Sample records for w-l sulfur dioxide recovery process

  1. Elemental sulfur recovery process

    DOEpatents

    Flytzani-Stephanopoulos, M.; Zhicheng Hu.

    1993-09-07

    An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO[sub 2] in the regenerator off gas stream to elemental sulfur in the presence of a catalyst. 4 figures.

  2. Elemental sulfur recovery process

    DOEpatents

    Flytzani-Stephanopoulos, Maria; Hu, Zhicheng

    1993-01-01

    An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO.sub.2 -containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO.sub.2 to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO.sub.2 in the regenerator off gas stream to elemental sulfur in the presence of a catalyst.

  3. Catalyst for elemental sulfur recovery process

    DOEpatents

    Flytzani-Stephanopoulos, M.; Liu, W.

    1995-01-24

    A catalytic reduction process is described for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides high activity and selectivity, as well as stability in the reaction atmosphere, for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over a metal oxide composite catalyst having one of the following empirical formulas: [(FO[sub 2])[sub 1[minus]n](RO)[sub n

  4. Sensitivity of ginseng to ozone and sulfur dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Proctor, J.T.A.; Ormrod, D.P.

    1981-10-01

    American ginseng (Panax quinquefolius L.), was injured by exposure to 20 pphm ozone and/or 50 pphm (v/v) sulfur dioxide for 6 hr daily for 4 days. Ozone induced upper surface leaflet stippling along the veins and interveinally, and sulfur dioxide induced mild chlorosis to irregular necrotic areas. Ginseng was less sensitive to ozone and as sensitive to sulfur dioxide as 'Cherry Belle' radish (Raphanus sativus L.) and 'Bel W-3' tobacco (Nicotiana tabacum L.).

  5. Catalyst for elemental sulfur recovery process

    DOEpatents

    Flytzani-Stephanopoulos, Maria; Liu, Wei

    1995-01-01

    A catalytic reduction process for the direct recovery of elemental sulfur from various SO.sub.2 -containing industrial gas streams. The catalytic process provides high activity and selectivity, as well as stability in the reaction atmosphere, for the reduction of SO.sub.2 to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over a metal oxide composite catalyst having one of the following empirical formulas: [(OF.sub.2).sub.1-n (RO.sub.1)n].sub.1-k M.sub.k, [(FO.sub.2).sub.1-n (RO.sub.1.5).sub.n ].sub.1-k M.sub.k, or [Ln.sub.x Zr.sub.1-x O.sub.2-0.5x ].sub.1-k M.sub.k wherein FO.sub.2 is a fluorite-type oxide; RO represents an alkaline earth oxide; RO.sub.1.5 is a Group IIIB or rare earth oxide; Ln is a rare earth element having an atomic number from 57 to 65 or mixtures thereof; M is a transition metal or a mixture of transition metals; n is a number having a value from 0.0 to 0.35; k is a number having a value from 0.0 to about 0.5; and x is a number having a value from about 0.45 to about 0.55.

  6. Effect of Ethanol, Sulfur Dioxide and Glucose on the Growth of Wine Spoilage Yeasts Using Response Surface Methodology

    PubMed Central

    Chandra, Mahesh; Oro, Inês; Ferreira-Dias, Suzana; Malfeito-Ferreira, Manuel

    2015-01-01

    Response surface methodology (RSM) was used to study the effect of three factors, sulfur dioxide, ethanol and glucose, on the growth of wine spoilage yeast species, Zygosaccharomyces bailii, Schizosaccharomyces pombe, Saccharomycodes ludwigii and Saccharomyces cerevisiae. Seventeen central composite rotatable design (CCRD) trials were designed for each test yeast using realistic concentrations of the factors (variables) in premium red wine. Polynomial regression equations were fitted to experimental data points, and the growth inhibitory conditions of these three variables were determined. The overall results showed Sa. ludwigii as the most resistant species growing under high ethanol/free sulfur dioxide concentrations, i.e., 15% (v/v)/20 mg L-1, 14% (v/v)/32 mg L-1 and 12.5% (v/v)/40 mg L-1, whereas other yeasts did not survive under the same levels of ethanol/free sulfur dioxide concentrations. The inhibitory effect of ethanol was primarily observed during longer incubation periods, compared with sulfur dioxide, which showed an immediate effect. In some CCRD trials, Sa. ludwigii and S. cerevisiae showed growth recovery after a short death period under the exposure of 20–32 mg L-1 sulfur dioxide in the presence of 11% (v/v) or more ethanol. However, Sc. pombe and Z. bailii did not show such growth recovery under similar conditions. Up to 10 g L-1 of glucose did not prevent cell death under the sulfur dioxide or ethanol stress. This observation demonstrates that the sugar levels commonly used in wine to sweeten the mouthfeel do not increase wine susceptibility to spoilage yeasts, contrary to the anecdotal evidence. PMID:26107389

  7. Future Sulfur Dioxide Emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Steven J.; Pitcher, Hugh M.; Wigley, Tom M.

    2005-12-01

    The importance of sulfur dioxide emissions for climate change is now established, although substantial uncertainties remain. This paper presents projections for future sulfur dioxide emissions using the MiniCAM integrated assessment model. A new income-based parameterization for future sulfur dioxide emissions controls is developed based on purchasing power parity (PPP) income estimates and historical trends related to the implementation of sulfur emissions limitations. This parameterization is then used to produce sulfur dioxide emissions trajectories for the set of scenarios developed for the Special Report on Emission Scenarios (SRES). We use the SRES methodology to produce harmonized SRES scenarios using the latestmore » version of the MiniCAM model. The implications, and requirements, for IA modeling of sulfur dioxide emissions are discussed. We find that sulfur emissions eventually decline over the next century under a wide set of assumptions. These emission reductions result from a combination of emission controls, the adoption of advanced electric technologies, and a shift away from the direct end use of coal with increasing income levels. Only under a scenario where incomes in developing regions increase slowly do global emission levels remain at close to present levels over the next century. Under a climate policy that limits emissions of carbon dioxide, sulfur dioxide emissions fall in a relatively narrow range. In all cases, the relative climatic effect of sulfur dioxide emissions decreases dramatically to a point where sulfur dioxide is only a minor component of climate forcing by the end of the century. Ecological effects of sulfur dioxide, however, could be significant in some developing regions for many decades to come.« less

  8. Dramatic reduction of sulfur dioxide emission in Northeastern China in the last decade

    NASA Astrophysics Data System (ADS)

    Yuan, J.

    2017-12-01

    Analysis of spatial and temporal variations of sulfur dioxide concentration in planetary boundary layer were conducted. The data were generated by NASA satellite daily from October of 2004 and were obtained through NASA Giovanni. The global monthly mean spatial distribution of sulfur dioxide showed several hot spots including: several spots on some islands in the Pacific Ocean, several spots in central America, and central Africa. Most of these hot spots of sulfur dioxide are related to known active volcanos. The biggest hot spot of sulfur dioxide were observed in Northeastern China. While high concentration sulfur dioxide was still observed in Northeastern China in 2017. The area averaged concentration of sulfur dioxide declined dramatically since its peak in 2008. This temporal trend indicates that sulfur reduction effort has been effective in the last decade or post 2008 financial crisis recovery lead an industry less sulfur dioxide emission.

  9. Distribution of Sulfur Dioxide Frost on Io

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Sulfur dioxide, normally a gas at room temperatures, is known to exist on Io's surface as a frost, condensing there from the hot gases emanating from the Io volcanoes. However, the deposition patterns and relation of the frost distribution to the volcanic activity is unknown, since prior measurements lacked the spatial resolution to accurately map the surface frost.

    The Galileo Near Infrared Mapping Spectrometer (NIMS) obtained relatively high spatial and spectral resolution images during the C3 orbit, and the characteristic infrared absorptions of sulfur dioxide frost appearing in the spectra were used to produce the SO2 frost map shown on the right. The comparison image on the left (from 1979 Voyager measurements) shows the same view and indicates the surface brightness as seen in visible light.

    The frost map shows maximum SO2 concentration as white, lesser amounts as blue coloration, and areas with little or no SO2 as black. The resolution of this map is about 120 km (75 miles), which spans the latitude range 120 W to 270 W.

    It is interesting to compare this frost distribution with regions of volcanic activity. Volcanic hotspots identified from NIMS and SSI images occur in many of the dark - low SO2 - areas, a reasonable finding since sulfur dioxide would not condense on such hot regions. The Pele region (to the lower left), N. Colchis hot spots (upper center) and S. Volund (upper right) are good examples of hot spot areas depleted in sulfur dioxide. Much of the rest of this hemisphere of Io has varying amounts of sulfur dioxide present. The most sulfur dioxide-rich area is Colchis Regio, the white area to the right of center.

    Of particular interest is the dark area to the south of Colchis Regio. From the study of other NIMS images, it is seen that this region does not have any large, obvious hotspots. However, it is depleted in sulfur dioxide.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science

  10. Sulfur Dioxide Designations

    EPA Pesticide Factsheets

    This area provides information on the process EPA, the states, and the tribes follow to designate areas as attainment (meeting) or nonattainment (not meeting) the sulfur dioxide air quality standards.

  11. Low Quality Natural Gas Sulfur Removal and Recovery CNG Claus Sulfur Recovery Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klint, V.W.; Dale, P.R.; Stephenson, C.

    1997-10-01

    Increased use of natural gas (methane) in the domestic energy market will force the development of large non-producing gas reserves now considered to be low quality. Large reserves of low quality natural gas (LQNG) contaminated with hydrogen sulfide (H{sub 2}S), carbon dioxide (CO{sub 2}) and nitrogen (N) are available but not suitable for treatment using current conventional gas treating methods due to economic and environmental constraints. A group of three technologies have been integrated to allow for processing of these LQNG reserves; the Controlled Freeze Zone (CFZ) process for hydrocarbon / acid gas separation; the Triple Point Crystallizer (TPC) processmore » for H{sub 2}S / C0{sub 2} separation and the CNG Claus process for recovery of elemental sulfur from H{sub 2}S. The combined CFZ/TPC/CNG Claus group of processes is one program aimed at developing an alternative gas treating technology which is both economically and environmentally suitable for developing these low quality natural gas reserves. The CFZ/TPC/CNG Claus process is capable of treating low quality natural gas containing >10% C0{sub 2} and measurable levels of H{sub 2}S and N{sub 2} to pipeline specifications. The integrated CFZ / CNG Claus Process or the stand-alone CNG Claus Process has a number of attractive features for treating LQNG. The processes are capable of treating raw gas with a variety of trace contaminant components. The processes can also accommodate large changes in raw gas composition and flow rates. The combined processes are capable of achieving virtually undetectable levels of H{sub 2}S and significantly less than 2% CO in the product methane. The separation processes operate at pressure and deliver a high pressure (ca. 100 psia) acid gas (H{sub 2}S) stream for processing in the CNG Claus unit. This allows for substantial reductions in plant vessel size as compared to conventional Claus / Tail gas treating technologies. A close integration of the components of the CNG

  12. 40 CFR 60.642 - Standards for sulfur dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standards for sulfur dioxide. 60.642... Gas Processing: SO2 Emissions § 60.642 Standards for sulfur dioxide. (a) During the initial... reduction efficiency (Zi) to be determined from table 1 based on the sulfur feed rate (X) and the sulfur...

  13. 40 CFR 60.642 - Standards for sulfur dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standards for sulfur dioxide. 60.642... Gas Processing: SO2 Emissions § 60.642 Standards for sulfur dioxide. (a) During the initial... reduction efficiency (Zi) to be determined from table 1 based on the sulfur feed rate (X) and the sulfur...

  14. 40 CFR 60.642 - Standards for sulfur dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for sulfur dioxide. 60.642... Gas Processing: SO2 Emissions § 60.642 Standards for sulfur dioxide. (a) During the initial... reduction efficiency (Zi) to be determined from table 1 based on the sulfur feed rate (X) and the sulfur...

  15. 75 FR 81471 - Approval and Promulgation of Air Quality Implementation Plans; Minnesota; Sulfur Dioxide SIP...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-28

    ... Promulgation of Air Quality Implementation Plans; Minnesota; Sulfur Dioxide SIP Revision for Marathon Petroleum... October 6, 2009, Minnesota submitted a request for a sulfur dioxide State Implementation Plan revision for... installation of new boilers and a sulfur recovery unit and changes to three existing heaters. Overall, this...

  16. 21 CFR 182.3862 - Sulfur dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sulfur dioxide. 182.3862 Section 182.3862 Food and... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Chemical Preservatives § 182.3862 Sulfur dioxide. (a) Product. Sulfur dioxide. (b) [Reserved] (c) Limitations, restrictions, or explanation. This...

  17. 21 CFR 182.3862 - Sulfur dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sulfur dioxide. 182.3862 Section 182.3862 Food and... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Chemical Preservatives § 182.3862 Sulfur dioxide. (a) Product. Sulfur dioxide. (b) [Reserved] (c) Limitations, restrictions, or explanation. This...

  18. 21 CFR 182.3862 - Sulfur dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sulfur dioxide. 182.3862 Section 182.3862 Food and... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Chemical Preservatives § 182.3862 Sulfur dioxide. (a) Product. Sulfur dioxide. (b) [Reserved] (c) Limitations, restrictions, or explanation. This...

  19. 21 CFR 182.3862 - Sulfur dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sulfur dioxide. 182.3862 Section 182.3862 Food and... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Chemical Preservatives § 182.3862 Sulfur dioxide. (a) Product. Sulfur dioxide. (b) [Reserved] (c) Limitations, restrictions, or explanation. This...

  20. 21 CFR 582.3862 - Sulfur dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sulfur dioxide. 582.3862 Section 582.3862 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... Sulfur dioxide. (a) Product. Sulfur dioxide. (b) [Reserved] (c) Limitations, restrictions, or explanation...

  1. 21 CFR 582.3862 - Sulfur dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sulfur dioxide. 582.3862 Section 582.3862 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... Sulfur dioxide. (a) Product. Sulfur dioxide. (b) [Reserved] (c) Limitations, restrictions, or explanation...

  2. 21 CFR 582.3862 - Sulfur dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sulfur dioxide. 582.3862 Section 582.3862 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... Sulfur dioxide. (a) Product. Sulfur dioxide. (b) [Reserved] (c) Limitations, restrictions, or explanation...

  3. 21 CFR 582.3862 - Sulfur dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sulfur dioxide. 582.3862 Section 582.3862 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... Sulfur dioxide. (a) Product. Sulfur dioxide. (b) [Reserved] (c) Limitations, restrictions, or explanation...

  4. 21 CFR 582.3862 - Sulfur dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sulfur dioxide. 582.3862 Section 582.3862 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... Sulfur dioxide. (a) Product. Sulfur dioxide. (b) [Reserved] (c) Limitations, restrictions, or explanation...

  5. 21 CFR 182.3862 - Sulfur dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sulfur dioxide. 182.3862 Section 182.3862 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Chemical Preservatives § 182.3862 Sulfur dioxide. (a) Product. Sulfur dioxide...

  6. 46 CFR 151.50-84 - Sulfur dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Sulfur dioxide. 151.50-84 Section 151.50-84 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-84 Sulfur dioxide. (a) Sulfur... respiratory protective device that protects the wearer against sulfur dioxide vapors and provides respiratory...

  7. 46 CFR 151.50-84 - Sulfur dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Sulfur dioxide. 151.50-84 Section 151.50-84 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-84 Sulfur dioxide. (a) Sulfur... respiratory protective device that protects the wearer against sulfur dioxide vapors and provides respiratory...

  8. 46 CFR 151.50-84 - Sulfur dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Sulfur dioxide. 151.50-84 Section 151.50-84 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-84 Sulfur dioxide. (a) Sulfur... respiratory protective device that protects the wearer against sulfur dioxide vapors and provides respiratory...

  9. 46 CFR 151.50-84 - Sulfur dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Sulfur dioxide. 151.50-84 Section 151.50-84 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-84 Sulfur dioxide. (a) Sulfur... respiratory protective device that protects the wearer against sulfur dioxide vapors and provides respiratory...

  10. Antibotulinal efficacy of sulfur dioxide in meat.

    PubMed Central

    Tompkin, R B; Christiansen, L N; Shaparis, A B

    1980-01-01

    The addition of sodium metabisulfite as a source of sulfur dioxide delayed botulinal outgrowth in perishable canned comminuted pork when it was temperature abused at 27 degree C. The degree of inhibition was directly related to the level of sulfur dioxide. Levels greater than 100 microgram of sulfur dioxide per g were necessary to achieve significant inhibition when a target level of 100 botulinal spores per g was used. Sodium nitrite partially reduced the efficacy of the sulfur dioxide. Sulfur dioxide offers a new option for the control of botulinal outgrowth in cured or noncured meat and poultry products. PMID:6996613

  11. The removal of sulfur dioxide from flue gases

    PubMed Central

    Kettner, Helmut

    1965-01-01

    The growth of industrialization makes it imperative to reduce the amounts of sulfur dioxide emitted into the atmosphere. This article describes various processes for cleaning flue gases, and gives details of new methods being investigated. Wet scrubbing with water, though widely practised, has many disadvantages. Scrubbing with zinc oxide, feasible in zinc works, is more satisfactory. Dry methods use a solid absorbent; they have the advantage of a high emission temperature. Other methods are based on the addition to the fuel or the flue gases of substances such as activated metal oxides, which react with the sulfur to form compounds less harmful than sulfur dioxide. Also being investigated are a two-stage combustion system, in which the sulfur dioxide is removed in the first stage, and the injection of activated powdered dolomite into burning fuel; the resulting sulfates being removed by electrostatic precipitation. A wet catalysis process has recently been developed. Most of the cleaning processes are not yet technically mature, but first results show good efficiency and relatively low cost. PMID:14315714

  12. Influence of cell temperature on sulfur dioxide contamination in proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Zhai, Y.; Bender, G.; Bethune, K.; Rocheleau, R.

    2014-02-01

    The effects of temperature on sulfur dioxide (SO2) contamination in PEMFCs are investigated by operating single cells with 2 ppm SO2 in the cathode at different temperatures. Cell performance response shows that voltage degradation was delayed and appears a transition of multiple processes at low temperatures; a similar performance loss is observed when performances reached steady state. The restored performance from the reversible and the irreversible degradations highly depends on temperature. At low temperature, the performance recovery is only negligible with neat air operation (self-recovery), while full recovery is observed after cyclic voltammetry (CV) scanning. As temperature increased, so did the self-recovery performance. However, the total recovery performance decreased. Electrochemical impedance spectroscopy analysis indicates that the potential-dependent poisoning process was delayed at low temperature, and the removal of the sulfur species from Pt/C was inhibited during the self-recovery. Water balance analysis implies that the delay could be attributed to the effect of liquid water scavenging and the mass transport of SO2 in the membrane electrode assemblies. The CV analysis confirms that the decomposition/desorption of the sulfur adsorbates was inhibited and indicates that the SO2 crossover from the cathode to the anode side was also mitigated at low temperature.

  13. 40 CFR 50.4 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... standards for sulfur oxides (sulfur dioxide). 50.4 Section 50.4 Protection of Environment ENVIRONMENTAL....4 National primary ambient air quality standards for sulfur oxides (sulfur dioxide). (a) The level...). (c) Sulfur oxides shall be measured in the ambient air as sulfur dioxide by the reference method...

  14. 40 CFR 50.4 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... standards for sulfur oxides (sulfur dioxide). 50.4 Section 50.4 Protection of Environment ENVIRONMENTAL....4 National primary ambient air quality standards for sulfur oxides (sulfur dioxide). (a) The level...). (c) Sulfur oxides shall be measured in the ambient air as sulfur dioxide by the reference method...

  15. 40 CFR 50.4 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... standards for sulfur oxides (sulfur dioxide). 50.4 Section 50.4 Protection of Environment ENVIRONMENTAL....4 National primary ambient air quality standards for sulfur oxides (sulfur dioxide). (a) The level...). (c) Sulfur oxides shall be measured in the ambient air as sulfur dioxide by the reference method...

  16. 40 CFR 50.4 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... standards for sulfur oxides (sulfur dioxide). 50.4 Section 50.4 Protection of Environment ENVIRONMENTAL....4 National primary ambient air quality standards for sulfur oxides (sulfur dioxide). (a) The level...). (c) Sulfur oxides shall be measured in the ambient air as sulfur dioxide by the reference method...

  17. [Sulfur dioxide limit standard and residues in Chinese medicinal materials].

    PubMed

    Kang, Chuan-Zhi; Yang, Wan-Zhen; Mo, Ge; Zhou, Li; Jiang, Jing-Yi; Lv, Chao-Geng; Wang, Sheng; Zhou, Tao; Yang, Ye; Guo, Lan-Ping

    2018-01-01

    The traditional sulfur fumigation processing method has been widely used in the initial processing and storage of traditional Chinese medicinal materials due to its economy, efficiency, convenience, high operability and effect on mold and insect prevention. However, excessive sulfur fumigation of traditional Chinese medicinal materials would lead to the changes in chemical compositions, and even endanger human health. This study showed that traditional Chinese medicinal materials were sulfur fumigated directly after being harvested for quick drying, or fumigated after being weted in the storage process for preventing mold and insects. We found that the sulfur dioxide limits for traditional Chinese medicinal materials were stricter than those for foods. Based on the existing limit standards, we obtained the data of sulfur dioxide residues for 35 types of traditional Chinese medicinal materials in a total of 862 batches. According to the limit standard in the Chinese Pharmacopoeia (150, 400 mg·kg⁻¹), the average over-standard rate of sulfur dioxide was as high as 52.43%, but it was reduced to 29.47% if calculated based on the limit for vegetable additive standard (500 mg·kg⁻¹). Sulfur fumigation issue shall be considered correctly: sulfur dioxide is a type of low toxic substance and less dangerous than aflatoxin and other highly toxic substances, and a small amount of residue would not increase the toxicity of traditional Chinese medicinal materials. However, sulfur fumigation might change the content of chemical substances and affect the quality of traditional Chinese medicinal materials. Furthermore, the exposure hazards of toxic substances are comprehensively correlated with exposure cycle, exposure frequency, and application method. In conclusion, it is suggested to strengthen the studies on the limit standard of traditional Chinese medicinal materials, formulate practical and feasible limit standard for sulfur dioxide residues in traditional Chinese

  18. 40 CFR 52.2575 - Control strategy: Sulfur dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 5 2013-07-01 2013-07-01 false Control strategy: Sulfur dioxide. 52... strategy: Sulfur dioxide. (a) Part D—Approval—With the exceptions set forth in this subpart, the Administrator approved the Wisconsin sulfur dioxide control plan. (1) Part D—No action—USEPA takes no action on...

  19. 40 CFR 52.2575 - Control strategy: Sulfur dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Control strategy: Sulfur dioxide. 52... strategy: Sulfur dioxide. (a) Part D—Approval—With the exceptions set forth in this subpart, the Administrator approved the Wisconsin sulfur dioxide control plan. (1) Part D—No action—USEPA takes no action on...

  20. 40 CFR 52.2575 - Control strategy: Sulfur dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 5 2014-07-01 2014-07-01 false Control strategy: Sulfur dioxide. 52... strategy: Sulfur dioxide. (a) Part D—Approval—With the exceptions set forth in this subpart, the Administrator approved the Wisconsin sulfur dioxide control plan. (1) Part D—No action—USEPA takes no action on...

  1. 40 CFR 52.2575 - Control strategy: Sulfur dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Sulfur dioxide. 52... strategy: Sulfur dioxide. (a) Part D—Approval—With the exceptions set forth in this subpart, the Administrator approved the Wisconsin sulfur dioxide control plan. (1) Part D—No action—USEPA takes no action on...

  2. 40 CFR 52.2575 - Control strategy: Sulfur dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 5 2012-07-01 2012-07-01 false Control strategy: Sulfur dioxide. 52... strategy: Sulfur dioxide. (a) Part D—Approval—With the exceptions set forth in this subpart, the Administrator approved the Wisconsin sulfur dioxide control plan. (1) Part D—No action—USEPA takes no action on...

  3. 40 CFR 60.183 - Standard for sulfur dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for sulfur dioxide. 60.183... Smelters § 60.183 Standard for sulfur dioxide. (a) On and after the date on which the performance test... furnace, or converter gases which contain sulfur dioxide in excess of 0.065 percent by volume. (b...

  4. 40 CFR 60.183 - Standard for sulfur dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for sulfur dioxide. 60.183... Smelters § 60.183 Standard for sulfur dioxide. (a) On and after the date on which the performance test... furnace, or converter gases which contain sulfur dioxide in excess of 0.065 percent by volume. (b...

  5. 40 CFR 60.183 - Standard for sulfur dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for sulfur dioxide. 60.183... Smelters § 60.183 Standard for sulfur dioxide. (a) On and after the date on which the performance test... furnace, or converter gases which contain sulfur dioxide in excess of 0.065 percent by volume. (b...

  6. 40 CFR 60.183 - Standard for sulfur dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for sulfur dioxide. 60.183... Smelters § 60.183 Standard for sulfur dioxide. (a) On and after the date on which the performance test... furnace, or converter gases which contain sulfur dioxide in excess of 0.065 percent by volume. (b...

  7. 40 CFR 60.183 - Standard for sulfur dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for sulfur dioxide. 60.183... Smelters § 60.183 Standard for sulfur dioxide. (a) On and after the date on which the performance test... furnace, or converter gases which contain sulfur dioxide in excess of 0.065 percent by volume. (b...

  8. 40 CFR 60.82 - Standard for sulfur dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for sulfur dioxide. 60.82... Plants § 60.82 Standard for sulfur dioxide. (a) On and after the date on which the performance test... contain sulfur dioxide in excess of 2 kg per metric ton of acid produced (4 lb per ton), the production...

  9. 40 CFR 60.163 - Standard for sulfur dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for sulfur dioxide. 60.163... Smelters § 60.163 Standard for sulfur dioxide. (a) On and after the date on which the performance test... converter any gases which contain sulfur dioxide in excess of 0.065 percent by volume, except as provided in...

  10. 40 CFR 60.163 - Standard for sulfur dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for sulfur dioxide. 60.163... Smelters § 60.163 Standard for sulfur dioxide. (a) On and after the date on which the performance test... converter any gases which contain sulfur dioxide in excess of 0.065 percent by volume, except as provided in...

  11. 40 CFR 60.333 - Standard for sulfur dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for sulfur dioxide. 60.333... Turbines § 60.333 Standard for sulfur dioxide. On and after the date on which the performance test required... stationary gas turbine any gases which contain sulfur dioxide in excess of 0.015 percent by volume at 15...

  12. 40 CFR 60.333 - Standard for sulfur dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for sulfur dioxide. 60.333... Turbines § 60.333 Standard for sulfur dioxide. On and after the date on which the performance test required... stationary gas turbine any gases which contain sulfur dioxide in excess of 0.015 percent by volume at 15...

  13. 40 CFR 60.163 - Standard for sulfur dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for sulfur dioxide. 60.163... Smelters § 60.163 Standard for sulfur dioxide. (a) On and after the date on which the performance test... converter any gases which contain sulfur dioxide in excess of 0.065 percent by volume, except as provided in...

  14. 40 CFR 60.333 - Standard for sulfur dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for sulfur dioxide. 60.333... Turbines § 60.333 Standard for sulfur dioxide. On and after the date on which the performance test required... stationary gas turbine any gases which contain sulfur dioxide in excess of 0.015 percent by volume at 15...

  15. 40 CFR 60.82 - Standard for sulfur dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for sulfur dioxide. 60.82... Plants § 60.82 Standard for sulfur dioxide. (a) On and after the date on which the performance test... contain sulfur dioxide in excess of 2 kg per metric ton of acid produced (4 lb per ton), the production...

  16. 40 CFR 60.163 - Standard for sulfur dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for sulfur dioxide. 60.163... Smelters § 60.163 Standard for sulfur dioxide. (a) On and after the date on which the performance test... converter any gases which contain sulfur dioxide in excess of 0.065 percent by volume, except as provided in...

  17. 40 CFR 60.333 - Standard for sulfur dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for sulfur dioxide. 60.333... Turbines § 60.333 Standard for sulfur dioxide. On and after the date on which the performance test required... stationary gas turbine any gases which contain sulfur dioxide in excess of 0.015 percent by volume at 15...

  18. 40 CFR 60.163 - Standard for sulfur dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for sulfur dioxide. 60.163... Smelters § 60.163 Standard for sulfur dioxide. (a) On and after the date on which the performance test... converter any gases which contain sulfur dioxide in excess of 0.065 percent by volume, except as provided in...

  19. 40 CFR 60.82 - Standard for sulfur dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for sulfur dioxide. 60.82... Plants § 60.82 Standard for sulfur dioxide. (a) On and after the date on which the performance test... contain sulfur dioxide in excess of 2 kg per metric ton of acid produced (4 lb per ton), the production...

  20. 40 CFR 60.333 - Standard for sulfur dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for sulfur dioxide. 60.333... Turbines § 60.333 Standard for sulfur dioxide. On and after the date on which the performance test required... stationary gas turbine any gases which contain sulfur dioxide in excess of 0.015 percent by volume at 15...

  1. 40 CFR 60.82 - Standard for sulfur dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for sulfur dioxide. 60.82... Plants § 60.82 Standard for sulfur dioxide. (a) On and after the date on which the performance test... contain sulfur dioxide in excess of 2 kg per metric ton of acid produced (4 lb per ton), the production...

  2. 40 CFR 60.82 - Standard for sulfur dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for sulfur dioxide. 60.82... Plants § 60.82 Standard for sulfur dioxide. (a) On and after the date on which the performance test... contain sulfur dioxide in excess of 2 kg per metric ton of acid produced (4 lb per ton), the production...

  3. 40 CFR 50.5 - National secondary ambient air quality standard for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... standard for sulfur oxides (sulfur dioxide). 50.5 Section 50.5 Protection of Environment ENVIRONMENTAL....5 National secondary ambient air quality standard for sulfur oxides (sulfur dioxide). (a) The level... than 0.05 ppm shall be rounded up). (b) Sulfur oxides shall be measured in the ambient air as sulfur...

  4. 40 CFR 50.5 - National secondary ambient air quality standard for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... standard for sulfur oxides (sulfur dioxide). 50.5 Section 50.5 Protection of Environment ENVIRONMENTAL....5 National secondary ambient air quality standard for sulfur oxides (sulfur dioxide). (a) The level... than 0.05 ppm shall be rounded up). (b) Sulfur oxides shall be measured in the ambient air as sulfur...

  5. 40 CFR 50.5 - National secondary ambient air quality standard for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... standard for sulfur oxides (sulfur dioxide). 50.5 Section 50.5 Protection of Environment ENVIRONMENTAL....5 National secondary ambient air quality standard for sulfur oxides (sulfur dioxide). (a) The level... than 0.05 ppm shall be rounded up). (b) Sulfur oxides shall be measured in the ambient air as sulfur...

  6. 40 CFR 180.444 - Sulfur dioxide; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Sulfur dioxide; tolerances for... § 180.444 Sulfur dioxide; tolerances for residues. A tolerance is established as follows for sulfite residues of the fungicide sulfur dioxide (determined as (SO2)) in or on the following raw agricultural...

  7. 40 CFR 180.444 - Sulfur dioxide; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Sulfur dioxide; tolerances for... § 180.444 Sulfur dioxide; tolerances for residues. A tolerance is established as follows for sulfite residues of the fungicide sulfur dioxide (determined as (SO2)) in or on the following raw agricultural...

  8. 40 CFR 52.724 - Control strategy: Sulfur dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Control strategy: Sulfur dioxide. 52... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Illinois> § 52.724 Control strategy: Sulfur... Board necessary to insure attainment and maintenance of the sulfur dioxide standard, and the...

  9. 40 CFR 52.724 - Control strategy: Sulfur dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Control strategy: Sulfur dioxide. 52... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Illinois> § 52.724 Control strategy: Sulfur... Board necessary to insure attainment and maintenance of the sulfur dioxide standard, and the...

  10. 40 CFR 52.724 - Control strategy: Sulfur dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 3 2012-07-01 2012-07-01 false Control strategy: Sulfur dioxide. 52... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Illinois> § 52.724 Control strategy: Sulfur... Board necessary to insure attainment and maintenance of the sulfur dioxide standard, and the...

  11. 40 CFR 52.724 - Control strategy: Sulfur dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Control strategy: Sulfur dioxide. 52... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Illinois> § 52.724 Control strategy: Sulfur... Board necessary to insure attainment and maintenance of the sulfur dioxide standard, and the...

  12. 40 CFR 52.724 - Control strategy: Sulfur dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Control strategy: Sulfur dioxide. 52... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Illinois> § 52.724 Control strategy: Sulfur... Board necessary to insure attainment and maintenance of the sulfur dioxide standard, and the...

  13. 40 CFR 180.444 - Sulfur dioxide; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Sulfur dioxide; tolerances for... § 180.444 Sulfur dioxide; tolerances for residues. (a) General. A tolerance is established as follows for sulfite residues of the fungicide sulfur dioxide (determined as (SO2)) in or on the following raw...

  14. 40 CFR 180.444 - Sulfur dioxide; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Sulfur dioxide; tolerances for... § 180.444 Sulfur dioxide; tolerances for residues. (a) General. A tolerance is established as follows for sulfite residues of the fungicide sulfur dioxide (determined as (SO2)) in or on the following raw...

  15. 40 CFR 180.444 - Sulfur dioxide; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Sulfur dioxide; tolerances for... § 180.444 Sulfur dioxide; tolerances for residues. (a) General. A tolerance is established as follows for sulfite residues of the fungicide sulfur dioxide (determined as (SO2)) in or on the following raw...

  16. 40 CFR 50.17 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... standards for sulfur oxides (sulfur dioxide). 50.17 Section 50.17 Protection of Environment ENVIRONMENTAL....17 National primary ambient air quality standards for sulfur oxides (sulfur dioxide). (a) The level of the national primary 1-hour annual ambient air quality standard for oxides of sulfur is 75 parts...

  17. 40 CFR 50.17 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... standards for sulfur oxides (sulfur dioxide). 50.17 Section 50.17 Protection of Environment ENVIRONMENTAL....17 National primary ambient air quality standards for sulfur oxides (sulfur dioxide). (a) The level of the national primary 1-hour annual ambient air quality standard for oxides of sulfur is 75 parts...

  18. 40 CFR 50.17 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... standards for sulfur oxides (sulfur dioxide). 50.17 Section 50.17 Protection of Environment ENVIRONMENTAL....17 National primary ambient air quality standards for sulfur oxides (sulfur dioxide). (a) The level of the national primary 1-hour annual ambient air quality standard for oxides of sulfur is 75 parts...

  19. 40 CFR 50.17 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... standards for sulfur oxides (sulfur dioxide). 50.17 Section 50.17 Protection of Environment ENVIRONMENTAL....17 National primary ambient air quality standards for sulfur oxides (sulfur dioxide). (a) The level of the national primary 1-hour annual ambient air quality standard for oxides of sulfur is 75 parts...

  20. 40 CFR 50.17 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... standards for sulfur oxides (sulfur dioxide). 50.17 Section 50.17 Protection of Environment ENVIRONMENTAL....17 National primary ambient air quality standards for sulfur oxides (sulfur dioxide). (a) The level of the national primary 1-hour annual ambient air quality standard for oxides of sulfur is 75 parts...

  1. 40 CFR 50.4 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... standards for sulfur oxides (sulfur dioxide). 50.4 Section 50.4 Protection of Environment ENVIRONMENTAL....4 National primary ambient air quality standards for sulfur oxides (sulfur dioxide). Link to an... to or greater than 0.005 ppm shall be rounded up). (c) Sulfur oxides shall be measured in the ambient...

  2. Copper mercaptides as sulfur dioxide indicators

    DOEpatents

    Eller, Phillip G.; Kubas, Gregory J.

    1979-01-01

    Organophosphine copper(I) mercaptide complexes are useful as convenient and semiquantitative visual sulfur dioxide gas indicators. The air-stable complexes form 1:1 adducts in the presence of low concentrations of sulfur dioxide gas, with an associated color change from nearly colorless to yellow-orange. The mercaptides are made by mixing stoichiometric amounts of the appropriate copper(I) mercaptide and phosphine in an inert organic solvent.

  3. Sulfur Dioxide Emissions from Congo Volcanoes

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Earth Probe Total Ozone Mapping Spectrometer (TOMS) detected a sulfur dioxide cloud associated with the January 2002 eruption of Nyiragongo as it flew over the region at around 11 a.m. local time (0900 UTC) on January 17. The sensor detected no significant amounts of ash in the eruption cloud. At the time of the TOMS overpass the cloud extended up to roughly 200 km (124 miles) northwest of Nyiragongo and was still attached to the volcano. This observation is consistent with nearly coincident MODIS imagery which shows an opaque cloud of gas and steam in the same location. The TOMS measurements show that the amount of sulfur dioxide in the Nyiragongo's plume range from about 10 to 30 kilotons. Please note that TOMS mass retrievals are dependent on the altitude of the cloud and may be adjusted as more information becomes available. Since the cloud may still have been developing at the time of the TOMS overpass, the final sulfur dioxide burden may have been greater. Wind trajectory data (courtesy of Leslie Lait, SSAI) suggest that part of the cloud may have reached at least mid- to upper-tropospheric altitudes of up to 12 km (7 miles), but scientists suspect no significant stratospheric injection of sulfur dioxide as a result of this eruption since the gas was not visible over the Democratic Republic of the Congo region in subsequent TOMS data acquired on January 18. Production of sulfur dioxide without a significant ash cloud is commonly observed during effusive eruptions such as the Nyiragongo event. Although dense low-level ash may be produced during such eruptions, these particulates usually fall out fairly quickly and elude detection by satellite. The size of the January 17 Nyiragongo cloud and the estimated sulfur dioxide tonnage are fairly modest, and at least an order of magnitude smaller than values typically measured by TOMS during eruptions of nearby Nyamuragira during its frequent outbursts (e.g., on February 6, 2001). Sulfur dioxide column amounts

  4. Vanadium doped tin dioxide as a novel sulfur dioxide sensor.

    PubMed

    Das, S; Chakraborty, S; Parkash, O; Kumar, D; Bandyopadhyay, S; Samudrala, S K; Sen, A; Maiti, H S

    2008-04-15

    Considering the short-term exposure limit of SO2 to be 5 ppm, we first time report that semiconductor sensors based on vanadium doped SnO2 can be used for SO2 leak detection because of their good sensitivity towards SO2 at concentrations down to 5 ppm. Such sensors are quite selective in presence of other gases like carbon monoxide, methane and butane. The high sensitivity of vanadium doped tin dioxide towards SO2 may be understood by considering the oxidation of sulfur dioxide to sulfur trioxide on SnO2 surface through redox cycles of vanadium-sulfur-oxygen adsorbed species.

  5. 40 CFR 60.173 - Standard for sulfur dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for sulfur dioxide. 60.173... Smelters § 60.173 Standard for sulfur dioxide. (a) On and after the date on which the performance test... subpart shall cause to be discharged into the atmosphere from any roaster any gases which contain sulfur...

  6. 40 CFR 60.173 - Standard for sulfur dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for sulfur dioxide. 60.173... Smelters § 60.173 Standard for sulfur dioxide. (a) On and after the date on which the performance test... subpart shall cause to be discharged into the atmosphere from any roaster any gases which contain sulfur...

  7. 40 CFR 60.173 - Standard for sulfur dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for sulfur dioxide. 60.173... Smelters § 60.173 Standard for sulfur dioxide. (a) On and after the date on which the performance test... subpart shall cause to be discharged into the atmosphere from any roaster any gases which contain sulfur...

  8. 40 CFR 60.173 - Standard for sulfur dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for sulfur dioxide. 60.173... Smelters § 60.173 Standard for sulfur dioxide. (a) On and after the date on which the performance test... subpart shall cause to be discharged into the atmosphere from any roaster any gases which contain sulfur...

  9. REMOTE SENSING OF SULFUR DIOXIDE EFFECTS ON VEGETATION: SPECTRORADIOMETRY

    EPA Science Inventory

    Remote measurements of spectral reflectance were made in a laboratory to study sulfur dioxide (SO2) effects on the foliage of soybean (Glycine max (L.) Merr.) and winter wheat (Triticum aestivum) plants. The relationship between spectral reflectance and foliar injury from SO2 was...

  10. 40 CFR 60.642 - Standards for sulfur dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards for sulfur dioxide. 60.642... After January 20, 1984, and on or Before August 23, 2011 § 60.642 Standards for sulfur dioxide. (a... minimum, an SO2 emission reduction efficiency (Zi) to be determined from table 1 based on the sulfur feed...

  11. 40 CFR 60.642 - Standards for sulfur dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for sulfur dioxide. 60.642... After January 20, 1984, and on or Before August 23, 2011 § 60.642 Standards for sulfur dioxide. (a... minimum, an SO2 emission reduction efficiency (Zi) to be determined from table 1 based on the sulfur feed...

  12. Terpolymerization of ethylene, sulfur dioxide and carbon monoxide

    DOEpatents

    Johnson, Richard; Steinberg, Meyer

    1981-01-01

    This invention relates to a high molecular weight terpolymer of ethylene, sulfur dioxide and carbon monoxide stable to 280.degree. C. and containing as little as 36 mol % ethylene and about 41-51 mol % sulfur dioxide; and to the method of producing said terpolymer by irradiation of a liquid and gaseous mixture of ethylene, sulfur dioxide and carbon monoxide by means of Co-60 gamma rays or an electron beam, at a temperature of about 10.degree.-50.degree. C., and at a pressure of about 140 to 680 atmospheres, to initiate polymerization.

  13. Process for sequestering carbon dioxide and sulfur dioxide

    DOEpatents

    Maroto-Valer, M Mercedes [State College, PA; Zhang, Yinzhi [State College, PA; Kuchta, Matthew E [State College, PA; Andresen, John M [State College, PA; Fauth, Dan J [Pittsburgh, PA

    2009-10-20

    A process for sequestering carbon dioxide, which includes reacting a silicate based material with an acid to form a suspension, and combining the suspension with carbon dioxide to create active carbonation of the silicate-based material, and thereafter producing a metal salt, silica and regenerating the acid in the liquid phase of the suspension.

  14. 40 CFR 52.2525 - Control strategy: Sulfur dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 5 2014-07-01 2014-07-01 false Control strategy: Sulfur dioxide. 52.2525 Section 52.2525 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... strategy: Sulfur dioxide. (a) [Reserved] (b) EPA approves the attainment demonstration State Implementation...

  15. 40 CFR 52.834 - Control strategy: Sulfur dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Control strategy: Sulfur dioxide. 52.834 Section 52.834 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Iowa § 52.834 Control strategy: Sulfur dioxide...

  16. 40 CFR 52.834 - Control strategy: Sulfur dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 3 2012-07-01 2012-07-01 false Control strategy: Sulfur dioxide. 52.834 Section 52.834 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Iowa § 52.834 Control strategy: Sulfur dioxide...

  17. 40 CFR 52.834 - Control strategy: Sulfur dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Control strategy: Sulfur dioxide. 52.834 Section 52.834 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Iowa § 52.834 Control strategy: Sulfur dioxide...

  18. 40 CFR 52.834 - Control strategy: Sulfur dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Control strategy: Sulfur dioxide. 52.834 Section 52.834 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Iowa § 52.834 Control strategy: Sulfur dioxide...

  19. 40 CFR 52.834 - Control strategy: Sulfur dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Control strategy: Sulfur dioxide. 52.834 Section 52.834 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Iowa § 52.834 Control strategy: Sulfur dioxide...

  20. Terpolymerization of ethylene, sulfur dioxide and carbon monoxide

    DOEpatents

    Johnson, R.; Steinberg, M.

    This invention relates to high molecular weight terpolymer of ethylene, sulfur dioxide and carbon monoxide stable to 280/sup 0/C and containing as little as 36 mo1% ethylene and about 41 to 51 mo1% sulfur dioxide, and to the method of producing said terpolymer by irradiation of a liquid and gaseous mixture of ethylene, sulfur dioxide and carbon monoxide by means of Co-60 gamma rays or an electron beam, at a temperature of about 10 to 50/sup 0/C, and at a pressure of about 140 to 680 atmospheres, to initiate polymerization.

  1. PHYSIOLOGY OF ECOTYPIC PLANT RESPONSE TO SULFUR DIOXIDE IN 'GERANIUM CAROLINIANUM' L

    EPA Science Inventory

    Populations of Geranium carolinianum, winter annual plant common in disturbed habitats vary in their folair response to sulfur dioxide and pollution resistance is characteristic of populations sampled from areas in which SO2 has been a prominent stress. The physiological basis of...

  2. 40 CFR 52.795 - Control strategy: Sulfur dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Control strategy: Sulfur dioxide. 52... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Indiana § 52.795 Control strategy: Sulfur dioxide. (a) Revised APC-13 (December 5, 1974 submission) of Indiana's Air Pollution Control regulations...

  3. 40 CFR 52.795 - Control strategy: Sulfur dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Control strategy: Sulfur dioxide. 52... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Indiana § 52.795 Control strategy: Sulfur dioxide. (a) Revised APC-13 (December 5, 1974 submission) of Indiana's Air Pollution Control regulations...

  4. 40 CFR 52.795 - Control strategy: Sulfur dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 3 2012-07-01 2012-07-01 false Control strategy: Sulfur dioxide. 52... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Indiana § 52.795 Control strategy: Sulfur dioxide. (a) Revised APC-13 (December 5, 1974 submission) of Indiana's Air Pollution Control regulations...

  5. 40 CFR 52.795 - Control strategy: Sulfur dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Control strategy: Sulfur dioxide. 52... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Indiana § 52.795 Control strategy: Sulfur dioxide. (a) Revised APC-13 (December 5, 1974 submission) of Indiana's Air Pollution Control regulations...

  6. 40 CFR 52.795 - Control strategy: Sulfur dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Control strategy: Sulfur dioxide. 52... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Indiana § 52.795 Control strategy: Sulfur dioxide. (a) Revised APC-13 (December 5, 1974 submission) of Indiana's Air Pollution Control regulations...

  7. Sulfur dioxide: foe or friend for life?

    PubMed

    Wang, Xin-Bao; Cui, Hong; Liu, Xiaohong; Du, Jun-Bao

    2017-12-01

    Sulfur dioxide (SO₂) is a toxic gas and air pollutant. The toxic effects of SO₂ have been extensively studied. Oxidative damage due to SO₂ can occur in multiple organs. Inhaled SO₂ can also cause chromosomal aberrations, DNA damage and gene mutations in mammals. However, SO₂ can also be generated from the sulfur-containing amino acid, L-cysteine. Recent studies have shown that SO₂ has a vasorelaxant effect, and ameliorates pulmonary hypertension and vascular remodeling. SO₂ can also reduce lung injury and myocardial injury in rats. In addition, SO₂ reduces myocardial ischemia-reperfusion injury and atherosclerotic lesions. Therefore, SO₂ exerts both detrimental and protective effects in mammals. Is SO₂ a foe or friend for life?.

  8. 40 CFR 52.2525 - Control strategy: Sulfur dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 5 2013-07-01 2013-07-01 false Control strategy: Sulfur dioxide. 52.2525 Section 52.2525 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... strategy: Sulfur dioxide. (a) The provisions of § 51.112(a) are not met because the State did not...

  9. 40 CFR 52.2525 - Control strategy: Sulfur dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Sulfur dioxide. 52.2525 Section 52.2525 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... strategy: Sulfur dioxide. (a) The provisions of § 51.112(a) are not met because the State did not...

  10. 40 CFR 52.2525 - Control strategy: Sulfur dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Control strategy: Sulfur dioxide. 52.2525 Section 52.2525 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... strategy: Sulfur dioxide. (a) The provisions of § 51.112(a) are not met because the State did not...

  11. 40 CFR 52.2525 - Control strategy: Sulfur dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 5 2012-07-01 2012-07-01 false Control strategy: Sulfur dioxide. 52.2525 Section 52.2525 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... strategy: Sulfur dioxide. (a) The provisions of § 51.112(a) are not met because the State did not...

  12. Sulfur content of hybrid poplar cuttings fumigated with sulfur dioxide

    Treesearch

    Keith F. Jensen

    1975-01-01

    Hybrid poplar cuttings were fumigated with sulfur dioxide ranging in concentration from 0.1 to 5 ppm for periods of 5 to 80 hours. At the end of the fumigation periods, the cuttings were harvested and the sulfur and chlorophyll contents of the leaves were measured. At 0.1 ppm and 0.25 ppm the sulfur content initially increased, but decreased as fumigation continued. At...

  13. Catalyst for the reduction of sulfur dioxide to elemental sulfur

    DOEpatents

    Jin, Y.; Yu, Q.; Chang, S.G.

    1996-02-27

    The inventive catalysts allow for the reduction of sulfur dioxide to elemental sulfur in smokestack scrubber environments. The catalysts have a very high sulfur yield of over 90% and space velocity of 10,000 h{sup {minus}1}. They also have the capacity to convert waste gases generated during the initial conversion into elemental sulfur. The catalysts have inexpensive components, and are inexpensive to produce. The net impact of the invention is to make this technology practically available to industrial applications. 21 figs.

  14. Catalyst for the reduction of sulfur dioxide to elemental sulfur

    DOEpatents

    Jin, Yun; Yu, Qiquan; Chang, Shih-Ger

    1996-01-01

    The inventive catalysts allow for the reduction of sulfur dioxide to elemental sulfur in smokestack scrubber environments. The catalysts have a very high sulfur yield of over 90% and space velocity of 10,000 h.sup.-1. They also have the capacity to convert waste gases generated during the initial conversion into elemental sulfur. The catalysts have inexpensive components, and are inexpensive to produce. The net impact of the invention is to make this technology practically available to industrial applications.

  15. Metabolic responses to sulfur dioxide in grapevine (Vitis vinifera L.): photosynthetic tissues and berries.

    PubMed

    Considine, Michael J; Foyer, Christine H

    2015-01-01

    Research on sulfur metabolism in plants has historically been undertaken within the context of industrial pollution. Resolution of the problem of sulfur pollution has led to sulfur deficiency in many soils. Key questions remain concerning how different plant organs deal with reactive and potentially toxic sulfur metabolites. In this review, we discuss sulfur dioxide/sulfite assimilation in grape berries in relation to gene expression and quality traits, features that remain significant to the food industry. We consider the intrinsic metabolism of sulfite and its consequences for fruit biology and postharvest physiology, comparing the different responses in fruit and leaves. We also highlight inconsistencies in what is considered the "ambient" environmental or industrial exposures to SO2. We discuss these findings in relation to the persistent threat to the table grape industry that intergovernmental agencies will revoke the industry's exemption to the worldwide ban on the use of SO2 for preservation of fresh foods. Transcriptome profiling studies on fruit suggest that added value may accrue from effects of SO2 fumigation on the expression of genes encoding components involved in processes that underpin traits related to customer satisfaction, particularly in table grapes, where SO2 fumigation may extend for several months.

  16. Metabolic responses to sulfur dioxide in grapevine (Vitis vinifera L.): photosynthetic tissues and berries

    PubMed Central

    Considine, Michael J.; Foyer, Christine H.

    2015-01-01

    Research on sulfur metabolism in plants has historically been undertaken within the context of industrial pollution. Resolution of the problem of sulfur pollution has led to sulfur deficiency in many soils. Key questions remain concerning how different plant organs deal with reactive and potentially toxic sulfur metabolites. In this review, we discuss sulfur dioxide/sulfite assimilation in grape berries in relation to gene expression and quality traits, features that remain significant to the food industry. We consider the intrinsic metabolism of sulfite and its consequences for fruit biology and postharvest physiology, comparing the different responses in fruit and leaves. We also highlight inconsistencies in what is considered the “ambient” environmental or industrial exposures to SO2. We discuss these findings in relation to the persistent threat to the table grape industry that intergovernmental agencies will revoke the industry’s exemption to the worldwide ban on the use of SO2 for preservation of fresh foods. Transcriptome profiling studies on fruit suggest that added value may accrue from effects of SO2 fumigation on the expression of genes encoding components involved in processes that underpin traits related to customer satisfaction, particularly in table grapes, where SO2 fumigation may extend for several months. PMID:25750643

  17. LIGNOSULFONATE-MODIFIED CALCIUM HYDROXIDE FOR SULFUR DIOXIDE CONTROL

    EPA Science Inventory

    The article discusses the use of lignosulfonate-modified calcium hydroxide Ca(OH)2 for sulfur dioxide (SO2) control. The limestone injection multistage burner (LIMB) process is currently being developed at the U.S. EPA as a low cost retrofittable technology for controlling oxides...

  18. ADVANCED SULFUR CONTROL CONCEPTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Apostolos A. Nikolopoulos; Santosh K. Gangwal; William J. McMichael

    Conventional sulfur removal in integrated gasification combined cycle (IGCC) power plants involves numerous steps: COS (carbonyl sulfide) hydrolysis, amine scrubbing/regeneration, Claus process, and tail-gas treatment. Advanced sulfur removal in IGCC systems involves typically the use of zinc oxide-based sorbents. The sulfides sorbent is regenerated using dilute air to produce a dilute SO{sub 2} (sulfur dioxide) tail gas. Under previous contracts the highly effective first generation Direct Sulfur Recovery Process (DSRP) for catalytic reduction of this SO{sub 2} tail gas to elemental sulfur was developed. This process is currently undergoing field-testing. In this project, advanced concepts were evaluated to reduce themore » number of unit operations in sulfur removal and recovery. Substantial effort was directed towards developing sorbents that could be directly regenerated to elemental sulfur in an Advanced Hot Gas Process (AHGP). Development of this process has been described in detail in Appendices A-F. RTI began the development of the Single-step Sulfur Recovery Process (SSRP) to eliminate the use of sorbents and multiple reactors in sulfur removal and recovery. This process showed promising preliminary results and thus further process development of AHGP was abandoned in favor of SSRP. The SSRP is a direct Claus process that consists of injecting SO{sub 2} directly into the quenched coal gas from a coal gasifier, and reacting the H{sub 2}S-SO{sub 2} mixture over a selective catalyst to both remove and recover sulfur in a single step. The process is conducted at gasifier pressure and 125 to 160 C. The proposed commercial embodiment of the SSRP involves a liquid phase of molten sulfur with dispersed catalyst in a slurry bubble-column reactor (SBCR).« less

  19. 40 CFR 60.46c - Emission monitoring for sulfur dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Emission monitoring for sulfur dioxide... Industrial-Commercial-Institutional Steam Generating Units § 60.46c Emission monitoring for sulfur dioxide... the inlet to the steam generating unit and analyzed for sulfur content and heat content according the...

  20. 40 CFR 60.46c - Emission monitoring for sulfur dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Emission monitoring for sulfur dioxide... Industrial-Commercial-Institutional Steam Generating Units § 60.46c Emission monitoring for sulfur dioxide... the inlet to the steam generating unit and analyzed for sulfur content and heat content according the...

  1. 40 CFR 60.46c - Emission monitoring for sulfur dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Emission monitoring for sulfur dioxide... Industrial-Commercial-Institutional Steam Generating Units § 60.46c Emission monitoring for sulfur dioxide... the inlet to the steam generating unit and analyzed for sulfur content and heat content according the...

  2. 40 CFR 60.46c - Emission monitoring for sulfur dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Emission monitoring for sulfur dioxide... Industrial-Commercial-Institutional Steam Generating Units § 60.46c Emission monitoring for sulfur dioxide... the inlet to the steam generating unit and analyzed for sulfur content and heat content according the...

  3. 40 CFR 60.43Da - Standards for sulfur dioxide (SO2).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standards for sulfur dioxide (SO2). 60... Steam Generating Units § 60.43Da Standards for sulfur dioxide (SO2). (a) On and after the date on which... the percent reduction requirement is determined on a 24-hour basis. (d) Sulfur dioxide emissions are...

  4. 40 CFR 60.43Da - Standard for sulfur dioxide (SO2).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for sulfur dioxide (SO2). 60... for sulfur dioxide (SO2). (a) On and after the date on which the initial performance test is completed... reduction requirement is determined on a 24-hour basis. (d) Sulfur dioxide emissions are limited to 520 ng/J...

  5. 40 CFR 60.47b - Emission monitoring for sulfur dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Emission monitoring for sulfur dioxide... Industrial-Commercial-Institutional Steam Generating Units § 60.47b Emission monitoring for sulfur dioxide... generating unit and analyzing them for sulfur and heat content according to Method 19 of appendix A of this...

  6. 40 CFR 60.47b - Emission monitoring for sulfur dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Emission monitoring for sulfur dioxide... Industrial-Commercial-Institutional Steam Generating Units § 60.47b Emission monitoring for sulfur dioxide... generating unit and analyzing them for sulfur and heat content according to Method 19 of appendix A of this...

  7. 40 CFR 60.47b - Emission monitoring for sulfur dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Emission monitoring for sulfur dioxide... Industrial-Commercial-Institutional Steam Generating Units § 60.47b Emission monitoring for sulfur dioxide... generating unit and analyzing them for sulfur and heat content according to Method 19 of appendix A of this...

  8. 40 CFR 60.47b - Emission monitoring for sulfur dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Emission monitoring for sulfur dioxide... Industrial-Commercial-Institutional Steam Generating Units § 60.47b Emission monitoring for sulfur dioxide... generating unit and analyzing them for sulfur and heat content according to Method 19 of appendix A of this...

  9. 40 CFR 60.47b - Emission monitoring for sulfur dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Emission monitoring for sulfur dioxide... Industrial-Commercial-Institutional Steam Generating Units § 60.47b Emission monitoring for sulfur dioxide... generating unit and analyzing them for sulfur and heat content according to Method 19 of appendix A of this...

  10. The Significance of the Bond Angle in Sulfur Dioxide.

    ERIC Educational Resources Information Center

    Purser, Gordon H.

    1989-01-01

    Examined are the illustrations and descriptions of the molecular structure of sulfur dioxide found in selected chemistry textbooks. Inconsistencies and incorrect information are indicated. It is suggested that molecules other than sulfur dioxide be used as examples of molecules for which resonance is important. (CW)

  11. Claus sulfur recovery unit startups

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parnell, D.C.

    1973-08-01

    Because of the recent emphasis on reducing sulfur emissions to the atmosphere, Claus-type sulfur recovery units are becoming more prevalent throughout the industry. Many plants, including refinery, chemical, and natural gasoline units, are being required to install Claus sulfur recovery facilities to meet pollution requirements. Although Claus units in some cases cannot alone meet the most rigid air pollution codes currently being enforced, they are still the most economical and practical method for recovering about 94 to 97% of the sulfur from hydrogen sulfide rich gases. For best operation and longer service life, proper startup and shutdown procedures for thesemore » sulfur recovery units should be followed. On all startups and shutdowns, these units require considerable operator attention; improper operation during these critical phases can affect overall plant efficiency.« less

  12. Development of a tunable Fabry-Perot interferometer UV camera for monitoring sulfur dioxide emissions

    NASA Astrophysics Data System (ADS)

    Tamminen, J.; Kujanpää, J.; Ojanen, H.; Saari, H.; Näkki, I.; Tukiainen, S.; Kyrölä, E.

    2017-12-01

    We present a novel UV camera for sulfur dioxide emission monitoring.The camera is equipped with a piezo-actuated Fabry-Perot interferometer allowing thefilter transmission to be tuned to match the differential absorption features ofsulfur dioxide in the wavelength region 305-320 nm. The differential absorption structuresare exploited to reduce the interfering effects of weakly wavelength dependent absorbers, suchas aerosols and black carbon, present in the exhaust gas. A data processing algorithm basedon two air gaps of the filter is presented allowing collection of a sufficient signal-to-noise ratio fordetecting sulfur dioxide in the ship plumes even in the designated emission control areas, such as the Baltic Seawhere the sulfur content limit of fuel oil is 0.1 %. First field tests performed inLänsisatama harbour, Helsinki Finland, indicate that sulfur dioxide can be detectedin ship plumes. The camera is light-weight and can be mounted to a drone.

  13. Sulfur dioxide emissions from la soufriere volcano, st. Vincent, west indies.

    PubMed

    Hoff, R M; Gallant, A J

    1980-08-22

    During the steady-state period of activity of La Soufriere Volcano in 1979, the mass emissions of sulfur dioxide into the troposphere amounted to a mean value of 339 +/- 126 metric tons per day. This value is similar to the sulfur dioxide emissions of other Central American volcanoes but less than those measured at Mount Etna, an exceptionally strong volcanic source of sulfur dioxide.

  14. Loss of sulfur dioxide and changes in some chemical properties of Malatya apricots (Prunus armeniaca L.) during sulfuring and drying.

    PubMed

    Türkyılmaz, Meltem; Özkan, Mehmet; Güzel, Nihal

    2014-09-01

    This study was conducted to determine the differences in some analytical properties of four apricot cultivars and to determine the changes in these analytical properties during sulfuring and sun-drying. There were significant differences in the contents of polyphenols, carotenoids and organic acids (OA) as well as antioxidant activities (AOAs) of the cultivars (P < 0.05). After sulfuring and drying, considerable reductions were detected in the contents of total polyphenols (TPCs, 11-26%), OAs (4-32%) and β-carotene (6-21%), and AOAs (2-21%) of the samples. Sun-drying resulted in 71-83% decreases in sulfur dioxide (SO2 ) contents of sulfured-dried apricots (SDAs) in comparison with apricots immediately after sulfuring. As the TPCs increased, the SO2 absorption by the samples also increased. In contrast, the OA contents had no effect on SO2 absorption, but an increase in OA content resulted in an increase in the browning values of the SDAs. As expected, increases in contents of ferulic acid (r = 0.932), chlorogenic acid (r = 0.850), epicatechin (r = 0.804) and quercetin (r = 0.750) led to an increase in browning values of the SDAs. There were significant effects of cultivar and processing on the physico-chemical properties investigated in the study, and with the absorption of SO2 and the formation of a brown colour in the samples. © 2014 Society of Chemical Industry.

  15. 40 CFR 77.3 - Offset plans for excess emissions of sulfur dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... sulfur dioxide. 77.3 Section 77.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) EXCESS EMISSIONS § 77.3 Offset plans for excess emissions of sulfur dioxide... sulfur dioxide in any calendar year shall be liable to offset the amount of such excess emissions by an...

  16. 40 CFR 77.3 - Offset plans for excess emissions of sulfur dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... sulfur dioxide. 77.3 Section 77.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) EXCESS EMISSIONS § 77.3 Offset plans for excess emissions of sulfur dioxide... sulfur dioxide in any calendar year shall be liable to offset the amount of such excess emissions by an...

  17. 40 CFR 77.3 - Offset plans for excess emissions of sulfur dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... sulfur dioxide. 77.3 Section 77.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) EXCESS EMISSIONS § 77.3 Offset plans for excess emissions of sulfur dioxide... sulfur dioxide in any calendar year shall be liable to offset the amount of such excess emissions by an...

  18. 40 CFR 77.3 - Offset plans for excess emissions of sulfur dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sulfur dioxide. 77.3 Section 77.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) EXCESS EMISSIONS § 77.3 Offset plans for excess emissions of sulfur dioxide... sulfur dioxide in any calendar year shall be liable to offset the amount of such excess emissions by an...

  19. 40 CFR 77.6 - Penalties for excess emissions of sulfur dioxide and nitrogen oxides.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... sulfur dioxide and nitrogen oxides. 77.6 Section 77.6 Protection of Environment ENVIRONMENTAL PROTECTION... sulfur dioxide and nitrogen oxides. (a)(1) If excess emissions of sulfur dioxide occur at the affected... under paragraph (a)(1) of this section for any increase in excess emissions of sulfur dioxide determined...

  20. 40 CFR 77.6 - Penalties for excess emissions of sulfur dioxide and nitrogen oxides.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... sulfur dioxide and nitrogen oxides. 77.6 Section 77.6 Protection of Environment ENVIRONMENTAL PROTECTION... sulfur dioxide and nitrogen oxides. (a)(1) If excess emissions of sulfur dioxide occur at the affected... under paragraph (a)(1) of this section for any increase in excess emissions of sulfur dioxide determined...

  1. 40 CFR 77.6 - Penalties for excess emissions of sulfur dioxide and nitrogen oxides.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... sulfur dioxide and nitrogen oxides. 77.6 Section 77.6 Protection of Environment ENVIRONMENTAL PROTECTION... sulfur dioxide and nitrogen oxides. (a)(1) If excess emissions of sulfur dioxide occur at the affected... under paragraph (a)(1) of this section for any increase in excess emissions of sulfur dioxide determined...

  2. 40 CFR 77.6 - Penalties for excess emissions of sulfur dioxide and nitrogen oxides.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sulfur dioxide and nitrogen oxides. 77.6 Section 77.6 Protection of Environment ENVIRONMENTAL PROTECTION... sulfur dioxide and nitrogen oxides. (a)(1) If excess emissions of sulfur dioxide occur at the affected... under paragraph (a)(1) of this section for any increase in excess emissions of sulfur dioxide determined...

  3. Prometheus Silicates/Sulfur dioxide/NIMS

    NASA Image and Video Library

    2000-05-18

    The Prometheus region of Jupiter moon Io was imaged by NASA Galileo spacecraft in 1999. The maps made from spectrometer data show the interplay between hot silicates on the surface and sulfur dioxide frost.

  4. Removing Sulphur Dioxide From Stack Gases

    ERIC Educational Resources Information Center

    Slack, A. V.

    1973-01-01

    Process types, process concepts, claims and counterclaims, cost factors, and the level of developed technology for sulfur dioxide control in stack gases are focused upon and evaluated. Wet and dry processes as well as recovery and throwaway processes are compared. (BL)

  5. 40 CFR 60.42c - Standard for sulfur dioxide (SO2).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for sulfur dioxide (SO2). 60...-Commercial-Institutional Steam Generating Units § 60.42c Standard for sulfur dioxide (SO2). (a) Except as... percent sulfur. The percent reduction requirements are not applicable to affected facilities under this...

  6. 40 CFR 60.42c - Standard for sulfur dioxide (SO2).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for sulfur dioxide (SO2). 60...-Commercial-Institutional Steam Generating Units § 60.42c Standard for sulfur dioxide (SO2). (a) Except as... percent sulfur. The percent reduction requirements are not applicable to affected facilities under this...

  7. 40 CFR 60.42c - Standard for sulfur dioxide (SO2).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for sulfur dioxide (SO2). 60...-Commercial-Institutional Steam Generating Units § 60.42c Standard for sulfur dioxide (SO2). (a) Except as... percent sulfur. The percent reduction requirements are not applicable to affected facilities under this...

  8. 40 CFR 60.42c - Standard for sulfur dioxide (SO2).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for sulfur dioxide (SO2). 60...-Commercial-Institutional Steam Generating Units § 60.42c Standard for sulfur dioxide (SO2). (a) Except as... sulfur. The percent reduction requirements are not applicable to affected facilities under this paragraph...

  9. 40 CFR 52.1875 - Attainment dates for achieving the sulfur dioxide secondary standard.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... sulfur dioxide secondary standard. 52.1875 Section 52.1875 Protection of Environment ENVIRONMENTAL... (CONTINUED) Ohio § 52.1875 Attainment dates for achieving the sulfur dioxide secondary standard. The attainment date for achieving the sulfur dioxide (SO2) secondary national ambient air quality standard (NAAQS...

  10. 40 CFR 52.1875 - Attainment dates for achieving the sulfur dioxide secondary standard.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... sulfur dioxide secondary standard. 52.1875 Section 52.1875 Protection of Environment ENVIRONMENTAL... (CONTINUED) Ohio § 52.1875 Attainment dates for achieving the sulfur dioxide secondary standard. The attainment date for achieving the sulfur dioxide (SO2) secondary national ambient air quality standard (NAAQS...

  11. 40 CFR 52.1875 - Attainment dates for achieving the sulfur dioxide secondary standard.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... sulfur dioxide secondary standard. 52.1875 Section 52.1875 Protection of Environment ENVIRONMENTAL... (CONTINUED) Ohio § 52.1875 Attainment dates for achieving the sulfur dioxide secondary standard. The attainment date for achieving the sulfur dioxide (SO2) secondary national ambient air quality standard (NAAQS...

  12. 40 CFR 52.1875 - Attainment dates for achieving the sulfur dioxide secondary standard.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... sulfur dioxide secondary standard. 52.1875 Section 52.1875 Protection of Environment ENVIRONMENTAL... (CONTINUED) Ohio § 52.1875 Attainment dates for achieving the sulfur dioxide secondary standard. The attainment date for achieving the sulfur dioxide (SO2) secondary national ambient air quality standard (NAAQS...

  13. 40 CFR 52.1875 - Attainment dates for achieving the sulfur dioxide secondary standard.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sulfur dioxide secondary standard. 52.1875 Section 52.1875 Protection of Environment ENVIRONMENTAL... (CONTINUED) Ohio § 52.1875 Attainment dates for achieving the sulfur dioxide secondary standard. The attainment date for achieving the sulfur dioxide (SO2) secondary national ambient air quality standard (NAAQS...

  14. Sulfur Dioxide Pollution Monitor.

    ERIC Educational Resources Information Center

    National Bureau of Standards (DOC), Washington, DC.

    The sulfur dioxide pollution monitor described in this document is a government-owed invention that is available for licensing. The background of the invention is outlined, and drawings of the monitor together with a detailed description of its function are provided. A sample stream of air, smokestack gas or the like is flowed through a…

  15. 40 CFR 52.2679 - Control strategy and regulations: Sulfur dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 5 2013-07-01 2013-07-01 false Control strategy and regulations: Sulfur dioxide. 52.2679 Section 52.2679 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY....2679 Control strategy and regulations: Sulfur dioxide. (a) Approvals of the following rules are limited...

  16. 40 CFR 52.2679 - Control strategy and regulations: Sulfur dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy and regulations: Sulfur dioxide. 52.2679 Section 52.2679 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY....2679 Control strategy and regulations: Sulfur dioxide. (a) Approvals of the following rules are limited...

  17. 40 CFR 52.2679 - Control strategy and regulations: Sulfur dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 5 2012-07-01 2012-07-01 false Control strategy and regulations: Sulfur dioxide. 52.2679 Section 52.2679 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY....2679 Control strategy and regulations: Sulfur dioxide. (a) Approvals of the following rules are limited...

  18. 40 CFR 52.2679 - Control strategy and regulations: Sulfur dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Control strategy and regulations: Sulfur dioxide. 52.2679 Section 52.2679 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY....2679 Control strategy and regulations: Sulfur dioxide. (a) Approvals of the following rules are limited...

  19. 40 CFR 52.2679 - Control strategy and regulations: Sulfur dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 5 2014-07-01 2014-07-01 false Control strategy and regulations: Sulfur dioxide. 52.2679 Section 52.2679 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY....2679 Control strategy and regulations: Sulfur dioxide. (a) Approvals of the following rules are limited...

  20. 40 CFR 49.129 - Rule for limiting emissions of sulfur dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Rule for limiting emissions of sulfur... emissions of sulfur dioxide. (a) What is the purpose of this section? This section limits the amount of sulfur dioxide (SO2) that may be emitted from certain air pollution sources operating within the Indian...

  1. Review of sulfur dioxide to sulfate aerosol chemistry at Kīlauea Volcano, Hawai'i

    NASA Astrophysics Data System (ADS)

    Pattantyus, Andre K.; Businger, Steven; Howell, Steven G.

    2018-07-01

    Sulfur dioxide emissions from the Kīlauea Volcano on the island of Hawai'i and the subsequent formation of sulfate aerosols have caused a public health hazard across the state of Hawai'i since the volcano began erupting continuously in 1983. The University of Hawai'i at Mānoa began to forecast the trajectory and dispersion of emissions in 2010 to help mitigate the hazards to public health. In this paper a comprehensive review of potential conversion reactions is presented with the goal of more accurately representing the sulfur dioxide chemistry in the dispersion model. Atmospheric sulfur dioxide chemistry and major process responsible for sulfate formation are well documented in urban and industrial settings. The atmosphere in the vicinity of Kīlauea Volcano on the island of Hawai'i differs from that in previous investigations by virtue of being far removed from both urban and industrial settings in a remote, tropical marine atmosphere. Additionally, the combination of the high rate of sulfur dioxide emissions and trace gases and metals from Kīlauea Volcano creates a unique circumstance that requires a new look at potential conversion pathways to determine the dominant reactions. The theoretical analysis suggests that the dominant reaction in clear air will be between sulfur dioxide and the hydroxyl radical (0.01-5% h-1) and the dominant reaction in cloudy air involves hydrogen peroxide (3-50% s-1). Moreover, given the high SO2 emissions from the Halema'uma'u Crater vent, the oxidation of sulfur dioxide by these reactants is limited by their rate of production.

  2. Electrochemical oxidation of wine polyphenols in the presence of sulfur dioxide.

    PubMed

    Makhotkina, Olga; Kilmartin, Paul A

    2013-06-12

    Electrochemical oxidation of three representative wine polyphenols (catechin, caffeic acid, and quercetin) in the presence of sulfur dioxide in a model wine solution (pH = 3.3) was investigated. The oxidation was undertaken using chronoamperometry at a rotating glassy carbon rod electrode, and the reaction products were characterized by HPLC-MS. The mechanism of electrochemical oxidation of polyphenols in the presence of sulfur dioxide was proposed to be an ECEC mechanism. The polyphenols first underwent a one-electron oxidation to a semiquinone radical, which can be reduced back to the original polyphenol by sulfur dioxide, or further oxidized to the quinone form. In the cases of caffeic acid and catechin, the quinone combined with sulfur dioxide and produced new derivatives. The quercetin quinone underwent further chemical transformations, producing several new compounds. The proposed mechanisms were confirmed by digital simulation of cyclic voltammograms.

  3. Sodium fluoride and sulfur dioxide affected male reproduction by disturbing blood-testis barrier in mice.

    PubMed

    Zhang, Jianhai; Li, Zhihui; Qie, Mingli; Zheng, Ruibo; Shetty, Jagathpala; Wang, Jundong

    2016-08-01

    Fluoride and sulfur dioxide (SO2), two well-known environmental toxicants, have been implicated to have adverse effects on male reproductive health in humans and animals. The objective of this study to investigate if the BTB is one of the pathways that lead to reproductive toxicity of sodium fluoride and sulfur dioxide alone or in combination, in view of the key role of blood testis barrier (BTB) in testis. The results showed that a marked decrease in sperm quality, and altered morphology and ultrastructure of BTB in testis of mice exposure to fluoride (100 mg NaF/L in drinking water) or/and sulfur dioxide (28 mg SO2/m(3), 3 h/day). Meanwhile, the mRNA expression levels of some vital BTB-associated proteins, including occluding, claudin-11, ZO-1, Ncadherin, α-catenin, and connexin-43 were all strikingly reduced after NaF exposure, although only the reduction of DSG-2 was statistically significant in all treatment groups. Moreover, the proteins expressions also decreased significantly in claudin-11, N-cadherin, α-catenin, connexin-43 and desmoglein-2 in mice treated with fluoride and/or SO2. These changes in BTB structure and constitutive proteins may therefore be connected with the low sperm quality in these mice. The role of fluoride should deserves more attention in this process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Effective sulfur and energy recovery from hydrogen sulfide through incorporating an air-cathode fuel cell into chelated-iron process.

    PubMed

    Sun, Min; Song, Wei; Zhai, Lin-Feng; Cui, Yu-Zhi

    2013-12-15

    The chelated-iron process is among the most promising techniques for the hydrogen sulfide (H2S) removal due to its double advantage of waste minimization and resource recovery. However, this technology has encountered the problem of chelate degradation which made it difficult to ensure reliable and economical operation. This work aims to develop a novel fuel-cell-assisted chelated-iron process which employs an air-cathode fuel cell for the catalyst regeneration. By using such a process, sulfur and electricity were effectively recovered from H2S and the problem of chelate degradation was well controlled. Experiment on a synthetic sulfide solution showed the fuel-cell-assisted chelated-iron process could maintain high sulfur recovery efficiencies generally above 90.0%. The EDTA was preferable to NTA as the chelating agent for electricity generation, given the Coulombic efficiencies (CEs) of 17.8 ± 0.5% to 75.1 ± 0.5% for the EDTA-chelated process versus 9.6 ± 0.8% to 51.1 ± 2.7% for the NTA-chelated process in the pH range of 4.0-10.0. The Fe (III)/S(2-) ratio exhibited notable influence on the electricity generation, with the CEs improved by more than 25% as the Fe (III)/S(2-) molar ratio increased from 2.5:1 to 3.5:1. Application of this novel process in treating a H2S-containing biogas stream achieved 99% of H2S removal efficiency, 78% of sulfur recovery efficiency, and 78.6% of energy recovery efficiency, suggesting the fuel-cell-assisted chelated-iron process was effective to remove the H2S from gas streams with favorable sulfur and energy recovery efficiencies. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Table of Historical Sulfur Dioxide National Ambient Air Quality Standards (NAAQS)

    EPA Pesticide Factsheets

    See the history of limits to the level of sulfur dioxide (SO2) in ambient air, set through the NAAQS review and rulemaking process under the Clean Air Act. This includes both primary and secondary standards.

  6. 40 CFR 77.5 - Deduction of allowances to offset excess emissions of sulfur dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... excess emissions of sulfur dioxide. 77.5 Section 77.5 Protection of Environment ENVIRONMENTAL PROTECTION... excess emissions of sulfur dioxide. (a) The Administrator will deduct allowances to offset excess... emissions of sulfur dioxide. [58 FR 3757, Jan. 11, 1993, as amended at 70 FR 25337, May 12, 2005] ...

  7. 40 CFR 77.5 - Deduction of allowances to offset excess emissions of sulfur dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... excess emissions of sulfur dioxide. 77.5 Section 77.5 Protection of Environment ENVIRONMENTAL PROTECTION... excess emissions of sulfur dioxide. (a) The Administrator will deduct allowances to offset excess... emissions of sulfur dioxide. [58 FR 3757, Jan. 11, 1993, as amended at 70 FR 25337, May 12, 2005] ...

  8. 40 CFR 77.5 - Deduction of allowances to offset excess emissions of sulfur dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... excess emissions of sulfur dioxide. 77.5 Section 77.5 Protection of Environment ENVIRONMENTAL PROTECTION... excess emissions of sulfur dioxide. (a) The Administrator will deduct allowances to offset excess... emissions of sulfur dioxide. [58 FR 3757, Jan. 11, 1993, as amended at 70 FR 25337, May 12, 2005] ...

  9. 40 CFR 77.5 - Deduction of allowances to offset excess emissions of sulfur dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... excess emissions of sulfur dioxide. 77.5 Section 77.5 Protection of Environment ENVIRONMENTAL PROTECTION... excess emissions of sulfur dioxide. (a) The Administrator will deduct allowances to offset excess... emissions of sulfur dioxide. [58 FR 3757, Jan. 11, 1993, as amended at 70 FR 25337, May 12, 2005] ...

  10. Sulfur Dioxide and Material Damage

    ERIC Educational Resources Information Center

    Gillette, Donald G.

    1975-01-01

    This study relates sulfur dioxide levels with material damage in heavily populated or polluted areas. Estimates of loss were determined from increased maintenance and replacement costs. The data indicate a decrease in losses during the past five years probably due to decline in pollution levels established by air quality standards. (MR)

  11. Involvement of the yciW gene in l-cysteine and l-methionine metabolism in Escherichia coli.

    PubMed

    Kawano, Yusuke; Ohtsu, Iwao; Tamakoshi, Ai; Shiroyama, Maeka; Tsuruoka, Ai; Saiki, Kyohei; Takumi, Kazuhiro; Nonaka, Gen; Nakanishi, Tsuyoshi; Hishiki, Takako; Suematsu, Makoto; Takagi, Hiroshi

    2015-03-01

    We here analyzed a sulfur index of Escherichia coli using LC-MS/MS combined with thiol-specific derivatization by monobromobimane. The obtained sulfur index was then applied to evaluate the L-cysteine producer. E. coli cells overexpressing the yciW gene, a novel Cys regulon, accumulated l-homocysteine, suggesting that YciW is involved in L-methionine biosynthesis. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. Interaction of sulfur dioxide and carbon dioxide with clean silver in ultrahigh vacuum.

    NASA Technical Reports Server (NTRS)

    Lassiter, W. S.

    1972-01-01

    It is shown that when a clean polycrystalline silver surface is subjected to sulfur dioxide at a pressure of 1 nanotorr, sulfur is chemisorbed to the silver. Heating the contaminated silver leads to an estimation of the minimum heat of desorption of 59 kcal/mol. Sulfur Auger peak height and relative function measurements of the surface during exposure show that adsorption occurs during 6 microtorr/sec exposure at 1 nanotorr.

  13. A fuel-cell-assisted iron redox process for simultaneous sulfur recovery and electricity production from synthetic sulfide wastewater.

    PubMed

    Zhai, Lin-Feng; Song, Wei; Tong, Zhong-Hua; Sun, Min

    2012-12-01

    Sulfide present in wastewaters and waste gases should be removed due to its toxicity, corrosivity, and malodorous property. Development of effective, stable, and feasible methods for sulfur recovery from sulfide attains a double objective of waste minimization and resource recovery. Here we report a novel fuel-cell-assisted iron redox (FC-IR) process for simultaneously recovering sulfur and electricity from synthetic sulfide wastewater. The FC-IR system consists of an oxidizing reactor where sulfide is oxidized to elemental sulfur by Fe(III), and a fuel cell where Fe(III) is regenerated from Fe(II) concomitantly with electricity producing. The oxidation of sulfide by Fe(III) is significantly dependent on solution pH. Increasing the pH from 0.88 to 1.96 accelerates the oxidation of sulfide, however, lowers the purity of the produced elemental sulfur. The performance of fuel cell is also a strong function of solution pH. Fe(II) is completely oxidized to Fe(III) when the fuel cell is operated at a pH above 6.0, whereas only partially oxidized below pH 6.0. At pH 6.0, the highest columbic efficiency of 75.7% is achieved and electricity production maintains for the longest time of 106 h. Coupling operation of the FC-IR system obtains sulfide removal efficiency of 99.90%, sulfur recovery efficiency of 78.6 ± 8.3%, and columbic efficiency of 58.6 ± 1.6%, respectively. These results suggest that the FC-IR process is a promising tool to recover sulfur and energy from sulfide. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. 40 CFR 77.3 - Offset plans for excess emissions of sulfur dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Offset plans for excess emissions of sulfur dioxide. 77.3 Section 77.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) EXCESS EMISSIONS § 77.3 Offset plans for excess emissions of sulfur dioxide...

  15. 78 FR 28173 - Approval and Promulgation of Air Quality Implementation Plans; Indiana; Sulfur Dioxide and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-14

    ...-9811-5] Approval and Promulgation of Air Quality Implementation Plans; Indiana; Sulfur Dioxide and Nitrogen Dioxide Ambient Air Quality Standards AGENCY: Environmental Protection Agency (EPA). ACTION... implementation plan (SIP) for nitrogen dioxide (NO 2 ) and sulfur dioxide (SO 2 ) under the Clean Air Act. This...

  16. Selective sulfur dioxide adsorption on crystal defect sites on an isoreticular metal organic framework series

    PubMed Central

    Rodríguez-Albelo, L. Marleny; López-Maya, Elena; Hamad, Said; Ruiz-Salvador, A. Rabdel; Calero, Sofia; Navarro, Jorge A.R.

    2017-01-01

    The widespread emissions of toxic gases from fossil fuel combustion represent major welfare risks. Here we report the improvement of the selective sulfur dioxide capture from flue gas emissions of isoreticular nickel pyrazolate metal organic frameworks through the sequential introduction of missing-linker defects and extra-framework barium cations. The results and feasibility of the defect pore engineering carried out are quantified through a combination of dynamic adsorption experiments, X-ray diffraction, electron microscopy and density functional theory calculations. The increased sulfur dioxide adsorption capacities and energies as well as the sulfur dioxide/carbon dioxide partition coefficients values of defective materials compared to original non-defective ones are related to the missing linkers enhanced pore accessibility and to the specificity of sulfur dioxide interactions with crystal defect sites. The selective sulfur dioxide adsorption on defects indicates the potential of fine-tuning the functional properties of metal organic frameworks through the deliberate creation of defects. PMID:28198376

  17. Sulfur dioxide leaching of spent zinc-carbon-battery scrap

    NASA Astrophysics Data System (ADS)

    Avraamides, J.; Senanayake, G.; Clegg, R.

    Zinc-carbon batteries, which contain around 20% zinc, 35% manganese oxides and 10% steel, are currently disposed after use as land fill or reprocessed to recover metals or oxides. Crushed material is subjected to magnetic separation followed by hydrometallurgical treatment of the non-magnetic material to recover zinc metal and manganese oxides. The leaching with 2 M sulfuric acid in the presence of hydrogen peroxide recovers 93% Zn and 82% Mn at 25 °C. Alkaline leaching with 6 M NaOH recovers 80% zinc. The present study shows that over 90% zinc and manganese can be leached in 20-30 min at 30 °C using 0.1-1.0 M sulfuric acid in the presence of sulfur dioxide. The iron extraction is sensitive to both acid concentration and sulfur dioxide flow rate. The effect of reagent concentration and particle size on the extraction of zinc, manganese and iron are reported. It is shown that the iron and manganese leaching follow a shrinking core kinetic model due to the formation of insoluble metal salts/oxides on the solid surface. This is supported by (i) the decrease in iron and manganese extraction from synthetic Fe(III)-Mn(IV)-Zn(II) oxide mixtures with increase in acid concentration from 1 M to 2 M, and (ii) the low iron dissolution and re-precipitation of dissolved manganese and zinc during prolonged leaching of battery scrap with low sulfur dioxide.

  18. Sulfuric acid-sulfur heat storage cycle

    DOEpatents

    Norman, John H.

    1983-12-20

    A method of storing heat is provided utilizing a chemical cycle which interconverts sulfuric acid and sulfur. The method can be used to levelize the energy obtained from intermittent heat sources, such as solar collectors. Dilute sulfuric acid is concentrated by evaporation of water, and the concentrated sulfuric acid is boiled and decomposed using intense heat from the heat source, forming sulfur dioxide and oxygen. The sulfur dioxide is reacted with water in a disproportionation reaction yielding dilute sulfuric acid, which is recycled, and elemental sulfur. The sulfur has substantial potential chemical energy and represents the storage of a significant portion of the energy obtained from the heat source. The sulfur is burned whenever required to release the stored energy. A particularly advantageous use of the heat storage method is in conjunction with a solar-powered facility which uses the Bunsen reaction in a water-splitting process. The energy storage method is used to levelize the availability of solar energy while some of the sulfur dioxide produced in the heat storage reactions is converted to sulfuric acid in the Bunsen reaction.

  19. Testing of Lithium-Sulfur Dioxide Cells for Waste Disposal Hazards.

    DTIC Science & Technology

    1980-10-01

    r AD-AO90 785 WAPORA INC CHEVY CHASE NO F/G 10/3 TESTING OF LITHIUM-SULFUR DIOXIDE CELLS FOR WASTE DISPOSAL HAZA-ETC(U) OCT 80 D B BOIES OAAK20-79-C... TESTING ION T HUM -SUFU DIXD-EL ORWSEDSOA Daved B. pBli else 69stributonsi nlmied.e OCTOBELE198 Fia PRepr for Peio OCT 23198008 STRYUIO AELETOISRSA...34 cell Toxic waste Sulfur dioxide vapor pressure Structural Integrity Test Ignitable waste Extraction procedure results Corrosive waste ftactive waste

  20. Distribution of Sulfur Dioxide Frost on Io

    NASA Image and Video Library

    1998-03-26

    Sulfur dioxide, normally a gas at room temperatures, is known to exist on Io surface as a frost, condensing there from the hot gases emanating from the Io volcanoes. This image was taken in 1996 by NASA Galileo spacecraft.

  1. Method of removing and recovering elemental sulfur from highly reducing gas streams containing sulfur gases

    DOEpatents

    Gangwal, Santosh K.; Nikolopoulos, Apostolos A.; Dorchak, Thomas P.; Dorchak, Mary Anne

    2005-11-08

    A method is provided for removal of sulfur gases and recovery of elemental sulfur from sulfur gas containing supply streams, such as syngas or coal gas, by contacting the supply stream with a catalyst, that is either an activated carbon or an oxide based catalyst, and an oxidant, such as sulfur dioxide, in a reaction medium such as molten sulfur, to convert the sulfur gases in the supply stream to elemental sulfur, and recovering the elemental sulfur by separation from the reaction medium.

  2. Ambient air concentration of sulfur dioxide affects flight activity in bees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ginevan, M.E.; Lane, D.D.; Greenberg, L.

    Three long-term (16 to 29 days) low-level (0.14 to 0.28 ppM) sulfur dioxide fumigations showed that exposure tothis gas has deleterious effects on male sweat bees (Lasioglossum zephrum). Although effects on mortality were equivocal, flight activity was definitely reduced. Because flight is necessary for successful mating behavior, the results suggest that sulfur dioxide air pollution could adversely affect this and doubtless other terrestrial insects.

  3. Low Energy, Low Emissions: Sulfur Dioxide; Nitrogen Oxides, and Carbon Dioxide in Western Europe.

    ERIC Educational Resources Information Center

    Alcamo, Joseph; De Vries, Bert

    1992-01-01

    Links proposed low-energy scenarios for different Western European countries with the amount of pollutants that may result from these scenarios. Sulfur dioxide, nitrogen oxide, and carbon dioxide emissions are calculated for the 10 countries for which low-energy scenarios are available, resulting in reductions of 54%, 37%, and 40%, respectively.…

  4. High-efficiency and high-power rechargeable lithium–sulfur dioxide batteries exploiting conventional carbonate-based electrolytes

    PubMed Central

    Park, Hyeokjun; Lim, Hee-Dae; Lim, Hyung-Kyu; Seong, Won Mo; Moon, Sehwan; Ko, Youngmin; Lee, Byungju; Bae, Youngjoon; Kim, Hyungjun; Kang, Kisuk

    2017-01-01

    Shedding new light on conventional batteries sometimes inspires a chemistry adoptable for rechargeable batteries. Recently, the primary lithium-sulfur dioxide battery, which offers a high energy density and long shelf-life, is successfully renewed as a promising rechargeable system exhibiting small polarization and good reversibility. Here, we demonstrate for the first time that reversible operation of the lithium-sulfur dioxide battery is also possible by exploiting conventional carbonate-based electrolytes. Theoretical and experimental studies reveal that the sulfur dioxide electrochemistry is highly stable in carbonate-based electrolytes, enabling the reversible formation of lithium dithionite. The use of the carbonate-based electrolyte leads to a remarkable enhancement of power and reversibility; furthermore, the optimized lithium-sulfur dioxide battery with catalysts achieves outstanding cycle stability for over 450 cycles with 0.2 V polarization. This study highlights the potential promise of lithium-sulfur dioxide chemistry along with the viability of conventional carbonate-based electrolytes in metal-gas rechargeable systems. PMID:28492225

  5. Sulfur dioxide-induced chronic bronchitis in beagle dogs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greene, S.A.; Wolff, R.K.; Hahn, F.F.

    This study was done to produce a model of chronic bronchitis. Twelve beagle dogs were exposed to 500 ppm sulfur dioxide (SO/sub 2/) for 2 h/d, 5d/wk for 21 wk and 4 dogs were sham-exposed to filtered ambient air for the same period. Exposure effects were evaluated by periodically examining the dogs using chest radiographs, pulmonary function, tracheal mucous clearance, and the cellular and soluble components of bronchopulmonary lavage fluids. Dogs were serially sacrificed after 13 and 21 wk of exposure and after 6 and 14 wk of recovery. Clinical signs produced in the SO/sub 2/-exposed dogs included mucoid nasalmore » discharge, productive cough, moist rales on auscultation, tonsilitis, and conjunctivitis. Chest radiographs revealed mild peribronchiolar thickening. Histopathology, tracheal mucous clearance measurements, and lavage cytology were consistent with a diagnosis of chronic bronchitis. It is concluded that repeated exposure to 500 ppm SO/sub 2/ for 21 wk produced chronic bronchitis in the beagle dog. Complete recovery occurred within 5 wk following cessation of SO/sub 2/ exposure. 43 references, 2 figures, 2 tables.« less

  6. Determination of sulfur dioxide in wine using headspace gas chromatography and electron capture detection.

    PubMed

    Aberl, A; Coelhan, M

    2013-01-01

    Sulfites are routinely added as preservatives and antioxidants in wine production. By law, the total sulfur dioxide content in wine is restricted and therefore must be monitored. Currently, the method of choice for determining the total content of sulfur dioxide in wine is the optimised Monier-Williams method, which is time consuming and laborious. The headspace gas chromatographic method described in this study offers a fast and reliable alternative method for the detection and quantification of the sulfur dioxide content in wine. The analysis was performed using an automatic headspace injection sampler, coupled with a gas chromatograph and an electron capture detector. The method is based on the formation of gaseous sulfur dioxide subsequent to acidification and heating of the sample. In addition to free sulfur dioxide, reversibly bound sulfur dioxide in carbonyl compounds, such as acetaldehyde, was also measured with this method. A total of 20 wine samples produced using diverse grape varieties and vintages of varied provenance were analysed using the new method. For reference and comparison purposes, 10 of the results obtained by the proposed method were compared with those acquired by the optimised Monier-Williams method. Overall, the results from the headspace analysis showed good correlation (R = 0.9985) when compared with the conventional method. This new method requires minimal sample preparation and is simple to perform, and the analysis can also be completed within a short period of time.

  7. Sulfur dioxide emission rates from Kīlauea Volcano, Hawai‘i, 2007–2010

    USGS Publications Warehouse

    Elias, T.; Sutton, A.J.

    2012-01-01

    Kīlauea Volcano has one of the longest running volcanic sulfur dioxide (SO2) emission rate databases on record. Sulfur dioxide emission rates from Kīlauea Volcano were first measured by Stoiber and Malone (1975) and have been measured on a regular basis since 1979 (Elias and Sutton, 2007, and references within). Compilations of SO2 emission-rate and wind-vector data from 1979 through 2006 are available on the USGS Web site (Elias and others, 1998; Elias and Sutton, 2002; Elias and Sutton, 2007). This report updates the database, documents the changes in data collection and processing methods, and highlights how SO2 emissions have varied with eruptive activity at Kīlauea Volcano for the interval 2007–2010.

  8. Sulfur Dioxide State Implementation Plan (SIP) Checklist Guide

    EPA Pesticide Factsheets

    Tools, guidance, and examples to assist air quality agencies of non-attainment areas in developing plans to implement national ambient air quality standards (NAAQS), including the sulfur dioxide (SO2) air emissions standard.

  9. The millimeter-wavelength sulfur dioxide absorption spectra measured under simulated Venus conditions

    NASA Astrophysics Data System (ADS)

    Bellotti, Amadeo; Steffes, Paul G.

    2015-07-01

    Over 130 laboratory measurements of the 2-4 mm wavelength opacity of sulfur dioxide in a carbon dioxide atmosphere under simulated conditions for the upper Venus troposphere (temperatures between 308 and 343 K and pressures between 0.03 and 2 bar) have been made. These measurements along with the centimeter wavelength measurements by Steffes et al. (Steffes, P.G. et al. [2015]. Icarus 245, 153-161) have been used to empirically assess existing formalisms for sulfur dioxide opacity in a carbon dioxide atmosphere (Fahd, A.K., Steffes, P.G. [1992]. Icarus 97(2), 200-210; Suleiman, S.H. et al. [1996]. J. Geophys. Res.: Planets 101(E2), 4623-4635). The Van Vleck and Weisskopf Model (VVW) used by Fahd and Steffes with the JPL rotational line catalog (Pickett, H. et al. [1998]. J. Quant. Spectrosc. Radiat. Transfer 60(5), 499-890) was found to fit 85.88% of all 500 measurements within the 2-sigma uncertainty. This work will improve the confidence in retrievals of the atmospheric abundance of sulfur dioxide from millimeter-wavelength observations of the Venus atmosphere.

  10. Evidence of recovery of Juniperus virginiana trees from sulfur pollution after the Clean Air Act.

    PubMed

    Thomas, Richard B; Spal, Scott E; Smith, Kenneth R; Nippert, Jesse B

    2013-09-17

    Using dendroisotopic techniques, we show the recovery of Juniperus virginiana L. (eastern red cedar) trees in the Central Appalachian Mountains from decades of acidic pollution. Acid deposition over much of the 20th century reduced stomatal conductance of leaves, thereby increasing intrinsic water-use efficiency of the Juniperus trees. These data indicate that the stomata of Juniperus may be more sensitive to acid deposition than to increasing atmospheric CO2. A breakpoint in the 100-y δ(13)C tree ring chronology occurred around 1980, as the legacy of sulfur dioxide emissions declined following the enactment of the Clean Air Act in 1970, indicating a gradual increase in stomatal conductance (despite rising levels of atmospheric CO2) and a concurrent increase in photosynthesis related to decreasing acid deposition and increasing atmospheric CO2. Tree ring δ(34)S shows a synchronous change in the sources of sulfur used at the whole-tree level that indicates a reduced anthropogenic influence. The increase in growth and the δ(13)C and δ(34)S trends in the tree ring chronology of these Juniperus trees provide evidence for a distinct physiological response to changes in atmospheric SO2 emissions since ∼1980 and signify the positive impacts of landmark environmental legislation to facilitate recovery of forest ecosystems from acid deposition.

  11. 40 CFR 60.44c - Compliance and performance test methods and procedures for sulfur dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and procedures for sulfur dioxide. 60.44c Section 60.44c Protection of Environment ENVIRONMENTAL... Compliance and performance test methods and procedures for sulfur dioxide. (a) Except as provided in... operator seeks to demonstrate compliance with the fuel oil sulfur limits under § 60.42c based on shipment...

  12. 40 CFR 60.44c - Compliance and performance test methods and procedures for sulfur dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and procedures for sulfur dioxide. 60.44c Section 60.44c Protection of Environment ENVIRONMENTAL... Compliance and performance test methods and procedures for sulfur dioxide. (a) Except as provided in... operator seeks to demonstrate compliance with the fuel oil sulfur limits under § 60.42c based on shipment...

  13. 40 CFR 60.44c - Compliance and performance test methods and procedures for sulfur dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and procedures for sulfur dioxide. 60.44c Section 60.44c Protection of Environment ENVIRONMENTAL... Compliance and performance test methods and procedures for sulfur dioxide. (a) Except as provided in... operator seeks to demonstrate compliance with the fuel oil sulfur limits under § 60.42c based on shipment...

  14. 40 CFR 60.44c - Compliance and performance test methods and procedures for sulfur dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and procedures for sulfur dioxide. 60.44c Section 60.44c Protection of Environment ENVIRONMENTAL... Compliance and performance test methods and procedures for sulfur dioxide. (a) Except as provided in... operator seeks to demonstrate compliance with the fuel oil sulfur limits under § 60.42c based on shipment...

  15. 40 CFR 721.9672 - Amides, tall-oil fatty, N-[2-[2-hydroxyethyl)amino]ethyl], reaction products with sulfur dioxide...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-hydroxyethyl)amino]ethyl], reaction products with sulfur dioxide; fatty acids, tall-oil, reaction products with 1-piperazineethanamine and sulfur dioxide; fatty acids, tall-oil reaction products with sulfur...)amino]ethyl], reaction products with sulfur dioxide; fatty acids, tall-oil, reaction products with 1...

  16. 40 CFR 721.9672 - Amides, tall-oil fatty, N-[2-[2-hydroxyethyl)amino]ethyl], reaction products with sulfur dioxide...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-hydroxyethyl)amino]ethyl], reaction products with sulfur dioxide; fatty acids, tall-oil, reaction products with 1-piperazineethanamine and sulfur dioxide; fatty acids, tall-oil reaction products with sulfur...)amino]ethyl], reaction products with sulfur dioxide; fatty acids, tall-oil, reaction products with 1...

  17. 40 CFR 721.9672 - Amides, tall-oil fatty, N-[2-[2-hydroxyethyl)amino]ethyl], reaction products with sulfur dioxide...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-hydroxyethyl)amino]ethyl], reaction products with sulfur dioxide; fatty acids, tall-oil, reaction products with 1-piperazineethanamine and sulfur dioxide; fatty acids, tall-oil reaction products with sulfur...)amino]ethyl], reaction products with sulfur dioxide; fatty acids, tall-oil, reaction products with 1...

  18. Statistical summary and trend evaluation of air quality data for Cleveland, Ohio in 1967 to 1971: Total suspended particulate, nitrogen dioxide, and sulfur dioxide

    NASA Technical Reports Server (NTRS)

    Neustadter, H. E.; Sidik, S. M.; Burr, J. C., Jr.

    1972-01-01

    Air quality data for Cleveland, Ohio, for the period of 1967 to 1971 were collated and subjected to statistical analysis. The total suspended particulate component is lognormally distributed; while sulfur dioxide and nitrogen dioxide are reasonably approximated by lognormal distributions. Only sulfur dioxide, in some residential neighborhoods, meets Ohio air quality standards. Air quality has definitely improved in the industrial valley, while in the rest of the city, only sulfur dioxide has shown consistent improvement. A pollution index is introduced which displays directly the degree to which the environmental air conforms to mandated standards.

  19. Successful sulfur recovery in low sulfurate compounds obtained from the zinc industry: Evaporation-condensation method.

    PubMed

    Suárez-Gómez, Sergio Luis; Sánchez, Maria Luisa; Blanco, Francisco; Ayala, Julia; de Cos Juez, Francisco Javier

    2017-08-15

    The improvement of an evaporation-condensation method allows for successful recovery of elemental sulfur from sulfide concentrates from the zinc industry. Elemental sulfur can be obtained with this method in samples with a low (60%) sulfur content. The effects of heating temperature between 150°C and 250°C and heating time up to 120min on the recovery of sulfur are also studied. Elemental sulfur obtained in this way is of high purity and therefore, there is no need for further purification. The treatment of these industrial residues would help removing sulfur from the environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Regional sulfur dioxide emissions: shall we achieve the goal?

    NASA Astrophysics Data System (ADS)

    Tan, X.; Shi, L.; Wang, M.; Wang, JY

    2017-01-01

    Although economic growth is slowing down in the new normal period, air pollution is still a very serious problem in China. The 15% binding goal of sulfur dioxide emission reduction from 2016 to 2020, as stipulated in the 13th Five-Year Plan, has been an ambitious target for the Chinese government. This paper studies the synthetic evaluation and forecasting analysis of sulfur dioxide in China by means of a “grey model” approach combined with the grey relational analysis methods, with the panel data of 31 provinces from 2005 to 2015. Grey analysis used to analyse a system with imperfect information, such that a variety of available solutions is reviewed, and the optimal solution is identified. Some encouraging results show that national emissions and a majority of provinces will achieve the target. Over time, the gap of regional differences is rapidly closing. According to the results of grey relational analysis, we find industrial structure and energy consumption have a more significant impact on sulfur dioxide emissions than GDP. Atmospheric treatment investment and environmental protection manpower play a more important role in emissions variation. Based on the findings, we should distinguish different factors and take different measures to protect the environment.

  1. Lithium-sulfur dioxide batteries on Mars rovers

    NASA Technical Reports Server (NTRS)

    Ratnakumar, Bugga V.; Smart, M. C.; Ewell, R. C.; Whitcanack, L. D.; Kindler, A.; Narayanan, S. R.; Surampudi, S.

    2004-01-01

    NASA's 2003 Mars Exploration Rover (MER) missions, Spirit and Opportunity, have been performing exciting surface exploration studies for the past six months. These two robotic missions were aimed at examining the presence of water and, thus, any evidence of life, and at understanding the geological conditions of Mars, These rovers have been successfully assisted by primary lithium-sulfur dioxide batteries during the critical entry, descent, and landing (EDL) maneuvers. These batteries were located on the petals of the lander, which, unlike in the Mars Pathfinder mission, was designed only to carry the rover. The selection of the lithium-sulfur dioxide battery system for this application was based on its high specific energy and high rate discharge capability, combined with low heat evolution, as dictated by this application. Lithium-sulfur dioxide batteries exhibit voltage delay, which tends to increase at low discharge temperatures, especially after extended storage at warm temperatures, In the absence of a depassivation circuit, as provided on earlier missions, e.g., Galileo, we were required to depassivate the lander primary batteries in a unique manner. The batteries were brought onto a shunt-regulated bus set at pre-selected discharge voltages, thus affecting depassivation during constant discharge voltages. Several ground tests were preformed, on cells, cell strings and battery assembly with five parallel strings, to identify optimum shunt voltages and durations of depassivation. We also examined the repassivation of lithium anodes, subsequent to depassivation. In this paper, we will describe these studies, in detail, as well as the depassivation of the lander flight batteries on both Spirit and Opportunity rover prior to the EDL sequence and their performance during landing on Mars.

  2. 40 CFR 60.4330 - What emission limits must I meet for sulfur dioxide (SO2)?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sulfur dioxide (SO2)? 60.4330 Section 60.4330 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... sulfur dioxide (SO2)? (a) If your turbine is located in a continental area, you must comply with either... contains total potential sulfur emissions in excess of 26 ng SO2/J (0.060 lb SO2/MMBtu) heat input. If your...

  3. 40 CFR 60.4330 - What emission limits must I meet for sulfur dioxide (SO2)?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... sulfur dioxide (SO2)? 60.4330 Section 60.4330 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... sulfur dioxide (SO2)? (a) If your turbine is located in a continental area, you must comply with either... contains total potential sulfur emissions in excess of 26 ng SO2/J (0.060 lb SO2/MMBtu) heat input. If your...

  4. 40 CFR 60.4330 - What emission limits must I meet for sulfur dioxide (SO2)?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... sulfur dioxide (SO2)? 60.4330 Section 60.4330 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... sulfur dioxide (SO2)? (a) If your turbine is located in a continental area, you must comply with either... contains total potential sulfur emissions in excess of 26 ng SO2/J (0.060 lb SO2/MMBtu) heat input. If your...

  5. 40 CFR 60.4330 - What emission limits must I meet for sulfur dioxide (SO2)?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... sulfur dioxide (SO2)? 60.4330 Section 60.4330 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... sulfur dioxide (SO2)? (a) If your turbine is located in a continental area, you must comply with either... contains total potential sulfur emissions in excess of 26 ng SO2/J (0.060 lb SO2/MMBtu) heat input. If your...

  6. 40 CFR 60.4330 - What emission limits must I meet for sulfur dioxide (SO2)?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... sulfur dioxide (SO2)? 60.4330 Section 60.4330 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... sulfur dioxide (SO2)? (a) If your turbine is located in a continental area, you must comply with either... contains total potential sulfur emissions in excess of 26 ng SO2/J (0.060 lb SO2/MMBtu) heat input. If your...

  7. An evaluation of possible mechanisms for conversion of sulfur dioxide to sulfuric acid and sulfate aerosols in the troposphere

    Treesearch

    Jack G. Calvert

    1976-01-01

    The mechanisms and rates of conversion of sulfur dioxide to sulfur trioxide, sulfuric acid, and other "sulfate" aerosol precursors are considered in view of current knowledge related to atmospheric reactions and chemical kinetics. Several heterogeneous pathways exist for SO2 oxidation promoted on solid catalyst particles and in aqueous...

  8. Extraordinary Difference in Reactivity of Ozone (OOO) and Sulfur Dioxide (OSO): A Theoretical Study.

    PubMed

    Lan, Yu; Wheeler, Steven E; Houk, K N

    2011-07-12

    Ozone and sulfur dioxide are valence isoelectronic yet show very different reactivity. While ozone is one of the most reactive 1,3-dipoles, SO2 does not react in this way at all. The activation energies of dipolar cycloadditions of sulfur dioxide with either ethylene or acetylene are predicted here by B3LYP, M06-2X, CBS-QB3, and CCSD(T) to be much higher than reactions of ozone. The dipolar cycloaddition of ozone is very exothermic, while that of than sulfur dioxide is endothermic. The prohibitive barriers in the case of SO2 arise from large distortion energies as well as unfavorable interaction energies in the transition states. This arises in part from the HOMO-LUMO gap of sulfur dioxide, which is larger than that of ozone. Valence bond calculations also show that while ozone has a high degree of diradical character, SO2 does not, and is better characterized as a dritterion.

  9. Effect of sulfur dioxide fumigation on survival of foodborne pathogens on table grapes under standard storage temperature

    USDA-ARS?s Scientific Manuscript database

    We examined the persistence of Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella enterica Thompson inoculated on freshly-harvested table grapes under standard cold storage with initial and weekly sulfur dioxide (SO2) fumigation. L. monocytogenes and S. enterica Thompson were much more...

  10. 78 FR 47191 - Air Quality Designations for the 2010 Sulfur Dioxide (SO2) Primary National Ambient Air Quality...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-05

    ... Air Quality Designations for the 2010 Sulfur Dioxide (SO[bdi2]) Primary National Ambient Air Quality... air quality designations for certain areas in the United States for the 2010 primary Sulfur Dioxide... of this document? III. What is sulfur dioxide? IV. What is the 2010 SO 2 NAAQS and what are the...

  11. Sulfur dioxide and nitrogen oxides emissions from U.S. pulp and paper mills, 1980-2005.

    PubMed

    Pinkerton, John E

    2007-08-01

    Comprehensive surveys conducted at 5-yr intervals were used to estimate sulfur dioxide (SO,) and nitrogen oxides (NO.) emissions from U.S. pulp and paper mills for 1980, 1985, 1990, 1995, 2000, and 2005. Over the 25-yr period, paper production increased by 50%, whereas total SO, emissions declined by 60% to 340,000 short tons (t) and total NO, emissions decreased approximately 15% to 230,000 t. The downward emission trends resulted from a combination of factors, including reductions in oil and coal use, steadily declining fuel sulfur content, lower pulp and paper production in recent years, increased use of flue gas desulfurization systems on boilers, growing use of combustion modifications and add-on control systems to reduce boiler and gas turbine NO, emissions, and improvements in kraft recovery furnace operations.

  12. The Sulfur Dioxide Plume from the February 26, 2000 Eruption of Mt. Hekla, Iceland

    NASA Technical Reports Server (NTRS)

    Krueger, Arlin J.; Krotkov, N. A.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The February 2000 fissure eruption of Mt. Hekla, Iceland was captured in sulfur dioxide data from the Earth Probe TOMS. A special algorithm is used to discriminate sulfur dioxide from ozone. The eruption began at 18:19 GMT on February 26, 2000 and was first viewed by TOMS at 09:55 GMT on February 27. The volcanic cloud at that time appeared as a very long and narrow arc extending west from the volcano in southern Iceland, then north across Greenland, and finally east towards Norway. The cloud altitude was reported from aircraft sightings and data to be above 10 km. The circulation of a ridge located north of Iceland produced the large arc shaped cloud. As the eruption is non-explosive the high altitude cloud contains little ash. Almost all the ash from the eruption fell out locally across Iceland. By February 29, the sulfur dioxide cloud had drifted eastward in a band along the Barents Sea coast of Norway and Russia. The analysis includes an assessment of the initial sulfur dioxide content and its rate of conversion to sulfate.

  13. Prehydrolysis of birch wood with sulfur dioxide

    Treesearch

    Edward L. Springer; Kimball A. Libkie

    1980-01-01

    Work in progress on prehydrolysis of white birch (Betula papyrifera) wood with sulfur dioxide presents an alternative means for producing a relatively concentrated pentose solution with a very small requirement for steam or other forms of energy. The key ideas are to conduct the prehydrolysis reaction at a very low liquor-to-wood ratio (called vapor-phase cooking in...

  14. Surface acoustic wave sensors/gas chromatography; and Low quality natural gas sulfur removal and recovery CNG Claus sulfur recovery process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klint, B.W.; Dale, P.R.; Stephenson, C.

    This topical report consists of the two titled projects. Surface Acoustic Wave/Gas Chromatography (SAW/GC) provides a cost-effective system for collecting real-time field screening data for characterization of vapor streams contaminated with volatile organic compounds (VOCs). The Model 4100 can be used in a field screening mode to produce chromatograms in 10 seconds. This capability will allow a project manager to make immediate decisions and to avoid the long delays and high costs associated with analysis by off-site analytical laboratories. The Model 4100 is currently under evaluation by the California Environmental Protection Agency Technology Certification Program. Initial certification focuses upon themore » following organics: cis-dichloroethylene, chloroform, carbon tetrachloride, trichlorethylene, tetrachloroethylene, tetrachloroethane, benzene, ethylbenzene, toluene, and o-xylene. In the second study the CNG Claus process is being evaluated for conversion and recovery of elemental sulfur from hydrogen sulfide, especially found in low quality natural gas. This report describes the design, construction and operation of a pilot scale plant built to demonstrate the technical feasibility of the integrated CNG Claus process.« less

  15. 75 FR 81555 - Approval and Promulgation of Air Quality Implementation Plans; Minnesota; Sulfur Dioxide SIP...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-28

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 52 [EPA-R05-OAR-2009-0808; FRL-9243-4] Approval and Promulgation of Air Quality Implementation Plans; Minnesota; Sulfur Dioxide SIP Revision for Marathon Petroleum... proposing to approve a sulfur dioxide State Implementation Plan revision request for Marathon Petroleum in...

  16. Effects of sulfur dioxide emissions on stream chemistry in the western United States

    USGS Publications Warehouse

    Campbell, D.H.; Turk, J.T.

    1988-01-01

    A 20-year record of water chemistry for seven headwater streams in the Rocky Mountain region of the western United States is compared to estimates of local and regional sulfur dioxide emissions for the same period. Emissions from smelters in the region comprise a significant part of sulfur dioxide emissions for the 11 states upwind of acid-sensitive watersheds in the Rocky Mountains, but smelter emissions have steadily decreased since 1970. Analysis of stream chemistry indicates conservative behavior of watershed sulfate, with atmospheric deposition as the dominant source of sulfate. No relation between regional stream chemistry and smelter or regional sulfur dioxide emissions is detected for the watersheds. Local emissions trends, however, do appear to affect sulfate concentrations in the streams. Year-to-year variability in stream sulfate concentration is much greater than any long-term trends that might be inferred.

  17. A Conductivity Device for Measuring Sulfur Dioxide in the Air

    ERIC Educational Resources Information Center

    Craig, James C.

    1972-01-01

    Described is a general electroconductivity device enabling students to determine sulfur dioxide concentration in a particular location, hopefully leading to a deeper understanding of the problem of air pollution. (DF)

  18. A new process for converting SO2 to sulfur without generating secondary pollutants through reactions involving CaS and CaSO4.

    PubMed

    Sohn, H Y; Kim, Byung-Su

    2002-07-01

    Nonferrous smelters and coal gasification processes generate environmentally harmful sulfur dioxide streams, most of which are treated to produce sulfuric acid with the accompanying problems of market shortage and transportation difficulties. Some sulfur dioxide streams are scrubbed with an alkali solution or a solid substance such as limestone or dolomite, which in turn generates wastes that pose other pollution problems. While the conversion of sulfur dioxide to elemental sulfur has many environmental advantages, no processes exist that are environmentally acceptable and economically viable. A new method for converting sulfur dioxide to elemental sulfur by a cyclic process involving calcium sulfide and calcium sulfate without generating solid wastes has been developed. In this process, calcium sulfate pellets as the starting raw material are reduced by a suitable reducing agent such as hydrogen to produce calcium sulfide pellets, which are used to reduce sulfur dioxide producing elemental sulfur vapor and calcium sulfate. The latter is then reduced to regenerate calcium sulfide. Thermodynamic analysis and experimental results indicated that the CaS-SO2 reaction produces mainly sulfur vapor and solid calcium sulfate and that the gaseous product from the CaSO4-H2 reaction is mainly water vapor. The rates of the two reactions are reasonably rapid in the temperature range 1000-1100 K, and, importantly, the physical strengths and reactivities of the pellets are maintained largely unchanged up to the tenth cycle, the last cycle tested in this work. Sulfur dioxide-containing streams from certain sources, such as the regenerator off-gas from an integrated gasification combined cycle desulfurization unit and new sulfide smelting plants, contain much higher partial pressures of SO2. In these cases, the rate of the first reaction is expected to be proportionally higher than in the test conditions reported in this paper.

  19. Sulfur Dioxide Plume from Mt. Etna Eruption 2002 as Detected with AIRS Data

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Mt. Etna, a volcano on the island of Sicily, erupted on October 26, 2002. Preliminary analysis of data taken by the Atmospheric Infrared Sounder (AIRS) on NASA's Aqua satellite on October 28 shows the instrument can provide an excellent means to study the evolution and structure of the sulfur dioxide plume emitted from volcanoes. These data also demonstrate that AIRS can be used to obtain the total mass of sulfur dioxide injected into the atmosphere during a volcanic event, information that may help us to better understand these dangerous natural occurrences in the future.

    The image clearly shows the sulfur dioxide plume. This image was created by comparing data taken at two different frequencies, or channels, and creating one image that highlights the differences between these two channels. Both channels are sensitive to water vapor, but one of the channels is also sensitive to sulfur dioxide. By subtracting out the common water vapor signal in both channels, the sulfur dioxide feature remains and shows up as an enhancement in the difference image.

    The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California Institute of Technology in Pasadena.

  20. Emission rates of sulfur dioxide and carbon dioxide from Redoubt Volcano, Alaska during the 1989-1990 eruptions

    USGS Publications Warehouse

    Casadevall, T.J.; Doukas, M.P.; Neal, C.A.; McGimsey, R.G.; Gardner, C.A.

    1994-01-01

    Airborne measurements of sulfur dioxide emission rates in the gas plume emitted from fumaroles in the summit crater of Redoubt Volcano were started on March 20, 1990 using the COSPEC method. During the latter half of the period of intermittent dome growth and destruction, between March 20 and mid-June 1990, sulfur dioxide emission rates ranged from approximately 1250 to 5850 t/d, rates notably higher than for other convergent-plate boundary volcanoes during periods of active dome growth. Emission rates following the end of dome growth from late June 1990 through May 1991 decreased steadily to less than 75 t/d. The largest mass of sulfur dioxide was released during the period of explosive vent clearing when explosive degassing on December 14-15 injected at least 175,000 ?? 50,000 tonnes of SO2 into the atmosphere. Following the explosive eruptions of December 1989, Redoubt Volcano entered a period of intermittent dome growth from late December 1989 to mid-June 1990 during which Redoubt emitted a total mass of SO2 ranging from 572,000 ?? 90,000 tonnes to 680,000 ?? 90,000 tonnes. From mid-June 1990 through May 1991, the volcano was in a state of posteruption degassing into the troposphere, producing approximately 183,000 ?? 50,000 tonnes of SO2. We estimate that Redoubt Volcano released a minimum mass of sulfur dioxide of approximately 930,000 tonnes. While COSPEC data were not obtained frequently enough to enable their use in eruption prediction, SO2 emission rates clearly indicated a consistent decline in emission rates between March through October 1990 and a continued low level of emission rates through the first half of 1991. Values from consecutive daily measurements of sulfur dioxide emission rates spanning the March 23, 1990 eruption decreased in the three days prior to eruption. That decrease was coincident with a several-fold increase in the frequency of shallow seismic events, suggesting partial sealing of the magma conduit to gas loss that resulted in

  1. Alternative Strategies for Control of Sulfur Dioxide Emissions

    ERIC Educational Resources Information Center

    MacDonald, Bryce I.

    1975-01-01

    Achievement of air quality goals requires careful consideration of alternative control strategies in view of national concerns with energy and the economy. Three strategies which might be used by coal fired steam electric plants to achieve ambient air quality standards for sulfur dioxide have been compared and the analysis presented. (Author/BT)

  2. Fast-regenerable sulfur dioxide adsorbents for diesel engine emission control

    DOEpatents

    Li, Liyu [Richland, WA; King, David L [Richland, WA

    2011-03-15

    Disclosed herein are sorbents and devices for controlling sulfur oxides emissions as well as systems including such sorbents and devices. Also disclosed are methods for making and using the disclosed sorbents, devices and systems. In one embodiment the disclosed sorbents can be conveniently regenerated, such as under normal exhaust stream from a combustion engine, particularly a diesel engine. Accordingly, also disclosed are combustion vehicles equipped with sulfur dioxide emission control devices.

  3. 78 FR 17915 - EPA Responses to State and Tribal 2010 Sulfur Dioxide Designation Recommendations: Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-25

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 81 [EPA-HQ-OAR-2012-0233; FRL-9793-7] EPA Responses to State and Tribal 2010 Sulfur Dioxide Designation Recommendations: Notice of Availability and Public... responses to state and tribal designation recommendations for the 2010 Sulfur Dioxide National Ambient Air...

  4. Carbon Dioxide-Water Emulsions for Enhanced Oil Recovery and Permanent Sequestration of Carbon Dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryan, David; Golomb, Dan; Shi, Guang

    2011-09-30

    This project involves the use of an innovative new invention Particle Stabilized Emulsions (PSEs) of Carbon Dioxide-in-Water and Water-in-Carbon Dioxide for Enhanced Oil Recovery (EOR) and Permanent Sequestration of Carbon Dioxide. The EOR emulsion would be injected into a semi-depleted oil reservoir such as Dover 33 in Otsego County, Michigan. It is expected that the emulsion would dislocate the stranded heavy crude oil from the rock granule surfaces, reduce its viscosity, and increase its mobility. The advancing emulsion front should provide viscosity control which drives the reduced-viscosity oil toward the production wells. The make-up of the emulsion would be subsequentlymore » changed so it interacts with the surrounding rock minerals in order to enhance mineralization, thereby providing permanent sequestration of the injected CO{sub 2}. In Phase 1 of the project, the following tasks were accomplished: 1. Perform laboratory scale (mL/min) refinements on existing procedures for producing liquid carbon dioxide-in-water (C/W) and water-in-liquid carbon dioxide (W/C) emulsion stabilized by hydrophilic and hydrophobic fine particles, respectively, using a Kenics-type static mixer. 2. Design and cost evaluate scaled up (gal/min) C/W and W/C emulsification systems to be deployed in Phase 2 at the Otsego County semi-depleted oil field. 3. Design the modifications necessary to the present CO{sub 2} flooding system at Otsego County for emulsion injection. 4. Design monitoring and verification systems to be deployed in Phase 2 for measuring potential leakage of CO{sub 2} after emulsion injection. 5. Design production protocol to assess enhanced oil recovery with emulsion injection compared to present recovery with neat CO{sub 2} flooding. 6. Obtain Federal and State permits for emulsion injection. Initial research focused on creating particle stabilized emulsions with the smallest possible globule size so that the emulsion can penetrate even low-permeability crude

  5. Advanced Rechargeable Lithium Sulfur Dioxide Cell

    DTIC Science & Technology

    1991-11-01

    AD-A274 908IIIIlIIIE McDonald , P. Harris, F. Goebel, S. Hossi ierra, M. Guentert, C. Todino 7 ad r nse TECHNICAL PRODUCTS INCY DTIC ELECTE JAN26 1994...Pawcatuck, CT 06379 94-02298 1425 Best Available Copy I ADVANCED RECHARGEABLE LITHIUM SULFUR DIOXIDE CELL I R.C. McDonald , P. Harris, F. Goebel, S. Hossain...20 minutes. The electrochemical measurements were carried out using a I Starbuck 20-station cycler system which is connected to a computer to monitor

  6. Advances in the study on endogenous sulfur dioxide in the cardiovascular system.

    PubMed

    Tian, Hong

    2014-01-01

    This review summarized the current advances in understanding the role of the novel gasotransmitter, sulfur dioxide (SO2), in the cardiovascular system. Articles on the advances in the study of the role of endogenous sulfur dioxide in the cardiovascular system were accessed from PubMed and CNKI from 2003 to 2013, using keywords such as "endogenous sulfur dioxide" and "cardiovascular system". Articles with regard to the role of SO2 in the regulation of cardiovascular system were selected. Recently, scientists discovered that an endogenous SO2 pathway is present in the cardiovascular system and exerts physiologically significant effects, such as regulation of the cardiac function and the pathogenesis of various cardiopulmonary diseases such as hypoxic pulmonary hypertension, hypertension, coronary atherosclerosis, and cardiac ischemia-reperfusion (I/R) injury, in the cardiovascular system. Endogenous SO2 is a novel member of the gasotransmitter family in addition to the nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S). Studies indicated that it has a role in regulating the cardiovascular disease.

  7. Fact Sheets and Additional Information Regarding the 2012 Decision to Retain the Secondary NAAQS for Nitrogen Dioxide and Sulfur Dioxide

    EPA Pesticide Factsheets

    On April 3, 2012, EPA sdecided to retain the current secondary national ambient air quality standard (NAAQS) for nitrogen dioxide (NO2) and sulfur dioxide (SO2).This page contains a fact sheet describing that action.

  8. Biologically removing sulfur from dilute gas flows

    NASA Astrophysics Data System (ADS)

    Ruitenberg, R.; Dijkman, H.; Buisman, C. J. N.

    1999-05-01

    A biological process has been developed to clean off-gases containing sulfur dioxide from industrial installations. The sulfur dioxide is converted into hydrogen sulfide, which can then be oxidized to elemental sulfur if not used on-site. The process produces no waste products that require disposal and has a low reagent consumption.

  9. Sensing Free Sulfur Dioxide in Wine

    PubMed Central

    Monro, Tanya M.; Moore, Rachel L.; Nguyen, Mai-Chi; Ebendorff-Heidepriem, Heike; Skouroumounis, George K.; Elsey, Gordon M.; Taylor, Dennis K.

    2012-01-01

    Sulfur dioxide (SO2) is important in the winemaking process as it aids in preventing microbial growth and the oxidation of wine. These processes and others consume the SO2 over time, resulting in wines with little SO2 protection. Furthermore, SO2 and sulfiting agents are known to be allergens to many individuals and for that reason their levels need to be monitored and regulated in final wine products. Many of the current techniques for monitoring SO2 in wine require the SO2 to be separated from the wine prior to analysis. This investigation demonstrates a technique capable of measuring free sulfite concentrations in low volume liquid samples in white wine. This approach adapts a known colorimetric reaction to a suspended core optical fiber sensing platform, and exploits the interaction between guided light located within the fiber voids and a mixture of the wine sample and a colorimetric analyte. We have shown that this technique enables measurements to be made without dilution of the wine samples, thus paving the way towards real time in situ wine monitoring. PMID:23112627

  10. Synthesis and characterization of electrospun molybdenum dioxide-carbon nanofibers as sulfur matrix additives for rechargeable lithium-sulfur battery applications.

    PubMed

    Zhuang, Ruiyuan; Yao, Shanshan; Jing, Maoxiang; Shen, Xiangqian; Xiang, Jun; Li, Tianbao; Xiao, Kesong; Qin, Shibiao

    2018-01-01

    One-dimensional molybdenum dioxide-carbon nanofibers (MoO 2 -CNFs) were prepared using an electrospinning technique followed by calcination, using sol-gel precursors and polyacrylonitrile (PAN) as a processing aid. The resulting samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, Brunauer-Emmet-Teller (BET) surface area measurements, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). MoO 2 -CNFs with an average diameter of 425-575 nm obtained after heat treatment were used as a matrix to prepare sulfur/MoO 2 -CNF cathodes for lithium-sulfur (Li-S) batteries. The polysulfide adsorption and electrochemical performance tests demonstrated that MoO 2 -CNFs did not only act as polysulfide reservoirs to alleviate the shuttle effect, but also improve the electrochemical reaction kinetics during the charge-discharge processes. The effect of MoO 2 -CNF heat treatment on the cycle performance of sulfur/MoO 2 -CNFs electrodes was examined, and the data showed that MoO 2 -CNFs calcined at 850 °C delivered optimal performance with an initial capacity of 1095 mAh g -1 and 860 mAh g -1 after 50 cycles. The results demonstrated that sulfur/MoO 2 -CNF composites display a remarkably high lithium-ion diffusion coefficient, low interfacial resistance and much better electrochemical performance than pristine sulfur cathodes.

  11. Enhancement of L-cysteine production by disruption of yciW in Escherichia coli.

    PubMed

    Kawano, Yusuke; Ohtsu, Iwao; Takumi, Kazuhiro; Tamakoshi, Ai; Nonaka, Gen; Funahashi, Eri; Ihara, Masaki; Takagi, Hiroshi

    2015-02-01

    Using in silico analysis, the yciW gene of Escherichia coli was identified as a novel L-cysteine regulon that may be regulated by the transcriptional activator CysB for sulfur metabolic genes. We found that overexpression of yciW conferred tolerance to L-cysteine, but disruption of yciW increased L-cysteine production in E. coli. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. Advanced Rechargeable Lithium Sulfur Dioxide Cell

    DTIC Science & Technology

    1991-11-01

    LITHIUM SULFUR DIOXIDE CELL R.C. McDonald R. Vierra P. Harris M. Guentert F. Goebel C. Todino S. Hossain Yardney Technical Products, Inc. 82 Mechanic... McDonald ; P Harris; F Goebel; S Hossain; R Vierra; M Guentert; C Todino 7. Z mG OnGAMiATIO MAMES AND AOSS4ES) g.Pta~o Yardney Technical Products, Inc...cathode was then dried and cured at 280’C under flowing argon for 20 minutes. The electrochemical measurements were carried out using a Starbuck 20

  13. Accurate thermochemistry and spectroscopy of the oxygen-protonated sulfur dioxide isomers.

    PubMed

    Puzzarini, Cristina

    2011-12-28

    Despite the promising relevance of protonated sulfur dioxide in astrophysical and atmospheric fields, its thermochemical and spectroscopic characterization is very limited. High-level quantum-chemical calculations have shown that the most stable isomer is the cis oxygen-protonated sulfur dioxide, HOSO(+), while the trans form is about 2 kcal mol(-1) less stable; even less stable (by about 42 kcal mol(-1)) is the S-protonated isomer [V. Lattanzi et al., J. Chem. Phys., 2010, 133, 194305]. The enthalpy of formation for the cis- and trans-HOSO(+) is presented, based on the well tested HEAT protocol [A. Tajti et al., J. Chem. Phys., 2004, 121, 11599]. Systematically extrapolated ab initio energies, accounting for electron correlation through coupled cluster theory, including up to single, double, triple and quadruple excitations, have been corrected for core-electron correlation, anharmonic zero-point vibrational energy, diagonal Born-Oppenheimer and scalar relativistic effects. As a byproduct, proton affinity of sulfur dioxide and atomization energies have also been obtained at the same levels of theory. Vibrational and rotational spectroscopic properties have been investigated by means of composite schemes that allow us to account for truncation of basis set as well as core correlation. Where available, for both thermochemistry and spectroscopy, very good agreement with experimental data has been observed.

  14. Thermo Scientific Sulfur Dioxide Analyzer Instrument Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Springston, S. R.

    The Sulfur Dioxide Analyzer measures sulfur dioxide based on absorbance of UV light at one wavelength by SO2 molecules which then decay to a lower energy state by emitting UV light at a longer wavelength. Specifically, SO2 + hυ1 →SO2 *→SO2 + hυ2 The emitted light is proportional to the concentration of SO2 in the optical cell. External communication with the analyzer is available through an Ethernet port configured through the instrument network of the AOS systems. The Model 43i-TLE is part of the i-series of Thermo Scientific instruments. The i-series instruments are designed to interface with external computers throughmore » the proprietary Thermo Scientific iPort Software. However, this software is somewhat cumbersome and inflexible. BNL has written an interface program in National Instruments LabView that both controls the Model 43i-TLE Analyzer AND queries the unit for all measurement and housekeeping data. The LabView vi (the software program written by BNL) ingests all raw data from the instrument and outputs raw data files in a uniform data format similar to other instruments in the AOS and described more fully in Section 6.0 below.« less

  15. NATIONAL PERFORMANCE AUDIT PROGRAM: 1979 PROFICIENCY SURVEYS FOR SULFUR DIOXIDE, NITROGEN DIOXIDE, CARBON MONOXIDE, SULFATE, NITRATE, LEAD AND HIGH VOLUME FLOW

    EPA Science Inventory

    The Quality Assurance Division of the Environmental Monitoring Systems Laboratory, Research Triangle Park, North Carolina, administers semiannual Surveys of Analytical Proficiency for sulfur dioxide, nitrogen dioxide, carbon monoxide, sulfate, nitrate and lead. Sample material, s...

  16. A regenerable carbon dioxide removal and oxygen recovery system for the Japanese Experiment Module.

    PubMed

    Otsuji, K; Hirao, M; Satoh, S

    1987-01-01

    The Japanese Space Station Program is now under Phase B study by the National Space Development Agency of Japan in participation with the U.S. Space Station Program. A Japanese Space Station participation will be a dedicated pressurized module to be attached to the U.S. Space Station, and is called Japanese Experiment Module (JEM). Astronaut scientists will conduct various experimental operations there. Thus an environment control and life support system is required. Regenerable carbon dioxide removal and collection technique as well as oxygen recovery technique has been studied and investigated for several years. A regenerable carbon dioxide removal subsystem using steam desorbed solid amine and an oxygen recovery subsystem using Sabatier methane cracking have a good possibility for the application to the Japanese Experiment Module. Basic performance characteristics of the carbon dioxide removal and oxygen recovery subsystem are presented according to the results of a fundamental performance test program. The trace contaminant removal process is also investigated and discussed. The solvent recovery plant for the regeneration of various industrial solvents, such as hydrocarbons, alcohols and so on, utilizes the multi-bed solvent adsorption and steam desorption process, which is very similar to the carbon dioxide removal subsystem. Therefore, to develop essential components including adsorption tank (bed), condenser. process controller and energy saving system, the technology obtained from the experience to construct solvent recovery plant can be easily and effectively applicable to the carbon dioxide removal subsystem. The energy saving efficiency is evaluated for blower power reduction, steam reduction and waste heat utilization technique. According to the above background, the entire environment control and life support system for the Japanese Experiment Module including the carbon dioxide removal and oxygen recovery subsystem is evaluated and proposed.

  17. NASA AIRS Instrument Tracks Transport of Sulfur Dioxide from Chilean Volcanic Eruption Animation

    NASA Image and Video Library

    2015-05-07

    For the first time in 40 years, the Calbuco volcano in southern Chile erupted on April 22, 2015. The eruption caused airline flight cancellations in Chile, Argentina and Uruguay and the evacuation of approximately 4,000 people. This movie shows alternating day and nighttime views of the plume of sulfur dioxide gas emitted by Calbuco, as observed by NASA's Atmospheric Infrared Sounder (AIRS) instrument on NASA's Aqua spacecraft, from April 22 to May 5, 2015. Significant amounts of sulfur dioxide are shown in bright red. The largest plume is apparent over South America during the initial eruption on April 22. The plume is then carried by winds across the south Atlantic Ocean and southern Africa. A second large eruption on April 29 produced a smaller plume. Volcanic sulfur dioxide can be an important factor in climate. Some of it is carried into Earth's stratosphere, where it is transformed into highly reflective droplets of sulfuric acid. By reflecting sunlight, these droplets can cool Earth. Large eruptions, like Mt. Pinatubo in 1991, cool our planet and disrupt rainfall patterns. Though an impressive eruption, Calbuco is expected to have only a small impact on Earth's climate. http://photojournal.jpl.nasa.gov/catalog/PIA19385

  18. Effect of Porosity Parameters and Surface Chemistry on Carbon Dioxide Adsorption in Sulfur-Doped Porous Carbons.

    PubMed

    Wang, En-Jie; Sui, Zhu-Yin; Sun, Ya-Nan; Ma, Zhuang; Han, Bao-Hang

    2018-05-22

    In this work, a series of highly porous sulfur-doped carbons are prepared through physical activation methods by using polythiophene as a precursor. The morphology, structure, and physicochemical properties are revealed by a variety of characterization methods, such as scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, and nitrogen sorption measurement. Their porosity parameters and chemical compositions can be well-tuned by changing the activating agents (steam and carbon dioxide) and reaction temperature. These sulfur-doped porous carbons possess specific surface area of 670-2210 m 2 g -1 , total pore volume of 0.31-1.26 cm 3 g -1 , and sulfur content of 0.6-4.9 atom %. The effect of porosity parameters and surface chemistry on carbon dioxide adsorption in sulfur-doped porous carbons is studied in detail. After a careful analysis of carbon dioxide uptake at different temperatures (273 and 293 K), pore volumes from small pore size (less than 1 nm) play an important role in carbon dioxide adsorption at 273 K, whereas surface chemistry is the key factor at a higher adsorption temperature or lower relative pressure. Furthermore, sulfur-doped porous carbons also possess good gas adsorption selectivity and excellent recyclability for regeneration.

  19. Removing oxygen from a solvent extractant in an uranium recovery process

    DOEpatents

    Hurst, Fred J.; Brown, Gilbert M.; Posey, Franz A.

    1984-01-01

    An improvement in effecting uranium recovery from phosphoric acid solutions is provided by sparging dissolved oxygen contained in solutions and solvents used in a reductive stripping stage with an effective volume of a nonoxidizing gas before the introduction of the solutions and solvents into the stage. Effective volumes of nonoxidizing gases, selected from the group consisting of argon, carbon dioxide, carbon monoxide, helium, hydrogen, nitrogen, sulfur dioxide, and mixtures thereof, displace oxygen from the solutions and solvents thereby reduce deleterious effects of oxygen such as excessive consumption of elemental or ferrous and accumulation of complex iron phosphates or cruds.

  20. PROCESS FOR THE RECOVERY OF URANIUM

    DOEpatents

    Morris, G.O.

    1955-06-21

    This patent relates to a process for the recovery of uranium from impure uranium tetrafluoride. The process consists essentially of the steps of dissolving the impure uranium tetrafluoride in excess dilute sulfuric acid in the presence of excess hydrogen peroxide, precipitating ammonium uranate from the solution so formed by adding an excess of aqueous ammonia, dissolving the precipitate in sulfuric acid and adding hydrogen peroxide to precipitate uranium peroxdde.

  1. Ozone and sulfur dioxide effects on tall fescue. II. Alteration of quality constituents. [Festuca arundinacea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flagler, R.B.; Youngner, V.B.

    A greenhouse study was conducted to determine whether ozone (O/sub 3/) and sulfur dioxide (SO/sub 2/) might alter forage quality parameters of tall fescue (Festuca arundinacea Schreb. Alta). Plants were exposed weekly to four O/sub 3/ treatments, 0, 0.10, 0.20, and 0.30 ..mu..L L/sup -1/; with or without 0.10 ..mu..L L/sup -1/ SO/sub 2/, 6 h d/sup -1/ for 12 weeks. Ozone had a much greater impact on forage quality than did SO/sub 2/. Ozone increased protein content on a g kg/sup -1/ basis and decreased protein on a weight per plant basis. Ozone reduced crude fat, crude fiber, andmore » total nonstructural carbohydrate contents of the forage. Crude ash content increased due to O/sub 3/ exposure. On a weight per plant basis, O/sub 3/ decreased the forage concentration of Ca, Mg, and P. Ozone increased Ca concentration of herbage. Sulfur dioxide increased ash content of the forage. Phosphorus concentration and weight per plant of Mg and P were all reduced by SO/sub 2/ Significant pollutant interactions occurred for crude fiber, crude ash, total Mg, and total P contents of forage. While treatments resulted in some apparent increases in forage quality, these were at the expense of yield. The most adverse effects on forage quality were an increase in ash content which resulted from an interaction of SO/sub 2/ with O/sub 3/, and a reduction in soluble carbohydrate content of shoots due to O/sub 3/.« less

  2. Sulfur flows and biosolids processing: Using Material Flux Analysis (MFA) principles at wastewater treatment plants.

    PubMed

    Fisher, R M; Alvarez-Gaitan, J P; Stuetz, R M; Moore, S J

    2017-08-01

    High flows of sulfur through wastewater treatment plants (WWTPs) may cause noxious gaseous emissions, corrosion of infrastructure, inhibit wastewater microbial communities, or contribute to acid rain if the biosolids or biogas is combusted. Yet, sulfur is an important agricultural nutrient and the direct application of biosolids to soils enables its beneficial re-use. Flows of sulfur throughout the biosolids processing of six WWTPs were investigated to identify how they were affected by biosolids processing configurations. The process of tracking sulfur flows through the sites also identified limitations in data availability and quality, highlighting future requirements for tracking substance flows. One site was investigated in more detail showing sulfur speciation throughout the plant and tracking sulfur flows in odour control systems in order to quantify outflows to air, land and ocean sinks. While the majority of sulfur from WWTPs is removed as sulfate in the secondary effluent, the sulfur content of biosolids is valuable as it can be directly returned to soils to combat the potential sulfur deficiencies. Biosolids processing configurations, which focus on maximising solids recovery, through high efficiency separation techniques in primary sedimentation tanks, thickeners and dewatering centrifuges retain more sulfur in the biosolids. However, variations in sulfur loads and concentrations entering the WWTPs affect sulfur recovery in the biosolids, suggesting industrial emitters, and chemical dosing of iron salts are responsible for differences in recovery between sites. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Reduction of produced elementary sulfur in denitrifying sulfide removal process.

    PubMed

    Zhou, Xu; Liu, Lihong; Chen, Chuan; Ren, Nanqi; Wang, Aijie; Lee, Duu-Jong

    2011-05-01

    Denitrifying sulfide removal (DSR) processes simultaneously convert sulfide, nitrate, and chemical oxygen demand from industrial wastewater into elemental sulfur, dinitrogen gas, and carbon dioxide, respectively. The failure of a DSR process is signaled by high concentrations of sulfide in reactor effluent. Conventionally, DSR reactor failure is blamed for overcompetition for heterotroph to autotroph communities. This study indicates that the elementary sulfur produced by oxidizing sulfide that is a recoverable resource from sulfide-laden wastewaters can be reduced back to sulfide by sulfur-reducing Methanobacterium sp. The Methanobacterium sp. was stimulated with excess organic carbon (acetate) when nitrite was completely consumed by heterotrophic denitrifiers. Adjusting hydraulic retention time of a DSR reactor when nitrite is completely consumed provides an additional control variable for maximizing DSR performance.

  4. Sulfuric acid on Europa and the radiolytic sulfur cycle.

    PubMed

    Carlson, R W; Johnson, R E; Anderson, M S

    1999-10-01

    A comparison of laboratory spectra with Galileo data indicates that hydrated sulfuric acid is present and is a major component of Europa's surface. In addition, this moon's visually dark surface material, which spatially correlates with the sulfuric acid concentration, is identified as radiolytically altered sulfur polymers. Radiolysis of the surface by magnetospheric plasma bombardment continuously cycles sulfur between three forms: sulfuric acid, sulfur dioxide, and sulfur polymers, with sulfuric acid being about 50 times as abundant as the other forms. Enhanced sulfuric acid concentrations are found in Europa's geologically young terrains, suggesting that low-temperature, liquid sulfuric acid may influence geological processes.

  5. 40 CFR 63.1568 - What are my requirements for HAP emissions from sulfur recovery units?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... emissions from sulfur recovery units? 63.1568 Section 63.1568 Protection of Environment ENVIRONMENTAL... Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Catalytic Cracking Units, Catalytic Reforming Units, Sulfur Recovery Units, and Bypass Lines § 63.1568 What...

  6. 40 CFR 60.106a - Monitoring of emissions and operations for sulfur recovery plants.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for sulfur recovery plants. 60.106a Section 60.106a Protection of Environment ENVIRONMENTAL PROTECTION... Commenced After May 14, 2007 § 60.106a Monitoring of emissions and operations for sulfur recovery plants. (a) The owner or operator of a sulfur recovery plant that is subject to the emissions limits in § 60.102a...

  7. 40 CFR 60.106a - Monitoring of emissions and operations for sulfur recovery plants.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for sulfur recovery plants. 60.106a Section 60.106a Protection of Environment ENVIRONMENTAL PROTECTION... Commenced After May 14, 2007 § 60.106a Monitoring of emissions and operations for sulfur recovery plants. (a) The owner or operator of a sulfur recovery plant that is subject to the emissions limits in § 60.102a...

  8. 40 CFR 60.106a - Monitoring of emissions and operations for sulfur recovery plants.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for sulfur recovery plants. 60.106a Section 60.106a Protection of Environment ENVIRONMENTAL PROTECTION... Commenced After May 14, 2007 § 60.106a Monitoring of emissions and operations for sulfur recovery plants. (a) The owner or operator of a sulfur recovery plant that is subject to the emissions limits in § 60.102a...

  9. 40 CFR 60.106a - Monitoring of emissions and operations for sulfur recovery plants.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for sulfur recovery plants. 60.106a Section 60.106a Protection of Environment ENVIRONMENTAL PROTECTION... Commenced After May 14, 2007 § 60.106a Monitoring of emissions and operations for sulfur recovery plants. (a) The owner or operator of a sulfur recovery plant that is subject to the emissions limits in § 60.102a...

  10. 40 CFR 60.106a - Monitoring of emissions and operations for sulfur recovery plants.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for sulfur recovery plants. 60.106a Section 60.106a Protection of Environment ENVIRONMENTAL PROTECTION... Commenced After May 14, 2007 § 60.106a Monitoring of emissions and operations for sulfur recovery plants. (a) The owner or operator of a sulfur recovery plant that is subject to the emissions limits in § 60.102a...

  11. Statistical interpretation of chromatic indicators in correlation to phytochemical profile of a sulfur dioxide-free mulberry (Morus nigra) wine submitted to non-thermal maturation processes.

    PubMed

    Tchabo, William; Ma, Yongkun; Kwaw, Emmanuel; Zhang, Haining; Xiao, Lulu; Apaliya, Maurice T

    2018-01-15

    The four different methods of color measurement of wine proposed by Boulton, Giusti, Glories and Commission International de l'Eclairage (CIE) were applied to assess the statistical relationship between the phytochemical profile and chromatic characteristics of sulfur dioxide-free mulberry (Morus nigra) wine submitted to non-thermal maturation processes. The alteration in chromatic properties and phenolic composition of non-thermal aged mulberry wine were examined, aided by the used of Pearson correlation, cluster and principal component analysis. The results revealed a positive effect of non-thermal processes on phytochemical families of wines. From Pearson correlation analysis relationships between chromatic indexes and flavonols as well as anthocyanins were established. Cluster analysis highlighted similarities between Boulton and Giusti parameters, as well as Glories and CIE parameters in the assessment of chromatic properties of wines. Finally, principal component analysis was able to discriminate wines subjected to different maturation techniques on the basis of their chromatic and phenolics characteristics. Copyright © 2017. Published by Elsevier Ltd.

  12. Stability of patulin to sulfur dioxide and to yeast fermentation.

    PubMed

    Burroughs, L F

    1977-01-01

    The affinity of patulin for sulfur dioxide (SO2) is much less than was previously reported and is of little significance at the SO2 concentrations (below 200 ppm) used in the processing of apple juice and cider. However, at concentrations of 2000 ppm SO2 and 15 ppm patulin, combination was 90% complete in 2 days. Removal of SO2 liberated only part of the patulin, which suggests that 2 mechanisms are involved: one reversible (opening the hemiacetal ring) and one irreversible (SO2 addition at the double bond). Test with 2 yeasts used in English commercial cider making confirmed that patulin is effectively removed during yeast fermentation.

  13. Probability model for atmospheric sulfur dioxide concentrations in the area of Venice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buttazzoni, C.; Lavagnini, I.; Marani, A.

    1986-09-01

    This paper deals with a comparative screening of existing air quality models based on their ability to simulate the distribution of sulfur dioxide data in the Venetian area. Investigations have been carried out on sulfur dioxide dispersion in the atmosphere of the Venetian area. The studies have been mainly focused on transport models (Gaussian, plume and K-models) aiming at meaningful correlations of sources and receptors. Among the results, a noteworthy disagreement of simulated and experimental data, due to the lack of thorough knowledge of source field conditions and of local meteorology of the sea-land transition area, has been shown. Investigationsmore » with receptor oriented models (based, e.g., on time series analysis, Fourier analysis, or statistical distributions) have also been performed.« less

  14. Impact of sulfur dioxide oxidation by Stabilized Criegee Intermediate on sulfate

    EPA Science Inventory

    We revise the Carbon Bond chemical mechanism to explicitly represent three Stabilized Criegee Intermediates (SCIs) and their subsequent reactions with sulfur dioxide, water monomer, and water dimer, and incorporate the reactions into the Community Multiscale Air Quality model. Th...

  15. Process and apparatus for generating elemental sulfur and re-usable metal oxide from spent metal sulfide sorbents

    DOEpatents

    Ayala, Raul E.; Gal, Eli

    1995-01-01

    A process and apparatus for generating elemental sulfur and re-usable metal oxide from spent metal-sulfur compound. Spent metal-sulfur compound is regenerated to re-usable metal oxide by moving a bed of spent metal-sulfur compound progressively through a single regeneration vessel having a first and second regeneration stage and a third cooling and purging stage. The regeneration is carried out and elemental sulfur is generated in the first stage by introducing a first gas of sulfur dioxide which contains oxygen at a concentration less than the stoichiometric amount required for complete oxidation of the spent metal-sulfur compound. A second gas containing sulfur dioxide and excess oxygen at a concentration sufficient for complete oxidation of the partially spent metal-sulfur compound, is introduced into the second regeneration stage. Gaseous sulfur formed in the first regeneration stage is removed prior to introducing the second gas into the second regeneration stage. An oxygen-containing gas is introduced into the third cooling and purging stage. Except for the gaseous sulfur removed from the first stage, the combined gases derived from the regeneration stages which are generally rich in sulfur dioxide and lean in oxygen, are removed from the regenerator as an off-gas and recycled as the first and second gas into the regenerator. Oxygen concentration is controlled by adding air, oxygen-enriched air or pure oxygen to the recycled off-gas.

  16. Research Progress in Carbon Dioxide Storage and Enhanced Oil Recovery

    NASA Astrophysics Data System (ADS)

    Wang, Keliang; Wang, Gang; Lu, Chunjing

    2018-02-01

    With the rapid development of global economy, human beings have become highly dependent upon fossil fuel such as coal and petroleum. Much fossil fuel is consumed in industrial production and human life. As a result, carbon dioxide emissions have been increasing, and the greenhouse effects thereby generated are posing serious threats to environment of the earth. These years, increasing average global temperature, frequent extreme weather events and climatic changes cause material disasters to the world. After scientists’ long-term research, ample evidences have proven that emissions of greenhouse gas like carbon dioxide have brought about tremendous changes to global climate. To really reduce carbon dioxide emissions, governments of different countries and international organizations have invested much money and human resources in performing research related to carbon dioxide emissions. Manual underground carbon dioxide storage and carbon dioxide-enhanced oil recovery are schemes with great potential and prospect for reducing carbon dioxide emissions. Compared with other schemes for reducing carbon dioxide emissions, aforementioned two schemes exhibit high storage capacity and yield considerable economic benefits, so they have become research focuses for reducing carbon dioxide emissions. This paper introduces the research progress in underground carbon dioxide storage and enhanced oil recovery, pointing out the significance and necessity of carbon dioxide-driven enhanced oil recovery.

  17. Catalytic removal of sulfur dioxide from dibenzothiophene sulfone over Mg-Al mixed oxides supported on mesoporous silica.

    PubMed

    You, Nansuk; Kim, Min Ji; Jeong, Kwang-Eun; Jeong, Soon-Yong; Park, Young-Kwon; Jeon, Jong-Ki

    2010-05-01

    Dibenzothiophene sulfone (DBTS), one of the products of the oxidative desulfurization of heavy oil, can be removed through extraction as well as by an adsorption process. It is necessary to utilize DBTS in conjunction with catalytic cracking. An object of the present study is to provide an Mg-Al-mesoporous silica catalyst for the removal of sulfur dioxide from DBTS. The characteristics of the Mg-Al-mesoporous silica catalyst were investigated through N2 adsorption, XRD, ICP, and XRF. An Mg-Al-mesoporous silica catalyst formulated in a direct incorporation method showed higher catalytic performance compared to pure MgO during the catalytic removal of sulfur dioxide from DBTS. The higher dispersion of Mg as well as the large surface area of the Mg-Al-mesoporous silica catalyst strongly influenced the catalyst basicity in DBTS cracking.

  18. Effect of hydroxytyrosol on quality of sulfur dioxide-free red wine.

    PubMed

    Raposo, R; Ruiz-Moreno, M J; Garde-Cerdán, T; Puertas, B; Moreno-Rojas, J M; Gonzalo-Diago, A; Guerrero, R F; Ortiz, V; Cantos-Villar, E

    2016-02-01

    In this work, the feasibility of two commercial products enriched in hydroxytyrosol (HT) as alternative to sulfur dioxide in Syrah red wines was evaluated. The HT enriched products came from synthesis and from olive waste. Wines treated with HT were compared with wines treated with sulfur dioxide at two winemaking stages: bottling and after 6 months of storage in bottle. Minor differences were found in enological parameters and volatile composition (esters, alcohols and acids). Significant differences were observed in color related parameters and sensory analysis. HT wines improved color parameters as well as scents and tasting at bottling. However, after 6 months of storage in bottle HT wines were more oxidized than SO2 wines. The olfactometry profile of HT wines supported sensory analysis. HT wines showed new odorant zones from both the added product and oxidation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Effects of low sulfur dioxide concentrations on bioactive compounds and antioxidant properties of Aglianico red wine.

    PubMed

    Gabriele, Morena; Gerardi, Chiara; Lucejko, Jeannette J; Longo, Vincenzo; Pucci, Laura; Domenici, Valentina

    2018-04-15

    This study analyzed the effect of low sulfur dioxide concentrations on the chromatic properties, phytochemical composition and antioxidant activity of Aglianico red wines with respect to wines produced from conventional winemaking. We determined the phytochemical composition by spectrophotometric methods and HPLC-DAD analysis and the in vitro antioxidant activity of different wine samples by the ORAC assay. The main important classes of fluorophore molecules in red wine were identified by Front-Face fluorescence spectroscopy, and the emission intensity trend was investigated at various sulfur dioxide concentrations. Lastly, we tested the effects of both conventional and low sulfite wines on ex vivo human erythrocytes under oxidative stimulus by the cellular antioxidant activity (CAA) assay and the hemolysis test. The addition of sulfur dioxide, which has well-known side effects, increased the content of certain bioactive components but did not raise the erythrocyte antioxidant capacity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Adsorption of sulfur dioxide on ammonia-treated activated carbon fibers

    USGS Publications Warehouse

    Mangun, C.L.; DeBarr, J.A.; Economy, J.

    2001-01-01

    A series of activated carbon fibers (ACFs) and ammonia-treated ACFs prepared from phenolic fiber precursors have been studied to elucidate the role of pore size, pore volume, and pore surface chemistry on adsorption of sulfur dioxide and its catalytic conversion to sulfuric acid. As expected, the incorporation of basic functional groups into the ACFs was shown as an effective method for increasing adsorption of sulfur dioxide. The adsorption capacity for dry SO2 did not follow specific trends; however the adsorption energies calculated from the DR equation were found to increase linearly with nitrogen content for each series of ACFs. Much higher adsorption capacities were achieved for SO2 in the presence of oxygen and water due to its catalytic conversion to H2SO4. The dominant factor for increasing adsorption of SO2 from simulated flue gas for each series of fibers studied was the weight percent of basic nitrogen groups present. In addition, the adsorption energies calculated for dry SO2 were shown to be linearly related to the adsorption capacity of H2SO4 from this flue gas for all fibers. It was shown that optimization of this parameter along with the pore volume results in higher adsorption capacities for removal of SO2 from flue gases. ?? 2001 Elsevier Science Ltd. All rights reserved.

  1. Method for oxygen reduction in a uranium-recovery process. [US DOE patent application

    DOEpatents

    Hurst, F.J.; Brown, G.M.; Posey, F.A.

    1981-11-04

    An improvement in effecting uranium recovery from phosphoric acid solutions is provided by sparging dissolved oxygen contained in solutions and solvents used in a reductive stripping stage with an effective volume of a nonoxidizing gas before the introduction of the solutions and solvents into the stage. Effective volumes of nonoxidizing gases, selected from the group consisting of argon, carbon dioxide, carbon monoxide, helium, hydrogen, nitrogen, sulfur dioxide, and mixtures thereof, displace oxygen from the solutions and solvents thereby reduce deleterious effects of oxygen such as excessive consumption of elemental or ferrous iron and accumulation of complex iron phosphates or cruds.

  2. Airborne sulfur trace species intercomparison campaign: Sulfur dioxide, dimethylsulfide, hydrogen sulfide, carbon disulfide, and carbonyl sulfide

    NASA Technical Reports Server (NTRS)

    Gregory, Gerald L.; Hoell, James M., Jr.; Davis, Douglas D.

    1991-01-01

    Results from an airborne intercomparison of techniques to measure tropospheric levels of sulfur trace gases are presented. The intercomparison was part of the NASA Global Tropospheric Experiment (GTE) and was conducted during the summer of 1989. The intercomparisons were conducted on the Wallops Electra aircraft during flights from Wallops Island, Virginia, and Natal, Brazil. Sulfur measurements intercompared included sulfur dioxide (SO2), dimethylsulfide (DMS), hydrogen sulfide (H2S), carbon disulfide (CS2), and carbonyl sulfide (OCS). Measurement techniques ranged from filter collection systems with post-flight analyses to mass spectrometer and gas chromatograph systems employing various methods for measuring and identifying the sulfur gases during flight. Sampling schedules for the techniques ranged from integrated collections over periods as long as 50 minutes to one- to three-minute samples every ten or fifteen minutes. Several of the techniques provided measurements of more than one sulfur gas. Instruments employing different detection principles were involved in each of the sulfur intercomparisons. Also included in the intercomparison measurement scenario were a host of supporting measurements (i.e., ozone, nitrogen oxides, carbon monoxide, total sulfur, aerosols, etc.) for purposes of: (1) interpreting results (i.e., correlation of any noted instrument disagreement with the chemical composition of the measurement environment); and (2) providing supporting chemical data to meet CITE-3 science objectives of studying ozone/sulfur photochemistry, diurnal cycles, etc. The results of the intercomparison study are briefly discussed.

  3. Process for removal of sulfur compounds from fuel gases

    DOEpatents

    Moore, Raymond H.; Stegen, Gary E.

    1978-01-01

    Fuel gases such as those produced in the gasification of coal are stripped of sulfur compounds and particulate matter by contact with molten metal salt. The fuel gas and salt are intimately mixed by passage through a venturi or other constriction in which the fuel gas entrains the molten salt as dispersed droplets to a gas-liquid separator. The separated molten salt is divided into a major and a minor flow portion with the minor flow portion passing on to a regenerator in which it is contacted with steam and carbon dioxide as strip gas to remove sulfur compounds. The strip gas is further processed to recover sulfur. The depleted, minor flow portion of salt is passed again into contact with the fuel gas for further sulfur removal from the gas. The sulfur depleted, fuel gas then flows through a solid absorbent for removal of salt droplets. The minor flow portion of the molten salt is then recombined with the major flow portion for feed to the venturi.

  4. ENHANCEMENT OF REACTIVITY IN SURFACTANT-MODIFIED SORBENTS FOR SULFUR DIOXIDE CONTROL

    EPA Science Inventory

    Injection of calcium-based sorbents into the postflame zone of utility boilers is capable of achieving sulfur dioxide (SO2) captures of 50-60% at a stoichiometry of 2. Calcium hydroxide [Ca(OH)2] appears to be the most effective commercially available sorbent. Recent attempts to ...

  5. 78 FR 28143 - Approval and Promulgation of Air Quality Implementation Plans; Indiana; Sulfur Dioxide and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-14

    ...-9811-6] Approval and Promulgation of Air Quality Implementation Plans; Indiana; Sulfur Dioxide and Nitrogen Dioxide Ambient Air Quality Standards AGENCY: Environmental Protection Agency (EPA). ACTION... amend the national ambient air quality standards (NAAQS) for NO 2 and SO 2 to be consistent with the...

  6. Sulfur Dioxide Capture by Heterogeneous Oxidation on Hydroxylated Manganese Dioxide.

    PubMed

    Wu, Haodong; Cai, Weimin; Long, Mingce; Wang, Hairui; Wang, Zhiping; Chen, Chen; Hu, Xiaofang; Yu, Xiaojuan

    2016-06-07

    Here we demonstrate that sulfur dioxide (SO2) is efficiently captured via heterogeneous oxidation into sulfate on the surface of hydroxylated manganese dioxide (MnO2). Lab-scale activity tests in a fluidized bed reactor showed that the removal efficiency for a simulated flue gas containing 5000 mg·Nm(-3) SO2 could reach nearly 100% with a GHSV (gas hourly space velocity) of 10000 h(-1). The mechanism was investigated using a combination of experimental characterizations and theoretical calculations. It was found that formation of surface bound sulfate proceeds via association of SO2 with terminal hydroxyls. Both H2O and O2 are essential for the generation of reactive terminal hydroxyls, and the indirect role of O2 in heterogeneous SO2 oxidation at low temperature was also revealed. We propose that the high reactivity of terminal hydroxyls is attributed to the proper surface configuration of MnO2 to adsorb water with degenerate energies for associative and dissociative states, and maintain rapid proton dynamics. Viability analyses suggest that the desulfurization method that is based on such a direct oxidation reaction at the gas/solid interface represents a promising approach for SO2 capture.

  7. Method for removing sulfur oxide from waste gases and recovering elemental sulfur

    DOEpatents

    Moore, Raymond H.

    1977-01-01

    A continuous catalytic fused salt extraction process is described for removing sulfur oxides from gaseous streams. The gaseous stream is contacted with a molten potassium sulfate salt mixture having a dissolved catalyst to oxidize sulfur dioxide to sulfur trioxide and molten potassium normal sulfate to solvate the sulfur trioxide to remove the sulfur trioxide from the gaseous stream. A portion of the sulfur trioxide loaded salt mixture is then dissociated to produce sulfur trioxide gas and thereby regenerate potassium normal sulfate. The evolved sulfur trioxide is reacted with hydrogen sulfide as in a Claus reactor to produce elemental sulfur. The process may be advantageously used to clean waste stack gas from industrial plants, such as copper smelters, where a supply of hydrogen sulfide is readily available.

  8. SPONTANEOUSLY HYPERTENSIVE RATS ARE SUSCEPTIBLE TO AIRWAY DISEASE INDUCED BY SULFUR DIOXIDE

    EPA Science Inventory

    Rodent models of chronic pulmonary diseases induced by sulfur dioxide (SO2), elastase or tobacco smoke have limited utility because of their lack of chronicity of inflammation, and they demonstrate limited sensitivity to a given experimental manipulation. We hypothesized that dis...

  9. In-situ surface science studies of the interaction between sulfur dioxide and two-dimensional palladium loaded-cerium/zirconium mixed metal oxide model catalysts

    NASA Astrophysics Data System (ADS)

    Romano, Esteban Javier

    2005-07-01

    Cerium and zirconium oxides are important materials in industrial catalysis. Particularly, the great advances attained in the past 30 years in controlling levels of gaseous pollutants released from internal combustion engines can be attributed to the development of catalysts employing these materials. Unfortunately, oxides of sulfur are known threats to the longevity of many catalytic systems by irreversibly interacting with catalytic materials. In this work, polycrystalline cerium-zirconium mixed-metal-oxide (MMO) solid solutions were synthesized. High resolution x-ray photoelectron spectroscopy (XPS) spectral data was collected and examined for revelation of the surface species that form on these metal oxides after in-situ exposures to sulfur dioxide. The model catalysts were exposed to sulfur dioxide using a custom modified in-situ reaction cell and platen heater. The results of this study demonstrate the formation of sulfate and sulfite surface sulfur species. Temperature and compositional dependencies were displayed, with higher temperatures and ceria molar ratios displaying a larger propensity for forming surface sulfur species. In addition to analysis of sulfur photoemission, the photoemission regions of oxygen, zirconium, and cerium were examined for the materials used in this study before and after the aforementioned treatments with sulfur dioxide. The presence of surface hydroxyl groups was observed and metal oxidation state changes were probed to further enhance the understanding of sulfur dioxide adsorption on the synthesized materials. Palladium loaded mixed-metal oxides were synthesized using a unique solid-state methodology to probe the effect of palladium addition on sulfur dioxide adsorption. The addition of palladium to this model system is shown to have a strong effect on the magnitude of adsorption for sulfur dioxide on some material/exposure condition combinations. Ceria/zirconia sulfite and sulfate species are identified on the palladium

  10. REGIONAL TRENDS IN RURAL SULFUR DIOXIDE CONCENTRATIONS OVER THE EASTERN U.S.

    EPA Science Inventory

    Emission reductions were mandated in the Clean Air Art Amendments of 1990 with the expectation that they would result in corresponding reductions in air pollution. The 1990 amendments include new requirements that appreciably reduced sulfur dioxide (SO2) emissions in two phases o...

  11. A study of the total atmospheric sulfur dioxide load using ground-based measurements and the satellite derived Sulfur Dioxide Index

    NASA Astrophysics Data System (ADS)

    Georgoulias, A. K.; Balis, D.; Koukouli, M. E.; Meleti, C.; Bais, A.; Zerefos, C.

    We present characteristics of the sulfur dioxide (SO 2) loading over Thessaloniki, Greece, and seven other selected sites around the world using SO 2 total column measurements from Brewer spectrophotometers together with satellite estimates of the Version 8 TOMS Sulfur Dioxide Index (SOI) over the same locations, retrieved from Nimbus 7 TOMS (1979-1993), Earth Probe TOMS (1996-2003) and OMI/Aura (2004-2006). Traditionally, the SOI has been used to quantify the SO 2 quantities emitted during great volcanic eruptions. Here, we investigate whether the SOI can give an indication of the total SO 2 load for areas and periods away from eruptive volcanic activity by studying its relative changes as a correlative measure to the SO 2 total column. We examined time series from Thessaloniki and another seven urban and non-urban stations, five in the European Union (Arosa, De Bilt, Hohenpeissenberg, Madrid, Rome) and two in India (Kodaikanal, New Delhi). Based on the Brewer data, Thessaloniki shows high SO 2 total columns for a European Union city but values are still low if compared to highly affected regions like those in India. For the time period 1983-2006 the SO 2 levels above Thessaloniki have generally decreased with a rate of 0.028 Dobson Units (DU) per annum, presumably due to the European Union's strict sulfur control policies. The seasonal variability of the SO 2 total column exhibits a double peak structure with two maxima, one during winter and the second during summer. The winter peak can be attributed to central heating while the summer peak is due to synoptic transport from sources west of the city and sources in the north of Greece. A moderate correlation was found between the seasonal levels of Brewer total SO 2 and SOI for Thessaloniki, Greece ( R = 0.710-0.763) and Madrid, Spain ( R = 0.691) which shows that under specific conditions the SOI might act as an indicator of the SO 2 total load.

  12. Raman spectra and cross sections of ammonia, chlorine, hydrogen sulfide, phosgene, and sulfur dioxide toxic gases in the fingerprint region 400 1400 cm 1

    DTIC Science & Technology

    2015-11-24

    ammonia , chlorine, hydrogen sulfide, phosgene, and sulfur dioxide toxic gases in the fingerprint region 400... ammonia (NH3), chlorine (Cl2), hydrogen sulfide (H2S), phosgene (COCl2), and sulfur dioxide (SO2) toxic gases have been measured in the fingerprint...sections of ammonia (NH3), chlorine (Cl2), hydrogen sulfide (H2S), phosgene (CCl2O), and sulfur dioxide (SO2) toxic gases in the fingerprint

  13. Raman Spectra and Cross Sections of Ammonia, Chlorine, Hydrogen Sulfide, Phosgene, and Sulfur Dioxide Toxic Gases in the Fingerprint Region 400-1400 cm-1

    DTIC Science & Technology

    2015-12-14

    ammonia , chlorine, hydrogen sulfide, phosgene, and sulfur dioxide toxic gases in the fingerprint region 400... ammonia (NH3), chlorine (Cl2), hydrogen sulfide (H2S), phosgene (COCl2), and sulfur dioxide (SO2) toxic gases have been measured in the fingerprint...sections of ammonia (NH3), chlorine (Cl2), hydrogen sulfide (H2S), phosgene (CCl2O), and sulfur dioxide (SO2) toxic gases in the fingerprint region

  14. Case study, comparison of trial burn results from similar sulfuric acid regeneration plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milaszewski, M.; Johns, T.; Dickerson, W.F.

    The primary business of Rhodia Eco Services (Rhodia) is the regeneration of sulfuric acid. Sulfuric acid regeneration requires thermal decomposition of acid to sulfur dioxide, and remaking the acid through chemical reaction. The sulfuric acid regeneration furnace is the ideal place to process pumpable wastes for energy recovery and for thermal destruction. Rhodia is regulated by the Boiler and Industrial Furnace (BIF) regulations (40 CFR 266, Subpart H). The Hammond, Indiana plant is an interim status BIF facility and the Houston, Texas facility is renewing its RCRA incineration permit as a BIF facility. Both plants have conducted BIF Trial Burnsmore » with very similar results. The performance levels demonstrated were at levels better than RCRA/BIF standards for destruction and removal efficiency, metal, HCl/Cl, particulate, dioxin/furan, and organic emissions.« less

  15. Lithium/sulfur dioxide cell and battery safety

    NASA Technical Reports Server (NTRS)

    Halpert, G.; Anderson, A.

    1982-01-01

    The new high-energy lithium/sulfur dioxide primary electrochemical cell, having a number of advantages, has received considerable attention as a power source in the past few years. With greater experience and improved design by the manufacturers, this system can be used in a safe manner provided the guidelines for use and safety precautions described herein are followed. In addition to a description of cell design and appropriate definitions, there is a safety precautions checklist provided to guide the user. Specific safety procedures for marking, handling, transportation, and disposal are also given, as is a suggested series of tests, to assure manufacturer conformance to requirements.

  16. 77 FR 46295 - Extension of Deadline for Promulgating Designations for the 2010 Primary Sulfur Dioxide National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-03

    ... Deadline for Promulgating Designations for the 2010 Primary Sulfur Dioxide National Ambient Air Quality... extend by up to 1 year the deadline for promulgating initial area designations for the primary sulfur... necessary to modify any of the state recommendations. The EPA was originally intending to complete the...

  17. Development of spent fuel reprocessing process based on selective sulfurization: Study on the Pu, Np and Am sulfurization

    NASA Astrophysics Data System (ADS)

    Kirishima, Akira; Amano, Yuuki; Nihei, Toshifumi; Mitsugashira, Toshiaki; Sato, Nobuaki

    2010-03-01

    For the recovery of fissile materials from spent nuclear fuel, we have proposed a novel reprocessing process based on selective sulfurization of fission products (FPs). The key concept of this process is utilization of unique chemical property of carbon disulfide (CS2), i.e., it works as a reductant for U3O8 but works as a sulfurizing agent for minor actinides and lanthanides. Sulfurized FPs and minor actinides (MA) are highly soluble to dilute nitric acid while UO2 and PuO2 are hardly soluble, therefore, FPs and MA can be removed from Uranium and Plutonium matrix by selective dissolution. As a feasibility study of this new concept, the sulfurization behaviours of U, Pu, Np, Am and Eu are investigated in this paper by the thermodynamical calculation, phase analysis of chemical analogue elements and tracer experiments.

  18. COMBINED EFFECT OF SULFUR DIOXIDE AND OZONE ON BEAN AND TOBACCO PLANTS

    EPA Science Inventory

    Plants of two cultivars of Phaseolus vulgaris and one cultivar of Nicotiana tabacum were exposed to a replicated series of concentrations of sulfur dioxide (SO2), ozone (03), and combinations of these two air pollutants for single four-hour periods. Experiments were performed in ...

  19. Removal of Sulfur Dioxide from Flue Gas Using the Sludge Sodium Humate

    PubMed Central

    Hu, Guoxin

    2013-01-01

    This study shows the ability of sodium humate from alkaline treatment sludge on removing sulfur dioxide (SO2) in the simulated flue gas. Experiments were conducted to examine the effect of various operating parameters, like the inlet SO2 concentration or temperature or O2, on the SO2 absorption efficiency and desulfurization time in a lab-scale bubbling reactor. The sludge sodium humate in the supernatant after alkaline sludge treatment shows great performance in SO2 absorption, and such efficiency can be maintained above 98% with 100 mL of this absorption solution at 298 K (flue gas rate of 0.12 m3/h). The highest SO2 absorption by 1.63 g SHA-Na is 0.946 mmol in the process, which is translated to 0.037 g SO2 g−1 SHA-Na. The experimental results indicate that the inlet SO2 concentration slightly influences the SO2 absorption efficiency and significantly influences the desulfurization time. The pH of the absorption solution should be above 3.5 in this process in order to make an effective desulfurization. The products of this process were characterized by Fourier transform infrared spectroscopy and X-ray diffraction. It can be seen that the desulfurization products mainly contain sludge humic acid sediment, which can be used as fertilizer components. PMID:24453875

  20. Electrochemistry of Sulfur Dioxide in Nonaqueous Solutions. Part I.

    DTIC Science & Technology

    1981-05-18

    carried out as part of a program to investigate safety hazards in nonaqueous ambient temperature lithium batteries. Comparison and discussion of...behavior of nonaqueous solutions of sulfur dioxide has been generated by the use of these systems in high energy density lithium batteries. During the past... hexafluorophosphate ) 6 at -0.13V and +0.63V (vs. AgCl coated Ag wire), which were assigned to the oxidation of S02- and 62042-. Fouchard observed that the

  1. 40 CFR Table 30 to Subpart Uuu of... - Operating Limits for HAP Emissions From Sulfur Recovery Units

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Sulfur Recovery Units 30 Table 30 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL... Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 30 Table 30 to Subpart UUU of Part 63—Operating Limits for HAP Emissions From Sulfur Recovery...

  2. Advection of sulfur dioxide over the western Atlantic Ocean during CITE 3

    NASA Technical Reports Server (NTRS)

    Thornton, D. C.; Bandy, A. R.; Beltz, N.; Driedger, A. R., III; Ferek, R.

    1993-01-01

    During the NASA Chemical Instrumentation Test and Evaluation 3 sulfur intercomparison over the western Atlantic Ocean, five techniques for the determination of sulfur dioxide were evaluated. The response times of the techniques varied from 3 to 30 min. Based on the ensemble of measurements reported, it was clear that advection of SO2 from the North American continent occurred in the boundary layer (altitude less than 1 km) with only one exception. The vertical distribution of SO2 above the boundary layer for the northern and southern Atlantic Ocean was remarkably similar duing this experiment.

  3. Fruit growing in areas of air pollution by sulfur dioxide (in German)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guderian, R.

    1969-01-01

    A review is presented dealing with leaf injuries and reductions in growth, yield, and fruit quality in pome fruits, stone fruits, bush fruits, vines, strawberries, and walnuts caused by sulfur dioxide. References to varietal resistance and the effects of manuring on resistance are provided. 11 references.

  4. Transport of sulfur dioxide from the Asian Pacific Rim to the North Pacific troposphere

    NASA Astrophysics Data System (ADS)

    Thornton, Donald C.; Bandy, Alan R.; Blomquist, Byron W.; Talbot, Robert W.; Dibb, Jack E.

    1997-12-01

    The NASA Pacific Exploratory Mission over the Western Pacific Ocean (PEM-West B) field experiment provided an opportunity to study sulfur dioxide (SO2) in the troposphere over the western Pacific Ocean from the tropics to 60°N during February-March 1993. The large suite of chemical and physical measurements yielded a complex matrix in which to understand the distribution of sulfur dioxide over the western Pacific region. In contrast to the late summer period of Pacific Exploratory Mission-West A (PEM-West A) (1991) over this same area, SO2 showed little increase with altitude, and concentrations were much lower in the free troposphere than during the PEM-West B period. Volcanic impacts on the upper troposphere were again found as a result of deep convection in the tropics. Extensive emission of SO2 from the Pacific Rim land masses were primarily observed in the lower well-mixed part of the boundary layer but also in the upper part of the boundary layer. Analyses of the SO2 data with aerosol sulfate, beryllium-7, and lead-210 indicated that SO2 contributed to half or more of the observed total oxidized sulfur (SO2 plus aerosol sulfate) in free tropospheric air. The combined data set suggests that SO2 above 8.5 km is transported from the surface but with aerosol sulfate being removed more effectively than SO2. Cloud processing and rain appeared to be responsible for lower SO2 levels between 3 and 8.5 km than above or below this region.

  5. Woodchip-sulfur based heterotrophic and autotrophic denitrification (WSHAD) process for nitrate contaminated water remediation.

    PubMed

    Li, Rui; Feng, Chuanping; Hu, Weiwu; Xi, Beidou; Chen, Nan; Zhao, Baowei; Liu, Ying; Hao, Chunbo; Pu, Jiaoyang

    2016-02-01

    Nitrate contaminated water can be effectively treated by simultaneous heterotrophic and autotrophic denitrification (HAD). In the present study, woodchips and elemental sulfur were used as co-electron donors for HAD. It was found that ammonium salts could enhance the denitrifying activity of the Thiobacillus bacteria, which utilize the ammonium that is produced by the dissimilatory nitrate reduction to ammonium (DNRA) in the woodchip-sulfur based heterotrophic and autotrophic denitrification (WSHAD) process. The denitrification performance of the WSHAD process (reaction constants range from 0.05485 h(-1) to 0.06637 h(-1)) is better than that of sulfur-based autotrophic denitrification (reaction constants range from 0.01029 h(-1) to 0.01379 h(-1)), and the optimized ratio of woodchips to sulfur is 1:1 (w/w). No sulfate accumulation is observed in the WSHAD process and the alkalinity generated in the heterotrophic denitrification can compensate for alkalinity consumption by the sulfur-based autotrophic denitrification. The symbiotic relationship between the autotrophic and the heterotrophic denitrification processes play a vital role in the mixotrophic environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. 40 CFR Table 29 to Subpart Uuu of... - HAP Emission Limits for Sulfur Recovery Units

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Recovery Units 29 Table 29 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION... Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 29 Table 29 to Subpart UUU of Part 63—HAP Emission Limits for Sulfur Recovery Units As stated in...

  7. 40 CFR Table 29 to Subpart Uuu of... - HAP Emission Limits for Sulfur Recovery Units

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Recovery Units 29 Table 29 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION... Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 29 Table 29 to Subpart UUU of Part 63—HAP Emission Limits for Sulfur Recovery Units As stated in...

  8. Age of pine seedlings with primary needles affects sensitivity to ozone and sulfur dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berry, C.R.

    1974-02-01

    Seedlings of Virginia (Pinus virginiana), shortleaf (P. echinata), slash (P. elliottii var. elliottii), and loblolly (P. taeda) pines at ages 2, 4, 6, 8, and 10 wk were exposed to individual dosages of ozone and sulfur dioxide. Exposures were 2 hr at 655.0 +/- 65 ..mu..g/m/sup 3/ for SO/sub 2/ and 477.5 +/- 48 ..mu../m/sup 3/ for O/sub 3/ (25 +/- 2.5 parts per hundred million). The two gases were equally injurious to all species, and all species were equally sensitive to each gas. Maximum sensitivity of the seedlings to the two gases, however, occurred at different ages. For ozonemore » the greatest sensitivity was 2 wk or younger, and for sulfur dioxide at 8 to 10 wk or older.« less

  9. SOA FORMATION FROM THE IRRADIATION OF A-PINENE-NOX IN THE ABSENCE AND PRESENCE OF SULFUR DIOXIDE

    EPA Science Inventory

    Sulfur dioxide (SO2) is an important constituent in the polluted atmosphere. It is emitted from combustion sources using fuels that contain sulfur. Emissions of SO2 in the United States were reportedly 17 Tg in 1996 with most coming from coal and petroleum combustion. The pr...

  10. CALCINATION AND SINTERING OF SORBENTS DURING BOILER INJECTION FOR DRY SULFUR DIOXIDE CONTROL

    EPA Science Inventory

    The paper discusses the calcination and sintering of sorbents during boiler injection for dry sulfur dioxide (S02) control, with emphasis on calcium hydroxide--Ca(OH)2--because of its superior reactivity with S02 and its wide commercial availability. Calcination and sintering are...

  11. EVALUATION AND APPLICATION OF SOX MEASUREMENT PROCEDURES FOR KRAFT RECOVERY FURNACES

    EPA Science Inventory

    The objective of this investigation was to determine the sulfuric acid (SO3/H2SO4) and sulfur dioxide (SO2) emissions from kraft recovery furnaces using an extractive sampling system. The Goksoyr and Ross controlled condensation technique was chosen. Equipment was designed and fa...

  12. Space-based detection of missing sulfur dioxide sources of global air pollution

    NASA Astrophysics Data System (ADS)

    McLinden, Chris A.; Fioletov, Vitali; Shephard, Mark W.; Krotkov, Nick; Li, Can; Martin, Randall V.; Moran, Michael D.; Joiner, Joanna

    2016-07-01

    Sulfur dioxide is designated a criteria air contaminant (or equivalent) by virtually all developed nations. When released into the atmosphere, sulfur dioxide forms sulfuric acid and fine particulate matter, secondary pollutants that have significant adverse effects on human health, the environment and the economy. The conventional, bottom-up emissions inventories used to assess impacts, however, are often incomplete or outdated, particularly for developing nations that lack comprehensive emission reporting requirements and infrastructure. Here we present a satellite-based, global emission inventory for SO2 that is derived through a simultaneous detection, mapping and emission-quantifying procedure, and thereby independent of conventional information sources. We find that of the 500 or so large sources in our inventory, nearly 40 are not captured in leading conventional inventories. These missing sources are scattered throughout the developing world--over a third are clustered around the Persian Gulf--and add up to 7 to 14 Tg of SO2 yr-1, or roughly 6-12% of the global anthropogenic source. Our estimates of national total emissions are generally in line with conventional numbers, but for some regions, and for SO2 emissions from volcanoes, discrepancies can be as large as a factor of three or more. We anticipate that our inventory will help eliminate gaps in bottom-up inventories, independent of geopolitical borders and source types.

  13. Space-Based Detection of Missing Sulfur Dioxide Sources of Global Air Pollution

    NASA Technical Reports Server (NTRS)

    McLinden, Chris A.; Fioletov, Vitali; Shephard, Mark W.; Krotkov, Nick; Li, Can; Martin, Randall V.; Moran, Michael D.; Joiner, Joanna

    2016-01-01

    Sulfur dioxide is designated a criteria air contaminant (or equivalent) by virtually all developed nations. When released into the atmosphere, sulfur dioxide forms sulfuric acid and fine particulate matter, secondary pollutants that have significant adverse effects on human health, the environment and the economy. The conventional, bottom-up emissions inventories used to assess impacts, however, are often incomplete or outdated, particularly for developing nations that lack comprehensive emission reporting requirements and infrastructure. Here we present a satellite-based, global emission inventory for SO2 that is derived through a simultaneous detection, mapping and emission-quantifying procedure, and thereby independent of conventional information sources. We find that of the 500 or so large sources in our inventory, nearly 40 are not captured in leading conventional inventories. These missing sources are scattered throughout the developing world-over a third are clustered around the Persian Gulf-and add up to 7 to 14 Tg of SO2 yr(exp -1), or roughly 6-12% of the global anthropogenic source. Our estimates of national total emissions are generally in line with conventional numbers, but for some regions, and for SO2 emissions from volcanoes, discrepancies can be as large as a factor of three or more. We anticipate that our inventory will help eliminate gaps in bottom-up inventories, independent of geopolitical borders and source types.

  14. Remotely Sensed Density Measurements of Volcanic Sulfur Dioxide Plumes Using a Spectral Long Wave Infrared Imager

    DTIC Science & Technology

    2002-09-01

    USGS). (Tilling, R., Heliker, C., and Wright, T., “ Eruptions of Hawaiian Volcanoes ”) The mission of HVO is to monitor Hawaii’s Mauna Loa and Kilauea ...Hendley, J., “Living on Active Volcanoes ”) Hawaii’s Kilauea Volcano is unique in its long-term (1983 – present), nearly continuous eruptive ...monitoring the gas emission process of Kilauea Volcano . During periods of sustained eruption , Kilauea emits about 2,000 tons of sulfur dioxide gas (SO2

  15. Three approaches for estimating recovery factors in carbon dioxide enhanced oil recovery

    USGS Publications Warehouse

    Verma, Mahendra K.

    2017-07-17

    PrefaceThe Energy Independence and Security Act of 2007 authorized the U.S. Geological Survey (USGS) to conduct a national assessment of geologic storage resources for carbon dioxide (CO2) and requested the USGS to estimate the “potential volumes of oil and gas recoverable by injection and sequestration of industrial carbon dioxide in potential sequestration formations” (42 U.S.C. 17271(b)(4)). Geologic CO2 sequestration associated with enhanced oil recovery (EOR) using CO2 in existing hydrocarbon reservoirs has the potential to increase the U.S. hydrocarbon recoverable resource. The objective of this report is to provide detailed information on three approaches that can be used to calculate the incremental recovery factors for CO2-EOR. Therefore, the contents of this report could form an integral part of an assessment methodology that can be used to assess the sedimentary basins of the United States for the hydrocarbon recovery potential using CO2-EOR methods in conventional oil reservoirs.

  16. Lepton Number Violating e-W+ → e+W- → W-W- Processes in the Left-Right Gauge Model

    NASA Astrophysics Data System (ADS)

    Doi, M.

    1999-03-01

    As new tests of the nature of neutrinos, lepton number violating e-W+a → e+W-b and e-e- → W-a W-b processes are studied within the SU(2)L × SU(2)R × U(1)B-L gauge model. They take place via exchange of a Majorana neutrino and a doubly charged Higgs particle. Differential cross sections are derived in the most general form. The angular distribution of the former process becomes resonant at cos θj= -1+2(Ma2Mb2 -mj2s)/ (s-Ma2) (s-Mb2), from which the neutrino mass mj can be deduced. Differential cross sections are estimated by using present bounds on the parameters. The cross section of the former process is about 102 times larger than the latter. Another process, e-p → e+W-n, which includes e-W+ → e+ W- as a sub-process, is also discussed, and orders of magnitude of the cross section are estimated.

  17. Biological Effects of Short, High-Level Exposure to Gases: Sulfur Dioxide.

    DTIC Science & Technology

    1980-05-01

    irritation and moist rales, bilaterally and anteriorly over the large bronchi. One-half of the subjects exposed to sulfur dioxide at concentrations of... burns . The pharyngeal mucosa was hyperemic but without ulceration . These men had decreased breath sounds, diffuse rales and rhonchi, with essentially...workplace have limited appli- cation in the military setting; the basis for their selection is the protection of chronically exposed workers against

  18. Using Demonstrations Involving Combustion and Acid-Base Chemistry to Show Hydration of Carbon Dioxide, Sulfur Dioxide, and Magnesium Oxide and Their Relevance for Environmental Climate Science

    ERIC Educational Resources Information Center

    Shaw, C. Frank, III; Webb, James W.; Rothenberger, Otis

    2016-01-01

    The nature of acidic and basic (alkaline) oxides can be easily illustrated via a series of three straightforward classroom demonstrations for high school and general chemistry courses. Properties of carbon dioxide, sulfur dioxide, and magnesium oxide are revealed inexpensively and safely. Additionally, the very different kinetics of hydration of…

  19. β-Sitosterol: Supercritical Carbon Dioxide Extraction from Sea Buckthorn (Hippophae rhamnoides L.) Seeds

    PubMed Central

    Sajfrtová, Marie; Ličková, Ivana; Wimmerová, Martina; Sovová, Helena; Wimmer, Zdeněk

    2010-01-01

    Supercritical fluid extraction represents an efficient and environmentally friendly technique for isolation of phytosterols from different plant sources. Sea buckthorn (Hippophae rhamnoides L.) seeds were extracted with supercritical carbon dioxide at pressures ranging from 15–60 MPa and temperatures of 40–80 °C. Oil and β-sitosterol yields were measured in the extraction course and compared with Soxhlet extraction with hexane. The average yield of β-sitosterol was 0.31 mg/g of seeds. The maximum concentration of β-sitosterol in the extract, 0.5% w/w, was achieved at 15 MPa, 40 °C, and a carbon dioxide consumption of 50 g/g of seeds. The extraction rate was maximal at 60 MPa and 40 °C. Both β-sitosterol yield and its concentration in the extract obtained with hexane were lower than with carbon dioxide. PMID:20480045

  20. β-Sitosterol: supercritical carbon dioxide extraction from sea buckthorn (Hippophae rhamnoides L.) seeds.

    PubMed

    Sajfrtová, Marie; Licková, Ivana; Wimmerová, Martina; Sovová, Helena; Wimmer, Zdenek

    2010-04-22

    Supercritical fluid extraction represents an efficient and environmentally friendly technique for isolation of phytosterols from different plant sources. Sea buckthorn (Hippophae rhamnoides L.) seeds were extracted with supercritical carbon dioxide at pressures ranging from 15-60 MPa and temperatures of 40-80 degrees C. Oil and β-sitosterol yields were measured in the extraction course and compared with Soxhlet extraction with hexane. The average yield of β-sitosterol was 0.31 mg/g of seeds. The maximum concentration of β-sitosterol in the extract, 0.5% w/w, was achieved at 15 MPa, 40 degrees C, and a carbon dioxide consumption of 50 g/g of seeds. The extraction rate was maximal at 60 MPa and 40 degrees C. Both β-sitosterol yield and its concentration in the extract obtained with hexane were lower than with carbon dioxide.

  1. 40 CFR 63.1568 - What are my requirements for HAP emissions from sulfur recovery units?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true What are my requirements for HAP emissions from sulfur recovery units? 63.1568 Section 63.1568 Protection of Environment ENVIRONMENTAL... requirements for HAP emissions from sulfur recovery units? (a) What emission limitations and work practice...

  2. NATIONAL PERFORMANCE AUDIT PROGRAM: 1980 PROFICIENCY SURVEY FOR SULFUR DIOXIDE, NITROGEN DIOXIDE, CARBON MONOXIDE, SULFATE, NITRATE, LEAD AND HIGH VOLUME FLOW

    EPA Science Inventory

    Based on authority granted by provisions of the Clean Air Act (42 U.S.C 7410, et seq.), the Quality Assurance Division of the Environmental Monitoring Systems Laboratory, Research Triangle Park, NC administers periodic surveys of analytical proficiency for sulfur dioxide, nitroge...

  3. Statistical summary of air quality data for metropolitian Cleveland, Ohio, 1967 - 1972: Total suspended particulates, nitrogen dioxide, and sulfur dioxide

    NASA Technical Reports Server (NTRS)

    King, R. B.; Neustadter, H. E.; Fordyce, J. S.; Burr, J. C., Jr.; Cornett, C. L.

    1974-01-01

    Air-quality data for metropolitan Cleveland, Ohio, from 1967 through 1972 were collated and statistically analyzed. Total suspended particulates (TSP) departed from lognormal distribution in 1972. Nitrogen dioxide and sulfur dioxide, departed significantly from lognormal distributions in 1972. In Cleveland the Ohio standards were not met. However, the data indicate a general improvement in air quality. Unusually high precipitation (43% above the average in 1972) may be responsible in lowering these values from the 1971 levels. The mean values of TSP, NO2, and SO2 are 104, 191, and 83 microgram/cu m respectively.

  4. DEVELOPMENT OF INFRARED METHODS FOR CHARACTERIZATION OF INORGANIC SULFUR SPECIES RELATED TO INJECTION DESULFURIZATION PROCESSES

    EPA Science Inventory

    Current methods designed to control and reduce the amount of sulfur dioxide emitted into the atmosphere from coal-fired power plants and factories rely upon the reaction between SO2 and alkaline earth compounds and are called flue gas desulfurization (FGD) processes. Of these met...

  5. Dielectric recovery mechanism of pressurized carbon dioxide at liquid and supercritical phases

    NASA Astrophysics Data System (ADS)

    Tanoue, Hiroyuki; Furusato, Tomohiro; Imamichi, Takahiro; Ota, Miyuki; Katsuki, Sunao; Akiyama, Hidenori

    2015-09-01

    Estimates of dielectric recovery rates of supercritical (SC) and liquid carbon dioxide (CO2) were derived with focus on highly-repetitive pulsed power switching mediums. Calculated results suggest that recovery time of SC and liquid CO2 are approximately 50 times shorter than that of water and oils. Prior to 10 µs after breakdown, recovery rates in neither SC nor liquid CO2 reached 100%, though the recovery rate in SC CO2 was higher than that of liquid CO2. To examine causes of recovery rate differences, each dielectric recovery process in SC and liquid CO2 was observed by laser shadowgraph technique. These shadowgraph images suggest two factors explaining dielectric recovery rate differences between these medium conditions: 1) thermodynamic property differences between medium conditions, and 2) differences in the low density region recovery mechanism.

  6. Process for removing sulfur from sulfur-containing gases

    DOEpatents

    Rochelle, Gary T.; Jozewicz, Wojciech

    1989-01-01

    The present disclosure relates to improved processes for treating hot sulfur-containing flue gas to remove sulfur therefrom. Processes in accorda The government may own certain rights in the present invention pursuant to EPA Cooperative Agreement CR 81-1531.

  7. Sulfur control in ion-conducting membrane systems

    DOEpatents

    Stein, VanEric Edward; Richards, Robin Edward; Brengel, David Douglas; Carolan, Michael Francis

    2003-08-05

    A method for controlling the sulfur dioxide partial pressure in a pressurized, heated, oxygen-containing gas mixture which is contacted with an ion-conducting metallic oxide membrane which permeates oxygen ions. The sulfur dioxide partial pressure in the oxygen-depleted non-permeate gas from the membrane module is maintained below a critical sulfur dioxide partial pressure, p.sub.SO2 *, to protect the membrane material from reacting with sulfur dioxide and reducing the oxygen flux of the membrane. Each ion-conducting metallic oxide material has a characteristic critical sulfur dioxide partial pressure which is useful in determining the required level of sulfur removal from the feed gas and/or from the fuel gas used in a direct-fired feed gas heater.

  8. 40 CFR Table 29 to Subpart Uuu of... - HAP Emission Limits for Sulfur Recovery Units

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Units 29 Table 29 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 29 Table 29 to Subpart UUU of Part 63—HAP Emission Limits for Sulfur Recovery Units As stated in § 63.1568(a)(1...

  9. 40 CFR Table 29 to Subpart Uuu of... - HAP Emission Limits for Sulfur Recovery Units

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Units 29 Table 29 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 29 Table 29 to Subpart UUU of Part 63—HAP Emission Limits for Sulfur Recovery Units As stated in § 63.1568...

  10. 40 CFR Table 29 to Subpart Uuu of... - HAP Emission Limits for Sulfur Recovery Units

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Units 29 Table 29 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 29 Table 29 to Subpart UUU of Part 63—HAP Emission Limits for Sulfur Recovery Units As stated in § 63.1568(a)(1...

  11. Reduction in environmental impact of sulfuric acid hydrolysis of bamboo for production of fuel ethanol.

    PubMed

    Sun, Zhao-Yong; Tang, Yue-Qin; Morimura, Shigeru; Kida, Kenji

    2013-01-01

    Fuel ethanol can be produced from bamboo by concentrated sulfuric acid hydrolysis followed by continuous ethanol fermentation. To reduce the environmental impact of this process, treatment of the stillage, reuse of the sulfuric acid and reduction of the process water used were studied. The total organic carbon (TOC) concentration of stillage decreased from 29,688 to 269 mg/l by thermophilic methane fermentation followed by aerobic treatment. Washing the solid residue from acid hydrolysis with effluent from the biological treatment increased the sugar recovery from 69.3% to 79.3%. Sulfuric acid recovered during the acid-sugar separation process was condensed and reused for hydrolysis, resulting in a sugar recovery efficiency of 76.8%, compared to 80.1% when fresh sulfuric acid was used. After acetate removal, the condensate could be reused as elution water in the acid-sugar separation process. As much as 86.3% of the process water and 77.6% of the sulfuric acid could be recycled. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Guidance for 1-Hour Sulfur Dioxide (SO2) Nonattainment Area State Implementation Plans (SIP) Submissions

    EPA Pesticide Factsheets

    The document is intended to provide guidance and recommendations to state, local and tribal governments for the development of SIPs and tribal implementation plans (TIPs) under the 2010 1-hour primary NAAQS for Sulfur Dioxide (SO2).

  13. Process development and exergy cost sensitivity analysis of a hybrid molten carbonate fuel cell power plant and carbon dioxide capturing process

    NASA Astrophysics Data System (ADS)

    Mehrpooya, Mehdi; Ansarinasab, Hojat; Moftakhari Sharifzadeh, Mohammad Mehdi; Rosen, Marc A.

    2017-10-01

    An integrated power plant with a net electrical power output of 3.71 × 105 kW is developed and investigated. The electrical efficiency of the process is found to be 60.1%. The process includes three main sub-systems: molten carbonate fuel cell system, heat recovery section and cryogenic carbon dioxide capturing process. Conventional and advanced exergoeconomic methods are used for analyzing the process. Advanced exergoeconomic analysis is a comprehensive evaluation tool which combines an exergetic approach with economic analysis procedures. With this method, investment and exergy destruction costs of the process components are divided into endogenous/exogenous and avoidable/unavoidable parts. Results of the conventional exergoeconomic analyses demonstrate that the combustion chamber has the largest exergy destruction rate (182 MW) and cost rate (13,100 /h). Also, the total process cost rate can be decreased by reducing the cost rate of the fuel cell and improving the efficiency of the combustion chamber and heat recovery steam generator. Based on the total avoidable endogenous cost rate, the priority for modification is the heat recovery steam generator, a compressor and a turbine of the power plant, in rank order. A sensitivity analysis is done to investigate the exergoeconomic factor parameters through changing the effective parameter variations.

  14. Alteration of Extracellular Enzymes in Pinto Bean Leaves upon Exposure to Air Pollutants, Ozone and Sulfur Dioxide.

    PubMed

    Peters, J L; Castillo, F J; Heath, R L

    1989-01-01

    Diamine oxidase and peroxidase, associated with the wall in pinto bean (Phaseolus vulgaris L. var Pinto) leaves, can be washed out by vacuum infiltration and assayed without grinding the leaf. The diamine oxidase activity is inhibited in vivo by exposure of the plants to ozone (dose of 0.6 microliters per liter x hour), whereas the peroxidase activity associated with the wall space is stimulated. This dose does not cause obvious necrosis or chlorosis of the leaf. These alterations are greater when the dose of ozone exposure is given as a triangular pulse (a slow rise to a peak of 0.24 microliters per liter followed by a slow fall) compared to that given as a constant square wave pulse of 0.15 microliters per liter for the same 4 hour period. Exposure of the plants to sulfur dioxide (at a concentration of 0.4 microliters per liter for 4 hours) does not result in any change in the diamine oxidase or peroxidase activities, yet the total sulfhydryl content of the leaf is increased, demonstrating the entry of sulfur dioxide. These two pollutants, with different chemical reactivities, affect the activities of the extracellular enzymes in different manners. In the case of ozone exposure, the inhibition of extracellular diamine oxidase could profoundly alter the movements of polyamines from cell to cell.

  15. Enhanced elementary sulfur recovery in integrated sulfate-reducing, sulfur-producing rector under micro-aerobic condition.

    PubMed

    Xu, Xi-jun; Chen, Chuan; Wang, Ai-jie; Fang, Ning; Yuan, Ye; Ren, Nan-qi; Lee, Duu-jong

    2012-07-01

    Biological treatment of sulfate-laden wastewater consists of two separate reactors to reduce sulfate to sulfide by sulfate-reducing bacteria (SRB) and to oxidize sulfide to sulfur (S(0)) by sulfide oxidation bacteria (SOB). To have SRB+SOB in a single reactor faced difficulty of low S(0) conversion. This study for the first time revealed that dissolved oxygen (DO) level can be used to manipulate SRB+SOB reactions in a single reactor. This work demonstrated successful operation of an integrated SRB+SOB reactor under micro-aerobic condition. At DO = 0.10-0.12 mg l(-1), since the activities of SOB were enhanced by limited oxygen, the removal efficiency for sulfate reached 81.5% and the recovery of S(0) peaked at 71.8%, higher than those reported in literature. At increased DO, chemical oxidation of sulfide with molecular oxygen competed with SOB so conversion of S(0) started to decline. At DO>0.30 mg l(-1) activities of SRB were inhibited, leading to failure of the SRB+SOB reactor. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. The future of airborne sulfur-containing particles in the absence of fossil fuel sulfur dioxide emissions

    DOE PAGES

    Perraud, Véronique; Horne, Jeremy R.; Martinez, Andrew S.; ...

    2015-10-19

    Sulfuric acid (H2SO4), formed from oxidation of sulfur dioxide (SO2) emitted during fossil fuel combustion, is a major precursor of new airborne particles, which have well-documented detrimental effects on health, air quality, and climate. Another precursor is methanesulfonic acid (MSA), produced simultaneously with SO2 during the atmospheric oxidation of organosulfur compounds (OSCs), such as dimethyl sulfide. In the present paper, a multidisciplinary approach is used to examine how contributions of H2SO4 and MSA to particle formation will change in a large coastal urban area as anthropogenic fossil fuel emissions of SO2 decline. The 3-dimensional University of California Irvine–California Institute ofmore » Technology airshed model is used to compare atmospheric concentrations of gas phase MSA, H2SO4, and SO2 under current emissions of fossil fuel-associated SO2 and a best-case futuristic scenario with zero fossil fuel sulfur emissions. Model additions include results from (i) quantum chemical calculations that clarify the previously uncertain gas phase mechanism of formation of MSA and (ii) a combination of published and experimental estimates of OSC emissions, such as those from marine, agricultural, and urban processes, which include pet waste and human breath. Results show that in the zero anthropogenic SO2 emissions case, particle formation potential from H2SO4 will drop by about two orders of magnitude compared with the current situation. However, particles will continue to be generated from the oxidation of natural and anthropogenic sources of OSCs, with contributions from MSA and H2SO4 of a similar order of magnitude. Finally, this could be particularly important in agricultural areas where there are significant sources of OSCs.« less

  17. The future of airborne sulfur-containing particles in the absence of fossil fuel sulfur dioxide emissions.

    PubMed

    Perraud, Véronique; Horne, Jeremy R; Martinez, Andrew S; Kalinowski, Jaroslaw; Meinardi, Simone; Dawson, Matthew L; Wingen, Lisa M; Dabdub, Donald; Blake, Donald R; Gerber, R Benny; Finlayson-Pitts, Barbara J

    2015-11-03

    Sulfuric acid (H2SO4), formed from oxidation of sulfur dioxide (SO2) emitted during fossil fuel combustion, is a major precursor of new airborne particles, which have well-documented detrimental effects on health, air quality, and climate. Another precursor is methanesulfonic acid (MSA), produced simultaneously with SO2 during the atmospheric oxidation of organosulfur compounds (OSCs), such as dimethyl sulfide. In the present work, a multidisciplinary approach is used to examine how contributions of H2SO4 and MSA to particle formation will change in a large coastal urban area as anthropogenic fossil fuel emissions of SO2 decline. The 3-dimensional University of California Irvine-California Institute of Technology airshed model is used to compare atmospheric concentrations of gas phase MSA, H2SO4, and SO2 under current emissions of fossil fuel-associated SO2 and a best-case futuristic scenario with zero fossil fuel sulfur emissions. Model additions include results from (i) quantum chemical calculations that clarify the previously uncertain gas phase mechanism of formation of MSA and (ii) a combination of published and experimental estimates of OSC emissions, such as those from marine, agricultural, and urban processes, which include pet waste and human breath. Results show that in the zero anthropogenic SO2 emissions case, particle formation potential from H2SO4 will drop by about two orders of magnitude compared with the current situation. However, particles will continue to be generated from the oxidation of natural and anthropogenic sources of OSCs, with contributions from MSA and H2SO4 of a similar order of magnitude. This could be particularly important in agricultural areas where there are significant sources of OSCs.

  18. The future of airborne sulfur-containing particles in the absence of fossil fuel sulfur dioxide emissions

    PubMed Central

    Perraud, Véronique; Horne, Jeremy R.; Martinez, Andrew S.; Kalinowski, Jaroslaw; Meinardi, Simone; Dawson, Matthew L.; Wingen, Lisa M.; Dabdub, Donald; Blake, Donald R.; Gerber, R. Benny; Finlayson-Pitts, Barbara J.

    2015-01-01

    Sulfuric acid (H2SO4), formed from oxidation of sulfur dioxide (SO2) emitted during fossil fuel combustion, is a major precursor of new airborne particles, which have well-documented detrimental effects on health, air quality, and climate. Another precursor is methanesulfonic acid (MSA), produced simultaneously with SO2 during the atmospheric oxidation of organosulfur compounds (OSCs), such as dimethyl sulfide. In the present work, a multidisciplinary approach is used to examine how contributions of H2SO4 and MSA to particle formation will change in a large coastal urban area as anthropogenic fossil fuel emissions of SO2 decline. The 3-dimensional University of California Irvine–California Institute of Technology airshed model is used to compare atmospheric concentrations of gas phase MSA, H2SO4, and SO2 under current emissions of fossil fuel-associated SO2 and a best-case futuristic scenario with zero fossil fuel sulfur emissions. Model additions include results from (i) quantum chemical calculations that clarify the previously uncertain gas phase mechanism of formation of MSA and (ii) a combination of published and experimental estimates of OSC emissions, such as those from marine, agricultural, and urban processes, which include pet waste and human breath. Results show that in the zero anthropogenic SO2 emissions case, particle formation potential from H2SO4 will drop by about two orders of magnitude compared with the current situation. However, particles will continue to be generated from the oxidation of natural and anthropogenic sources of OSCs, with contributions from MSA and H2SO4 of a similar order of magnitude. This could be particularly important in agricultural areas where there are significant sources of OSCs. PMID:26483454

  19. The future of airborne sulfur-containing particles in the absence of fossil fuel sulfur dioxide emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perraud, Véronique; Horne, Jeremy R.; Martinez, Andrew S.

    Sulfuric acid (H2SO4), formed from oxidation of sulfur dioxide (SO2) emitted during fossil fuel combustion, is a major precursor of new airborne particles, which have well-documented detrimental effects on health, air quality, and climate. Another precursor is methanesulfonic acid (MSA), produced simultaneously with SO2 during the atmospheric oxidation of organosulfur compounds (OSCs), such as dimethyl sulfide. In the present paper, a multidisciplinary approach is used to examine how contributions of H2SO4 and MSA to particle formation will change in a large coastal urban area as anthropogenic fossil fuel emissions of SO2 decline. The 3-dimensional University of California Irvine–California Institute ofmore » Technology airshed model is used to compare atmospheric concentrations of gas phase MSA, H2SO4, and SO2 under current emissions of fossil fuel-associated SO2 and a best-case futuristic scenario with zero fossil fuel sulfur emissions. Model additions include results from (i) quantum chemical calculations that clarify the previously uncertain gas phase mechanism of formation of MSA and (ii) a combination of published and experimental estimates of OSC emissions, such as those from marine, agricultural, and urban processes, which include pet waste and human breath. Results show that in the zero anthropogenic SO2 emissions case, particle formation potential from H2SO4 will drop by about two orders of magnitude compared with the current situation. However, particles will continue to be generated from the oxidation of natural and anthropogenic sources of OSCs, with contributions from MSA and H2SO4 of a similar order of magnitude. Finally, this could be particularly important in agricultural areas where there are significant sources of OSCs.« less

  20. Lagrangian transport simulations of volcanic sulfur dioxide emissions: impact of meteorological data products

    NASA Astrophysics Data System (ADS)

    Hoffmann, Lars; Rößler, Thomas; Griessbach, Sabine; Heng, Yi; Stein, Olaf

    2017-04-01

    Sulfur dioxide (SO2) emissions from strong volcanic eruptions are an important natural cause for climate variations. We applied our new Lagrangian transport model Massive-Parallel Trajectory Calculations (MPTRAC) to perform simulations for three case studies of volcanic eruption events. The case studies cover the eruptions of Grímsvötn, Iceland, Puyehue-Cordón Caulle, Chile, and Nabro, Eritrea, in May and June 2011. We used SO2 observations of the Atmospheric Infrared Sounder (AIRS/Aqua) and a backward trajectory approach to initialize the simulations. Besides validation of the new model, the main goal of our study was a comparison of simulations with different meteorological data products. We considered three reanalyses (ERA-Interim, MERRA, and NCAR/NCEP) and the European Centre for Medium-Range Weather Forecasts (ECMWF) operational analysis. Qualitatively, the SO2 distributions from the simulations compare well with the AIRS data, but also with Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) aerosol observations. Transport deviations and the critical success index (CSI) are analyzed to evaluate the simulations quantitatively. During the first 5 or 10 days after the eruptions we found the best performance for the ECMWF analysis (CSI range of 0.25 - 0.31), followed by ERA-Interim (0.25 - 0.29), MERRA (0.23 - 0.27), and NCAR/NCEP (0.21 - 0.23). High temporal and spatial resolution of the meteorological data does lead to improved performance of Lagrangian transport simulations of volcanic emissions in the upper troposphere and lower stratosphere. Reference: Hoffmann L., Rößler, T., Griessbach, S., Heng, Y., and Stein, O., Lagrangian transport simulations of volcanic sulfur dioxide emissions: impact of meteorological data products, J. Geophys. Res., 121(9), 4651-4673, doi:10.1002/2015JD023749, 2016.

  1. 40 CFR 77.6 - Penalties for excess emissions of sulfur dioxide and nitrogen oxides.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Penalties for excess emissions of sulfur dioxide and nitrogen oxides. 77.6 Section 77.6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) EXCESS EMISSIONS § 77.6 Penalties for excess emissions of...

  2. 40 CFR 77.5 - Deduction of allowances to offset excess emissions of sulfur dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Deduction of allowances to offset excess emissions of sulfur dioxide. 77.5 Section 77.5 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) EXCESS EMISSIONS § 77.5 Deduction of allowances to offset...

  3. Sulfur volatiles in guava (Psidium guajava L.) leaves: possible defense mechanism.

    PubMed

    Rouseff, Russell L; Onagbola, Ebenezer O; Smoot, John M; Stelinski, Lukasz L

    2008-10-08

    Volatiles from crushed and intact guava leaves (Psidium guajava L.) were collected using static headspace SPME and determined using GC-PFPD, pulsed flame photometric detection, and GC-MS. Leaf volatiles from four common citrus culitvars were examined similarly to determine the potential component(s) responsible for guava's protective effect against the Asian citrus psyllid (Diaphorina citri Kuwayama), which is the insect vector of Huanglongbing (HLB) or citrus greening disease. Seven sulfur volatiles were detected: hydrogen sulfide, sulfur dioxide, methanethiol, dimethyl sulfide (DMS), dimethyl disulfide (DMDS), methional, and dimethyl trisulfide (DMTS). Identifications were based on matching linear retention index values on ZB-5, DB-Wax, and PLOT columns and MS spectra in the case of DMDS and DMS. DMDS is an insect toxic, defensive volatile produced only by wounded guava but not citrus leaves and, thus, may be the component responsible for the protective effect of guava against the HLB vector. DMDS is formed immediately after crushing, becoming the major headspace volatile within 10 min. Forty-seven additional leaf volatiles were identified from LRI and MS data in the crushed guava leaf headspace.

  4. Mixing of sulfur between pyritic and organic phases during coal conversion processes: Annual final report, March 1, 1986-February 28, 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunkerton, L.V.; Nigam, A.; Mitra, S.

    1987-05-01

    In preparation for using /sup 33/S NMR for characterization of organic sulfur types in coal, previously prepared substituted dibenzothiophene model compounds were converted to their corresponding sulfones and their sulfur-33 nmr recorded. The sulfur-33 NMR spectra of dibenzothiophene-5,5-dioxide (2), 2-(p-methylphenylsulfonyl) dibenzothiophene-5,5-dioxide (4), and 2-(methylsulfonyl) dibenzothiophene-5,5-dioxide (6) are reported. The chemical shifts were in the +2 to -21 ppM range. The line widths ranged 70 to 200 Hz. The changes in /sup 13/C chemical shift experienced by aromatic carbons upon oxidizing the sulfide to its sulfone were also studied and the data used to identify which sulfone was formed in multiplemore » thioether-containing aromatics after partial oxidation. Continuing results on the use of the substituted dibenzothiophenes to monitor mixing of sulfur between pyritic and organic phases are also reported. Non-isothermal hydrodesulfurization of model organic sulfur compounds was carried out in a cola-like environment. The model sulfur compounds represented different types of carbon-sulfur bonds commonly encountered in coal. Similar experiments were carried out in the presence of troilite (iron sulfide) to investigate the possibility of sulfur migration from the organic compound to the iron sulfide. Next, iron pyrite was hydrodesulfurized in the presence of some organic molecules to see if sulfur could be incorporated into the organic molecules during the process. Results show that sulfur from organic compounds can be absorbed by troilite, and, similarly, sulfur from pyrite can form new carbon-sulfur bonds during hydrodesulfurization. Based on these observations, it is suggested that during coal conversion reactions it is possible to have intermigration of sulfur between the organic and the inorganic phases.« less

  5. Method of removing sulfur emissions from a fluidized-bed combustion process

    DOEpatents

    Vogel, Gerhard John; Jonke, Albert A.; Snyder, Robert B.

    1978-01-01

    Alkali metal or alkaline earth metal oxides are impregnated within refractory support material such as alumina and introduced into a fluidized-bed process for the combustion of coal. Sulfur dioxide produced during combustion reacts with the metal oxide to form metal sulfates within the porous support material. The support material is removed from the process and the metal sulfate regenerated to metal oxide by chemical reduction. Suitable pore sizes are originally developed within the support material by heat-treating to accommodate both the sulfation and regeneration while still maintaining good particle strength.

  6. Sulfur Nanoparticles Synthesis and Characterization from H2S Gas, Using Novel Biodegradable Iron Chelates in W/O Microemulsion

    NASA Astrophysics Data System (ADS)

    Deshpande, Aniruddha S.; Khomane, Ramdas B.; Vaidya, Bhalchandra K.; Joshi, Renuka M.; Harle, Arti S.; Kulkarni, Bhaskar D.

    2008-06-01

    Sulfur nanoparticles were synthesized from hazardous H2S gas using novel biodegradable iron chelates in w/o microemulsion system. Fe3+ malic acid chelate (0.05 M aqueous solution) was studied in w/o microemulsion containing cyclohexane, Triton X-100 and n-hexanol as oil phase, surfactant, co-surfactant, respectively, for catalytic oxidation of H2S gas at ambient conditions of temperature, pressure, and neutral pH. The structural features of sulfur nanoparticles have been characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), energy dispersive spectroscopy (EDS), diffused reflectance infra-red Fourier transform technique, and BET surface area measurements. XRD analysis indicates the presence of α-sulfur. TEM analysis shows that the morphology of sulfur nanoparticles synthesized in w/o microemulsion system is nearly uniform in size (average particle size 10 nm) and narrow particle size distribution (in range of 5 15 nm) as compared to that in aqueous surfactant systems. The EDS analysis indicated high purity of sulfur (>99%). Moreover, sulfur nanoparticles synthesized in w/o microemulsion system exhibit higher antimicrobial activity (against bacteria, yeast, and fungi) than that of colloidal sulfur.

  7. Sulfur Nanoparticles Synthesis and Characterization from H2S Gas, Using Novel Biodegradable Iron Chelates in W/O Microemulsion

    PubMed Central

    2008-01-01

    Sulfur nanoparticles were synthesized from hazardous H2S gas using novel biodegradable iron chelates in w/o microemulsion system. Fe3+–malic acid chelate (0.05 M aqueous solution) was studied in w/o microemulsion containing cyclohexane, Triton X-100 andn-hexanol as oil phase, surfactant, co-surfactant, respectively, for catalytic oxidation of H2S gas at ambient conditions of temperature, pressure, and neutral pH. The structural features of sulfur nanoparticles have been characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), energy dispersive spectroscopy (EDS), diffused reflectance infra-red Fourier transform technique, and BET surface area measurements. XRD analysis indicates the presence of α-sulfur. TEM analysis shows that the morphology of sulfur nanoparticles synthesized in w/o microemulsion system is nearly uniform in size (average particle size 10 nm) and narrow particle size distribution (in range of 5–15 nm) as compared to that in aqueous surfactant systems. The EDS analysis indicated high purity of sulfur (>99%). Moreover, sulfur nanoparticles synthesized in w/o microemulsion system exhibit higher antimicrobial activity (against bacteria, yeast, and fungi) than that of colloidal sulfur.

  8. Self-Cleaning Boudouard Reactor for Full Oxygen Recovery from Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    Coutts, Janelle; Hintze, Paul E.; Muscatello, Anthony C.; Gibson, Tracy L.; Captain, James G.; Lunn, Griffin M.; Devor, Robert W.; Bauer, Brint; Parks, Steve

    2016-01-01

    Oxygen recovery from respiratory carbon dioxide is an important aspect of human spaceflight. Methods exist to sequester the carbon dioxide, but production of oxygen needs further development. The current International Space Station Carbon Dioxide Reduction System (CRS) uses the Sabatier reaction to produce water (and ultimately breathing air). Oxygen recovery is limited to 50 because half of the hydrogen used in the Sabatier reactor is lost as methane, which is vented overboard. The Bosch reaction, which converts carbon dioxide to oxygen and solid carbon is capable of recovering all the oxygen from carbon dioxide, and is the only real alternative to the Sabatier reaction. However, the last reaction in the cycle, the Boudouard reaction, produces solid carbon and the resulting carbon buildup will eventually foul the nickel or iron catalyst, reducing reactor life and increasing consumables. To minimize this fouling and increase efficiency, a number of self-cleaning catalyst designs have been created. This paper will describe recent results evaluating one of the designs.

  9. Self-Cleaning Boudouard Reactor for Full Oxygen Recovery from Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    Hintze, Paul E.; Muscatello, Anthony C.; Meier, Anne J.; Gibson, Tracy L.; Captain, James G.; Lunn, Griffin M.; Devor, Robert W.

    2016-01-01

    Oxygen recovery from respiratory carbon dioxide is an important aspect of human spaceflight. Methods exist to sequester the carbon dioxide, but production of oxygen needs further development. The current International Space Station Carbon Dioxide Reduction System (CRS) uses the Sabatier reaction to produce water (and ultimately breathing air). Oxygen recovery is limited to 50% because half of the hydrogen used in the Sabatier reactor is lost as methane, which is vented overboard. The Bosch reaction, which converts carbon dioxide to oxygen and solid carbon is capable of recovering all the oxygen from carbon dioxide, and is the only real alternative to the Sabatier reaction. However, the last reaction in the cycle, the Boudouard reaction, produces solid carbon and the resulting carbon buildup will eventually foul the nickel or iron catalyst, reducing reactor life and increasing consumables. To minimize this fouling and increase efficiency, a number of self-cleaning catalyst designs have been created. This paper will describe recent results evaluating one of the designs.

  10. Self-Cleaning Boudouard Reactor for Full Oxygen Recovery from Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    Hintze, Paul E.; Muscatello, Anthony C.; Gibson, Tracy L.; Captain, James G.; Lunn, Griffin M.; Devor, Robert W.; Bauer, Brint; Parks, Steve

    2016-01-01

    Oxygen recovery from respiratory carbon dioxide is an important aspect of human spaceflight. Methods exist to sequester the carbon dioxide, but production of oxygen needs further development. The current International Space Station Carbon Dioxide Reduction System (CRS) uses the Sabatier reaction to produce water (and ultimately breathing air). Oxygen recovery is limited to 50% because half of the hydrogen used in the Sabatier reactor is lost as methane which is vented overboard. The Bosch reaction, which converts carbon dioxide to oxygen and solid carbon, is capable of recovering all the oxygen from carbon dioxide, and it is a promising alternative to the Sabatier reaction. However, the last reaction in the cycle, the Boudouard reaction, produces solid carbon, and the resulting carbon buildup eventually fouls the catalyst, reducing reactor life and increasing consumables. To minimize this fouling and increase efficiency, a number of self-cleaning catalyst designs have been created. This paper will describe recent results evaluating one of the designs.

  11. Effects of growth retardants and fumigations with ozone and sulfur dioxide on growth and flowering of Euphorbia pulcherrima Willd

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cathey, H.M.; Heggestad, H.E.

    1973-01-01

    Eight cultivars of poinsettia, Euphorbia pulcherrima Willd., were evaluated for sensitivity to ..cap alpha..-cyclopropyl-..cap alpha.. (4-methoxyphenyl)-5-pyrimidine methanol (ancymidol) and protection from ozone and sulfur dioxide injury afforded by applications of ancymidol and (2-chloroethyl) trimethyl ammonium chloride (chlormequat). Foliar sprays of ancymidol were at least 80 to 500 times and the soil drench 1000 times more active than chlormequat in retarding stem elongation. The diam of the bracts was reduced, but branching increased more on plants treated with ancymidol than on untreated plants. The cv. Annette Hegg (AH) was more sensitive to ozone fumigations than was Eckespoint C-1' (C-1). Sulfur dioxidemore » also caused more injury to AH than to C-1. Ancymidol and chlormequat reduced visible injury induced by ozone and sulfur dioxide.« less

  12. Ultrasound-assisted oxidative process for sulfur removal from petroleum product feedstock.

    PubMed

    Mello, Paola de A; Duarte, Fábio A; Nunes, Matheus A G; Alencar, Mauricio S; Moreira, Elizabeth M; Korn, Mauro; Dressler, Valderi L; Flores, Erico M M

    2009-08-01

    A procedure using ultrasonic irradiation is proposed for sulfur removal of a petroleum product feedstock. The procedure involves the combination of a peroxyacid and ultrasound-assisted treatment in order to comply with the required sulfur content recommended by the current regulations for fuels. The ultrasound-assisted oxidative desulfurization (UAOD) process was applied to a petroleum product feedstock using dibenzothiophene as a model sulfur compound. The influence of ultrasonic irradiation time, oxidizing reagents amount, kind of solvent for the extraction step and kind of organic acid were investigated. The use of ultrasonic irradiation allowed higher efficiency for sulfur removal in comparison to experiments performed without its application, under the same reactional conditions. Using the optimized conditions for UAOD, the sulfur removal was about 95% after 9min of ultrasonic irradiation (20kHz, 750W, run at 40%), using hydrogen peroxide and acetic acid, followed by extraction with methanol.

  13. Synthesis of l-cysteine derivatives containing stable sulfur isotopes and application of this synthesis to reactive sulfur metabolome.

    PubMed

    Ono, Katsuhiko; Jung, Minkyung; Zhang, Tianli; Tsutsuki, Hiroyasu; Sezaki, Hiroshi; Ihara, Hideshi; Wei, Fan-Yan; Tomizawa, Kazuhito; Akaike, Takaaki; Sawa, Tomohiro

    2017-05-01

    Cysteine persulfide is an L-cysteine derivative having one additional sulfur atom bound to a cysteinyl thiol group, and it serves as a reactive sulfur species that regulates redox homeostasis in cells. Here, we describe a rapid and efficient method of synthesis of L-cysteine derivatives containing isotopic sulfur atoms and application of this method to a reactive sulfur metabolome. We used bacterial cysteine syntheses to incorporate isotopic sulfur atoms into the sulfhydryl moiety of L-cysteine. We cloned three cysteine synthases-CysE, CysK, and CysM-from the Gram-negative bacterium Salmonella enterica serovar Typhimurium LT2, and we generated their recombinant enzymes. We synthesized 34 S-labeled L-cysteine from O-acetyl-L-serine and 34 S-labeled sodium sulfide as substrates for the CysK or CysM reactions. Isotopic labeling of L-cysteine at both sulfur ( 34 S) and nitrogen ( 15 N) atoms was also achieved by performing enzyme reactions with 15 N-labeled L-serine, acetyl-CoA, and 34 S-labeled sodium sulfide in the presence of CysE and CysK. The present enzyme systems can be applied to syntheses of a series of L-cysteine derivatives including L-cystine, L-cystine persulfide, S-sulfo-L-cysteine, L-cysteine sulfonate, and L-selenocystine. We also prepared 34 S-labeled N-acetyl-L-cysteine (NAC) by incubating 34 S-labeled L-cysteine with acetyl coenzyme A in test tubes. Tandem mass spectrometric identification of low-molecular-weight thiols after monobromobimane derivatization revealed the endogenous occurrence of NAC in the cultured mammalian cells such as HeLa cells and J774.1 cells. Furthermore, we successfully demonstrated, by using 34 S-labeled NAC, metabolic conversion of NAC to glutathione and its persulfide, via intermediate formation of L-cysteine, in the cells. The approach using isotopic sulfur labeling combined with mass spectrometry may thus contribute to greater understanding of reactive sulfur metabolome and redox biology. Copyright © 2017 Elsevier Inc

  14. Influence of sulfur dioxide generators on red raspberry quality during postharvest storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spayd, S.E.; Norton, R.A.; Hayrynen, L.D.

    Hand harvested Meeker red raspberries were held at 4/sup 0/, 14/sup 0/, and 25/sup 0/C for up to 12 days using two types of sulfur dioxide generating pads. Visual mold rating were lower for fruits held with either SO/sub 2/ generator, but Howard Mold Count did not differ between the generators and the control fruits. Fruits stored with the generators were brighter and redder in color than controls when stored at 4/sup 0/C. Irregular bleaching of anthocyanins from drupelets occurred when fruits were stored at 14/sup 0/C or higher. Use of SO/sub 2/ generators is not recommended for fresh marketmore » fruit or nonheat treated processing fruit due to the bleaching and due to SO/sub 2/ residues in the fruit.« less

  15. Determination of free sulfites (SO3-2) in dried fruits processed with sulfur dioxide by ion chromatography through anion exchange column and conductivity detection.

    PubMed

    Liao, Benjamin S; Sram, Jacqueline C; Files, Darin J

    2013-01-01

    A simple and effective anion ion chromatography (IC) method with anion exchange column and conductivity detector has been developed to determine free sulfites (SO3-2) in dried fruits processed with sulfur dioxide. No oxidation agent, such as hydrogen peroxide, is used to convert sulfites to sulfates for IC analysis. In addition, no stabilizing agent, such as formaldehyde, fructose or EDTA, is required during the sample extraction. This method uses aqueous 0.2 N NaOH as the solvent for standard preparation and sample extraction. The sulfites, either prepared from standard sodium sulfite powder or extracted from food samples, are presumed to be unbound SO3-2 in aqueous 0.2 N NaOH (pH > 13), because the bound sulfites in the sample matrix are released at pH > 10. In this study, sulfites in the standard solutions were stable at room temperature (i.e., 15-25 degrees C) for up to 12 days. The lowest standard of the linear calibration curve is set at 1.59 microg/mL SO3-2 (equivalent to 6.36 microg/g sample with no dilution) for analysis of processed dried fruits that would contain high levels (>1000 microg/g) of sulfites. As a consequence, this method typically requires significant dilution of the sample extract. Samples are prepared with a simple procedure of sample compositing, extraction with aqueous 0.2 N NaOH, centrifugation, dilution as needed, and filtration prior to IC. The sulfites in these sample extracts are stable at room temperature for up to 20 h. Using anion IC, the sulfites are eluted under isocratic conditions with 10 mM aqueous sodium carbonate solution as the mobile phase passing through an anion exchange column. The sulfites are easily separated, with an analysis run time of 18 min, regardless of the dried fruit matrix. Recoveries from samples spiked with sodium sulfites were demonstrated to be between 81 and 105% for five different fruit matrixes (apricot, golden grape, white peach, fig, and mango). Overall, this method is simple to perform and

  16. Atmospheric Sulfur Dioxide in the United States: Can the Standards be Justified or Afforded?

    ERIC Educational Resources Information Center

    Megonnell, William H.

    1975-01-01

    Recent reviews have concluded that there is no basis for changing the standards set by the EPA in 1971, even though the data base was insufficient then for a quantifiable, scientific definition of clean air. Examination of data shows that the United States does not have a sulfur dioxide problem. (Author/BT)

  17. Process for recovery of sulfur from acid gases

    DOEpatents

    Towler, Gavin P.; Lynn, Scott

    1995-01-01

    Elemental sulfur is recovered from the H.sub.2 S present in gases derived from fossil fuels by heating the H.sub.2 S with CO.sub.2 in a high-temperature reactor in the presence of a catalyst selected as one which enhances the thermal dissociation of H.sub.2 S to H.sub.2 and S.sub.2. The equilibrium of the thermal decomposition of H.sub.2 S is shifted by the equilibration of the water-gas-shift reaction so as to favor elemental sulfur formation. The primary products of the overall reaction are S.sub.2, CO, H.sub.2 and H.sub.2 O. Small amounts of COS, SO.sub.2 and CS.sub.2 may also form. Rapid quenching of the reaction mixture results in a substantial increase in the efficiency of the conversion of H.sub.2 S to elemental sulfur. Plant economy is further advanced by treating the product gases to remove byproduct carbonyl sulfide by hydrolysis, which converts the COS back to CO.sub.2 and H.sub.2 S. Unreacted CO.sub.2 and H.sub.2 S are removed from the product gas and recycled to the reactor, leaving a gas consisting chiefly of H.sub.2 and CO, which has value either as a fuel or as a chemical feedstock and recovers the hydrogen value from the H.sub.2 S.

  18. Process for the recovery of alumina from fly ash

    DOEpatents

    Murtha, M.J.

    1983-08-09

    An improvement in the lime-sinter process for recovering alumina from pulverized coal fly ash is disclosed. The addition of from 2 to 10 weight percent carbon and sulfur to the fly ash-calcium carbonate mixture increase alumina recovery at lower sintering temperatures.

  19. Fact Sheets and Additional Information Regarding the Primary National Ambient Air Quality Standard (NAAQS) for Sulfur Dioxide

    EPA Pesticide Factsheets

    Find tools for primary standards for Sulfur Dioxide, maps of nonattainment areas, an overview of the proposal, projected nonattainment areas for 2020, and a presentation on the 2011 SO2 primary NAAQS revision.

  20. Environmental sulfur dioxide: toxicity toward the alveolar macrophage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butenhoff, J.L.

    This study was designed to determine if SO/sub 2/ and/or its associated ions in solution (H/sub 3/O/sup +/, HSO/sub 3//sup -/, SO/sub 3//sup =/ and SO/sub 4//sup =/) are cytotoxic to rat PAM cells in primary culture. The indices of cytotoxicity which were evaluated included cell viability uptake of particles and viable bacteria, inhibition of antioxidant enzymes, cell surface morphology and oxygen utilization. For determining effects on cell viability, function and morphology, exposures were conducted for 20 hours at either 30 or 37 deg. C in Leighton culture tubes of polystyrene petri dishes. In both instances, cells were attached tomore » glass. Cell viability dose-response curves were obtained with H/sub 3/O/sup +/ (HCl and H/sub 2/SO/sub 4/), SO/sub 2/ (dissolved gas), HSO/sub 3//sup -/, SO/sub 3//sup =/ and SO/sub 4//sup =/. Buffer strength and pH were varied to determine the effect of these various molecular species on viability. Sulfur dioxide gas exhibited a weak protentiating effect on H/sub 3/O/sup +/ toxicity below pH 6.4. Significant viability loss did not occur above pH 6.4. Particle uptake was diminished significantly at sulfite concentration greater than or equal to 500 uM, pH 7.2. Sulfite was found to be a potent competitive inhibitor of GSH-peroxidase in vitro. A slight yet significant change in cell morphology occurred at sulfite concentrations of 200 uM and 4000 uM and pH 7.2. There was a significant difference in O/sub 2/ utilization between control and 4000 uM exposed cells, indicating a potential diminution in cell-surface mediated respiratory stimulation. Based on these studies, sulfur dioxide gas exposure may have an effect on alveolar macrophage function depending on the ambient concentration of the gas and its accumulation in the airspaces of the lung.« less

  1. [Spatial distribution of sulfur dioxide around a tobacco bulk-curing workshop cluster].

    PubMed

    He, Fan; Wang, Mei; Wang, Tao; Sun, Jian-Feng; Huang, Wu-Xing; Tian, Bin-Qiang; Gong, Chang-Rong

    2014-03-01

    In order to manifest lower energy consumption and less labor employment, and provide the theoretical basis for constructing environmentally friendly modem tobacco agriculture, this paper analyzed gas composition of the chimney from a bulk-curing barn and the dispersion of sulfur dioxide (SO2) around the workshop cluster using ecom-J2KN flue gas analyzer and air sampler. During curing, the concentrations of carbon dioxide (CO2) and SO2 in the chimney were both highest at 38 degrees C, while the concentration of nitrogen oxides (NOx) was highest at 42 degrees C. The emission concentration of SO2 from the chimney was 1327.60-2218.40 mg x m(-3). Average SO2 emission would decrease by 49.7% through adding 4.0% of a sulfur-fixed agent. The highest concentrations of SO2 in the surface soil appeared at the yellowing stage. SO2 concentration in horizontal direction localized at 43-80 m exceeded 0.5 mg x m(-3). The highest concentration of SO2 (0.57 mg x m(-3)) was observed at 50 m. At 50 m in the downstream wind direction of the workshop cluster, SO2 concentration in vertical direction localized at 0.9-1.8 m exceeded 0.5 mg x m(-3), and the highest concentration of SO2 in vertical direction was 0.65 mg x m(-3) at 1.6 m. During curing, the average concentration of SO2 was decreased by 0.43 mg x m(-3) by using the sulfur-fixed agent. The polluted boundary was localized at 120 m in the downstream wind direction of the workshop cluster.

  2. Attribution of atmospheric sulfur dioxide over the English Channel to dimethyl sulfide and changing ship emissions

    NASA Astrophysics Data System (ADS)

    Yang, Mingxi; Bell, Thomas G.; Hopkins, Frances E.; Smyth, Timothy J.

    2016-04-01

    Atmospheric sulfur dioxide (SO2) was measured continuously from the Penlee Point Atmospheric Observatory (PPAO) near Plymouth, United Kingdom, between May 2014 and November 2015. This coastal site is exposed to marine air across a wide wind sector. The predominant southwesterly winds carry relatively clean background Atlantic air. In contrast, air from the southeast is heavily influenced by exhaust plumes from ships in the English Channel as well as near Plymouth Sound. A new International Maritime Organization (IMO) regulation came into force in January 2015 to reduce the maximum allowed sulfur content in ships' fuel 10-fold in sulfur emission control areas such as the English Channel. Our observations suggest a 3-fold reduction in ship-emitted SO2 from 2014 to 2015. Apparent fuel sulfur content calculated from coincidental SO2 and carbon dioxide (CO2) peaks from local ship plumes show a high level of compliance to the IMO regulation (> 95 %) in both years (˜ 70 % of ships in 2014 were already emitting at levels below the 2015 cap). Dimethyl sulfide (DMS) is an important source of atmospheric SO2 even in this semi-polluted region. The relative contribution of DMS oxidation to the SO2 burden over the English Channel increased from about one-third in 2014 to about one-half in 2015 due to the reduction in ship sulfur emissions. Our diel analysis suggests that SO2 is removed from the marine atmospheric boundary layer in about half a day, with dry deposition to the ocean accounting for a quarter of the total loss.

  3. The distribution of sulfur dioxide and other infrared absorbers on the surface of Io

    USGS Publications Warehouse

    Carlson, R.W.; Smythe, W.D.; Lopes-Gautier, R. M. C.; Davies, A.G.; Kamp, L.W.; Mosher, J.A.; Soderblom, L.A.; Leader, F.E.; Mehlman, R.; Clark, R.N.; Fanale, F.P.

    1997-01-01

    The Galileo Near Infrared Mapping Spectrometer was used to investigate the distribution and properties of sulfur dioxide over the surface of Io, and qualitative results for the anti-Jove hemisphere are presented here. SO2, existing as a frost, is found almost everywhere, but with spatially variable concentration. The exceptions are volcanic hot spots, where high surface temperatures promote rapid vaporization and can produce SO2-free areas. The pervasive frost, if fully covering the cold surface, has characteristic grain sizes of 30 to 100 Urn, or greater. Regions of greater sulfur dioxide concentrations are found. The equatorial Colchis Regio area exhibits extensive snowfields with large particles (250 to 500 ??m diameter, or greater) beneath smaller particles. A weak feature at 3.15 ??m is observed and is perhaps due to hydroxides, hydrates, or water. A broad absorption in the 1 ??m region, which could be caused by iron-containing minerals, shows a concentration in Io'S southern polar region, with an absence in the Pele plume deposition ring. Copyright 1997 by the American Geophysical Union.

  4. OMI satellite observations of decadal changes in ground-level sulfur dioxide over North America

    NASA Astrophysics Data System (ADS)

    Kharol, Shailesh K.; McLinden, Chris A.; Sioris, Christopher E.; Shephard, Mark W.; Fioletov, Vitali; van Donkelaar, Aaron; Philip, Sajeev; Martin, Randall V.

    2017-05-01

    Sulfur dioxide (SO2) has a significant impact on the environment and human health. We estimated ground-level sulfur dioxide (SO2) concentrations from the Ozone Monitoring Instrument (OMI) using SO2 profiles from the Global Environmental Multi-scale - Modelling Air quality and CHemistry (GEM-MACH) model over North America for the period of 2005-2015. OMI-derived ground-level SO2 concentrations (r = 0. 61) and trends (r = 0. 74) correlated well with coincident in situ measurements from air quality networks over North America. We found a strong decreasing trend in coincidently sampled ground-level SO2 from OMI (-81 ± 19 %) and in situ measurements (-86 ± 13 %) over the eastern US for the period of 2005-2015, which reflects the implementation of stricter pollution control laws, including flue-gas desulfurization (FGD) devices in power plants. The spatially and temporally contiguous OMI-derived ground-level SO2 concentrations can be used to assess the impact of long-term exposure to SO2 on the health of humans and the environment.

  5. Effects of acid rain and sulfur dioxide on marble dissolution

    USGS Publications Warehouse

    Schuster, Paul F.; Reddy, Michael M.; Sherwood, Susan I.

    1994-01-01

    Acid precipitation and the dry deposition of sulfur dioxide (SO2) accelerate damage to carbonate-stone monuments and building materials. This study identified and quantified environmental damage to a sample of Vermont marble during storms and their preceding dry periods. Results from field experiments indicated the deposition of SO2 gas to the stone surface during dry periods and a twofold increase in marble dissolution during coincident episodes of low rain rate and decreased rainfall pH. The study is widely applicable to the analysis of carbonate-stone damage at locations affected by acid rain and air pollution.

  6. Impact of sulfur dioxide on plant sexual reproduction: in vivo and in vitro effects compared

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du Bay, D.T.; Murdy, W.H.

    In Lepidium virginicum L., exposure of pollen to 0.6 ppm sulfur dioxide (SO/sub 2/) for 4 h reduced pollen germination in vitro 94% from the control, whereas exposure to 0.6 ppm SO/sub 2/ for 2, 4, and 8 h during flowering reduced pollen germination in vivo 50% from the control, but did not affect seed set. An interaction between SO/sub 2/ and water may have caused the inhibition of pollen germination in a liquid culture medium, as well as on the moist surface of an intact stigma. However, the results suggest that the use of pollen germination and pollen tubemore » elongation in vitro to assess the direct effects of SO/sub 2/ on plant secual reproduction in vivo is not valid.« less

  7. The shadow price of substitutable sulfur in the US electric power plant: a distance function approach.

    PubMed

    Lee, Myunghun

    2005-10-01

    Given restrictions on sulfur dioxide emissions, a feasible long-run response could involve either an investment in improving boiler fuel-efficiency or a shift to a production process that is effective in removing sulfur dioxide. To allow for the possibility of substitution between sulfur and productive capital, we measure the shadow price of sulfur dioxide as the opportunity cost of lowering sulfur emissions in terms of forgone capital. The input distance function is estimated with data from 51 coal-fired US power units operating between 1977 and 1986. The indirect Morishima elasticities of substitution indicate that the substitutability of capital for sulfur is relatively high. The overall weighted average estimate of the shadow price of sulfur is -0.076 dollars per pound in constant 1976 dollars.

  8. Growth of radish and marigold following repeated exposure to nitrogen dioxide, sulfur dioxide, and ozone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reinert, R.A.; Sanders, J.S.

    Radish and marigold plants were exposed to 0.3 ppM of nitrogen dioxide (NO/sub 2/), sulfur dioxide (SO/sub 2/), and /or ozone (O/sub 3/) nine times during a 3-wk period. No interactions among NO/sub 2/, SO/sub 2/, and O/sub 3/ were detected in measurement of radish foliage and root dry weight. Treatments containing O/sub 3/ reduced radish foliage and root (hypocotyl) dry weight 356 and 531 mg/plant, respectively. Interactions among NO/sub 2/, SO/sub 2/ and O/sub 3/ occurred in shoots and roots of marigold. SO/sub 2/ alone reduced marigold shoot and root dry weight, but this effect was reversed in themore » presence of O/sub 3/. The suppressive effect of SO/sub 2/ on root weight was also reversed by NO/sub 2/. Treatments containing SO/sub 2/ reduced dry flower weight 0.17 g/plant, but effects of the pollutant interactions observed in shoots and roots were not present. 8 references, 2 tables.« less

  9. Growth of radish and marigold following repeated exposure to nitrogen dioxide, sulfur dioxide, and ozone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reinert, R.A.; Sanders, J.S.

    Radish and marigold plants were exposed to 0.3 ppm of nitrogen dioxide (NO/sub 2/), sulfur dioxide (SO/sub 2/), and/or ozone (O/sub 3/) nine times during a 3-wk period. No interactions among NO/sub 2/, SO/sub 2/, and O/sub 3/ were detected in measurement of radish foliage and root dry weight. Treatments containing O/sub 3/ reduced radish foliage and root (hypocotyl) dry weight 356 and 531 mg/plant, respectively. Interactions among NO/sub 2/, SO/sub 2/, and O/sub 3/ occurred in shoots and roots of marigold. SO/sub 2/ alone reduced marigold shoot and root dry weight, but this effect was reversed in the presencemore » of O/sub 3/. The suppressive effect of SO/sub 2/ on root weight was also reversed by NO/sub 3/. Treatments containing SO/sub 2/ reduced dry flower weight 0.17 g/plant, but effects of the pollutant interactions observed in shoots and roots were not present.« less

  10. Seasonal trends of atmospheric nitrogen dioxide and sulfur dioxide over North Santa Clara, Cuba.

    PubMed

    Alejo, Daniellys; Morales, Mayra C; de la Torre, Jorge B; Grau, Ricardo; Bencs, László; Van Grieken, René; Van Espen, Piet; Sosa, Dismey; Nuñez, Vladimir

    2013-07-01

    Atmospheric nitrogen dioxide (NO2) and sulfur dioxide (SO2) levels were monitored simultaneously by means of Radiello passive samplers at six sites of Santa Clara city, Cuba, in the cold and the warm seasons in 2010. The dissolved ionic forms of NO2 and SO2 as nitrate and sulfite plus sulfate, respectively, were determined by means of ion chromatography. Analysis of NO2 as nitrite was also performed by UV-Vis spectrophotometry. For NO2, significant t tests show good agreement between the results of IC and UV-Vis methods. The NO2 and SO2 concentrations peaked in the cold season, while their minimum levels were experienced in the warm season. The pollutant levels do not exceed the maximum allowable limit of the Cuban Standard 39:1999, i.e., 40 μg/m(3) and 50 μg/m(3) for NO2 and SO2, respectively. The lowest pollutant concentrations obtained in the warm season can be attributed to an increase in their removal via precipitation (scavenging) while to the decreased traffic density and industrial emission during the summer holidays (e.g., July and August).

  11. 40 CFR 52.1881 - Control strategy: Sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... sulfur oxides. (iii) Fossil fuel means natural gas, refinery fuel gas, coke oven gas, petroleum, coal and any form of solid, liquid, or gaseous fuel derived from such materials. (iv) Fossil fuel-fired steam generating unit means a furnace or boiler used in the process of burning fossil fuel for the purpose of...

  12. 40 CFR 52.1881 - Control strategy: Sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... sulfur oxides. (iii) Fossil fuel means natural gas, refinery fuel gas, coke oven gas, petroleum, coal and any form of solid, liquid, or gaseous fuel derived from such materials. (iv) Fossil fuel-fired steam generating unit means a furnace or boiler used in the process of burning fossil fuel for the purpose of...

  13. 40 CFR 52.1881 - Control strategy: Sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... sulfur oxides. (iii) Fossil fuel means natural gas, refinery fuel gas, coke oven gas, petroleum, coal and any form of solid, liquid, or gaseous fuel derived from such materials. (iv) Fossil fuel-fired steam generating unit means a furnace or boiler used in the process of burning fossil fuel for the purpose of...

  14. 40 CFR 52.1881 - Control strategy: Sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sulfur oxides. (iii) Fossil fuel means natural gas, refinery fuel gas, coke oven gas, petroleum, coal and any form of solid, liquid, or gaseous fuel derived from such materials. (iv) Fossil fuel-fired steam generating unit means a furnace or boiler used in the process of burning fossil fuel for the purpose of...

  15. 40 CFR 52.1881 - Control strategy: Sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... sulfur oxides. (iii) Fossil fuel means natural gas, refinery fuel gas, coke oven gas, petroleum, coal and any form of solid, liquid, or gaseous fuel derived from such materials. (iv) Fossil fuel-fired steam generating unit means a furnace or boiler used in the process of burning fossil fuel for the purpose of...

  16. Removal of sulfur dioxide and formation of sulfate aerosol in Tokyo

    NASA Astrophysics Data System (ADS)

    Miyakawa, T.; Takegawa, N.; Kondo, Y.

    2007-07-01

    Ground-based in situ measurements of sulfur dioxide (SO2) and submicron sulfate aerosol (SO42-) together with carbon monoxide (CO) were conducted at an urban site in Tokyo, Japan from spring 2003 to winter 2004. The observed concentrations of SO2 were affected dominantly by anthropogenic emissions (for example, manufacturing industries) in source areas, while small fraction of the data (<30%) was affected by large point sources of SO2 (power plant and volcano). Although emission sources of CO in Tokyo are different from those of SO2, the major emission sources of CO and SO2 are colocated, indicating that CO can be used as a tracer of anthropogenic SO2 emissions in Tokyo. The ratio of SO42- to total sulfur compounds (SOx = SO2 + SO42-) and the remaining fraction of SOx, which is derived as the ratio of the linear regression slope of the SOx-CO correlation, is used as measures for the formation of SO42- and removal of SOx, respectively. Using these parameters, the average formation efficiency of SO42- (i.e., amount of SO42- produced per SO2 emitted from emission sources) are estimated to be 0.18 and 0.03 in the summer and winter periods, respectively. A simple box model was developed to estimate the lifetime of SOx. The lifetime of SOx for the summer period (26 h) is estimated to be about two times longer than that for the winter period (14 h). The seasonal variations of the remaining fraction of SOx, estimated formation efficiency of SO42-, and lifetime of SOx are likely due to those of the boundary layer height and photochemical activity (i.e., hydroxyl radical). These results provide useful insights into the formation and removal processes of sulfur compounds exported from an urban area.

  17. Supplement to the Second Addendum (1986) to Air Quality Criteria for Particulate Matter and Sulfur Oxides (1982): Assessment of New Findings on Sulfur Dioxide and Acute Exposure Health Effects in Asthmatic Individuals (1994)

    EPA Science Inventory

    The present Supplement to the Second Addendum (1986) to the document Air Quality Criteria for Particulate Matter and Sulfur Oxides (1982) focuses on evaluation of newly available controlled human exposure studies of acute (a\\1h) sulfur dioxide (SO2) exposure effects on pulmonary ...

  18. Safety hazards associated with the charging of lithium/sulfur dioxide cells

    NASA Technical Reports Server (NTRS)

    Frank, H.; Halpert, G.; Lawson, D. D.; Barnes, J. A.; Bis, R. F.

    1986-01-01

    A continuing research program to assess the responses of spirally wound, lithium/sulfur dioxide cells to charging as functions of charging current, temperature, and cell condition prior to charging is described. Partially discharged cells that are charged at currents greater than one ampere explode with the time to explosion inversely proportional to the charging current. Cells charged at currents of less than one ampere may fail in one of several modes. The data allows an empirical prediction of when certain cells will fail given a constant charging current.

  19. Chemically activated manganese dioxide for dry batteries

    NASA Astrophysics Data System (ADS)

    Askar, M.; Abbas, H.

    1994-10-01

    The present investigation has enabled us to convert inactive beta-manganese dioxide to high electrochemically active types by chemical processes. Natural and chemically prepared beta-manganese dioxides were roasted at 1050 C to form Mn3O4. This compound was subjected to activation treatment using hydrochloric and sulfuric acid under various reaction conditions. The manganese dioxide so obtained was examined by x-ray diffraction, thermogravimetric, differential thermal, and chemical analyses. The structure of the dioxide obtained was found to be greatly dependent on the origin of MnO2 and type of acid used. Treatment with hydrochloric acid yielded the so-called gamma-variety while sulfuric acid tended to produce gamma- or alpha-MnO2. In addition, waste manganese sulfate obtained as by-product from sulfuric acid digestion treatment was recycled and electrolytically oxidized to gamma-MnO2. The discharge performance of the above-mentioned MnO2 samples as battery cathodic active material was evaluated and compared with the ordinary battery grade.

  20. The preparation and the sustained release of titanium dioxide hollow particles encapsulating L-ascorbic acid

    NASA Astrophysics Data System (ADS)

    Tominaga, Yoko; Kadota, Kazunori; Shimosaka, Atsuko; Yoshida, Mikio; Oshima, Kotaro; Shirakawa, Yoshiyuki

    2018-05-01

    The preparation of the titanium dioxide hollow particles encapsulating L-ascorbic acid via sol-gel process using inkjet nozzle has been performed, and the sustained release and the effect protecting against degradation of L-ascorbic acid in the particles were investigated. The morphology of titanium dioxide particles was evaluated by scanning electron microscopy (SEM) and energy dispersive X-ray spectrometry (EDS). The sustained release and the effect protecting against degradation of L-ascorbic acid were estimated by dialysis bag method in phosphate buffer saline (PBS) (pH = 7.4) as release media. The prepared titanium dioxide particles exhibited spherical porous structures. The particle size distribution of the titanium dioxide particles was uniform. The hollow titanium dioxide particles encapsulating L-ascorbic acid showed the sustained release. It was also found that the degradation of L-ascorbic acid could be inhibited by encapsulating L-ascorbic acid in the titanium dioxide hollow particles.

  1. Method to prevent sulfur accumulation in membrane electrode assembly

    DOEpatents

    Steimke, John L; Steeper, Timothy J; Herman, David T

    2014-04-29

    A method of operating a hybrid sulfur electrolyzer to generate hydrogen is provided that includes the steps of providing an anolyte with a concentration of sulfur dioxide, and applying a current. During steady state generation of hydrogen a plot of applied current density versus concentration of sulfur dioxide is below a boundary line. The boundary line may be linear and extend through the origin of the graph with a slope of 0.001 in which the current density is measured in mA/cm2 and the concentration of sulfur dioxide is measured in moles of sulfur dioxide per liter of anolyte.

  2. Regulatory Impact Analysis (RIA) for the Proposed Revisions to the Sulfur Dioxide National Ambient Air Quality Standards (NAAQS)

    EPA Pesticide Factsheets

    This Regulatory Impact Analysis (RIA) provides estimates of the incremental costs and monetized human health benefits of attaining a revised short‐term Sulfur Dioxide (SO2) NAAQS within the current monitoring network.

  3. Investigation into the ring-substituted polyanilines and their application for the detection and adsorption of sulfur dioxide

    PubMed Central

    Tian, Yuhong; Qu, Ke; Zeng, Xiangqun

    2017-01-01

    It has been demonstrated in this study that the substituents on the monomer aniline benzene ring are able to introduce the significant differences to the resulting polyaniline’s collective properties. We systematically evaluated the structural perturbation effects of two substituents (methyl and methoxy) of aniline monomer through the electrochemical method. Our results showed that the methoxy group induces the less structural perturbation than the methyl counterpart, because of its partial double bond restriction. The morphologies are different for the polyaniline and the ring-substituted polyanilines, in which substituted polyanilines feature the larger porosities with the addition of these side groups. The influential effects of the methoxy side group have been further illustrated and amplified by its superior sensing performance towards the environmentally-significant sulfur dioxide gas, evaluated through the construction of the quartz crystal microbalance (QCM)-based gas sensor with these polyaniline materials. The as-constructed gas sensor’s sensitivity, selectivity and stability in terms of its SO2 responses have been evaluated in details. The methoxy-substituted polyaniline was tested to show the unique gas sensing properties for the sulfur dioxide at the low concentrations (50–250 ppm) and function as the adsorbing material at the high concentrations (500–1250 ppm). Thus it can be used both as sensing material as well as a novel filter and/or storage reservoir for the removal of sulfur dioxide pollutant from the environments. PMID:29033497

  4. Assessment of the UV camera sulfur dioxide retrieval for point source plumes

    USGS Publications Warehouse

    Dalton, M.P.; Watson, I.M.; Nadeau, P.A.; Werner, C.; Morrow, W.; Shannon, J.M.

    2009-01-01

    Digital cameras, sensitive to specific regions of the ultra-violet (UV) spectrum, have been employed for quantifying sulfur dioxide (SO2) emissions in recent years. The instruments make use of the selective absorption of UV light by SO2 molecules to determine pathlength concentration. Many monitoring advantages are gained by using this technique, but the accuracy and limitations have not been thoroughly investigated. The effect of some user-controlled parameters, including image exposure duration, the diameter of the lens aperture, the frequency of calibration cell imaging, and the use of the single or paired bandpass filters, have not yet been addressed. In order to clarify methodological consequences and quantify accuracy, laboratory and field experiments were conducted. Images were collected of calibration cells under varying observational conditions, and our conclusions provide guidance for enhanced image collection. Results indicate that the calibration cell response is reliably linear below 1500 ppm m, but that the response is significantly affected by changing light conditions. Exposure durations that produced maximum image digital numbers above 32 500 counts can reduce noise in plume images. Sulfur dioxide retrieval results from a coal-fired power plant plume were compared to direct sampling measurements and the results indicate that the accuracy of the UV camera retrieval method is within the range of current spectrometric methods. ?? 2009 Elsevier B.V.

  5. Monitoring, exposure and risk assessment of sulfur dioxide residues in fresh or dried fruits and vegetables in China.

    PubMed

    Lou, Tiantian; Huang, Weisu; Wu, Xiaodan; Wang, Mengmeng; Zhou, Liying; Lu, Baiyi; Zheng, Lufei; Hu, Yinzhou

    2017-06-01

    Sulfur dioxide residues in 20 kinds of products collected from 23 provinces of China (Jilin, Beijing, Shanxi, Shandong, Henan, Hebei, Jiangsu, Anhui, Shanghai, Zhejiang, Fujian, Guangdong, Guangxi, Yunnan, Guizhou, Hunan, Hubei, Chongqing, Sichuan, Gansu, Neimenggu, Xinjiang and Hainan) were analysed, and a health risk assessment was performed. The detection rates of sulfur dioxide residues in fresh vegetables, fresh fruits, dried vegetables and dried fruits were 11.1-95.9%, 12.6-92.3%, 70.3-80.0% and 26.0-100.0%, respectively; the mean concentrations of residues were 2.7-120.8, 3.8-35.7, 26.9-99.1 and 12.0-1120.4 mg kg -1 , respectively. The results indicated that fresh vegetables and dried products are critical products; the daily intakes (EDIs) for children were higher than others; the hazard indexes (HI) for four groups were 0.019-0.033, 0.001-0.005, 0.007-0.016 and 0.002-0.005 at P50, respectively. But the HI was more than 1 at P99 by intake dried fruits and vegetables. Although the risk for consumers was acceptable on the whole, children were the most vulnerable group. Uncertainty and sensitivity analyses indicated that the level of sulfur dioxide residues was the most influential variable in this model. Thus, continuous monitoring and stricter regulation of sulfites using are recommended in China.

  6. Raman Spectra and Cross Sections of Ammonia, Chlorine, Hydrogen Sulfide, Phosgene, and Sulfur Dioxide Toxic Gases in the Fingerprint Region 400-1400 cm-1

    DTIC Science & Technology

    2016-02-11

    AIP ADVANCES 6, 025310 (2016) Raman spectra and cross sections of ammonia , chlorine, hydrogen sulfide, phosgene, and sulfur dioxide toxic gases in...Received 10 December 2015; accepted 3 February 2016; published online 11 February 2016) Raman spectra of ammonia (NH3), chlorine (Cl2), hydrogen...and cross sections of ammonia (NH3), chlorine (Cl2), hydrogen sulfide (H2S), phosgene (CCl2O), and sulfur dioxide (SO2) toxic gases in the fingerprint

  7. Determination of sulfur in bovine serum albumin and L-cysteine using high-resolution continuum source molecular absorption spectrometry of the CS molecule

    NASA Astrophysics Data System (ADS)

    Andrade-Carpente, Eva; Peña-Vázquez, Elena; Bermejo-Barrera, Pilar

    2016-08-01

    In this study, the content of sulfur in bovine serum albumin and L-cysteine was determined using high-resolution continuum source molecular absorption spectrometry of the CS molecule, generated in a reducing air-acetylene flame. Flame conditions (height above the burner, measurement time) were optimized using a 3.0% (v/v) sulfuric acid solution. A microwave lab station (Ethos Plus MW) was used for the digestion of both compounds. During the digestion step, sulfur was converted to sulfate previous to the determination. Good repeatability (4-10%) and analytical recovery (91-106%) was obtained.

  8. Sulfur Removal by Adding Iron During the Digestion Process of High-sulfur Bauxite

    NASA Astrophysics Data System (ADS)

    Zhanwei, Liu; Hengwei, Yan; Wenhui, Ma; Keqiang, Xie; Dunyong, Li; Licong, Zheng; Pengfei, Li

    2018-04-01

    This paper proposes a novel approach to sulfur removal by adding iron during the digestion process. Iron can react with high-valence sulfur (S2O3 2-, SO3 2-, SO4 2-) to generate S2- at digestion temperature, and then S2- enter red mud in the form of Na3FeS3 to be removed. As iron dosage increases, high-valence sulfur concentration decreases, but the concentration of S2- increases; sulfur digestion rate decreases while sulfur content in red mud markedly increases; the alumina digestion rate, conversely, remains fairly stable. So sulfur can be removed completely by adding iron in digestion process, which provide a theoretical basis for the effective removal of sulfur in alumina production process.

  9. First results of an Investigation of Sulfur Dioxide in the Ultraviolet from Pioneer Venus through Venus Express

    NASA Astrophysics Data System (ADS)

    McGouldrick, Kevin; Molaverdikhani, K.; Esposito, L. W.; Pankratz, C. K.

    2010-10-01

    The Laboratory for Atmospheric and Space Physics is carrying on a project to restore and preserve data products from several past missions for archival and use by the scientific community. This project includes the restoration of data from Mariner 6/7, Pioneer Venus, Voyager 1/2, and Galileo. Here, we present initial results of this project that involve Pioneer Venus Orbiter Ultraviolet Spectrometer (PVO UVS) data. Using the Discrete Ordinate Method for Radiative Transfer (DISORT), we generate a suite of models for the three free parameters in the upper atmosphere of Venus in which we are interested: sulfur dioxide abundance at 40mb, scale height of sulfur dioxide, and the typical radius of the upper haze particles (assumed to be composed of 84.5% sulfuric acid). We calculate best fits to our radiative transfer model results for multi-spectral images taken with PVO UVS, as well as the 'visible' channel (includes wavelengths from 290nm to about 1000nm) of the mapping mode of the Visible and Infrared Thermal Imaging Spectrometer (VIRTIS-M-Vis) on the Venus Express spacecraft, currently orbiting Venus. This work is funded though the NASA Planetary Mission Data Analysis Program, NNH08ZDA001N.

  10. The impact of sulfur dioxide on plant sexual reproduction: in vivo and in vitro effects compared

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DuBay, D.T.; Murdy, W.H.

    1983-01-01

    In Lepidium virginicum L., exposure of pollen to 0.6 ppm sulfur dioxide (SO/sub 2/) for 4 h reduced pollen germination in vitro 94% from the control, whereas exposure to 0.6 ppm SO/sub 2/ for 2, 4, and 8 h during flowering reduced pollen germination in vivo 50% from the control, but did not affect seed set.An interaction between SO/sub 2/ and water may have caused the inhibition of pollen germination in a liquid culture medium, as well as on the moist surface of an intact stigma. However, the results suggest that the use of pollen germination and pollen tube elongationmore » in vitro to asses the direct effects of SO/sub 2/ on plant sexual reproduction in vivo is not valid.« less

  11. Effects of ozone, sulfur dioxide, and alpha and delta races of Colletotrichum Lindemuthianum (Sacc. and Magn. ) Bri and Cav. on bean (Phaseolus vulgaris L. )

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achwanya, O.S.

    1984-01-01

    A number of bean (Phaseolus vulgaris L.) cultivars were evaluated for their responses to the air pollutants ozone and sulfur dioxide singly and in combination, as well as for their reaction to the alpha and delta races of Colletotrichum lindemuthianum (Sacc. and Magn.) Bri and Cav. Variation in response to both the pollutants and the fungus was noted among the cultivars. Anthracnose caused a reduction in the biomass of some cultivars of the order of 50%. A negative correlation of (r = -0.72, p < 0.0001) was found between the disease severity and the total plant biomass. Greater than additivemore » effects of O/sub 3/ + SO/sub 2/ mixtures were demonstrated. Chlorophyll content and biomass were found to be reliable variables for assessing treatment effects. The pollutants appeared to stimulate the disease development. Greater pollutant injury was also in the presence of the anthracnose disease. The results indicated that there was an interaction between the fungal disease and the air pollutants. Implications for evaluating bean cultivars for resistance to C. lindemuthianum under polluted atmosphere are suggested.« less

  12. Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries.

    PubMed

    Chen, Xiangping; Chen, Yongbin; Zhou, Tao; Liu, Depei; Hu, Hang; Fan, Shaoyun

    2015-04-01

    Environmentally hazardous substances contained in spent Li-ion batteries, such as heavy metals and nocuous organics, will pose a threat to the environment and human health. On the other hand, the sustainable recycling of spent lithium-ion batteries may bring about environmental and economic benefits. In this study, a hydrometallurgical process was adopted for the comprehensive recovery of nickel, manganese, cobalt and lithium from sulfuric acid leaching liquor from waste cathode materials of spent lithium-ion batteries. First, nickel ions were selectively precipitated and recovered using dimethylglyoxime reagent. Recycled dimethylglyoxime could be re-used as precipitant for nickel and revealed similar precipitation performance compared with fresh dimethylglyoxime. Then the separation of manganese and cobalt was conducted by solvent extraction method using cobalt loaded D2EHPA. And McCabe-Thiele isotherm was employed for the prediction of the degree of separation and the number of extraction stages needed at specific experimental conditions. Finally, cobalt and lithium were sequentially precipitated and recovered as CoC2O4 ⋅ 2H2O and Li2CO3 using ammonium oxalate solution and saturated sodium carbonate solution, respectively. Recovery efficiencies could be attained as follows: 98.7% for Ni; 97.1% for Mn, 98.2% for Co and 81.0% for Li under optimized experimental conditions. This hydrometallurgical process may promise a candidate for the effective separation and recovery of metal values from the sulfuric acid leaching liquor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. An intercomparison of aircraft instrumentation for tropospheric measurements of sulfur dioxide

    NASA Technical Reports Server (NTRS)

    Gregory, Gerald L.; Davis, Douglas D.; Beltz, Nobert; Bandy, Alan R.; Ferek, Ronald J.; Thornton, Donald C.

    1993-01-01

    As part of the NASA Tropospheric Chemistry Program, a series of field intercomparisons have been conducted to evaluate the state-of-the art for measuring key tropospheric species. One of the objectives of the third intercomparison campaign in this series, Chemical Instrumentation Test and Evaluation 3 (CITE 3), was to evaluate instrumentation for making reliable tropospheric aircraft measurements of sulfur dioxide, dimethyl sulfide, hydrogen sulfide, carbon disulfide, and carbonyl sulfide. This paper reports the results of the intercomparisons of five sulfur dioxide measurement methods ranging from filter techniques, in which samples collected in flight are returned to the laboratory for analyses (chemiluminescent or ion chromatographic), to near real-time, in-flight measurements via gas chromatographic, mass spectrometric, and chemiluminescent techniques. All techniques showed some tendency to track sizeable changes in ambient SO2 such as those associated with altitude changes. For SO2 mixing ratios in the range of 200 pptv to a few ppbv, agreement among the techniques varies from about 30% to several orders of magnitude, depending upon the pair of measurements intercompared. For SO2 mixing ratios less than 200 pptv, measurements from the techniques are uncorrelated. In general, observed differences in the measurement of standards do not account for the flight results. The CITE 3 results do not unambiguously identify one or more of the measurement techniques as providing valid or invalid SO2 measurements, but identify the range of 'potential' uncertainty in SO2 measurements reported by currently available instrumentation and as measured under realistic aircraft environments.

  14. Effects of ozone and sulfur dioxide on height and stem specific gravity of Populus hybrids

    Treesearch

    Roy L. Patton

    1981-01-01

    Unfumigated hybrid poplars (Populus spp.) were compared with poplars of the same nine clones fumigated with 0.15 pprn ozone or 0.25 ppm sulfur dioxide. After 102 days, plant height and stem specific gravity were measured to determine whether specific gravity is altered by the fumigants and to compare that response to height suppression, an accepted...

  15. Magmatic vapor source for sulfur dioxide released during volcanic eruptions: Evidence from Mount Pinatubo

    USGS Publications Warehouse

    Wallace, P.J.; Gerlach, T.M.

    1994-01-01

    Sulfur dioxide (SO2) released by the explosive eruption of Mount Pinatubo on 15 June 1991 had an impact on climate and stratospheric ozone. The total mass of SO2 released was much greater than the amount dissolved in the magma before the eruption, and thus an additional source for the excess SO2 is required. Infrared spectroscopic analyses of dissolved water and carbon dioxide in glass inclusions from quartz phenocrysts demonstrate that before eruption the magma contained a separate, SO2-bearing vapor phase. Data for gas emissions from other volcanoes in subduction-related arcs suggest that preeruptive magmatic vapor is a major source of the SO2 that is released during many volcanic eruptions.

  16. Process for forming sulfuric acid

    DOEpatents

    Lu, Wen-Tong P.

    1981-01-01

    An improved electrode is disclosed for the anode in a sulfur cycle hydrogen generation process where sulfur dioxie is oxidized to form sulfuric acid at the anode. The active compound in the electrode is palladium, palladium oxide, an alloy of palladium, or a mixture thereof. The active compound may be deposited on a porous, stable, conductive substrate.

  17. Economic, Environmental, and Coal Market Impacts of Sulfur Dioxide Emissions Trading under Alternative Acid Rain Control Proposals (1989)

    EPA Pesticide Factsheets

    This report examines the ramifications of diferent levels of emissions trading in the context of tro representative electric utility sulfur dioxide emisson reduction proposals designed to control acid rain, and in the absence of any new control program.

  18. [The sources of inorganic sulfur in the process of cluster protein Fnr[4Fe-4S]2+ reconstruction in Escherichia coli cells cultivated with NO-donating agents].

    PubMed

    Vasil'eva, S V; Strel'tsova, D A; Vlaskina, A V; Mikoian, V D; Vanin, A F

    2012-01-01

    Dinitrosyl iron complexes (DNICs) with thiol ligands--binuclear and mononuclear--inhibited aidB gene expression in E. coli cells. This process is due to the nitrosylation of the active center in iron-sulfur protein Fnr [4Fe-4S]2+ by low-molecular DNICs. The next step is transformation of the above DNICs into the DNICs with the thiol groups in the apo-form of Fnr protein. These nitrosylated proteins are characterized by the EPR signal with g perpendicular = 2.04 and g parallel 1 = 2,014. An addition of sulfur containing L-Cys or N-A-L-Cys as well as Na2S to the cells lead to the increasing in the aidB gene expression simultaneously with an appearance of the EPR signal with g perpendicular = 2.04 and g parallel = 2.02 as the characteristics of the DNICs with persulfide (R-S-S-) ligands. We suppose that the recovery of the aidB gene activity was due to the accumulation of inorganic sulfur in the cells and reconstruction of the active center in Fnr[4Fe-4S]2+. It appears that the above process is the function of L-cysteine-desulfurase protein which repaired the active center of Fnr[4Fe-4S]2+ protein using the sulfur from L-Cys or N-A-L-Cys after its deacetylation. On the other side the ions of inorganic sulfur being reacted with SH-groups led to the transformation of DNIC with thiol ligands into the persulfides. Na2S was the most potent activator of the aidB gene expression in our experiments.

  19. Unique pioneer microbial communities exposed to volcanic sulfur dioxide

    PubMed Central

    Fujimura, Reiko; Kim, Seok-Won; Sato, Yoshinori; Oshima, Kenshiro; Hattori, Masahira; Kamijo, Takashi; Ohta, Hiroyuki

    2016-01-01

    Newly exposed volcanic substrates contain negligible amounts of organic materials. Heterotrophic organisms in newly formed ecosystems require bioavailable carbon and nitrogen that are provided from CO2 and N2 fixation by pioneer microbes. However, the knowledge of initial ecosystem developmental mechanisms, especially the association between microbial succession and environmental change, is still limited. This study reports the unique process of microbial succession in fresh basaltic ash, which was affected by long-term exposure to volcanic sulfur dioxide (SO2). Here we compared the microbial ecosystems among deposits affected by SO2 exposure at different levels. The results of metagenomic analysis suggested the importance of autotrophic iron-oxidizing bacteria, particularly those involved in CO2 and N2 fixation, in the heavily SO2 affected site. Changes in the chemical properties of the deposits after the decline of the SO2 impact led to an apparent decrease in the iron-oxidizer abundance and a possible shift in the microbial community structure. Furthermore, the community structure of the deposits that had experienced lower SO2 gas levels showed higher similarity with that of the control forest soil. Our results implied that the effect of SO2 exposure exerted a selective pressure on the pioneer community structure by changing the surrounding environment of the microbes. PMID:26791101

  20. Optimization of chip size and moisture content to obtain high, combined sugar recovery after sulfur dioxide-catalyzed steam pretreatment of softwood and enzymatic hydrolysis of the cellulosic component.

    PubMed

    Olsen, Colin; Arantes, Valdeir; Saddler, Jack

    2015-01-01

    The influence of chip size and moisture content on the combined sugar recovery after steam pretreatment of lodgepole pine and subsequent enzymatic hydrolysis of the cellulosic component were investigated using response surface methodology. Chip size had little influence on sugar recovery after both steam pretreatment and enzymatic hydrolysis. In contrast, the moisture of the chips greatly influenced the relative severity of steam pretreatment and, as a result, the combined sugar recovery from the hemicellulosic and cellulosic fractions. Irrespective of chip size and the pretreatment temperature, time, and SO2 loading that were used, the relative severity of pretreatment was highest at a moisture of 30-40w/w%. However, the predictive model indicated that an elevated moisture content of roughly 50w/w% (about the moisture content of a standard softwood mill chip) would result in the highest, combined sugar recovery (80%) over the widest range of steam pretreatment conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Scandium recovery from slags after oxidized nickel ore processing

    NASA Astrophysics Data System (ADS)

    Smyshlyaev, Denis; Botalov, Maxim; Bunkov, Grigory; Rychkov, Vladimir; Kirillov, Evgeny; Kirillov, Sergey; Semenishchev, Vladimir

    2017-09-01

    One of the possible sources of scandium production - waste (slags) from processing of oxidized nickel ores, has been considered in present research work. The hydrometallurgical method has been selected as the primary for scandium extraction. Different reagents for leaching of scandium, such as sulfuric acid, various carbonate salts and fluorides, have been tested. Sulfuric acid has been recognized as an optimal leaching reagent. Sulfuric acid concentration of 100 g L-1 allowed recovering up to 97 % of scandium.

  2. Recovery of laccase from processed Hericium erinaceus (Bull.:Fr) Pers. fruiting bodies in aqueous two-phase system.

    PubMed

    Rajagopalu, Devamalini; Show, Pau Loke; Tan, Yee Shin; Muniandy, Sekaran; Sabaratnam, Vikineswary; Ling, Tau Chuan

    2016-09-01

    The feasible use of aqueous two-phase systems (ATPSs) to establish a viable protocol for the recovery of laccase from processed Hericium erinaceus (Bull.:Fr.) Pers. fruiting bodies was evaluated. Cold-stored (4.00±1.00°C) H. erinaceus recorded the highest laccase activities of 2.02±0.04 U/mL among all the processed techniques. The evaluation was carried out in twenty-five ATPSs, which composed of polyethylene glycol (PEG) with various molecular weights and potassium phosphate salt solution to purify the protein from H. erinaceus. Optimum recovery condition was observed in the ATPS which contained 17% (w/w) PEG with a molecular weight of 8000 and 12.2% (w/w) potassium phosphate solution, at a volume ratio (VR) of 1.0. The use of ATPS resulted in one-single primary recovery stage process that produced an overall yield of 99% with a purification factor of 8.03±0.46. The molecular mass of laccases purified from the bottom phase was in the range of 55-66 kDa. The purity of the partitioned laccase was confirmed with sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. Evaluation of sulfur dioxide-generating pads and modified atmosphere packaging for control of postharvest diseases in blueberries

    USDA-ARS?s Scientific Manuscript database

    Postharvest diseases are a limiting factor of storage and shelf life of blueberries. Gray mold caused by Botrytis cinerea is one of the most important postharvest diseases in blueberries grown in California. In this study, we evaluated the effects of sulfur dioxide (SO2)-generating pads (designated ...

  4. Determination of sulfur trioxide in engine exhaust.

    PubMed Central

    Arnold, D R

    1975-01-01

    Sulfur trioxide in the exhaust gas of an internal combustion engine is removed and concentrated by absorption in a solution of 80% isopropyl alcohol, which quantitatively absorbs it and inhibits the oxidation of any sulfur dioxide which may be absorbed. The absorbed sulfur trioxide (sulfuric acid) is determined by an absorption titration by using barium chloride as the titrant and thorin as the indicator. The sulfur dioxide content of the exhaust is measured continuously by means of a DuPont Model 411 ultraviolet photoanalyzer. PMID:50930

  5. Endogenous Sulfur Dioxide: A New Member of Gasotransmitter Family in the Cardiovascular System

    PubMed Central

    Huang, Yaqian; Tang, Chaoshu; Du, Junbao; Jin, Hongfang

    2016-01-01

    Sulfur dioxide (SO2) was previously regarded as a toxic gas in atmospheric pollutants. But it has been found to be endogenously generated from metabolism of sulfur-containing amino acids in mammals through transamination by aspartate aminotransferase (AAT). SO2 could be produced in cardiovascular tissues catalyzed by its synthase AAT. In recent years, studies revealed that SO2 had physiological effects on the cardiovascular system, including vasorelaxation and cardiac function regulation. In addition, the pathophysiological effects of SO2 were also determined. For example, SO2 ameliorated systemic hypertension and pulmonary hypertension, prevented the development of atherosclerosis, and protected against myocardial ischemia-reperfusion (I/R) injury and isoproterenol-induced myocardial injury. These findings suggested that endogenous SO2 was a novel gasotransmitter in the cardiovascular system and provided a new therapy target for cardiovascular diseases. PMID:26839635

  6. Endogenous Sulfur Dioxide: A New Member of Gasotransmitter Family in the Cardiovascular System.

    PubMed

    Huang, Yaqian; Tang, Chaoshu; Du, Junbao; Jin, Hongfang

    2016-01-01

    Sulfur dioxide (SO2) was previously regarded as a toxic gas in atmospheric pollutants. But it has been found to be endogenously generated from metabolism of sulfur-containing amino acids in mammals through transamination by aspartate aminotransferase (AAT). SO2 could be produced in cardiovascular tissues catalyzed by its synthase AAT. In recent years, studies revealed that SO2 had physiological effects on the cardiovascular system, including vasorelaxation and cardiac function regulation. In addition, the pathophysiological effects of SO2 were also determined. For example, SO2 ameliorated systemic hypertension and pulmonary hypertension, prevented the development of atherosclerosis, and protected against myocardial ischemia-reperfusion (I/R) injury and isoproterenol-induced myocardial injury. These findings suggested that endogenous SO2 was a novel gasotransmitter in the cardiovascular system and provided a new therapy target for cardiovascular diseases.

  7. Monitoring of sulfur dioxide emission resulting from biogas utilization on commercial pig farms in Taiwan.

    PubMed

    Su, Jung-Jeng; Chen, Yen-Jung

    2015-01-01

    The objective of this work tends to promote methane content in biogas and evaluate sulfur dioxide emission from direct biogas combustion without desulfurization. Analytical results of biogas combustion showed that combustion of un-desulfurized biogas exhausted more than 92% of SO₂ (P < 0.01). In the meantime, more than 90% of hydrogen sulfide was removed during the combustion process using un-desulfurized biogas (P < 0.01). Those disappeared hydrogen sulfide may deposit on the surfaces of power generator's engines or burner heads of boilers. Some of them (4.6-9.1% of H₂S) were converted to SO₂ in exhaust gas. Considering the impacts to human health and living environment, it is better to desulfurize biogas before any applications.

  8. Flow injection gas chromatography with sulfur chemiluminescence detection for the analysis of total sulfur in complex hydrocarbon matrixes.

    PubMed

    Hua, Yujuan; Hawryluk, Myron; Gras, Ronda; Shearer, Randall; Luong, Jim

    2018-01-01

    A fast and reliable analytical technique for the determination of total sulfur levels in complex hydrocarbon matrices is introduced. The method employed flow injection technique using a gas chromatograph as a sample introduction device and a gas phase dual-plasma sulfur chemiluminescence detector for sulfur quantification. Using the technique described, total sulfur measurement in challenging hydrocarbon matrices can be achieved in less than 10 s with sample-to-sample time <2 min. The high degree of selectivity and sensitivity toward sulfur compounds of the detector offers the ability to measure low sulfur levels with a detection limit in the range of 20 ppb w/w S. The equimolar response characteristic of the detector allows the quantitation of unknown sulfur compounds and simplifies the calibration process. Response is linear over a concentration range of five orders of magnitude, with a high degree of repeatability. The detector's lack of response to hydrocarbons enables direct analysis without the need for time-consuming sample preparation and chromatographic separation processes. This flow injection-based sulfur chemiluminescence detection technique is ideal for fast analysis or trace sulfur analysis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Effect of work and recovery durations on W' reconstitution during intermittent exercise.

    PubMed

    Skiba, Philip F; Jackman, Sarah; Clarke, David; Vanhatalo, Anni; Jones, Andrew M

    2014-07-01

    We recently presented an integrating model of the curvature constant of the hyperbolic power-time relationship (W') that permits the calculation of the W' balance (W'BAL) remaining at any time during intermittent exercise. Although a relationship between recovery power and the rate of W' recovery was demonstrated, the effect of the length of work or recovery intervals remains unclear. After determining VO2max, critical power, and W', 11 subjects completed six separate exercise tests on a cycle ergometer on different days, and in random order. Tests consisted of a period of intermittent severe-intensity exercise until the subject depleted approximately 50% of their predicted W'BAL, followed by a constant work rate (CWR) exercise bout until exhaustion. Work rates were kept constant between trials; however, either work or recovery durations during intermittent exercise were varied. The actual W' measured during the CWR (W'ACT) was compared with the amount of W' predicted to be available by the W'BAL model. Although some differences between W'BAL and W'ACT were noted, these amounted to only -1.6 ± 1.1 kJ when averaged across all conditions. The W'ACT was linearly correlated with the difference between VO2 at the start of CWR and VO2max (r = 0.79, P < 0.01). The W'BAL model provided a generally robust prediction of CWR W'. There may exist a physiological optimum formulation of work and recovery intervals such that baseline VO2 can be minimized, leading to an enhancement of subsequent exercise tolerance. These results may have important implications for athletic training and racing.

  10. Evaluation of sulfur dioxide emissions from explosive volcanism: the 1982-1983 eruptions of Galunggung, Java, Indonesia

    USGS Publications Warehouse

    Bluth, G.J.S.; Casadevall, T.J.; Schnetzler, C.C.; Doiron, S.D.; Walter, Louis S.; Krueger, A.J.; Badruddin, M.

    1994-01-01

    Galunggung volcano, Java, awoke from a 63-year quiescence in April 1982, and erupted sporadically through January 1983. During its most violent period from April to October, the Cikasasah Volcano Observatory reported 32 large and 56 moderate to small eruptions. From April 5 through September 19 the Total Ozone Mapping Spectrometer (TOMS), carried on NASA's Nimbus-7 satellite, detected and measured 24 different sulfur dioxide clouds; an estimated 1730 kilotons (kt) of SO2 were outgassed by these explosive eruptions. The trajectories, and rapid dispersion rates, of the SO2 clouds were consistent with injection altitudes below the tropopause. An additional 300 kt of SO2 were estimated to have come from 64 smaller explosive eruptions, based on the detection limit of the TOMS instrument. For the first time, an extended period of volcanic activity was monitored by remote sensing techniques which enabled observations of both the entire SO2 clouds produced by large explosive eruptions (using TOMS), and the relatively lower levels of SO2 emissions during non-explosive outgassing (using the Correlation Spectrometer, or COSPEC). Based on COSPEC measurements from August 1982 to January 1983, and on the relationship between explosive and non-explosive degassing, approximately 400 kt of SO2 were emitted during non-explosive activity. The total sulfur dioxide outgassed from Galunggung volcano from April 1982 to January 1983 is calculated to be 2500 kt (?? 30%) from both explosive and non-explosive activity. While Galunggung added large quantities of sulfur dioxide to the atmosphere, its sporadic emissions occurred in relatively small events distributed over several months, and reached relatively low altitudes, and are unlikely to have significantly affected aerosol loading of the stratosphere in 1982 by volcanic activity. ?? 1994.

  11. The impact of particle size, relative humidity, and sulfur dioxide on iron solubility in simulated atmospheric marine aerosols.

    PubMed

    Cartledge, Benton T; Marcotte, Aurelie R; Herckes, Pierre; Anbar, Ariel D; Majestic, Brian J

    2015-06-16

    Iron is a limiting nutrient in about half of the world's oceans, and its most significant source is atmospheric deposition. To understand the pathways of iron solubilization during atmospheric transport, we exposed size segregated simulated marine aerosols to 5 ppm sulfur dioxide at arid (23 ± 1% relative humidity, RH) and marine (98 ± 1% RH) conditions. Relative iron solubility increased as the particle size decreased for goethite and hematite, while for magnetite, the relative solubility was similar for all of the fine size fractions (2.5-0.25 μm) investigated but higher than the coarse size fraction (10-2.5 μm). Goethite and hematite showed increased solubility at arid RH, but no difference (p > 0.05) was observed between the two humidity levels for magnetite. There was no correlation between iron solubility and exposure to SO2 in any mineral for any size fraction. X-ray absorption near edge structure (XANES) measurements showed no change in iron speciation [Fe(II) and Fe(III)] in any minerals following SO2 exposure. SEM-EDS measurements of SO2-exposed goethite revealed small amounts of sulfur uptake on the samples; however, the incorporated sulfur did not affect iron solubility. Our results show that although sulfur is incorporated into particles via gas-phase processes, changes in iron solubility also depend on other species in the aerosol.

  12. Recovery of copper and water from copper-electroplating wastewater by the combination process of electrolysis and electrodialysis.

    PubMed

    Peng, Changsheng; Liu, Yanyan; Bi, Jingjing; Xu, Huizhen; Ahmed, Abou-Shady

    2011-05-30

    In this paper, a laboratory-scale process which combined electrolysis (EL) and electrodialysis (ED) was developed to treat copper-containing wastewater. The feasibility of such process for copper recovery as well as water reuse was determined. Effects of three operating parameters, voltage, initial Cu(2+) concentration and water flux on the recovery of copper and water were investigated and optimized. The results showed that about 82% of copper could be recovered from high concentration wastewater (HCW, >400mg/L) by EL, at the optimal conditions of voltage 2.5 V/cm and water flux 4 L/h; while 50% of diluted water could be recycled from low concentration wastewater (LCW, <200mg/L) by ED, at the optimal conditions of voltage 40 V and water flux 4 L/h. However, because of the limitation of energy consumption (EC), LCW for EL and HCW for ED could not be treated effectively, and the effluent water of EL and concentrated water of ED should be further treated before discharged. Therefore, the combination process of EL and ED was developed to realize the recovery of copper and water simultaneously from both HCW and LCW. The results of the EL-ED process showed that almost 99.5% of copper and 100% of water could be recovered, with the energy consumption of EL ≈ 3 kW h/kg and ED ≈ 2 kW h/m(3). According to SEM and EDX analysis, the purity of recovered copper was as high as 97.9%. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Digestive recovery of sulfur-methyl-L-methionine and its bioaccessibility in Kimchi cabbages using a simulated in vitro digestion model system.

    PubMed

    Lee, Hae-Rim; Cho, Sun-Duk; Lee, Woon Kyu; Kim, Gun-Hee; Shim, Soon-Mi

    2014-01-15

    Sulfur-methyl-L-methionine (SMM) has been known to provide various biological functions such as radical scavenging effect, inhibition of adipocyte differentiation, and prevention of gastric mucosal damage. Kimchi cabbages are known to be a major food source providing SMM but its bioaccessibility has not been studied. The objective of current study was to determine both the digestive stability of SMM and the amount released from Kimchi cabbages under a simulated in vitro digestion model system. The in vitro digestion model system simulating a human gastrointestinal tract was carried out for measuring digestive recovery and bioaccessibility of SMM. SMM was quantified by using high-performance liquid chromatography with a fluorescence detector. Recovery of an SMM standard after digestion was 0.68 and 0.65% for fasted and fed conditions, respectively, indicating that the digestive stability of the SMM standard was not affected by dietary energy or co-ingested food matrix. The SMM standard was also significantly stable in acidic pH (P < 0.05). The bioaccessibility of SMM from Kimchi cabbages was measured under a fasted condition, resulted in 8.83, 14.71 and 10.88%, for salivary, gastric and small intestinal phases, respectively. Results from our study suggest that SMM from Kimchi cabbages, a component of food sources, is more bioavailable than SMM by itself. © 2013 Society of Chemical Industry.

  14. Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xiangping; Chen, Yongbin; Zhou, Tao, E-mail: zhoutao@csu.edu.cn

    2015-04-15

    Highlights: • Selective precipitation and solvent extraction were adopted. • Nickel, cobalt and lithium were selectively precipitated. • Co-D2EHPA was employed as high-efficiency extraction reagent for manganese. • High recovery percentages could be achieved for all metal values. - Abstract: Environmentally hazardous substances contained in spent Li-ion batteries, such as heavy metals and nocuous organics, will pose a threat to the environment and human health. On the other hand, the sustainable recycling of spent lithium-ion batteries may bring about environmental and economic benefits. In this study, a hydrometallurgical process was adopted for the comprehensive recovery of nickel, manganese, cobalt andmore » lithium from sulfuric acid leaching liquor from waste cathode materials of spent lithium-ion batteries. First, nickel ions were selectively precipitated and recovered using dimethylglyoxime reagent. Recycled dimethylglyoxime could be re-used as precipitant for nickel and revealed similar precipitation performance compared with fresh dimethylglyoxime. Then the separation of manganese and cobalt was conducted by solvent extraction method using cobalt loaded D2EHPA. And McCabe–Thiele isotherm was employed for the prediction of the degree of separation and the number of extraction stages needed at specific experimental conditions. Finally, cobalt and lithium were sequentially precipitated and recovered as CoC{sub 2}O{sub 4}⋅2H{sub 2}O and Li{sub 2}CO{sub 3} using ammonium oxalate solution and saturated sodium carbonate solution, respectively. Recovery efficiencies could be attained as follows: 98.7% for Ni; 97.1% for Mn, 98.2% for Co and 81.0% for Li under optimized experimental conditions. This hydrometallurgical process may promise a candidate for the effective separation and recovery of metal values from the sulfuric acid leaching liquor.« less

  15. Process for removing sulfur from sulfur-containing gases: high calcium fly-ash

    DOEpatents

    Rochelle, Gary T.; Chang, John C. S.

    1991-01-01

    The present disclosure relates to improved processes for treating hot sulfur-containing flue gas to remove sulfur therefrom. Processes in accordance with the present invention include preparing an aqueous slurry composed of a calcium alkali source and a source of reactive silica and/or alumina, heating the slurry to above-ambient temperatures for a period of time in order to facilitate the formation of sulfur-absorbing calcium silicates or aluminates, and treating the gas with the heat-treated slurry components. Examples disclosed herein demonstrate the utility of these processes in achieving improved sulfur-absorbing capabilities. Additionally, disclosure is provided which illustrates preferred configurations for employing the present processes both as a dry sorbent injection and for use in conjunction with a spray dryer and/or bagfilter. Retrofit application to existing systems is also addressed.

  16. Sulfur Dioxide Plume During the Continuing Eruption of Mt. Etna, Italy

    NASA Image and Video Library

    2001-08-03

    The current eruption of Mt. Etna started on July 17, and has continued to the present. This ASTER image was acquired on Sunday, July 29 and shows the sulfur dioxide plume (in purple) originating form the summit, drifting over the city of Catania, and continuing over the Ionian Sea. ASTER's unique combination of multiple thermal infrared channels and high spatial resolution allows the determination of the thickness and position of the SO2 plume. The image covers an area of 24 x 30 km. The image is centered at 37.7 degrees north latitude, 15 degrees east longitude. http://photojournal.jpl.nasa.gov/catalog/PIA02678

  17. Effects of simulated acid rain, ozone and sulfur dioxide on suitability of elms for elm leaf beetle

    Treesearch

    Richard W. Hall; Jack H. Barger; Alden M. Townsend

    1988-01-01

    Cuttings from two clonally propagated elm hybrids ('Pioneer' and 'Homestead') were treated with ozone (03), sulfur dioxide (S02), simulated acid rain or left untreated. Fumigants were applied 7 hours per day, 5 days per week for 9 weeks in open-top chambers. Fumigation treatments were: 0.1 ppm 0

  18. Bosch Reactor Development for High Percentage Oxygen Recovery from Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    Howard, David; Abney, Morgan

    2015-01-01

    This next Generation Life Support Project entails the development and demonstration of Bosch reaction technologies to improve oxygen recovery from metabolically generated oxygen and/or space environments. A primary focus was placed on alternate carbon formation reactor concepts to improve useful catalyst life for space vehicle applications, and make use of in situ catalyst resources for non-terrestrial surface missions. Current state-of-the-art oxygen recovery systems onboard the International Space Station are able to effectively recover approximately 45 percent of the oxygen consumed by humans and exhausted in the form of carbon dioxide (CO2). Excess CO2 is vented overboard and the oxygen contained in the molecules is lost. For long-duration missions beyond the reaches of Earth for resupply, it will be necessary to recover greater amounts of constituents such as oxygen that are necessary for sustaining life. Bosch technologies theoretically recover 100 percent of the oxygen from CO2, producing pure carbon as the sole waste product. Challenges with this technology revolve around the carbon product fouling catalyst materials, drastically limiting catalyst life. This project successfully demonstrated techniques to extend catalyst surface area exposure times to improve catalyst life for vehicle applications, and demonstrated the use of Martian and lunar regolith as viable catalyst Bosch Reactor Development for High Percentage Oxygen Recovery From Carbon Dioxide materials for surface missions. The Bosch process generates carbon nanotube formation within the regolith, which has been shown to improve mechanical properties of building materials. Production of bricks from post reaction regolith for building and radiation shielding applications were also explored.

  19. Airborne measurements of sulfur dioxide, dimethyl sulfide, carbon disulfide, and carbonyl sulfide by isotope dilution gas chromatography/mass spectrometry

    NASA Technical Reports Server (NTRS)

    Bandy, Alan R.; Thornton, Donald C.; Driedger, Arthur R., III

    1993-01-01

    A gas chromatograph/mass spectrometer is described for determining atmospheric sulfur dioxide, carbon disulfide, dimethyl sulfide, and carbonyl sulfide from aircraft and ship platforms. Isotopically labelled variants of each analyte were used as internal standards to achieve high precision. The lower limit of detection for each species for an integration time of 3 min was 1 pptv for sulfur dioxide and dimethyl sulfide and 0.2 pptv for carbon disulfide and carbonyl sulfide. All four species were simultaneously determined with a sample frequency of one sample per 6 min or greater. When only one or two species were determined, a frequency of one sample per 4 min was achieved. Because a calibration is included in each sample, no separate calibration sequence was needed. Instrument warmup was only a few minutes. The instrument was very robust in field deployments, requiring little maintenance.

  20. Hydrogen and sulfur recovery from hydrogen sulfide wastes

    DOEpatents

    Harkness, J.B.L.; Gorski, A.J.; Daniels, E.J.

    1993-05-18

    A process is described for generating hydrogen and elemental sulfur from hydrogen sulfide waste in which the hydrogen sulfide is [dis]associated under plasma conditions and a portion of the hydrogen output is used in a catalytic reduction unit to convert sulfur-containing impurities to hydrogen sulfide for recycle, the process also including the addition of an ionizing gas such as argon to initiate the plasma reaction at lower energy, a preheater for the input to the reactor and an internal adjustable choke in the reactor for enhanced coupling with the microwave energy input.

  1. Hydrogen and sulfur recovery from hydrogen sulfide wastes

    DOEpatents

    Harkness, John B. L.; Gorski, Anthony J.; Daniels, Edward J.

    1993-01-01

    A process for generating hydrogen and elemental sulfur from hydrogen sulfide waste in which the hydrogen sulfide is associated under plasma conditions and a portion of the hydrogen output is used in a catalytic reduction unit to convert sulfur-containing impurities to hydrogen sulfide for recycle, the process also including the addition of an ionizing gas such as argon to initiate the plasma reaction at lower energy, a preheater for the input to the reactor and an internal adjustable choke in the reactor for enhanced coupling with the microwave energy input.

  2. The effect of a mouthrinse containing chlorine dioxide in the clinical reduction of volatile sulfur compounds.

    PubMed

    Soares, Leo Guimaraes; Guaitolini, Roberto Luiz; Weyne, Sergio de Carvalho; Falabella, Marcio Eduardo Vieira; Tinoco, Eduardo Muniz Barretto; da Silva, Denise Gomes

    2013-07-01

    This study sought to evaluate the clinical effect of a mouthrinse containing 0.3% chlorine dioxide (ClO2) in reducing oral volatile sulfur compounds (VSC). Halitosis was induced by L-cysteine in 11 volunteers, and 4 solutions were compared: a test solution containing 0.3% ClO2, 0.07% cetylpyridinium chloride (CPC), and 0.05% sodium fluoride; a placebo; a solution containing 0.05% CPC; and a control solution of 0.2% chlorhexidine gluconate (CHX). VSC levels were assessed using a Halimeter, and 6 measurements were made from baseline to 3 hours postrinse. The VSC reduction rate of the test mouthrinse was superior to the placebo and the CPC solution. There was no difference between the test solution and the CHX solution in VSC reduction rates immediately postrinse, or at 2 and 3 hours postrinse; both solutions were statistically superior to the placebo and the CPC solution.

  3. UTILIZATION OF A RESPONSE-SURFACE TECHNIQUE IN THE STUDY OF PLANT RESPONSES TO OZONE AND SULFUR DIOXIDE MIXTURES

    EPA Science Inventory

    A second order rotatable design was used to obtain polynomial equations describing the effects of combinations of sulfur dioxide (SO2) and ozone (O3) on foliar injury and plant growth. The response surfaces derived from these equations were displayed as contour or isometric (3-di...

  4. Ru-OSO coordination photogenerated at 100 K in tetraammineaqua(sulfur dioxide)ruthenium(II) (±)-camphorsulfonate.

    PubMed

    Phillips, Anthony E; Cole, Jacqueline M; d'Almeida, Thierry; Low, Kian Sing

    2012-02-06

    The photoinduced O-bound coordination mode in RuSO(2) complexes, previously observed only at 13 K, has been generated at 100 K in tetraammineaqua(sulfur dioxide)ruthenium(II) (±)-camphorsulfonate. This coordination state, often denoted MS1, decays to the η(2)-bound MS2 state, with an estimated half-life of 3.4(8) h and a long-lived population of 2.9(4)% at 120 K.

  5. 40 CFR Table 35 to Subpart Uuu of... - Continuous Compliance With Operating Limits for HAP Emissions From Sulfur Recovery Units

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Continuous Compliance With Operating Limits for HAP Emissions From Sulfur Recovery Units 35 Table 35 to Subpart UUU of Part 63 Protection of... Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 35 Table 35 to Subpart UUU of Part 63—Continuous...

  6. 40 CFR Table 35 to Subpart Uuu of... - Continuous Compliance With Operating Limits for HAP Emissions From Sulfur Recovery Units

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Continuous Compliance With Operating Limits for HAP Emissions From Sulfur Recovery Units 35 Table 35 to Subpart UUU of Part 63 Protection of... Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 35 Table 35 to Subpart UUU of Part 63—Continuous...

  7. 40 CFR Table 35 to Subpart Uuu of... - Continuous Compliance With Operating Limits for HAP Emissions From Sulfur Recovery Units

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Continuous Compliance With Operating Limits for HAP Emissions From Sulfur Recovery Units 35 Table 35 to Subpart UUU of Part 63 Protection of... Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 35 Table 35 to Subpart UUU of Part 63—Continuous...

  8. Endogenous sulfur dioxide aggravates myocardial injury in isolated rat heart with ischemia and reperfusion.

    PubMed

    Zhang, Suqing; Du, Junbao; Jin, Hongfang; Li, Wei; Liang, Yinfang; Geng, Bin; Li, Shukui; Zhang, Chunyu; Tang, Chaoshu

    2009-02-27

    Ischemia-reperfusion (I/R) injury is an important clinical problem. This article investigated the role of sulfur dioxide (SO2) in the regulation of cardiac function and in the pathogenesis of cardiac I/R injury in isolated rat heart. Rat hearts isolated on a Langendorff apparatus were divided into control, I/R, I/R+SO2, and I/R+hydroxamate groups. Hydroxamate is an inhibitor of SO2 synthetase. I/R treatment was ischemia for 2 hr in hypothermic solution (4 degrees C), then reperfusion/rewarming (37 degrees C) for 60 min. Cardiac function was monitored by MacLab analog to a digital converter. Determination of sulfite content involved reverse-phase high performance liquid chromatography with fluorescence detection. Myoglobin content of coronary perfusate was determined at 410 nm. Myocardial malondialdehyde (MDA) was determined by thiobarbituric acid method, and conjugated diene (CD) was extracted by chloroform. 5,50-Dithiobis-2-nitrobenzoic acid was used to determine glutathione (GSH). The results showed that I/R treatment obviously increased myocardial sulfite content, and sulfite content of myocardium was negatively correlated with the recovery rate of left-ventricle developed pressure and positively correlated with the leakage of myoglobin. In postreperfusion, myocardial function recovery was decreased by SO2. During reperfusion, myocardium-released enzymes, MDA and CD level were increased but myocardial GSH content was depressed with the treatment of SO2 donor. Incubation of myocardial tissue with SO2 significantly increased MDA and CD generation. Endogenous SO2 might be involved in the pathogenesis of myocardial I/R injury, and its mechanism might be associated with an increase in lipid peroxide level and a decrease in GSH generation.

  9. Sulfur dioxide in the atmosphere of Venus 1 sounding rocket observations

    NASA Technical Reports Server (NTRS)

    Mcclintock, William E.; Barth, Charles A.; Kohnert, Richard A.

    1994-01-01

    In this paper we present ultraviolet reflectance spectra obtained during two sounding rocket observations of Venus made during September 1988 and March 1991. We describe the sensitivity of the derived reflectance to instrument calibration and show that significant artifacts can appear in that spectrum as a result of using separate instruments to observe both the planetary radiance and the solar irradiance. We show that sulfur dioxide is the primary spectral absorber in the 190 - 230 nm region and that the range of altitudes probed by these wavelengths is very sensitive to incidence and emission angles. In a following paper Na et. al. (1994) show that sulfur monoxide features are also present in these data. Accurate identification and measurement of additional species require observations in which both the planetary radiance and the solar irradiance are measured with the same instrument. The instrument used for these observations is uniquely suited for obtaining large phase angle coverage and for studying transient atmospheric events on Venus because it can observe targets within 18 deg of the sun while earth orbiting instruments are restricted to solar elongation angles greater than or equal to 45 deg.

  10. Manganese ore tailing: optimization of acid leaching conditions and recovery of soluble manganese.

    PubMed

    Santos, Olívia de Souza Heleno; Carvalho, Cornélio de Freitas; Silva, Gilmare Antônia da; Santos, Cláudio Gouvêa Dos

    2015-01-01

    Manganese recovery from industrial ore processing waste by means of leaching with sulfuric acid was the objective of this study. Experimental conditions were optimized by multivariate experimental design approaches. In order to study the factors affecting leaching, a screening step was used involving a full factorial design with central point for three variables in two levels (2(3)). The three variables studied were leaching time, concentration of sulfuric acid and sample amount. The three factors screened were shown to be relevant and therefore a Doehlert design was applied to determine the best working conditions for leaching and to build the response surface. By applying the best leaching conditions, the concentrations of 12.80 and 13.64 %w/w of manganese for the global sample and for the fraction -44 + 37 μm, respectively, were found. Microbeads of chitosan were tested for removal of leachate acidity and recovering of soluble manganese. Manganese recovery from the leachate was 95.4%. Upon drying the leachate, a solid containing mostly manganese sulfate was obtained, showing that the proposed optimized method is efficient for manganese recovery from ore tailings. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Sulfur-oxidizing autotrophic and mixotrophic denitrification processes for drinking water treatment: elimination of excess sulfate production and alkalinity requirement.

    PubMed

    Sahinkaya, Erkan; Dursun, Nesrin

    2012-09-01

    This study evaluated the elimination of alkalinity need and excess sulfate generation of sulfur-based autotrophic denitrification process by stimulating simultaneous autotrophic and heterotrophic (mixotrophic) denitrification process in a column bioreactor by methanol supplementation. Also, denitrification performances of sulfur-based autotrophic and mixotrophic processes were compared. In autotrophic process, acidity produced by denitrifying sulfur-oxidizing bacteria was neutralized by the external NaHCO(3) supplementation. After stimulating mixotrophic denitrification process, the alkalinity need of the autotrophic process was satisfied by the alkalinity produced by heterotrophic denitrifiers. Decreasing and lastly eliminating the external alkalinity supplementation did not adversely affect the process performance. Complete denitrification of 75 mg L(-1) NO(3)-N under mixotrophic conditions at 4 h hydraulic retention time was achieved without external alkalinity supplementation and with effluent sulfate concentration lower than the drinking water guideline value of 250 mg L(-1). The denitrification rate of mixotrophic process (0.45 g NO(3)-N L(-1) d(-1)) was higher than that of autotrophic one (0.3 g NO(3)-N L(-1) d(-1)). Batch studies showed that the sulfur-based autotrophic nitrate reduction rate increased with increasing initial nitrate concentration and transient accumulation of nitrite was observed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Mass-independent sulfur isotopic compositions in stratospheric volcanic eruptions.

    PubMed

    Baroni, Mélanie; Thiemens, Mark H; Delmas, Robert J; Savarino, Joël

    2007-01-05

    The observed mass-independent sulfur isotopic composition (Delta33S) of volcanic sulfate from the Agung (March 1963) and Pinatubo (June 1991) eruptions recorded in the Antarctic snow provides a mechanism for documenting stratospheric events. The sign of Delta33S changes over time from an initial positive component to a negative value. Delta33S is created during photochemical oxidation of sulfur dioxide to sulfuric acid on a monthly time scale, which indicates a fast process. The reproducibility of the results reveals that Delta33S is a reliable tracer to chemically identify atmospheric processes involved during stratospheric volcanism.

  13. Monitoring ambient sulfur dioxide levels at some residential environments in the Greater Cairo urban Region--Egypt.

    PubMed

    El-Dars, F M S; Mohamed, A M F; Aly, H A T

    2004-07-01

    The impact of the increased sulfur dioxide emissions within the Greater Cairo Urban Region over the part 50 yr has been overwhelming. While previous air-pollution surveys measuring SO2 levels in the region converged upon the study of emissions from specific industrial activities, no correlation between the measured concentrations and the induced health-related impacts in living environments was provided. As well, no inventory of emissions from other sources within some residential areas were accounted for or evaluated. During the study period of January to April 2000, the ambient sulfur dioxide levels in four residential locations within the capital region were investigated. The results indicated that the measured cumulative ambient SO2 concentrations were in excess of the national and the international monthly mean exposure limits, irrespective of the type of local activity. As well, measurements within three of the selected environments surpassed the 0.5 ppm SO2 odor-threshold. The data also showed a significant dependency of the measured content upon the physical layout and topography of the studied environment as well as with respect to the prevailing seasonal weather conditions.

  14. The Social Cost of Trading: Measuring the Increased Damages from Sulfur Dioxide Trading in the United States

    ERIC Educational Resources Information Center

    Henry, David D., III; Muller, Nicholas Z.; Mendelsohn, Robert O.

    2011-01-01

    The sulfur dioxide (SO[subscript 2]) cap and trade program established in the 1990 Clean Air Act Amendments is celebrated for reducing abatement costs ($0.7 to $2.1 billion per year) by allowing emissions allowances to be traded. Unfortunately, places with high marginal costs also tend to have high marginal damages. Ton-for-ton trading reduces…

  15. Fact Sheets and Additional Information Regarding the 2010 Revision to the Primary National Ambient Air Quality Standards (NAAQS) for Sulfur Dioxide

    EPA Pesticide Factsheets

    Find tools for primary standards for Sulfur Dioxide, maps of nonattainment areas, an overview of the proposal, projected nonattainment areas for 2020, and a presentation on the 2011 SO2 primary NAAQS revision.

  16. Improvement of gaseous energy recovery from sugarcane bagasse by dark fermentation followed by biomethanation process.

    PubMed

    Kumari, Sinu; Das, Debabrata

    2015-10-01

    The aim of the present study was to enhance the gaseous energy recovery from sugarcane bagasse. The two stage (biohydrogen and biomethanation) batch process was considered under mesophilic condition. Alkali pretreatment (ALP) was used to remove lignin from sugarcane bagasse. This enhanced the enzymatic digestibility of bagasse to a great extent. The maximum lignin removal of 60% w/w was achieved at 0.25 N NaOH concentration (50°C, 30 min). The enzymatic hydrolysis efficiency was increased to about 2.6-folds with alkali pretreated sugarcane bagasse as compared to untreated one. The maximum hydrogen and methane yields from the treated sugarcane bagasse by biohydrogen and biomethanation processes were 93.4 mL/g-VS and 221.8 mL/g-VS respectively. This process resulted in significant increase in energy conversion efficiency (44.8%) as compared to single stage hydrogen production process (5.4%). Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Smart battery controller for lithium sulfur dioxide batteries

    NASA Astrophysics Data System (ADS)

    Atwater, Terrill; Bard, Arnold; Testa, Bruce; Shader, William

    1992-08-01

    Each year, the U.S. Army purchases millions of lithium sulfur dioxide batteries for use in portable electronics equipment. Because of their superior rate capability and service life over a wide variety of conditions, lithium batteries are the power source of choice for military equipment. There is no convenient method of determining the available energy remaining in partially used lithium batteries; hence, users do not take full advantage of all the available battery energy. Currently, users replace batteries before each mission, which leads to premature disposal, and results in the waste of millions of dollars in battery energy every year. Another problem of the lithium battery is that it is necessary to ensure complete discharge of the cells when the useful life of the battery has been expended, or when a hazardous condition exists; a hazardous condition may result in one or more of the cells venting. The Electronics Technology and Devices Laboratory has developed a working prototype of a smart battery controller (SBC) that addresses these problems.

  18. Dry syngas purification process for coal gas produced in oxy-fuel type integrated gasification combined cycle power generation with carbon dioxide capturing feature.

    PubMed

    Kobayashi, Makoto; Akiho, Hiroyuki

    2017-12-01

    Electricity production from coal fuel with minimizing efficiency penalty for the carbon dioxide abatement will bring us sustainable and compatible energy utilization. One of the promising options is oxy-fuel type Integrated Gasification Combined Cycle (oxy-fuel IGCC) power generation that is estimated to achieve thermal efficiency of 44% at lower heating value (LHV) base and provide compressed carbon dioxide (CO 2 ) with concentration of 93 vol%. The proper operation of the plant is established by introducing dry syngas cleaning processes to control halide and sulfur compounds satisfying tolerate contaminants level of gas turbine. To realize the dry process, the bench scale test facility was planned to demonstrate the first-ever halide and sulfur removal with fixed bed reactor using actual syngas from O 2 -CO 2 blown gasifier for the oxy-fuel IGCC power generation. Design parameter for the test facility was required for the candidate sorbents for halide removal and sulfur removal. Breakthrough test was performed on two kinds of halide sorbents at accelerated condition and on honeycomb desulfurization sorbent at varied space velocity condition. The results for the both sorbents for halide and sulfur exhibited sufficient removal within the satisfactory short depth of sorbent bed, as well as superior bed conversion of the impurity removal reaction. These performance evaluation of the candidate sorbents of halide and sulfur removal provided rational and affordable design parameters for the bench scale test facility to demonstrate the dry syngas cleaning process for oxy-fuel IGCC system as the scaled up step of process development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. [Effects on phenol removal in the process of enhanced coagulation by manganese dioxide formed in situ].

    PubMed

    Zhang, Li-Zhu; Chen, Xiao-Dong; Ma, Jun; Yu, Min; Li, Xin

    2011-10-01

    Phenol was selected as a model compound. Factors, such as Ca2+, tannic acid, dose of kaolinite, dose of manganese dioxide formed in situ and pH, were invested on phenol removal in the process of enhanced coagulation by manganese dioxide formed in situ. Results showed that the addition of Ca2+ is beneficial for phenol removal. In the range of Ca2+ varied from 0 to 1.0 mmol x L(-1), the efficiency of phenol removal was enhanced more than 10%. Tannic acid can enhance phenol removal significantly when they are coexisted in water. As tannic acid was added to 10 mg x L(-1), phenol removal can be increased about 30% and 50% in the process of coagulation by AlCl3 and enhanced coagulation by manganese dioxide formed in situ, respectively. The dose of coagulant can be reduced in the process of enhanced coagulation with the addition of manganese dioxide formed in situ. The point of 1 mg x L(-1) manganese dioxide formed in situ linked with 30 mg x L(-1) AlCl3 can have the same phenol removal efficiency as the addition of 50 mg x L(-1) AlCl3. In the range of pH varied from 5 to 9, phenol can be removed with the high efficiency in the process of enhanced coagulation by manganese dioxide formed in situ. While under the strong acid condition and strong basic condition, phenol has lower removal efficiency.

  20. Recovery of Vanadium from Magnetite Ore Using Direct Acid Leaching: Optimization of Parameters by Plackett-Burman and Response Surface Methodologies

    NASA Astrophysics Data System (ADS)

    Nejad, Davood Ghoddocy; Khanchi, Ali Reza; Taghizadeh, Majid

    2018-06-01

    Recovery of vanadium from magnetite ore by direct acid leaching is discussed. The proposed process, which employs a mixture of nitric and sulfuric acids, avoids pyrometallurgical treatments since such treatment consumes a high amount of energy. To determine the optimum conditions of vanadium recovery, the leaching process is optimized through Plackett-Burman (P-B) design and response surface methodology (RSM). In this respect, temperature (80-95°C), liquid to solid ratio (L/S) (3-10 mL g-1), sulfuric acid concentration (3-6 M), nitric acid concentration (5-10 vol.%) and time (4-8 h) are considered as the independent variables. According to the P-B approach, temperature and acid concentrations are, respectively, the most effective parameters in the leaching process. These parameters are optimized using RSM to maximize recovery of vanadium by direct acid leaching. In this way, 86.7% of vanadium can be extracted from magnetic ore.

  1. Recovery of Vanadium from Magnetite Ore Using Direct Acid Leaching: Optimization of Parameters by Plackett-Burman and Response Surface Methodologies

    NASA Astrophysics Data System (ADS)

    Nejad, Davood Ghoddocy; Khanchi, Ali Reza; Taghizadeh, Majid

    2018-03-01

    Recovery of vanadium from magnetite ore by direct acid leaching is discussed. The proposed process, which employs a mixture of nitric and sulfuric acids, avoids pyrometallurgical treatments since such treatment consumes a high amount of energy. To determine the optimum conditions of vanadium recovery, the leaching process is optimized through Plackett-Burman (P-B) design and response surface methodology (RSM). In this respect, temperature (80-95°C), liquid to solid ratio (L/S) (3-10 mL g-1), sulfuric acid concentration (3-6 M), nitric acid concentration (5-10 vol.%) and time (4-8 h) are considered as the independent variables. According to the P-B approach, temperature and acid concentrations are, respectively, the most effective parameters in the leaching process. These parameters are optimized using RSM to maximize recovery of vanadium by direct acid leaching. In this way, 86.7% of vanadium can be extracted from magnetic ore.

  2. Modified dry limestone process for control of sulfur dioxide emissions

    DOEpatents

    Shale, Correll C.; Cross, William G.

    1976-08-24

    A method and apparatus for removing sulfur oxides from flue gas comprise cooling and conditioning the hot flue gas to increase the degree of water vapor saturation prior to passage through a bed of substantially dry carbonate chips or lumps, e.g., crushed limestone. The reaction products form as a thick layer of sulfites and sulfates on the surface of the chips which is easily removed by agitation to restore the reactive surface of the chips.

  3. Pilot scale study on steam explosion and mass balance for higher sugar recovery from rice straw.

    PubMed

    Sharma, Sandeep; Kumar, Ravindra; Gaur, Ruchi; Agrawal, Ruchi; Gupta, Ravi P; Tuli, Deepak K; Das, Biswapriya

    2015-01-01

    Pretreatment of rice straw on pilot scale steam explosion has been attempted to achieve maximum sugar recovery. Three different reaction media viz. water, sulfuric acid and phosphoric acid (0.5%, w/w) were explored for pretreatment by varying operating temperature (160, 180 and 200°C) and reaction time (5 and 10min). Using water and 0.5% SA showed almost similar sugar recovery (∼87%) at 200 and 180°C respectively. However, detailed studies showed that the former caused higher production of oligomeric sugars (13.56g/L) than the later (3.34g/L). Monomeric sugar, followed the reverse trend (7.83 and 11.62g/L respectively). Higher oligomers have a pronounced effect in reducing enzymatic sugar yield as observed in case of water. Mass balance studies for water and SA assisted SE gave total saccharification yield as 81.8% and 77.1% respectively. However, techno-economical viability will have a trade-off between these advantages and disadvantages offered by the pretreatment medium. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. 40 CFR Table 30 to Subpart Uuu of... - Operating Limits for HAP Emissions From Sulfur Recovery Units

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Operating Limits for HAP Emissions From Sulfur Recovery Units 30 Table 30 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL..., Subpt. UUU, Table 30 Table 30 to Subpart UUU of Part 63—Operating Limits for HAP Emissions From Sulfur...

  5. Production of spent mushroom substrate hydrolysates useful for cultivation of Lactococcus lactis by dilute sulfuric acid, cellulase and xylanase treatment.

    PubMed

    Qiao, Jian-Jun; Zhang, Yan-Fei; Sun, Li-Fan; Liu, Wei-Wei; Zhu, Hong-Ji; Zhang, Zhijun

    2011-09-01

    Spent mushroom substrate (SMS) was treated with dilute sulfuric acid followed by cellulase and xylanase treatment to produce hydrolysates that could be used as the basis for media for the production of value added products. A L9 (3(4)) orthogonal experiment was performed to optimize the acid treatment process. Pretreatment with 6% (w/w) dilute sulfuric acid at 120°C for 120 min provided the highest reducing sugar yield of 267.57 g/kg SMS. No furfural was detected in the hydrolysates. Exposure to 20PFU of cellulase and 200 XU of xylanase per gram of pretreated SMS at 40°C resulted in the release of 79.85 g/kg or reducing sugars per kg acid pretreated SMS. The dilute sulfuric acid could be recycled to process fresh SMS four times. SMS hydrolysates neutralized with ammonium hydroxide, sodium hydroxide, or calcium hydroxide could be used as the carbon source for cultivation of Lactococcus lactis subsp. lactis W28 and a cell density of 2.9×10(11)CFU/mL could be obtained. The results provide a foundation for the development of value-added products based on SMS. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Measuring the impact of global tropospheric ozone, carbon dioxide and sulfur dioxide concentrations on biodiversity loss.

    PubMed

    Ahmed Bhuiyan, Miraj; Rashid Khan, Haroon Ur; Zaman, Khalid; Hishan, Sanil S

    2018-01-01

    The aim of this study is to examine the impact of air pollutants, including mono-nitrogen oxides (NOx), nitrous oxide (N 2 O), sulfur dioxide (SO 2 ), carbon dioxide emissions (CO 2 ), and greenhouse gas (GHG) emissions on ecological footprint, habitat area, food supply, and biodiversity in a panel of thirty-four developed and developing countries, over the period of 1995-2014. The results reveal that NOx and SO 2 emissions both have a negative relationship with ecological footprints, while N 2 O emission and real GDP per capita have a direct relationship with ecological footprints. NOx has a positive relationship with forest area, per capita food supply and biological diversity while CO 2 emission and GHG emission have a negative impact on food production. N 2 O has a positive impact on forest area and biodiversity, while SO 2 emissions have a negative relationship with them. SO 2 emission has a direct relationship with per capita food production, while GDP per capita significantly affected per capita food production and food supply variability across countries. The overall results reveal that SO 2 , CO 2 , and GHG emissions affected potential habitat area, while SO 2 and GHG emissions affected the biodiversity index. Trade liberalization policies considerably affected the potential habitat area and biological diversity in a panel of countries. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Emission characteristics of nitrogen- and sulfur-containing odorous compounds during different sewage sludge chemical conditioning processes.

    PubMed

    Liu, Huan; Luo, Guang-Qian; Hu, Hong-Yun; Zhang, Qiang; Yang, Jia-Kuan; Yao, Hong

    2012-10-15

    Chemical conditioners are often used to enhance sewage sludge dewaterability through altering sludge properties and flocs structure, both affect odorous compounds emissions not only during sludge conditioning but also in subsequent sludge disposal. This study was to investigate emission characteristics of ammonia (NH(3)), sulfur dioxide (SO(2)), hydrogen sulfide (H(2)S) and carbonyl sulfide (COS) generated from sewage sludge conditioned by three representative conditioners, i.e., organic polymers, iron salts and skeleton builders, F-S (Fenton's reagent and skeleton builders) composite conditioner. The results demonstrate that polyacrylamide (PAM) has an insignificant effect on emission characteristics of nitrogen- and sulfur-containing odorous compounds, because the properties, sulfur and nitrogen speciations are similar in PAM-conditioned sludge and raw sludge (RS). Significant increases of SO(2) and H(2)S emissions in the H(2)SO(4) conditioning process were observed due to the accelerated decomposition of sulfur-containing amino acids in acidic environment. Fenton peroxidation facilitates the formation of COS. CaO can reduce sulfur-containing gases emission via generation of calcium sulfate. However, under strong alkaline conditions, free ammonia or protonated amine in sludge can be easily converted to volatile ammonia, resulting in a significant release of NH(3). Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Taxing sulfur dioxide emission allowances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, G.L.

    1993-09-15

    The acid rain control program authorized by Title IV of the Clean Air Act Amendments of 1990 (CAAA) was designed to reduce the adverse effects of acid rain by limiting emissions of sulfur dioxide (SO[sub 2]) into the atmosphere. The program is a complex scheme involving the issuance, consumption, holding, and trading of emission allowances for SO[sub 2]. Not surprisingly, electric utilities will face federal income tax issues in connection with the program. Under the emission allowance program, the U.S. Environmental Protection Agency (EPA) will issue emission allowance to owners or operators of certain utility power plants at no costmore » to the recipients. An emission allowance is an authorization to emit one ton of SO[sub 2] during or after the calendar year for which it is issued. If a utility power plant subject to the program emits SO[sub 2] in excess of its allowances, the owner or operator will be subject to a penalty of $2,000 a ton, and must offset the excess emissions with allowances in the subsequent year. Allowances may be bought and sold. Phase I of the program begins January 1, 1995, and will apply to 110 utility generating units. Phase II takes effect January 1, 2000, and will include most electric utility generating units. EPA will withhold a specified number of allowances for direct sale and auction. The resulting proceeds will be paid to the utilities from which the allowances were withheld. The Internal Revenue Service (IRS) has provided somewhat limited guidance on several tax issues raised by the program. Significant tax issues and the positions articulated by the IRS (if any) are discussed in this article.« less

  9. Formation of Secondary Organic Aerosol from Irradiated a-Pinene/Tolueme/NOx Mixtures and the Effect of Isoprene and Sulfur Dioxide

    EPA Science Inventory

    Secondary organic aerosol (SOA) was generated by irradiating a series of a-pinene/toluene/NOx mixtures in the absence and presence of isoprene or sulfur dioxide. The purpose of the experiment was to evaluate the extent to which chemical perturbations to this base-case (a-pinene/...

  10. Effect of Sulfuric Acid on the Uptake of Sulfur Dioxide on Soot

    NASA Astrophysics Data System (ADS)

    Slowik, J. G.; Koehler, B. G.

    2001-05-01

    The uptake of SO2 on soot may lead to the formation of sulfuric acid on the soot. The sulfuric acid then can affect the further uptake of SO2 on the soot. We are interested in the effect of submonolayer H2SO4 on the uptake of SO2. We measured the uptake of SO2 on n-hexane soot as a function SO2 pressure (10-7 to 10-4 Torr) and sulfuric acid coverage between -140\\deg and -120\\deg C. We generate sulfuric acid by adsorbing varying amounts of SO3 on soot, covering the SO3 with a thick layer of condensed H2O, and heating to 193 K to react the SO3 and H2O and to remove the excess H2O. The sulfuric acid coverage is in the range of monolayer or sub-monolayer. Adsorption of SO2 on soot with and without the sulfuric acid shows that the acid reduces the SO2 uptake by a factor of two or more. Varying the amount of acid has little effect on uptake. However, increasing the thickness of the soot substrate causes a significant increase in SO2 uptake.

  11. Constraints on water vapor and sulfur dioxide at Ceres: Exploiting the sensitivity of the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Roth, Lorenz

    2018-05-01

    Far-ultraviolet observations of dwarf-planet (1) Ceres were obtained on several occasions in 2015 and 2016 by the Cosmic Origins Spectrograph (COS) and the Space Telescope Imaging Spectrograph (STIS), both on board the Hubble Space Telescope (HST). We report a search for neutral gas emissions at hydrogen, oxygen and sulfur lines around Ceres from a potential teneous exosphere. No detectable exosphere emissions are present in any of the analyzed HST observations. We apply analytical models to relate the derived upper limits for the atomic species to a water exosphere (for H and O) and a sulfur dioxide exosphere (for S and O), respectively. The H and O upper limits constrain the H2O production rate at the surface to (2 - 4) ×1026 molecules s-1 or lower, similar to or slightly larger than previous detections and upper limits. With low fluxes of energetic protons measured in the solar wind prior to the HST observations and the obtained non-detections, an assessment of the recently suggested sputter-generated water exosphere during solar energetic particle events is not possible. Investigating a sulfur dioxide-based exosphere, we find that the O and S upper limits constrain the SO2 density at the surface to values ∼ 1010 times lower than the equilibrium vapor pressure density. This result implies that SO2 is not present on Ceres' sunlit surface, contrary to previous findings in HST ultraviolet reflectance spectra but in agreement with the absence of SO2 infrared spectral features as observed by the Dawn spacecraft.

  12. Myths and realities about the recovery of L׳Aquila after the earthquake

    PubMed Central

    Contreras, Diana; Blaschke, Thomas; Kienberger, Stefan; Zeil, Peter

    2014-01-01

    There is a set of myths which are linked to the recovery of L׳Aquila, such as: the L׳Aquila recovery has come to a halt, it is still in an early recovery phase, and there is economic stagnation. The objective of this paper is threefold: (a) to identify and develop a set of spatial indicators for the case of L׳Aquila, (b) to test the feasibility of a numerical assessment of these spatial indicators as a method to monitor the progress of a recovery process after an earthquake and (c) to answer the question whether the recovery process in L׳Aquila stagnates or not. We hypothesize that after an earthquake the spatial distribution of expert defined variables can constitute an index to assess the recovery process more objectively. In these articles, we aggregated several indicators of building conditions to characterize the physical dimension, and we developed building use indicators to serve as proxies for the socio-economic dimension while aiming for transferability of this approach. The methodology of this research entailed six steps: (1) fieldwork, (2) selection of a sampling area, (3) selection of the variables and indicators for the physical and socio-economic dimensions, (4) analyses of the recovery progress using spatial indicators by comparing the changes in the restricted core area as well as building use over time; (5) selection and integration of the results through expert weighting; and (6) determining hotspots of recovery in L׳Aquila. Eight categories of building conditions and twelve categories of building use were identified. Both indicators: building condition and building use are aggregated into a recovery index. The reconstruction process in the city center of L׳Aquila seems to stagnate, which is reflected by the five following variables: percentage of buildings with on-going reconstruction, partial reconstruction, reconstruction projected residential building use and transport facilities. These five factors were still at low levels within the

  13. Treatment of high-strength sulfate wastewater using an autotrophic biocathode in view of elemental sulfur recovery.

    PubMed

    Blázquez, Enric; Gabriel, David; Baeza, Juan Antonio; Guisasola, Albert

    2016-11-15

    Treatment of high-strength sulfate wastewaters is becoming a research issue not only for its optimal management but also for the possibility of recovering elemental sulfur. Moreover, sulfate-rich wastewater production is expected to grow due to the increased SO 2 emission contained in flue gases which are treated by chemical absorption in water. Bioelectrochemical systems (BESs) are a promising alternative for sulfate reduction with a lack of electron donor, since hydrogen can be generated in situ from electricity. However, complete sulfate reduction leads to hydrogen sulfide as final sulfur compound. This work is the first to demonstrate that, in addition to an efficient sulfate-rich wastewater treatment, elemental sulfur could be recovered in a biocathode of a BES under oxygen limiting conditions. The key of the process is the biological oxidation of sulfide to elemental sulfur simultaneously to the sulfate reduction in the cathode using the oxygen produced in the anode that diffuses through the membrane. High sulfate reduction rates (up to 388 mg S-SO 4 2-  L -1  d -1 ) were observed linked to a low production of sulfide. Accumulation of elemental sulfur over graphite fibers of the biocathode was demonstrated by energy dispersive spectrometry, discarding the presence of metal sulfides. Microbial community analysis of the cathode biofilm demonstrated the presence of sulfate-reducing bacteria (mainly Desulfovibrio sp.) and sulfide-oxidizing bacteria (mainly Sulfuricurvum sp.). Hence, this biocathode allows simultaneous biological sulfate reduction and biological sulfide oxidation to elemental sulfur, opening up a novel process for recovering sulfur from sulfate-rich wastewaters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Carbon Dioxide Reduction Post-Processing Sub-System Development

    NASA Technical Reports Server (NTRS)

    Abney, Morgan B.; Miller, Lee A.; Greenwood, Zachary; Barton, Katherine

    2012-01-01

    The state-of-the-art Carbon Dioxide (CO2) Reduction Assembly (CRA) on the International Space Station (ISS) facilitates the recovery of oxygen from metabolic CO2. The CRA utilizes the Sabatier process to produce water with methane as a byproduct. The methane is currently vented overboard as a waste product. Because the CRA relies on hydrogen for oxygen recovery, the loss of methane ultimately results in a loss of oxygen. For missions beyond low earth orbit, it will prove essential to maximize oxygen recovery. For this purpose, NASA is exploring an integrated post-processor system to recover hydrogen from CRA methane. The post-processor, called a Plasma Pyrolysis Assembly (PPA) partially pyrolyzes methane to recover hydrogen with acetylene as a byproduct. In-flight operation of post-processor will require a Methane Purification Assembly (MePA) and an Acetylene Separation Assembly (ASepA). Recent efforts have focused on the design, fabrication, and testing of these components. The results and conclusions of these efforts will be discussed as well as future plans.

  15. A highly efficient polysulfide mediator for lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Liang, Xiao; Hart, Connor; Pang, Quan; Garsuch, Arnd; Weiss, Thomas; Nazar, Linda F.

    2015-01-01

    The lithium-sulfur battery is receiving intense interest because its theoretical energy density exceeds that of lithium-ion batteries at much lower cost, but practical applications are still hindered by capacity decay caused by the polysulfide shuttle. Here we report a strategy to entrap polysulfides in the cathode that relies on a chemical process, whereby a host—manganese dioxide nanosheets serve as the prototype—reacts with initially formed lithium polysulfides to form surface-bound intermediates. These function as a redox shuttle to catenate and bind ‘higher’ polysulfides, and convert them on reduction to insoluble lithium sulfide via disproportionation. The sulfur/manganese dioxide nanosheet composite with 75 wt% sulfur exhibits a reversible capacity of 1,300 mA h g-1 at moderate rates and a fade rate over 2,000 cycles of 0.036%/cycle, among the best reported to date. We furthermore show that this mechanism extends to graphene oxide and suggest it can be employed more widely.

  16. Supercritical carbon dioxide process for pasteurization of fruit juices

    USDA-ARS?s Scientific Manuscript database

    Supercritical carbon dioxide (SCCO2) nonthermal processing inactivates microorganisms in juices using non-toxic and non-reactive CO2. However, data is lacking on the inactivation of E. coli K12 and L. plantarum in apple cider using pilot plant scale SCCO2 equipment. For this study, pasteurized pres...

  17. Utilization of a response-surface technique in the study of plant responses to ozone and sulfur dioxide mixtures.

    PubMed

    Ormrod, D P; Tingey, D T; Gumpertz, M L; Olszyk, D M

    1984-05-01

    A second order rotatable design was used to obtain polynomial equations describing the effects of combinations of sulfur dioxide (SO(2)) and ozone (O(3)) on foliar injury and plant growth. The response surfaces derived from these equations were displayed as contour or isometric (3-dimensional) plots. The contour plots aided in the interpretation of the pollutant interactions and were judged easier to use than the isometric plots. Plants of ;Grand Rapids' lettuce (Lactuca sativa L.), ;Cherry Belle' radish (Raphanus sativus L.), and ;Alsweet' pea (Pisum sativum L.) were grown in a controlled environment chamber and exposed to seven combinations of SO(2) and O(3). Injury was evaluated based on visible chlorosis and necrosis and growth was evaluated as leaf area and dry weight. Covariate measurements were used to increase precision. Radish and pea had greater injury, in general, that did lettuce; all three species were sensitive to O(3), and pea was most sensitive and radish least sensitive to SO(2). Leaf injury responses were relatively more affected by the pollutants than were plant growth responses in radish and pea but not in lettuce. In radish, hypocotyl growth was more sensitive to the pollutants than was leaf growth.

  18. Simultaneous removal of nitrogen oxide/nitrogen dioxide/sulfur dioxide from gas streams by combined plasma scrubbing technology.

    PubMed

    Chang, Moo Been; Lee, How Ming; Wu, Feeling; Lai, Chi Ren

    2004-08-01

    Oxides of nitrogen (NOx) [nitrogen oxide (NO) + nitrogen dioxide (NO2)] and sulfur dioxide (SO2) are removed individually in traditional air pollution control technologies. This study proposes a combined plasma scrubbing (CPS) system for simultaneous removal of SO2 and NOx. CPS consists of a dielectric barrier discharge (DBD) and wet scrubbing in series. DBD is used to generate nonthermal plasmas for converting NO to NO2. The water-soluble NO2 then can be removed by wet scrubbing accompanied with SO2 removal. In this work, CPS was tested with simulated exhausts in the laboratory and with diesel-generator exhausts in the field. Experimental results indicate that DBD is very efficient in converting NO to NO2. More than 90% removal of NO, NOx, and SO2 can be simultaneously achieved with CPS. Both sodium sulfide (Na2S) and sodium sulfite (Na2SO3) scrubbing solutions are good for NO2 and SO2 absorption. Energy efficiencies for NOx and SO2 removal are 17 and 18 g/kWh, respectively. The technical feasibility of CPS for simultaneous removal of NO, NO2, and SO2 from gas streams is successfully demonstrated in this study. However, production of carbon monoxide as a side-product (approximately 100 ppm) is found and should be considered.

  19. Quadruple sulfur isotope constraints on the origin and cycling of volatile organic sulfur compounds in a stratified sulfidic lake

    NASA Astrophysics Data System (ADS)

    Oduro, Harry; Kamyshny, Alexey; Zerkle, Aubrey L.; Li, Yue; Farquhar, James

    2013-11-01

    We have quantified the major forms of volatile organic sulfur compounds (VOSCs) distributed in the water column of stratified freshwater Fayetteville Green Lake (FGL), to evaluate the biogeochemical pathways involved in their production. The lake's anoxic deep waters contain high concentrations of sulfate (12-16 mmol L-1) and sulfide (0.12 μmol L-1 to 1.5 mmol L-1) with relatively low VOSC concentrations, ranging from 0.1 nmol L-1 to 2.8 μmol L-1. Sulfur isotope measurements of combined volatile organic sulfur compounds demonstrate that VOSC species are formed primarily from reduced sulfur (H2S/HS-) and zero-valent sulfur (ZVS), with little input from sulfate. Thedata support a role of a combination of biological and abiotic processes in formation of carbon-sulfur bonds between reactive sulfur species and methyl groups of lignin components. These processes are responsible for very fast turnover of VOSC species, maintaining their low levels in FGL. No dimethylsulfoniopropionate (DMSP) was detected by Electrospray Ionization Mass Spectrometry (ESI-MS) in the lake water column or in planktonic extracts. These observations indicate a pathway distinct from oceanic and coastal marine environments, where dimethylsulfide (DMS) and other VOSC species are principally produced via the breakdown of DMSP by plankton species.

  20. Single-mode interband cascade laser multiemitter structure for two-wavelength absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Scheuermann, Julian; Weih, Robert; Becker, Steffen; Fischer, Marc; Koeth, Johannes; Höfling, Sven

    2018-01-01

    An interband cascade laser multiemitter with single-mode distributed feedback (DFB) emission at two wavelengths is presented. Continuous-wave laser operation is measured from 0°C to 40°C with threshold currents of around 25 mA and output powers of around 9 mW at 20°C. The ridge waveguide DFB structures are monolithically integrated with a spacing of 70 μm and each is provided with an individual metal DFB grating to select specific single-mode wavelengths of interest for absorption spectroscopy. The emission windows at 3.92 and 4.01 μm are targeting hydrogen sulfide and sulfur dioxide, which are of importance for industrial applications since both gases are reagents of the Claus process in sulfur recovery units, recovering elemental sulfur from gaseous hydrogen sulfide.

  1. 40 CFR Table 32 to Subpart Uuu of... - Requirements for Performance Tests for HAP Emissions From Sulfur Recovery Units Not Subject to...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Sulfur Oxides 32 Table 32 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION...: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 32 Table 32 to Subpart UUU of Part 63—Requirements for Performance Tests for HAP Emissions From Sulfur...

  2. Sulfur isotopic evidence for the origin of elemental sulfur in gas hydrate-bearing sediments of the northern South China Sea

    NASA Astrophysics Data System (ADS)

    Lin, Zhiyong; Sun, Xiaoming; Strauss, Harald; Lu, Yang; Xu, Li; Lu, Hongfeng; Teichert, Barbara M. A.; Peckmann, Jörn

    2017-04-01

    Elemental sulfur is a common intermediate in the sulfur cycle and contributes significantly to the fractionation of stable sulfur isotopes in different reservoirs in shelfal marine sediments (e.g., Canfield and Thamdrup, 1994). However, no study dedicated to the isotopic composition of elemental sulfur in seep environments has been conducted to the best of our knowledge, thus limiting further insight into the biochemical pathways involving elemental sulfur in such environments. In this study, elemental sulfur and pyrite were extracted from the sediment of a 200-m long gas hydrate-bearing core, which was obtained from the gas hydrate drilling expedition to the northern South China Sea in 2013 (Zhang et al., 2015). The sulfur isotopic composition of elemental sulfur was found to vary from -16 to +23 per mill, and pyrite yielded values ranging from -34 to +18 per mill. Interestingly, elemental sulfur revealed higher 34S contents (up to 30 per mill) than the associated pyrite in most sediment layers. Since elemental sulfur is only produced during oxidative pathways in the sulfur cycle, the studied elemental sulfur apparently represents the oxidation product of hydrogen sulfide by various electron acceptors such as Mn(IV) oxides or Fe(III) oxides (e.g., Thamdrup et al., 1993; Yao and Millero, 1996). Since there is little sulfur isotope fractionation for oxidative processes (Fry et al., 1986), the enrichment of elemental sulfur in 34S points to a pool of hydrogen sulfide depleted in 32S, which is best interpreted to result from sulfate-driven anaerobic oxidation of methane. References: Canfield D.E. and Thamdrup B. (1994) The production of 34S-depleted sulfide during bacterial disproportionation of elemental sulfur. Science 266, 1973. Fry B., Cox J., Gest H. and Hayer J.M. (1986) Discrimination between 34S and32S during bacterial metabolism of inorganic sulfur compounds. J. Bacteriol. 165, 328-330. Thamdrup B., Finster K., Hansen W. and Bak F. (1993) Bacterial

  3. PROCESS FOR COOLING A NUCLEAR REACTOR

    DOEpatents

    Borst, L.B.

    1962-12-11

    This patent relates to the operation of a reactor cooled by liquid sulfur dioxide. According to the invention the pressure on the sulfur dioxide in the reactor is maintained at least at the critical pressure of the sulfur dioxide. Heating the sulfur dioxide to its critical temperature results in vaporization of the sulfur dioxide without boiling. (AEC)

  4. REAL-TIME MEASUREMENT OF AIRWAY RESPONSES TO SULOFUR DIOXIDE (SO2) IN AN INTACT, AWAKE GUINEA PIG MODEL

    EPA Science Inventory

    Real-time measurment of airway responses to Sulfur Dioxide (SO2) in an intact, awake guinea pig model. J Stanek1,2, Q Krantz2, J Nolan2, D Winsett2, W Watkinson2, and D Costa2. 1College of Veterinary Medicine, NCSU, Raleigh, NC, USA; 2Pulmonary Toxicology Branch, ETD, NHEERL, US...

  5. URANIUM RECOVERY PROCESS

    DOEpatents

    Hyman, H.H.; Dreher, J.L.

    1959-07-01

    The recovery of uranium from the acidic aqueous metal waste solutions resulting from the bismuth phosphate carrier precipitation of plutonium from solutions of neutron irradiated uranium is described. The waste solutions consist of phosphoric acid, sulfuric acid, and uranium as a uranyl salt, together with salts of the fission products normally associated with neutron irradiated uranium. Generally, the process of the invention involves the partial neutralization of the waste solution with sodium hydroxide, followed by conversion of the solution to a pH 11 by mixing therewith sufficient sodium carbonate. The resultant carbonate-complexed waste is contacted with a titanated silica gel and the adsorbent separated from the aqueous medium. The aqueous solution is then mixed with sufficient acetic acid to bring the pH of the aqueous medium to between 4 and 5, whereby sodium uranyl acetate is precipitated. The precipitate is dissolved in nitric acid and the resulting solution preferably provided with salting out agents. Uranyl nitrate is recovered from the solution by extraction with an ether such as diethyl ether.

  6. Sulfur dioxide retrievals from OMI and GOME-2 in preparation of TROPOMI

    NASA Astrophysics Data System (ADS)

    Theys, Nicolas; De Smedt, Isabelle; Danckaert, Thomas; Yu, Huan; van Gent, Jeroen; Van Roozendael, Michel

    2016-04-01

    The TROPOspheric Monitoring Instrument (TROPOMI) will be launched in 2016 onboard the ESA Sentinel-5 Precursor (S5P) platform and will provide global observations of atmospheric trace gases, with unprecedented spatial resolution. Sulfur dioxide (SO2) measurements from S5P will significantly improve the current capabilities for anthropogenic and volcanic emissions monitoring, and will extend the long-term datasets from past and existing UV sensors (TOMS, GOME, SCIAMACHY, OMI, GOME-2, OMPS). This work presents the SO2 retrieval schemes performed at BIRA-IASB as part of level-2 algorithm prototyping activities for S5P and tested on OMI and GOME-2. With a focus on anthropogenic sources, we show comparisons between OMI and GOME-2 as well as ground-based measurements, and discuss the possible reasons for the differences.

  7. SULPHUR DIOXIDE LEACHING OF URANIUM CONTAINING MATERIAL

    DOEpatents

    Thunaes, A.; Rabbits, F.T.; Hester, K.D.; Smith, H.W.

    1958-12-01

    A process is described for extracting uranlum from uranium containing material, such as a low grade pitchblende ore, or mill taillngs, where at least part of the uraniunn is in the +4 oxidation state. After comminuting and magnetically removing any entrained lron particles the general material is made up as an aqueous slurry containing added ferric and manganese salts and treated with sulfur dioxide and aeration to an extent sufficient to form a proportion of oxysulfur acids to give a pH of about 1 to 2 but insufficient to cause excessive removal of the sulfur dioxide gas. After separating from the solids, the leach solution is adjusted to a pH of about 1.25, then treated with metallic iron in the presence of a precipitant such as a soluble phosphate, arsonate, or fluoride.

  8. Sulfur dioxide alleviates programmed cell death in barley aleurone by acting as an antioxidant

    PubMed Central

    Yang, Feng; Huang, Zhong-Qin; Tang, Jun; Hu, Kang-Di

    2017-01-01

    Sulfur dioxide (SO2), a gaseous signaling molecule in animal cells, has recently been found to play a physiological role in plants. Here we studied the role of SO2 in gibberellic acid (GA3)-induced programmed cell death (PCD) in barley (Hordeum vulgare L.) aleurone layers. The application of the SO2 donor (NaHSO3/Na2SO3, 1:3 M/M) effectively alleviated PCD in barley aleurone layers in a dose-dependent manner with an optimal concentration of 50 μM. Further investigations showed that SO2 reduced the accumulation of hydrogen peroxide (H2O2), superoxide anion (⋅O2−) and malondialdehyde (MDA) in aleurone layers. Moreover, the activities of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), glutathione reductase (GR) and guaiacol peroxidase (POD) were enhanced by SO2 donor treatment. Meanwhile, lipoxygenase (LOX) activity was attenuated by SO2 donor treatment. Furthermore, an induction of endogenous H2S and NO were also observed in SO2-treated aleurone layers, suggesting interactions of SO2 with other well-known signaling molecules. Taken together, we show that SO2 negatively regulated PCD by acting as an antioxidant to scavenge excessive reactive oxygen species (ROS) generated during PCD. PMID:29155872

  9. Process for removing sulfur from coal

    DOEpatents

    Aida, Tetsuo; Squires, Thomas G.; Venier, Clifford G.

    1985-02-05

    A process for the removal of divalent organic and inorganic sulfur compounds from coal and other carbonaceous material. A slurry of pulverized carbonaceous material is contacted with an electrophilic oxidant which selectively oxidizes the divalent organic and inorganic compounds to trivalent and tetravalent compounds. The carbonaceous material is then contacted with a molten caustic which dissolves the oxidized sulfur compounds away from the hydrocarbon matrix.

  10. Process for removing sulfur from coal

    DOEpatents

    Aida, T.; Squires, T.G.; Venier, C.G.

    1983-08-11

    A process is disclosed for the removal of divalent organic and inorganic sulfur compounds from coal and other carbonaceous material. A slurry of pulverized carbonaceous material is contacted with an electrophilic oxidant which selectively oxidizes the divalent organic and inorganic compounds to trivalent and tetravalent compounds. The carbonaceous material is then contacted with a molten caustic which dissolves the oxidized sulfur compounds away from the hydrocarbon matrix.

  11. Utilization of a Response-Surface Technique in the Study of Plant Responses to Ozone and Sulfur Dioxide Mixtures 1

    PubMed Central

    Ormrod, Douglas P.; Tingey, David T.; Gumpertz, Marcia L.; Olszyk, David M.

    1984-01-01

    A second order rotatable design was used to obtain polynomial equations describing the effects of combinations of sulfur dioxide (SO2) and ozone (O3) on foliar injury and plant growth. The response surfaces derived from these equations were displayed as contour or isometric (3-dimensional) plots. The contour plots aided in the interpretation of the pollutant interactions and were judged easier to use than the isometric plots. Plants of `Grand Rapids' lettuce (Lactuca sativa L.), `Cherry Belle' radish (Raphanus sativus L.), and `Alsweet' pea (Pisum sativum L.) were grown in a controlled environment chamber and exposed to seven combinations of SO2 and O3. Injury was evaluated based on visible chlorosis and necrosis and growth was evaluated as leaf area and dry weight. Covariate measurements were used to increase precision. Radish and pea had greater injury, in general, that did lettuce; all three species were sensitive to O3, and pea was most sensitive and radish least sensitive to SO2. Leaf injury responses were relatively more affected by the pollutants than were plant growth responses in radish and pea but not in lettuce. In radish, hypocotyl growth was more sensitive to the pollutants than was leaf growth. PMID:16663598

  12. Carbon dioxide removal process

    DOEpatents

    Baker, Richard W.; Da Costa, Andre R.; Lokhandwala, Kaaeid A.

    2003-11-18

    A process and apparatus for separating carbon dioxide from gas, especially natural gas, that also contains C.sub.3+ hydrocarbons. The invention uses two or three membrane separation steps, optionally in conjunction with cooling/condensation under pressure, to yield a lighter, sweeter product natural gas stream, and/or a carbon dioxide stream of reinjection quality and/or a natural gas liquids (NGL) stream.

  13. Abatement of sulfur hexafluoride emissions from the semiconductor manufacturing process by atmospheric-pressure plasmas.

    PubMed

    Lee, How Ming; Chang, Moo Been; Wu, Kuan Yu

    2004-08-01

    Sulfur hexafluoride (SF6) is an important gas for plasma etching processes in the semiconductor industry. SF6 intensely absorbs infrared radiation and, consequently, aggravates global warming. This study investigates SF6 abatement by nonthermal plasma technologies under atmospheric pressure. Two kinds of nonthermal plasma processes--dielectric barrier discharge (DBD) and combined plasma catalysis (CPC)--were employed and evaluated. Experimental results indicated that as much as 91% of SF6 was removed with DBDs at 20 kV of applied voltage and 150 Hz of discharge frequency for the gas stream containing 300 ppm SF6, 12% oxygen (O2), and 40% argon (Ar), with nitrogen (N2) as the carrier gas. Four additives, including Ar, O2, ethylene (C2H4), and H2O(g), are effective in enhancing SF6 abatement in the range of conditions studied. DBD achieves a higher SF6 removal efficiency than does CPC at the same operation condition. But CPC achieves a higher electrical energy utilization compared with DBD. However, poisoning of catalysts by sulfur (S)-containing species needs further investigation. SF6 is mainly converted to SOF2, SO2F4, sulfur dioxide (SO2), oxygen difluoride (OF2), and fluoride (F2). They do not cause global warming and can be captured by either wet scrubbing or adsorption. This study indicates that DBD and CPC are feasible control technologies for reducing SF6 emissions.

  14. Cathode Loading Effect on Sulfur Utilization in Lithium–Sulfur Battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Ke; Liu, Helen; Gan, Hong

    The Lithium-Sulfur (Li-S) battery is under intensive research in recent years due to its potential to provide higher energy density and lower cost than the current state-of-the-art lithium-ion battery technology. To meet cost target for transportation application, high sulfur loading up to 8 mAh cm -2 is predicted by modeling. In this work, we have investigated the sulfur loading effect on the galvanostatic charge/discharge cycling performance of Li-S cells with theoretical sulfur loading ranging from 0.5 mAh cm -2 to 7.5 mAh cm -2. We found that the low sulfur utilization of electrodes with sulfur loading of > 3.0 mAhmore » cm-2 is due to their inability to deliver capacities at the 2.1V voltage plateau, which corresponds to the conversion of soluble Li 2S 4 to insoluble Li 2S 2/Li 2S. This electrochemical conversion process recovers to deliver the expected sulfur utilization after several activation cycles for electrodes with sulfur loading up to 4.5 mAh cm -2. For electrodes with 7.0 mAh cm -2 loading, no sulfur utilization recovery was observed for 100 cycles. The root cause of this phenomenon is elucidated by SEM/EDS and EIS investigation. Carbon interlayer cell design and low rate discharge activation are demonstrated to be effective mitigation methods.« less

  15. Cathode Loading Effect on Sulfur Utilization in Lithium–Sulfur Battery

    DOE PAGES

    Sun, Ke; Liu, Helen; Gan, Hong

    2016-05-01

    The Lithium-Sulfur (Li-S) battery is under intensive research in recent years due to its potential to provide higher energy density and lower cost than the current state-of-the-art lithium-ion battery technology. To meet cost target for transportation application, high sulfur loading up to 8 mAh cm -2 is predicted by modeling. In this work, we have investigated the sulfur loading effect on the galvanostatic charge/discharge cycling performance of Li-S cells with theoretical sulfur loading ranging from 0.5 mAh cm -2 to 7.5 mAh cm -2. We found that the low sulfur utilization of electrodes with sulfur loading of > 3.0 mAhmore » cm-2 is due to their inability to deliver capacities at the 2.1V voltage plateau, which corresponds to the conversion of soluble Li 2S 4 to insoluble Li 2S 2/Li 2S. This electrochemical conversion process recovers to deliver the expected sulfur utilization after several activation cycles for electrodes with sulfur loading up to 4.5 mAh cm -2. For electrodes with 7.0 mAh cm -2 loading, no sulfur utilization recovery was observed for 100 cycles. The root cause of this phenomenon is elucidated by SEM/EDS and EIS investigation. Carbon interlayer cell design and low rate discharge activation are demonstrated to be effective mitigation methods.« less

  16. Risk management for sulfur dioxide abatement under multiple uncertainties

    NASA Astrophysics Data System (ADS)

    Dai, C.; Sun, W.; Tan, Q.; Liu, Y.; Lu, W. T.; Guo, H. C.

    2016-03-01

    In this study, interval-parameter programming, two-stage stochastic programming (TSP), and conditional value-at-risk (CVaR) were incorporated into a general optimization framework, leading to an interval-parameter CVaR-based two-stage programming (ICTP) method. The ICTP method had several advantages: (i) its objective function simultaneously took expected cost and risk cost into consideration, and also used discrete random variables and discrete intervals to reflect uncertain properties; (ii) it quantitatively evaluated the right tail of distributions of random variables which could better calculate the risk of violated environmental standards; (iii) it was useful for helping decision makers to analyze the trade-offs between cost and risk; and (iv) it was effective to penalize the second-stage costs, as well as to capture the notion of risk in stochastic programming. The developed model was applied to sulfur dioxide abatement in an air quality management system. The results indicated that the ICTP method could be used for generating a series of air quality management schemes under different risk-aversion levels, for identifying desired air quality management strategies for decision makers, and for considering a proper balance between system economy and environmental quality.

  17. Development of lysozyme-combined antibacterial system to reduce sulfur dioxide and to stabilize Italian Riesling ice wine during aging process

    PubMed Central

    Chen, Kai; Han, Shun-yu; Zhang, Bo; Li, Min; Sheng, Wen-jun

    2015-01-01

    For the purpose of SO2 reduction and stabilizing ice wine, a new antibacterial technique was developed and verified in order to reduce the content of sulfur dioxide (SO2) and simultaneously maintain protein stability during ice wine aging process. Hazardous bacterial strain (lactic acid bacteria, LAB) and protein stability of Italian Riesling ice wine were evaluated in terms of different amounts of lysozyme, SO2, polyphenols, and wine pH by single-factor experiments. Subsequently, a quadratic rotation-orthogonal composite design with four variables was conducted to establish the multiple linear regression model that demonstrated the influence of different treatments on synthesis score between LAB inhibition and protein stability of ice wine. The results showed that, synthesis score can be influenced by lysozyme and SO2 concentrations on an extremely significant level (P < 0.01). Furthermore, the lysozyme-combined antibacterial system, which is specially designed for ice wine aging, was optimized step by step by response surface methodology and ridge analysis. As a result, the optimal proportion should be control in ice wine as follows: 179.31 mg L−1 lysozyme, 177.14 mg L−1 SO2, 0.60 g L−1 polyphenols, and 4.01 ice wine pH. Based on this system, the normalized synthesis score between LAB inhibition and protein stability can reach the highest point 0.920. Finally, by the experiments of verification and comparison, it was indicated that lysozyme-combined antibacterial system, which was a practical and prospective method to reduce SO2 concentration and effectively prevent contamination from hazardous LAB, can be used to stabilize ice wine during aging process. PMID:26405531

  18. Comparison of inter-trial recovery times for the determination of critical power and W' in cycling.

    PubMed

    Karsten, Bettina; Hopker, James; Jobson, Simon A; Baker, Jonathan; Petrigna, Luca; Klose, Andreas; Beedie, Christopher

    2017-07-01

    Critical Power (CP) and W' are often determined using multi-day testing protocols. To investigate this cumbersome testing method, the purpose of this study was to compare the differences between the conventional use of a 24-h inter-trial recovery time with those of 3 h and 30 min for the determination of CP and W'. 9 moderately trained cyclists performed an incremental test to exhaustion to establish the power output associated with the maximum oxygen uptake (p[Formula: see text] max ), and 3 protocols requiring time-to-exhaustion trials at a constant work-rate performed at 80%, 100% and 105% of p[Formula: see text] max. Design: Protocol A utilised 24-h inter-trial recovery (CP 24 /W' 24 ), protocol B utilised 3-h inter-trial recovery (CP 3 /W' 3 ), and protocol C used 30-min inter-trial recovery period (CP 0.5 /W' 0.5 ). CP and W' were calculated using the inverse time (1/t) versus power (P) relation (P = W'(1/t) + CP). 95% Limits of Agreement between protocol A and B were -9 to 15 W; -7.4 to 7.8 kJ (CP/W') and between protocol A and protocol C they were -27 to 22 W; -7.2 to 15.1 kJ (CP/W'). Compared to criterion protocol A, the average prediction error of protocol B was 2.5% (CP) and 25.6% (W'), whilst for protocol C it was 3.7% (CP) and 32.9% (W'). 3-h and 30-min inter-trial recovery time protocols provide valid methods of determining CP but not W' in cycling.

  19. The Impact of Increasing Carbon Dioxide on Ozone Recovery

    NASA Technical Reports Server (NTRS)

    Rosenfield, Joan E.; Douglass, Anne R.; Considine, David B.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    We have used the GSFC coupled two-dimensional (2D) model to study the impact of increasing carbon dioxide from 1980 to 2050 on the recovery of ozone to its pre-1980 amounts. We find that the changes in temperature and circulation arising from increasing CO2 affect ozone recovery in a manner which varies greatly with latitude, altitude, and time of year. Middle and upper stratospheric ozone recovers faster at all latitudes due to a slowing of the ozone catalytic loss cycles. In the lower stratosphere, the recovery of tropical ozone is delayed due to a decrease in production and a speed up in the overturning circulation. The recovery of high northern latitude lower stratospheric ozone is delayed in spring and summer due to an increase in springtime heterogeneous chemical loss, and is speeded up in fall and winter due to increased downwelling. The net effect on the higher northern latitude column ozone is to slow down the recovery from late March to late July, while making it faster at other times. In the high southern latitudes, the impact of CO2 cooling is negligible. Annual mean column ozone is predicted to recover faster at all latitudes, and globally averaged ozone is predicted to recover approximately ten years faster as a result of increasing CO2.

  20. Gasoline from natural gas by sulfur processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erekson, E.J.; Miao, F.Q.

    1995-12-31

    The overall objective of this research project is to develop a catalytic process to convert natural gas to liquid transportation fuels. The process, called the HSM (Hydrogen Sulfide-Methane) Process, consists of two steps that each utilize a catalyst and sulfur-containing intermediates: (1) converting natural gas to CS{sub 2} and (2) converting CS{sub 2} to gasoline range liquids. Catalysts have been found that convert methane to carbon disulfide in yields up to 98%. This exceeds the target of 40% yields for the first step. The best rate for CS{sub 2} formation was 132 g CS{sub 2}/kg-cat-h. The best rate for hydrogenmore » production is 220 L H{sub 2} /kg-cat-h. A preliminary economic study shows that in a refinery application hydrogen made by the HSM technology would cost $0.25-R1.00/1000 SCF. Experimental data will be generated to facilitate evaluation of the overall commercial viability of the process.« less

  1. Ambient Air Monitoring for Sulfur Compounds

    ERIC Educational Resources Information Center

    Forrest, Joseph; Newman, Leonard

    1973-01-01

    A literature review of analytical techniques available for the study of compounds at low concentrations points up some of the areas where further research is needed. Compounds reviewed are sulfur dioxide, sulfuric acid, ammonium sulfate and bisulfate, metal sulfates, hydrogen sulfide, and organic sulfides. (BL)

  2. A new fluorescent probe for colorimetric and ratiometric detection of sulfur dioxide derivatives in liver cancer cells

    NASA Astrophysics Data System (ADS)

    Li, Dong-Peng; Wang, Zhao-Yang; Cui, Jie; Wang, Xin; Miao, Jun-Ying; Zhao, Bao-Xiang

    2017-03-01

    A new ratiometric fluorescent probe was constructed with hemicyanine and 7-nitrobenzofurazan for detection of sulfur dioxide derivatives (HSO3-/SO32-). The ratiometric response mode could be attributed to the efficient FRET (Förster resonance energy transfer) platform. The probe exbihited some desirable properties including fast response (within 2 minutes), good selectivity and high sensitivity. Moreover, the probe could detect endogenous HSO3- in liver cancer cells rather than normal liver cells, implying the diagnosal potential of the probe.

  3. Simultaneous removal of nitrogen oxides and sulfur oxides from combustion gases

    DOEpatents

    Clay, David T.; Lynn, Scott

    1976-10-19

    A process for the simultaneous removal of sulfur oxides and nitrogen oxides from power plant stack gases comprising contacting the stack gases with a supported iron oxide catalyst/absorbent in the presence of sufficient reducing agent selected from the group consisting of carbon monoxide, hydrogen, and mixtures thereof, to provide a net reducing atmosphere in the SO.sub.x /NO.sub.x removal zone. The sulfur oxides are removed by absorption substantially as iron sulfide, and nitrogen oxides are removed by catalytic reduction to nitrogen and ammonia. The spent iron oxide catalyst/absorbent is regenerated by oxidation and is recycled to the contacting zone. Sulfur dioxide is also produced during regeneration and can be utilized in the production of sulfuric acid and/or sulfur.

  4. Exposures and their determinants in radiographic film processing.

    PubMed

    Teschke, Kay; Chow, Yat; Brauer, Michael; Chessor, Ed; Hirtle, Bob; Kennedy, Susan M; Yeung, Moira Chan; Ward, Helen Dimich

    2002-01-01

    Radiographers process X-ray films using developer and fixer solutions that contain chemicals known to cause or exacerbate asthma. In a study in British Columbia, Canada, radiographers' personal exposures to glutaraldehyde (a constituent of the developer chemistry), acetic acid (a constituent of the fixer chemistry), and sulfur dioxide (a byproduct of sulfites, present in both developer and fixer solutions) were measured. Average full-shift exposures to glutaraldehyde, acetic acid, and sulfur dioxide were 0.0009 mg/m3, 0.09 mg/m3, and 0.08 mg/m3, respectively, all more than one order of magnitude lower than current occupational exposure limits. Local exhaust ventilation of the processing machines and use of silver recovery units lowered exposures, whereas the number of films processed per machine and the time spent near the machines increased exposures. Personnel in clinic facilities had higher exposures than those in hospitals. Private clinics were less likely to have local exhaust ventilation and silver recovery units. Their radiographers spent more time in the processor areas and processed more films per machine. Although exposures were low compared with exposure standards, there are good reasons to continue practices to minimize or eliminate exposures: glutaraldehyde and hydroquinone (present in the developer) are sensitizers; the levels at which health effects occur are not yet clearly established, but appear to be lower than current standards; and health effects resulting from the mixture of chemicals are not understood. Developments in digital imaging technology are making available options that do not involve wet-processing of photographic film and therefore could eliminate the use of developer and fixer chemicals altogether.

  5. India Is Overtaking China as the World's Largest Emitter of Anthropogenic Sulfur Dioxide

    NASA Technical Reports Server (NTRS)

    Li, Can; McLinden, Chris; Fioletov, Vitali; Krotkov, Nickolay; Carn, Simon; Joiner, Joanna; Streets, David; He, Hao; Ren, Xinrong; Li, Zhanqing; hide

    2017-01-01

    Severe haze is a major public health concern in China and India. Both countries rely heavily on coal for energy, and sulfur dioxide (SO2) emitted from coal-fired power plants and industry is a major pollutant contributing to their air quality problems. Timely, accurate information on SO2 sources is a required input to air quality models for pollution prediction and mitigation. However, such information has been difficult to obtain for these two countries, as fast-paced changes in economy and environmental regulations have often led to unforeseen emission changes. Here we use satellite observations to show that China and India are on opposite trajectories for sulfurous pollution. Since 2007, emissions in China have declined by 75 percent while those in India have increased by 50 percent. With these changes, India is now surpassing China as the world's largest emitter of anthropogenic SO2. This finding, not predicted by emission scenarios, suggests effective SO2 control in China and lack thereof in India. Despite this, haze remains severe in China, indicating the importance of reducing emissions of other pollutants. In India, approximately 33 million people now live in areas with substantial SO2 pollution. Continued growth in emissions will adversely affect more people and further exacerbate morbidity and mortality.

  6. Probing the Superfluid Response of para-Hydrogen with a Sulfur Dioxide Dopant.

    PubMed

    Zeng, Tao; Guillon, Grégoire; Cantin, Joshua T; Roy, Pierre-Nicholas

    2013-07-18

    We recently presented the first attempt at using an asymmetric top molecule (para-water) to probe the superfluidity of nanoclusters (of para-hydrogen) [ Zeng , T. ; Li , H. ; Roy , P.-N. J. Phys. Chem. Lett. 2013 , 4 , 18 - 22 ]. Unfortunately, para-water could not be used to probe the para-hydrogen superfluid response. We now report a theoretical simulation of sulfur dioxide rotating in para-hydrogen clusters and show that this asymmetric top can serve as a genuine probe of superfluidity. With this probe, we predict that as few as four para-hydrogen molecules are enough to form a superfluid cluster, the smallest superfluid system to date. We also propose the concept of "exchange superfluid fraction" as a more precise measurement. New superfluid scenarios brought about by an asymmetric top dopant and potential experimental measurements are discussed.

  7. Simultaneous recovery of vanadium and nickel from power plant fly-ash: Optimization of parameters using response surface methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nazari, E.; Rashchi, F., E-mail: rashchi@ut.ac.ir; Saba, M.

    2014-12-15

    Highlights: • Leaching of vanadium and nickel from fly ash (14.43% V and 5.19% Ni) in sulfuric acid was performed. • Optimization of leaching parameters was carried out using a response surface methodology. • Using optimum conditions, 94.28% V and 81.01% Ni “actual recovery” was obtained. - Abstract: Simultaneous recovery of vanadium (V) and nickel (Ni), which are classified as two of the most hazardous metal species from power plant heavy fuel fly-ash, was studied using a hydrometallurgical process consisting of acid leaching using sulfuric acid. Leaching parameters were investigated and optimized in order to maximize the recovery of bothmore » vanadium and nickel. The independent leaching parameters investigated were liquid to solid ratio (S/L) (5–12.5 wt.%), temperature (45–80 °C), sulfuric acid concentration (5–25 v/v%) and leaching time (1–5 h). Response surface methodology (RSM) was used to optimize the process parameters. The most effective parameter on the recovery of both elements was found to be temperature and the least effective was time for V and acid concentration for Ni. Based on the results, optimum condition for metals recovery (actual recovery of ca.94% for V and 81% for Ni) was determined to be solid to liquid ratio of 9.15 wt.%, temperature of 80 °C, sulfuric acid concentration of 19.47 v/v% and leaching time of 2 h. The maximum V and Ni predicted recovery of 91.34% and 80.26% was achieved.« less

  8. Methane Post-Processor Development to Increase Oxygen Recovery beyond State-of-the-Art Carbon Dioxide Reduction Technology

    NASA Technical Reports Server (NTRS)

    Abney, Morgan; Miller, Lee; Greenwood, Zach; Iannantuono, Michelle; Jones, Kenny

    2013-01-01

    State-of-the-art life support carbon dioxide (CO2) reduction technology, based on the Sabatier reaction, is theoretically capable of 50% recovery of oxygen from metabolic CO2. This recovery is constrained by the limited availability of reactant hydrogen. Post-processing of the methane byproduct from the Sabatier reactor results in hydrogen recycle and a subsequent increase in oxygen recovery. For this purpose, a Methane Post-Processor Assembly containing three sub-systems has been developed and tested. The assembly includes a Methane Purification Assembly (MePA) to remove residual CO2 and water vapor from the Sabatier product stream, a Plasma Pyrolysis Assembly (PPA) to partially pyrolyze methane into hydrogen and acetylene, and an Acetylene Separation Assembly (ASepA) to purify the hydrogen product for recycle. The results of partially integrated testing of the sub-systems are reported.

  9. Methane Post-Processor Development to Increase Oxygen Recovery beyond State-of-the-Art Carbon Dioxide Reduction Technology

    NASA Technical Reports Server (NTRS)

    Abney, Morgan B.; Greenwood, Zachary; Miller, Lee A.; Alvarez, Giraldo; Iannantuono, Michelle; Jones, Kenny

    2013-01-01

    State-of-the-art life support carbon dioxide (CO2) reduction technology, based on the Sabatier reaction, is theoretically capable of 50% recovery of oxygen from metabolic CO2. This recovery is constrained by the limited availability of reactant hydrogen. Post-processing of the methane byproduct from the Sabatier reactor results in hydrogen recycle and a subsequent increase in oxygen recovery. For this purpose, a Methane Post-Processor Assembly containing three sub-systems has been developed and tested. The assembly includes a Methane Purification Assembly (MePA) to remove residual CO2 and water vapor from the Sabatier product stream, a Plasma Pyrolysis Assembly (PPA) to partially pyrolyze methane into hydrogen and acetylene, and an Acetylene Separation Assembly (ASepA) to purify the hydrogen product for recycle. The results of partially integrated testing of the sub-systems are reported

  10. Role of manganese dioxide in the recovery of oxide-sulphide zinc ore.

    PubMed

    Yang, Kun; Zhang, Libo; Zhu, Xingcai; Peng, Jinhui; Li, Shiwei; Ma, Aiyuan; Li, Haoyu; Zhu, Fei

    2018-02-05

    In this article, the role of MnO 2 in the recovery of oxide-sulphide zinc ore discussed. Through adopting various modern analysis techniques (such as X-ray diffraction pattern, X-ray photoelectron spectroscopy, scanning electron microscope, energy dispersive X-ray analysis, and fourier transform infrared spectroscopy), the function and mechanism of MnO 2 during the phase transformation process is found out. Thermodynamic mechanisms involved in the phase transformation process with or without addition of manganese dioxide investigated by exploiting the Equilib module of FactSage. What's more, XRD patterns, XPS spectra and SEM-EDAX analyses of zinc calcines verify well the calculations of FactSage. Results reveal that the addition of MnO 2 will produce an aggregation of ZnMn 2 O 4 , a valuable energy material, while roasting on its own, results in generating undesirable Zn 2 SiO 4 , the oxidation degree being relatively low. Moreover, XRD pattern of zinc calcine and FT-IR spectrum of yellow product collected in the calcination process prove that the sulphur-fixing value of the additive MnO 2 , which can promote transforming to the elemental sulphur. The volatile S can be collected through a simple guiding device. In this process, the emission of SO 2 effectively avoids, thus MnO 2 deems as a potential additive in the recovery of oxide-sulphide zinc ore. Copyright © 2017. Published by Elsevier B.V.

  11. Determination of sulfur in food by high resolution continuum source flame molecular absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Zambrzycka, Elżbieta; Godlewska-Żyłkiewicz, Beata

    2014-11-01

    In the present work, a fast, simple and sensitive analytical method for determination of sulfur in food and beverages by high resolution continuum source flame molecular absorption spectrometry was developed. The determination was performed via molecular absorption of carbon monosulfide, CS. Different CS rotational lines (257.959 nm, 258.033 nm, 258.055 nm), number of pixels and types of standard solution of sulfur, namely: sulfuric acid, sodium sulfate, ammonium sulfate, sodium sulfite, sodium sulfide, DL-cysteine, and L-cystine, were studied in terms of sensitivity, repeatability of results as well as limit of detection and limit of quantification. The best results were obtained for measurements of absorption of the CS molecule at 258.055 nm at the wavelength range covering 3 pixels and DL-cysteine in 0.2 mol L- 1 HNO3 solution as a calibration standard. Under optimized conditions the limit of detection and the limit of quantification achieved for sulfur were 10.9 mg L- 1 and 36.4 mg L- 1, respectively. The repeatability of the results expressed as relative standard deviation was typically < 5%. The accuracy of the method was tested by analysis of digested biological certified reference materials (soya bean flour, corn flour and herbs) and recovery experiment for beverage samples with added known amount of sulfur standard. The recovery of analyte from such samples was in the range of 93-105% with the repeatability in the range of 4.1-5.0%. The developed method was applied for the determination of sulfur in milk (194 ± 10 mg kg- 1), egg white (2188 ± 29 mg kg- 1), mineral water (31.0 ± 0.9 mg L- 1), white wine (260 ± 4 mg L- 1) and red wine (82 ± 2 mg L- 1), as well as in sample rich in ions, such as bitter mineral water (6900 ± 100 mg L- 1).

  12. Polyphenols content, phenolics profile and antioxidant activity of organic red wines produced without sulfur dioxide/sulfites addition in comparison to conventional red wines.

    PubMed

    Garaguso, Ivana; Nardini, Mirella

    2015-07-15

    Wine exerts beneficial effects on human health when it is drunk with moderation. Nevertheless, wine may also contain components negatively affecting human health. Among these, sulfites may induce adverse effects after ingestion. We examined total polyphenols and flavonoids content, phenolics profile and antioxidant activity of eight organic red wines produced without sulfur dioxide/sulfites addition in comparison to those of eight conventional red wines. Polyphenols and flavonoids content were slightly higher in organic wines in respect to conventional wines, however differences did not reach statistical significance. The phenolic acids profile was quite similar in both groups of wines. Antioxidant activity was higher in organic wines compared to conventional wines, although differences were not statistically significant. Our results indicate that organic red wines produced without sulfur dioxide/sulfites addition are comparable to conventional red wines with regard to the total polyphenols and flavonoids content, the phenolics profile and the antioxidant activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Laboratory measurements of the 3.7-20 cm wavelength opacity of sulfur dioxide and carbon dioxide under simulated conditions for the deep atmosphere of Venus

    NASA Astrophysics Data System (ADS)

    Steffes, Paul G.; Shahan, Patrick; Christopher Barisich, G.; Bellotti, Amadeo

    2015-01-01

    In the past two decades, multiple observations of Venus have been made at X-Band (3.6 cm) using the Jansky Very Large Array (VLA), and maps have been created of the 3.6 cm emission from Venus (see, e.g., Devaraj, K. [2011]. The Centimeter- and Millimeter-Wavelength Ammonia Absorption Spectra under Jovian Conditions. PhD Thesis, Georgia Institute of Technology, Atlanta, GA). Since the emission morphology is related both to surface features and to deep atmospheric absorption from CO2 and SO2 (see, e.g., Butler, B.J., Steffes, P.G., Suleiman, S.H., Kolodner, M.A., Jenkins, J.M. [2001]. Icarus 154, 226-238), knowledge of the microwave absorption properties of sulfur dioxide in a carbon dioxide atmosphere under conditions for the deep atmosphere of Venus is required for proper interpretation. Except for a single measurement campaign conducted at a single wavelength (3.2 cm) over 40 years ago (Ho, W., Kaufman, I.A., Thaddeus, P. [1966]. J. Geophys. Res. 71, 5091-5108), no measurements of the centimeter-wavelength properties of any Venus atmospheric constituent have been conducted under conditions characteristic of the deep atmosphere (pressures from 10 to 92 bars and temperatures from 400 to 700 K). New measurements of the microwave properties of SO2 and CO2 at wavelengths from 3.7 to 20 cm have been conducted under simulated conditions for the deep atmosphere of Venus, using a new high-pressure system. Results from this measurement campaign conducted at temperatures from 430 K to 560 K and at pressures up to 92 bars are presented. Results indicate that the model for the centimeter-wavelength opacity from pure CO2 (Ho, W., Kaufman, I.A., Thaddeus, P. [1966]. J. Geophys. Res. 71, 5091-5108), is valid over the entire centimeter-wavelength range under simulated conditions for the deep atmosphere of Venus. Additionally, the laboratory results indicate that both of the models for the centimeter-wavelength opacity of SO2 in a CO2 atmosphere from Suleiman et al. (Suleiman, S

  14. Lethal and sublethal responses of native mussels (Unionidae: Lampsilis siliquoidea and L. higginsii) to elevated carbon dioxide

    USGS Publications Warehouse

    Waller, Diane L.; Bartsch, Michelle; Bartsch, Lynn; Jackson, Craig

    2018-01-01

    Levels of carbon dioxide (CO2) that have been proposed for aquatic invasive species (AIS) control [24 000 – 96 000 µatm partial pressure CO2 (PCO2); 1 atm = 101.325 kPa] were tested on juvenile mussels, the Fatmucket (Lampsilis siliquoidea) and the U.S. federally endangered Higgins Eye (L. higginsii). A suite of responses (survival, growth, behavior, and gene expression) were measured after 28-d exposure and 14-d postexposure to CO2. The 28-d LC20 (lethal concentration to 20%) was lower for L. higginsii (31 800 µatm PCO2, 95% confidence interval (CI) 15 000 – 42 800 µatm) than for L. siliquoidea (58 200 µatm PCO2, 95% CI 45 200 – 68 100 µatm). Treatment-related reductions occurred in all measures of growth and condition. Expression of chitin synthase, key for shell formation, was down-regulated at 28-d exposure. Carbon dioxide caused narcotization and unburial of mussels, behaviors that could increase mortality by predation and displacement. We conclude that survival and growth of juvenile mussels could be reduced by continuous exposure to elevated CO2, but recovery may be possible in shorter duration exposure.

  15. Interspecific differences in the effects of sulfur dioxide on angiosperm sexual reproduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DuBay, D.T.

    1981-01-01

    The major objective of this study was to test the potential direct effects of SO/sub 2/ on sexual reproduction in several plant species with different reproductive structures and processes. In marked contrast to the sensitivity to SO/sub 2/ reported by other investigators for pollen germination and pollen tube growth in vitro, and recorded for Lepidium virginicum in this study, 4 of 5 species tested were tolerant with respect to fruit and seed set after exposure to 0.6 ppm SO/sub 2/ for 8 hours during flowering. Seed set in the one sensitive species, Geranium carolinianum, was reduced 40% from the controlmore » after exposure to SO/sub 2/, but only when relative humidity (RH) was at or above 90%. The effect of SO/sub 2/ on Lepidium pollen germination in vitro was greater than the effect of SO/sub 2/ on sexual reproduction in vivo. Sulfur dioxide reduced pollen germination in vitro 94% from the control. The same concentration of SO/sub 2/, at 90% Rh, reduced pollen germination in vivo 50% from the control, but had no effect on seed set. Predictions of effects of SO/sub 2/ on reproduction in vivo based on effects of SO/sub 2/ on pollen germination and pollen tube growth in vitro are not valid.« less

  16. Petroleum Refineries (Catalytic Cracking, Catalytic Reforming and Sulfur Recovery Units): National Emission Standards for Hazardous Air Pollutants (NESHAP)

    EPA Pesticide Factsheets

    learn more about the NESHAP for catalytic cracking and reforming units, as well as sulfur recovery units in petroleum refineries by reading the rule history, rule summary, background information documents, and compliance information

  17. Biorefining strategy for maximal monosaccharide recovery from three different feedstocks: eucalyptus residues, wheat straw and olive tree pruning.

    PubMed

    Silva-Fernandes, Talita; Duarte, Luís Chorão; Carvalheiro, Florbela; Marques, Susana; Loureiro-Dias, Maria Conceição; Fonseca, César; Gírio, Francisco

    2015-05-01

    This work proposes the biorefining of eucalyptus residues (ER), wheat straw (WS) and olive tree pruning (OP) combining hydrothermal pretreatment (autohydrolysis) with acid post-hydrolysis of the liquid fraction and enzymatic hydrolysis of the solid fraction towards maximal recovery of monosaccharides from those lignocellulose materials. Autohydrolysis of ER, WS and OP was performed under non-isothermal conditions (195-230°C) and the non-cellulosic saccharides were recovered in the liquid fraction while cellulose and lignin remained in the solid fraction. The acid post-hydrolysis of the soluble oligosaccharides was studied by optimizing sulfuric acid concentration (1-4%w/w) and reaction time (10-60 min), employing a factorial (2(2)) experimental design. The solids resulting from pretreatment were submitted to enzymatic hydrolysis by applying commercial cellulolytic enzymes Celluclast® 1.5L and Novozyme® 188 (0.225 and 0.025 g/g solid, respectively). This strategy provides high total monosaccharide recovery or high glucose recovery from lignocellulosic materials, depending on the autohydrolysis conditions applied. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Simultaneous heterotrophic and sulfur-oxidizing autotrophic denitrification process for drinking water treatment: control of sulfate production.

    PubMed

    Sahinkaya, Erkan; Dursun, Nesrin; Kilic, Adem; Demirel, Sevgi; Uyanik, Sinan; Cinar, Ozer

    2011-12-15

    A long-term performance of a packed-bed bioreactor containing sulfur and limestone was evaluated for the denitrification of drinking water. Autotrophic denitrification rate was limited by the slow dissolution rate of sulfur and limestone. Dissolution of limestone for alkalinity supplementation increased hardness due to release of Ca(2+). Sulfate production is the main disadvantage of the sulfur autotrophic denitrification process. The effluent sulfate concentration was reduced to values below drinking water guidelines by stimulating the simultaneous heterotrophic and autotrophic denitrification with methanol supplementation. Complete removal of 75 mg/L NO(3)-N with effluent sulfate concentration of around 225 mg/L was achieved when methanol was supplemented at methanol/NO(3)-N ratio of 1.67 (mg/mg), which was much lower than the theoretical value of 2.47 for heterotrophic denitrification. Batch studies showed that sulfur-based autotrophic NO(2)-N reduction rate was around three times lower than the reduction rate of NO(3)-N, which led to NO(2)-N accumulation at high loadings. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Formation of Hydrogen Sulfide in Wine: Interactions between Copper and Sulfur Dioxide.

    PubMed

    Bekker, Marlize Z; Smith, Mark E; Smith, Paul A; Wilkes, Eric N

    2016-09-10

    The combined synergistic effects of copper (Cu(2+)) and sulfur dioxide (SO₂) on the formation of hydrogen sulfide (H₂S) in Verdelho and Shiraz wine samples post-bottling was studied over a 12-month period. The combined treatment of Cu(2+) and SO₂ significantly increased H₂S formation in Verdelho wines samples that were not previously treated with either Cu(2+) or SO₂. The formation of H₂S produced through Cu(2+) mediated reactions was likely either: (a) directly through the interaction of SO₂ with either Cu(2+) or H₂S; or (b) indirectly through the interaction of SO₂ with other wine matrix compounds. To gain better understanding of the mechanisms responsible for the significant increases in H₂S concentration in the Verdelho samples, the interaction between Cu(2+) and SO₂ was studied in a model wine matrix with and without the presence of a representative thiol quenching compound (4-methylbenzoquinone, 4MBQ). In these model studies, the importance of naturally occurring wine compounds and wine additives, such as quinones, SO₂, and metal ions, in modulating the formation of H₂S post-bottling was demonstrated. When present in equimolar concentrations a 1:1 ratio of H₂S- and SO₂-catechol adducts were produced. At wine relevant concentrations, however, only SO₂-adducts were produced, reinforcing that the competition reactions of sulfur nucleophiles, such as H₂S and SO₂, with wine matrix compounds play a critical role in modulating final H₂S concentrations in wines.

  20. Calcium looping process for high purity hydrogen production integrated with capture of carbon dioxide, sulfur and halides

    DOEpatents

    Ramkumar, Shwetha; Fan, Liang-Shih

    2013-07-30

    A process for producing hydrogen comprising the steps of: (i) gasifying a fuel into a raw synthesis gas comprising CO, hydrogen, steam, sulfur and halide contaminants in the form of H.sub.2S, COS, and HX, wherein X is a halide; (ii) passing the raw synthesis gas through a water gas shift reactor (WGSR) into which CaO and steam are injected, the CaO reacting with the shifted gas to remove CO.sub.2, sulfur and halides in a solid-phase calcium-containing product comprising CaCO.sub.3, CaS and CaX.sub.2; (iii) separating the solid-phase calcium-containing product from an enriched gaseous hydrogen product; and (iv) regenerating the CaO by calcining the solid-phase calcium-containing product at a condition selected from the group consisting of: in the presence of steam, in the presence of CO.sub.2, in the presence of synthesis gas, in the presence of H.sub.2 and O.sub.2, under partial vacuum, and combinations thereof.

  1. Crystalline sulfur dioxide: Crystal field splittings, absolute band intensities and complex refractive indices derived from infrared spectra

    NASA Technical Reports Server (NTRS)

    Khanna, R. K.; Zhao, Guizhi

    1986-01-01

    The infrared absorption spectra of thin crystalline films of sulfur dioxide at 90 K are reported in the 2700 to 450/cm region. The observed multiplicity of the spectral features in the regions of fundamentals is attributed to factor group splittings of the modes in a biaxial crystal lattice and the naturally present minor S-34, S-36, and O-18 isotopic species. Complex refractive indices determined by an iterative Kramers-Kronig analysis of the extinction data, and absolute band strengths derived from them, are also reported in this region.

  2. Using CATS Near-Real-time Lidar Observations to Monitor and Constrain Volcanic Sulfur Dioxide (SO2) Forecasts

    NASA Technical Reports Server (NTRS)

    Hughes, E. J.; Yorks, J.; Krotkov, N. A.; da Silva, A. M.; Mcgill, M.

    2016-01-01

    An eruption of Italian volcano Mount Etna on 3 December 2015 produced fast-moving sulfur dioxide (SO2) and sulfate aerosol clouds that traveled across Asia and the Pacific Ocean, reaching North America in just 5 days. The Ozone Profiler and Mapping Suite's Nadir Mapping UV spectrometer aboard the U.S. National Polar-orbiting Partnership satellite observed the horizontal transport of the SO2 cloud. Vertical profiles of the colocated volcanic sulfate aerosols were observed between 11.5 and 13.5 km by the new Cloud Aerosol Transport System (CATS) space-based lidar aboard the International Space Station. Backward trajectory analysis estimates the SO2 cloud altitude at 7-12 km. Eulerian model simulations of the SO2 cloud constrained by CATS measurements produced more accurate dispersion patterns compared to those initialized with the back trajectory height estimate. The near-real-time data processing capabilities of CATS are unique, and this work demonstrates the use of these observations to monitor and model volcanic clouds.

  3. Using CATS Near-Real-Time Lidar Observations to Monitor and Constrain Volcanic Sulfur Dioxide (SO2) Forecasts

    NASA Technical Reports Server (NTRS)

    Hughes, E. J.; Yorks, J.; Krotkov, N. A.; Da Silva, A. M.; McGill, M.

    2016-01-01

    An eruption of Italian volcano Mount Etna on 3 December 2015 produced fast-moving sulfur dioxide (SO2) and sulfate aerosol clouds that traveled across Asia and the Pacific Ocean, reaching North America in just 5days. The Ozone Profiler and Mapping Suite's Nadir Mapping UV spectrometer aboard the U.S. National Polar-orbiting Partnership satellite observed the horizontal transport of the SO2 cloud. Vertical profiles of the colocated volcanic sulfate aerosols were observed between 11.5 and 13.5 km by the new Cloud Aerosol Transport System (CATS) space-based lidar aboard the International Space Station. Backward trajectory analysis estimates the SO2 cloud altitude at 7-12 km. Eulerian model simulations of the SO2 cloud constrained by CATS measurements produced more accurate dispersion patterns compared to those initialized with the back trajectory height estimate. The near-real-time data processing capabilities of CATS are unique, and this work demonstrates the use of these observations to monitor and model volcanic clouds.

  4. GEMINI-TITAN (GT)-10 (RECOVERY)- ASTRONAUT JOHN W. YOUNG - MISC. - ATLANTIC

    NASA Image and Video Library

    1966-07-21

    S66-42787 (21 July 1966) --- Twelve-year -old Billy Doyle of Virginia Beach, VA., shakes hands with astronaut Michael Collins, Gemini-10 pilot, aboard the recovery ship USS Guadalcanal. At right is John W. Young, command pilot of the Gemini-10 spaceflight. Billy represented 41 youngsters permitted aboard the Guadalcanal to witness the recovery with their Naval fathers or close relatives, marking the first time dependents have been permitted aboard a ship during a Gemini recovery operation. Photo credit: NASA

  5. Clues to early diagenetic sulfurization processes from mild chemical cleavage of labile sulfur-rich geomacromolecules

    NASA Astrophysics Data System (ADS)

    Adam, P.; Schneckenburger, P.; Schaeffer, P.; Albrecht, P.

    2000-10-01

    Macromolecular fractions, isolated from the solvent extract of sulfur-rich Recent (Siders Pond, USA; Lake Cadagno, Switzerland; Walvis Bay, Namibia) and immature sediments (Gibellina, Messinian of Sicily; Vena del Gesso, Messinian of Italy), were investigated by chemical degradation using sodium ethanethiolate/methyliodide. This mild reagent which cleaves polysulfide bonds to yield methylsulfides has the advantage over other methods of leaving intact other functionalities (like double bonds) and preserving sulfur atoms at their incorporation site. The method is, therefore, well-suited to the molecular level investigation of sulfur-rich macromolecules from Recent sediments containing highly functionalized polysulfide-bound subunits. In Recent anoxic sulfur-rich sediments, the release of various methylthioethers clearly demonstrates that intermolecular sulfurization of organic matter does occur at the earliest stages of diagenesis. Steroids and phytane derivatives are the major sulfurized lipids, a feature also observed in more mature sulfur-rich sediments. Several phytene derivatives, such as cis and trans 1-methylthiophyt-2-enes, as well as methylthiosteroids, including 5α- and 5β-3-(methylthio)-cholest-2-enes, were identified by comparison with synthesized standards. Steroid methylthioenolethers are released from polysulfide-bound steroid enethiols present in the macromolecular fractions. The latter, which correspond to thioketones, can be considered as intermediates in the reductive sulfurization pathway leading from steroid ketones to polysulfide-bound saturated steroid skeletons and are characterized for the first time in the present study. Thus, it could be shown that the major part of the polysulfide-bound lipids occurring in Recent sediments is apparently the result of sulfurization processes affecting carbonyls (aldehydes and ketones). The unsaturated methylthioethers obtained from Recent sediments were not present in more mature evaporitic samples, which

  6. Toxicology of sulfur in ruminants: review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kandylis, K.

    1984-10-01

    This review deals with the toxicology of sulfur in ruminants including toxicity, neurotoxic effects, and mechanism of toxic action of hydrogen sulfide, clinical signs, and treatment. It will report effects of excessive intake of sulfur by ruminants on feed intake, animal performance, ruminal digestion and motility, rumination, and other physiological functions. Poisoning of animals with sulfur from industrial emissions (sulfur dioxide) also is discussed. Excessive quantities of dietary sulfur (above .3 to .4%) as sulfate or elemental sulfur may cause toxic effects and in extreme cases can be fatal. The means is discussed whereby consumption of excessive amounts of sulfurmore » leads to toxic effects. 53 references, 1 table.« less

  7. Dose-response of urban trees to sulfur dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Temple, P.J.

    1972-01-01

    Controlled fumigation experiments were conducted to determine the dose-response relationships for four species of urban trees exposed to sulfur dioxide. The species chosen were ginkgo, Norway maple, pin oak, and Chinese elm. Results indicated that resistance to SO/sub 2/ increased among the species in the following order: Chinese elm, Norway maple, ginkgo, pin oak. Elm showed almost 100% leaf necrosis at exposures over 2 ppM for 6 hr, and severe chlorosis and necrosis at 0.25 ppM for 30 days. Fifty percent leaf necrosis occurred on Norway maple at 3 ppM for 6 hr, and on ginkgo at 4 ppM formore » 6 hr, and both species developed moderate marginal chlorosis at 0.50 ppM for 30 days. Injury on pin oak was minor, even at 8 ppM for 8 hr, but at 0.50 ppM for 30 days, a slight overall chlorosis developed on the leaves. The relative susceptibilities of the four species were the same in the long-term as in the short-term exposures. The shapes of the dose-response surfaces indicated that durations of exposure and concentration of the pollutant were of equal importance in producing injury on Chinese elm and probably on pin oak, but on Norway maple and ginkgo, concentration of SO/sub 2/ was of greater importance than the duration of exposure.« less

  8. Sulfur cathodes with hydrogen reduced titanium dioxide inverse opal structure.

    PubMed

    Liang, Zheng; Zheng, Guangyuan; Li, Weiyang; Seh, Zhi Wei; Yao, Hongbin; Yan, Kai; Kong, Desheng; Cui, Yi

    2014-05-27

    Sulfur is a cathode material for lithium-ion batteries with a high specific capacity of 1675 mAh/g. The rapid capacity fading, however, presents a significant challenge for the practical application of sulfur cathodes. Two major approaches that have been developed to improve the sulfur cathode performance include (a) fabricating nanostructured conductive matrix to physically encapsulate sulfur and (b) engineering chemical modification to enhance binding with polysulfides and, thus, to reduce their dissolution. Here, we report a three-dimensional (3D) electrode structure to achieve both sulfur physical encapsulation and polysulfides binding simultaneously. The electrode is based on hydrogen reduced TiO2 with an inverse opal structure that is highly conductive and robust toward electrochemical cycling. The relatively enclosed 3D structure provides an ideal architecture for sulfur and polysulfides confinement. The openings at the top surface allow sulfur infusion into the inverse opal structure. In addition, chemical tuning of the TiO2 composition through hydrogen reduction was shown to enhance the specific capacity and cyclability of the cathode. With such TiO2 encapsulated sulfur structure, the sulfur cathode could deliver a high specific capacity of ∼1100 mAh/g in the beginning, with a reversible capacity of ∼890 mAh/g after 200 cycles of charge/discharge at a C/5 rate. The Coulombic efficiency was also maintained at around 99.5% during cycling. The results showed that inverse opal structure of hydrogen reduced TiO2 represents an effective strategy in improving lithium sulfur batteries performance.

  9. 40 CFR Table 32 to Subpart Uuu of... - Requirements for Performance Tests for HAP Emissions From Sulfur Recovery Units Not Subject to...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Sulfur Oxides 32 Table 32 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION... Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 32 Table 32 to Subpart UUU of Part 63—Requirements for Performance Tests for HAP Emissions From...

  10. 40 CFR Table 32 to Subpart Uuu of... - Requirements for Performance Tests for HAP Emissions From Sulfur Recovery Units Not Subject to...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Sulfur Oxides 32 Table 32 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION... Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 32 Table 32 to Subpart UUU of Part 63—Requirements for Performance Tests for HAP Emissions From...

  11. 40 CFR Table 32 to Subpart Uuu of... - Requirements for Performance Tests for HAP Emissions From Sulfur Recovery Units Not Subject to...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Sulfur Oxides 32 Table 32 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION... Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 32 Table 32 to Subpart UUU of Part 63—Requirements for Performance Tests for HAP Emissions From...

  12. Using CO2 Prophet to estimate recovery factors for carbon dioxide enhanced oil recovery

    USGS Publications Warehouse

    Attanasi, Emil D.

    2017-07-17

    IntroductionThe Oil and Gas Journal’s enhanced oil recovery (EOR) survey for 2014 (Koottungal, 2014) showed that gas injection is the most frequently applied method of EOR in the United States and that carbon dioxide (CO2 ) is the most commonly used injection fluid for miscible operations. The CO2-EOR process typically follows primary and secondary (waterflood) phases of oil reservoir development. The common objective of implementing a CO2-EOR program is to produce oil that remains after the economic limit of waterflood recovery is reached. Under conditions of miscibility or multicontact miscibility, the injected CO2 partitions between the gas and liquid CO2 phases, swells the oil, and reduces the viscosity of the residual oil so that the lighter fractions of the oil vaporize and mix with the CO2 gas phase (Teletzke and others, 2005). Miscibility occurs when the reservoir pressure is at least at the minimum miscibility pressure (MMP). The MMP depends, in turn, on oil composition, impurities of the CO2 injection stream, and reservoir temperature. At pressures below the MMP, component partitioning, oil swelling, and viscosity reduction occur, but the efficiency is increasingly reduced as the pressure falls farther below the MMP. CO2-EOR processes are applied at the reservoir level, where a reservoir is defined as an underground formation containing an individual and separate pool of producible hydrocarbons that is confined by impermeable rock or water barriers and is characterized by a single natural pressure system. A field may consist of a single reservoir or multiple reservoirs that are not in communication but which may be associated with or related to a single structural or stratigraphic feature (U.S. Energy Information Administration [EIA], 2000). The purpose of modeling the CO2-EOR process is discussed along with the potential CO2-EOR predictive models. The data demands of models and the scope of the assessments require tradeoffs between reservoir

  13. The Gonzaga desulfurization flue gas process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelleher, R.L.; O'Leary, T.J.; Shirk, I.A.

    1984-01-01

    The Gonzaga desulfurization flue gas process removes sulfur dioxide from a flue by cold water scrubbing. Sulfur dioxide is significantly more soluable in cold water (35/sup 0/F to 60/sup 0/F) than in warm water (100/sup 0/F). Sulfur dioxide reacts in water similarly as carbon dioxide reacts in water, in that both gasses are released from the water as the temperature of the water increases. The researchers at the Gonzaga University developed this process from the observations and techniques used in studying the acid and aldehyde concentrations in flue gasses with varying of fuel to air ratios. The apparatus was fixedmore » to a stationary engine and a gas/oil fired boiler. The flue gas was cooled to the dew point temperature of the air entering the combustion chamber on the pre-air heater. The system is described in two parts: the energies required for cooling in the scrubbing section and the energies required in the treatment section. The cold flue gas is utilized in cooling the scrubber section.« less

  14. Improving volcanic sulfur dioxide cloud dispersal forecasts by progressive assimilation of satellite observations

    NASA Astrophysics Data System (ADS)

    Boichu, Marie; Clarisse, Lieven; Khvorostyanov, Dmitry; Clerbaux, Cathy

    2014-04-01

    Forecasting the dispersal of volcanic clouds during an eruption is of primary importance, especially for ensuring aviation safety. As volcanic emissions are characterized by rapid variations of emission rate and height, the (generally) high level of uncertainty in the emission parameters represents a critical issue that limits the robustness of volcanic cloud dispersal forecasts. An inverse modeling scheme, combining satellite observations of the volcanic cloud with a regional chemistry-transport model, allows reconstructing this source term at high temporal resolution. We demonstrate here how a progressive assimilation of freshly acquired satellite observations, via such an inverse modeling procedure, allows for delivering robust sulfur dioxide (SO2) cloud dispersal forecasts during the eruption. This approach provides a computationally cheap estimate of the expected location and mass loading of volcanic clouds, including the identification of SO2-rich parts.

  15. Sensitivity and symptomology of marigold cultivars exposed to acute sulfur dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howe, T.K.; Woltz, S.S.

    Thirty-nine cultivars of marigold (Tagetes spp.) were exposed to sulfur dioxide to determine their relative sensitivity. Flowering plants were fumigated at 1 ppM SO/sub 2/ for 4 hours or at 2 ppM SO/sub 2/ for 2 hours. The average foliar injury for all leaves on individual plants ranged from 42.3% for 'Crackerjack Mix' at 2 ppM SO/sub 2/ to 0.0% for 'Cupid Yellow' at 1 ppM SO/sub 2/. Foliar necrosis appeared as a gray to white marginal and/or interveinal scorch 1 day after exposure. There was a tendency for interveinal necrosis to be near the midvein. The extra-floral nectaries whichmore » line the leaf margins of marigold were scorched in 15 of the 39 cultivars. This injury may be of diagnostic value. Sepals were very sensitive to SO/sub 2/. Sepal injury appeared as a pinpoint scorch and as tip burn, and was apparent in some cultivars when no foliar injury occurred. 12 references, 1 figure, 1 table.« less

  16. Assessment of sulfide production risk in soil during the infiltration of domestic wastewater treated by a sulfur-utilizing denitrification process.

    PubMed

    Ghorbel, L; Coudert, L; Gilbert, Y; Mercier, G; Blais, J F

    2016-10-01

    This study aimed to determine the potential of sulfide generation during infiltration through soil of domestic wastewater treated by a sulfur-utilizing denitrification process. Three types of soil with different permeability rates (K s = 0.028, 0.0013, and 0.00015 cm/s) were investigated to evaluate the potential risk of sulfur generation during the infiltration of domestic wastewater treated by a sulfur-utilizing denitrification system. These soils were thoroughly characterized and tested to assess their capacity to be used as drainages for wastewaters. Experiments were conducted under two operating modes (saturated and unsaturated). Sulfate, sulfide, and chemical oxygen demand (COD) levels were determined over a period of 100 days. Despite the high concentration of sulfates (200 mg/L) under anaerobic conditions (ORP = -297 mV), no significant amount of sulfide was generated in the aqueous (<0.2 mg/L) or gaseous (<0.15 ppm) phases. Furthermore, the soil permeability did not have a noticeable effect on the infiltration of domestic wastewater treated by a sulfur-utilizing denitrification system due to low contents of organic matter (i.e., dissolved organic carbon, DOC). The autotrophic denitrification process used to treat the domestic wastewater allowed the reduction of the concentration of biochemical oxygen demand (BOD5) below 5 mg/L, of DOC below 7 mg/L, and of COD below 100 mg/L.

  17. 40 CFR Table 32 to Subpart Uuu of... - Requirements for Performance Tests for HAP Emissions From Sulfur Recovery Units Not Subject to...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Requirements for Performance Tests for HAP Emissions From Sulfur Recovery Units Not Subject to the New Source Performance Standards for Sulfur Oxides 32 Table 32 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED)...

  18. Advanced Sulfur Control Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gangwal, S.K.; Portzer, J.W.; Turk, B.S.

    1996-12-31

    The primary objective of this project is to determine the feasibility of an alternate concept for the regeneration of high temperature desulfurization sorbents in which elemental sulfur, instead of SO{sub 2}, is produced. If successful, this concept will eliminate or alleviate problems caused by the highly exothermic nature of the regeneration reaction, the tendency for metal sulfate formation, and the need to treat the regeneration off-gas to prevent atmospheric SO{sub 2}, emissions. Iron and cerium-based sorbents were chosen on the basis of thermodynamic analysis to determine the feasibility of elemental sulfur production. The ability of both to remove H{sub 2}Smore » during the sulfidation phase is less than that of zinc-based sorbents, and a two-stage desulfurization process will likely be required. Preliminary experimental work used electrobalance reactors to compare the relative rates of reaction of O{sub 2} and H{sub 2}O with FeS. More detailed studies of the regeneration of FeS as well as the sulfidation of CeO{sub 2} and regeneration of Ce{sub 2}O{sub 2}S are being carried out in a laboratory-scale fixed-bed reactor equipped with a unique analytical system which permits semi-continuous analysis of the distribution of elemental sulfur, H{sub 2}S, and SO{sub 2} in the reaction product gas.« less

  19. Controlled exposure of volunteers with chronic obstructive pulmonary disease to sulfur dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linn, W.S.; Fischer, D.A.; Shamoo, D.A.

    1985-08-01

    Twenty-four volunteers with chronic obstructive pulmonary disease (COPD) were exposed to sulfur dioxide (SO/sub 2/) at 0, 0.4, and 0.8 ppm in an environmental control chamber. Exposures lasted 1 hr and included two 15-min exercise periods (mean exercise ventilation rate 18 liter/min). Pulmonary mechanical function was evaluated before exposures, after initial exercise, and at the end of exposure. Blood oxygenation was measured by ear oximetry before exposure and during the second exercise period. Symptoms were recorded throughout exposure periods and for 1 week afterward. No statistically significant changes in physiology or symptoms could be attributed to SO/sub 2/ exposure. Oldermore » adults with COPD seem less reactive to a given concentration of SO/sub 2/ than heavily exercising young adult asthmatics. This may be due to lower ventilation rates (i.e., lower SO/sub 2/ dose rates) and/or to lower airway reactivity in the COPD group.« less

  20. Comparison of 2-Octanol and Tributyl Phosphate in Recovery of Tungsten from Sulfuric-Phosphoric Acid Leach Solution of Scheelite

    NASA Astrophysics Data System (ADS)

    Liao, Yulong; Zhao, Zhongwei

    2018-04-01

    Tungsten was recovered from sulfuric-phosphoric acid leach solution of scheelite using 2-octanol and tributyl phosphate (TBP). Approximately 76% of the tungsten and less than 6.2% of the iron were extracted when using 70% 2-octanol, showing good selectivity for tungsten over iron; the tungsten extraction could not be significantly enhanced using a three-stage countercurrent simulation test. Moreover, more than 99.2% of the W and 91.0% of the Fe were extracted when using 70% TBP, showing poor selectivity, but after pretreating the leach solution with iron powder, less than 5.5% of the Fe was extracted. The loaded phases were stripped using deionized water and ammonia solution. The maximum stripping rate of tungsten from loaded 2-octanol was 45.6% when using water, compared with only 13.1% from loaded TBP. Tungsten was efficiently stripped from loaded phases using ammonia solution without formation of Fe(OH)3 precipitate. Finally, a flow sheet for recovery of tungsten with TBP is proposed.