion. From the experimental results, the proposed model outperforms the conventional weighted average model to improve the range estimation for better 3D reconstruction. The outcome demonstrated is of interest to various laser ranging applications and can be a reference for future works. PMID:28872589
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graf, Norman A.; /SLAC
Maximizing the physics performance of detectors being designed for the International Linear Collider, while remaining sensitive to cost constraints, requires a powerful, efficient, and flexible simulation, reconstruction and analysis environment to study the capabilities of a large number of different detector designs. The preparation of Letters Of Intent for the International Linear Collider involved the detailed study of dozens of detector options, layouts and readout technologies; the final physics benchmarking studies required the reconstruction and analysis of hundreds of millions of events. We describe the Java-based software toolkit (org.lcsim) which was used for full event reconstruction and analysis. The componentsmore » are fully modular and are available for tasks from digitization of tracking detector signals through to cluster finding, pattern recognition, track-fitting, calorimeter clustering, individual particle reconstruction, jet-finding, and analysis. The detector is defined by the same xml input files used for the detector response simulation, ensuring the simulation and reconstruction geometries are always commensurate by construction. We discuss the architecture as well as the performance.« less
From Panoramic Photos to a Low-Cost Photogrammetric Workflow for Cultural Heritage 3d Documentation
NASA Astrophysics Data System (ADS)
D'Annibale, E.; Tassetti, A. N.; Malinverni, E. S.
2013-07-01
The research aims to optimize a workflow of architecture documentation: starting from panoramic photos, tackling available instruments and technologies to propose an integrated, quick and low-cost solution of Virtual Architecture. The broader research background shows how to use spherical panoramic images for the architectural metric survey. The input data (oriented panoramic photos), the level of reliability and Image-based Modeling methods constitute an integrated and flexible 3D reconstruction approach: from the professional survey of cultural heritage to its communication in virtual museum. The proposed work results from the integration and implementation of different techniques (Multi-Image Spherical Photogrammetry, Structure from Motion, Imagebased Modeling) with the aim to achieve high metric accuracy and photorealistic performance. Different documentation chances are possible within the proposed workflow: from the virtual navigation of spherical panoramas to complex solutions of simulation and virtual reconstruction. VR tools make for the integration of different technologies and the development of new solutions for virtual navigation. Image-based Modeling techniques allow 3D model reconstruction with photo realistic and high-resolution texture. High resolution of panoramic photo and algorithms of panorama orientation and photogrammetric restitution vouch high accuracy and high-resolution texture. Automated techniques and their following integration are subject of this research. Data, advisably processed and integrated, provide different levels of analysis and virtual reconstruction joining the photogrammetric accuracy to the photorealistic performance of the shaped surfaces. Lastly, a new solution of virtual navigation is tested. Inside the same environment, it proposes the chance to interact with high resolution oriented spherical panorama and 3D reconstructed model at once.
Calibration, reconstruction, and rendering of cylindrical millimeter-wave image data
NASA Astrophysics Data System (ADS)
Sheen, David M.; Hall, Thomas E.
2011-05-01
Cylindrical millimeter-wave imaging systems and technology have been under development at the Pacific Northwest National Laboratory (PNNL) for several years. This technology has been commercialized, and systems are currently being deployed widely across the United States and internationally. These systems are effective at screening for concealed items of all types; however, new sensor designs, image reconstruction techniques, and image rendering algorithms could potentially improve performance. At PNNL, a number of specific techniques have been developed recently to improve cylindrical imaging methods including wideband techniques, combining data from full 360-degree scans, polarimetric imaging techniques, calibration methods, and 3-D data visualization techniques. Many of these techniques exploit the three-dimensionality of the cylindrical imaging technique by optimizing the depth resolution of the system and using this information to enhance detection. Other techniques, such as polarimetric methods, exploit scattering physics of the millimeter-wave interaction with concealed targets on the body. In this paper, calibration, reconstruction, and three-dimensional rendering techniques will be described that optimize the depth information in these images and the display of the images to the operator.
Organizatonal Communication Issues in Italian Multinational Corporations.
ERIC Educational Resources Information Center
Cesaria, Ruggero
2000-01-01
Provides a brief historical reconstruction of management communication in Italian companies. Suggests that dealing with communication technologies, communication professionals, and intercultural communication represent three future challenges. (NH)
Liang, Weiqiang; Yao, Yuanyuan; Huang, Zixian; Chen, Yuhong; Ji, Chenyang; Zhang, Jinming
2016-07-01
The purpose of this study was to evaluate the clinical application of individual craniofacial bone fabrications using computer-assisted design (CAD)-computer-assisted manufacturing technology for the reconstruction of craniofacial bone defects. A total of 8 patients diagnosed with craniofacial bone defects were enrolled in this study between May 2007 and August 2010. After computed tomography scans were obtained, the patients were fitted with artificial bone that was created using CAD software, rapid prototyping technology, and epoxy-methyl acrylate resin and hydroxyapatite materials. The fabrication was fixed to the defect area with titanium screws, and soft tissue defects were repaired if necessary. The fabrications were precisely fixed to the defect areas, and all wounds healed well without any serious complications except for 1 case with intraoral incision dehiscence, which required further treatment. Postoperative curative effects were retrospectively observed after 6 to 48 months, acceptable anatomic and cosmetic outcomes were obtained, and no rejections or other complications occurred. The use of CAD-computer-assisted manufacturing technology-assisted epoxy-methyl acrylate resin and hydroxyapatite composite artificial bone to treat patients with craniofacial bone defects could enable the precise reconstruction of these defects and obtain good anatomic and cosmetic outcomes. Copyright © 2016 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Medical information security in the era of artificial intelligence.
Wang, Yufeng; Wang, Liwei; Xue, Chang-Ao
2018-06-01
In recent years, biometric technologies, such as iris, facial, and finger vein recognition, have reached consumers and are being increasingly applied. However, it remains unknown whether these highly specific biometric technologies are as safe as declared by their manufacturers. As three-dimensional (3D) reconstruction based on medical imaging and 3D printing are being developed, these biometric technologies may face severe challenges. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ogawa, Kazuhisa; Kobayashi, Hirokazu; Tomita, Akihisa
2018-02-01
The quantum interference of entangled photons forms a key phenomenon underlying various quantum-optical technologies. It is known that the quantum interference patterns of entangled photon pairs can be reconstructed classically by the time-reversal method; however, the time-reversal method has been applied only to time-frequency-entangled two-photon systems in previous experiments. Here, we apply the time-reversal method to the position-wave-vector-entangled two-photon systems: the two-photon Young interferometer and the two-photon beam focusing system. We experimentally demonstrate that the time-reversed systems classically reconstruct the same interference patterns as the position-wave-vector-entangled two-photon systems.
NASA Astrophysics Data System (ADS)
Bouma, Henri; van der Mark, Wannes; Eendebak, Pieter T.; Landsmeer, Sander H.; van Eekeren, Adam W. M.; ter Haar, Frank B.; Wieringa, F. Pieter; van Basten, Jean-Paul
2012-06-01
Compared to open surgery, minimal invasive surgery offers reduced trauma and faster recovery. However, lack of direct view limits space perception. Stereo-endoscopy improves depth perception, but is still restricted to the direct endoscopic field-of-view. We describe a novel technology that reconstructs 3D-panoramas from endoscopic video streams providing a much wider cumulative overview. The method is compatible with any endoscope. We demonstrate that it is possible to generate photorealistic 3D-environments from mono- and stereoscopic endoscopy. The resulting 3D-reconstructions can be directly applied in simulators and e-learning. Extended to real-time processing, the method looks promising for telesurgery or other remote vision-guided tasks.
Safikhani, Zhaleh; Sadeghi, Mehdi; Pezeshk, Hamid; Eslahchi, Changiz
2013-01-01
Recent advances in the sequencing technologies have provided a handful of RNA-seq datasets for transcriptome analysis. However, reconstruction of full-length isoforms and estimation of the expression level of transcripts with a low cost are challenging tasks. We propose a novel de novo method named SSP that incorporates interval integer linear programming to resolve alternatively spliced isoforms and reconstruct the whole transcriptome from short reads. Experimental results show that SSP is fast and precise in determining different alternatively spliced isoforms along with the estimation of reconstructed transcript abundances. The SSP software package is available at http://www.bioinf.cs.ipm.ir/software/ssp. © 2013.
Preliminary experimental results from a MARS Micro-CT system.
He, Peng; Yu, Hengyong; Thayer, Patrick; Jin, Xin; Xu, Qiong; Bennett, James; Tappenden, Rachael; Wei, Biao; Goldstein, Aaron; Renaud, Peter; Butler, Anthony; Butler, Phillip; Wang, Ge
2012-01-01
The Medipix All Resolution System (MARS) system is a commercial spectral/multi-energy micro-CT scanner designed and assembled by the MARS Bioimaging, Ltd. in New Zealand. This system utilizes the state-of-the-art Medipix photon-counting, energy-discriminating detector technology developed by a collaboration at European Organization for Nuclear Research (CERN). In this paper, we report our preliminary experimental results using this system, including geometrical alignment, photon energy characterization, protocol optimization, and spectral image reconstruction. We produced our scan datasets with a multi-material phantom, and then applied ordered subset-simultaneous algebraic reconstruction technique (OS-SART) to reconstruct images in different energy ranges and principal component analysis (PCA) to evaluate spectral deviation among the energy ranges.
LoPresti, Melissa; Daniels, Bradley; Buchanan, Edward P; Monson, Laura; Lam, Sandi
2017-04-01
Repeat surgery for restenosis after initial nonsyndromic craniosynostosis intervention is sometimes needed. Calvarial vault reconstruction through a healed surgical bed adds a level of intraoperative complexity and may benefit from preoperative and intraoperative definitions of biometric and aesthetic norms. Computer-assisted design and manufacturing using 3D imaging allows the precise formulation of operative plans in anticipation of surgical intervention. 3D printing turns virtual plans into anatomical replicas, templates, or customized implants by using a variety of materials. The authors present a technical note illustrating the use of this technology: a repeat calvarial vault reconstruction that was planned and executed using computer-assisted design and 3D printed intraoperative guides.
Updates in Head and Neck Reconstruction.
Largo, Rene D; Garvey, Patrick B
2018-02-01
After reading this article, the participant should be able to: 1. Have a basic understanding of virtual planning, rapid prototype modeling, three-dimensional printing, and computer-assisted design and manufacture. 2. Understand the principles of combining virtual planning and vascular mapping. 3. Understand principles of flap choice and design in preoperative planning of free osteocutaneous flaps in mandible and midface reconstruction. 4. Discuss advantages and disadvantages of computer-assisted design and manufacture in reconstruction of advanced oncologic mandible and midface defects. Virtual planning and rapid prototype modeling are increasingly used in head and neck reconstruction with the aim of achieving superior surgical outcomes in functionally and aesthetically critical areas of the head and neck compared with conventional reconstruction. The reconstructive surgeon must be able to understand this rapidly-advancing technology, along with its advantages and disadvantages. There is no limit to the degree to which patient-specific data may be integrated into the virtual planning process. For example, vascular mapping can be incorporated into virtual planning of mandible or midface reconstruction. Representative mandible and midface cases are presented to illustrate the process of virtual planning. Although virtual planning has become helpful in head and neck reconstruction, its routine use may be limited by logistic challenges, increased acquisition costs, and limited flexibility for intraoperative modifications. Nevertheless, the authors believe that the superior functional and aesthetic results realized with virtual planning outweigh the limitations.
Reyes, Camilo; Mason, Eric; Solares, C. Arturo
2014-01-01
Introduction A substantial body of literature has been devoted to the distinct characteristics and surgical options to repair the skull base. However, the skull base is an anatomically challenging location that requires a three-dimensional reconstruction approach. Furthermore, advances in endoscopic skull base surgery encompass a wide range of surgical pathology, from benign tumors to sinonasal cancer. This has resulted in the creation of wide defects that yield a new challenge in skull base reconstruction. Progress in technology and imaging has made this approach an internationally accepted method to repair these defects. Objectives Discuss historical developments and flaps available for skull base reconstruction. Data Synthesis Free grafts in skull base reconstruction are a viable option in small defects and low-flow leaks. Vascularized flaps pose a distinct advantage in large defects and high-flow leaks. When open techniques are used, free flap reconstruction techniques are often necessary to repair large entry wound defects. Conclusions Reconstruction of skull base defects requires a thorough knowledge of surgical anatomy, disease, and patient risk factors associated with high-flow cerebrospinal fluid leaks. Various reconstruction techniques are available, from free tissue grafting to vascularized flaps. Possible complications that can befall after these procedures need to be considered. Although endonasal techniques are being used with increasing frequency, open techniques are still necessary in selected cases. PMID:25992142
Tarsitano, Achille; Badiali, Giovanni; Pizzigallo, Angelo; Marchetti, Claudio
2016-10-01
Enophthalmos is a severe complication of primary reconstruction of orbital floor fractures. The goal of secondary reconstruction procedures is to restore symmetrical globe positions to recover function and aesthetics. The authors propose a new method of orbital floor reconstruction using a mirroring technique and a customized titanium mesh, printed using a direct metal laser-sintering method. This reconstructive protocol involves 4 steps: mirroring of the healthy orbit at the affected site, virtual design of a patient-specific orbital floor mesh, CAM procedures for direct laser-sintering of the customized titanium mesh, and surgical insertion of the device. Using a computed tomography data set, the normal, uninjured side of the craniofacial skeleton was reflected onto the contralateral injured side, and a reconstructive orbital floor mesh was designed virtually on the mirrored orbital bone surface. The solid-to-layer files of the mesh were then manufactured using direct metal laser sintering, which resolves the shaping and bending biases inherent in the indirect method. An intraoperative navigation system ensured accuracy of the entire procedure. Clinical outcomes were assessed using 3dMD photogrammetry and computed tomography data in 7 treated patients. The technique described here appears to be a viable method to correct complex orbital floor defects needing delayed reconstruction. This study represents the first step in the development of a wider experimental protocol for orbital floor reconstruction using computer-assisted design-computer-assisted manufacturing technology.
ERIC Educational Resources Information Center
Magnifico, Alecia Marie; Olmanson, Justin; Cope, Bill
2013-01-01
In this article the authors examine motivational constructs through the lens of new media-supported educational efforts. By examining a range of online, new-media-based learning communities and instructional technologies, they analyze the ways in which motivation is positioned within the field of education, how ecologies of motivation embedded…
The fusion of craniofacial reconstruction and microsurgery: a functional and aesthetic approach.
Broyles, Justin M; Abt, Nicholas B; Shridharani, Sachin M; Bojovic, Branko; Rodriguez, Eduardo D; Dorafshar, Amir H
2014-10-01
Reconstruction of large, composite defects in the craniofacial region has evolved significantly over the past half century. During this time, there have been significant advances in craniofacial and microsurgical surgery. These contributions have often been in parallel; however, over the past 10 years, these two disciplines have begun to overlap more frequently, and the techniques of one have been used to advance the other. In the current review, the authors aim to describe the available options for free tissue reconstruction in craniofacial surgery. A review of microsurgical reconstructive options of aesthetic units within the craniofacial region was undertaken with attention directed toward surgeon flap preference. Anatomical areas analyzed included scalp, calvaria, forehead, frontal sinus, nose, maxilla and midface, periorbita, mandible, lip, and tongue. Although certain flaps such as the ulnar forearm flap and lateral circumflex femoral artery-based flaps were used in multiple reconstructive sites, each anatomical location possesses a unique array of flaps to maximize outcomes. Craniofacial surgery, like plastic surgery, has made tremendous advancements in the past 40 years. With innovations in technology, flap design, and training, microsurgery has become safer, faster, and more commonplace than at any time in history. Reconstructive microsurgery allows the surgeon to be creative in this approach, and free tissue transfer has become a mainstay of modern craniofacial reconstruction.
Joint reconstruction of PET-MRI by exploiting structural similarity
NASA Astrophysics Data System (ADS)
Ehrhardt, Matthias J.; Thielemans, Kris; Pizarro, Luis; Atkinson, David; Ourselin, Sébastien; Hutton, Brian F.; Arridge, Simon R.
2015-01-01
Recent advances in technology have enabled the combination of positron emission tomography (PET) with magnetic resonance imaging (MRI). These PET-MRI scanners simultaneously acquire functional PET and anatomical or functional MRI data. As function and anatomy are not independent of one another the images to be reconstructed are likely to have shared structures. We aim to exploit this inherent structural similarity by reconstructing from both modalities in a joint reconstruction framework. The structural similarity between two modalities can be modelled in two different ways: edges are more likely to be at similar positions and/or to have similar orientations. We analyse the diffusion process generated by minimizing priors that encapsulate these different models. It turns out that the class of parallel level set priors always corresponds to anisotropic diffusion which is sometimes forward and sometimes backward diffusion. We perform numerical experiments where we jointly reconstruct from blurred Radon data with Poisson noise (PET) and under-sampled Fourier data with Gaussian noise (MRI). Our results show that both modalities benefit from each other in areas of shared edge information. The joint reconstructions have less artefacts and sharper edges compared to separate reconstructions and the ℓ2-error can be reduced in all of the considered cases of under-sampling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bieth, Michel; Schoels, Hubert
2006-07-01
The European Union' TACIS1 programme has been established for the New Independent States (NIS), among them in the Russian Federation since 1991. One priority of TACIS funding is Nuclear Safety. The European Commission has made available a total of 944 Million Euros for nuclear safety programmes covering the period 1991-2003. The TACIS nuclear safety programme is devoted to the improvement of the safety of Soviet designed nuclear installations in providing technology and safety culture transfer. JRC is carrying out works in the following areas: On-Site Assistance for TACIS operating Nuclear Power Plants; Design Safety and Dissemination of TACIS results; Reactormore » Pressure Vessel Embrittlement for VVER; Regulatory Assistance; Industrial Waste Management; Nuclear Safeguards; All TACIS projects, dealing with these areas of activity are now available in so called Project Description Sheets (PDS) or Project Results Sheets (PRS) in the Internet for everybody. JRC has created in the Internet an easy to open and to browse database which contains the result of works in relation to the above mentioned nuclear activities. This presentation gives an on-line overview of the app. 430 projects which have been implemented so far since the outset of the TACIS Nuclear Programme in the Russian Federation, which is representative to the other CIS countries, benefiting from the TACIS. The presentation will mainly consist of an on-line-demonstration of the TACIS Nuclear WEB Page, created by JRC. (authors)« less
Dvoránková, Barbora; Holíková, Zuzana; Vacík, Jirí; Königová, Radana; Kapounková, Zuzana; Michálek, Jirí; Prádn, Martin; Smetana, Karel
2003-03-01
Extensive wound coverage still represents a challenge for contemporary medicine. We demonstrate the results of a clinical trial of the grafting of cultured keratinocytes directly on a polymer cultivation support in the treatment of skin defects in seriously burned patients and in patients with trophic ulcers. Wound closure was evaluated clinically. The morphology and phenotypic pattern of the reconstructed epidermis, including the basal lamina, as well as the presence of Langerhans cells, were evaluated immunocytochemically using a panel of monoclonal antibodies. All layers of the reconstructed epidermis were normally differentiated (cytokeratin immunocytochemistry). The basal lamina contained collagen type IV and laminin. The reconstructed epidermis was extensively colonized by Langerhans cells. The results of the described technology are encouraging, especially in patients after a burn injury. The described procedure is suitable for the treatment of skin defects in clinical practice.
Photogrammetric Network for Evaluation of Human Faces for Face Reconstruction Purpose
NASA Astrophysics Data System (ADS)
Schrott, P.; Detrekői, Á.; Fekete, K.
2012-08-01
Facial reconstruction is the process of reconstructing the geometry of faces of persons from skeletal remains. A research group (BME Cooperation Research Center for Biomechanics) was formed representing several organisations to combine knowledgebases of different disciplines like anthropology, medical, mechanical, archaeological sciences etc. to computerize the face reconstruction process based on a large dataset of 3D face and skull models gathered from living persons: cranial data from CT scans and face models from photogrammetric evaluations. The BUTE Dept. of Photogrammetry and Geoinformatics works on the method and technology of the 3D data acquisition for the face models. In this paper we will present the research and results of the photogrammetric network design, the modelling to deal with visibility constraints, and the investigation of the developed basic photogrammetric configuration to specify the result characteristics to be expected using the device built for the photogrammetric face measurements.
Regularization Reconstruction Method for Imaging Problems in Electrical Capacitance Tomography
NASA Astrophysics Data System (ADS)
Chu, Pan; Lei, Jing
2017-11-01
The electrical capacitance tomography (ECT) is deemed to be a powerful visualization measurement technique for the parametric measurement in a multiphase flow system. The inversion task in the ECT technology is an ill-posed inverse problem, and seeking for an efficient numerical method to improve the precision of the reconstruction images is important for practical measurements. By the introduction of the Tikhonov regularization (TR) methodology, in this paper a loss function that emphasizes the robustness of the estimation and the low rank property of the imaging targets is put forward to convert the solution of the inverse problem in the ECT reconstruction task into a minimization problem. Inspired by the split Bregman (SB) algorithm, an iteration scheme is developed for solving the proposed loss function. Numerical experiment results validate that the proposed inversion method not only reconstructs the fine structures of the imaging targets, but also improves the robustness.
Chen, Shanqiu; Dong, LiZhi; Chen, XiaoJun; Tan, Yi; Liu, Wenjin; Wang, Shuai; Yang, Ping; Xu, Bing; Ye, YuTang
2016-04-10
Adaptive optics is an important technology for improving beam quality in solid-state slab lasers. However, there are uncorrectable aberrations in partial areas of the beam. In the criterion of the conventional least-squares reconstruction method, it makes the zones with small aberrations nonsensitive and hinders this zone from being further corrected. In this paper, a weighted least-squares reconstruction method is proposed to improve the relative sensitivity of zones with small aberrations and to further improve beam quality. Relatively small weights are applied to the zones with large residual aberrations. Comparisons of results show that peak intensity in the far field improved from 1242 analog digital units (ADU) to 2248 ADU, and beam quality β improved from 2.5 to 2.0. This indicates the weighted least-squares method has better performance than the least-squares reconstruction method when there are large zonal uncorrectable aberrations in the slab laser system.
Image reconstruction and system modeling techniques for virtual-pinhole PET insert systems
Keesing, Daniel B; Mathews, Aswin; Komarov, Sergey; Wu, Heyu; Song, Tae Yong; O'Sullivan, Joseph A; Tai, Yuan-Chuan
2012-01-01
Virtual-pinhole PET (VP-PET) imaging is a new technology in which one or more high-resolution detector modules are integrated into a conventional PET scanner with lower-resolution detectors. It can locally enhance the spatial resolution and contrast recovery near the add-on detectors, and depending on the configuration, may also increase the sensitivity of the system. This novel scanner geometry makes the reconstruction problem more challenging compared to the reconstruction of data from a standalone PET scanner, as new techniques are needed to model and account for the non-standard acquisition. In this paper, we present a general framework for fully 3D modeling of an arbitrary VP-PET insert system. The model components are incorporated into a statistical reconstruction algorithm to estimate an image from the multi-resolution data. For validation, we apply the proposed model and reconstruction approach to one of our custom-built VP-PET systems – a half-ring insert device integrated into a clinical PET/CT scanner. Details regarding the most important implementation issues are provided. We show that the proposed data model is consistent with the measured data, and that our approach can lead to reconstructions with improved spatial resolution and lesion detectability. PMID:22490983
ACTS: from ATLAS software towards a common track reconstruction software
NASA Astrophysics Data System (ADS)
Gumpert, C.; Salzburger, A.; Kiehn, M.; Hrdinka, J.; Calace, N.; ATLAS Collaboration
2017-10-01
Reconstruction of charged particles’ trajectories is a crucial task for most particle physics experiments. The high instantaneous luminosity achieved at the LHC leads to a high number of proton-proton collisions per bunch crossing, which has put the track reconstruction software of the LHC experiments through a thorough test. Preserving track reconstruction performance under increasingly difficult experimental conditions, while keeping the usage of computational resources at a reasonable level, is an inherent problem for many HEP experiments. Exploiting concurrent algorithms and using multivariate techniques for track identification are the primary strategies to achieve that goal. Starting from current ATLAS software, the ACTS project aims to encapsulate track reconstruction software into a generic, framework- and experiment-independent software package. It provides a set of high-level algorithms and data structures for performing track reconstruction tasks as well as fast track simulation. The software is developed with special emphasis on thread-safety to support parallel execution of the code and data structures are optimised for vectorisation to speed up linear algebra operations. The implementation is agnostic to the details of the detection technologies and magnetic field configuration which makes it applicable to many different experiments.
NASA Astrophysics Data System (ADS)
Zhao, Jin; Han-Ming, Zhang; Bin, Yan; Lei, Li; Lin-Yuan, Wang; Ai-Long, Cai
2016-03-01
Sparse-view x-ray computed tomography (CT) imaging is an interesting topic in CT field and can efficiently decrease radiation dose. Compared with spatial reconstruction, a Fourier-based algorithm has advantages in reconstruction speed and memory usage. A novel Fourier-based iterative reconstruction technique that utilizes non-uniform fast Fourier transform (NUFFT) is presented in this work along with advanced total variation (TV) regularization for a fan sparse-view CT. The proposition of a selective matrix contributes to improve reconstruction quality. The new method employs the NUFFT and its adjoin to iterate back and forth between the Fourier and image space. The performance of the proposed algorithm is demonstrated through a series of digital simulations and experimental phantom studies. Results of the proposed algorithm are compared with those of existing TV-regularized techniques based on compressed sensing method, as well as basic algebraic reconstruction technique. Compared with the existing TV-regularized techniques, the proposed Fourier-based technique significantly improves convergence rate and reduces memory allocation, respectively. Projected supported by the National High Technology Research and Development Program of China (Grant No. 2012AA011603) and the National Natural Science Foundation of China (Grant No. 61372172).
Liao, Junlin; Wang, Shaohua; Chen, Jia; Xie, Hongju; Zhou, Jianda
2017-02-28
Three-dimensional (3D) bioprinting provides an advanced technology for tissue engineering and regenerative medicine because of its ability to produce the models or organs with higher precision and more suitable for human body. It has been successfully used to produce a variety of cartilage scaffold materials. In addition, 3D bioprinter can directly to print tissue and organs with live chondrocytes. In conclusion, 3D bioprinting may have broad prospect for cartilage regeneration and reconstruction in tissue engineering.
Chen, Long; Tang, Wen; John, Nigel W; Wan, Tao Ruan; Zhang, Jian Jun
2018-05-01
While Minimally Invasive Surgery (MIS) offers considerable benefits to patients, it also imposes big challenges on a surgeon's performance due to well-known issues and restrictions associated with the field of view (FOV), hand-eye misalignment and disorientation, as well as the lack of stereoscopic depth perception in monocular endoscopy. Augmented Reality (AR) technology can help to overcome these limitations by augmenting the real scene with annotations, labels, tumour measurements or even a 3D reconstruction of anatomy structures at the target surgical locations. However, previous research attempts of using AR technology in monocular MIS surgical scenes have been mainly focused on the information overlay without addressing correct spatial calibrations, which could lead to incorrect localization of annotations and labels, and inaccurate depth cues and tumour measurements. In this paper, we present a novel intra-operative dense surface reconstruction framework that is capable of providing geometry information from only monocular MIS videos for geometry-aware AR applications such as site measurements and depth cues. We address a number of compelling issues in augmenting a scene for a monocular MIS environment, such as drifting and inaccurate planar mapping. A state-of-the-art Simultaneous Localization And Mapping (SLAM) algorithm used in robotics has been extended to deal with monocular MIS surgical scenes for reliable endoscopic camera tracking and salient point mapping. A robust global 3D surface reconstruction framework has been developed for building a dense surface using only unorganized sparse point clouds extracted from the SLAM. The 3D surface reconstruction framework employs the Moving Least Squares (MLS) smoothing algorithm and the Poisson surface reconstruction framework for real time processing of the point clouds data set. Finally, the 3D geometric information of the surgical scene allows better understanding and accurate placement AR augmentations based on a robust 3D calibration. We demonstrate the clinical relevance of our proposed system through two examples: (a) measurement of the surface; (b) depth cues in monocular endoscopy. The performance and accuracy evaluations of the proposed framework consist of two steps. First, we have created a computer-generated endoscopy simulation video to quantify the accuracy of the camera tracking by comparing the results of the video camera tracking with the recorded ground-truth camera trajectories. The accuracy of the surface reconstruction is assessed by evaluating the Root Mean Square Distance (RMSD) of surface vertices of the reconstructed mesh with that of the ground truth 3D models. An error of 1.24 mm for the camera trajectories has been obtained and the RMSD for surface reconstruction is 2.54 mm, which compare favourably with previous approaches. Second, in vivo laparoscopic videos are used to examine the quality of accurate AR based annotation and measurement, and the creation of depth cues. These results show the potential promise of our geometry-aware AR technology to be used in MIS surgical scenes. The results show that the new framework is robust and accurate in dealing with challenging situations such as the rapid endoscopy camera movements in monocular MIS scenes. Both camera tracking and surface reconstruction based on a sparse point cloud are effective and operated in real-time. This demonstrates the potential of our algorithm for accurate AR localization and depth augmentation with geometric cues and correct surface measurements in MIS with monocular endoscopes. Copyright © 2018 Elsevier B.V. All rights reserved.
Bordbar, Aarash; Jamshidi, Neema; Palsson, Bernhard O
2011-07-12
The development of high-throughput technologies capable of whole cell measurements of genes, proteins, and metabolites has led to the emergence of systems biology. Integrated analysis of the resulting omic data sets has proved to be hard to achieve. Metabolic network reconstructions enable complex relationships amongst molecular components to be represented formally in a biologically relevant manner while respecting physical constraints. In silico models derived from such reconstructions can then be queried or interrogated through mathematical simulations. Proteomic profiling studies of the mature human erythrocyte have shown more proteins present related to metabolic function than previously thought; however the significance and the causal consequences of these findings have not been explored. Erythrocyte proteomic data was used to reconstruct the most expansive description of erythrocyte metabolism to date, following extensive manual curation, assessment of the literature, and functional testing. The reconstruction contains 281 enzymes representing functions from glycolysis to cofactor and amino acid metabolism. Such a comprehensive view of erythrocyte metabolism implicates the erythrocyte as a potential biomarker for different diseases as well as a 'cell-based' drug-screening tool. The analysis shows that 94 erythrocyte enzymes are implicated in morbid single nucleotide polymorphisms, representing 142 pathologies. In addition, over 230 FDA-approved and experimental pharmaceuticals have enzymatic targets in the erythrocyte. The advancement of proteomic technologies and increased generation of high-throughput proteomic data have created the need for a means to analyze these data in a coherent manner. Network reconstructions provide a systematic means to integrate and analyze proteomic data in a biologically meaning manner. Analysis of the red cell proteome has revealed an unexpected level of complexity in the functional capabilities of human erythrocyte metabolism.
Bischel, Alexander; Stratis, Andreas; Kakar, Apoorv; Bosmans, Hilde; Jacobs, Reinhilde; Gassner, Eva-Maria; Puelacher, Wolfgang; Pauwels, Ruben
2016-01-01
Objective: The aim of this study was to evaluate whether application of ultralow dose protocols and iterative reconstruction technology (IRT) influence quantitative Hounsfield units (HUs) and contrast-to-noise ratio (CNR) in dentomaxillofacial CT imaging. Methods: A phantom with inserts of five types of materials was scanned using protocols for (a) a clinical reference for navigated surgery (CT dose index volume 36.58 mGy), (b) low-dose sinus imaging (18.28 mGy) and (c) four ultralow dose imaging (4.14, 2.63, 0.99 and 0.53 mGy). All images were reconstructed using: (i) filtered back projection (FBP); (ii) IRT: adaptive statistical iterative reconstruction-50 (ASIR-50), ASIR-100 and model-based iterative reconstruction (MBIR); and (iii) standard (std) and bone kernel. Mean HU, CNR and average HU error after recalibration were determined. Each combination of protocols was compared using Friedman analysis of variance, followed by Dunn's multiple comparison test. Results: Pearson's sample correlation coefficients were all >0.99. Ultralow dose protocols using FBP showed errors of up to 273 HU. Std kernels had less HU variability than bone kernels. MBIR reduced the error value for the lowest dose protocol to 138 HU and retained the highest relative CNR. ASIR could not demonstrate significant advantages over FBP. Conclusions: Considering a potential dose reduction as low as 1.5% of a std protocol, ultralow dose protocols and IRT should be further tested for clinical dentomaxillofacial CT imaging. Advances in knowledge: HU as a surrogate for bone density may vary significantly in CT ultralow dose imaging. However, use of std kernels and MBIR technology reduce HU error values and may retain the highest CNR. PMID:26859336
Verification of a neutronic code for transient analysis in reactors with Hex-z geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzalez-Pintor, S.; Verdu, G.; Ginestar, D.
Due to the geometry of the fuel bundles, to simulate reactors such as VVER reactors it is necessary to develop methods that can deal with hexagonal prisms as basic elements of the spatial discretization. The main features of a code based on a high order finite element method for the spatial discretization of the neutron diffusion equation and an implicit difference method for the time discretization of this equation are presented and the performance of the code is tested solving the first exercise of the AER transient benchmark. The obtained results are compared with the reference results of the benchmarkmore » and with the results provided by PARCS code. (authors)« less
Light-field and holographic three-dimensional displays [Invited].
Yamaguchi, Masahiro
2016-12-01
A perfect three-dimensional (3D) display that satisfies all depth cues in human vision is possible if a light field can be reproduced exactly as it appeared when it emerged from a real object. The light field can be generated based on either light ray or wavefront reconstruction, with the latter known as holography. This paper first provides an overview of the advances of ray-based and wavefront-based 3D display technologies, including integral photography and holography, and the integration of those technologies with digital information systems. Hardcopy displays have already been used in some applications, whereas the electronic display of a light field is under active investigation. Next, a fundamental question in this technology field is addressed: what is the difference between ray-based and wavefront-based methods for light-field 3D displays? In considering this question, it is of particular interest to look at the technology of holographic stereograms. The phase information in holography contributes to the resolution of a reconstructed image, especially for deep 3D images. Moreover, issues facing the electronic display system of light fields are discussed, including the resolution of the spatial light modulator, the computational techniques of holography, and the speckle in holographic images.
Lorenzoni, Fabio Cesar; Bonfante, Estevam A; Bonfante, Gerson; Martins, Leandro M; Witek, Lukasz; Silva, Nelson R F A
2013-08-01
This evaluation aimed to (1) validate micro-computed tomography (microCT) findings using scanning electron microscopy (SEM) imaging, and (2) quantify the volume of voids and the bonded surface area resulting from fiber-reinforced composite (FRC) dowel cementation technique using microCT scanning technology/3D reconstructing software. A fiberglass dowel was cemented in a condemned maxillary lateral incisor prior to its extraction. A microCT scan was performed of the extracted tooth creating a large volume of data in DICOM format. This set of images was imported to image-processing software to inspect the internal architecture of structures. The outer surface and the spatial relationship of dentin, FRC dowel, cement layer, and voids were reconstructed. Three-dimensional spatial architecture of structures and volumetric analysis revealed that 9.89% of the resin cement was composed of voids and that the bonded area between root dentin and cement was 60.63% larger than that between cement and FRC dowel. SEM imaging demonstrated the presence of voids similarly observed using microCT technology (aim 1). MicroCT technology was able to nondestructively measure the volume of voids within the cement layer and the bonded surface area at the root/cement/FRC interfaces (aim 2). The interfaces at the root dentin/cement/dowel represent a timely and relevant topic where several efforts have been conducted in the past few years to understand their inherent features. MicroCT technology combined with 3D reconstruction allows for not only inspecting the internal arrangement rendered by fiberglass adhesively bonded to root dentin, but also estimating the volume of voids and contacted bond area between the dentin and cement layer. © 2013 by the American College of Prosthodontists.
Shem-Tov, Doron; Halperin, Eran
2014-06-01
Recent technological improvements in the field of genetic data extraction give rise to the possibility of reconstructing the historical pedigrees of entire populations from the genotypes of individuals living today. Current methods are still not practical for real data scenarios as they have limited accuracy and assume unrealistic assumptions of monogamy and synchronized generations. In order to address these issues, we develop a new method for pedigree reconstruction, [Formula: see text], which is based on formulations of the pedigree reconstruction problem as variants of graph coloring. The new formulation allows us to consider features that were overlooked by previous methods, resulting in a reconstruction of up to 5 generations back in time, with an order of magnitude improvement of false-negatives rates over the state of the art, while keeping a lower level of false positive rates. We demonstrate the accuracy of [Formula: see text] compared to previous approaches using simulation studies over a range of population sizes, including inbred and outbred populations, monogamous and polygamous mating patterns, as well as synchronous and asynchronous mating.
A GPU-Based Architecture for Real-Time Data Assessment at Synchrotron Experiments
NASA Astrophysics Data System (ADS)
Chilingaryan, Suren; Mirone, Alessandro; Hammersley, Andrew; Ferrero, Claudio; Helfen, Lukas; Kopmann, Andreas; Rolo, Tomy dos Santos; Vagovic, Patrik
2011-08-01
Advances in digital detector technology leads presently to rapidly increasing data rates in imaging experiments. Using fast two-dimensional detectors in computed tomography, the data acquisition can be much faster than the reconstruction if no adequate measures are taken, especially when a high photon flux at synchrotron sources is used. We have optimized the reconstruction software employed at the micro-tomography beamlines of our synchrotron facilities to use the computational power of modern graphic cards. The main paradigm of our approach is the full utilization of all system resources. We use a pipelined architecture, where the GPUs are used as compute coprocessors to reconstruct slices, while the CPUs are preparing the next ones. Special attention is devoted to minimize data transfers between the host and GPU memory and to execute memory transfers in parallel with the computations. We were able to reduce the reconstruction time by a factor 30 and process a typical data set of 20 GB in 40 seconds. The time needed for the first evaluation of the reconstructed sample is reduced significantly and quasi real-time visualization is now possible.
Yoon, Young-Gyu; Dai, Peilun; Wohlwend, Jeremy; Chang, Jae-Byum; Marblestone, Adam H.; Boyden, Edward S.
2017-01-01
We here introduce and study the properties, via computer simulation, of a candidate automated approach to algorithmic reconstruction of dense neural morphology, based on simulated data of the kind that would be obtained via two emerging molecular technologies—expansion microscopy (ExM) and in-situ molecular barcoding. We utilize a convolutional neural network to detect neuronal boundaries from protein-tagged plasma membrane images obtained via ExM, as well as a subsequent supervoxel-merging pipeline guided by optical readout of information-rich, cell-specific nucleic acid barcodes. We attempt to use conservative imaging and labeling parameters, with the goal of establishing a baseline case that points to the potential feasibility of optical circuit reconstruction, leaving open the possibility of higher-performance labeling technologies and algorithms. We find that, even with these conservative assumptions, an all-optical approach to dense neural morphology reconstruction may be possible via the proposed algorithmic framework. Future work should explore both the design-space of chemical labels and barcodes, as well as algorithms, to ultimately enable routine, high-performance optical circuit reconstruction. PMID:29114215
Energy reconstruction of hadrons in highly granular combined ECAL and HCAL systems
NASA Astrophysics Data System (ADS)
Israeli, Y.
2018-05-01
This paper discusses the hadronic energy reconstruction of two combined electromagnetic and hadronic calorimeter systems using physics prototypes of the CALICE collaboration: the silicon-tungsten electromagnetic calorimeter (Si-W ECAL) and the scintillator-SiPM based analog hadron calorimeter (AHCAL); and the scintillator-tungsten electromagnetic calorimeter (ScECAL) and the AHCAL. These systems were operated in hadron beams at CERN and FNAL, permitting the study of the performance in combined ECAL and HCAL systems. Two techniques for the energy reconstruction are used, a standard reconstruction based on calibrated sub-detector energy sums, and one based on a software compensation algorithm making use of the local energy density information provided by the high granularity of the detectors. The software compensation-based algorithm improves the hadronic energy resolution by up to 30% compared to the standard reconstruction. The combined system data show comparable energy resolutions to the one achieved for data with showers starting only in the AHCAL and therefore demonstrate the success of the inter-calibration of the different sub-systems, despite of their different geometries and different readout technologies.
A Case Series of Rapid Prototyping and Intraoperative Imaging in Orbital Reconstruction
Lim, Christopher G.T.; Campbell, Duncan I.; Cook, Nicholas; Erasmus, Jason
2014-01-01
In Christchurch Hospital, rapid prototyping (RP) and intraoperative imaging are the standard of care in orbital trauma and has been used since February 2013. RP allows the fabrication of an anatomical model to visualize complex anatomical structures which is dimensionally accurate and cost effective. This assists diagnosis, planning, and preoperative implant adaptation for orbital reconstruction. Intraoperative imaging involves a computed tomography scan during surgery to evaluate surgical implants and restored anatomy and allows the clinician to correct errors in implant positioning that may occur during the same procedure. This article aims to demonstrate the potential clinical and cost saving benefits when both these technologies are used in orbital reconstruction which minimize the need for revision surgery. PMID:26000080
Total focusing method with correlation processing of antenna array signals
NASA Astrophysics Data System (ADS)
Kozhemyak, O. A.; Bortalevich, S. I.; Loginov, E. L.; Shinyakov, Y. A.; Sukhorukov, M. P.
2018-03-01
The article proposes a method of preliminary correlation processing of a complete set of antenna array signals used in the image reconstruction algorithm. The results of experimental studies of 3D reconstruction of various reflectors using and without correlation processing are presented in the article. Software ‘IDealSystem3D’ by IDeal-Technologies was used for experiments. Copper wires of different diameters located in a water bath were used as a reflector. The use of correlation processing makes it possible to obtain more accurate reconstruction of the image of the reflectors and to increase the signal-to-noise ratio. The experimental results were processed using an original program. This program allows varying the parameters of the antenna array and sampling frequency.
A case series of rapid prototyping and intraoperative imaging in orbital reconstruction.
Lim, Christopher G T; Campbell, Duncan I; Cook, Nicholas; Erasmus, Jason
2015-06-01
In Christchurch Hospital, rapid prototyping (RP) and intraoperative imaging are the standard of care in orbital trauma and has been used since February 2013. RP allows the fabrication of an anatomical model to visualize complex anatomical structures which is dimensionally accurate and cost effective. This assists diagnosis, planning, and preoperative implant adaptation for orbital reconstruction. Intraoperative imaging involves a computed tomography scan during surgery to evaluate surgical implants and restored anatomy and allows the clinician to correct errors in implant positioning that may occur during the same procedure. This article aims to demonstrate the potential clinical and cost saving benefits when both these technologies are used in orbital reconstruction which minimize the need for revision surgery.
Lai, Chin-Feng; Chen, Min; Pan, Jeng-Shyang; Youn, Chan-Hyun; Chao, Han-Chieh
2014-03-01
As cloud computing and wireless body sensor network technologies become gradually developed, ubiquitous healthcare services prevent accidents instantly and effectively, as well as provides relevant information to reduce related processing time and cost. This study proposes a co-processing intermediary framework integrated cloud and wireless body sensor networks, which is mainly applied to fall detection and 3-D motion reconstruction. In this study, the main focuses includes distributed computing and resource allocation of processing sensing data over the computing architecture, network conditions and performance evaluation. Through this framework, the transmissions and computing time of sensing data are reduced to enhance overall performance for the services of fall events detection and 3-D motion reconstruction.
Skull defect reconstruction based on a new hybrid level set.
Zhang, Ziqun; Zhang, Ran; Song, Zhijian
2014-01-01
Skull defect reconstruction is an important aspect of surgical repair. Historically, a skull defect prosthesis was created by the mirroring technique, surface fitting, or formed templates. These methods are not based on the anatomy of the individual patient's skull, and therefore, the prosthesis cannot precisely correct the defect. This study presented a new hybrid level set model, taking into account both the global optimization region information and the local accuracy edge information, while avoiding re-initialization during the evolution of the level set function. Based on the new method, a skull defect was reconstructed, and the skull prosthesis was produced by rapid prototyping technology. This resulted in a skull defect prosthesis that well matched the skull defect with excellent individual adaptation.
Siekmann, Max; Lothes, Thomas; König, Ralph; Wirtz, Christian Rainer; Coburger, Jan
2018-03-01
Currently, intraoperative ultrasound in brain tumor surgery is a rapidly propagating option in imaging technology. We examined the accuracy and resolution limits of different ultrasound probes and the influence of 3D-reconstruction in a phantom and compared these results to MRI in an intraoperative setting (iMRI). An agarose gel phantom with predefined gel targets was examined with iMRI, a sector (SUS) and a linear (LUS) array probe with two-dimensional images. Additionally, 3D-reconstructed sweeps in perpendicular directions were made of every target with both probes, resulting in 392 measurements. Statistical calculations were performed, and comparative boxplots were generated. Every measurement of iMRI and LUS was more precise than SUS, while there was no apparent difference in height of iMRI and 3D-reconstructed LUS. Measurements with 3D-reconstructed LUS were always more accurate than in 2D-LUS, while 3D-reconstruction of SUS showed nearly no differences to 2D-SUS in some measurements. We found correlations of 3D-reconstructed SUS and LUS length and width measurements with 2D results in the same image orientation. LUS provides an accuracy and resolution comparable to iMRI, while SUS is less exact than LUS and iMRI. 3D-reconstruction showed the potential to distinctly improve accuracy and resolution of ultrasound images, although there is a strong correlation with the sweep direction during data acquisition.
Improving PET spatial resolution and detectability for prostate cancer imaging
NASA Astrophysics Data System (ADS)
Bal, H.; Guerin, L.; Casey, M. E.; Conti, M.; Eriksson, L.; Michel, C.; Fanti, S.; Pettinato, C.; Adler, S.; Choyke, P.
2014-08-01
Prostate cancer, one of the most common forms of cancer among men, can benefit from recent improvements in positron emission tomography (PET) technology. In particular, better spatial resolution, lower noise and higher detectability of small lesions could be greatly beneficial for early diagnosis and could provide a strong support for guiding biopsy and surgery. In this article, the impact of improved PET instrumentation with superior spatial resolution and high sensitivity are discussed, together with the latest development in PET technology: resolution recovery and time-of-flight reconstruction. Using simulated cancer lesions, inserted in clinical PET images obtained with conventional protocols, we show that visual identification of the lesions and detectability via numerical observers can already be improved using state of the art PET reconstruction methods. This was achieved using both resolution recovery and time-of-flight reconstruction, and a high resolution image with 2 mm pixel size. Channelized Hotelling numerical observers showed an increase in the area under the LROC curve from 0.52 to 0.58. In addition, a relationship between the simulated input activity and the area under the LROC curve showed that the minimum detectable activity was reduced by more than 23%.
Kim, Jong Bae; Brienza, David M
2006-01-01
A Remote Accessibility Assessment System (RAAS) that uses three-dimensional (3-D) reconstruction technology is being developed; it enables clinicians to assess the wheelchair accessibility of users' built environments from a remote location. The RAAS uses commercial software to construct 3-D virtualized environments from photographs. We developed custom screening algorithms and instruments for analyzing accessibility. Characteristics of the camera and 3-D reconstruction software chosen for the system significantly affect its overall reliability. In this study, we performed an accuracy assessment to verify that commercial hardware and software can construct accurate 3-D models by analyzing the accuracy of dimensional measurements in a virtual environment and a comparison of dimensional measurements from 3-D models created with four cameras/settings. Based on these two analyses, we were able to specify a consumer-grade digital camera and PhotoModeler (EOS Systems, Inc, Vancouver, Canada) software for this system. Finally, we performed a feasibility analysis of the system in an actual environment to evaluate its ability to assess the accessibility of a wheelchair user's typical built environment. The field test resulted in an accurate accessibility assessment and thus validated our system.
Chen, Qian-Qian; Liu, Xiao-Dong; Liu, Wen-Qi; Jiang, Shan
2011-10-01
Compared with traditional chemical analysis methods, reflectance spectroscopy has the advantages of speed, minimal or no sample preparation, non-destruction, and low cost. In order to explore the potential application of spectroscopy technology in the paleolimnological study on Antarctic lakes, we took a lake sediment core in Mochou Lake at Zhongshan Station of Antarctic, and analyzed the near infrared reflectance spectroscopy (NIRS) data in the sedimentary samples. The results showed that the factor loadings of principal component analysis (PCA) displayed very similar depth-profile change pattern with the S2 index, a reliable proxy for the change in historical lake primary productivity. The correlation analysis showed that the values of PCA factor loading and S2 were correlated significantly, suggesting that it is feasible to infer paleoproductivity changes recorded in Antarctic lakes using NIRS technology. Compared to the traditional method of the trough area between 650 and 700 nm, the authors found that the PCA statistical approach was more accurate for reconstructing the change in historical lake primary productivity. The results reported here demonstrate that reflectance spectroscopy can provide a rapid method for the reconstruction of lake palaeoenviro nmental change in the remote Antarctic regions.
Trajectory of Sewerage System Development Optimization
NASA Astrophysics Data System (ADS)
Chupin, R. V.; Mayzel, I. V.; Chupin, V. R.
2017-11-01
The transition to market relations has determined a new technology for our country to manage the development of urban engineering systems. This technology has shifted to the municipal level and it can, in large, be presented in two stages. The first is the development of a scheme for the development of the water supply and sanitation system, the second is the implementation of this scheme on the basis of investment programs of utilities. In the investment programs, financial support is provided for the development and reconstruction of water disposal systems due to the investment component in the tariff, connection fees for newly commissioned capital construction projects and targeted financing for selected state and municipal programs, loans and credits. Financial provision with the development of sewerage systems becomes limited and the problem arises in their rational distribution between the construction of new water disposal facilities and the reconstruction of existing ones. The paper suggests a methodology for developing options for the development of sewerage systems, selecting the best of them by the life cycle cost criterion, taking into account the limited investments in their construction, models and methods of analysis, optimizing their reconstruction and development, taking into account reliability and seismic resistance.
NASA Astrophysics Data System (ADS)
Gong, Y.; Yang, Y.; Yang, X.
2018-04-01
For the purpose of extracting productions of some specific branching plants effectively and realizing its 3D reconstruction, Terrestrial LiDAR data was used as extraction source of production, and a 3D reconstruction method based on Terrestrial LiDAR technologies combined with the L-system was proposed in this article. The topology structure of the plant architectures was extracted using the point cloud data of the target plant with space level segmentation mechanism. Subsequently, L-system productions were obtained and the structural parameters and production rules of branches, which fit the given plant, was generated. A three-dimensional simulation model of target plant was established combined with computer visualization algorithm finally. The results suggest that the method can effectively extract a given branching plant topology and describes its production, realizing the extraction of topology structure by the computer algorithm for given branching plant and also simplifying the extraction of branching plant productions which would be complex and time-consuming by L-system. It improves the degree of automation in the L-system extraction of productions of specific branching plants, providing a new way for the extraction of branching plant production rules.
Research on compression performance of ultrahigh-definition videos
NASA Astrophysics Data System (ADS)
Li, Xiangqun; He, Xiaohai; Qing, Linbo; Tao, Qingchuan; Wu, Di
2017-11-01
With the popularization of high-definition (HD) images and videos (1920×1080 pixels and above), there are even 4K (3840×2160) television signals and 8 K (8192×4320) ultrahigh-definition videos. The demand for HD images and videos is increasing continuously, along with the increasing data volume. The storage and transmission cannot be properly solved only by virtue of the expansion capacity of hard disks and the update and improvement of transmission devices. Based on the full use of the coding standard high-efficiency video coding (HEVC), super-resolution reconstruction technology, and the correlation between the intra- and the interprediction, we first put forward a "division-compensation"-based strategy to further improve the compression performance of a single image and frame I. Then, by making use of the above thought and HEVC encoder and decoder, a video compression coding frame is designed. HEVC is used inside the frame. Last, with the super-resolution reconstruction technology, the reconstructed video quality is further improved. The experiment shows that by the proposed compression method for a single image (frame I) and video sequence here, the performance is superior to that of HEVC in a low bit rate environment.
Novel CFB Boiler Technology with Reconstruction of its Fluidization State
NASA Astrophysics Data System (ADS)
Yang, H. R.; Zhang, H.; Lu, J. F.; Lfu, Q.; Wu, Y. X.; Yuet, G. X.; Su, J.; Fu, Z. P.
Compared with a conventional pulverized coal fired boiler, the combustion efficiency of a CFB boiler is lower while the self-consumed service power is 1-2% higher. The solution of these problems is the key research topic for researchers and manufacturers of CFB boilers. Based on the State Specification Design Theory of CFB boilers, Tsinghua University proposed a novel CFB technology by reconstruction of the fluidization state in the furnace by adjusting the bed inventory and bed quality. Theoretical analyses show that there is an optimal bed pressure drop, around which the boiler operation can achieve the maximal combustion efficiency and with significant reduction of the wear of the heating surface and fan power consumption. The proposed novel process was implemented in a 75t/h CFB boiler. The results of field tests on this boiler validated the theoretical analyses.
High-resolution three-dimensional imaging with compress sensing
NASA Astrophysics Data System (ADS)
Wang, Jingyi; Ke, Jun
2016-10-01
LIDAR three-dimensional imaging technology have been used in many fields, such as military detection. However, LIDAR require extremely fast data acquisition speed. This makes the manufacture of detector array for LIDAR system is very difficult. To solve this problem, we consider using compress sensing which can greatly decrease the data acquisition and relax the requirement of a detection device. To use the compressive sensing idea, a spatial light modulator will be used to modulate the pulsed light source. Then a photodetector is used to receive the reflected light. A convex optimization problem is solved to reconstruct the 2D depth map of the object. To improve the resolution in transversal direction, we use multiframe image restoration technology. For each 2D piecewise-planar scene, we move the SLM half-pixel each time. Then the position where the modulated light illuminates will changed accordingly. We repeat moving the SLM to four different directions. Then we can get four low-resolution depth maps with different details of the same plane scene. If we use all of the measurements obtained by the subpixel movements, we can reconstruct a high-resolution depth map of the sense. A linear minimum-mean-square error algorithm is used for the reconstruction. By combining compress sensing and multiframe image restoration technology, we reduce the burden on data analyze and improve the efficiency of detection. More importantly, we obtain high-resolution depth maps of a 3D scene.
2016-07-01
Communications and Information Technology (MOCIT). Because the agencies were not required to report ICT-specific activities and did not use a common...inspections, and investigations on the use of taxpayer dollars and related funds. SIGAR works to provide accurate and balanced information , evaluations...Special Inspector General for Afghanistan Reconstruction v SIGAR 16-46 Audit Report Afghanistan’s Information and Communications Technology
Shading correction assisted iterative cone-beam CT reconstruction
NASA Astrophysics Data System (ADS)
Yang, Chunlin; Wu, Pengwei; Gong, Shutao; Wang, Jing; Lyu, Qihui; Tang, Xiangyang; Niu, Tianye
2017-11-01
Recent advances in total variation (TV) technology enable accurate CT image reconstruction from highly under-sampled and noisy projection data. The standard iterative reconstruction algorithms, which work well in conventional CT imaging, fail to perform as expected in cone beam CT (CBCT) applications, wherein the non-ideal physics issues, including scatter and beam hardening, are more severe. These physics issues result in large areas of shading artifacts and cause deterioration to the piecewise constant property assumed in reconstructed images. To overcome this obstacle, we incorporate a shading correction scheme into low-dose CBCT reconstruction and propose a clinically acceptable and stable three-dimensional iterative reconstruction method that is referred to as the shading correction assisted iterative reconstruction. In the proposed method, we modify the TV regularization term by adding a shading compensation image to the reconstructed image to compensate for the shading artifacts while leaving the data fidelity term intact. This compensation image is generated empirically, using image segmentation and low-pass filtering, and updated in the iterative process whenever necessary. When the compensation image is determined, the objective function is minimized using the fast iterative shrinkage-thresholding algorithm accelerated on a graphic processing unit. The proposed method is evaluated using CBCT projection data of the Catphan© 600 phantom and two pelvis patients. Compared with the iterative reconstruction without shading correction, the proposed method reduces the overall CT number error from around 200 HU to be around 25 HU and increases the spatial uniformity by a factor of 20 percent, given the same number of sparsely sampled projections. A clinically acceptable and stable iterative reconstruction algorithm for CBCT is proposed in this paper. Differing from the existing algorithms, this algorithm incorporates a shading correction scheme into the low-dose CBCT reconstruction and achieves more stable optimization path and more clinically acceptable reconstructed image. The method proposed by us does not rely on prior information and thus is practically attractive to the applications of low-dose CBCT imaging in the clinic.
NASA Astrophysics Data System (ADS)
Li, J.; Warner, T.; Bao, A.
2017-12-01
Central Asia is one of the world most vulnerable areas responding to global change. Lakes in arid regions of Central Asia remain sensitive to climatic change and fluctuate with temperature and precipitation variations. Study showed that some central asian inland lakes in showed a trend of area shrinkage or extinct in the last decades. Quantitative analysis of lake volume changes in spatio-temporal processes will improve our understanding water resource utilization in arid regions and their responses to regional climate change. However, due to the lack of lake bathmetry or observation data, the volumes of these lakes remain unknown. In this paper, three lakes, such as Chaiwopu lake, Alik Lake and Selectyteniz Lake in Central Asia are used to reconstruct lake volume changes. Firstly, stereo mapping technologies derived from ZY-3 high resolution data are used to map the high-precision 3-D lake bathmetry, so as to create "Area-Level-Volume" based on contours of lake bathmetry. Secondly, time series lake areas in the last 50 years are mapped with multi-source and multi-temporal remote sensing images. Based on lake storage curves and time series lake areas, lake volumes in the last 5 decades can be reconstructed, and the spatio-temporal characteristics of lake volume changes and their mechanisms are also analyzed. The results showed that the high-precision lake hydrological elements are reconstructed on arid drying lakes through the application of stereo mapping technology in remote sensing.
Velasco, Ignacio; Vahdani, Soheil; Ramos, Hector
2017-09-01
Three-dimensional (3D) printing is relatively a new technology with clinical applications, which enable us to create rapid accurate prototype of the selected anatomic region, making it possible to plan complex surgery and pre-bend hardware for individual surgical cases. This study aimed to express our experience with the use of medical rapid prototype (MRP) of the maxillofacial region created by desktop 3D printer and its application in maxillofacial reconstructive surgeries. Three patients with benign mandible tumors were included in this study after obtaining informed consent. All patient's maxillofacial CT scan data was processed by segmentation and isolation software and mandible MRP was printed using our desktop 3D printer. These models were used for preoperative surgical planning and prebending of the reconstruction plate. MRP created by desktop 3D printer is a cost-efficient, quick and easily produced appliance for the planning of reconstructive surgery. It can contribute in patient orientation and helping them in a better understanding of their condition and proposed surgical treatment. It helps surgeons for pre-operative planning in the resection or reconstruction cases and represent an excellent tool in academic setting for residents training. The pre-bended reconstruction plate based on MRP, resulted in decreased surgery time, cost and anesthesia risks on the patients. Key words: 3D printing, medical modeling, rapid prototype, mandibular reconstruction, ameloblastoma.
Advanced technologies in plastic surgery: how new innovations can improve our training and practice.
Grunwald, Tiffany; Krummel, Thomas; Sherman, Randy
2004-11-01
Over the last two decades, virtual reality, haptics, simulators, robotics, and other "advanced technologies" have emerged as important innovations in medical learning and practice. Reports on simulator applications in medicine now appear regularly in the medical, computer science, engineering, and popular literature. The goal of this article is to review the emerging intersection between advanced technologies and surgery and how new technology is being utilized in several surgical fields, particularly plastic surgery. The authors also discuss how plastic and reconstructive surgeons can benefit by working to further the development of multimedia and simulated environment technologies in surgical practice and training.
Readout technologies for directional WIMP Dark Matter detection
NASA Astrophysics Data System (ADS)
Battat, J. B. R.; Irastorza, I. G.; Aleksandrov, A.; Asada, T.; Baracchini, E.; Billard, J.; Bosson, G.; Bourrion, O.; Bouvier, J.; Buonaura, A.; Burdge, K.; Cebrián, S.; Colas, P.; Consiglio, L.; Dafni, T.; D'Ambrosio, N.; Deaconu, C.; De Lellis, G.; Descombes, T.; Di Crescenzo, A.; Di Marco, N.; Druitt, G.; Eggleston, R.; Ferrer-Ribas, E.; Fusayasu, T.; Galán, J.; Galati, G.; García, J. A.; Garza, J. G.; Gentile, V.; Garcia-Sciveres, M.; Giomataris, Y.; Guerrero, N.; Guillaudin, O.; Guler, A. M.; Harton, J.; Hashimoto, T.; Hedges, M. T.; Iguaz, F. J.; Ikeda, T.; Jaegle, I.; Kadyk, J. A.; Katsuragawa, T.; Komura, S.; Kubo, H.; Kuge, K.; Lamblin, J.; Lauria, A.; Lee, E. R.; Lewis, P.; Leyton, M.; Loomba, D.; Lopez, J. P.; Luzón, G.; Mayet, F.; Mirallas, H.; Miuchi, K.; Mizumoto, T.; Mizumura, Y.; Monacelli, P.; Monroe, J.; Montesi, M. C.; Naka, T.; Nakamura, K.; Nishimura, H.; Ochi, A.; Papevangelou, T.; Parker, J. D.; Phan, N. S.; Pupilli, F.; Richer, J. P.; Riffard, Q.; Rosa, G.; Santos, D.; Sawano, T.; Sekiya, H.; Seong, I. S.; Snowden-Ifft, D. P.; Spooner, N. J. C.; Sugiyama, A.; Taishaku, R.; Takada, A.; Takeda, A.; Tanaka, M.; Tanimori, T.; Thorpe, T. N.; Tioukov, V.; Tomita, H.; Umemoto, A.; Vahsen, S. E.; Yamaguchi, Y.; Yoshimoto, M.; Zayas, E.
2016-11-01
The measurement of the direction of WIMP-induced nuclear recoils is a compelling but technologically challenging strategy to provide an unambiguous signature of the detection of Galactic dark matter. Most directional detectors aim to reconstruct the dark-matter-induced nuclear recoil tracks, either in gas or solid targets. The main challenge with directional detection is the need for high spatial resolution over large volumes, which puts strong requirements on the readout technologies. In this paper we review the various detector readout technologies used by directional detectors. In particular, we summarize the challenges, advantages and drawbacks of each approach, and discuss future prospects for these technologies.
Chan, Harley H L; Siewerdsen, Jeffrey H; Vescan, Allan; Daly, Michael J; Prisman, Eitan; Irish, Jonathan C
2015-01-01
The aim of this study was to demonstrate the role of advanced fabrication technology across a broad spectrum of head and neck surgical procedures, including applications in endoscopic sinus surgery, skull base surgery, and maxillofacial reconstruction. The initial case studies demonstrated three applications of rapid prototyping technology are in head and neck surgery: i) a mono-material paranasal sinus phantom for endoscopy training ii) a multi-material skull base simulator and iii) 3D patient-specific mandible templates. Digital processing of these phantoms is based on real patient or cadaveric 3D images such as CT or MRI data. Three endoscopic sinus surgeons examined the realism of the endoscopist training phantom. One experienced endoscopic skull base surgeon conducted advanced sinus procedures on the high-fidelity multi-material skull base simulator. Ten patients participated in a prospective clinical study examining patient-specific modeling for mandibular reconstructive surgery. Qualitative feedback to assess the realism of the endoscopy training phantom and high-fidelity multi-material phantom was acquired. Conformance comparisons using assessments from the blinded reconstructive surgeons measured the geometric performance between intra-operative and pre-operative reconstruction mandible plates. Both the endoscopy training phantom and the high-fidelity multi-material phantom received positive feedback on the realistic structure of the phantom models. Results suggested further improvement on the soft tissue structure of the phantom models is necessary. In the patient-specific mandible template study, the pre-operative plates were judged by two blinded surgeons as providing optimal conformance in 7 out of 10 cases. No statistical differences were found in plate fabrication time and conformance, with pre-operative plating providing the advantage of reducing time spent in the operation room. The applicability of common model design and fabrication techniques across a variety of otolaryngological sub-specialties suggests an emerging role for rapid prototyping technology in surgical education, procedure simulation, and clinical practice.
Chan, Harley H. L.; Siewerdsen, Jeffrey H.; Vescan, Allan; Daly, Michael J.; Prisman, Eitan; Irish, Jonathan C.
2015-01-01
The aim of this study was to demonstrate the role of advanced fabrication technology across a broad spectrum of head and neck surgical procedures, including applications in endoscopic sinus surgery, skull base surgery, and maxillofacial reconstruction. The initial case studies demonstrated three applications of rapid prototyping technology are in head and neck surgery: i) a mono-material paranasal sinus phantom for endoscopy training ii) a multi-material skull base simulator and iii) 3D patient-specific mandible templates. Digital processing of these phantoms is based on real patient or cadaveric 3D images such as CT or MRI data. Three endoscopic sinus surgeons examined the realism of the endoscopist training phantom. One experienced endoscopic skull base surgeon conducted advanced sinus procedures on the high-fidelity multi-material skull base simulator. Ten patients participated in a prospective clinical study examining patient-specific modeling for mandibular reconstructive surgery. Qualitative feedback to assess the realism of the endoscopy training phantom and high-fidelity multi-material phantom was acquired. Conformance comparisons using assessments from the blinded reconstructive surgeons measured the geometric performance between intra-operative and pre-operative reconstruction mandible plates. Both the endoscopy training phantom and the high-fidelity multi-material phantom received positive feedback on the realistic structure of the phantom models. Results suggested further improvement on the soft tissue structure of the phantom models is necessary. In the patient-specific mandible template study, the pre-operative plates were judged by two blinded surgeons as providing optimal conformance in 7 out of 10 cases. No statistical differences were found in plate fabrication time and conformance, with pre-operative plating providing the advantage of reducing time spent in the operation room. The applicability of common model design and fabrication techniques across a variety of otolaryngological sub-specialties suggests an emerging role for rapid prototyping technology in surgical education, procedure simulation, and clinical practice. PMID:26331717
JPRS Report, Science & Technology, USSR: Life Sciences
1988-04-15
disease. Microsurgery and laser technology will be used more widely. The creation of cardiology dispensaries in all republic, kray, and oblast... microsurgery and dialysis will be used much more widely, and organ and tissue transplants and surgical interventions will be performed more often...be directed first of all to reconstruction and equipment renovation and to bringing treatment-and-prevention facilites up to speed with established
Trace: a high-throughput tomographic reconstruction engine for large-scale datasets
Bicer, Tekin; Gursoy, Doga; Andrade, Vincent De; ...
2017-01-28
Here, synchrotron light source and detector technologies enable scientists to perform advanced experiments. These scientific instruments and experiments produce data at such scale and complexity that large-scale computation is required to unleash their full power. One of the widely used data acquisition technique at light sources is Computed Tomography, which can generate tens of GB/s depending on x-ray range. A large-scale tomographic dataset, such as mouse brain, may require hours of computation time with a medium size workstation. In this paper, we present Trace, a data-intensive computing middleware we developed for implementation and parallelization of iterative tomographic reconstruction algorithms. Tracemore » provides fine-grained reconstruction of tomography datasets using both (thread level) shared memory and (process level) distributed memory parallelization. Trace utilizes a special data structure called replicated reconstruction object to maximize application performance. We also present the optimizations we have done on the replicated reconstruction objects and evaluate them using a shale and a mouse brain sinogram. Our experimental evaluations show that the applied optimizations and parallelization techniques can provide 158x speedup (using 32 compute nodes) over single core configuration, which decreases the reconstruction time of a sinogram (with 4501 projections and 22400 detector resolution) from 12.5 hours to less than 5 minutes per iteration.« less
Preliminary frequency-domain analysis for the reconstructed spatial resolution of muon tomography
NASA Astrophysics Data System (ADS)
Yu, B.; Zhao, Z.; Wang, X.; Wang, Y.; Wu, D.; Zeng, Z.; Zeng, M.; Yi, H.; Luo, Z.; Yue, X.; Cheng, J.
2014-11-01
Muon tomography is an advanced technology to non-destructively detect high atomic number materials. It exploits the multiple Coulomb scattering information of muon to reconstruct the scattering density image of the traversed object. Because of the statistics of muon scattering, the measurement error of system and the data incompleteness, the reconstruction is always accompanied with a certain level of interference, which will influence the reconstructed spatial resolution. While statistical noises can be reduced by extending the measuring time, system parameters determine the ultimate spatial resolution that one system can reach. In this paper, an effective frequency-domain model is proposed to analyze the reconstructed spatial resolution of muon tomography. The proposed method modifies the resolution analysis in conventional computed tomography (CT) to fit the different imaging mechanism in muon scattering tomography. The measured scattering information is described in frequency domain, then a relationship between the measurements and the original image is proposed in Fourier domain, which is named as "Muon Central Slice Theorem". Furthermore, a preliminary analytical expression of the ultimate reconstructed spatial is derived, and the simulations are performed for validation. While the method is able to predict the ultimate spatial resolution of a given system, it can also be utilized for the optimization of system design and construction.
NASA Astrophysics Data System (ADS)
Liu, Sha; Liu, Shi; Tong, Guowei
2017-11-01
In industrial areas, temperature distribution information provides a powerful data support for improving system efficiency, reducing pollutant emission, ensuring safety operation, etc. As a noninvasive measurement technology, acoustic tomography (AT) has been widely used to measure temperature distribution where the efficiency of the reconstruction algorithm is crucial for the reliability of the measurement results. Different from traditional reconstruction techniques, in this paper a two-phase reconstruction method is proposed to ameliorate the reconstruction accuracy (RA). In the first phase, the measurement domain is discretized by a coarse square grid to reduce the number of unknown variables to mitigate the ill-posed nature of the AT inverse problem. By taking into consideration the inaccuracy of the measured time-of-flight data, a new cost function is constructed to improve the robustness of the estimation, and a grey wolf optimizer is used to solve the proposed cost function to obtain the temperature distribution on the coarse grid. In the second phase, the Adaboost.RT based BP neural network algorithm is developed for predicting the temperature distribution on the refined grid in accordance with the temperature distribution data estimated in the first phase. Numerical simulations and experiment measurement results validate the superiority of the proposed reconstruction algorithm in improving the robustness and RA.
Trace: a high-throughput tomographic reconstruction engine for large-scale datasets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bicer, Tekin; Gursoy, Doga; Andrade, Vincent De
Here, synchrotron light source and detector technologies enable scientists to perform advanced experiments. These scientific instruments and experiments produce data at such scale and complexity that large-scale computation is required to unleash their full power. One of the widely used data acquisition technique at light sources is Computed Tomography, which can generate tens of GB/s depending on x-ray range. A large-scale tomographic dataset, such as mouse brain, may require hours of computation time with a medium size workstation. In this paper, we present Trace, a data-intensive computing middleware we developed for implementation and parallelization of iterative tomographic reconstruction algorithms. Tracemore » provides fine-grained reconstruction of tomography datasets using both (thread level) shared memory and (process level) distributed memory parallelization. Trace utilizes a special data structure called replicated reconstruction object to maximize application performance. We also present the optimizations we have done on the replicated reconstruction objects and evaluate them using a shale and a mouse brain sinogram. Our experimental evaluations show that the applied optimizations and parallelization techniques can provide 158x speedup (using 32 compute nodes) over single core configuration, which decreases the reconstruction time of a sinogram (with 4501 projections and 22400 detector resolution) from 12.5 hours to less than 5 minutes per iteration.« less
Wire-Cell Tomographic Event Reconstruction for large LArTPCs
NASA Astrophysics Data System (ADS)
Qian, Xin; Viren, Brett; Zhang, Chao; Wire-Cell Team
2016-03-01
Event reconstruction is one of the most challenging tasks in analyzing the data from current and future large liquid argon time projection chambers (LArTPCs). The performance of the event reconstruction holds the key to many potential future discoveries with the LArTPC technology including i) searching for new CP violation in the leptonic sector, ii) determining the neutrino mass hierarchy, and iii) searching for additional light (sterile) neutrino species. In this talk, we introduce a new reconstruction method: Wire-Cell. The principle of Wire-Cell strictly follows the principle of LArTPC, that is, the same amount of ionization electrons are observed by all the wire-planes. Using both time and charge information, 3D image of the event topologies are firstly obtained. Further reconstruction steps including the clustering, tracking, and particle identifications (PID) are then directly applied to the 3D image. The principle, current status, and future development plan of Wire-Cell will be described. The results of Wire-Cell event reconstruction will be shown with an innovative web-based ``BEE'' 3D event display. This work is supported by U.S. Department of Energy, Office of Science, Office of High Energy Physics and Early Career Research program under Contract Number DE-SC0012704.
Single photon emission computed tomography-guided Cerenkov luminescence tomography
NASA Astrophysics Data System (ADS)
Hu, Zhenhua; Chen, Xueli; Liang, Jimin; Qu, Xiaochao; Chen, Duofang; Yang, Weidong; Wang, Jing; Cao, Feng; Tian, Jie
2012-07-01
Cerenkov luminescence tomography (CLT) has become a valuable tool for preclinical imaging because of its ability of reconstructing the three-dimensional distribution and activity of the radiopharmaceuticals. However, it is still far from a mature technology and suffers from relatively low spatial resolution due to the ill-posed inverse problem for the tomographic reconstruction. In this paper, we presented a single photon emission computed tomography (SPECT)-guided reconstruction method for CLT, in which a priori information of the permissible source region (PSR) from SPECT imaging results was incorporated to effectively reduce the ill-posedness of the inverse reconstruction problem. The performance of the method was first validated with the experimental reconstruction of an adult athymic nude mouse implanted with a Na131I radioactive source and an adult athymic nude mouse received an intravenous tail injection of Na131I. A tissue-mimic phantom based experiment was then conducted to illustrate the ability of the proposed method in resolving double sources. Compared with the traditional PSR strategy in which the PSR was determined by the surface flux distribution, the proposed method obtained much more accurate and encouraging localization and resolution results. Preliminary results showed that the proposed SPECT-guided reconstruction method was insensitive to the regularization methods and ignored the heterogeneity of tissues which can avoid the segmentation procedure of the organs.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Section 63.44 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... Control Technology Determinations for Major Sources in Accordance With Clean Air Act Sections, Sections...
Internet Technology in Electronic Commerce
NASA Astrophysics Data System (ADS)
Zhanys, A. B.; Tursinbaeva, A. F.
2018-05-01
Informatization is an active process of acquiring information as a valuable resource for development using Informatics tools in order to dramatically increase the intellectual level of civilization on this basis – humanistic reconstruction of the whole human life.
3D bio-printing technology for body tissues and organs regeneration.
Biazar, Esmaeil; Najafi S, Masoumeh; Heidari K, Saeed; Yazdankhah, Meysam; Rafiei, Ataollah; Biazar, Dariush
2018-04-01
In the last decade, the use of new technologies in the reconstruction of body tissues has greatly developed. Utilising stem cell technology, nanotechnology and scaffolding design has created new opportunities in tissue regeneration. The use of accurate engineering design in the creation of scaffolds, including 3D printers, has been widely considered. Three-dimensional printers, especially high precision bio-printers, have opened up a new way in the design of 3D tissue engineering scaffolds. In this article, a review of the latest applications of this technology in this promising area has been addressed.
Management of fractures of the condyle, condylar neck, and coronoid process.
Kisnisci, Reha
2013-11-01
Proper anatomic reduction of the fracture and accelerated complete recovery are desirable goals after trauma reconstruction. Over the recent decades, significant headway in craniomaxillofacial trauma care has been achieved and advancements in the management for the injuries of the mandibular condyle have also proved to be no exception. A trend in operative and reconstructive options for proper anatomic reduction and internal fixation has become notable as a result of newly introduced technology, surgical techniques, and operative expertise. Copyright © 2013 Elsevier Inc. All rights reserved.
SU-D-206-03: Segmentation Assisted Fast Iterative Reconstruction Method for Cone-Beam CT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, P; Mao, T; Gong, S
2016-06-15
Purpose: Total Variation (TV) based iterative reconstruction (IR) methods enable accurate CT image reconstruction from low-dose measurements with sparse projection acquisition, due to the sparsifiable feature of most CT images using gradient operator. However, conventional solutions require large amount of iterations to generate a decent reconstructed image. One major reason is that the expected piecewise constant property is not taken into consideration at the optimization starting point. In this work, we propose an iterative reconstruction method for cone-beam CT (CBCT) using image segmentation to guide the optimization path more efficiently on the regularization term at the beginning of the optimizationmore » trajectory. Methods: Our method applies general knowledge that one tissue component in the CT image contains relatively uniform distribution of CT number. This general knowledge is incorporated into the proposed reconstruction using image segmentation technique to generate the piecewise constant template on the first-pass low-quality CT image reconstructed using analytical algorithm. The template image is applied as an initial value into the optimization process. Results: The proposed method is evaluated on the Shepp-Logan phantom of low and high noise levels, and a head patient. The number of iterations is reduced by overall 40%. Moreover, our proposed method tends to generate a smoother reconstructed image with the same TV value. Conclusion: We propose a computationally efficient iterative reconstruction method for CBCT imaging. Our method achieves a better optimization trajectory and a faster convergence behavior. It does not rely on prior information and can be readily incorporated into existing iterative reconstruction framework. Our method is thus practical and attractive as a general solution to CBCT iterative reconstruction. This work is supported by the Zhejiang Provincial Natural Science Foundation of China (Grant No. LR16F010001), National High-tech R&D Program for Young Scientists by the Ministry of Science and Technology of China (Grant No. 2015AA020917).« less
In vivo quantitative bioluminescence tomography using heterogeneous and homogeneous mouse models.
Liu, Junting; Wang, Yabin; Qu, Xiaochao; Li, Xiangsi; Ma, Xiaopeng; Han, Runqiang; Hu, Zhenhua; Chen, Xueli; Sun, Dongdong; Zhang, Rongqing; Chen, Duofang; Chen, Dan; Chen, Xiaoyuan; Liang, Jimin; Cao, Feng; Tian, Jie
2010-06-07
Bioluminescence tomography (BLT) is a new optical molecular imaging modality, which can monitor both physiological and pathological processes by using bioluminescent light-emitting probes in small living animal. Especially, this technology possesses great potential in drug development, early detection, and therapy monitoring in preclinical settings. In the present study, we developed a dual modality BLT prototype system with Micro-computed tomography (MicroCT) registration approach, and improved the quantitative reconstruction algorithm based on adaptive hp finite element method (hp-FEM). Detailed comparisons of source reconstruction between the heterogeneous and homogeneous mouse models were performed. The models include mice with implanted luminescence source and tumor-bearing mice with firefly luciferase report gene. Our data suggest that the reconstruction based on heterogeneous mouse model is more accurate in localization and quantification than the homogeneous mouse model with appropriate optical parameters and that BLT allows super-early tumor detection in vivo based on tomographic reconstruction of heterogeneous mouse model signal.
Bayesian image reconstruction for improving detection performance of muon tomography.
Wang, Guobao; Schultz, Larry J; Qi, Jinyi
2009-05-01
Muon tomography is a novel technology that is being developed for detecting high-Z materials in vehicles or cargo containers. Maximum likelihood methods have been developed for reconstructing the scattering density image from muon measurements. However, the instability of maximum likelihood estimation often results in noisy images and low detectability of high-Z targets. In this paper, we propose using regularization to improve the image quality of muon tomography. We formulate the muon reconstruction problem in a Bayesian framework by introducing a prior distribution on scattering density images. An iterative shrinkage algorithm is derived to maximize the log posterior distribution. At each iteration, the algorithm obtains the maximum a posteriori update by shrinking an unregularized maximum likelihood update. Inverse quadratic shrinkage functions are derived for generalized Laplacian priors and inverse cubic shrinkage functions are derived for generalized Gaussian priors. Receiver operating characteristic studies using simulated data demonstrate that the Bayesian reconstruction can greatly improve the detection performance of muon tomography.
NASA Astrophysics Data System (ADS)
Apel, W. D.; Arteaga-Velazquez, J. C.; Bähren, L.; Bekk, K.; Bertaina, M.; Biermann, P. L.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Chiavassa, A.; Daumiller, K.; de Souza, V.; di Pierro, F.; Doll, P.; Engel, R.; Falcke, H.; Fuchs, B.; Fuhrmann, D.; Gemmeke, H.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Horneffer, A.; Huber, D.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Krömer, O.; Kuijpers, J.; Link, K.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Melissas, M.; Morello, C.; Oehlschläger, J.; Palmieri, N.; Pierog, T.; Rautenberg, J.; Rebel, H.; Roth, M.; Rühle, C.; Saftoiu, A.; Schieler, H.; Schmidt, A.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Weindl, A.; Wochele, J.; Zabierowski, J.; Zensus, J. A.; Lopes Collaboration
2014-09-01
LOPES is a digital radio interferometer located at Karlsruhe Institute of Technology (KIT), Germany, that measures radio emission from extensive air showers at MHz frequencies in coincidence with KASCADE-Grande. In this article, we explore a method (slope method) that leverages the slope of the measured radio lateral distribution to reconstruct crucial attributes of primary cosmic rays. First, we present an investigation of the method on the basis of pure simulations. Second, we directly apply the slope method to LOPES measurements. Applying the slope method to simulations, we obtain uncertainties on the reconstruction of energy and depth of shower maximum (Xmax) of 13% and 50 g /cm2, respectively. Applying it to LOPES measurements, we are able to reconstruct energy and Xmax of individual events with upper limits on the precision of 20%-25% for the primary energy and 95 g /cm2 for Xmax, despite strong human-made noise at the LOPES site.
Using additive manufacturing in accuracy evaluation of reconstructions from computed tomography.
Smith, Erin J; Anstey, Joseph A; Venne, Gabriel; Ellis, Randy E
2013-05-01
Bone models derived from patient imaging and fabricated using additive manufacturing technology have many potential uses including surgical planning, training, and research. This study evaluated the accuracy of bone surface reconstruction of two diarthrodial joints, the hip and shoulder, from computed tomography. Image segmentation of the tomographic series was used to develop a three-dimensional virtual model, which was fabricated using fused deposition modelling. Laser scanning was used to compare cadaver bones, printed models, and intermediate segmentations. The overall bone reconstruction process had a reproducibility of 0.3 ± 0.4 mm. Production of the model had an accuracy of 0.1 ± 0.1 mm, while the segmentation had an accuracy of 0.3 ± 0.4 mm, indicating that segmentation accuracy was the key factor in reconstruction. Generally, the shape of the articular surfaces was reproduced accurately, with poorer accuracy near the periphery of the articular surfaces, particularly in regions with periosteum covering and where osteophytes were apparent.
Ruppin, Eytan; Papin, Jason A; de Figueiredo, Luis F; Schuster, Stefan
2010-08-01
With the advent of modern omics technologies, it has become feasible to reconstruct (quasi-) whole-cell metabolic networks and characterize them in more and more detail. Computer simulations of the dynamic behavior of such networks are difficult due to a lack of kinetic data and to computational limitations. In contrast, network analysis based on appropriate constraints such as the steady-state condition (constraint-based analysis) is feasible and allows one to derive conclusions about the system's metabolic capabilities. Here, we review methods for the reconstruction of metabolic networks, modeling techniques such as flux balance analysis and elementary flux modes and current progress in their development and applications. Game-theoretical methods for studying metabolic networks are discussed as well. Copyright © 2010 Elsevier Ltd. All rights reserved.
An AST-ELM Method for Eliminating the Influence of Charging Phenomenon on ECT.
Wang, Xiaoxin; Hu, Hongli; Jia, Huiqin; Tang, Kaihao
2017-12-09
Electrical capacitance tomography (ECT) is a promising imaging technology of permittivity distributions in multiphase flow. To reduce the effect of charging phenomenon on ECT measurement, an improved extreme learning machine method combined with adaptive soft-thresholding (AST-ELM) is presented and studied for image reconstruction. This method can provide a nonlinear mapping model between the capacitance values and medium distributions by using machine learning but not an electromagnetic-sensitive mechanism. Both simulation and experimental tests are carried out to validate the performance of the presented method, and reconstructed images are evaluated by relative error and correlation coefficient. The results have illustrated that the image reconstruction accuracy by the proposed AST-ELM method has greatly improved than that by the conventional methods under the condition with charging object.
An AST-ELM Method for Eliminating the Influence of Charging Phenomenon on ECT
Wang, Xiaoxin; Hu, Hongli; Jia, Huiqin; Tang, Kaihao
2017-01-01
Electrical capacitance tomography (ECT) is a promising imaging technology of permittivity distributions in multiphase flow. To reduce the effect of charging phenomenon on ECT measurement, an improved extreme learning machine method combined with adaptive soft-thresholding (AST-ELM) is presented and studied for image reconstruction. This method can provide a nonlinear mapping model between the capacitance values and medium distributions by using machine learning but not an electromagnetic-sensitive mechanism. Both simulation and experimental tests are carried out to validate the performance of the presented method, and reconstructed images are evaluated by relative error and correlation coefficient. The results have illustrated that the image reconstruction accuracy by the proposed AST-ELM method has greatly improved than that by the conventional methods under the condition with charging object. PMID:29232850
Hay, Peter D; Smith, Julie; O'Connor, Richard A
2016-02-01
The aim of this study was to evaluate the benefits to SPECT bone scan image quality when applying resolution recovery (RR) during image reconstruction using software provided by a third-party supplier. Bone SPECT data from 90 clinical studies were reconstructed retrospectively using software supplied independent of the gamma camera manufacturer. The current clinical datasets contain 120×10 s projections and are reconstructed using an iterative method with a Butterworth postfilter. Five further reconstructions were created with the following characteristics: 10 s projections with a Butterworth postfilter (to assess intraobserver variation); 10 s projections with a Gaussian postfilter with and without RR; and 5 s projections with a Gaussian postfilter with and without RR. Two expert observers were asked to rate image quality on a five-point scale relative to our current clinical reconstruction. Datasets were anonymized and presented in random order. The benefits of RR on image scores were evaluated using ordinal logistic regression (visual grading regression). The application of RR during reconstruction increased the probability of both observers of scoring image quality as better than the current clinical reconstruction even where the dataset contained half the normal counts. Type of reconstruction and observer were both statistically significant variables in the ordinal logistic regression model. Visual grading regression was found to be a useful method for validating the local introduction of technological developments in nuclear medicine imaging. RR, as implemented by the independent software supplier, improved bone SPECT image quality when applied during image reconstruction. In the majority of clinical cases, acquisition times for bone SPECT intended for the purposes of localization can safely be halved (from 10 s projections to 5 s) when RR is applied.
Mudrak, Daniel; Kampusch, Stefan; Wielandner, Alice; Prosch, Helmut; Braun, Christina; Toemboel, Frédéric P. R.; Hofmanninger, Johannes; Kaniusas, Eugenijus
2017-01-01
Electrical impedance tomography (EIT) is a promising imaging technique for bedside monitoring of lung function. It is easily applicable, cheap and requires no ionizing radiation, but clinical interpretation of EIT-images is still not standardized. One of the reasons for this is the ill-posed nature of EIT, allowing a range of possible images to be produced–rather than a single explicit solution. Thus, to further advance the EIT technology for clinical application, thorough examinations of EIT-image reconstruction settings–i.e., mathematical parameters and addition of a priori (e.g., anatomical) information–is essential. In the present work, regional ventilation distribution profiles derived from different EIT finite-element reconstruction models and settings (for GREIT and Gauss Newton) were compared to regional aeration profiles assessed by the gold-standard of 4-dimensional computed tomography (4DCT) by calculating the root mean squared error (RMSE). Specifically, non-individualized reconstruction models (based on circular and averaged thoracic contours) and individualized reconstruction models (based on true thoracic contours) were compared. Our results suggest that GREIT with noise figure of 0.15 and non-uniform background works best for the assessment of regional ventilation distribution by EIT, as verified versus 4DCT. Furthermore, the RMSE of anteroposterior ventilation profiles decreased from 2.53±0.62% to 1.67±0.49% while correlation increased from 0.77 to 0.89 after embedding anatomical information into the reconstruction models. In conclusion, the present work reveals that anatomically enhanced EIT-image reconstruction is superior to non-individualized reconstruction models, but further investigations in humans, so as to standardize reconstruction settings, is warranted. PMID:28763474
Numajiri, Toshiaki; Morita, Daiki; Nakamura, Hiroko; Tsujiko, Shoko; Yamochi, Ryo; Sowa, Yoshihiro; Toyoda, Kenichiro; Tsujikawa, Takahiro; Arai, Akihito; Yasuda, Makoto; Hirano, Shigeru
2018-06-01
Computer-assisted design (CAD) and computer-aided manufacturing (CAM) techniques are in widespread use for maxillofacial reconstruction. However, CAD/CAM surgical guides are commercially available only in limited areas. To use this technology in areas where these commercial guides are not available, the authors developed a CAD/CAM technique in which all processes are performed by the surgeon (in-house approach). The authors describe their experience and the characteristics of their in-house CAD/CAM reconstruction of the maxilla. This was a retrospective study of maxillary reconstruction with a free osteocutaneous flap. Free CAD software was used for virtual surgery and to design the cutting guides (maxilla and fibula), which were printed by a 3-dimensional printer. After the model surgery and pre-bending of the titanium plates, the actual reconstructions were performed. The authors compared the clinical information, preoperative plan, and postoperative reconstruction data. The reconstruction was judged as accurate if more than 80% of the reconstructed points were within a deviation of 2 mm. Although on-site adjustment was necessary in particular cases, all 4 reconstructions were judged as accurate. In total, 3 days were needed before the surgery for planning, printing, and pre-bending of plates. The average ischemic time was 134 minutes (flap suturing and bone fixation, 70 minutes; vascular anastomoses, 64 minutes). The mean deviation after reconstruction was 0.44 mm (standard deviation, 0.97). The deviations were 67.8% for 1 mm, 93.8% for 2 mm, and 98.6% for 3 mm. The disadvantages of the regular use of CAD/CAM reconstruction are the intraoperative changes in defect size and local tissue scarring. Good accuracy was obtained for CAD/CAM-guided reconstructions based on an in-house approach. The theoretical advantage of computer simulation contributes to the accuracy. An in-house approach could be an option for maxillary reconstruction. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
R tool for analysis of DNA methylation and expression datasets. Integrative analysis allows reconstruction of in vivo transcription factor networks altered in cancer along with identification of the underlying gene regulatory sequences.
Contribution of 3D printing to mandibular reconstruction after cancer.
Dupret-Bories, A; Vergez, S; Meresse, T; Brouillet, F; Bertrand, G
2018-04-01
Three-dimensional (3D) printing is booming in the medical field. This technology increases the possibilities of personalized treatment for patients, while lowering manufacturing costs. To facilitate mandibular reconstruction with fibula free flap, some companies propose cutting guides obtained by CT-guided moulding. However, these guides are prohibitively expensive (€2,000 to €6,000). Based on a partnership with the CNRS, engineering students and a biomedical company, the authors have developed cutting guides and 3D-printed mandible templates, deliverable in 7days and at a lower cost. The novelty of this project is the speed of product development at a significantly lower price. In this technical note, the authors describe the logistic chain of production of mandible templates and cutting guides, as well as the results obtained. The goal is to allow access to this technology to all patients in the near future. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Reconstruction of 3d Objects of Assets and Facilities by Using Benchmark Points
NASA Astrophysics Data System (ADS)
Baig, S. U.; Rahman, A. A.
2013-08-01
Acquiring and modeling 3D geo-data of building assets and facility objects is one of the challenges. A number of methods and technologies are being utilized for this purpose. Total station, GPS, photogrammetric and terrestrial laser scanning are few of these technologies. In this paper, points commonly shared by potential facades of assets and facilities modeled from point clouds are identified. These points are useful for modeling process to reconstruct 3D models of assets and facilities stored to be used for management purposes. These models are segmented through different planes to produce accurate 2D plans. This novel method improves the efficiency and quality of construction of models of assets and facilities with the aim utilize in 3D management projects such as maintenance of buildings or group of items that need to be replaced, or renovated for new services.
Survey of Motion Tracking Methods Based on Inertial Sensors: A Focus on Upper Limb Human Motion
Filippeschi, Alessandro; Schmitz, Norbert; Miezal, Markus; Bleser, Gabriele; Ruffaldi, Emanuele; Stricker, Didier
2017-01-01
Motion tracking based on commercial inertial measurements units (IMUs) has been widely studied in the latter years as it is a cost-effective enabling technology for those applications in which motion tracking based on optical technologies is unsuitable. This measurement method has a high impact in human performance assessment and human-robot interaction. IMU motion tracking systems are indeed self-contained and wearable, allowing for long-lasting tracking of the user motion in situated environments. After a survey on IMU-based human tracking, five techniques for motion reconstruction were selected and compared to reconstruct a human arm motion. IMU based estimation was matched against motion tracking based on the Vicon marker-based motion tracking system considered as ground truth. Results show that all but one of the selected models perform similarly (about 35 mm average position estimation error). PMID:28587178
Electrochemical study of pre- and post-transition corrosion of Zr alloys in PWR coolant
NASA Astrophysics Data System (ADS)
Macák, Jan; Novotný, Radek; Sajdl, Petr; Renčiuková, Veronika; Vrtílková, Věra
Corrosion properties of Zr-Sn and Zr-Nb zirconium alloys were studied under simulated PWR conditions (or, more exactly, VVER conditions — boric acid, potassium hydroxide, lithium hydroxide) at temperatures up to 340°C and 15MPa using in-situ electrochemical impedance spectroscopy (EIS) and polarization measurements. EIS spectra were obtained in a wide range of frequencies (typically 100kHz — 100μHz). It enabled to gain information of both dielectric properties of oxide layers developing on the Zr-alloys surface and of the kinetics of the corrosion process and the associated charge and mass transfer phenomena. Experiments were run for more than 380 days; thus, the study of all the corrosion stages (pre-transition, transition, post-transition) was possible.
System Characterizations and Optimized Reconstruction Methods for Novel X-ray Imaging Modalities
NASA Astrophysics Data System (ADS)
Guan, Huifeng
In the past decade there have been many new emerging X-ray based imaging technologies developed for different diagnostic purposes or imaging tasks. However, there exist one or more specific problems that prevent them from being effectively or efficiently employed. In this dissertation, four different novel X-ray based imaging technologies are discussed, including propagation-based phase-contrast (PB-XPC) tomosynthesis, differential X-ray phase-contrast tomography (D-XPCT), projection-based dual-energy computed radiography (DECR), and tetrahedron beam computed tomography (TBCT). System characteristics are analyzed or optimized reconstruction methods are proposed for these imaging modalities. In the first part, we investigated the unique properties of propagation-based phase-contrast imaging technique when combined with the X-ray tomosynthesis. Fourier slice theorem implies that the high frequency components collected in the tomosynthesis data can be more reliably reconstructed. It is observed that the fringes or boundary enhancement introduced by the phase-contrast effects can serve as an accurate indicator of the true depth position in the tomosynthesis in-plane image. In the second part, we derived a sub-space framework to reconstruct images from few-view D-XPCT data set. By introducing a proper mask, the high frequency contents of the image can be theoretically preserved in a certain region of interest. A two-step reconstruction strategy is developed to mitigate the risk of subtle structures being oversmoothed when the commonly used total-variation regularization is employed in the conventional iterative framework. In the thirt part, we proposed a practical method to improve the quantitative accuracy of the projection-based dual-energy material decomposition. It is demonstrated that applying a total-projection-length constraint along with the dual-energy measurements can achieve a stabilized numerical solution of the decomposition problem, thus overcoming the disadvantages of the conventional approach that was extremely sensitive to noise corruption. In the final part, we described the modified filtered backprojection and iterative image reconstruction algorithms specifically developed for TBCT. Special parallelization strategies are designed to facilitate the use of GPU computing, showing demonstrated capability of producing high quality reconstructed volumetric images with a super fast computational speed. For all the investigations mentioned above, both simulation and experimental studies have been conducted to demonstrate the feasibility and effectiveness of the proposed methodologies.
Li, Yang; Li, Weiyang; Liu, Chaohua; Yang, Qing; Xue, Ping; Liu, Hengxin; Cui, Jiangbo; Ding, Jianke; Su, Yingjun; Ma, Xianjie
2018-05-03
Skin grafting is often the first choice for closing forehead defects. However, the aesthetics of skin grafting-reconstructed forehead defects are still not accepted by a large number of patients. With the technological advancement of laser hair removal, scalp flaps have been considered as donors for reconstruction of forehead defects. We evaluated 10 cases of forehead defect reconstructions with expanded scalp flaps followed by hair removal by an 800 nm diode laser. All flaps survived uneventfully and underwent 4-6 laser treatments for hair removal. The appearances of the reconstructed foreheads were similar to that of the adjacent skin, and all patients were satisfied with the treatment outcomes during the 6-24 months of follow-up. It is concluded that the combined treatments of expanded scalp flaps and diode laser hair removal are effective for repairing forehead defects.Level of Evidence IV This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Witjes, Max J H; Schepers, Rutger H; Kraeima, Joep
2018-04-01
This review describes the advances in 3D virtual planning for mandibular and maxillary reconstruction surgical defects with full prosthetic rehabilitation. The primary purpose is to provide an overview of various techniques that apply 3D technology safely in primary and secondary reconstructive cases of patients suffering from head and neck cancer. Methods have been developed to overcome the problem of control over the margin during surgery while the crucial decision with regard to resection margin and planning of osteotomies were predetermined by virtual planning. The unlimited possibilities of designing patient-specific implants can result in creative uniquely applied solutions for single cases but should be applied wisely with knowledge of biomechanical engineering principles. The high surgical accuracy of an executed 3D virtual plan provides tumor margin control during ablative surgery and the possibility of planned combined use of osseus free flaps and dental implants in the reconstruction in one surgical procedure. A thorough understanding of the effects of radiotherapy on the reconstruction, soft tissue management, and prosthetic rehabilitation is imperative in individual cases when deciding to use dental implants in patients who received radiotherapy.
En bloc sacrectomy and reconstruction: technique modification for pelvic fixation.
Newman, C Benjamin; Keshavarzi, Sassan; Aryan, Henry E
2009-12-01
When the management of sacral tumors requires partial or complete sacrectomy, the spinopelvic apparatus must be reconstructed. This is a challenging and infrequently performed operation, and as such, many spine surgeons are unfamiliar with techniques available to carry out these procedures. A 34-year-old man presented with severe low back pain, mild left ankle dorsiflexion weakness, and left S1 paresthesias. Imaging revealed a large sacral mass extending into the L5/S1 and S1/S2 neural foramina as well as the presacral visceral and vascular structures. Needle biopsy of this mass demonstrated a low-grade chondrosarcoma. A 2-stage anterior/posterior en bloc sacrectomy with a novel modification of the Galveston L-rod pelvic ring reconstruction was carried out. Our modification takes advantage of new materials and implant technology to offer another alternative in reconstruction of the spinopelvic junction. Understanding the anatomy and biomechanics of the spinopelvic apparatus and the lumbosacral junction, as well as having a familiarity with the various techniques available for carrying out sacrectomy and pelvic ring reconstruction, will enable the spine surgeon to effectively manage sacral tumors. Copyright 2009 Elsevier Inc. All rights reserved.
New solutions and applications of 3D computer tomography image processing
NASA Astrophysics Data System (ADS)
Effenberger, Ira; Kroll, Julia; Verl, Alexander
2008-02-01
As nowadays the industry aims at fast and high quality product development and manufacturing processes a modern and efficient quality inspection is essential. Compared to conventional measurement technologies, industrial computer tomography (CT) is a non-destructive technology for 3D-image data acquisition which helps to overcome their disadvantages by offering the possibility to scan complex parts with all outer and inner geometric features. In this paper new and optimized methods for 3D image processing, including innovative ways of surface reconstruction and automatic geometric feature detection of complex components, are presented, especially our work of developing smart online data processing and data handling methods, with an integrated intelligent online mesh reduction. Hereby the processing of huge and high resolution data sets is guaranteed. Besides, new approaches for surface reconstruction and segmentation based on statistical methods are demonstrated. On the extracted 3D point cloud or surface triangulation automated and precise algorithms for geometric inspection are deployed. All algorithms are applied to different real data sets generated by computer tomography in order to demonstrate the capabilities of the new tools. Since CT is an emerging technology for non-destructive testing and inspection more and more industrial application fields will use and profit from this new technology.
Vahdani, Soheil; Ramos, Hector
2017-01-01
Background Three-dimensional (3D) printing is relatively a new technology with clinical applications, which enable us to create rapid accurate prototype of the selected anatomic region, making it possible to plan complex surgery and pre-bend hardware for individual surgical cases. This study aimed to express our experience with the use of medical rapid prototype (MRP) of the maxillofacial region created by desktop 3D printer and its application in maxillofacial reconstructive surgeries. Material and Methods Three patients with benign mandible tumors were included in this study after obtaining informed consent. All patient’s maxillofacial CT scan data was processed by segmentation and isolation software and mandible MRP was printed using our desktop 3D printer. These models were used for preoperative surgical planning and prebending of the reconstruction plate. Conclusions MRP created by desktop 3D printer is a cost-efficient, quick and easily produced appliance for the planning of reconstructive surgery. It can contribute in patient orientation and helping them in a better understanding of their condition and proposed surgical treatment. It helps surgeons for pre-operative planning in the resection or reconstruction cases and represent an excellent tool in academic setting for residents training. The pre-bended reconstruction plate based on MRP, resulted in decreased surgery time, cost and anesthesia risks on the patients. Key words:3D printing, medical modeling, rapid prototype, mandibular reconstruction, ameloblastoma. PMID:29075412
Magneto-acousto-electrical Measurement Based Electrical Conductivity Reconstruction for Tissues.
Zhou, Yan; Ma, Qingyu; Guo, Gepu; Tu, Juan; Zhang, Dong
2018-05-01
Based on the interaction of ultrasonic excitation and magnetoelectrical induction, magneto-acousto-electrical (MAE) technology was demonstrated to have the capability of differentiating conductivity variations along the acoustic transmission. By applying the characteristics of the MAE voltage, a simplified algorithm of MAE measurement based conductivity reconstruction was developed. With the analyses of acoustic vibration, ultrasound propagation, Hall effect, and magnetoelectrical induction, theoretical and experimental studies of MAE measurement and conductivity reconstruction were performed. The formula of MAE voltage was derived and simplified for the transducer with strong directivity. MAE voltage was simulated for a three-layer gel phantom and the conductivity distribution was reconstructed using the modified Wiener inverse filter and Hilbert transform, which was also verified by experimental measurements. The experimental results are basically consistent with the simulations, and demonstrate that the wave packets of MAE voltage are generated at tissue interfaces with the amplitudes and vibration polarities representing the values and directions of conductivity variations. With the proposed algorithm, the amplitude and polarity of conductivity gradient can be restored and the conductivity distribution can also be reconstructed accurately. The favorable results demonstrate the feasibility of accurate conductivity reconstruction with improved spatial resolution using MAE measurement for tissues with conductivity variations, especially suitable for nondispersive tissues with abrupt conductivity changes. This study demonstrates that the MAE measurement based conductivity reconstruction algorithm can be applied as a new strategy for nondestructive real-time monitoring of conductivity variations in biomedical engineering.
Mizuno, Mitsuru; Kobayashi, Shinji; Takebe, Takanori; Kan, Hiroomi; Yabuki, Yuichiro; Matsuzaki, Takahisa; Yoshikawa, Hiroshi Y; Nakabayashi, Seiichiro; Ik, Lee Jeong; Maegawa, Jiro; Taniguchi, Hideki
2014-03-01
In healthy joints, hyaline cartilage covering the joint surfaces of bones provides cushioning due to its unique mechanical properties. However, because of its limited regenerative capacity, age- and sports-related injuries to this tissue may lead to degenerative arthropathies, prompting researchers to investigate a variety of cell sources. We recently succeeded in isolating human cartilage progenitor cells from ear elastic cartilage. Human cartilage progenitor cells have high chondrogenic and proliferative potential to form elastic cartilage with long-term tissue maintenance. However, it is unknown whether ear-derived cartilage progenitor cells can be used to reconstruct hyaline cartilage, which has different mechanical and histological properties from elastic cartilage. In our efforts to develop foundational technologies for joint hyaline cartilage repair and reconstruction, we conducted this study to obtain an answer to this question. We created an experimental canine model of knee joint cartilage damage, transplanted ear-derived autologous cartilage progenitor cells. The reconstructed cartilage was rich in proteoglycans and showed unique histological characteristics similar to joint hyaline cartilage. In addition, mechanical properties of the reconstructed tissues were higher than those of ear cartilage and equal to those of joint hyaline cartilage. This study suggested that joint hyaline cartilage was reconstructed from ear-derived cartilage progenitor cells. It also demonstrated that ear-derived cartilage progenitor cells, which can be harvested by a minimally invasive method, would be useful for reconstructing joint hyaline cartilage in patients with degenerative arthropathies. © AlphaMed Press.
Sharaf, Basel; Sabbagh, M Diya; Vijayasekaran, Aparna; Allen, Mark; Matsumoto, Jane
2018-04-30
Primary sarcomas of the sternum are extremely rare and present the surgical teams involved with unique challenges. Historically, local muscle flaps have been utilized to reconstruct the resulting defect. However, when the resulting oncologic defect is larger than anticipated, local tissues have been radiated, or when preservation of chest wall muscles is necessary to optimize function, local reconstructive options are unsuitable. Virtual surgical planning (VSP) and in house three-dimensional (3D) printing provides the platform for improved understanding of the anatomy of complex tumours, communication amongst surgeons, and meticulous pre-operative planning. We present the novel use of this technology in the multidisciplinary surgical care of a 35 year old male with primary sarcoma of the sternum. Emphasis on minimizing morbidity, maintaining function of chest wall muscles, and preservation of the internal mammary vessels for microvascular anastomosis are discussed. While the majority of patients at our institution receive local or regional flaps for reconstruction of thoracic defects, advances in microvascular surgery allow the reconstructive surgeon the latitude to choose other flap options if necessary. VSP and 3D printing allowed the surgical team involved to utilize free tissue transfer to reconstruct the defect with free tissue transfer from the thigh. Perseveration of the internal mammary vessels was paramount during tumor extirpation. Virtual surgical planning and rapid prototyping is a useful adjunct to standard imaging in complex chest wall resection and reconstruction. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Erem, Burak; Coll-Font, Jaume; Orellana, Ramon Martinez; Štóvíček, Petr; Brooks, Dana H.
2014-01-01
Cardiac electrical imaging from body surface potential measurements is increasingly being seen as a technology with the potential for use in the clinic, for example for pre-procedure planning or during-treatment guidance for ventricular arrhythmia ablation procedures. However several important impediments to widespread adoption of this technology remain to be effectively overcome. Here we address two of these impediments: the difficulty of reconstructing electric potentials on the inner (endocardial) as well as outer (epicardial) surfaces of the ventricles, and the need for full anatomical imaging of the subject’s thorax to build an accurate subject-specific geometry. We introduce two new features in our reconstruction algorithm: a non-linear low-order dynamic parameterization derived from the measured body surface signals, and a technique to jointly regularize both surfaces. With these methodological innovations in combination, it is possible to reconstruct endocardial activation from clinically acquired measurements with an imprecise thorax geometry. In particular we test the method using body surface potentials acquired from three subjects during clinical procedures where the subjects’ hearts were paced on their endocardia using a catheter device. Our geometric models were constructed using a set of CT scans limited in axial extent to the immediate region near the heart. The catheter system provides a reference location to which we compare our results. We compare our estimates of pacing site localization, in terms of both accuracy and stability, to those reported in a recent clinical publication [1], where a full set of CT scans were available and only epicardial potentials were reconstructed. PMID:24595345
Feng, Zhihong; Zhao, Jinlong; Zhou, Libin; Dong, Yan; Zhao, Yimin
2009-10-01
The purpose of this report is to show the establishment of an animal model with a unilateral maxilla defect, application of virtual reality and rapid prototyping in the surgical planning for dentoalveolar distraction osteogenesis (DO). Two adult dogs were used to develop an animal model with a unilateral maxillary defect. The 3-dimensional model of the canine craniofacial skeleton was reconstructed with computed tomography data using the software Mimics, version 12.0 (Materialise Group, Leuven, Belgium). A virtual individual distractor was designed and transferred onto the model with the defect, and the osteotomies and distraction processes were simulated. A precise casting technique and numeric control technology were applied to produce the titanium distraction device, which was installed on the physical model with the defect, which was generated using Selective Laser Sintering technology, and the in vitro simulation of osteotomies and DO was done. The 2 dogs survived the operation and were lively. The osteotomies and distraction process were simulated successfully whether on the virtual or the physical model. The bone transport could be distracted to the desired position both in the virtual environment and on the physical model. The novel method to develop an animal model with a unilateral maxillary defect was feasible, and the animal model was suitable to develop the reconstruction method for unilateral maxillary defect cases with dentoalveolar DO. Computer-assisted surgical planning and simulation improved the reliability of the maxillofacial surgery, especially for the complex cases. The novel idea to reconstruct the unilateral maxillary defect with dentoalveolar DO was proved through the model experiment.
Cosmic ray measurements with LOPES: Status and recent results
NASA Astrophysics Data System (ADS)
Schröder, F. G.; Apel, W. D.; Arteaga-Velázquez, J. C.; Bähren, L.; Bekk, K.; Bertaina, M.; Biermann, P. L.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Chiavassa, A.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Falcke, H.; Fuchs, B.; Fuhrmann, D.; Gemmeke, H.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Horneffer, A.; Huber, D.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Krömer, O.; Kuijpers, J.; Link, K.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Melissas, M.; Morello, C.; Oehlschläger, J.; Palmieri, N.; Pierog, T.; Rautenberg, J.; Rebel, H.; Roth, M.; Rühle, C.; Saftoiu, A.; Schieler, H.; Schmidt, A.; Sima, O.; Toma, G.; Trinchero, G. C.; Weindl, A.; Wochele, J.; Zabierowski, J.; Zensus, J. A.
2013-05-01
LOPES is a digital antenna array at the Karlsruhe Institute of Technology, Germany, for cosmic-ray air-shower measurements. Triggered by the co-located KASCADE-Grande air-shower array, LOPES detects the radio emission of air showers via digital radio interferometry. We summarize the status of LOPES and recent results. In particular, we present an update on the reconstruction of the primary-particle properties based on almost 500 events above 100PeV. With LOPES, the arrival direction can be reconstructed with a precision of at least 0.65°, and the energy with a precision of at least 20%, which, however, does not include systematic uncertainties on the absolute energy scale. For many particle and astrophysics questions the reconstruction of the atmospheric depth of the shower maximum, Xmax, is important, since it yields information on the type of the primary particle and its interaction with the atmosphere. Recently, we found experimental evidence that the slope of the radio lateral distribution is indeed sensitive to the longitudinal development of the air shower, but unfortunately, the Xmax precision at LOPES is limited by the high level of anthropogenic radio background. Nevertheless, the developed methods can be transferred to next generation experiments with lower background, which should provide an Xmax precision competitive to other detection technologies.
Technical note: 3D from standard digital photography of human crania-a preliminary assessment.
Katz, David; Friess, Martin
2014-05-01
This study assessed three-dimensional (3D) photogrammetry as a tool for capturing and quantifying human skull morphology. While virtual reconstruction with 3D surface scanning technology has become an accepted part of the paleoanthropologist's tool kit, recent advances in 3D photogrammetry make it a potential alternative to dedicated surface scanners. The principal advantages of photogrammetry are more rapid raw data collection, simplicity and portability of setup, and reduced equipment costs. We tested the precision and repeatability of 3D photogrammetry by comparing digital models of human crania reconstructed from conventional, 2D digital photographs to those generated using a 3D surface scanner. Overall, the photogrammetry and scanner meshes showed low degrees of deviation from one another. Surface area estimates derived from photogrammetry models tended to be slightly larger. Landmark configurations generally did not cluster together based upon whether the reconstruction was created with photogrammetry or surface scanning technology. Average deviations of landmark coordinates recorded on photogrammetry models were within the generally allowable range of error in osteometry. Thus, while dependent upon the needs of the particular research project, 3D photogrammetry appears to be a suitable, lower-cost alternative to 3D imaging and scanning options. Copyright © 2014 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poulin, E; Racine, E; Beaulieu, L
2014-06-15
Purpose: In high dose rate brachytherapy (HDR-B), actual catheter reconstruction protocols are slow and errors prompt. The purpose of this study was to evaluate the accuracy and robustness of an electromagnetic (EM) tracking system for improved catheter reconstruction in HDR-B protocols. Methods: For this proof-of-principle, a total of 10 catheters were inserted in gelatin phantoms with different trajectories. Catheters were reconstructed using a Philips-design 18G biopsy needle (used as an EM stylet) and the second generation Aurora Planar Field Generator from Northern Digital Inc. The Aurora EM system exploits alternating current technology and generates 3D points at 40 Hz. Phantomsmore » were also scanned using a μCT (GE Healthcare) and Philips Big Bore clinical CT system with a resolution of 0.089 mm and 2 mm, respectively. Reconstructions using the EM stylet were compared to μCT and CT. To assess the robustness of the EM reconstruction, 5 catheters were reconstructed twice and compared. Results: Reconstruction time for one catheter was 10 seconds or less. This would imply that for a typical clinical implant of 17 catheters, the total reconstruction time would be less than 3 minutes. When compared to the μCT, the mean EM tip identification error was 0.69 ± 0.29 mm while the CT error was 1.08 ± 0.67 mm. The mean 3D distance error was found to be 0.92 ± 0.37 mm and 1.74 ± 1.39 mm for the EM and CT, respectively. EM 3D catheter trajectories were found to be significantly more accurate (unpaired t-test, p < 0.05). A mean difference of less than 0.5 mm was found between successive EM reconstructions. Conclusion: The EM reconstruction was found to be faster, more accurate and more robust than the conventional methods used for catheter reconstruction in HDR-B. This approach can be applied to any type of catheters and applicators. We would like to disclose that the equipments, used in this study, is coming from a collaboration with Philips Medical.« less
Wei, Zhuang; Reisdorf, Ramona L; Thoreson, Andrew R; Jay, Gregory D; Moran, Steven L; An, Kai-Nan; Amadio, Peter C; Zhao, Chunfeng
2018-04-04
Flexor tendon injury is common, and tendon reconstruction is indicated clinically if the primary repair fails or cannot be performed immediately after tendon injury. The purpose of the current study was to compare clinically standard extrasynovial autologous graft (EAG) tendon and intrasynovial allogeneic graft (IAG) that had both undergone biolubricant surface modification in a canine in vivo model. Twenty-four flexor digitorum profundus (FDP) tendons from the second and fifth digits of 12 dogs were used for this study. In the first phase, a model of failed FDP tendon repair was created. After 6 weeks, the ruptured FDP tendons with a scarred digit were reconstructed with the use of either EAG or IAG tendons treated with carbodiimide-derivatized hyaluronic acid and lubricin. At 12 weeks after tendon reconstruction, the digits were harvested for functional, biomechanical, and histologic evaluations. The tendon failure model was a clinically relevant and reproducible model for tendon reconstruction. The IAG group demonstrated improved digit function with decreased adhesion formation, lower digit work of flexion, and improved graft gliding ability compared with the EAG group. However, the IAG group had decreased healing at the distal tendon-bone junction. Our histologic findings verified the biomechanical evaluations and, further, showed that cellular repopulation of allograft at 12 weeks after reconstruction is still challenging. FDP tendon reconstruction using IAG with surface modification has some beneficial effects for reducing adhesions but demonstrated inferior healing at the distal tendon-bone junction compared with EAG. These mixed results indicate that vitalization and turnover acceleration are crucial to reducing failure of reconstruction with allograft. Flexor tendon reconstruction is a common surgical procedure. However, postoperative adhesion formation may lead to unsatisfactory clinical outcomes. In this study, we developed a potential flexor tendon allograft using chemical and tissue-engineering approaches. This technology could improve function following tendon reconstruction.
Hybrid spectral CT reconstruction
Clark, Darin P.
2017-01-01
Current photon counting x-ray detector (PCD) technology faces limitations associated with spectral fidelity and photon starvation. One strategy for addressing these limitations is to supplement PCD data with high-resolution, low-noise data acquired with an energy-integrating detector (EID). In this work, we propose an iterative, hybrid reconstruction technique which combines the spectral properties of PCD data with the resolution and signal-to-noise characteristics of EID data. Our hybrid reconstruction technique is based on an algebraic model of data fidelity which substitutes the EID data into the data fidelity term associated with the PCD reconstruction, resulting in a joint reconstruction problem. Within the split Bregman framework, these data fidelity constraints are minimized subject to additional constraints on spectral rank and on joint intensity-gradient sparsity measured between the reconstructions of the EID and PCD data. Following a derivation of the proposed technique, we apply it to the reconstruction of a digital phantom which contains realistic concentrations of iodine, barium, and calcium encountered in small-animal micro-CT. The results of this experiment suggest reliable separation and detection of iodine at concentrations ≥ 5 mg/ml and barium at concentrations ≥ 10 mg/ml in 2-mm features for EID and PCD data reconstructed with inherent spatial resolutions of 176 μm and 254 μm, respectively (point spread function, FWHM). Furthermore, hybrid reconstruction is demonstrated to enhance spatial resolution within material decomposition results and to improve low-contrast detectability by as much as 2.6 times relative to reconstruction with PCD data only. The parameters of the simulation experiment are based on an in vivo micro-CT experiment conducted in a mouse model of soft-tissue sarcoma. Material decomposition results produced from this in vivo data demonstrate the feasibility of distinguishing two K-edge contrast agents with a spectral separation on the order of the energy resolution of the PCD hardware. PMID:28683124
Current methods of burn reconstruction.
Orgill, Dennis P; Ogawa, Rei
2013-05-01
After reading this article, the participant should be able to: 1. Explain the present challenges in reconstructive burn surgery. 2. Describe the most appropriate treatment methods and techniques for specific burn injury types, including skin grafts, dermal substitutes, and a variety of flap options. 3. Identify the appropriate use, advantages, and disadvantages of specific flaps in the treatment of burn injuries, including local, regional, superthin, prefabricated, prelaminated, and free flaps. Victims of thermal burns often form heavy scars and develop contractures around joints, inhibiting movement. As burns can occur in all cutaneous areas of the body, a wide range of reconstructive options have been utilized. Each method has advantages and disadvantages that must be considered by both patients and surgeons. The authors reviewed the literature for burn reconstruction and focused their discussion on areas that have been recently developed. They reviewed the mechanism of burn injury and discussed how this relates to the pathophysiology of the burn injury. Surgeons now have a wide array of plastic surgical techniques that can be used to treat burn victims. These range from skin grafts and local flaps to free flaps, prefabricated flaps, superthin flaps, and dermal scaffolds. Recent advances in burn reconstruction provide methods to decrease scar tissue and joint contractures. In the future, the authors hope that further developments in burn treatment will foster the development of new technologies that will allow site-specific reconstruction with minimal donor-site morbidity.
NASA Astrophysics Data System (ADS)
Hosani, E. Al; Zhang, M.; Abascal, J. F. P. J.; Soleimani, M.
2016-11-01
Electrical capacitance tomography (ECT) is an imaging technology used to reconstruct the permittivity distribution within the sensing region. So far, ECT has been primarily used to image non-conductive media only, since if the conductivity of the imaged object is high, the capacitance measuring circuit will be almost shortened by the conductivity path and a clear image cannot be produced using the standard image reconstruction approaches. This paper tackles the problem of imaging metallic samples using conventional ECT systems by investigating the two main aspects of image reconstruction algorithms, namely the forward problem and the inverse problem. For the forward problem, two different methods to model the region of high conductivity in ECT is presented. On the other hand, for the inverse problem, three different algorithms to reconstruct the high contrast images are examined. The first two methods are the linear single step Tikhonov method and the iterative total variation regularization method, and use two sets of ECT data to reconstruct the image in time difference mode. The third method, namely the level set method, uses absolute ECT measurements and was developed using a metallic forward model. The results indicate that the applications of conventional ECT systems can be extended to metal samples using the suggested algorithms and forward model, especially using a level set algorithm to find the boundary of the metal.
Reconstructing (super)trees from data sets with missing distances: not all is lost.
Kettleborough, George; Dicks, Jo; Roberts, Ian N; Huber, Katharina T
2015-06-01
The wealth of phylogenetic information accumulated over many decades of biological research, coupled with recent technological advances in molecular sequence generation, presents significant opportunities for researchers to investigate relationships across and within the kingdoms of life. However, to make best use of this data wealth, several problems must first be overcome. One key problem is finding effective strategies to deal with missing data. Here, we introduce Lasso, a novel heuristic approach for reconstructing rooted phylogenetic trees from distance matrices with missing values, for data sets where a molecular clock may be assumed. Contrary to other phylogenetic methods on partial data sets, Lasso possesses desirable properties such as its reconstructed trees being both unique and edge-weighted. These properties are achieved by Lasso restricting its leaf set to a large subset of all possible taxa, which in many practical situations is the entire taxa set. Furthermore, the Lasso approach is distance-based, rendering it very fast to run and suitable for data sets of all sizes, including large data sets such as those generated by modern Next Generation Sequencing technologies. To better understand the performance of Lasso, we assessed it by means of artificial and real biological data sets, showing its effectiveness in the presence of missing data. Furthermore, by formulating the supermatrix problem as a particular case of the missing data problem, we assessed Lasso's ability to reconstruct supertrees. We demonstrate that, although not specifically designed for such a purpose, Lasso performs better than or comparably with five leading supertree algorithms on a challenging biological data set. Finally, we make freely available a software implementation of Lasso so that researchers may, for the first time, perform both rooted tree and supertree reconstruction with branch lengths on their own partial data sets. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Reconstruction with 3D-printed pelvic endoprostheses after resection of a pelvic tumour.
Liang, H; Ji, T; Zhang, Y; Wang, Y; Guo, W
2017-02-01
The aims of this retrospective study were to report the feasibility of using 3D-printing technology for patients with a pelvic tumour who underwent reconstruction. A total of 35 patients underwent resection of a pelvic tumour and reconstruction using 3D-printed endoprostheses between September 2013 and December 2015. According to Enneking's classification of bone defects, there were three Type I lesions, 12 Type II+III lesions, five Type I+II lesions, two Type I+II+III lesions, ten type I+II+IV lesions and three type I+II+III+IV lesions. A total of three patients underwent reconstruction using an iliac prosthesis, 12 using a standard hemipelvic prosthesis and 20 using a screw-rod connected hemipelvic prosthesis. All patients had an en bloc resection. Margins were wide in 15 patients, marginal in 14 and intralesional in six. After a mean follow-up of 20.5 months (6 to 30), 25 patients survived without evidence of disease, five were alive with disease and five had died from metastatic disease. Complications included seven patients with delayed wound healing and two with a dislocation of the hip. None had a deep infection. For the 30 surviving patients, the mean Musculoskeletal Society 93 score was 22.7 (20 to 25) for patients with an iliac prosthesis, 19.8 (15 to 26) for those with a standard prosthesis, and 17.7 (9 to 25) for those with a screw-rod connected prosthesis. The application of 3D-printing technology can facilitate the precise matching and osseointegration between implants and the host bone. We found that the use of 3D-printed pelvic prostheses for reconstruction of the bony defect after resection of a pelvic tumour was safe, without additional complications, and gave good short-term functional results. Cite this article: Bone Joint J 2017;99-B:267-75. ©2017 The British Editorial Society of Bone & Joint Surgery.
NASA Astrophysics Data System (ADS)
Li, Dongming; Zhang, Lijuan; Wang, Ting; Liu, Huan; Yang, Jinhua; Chen, Guifen
2016-11-01
To improve the adaptive optics (AO) image's quality, we study the AO image restoration algorithm based on wavefront reconstruction technology and adaptive total variation (TV) method in this paper. Firstly, the wavefront reconstruction using Zernike polynomial is used for initial estimated for the point spread function (PSF). Then, we develop our proposed iterative solutions for AO images restoration, addressing the joint deconvolution issue. The image restoration experiments are performed to verify the image restoration effect of our proposed algorithm. The experimental results show that, compared with the RL-IBD algorithm and Wiener-IBD algorithm, we can see that GMG measures (for real AO image) from our algorithm are increased by 36.92%, and 27.44% respectively, and the computation time are decreased by 7.2%, and 3.4% respectively, and its estimation accuracy is significantly improved.
NASA Astrophysics Data System (ADS)
Senkin, Sergey
2018-01-01
The ATLAS Collaboration has started a vast programme of upgrades in the context of high-luminosity LHC (HL-LHC) foreseen in 2024. We present here one of the frontend readout options, an ASIC called FATALIC, proposed for the high-luminosity phase LHC upgrade of the ATLAS Tile Calorimeter. Based on a 130 nm CMOS technology, FATALIC performs the complete signal processing, including amplification, shaping and digitisation. We describe the full characterisation of FATALIC and also the Optimal Filtering signal reconstruction method adapted to fully exploit the FATALIC three-range layout. Additionally we present the resolution performance of the whole chain measured using the charge injection system designed for calibration. Finally we discuss the results of the signal reconstruction used on real data collected during a preliminary beam test at CERN.
2008-01-01
sustainable growth. The real benefits lie not in the provision of technology per se, but rather in promoting creation of powerful social and economic...for poverty reduction and economic recovery. ICT benefits not only the rich but those who are less fortunate. For example, at the village level in...of interest and reach subject matter experts for advice and counseling. 6 However, the poor cannot benefit from globalization without active
NASA Astrophysics Data System (ADS)
Tomarov, G. V.; Shipkov, A. A.; Lovchev, V. N.; Gutsev, D. F.
2016-10-01
Problems of metal flow-accelerated corrosion (FAC) in the pipelines and equipment of the condensate- feeding and wet-steam paths of NPP power-generating units (PGU) are examined. Goals, objectives, and main principles of the methodology for the implementation of an integrated program of AO Concern Rosenergoatom for the prevention of unacceptable FAC thinning and for increasing operational flow-accelerated corrosion resistance of NPP EaP are worded (further the Program). A role is determined and potentialities are shown for the use of Russian software packages in the evaluation and prediction of FAC rate upon solving practical problems for the timely detection of unacceptable FAC thinning in the elements of pipelines and equipment (EaP) of the secondary circuit of NPP PGU. Information is given concerning the structure, properties, and functions of the software systems for plant personnel support in the monitoring and planning of the inservice inspection of FAC thinning elements of pipelines and equipment of the secondary circuit of NPP PGUs, which are created and implemented at some Russian NPPs equipped with VVER-1000, VVER-440, and BN-600 reactors. It is noted that one of the most important practical results of software packages for supporting NPP personnel concerning the issue of flow-accelerated corrosion consists in revealing elements under a hazard of intense local FAC thinning. Examples are given for successful practice at some Russian NPP concerning the use of software systems for supporting the personnel in early detection of secondary-circuit pipeline elements with FAC thinning close to an unacceptable level. Intermediate results of working on the Program are presented and new tasks set in 2012 as a part of the updated program are denoted. The prospects of the developed methods and tools in the scope of the Program measures at the stages of design and construction of NPP PGU are discussed. The main directions of the work on solving the problems of flow-accelerated corrosion of pipelines and equipment in Russian NPP PGU are defined.
NASA Astrophysics Data System (ADS)
Parchevsky, V. M.; Guryanova, V. V.
2017-01-01
A computational and experimental procedure for construction of the two-dimensional separation curve (TDSC) for a horizontal steam generator (SG) at a nuclear power station (NPS) with VVER-reactors. In contrast to the conventional one-dimensional curve describing the wetness of saturated steam generated in SG as a function of the boiler water level at one, usually rated, load, TDSC is a function of two variables, which are the level and the load of SGB that enables TDSC to be used for wetness control in a wide load range. The procedure is based on two types of experimental data obtained during rated load operation: the nonuniformity factor of the steam load at the outlet from the submerged perforated sheet (SPS) and the dependence of the mass water level in the vicinity of the "hot" header on the water level the "cold" end of SG. The TDSC prediction procedure is presented in the form of an algorithm using SG characteristics, such as steam load and water level as the input and giving the calculated steam wetness at the output. The zoneby-zone calculation method is used. The result is presented in an analytical form (as an empirical correlation) suitable for uploading into controllers or other controls. The predicted TDSC can be used during real-time operation for implementation of different wetness control scenarios (for example, if the effectiveness is a priority, then the minimum water level, minimum wetness, and maximum turbine efficiency should be maintained; if safety is a priority, then the maximum level at the allowable wetness and the maximum water inventory should be kept), for operation of NPS in controlling the frequency and power in a power system, at the design phase (as a part of the simulation complex for verification of design solutions), during construction and erection (in developing software for personnel training simulators), during commissioning tests (to reduce the duration and labor-intensity of experimental activities), and for training.
Voice Response Systems Technology.
ERIC Educational Resources Information Center
Gerald, Jeanette
1984-01-01
Examines two methods of generating synthetic speech in voice response systems, which allow computers to communicate in human terms (speech), using human interface devices (ears): phoneme and reconstructed voice systems. Considerations prior to implementation, current and potential applications, glossary, directory, and introduction to Input Output…
A quantitative evaluation of the three dimensional reconstruction of patients' coronary arteries.
Klein, J L; Hoff, J G; Peifer, J W; Folks, R; Cooke, C D; King, S B; Garcia, E V
1998-04-01
Through extensive training and experience angiographers learn to mentally reconstruct the three dimensional (3D) relationships of the coronary arterial branches. Graphic computer technology can assist angiographers to more quickly visualize the coronary 3D structure from limited initial views and then help to determine additional helpful views by predicting subsequent angiograms before they are obtained. A new computer method for facilitating 3D reconstruction and visualization of human coronary arteries was evaluated by reconstructing biplane left coronary angiograms from 30 patients. The accuracy of the reconstruction was assessed in two ways: 1) by comparing the vessel's centerlines of the actual angiograms with the centerlines of a 2D projection of the 3D model projected into the exact angle of the actual angiogram; and 2) by comparing two 3D models generated by different simultaneous pairs on angiograms. The inter- and intraobserver variability of reconstruction were evaluated by mathematically comparing the 3D model centerlines of repeated reconstructions. The average absolute corrected displacement of 14,662 vessel centerline points in 2D from 30 patients was 1.64 +/- 2.26 mm. The average corrected absolute displacement of 3D models generated from different biplane pairs was 7.08 +/- 3.21 mm. The intraobserver variability of absolute 3D corrected displacement was 5.22 +/- 3.39 mm. The interobserver variability was 6.6 +/- 3.1 mm. The centerline analyses show that the reconstruction algorithm is mathematically accurate and reproducible. The figures presented in this report put these measurement errors into clinical perspective showing that they yield an accurate representation of the clinically relevant information seen on the actual angiograms. These data show that this technique can be clinically useful by accurately displaying in three dimensions the complex relationships of the branches of the coronary arterial tree.
Jehle, Dietrich; Chae, Floria; Wai, Jonathan; Cloud, Sam; Pierce, David; Meyer, Michael
2012-01-01
CT angiography (CTA) has improved significantly over the past few years such that the reconstructed images of the cerebral arteries may now be equivalent to conventional digital angiography. The new technology of 64 slice multi-detector CTA can reconstruct detailed images that can reliably identify small cerebral aneurysms, even those <3mm. In addition, it is estimated that CT followed by lumbar puncture (LP) misses up to 4% of symptomatic aneurysms. We present a series of cases that illustrates how CT followed by CTA may be replacing CT-LP as the standard of care in working up patients for symptomatic cerebral aneurysms and the importance of performing three dimensional (3D) reconstructions. A series of seven cases of symptomatic cerebral aneurysms were identified that illustrate the sensitivity of CT-CTA versus CT-LP and the importance of 3D reconstruction in identifying these aneurysms. Surgical treatment was recommended for 6 of the 7 patients with aneurysms and strict hypertension control was recommended for the seventh patient. Some of these patients demonstrated subarachnoid hemorrhage on presentation while others had negative LPs. A number of these patients with negative LPs were clearly symptomatic from their aneurysms. At least one of these cerebral aneurysms was not apparent on CTA without 3D reconstruction. 3D reconstruction of CTA is crucial to adequately identify cerebral aneurysms. This case series helps reinforce the importance of 3D reconstruction. There is some data to suggest that 64 slice CT-CTA may be equivalent or superior to CT-LP in the detection of symptomatic cerebral aneurysms. PMID:22593806
Kumta, Samir; Kumta, Monica; Jain, Leena; Purohit, Shrirang; Ummul, Rani
2015-01-01
Introduction: Replication of the exact three-dimensional (3D) structure of the maxilla and mandible is now a priority whilst attempting reconstruction of these bones to attain a complete functional and aesthetic rehabilitation. We hereby present the process of rapid prototyping using stereolithography to produce templates for modelling bone grafts and implants for maxilla/mandible reconstructions, its applications in tumour/trauma, and outcomes for primary and secondary reconstruction. Materials and Methods: Stereolithographic template-assisted reconstruction was used on 11 patients for the reconstruction of the mandible/maxilla primarily following tumour excision and secondarily for the realignment of post-traumatic malunited fractures or deformity corrections. Data obtained from the computed tomography (CT) scans with 1-mm resolution were converted into a computer-aided design (CAD) using the CT Digital Imaging and Communications in Medicine (DICOM) data. Once a CAD model was constructed, it was converted into a stereolithographic format and then processed by the rapid prototyping technology to produce the physical anatomical model using a resin. This resin model replicates the native mandible, which can be thus used off table as a guide for modelling the bone grafts. Discussion: This conversion of two-dimensional (2D) data from CT scan into 3D models is a very precise guide to shaping the bone grafts. Further, this CAD can reconstruct the defective half of the mandible using the mirror image principle, and the normal anatomical model can be created to aid secondary reconstructions. Conclusion: This novel approach allows a precise translation of the treatment plan directly to the surgical field. It is also an important teaching tool for implant moulding and fixation, and helps in patient counselling. PMID:26933279
Kumta, Samir; Kumta, Monica; Jain, Leena; Purohit, Shrirang; Ummul, Rani
2015-01-01
Replication of the exact three-dimensional (3D) structure of the maxilla and mandible is now a priority whilst attempting reconstruction of these bones to attain a complete functional and aesthetic rehabilitation. We hereby present the process of rapid prototyping using stereolithography to produce templates for modelling bone grafts and implants for maxilla/mandible reconstructions, its applications in tumour/trauma, and outcomes for primary and secondary reconstruction. Stereolithographic template-assisted reconstruction was used on 11 patients for the reconstruction of the mandible/maxilla primarily following tumour excision and secondarily for the realignment of post-traumatic malunited fractures or deformity corrections. Data obtained from the computed tomography (CT) scans with 1-mm resolution were converted into a computer-aided design (CAD) using the CT Digital Imaging and Communications in Medicine (DICOM) data. Once a CAD model was constructed, it was converted into a stereolithographic format and then processed by the rapid prototyping technology to produce the physical anatomical model using a resin. This resin model replicates the native mandible, which can be thus used off table as a guide for modelling the bone grafts. This conversion of two-dimensional (2D) data from CT scan into 3D models is a very precise guide to shaping the bone grafts. Further, this CAD can reconstruct the defective half of the mandible using the mirror image principle, and the normal anatomical model can be created to aid secondary reconstructions. This novel approach allows a precise translation of the treatment plan directly to the surgical field. It is also an important teaching tool for implant moulding and fixation, and helps in patient counselling.
Manrique, Oscar J; Lalezarzadeh, Frank; Dayan, Erez; Shin, Joseph; Buchbinder, Daniel; Smith, Mark
2015-05-01
Reconstruction of bony craniofacial defects requires precise understanding of the anatomic relationships. The ideal reconstructive technique should be fast as well as economical, with minimal donor-site morbidity, and provide a lasting and aesthetically pleasing result. There are some circumstances in which a patient's own tissue is not sufficient to reconstruct defects. The development of sophisticated software has facilitated the manufacturing of patient-specific implants (PSIs). The aim of this study was to analyze the utility of polyether ether ketone (PEEK) PSIs for craniofacial reconstruction. We performed a retrospective chart review from July 2009 to July 2013 in patients who underwent craniofacial reconstruction using PEEK-PSIs using a virtual process based on computer-aided design and computer-aided manufacturing. A total of 6 patients were identified. The mean age was 46 years (16-68 y). Operative indications included cancer (n = 4), congenital deformities (n = 1), and infection (n = 1). The mean surgical time was 3.7 hours and the mean hospital stay was 1.5 days. The mean surface area of the defect was 93.4 ± 43.26 cm(2), the mean implant cost was $8493 ± $837.95, and the mean time required to manufacture the implants was 2 weeks. No major or minor complications were seen during the 4-year follow-up. We found PEEK implants to be useful in the reconstruction of complex calvarial defects, demonstrating a low complication rate, good outcomes, and high patient satisfaction in this small series of patients. Polyether ether ketone implants show promising potential and warrant further study to better establish the role of this technology in cranial reconstruction.
Tang, Rui; Ma, Long-Fei; Rong, Zhi-Xia; Li, Mo-Dan; Zeng, Jian-Ping; Wang, Xue-Dong; Liao, Hong-En; Dong, Jia-Hong
2018-04-01
Augmented reality (AR) technology is used to reconstruct three-dimensional (3D) images of hepatic and biliary structures from computed tomography and magnetic resonance imaging data, and to superimpose the virtual images onto a view of the surgical field. In liver surgery, these superimposed virtual images help the surgeon to visualize intrahepatic structures and therefore, to operate precisely and to improve clinical outcomes. The keywords "augmented reality", "liver", "laparoscopic" and "hepatectomy" were used for searching publications in the PubMed database. The primary source of literatures was from peer-reviewed journals up to December 2016. Additional articles were identified by manual search of references found in the key articles. In general, AR technology mainly includes 3D reconstruction, display, registration as well as tracking techniques and has recently been adopted gradually for liver surgeries including laparoscopy and laparotomy with video-based AR assisted laparoscopic resection as the main technical application. By applying AR technology, blood vessels and tumor structures in the liver can be displayed during surgery, which permits precise navigation during complex surgical procedures. Liver transformation and registration errors during surgery were the main factors that limit the application of AR technology. With recent advances, AR technologies have the potential to improve hepatobiliary surgical procedures. However, additional clinical studies will be required to evaluate AR as a tool for reducing postoperative morbidity and mortality and for the improvement of long-term clinical outcomes. Future research is needed in the fusion of multiple imaging modalities, improving biomechanical liver modeling, and enhancing image data processing and tracking technologies to increase the accuracy of current AR methods. Copyright © 2018 First Affiliated Hospital, Zhejiang University School of Medicine in China. Published by Elsevier B.V. All rights reserved.
Cranial reconstruction: 3D biomodel and custom-built implant created using additive manufacturing.
Jardini, André Luiz; Larosa, Maria Aparecida; Maciel Filho, Rubens; Zavaglia, Cecília Amélia de Carvalho; Bernardes, Luis Fernando; Lambert, Carlos Salles; Calderoni, Davi Reis; Kharmandayan, Paulo
2014-12-01
Additive manufacturing (AM) technology from engineering has helped to achieve several advances in the medical field, particularly as far as fabrication of implants is concerned. The use of AM has made it possible to carry out surgical planning and simulation using a three-dimensional physical model which accurately represents the patient's anatomy. AM technology enables the production of models and implants directly from a 3D virtual model, facilitating surgical procedures and reducing risks. Furthermore, AM has been used to produce implants designed for individual patients in areas of medicine such as craniomaxillofacial surgery, with optimal size, shape and mechanical properties. This work presents AM technologies which were applied to design and fabricate a biomodel and customized implant for the surgical reconstruction of a large cranial defect. A series of computed tomography data was obtained and software was used to extract the cranial geometry. The protocol presented was used to create an anatomic biomodel of the bone defect for surgical planning and, finally, the design and manufacture of the patient-specific implant. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Joseph J.; Siddiqui, Khan M.; Fort, Leslie; Moffitt, Ryan; Juluru, Krishna; Kim, Woojin; Safdar, Nabile; Siegel, Eliot L.
2007-03-01
3D and multi-planar reconstruction of CT images have become indispensable in the routine practice of diagnostic imaging. These tools cannot only enhance our ability to diagnose diseases, but can also assist in therapeutic planning as well. The technology utilized to create these can also render surface reconstructions, which may have the undesired potential of providing sufficient detail to allow recognition of facial features and consequently patient identity, leading to violation of patient privacy rights as described in the HIPAA (Health Insurance Portability and Accountability Act) legislation. The purpose of this study is to evaluate whether 3D reconstructed images of a patient's facial features can indeed be used to reliably or confidently identify that specific patient. Surface reconstructed images of the study participants were created used as candidates for matching with digital photographs of participants. Data analysis was performed to determine the ability of observers to successfully match 3D surface reconstructed images of the face with facial photographs. The amount of time required to perform the match was recorded as well. We also plan to investigate the ability of digital masks or physical drapes to conceal patient identity. The recently expressed concerns over the inability to truly "anonymize" CT (and MRI) studies of the head/face/brain are yet to be tested in a prospective study. We believe that it is important to establish whether these reconstructed images are a "threat" to patient privacy/security and if so, whether minimal interventions from a clinical perspective can substantially reduce this possibility.
NASA Astrophysics Data System (ADS)
Palmieri, N.; Apel, W. D.; Arteaga-Velázquez, J. C.; Bähren, L.; Bekk, K.; Bertaina, M.; Biermann, P. L.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Chiavassa, A.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Falcke, H.; Fuchs, B.; Fuhrmann, D.; Gemmeke, H.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Horneffer, A.; Huber, D.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Krömer, O.; Kuijpers, J.; Link, K.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Melissas, M.; Morello, C.; Oehlschläger, J.; Pierog, T.; Rautenberg, J.; Rebel, H.; Roth, M.; Rühle, C.; Saftoiu, A.; Schieler, H.; Schmidt, A.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Weindl, A.; Wochele, J.; Zabierowski, J.; Zensus, J. A.
2013-05-01
The LOPES experiment, a digital radio interferometer located at KIT (Karlsruhe Institute of Technology), obtained remarkable results for the detection of radio emission from extensive air showers at MHz frequencies. Features of the radio lateral distribution function (LDF) measured by LOPES are explored in this work for a precise reconstruction of two fundamental air shower parameters: the primary energy and the shower Xmax. The method presented here has been developed on (REAS3-)simulations, and is applied to LOPES measurements. Despite the high human-made noise at the LOPES site, it is possible to reconstruct both the energy and Xmax for individual events. On the one hand, the energy resolution is promising and comparable to the one of the co-located KASCADE-Grande experiment. On the other hand, Xmax values are reconstructed with the LOPES measurements with a resolution of 90 g/cm2. A precision on Xmax better than 30 g/cm2 is predicted and achievable in a region with a lower human-made noise level.
Complex robotic reconstructive surgical procedures in children with urologic abnormalities.
Orvieto, Marcelo A; Gundeti, Mohan S
2011-07-01
Robot-assisted laparoscopic surgery (RALS) is evolving rapidly in the pediatric surgical field. The unique attributes of the robotic interface makes this technology ideal for children with congenital anomalies who often require reconstructive procedures. Furthermore, the system can generate extremely delicate movements in a confined working space such as the one generally found in the pediatric population. Herein, we critically review the current experience with RALS placing a special emphasis in children undergoing complex reconstructive surgical procedures worldwide. A total of 42 original manuscripts on a variety of robot-assisted urologic surgical procedures in children were identified from a MEDLINE database search. Complex reconstructive procedures that are being currently performed include reoperative pyeloplasty, pyeloplasty in infants, pyelolithotomy, ureteropyelostomy/ureterostomy, bladder augmentation with or without appendico-vesicostomy, bladder neck sling procedure, among others. Initial results with robot assistance are encouraging and have demonstrated safety comparable to open procedures and outcomes at least equivalent to standard laparoscopy. Future development of smaller instruments, incorporating tactile feedback, will likely overcome current limitations and spread out the use of this technique in younger children and more advanced procedures.
Code of Federal Regulations, 2010 CFR
2010-10-01
... App. U.S.C. 1101 through 1294). Actual Cost of a Vessel or Shipyard Project means, as of any specified... thereafter, for the construction, reconstruction or reconditioning of such Vessel or Shipyard Project. Advanced Shipbuilding Technology means: (1) Numerically controlled machine tools, robots, automated process...
Code of Federal Regulations, 2011 CFR
2011-10-01
... App. U.S.C. 1101 through 1294). Actual Cost of a Vessel or Shipyard Project means, as of any specified... thereafter, for the construction, reconstruction or reconditioning of such Vessel or Shipyard Project. Advanced Shipbuilding Technology means: (1) Numerically controlled machine tools, robots, automated process...
Code of Federal Regulations, 2014 CFR
2014-10-01
... App. U.S.C. 1101 through 1294). Actual Cost of a Vessel or Shipyard Project means, as of any specified... thereafter, for the construction, reconstruction or reconditioning of such Vessel or Shipyard Project. Advanced Shipbuilding Technology means: (1) Numerically controlled machine tools, robots, automated process...
Code of Federal Regulations, 2012 CFR
2012-10-01
... App. U.S.C. 1101 through 1294). Actual Cost of a Vessel or Shipyard Project means, as of any specified... thereafter, for the construction, reconstruction or reconditioning of such Vessel or Shipyard Project. Advanced Shipbuilding Technology means: (1) Numerically controlled machine tools, robots, automated process...
Code of Federal Regulations, 2013 CFR
2013-10-01
... App. U.S.C. 1101 through 1294). Actual Cost of a Vessel or Shipyard Project means, as of any specified... thereafter, for the construction, reconstruction or reconditioning of such Vessel or Shipyard Project. Advanced Shipbuilding Technology means: (1) Numerically controlled machine tools, robots, automated process...
Reconstruction of gas distribution pipelines in MOZG in Poland using PE and PA pipes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borowicz, W.; Podziemski, T.; Kramek, E.
1996-12-31
MOZG--Warsaw Regional Gas Distribution Company was established in 1856. Now it is one of six gas distribution companies in Poland. Due to steadily increasing safety demands, some of the pipelines will need reconstruction. The majority of the substandard piping is located in urban areas. The company wanted to gain experiences in applying reconstruction technologies using two different plastic materials polyethylene and polyamide. They also wanted to assess the technical and economic practicalities of performing relining processes. A PE project--large diameter polyethylene relining (450 mm) conducted in Warsaw in 1994/95 and PA projects--relining using polyamide pipes, projects conducted in Radom andmore » in Warsaw during 1993 and 1994 are the most interesting and representative for this kind of works. Thanks to the experience obtained whilst carrying out these projects, reconstruction of old gas pipelines has become routine. Now they often use polyethylene relining of smaller diameters and they continue both construction and reconstruction of gas network using PA pipes. This paper presents the accumulated knowledge showing the advantages and disadvantages of applied methods. It describes project design and implementation with details and reports on the necessary preparation work, on site job organization and the most common problems arising during the construction works.« less
A modified conjugate gradient method based on the Tikhonov system for computerized tomography (CT).
Wang, Qi; Wang, Huaxiang
2011-04-01
During the past few decades, computerized tomography (CT) was widely used for non-destructive testing (NDT) and non-destructive examination (NDE) in the industrial area because of its characteristics of non-invasiveness and visibility. Recently, CT technology has been applied to multi-phase flow measurement. Using the principle of radiation attenuation measurements along different directions through the investigated object with a special reconstruction algorithm, cross-sectional information of the scanned object can be worked out. It is a typical inverse problem and has always been a challenge for its nonlinearity and ill-conditions. The Tikhonov regulation method is widely used for similar ill-posed problems. However, the conventional Tikhonov method does not provide reconstructions with qualities good enough, the relative errors between the reconstructed images and the real distribution should be further reduced. In this paper, a modified conjugate gradient (CG) method is applied to a Tikhonov system (MCGT method) for reconstructing CT images. The computational load is dominated by the number of independent measurements m, and a preconditioner is imported to lower the condition number of the Tikhonov system. Both simulation and experiment results indicate that the proposed method can reduce the computational time and improve the quality of image reconstruction. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.
An interactive display system for large-scale 3D models
NASA Astrophysics Data System (ADS)
Liu, Zijian; Sun, Kun; Tao, Wenbing; Liu, Liman
2018-04-01
With the improvement of 3D reconstruction theory and the rapid development of computer hardware technology, the reconstructed 3D models are enlarging in scale and increasing in complexity. Models with tens of thousands of 3D points or triangular meshes are common in practical applications. Due to storage and computing power limitation, it is difficult to achieve real-time display and interaction with large scale 3D models for some common 3D display software, such as MeshLab. In this paper, we propose a display system for large-scale 3D scene models. We construct the LOD (Levels of Detail) model of the reconstructed 3D scene in advance, and then use an out-of-core view-dependent multi-resolution rendering scheme to realize the real-time display of the large-scale 3D model. With the proposed method, our display system is able to render in real time while roaming in the reconstructed scene and 3D camera poses can also be displayed. Furthermore, the memory consumption can be significantly decreased via internal and external memory exchange mechanism, so that it is possible to display a large scale reconstructed scene with over millions of 3D points or triangular meshes in a regular PC with only 4GB RAM.
NASA Astrophysics Data System (ADS)
Krynkin, A.; Dolcetti, G.; Hunting, S.
2017-02-01
Accurate reconstruction of the surface roughness is of high importance to various areas of science and engineering. One important application of this technology is for remote monitoring of open channel flows through observing its dynamic surface roughness. In this paper a novel airborne acoustic method of roughness reconstruction is proposed and tested with a static rigid rough surface. This method is based on the acoustic holography principle and Kirchhoff approximation which make use of acoustic pressure data collected at multiple receiver points spread along an arch. The Tikhonov regularisation and generalised cross validation technique are used to solve the underdetermined system of equations for the acoustic pressures. The experimental data are collected above a roughness created with a 3D printer. For the given surface, it is shown that the proposed method works well with the various number of receiver positions. In this paper, the tested ratios between the number of surface points at which the surface elevation can be reconstructed and number of receiver positions are 2.5, 5, and 7.5. It is shown that, in a region comparable with the projected size of the main directivity lobe, the method is able to reconstruct the spatial spectrum density of the actual surface elevation with the accuracy of 20%.
Krynkin, A; Dolcetti, G; Hunting, S
2017-02-01
Accurate reconstruction of the surface roughness is of high importance to various areas of science and engineering. One important application of this technology is for remote monitoring of open channel flows through observing its dynamic surface roughness. In this paper a novel airborne acoustic method of roughness reconstruction is proposed and tested with a static rigid rough surface. This method is based on the acoustic holography principle and Kirchhoff approximation which make use of acoustic pressure data collected at multiple receiver points spread along an arch. The Tikhonov regularisation and generalised cross validation technique are used to solve the underdetermined system of equations for the acoustic pressures. The experimental data are collected above a roughness created with a 3D printer. For the given surface, it is shown that the proposed method works well with the various number of receiver positions. In this paper, the tested ratios between the number of surface points at which the surface elevation can be reconstructed and number of receiver positions are 2.5, 5, and 7.5. It is shown that, in a region comparable with the projected size of the main directivity lobe, the method is able to reconstruct the spatial spectrum density of the actual surface elevation with the accuracy of 20%.
Fundamental Bounds for Sequence Reconstruction from Nanopore Sequencers.
Magner, Abram; Duda, Jarosław; Szpankowski, Wojciech; Grama, Ananth
2016-06-01
Nanopore sequencers are emerging as promising new platforms for high-throughput sequencing. As with other technologies, sequencer errors pose a major challenge for their effective use. In this paper, we present a novel information theoretic analysis of the impact of insertion-deletion (indel) errors in nanopore sequencers. In particular, we consider the following problems: (i) for given indel error characteristics and rate, what is the probability of accurate reconstruction as a function of sequence length; (ii) using replicated extrusion (the process of passing a DNA strand through the nanopore), what is the number of replicas needed to accurately reconstruct the true sequence with high probability? Our results provide a number of important insights: (i) the probability of accurate reconstruction of a sequence from a single sample in the presence of indel errors tends quickly (i.e., exponentially) to zero as the length of the sequence increases; and (ii) replicated extrusion is an effective technique for accurate reconstruction. We show that for typical distributions of indel errors, the required number of replicas is a slow function (polylogarithmic) of sequence length - implying that through replicated extrusion, we can sequence large reads using nanopore sequencers. Moreover, we show that in certain cases, the required number of replicas can be related to information-theoretic parameters of the indel error distributions.
[Application Progress of Three-dimensional Laser Scanning Technology in Medical Surface Mapping].
Zhang, Yonghong; Hou, He; Han, Yuchuan; Wang, Ning; Zhang, Ying; Zhu, Xianfeng; Wang, Mingshi
2016-04-01
The booming three-dimensional laser scanning technology can efficiently and effectively get spatial three-dimensional coordinates of the detected object surface and reconstruct the image at high speed,high precision and large capacity of information.Non-radiation,non-contact and the ability of visualization make it increasingly popular in three-dimensional surface medical mapping.This paper reviews the applications and developments of three-dimensional laser scanning technology in medical field,especially in stomatology,plastic surgery and orthopedics.Furthermore,the paper also discusses the application prospects in the future as well as the biomedical engineering problems it would encounter with.
NASA Astrophysics Data System (ADS)
Castagnetti, C.; Giannini, M.; Rivola, R.
2017-05-01
The research project VisualVersilia 3D aims at offering a new way to promote the territory and its heritage by matching the traditional reading of the document and the potential use of modern communication technologies for the cultural tourism. Recently, the research on the use of new technologies applied to cultural heritage have turned their attention mainly to technologies to reconstruct and narrate the complexity of the territory and its heritage, including 3D scanning, 3D printing and augmented reality. Some museums and archaeological sites already exploit the potential of digital tools to preserve and spread their heritage but interactive services involving tourists in an immersive and more modern experience are still rare. The innovation of the project consists in the development of a methodology for documenting current and past historical ages and integrating their 3D visualizations with rendering capable of returning an immersive virtual reality for a successful enhancement of the heritage. The project implements the methodology in the archaeological complex of Massaciuccoli, one of the best preserved roman site of the Versilia Area (Tuscany, Italy). The activities of the project briefly consist in developing: 1. the virtual tour of the site in its current configuration on the basis of spherical images then enhanced by texts, graphics and audio guides in order to enable both an immersive and remote tourist experience; 2. 3D reconstruction of the evidences and buildings in their current condition for documentation and conservation purposes on the basis of a complete metric survey carried out through laser scanning; 3. 3D virtual reconstructions through the main historical periods on the basis of historical investigation and the analysis of data acquired.
Murphy, Ryan J; Liacouras, Peter C; Grant, Gerald T; Wolfe, Kevin C; Armand, Mehran; Gordon, Chad R
2016-11-01
Craniomaxillofacial reconstruction with patient-specific, customized craniofacial implants (CCIs) is ideal for skeletal defects involving areas of aesthetic concern-the non-weight-bearing facial skeleton, temporal skull, and/or frontal-forehead region. Results to date are superior to a variety of "off-the-shelf" materials, but require a protocol computed tomography scan and preexisting defect for computer-assisted design/computer-assisted manufacturing of the CCI. The authors developed a craniomaxillofacial surgical assistance workstation to address these challenges and intraoperatively guide CCI modification for an unknown defect size/shape. First, the surgeon designed an oversized CCI based on his/her surgical plan. Intraoperatively, the surgeon resected the bone and digitized the resection using a navigation pointer. Next, a projector displayed the limits of the craniofacial bone defect onto the prefabricated, oversized CCI for the size modification process; the surgeon followed the projected trace to modify the implant. A cadaveric study compared the standard technique (n = 1) to the experimental technique (n = 5) using surgical time and implant fit. The technology reduced the time and effort needed to resize the oversized CCI by an order of magnitude as compared with the standard manual resizing process. Implant fit was consistently better for the computer-assisted case compared with the control by at least 30%, requiring only 5.17 minutes in the computer-assisted cases compared with 35 minutes for the control. This approach demonstrated improvement in surgical time and accuracy of CCI-based craniomaxillofacial reconstruction compared with previously reported methods. The craniomaxillofacial surgical assistance workstation will provide craniofacial surgeons a computer-assisted technology for effective and efficient single-stage reconstruction when exact craniofacial bone defect sizes are unknown.
Traversi, Egidio; Bertoli, Giuseppe; Barazzoni, Giancarlo; Baldi, Maurizia; Tramarin, Roberto
2004-02-01
The recent technical developments in multislice computed tomography (MSCT), with ECG retro-gated image reconstruction, have elicited great interest in the possibility of accurate non-invasive imaging of the coronary arteries. The latest generation of MSCT systems with 8-16 rows of detectors permits acquisition of the whole cardiac volume during a single 15-20 s breath-hold with a submillimetric definition of the images and an outstanding signal-to-noise ratio. Thus the race which, between MSCT, electron beam computed tomography and cardiac magnetic resonance imaging, can best provide routine and reliable imaging of the coronary arteries in clinical practice has recommenced. Currently available MSCT systems offer different options for both cardiac image acquisition and reconstruction, including multiplanar and curved multiplanar reconstruction, three-dimensional volume rendering, maximum intensity projection, and virtual angioscopy. In our preliminary experience including 176 patients suffering from known or suspected coronary artery disease, MSCT was feasible in 161 (91.5%) and showed a sensitivity of 80.4% and a specificity of 80.3%, with respect to standard coronary angiography, in detecting critical stenosis in coronary arteries and artery or venous bypass grafts. These results correspond to a positive predictive value of 58.6% and a negative predictive value of 92.2%. The true role that MSCT is likely to play in the future in non-invasive coronary imaging is still to be defined. Nevertheless, the huge amount of data obtainable by MSCT along with the rapid technological advances, shorter acquisition times and reconstruction algorithm developments will make the technique stronger, and possible applications are expected not only for non-invasive coronary angiography, but also for cardiac function and myocardial perfusion evaluation, as an all-in-one examination.
Grassi, Alberto; Vascellari, Alberto; Combi, Alberto; Tomaello, Luca; Canata, Gian Luigi; Zaffagnini, Stefano
2016-07-01
A worldwide consensus for timing and criteria for return to sport after anterior cruciate ligament (ACL) reconstruction is lacking. The aim of the study was to survey among the Italian Society of Knee, Arthroscopy, Sport, Cartilage and Orthopaedic Technologies (SIGASCOT) members in order to evaluate their approaches to the return to sport after ACL reconstruction regarding timing and criteria. A web survey among the SIGASCOT members was performed, including 14 questions regarding technical and graft preferences, timing for return to training and competitive activity for contact and non-contact sports and criteria to allow return to sport. Totally, 123 members completed the questionnaire. Return to training sports was allowed within 6 month by 87 % for non-contact sports and by 53 % for contact sports. Return to competitive activity was allowed within 6 months by 48 % for non-contact sports and by 13 % for contact sports. Full ROM (77 %), Lachman test (65 %) and Pivot-Shift test (65 %) were the most used criteria to allow return to sport. The 90 % used at least one clinical score. The SIGASCOT members showed various approaches in the return to sport after ACL reconstruction, with differences between return to training or competitive activity, and between contact and non-contact sports. Six months was generally considered adequate by most of the members for the most demanding activities. The most used criteria to allow return to sport were manual testing. A clear definition of sport activities and more objective criteria for the return to sport are needed. Level V, expert opinion.
Haptic augmented skin surface generation toward telepalpation from a mobile skin image.
Kim, K
2018-05-01
Very little is known about the methods of integrating palpation techniques to existing mobile teleskin imaging that delivers low quality tactile information (roughness) for telepalpation. However, no study has been reported yet regarding telehaptic palpation using mobile phone images for teledermatology or teleconsultations of skincare. This study is therefore aimed at introducing a new algorithm accurately reconstructing a haptic augmented skin surface for telehaptic palpation using a low-cost clip-on microscope simply attached to a mobile phone. Multiple algorithms such as gradient-based image enhancement, roughness-adaptive tactile mask generation, roughness-enhanced 3D tactile map building, and visual and haptic rendering with a three-degrees-of-freedom (DOF) haptic device were developed and integrated as one system. Evaluation experiments have been conducted to test the performance of 3D roughness reconstruction with/without the tactile mask. The results confirm that reconstructed haptic roughness with the tactile mask is superior to the reconstructed haptic roughness without the tactile mask. Additional experiments demonstrate that the proposed algorithm is robust against varying lighting conditions and blurring. In last, a user study has been designed to see the effect of the haptic modality to the existing visual only interface and the results attest that the haptic skin palpation can significantly improve the skin exam performance. Mobile image-based telehaptic palpation technology was proposed, and an initial version was developed. The developed technology was tested with several skin images and the experimental results showed the superiority of the proposed scheme in terms of the performance of haptic augmentation of real skin images. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Chen, Hsin-Yu; Ng, Li-Shia; Chang, Chun-Shin; Lu, Ting-Chen; Chen, Ning-Hung; Chen, Zung-Chung
2017-06-01
Advances in three-dimensional imaging and three-dimensional printing technology have expanded the frontier of presurgical design for microtia reconstruction from two-dimensional curved lines to three-dimensional perspectives. This study presents an algorithm for combining three-dimensional surface imaging, computer-assisted design, and three-dimensional printing to create patient-specific auricular frameworks in unilateral microtia reconstruction. Between January of 2015 and January of 2016, six patients with unilateral microtia were enrolled. The average age of the patients was 7.6 years. A three-dimensional image of the patient's head was captured by 3dMDcranial, and virtual sculpture carried out using Geomagic Freeform software and a Touch X Haptic device for fabrication of the auricular template. Each template was tailored according to the patient's unique auricular morphology. The final construct was mirrored onto the defective side and printed out with biocompatible acrylic material. During the surgery, the prefabricated customized template served as a three-dimensional guide for surgical simulation and sculpture of the MEDPOR framework. Average follow-up was 10.3 months. Symmetric and good aesthetic results with regard to auricular shape, projection, and orientation were obtained. One case with severe implant exposure was salvaged with free temporoparietal fascia transfer and skin grafting. The combination of three-dimensional imaging and manufacturing technology with the malleability of MEDPOR has surpassed existing limitations resulting from the use of autologous materials and the ambiguity of two-dimensional planning. This approach allows surgeons to customize the auricular framework in a highly precise and sophisticated manner, taking a big step closer to the goal of mirror-image reconstruction for unilateral microtia patients. Therapeutic, IV.
Morozumi, Takeya; Toki, Daisuke; Eguchi-Ogawa, Tomoko; Uenishi, Hirohide
2011-09-01
Large-scale cDNA-sequencing projects require an efficient strategy for mass sequencing. Here we describe a method for sequencing pooled cDNA clones using a combination of transposon insertion and Gateway technology. Our method reduces the number of shotgun clones that are unsuitable for reconstruction of cDNA sequences, and has the advantage of reducing the total costs of the sequencing project.
Linear Array Ultrasonic Testing Of A Thick Concrete Specimens For Non-Destructive Evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clayton, Dwight A.; Khazanovich, Lev; Zammerachi, Mattia
The University of Minnesota and Oak Ridge National Laboratory are collaborating on the design and construction of a concrete specimen with sufficient reinforcement density and cross-sectional size to represent a light water reactor (LWR) containment wall with various defects. The preliminary analysis of the collected data using extended synthetic aperture focussin technique (SAFT) reconstruction indicated a great potential of the ultrasound array technology for locating relatively shallow distresses. However, the resolution and reliability of the analysis is inversely proportional to the defect depth and the amount of reinforcement between the measurement point and the defect location. The objective of thismore » round of testing is to evaluate repeatability of the obtained reconstructions from measurements with different frequencies as well as to examine the effect of the duration of the sending ultrasound signal on the resulting reconstructions. Two series of testing are performed in this study. The objective of the first series is to evaluate repeatability of the measurements and resulting reconstructed images. The measurements use three center frequencies. Five measurements are performed at each location with and without lifting the device. The analysis of the collected data suggested that a linear array ultrasound system can produce reliably repeatable reconstructions using 50 kHz signals for relatively shallow depths (less than 0.5 m). However, for reconstructions at the greater depths the use of lower frequency and/or signal filtering to reduce the effect of signal noise may be required. The objective of the second series of testing is to obtain measurements with various impulse signal durations. The entire grid on the smooth surface is tested with four different various impulse signal durations. An analysis of the resulting extended SAFT reconstructions suggested that Kirchhoff-based migration leads to easier interpreting reconstructions when shorter duration impulse is used. Longer duration impulses may provide useful information for model-based reconstructions.« less
Moral implications of obstetric technologies for pregnancy and motherhood.
Brauer, Susanne
2016-03-01
Drawing on sociological and anthropological studies, the aim of this article is to reconstruct how obstetric technologies contribute to a moral conception of pregnancy and motherhood, and to evaluate that conception from a normative point of view. Obstetrics and midwifery, so the assumption, are value-laden, value-producing and value-reproducing practices, values that shape the social perception of what it means to be a "good" pregnant woman and to be a "good" (future) mother. Activities in the medical field of reproduction contribute to "kinning", that is the making of particular social relationships marked by closeness and special moral obligations. Three technologies, which belong to standard procedures in prenatal care in postmodern societies, are presently investigated: (1) informed consent in prenatal care, (2) obstetric sonogram, and (3) birth plan. Their widespread application is supposed to serve the moral (and legal) goal of effecting patient autonomy (and patient right). A reconstruction of the actual moral implications of these technologies, however, reveals that this goal is missed in multiple ways. Informed consent situations are marked by involuntariness and blindness to social dimensions of decision-making; obstetric sonograms construct moral subjectivity and agency in a way that attribute inconsistent and unreasonable moral responsibilities to the pregnant woman; and birth plans obscure the need for a healthcare environment that reflects a shared-decision-making model, rather than a rational-choice-framework.
NASA Astrophysics Data System (ADS)
Gurovich, B.; Kuleshova, E.; Zabusov, O.; Fedotova, S.; Frolov, A.; Saltykov, M.; Maltsev, D.
2013-04-01
In this paper the influence of structural parameters on the tendency of steels to reversible temper embrittlement was studied for assessment of performance properties of reactor pressure vessel steels with extended service life. It is shown that the growth of prior austenite grain size leads to an increase of the critical embrittlement temperature in the initial state. An embrittlement heat treatment at the temperature of maximum manifestation of temper embrittlement (480 °C) shifts critical embrittlement temperature to higher values due to the increase of the phosphorus concentration on grain boundaries. There is a correlation between phosphorus concentration on boundaries of primary austenite grains and the share of brittle intergranular fracture (that, in turn, depends on impact test temperature) in the fracture surfaces of the tested Charpy specimens.
NASA Astrophysics Data System (ADS)
Gurovich, B. A.; Kuleshova, E. A.; Frolov, A. S.; Maltsev, D. A.; Prikhodko, K. E.; Fedotova, S. V.; Margolin, B. Z.; Sorokin, A. A.
2015-10-01
A complex study of structural state and properties of 18Cr-10Ni-Ti austenitic stainless steel after irradiation in BOR-60 fast research reactor (in the temperature range 330-400 °С up to damaging doses of 145 dpa) and in VVER-1000 light water reactor (at temperature ∼320 °С and damaging doses ∼12-14 dpa) was performed. The possibility of recovery of structural-phase state and mechanical properties to the level almost corresponding to the initial state by the recovery annealing was studied. The principal possibility of the recovery annealing of pressurized water reactor internals that ensures almost complete recovery of its mechanical properties and microstructure was shown. The optimal mode of recovery annealing was established: 1000 °C during 120 h.
Overview of Facial Plastic Surgery and Current Developments
Chuang, Jessica; Barnes, Christian; Wong, Brian J. F.
2016-01-01
Facial plastic surgery is a multidisciplinary specialty largely driven by otolaryngology but includes oral maxillary surgery, dermatology, ophthalmology, and plastic surgery. It encompasses both reconstructive and cosmetic components. The scope of practice for facial plastic surgeons in the United States may include rhinoplasty, browlifts, blepharoplasty, facelifts, microvascular reconstruction of the head and neck, craniomaxillofacial trauma reconstruction, and correction of defects in the face after skin cancer resection. Facial plastic surgery also encompasses the use of injectable fillers, neural modulators (e.g., BOTOX Cosmetic, Allergan Pharmaceuticals, Westport, Ireland), lasers, and other devices aimed at rejuvenating skin. Facial plastic surgery is a constantly evolving field with continuing innovative advances in surgical techniques and cosmetic adjunctive technologies. This article aims to give an overview of the various procedures that encompass the field of facial plastic surgery and to highlight the recent advances and trends in procedures and surgical techniques. PMID:28824978
Dallaire, Xavier; Thibault, Simon
2017-04-01
Plenoptic imaging has been used in the past decade mainly for 3D reconstruction or digital refocusing. It was also shown that this technology has potential for correcting monochromatic aberrations in a standard optical system. In this paper, we present an algorithm for reconstructing images using a projection technique while correcting defects present in it that can apply to chromatic aberrations and wide-angle optical systems. We show that the impact of noise on the reconstruction procedure is minimal. Trade-offs between the sampling of the optical system needed for characterization and image quality are presented. Examples are shown for aberrations in a classic optical system and for chromatic aberrations. The technique is also applied to a wide-angle full field of view of 140° (FFOV 140°) optical system. This technique could be used in order to further simplify or minimize optical systems.
Tseng, Yun-Hua; Lu, Chih-Wen
2017-01-01
Compressed sensing (CS) is a promising approach to the compression and reconstruction of electrocardiogram (ECG) signals. It has been shown that following reconstruction, most of the changes between the original and reconstructed signals are distributed in the Q, R, and S waves (QRS) region. Furthermore, any increase in the compression ratio tends to increase the magnitude of the change. This paper presents a novel approach integrating the near-precise compressed (NPC) and CS algorithms. The simulation results presented notable improvements in signal-to-noise ratio (SNR) and compression ratio (CR). The efficacy of this approach was verified by fabricating a highly efficient low-cost chip using the Taiwan Semiconductor Manufacturing Company’s (TSMC) 0.18-μm Complementary Metal-Oxide-Semiconductor (CMOS) technology. The proposed core has an operating frequency of 60 MHz and gate counts of 2.69 K. PMID:28991216
First uses of HAART 300 rings for aortic valve repair in Poland - 4 case studies.
Juściński, Jacek H; Koprowski, Andrzej; Kołaczkowska, Magdalena; Kowalik, Maciej M; Rogowski, Jan A; Rankin, James S
2018-03-01
Aortic valve reconstructions using geometric annuloplasty rings HAART 300/200 open new era in aortic valve surgery. The HAART technology resizes, reshapes, stabilizes and simplifies aortic valve repair. The HAART aortic repair rings are designed to be implanted directly into aortic annulus (under aortic valve leaflets). We present first in Poland 4 cases of aortic valve reconstructions using geometric annuloplasty rings HAART 300. Two patients had type IA aortic insufficiency (due to El-Khoury classification) - they were treated by HAART 300 ring insertion and ascending aorta prosthesis implantation. Third patient, Marfan with type IB aortic insufficiency was repaired by HAART 300 ring implantation followed by remodeling (Yacoub) procedure. Fourth patient with type II aortic insufficiency (due to RCC prolapse) was repaired by HAART 300 implantation and cusp plication. All patients shows good results on 6 months postoperative 3D TTE examinations. Presented technique is reproducible and simplify aortic valve reconstructions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Carlo, Francesco; Gürsoy, Doğa; Ching, Daniel J.
There is a widening gap between the fast advancement of computational methods for tomographic reconstruction and their successful implementation in production software at various synchrotron facilities. This is due in part to the lack of readily available instrument datasets and phantoms representative of real materials for validation and comparison of new numerical methods. Recent advancements in detector technology made sub-second and multi-energy tomographic data collection possible [1], but also increased the demand to develop new reconstruction methods able to handle in-situ [2] and dynamic systems [3] that can be quickly incorporated in beamline production software [4]. The X-ray Tomography Datamore » Bank, tomoBank, provides a repository of experimental and simulated datasets with the aim to foster collaboration among computational scientists, beamline scientists, and experimentalists and to accelerate the development and implementation of tomographic reconstruction methods for synchrotron facility production software by providing easy access to challenging dataset and their descriptors.« less
Characterising encapsulated nuclear waste using cosmic-ray muon tomography
NASA Astrophysics Data System (ADS)
Clarkson, A.; Hamilton, D. J.; Hoek, M.; Ireland, D. G.; Johnstone, J. R.; Kaiser, R.; Keri, T.; Lumsden, S.; Mahon, D. F.; McKinnon, B.; Murray, M.; Nutbeam-Tuffs, S.; Shearer, C.; Yang, G.; Zimmerman, C.
2015-03-01
Tomographic imaging techniques using the Coulomb scattering of cosmic-ray muons have been shown previously to successfully identify and characterise low- and high-Z materials within an air matrix using a prototype scintillating-fibre tracker system. Those studies were performed as the first in a series to assess the feasibility of this technology and image reconstruction techniques in characterising the potential high-Z contents of legacy nuclear waste containers for the U.K. Nuclear Industry. The present work continues the feasibility study and presents the first images reconstructed from experimental data collected using this small-scale prototype system of low- and high-Z materials encapsulated within a concrete-filled stainless-steel container. Clear discrimination is observed between the thick steel casing, the concrete matrix and the sample materials assayed. These reconstructed objects are presented and discussed in detail alongside the implications for future industrial scenarios.
Use of prototyping in preoperative planning for patients with head and neck tumors.
de Farias, Terence Pires; Dias, Fernando Luiz; Galvão, Mário Sérgio; Boasquevisque, Edson; Pastl, Ana Carolina; Albuquerque Sousa, Bruno
2014-12-01
Prototyping technologies for reconstructions consist of obtaining a 3-dimensional model of the object of interest. Solid models are constructed by the deposition of materials in successive layers. The purpose of this study was to perform a double-blind, randomized, prospective study to evaluate the efficacy of prototype use in head and neck surgeries. Thirty-seven cases were randomized into prototype and nonprototype groups. The following factors were recorded: the time of plate and locking screw apposition, flap size, time for reconstruction, and an aesthetic evaluation. The prototype group exhibited a reduced surgical time (43.7 minutes vs 127.7 minutes, respectively; p = .001), a tendency to reduce the size of the bone flap taken for reconstruction, and better aesthetic results than the group that was not prototyped. The use of prototyping demonstrated a trend toward a reduced surgical time, smaller bone flaps, and better aesthetic results. © 2014 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Toma, G.; Apel, W. D.; Arteaga, J. C.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brâncuş, I. M.; Buchholz, P.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Fuhrmann, D.; Ghia, P. L.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Kickelbick, D.; Klages, H. O.; Link, K.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Mayer, H. J.; Melissas, M.; Milke, J.; Mitrică, B.; Morello, C.; Navarra, G.; Nehls, S.; Oehlschläger, J.; Ostapchenko, S.; Over, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schröder, F. G.; Sima, O.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.
2011-05-01
Previous EAS investigations have shown that for a fixed primary energy the charged particle density becomes independent of the primary mass at certain (fixed) distances from the shower axis. This feature can be used as an estimator for the primary energy. We present results on the reconstruction of the primary energy spectrum of cosmic rays from the experimentally recorded S(500) observable (the density of charged particles at a distance of 500 m to the shower core as measured in a plane normal to the shower axis) using the KASCADE-Grande detector array. The KASCADE-Grande experiment is hosted by the Karlsruhe Institute for Technology - Campus North, Karlsruhe, Germany, 110 m a.s.l. and operated by an international collaboration. The obtained primary energy spectrum is presented along with the result of another reconstruction technique presently employed at KASCADE-Grande.
[Preliminary use of HoloLens glasses in surgery of liver cancer].
Shi, Lei; Luo, Tao; Zhang, Li; Kang, Zhongcheng; Chen, Jie; Wu, Feiyue; Luo, Jia
2018-05-28
To establish the preoperative three dimensional (3D) model of liver cancer, and to precisely match the preoperative planning with the target organs during the operation. Methods: The 3D model reconstruction based on magnetic resonance data, which was combined with virtual reality technology via HoloLens glasses, was applied in the operation of liver cancer to achieve preoperative 3D modeling and surgical planning, and to directly match it with the operative target organs during operation. Results: The 3D model reconstruction of liver cancer based on magnetic resonance data was completed. The exact match with the target organ was performed during the operation via HoloLens glasses leaded by the 3D model. Conclusion: Magnetic resonance data can be used for the 3D model reconstruction to improve preoperative assessment and accurate match during the operation.
Experimental quantum compressed sensing for a seven-qubit system
Riofrío, C. A.; Gross, D.; Flammia, S. T.; Monz, T.; Nigg, D.; Blatt, R.; Eisert, J.
2017-01-01
Well-controlled quantum devices with their increasing system size face a new roadblock hindering further development of quantum technologies. The effort of quantum tomography—the reconstruction of states and processes of a quantum device—scales unfavourably: state-of-the-art systems can no longer be characterized. Quantum compressed sensing mitigates this problem by reconstructing states from incomplete data. Here we present an experimental implementation of compressed tomography of a seven-qubit system—a topological colour code prepared in a trapped ion architecture. We are in the highly incomplete—127 Pauli basis measurement settings—and highly noisy—100 repetitions each—regime. Originally, compressed sensing was advocated for states with few non-zero eigenvalues. We argue that low-rank estimates are appropriate in general since statistical noise enables reliable reconstruction of only the leading eigenvectors. The remaining eigenvectors behave consistently with a random-matrix model that carries no information about the true state. PMID:28513587
High-order noise analysis for low dose iterative image reconstruction methods: ASIR, IRIS, and MBAI
NASA Astrophysics Data System (ADS)
Do, Synho; Singh, Sarabjeet; Kalra, Mannudeep K.; Karl, W. Clem; Brady, Thomas J.; Pien, Homer
2011-03-01
Iterative reconstruction techniques (IRTs) has been shown to suppress noise significantly in low dose CT imaging. However, medical doctors hesitate to accept this new technology because visual impression of IRT images are different from full-dose filtered back-projection (FBP) images. Most common noise measurements such as the mean and standard deviation of homogeneous region in the image that do not provide sufficient characterization of noise statistics when probability density function becomes non-Gaussian. In this study, we measure L-moments of intensity values of images acquired at 10% of normal dose and reconstructed by IRT methods of two state-of-art clinical scanners (i.e., GE HDCT and Siemens DSCT flash) by keeping dosage level identical to each other. The high- and low-dose scans (i.e., 10% of high dose) were acquired from each scanner and L-moments of noise patches were calculated for the comparison.
3-D Imaging In Virtual Environment: A Scientific Clinical and Teaching Tool
NASA Technical Reports Server (NTRS)
Ross, Muriel D.; DeVincenzi, Donald L. (Technical Monitor)
1996-01-01
The advent of powerful graphics workstations and computers has led to the advancement of scientific knowledge through three-dimensional (3-D) reconstruction and imaging of biological cells and tissues. The Biocomputation Center at NASA Ames Research Center pioneered the effort to produce an entirely computerized method for reconstruction of objects from serial sections studied in a transmission electron microscope (TEM). The software developed, ROSS (Reconstruction of Serial Sections), is now being distributed to users across the United States through Space Act Agreements. The software is in widely disparate fields such as geology, botany, biology and medicine. In the Biocomputation Center, ROSS serves as the basis for development of virtual environment technologies for scientific and medical use. This report will describe the Virtual Surgery Workstation Project that is ongoing with clinicians at Stanford University Medical Center, and the role of the Visible Human data in the project.
The timing of reconstruction in severe mechanical trauma.
Kuhn, Ferenc
2014-01-01
Serious ocular trauma involving the posterior segment remains rather common and, despite many technological advances in recent years, continues to represent a significant management challenge to the ophthalmologist. One of these challenges is to identify the most optimal timing for the ultimate reconstruction, namely vitrectomy. While it is fairly obvious that suture-closure of the wound of open-globe injuries should be done as soon as possible, it is less clear whether vitrectomy should be performed in the same surgical session (primary comprehensive reconstruction) or be deferred (staged approach), and if so for how long. In this review, 4 options for staging are offered: early (days 2-4); delayed (days 5-7); late (days 8-14), and very late (past 2 weeks). The earlier the vitrectomy, the higher the risk of intraoperative complications. Conversely, the later the vitrectomy, the higher the incidence and severity of postoperative complications, of which proliferative vitreoretinopathy is the most damaging.
A simplified close range photogrammetric technique for soil erosion assessment
USDA-ARS?s Scientific Manuscript database
Surface reconstruction using digital photogrammetry offers a great advantage for soil erosion research. The technology can be cumbersome for field application as it relies on the accurate measurement of control points often using a survey grade instruments. Also, even though digital photogrammetry h...
Lu, Minxun; Li, Yongjiang; Luo, Yi; Zhang, Wenli; Zhou, Yong; Tu, Chongqi
2018-03-06
Currently, it is challenging to treat massive bone defects of proximal tibia. Although numerous methods are available for reconstruction with epiphysis preservation, limitations in knee function and complications are noted with these methods. Our paper describes our attempt to reconstruct a marked defect in the proximal tibia with an uncemented three-dimensional (3D)-printed prosthesis and to evaluate the prosthesis design and short-term outcomes. A 15-year-old boy with metaphyseal osteosarcoma of the tibia underwent intercalary allograft reconstruction following wide tumour resection with epiphysis preservation. However, chronic allograft rejection and/or infection occurred after the surgery and a sinus tract was formed. The rejection and/or infection process was successfully stopped by the removal of the graft and implantation of an antibiotic-loaded cement spacer; however, the limb function was poor. Because of the irregular shape of the defect and the excessively short length of the residual proximal tibia, we used the 3D printing technology to design and fabricate a personalised prosthesis to reconstruct the defect, with the preservation of the knee joint. At the last follow-up at 26 months, the patient had satisfactory limb function. The 3D-printed prosthesis may be a feasible option in the reconstruction of tibial metaphyseal defects with the preservation of the knee joint. Moreover, it can result in good postoperative function and low complication rates. However, a long-term follow-up is required to clarify its long-term outcomes.
Optimization of the Reconstruction Interval in Neurovascular 4D-CTA Imaging
Hoogenboom, T.C.H.; van Beurden, R.M.J.; van Teylingen, B.; Schenk, B.; Willems, P.W.A.
2012-01-01
Summary Time resolved whole brain CT angiography (4D-CTA) is a novel imaging technology providing information regarding blood flow. One of the factors that influence the diagnostic value of this examination is the temporal resolution, which is affected by the gantry rotation speed during acquisition and the reconstruction interval during post-processing. Post-processing determines the time spacing between two reconstructed volumes and, unlike rotation speed, does not affect radiation burden. The data sets of six patients who underwent a cranial 4D-CTA were used for this study. Raw data was acquired using a 320-slice scanner with a rotation speed of 2 Hz. The arterial to venous passage of an intravenous contrast bolus was captured during a 15 s continuous scan. The raw data was reconstructed using four different reconstruction-intervals: 0.2, 0.3, 0.5 and 1.0 s. The results were rated by two observers using a standardized score sheet. The appearance of each lesion was rated correctly in all readings. Scoring for quality of temporal resolution revealed a stepwise improvement from the 1.0 s interval to the 0.3 s interval, while no discernable improvement was noted between the 0.3 s and 0.2 s interval. An increase in temporal resolution may improve the diagnostic quality of cranial 4D-CTA. Using a rotation speed of 0.5 s, the optimal reconstruction interval appears to be 0.3 s, beyond which, changes can no longer be discerned. PMID:23217631
A Streaming PCA VLSI Chip for Neural Data Compression.
Wu, Tong; Zhao, Wenfeng; Guo, Hongsun; Lim, Hubert H; Yang, Zhi
2017-12-01
Neural recording system miniaturization and integration with low-power wireless technologies require compressing neural data before transmission. Feature extraction is a procedure to represent data in a low-dimensional space; its integration into a recording chip can be an efficient approach to compress neural data. In this paper, we propose a streaming principal component analysis algorithm and its microchip implementation to compress multichannel local field potential (LFP) and spike data. The circuits have been designed in a 65-nm CMOS technology and occupy a silicon area of 0.06 mm. Throughout the experiments, the chip compresses LFPs by 10 at the expense of as low as 1% reconstruction errors and 144-nW/channel power consumption; for spikes, the achieved compression ratio is 25 with 8% reconstruction errors and 3.05-W/channel power consumption. In addition, the algorithm and its hardware architecture can swiftly adapt to nonstationary spiking activities, which enables efficient hardware sharing among multiple channels to support a high-channel count recorder.
Towards a high sensitivity small animal PET system based on CZT detectors (Conference Presentation)
NASA Astrophysics Data System (ADS)
Abbaszadeh, Shiva; Levin, Craig
2017-03-01
Small animal positron emission tomography (PET) is a biological imaging technology that allows non-invasive interrogation of internal molecular and cellular processes and mechanisms of disease. New PET molecular probes with high specificity are under development to target, detect, visualize, and quantify subtle molecular and cellular processes associated with cancer, heart disease, and neurological disorders. However, the limited uptake of these targeted probes leads to significant reduction in signal. There is a need to advance the performance of small animal PET system technology to reach its full potential for molecular imaging. Our goal is to assemble a small animal PET system based on CZT detectors and to explore methods to enhance its photon sensitivity. In this work, we reconstruct an image from a phantom using a two-panel subsystem consisting of six CZT crystals in each panel. For image reconstruction, coincidence events with energy between 450 and 570 keV were included. We are developing an algorithm to improve sensitivity of the system by including multiple interaction events.
Vehmeijer, Maarten; van Eijnatten, Maureen; Liberton, Niels; Wolff, Jan
2016-08-01
Fractures of the orbital floor are often a result of traffic accidents or interpersonal violence. To date, numerous materials and methods have been used to reconstruct the orbital floor. However, simple and cost-effective 3-dimensional (3D) printing technologies for the treatment of orbital floor fractures are still sought. This study describes a simple, precise, cost-effective method of treating orbital fractures using 3D printing technologies in combination with autologous bone. Enophthalmos and diplopia developed in a 64-year-old female patient with an orbital floor fracture. A virtual 3D model of the fracture site was generated from computed tomography images of the patient. The fracture was virtually closed using spline interpolation. Furthermore, a virtual individualized mold of the defect site was created, which was manufactured using an inkjet printer. The tangible mold was subsequently used during surgery to sculpture an individualized autologous orbital floor implant. Virtual reconstruction of the orbital floor and the resulting mold enhanced the overall accuracy and efficiency of the surgical procedure. The sculptured autologous orbital floor implant showed an excellent fit in vivo. The combination of virtual planning and 3D printing offers an accurate and cost-effective treatment method for orbital floor fractures. Copyright © 2016 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Suska, Felicia; Kjeller, Göran; Tarnow, Peter; Hryha, Eduard; Nyborg, Lars; Snis, Anders; Palmquist, Anders
2016-08-01
In the field of maxillofacial reconstruction, additive manufacturing technologies, specifically electron beam melting (EBM), offer clinicians the potential for patient-customized design of jaw prostheses, which match both load-bearing and esthetic demands. The technique allows an innovative, functional design, combining integrated porous regions for bone ingrowth and secondary biological fixation with solid load-bearing regions ensuring the biomechanical performance. A patient-specific mandibular prosthesis manufactured using EBM was successfully used to reconstruct a patient's mandibular defect after en bloc resection. Over a 9-month follow-up period, the patient had no complications. A short operating time, good esthetic outcome, and high level of patient satisfaction as measured by quality-of-life questionnaires-the European Organisation for Research and Treatment of Cancer QLQ-C30 (30-item quality-of-life core questionnaire) and H&N35 (head and neck cancer module)-were reported for this case. Individually planned and designed EBM-produced prostheses may be suggested as a possible future alternative to fibular grafts or other reconstructive methods. However, the role of porosity, the role of geometry, and the optimal combination of solid and porous parts, as well as surface properties in relation to soft tissues, should be carefully evaluated in long-term clinical trials. Copyright © 2016 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Mundermann, Lars; Mundermann, Annegret; Chaudhari, Ajit M.; Andriacchi, Thomas P.
2005-01-01
Anthropometric parameters are fundamental for a wide variety of applications in biomechanics, anthropology, medicine and sports. Recent technological advancements provide methods for constructing 3D surfaces directly. Of these new technologies, visual hull construction may be the most cost-effective yet sufficiently accurate method. However, the conditions influencing the accuracy of anthropometric measurements based on visual hull reconstruction are unknown. The purpose of this study was to evaluate the conditions that influence the accuracy of 3D shape-from-silhouette reconstruction of body segments dependent on number of cameras, camera resolution and object contours. The results demonstrate that the visual hulls lacked accuracy in concave regions and narrow spaces, but setups with a high number of cameras reconstructed a human form with an average accuracy of 1.0 mm. In general, setups with less than 8 cameras yielded largely inaccurate visual hull constructions, while setups with 16 and more cameras provided good volume estimations. Body segment volumes were obtained with an average error of 10% at a 640x480 resolution using 8 cameras. Changes in resolution did not significantly affect the average error. However, substantial decreases in error were observed with increasing number of cameras (33.3% using 4 cameras; 10.5% using 8 cameras; 4.1% using 16 cameras; 1.2% using 64 cameras).
Dual-Energy Computed Tomography: Image Acquisition, Processing, and Workflow.
Megibow, Alec J; Kambadakone, Avinash; Ananthakrishnan, Lakshmi
2018-07-01
Dual energy computed tomography has been available for more than 10 years; however, it is currently on the cusp of widespread clinical use. The way dual energy data are acquired and assembled must be appreciated at the clinical level so that the various reconstruction types can extend its diagnostic power. The type of scanner that is present in a given practice dictates the way in which the dual energy data can be presented and used. This article compares and contrasts how dual source, rapid kV switching, and spectral technologies acquire and present dual energy reconstructions to practicing radiologists. Copyright © 2018 Elsevier Inc. All rights reserved.
Faultfinder: A diagnostic expert system with graceful degradation for onboard aircraft applications
NASA Technical Reports Server (NTRS)
Abbott, Kathy H.; Schutte, Paul C.; Palmer, Michael T.; Ricks, Wendell R.
1988-01-01
A research effort was conducted to explore the application of artificial intelligence technology to automation of fault monitoring and diagnosis as an aid to the flight crew. Human diagnostic reasoning was analyzed and actual accident and incident cases were reconstructed. Based on this analysis and reconstruction, diagnostic concepts were conceived and implemented for an aircraft's engine and hydraulic subsystems. These concepts are embedded within a multistage approach to diagnosis that reasons about time-based, causal, and qualitative information, and enables a certain amount of graceful degradation. The diagnostic concepts are implemented in a computer program called Faultfinder that serves as a research prototype.
Micro-pixelation and color mixing in biological photonic structures (presentation video)
NASA Astrophysics Data System (ADS)
Bartl, Michael H.; Nagi, Ramneet K.
2014-03-01
The world of insects displays myriad hues of coloration effects produced by elaborate nano-scale architectures built into wings and exoskeleton. For example, we have recently found many weevils possess photonic architectures with cubic lattices. In this talk, we will present high-resolution three-dimensional reconstructions of weevil photonic structures with diamond and gyroid lattices. Moreover, by reconstructing entire scales we found arrays of single-crystalline domains, each oriented such that only selected crystal faces are visible to an observer. This pixel-like arrangement is key to the angle-independent coloration typical of weevils—a strategy that could enable a new generation of coating technologies.
Analysis of the multigroup model for muon tomography based threat detection
NASA Astrophysics Data System (ADS)
Perry, J. O.; Bacon, J. D.; Borozdin, K. N.; Fabritius, J. M.; Morris, C. L.
2014-02-01
We compare different algorithms for detecting a 5 cm tungsten cube using cosmic ray muon technology. In each case, a simple tomographic technique was used for position reconstruction, but the scattering angles were used differently to obtain a density signal. Receiver operating characteristic curves were used to compare images made using average angle squared, median angle squared, average of the squared angle, and a multi-energy group fit of the angular distributions for scenes with and without a 5 cm tungsten cube. The receiver operating characteristic curves show that the multi-energy group treatment of the scattering angle distributions is the superior method for image reconstruction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Huiqiao; Yang, Yi; Tang, Xiangyang
2015-06-15
Purpose: Optimization-based reconstruction has been proposed and investigated for reconstructing CT images from sparse views, as such the radiation dose can be substantially reduced while maintaining acceptable image quality. The investigation has so far focused on reconstruction from evenly distributed sparse views. Recognizing the clinical situations wherein only unevenly sparse views are available, e.g., image guided radiation therapy, CT perfusion and multi-cycle cardiovascular imaging, we investigate the performance of optimization-based image reconstruction from unevenly sparse projection views in this work. Methods: The investigation is carried out using the FORBILD and an anthropomorphic head phantoms. In the study, 82 views, whichmore » are evenly sorted out from a full (360°) axial CT scan consisting of 984 views, form sub-scan I. Another 82 views are sorted out in a similar manner to form sub-scan II. As such, a CT scan with sparse (164) views at 1:6 ratio are formed. By shifting the two sub-scans relatively in view angulation, a CT scan with unevenly distributed sparse (164) views at 1:6 ratio are formed. An optimization-based method is implemented to reconstruct images from the unevenly distributed views. By taking the FBP reconstruction from the full scan (984 views) as the reference, the root mean square (RMS) between the reference and the optimization-based reconstruction is used to evaluate the performance quantitatively. Results: In visual inspection, the optimization-based method outperforms the FBP substantially in the reconstruction from unevenly distributed, which are quantitatively verified by the RMS gauged globally and in ROIs in both the FORBILD and anthropomorphic head phantoms. The RMS increases with increasing severity in the uneven angular distribution, especially in the case of anthropomorphic head phantom. Conclusion: The optimization-based image reconstruction can save radiation dose up to 12-fold while providing acceptable image quality for advanced clinical applications wherein only unevenly distributed sparse views are available. Research Grants: W81XWH-12-1-0138 (DoD), Sinovision Technologies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, J; Huang, J; Szczykutowicz, T
2016-06-15
Purpose: To perform an initial evaluation of a novel split-filter dual-energy CT (DECT) system with the goal of understanding the clinical utility and limitations of the system for radiation therapy. Methods: Several phantoms were imaged using the split-filter DECT technique on the Siemens Edge CT scanner using a range of clinically-relevant doses. The optimum-contrast reconstruction, the mixed reconstruction, and the monoenergetic reconstructions (ranging from 40 keV to 190 keV) were evaluated. Each image was analyzed for CT number accuracy, uniformity, noise, low-contrast visibility (LCV), spatial resolution and geometric distortion. For comparison purposes, all parameters were evaluated on 120 kVp single-energymore » CT (SECT) scans used for treatment planning, as well as, a sequential-scan DECT technique for corresponding doses. Results: For all DECT reconstructions no observable geometric distortion was found. Both the optimal-contrast and mixed images demonstrated slight improvements in LCV and noise when compared to the SECT, and slight reductions in CT number accuracy and spatial resolution. The CT numbers trended as expected for the monoenergetic reconstructions, with CT number accuracy within 50 HU for materials of density <2 g/cm3. Spatial resolution increased with energy, and for monoenergetic reconstructions >70 keV the spatial resolution exceeded that of the SECT. The noise in the monoenergetic reconstructions increased with decreasing energy. Thus, the image uniformity, signal-to-noise ratio and LCV were diminished at lower energies (70 keV). Applying iterative reconstruction techniques to the low-energy images reduced noise and improved LCV. The signal-to-noise ratio was stable for energies >100 keV. Conclusion: The initial commissioning of the novel split-filter DECT technology demonstrated favorable results for clinical implementation. The mixed reconstruction showed potential as a replacement for the treatment planning SECT. The image parameters for the monoenergetic reconstructions varied appropriately with energy. This work provides an initial understanding of the limitations and potential applications for monoenergetic imaging.« less
High-speed optical 3D sensing and its applications
NASA Astrophysics Data System (ADS)
Watanabe, Yoshihiro
2016-12-01
This paper reviews high-speed optical 3D sensing technologies for obtaining the 3D shape of a target using a camera. The focusing speed is from 100 to 1000 fps, exceeding normal camera frame rates, which are typically 30 fps. In particular, contactless, active, and real-time systems are introduced. Also, three example applications of this type of sensing technology are introduced, including surface reconstruction from time-sequential depth images, high-speed 3D user interaction, and high-speed digital archiving.
Solar Photovoltaic Technology Assessment for Soldier-Portable and Mobile Power
2010-06-16
S ol di er -P or ta bl e an d M ob ile P ow er Solar Photovoltaic Technology Assessment for Soldier-Portable and Mobile Power Cao Chung, US...21005 DESTRUCTION NOTICE- Destroy by any method that will prevent disclosure of contents or reconstruction of the document. PTAE - TR – 10 – 01...NUMBER 6. AUTHOR( S ) Cao Chung 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) U.S
Three-Dimensional Printing in Orthopedic Surgery.
Eltorai, Adam E M; Nguyen, Eric; Daniels, Alan H
2015-11-01
Three-dimensional (3D) printing is emerging as a clinically promising technology for rapid prototyping of surgically implantable products. With this commercially available technology, computed tomography or magnetic resonance images can be used to create graspable objects from 3D reconstructed images. Models can enhance patients' understanding of their pathology and surgeon preoperative planning. Customized implants and casts can be made to match an individual's anatomy. This review outlines 3D printing, its current applications in orthopedics, and promising future directions. Copyright 2015, SLACK Incorporated.
ORNL`s war on crime, technically speaking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiques, P.
This paper describes research being carried out by the Center for Applied Science and Technology for Law Enforcement (CASTLE), at Oak Ridge National Laboratory. This program works on projects which are solvable, affordable, and outside the scope of the private sector. Examples are presented of work related to: the lifetime of childrens fingerprints compared to adults; the development of ways of providing cooler body armor; digital enhancement technology applied to security-camera images from crime scenes; victim identification by skeletal reconstruction for use by forensic anthropologists.
Krishnan, Naveen M; Chatterjee, Abhishek; Rosenkranz, Kari M; Powell, Stephen G; Nigriny, John F; Vidal, Dale C
2014-04-01
Expander-implant breast reconstruction is often supplemented with acellular dermal matrix (ADM). The use of acellular dermal matrix has allowed for faster, less painful expansions and improved aesthetics, but with increased cost. Our goal was to provide the first cost utility analysis of using acellular dermal matrix in two-stage, expander-implant immediate breast reconstruction following mastectomy. A comprehensive literature review was conducted to identify complication rates for two-stage, expander-implant immediate breast reconstruction with and without acellular dermal matrix. The probabilities of the most common complications were combined with Medicare Current Procedural Terminology reimbursement codes and expert utility estimates to fit into a decision model. The decision model evaluated the cost effectiveness of acellular dermal matrix relative to reconstructions without it. Retail costs for ADM were derived from the LifeCell 2012 company catalogue for Alloderm. The overall complication rates were 30% and 34.5% with and without ADM. The decision model revealed a baseline cost increase of $361.96 when acellular dermal matrix is used. The increase in Quality-Adjusted Life Years (QALYs) is 1.37 in the population with acellular dermal matrix. This yields a cost effective incremental cost-utility ratio (ICUR) of $264.20/QALY. Univariate sensitivity analysis confirmed that using acellular dermal matrix is cost effective even when using retail costs for unilateral and bilateral reconstructions. Our study shows that, despite an increased cost, acellular dermal matrix is a cost effective technology for patients undergoing two-stage, expander-implant immediate breast reconstruction due to its increased utility in successful procedures. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Lessons from Personal Photography: The Digital Disruption of Selectivity and Reflection
ERIC Educational Resources Information Center
Fawns, Tim
2015-01-01
Recent technological, cultural and economic factors have shifted the balance between recalling and reconstructing internalised information and accessing externalised information. While digital artefacts constitute an enormous and valuable set of resources, human engagement and reflection are important to the meaningful synthesis and application of…
JPRS Report. China: Qiushi (Seeking Truth) No. 19, 1 October 1989
1989-12-14
terms of technology such as acupuncture anesthesia, microsurgery , treatment of extensive burns; early diag- nosis and treatment of liver cancer... reconstruction , Tiananmen Square has become the center of the whole city. The Tiananmen tower and building, which overlook the square, have a magnificient
Reconstructing a School's Past Using Oral Histories and GIS Mapping.
ERIC Educational Resources Information Center
Alibrandi, Marsha; Beal, Candy; Thompson, Ann; Wilson, Anna
2000-01-01
Describes an interdisciplinary project that incorporated language arts, social studies, instructional technology, and science where middle school students were involved in oral history, Geographic Information System (GIS) mapping, architectural research, the science of dendrochronology, and the creation of an archival school Web site. (CMK)
NASA Astrophysics Data System (ADS)
Kabir, Salman; Smith, Craig; Armstrong, Frank; Barnard, Gerrit; Schneider, Alex; Guidash, Michael; Vogelsang, Thomas; Endsley, Jay
2018-03-01
Differential binary pixel technology is a threshold-based timing, readout, and image reconstruction method that utilizes the subframe partial charge transfer technique in a standard four-transistor (4T) pixel CMOS image sensor to achieve a high dynamic range video with stop motion. This technology improves low light signal-to-noise ratio (SNR) by up to 21 dB. The method is verified in silicon using a Taiwan Semiconductor Manufacturing Company's 65 nm 1.1 μm pixel technology 1 megapixel test chip array and is compared with a traditional 4 × oversampling technique using full charge transfer to show low light SNR superiority of the presented technology.
Distributed nuclear medicine applications using World Wide Web and Java technology.
Knoll, P; Höll, K; Mirzaei, S; Koriska, K; Köhn, H
2000-01-01
At present, medical applications applying World Wide Web (WWW) technology are mainly used to view static images and to retrieve some information. The Java platform is a relative new way of computing, especially designed for network computing and distributed applications which enables interactive connection between user and information via the WWW. The Java 2 Software Development Kit (SDK) including Java2D API, Java Remote Method Invocation (RMI) technology, Object Serialization and the Java Advanced Imaging (JAI) extension was used to achieve a robust, platform independent and network centric solution. Medical image processing software based on this technology is presented and adequate performance capability of Java is demonstrated by an iterative reconstruction algorithm for single photon emission computerized tomography (SPECT).
Summary of the 1st International Workshop on Networked Reality in Telecommunication
NASA Astrophysics Data System (ADS)
Davis, T.
1994-05-01
s of workshop papers are presented. Networked reality refers to the array of technologies and services involved in collecting a representation of reality at one location and using it to reconstruct an artificial representation of that reality at a remote location. The term encompasses transmission of the required information between the sites, and also includes the psychological, cultural, and legal implications of introducing derived communication systems. Networked reality is clearly derived from the emerging virtual reality technology base but is intended to go beyond the latter to include its integration with the required telecommunication technologies. A noteworthy feature of the Networked Reality '94 technical program is the extent of emphasis on social (particularly medical) impacts of the technology.
Rhetoric, Risk, and Markets: The Dot-Com Bubble
ERIC Educational Resources Information Center
Goodnight, G. Thomas; Green, Sandy Edward, Jr.
2010-01-01
Post-conventional economic theories are assembled to inquire into the contingent, mimetic, symbolic, and material spirals unfolding the dot-com bubble, 1992-2002. The new technologies bubble is reconstructed as a rhetorical movement across the practices of the hybrid market-industry risk culture of communications. The legacies of the bubble task…
Clickers and Formative Feedback at University Lectures
ERIC Educational Resources Information Center
Egelandsdal, Kjetil; Krumsvik, Rune Johan
2017-01-01
Lecturing is often criticized for being a monological and student passive way of teaching. However, digital technology such as Student Response Systems (SRS) can be used to reconstruct the traditional lecturing format. During a series of five two-hour lectures in "qualitative methods" for first year psychology students, we used SRS to…
AbstractBackground. High-throughput in vitro screening is an important tool for evaluating the potential biological activity of the thousands of existing chemicals in commerce and the hundreds more introduced each year. Among the assay technologies available, high-content imaging...
USDA-ARS?s Scientific Manuscript database
Diet composition of free roaming livestock and wildlife in extensive rangelands are difficult to quantify. Recent technological advances now allow us to reconstruct plant species-specific dietary protein composition using fecal samples. However, it has been suggested that validation of the method i...
A Changing Society: New Perspectives for Science Education.
ERIC Educational Resources Information Center
Hurd, Paul DeHart
Perspectives on the reconstruction of science education in terms of current economic and social conditions and the foreseeable future are presented in this publication. An acceptable science curriculum is described as one that has cultural as well as scientific and technological validity. Elements that have been identified as essential for the…
New technologies and in vitro testing approaches have been valuable additions to risk assessments that have historically relied solely on in vivo test results. Compared to in vivo methods, in vitro high throughput screening (HTS) assays are less expensive, faster and can provide ...
ERIC Educational Resources Information Center
Santos-Trigo, Manuel; Espinosa-Perez, Hugo; Reyes-Rodriguez, Aaron
2008-01-01
Different technological artefacts may offer distinct opportunities for students to develop resources and strategies to formulate, comprehend and solve mathematical problems. In particular, the use of dynamic software becomes relevant to assemble geometric configurations that may help students reconstruct and examine mathematical relationships. In…
2007-06-01
banditry. Afghan women are still among the worst off in the world: most are illite many have no access to healthcare, and child and forced marriages...Cyber security » Virus and spyware protection, intrusion detection-protection, firewalls » Control use of pirated software and porn surfing by
The Future in Education: Problems, Possibilities and Promise.
ERIC Educational Resources Information Center
Kierstead, Fred D., Ed.; And Others
1981-01-01
The nine articles in this special issue discuss topics on the future of education, including educational priorities for the 1990's, teacher education, educational technology, and culture and synergy as tools for educational and social reconstruction. Journal available from University of Oklahoma, College of Education, 434 Hawthorn Street, Norman,…
Non-standard equipment for construction of vertical shafts
NASA Astrophysics Data System (ADS)
Yagodkin, F. I.; Prokopov, A. Y.; Pleshko, M. S.; Pankratenko, A. N.
2017-10-01
The article deals with the modern problems of construction and reconstruction of vertical shafts of mines, which require innovative technical solutions in the mechanization of mining operations. The examples developed by the authors of the original equipment and technologies, are successfully implemented for the mining industry in Russia.
Optimization of tomographic reconstruction workflows on geographically distributed resources
Bicer, Tekin; Gursoy, Doga; Kettimuthu, Rajkumar; ...
2016-01-01
New technological advancements in synchrotron light sources enable data acquisitions at unprecedented levels. This emergent trend affects not only the size of the generated data but also the need for larger computational resources. Although beamline scientists and users have access to local computational resources, these are typically limited and can result in extended execution times. Applications that are based on iterative processing as in tomographic reconstruction methods require high-performance compute clusters for timely analysis of data. Here, time-sensitive analysis and processing of Advanced Photon Source data on geographically distributed resources are focused on. Two main challenges are considered: (i) modelingmore » of the performance of tomographic reconstruction workflows and (ii) transparent execution of these workflows on distributed resources. For the former, three main stages are considered: (i) data transfer between storage and computational resources, (i) wait/queue time of reconstruction jobs at compute resources, and (iii) computation of reconstruction tasks. These performance models allow evaluation and estimation of the execution time of any given iterative tomographic reconstruction workflow that runs on geographically distributed resources. For the latter challenge, a workflow management system is built, which can automate the execution of workflows and minimize the user interaction with the underlying infrastructure. The system utilizes Globus to perform secure and efficient data transfer operations. The proposed models and the workflow management system are evaluated by using three high-performance computing and two storage resources, all of which are geographically distributed. Workflows were created with different computational requirements using two compute-intensive tomographic reconstruction algorithms. Experimental evaluation shows that the proposed models and system can be used for selecting the optimum resources, which in turn can provide up to 3.13× speedup (on experimented resources). Furthermore, the error rates of the models range between 2.1 and 23.3% (considering workflow execution times), where the accuracy of the model estimations increases with higher computational demands in reconstruction tasks.« less
Optimization of tomographic reconstruction workflows on geographically distributed resources
Bicer, Tekin; Gürsoy, Doǧa; Kettimuthu, Rajkumar; De Carlo, Francesco; Foster, Ian T.
2016-01-01
New technological advancements in synchrotron light sources enable data acquisitions at unprecedented levels. This emergent trend affects not only the size of the generated data but also the need for larger computational resources. Although beamline scientists and users have access to local computational resources, these are typically limited and can result in extended execution times. Applications that are based on iterative processing as in tomographic reconstruction methods require high-performance compute clusters for timely analysis of data. Here, time-sensitive analysis and processing of Advanced Photon Source data on geographically distributed resources are focused on. Two main challenges are considered: (i) modeling of the performance of tomographic reconstruction workflows and (ii) transparent execution of these workflows on distributed resources. For the former, three main stages are considered: (i) data transfer between storage and computational resources, (i) wait/queue time of reconstruction jobs at compute resources, and (iii) computation of reconstruction tasks. These performance models allow evaluation and estimation of the execution time of any given iterative tomographic reconstruction workflow that runs on geographically distributed resources. For the latter challenge, a workflow management system is built, which can automate the execution of workflows and minimize the user interaction with the underlying infrastructure. The system utilizes Globus to perform secure and efficient data transfer operations. The proposed models and the workflow management system are evaluated by using three high-performance computing and two storage resources, all of which are geographically distributed. Workflows were created with different computational requirements using two compute-intensive tomographic reconstruction algorithms. Experimental evaluation shows that the proposed models and system can be used for selecting the optimum resources, which in turn can provide up to 3.13× speedup (on experimented resources). Moreover, the error rates of the models range between 2.1 and 23.3% (considering workflow execution times), where the accuracy of the model estimations increases with higher computational demands in reconstruction tasks. PMID:27359149
Optimization of tomographic reconstruction workflows on geographically distributed resources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bicer, Tekin; Gursoy, Doga; Kettimuthu, Rajkumar
New technological advancements in synchrotron light sources enable data acquisitions at unprecedented levels. This emergent trend affects not only the size of the generated data but also the need for larger computational resources. Although beamline scientists and users have access to local computational resources, these are typically limited and can result in extended execution times. Applications that are based on iterative processing as in tomographic reconstruction methods require high-performance compute clusters for timely analysis of data. Here, time-sensitive analysis and processing of Advanced Photon Source data on geographically distributed resources are focused on. Two main challenges are considered: (i) modelingmore » of the performance of tomographic reconstruction workflows and (ii) transparent execution of these workflows on distributed resources. For the former, three main stages are considered: (i) data transfer between storage and computational resources, (i) wait/queue time of reconstruction jobs at compute resources, and (iii) computation of reconstruction tasks. These performance models allow evaluation and estimation of the execution time of any given iterative tomographic reconstruction workflow that runs on geographically distributed resources. For the latter challenge, a workflow management system is built, which can automate the execution of workflows and minimize the user interaction with the underlying infrastructure. The system utilizes Globus to perform secure and efficient data transfer operations. The proposed models and the workflow management system are evaluated by using three high-performance computing and two storage resources, all of which are geographically distributed. Workflows were created with different computational requirements using two compute-intensive tomographic reconstruction algorithms. Experimental evaluation shows that the proposed models and system can be used for selecting the optimum resources, which in turn can provide up to 3.13× speedup (on experimented resources). Furthermore, the error rates of the models range between 2.1 and 23.3% (considering workflow execution times), where the accuracy of the model estimations increases with higher computational demands in reconstruction tasks.« less
3D Medical Collaboration Technology to Enhance Emergency Healthcare
Welch, Greg; Sonnenwald, Diane H; Fuchs, Henry; Cairns, Bruce; Mayer-Patel, Ketan; Söderholm, Hanna M.; Yang, Ruigang; State, Andrei; Towles, Herman; Ilie, Adrian; Ampalam, Manoj; Krishnan, Srinivas; Noel, Vincent; Noland, Michael; Manning, James E.
2009-01-01
Two-dimensional (2D) videoconferencing has been explored widely in the past 15–20 years to support collaboration in healthcare. Two issues that arise in most evaluations of 2D videoconferencing in telemedicine are the difficulty obtaining optimal camera views and poor depth perception. To address these problems, we are exploring the use of a small array of cameras to reconstruct dynamic three-dimensional (3D) views of a remote environment and of events taking place within. The 3D views could be sent across wired or wireless networks to remote healthcare professionals equipped with fixed displays or with mobile devices such as personal digital assistants (PDAs). The remote professionals’ viewpoints could be specified manually or automatically (continuously) via user head or PDA tracking, giving the remote viewers head-slaved or hand-slaved virtual cameras for monoscopic or stereoscopic viewing of the dynamic reconstructions. We call this idea remote 3D medical collaboration. In this article we motivate and explain the vision for 3D medical collaboration technology; we describe the relevant computer vision, computer graphics, display, and networking research; we present a proof-of-concept prototype system; and we present evaluation results supporting the general hypothesis that 3D remote medical collaboration technology could offer benefits over conventional 2D videoconferencing in emergency healthcare. PMID:19521951
3D medical collaboration technology to enhance emergency healthcare.
Welch, Gregory F; Sonnenwald, Diane H; Fuchs, Henry; Cairns, Bruce; Mayer-Patel, Ketan; Söderholm, Hanna M; Yang, Ruigang; State, Andrei; Towles, Herman; Ilie, Adrian; Ampalam, Manoj K; Krishnan, Srinivas; Noel, Vincent; Noland, Michael; Manning, James E
2009-04-19
Two-dimensional (2D) videoconferencing has been explored widely in the past 15-20 years to support collaboration in healthcare. Two issues that arise in most evaluations of 2D videoconferencing in telemedicine are the difficulty obtaining optimal camera views and poor depth perception. To address these problems, we are exploring the use of a small array of cameras to reconstruct dynamic three-dimensional (3D) views of a remote environment and of events taking place within. The 3D views could be sent across wired or wireless networks to remote healthcare professionals equipped with fixed displays or with mobile devices such as personal digital assistants (PDAs). The remote professionals' viewpoints could be specified manually or automatically (continuously) via user head or PDA tracking, giving the remote viewers head-slaved or hand-slaved virtual cameras for monoscopic or stereoscopic viewing of the dynamic reconstructions. We call this idea remote 3D medical collaboration. In this article we motivate and explain the vision for 3D medical collaboration technology; we describe the relevant computer vision, computer graphics, display, and networking research; we present a proof-of-concept prototype system; and we present evaluation results supporting the general hypothesis that 3D remote medical collaboration technology could offer benefits over conventional 2D videoconferencing in emergency healthcare.
Workflows and the Role of Images for Virtual 3d Reconstruction of no Longer Extant Historic Objects
NASA Astrophysics Data System (ADS)
Münster, S.
2013-07-01
3D reconstruction technologies have gained importance as tools for the research and visualization of no longer extant historic objects during the last decade. Within such reconstruction processes, visual media assumes several important roles: as the most important sources especially for a reconstruction of no longer extant objects, as a tool for communication and cooperation within the production process, as well as for a communication and visualization of results. While there are many discourses about theoretical issues of depiction as sources and as visualization outcomes of such projects, there is no systematic research about the importance of depiction during a 3D reconstruction process and based on empirical findings. Moreover, from a methodological perspective, it would be necessary to understand which role visual media plays during the production process and how it is affected by disciplinary boundaries and challenges specific to historic topics. Research includes an analysis of published work and case studies investigating reconstruction projects. This study uses methods taken from social sciences to gain a grounded view of how production processes would take place in practice and which functions and roles images would play within them. For the investigation of these topics, a content analysis of 452 conference proceedings and journal articles related to 3D reconstruction modeling in the field of humanities has been completed. Most of the projects described in those publications dealt with data acquisition and model building for existing objects. Only a small number of projects focused on structures that no longer or never existed physically. Especially that type of project seems to be interesting for a study of the importance of pictures as sources and as tools for interdisciplinary cooperation during the production process. In the course of the examination the authors of this paper applied a qualitative content analysis for a sample of 26 previously published project reports to depict strategies and types and three case studies of 3D reconstruction projects to evaluate evolutionary processes during such projects. The research showed that reconstructions of no longer existing historic structures are most commonly used for presentation or research purposes of large buildings or city models. Additionally, they are often realized by interdisciplinary workgroups using images as the most important source for reconstruction as far as important media for communication and quality control during the reconstruction process.
A Synergy-Based Optimally Designed Sensing Glove for Functional Grasp Recognition
Ciotti, Simone; Battaglia, Edoardo; Carbonaro, Nicola; Bicchi, Antonio; Tognetti, Alessandro; Bianchi, Matteo
2016-01-01
Achieving accurate and reliable kinematic hand pose reconstructions represents a challenging task. The main reason for this is the complexity of hand biomechanics, where several degrees of freedom are distributed along a continuous deformable structure. Wearable sensing can represent a viable solution to tackle this issue, since it enables a more natural kinematic monitoring. However, the intrinsic accuracy (as well as the number of sensing elements) of wearable hand pose reconstruction (HPR) systems can be severely limited by ergonomics and cost considerations. In this paper, we combined the theoretical foundations of the optimal design of HPR devices based on hand synergy information, i.e., the inter-joint covariation patterns, with textile goniometers based on knitted piezoresistive fabrics (KPF) technology, to develop, for the first time, an optimally-designed under-sensed glove for measuring hand kinematics. We used only five sensors optimally placed on the hand and completed hand pose reconstruction (described according to a kinematic model with 19 degrees of freedom) leveraging upon synergistic information. The reconstructions we obtained from five different subjects were used to implement an unsupervised method for the recognition of eight functional grasps, showing a high degree of accuracy and robustness. PMID:27271621
Fang, Jing-Jing; Liu, Jia-Kuang; Wu, Tzu-Chieh; Lee, Jing-Wei; Kuo, Tai-Hong
2013-05-01
Computer-aided design has gained increasing popularity in clinical practice, and the advent of rapid prototyping technology has further enhanced the quality and predictability of surgical outcomes. It provides target guides for complex bony reconstruction during surgery. Therefore, surgeons can efficiently and precisely target fracture restorations. Based on three-dimensional models generated from a computed tomographic scan, precise preoperative planning simulation on a computer is possible. Combining the interdisciplinary knowledge of surgeons and engineers, this study proposes a novel surgical guidance method that incorporates a built-in occlusal wafer that serves as the positioning reference.Two patients with complex facial deformity suffering from severe facial asymmetry problems were recruited. In vitro facial reconstruction was first rehearsed on physical models, where a customized surgical guide incorporating a built-in occlusal stent as the positioning reference was designed to implement the surgery plan. This study is intended to present the authors' preliminary experience in a complex facial reconstruction procedure. It suggests that in regions with less information, where intraoperative computed tomographic scans or navigation systems are not available, our approach could be an effective, expedient, straightforward aid to enhance surgical outcome in a complex facial repair.
Zhang, Jing; Yuan, Changan; Huang, Guohua; Zhao, Yinjun; Ren, Wenyi; Cao, Qizhi; Li, Jianying; Jin, Mingwu
2018-01-01
A snapshot imaging polarimeter using spatial modulation can encode four Stokes parameters allowing instantaneous polarization measurement from a single interferogram. However, the reconstructed polarization images could suffer a severe aliasing signal if the high-frequency component of the intensity image is prominent and occurs in the polarization channels, and the reconstructed intensity image also suffers reduction of spatial resolution due to low-pass filtering. In this work, a method using two anti-phase snapshots is proposed to address the two problems simultaneously. The full-resolution target image and the pure interference fringes can be obtained from the sum and the difference of the two anti-phase interferograms, respectively. The polarization information reconstructed from the pure interference fringes does not contain the aliasing signal from the high-frequency component of the object intensity image. The principles of the method are derived and its feasibility is tested by both computer simulation and a verification experiment. This work provides a novel method for spatially modulated imaging polarization technology with two snapshots to simultaneously reconstruct a full-resolution object intensity image and high-quality polarization components. PMID:29714224
A Synergy-Based Optimally Designed Sensing Glove for Functional Grasp Recognition.
Ciotti, Simone; Battaglia, Edoardo; Carbonaro, Nicola; Bicchi, Antonio; Tognetti, Alessandro; Bianchi, Matteo
2016-06-02
Achieving accurate and reliable kinematic hand pose reconstructions represents a challenging task. The main reason for this is the complexity of hand biomechanics, where several degrees of freedom are distributed along a continuous deformable structure. Wearable sensing can represent a viable solution to tackle this issue, since it enables a more natural kinematic monitoring. However, the intrinsic accuracy (as well as the number of sensing elements) of wearable hand pose reconstruction (HPR) systems can be severely limited by ergonomics and cost considerations. In this paper, we combined the theoretical foundations of the optimal design of HPR devices based on hand synergy information, i.e., the inter-joint covariation patterns, with textile goniometers based on knitted piezoresistive fabrics (KPF) technology, to develop, for the first time, an optimally-designed under-sensed glove for measuring hand kinematics. We used only five sensors optimally placed on the hand and completed hand pose reconstruction (described according to a kinematic model with 19 degrees of freedom) leveraging upon synergistic information. The reconstructions we obtained from five different subjects were used to implement an unsupervised method for the recognition of eight functional grasps, showing a high degree of accuracy and robustness.
Task-based data-acquisition optimization for sparse image reconstruction systems
NASA Astrophysics Data System (ADS)
Chen, Yujia; Lou, Yang; Kupinski, Matthew A.; Anastasio, Mark A.
2017-03-01
Conventional wisdom dictates that imaging hardware should be optimized by use of an ideal observer (IO) that exploits full statistical knowledge of the class of objects to be imaged, without consideration of the reconstruction method to be employed. However, accurate and tractable models of the complete object statistics are often difficult to determine in practice. Moreover, in imaging systems that employ compressive sensing concepts, imaging hardware and (sparse) image reconstruction are innately coupled technologies. We have previously proposed a sparsity-driven ideal observer (SDIO) that can be employed to optimize hardware by use of a stochastic object model that describes object sparsity. The SDIO and sparse reconstruction method can therefore be "matched" in the sense that they both utilize the same statistical information regarding the class of objects to be imaged. To efficiently compute SDIO performance, the posterior distribution is estimated by use of computational tools developed recently for variational Bayesian inference. Subsequently, the SDIO test statistic can be computed semi-analytically. The advantages of employing the SDIO instead of a Hotelling observer are systematically demonstrated in case studies in which magnetic resonance imaging (MRI) data acquisition schemes are optimized for signal detection tasks.
Quantitative IR microscopy and spectromics open the way to 3D digital pathology.
Bobroff, Vladimir; Chen, Hsiang-Hsin; Delugin, Maylis; Javerzat, Sophie; Petibois, Cyril
2017-04-01
Currently, only mass-spectrometry (MS) microscopy brings a quantitative analysis of chemical contents of tissue samples in 3D. Here, the reconstruction of a 3D quantitative chemical images of a biological tissue by FTIR spectro-microscopy is reported. An automated curve-fitting method is developed to extract all intense absorption bands constituting IR spectra. This innovation benefits from three critical features: (1) the correction of raw IR spectra to make them quantitatively comparable; (2) the automated and iterative data treatment allowing to transfer the IR-absorption spectrum into a IR-band spectrum; (3) the reconstruction of an 3D IR-band matrix (x, y, z for voxel position and a 4 th dimension with all IR-band parameters). Spectromics, which is a new method for exploiting spectral data for tissue metadata reconstruction, is proposed to further translate the related chemical information in 3D, as biochemical and anatomical tissue parameters. An example is given with oxidative stress distribution and the reconstruction of blood vessels in tissues. The requirements of IR microscopy instrumentation to propose 3D digital histology as a clinical routine technology is briefly discussed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jamieson, W R Eric
2006-01-01
Since the 2002 Surgical Technology International monograph on valvular prostheses, there have been significant developmental and investigative advances. Aortic bioprostheses and mechanical prostheses have undergone design changes to optimize hemodynamics and prevent patient-prosthesis mismatch to have a potential satisfactory influence on survival. There has been continual technological improvements striving to bring forward advances that improve the durability of bioprostheses and reduce the thrombogenicity of mechanical prostheses. There also has been a continuance to preserve biological tissue with glutaraldehyde, rather than clinically evaluate other cross-linking technologies, by controlling or retarding calcification with therapies to control phospholipids and residual aldehydes. The techniques of mitral valve reconstruction have now been well established and new annuloplasty rings have been designed for the potential of maintaining the anatomical and physiological characteristics of the mitral annulus. Several objectives exist for annuloplasty, namely remodeling of the length and shape of the dilated annulus, prevention of dilatation of the annulus, and support for the potentially fragile area after partial-leaflet resection. Currently, there exists an emergence of catheter-based therapies for management of aortic stenosis and mitral regurgitation. For management of selected populations with critical aortic stenosis, techniques for aortic valve substitution have been developed for both antegrade and retrograde catheter techniques, as well as apical transventricular implantation. Mitral regurgitation has been addressed by experimental transcoronary sinus, stent-like devices and transventricular, edge-to-edge leaflet devices. The devices, descriptions and pictorial images comprise this monograph.
Baumbach, Jan; Brinkrolf, Karina; Czaja, Lisa F; Rahmann, Sven; Tauch, Andreas
2006-02-14
The application of DNA microarray technology in post-genomic analysis of bacterial genome sequences has allowed the generation of huge amounts of data related to regulatory networks. This data along with literature-derived knowledge on regulation of gene expression has opened the way for genome-wide reconstruction of transcriptional regulatory networks. These large-scale reconstructions can be converted into in silico models of bacterial cells that allow a systematic analysis of network behavior in response to changing environmental conditions. CoryneRegNet was designed to facilitate the genome-wide reconstruction of transcriptional regulatory networks of corynebacteria relevant in biotechnology and human medicine. During the import and integration process of data derived from experimental studies or literature knowledge CoryneRegNet generates links to genome annotations, to identified transcription factors and to the corresponding cis-regulatory elements. CoryneRegNet is based on a multi-layered, hierarchical and modular concept of transcriptional regulation and was implemented by using the relational database management system MySQL and an ontology-based data structure. Reconstructed regulatory networks can be visualized by using the yFiles JAVA graph library. As an application example of CoryneRegNet, we have reconstructed the global transcriptional regulation of a cellular module involved in SOS and stress response of corynebacteria. CoryneRegNet is an ontology-based data warehouse that allows a pertinent data management of regulatory interactions along with the genome-scale reconstruction of transcriptional regulatory networks. These models can further be combined with metabolic networks to build integrated models of cellular function including both metabolism and its transcriptional regulation.
RELAP5 posttest calculation of IAEA-SPE-4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petelin, S.; Mavko, B.; Parzer, I.
The International Atomic Energy Agency`s Fourth Standard Problem Exercise (IAEA-SPE-4) was performed at the PMK-2 facility. The PMK-2 facility is designed to study processes following small- and medium-size breaks in the primary system and natural circulation in VVER-440 plants. The IAEA-SPE-4 experiment represents a cold-leg side small break, similar to the IAEA-SPE-2, with the exception of the high-pressure safety injection being unavailable, and the secondary side bleed and feed initiation. The break valve was located at the dead end of a vertical downcomer, which in fact simulates a break in the reactor vessel itself, and should be unlikely to happenmore » in a real nuclear power plant (NPP). Three different RELAP5 code versions were used for the transient simulation in order to assess the calculations with test results.« less
Horizontal steam generator thermal-hydraulics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ubra, O.; Doubek, M.
1995-09-01
Horizontal steam generators are typical components of nuclear power plants with pressure water reactor type VVER. Thermal-hydraulic behavior of horizontal steam generators is very different from the vertical U-tube steam generator, which has been extensively studied for several years. To contribute to the understanding of the horizontal steam generator thermal-hydraulics a computer program for 3-D steady state analysis of the PGV-1000 steam generator has been developed. By means of this computer program, a detailed thermal-hydraulic and thermodynamic study of the horizontal steam generator PGV-1000 has been carried out and a set of important steam generator characteristics has been obtained. Themore » 3-D distribution of the void fraction and 3-D level profile as functions of load and secondary side pressure have been investigated and secondary side volumes and masses as functions of load and pressure have been evaluated. Some of the interesting results of calculations are presented in the paper.« less
NASA Astrophysics Data System (ADS)
Kalyakin, S. G.; Kirillov, P. L.; Baranaev, Yu. D.; Glebov, A. P.; Bogoslovskaya, G. P.; Nikitenko, M. P.; Makhin, V. M.; Churkin, A. N.
2014-08-01
The state of nuclear power engineering as of February 1, 2014 and the accomplished elaborations of a supercritical-pressure water-cooled reactor are briefly reviewed, and the prospects of this new project are discussed based on this review. The new project rests on the experience gained from the development and operation of stationary water-cooled reactor plants, including VVERs, PWRs, BWRs, and RBMKs (their combined service life totals more than 15 000 reactor-years), and long-term experience gained around the world with operation of thermal power plants the turbines of which are driven by steam with supercritical and ultrasupercritical parameters. The advantages of such reactor are pointed out together with the scientific-technical problems that need to be solved during further development of such installations. The knowledge gained for the last decade makes it possible to refine the concept and to commence the work on designing an experimental small-capacity reactor.
Pretest analysis of natural circulation on the PWR model PACTEL with horizontal steam generators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kervinen, T.; Riikonen, V.; Ritonummi, T.
A new tests facility - parallel channel tests loop (PACTEL)- has been designed and built to simulate the major components and system behavior of pressurized water reactors (PWRs) during postulated small- and medium-break loss-of-coolant accidents. Pretest calculations have been performed for the first test series, and the results of these calculations are being used for planning experiments, for adjusting the data acquisition system, and for choosing the optimal position and type of instrumentation. PACTEL is a volumetrically scaled (1:305) model of the VVER-440 PWR. In all the calculated cases, the natural circulation was found to be effective in removing themore » heat from the core to the steam generator. The loop mass flow rate peaked at 60% mass inventory. The straightening of the loop seals increased the mass flow rate significantly.« less
Conard, Nicholas J.; Peresani, Marco
2017-01-01
In the scenario of the spread of the anatomically modern humans (AMHs) into Europe, the techno-complex known as Protoaurignacian is defined by the production of blades and bladelets within a single and continuous stone knapping sequence from the same core as the result of its progressive reduction. However, the growing re-evaluation of some assemblages is revealing that bladelets are frequently obtained from independent reduction sequences, hence discouraging the direct application of the model developed in southwestern France. High-resolution regional signatures are thus needed to reconstruct a more accurate portrait of the AMH colonization dynamic. Northeastern Italy, with the key site of Fumane Cave, is one among the regions of Mediterranean Europe worthy of consideration for reconstructing this colonization process and its cultural dynamics. Within the framework of a critical discussion of the technological definition of the Protoaurignacian and its relationship with contemporaneous industries on a regional and supra-regional scale, we present the results of a detailed analysis of the lithic technology from units A2-A1 based on reduction sequence and attribute analyses. Results show that bladelets are the first goal of production and they do not originate from reduced blade cores but from a broad range of independent and simultaneous core reduction strategies. One implication is that the most commonly used technological trait that is said to define the Protoaurignacian has been over-emphasized and that the Protoaurignacian is technologically consistent across its geographical extent. Additional data based on carinated core technology imply that this techno-complex shares a common technological background with the Early Aurignacian and that no features are restricted to one of the two facies. Furthermore, the major difference between the Protoaurignacian and Early Aurignacian appears to be more typological in nature, with retouched bladelets being less common in the Early Aurignacian. PMID:29216284
Falcucci, Armando; Conard, Nicholas J; Peresani, Marco
2017-01-01
In the scenario of the spread of the anatomically modern humans (AMHs) into Europe, the techno-complex known as Protoaurignacian is defined by the production of blades and bladelets within a single and continuous stone knapping sequence from the same core as the result of its progressive reduction. However, the growing re-evaluation of some assemblages is revealing that bladelets are frequently obtained from independent reduction sequences, hence discouraging the direct application of the model developed in southwestern France. High-resolution regional signatures are thus needed to reconstruct a more accurate portrait of the AMH colonization dynamic. Northeastern Italy, with the key site of Fumane Cave, is one among the regions of Mediterranean Europe worthy of consideration for reconstructing this colonization process and its cultural dynamics. Within the framework of a critical discussion of the technological definition of the Protoaurignacian and its relationship with contemporaneous industries on a regional and supra-regional scale, we present the results of a detailed analysis of the lithic technology from units A2-A1 based on reduction sequence and attribute analyses. Results show that bladelets are the first goal of production and they do not originate from reduced blade cores but from a broad range of independent and simultaneous core reduction strategies. One implication is that the most commonly used technological trait that is said to define the Protoaurignacian has been over-emphasized and that the Protoaurignacian is technologically consistent across its geographical extent. Additional data based on carinated core technology imply that this techno-complex shares a common technological background with the Early Aurignacian and that no features are restricted to one of the two facies. Furthermore, the major difference between the Protoaurignacian and Early Aurignacian appears to be more typological in nature, with retouched bladelets being less common in the Early Aurignacian.
Yu, Yao; Zhang, Wen-Bo; Liu, Xiao-Jing; Guo, Chuan-Bin; Yu, Guang-Yan; Peng, Xin
2017-06-01
The purpose of this study was to describe new technology assisted by 3-dimensional (3D) image fusion of 18 F-fluorodeoxyglucose (FDG)-positron emission tomography (PET)/computed tomography (CT) and contrast-enhanced CT (CECT) for computer planning of a maxillectomy of recurrent maxillary squamous cell carcinoma and defect reconstruction. Treatment of recurrent maxillary squamous cell carcinoma usually includes tumor resection and free flap reconstruction. FDG-PET/CT provided images of regions of abnormal glucose uptake and thus showed metabolic tumor volume to guide tumor resection. CECT data were used to create 3D reconstructed images of vessels to show the vascular diameters and locations, so that the most suitable vein and artery could be selected during anastomosis of the free flap. The data from preoperative maxillofacial CECT scans and FDG-PET/CT imaging were imported into the navigation system (iPlan 3.0; Brainlab, Feldkirchen, Germany). Three-dimensional image fusion between FDG-PET/CT and CECT was accomplished using Brainlab software according to the position of the 2 skulls simulated in the CECT image and PET/CT image, respectively. After verification of the image fusion accuracy, the 3D reconstruction images of the metabolic tumor, vessels, and other critical structures could be visualized within the same coordinate system. These sagittal, coronal, axial, and 3D reconstruction images were used to determine the virtual osteotomy sites and reconstruction plan, which was provided to the surgeon and used for surgical navigation. The average shift of the 3D image fusion between FDG-PET/CT and CECT was less than 1 mm. This technique, by clearly showing the metabolic tumor volume and the most suitable vessels for anastomosis, facilitated resection and reconstruction of recurrent maxillary squamous cell carcinoma. We used 3D image fusion of FDG-PET/CT and CECT to successfully accomplish resection and reconstruction of recurrent maxillary squamous cell carcinoma. This method has the potential to improve the clinical outcomes of these challenging procedures. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Compressive Sampling Based Interior Reconstruction for Dynamic Carbon Nanotube Micro-CT
Yu, Hengyong; Cao, Guohua; Burk, Laurel; Lee, Yueh; Lu, Jianping; Santago, Pete; Zhou, Otto; Wang, Ge
2010-01-01
In the computed tomography (CT) field, one recent invention is the so-called carbon nanotube (CNT) based field emission x-ray technology. On the other hand, compressive sampling (CS) based interior tomography is a new innovation. Combining the strengths of these two novel subjects, we apply the interior tomography technique to local mouse cardiac imaging using respiration and cardiac gating with a CNT based micro-CT scanner. The major features of our method are: (1) it does not need exact prior knowledge inside an ROI; and (2) two orthogonal scout projections are employed to regularize the reconstruction. Both numerical simulations and in vivo mouse studies are performed to demonstrate the feasibility of our methodology. PMID:19923686
Virtual Heritage Tours: Developing Interactive Narrative-Based Environments for Historical Sites
NASA Astrophysics Data System (ADS)
Tuck, Deborah; Kuksa, Iryna
In the last decade there has been a noticeable growth in the use of virtual reality (VR) technologies for reconstructing cultural heritage sites. However, many of these virtual reconstructions evidence little of sites' social histories. Narrating the Past is a research project that aims to re-address this issue by investigating methods for embedding social histories within cultural heritage sites and by creating narrative based virtual environments (VEs) within them. The project aims to enhance the visitor's knowledge and understanding by developing a navigable 3D story space, in which participants are immersed. This has the potential to create a malleable virtual environment allowing the visitor to configure their own narrative paths.
NASA Astrophysics Data System (ADS)
Bonivento, Walter M.
2018-02-01
This paper describes the basic ideas and the first simulation results of a new electro-magnetic calorimeter concept, named SplitCal, aimed at optimising the measurement of photon direction in fixed-target experiment configuration, with high photon detection efficiency. This calorimeter was designed for the invariant mass reconstruction of axion-like particles decaying into two photons in the mass range 200 MeV to 1 GeV for the proposed proton beam dump experiment SHiP at CERN. Preliminary results indicate that angular resolutions better than obtained by past experiments can be achieved with this design. An implementation of this concept with real technologies is under study.
The cosmic ray muon tomography facility based on large scale MRPC detectors
NASA Astrophysics Data System (ADS)
Wang, Xuewu; Zeng, Ming; Zeng, Zhi; Wang, Yi; Zhao, Ziran; Yue, Xiaoguang; Luo, Zhifei; Yi, Hengguan; Yu, Baihui; Cheng, Jianping
2015-06-01
Cosmic ray muon tomography is a novel technology to detect high-Z material. A prototype of TUMUTY with 73.6 cm×73.6 cm large scale position sensitive MRPC detectors has been developed and is introduced in this paper. Three test kits have been tested and image is reconstructed using MAP algorithm. The reconstruction results show that the prototype is working well and the objects with complex structure and small size (20 mm) can be imaged on it, while the high-Z material is distinguishable from the low-Z one. This prototype provides a good platform for our further studies of the physical characteristics and the performances of cosmic ray muon tomography.
Reconstruction of pulse noisy images via stochastic resonance
Han, Jing; Liu, Hongjun; Sun, Qibing; Huang, Nan
2015-01-01
We investigate a practical technology for reconstructing nanosecond pulse noisy images via stochastic resonance, which is based on the modulation instability. A theoretical model of this method for optical pulse signal is built to effectively recover the pulse image. The nanosecond noise-hidden images grow at the expense of noise during the stochastic resonance process in a photorefractive medium. The properties of output images are mainly determined by the input signal-to-noise intensity ratio, the applied voltage across the medium, and the correlation length of noise background. A high cross-correlation gain is obtained by optimizing these parameters. This provides a potential method for detecting low-level or hidden pulse images in various imaging applications. PMID:26067911
NASA Astrophysics Data System (ADS)
Subotzky, George
1999-11-01
The author identifies two tendencies affecting higher education. On the one hand, universities and colleges are under pressure to become more market-oriented and to respond to rapid changes in information technology and knowledge production. On the other hand, there is a growing concern that they should work for the benefit of society, promoting social equity and responding to community needs. The author argues that partnerships between the community and institutions of higher education are an effective way of contributing to community development. He describes the potential of South Africa's historically disadvantaged institutions to contribute to reconstruction and development in the aftermath of apartheid.
Fast-SG: an alignment-free algorithm for hybrid assembly.
Di Genova, Alex; Ruz, Gonzalo A; Sagot, Marie-France; Maass, Alejandro
2018-05-01
Long-read sequencing technologies are the ultimate solution for genome repeats, allowing near reference-level reconstructions of large genomes. However, long-read de novo assembly pipelines are computationally intense and require a considerable amount of coverage, thereby hindering their broad application to the assembly of large genomes. Alternatively, hybrid assembly methods that combine short- and long-read sequencing technologies can reduce the time and cost required to produce de novo assemblies of large genomes. Here, we propose a new method, called Fast-SG, that uses a new ultrafast alignment-free algorithm specifically designed for constructing a scaffolding graph using light-weight data structures. Fast-SG can construct the graph from either short or long reads. This allows the reuse of efficient algorithms designed for short-read data and permits the definition of novel modular hybrid assembly pipelines. Using comprehensive standard datasets and benchmarks, we show how Fast-SG outperforms the state-of-the-art short-read aligners when building the scaffoldinggraph and can be used to extract linking information from either raw or error-corrected long reads. We also show how a hybrid assembly approach using Fast-SG with shallow long-read coverage (5X) and moderate computational resources can produce long-range and accurate reconstructions of the genomes of Arabidopsis thaliana (Ler-0) and human (NA12878). Fast-SG opens a door to achieve accurate hybrid long-range reconstructions of large genomes with low effort, high portability, and low cost.
Hultman, Charles Scott; Clayton, John L; Kittinger, Benjamin J; Tong, Winnie M
2014-01-01
Learning curves are characterized by incremental improvement of a process, through repetition and reduction in variability, but can be disrupted with the emergence of new techniques and technologies. Abdominal wall reconstruction continues to evolve, with the introduction of components separation in the 1990s and biologic mesh in the 2000s. As such, attempts at innovation may impact the success of reconstructive outcomes and yield a changing set of complications. The purpose of this project was to describe the paradigm shift that has occurred in abdominal wall reconstruction during the past 10 years, focusing on the incorporation of new materials and methods. We reviewed 150 consecutive patients who underwent abdominal wall reconstruction of midline defects with components separation, from 2000 to 2010. Both univariate and multivariate logistic regression analyses were performed to identify risk factors for complications. Patients were stratified into the following periods: early (2000-2003), middle (2004-2006), and late (2007-2010). From 2000 to 2010, we performed 150 abdominal wall reconstructions with components separation [mean age, 50.2 years; body mass index (BMI), 30.4; size of defect, 357 cm; length of stay, 9.6 days; follow-up, 4.4 years]. Primary fascial closure was performed in 120 patients. Mesh was used in 114 patients in the following locations: overlay (n = 28), inlay (n = 30), underlay (n = 54), and unknown (n = 2). Complications occurred in a bimodal distribution, highest in 2001 (introduction of biologic mesh) and 2008 (conversion from underlay to overlay location). Age, sex, history of smoking, defect size, and length of stay were not associated with incidence of complications. Unadjusted risk factors for seroma (16.8%) were elevated BMI, of previous hernia repairs, use of overlay mesh, and late portion of the learning curve, with logistic regression supporting only late portion of the learning curve [odds ratio (OR), 4.3; 95% confidence interval (CI), 1.0-18.6] and BMI (OR, 1.17; 95% CI, 1.06-1.29). The only unadjusted risk factor for recurrence was location of mesh. Logistic regression, comparing underlay, inlay, and overlay mesh to no mesh, revealed that the use of underlay mesh predicted recurrence (OR, 3.0; 95% CI, 1.04-8.64). All P values were less than 0.05. The overall learning curve for a specific procedure, such as abdominal wall reconstruction, can be quite volatile, especially as innovative techniques and new technologies are introduced and incorporated into the surgeon's practice. Our current practice includes primary repair myofascial flap of the components separation and the use of biologic mesh as an overlay graft, anchored to the external oblique. This process of outcome improvement is not gradual but is often punctuated by periods of failure and redemption.
TomoBank: a tomographic data repository for computational x-ray science
De Carlo, Francesco; Gürsoy, Doğa; Ching, Daniel J.; ...
2018-02-08
There is a widening gap between the fast advancement of computational methods for tomographic reconstruction and their successful implementation in production software at various synchrotron facilities. This is due in part to the lack of readily available instrument datasets and phantoms representative of real materials for validation and comparison of new numerical methods. Recent advancements in detector technology made sub-second and multi-energy tomographic data collection possible [1], but also increased the demand to develop new reconstruction methods able to handle in-situ [2] and dynamic systems [3] that can be quickly incorporated in beamline production software [4]. The X-ray Tomography Datamore » Bank, tomoBank, provides a repository of experimental and simulated datasets with the aim to foster collaboration among computational scientists, beamline scientists, and experimentalists and to accelerate the development and implementation of tomographic reconstruction methods for synchrotron facility production software by providing easy access to challenging dataset and their descriptors.« less
Reconstruction and restoration of historical buildings of transport infrastructure
NASA Astrophysics Data System (ADS)
Kareeva, Daria; Glazkova, Valeriya
2017-10-01
The aim of this article is to identify the main problems in the restoration of the historical objects. For this reason, it is rationally to collect and analyze the existing world experience of restoration. The information which was put together showed that there are some problems which are common and can be solved. In addition, the protection of the Monuments of Culture and Architecture Comittees always makes the restoration and reconstruction of the historical buildings complicated. By the examples of Germany, Italy and Russia it is shown that there are problems in organization, economy, planning and control. Engineers should think of and justify the methodology of organizing and monitoring of the restoration of the historical buildings. As a second solution, it will be possible to minimize time and financial costs through a favorable financial and legal background for investors and through the creation of a system of restoration work organizing. And for a faster process of restoration the imitation programs should be optimized for research and selection of the reconstruction technological and economic methods.
Genovo: De Novo Assembly for Metagenomes
NASA Astrophysics Data System (ADS)
Laserson, Jonathan; Jojic, Vladimir; Koller, Daphne
Next-generation sequencing technologies produce a large number of noisy reads from the DNA in a sample. Metagenomics and population sequencing aim to recover the genomic sequences of the species in the sample, which could be of high diversity. Methods geared towards single sequence reconstruction are not sensitive enough when applied in this setting. We introduce a generative probabilistic model of read generation from environmental samples and present Genovo, a novel de novo sequence assembler that discovers likely sequence reconstructions under the model. A Chinese restaurant process prior accounts for the unknown number of genomes in the sample. Inference is made by applying a series of hill-climbing steps iteratively until convergence. We compare the performance of Genovo to three other short read assembly programs across one synthetic dataset and eight metagenomic datasets created using the 454 platform, the largest of which has 311k reads. Genovo's reconstructions cover more bases and recover more genes than the other methods, and yield a higher assembly score.
Radio Measurements of Air Showers with LOPES
NASA Astrophysics Data System (ADS)
Schröder, F. G.; Apel, W. D.; Arteaga-Velazquez, J. C.; Bähren, L.; Bekk, K.; Bertaina, M.; Biermann, P. L.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Chiavassa, A.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Falcke, H.; Fuchs, B.; Fuhrmann, D.; Gemmeke, H.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Horneffer, A.; Huber, D.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Krömer, O.; Kuijpers, J.; Link, K.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Melissas, M.; Morello, C.; Oehlschläger, J.; Palmieri, N.; Pierog, T.; Rautenberg, J.; Rebel, H.; Roth, M.; Rühle, C.; Saftoiu, A.; Schieler, H.; Schmidt, A.; Sima, O.; Toma, G.; Trinchero, G. C.; Weindl, A.; Wochele, J.; Zabierowski, J.; Zensus, J. A.
2013-02-01
LOPES is a digital antenna array for the radio measurement of cosmic-ray air showers at energies around 1017 eV. It is triggered by the KASCADE-Grande air-shower array at the Karlsruhe Institute of Technology (KIT), Germany. Because of an absolute amplitude calibration and a sophisticated data analysis, LOPES can test models for the radio emission to an up-to-now unachieved level, thus improving our understanding of the radio emission mechanisms. Recent REAS simulations of the air-shower radio emission come closer to the measurements than any previously tested simulations. We have determined the radio-reconstruction precision of interesting air-shower parameters by comparing LOPES reconstructions to both REAS simulations and KASCADE-Grande measurements, and present our latest results for the angular resolution, the energy and the Xmax reconstruction based on the radio measurement of about 500 air showers. Although the precision of LOPES is limited by the high level of anthropogenic noise at KIT, it opens a promising perspective for next-generation radio arrays in regions with a lower ambient noise level.
Period-doubling reconstructions of semiconductor partial dislocations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Ji -Sang; Huang, Bing; Wei, Su -Huai
2015-09-18
Atomic-scale understanding and control of dislocation cores is of great technological importance, because they act as recombination centers for charge carriers in optoelectronic devices. Using hybrid density-functional calculations, we present period-doubling reconstructions of a 90 degrees partial dislocation in GaAs, for which the periodicity of like-atom dimers along the dislocation line varies from one to two, to four dimers. The electronic properties of a dislocation change drastically with each period doubling. The dimers in the single-period dislocation are able to interact, to form a dispersive one-dimensional band with deep-gap states. However, the inter-dimer interaction for the double-period dislocation becomes significantlymore » reduced; hence, it is free of mid-gap states. The Ga core undergoes a further period-doubling transition to a quadruple-period reconstruction induced by the formation of small hole polarons. In conclusion, the competition between these dislocation phases suggests a new passivation strategy via population manipulation of the detrimental single-period phase.« less
Anisotropic elastic moduli reconstruction in transversely isotropic model using MRE
NASA Astrophysics Data System (ADS)
Song, Jiah; In Kwon, Oh; Seo, Jin Keun
2012-11-01
Magnetic resonance elastography (MRE) is an elastic tissue property imaging modality in which the phase-contrast based MRI imaging technique is used to measure internal displacement induced by a harmonically oscillating mechanical vibration. MRE has made rapid technological progress in the past decade and has now reached the stage of clinical use. Most of the research outcomes are based on the assumption of isotropy. Since soft tissues like skeletal muscles show anisotropic behavior, the MRE technique should be extended to anisotropic elastic property imaging. This paper considers reconstruction in a transversely isotropic model, which is the simplest case of anisotropy, and develops a new non-iterative reconstruction method for visualizing the elastic moduli distribution. This new method is based on an explicit representation formula using the Newtonian potential of measured displacement. Hence, the proposed method does not require iterations since it directly recovers the anisotropic elastic moduli. We perform numerical simulations in order to demonstrate the feasibility of the proposed method in recovering a two-dimensional anisotropic tensor.
Reconstruction of Pedagogical Education--The Fundamental and the Applied in Teacher Education
ERIC Educational Resources Information Center
Asadullin, Rail Mirvaevich; Teregulov, Filarit Sharifovich
2015-01-01
Authors propose a new approach for the development of educational sphere, where philosophical categories of fundamental and applied knowledge are considered as two counter processes of reality and pole cognition, between which project-technological activity is carried out. This fact allows to treat any pedagogical project as a compromise decision,…
Code of Federal Regulations, 2011 CFR
2011-07-01
... determinations for alternative operating scenarios. Approval of such determinations satisfies the requirements of section 112(g) of each such scenario. (4) Regardless of the review process, the MACT emission limitation... determined by the permitting authority. (2) Based upon available information, as defined in this subpart, the...
ERIC Educational Resources Information Center
Benjamin, Rebekah George
2012-01-01
Largely due to technological advances, methods for analyzing readability have increased significantly in recent years. While past researchers designed hundreds of formulas to estimate the difficulty of texts for readers, controversy has surrounded their use for decades, with criticism stemming largely from their application in creating new texts…
Code of Federal Regulations, 2012 CFR
2012-07-01
... achieving such emission reduction and any non-air quality health and environmental impacts and energy..., and analysis of cost and non-air quality health environmental impacts or energy requirements for the...-day period for submittal of public comment; and (iii) A notice by prominent advertisement in the area...
Code of Federal Regulations, 2014 CFR
2014-07-01
... achieving such emission reduction and any non-air quality health and environmental impacts and energy..., and analysis of cost and non-air quality health environmental impacts or energy requirements for the...-day period for submittal of public comment; and (iii) A notice by prominent advertisement in the area...
Code of Federal Regulations, 2013 CFR
2013-07-01
... achieving such emission reduction and any non-air quality health and environmental impacts and energy..., and analysis of cost and non-air quality health environmental impacts or energy requirements for the...-day period for submittal of public comment; and (iii) A notice by prominent advertisement in the area...
Analysis of 4D Modeling for Use by the Naval Facilities Engineering Command
2004-08-01
Use Today Today, 4D modeling is being used to build Space Mountain at the new Hong Kong Disneyland theme park. Additionally, the technology is being...used for the reconstruction of the 26-year-old Space Mountain at the Disneyland in Anaheim. Muller explains: Among the hassles: Contractors must
Maker Principles and Technologies in Teacher Education: A National Survey
ERIC Educational Resources Information Center
Cohen, Jonathan
2017-01-01
Broadly speaking, the maker movement is characterized by people who engage in the construction, deconstruction, and reconstruction of physical artifacts, and who share both the process of making and their physical products with the broader community of makers. There is growing sentiment that elements of the maker movement have the capability of…
[The application of genetic engineering to the petroleum biodesulfurization].
Tong, M Y; Fang, X C; Ma, T; Zhang, Q
2001-11-01
The developed course and reaction mechanisms of petroleum biodesulfurization were introduced. The recent development of genetic engineering technology, which used in desulfuration strain's construction, reconstruction and other fields, was summarized emphatically. Its current research situation internal and overseas and the developing prospect were simply analyzed, and our research designs were submitted.
Accommodating the Instrumental Genesis Framework within Dynamic Technology Environments
ERIC Educational Resources Information Center
Hegedus, Stephen J.; Moreno-Armella, Luis
2010-01-01
In certain digital environments, "hot-spots" are key infrastructural pieces that allow the dynamic construction and re-construction of mathematical figures. We shall discuss their existence with respect to what we call user-environment co-actions, describing how they are sustainable bi-directional processes that have the potential to ground and…
NASA Astrophysics Data System (ADS)
Zhu, Bin; Cheng, Lingpeng; Liu, Hongrong
2018-05-01
Not Available Project supported by the National Key R&D Program of China (Grant No. 2016YFA0501100), the National Natural Science Foundation of China (Grant Nos. 91530321, 31570742, and 31570727), and Science and Technology Planning Project of Hunan Province, China (Grant No. 2017RS3033).
Ji, Guoli; Ye, Pengchao; Shi, Yijian; Yuan, Leiming; Chen, Xiaojing; Yuan, Mingshun; Zhu, Dehua; Chen, Xi; Hu, Xinyu; Jiang, Jing
2017-01-01
Tegillarca granosa samples contaminated artificially by three kinds of toxic heavy metals including zinc (Zn), cadmium (Cd), and lead (Pb) were attempted to be distinguished using laser-induced breakdown spectroscopy (LIBS) technology and pattern recognition methods in this study. The measured spectra were firstly processed by a wavelet transform algorithm (WTA), then the generated characteristic information was subsequently expressed by an information gain algorithm (IGA). As a result, 30 variables obtained were used as input variables for three classifiers: partial least square discriminant analysis (PLS-DA), support vector machine (SVM), and random forest (RF), among which the RF model exhibited the best performance, with 93.3% discrimination accuracy among those classifiers. Besides, the extracted characteristic information was used to reconstruct the original spectra by inverse WTA, and the corresponding attribution of the reconstructed spectra was then discussed. This work indicates that the healthy shellfish samples of Tegillarca granosa could be distinguished from the toxic heavy-metal-contaminated ones by pattern recognition analysis combined with LIBS technology, which only requires minimal pretreatments. PMID:29149053
Cellular neural networks, the Navier-Stokes equation, and microarray image reconstruction.
Zineddin, Bachar; Wang, Zidong; Liu, Xiaohui
2011-11-01
Although the last decade has witnessed a great deal of improvements achieved for the microarray technology, many major developments in all the main stages of this technology, including image processing, are still needed. Some hardware implementations of microarray image processing have been proposed in the literature and proved to be promising alternatives to the currently available software systems. However, the main drawback of those proposed approaches is the unsuitable addressing of the quantification of the gene spot in a realistic way without any assumption about the image surface. Our aim in this paper is to present a new image-reconstruction algorithm using the cellular neural network that solves the Navier-Stokes equation. This algorithm offers a robust method for estimating the background signal within the gene-spot region. The MATCNN toolbox for Matlab is used to test the proposed method. Quantitative comparisons are carried out, i.e., in terms of objective criteria, between our approach and some other available methods. It is shown that the proposed algorithm gives highly accurate and realistic measurements in a fully automated manner within a remarkably efficient time.
Optics and optics-based technologies education with the benefit of LabVIEW
NASA Astrophysics Data System (ADS)
Wan, Yuhong; Man, Tianlong; Tao, Shiquan
2015-10-01
The details of design and implementation of incoherent digital holographic experiments based on LabVIEW are demonstrated in this work in order to offer a teaching modal by making full use of LabVIEW as an educational tool. Digital incoherent holography enables holograms to be recorded from incoherent light with just a digital camera and spatial light modulator and three-dimensional properties of the specimen are revealed after the hologram is reconstructed in the computer. The experiment of phase shifting incoherent digital holography is designed and implemented based on the principle of Fresnel incoherent correlation holography. An automatic control application is developed based on LabVIEW, which combines the functions of major experimental hardware control and digital reconstruction of the holograms. The basic functions of the system are completed and a user-friendly interface is provided for easy operation. The students are encouraged and stimulated to learn and practice the basic principle of incoherent digital holography and other related optics-based technologies during the programming of the application and implementation of the system.
3D Reconstruction of Irregular Buildings and Buddha Statues
NASA Astrophysics Data System (ADS)
Zhang, K.; Li, M.-j.
2014-04-01
Three-dimensional laser scanning could acquire object's surface data quickly and accurately. However, the post-processing of point cloud is not perfect and could be improved. Based on the study of 3D laser scanning technology, this paper describes the details of solutions to modelling irregular ancient buildings and Buddha statues in Jinshan Temple, which aiming at data acquisition, modelling and texture mapping, etc. In order to modelling irregular ancient buildings effectively, the structure of each building is extracted manually by point cloud and the textures are mapped by the software of 3ds Max. The methods clearly combine 3D laser scanning technology with traditional modelling methods, and greatly improves the efficiency and accuracy of the ancient buildings restored. On the other hand, the main idea of modelling statues is regarded as modelling objects in reverse engineering. The digital model of statues obtained is not just vivid, but also accurate in the field of surveying and mapping. On this basis, a 3D scene of Jinshan Temple is reconstructed, which proves the validity of the solutions.
Single-Cell Analysis Using Hyperspectral Imaging Modalities.
Mehta, Nishir; Shaik, Shahensha; Devireddy, Ram; Gartia, Manas Ranjan
2018-02-01
Almost a decade ago, hyperspectral imaging (HSI) was employed by the NASA in satellite imaging applications such as remote sensing technology. This technology has since been extensively used in the exploration of minerals, agricultural purposes, water resources, and urban development needs. Due to recent advancements in optical re-construction and imaging, HSI can now be applied down to micro- and nanometer scales possibly allowing for exquisite control and analysis of single cell to complex biological systems. This short review provides a description of the working principle of the HSI technology and how HSI can be used to assist, substitute, and validate traditional imaging technologies. This is followed by a description of the use of HSI for biological analysis and medical diagnostics with emphasis on single-cell analysis using HSI.
Application of Additive Manufacturing in Oral and Maxillofacial Surgery.
Farré-Guasch, Elisabet; Wolff, Jan; Helder, Marco N; Schulten, Engelbert A J M; Forouzanfar, Tim; Klein-Nulend, Jenneke
2015-12-01
Additive manufacturing is the process of joining materials to create objects from digital 3-dimensional (3D) model data, which is a promising technology in oral and maxillofacial surgery. The management of lost craniofacial tissues owing to congenital abnormalities, trauma, or cancer treatment poses a challenge to oral and maxillofacial surgeons. Many strategies have been proposed for the management of such defects, but autogenous bone grafts remain the gold standard for reconstructive bone surgery. Nevertheless, cell-based treatments using adipose stem cells combined with osteoconductive biomaterials or scaffolds have become a promising alternative to autogenous bone grafts. Such treatment protocols often require customized 3D scaffolds that fulfill functional and esthetic requirements, provide adequate blood supply, and meet the load-bearing requirements of the head. Currently, such customized 3D scaffolds are being manufactured using additive manufacturing technology. In this review, 2 of the current and emerging modalities for reconstruction of oral and maxillofacial bone defects are highlighted and discussed, namely human maxillary sinus floor elevation as a valid model to test bone tissue-engineering approaches enabling the application of 1-step surgical procedures and seeding of Good Manufacturing Practice-level adipose stem cells on computer-aided manufactured scaffolds to reconstruct large bone defects in a 2-step surgical procedure, in which cells are expanded ex vivo and seeded on resorbable scaffolds before implantation. Furthermore, imaging-guided tissue-engineering technologies to predetermine the surgical location and to facilitate the manufacturing of custom-made implants that meet the specific patient's demands are discussed. The potential of tissue-engineered constructs designed for the repair of large oral and maxillofacial bone defects in load-bearing situations in a 1-step surgical procedure combining these 2 innovative approaches is particularly emphasized. Copyright © 2015 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Human stem cells for craniomaxillofacial reconstruction.
Jalali, Morteza; Kirkpatrick, William Niall Alexander; Cameron, Malcolm Gregor; Pauklin, Siim; Vallier, Ludovic
2014-07-01
Human stem cell research represents an exceptional opportunity for regenerative medicine and the surgical reconstruction of the craniomaxillofacial complex. The correct architecture and function of the vastly diverse tissues of this important anatomical region are critical for life supportive processes, the delivery of senses, social interaction, and aesthetics. Craniomaxillofacial tissue loss is commonly associated with inflammatory responses of the surrounding tissue, significant scarring, disfigurement, and psychological sequelae as an inevitable consequence. The in vitro production of fully functional cells for skin, muscle, cartilage, bone, and neurovascular tissue formation from human stem cells, may one day provide novel materials for the reconstructive surgeon operating on patients with both hard and soft tissue deficit due to cancer, congenital disease, or trauma. However, the clinical translation of human stem cell technology, including the application of human pluripotent stem cells (hPSCs) in novel regenerative therapies, faces several hurdles that must be solved to permit safe and effective use in patients. The basic biology of hPSCs remains to be fully elucidated and concerns of tumorigenicity need to be addressed, prior to the development of cell transplantation treatments. Furthermore, functional comparison of in vitro generated tissue to their in vivo counterparts will be necessary for confirmation of maturity and suitability for application in reconstructive surgery. Here, we provide an overview of human stem cells in disease modeling, drug screening, and therapeutics, while also discussing the application of regenerative medicine for craniomaxillofacial tissue deficit and surgical reconstruction.
Zimmerer, Rüdiger M; Gellrich, Nils-Claudius; von Bülow, Sophie; Strong, Edward Bradley; Ellis, Edward; Wagner, Maximilian E H; Sanchez Aniceto, Gregorio; Schramm, Alexander; Grant, Michael P; Thiam Chye, Lim; Rivero Calle, Alvaro; Wilde, Frank; Perez, Daniel; Bittermann, Gido; Mahoney, Nicholas R; Redondo Alamillos, Marta; Bašić, Joanna; Metzger, Marc; Rasse, Michael; Dittman, Jan; Rometsch, Elke; Espinoza, Kathrin; Hesse, Ronny; Cornelius, Carl-Peter
2018-04-01
Reconstruction of orbital wall fractures is demanding and has improved dramatically with the implementation of new technologies. True-to-original accuracy of reconstruction has been deemed essential for good clinical outcome, and reasons for unfavorable clinical outcome have been researched extensively. However, no detailed analysis on the influence of plate position and surface contour on clinical outcome has yet been published. Data from a previous study were used for an ad-hoc analysis to identify predictors for unfavorable outcome, defined as diplopia or differences in globe height and/or globe projection of >2 mm. Presumed predictors were implant surface contour, aberrant implant dimension or position, accuracy of reconstructed orbital volume, and anatomical fracture topography according to the current AO classification. Neither in univariable nor in multivariable regression models were unfavorable clinical outcomes associated with any of the presumed radiological predictors, and no association of the type of implant, i.e., standard preformed, CAD-based individualized and non-CAD-based individualized with its surface contour could be shown. These data suggest that the influence of accurate mechanical reconstruction on clinical outcomes may be less predictable than previously believed, while the role of soft-tissue-related factors may have been underestimated. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Yang, Yu-Jiao; Wang, Shuai; Zhang, Biao; Shen, Hong-Bin
2018-06-25
As a relatively new technology to solve the three-dimensional (3D) structure of a protein or protein complex, single-particle reconstruction (SPR) of cryogenic electron microscopy (cryo-EM) images shows much superiority and is in a rapidly developing stage. Resolution measurement in SPR, which evaluates the quality of a reconstructed 3D density map, plays a critical role in promoting methodology development of SPR and structural biology. Because there is no benchmark map in the generation of a new structure, how to realize the resolution estimation of a new map is still an open problem. Existing approaches try to generate a hypothetical benchmark map by reconstructing two 3D models from two halves of the original 2D images for cross-reference, which may result in a premature estimation with a half-data model. In this paper, we report a new self-reference-based resolution estimation protocol, called SRes, that requires only a single reconstructed 3D map. The core idea of SRes is to perform a multiscale spectral analysis (MSSA) on the map through multiple size-variable masks segmenting the map. The MSSA-derived multiscale spectral signal-to-noise ratios (mSSNRs) reveal that their corresponding estimated resolutions will show a cliff jump phenomenon, indicating a significant change in the SSNR properties. The critical point on the cliff borderline is demonstrated to be the right estimator for the resolution of the map.
Human Stem Cells for Craniomaxillofacial Reconstruction
Kirkpatrick, William Niall Alexander; Cameron, Malcolm Gregor
2014-01-01
Human stem cell research represents an exceptional opportunity for regenerative medicine and the surgical reconstruction of the craniomaxillofacial complex. The correct architecture and function of the vastly diverse tissues of this important anatomical region are critical for life supportive processes, the delivery of senses, social interaction, and aesthetics. Craniomaxillofacial tissue loss is commonly associated with inflammatory responses of the surrounding tissue, significant scarring, disfigurement, and psychological sequelae as an inevitable consequence. The in vitro production of fully functional cells for skin, muscle, cartilage, bone, and neurovascular tissue formation from human stem cells, may one day provide novel materials for the reconstructive surgeon operating on patients with both hard and soft tissue deficit due to cancer, congenital disease, or trauma. However, the clinical translation of human stem cell technology, including the application of human pluripotent stem cells (hPSCs) in novel regenerative therapies, faces several hurdles that must be solved to permit safe and effective use in patients. The basic biology of hPSCs remains to be fully elucidated and concerns of tumorigenicity need to be addressed, prior to the development of cell transplantation treatments. Furthermore, functional comparison of in vitro generated tissue to their in vivo counterparts will be necessary for confirmation of maturity and suitability for application in reconstructive surgery. Here, we provide an overview of human stem cells in disease modeling, drug screening, and therapeutics, while also discussing the application of regenerative medicine for craniomaxillofacial tissue deficit and surgical reconstruction. PMID:24564584
Flow temporal reconstruction from non-time-resolved data part I: mathematic fundamentals
NASA Astrophysics Data System (ADS)
Legrand, Mathieu; Nogueira, José; Lecuona, Antonio
2011-10-01
At least two circumstances point to the need of postprocessing techniques to recover lost time information from non-time-resolved data: the increasing interest in identifying and tracking coherent structures in flows of industrial interest and the high data throughput of global measuring techniques, such as PIV, for the validation of computational fluid dynamics (CFD) codes. This paper offers the mathematic fundamentals of a space--time reconstruction technique from non-time-resolved, statistically independent data. An algorithm has been developed to identify and track traveling coherent structures in periodic flows. Phase-averaged flow fields are reconstructed with a correlation-based method, which uses information from the Proper Orthogonal Decomposition (POD). The theoretical background shows that the snapshot POD coefficients can be used to recover flow phase information. Once this information is recovered, the real snapshots are used to reconstruct the flow history and characteristics, avoiding neither the use of POD modes nor any associated artifact. The proposed time reconstruction algorithm is in agreement with the experimental evidence given by the practical implementation proposed in the second part of this work (Legrand et al. in Exp Fluids, 2011), using the coefficients corresponding to the first three POD modes. It also agrees with the results on similar issues by other authors (Ben Chiekh et al. in 9 Congrès Francophone de Vélocimétrie Laser, Bruxelles, Belgium, 2004; Van Oudheusden et al. in Exp Fluids 39-1:86-98, 2005; Meyer et al. in 7th International Symposium on Particle Image Velocimetry, Rome, Italy, 2007a; in J Fluid Mech 583:199-227, 2007b; Perrin et al. in Exp Fluids 43-2:341-355, 2007). Computer time to perform the reconstruction is relatively short, of the order of minutes with current PC technology.
Baumbach, Jan; Brinkrolf, Karina; Czaja, Lisa F; Rahmann, Sven; Tauch, Andreas
2006-01-01
Background The application of DNA microarray technology in post-genomic analysis of bacterial genome sequences has allowed the generation of huge amounts of data related to regulatory networks. This data along with literature-derived knowledge on regulation of gene expression has opened the way for genome-wide reconstruction of transcriptional regulatory networks. These large-scale reconstructions can be converted into in silico models of bacterial cells that allow a systematic analysis of network behavior in response to changing environmental conditions. Description CoryneRegNet was designed to facilitate the genome-wide reconstruction of transcriptional regulatory networks of corynebacteria relevant in biotechnology and human medicine. During the import and integration process of data derived from experimental studies or literature knowledge CoryneRegNet generates links to genome annotations, to identified transcription factors and to the corresponding cis-regulatory elements. CoryneRegNet is based on a multi-layered, hierarchical and modular concept of transcriptional regulation and was implemented by using the relational database management system MySQL and an ontology-based data structure. Reconstructed regulatory networks can be visualized by using the yFiles JAVA graph library. As an application example of CoryneRegNet, we have reconstructed the global transcriptional regulation of a cellular module involved in SOS and stress response of corynebacteria. Conclusion CoryneRegNet is an ontology-based data warehouse that allows a pertinent data management of regulatory interactions along with the genome-scale reconstruction of transcriptional regulatory networks. These models can further be combined with metabolic networks to build integrated models of cellular function including both metabolism and its transcriptional regulation. PMID:16478536
Actuator-Assisted Calibration of Freehand 3D Ultrasound System.
Koo, Terry K; Silvia, Nathaniel
2018-01-01
Freehand three-dimensional (3D) ultrasound has been used independently of other technologies to analyze complex geometries or registered with other imaging modalities to aid surgical and radiotherapy planning. A fundamental requirement for all freehand 3D ultrasound systems is probe calibration. The purpose of this study was to develop an actuator-assisted approach to facilitate freehand 3D ultrasound calibration using point-based phantoms. We modified the mathematical formulation of the calibration problem to eliminate the need of imaging the point targets at different viewing angles and developed an actuator-assisted approach/setup to facilitate quick and consistent collection of point targets spanning the entire image field of view. The actuator-assisted approach was applied to a commonly used cross wire phantom as well as two custom-made point-based phantoms (original and modified), each containing 7 collinear point targets, and compared the results with the traditional freehand cross wire phantom calibration in terms of calibration reproducibility, point reconstruction precision, point reconstruction accuracy, distance reconstruction accuracy, and data acquisition time. Results demonstrated that the actuator-assisted single cross wire phantom calibration significantly improved the calibration reproducibility and offered similar point reconstruction precision, point reconstruction accuracy, distance reconstruction accuracy, and data acquisition time with respect to the freehand cross wire phantom calibration. On the other hand, the actuator-assisted modified "collinear point target" phantom calibration offered similar precision and accuracy when compared to the freehand cross wire phantom calibration, but it reduced the data acquisition time by 57%. It appears that both actuator-assisted cross wire phantom and modified collinear point target phantom calibration approaches are viable options for freehand 3D ultrasound calibration.
Actuator-Assisted Calibration of Freehand 3D Ultrasound System
2018-01-01
Freehand three-dimensional (3D) ultrasound has been used independently of other technologies to analyze complex geometries or registered with other imaging modalities to aid surgical and radiotherapy planning. A fundamental requirement for all freehand 3D ultrasound systems is probe calibration. The purpose of this study was to develop an actuator-assisted approach to facilitate freehand 3D ultrasound calibration using point-based phantoms. We modified the mathematical formulation of the calibration problem to eliminate the need of imaging the point targets at different viewing angles and developed an actuator-assisted approach/setup to facilitate quick and consistent collection of point targets spanning the entire image field of view. The actuator-assisted approach was applied to a commonly used cross wire phantom as well as two custom-made point-based phantoms (original and modified), each containing 7 collinear point targets, and compared the results with the traditional freehand cross wire phantom calibration in terms of calibration reproducibility, point reconstruction precision, point reconstruction accuracy, distance reconstruction accuracy, and data acquisition time. Results demonstrated that the actuator-assisted single cross wire phantom calibration significantly improved the calibration reproducibility and offered similar point reconstruction precision, point reconstruction accuracy, distance reconstruction accuracy, and data acquisition time with respect to the freehand cross wire phantom calibration. On the other hand, the actuator-assisted modified “collinear point target” phantom calibration offered similar precision and accuracy when compared to the freehand cross wire phantom calibration, but it reduced the data acquisition time by 57%. It appears that both actuator-assisted cross wire phantom and modified collinear point target phantom calibration approaches are viable options for freehand 3D ultrasound calibration. PMID:29854371
Pöhlmann, Stefanie T L; Harkness, Elaine; Taylor, Christopher J; Gandhi, Ashu; Astley, Susan M
2017-08-01
This study aimed to investigate whether breast volume measured preoperatively using a Kinect 3D sensor could be used to determine the most appropriate implant size for reconstruction. Ten patients underwent 3D imaging before and after unilateral implant-based reconstruction. Imaging used seven configurations, varying patient pose and Kinect location, which were compared regarding suitability for volume measurement. Four methods of defining the breast boundary for automated volume calculation were compared, and repeatability assessed over five repetitions. The most repeatable breast boundary annotation used an ellipse to track the inframammary fold and a plane describing the chest wall (coefficient of repeatability: 70 ml). The most reproducible imaging position comparing pre- and postoperative volume measurement of the healthy breast was achieved for the sitting patient with elevated arms and Kinect centrally positioned (coefficient of repeatability: 141 ml). Optimal implant volume was calculated by correcting used implant volume by the observed postoperative asymmetry. It was possible to predict implant size using a linear model derived from preoperative volume measurement of the healthy breast (coefficient of determination R 2 = 0.78, standard error of prediction 120 ml). Mastectomy specimen weight and experienced surgeons' choice showed similar predictive ability (both: R 2 = 0.74, standard error: 141/142 ml). A leave one-out validation showed that in 61% of cases, 3D imaging could predict implant volume to within 10%; however for 17% of cases it was >30%. This technology has the potential to facilitate reconstruction surgery planning and implant procurement to maximise symmetry after unilateral reconstruction. Copyright © 2017 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
Reconstructing High School Chemical Reaction Lessons to Motivate and Support Conceptual Learning
NASA Astrophysics Data System (ADS)
Ndiforamang, Nathan Moma
The primary focus of this education leadership portfolio is to reconstruct lessons on chemical reaction concepts for teachers to use and reach all learners of chemistry in Cecil County Public Schools. As a high school chemistry teacher, I have observed that student enrollment in chemistry is relatively low, and students show little enthusiasm about being successful in chemistry compared to other science subjects. To understand these issues, I researched conceptual learning, misconceptions, and best practices; prepared open-ended questions in a survey for chemistry teachers in my district; distributed the survey; received their responses; and processed the information received. I analyzed the data using qualitative techniques, and the results revealed that many of the tools provided in the district's curriculum guide for chemistry were not effective in class. I used the data to search for learning tools and classroom resources that could improve students understanding of chemistry concepts. I then reconstructed eight lessons on chemical reaction concepts utilizing those tools and resources. I redistributed the reconstructed lessons to teachers who had volunteered to review the lessons and provide professional feedback. The teachers' feedback revealed that the tools and resources incorporated in the reconstructed lessons included interactive activities that would excite students. The teachers indicated that the lessons were technology rich and included a variety of learning strategies. They also noted that the lessons included too many activities to cover within a day's lesson, and some of the recommended weblinks had technical issues. Most of the suggestions received were used to improve the quality of the reconstructed lessons and will serve as a resource for future fine-tuning of the lessons.
Xia, Jingjing; Tsui, Po-Hsiang; Liu, Hao-Li
2016-01-01
Burst-mode focused ultrasound (FUS) exposure has been shown to induce transient blood-brain barrier (BBB) opening for potential CNS drug delivery. FUS-BBB opening requires imaging guidance during the intervention, yet current imaging technology only enables postoperative outcome confirmation. In this study, we propose an approach to visualize short-burst low-pressure focal beam distribution that allows to be applied in FUS-BBB opening intervention on small animals. A backscattered acoustic-wave reconstruction method based on synchronization among focused ultrasound emission, diagnostic ultrasound receiving and passively beamformed processing were developed. We observed that focal beam could be successfully visualized for in vitro FUS exposure with 0.5–2 MHz without involvement of microbubbles. The detectable level of FUS exposure was 0.467 MPa in pressure and 0.05 ms in burst length. The signal intensity (SI) of the reconstructions was linearly correlated with the FUS exposure level both in-vitro (r2 = 0.9878) and in-vivo (r2 = 0.9943), and SI level of the reconstructed focal beam also correlated with the success and level of BBB-opening. The proposed approach provides a feasible way to perform real-time and closed-loop control of FUS-based brain drug delivery. PMID:27295608
SCENERY: a web application for (causal) network reconstruction from cytometry data
Papoutsoglou, Georgios; Athineou, Giorgos; Lagani, Vincenzo; Xanthopoulos, Iordanis; Schmidt, Angelika; Éliás, Szabolcs; Tegnér, Jesper
2017-01-01
Abstract Flow and mass cytometry technologies can probe proteins as biological markers in thousands of individual cells simultaneously, providing unprecedented opportunities for reconstructing networks of protein interactions through machine learning algorithms. The network reconstruction (NR) problem has been well-studied by the machine learning community. However, the potentials of available methods remain largely unknown to the cytometry community, mainly due to their intrinsic complexity and the lack of comprehensive, powerful and easy-to-use NR software implementations specific for cytometry data. To bridge this gap, we present Single CEll NEtwork Reconstruction sYstem (SCENERY), a web server featuring several standard and advanced cytometry data analysis methods coupled with NR algorithms in a user-friendly, on-line environment. In SCENERY, users may upload their data and set their own study design. The server offers several data analysis options categorized into three classes of methods: data (pre)processing, statistical analysis and NR. The server also provides interactive visualization and download of results as ready-to-publish images or multimedia reports. Its core is modular and based on the widely-used and robust R platform allowing power users to extend its functionalities by submitting their own NR methods. SCENERY is available at scenery.csd.uoc.gr or http://mensxmachina.org/en/software/. PMID:28525568
Quality Analysis on 3d Buidling Models Reconstructed from Uav Imagery
NASA Astrophysics Data System (ADS)
Jarzabek-Rychard, M.; Karpina, M.
2016-06-01
Recent developments in UAV technology and structure from motion techniques have effected that UAVs are becoming standard platforms for 3D data collection. Because of their flexibility and ability to reach inaccessible urban parts, drones appear as optimal solution for urban applications. Building reconstruction from the data collected with UAV has the important potential to reduce labour cost for fast update of already reconstructed 3D cities. However, especially for updating of existing scenes derived from different sensors (e.g. airborne laser scanning), a proper quality assessment is necessary. The objective of this paper is thus to evaluate the potential of UAV imagery as an information source for automatic 3D building modeling at LOD2. The investigation process is conducted threefold: (1) comparing generated SfM point cloud to ALS data; (2) computing internal consistency measures of the reconstruction process; (3) analysing the deviation of Check Points identified on building roofs and measured with a tacheometer. In order to gain deep insight in the modeling performance, various quality indicators are computed and analysed. The assessment performed according to the ground truth shows that the building models acquired with UAV-photogrammetry have the accuracy of less than 18 cm for the plannimetric position and about 15 cm for the height component.
Analyzation of photopolymer materials shrunken influence for thick hologram gratings
NASA Astrophysics Data System (ADS)
Li, Zhenzhen; Xiao, Xue; Chen, Wei; Kang, Guoguo; Huang, Yong; Tan, Xiaodi
2016-09-01
The photopolymer materials are good media to record thick hologram gratings, because photopolymer materials have high resolution, low cost, simple process technology and so on. According to coupled wave theory for thick hologram gratings, we know that the same object beam can be reconstructed if the same reference beam is used to retrieve a thick hologram grating. However, the shrinkage always occurs in the photopolymer materials because of environment temperature, humidity, vibration etc. For instance, the same object beam cannot be reconstructed even the same reference beam to be used. In this paper, we will analysis the shrinkage influence of photopolymer materials for thick hologram gratings. We divide the photopolymer materials into several geometry layers, and analysis the reconstructed characteristics separately basing on coupled wave theory of Kogelnik. Through gradually continuous changing the angle between gratings and the border (we call it slant angle), we can build the geometry model of gratings bending caused by shrinkage of materials. We calculate wave complex amplitude diffracted from every layer, and superpose them to compute the total diffraction efficiency. We simulate above methods to obtain the curve of diffraction efficiency with reconstruction wavelength by using Matlab software. Comparing the simulated results with the experiments results, we can deduce the probable situation of thick hologram gratings bending after photopolymer materials shrink.
NASA Astrophysics Data System (ADS)
Xia, Jingjing; Tsui, Po-Hsiang; Liu, Hao-Li
2016-06-01
Burst-mode focused ultrasound (FUS) exposure has been shown to induce transient blood-brain barrier (BBB) opening for potential CNS drug delivery. FUS-BBB opening requires imaging guidance during the intervention, yet current imaging technology only enables postoperative outcome confirmation. In this study, we propose an approach to visualize short-burst low-pressure focal beam distribution that allows to be applied in FUS-BBB opening intervention on small animals. A backscattered acoustic-wave reconstruction method based on synchronization among focused ultrasound emission, diagnostic ultrasound receiving and passively beamformed processing were developed. We observed that focal beam could be successfully visualized for in vitro FUS exposure with 0.5-2 MHz without involvement of microbubbles. The detectable level of FUS exposure was 0.467 MPa in pressure and 0.05 ms in burst length. The signal intensity (SI) of the reconstructions was linearly correlated with the FUS exposure level both in-vitro (r2 = 0.9878) and in-vivo (r2 = 0.9943), and SI level of the reconstructed focal beam also correlated with the success and level of BBB-opening. The proposed approach provides a feasible way to perform real-time and closed-loop control of FUS-based brain drug delivery.
Generalized analog thresholding for spike acquisition at ultralow sampling rates
He, Bryan D.; Wein, Alex; Varshney, Lav R.; Kusuma, Julius; Richardson, Andrew G.
2015-01-01
Efficient spike acquisition techniques are needed to bridge the divide from creating large multielectrode arrays (MEA) to achieving whole-cortex electrophysiology. In this paper, we introduce generalized analog thresholding (gAT), which achieves millisecond temporal resolution with sampling rates as low as 10 Hz. Consider the torrent of data from a single 1,000-channel MEA, which would generate more than 3 GB/min using standard 30-kHz Nyquist sampling. Recent neural signal processing methods based on compressive sensing still require Nyquist sampling as a first step and use iterative methods to reconstruct spikes. Analog thresholding (AT) remains the best existing alternative, where spike waveforms are passed through an analog comparator and sampled at 1 kHz, with instant spike reconstruction. By generalizing AT, the new method reduces sampling rates another order of magnitude, detects more than one spike per interval, and reconstructs spike width. Unlike compressive sensing, the new method reveals a simple closed-form solution to achieve instant (noniterative) spike reconstruction. The base method is already robust to hardware nonidealities, including realistic quantization error and integration noise. Because it achieves these considerable specifications using hardware-friendly components like integrators and comparators, generalized AT could translate large-scale MEAs into implantable devices for scientific investigation and medical technology. PMID:25904712
Pappas, Evangelos; Zampeli, Franceska; Xergia, Sofia A; Georgoulis, Anastasios D
2013-04-01
Technological advances in recent years have allowed the easy and accurate assessment of knee motion during athletic activities. Subsequently, thousands of studies have been published that greatly improved our understanding of the aetiology, surgical reconstruction techniques and prevention of anterior cruciate ligament (ACL) injuries. The purpose of this review is to summarize the evidence from biomechanical studies on ACL-related research. High-impact articles that enhanced understanding of ACL injury aetiology, rehabilitation, prevention and adaptations after reconstruction were selected. The importance of restoring internal tibial rotation after ACL reconstruction has emerged in several studies. Criteria-based, individualized rehabilitation protocols have replaced the traditional time-based protocols. Excessive knee valgus, poor trunk control, excessive quadriceps forces and leg asymmetries have been identified as potential high risk biomechanical factors for ACL tear. Injury prevention programmes have emerged as low cost and effective means of preventing ACL injuries, particularly in female athletes. As a result of biomechanical research, clinicians have a better understanding of ACL injury aetiology, prevention and rehabilitation. Athletes exhibiting neuromuscular deficits predisposing them to ACL injury can be identified and enrolled into prevention programmes. Clinicians should assess ACL-reconstructed patients for excessive internal tibial rotation that may lead to poor outcomes.
Using seismic derived lithology parameters for hydrocarbon indication
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Riel, P.; Sisk, M.
1996-08-01
The last two decades have shown a strong increase in the use of seismic amplitude information for direct hydrocarbon indication. However, working with seismic amplitudes (and seismic attributes) has several drawbacks: tuning effects must be handled; quantitative analysis is difficult because seismic amplitudes are not directly related to lithology; and seismic amplitudes are reflection events, making it is unclear if amplitude changes relate to lithology variations above or below the interface. These drawbacks are overcome by working directly on seismic derived lithology data, lithology being a layer property rather than an interface property. Technology to extract lithology from seismic datamore » has made great strides, and a large range of methods are now available to users including: (1) Bandlimited acoustic impedance (AI) inversion; (2) Reconstruction of the low AI frequencies from seismic velocities, from spatial well log interpolation, and using constrained sparse spike inversion techniques; (3) Full bandwidth reconstruction of multiple lithology properties (porosity, sand fraction, density etc.,) in time and depth using inverse modeling. For these technologies to be fully leveraged, accessibility by end users is critical. All these technologies are available as interactive 2D and 3D workstation applications, integrated with seismic interpretation functionality. Using field data examples, we will demonstrate the impact of these different approaches on deriving lithology, and in particular show how accuracy and resolution is increased as more geologic and well information is added.« less
NASA Astrophysics Data System (ADS)
Bostick, Randall L.; Perram, Glen P.; Tuttle, Ronald
2009-05-01
The Air Force Institute of Technology (AFIT) has built a rotating prism chromotomographic hyperspectral imager (CTI) with the goal of extending the technology to exploit spatially extended sources with quickly varying (> 10 Hz) phenomenology, such as bomb detonations and muzzle flashes. This technology collects successive frames of 2-D data dispersed at different angles multiplexing spatial and spectral information which can then be used to reconstruct any arbitrary spectral plane(s). In this paper, the design of the AFIT instrument is described and then tested against a spectral target with near point source spatial characteristics to measure spectral and spatial resolution. It will be shown that, in theory, the spectral and spatial resolution in the 3-D spectral image cube is the nearly the same as a simple prism spectrograph with the same design. However, error in the knowledge of the prism linear dispersion at the detector array as a function of wavelength and projection angle will degrade resolution without further corrections. With minimal correction for error and use of a simple shift-and-add reconstruction algorithm, the CTI is able to produce a spatial resolution of about 2 mm in the object plane (234 μrad IFOV) and is limited by chromatic aberration. A spectral resolution of less than 1nm at shorter wavelengths is shown, limited primarily by prism dispersion.