Sample records for waals density functionals

  1. A Scalable Implementation of Van der Waals Density Functionals

    NASA Astrophysics Data System (ADS)

    Wu, Jun; Gygi, Francois

    2010-03-01

    Recently developed Van der Waals density functionals[1] offer the promise to account for weak intermolecular interactions that are not described accurately by local exchange-correlation density functionals. In spite of recent progress [2], the computational cost of such calculations remains high. We present a scalable parallel implementation of the functional proposed by Dion et al.[1]. The method is implemented in the Qbox first-principles simulation code (http://eslab.ucdavis.edu/software/qbox). Application to large molecular systems will be presented. [4pt] [1] M. Dion et al. Phys. Rev. Lett. 92, 246401 (2004).[0pt] [2] G. Roman-Perez and J. M. Soler, Phys. Rev. Lett. 103, 096102 (2009).

  2. Molecular adsorption on metal surfaces with van der Waals density functionals

    NASA Astrophysics Data System (ADS)

    Li, Guo; Tamblyn, Isaac; Cooper, Valentino R.; Gao, Hong-Jun; Neaton, Jeffrey B.

    2012-03-01

    The adsorption of 1,4-benzenediamine (BDA) on Au(111) and azobenzene on Ag(111) is investigated using density functional theory (DFT) with the nonlocal van der Waals density functional (vdW-DF) and the semilocal Perdew-Burke-Ernzerhof functional. For BDA on Au(111), the inclusion of London dispersion interactions not only dramatically enhances the molecule-substrate binding, resulting in adsorption energies consistent with experimental results, but also significantly alters the BDA binding geometry. For azobenzene on Ag(111), vdW-DFs produce superior adsorption energies compared to those obtained with other dispersion-corrected DFT approaches. These results provide evidence for the applicability of the vdW-DF approach and serve as practical benchmarks for the investigation of molecules adsorbed on noble-metal surfaces.

  3. Properties of real metallic surfaces: Effects of density functional semilocality and van der Waals nonlocality

    PubMed Central

    Patra, Abhirup; Bates, Jefferson E.; Sun, Jianwei; Perdew, John P.

    2017-01-01

    We have computed the surface energies, work functions, and interlayer surface relaxations of clean (111), (100), and (110) surfaces of Al, Cu, Ru, Rh, Pd, Ag, Pt, and Au. We interpret the surface energy from liquid metal measurements as the mean of the solid-state surface energies over these three lowest-index crystal faces. We compare experimental (and random phase approximation) reference values to those of a family of nonempirical semilocal density functionals, from the basic local density approximation (LDA) to our most advanced general purpose meta-generalized gradient approximation, strongly constrained and appropriately normed (SCAN). The closest agreement is achieved by the simplest density functional LDA, and by the most sophisticated one, SCAN+rVV10 (Vydrov–Van Voorhis 2010). The long-range van der Waals interaction, incorporated through rVV10, increases the surface energies by about 10%, and increases the work functions by about 3%. LDA works for metal surfaces through two known error cancellations. The Perdew–Burke–Ernzerhof generalized gradient approximation tends to underestimate both surface energies (by about 24%) and work functions (by about 4%), yielding the least-accurate results. The amount by which a functional underestimates these surface properties correlates with the extent to which it neglects van der Waals attraction at intermediate and long range. Qualitative arguments are given for the signs of the van der Waals contributions to the surface energy and work function. A standard expression for the work function in Kohn–Sham (KS) theory is shown to be valid in generalized KS theory. Interlayer relaxations from different functionals are in reasonable agreement with one another, and usually with experiment. PMID:29042509

  4. van der Waals forces in density functional theory: a review of the vdW-DF method.

    PubMed

    Berland, Kristian; Cooper, Valentino R; Lee, Kyuho; Schröder, Elsebeth; Thonhauser, T; Hyldgaard, Per; Lundqvist, Bengt I

    2015-06-01

    A density functional theory (DFT) that accounts for van der Waals (vdW) interactions in condensed matter, materials physics, chemistry, and biology is reviewed. The insights that led to the construction of the Rutgers-Chalmers van der Waals density functional (vdW-DF) are presented with the aim of giving a historical perspective, while also emphasizing more recent efforts which have sought to improve its accuracy. In addition to technical details, we discuss a range of recent applications that illustrate the necessity of including dispersion interactions in DFT. This review highlights the value of the vdW-DF method as a general-purpose method, not only for dispersion bound systems, but also in densely packed systems where these types of interactions are traditionally thought to be negligible.

  5. Accurate van der Waals coefficients from density functional theory

    PubMed Central

    Tao, Jianmin; Perdew, John P.; Ruzsinszky, Adrienn

    2012-01-01

    The van der Waals interaction is a weak, long-range correlation, arising from quantum electronic charge fluctuations. This interaction affects many properties of materials. A simple and yet accurate estimate of this effect will facilitate computer simulation of complex molecular materials and drug design. Here we develop a fast approach for accurate evaluation of dynamic multipole polarizabilities and van der Waals (vdW) coefficients of all orders from the electron density and static multipole polarizabilities of each atom or other spherical object, without empirical fitting. Our dynamic polarizabilities (dipole, quadrupole, octupole, etc.) are exact in the zero- and high-frequency limits, and exact at all frequencies for a metallic sphere of uniform density. Our theory predicts dynamic multipole polarizabilities in excellent agreement with more expensive many-body methods, and yields therefrom vdW coefficients C6, C8, C10 for atom pairs with a mean absolute relative error of only 3%. PMID:22205765

  6. Li intercalation in graphite: A van der Waals density-functional study

    NASA Astrophysics Data System (ADS)

    Hazrati, E.; de Wijs, G. A.; Brocks, G.

    2014-10-01

    Modeling layered intercalation compounds from first principles poses a problem, as many of their properties are determined by a subtle balance between van der Waals interactions and chemical or Madelung terms, and a good description of van der Waals interactions is often lacking. Using van der Waals density functionals we study the structures, phonons and energetics of the archetype layered intercalation compound Li-graphite. Intercalation of Li in graphite leads to stable systems with calculated intercalation energies of -0.2 to -0.3 eV/Li atom, (referred to bulk graphite and Li metal). The fully loaded stage 1 and stage 2 compounds LiC6 and Li1 /2C6 are stable, corresponding to two-dimensional √{3 }×√{3 } lattices of Li atoms intercalated between two graphene planes. Stage N >2 structures are unstable compared to dilute stage 2 compounds with the same concentration. At elevated temperatures dilute stage 2 compounds easily become disordered, but the structure of Li3 /16C6 is relatively stable, corresponding to a √{7 }×√{7 } in-plane packing of Li atoms. First-principles calculations, along with a Bethe-Peierls model of finite temperature effects, allow for a microscopic description of the observed voltage profiles.

  7. van der Waals forces in density functional theory: a review of the vdW-DF method

    DOE PAGES

    Berland, Kristian; Cooper, Valentino R.; Lee, Kyuho; ...

    2015-05-15

    We review a density functional theory (DFT) that accounts for van der Waals (vdW) interactions in condensed matter, materials physics, chemistry, and biology. The insights that led to the construction of the Rutgers–Chalmers van der Waals density functional (vdW-DF) are presented with the aim of giving a historical perspective, while also emphasizing more recent efforts which have sought to improve its accuracy. In addition to technical details, we discuss a range of recent applications that illustrate the necessity of including dispersion interactions in DFT. This review highlights the value of the vdW-DF method as a general-purpose method, not only formore » dispersion bound systems, but also in densely packed systems where these types of interactions are traditionally thought to be negligible.« less

  8. FDE-vdW: A van der Waals inclusive subsystem density-functional theory.

    PubMed

    Kevorkyants, Ruslan; Eshuis, Henk; Pavanello, Michele

    2014-07-28

    We present a formally exact van der Waals inclusive electronic structure theory, called FDE-vdW, based on the Frozen Density Embedding formulation of subsystem Density-Functional Theory. In subsystem DFT, the energy functional is composed of subsystem additive and non-additive terms. We show that an appropriate definition of the long-range correlation energy is given by the value of the non-additive correlation functional. This functional is evaluated using the fluctuation-dissipation theorem aided by a formally exact decomposition of the response functions into subsystem contributions. FDE-vdW is derived in detail and several approximate schemes are proposed, which lead to practical implementations of the method. We show that FDE-vdW is Casimir-Polder consistent, i.e., it reduces to the generalized Casimir-Polder formula for asymptotic inter-subsystems separations. Pilot calculations of binding energies of 13 weakly bound complexes singled out from the S22 set show a dramatic improvement upon semilocal subsystem DFT, provided that an appropriate exchange functional is employed. The convergence of FDE-vdW with basis set size is discussed, as well as its dependence on the choice of associated density functional approximant.

  9. FDE-vdW: A van der Waals inclusive subsystem density-functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kevorkyants, Ruslan; Pavanello, Michele, E-mail: m.pavanello@rutgers.edu; Eshuis, Henk

    2014-07-28

    We present a formally exact van der Waals inclusive electronic structure theory, called FDE-vdW, based on the Frozen Density Embedding formulation of subsystem Density-Functional Theory. In subsystem DFT, the energy functional is composed of subsystem additive and non-additive terms. We show that an appropriate definition of the long-range correlation energy is given by the value of the non-additive correlation functional. This functional is evaluated using the fluctuation–dissipation theorem aided by a formally exact decomposition of the response functions into subsystem contributions. FDE-vdW is derived in detail and several approximate schemes are proposed, which lead to practical implementations of the method.more » We show that FDE-vdW is Casimir-Polder consistent, i.e., it reduces to the generalized Casimir-Polder formula for asymptotic inter-subsystems separations. Pilot calculations of binding energies of 13 weakly bound complexes singled out from the S22 set show a dramatic improvement upon semilocal subsystem DFT, provided that an appropriate exchange functional is employed. The convergence of FDE-vdW with basis set size is discussed, as well as its dependence on the choice of associated density functional approximant.« less

  10. A simplified implementation of van der Waals density functionals for first-principles molecular dynamics applications

    NASA Astrophysics Data System (ADS)

    Wu, Jun; Gygi, François

    2012-06-01

    We present a simplified implementation of the non-local van der Waals correlation functional introduced by Dion et al. [Phys. Rev. Lett. 92, 246401 (2004)] and reformulated by Román-Pérez et al. [Phys. Rev. Lett. 103, 096102 (2009)]. The proposed numerical approach removes the logarithmic singularity of the kernel function. Complete expressions of the self-consistent correlation potential and of the stress tensor are given. Combined with various choices of exchange functionals, five versions of van der Waals density functionals are implemented. Applications to the computation of the interaction energy of the benzene-water complex and to the computation of the equilibrium cell parameters of the benzene crystal are presented. As an example of crystal structure calculation involving a mixture of hydrogen bonding and dispersion interactions, we compute the equilibrium structure of two polymorphs of aspirin (2-acetoxybenzoic acid, C9H8O4) in the P21/c monoclinic structure.

  11. Binding and Diffusion of Lithium in Graphite: Quantum Monte Carlo Benchmarks and Validation of van der Waals Density Functional Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganesh, P.; Kim, Jeongnim; Park, Changwon

    2014-11-03

    In highly accurate diffusion quantum Monte Carlo (QMC) studies of the adsorption and diffusion of atomic lithium in AA-stacked graphite are compared with van der Waals-including density functional theory (DFT) calculations. Predicted QMC lattice constants for pure AA graphite agree with experiment. Pure AA-stacked graphite is shown to challenge many van der Waals methods even when they are accurate for conventional AB graphite. Moreover, the highest overall DFT accuracy, considering pure AA-stacked graphite as well as lithium binding and diffusion, is obtained by the self-consistent van der Waals functional vdW-DF2, although errors in binding energies remain. Empirical approaches based onmore » point charges such as DFT-D are inaccurate unless the local charge transfer is assessed. Our results demonstrate that the lithium carbon system requires a simultaneous highly accurate description of both charge transfer and van der Waals interactions, favoring self-consistent approaches.« less

  12. Combining density functional and incremental post-Hartree-Fock approaches for van der Waals dominated adsorbate-surface interactions: Ag{sub 2}/graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lara-Castells, María Pilar de, E-mail: Pilar.deLara.Castells@csic.es; Mitrushchenkov, Alexander O.; Stoll, Hermann

    2015-09-14

    A combined density functional (DFT) and incremental post-Hartree-Fock (post-HF) approach, proven earlier to calculate He-surface potential energy surfaces [de Lara-Castells et al., J. Chem. Phys. 141, 151102 (2014)], is applied to describe the van der Waals dominated Ag{sub 2}/graphene interaction. It extends the dispersionless density functional theory developed by Pernal et al. [Phys. Rev. Lett. 103, 263201 (2009)] by including periodic boundary conditions while the dispersion is parametrized via the method of increments [H. Stoll, J. Chem. Phys. 97, 8449 (1992)]. Starting with the elementary cluster unit of the target surface (benzene), continuing through the realistic cluster model (coronene), andmore » ending with the periodic model of the extended system, modern ab initio methodologies for intermolecular interactions as well as state-of-the-art van der Waals-corrected density functional-based approaches are put together both to assess the accuracy of the composite scheme and to better characterize the Ag{sub 2}/graphene interaction. The present work illustrates how the combination of DFT and post-HF perspectives may be efficient to design simple and reliable ab initio-based schemes in extended systems for surface science applications.« less

  13. Versatile van der Waals Density Functional Based on a Meta-Generalized Gradient Approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Haowei; Yang, Zeng-Hui; Perdew, John P.

    A “best-of-both-worlds” van der Waals (vdW) density functional is constructed, seamlessly supplementing the strongly constrained and appropriately normed (SCAN) meta-generalized gradient approximation for short- and intermediate-range interactions with the long-range vdW interaction from r VV 10 , the revised Vydrov–van Voorhis nonlocal correlation functional. The resultant SCAN + r VV 10 is the only vdW density functional to date that yields excellent interlayer binding energies and spacings, as well as intralayer lattice constants in 28 layered materials. Its versatility for various kinds of bonding is further demonstrated by its good performance for 22 interactions between molecules; the cohesive energies andmore » lattice constants of 50 solids; the adsorption energy and distance of a benzene molecule on coinage-metal surfaces; the binding energy curves for graphene on Cu(111), Ni(111), and Co(0001) surfaces; and the rare-gas solids. We argue that a good semilocal approximation should (as SCAN does) capture the intermediate-range vdW through its exchange term. We have found an effective range of the vdW interaction between 8 and 16 Å for systems considered here, suggesting that this interaction is negligibly small at the larger distances where it reaches its asymptotic power-law decay.« less

  14. Versatile van der Waals Density Functional Based on a Meta-Generalized Gradient Approximation

    DOE PAGES

    Peng, Haowei; Yang, Zeng-Hui; Perdew, John P.; ...

    2016-10-12

    A “best-of-both-worlds” van der Waals (vdW) density functional is constructed, seamlessly supplementing the strongly constrained and appropriately normed (SCAN) meta-generalized gradient approximation for short- and intermediate-range interactions with the long-range vdW interaction from r VV 10 , the revised Vydrov–van Voorhis nonlocal correlation functional. The resultant SCAN + r VV 10 is the only vdW density functional to date that yields excellent interlayer binding energies and spacings, as well as intralayer lattice constants in 28 layered materials. Its versatility for various kinds of bonding is further demonstrated by its good performance for 22 interactions between molecules; the cohesive energies andmore » lattice constants of 50 solids; the adsorption energy and distance of a benzene molecule on coinage-metal surfaces; the binding energy curves for graphene on Cu(111), Ni(111), and Co(0001) surfaces; and the rare-gas solids. We argue that a good semilocal approximation should (as SCAN does) capture the intermediate-range vdW through its exchange term. We have found an effective range of the vdW interaction between 8 and 16 Å for systems considered here, suggesting that this interaction is negligibly small at the larger distances where it reaches its asymptotic power-law decay.« less

  15. Application of Van Der Waals Density Functional Theory to Study Physical Properties of Energetic Materials

    NASA Astrophysics Data System (ADS)

    Conroy, M. W.; Budzevich, M. M.; Lin, Y.; Oleynik, I. I.; White, C. T.

    2009-12-01

    An empirical correction to account for van der Waals interactions based on the work of Neumann and Perrin [J. Phys. Chem. B 109, 15531 (2005)] was applied to density functional theory calculations of energetic molecular crystals. The calculated equilibrium unit-cell volumes of FOX-7, β-HMX, solid nitromethane, PETN-I, α-RDX, and TATB show a significant improvement in the agreement with experimental results. Hydrostatic-compression simulations of β-HMX, PETN-I, and α-RDX were also performed. The isothermal equations of state calculated from the results show increased agreement with experiment in the pressure intervals studied.

  16. Density, structure, and dynamics of water: The effect of van der Waals interactions

    NASA Astrophysics Data System (ADS)

    Wang, Jue; Román-Pérez, G.; Soler, Jose M.; Artacho, Emilio; Fernández-Serra, M.-V.

    2011-01-01

    It is known that ab initio molecular dynamics (AIMD) simulations of liquid water at ambient conditions, based on the generalized gradient approximation (GGA) to density functional theory (DFT), with commonly used functionals fail to produce structural and diffusive properties in reasonable agreement with experiment. This is true for canonical, constant temperature simulations where the density of the liquid is fixed to the experimental density. The equilibrium density, at ambient conditions, of DFT water has recently been shown by Schmidt et al. [J. Phys. Chem. B, 113, 11959 (2009)] to be underestimated by different GGA functionals for exchange and correlation, and corrected by the addition of interatomic pair potentials to describe van der Waals (vdW) interactions. In this contribution we present a DFT-AIMD study of liquid water using several GGA functionals as well as the van der Waals density functional (vdW-DF) of Dion et al. [Phys. Rev. Lett. 92, 246401 (2004)]. As expected, we find that the density of water is grossly underestimated by GGA functionals. When a vdW-DF is used, the density improves drastically and the experimental diffusivity is reproduced without the need of thermal corrections. We analyze the origin of the density differences between all the functionals. We show that the vdW-DF increases the population of non-H-bonded interstitial sites, at distances between the first and second coordination shells. However, it excessively weakens the H-bond network, collapsing the second coordination shell. This structural problem is partially associated to the choice of GGA exchange in the vdW-DF. We show that a different choice for the exchange functional is enough to achieve an overall improvement both in structure and diffusivity.

  17. Phosphorus allotropes: Stability of black versus red phosphorus re-examined by means of the van der Waals inclusive density functional method

    NASA Astrophysics Data System (ADS)

    Aykol, Muratahan; Doak, Jeff W.; Wolverton, C.

    2017-06-01

    We evaluate the energetic stabilities of white, red, and black allotropes of phosphorus using density functional theory (DFT) and hybrid functional methods, van der Waals (vdW) corrections (DFT+vdW and hybrid+vdW), vdW density functionals, and random phase approximation (RPA). We find that stability of black phosphorus over red-V (i.e., the violet form) is not ubiquitous among these methods, and the calculated enthalpies for the reaction phosphorus (red-V)→phosphorus (black) are scattered between -20 and 40 meV/atom. With local density and generalized gradient approximations, and hybrid functionals, mean absolute errors (MAEs) in densities of P allotropes relative to experiments are found to be around 10%-25%, whereas with vdW-inclusive methods, MAEs in densities drop below ˜5 %. While the inconsistency among the density functional methods could not shed light on the stability puzzle of black versus red phosphorus, comparison of their accuracy in predicting densities and the supplementary RPA results on relative stabilities indicate that opposite to the common belief, black and red phosphorus are almost degenerate, or the red-V (violet) form of phosphorus might even be the ground state.

  18. Benchmarking Density Functional Theory Based Methods To Model NiOOH Material Properties: Hubbard and van der Waals Corrections vs Hybrid Functionals.

    PubMed

    Zaffran, Jeremie; Caspary Toroker, Maytal

    2016-08-09

    NiOOH has recently been used to catalyze water oxidation by way of electrochemical water splitting. Few experimental data are available to rationalize the successful catalytic capability of NiOOH. Thus, theory has a distinctive role for studying its properties. However, the unique layered structure of NiOOH is associated with the presence of essential dispersion forces within the lattice. Hence, the choice of an appropriate exchange-correlation functional within Density Functional Theory (DFT) is not straightforward. In this work, we will show that standard DFT is sufficient to evaluate the geometry, but DFT+U and hybrid functionals are required to calculate the oxidation states. Notably, the benefit of DFT with van der Waals correction is marginal. Furthermore, only hybrid functionals succeed in opening a bandgap, and such methods are necessary to study NiOOH electronic structure. In this work, we expect to give guidelines to theoreticians dealing with this material and to present a rational approach in the choice of the DFT method of calculation.

  19. Effects of van der Waals density functional corrections on trends in furfural adsorption and hydrogenation on close-packed transition metal surfaces

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Cheng, Lei; Curtiss, Larry; Greeley, Jeffrey

    2014-04-01

    The hydrogenation of furfural to furfuryl alcohol on Pd(111), Cu(111) and Pt(111) is studied with both standard Density Functional Theory (DFT)-GGA functionals and with van der Waals-corrected density functionals. VdW-DF functionals, including optPBE, optB88, optB86b, and Grimme's method, are used to optimize the adsorption configurations of furfural, furfuryl alcohol, and related intermediates resulting from hydrogenation of furfural, and the results are compared to corresponding values determined with GGA functionals, including PW91 and PBE. On Pd(111) and Pt(111), the adsorption geometries of the intermediates are not noticeably different between the two classes of functionals, while on Cu(111), modest changes are seen in both the perpendicular distance and the orientation of the aromatic ring with respect to the planar surface. In general, the binding energies increase substantially in magnitude as a result of van der Waals contributions on all metals. In contrast, however, dispersion effects on the kinetics of hydrogenation are relatively small. It is found that activation barriers are not significantly affected by the inclusion of dispersion effects, and a Brønsted-Evans-Polanyi relationship developed solely from PW91 calculations on Pd(111) is capable of describing corresponding results on Cu(111) and Pt(111), even when the dispersion effects are included. Finally, the reaction energies and barriers derived from the dispersion-corrected and pure GGA calculations are used to plot simple potential energy profiles for furfural hydrogenation to furfuryl alcohol on the three considered metals, and an approximately constant downshift of the energetics due to the dispersion corrections is observed.

  20. Evaluation of van der Waals density functionals for layered materials

    NASA Astrophysics Data System (ADS)

    Tawfik, Sherif Abdulkader; Gould, Tim; Stampfl, Catherine; Ford, Michael J.

    2018-03-01

    In 2012, Björkman et al. posed the question "Are we van der Waals ready?" [T. Björkman et al., J. Phys.: Condens. Matter 24, 424218 (2012), 10.1088/0953-8984/24/42/424218] about the ability of ab initio modeling to reproduce van der Waals (vdW) dispersion forces in layered materials. The answer at that time was no, however. Here we report on a new generation of vdW dispersion models and show that one, i.e., the fractionally ionic atom theory with many-body dispersions, offers close to quantitative predictions for layered structures. Furthermore, it does so from a qualitatively correct picture of dispersion forces. Other methods, such as D3 and optB88vdW, also work well, albeit with some exceptions. We thus argue that we are nearly vdW ready and that some modern dispersion methods are accurate enough to be used for nanomaterial prediction, albeit with some caution required.

  1. Polymorphism and thermodynamic ground state of silver fulminate studied from van der Waals density functional calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yedukondalu, N.; Vaitheeswaran, G., E-mail: gvsp@uohyd.ernet.in

    2014-06-14

    Silver fulminate (AgCNO) is a primary explosive, which exists in two polymorphic phases, namely, orthorhombic (Cmcm) and trigonal (R3{sup ¯}) forms at ambient conditions. In the present study, we have investigated the effect of pressure and temperature on relative phase stability of the polymorphs using planewave pseudopotential approaches based on Density Functional Theory (DFT). van der Waals interactions play a significant role in predicting the phase stability and they can be effectively captured by semi-empirical dispersion correction methods in contrast to standard DFT functionals. Based on our total energy calculations using DFT-D2 method, the Cmcm structure is found to bemore » the preferred thermodynamic equilibrium phase under studied pressure and temperature range. Hitherto Cmcm and R3{sup ¯} phases denoted as α- and β-forms of AgCNO, respectively. Also a pressure induced polymorphic phase transition is seen using DFT functionals and the same was not observed with DFT-D2 method. The equation of state and compressibility of both polymorphic phases were investigated. Electronic structure and optical properties were calculated using full potential linearized augmented plane wave method within the Tran-Blaha modified Becke-Johnson potential. The calculated electronic structure shows that α, β phases are indirect bandgap insulators with a bandgap values of 3.51 and 4.43 eV, respectively. The nature of chemical bonding is analyzed through the charge density plots and partial density of states. Optical anisotropy, electric-dipole transitions, and photo sensitivity to light of the polymorphs are analyzed from the calculated optical spectra. Overall, the present study provides an early indication to experimentalists to avoid the formation of unstable β-form of AgCNO.« less

  2. Structure and properties of fullerene molecular crystals with linear-scaling van der Waals density functional theory

    NASA Astrophysics Data System (ADS)

    Mostofi, Arash; Andrinopoulos, Lampros; Hine, Nicholas

    2014-03-01

    Fullerene molecular crystals are of technological promise for their use in heterojunction photovoltaic cells. An improved theoretical understanding of their structure and properties would be a step towards the rational design of new devices. Simulations based on density-functional theory (DFT) are invaluable for developing such insight, but standard semi-local functionals do not capture the important inter-molecular van der Waals (vdW) interactions in fullerene crystals. Furthermore the computational cost associated with the large unit cells needed are at the limit or beyond the capabilities of traditional DFT methods. In this work we overcome these limitations by using our implementation of a number of vdW-DFs in the ONETEP linear-scaling DFT code to study the structural properties of C60 molecular crystals. Powder neutron diffraction shows that the low-temperature Pa-3 phase is orientationally ordered with individual C60 units rotated around the [111] direction. We fully explore the energy landscape associated with the rotation angle and find two stable structures that are energetically very close, one of which corresponds to the experimentally observed structure. We further consider the effect of orientational disorder in very large supercells of thousands of atoms.

  3. Including screening in van der Waals corrected density functional theory calculations: the case of atoms and small molecules physisorbed on graphene.

    PubMed

    Silvestrelli, Pier Luigi; Ambrosetti, Alberto

    2014-03-28

    The Density Functional Theory (DFT)/van der Waals-Quantum Harmonic Oscillator-Wannier function (vdW-QHO-WF) method, recently developed to include the vdW interactions in approximated DFT by combining the quantum harmonic oscillator model with the maximally localized Wannier function technique, is applied to the cases of atoms and small molecules (X=Ar, CO, H2, H2O) weakly interacting with benzene and with the ideal planar graphene surface. Comparison is also presented with the results obtained by other DFT vdW-corrected schemes, including PBE+D, vdW-DF, vdW-DF2, rVV10, and by the simpler Local Density Approximation (LDA) and semilocal generalized gradient approximation approaches. While for the X-benzene systems all the considered vdW-corrected schemes perform reasonably well, it turns out that an accurate description of the X-graphene interaction requires a proper treatment of many-body contributions and of short-range screening effects, as demonstrated by adopting an improved version of the DFT/vdW-QHO-WF method. We also comment on the widespread attitude of relying on LDA to get a rough description of weakly interacting systems.

  4. X-ray electron density investigation of chemical bonding in van der Waals materials

    NASA Astrophysics Data System (ADS)

    Kasai, Hidetaka; Tolborg, Kasper; Sist, Mattia; Zhang, Jiawei; Hathwar, Venkatesha R.; Filsø, Mette Ø.; Cenedese, Simone; Sugimoto, Kunihisa; Overgaard, Jacob; Nishibori, Eiji; Iversen, Bo B.

    2018-03-01

    Van der Waals (vdW) solids have attracted great attention ever since the discovery of graphene, with the essential feature being the weak chemical bonding across the vdW gap. The nature of these weak interactions is decisive for many extraordinary properties, but it is a strong challenge for current theory to accurately model long-range electron correlations. Here we use synchrotron X-ray diffraction data to precisely determine the electron density in the archetypal vdW solid, TiS2, and compare the results with density functional theory calculations. Quantitative agreement is observed for the chemical bonding description in the covalent TiS2 slabs, but significant differences are identified for the interactions across the gap, with experiment revealing more electron deformation than theory. The present data provide an experimental benchmark for testing theoretical models of weak chemical bonding.

  5. On the accuracy of van der Waals inclusive density-functional theory exchange-correlation functionals for ice at ambient and high pressures.

    PubMed

    Santra, Biswajit; Klimes, Jirí; Tkatchenko, Alexandre; Alfè, Dario; Slater, Ben; Michaelides, Angelos; Car, Roberto; Scheffler, Matthias

    2013-10-21

    Density-functional theory (DFT) has been widely used to study water and ice for at least 20 years. However, the reliability of different DFT exchange-correlation (xc) functionals for water remains a matter of considerable debate. This is particularly true in light of the recent development of DFT based methods that account for van der Waals (vdW) dispersion forces. Here, we report a detailed study with several xc functionals (semi-local, hybrid, and vdW inclusive approaches) on ice Ih and six proton ordered phases of ice. Consistent with our previous study [B. Santra, J. Klimeš, D. Alfè, A. Tkatchenko, B. Slater, A. Michaelides, R. Car, and M. Scheffler, Phys. Rev. Lett. 107, 185701 (2011)] which showed that vdW forces become increasingly important at high pressures, we find here that all vdW inclusive methods considered improve the relative energies and transition pressures of the high-pressure ice phases compared to those obtained with semi-local or hybrid xc functionals. However, we also find that significant discrepancies between experiment and the vdW inclusive approaches remain in the cohesive properties of the various phases, causing certain phases to be absent from the phase diagram. Therefore, room for improvement in the description of water at ambient and high pressures remains and we suggest that because of the stern test the high pressure ice phases pose they should be used in future benchmark studies of simulation methods for water.

  6. Extent of Fock-exchange mixing for a hybrid van der Waals density functional?

    NASA Astrophysics Data System (ADS)

    Jiao, Yang; Schröder, Elsebeth; Hyldgaard, Per

    2018-05-01

    The vdW-DF-cx0 exchange-correlation hybrid design [K. Berland et al., J. Chem. Phys. 146, 234106 (2017)] has a truly nonlocal correlation component and aims to facilitate concurrent descriptions of both covalent and non-covalent molecular interactions. The vdW-DF-cx0 design mixes a fixed ratio, a, of the Fock exchange into the consistent-exchange van der Waals density functional, vdW-DF-cx [K. Berland and P. Hyldgaard, Phys. Rev. B 89, 035412 (2014)]. The mixing value a is sometimes taken as a semi-empirical parameter in hybrid formulations. Here, instead, we assert a plausible optimum average a value for the vdW-DF-cx0 design from a formal analysis; A new, independent determination of the mixing a is necessary since the Becke fit [A. D. Becke, J. Chem. Phys. 98, 5648 (1993)], yielding a' = 0.2, is restricted to semilocal correlation and does not reflect non-covalent interactions. To proceed, we adapt the so-called two-legged hybrid construction [K. Burke et al., Chem. Phys. Lett. 265, 115 (1997)] to a starting point in the vdW-DF-cx functional. For our approach, termed vdW-DF-tlh, we estimate the properties of the adiabatic-connection specification of the exact exchange-correlation functional, by combining calculations of the Fock exchange and of the coupling-constant variation in vdW-DF-cx. We find that such vdW-DF-tlh hybrid constructions yield accurate characterizations of molecular interactions (even if they lack self-consistency). The accuracy motivates trust in the vdW-DF-tlh determination of system-specific values of the Fock-exchange mixing. We find that an average value a' = 0.2 best characterizes the vdW-DF-tlh description of covalent and non-covalent interactions, although there exists some scatter. This finding suggests that the original Becke value, a' = 0.2, also represents an optimal average Fock-exchange mixing for the new, truly nonlocal-correlation hybrids. To enable self-consistent calculations, we furthermore define and test a zero

  7. Combinations of coupled cluster, density functionals, and the random phase approximation for describing static and dynamic correlation, and van der Waals interactions

    NASA Astrophysics Data System (ADS)

    Garza, Alejandro J.; Bulik, Ireneusz W.; Alencar, Ana G. Sousa; Sun, Jianwei; Perdew, John P.; Scuseria, Gustavo E.

    2016-04-01

    Contrary to standard coupled cluster doubles (CCD) and Brueckner doubles (BD), singlet-paired analogues of CCD and BD (denoted here as CCD0 and BD0) do not break down when static correlation is present, but neglect substantial amounts of dynamic correlation. In fact, CCD0 and BD0 do not account for any contributions from multielectron excitations involving only same-spin electrons at all. We exploit this feature to add - without introducing double counting, self-interaction, or increase in cost - the missing correlation to these methods via meta-GGA (generalised gradient approximation) density functionals (Tao-Perdew-Staroverov-Scuseria and strongly constrained and appropriately normed). Furthermore, we improve upon these CCD0+DFT blends by invoking range separation: the short- and long-range correlations absent in CCD0/BD0 are evaluated with density functional theory and the direct random phase approximation, respectively. This corrects the description of long-range van der Waals forces. Comprehensive benchmarking shows that the combinations presented here are very accurate for weakly correlated systems, while also providing a reasonable description of strongly correlated problems without resorting to symmetry breaking.

  8. Effect of van der Waals interactions on the structural and binding properties of GaSe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkisov, Sergey Y., E-mail: sarkisov@mail.tsu.ru; Kosobutsky, Alexey V., E-mail: kosobutsky@kemsu.ru; Kemerovo State University, Krasnaya 6, 650043 Kemerovo

    The influence of van der Waals interactions on the lattice parameters, band structure, elastic moduli and binding energy of layered GaSe compound has been studied using projector-augmented wave method within density functional theory. We employed the conventional local/semilocal exchange-correlation functionals and recently developed van der Waals functionals which are able to describe dispersion forces. It is found that application of van der Waals density functionals allows to substantially increase the accuracy of calculations of the lattice constants a and c and interlayer distance in GaSe at ambient conditions and under hydrostatic pressure. The pressure dependences of the a-parameter, Ga–Ga, Ga–Semore » bond lengths and Ga–Ga–Se bond angle are characterized by a relatively low curvature, while c(p) has a distinct downward bowing due to nonlinear shrinking of the interlayer spacing. From the calculated binding energy curves we deduce the interlayer binding energy of GaSe, which is found to be in the range 0.172–0.197 eV/layer (14.2–16.2 meV/Å{sup 2}). - Highlights: • Effects of van der Waals interactions are analyzed using advanced density functionals. • Calculations with vdW-corrected functionals closely agree with experiment. • Interlayer binding energy of GaSe is estimated to be 14.2–16.2 meV/Å{sup 2}.« less

  9. What correlation effects are covered by density functional theory?

    NASA Astrophysics Data System (ADS)

    He, Yuan; Grafenstein, Jurgen; Kraka, Elfi; Cremer, Dieter

    The electron density distribution rho(r) generated by a DFT calculation was systematically studied by comparison with a series of reference densities obtained by wavefunction theory (WFT) methods that cover typical electron correlation effects. As a sensitive indicator for correlation effects the dipole moment of the CO molecule was used. The analysis reveals that typical LDA and GGA exchange functionals already simulate effects that are actually reminiscent of pair and three-electron correlation effects covered by MP2, MP4, and CCSD(T) in WFT. Correlation functionals contract the density towards the bond and the valence region thus taking negative charge out of the van der Waals region. It is shown that these improvements are relevant for the description of van der Waals interactions. Similar to certain correlated single-determinant WFT methods, BLYP and other GGA functionals underestimate ionic terms needed for a correct description of polar bonds. This is compensated for in hybrid functionals by mixing in HF exchange. The balanced mixing of local and non-local exchange and correlation effects leads to the correct description of polar bonds as in the B3LYP description of the CO molecule. The density obtained with B3LYP is closer to CCSD and CCSD(T) than to MP2 or MP4, which indicates that the B3LYP hybrid functional mimics those pair and three-electron correlation effects, which in WFT are only covered by coupled cluster methods.

  10. Van der Waals model for phase transitions in thermoresponsive surface films.

    PubMed

    McCoy, John D; Curro, John G

    2009-05-21

    Phase transitions in polymeric surface films are studied with a simple model based on the van der Waals equation of state. Each chain is modeled by a single bead attached to the surface by an entropic-Hooke's law spring. The surface coverage is controlled by adjusting the chemical potential, and the equilibrium density profile is calculated with density functional theory. The interesting feature of this model is the multivalued nature of the density profile seen at low temperature. This van der Waals loop behavior is resolved with a Maxwell construction between a high-density phase near the wall and a low-density phase in a "vertical" phase transition. Signatures of the phase transition in experimentally measurable quantities are then found. Numerical calculations are presented for isotherms of surface pressure, for the Poisson ratio, and for the swelling ratio.

  11. Ab-initio adsorption study of chitosan on functionalized graphene: critical role of van der Waals interactions.

    PubMed

    Rahman, R; Mazumdar, D

    2012-03-01

    We investigate the adsorption process of an organic biomolecule (chitosan) on epoxy-functionalized graphene using ab-initio density functional methods incorporating van-der-waals (vdW) interactions. The role of London dispersion force on the cohesive energy and conformal preference of the molecule is quantitatively elucidated. Functionalizing graphene with epoxy leads to weak hydrogen-bond interactions with chitosan. Binding energy values increase by over an order of magnitude after including vdW corrections, implying that dispersive interactions dominate the physisorption process. Conformal study show binding upto 30 kcal/mol when the molecule is oriented with the hydroxyl group approaching the functionalized graphene. Our study advances the promise of functionalized graphene for a variety of applications.

  12. Electron correlation and the self-interaction error of density functional theory

    NASA Astrophysics Data System (ADS)

    Polo, Victor; Kraka, Elfi; Cremer, Dieter

    The self-interaction error (SIE) of commonly used DFT functionals has been systematically investigated by comparing the electron density distribution ρ( r ) generated by self-interaction corrected DFT (SIC-DFT) with a series of reference densities obtained by DFT or wavefunction theory (WFT) methods that cover typical electron correlation effects. Although the SIE of GGA functionals is considerably smaller than that of LDA functionals, it has significant consequences for the coverage of electron correlation effects at the DFT level of theory. The exchange SIE mimics long range (non-dynamic) pair correlation effects, and is responsible for the fact that the electron density of DFT exchange-only calculations resembles often that of MP4, MP2 or even CCSD(T) calculations. Changes in the electron density caused by SICDFT exchange are comparable with those that are associated with HF exchange. Correlation functionals contract the density towards the bond and the valence region, thus taking negative charge out of the van der Waals region where these effects are exaggerated by the influence of the SIE of the correlation functional. Hence, SIC-DFT leads in total to a relatively strong redistribution of negative charge from van der Waals, non-bonding, and valence regions of heavy atoms to the bond regions. These changes, although much stronger, resemble those obtained when comparing the densities of hybrid functionals such as B3LYP with the corresponding GGA functional BLYP. Hence, the balanced mixing of local and non-local exchange and correlation effects as it is achieved by hybrid functionals mimics SIC-DFT and can be considered as an economic way to include some SIC into standard DFT. However, the investigation shows also that the SIC-DFT description of molecules is unreliable because the standard functionals used were optimized for DFT including the SIE.

  13. Predicting vapor liquid equilibria using density functional theory: A case study of argon

    NASA Astrophysics Data System (ADS)

    Goel, Himanshu; Ling, Sanliang; Ellis, Breanna Nicole; Taconi, Anna; Slater, Ben; Rai, Neeraj

    2018-06-01

    Predicting vapor liquid equilibria (VLE) of molecules governed by weak van der Waals (vdW) interactions using the first principles approach is a significant challenge. Due to the poor scaling of the post Hartree-Fock wave function theory with system size/basis functions, the Kohn-Sham density functional theory (DFT) is preferred for systems with a large number of molecules. However, traditional DFT cannot adequately account for medium to long range correlations which are necessary for modeling vdW interactions. Recent developments in DFT such as dispersion corrected models and nonlocal van der Waals functionals have attempted to address this weakness with a varying degree of success. In this work, we predict the VLE of argon and assess the performance of several density functionals and the second order Møller-Plesset perturbation theory (MP2) by determining critical and structural properties via first principles Monte Carlo simulations. PBE-D3, BLYP-D3, and rVV10 functionals were used to compute vapor liquid coexistence curves, while PBE0-D3, M06-2X-D3, and MP2 were used for computing liquid density at a single state point. The performance of the PBE-D3 functional for VLE is superior to other functionals (BLYP-D3 and rVV10). At T = 85 K and P = 1 bar, MP2 performs well for the density and structural features of the first solvation shell in the liquid phase.

  14. Density functional studies of the defect-induced electronic structure modifications in bilayer boronitrene

    NASA Astrophysics Data System (ADS)

    Ukpong, A. M.; Chetty, N.

    2012-05-01

    The van der Waals interaction-corrected density functional theory is used in this study to investigate the formation, energetic stability, and inter-layer cohesion in bilayer hexagonal boronitrene. The effect of inter-layer separation on the electronic structure is systematically investigated. The formation and energetic stability of intrinsic defects are also investigated at the equilibrium inter-layer separation. It is found that nonstoichiometric defects, and their complexes, that induce excess nitrogen or excess boron, in each case, are relatively more stable in the atmosphere that corresponds to the excess atomic species. The modifications of the electronic structure due to formation of complexes are also investigated. It is shown that van der Waals density functional theory gives an improved description of the cohesive properties but not the electronic structure in bilayer boronitrene compared to other functionals. We identify energetically favourable topological defects that retain the energy gap in the electronic structure, and discuss their implications for band gap engineering in low-n layer boronitrene insulators. The relative strengths and weaknesses of the functionals in predicting the properties of bilayer boronitrene are also discussed.

  15. Nonlocal van der Waals functionals: The case of rare-gas dimers and solids

    NASA Astrophysics Data System (ADS)

    Tran, Fabien; Hutter, Jürg

    2013-05-01

    Recently, the nonlocal van der Waals (vdW) density functionals [M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004), 10.1103/PhysRevLett.92.246401] have attracted considerable attention due to their good performance for systems where weak interactions are important. Since the physics of dispersion is included in these functionals, they are usually more accurate and show less erratic behavior than the semilocal and hybrid methods. In this work, several variants of the vdW functionals have been tested on rare-gas dimers (from He2 to Kr2) and solids (Ne, Ar, and Kr) and their accuracy compared to standard semilocal approximations, supplemented or not by an atom-pairwise dispersion correction [S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys. 132, 154104 (2010), 10.1063/1.3382344]. An analysis of the results in terms of energy decomposition is also provided.

  16. Van der Waals Epitaxy of Functional Oxide Heterostructures

    NASA Astrophysics Data System (ADS)

    Chu, Ying-Hao

    In the diligent pursuit of low-power consumption, multifunctional, and environmentally friendly electronics, more sophisticated requirements on functional materials are on demand. Recently, the discovery of 2D layered materials has created a revolution to this field. Pioneered by graphene, these new 2D materials exhibit abundant unusual physical phenomena that is undiscovered in bulk forms. These materials are characterized with their layer form and almost pure 2D electronic behavior. The confinement of charge and heat transport at such ultrathin planes offers possibilities to overcome the bottleneck of present device development in thickness limitation, and thus push the technologies into next generation. Van der Waals epitaxy, an epitaxial growth method to combine 2D and 3D materials, is one of current reliable manufacturing processes to fabricate 2D materials by growing these 2D materials epitaxially on 3D materials. Then, transferring the 2D materials to the substrates for practical applications. In the mean time, van der Waals epitaxy has also been used to create free-standing 3D materials by growing 3D materials on 2D materials and then removing them from 2D materials since the interfacial boding between 2D and 3D materials should be weak van der Waals bonds. In this study, we intend to take the same concept, but to integrate a family of functional materials in order to open new avenue to flexible electronics. Due to the interplay of lattice, charge, orbital, and spin degrees of freedom, correlated electrons in oxides generate a rich spectrum of competing phases and physical properties. Recently, lots of studies have suggested that oxide heterostructures provide a powerful route to create and manipulate the degrees of freedom and offer new possibilities for next generation devices, thus create a new playground for researchers to investigate novel physics and the emergence of fascinating states of condensed matter. In this talk, we use a 2D layered material as

  17. Structural and electronic properties of multilayer graphene on monolayer hexagonal boron nitride/nickel (111) interface system: A van der Waals density functional study

    NASA Astrophysics Data System (ADS)

    Yelgel, Celal

    2016-02-01

    The structural and electronic properties of multilayer graphene adsorbed on monolayer hexagonal boron nitride (h-BN)/Ni(111) interface system are investigated using the density functional theory with a recently developed non-local van der Waals density functional (rvv10). The most energetically favourable configuration for a monolayer h-BN/Ni(111) interface is found to be N atom atop the Ni atoms and B atom in fcc site with the interlayer distance of 2.04 Å and adsorption energy of 302 meV/BN. Our results show that increasing graphene layers on a monolayer h-BN/Ni(111) interface leads to a weakening of the interfacial interaction between the monolayer h-BN and Ni(111) surface. The adsorption energy of graphene layers on the h-BN/Ni(111) interface is found to be in the range of the 50-120 meV/C atom as the vertical distance from h-BN to the bottommost graphene layers decreases. With the adsorption of a multilayer graphene on the monolayer h-BN/Ni(111) interface system, the band gap of 0.12 eV and 0.25 eV opening in monolayer graphene and bilayer graphene near the K point is found with an upward shifting of the Fermi level. However, a stacking-sensitive band gap is opened in trilayer graphene. We obtain the band gap of 0.35 eV close to the K point with forming a Mexican hat band structure for ABC-stacked trilayer graphene.

  18. Use of Two-Body Correlated Basis Functions with van der Waals Interaction to Study the Shape-Independent Approximation for a Large Number of Trapped Interacting Bosons

    NASA Astrophysics Data System (ADS)

    Lekala, M. L.; Chakrabarti, B.; Das, T. K.; Rampho, G. J.; Sofianos, S. A.; Adam, R. M.; Haldar, S. K.

    2017-05-01

    We study the ground-state and the low-lying excitations of a trapped Bose gas in an isotropic harmonic potential for very small (˜ 3) to very large (˜ 10^7) particle numbers. We use the two-body correlated basis functions and the shape-dependent van der Waals interaction in our many-body calculations. We present an exhaustive study of the effect of inter-atomic correlations and the accuracy of the mean-field equations considering a wide range of particle numbers. We calculate the ground-state energy and the one-body density for different values of the van der Waals parameter C6. We compare our results with those of the modified Gross-Pitaevskii results, the correlated Hartree hypernetted-chain equations (which also utilize the two-body correlated basis functions), as well as of the diffusion Monte Carlo for hard sphere interactions. We observe the effect of the attractive tail of the van der Waals potential in the calculations of the one-body density over the truly repulsive zero-range potential as used in the Gross-Pitaevskii equation and discuss the finite-size effects. We also present the low-lying collective excitations which are well described by a hydrodynamic model in the large particle limit.

  19. Assessing Density Functionals Using Many Body Theory for Hybrid Perovskites

    NASA Astrophysics Data System (ADS)

    Bokdam, Menno; Lahnsteiner, Jonathan; Ramberger, Benjamin; Schäfer, Tobias; Kresse, Georg

    2017-10-01

    Which density functional is the "best" for structure simulations of a particular material? A concise, first principles, approach to answer this question is presented. The random phase approximation (RPA)—an accurate many body theory—is used to evaluate various density functionals. To demonstrate and verify the method, we apply it to the hybrid perovskite MAPbI3 , a promising new solar cell material. The evaluation is done by first creating finite temperature ensembles for small supercells using RPA molecular dynamics, and then evaluating the variance between the RPA and various approximate density functionals for these ensembles. We find that, contrary to recent suggestions, van der Waals functionals do not improve the description of the material, whereas hybrid functionals and the strongly constrained appropriately normed (SCAN) density functional yield very good agreement with the RPA. Finally, our study shows that in the room temperature tetragonal phase of MAPbI3 , the molecules are preferentially parallel to the shorter lattice vectors but reorientation on ps time scales is still possible.

  20. Van der Waals interactions and the limits of isolated atom models at interfaces

    PubMed Central

    Kawai, Shigeki; Foster, Adam S.; Björkman, Torbjörn; Nowakowska, Sylwia; Björk, Jonas; Canova, Filippo Federici; Gade, Lutz H.; Jung, Thomas A.; Meyer, Ernst

    2016-01-01

    Van der Waals forces are among the weakest, yet most decisive interactions governing condensation and aggregation processes and the phase behaviour of atomic and molecular matter. Understanding the resulting structural motifs and patterns has become increasingly important in studies of the nanoscale regime. Here we measure the paradigmatic van der Waals interactions represented by the noble gas atom pairs Ar–Xe, Kr–Xe and Xe–Xe with a Xe-functionalized tip of an atomic force microscope at low temperature. Individual rare gas atoms were fixed at node sites of a surface-confined two-dimensional metal–organic framework. We found that the magnitude of the measured force increased with the atomic radius, yet detailed simulation by density functional theory revealed that the adsorption induced charge redistribution strengthened the van der Waals forces by a factor of up to two, thus demonstrating the limits of a purely atomic description of the interaction in these representative systems. PMID:27174162

  1. Isobaric first-principles molecular dynamics of liquid water with nonlocal van der Waals interactions

    NASA Astrophysics Data System (ADS)

    Miceli, Giacomo; de Gironcoli, Stefano; Pasquarello, Alfredo

    2015-01-01

    We investigate the structural properties of liquid water at near ambient conditions using first-principles molecular dynamics simulations based on a semilocal density functional augmented with nonlocal van der Waals interactions. The adopted scheme offers the advantage of simulating liquid water at essentially the same computational cost of standard semilocal functionals. Applied to the water dimer and to ice Ih, we find that the hydrogen-bond energy is only slightly enhanced compared to a standard semilocal functional. We simulate liquid water through molecular dynamics in the NpH statistical ensemble allowing for fluctuations of the system density. The structure of the liquid departs from that found with a semilocal functional leading to more compact structural arrangements. This indicates that the directionality of the hydrogen-bond interaction has a diminished role as compared to the overall attractions, as expected when dispersion interactions are accounted for. This is substantiated through a detailed analysis comprising the study of the partial radial distribution functions, various local order indices, the hydrogen-bond network, and the selfdiffusion coefficient. The explicit treatment of the van der Waals interactions leads to an overall improved description of liquid water.

  2. Modeling of nanoscale liquid mixture transport by density functional hydrodynamics

    NASA Astrophysics Data System (ADS)

    Dinariev, Oleg Yu.; Evseev, Nikolay V.

    2017-06-01

    Modeling of multiphase compositional hydrodynamics at nanoscale is performed by means of density functional hydrodynamics (DFH). DFH is the method based on density functional theory and continuum mechanics. This method has been developed by the authors over 20 years and used for modeling in various multiphase hydrodynamic applications. In this paper, DFH was further extended to encompass phenomena inherent in liquids at nanoscale. The new DFH extension is based on the introduction of external potentials for chemical components. These potentials are localized in the vicinity of solid surfaces and take account of the van der Waals forces. A set of numerical examples, including disjoining pressure, film precursors, anomalous rheology, liquid in contact with heterogeneous surface, capillary condensation, and forward and reverse osmosis, is presented to demonstrate modeling capabilities.

  3. Scaling laws for van der Waals interactions in nanostructured materials.

    PubMed

    Gobre, Vivekanand V; Tkatchenko, Alexandre

    2013-01-01

    Van der Waals interactions have a fundamental role in biology, physics and chemistry, in particular in the self-assembly and the ensuing function of nanostructured materials. Here we utilize an efficient microscopic method to demonstrate that van der Waals interactions in nanomaterials act at distances greater than typically assumed, and can be characterized by different scaling laws depending on the dimensionality and size of the system. Specifically, we study the behaviour of van der Waals interactions in single-layer and multilayer graphene, fullerenes of varying size, single-wall carbon nanotubes and graphene nanoribbons. As a function of nanostructure size, the van der Waals coefficients follow unusual trends for all of the considered systems, and deviate significantly from the conventionally employed pairwise-additive picture. We propose that the peculiar van der Waals interactions in nanostructured materials could be exploited to control their self-assembly.

  4. Strain engineering of van der Waals heterostructures.

    PubMed

    Vermeulen, Paul A; Mulder, Jefta; Momand, Jamo; Kooi, Bart J

    2018-01-18

    Modifying the strain state of solids allows control over a plethora of functional properties. The weak interlayer bonding in van der Waals (vdWaals) materials such as graphene, hBN, MoS 2 , and Bi 2 Te 3 might seem to exclude strain engineering, since strain would immediately relax at the vdWaals interfaces. Here we present direct observations of the contrary by showing growth of vdWaals heterostructures with persistent in-plane strains up to 5% and we show that strain relaxation follows a not yet reported process distinctly different from strain relaxation in three-dimensionally bonded (3D) materials. For this, 2D bonded Bi 2 Te 3 -Sb 2 Te 3 and 2D/3D bonded Bi 2 Te 3 -GeTe multilayered films are grown using Pulsed Laser Deposition (PLD) and their structure is monitored in situ using Reflective High Energy Electron Diffraction (RHEED) and post situ analysis is performed using Transmission Electron Microscopy (TEM). Strain relaxation is modeled and found to solely depend on the layer being grown and its initial strain. This insight demonstrates that strain engineering of 2D bonded heterostructures obeys different rules than hold for epitaxial 3D materials and opens the door to precise tuning of the strain state of the individual layers to optimize functional performance of vdWaals heterostructures.

  5. Theory of melting at high pressures: Amending density functional theory with quantum Monte Carlo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shulenburger, L.; Desjarlais, M. P.; Mattsson, T. R.

    We present an improved first-principles description of melting under pressure based on thermodynamic integration comparing Density Functional Theory (DFT) and quantum Monte Carlo (QMC) treatments of the system. The method is applied to address the longstanding discrepancy between density functional theory (DFT) calculations and diamond anvil cell (DAC) experiments on the melting curve of xenon, a noble gas solid where van der Waals binding is challenging for traditional DFT methods. The calculations show excellent agreement with data below 20 GPa and that the high-pressure melt curve is well described by a Lindemann behavior up to at least 80 GPa, amore » finding in stark contrast to DAC data.« less

  6. Theory of melting at high pressures: Amending density functional theory with quantum Monte Carlo

    DOE PAGES

    Shulenburger, L.; Desjarlais, M. P.; Mattsson, T. R.

    2014-10-01

    We present an improved first-principles description of melting under pressure based on thermodynamic integration comparing Density Functional Theory (DFT) and quantum Monte Carlo (QMC) treatments of the system. The method is applied to address the longstanding discrepancy between density functional theory (DFT) calculations and diamond anvil cell (DAC) experiments on the melting curve of xenon, a noble gas solid where van der Waals binding is challenging for traditional DFT methods. The calculations show excellent agreement with data below 20 GPa and that the high-pressure melt curve is well described by a Lindemann behavior up to at least 80 GPa, amore » finding in stark contrast to DAC data.« less

  7. Temperature-Dependent and Gate-Tunable Rectification in a Black Phosphorus/WS2 van der Waals Heterojunction Diode.

    PubMed

    Dastgeer, Ghulam; Khan, Muhammad Farooq; Nazir, Ghazanfar; Afzal, Amir Muhammad; Aftab, Sikandar; Naqvi, Bilal Abbas; Cha, Janghwan; Min, Kyung-Ah; Jamil, Yasir; Jung, Jongwan; Hong, Suklyun; Eom, Jonghwa

    2018-04-18

    Heterostructures comprising two-dimensional (2D) semiconductors fabricated by individual stacking exhibit interesting characteristics owing to their 2D nature and atomically sharp interface. As an emerging 2D material, black phosphorus (BP) nanosheets have drawn much attention because of their small band gap semiconductor characteristics along with high mobility. Stacking structures composed of p-type BP and n-type transition metal dichalcogenides can produce an atomically sharp interface with van der Waals interaction which leads to p-n diode functionality. In this study, for the first time, we fabricated a heterojunction p-n diode composed of BP and WS 2 . The rectification effects are examined for monolayer, bilayer, trilayer, and multilayer WS 2 flakes in our BP/WS 2 van der Waals heterojunction diodes and also verified by density function theory calculations. We report superior functionalities as compared to other van der Waals heterojunction, such as efficient gate-dependent static rectification of 2.6 × 10 4 , temperature dependence, thickness dependence of rectification, and ideality factor of the device. The temperature dependence of Zener breakdown voltage and avalanche breakdown voltage were analyzed in the same device. Additionally, superior optoelectronic characteristics such as photoresponsivity of 500 mA/W and external quantum efficiency of 103% are achieved in the BP/WS 2 van der Waals p-n diode, which is unprecedented for BP/transition metal dichalcogenides heterostructures. The BP/WS 2 van der Waals p-n diodes have a profound potential to fabricate rectifiers, solar cells, and photovoltaic diodes in 2D semiconductor electronics and optoelectronics.

  8. Charge transport calculations by a wave-packet dynamical approach using maximally localized Wannier functions based on density functional theory: Application to high-mobility organic semiconductors

    NASA Astrophysics Data System (ADS)

    Ishii, Hiroyuki; Kobayashi, Nobuhiko; Hirose, Kenji

    2017-01-01

    We present a wave-packet dynamical approach to charge transport using maximally localized Wannier functions based on density functional theory including van der Waals interactions. We apply it to the transport properties of pentacene and rubrene single crystals and show the temperature-dependent natures from bandlike to thermally activated behaviors as a function of the magnitude of external static disorder. We compare the results with those obtained by the conventional band and hopping models and experiments.

  9. The effects of van der Waals attractions on cloud droplet growth by coalescence

    NASA Technical Reports Server (NTRS)

    Rogers, Jan R.; Davis, Robert H.

    1990-01-01

    The inclusion of van der Waals attractions in the interaction between cloud droplets has been recently shown to significantly increase the collision efficiencies of the smaller droplets. In the current work, these larger values for the collision efficiencies are used in a population dynamics model of the droplet size distribution evolution with time, in hopes of at least partially resolving the long-standing paradox in cloud microphysics that predicted rates of the onset of precipitation are generally much lower than those which are observed. Evolutions of several initial cloud droplet spectra have been tracked in time. Size evolutions are compared as predicted from the use of collision efficiencies computed using two different models to allow for droplet-droplet contact: one which considers slip flow effects only, and one which considers the combined effects of van der Waals forces and slip flow. The rate at which the droplet mass density function shifts to larger droplet sizes is increased by typically 20-25 percent, when collision efficiencies which include van der Waals forces are used.

  10. Rankine-Hugoniot relationships for molecular crystal explosives calculated using density functional theory based molecular dynamics

    NASA Astrophysics Data System (ADS)

    Mattsson, Ann E.; Wixom, Ryan R.; Mattsson, Thomas R.

    2011-06-01

    Density Functional Theory (DFT) has become a crucial tool for understanding the behavior of matter. The ability to perform high-fidelity calculations is most important for cases where experiments are impossible, dangerous, and/or prohibitively expensive to perform. For molecular crystals, successful use of DFT has been hampered by an inability to correctly describe the van der Waals' dominated equilibrium state. We have explored a way of bypassing this problem by using the Armiento-Mattsson 2005 (AM05) exchange-correlation functional. This functional is highly accurate for a wide range of solids, in particular in compression. Another advantage is that AM05 does not include any van der Waals' attraction. We will demonstrate the method on the PETN Hugoniot, and discuss our confidence in the results and ongoing research aimed at improvement. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  11. Density functional theory with van der waals corrections study of the adsorption of alkyl, alkylthiol, alkoxyl, and amino-alkyl chains on the H:Si(111) surface.

    PubMed

    Arefi, Hadi H; Nolan, Michael; Fagas, Giorgos

    2014-11-11

    Surface modification of silicon with organic monolayers tethered to the surface by different linkers is an important process in realizing future miniaturized electronic and sensor devices. Understanding the roles played by the nature of the linking group and the chain length on the adsorption structures and stabilities of these assemblies is vital to advance this technology. This paper presents a density functional theory (DFT) study of the hydrogen passivated Si(111) surface modified with alkyl chains of the general formula H:Si-(CH2)n-CH2 and H:Si-X-(CH2)n-CH3, where X = NH, O, S and n = (0, 1, 3, 5, 7, 9, 11), at half coverage. For (X)-hexane and (X)-dodecane functionalization, we also examined various coverages up to full monolayer grafting in order to validate the result of half covered surface and the linker effect on the coverage. We find that it is necessary to take into account the van der Waals interaction between the alkyl chains. The strongest binding is for the oxygen linker, followed by S, N, and C, irrespective of chain length. The result revealed that the sequence of the stability is independent of coverage; however, linkers other than carbon can shift the optimum coverage considerably and allow further packing density. For all linkers apart from sulfur, structural properties, in particular, surface-linker-chain angles, saturate to a single value once n > 3. For sulfur, we identify three regimes, namely, n = 0-3, n = 5-7, and n = 9-11, each with its own characteristic adsorption structures. Where possible, our computational results are shown to be consistent with the available experimental data and show how the fundamental structural properties of modified Si surfaces can be controlled by the choice of linking group and chain length.

  12. The X3LYP extended density functional for accurate descriptions of nonbond interactions, spin states, and thermochemical properties

    PubMed Central

    Xu, Xin; Goddard, William A.

    2004-01-01

    We derive the form for an exact exchange energy density for a density decaying with Gaussian-like behavior at long range. Based on this, we develop the X3LYP (extended hybrid functional combined with Lee–Yang–Parr correlation functional) extended functional for density functional theory to significantly improve the accuracy for hydrogen-bonded and van der Waals complexes while also improving the accuracy in heats of formation, ionization potentials, electron affinities, and total atomic energies [over the most popular and accurate method, B3LYP (Becke three-parameter hybrid functional combined with Lee–Yang–Parr correlation functional)]. X3LYP also leads to a good description of dipole moments, polarizabilities, and accurate excitation energies from s to d orbitals for transition metal atoms and ions. We suggest that X3LYP will be useful for predicting ligand binding in proteins and DNA. PMID:14981235

  13. The role of collective motion in the ultrafast charge transfer in van der Waals heterostructures

    DOE PAGES

    Wang, Han; Bang, Junhyeok; Sun, Yiyang; ...

    2016-05-10

    Here, the success of van der Waals (vdW) heterostructures, made of graphene, metal dichalcogenides, and other layered materials, hinges on the understanding of charge transfer across the interface as the foundation for new device concepts and applications. In contrast to conventional heterostructures, where a strong interfacial coupling is essential to charge transfer, recent experimental findings indicate that vdW heterostructues can exhibit ultra-fast charge transfer despite the weak binding of the heterostructure. Using time-dependent density functional theory molecular dynamics, we identify a strong dynamic coupling between the vdW layers associated with charge transfer. This dynamic coupling results in rapid nonlinear coherentmore » charge oscillations which constitute a purely electronic phenomenon and are shown to be a general feature of vdW heterostructures provided they have a critical minimum dipole coupling. Application to MoS2/WS2 heterostructure yields good agreement with experiment, indicating near complete charge transfer within a timescale of 100 fs.The success of van der Waals heterostructures made of graphene, metal dichalcogenides and other layered materials, hinges on the understanding of charge transfer across the interface as the foundation for new device concepts and applications. In contrast to conventional heterostructures, where a strong interfacial coupling is essential to charge transfer, recent experimental findings indicate that van der Waals heterostructues can exhibit ultrafast charge transfer despite the weak binding of these heterostructures. Here we find, using time-dependent density functional theory molecular dynamics, that the collective motion of excitons at the interface leads to plasma oscillations associated with optical excitation. By constructing a simple model of the van der Waals heterostructure, we show that there exists an unexpected criticality of the oscillations, yielding rapid charge transfer across the

  14. The role of collective motion in the ultrafast charge transfer in van der Waals heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Han; Bang, Junhyeok; Sun, Yiyang

    Here, the success of van der Waals (vdW) heterostructures, made of graphene, metal dichalcogenides, and other layered materials, hinges on the understanding of charge transfer across the interface as the foundation for new device concepts and applications. In contrast to conventional heterostructures, where a strong interfacial coupling is essential to charge transfer, recent experimental findings indicate that vdW heterostructues can exhibit ultra-fast charge transfer despite the weak binding of the heterostructure. Using time-dependent density functional theory molecular dynamics, we identify a strong dynamic coupling between the vdW layers associated with charge transfer. This dynamic coupling results in rapid nonlinear coherentmore » charge oscillations which constitute a purely electronic phenomenon and are shown to be a general feature of vdW heterostructures provided they have a critical minimum dipole coupling. Application to MoS2/WS2 heterostructure yields good agreement with experiment, indicating near complete charge transfer within a timescale of 100 fs.The success of van der Waals heterostructures made of graphene, metal dichalcogenides and other layered materials, hinges on the understanding of charge transfer across the interface as the foundation for new device concepts and applications. In contrast to conventional heterostructures, where a strong interfacial coupling is essential to charge transfer, recent experimental findings indicate that van der Waals heterostructues can exhibit ultrafast charge transfer despite the weak binding of these heterostructures. Here we find, using time-dependent density functional theory molecular dynamics, that the collective motion of excitons at the interface leads to plasma oscillations associated with optical excitation. By constructing a simple model of the van der Waals heterostructure, we show that there exists an unexpected criticality of the oscillations, yielding rapid charge transfer across the

  15. van der Waals torque

    NASA Astrophysics Data System (ADS)

    Esquivel-Sirvent, Raul; Schatz, George

    2014-03-01

    The theory of generalized van der Waals forces by Lifshtz when applied to optically anisotropic media predicts the existence of a torque. In this work we present a theoretical calculation of the van der Waals torque for two systems. First we consider two isotropic parallel plates where the anisotropy is induced using an external magnetic field. The anisotropy will in turn induce a torque. As a case study we consider III-IV semiconductors such as InSb that can support magneto plasmons. The calculations of the torque are done in the Voigt configuration, that occurs when the magnetic field is parallel to the surface of the slabs. The change in the dielectric function as the magnetic field increases has the effect of decreasing the van der Waals force and increasing the torque. Thus, the external magnetic field is used to tune both the force and torque. The second example we present is the use of the torque in the non retarded regime to align arrays of nano particle slabs. The torque is calculated within Barash and Ginzburg formalism in the nonretarded limit, and is quantified by the introduction of a Hamaker torque constant. Calculations are conducted between anisotropic slabs of materials including BaTiO3 and arrays of Ag nano particles. Depending on the shape and arrangement of the Ag nano particles the effective dielectric function of the array can be tuned as to make it more or less anisotropic. We show how this torque can be used in self assembly of arrays of nano particles. ref. R. Esquivel-Sirvent, G. C. Schatz, Phys. Chem C, 117, 5492 (2013). partial support from DGAPA-UNAM.

  16. Statistical substantiation of the van der Waals theory of inhomogeneous fluids

    NASA Astrophysics Data System (ADS)

    Baidakov, V. G.; Protsenko, S. P.; Chernykh, G. G.; Boltachev, G. Sh.

    2002-04-01

    Computer experiments on simulation of thermodynamic properties and structural characteristics of a Lennard-Jones fluid in one- and two-phase models have been performed for the purpose of checking the base concepts of the van der Waals theory. Calculations have been performed by the method of molecular dynamics at cutoff radii of the intermolecular potential rc,1=2.6σ and rc,2=6.78σ. The phase equilibrium parameters, surface tension, and density distribution have been determined in a two-phase model with a flat liquid-vapor interface. The strong dependence of these properties on the value of rc is shown. The p,ρ,T properties and correlation functions have been calculated in a homogeneous model for a stable and a metastable fluid. An equation of state for a Lennard-Jones fluid describing stable, metastable, and labile regions has been built. It is shown that at T>=1.1 the properties of a flat interface within the computer experimental error can be described by the van der Waals square-gradient theory with an influence parameter κ independent of the density. Taking into account the density dependence of κ through the second moment of the direct correlation function will deteriorate the agreement of the theory with data of computer simulation. The contribution of terms of a higher order than (∇ρ)2 to the Helmholtz free energy of an inhomogeneous system has been considered. It is shown that taking into account terms proportional to (∇ρ)4 leaves no way of obtaining agreement between the theory and simulation data, while taking into consideration of terms proportional to (∇ρ)6 makes it possible to describe with adequate accuracy all the properties of a flat interface in the temperature range from the triple to the critical point.

  17. From The Cover: The X3LYP extended density functional for accurate descriptions of nonbond interactions, spin states, and thermochemical properties.

    PubMed

    Xu, Xin; Goddard, William A

    2004-03-02

    We derive the form for an exact exchange energy density for a density decaying with Gaussian-like behavior at long range. Based on this, we develop the X3LYP (extended hybrid functional combined with Lee-Yang-Parr correlation functional) extended functional for density functional theory to significantly improve the accuracy for hydrogen-bonded and van der Waals complexes while also improving the accuracy in heats of formation, ionization potentials, electron affinities, and total atomic energies [over the most popular and accurate method, B3LYP (Becke three-parameter hybrid functional combined with Lee-Yang-Parr correlation functional)]. X3LYP also leads to a good description of dipole moments, polarizabilities, and accurate excitation energies from s to d orbitals for transition metal atoms and ions. We suggest that X3LYP will be useful for predicting ligand binding in proteins and DNA.

  18. From The Cover: The X3LYP extended density functional for accurate descriptions of nonbond interactions, spin states, and thermochemical properties

    NASA Astrophysics Data System (ADS)

    Xu, Xin; Goddard, William A., III

    2004-03-01

    We derive the form for an exact exchange energy density for a density decaying with Gaussian-like behavior at long range. Based on this, we develop the X3LYP (extended hybrid functional combined with Lee-Yang-Parr correlation functional) extended functional for density functional theory to significantly improve the accuracy for hydrogen-bonded and van der Waals complexes while also improving the accuracy in heats of formation, ionization potentials, electron affinities, and total atomic energies [over the most popular and accurate method, B3LYP (Becke three-parameter hybrid functional combined with Lee-Yang-Parr correlation functional)]. X3LYP also leads to a good description of dipole moments, polarizabilities, and accurate excitation energies from s to d orbitals for transition metal atoms and ions. We suggest that X3LYP will be useful for predicting ligand binding in proteins and DNA.

  19. EDITORIAL: Van der Waals interactions in advanced materials, in memory of David C Langreth Van der Waals interactions in advanced materials, in memory of David C Langreth

    NASA Astrophysics Data System (ADS)

    Hyldgaard, Per; Rahman, Talat S.

    2012-10-01

    Solid State Commun. 17 1425 [4]Gunnarsson O and Lundqvist B I 1976 Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism Phys. Rev. B 13 4274 [5]Langreth D C and Mehl M J 1981 Beyond the local-density approximation in calculations of ground-state electronic properties Phys. Rev. B 47 446 [6]Dion M, Rydberg H, Schröder E, Langreth D C and Lundqvist B I 2004 Van der Waals density functional for general geometries Phys. Rev. Lett. 92 246401 Thonhauser T, Cooper V R, Li S, Puzder A, Hyldgaard P and Langreth D C 2007 Van der Waals density functional: self-consistent potential and the nature of the van der Waals bond Phys. Rev. B 76 125112 [7]Lee K, Murray E D, Kong L, Lundqvist B I and Langreth D C 2010 A higher-accuracy van der Waals density functional Phys. Rev. B 82 081101 [8]Rapcewicz K and Ashcroft N W 1991 Fluctuation attraction in condensed matter: a nonlocal functional approach Phys. Rev. B 44 4032 Lundqvist B I, Andersson Y, Shao H, Chan S and Langreth D C 1995 Density functional theory including van der Waals forces Int. J. Quant. Chem. 56 247 [9]Langreth D C et al 2009 A density functional for sparse matter J. Phys.: Condens. Matter 21 084203 [10]For example, Kohn W, Meir Y and Makarov D E 1998 The exchange-correlation energy of a metallic surface Phys. Rev. Lett. 80 4153 Kurth S and Perdew J P 1999 Phys. Rev. B 59 10461 Dobson J F and Wang J 1999 Phys. Rev. Lett. 82 2123 Pitarke J M and Perdew J P 2003 Phys. Rev. B 67 045101 Vydrov O A and van Voorhi T 2009 Phys. Rev. Lett. 103 063004 [11]For example, Grimme S 2004 J. Comput. Phys. 25 1463 Tkatchenko A and Scheffler M 2009 Phys. Rev. Lett. 102 073005 Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154004 [12]Burke K 2012 Perspectives on density functional theory J. Chem. Phys. 136 150901 Van der Waals interactions in advanced materials contents Van der Waals interactions in advanced materials, in memory of David C LangrethPer Hyldgaard and Talat S

  20. The Economics of van der Waals Force Engineering

    NASA Astrophysics Data System (ADS)

    Pinto, Fabrizio

    2008-01-01

    As micro-electro-mechanical system (MEMS) fabrication continues on an ever-decreasing scale, new technological challenges must be successfully negotiated if Moore's Law is to be an even approximately valid model of the future of device miniaturization. Among the most significant obstacles is the existence of strong surface forces related to quantum mechanical van der Waals interatomic interactions, which rapidly diverge as the distance between any two neutral boundaries decreases. The van der Waals force is a contributing factor in several device failures and limitations, including, for instance, stiction and oscillator non-linearities. In the last decade, however, it has been conclusively shown that van der Waals forces are not just a MEMS limitation but can be engineered in both magnitude and sign so as to enable classes of proprietary inventions which either deliver novel capabilities or improve upon existing ones. The evolution of van der Waals force research from an almost exclusively theoretical field in quantum-electro-dynamics to an enabling nanotechnology discipline represents a useful example of the ongoing paradigm shift from government-centered to private-capital funded R&D in cutting-edge physics leading to potentially profitable products. In this paper, we discuss the reasons van der Waals force engineering may lead to the creation of thriving markets both in the short and medium terms by highlighting technical challenges that can be competitively addressed by this novel approach. We also discuss some notable obstacles to the cultural transformation of the academic research community required for the emergence of a functional van der Waals force engineering industry worldwide.

  1. Molecular density functional theory of water describing hydrophobicity at short and long length scales

    NASA Astrophysics Data System (ADS)

    Jeanmairet, Guillaume; Levesque, Maximilien; Borgis, Daniel

    2013-10-01

    We present an extension of our recently introduced molecular density functional theory of water [G. Jeanmairet et al., J. Phys. Chem. Lett. 4, 619 (2013)] to the solvation of hydrophobic solutes of various sizes, going from angstroms to nanometers. The theory is based on the quadratic expansion of the excess free energy in terms of two classical density fields: the particle density and the multipolar polarization density. Its implementation requires as input a molecular model of water and three measurable bulk properties, namely, the structure factor and the k-dependent longitudinal and transverse dielectric susceptibilities. The fine three-dimensional water structure around small hydrophobic molecules is found to be well reproduced. In contrast, the computed solvation free-energies appear overestimated and do not exhibit the correct qualitative behavior when the hydrophobic solute is grown in size. These shortcomings are corrected, in the spirit of the Lum-Chandler-Weeks theory, by complementing the functional with a truncated hard-sphere functional acting beyond quadratic order in density, and making the resulting functional compatible with the Van-der-Waals theory of liquid-vapor coexistence at long range. Compared to available molecular simulations, the approach yields reasonable solvation structure and free energy of hard or soft spheres of increasing size, with a correct qualitative transition from a volume-driven to a surface-driven regime at the nanometer scale.

  2. van der Waals Heterostructures with High Accuracy Rotational Alignment.

    PubMed

    Kim, Kyounghwan; Yankowitz, Matthew; Fallahazad, Babak; Kang, Sangwoo; Movva, Hema C P; Huang, Shengqiang; Larentis, Stefano; Corbet, Chris M; Taniguchi, Takashi; Watanabe, Kenji; Banerjee, Sanjay K; LeRoy, Brian J; Tutuc, Emanuel

    2016-03-09

    We describe the realization of van der Waals (vdW) heterostructures with accurate rotational alignment of individual layer crystal axes. We illustrate the approach by demonstrating a Bernal-stacked bilayer graphene formed using successive transfers of monolayer graphene flakes. The Raman spectra of this artificial bilayer graphene possess a wide 2D band, which is best fit by four Lorentzians, consistent with Bernal stacking. Scanning tunneling microscopy reveals no moiré pattern on the artificial bilayer graphene, and tunneling spectroscopy as a function of gate voltage reveals a constant density of states, also in agreement with Bernal stacking. In addition, electron transport probed in dual-gated samples reveals a band gap opening as a function of transverse electric field. To illustrate the applicability of this technique to realize vdW heterostructuctures in which the functionality is critically dependent on rotational alignment, we demonstrate resonant tunneling double bilayer graphene heterostructures separated by hexagonal boron-nitride dielectric.

  3. Adsorption of thiophene on transition metal surfaces with the inclusion of van der Waals effects

    NASA Astrophysics Data System (ADS)

    Malone, Walter; Matos, Jeronimo; Kara, Abdelkader

    2018-03-01

    We use density functional theory with the inclusion of the van der Waals interaction to study the adsorption of thiophene, C4H4S, on Pt, Rh, Pd, Au, and Ag (100) surfaces. The five van der Waals (vdW) inclusive functionals we employ are optB86b-vdW, optB88-vdW, optPBE-vdW, revPBE-vdW, and rPW86-vdW2. For comparison we also run calculations with the GGA- Perdew Burke and Ernzerhof (PBE) functional. We examine several adsorption sites with the plane of the molecule parallel or perpendicular to the surface. The most stable configuration on all metals was the site where the center of the thiophene lies over a 4-fold hollow site with the sulfur atom lying close to a top site. Furthermore, we examine several electronic and geometric properties of the adsorbate including charge transfer, modification of the d-band, adsorption energy, tilt angle, and adsorption height. For the coinage metals PBE gives the lowest adsorption energy. For reactive transition metal substrates, revPBE-vdW and rPW86-vdW2 give lower adsorption energies than PBE.

  4. Strong interlayer coupling in phosphorene/graphene van der Waals heterostructure: A first-principles investigation

    NASA Astrophysics Data System (ADS)

    Hu, Xue-Rong; Zheng, Ji-Ming; Ren, Zhao-Yu

    2018-04-01

    Based on first-principles calculations within the framework of density functional theory, we study the electronic properties of phosphorene/graphene heterostructures. Band gaps with different sizes are observed in the heterostructure, and charges transfer from graphene to phosphorene, causing the Fermi level of the heterostructure to shift downward with respect to the Dirac point of graphene. Significantly, strong coupling between two layers is discovered in the band spectrum even though it has a van der Waals heterostructure. A tight-binding Hamiltonian model is used to reveal that the resonance of the Bloch states between the phosphorene and graphene layers in certain K points combines with the symmetry matching between band states, which explains the reason for the strong coupling in such heterostructures. This work may enhance the understanding of interlayer interaction and composition mechanisms in van der Waals heterostructures consisting of two-dimensional layered nanomaterials, and may indicate potential reference information for nanoelectronic and optoelectronic applications.

  5. Antiferromagnetism in the van der Waals layered spin-lozenge semiconductor CrTe 3

    DOE PAGES

    McGuire, Michael A.; Garlea, V. Ovidiu; KC, Santosh; ...

    2017-04-14

    We have investigated the crystallographic, magnetic, and transport properties of the van der Waals bonded, layered compound CrTe 3 on single-crystal and polycrystalline materials. Furthermore, the crystal structure contains layers made up of lozenge-shaped Cr 4 tetramers. Electrical resistivity measurements show the crystals to be semiconducting, with a temperature dependence consistent with a band gap of 0.3 eV. The magnetic susceptibility exhibits a broad maximum near 300 K characteristic of low dimensional magnetic systems. Weak anomalies are observed in the susceptibility and heat capacity near 55 K, and single-crystal neutron diffraction reveals the onset of long-range antiferromagnetic order at thismore » temperature. Strongly dispersive spin waves are observed in the ordered state. Significant magnetoelastic coupling is indicated by the anomalous temperature dependence of the lattice parameters and is evident in structural optimization in van der Waals density functional theory calculations for different magnetic configurations. The cleavability of the compound is apparent from its handling and is confirmed by first-principles calculations, which predict a cleavage energy 0.5 J / m 2 , similar to graphite. Based on our results, CrTe 3 is identified as a promising compound for studies of low dimensional magnetism in bulk crystals as well as magnetic order in monolayer materials and van der Waals heterostructures.« less

  6. Antiferromagnetism in the van der Waals layered spin-lozenge semiconductor CrTe 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGuire, Michael A.; Garlea, V. Ovidiu; KC, Santosh

    We have investigated the crystallographic, magnetic, and transport properties of the van der Waals bonded, layered compound CrTe 3 on single-crystal and polycrystalline materials. Furthermore, the crystal structure contains layers made up of lozenge-shaped Cr 4 tetramers. Electrical resistivity measurements show the crystals to be semiconducting, with a temperature dependence consistent with a band gap of 0.3 eV. The magnetic susceptibility exhibits a broad maximum near 300 K characteristic of low dimensional magnetic systems. Weak anomalies are observed in the susceptibility and heat capacity near 55 K, and single-crystal neutron diffraction reveals the onset of long-range antiferromagnetic order at thismore » temperature. Strongly dispersive spin waves are observed in the ordered state. Significant magnetoelastic coupling is indicated by the anomalous temperature dependence of the lattice parameters and is evident in structural optimization in van der Waals density functional theory calculations for different magnetic configurations. The cleavability of the compound is apparent from its handling and is confirmed by first-principles calculations, which predict a cleavage energy 0.5 J / m 2 , similar to graphite. Based on our results, CrTe 3 is identified as a promising compound for studies of low dimensional magnetism in bulk crystals as well as magnetic order in monolayer materials and van der Waals heterostructures.« less

  7. Ab-initio study of structural and electronic properties of WS2/h-BN van der Waals heterostructure

    NASA Astrophysics Data System (ADS)

    Ghasemi majd, Zahra; Amiri, Peiman; Taghizadeh, Seyed Fardin

    2018-06-01

    First-principle calculations with different exchange-correlation functionals, including LDA, GGA, semi-empirical and ab-initio van der Waals in the forms of vdW-DF2B86R and vdW-DF2 were performed to evaluate the performance of different functionals in describing the bonding mechanism, adsorption energy and interlayer distance of WS2 monolayer on and between h-BN layers. The finding was that the vdW-DF2B86R seems to be the approach best lending itself to this purpose. In order to include the van der Waals (vdW) interactions in our calculations, we used the DFT-D2 and vdW methods, which gave rise to a physical adsorption with no net charge transfer between the WS2 layer and the corresponding substrates. In addition, we investigated the electronic and structural properties of WS2 and h-BN heterolayers, using vdW-DF2B86R functional. Based on density functional theory calculations, WS2 on and between h-BN layers showed a direct band gap at the K-point, which was experimentally observed.

  8. An extended hybrid density functional (X3LYP) with improved descriptions of nonbond interactions and thermodynamic properties of molecular systems.

    PubMed

    Xu, Xin; Zhang, Qingsong; Muller, Richard P; Goddard, William A

    2005-01-01

    We derive here the form for the exact exchange energy density for a density that decays with Gaussian-type behavior at long range. This functional is intermediate between the B88 and the PW91 exchange functionals. Using this modified functional to match the form expected for Gaussian densities, we propose the X3LYP extended functional. We find that X3LYP significantly outperforms Becke three parameter Lee-Yang-Parr (B3LYP) for describing van der Waals and hydrogen bond interactions, while performing slightly better than B3LYP for predicting heats of formation, ionization potentials, electron affinities, proton affinities, and total atomic energies as validated with the extended G2 set of atoms and molecules. Thus X3LYP greatly enlarges the field of applications for density functional theory. In particular the success of X3LYP in describing the water dimer (with R(e) and D(e) within the error bars of the most accurate determinations) makes it an excellent candidate for predicting accurate ligand-protein and ligand-DNA interactions. (c) 2005 American Institute of Physics.

  9. An extended hybrid density functional (X3LYP) with improved descriptions of nonbond interactions and thermodynamic properties of molecular systems

    NASA Astrophysics Data System (ADS)

    Xu, Xin; Zhang, Qingsong; Muller, Richard P.; Goddard, William A.

    2005-01-01

    We derive here the form for the exact exchange energy density for a density that decays with Gaussian-type behavior at long range. This functional is intermediate between the B88 and the PW91 exchange functionals. Using this modified functional to match the form expected for Gaussian densities, we propose the X3LYP extended functional. We find that X3LYP significantly outperforms Becke three parameter Lee-Yang-Parr (B3LYP) for describing van der Waals and hydrogen bond interactions, while performing slightly better than B3LYP for predicting heats of formation, ionization potentials, electron affinities, proton affinities, and total atomic energies as validated with the extended G2 set of atoms and molecules. Thus X3LYP greatly enlarges the field of applications for density functional theory. In particular the success of X3LYP in describing the water dimer (with Re and De within the error bars of the most accurate determinations) makes it an excellent candidate for predicting accurate ligand-protein and ligand-DNA interactions.

  10. mBEEF-vdW: Robust fitting of error estimation density functionals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lundgaard, Keld T.; Wellendorff, Jess; Voss, Johannes

    Here, we propose a general-purpose semilocal/nonlocal exchange-correlation functional approximation, named mBEEF-vdW. The exchange is a meta generalized gradient approximation, and the correlation is a semilocal and nonlocal mixture, with the Rutgers-Chalmers approximation for van der Waals (vdW) forces. The functional is fitted within the Bayesian error estimation functional (BEEF) framework. We improve the previously used fitting procedures by introducing a robust MM-estimator based loss function, reducing the sensitivity to outliers in the datasets. To more reliably determine the optimal model complexity, we furthermore introduce a generalization of the bootstrap 0.632 estimator with hierarchical bootstrap sampling and geometric mean estimator overmore » the training datasets. Using this estimator, we show that the robust loss function leads to a 10% improvement in the estimated prediction error over the previously used least-squares loss function. The mBEEF-vdW functional is benchmarked against popular density functional approximations over a wide range of datasets relevant for heterogeneous catalysis, including datasets that were not used for its training. Overall, we find that mBEEF-vdW has a higher general accuracy than competing popular functionals, and it is one of the best performing functionals on chemisorption systems, surface energies, lattice constants, and dispersion. We also show the potential-energy curve of graphene on the nickel(111) surface, where mBEEF-vdW matches the experimental binding length. mBEEF-vdW is currently available in gpaw and other density functional theory codes through Libxc, version 3.0.0.« less

  11. mBEEF-vdW: Robust fitting of error estimation density functionals

    DOE PAGES

    Lundgaard, Keld T.; Wellendorff, Jess; Voss, Johannes; ...

    2016-06-15

    Here, we propose a general-purpose semilocal/nonlocal exchange-correlation functional approximation, named mBEEF-vdW. The exchange is a meta generalized gradient approximation, and the correlation is a semilocal and nonlocal mixture, with the Rutgers-Chalmers approximation for van der Waals (vdW) forces. The functional is fitted within the Bayesian error estimation functional (BEEF) framework. We improve the previously used fitting procedures by introducing a robust MM-estimator based loss function, reducing the sensitivity to outliers in the datasets. To more reliably determine the optimal model complexity, we furthermore introduce a generalization of the bootstrap 0.632 estimator with hierarchical bootstrap sampling and geometric mean estimator overmore » the training datasets. Using this estimator, we show that the robust loss function leads to a 10% improvement in the estimated prediction error over the previously used least-squares loss function. The mBEEF-vdW functional is benchmarked against popular density functional approximations over a wide range of datasets relevant for heterogeneous catalysis, including datasets that were not used for its training. Overall, we find that mBEEF-vdW has a higher general accuracy than competing popular functionals, and it is one of the best performing functionals on chemisorption systems, surface energies, lattice constants, and dispersion. We also show the potential-energy curve of graphene on the nickel(111) surface, where mBEEF-vdW matches the experimental binding length. mBEEF-vdW is currently available in gpaw and other density functional theory codes through Libxc, version 3.0.0.« less

  12. The adsorption of NO, NH3, N2 on carbon surface: a density functional theory study.

    PubMed

    Wang, Jiayong; Yang, Mo; Deng, Debing; Qiu, Shuxia

    2017-08-11

    To explore the adsorption mechanism of NO, NH 3 , N 2 on a carbon surface, and the effect of basic and acidic functional groups, density functional theory was employed to investigate the interactions between these molecules and carbon surfaces. Molecular electrostatic potential, Mulliken population analyses, reduced density gradient, and Mayer bond order analyses were used to clarify the adsorption mechanism. The results indicate that van der Waals interactions are responsible for N 2 physisorption, and N 2 is the least likely to adsorb on a carbon surface. Modification of carbon materials to decorate basic or acidic functional groups could enhance the NH 3 physisorption because of hydrogen bonding or electrostatic interactions, however, NO physisorption on a carbon surface is poor. Zig-zag sites are more reactive than armchair sites when these gas molecules absorb on the edge sites of carbon surface. Graphical abstract NH 3 , N 2 , NO adsortion on carbon surface.

  13. Out-of-plane heat transfer in van der Waals stacks through electron-hyperbolic phonon coupling

    NASA Astrophysics Data System (ADS)

    Tielrooij, Klaas-Jan; Hesp, Niels C. H.; Principi, Alessandro; Lundeberg, Mark B.; Pogna, Eva A. A.; Banszerus, Luca; Mics, Zoltán; Massicotte, Mathieu; Schmidt, Peter; Davydovskaya, Diana; Purdie, David G.; Goykhman, Ilya; Soavi, Giancarlo; Lombardo, Antonio; Watanabe, Kenji; Taniguchi, Takashi; Bonn, Mischa; Turchinovich, Dmitry; Stampfer, Christoph; Ferrari, Andrea C.; Cerullo, Giulio; Polini, Marco; Koppens, Frank H. L.

    2018-01-01

    Van der Waals heterostructures have emerged as promising building blocks that offer access to new physics, novel device functionalities and superior electrical and optoelectronic properties1-7. Applications such as thermal management, photodetection, light emission, data communication, high-speed electronics and light harvesting8-16 require a thorough understanding of (nanoscale) heat flow. Here, using time-resolved photocurrent measurements, we identify an efficient out-of-plane energy transfer channel, where charge carriers in graphene couple to hyperbolic phonon polaritons17-19 in the encapsulating layered material. This hyperbolic cooling is particularly efficient, giving picosecond cooling times for hexagonal BN, where the high-momentum hyperbolic phonon polaritons enable efficient near-field energy transfer. We study this heat transfer mechanism using distinct control knobs to vary carrier density and lattice temperature, and find excellent agreement with theory without any adjustable parameters. These insights may lead to the ability to control heat flow in van der Waals heterostructures.

  14. Rationale for switching to nonlocal functionals in density functional theory

    NASA Astrophysics Data System (ADS)

    Lazić, P.; Atodiresei, N.; Caciuc, V.; Brako, R.; Gumhalter, B.; Blügel, S.

    2012-10-01

    Density functional theory (DFT) has been steadily improving over the past few decades, becoming the standard tool for electronic structure calculations. The early local functionals (LDA) were eventually replaced by more accurate semilocal functionals (GGA) which are in use today. A major persisting drawback is the lack of the nonlocal correlation which is at the core of dispersive (van der Waals) forces, so that a large and important class of systems remains outside the scope of DFT. The vdW-DF correlation functional of Langreth and Lundqvist, published in 2004, was the first nonlocal functional which could be easily implemented. Beyond expectations, the nonlocal functional has brought significant improvement to systems that were believed not to be sensitive to nonlocal correlations. In this paper, we use the example of graphene nanodomes growing on the Ir(111) surface, where with an increase of the size of the graphene islands the character of the bonding changes from strong chemisorption towards almost pure physisorption. We demonstrate how the seamless character of the vdW-DF functionals makes it possible to treat all regimes self-consistently, proving to be a systematic and consistent improvement of DFT regardless of the nature of bonding. We also discuss the typical surface science example of CO adsorption on (111) surfaces of metals, which shows that the nonlocal correlation may also be crucial for strongly chemisorbed systems. We briefly discuss open questions, in particular the choice of the most appropriate exchange part of the functional. As the vdW-DF begins to appear implemented self-consistently in a number of popular DFT codes, with numerical costs close to the GGA calculations, we draw the attention of the DFT community to the advantages and benefits of the adoption of this new class of functionals.

  15. Rationale for switching to nonlocal functionals in density functional theory.

    PubMed

    Lazić, P; Atodiresei, N; Caciuc, V; Brako, R; Gumhalter, B; Blügel, S

    2012-10-24

    Density functional theory (DFT) has been steadily improving over the past few decades, becoming the standard tool for electronic structure calculations. The early local functionals (LDA) were eventually replaced by more accurate semilocal functionals (GGA) which are in use today. A major persisting drawback is the lack of the nonlocal correlation which is at the core of dispersive (van der Waals) forces, so that a large and important class of systems remains outside the scope of DFT. The vdW-DF correlation functional of Langreth and Lundqvist, published in 2004, was the first nonlocal functional which could be easily implemented. Beyond expectations, the nonlocal functional has brought significant improvement to systems that were believed not to be sensitive to nonlocal correlations. In this paper, we use the example of graphene nanodomes growing on the Ir(111) surface, where with an increase of the size of the graphene islands the character of the bonding changes from strong chemisorption towards almost pure physisorption. We demonstrate how the seamless character of the vdW-DF functionals makes it possible to treat all regimes self-consistently, proving to be a systematic and consistent improvement of DFT regardless of the nature of bonding. We also discuss the typical surface science example of CO adsorption on (111) surfaces of metals, which shows that the nonlocal correlation may also be crucial for strongly chemisorbed systems. We briefly discuss open questions, in particular the choice of the most appropriate exchange part of the functional. As the vdW-DF begins to appear implemented self-consistently in a number of popular DFT codes, with numerical costs close to the GGA calculations, we draw the attention of the DFT community to the advantages and benefits of the adoption of this new class of functionals.

  16. Compact two-electron wave function for bond dissociation and Van der Waals interactions: a natural amplitude assessment.

    PubMed

    Giesbertz, Klaas J H; van Leeuwen, Robert

    2014-05-14

    Electron correlations in molecules can be divided in short range dynamical correlations, long range Van der Waals type interactions, and near degeneracy static correlations. In this work, we analyze for a one-dimensional model of a two-electron system how these three types of correlations can be incorporated in a simple wave function of restricted functional form consisting of an orbital product multiplied by a single correlation function f (r12) depending on the interelectronic distance r12. Since the three types of correlations mentioned lead to different signatures in terms of the natural orbital (NO) amplitudes in two-electron systems, we make an analysis of the wave function in terms of the NO amplitudes for a model system of a diatomic molecule. In our numerical implementation, we fully optimize the orbitals and the correlation function on a spatial grid without restrictions on their functional form. Due to this particular form of the wave function, we can prove that none of the amplitudes vanishes and moreover that it displays a distinct sign pattern and a series of avoided crossings as a function of the bond distance in agreement with the exact solution. This shows that the wave function ansatz correctly incorporates the long range Van der Waals interactions. We further show that the approximate wave function gives an excellent binding curve and is able to describe static correlations. We show that in order to do this the correlation function f (r12) needs to diverge for large r12 at large internuclear distances while for shorter bond distances it increases as a function of r12 to a maximum value after which it decays exponentially. We further give a physical interpretation of this behavior.

  17. When 2D Materials Meet Molecules: Opportunities and Challenges of Hybrid Organic/Inorganic van der Waals Heterostructures.

    PubMed

    Gobbi, Marco; Orgiu, Emanuele; Samorì, Paolo

    2018-05-01

    van der Waals heterostructures, composed of vertically stacked inorganic 2D materials, represent an ideal platform to demonstrate novel device architectures and to fabricate on-demand materials. The incorporation of organic molecules within these systems holds an immense potential, since, while nature offers a finite number of 2D materials, an almost unlimited variety of molecules can be designed and synthesized with predictable functionalities. The possibilities offered by systems in which continuous molecular layers are interfaced with inorganic 2D materials to form hybrid organic/inorganic van der Waals heterostructures are emphasized. Similar to their inorganic counterpart, the hybrid structures have been exploited to put forward novel device architectures, such as antiambipolar transistors and barristors. Moreover, specific molecular groups can be employed to modify intrinsic properties and confer new capabilities to 2D materials. In particular, it is highlighted how molecular self-assembly at the surface of 2D materials can be mastered to achieve precise control over position and density of (molecular) functional groups, paving the way for a new class of hybrid functional materials whose final properties can be selected by careful molecular design. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Two-point correlation function in systems with van der Waals type interaction

    NASA Astrophysics Data System (ADS)

    Dantchev, D.

    2001-09-01

    The behavior of the bulk two-point correlation function G( r; T| d ) in d-dimensional system with van der Waals type interactions is investigated and its consequences on the finite-size scaling properties of the susceptibility in such finite systems with periodic boundary conditions is discussed within mean-spherical model which is an example of Ornstein and Zernike type theory. The interaction is supposed to decay at large distances r as r - (d + σ), with 2 < d < 4, 2 < σ < 4 and d + σ≤6. It is shown that G( r; T| d ) decays as r - (d - 2) for 1 ≪ r≪ξ, exponentially for ξ≪ r≪ r *, where r * = (σ - 2)ξlnξ, and again in a power law as r - (d + σ) for r≫ r *. The analytical form of the leading-order scaling function of G( r; T| d ) in any of these regimes is derived.

  19. Quantum Monte Carlo calculations of van der Waals interactions between aromatic benzene rings

    NASA Astrophysics Data System (ADS)

    Azadi, Sam; Kühne, T. D.

    2018-05-01

    The magnitude of finite-size effects and Coulomb interactions in quantum Monte Carlo simulations of van der Waals interactions between weakly bonded benzene molecules are investigated. To that extent, two trial wave functions of the Slater-Jastrow and Backflow-Slater-Jastrow types are employed to calculate the energy-volume equation of state. We assess the impact of the backflow coordinate transformation on the nonlocal correlation energy. We found that the effect of finite-size errors in quantum Monte Carlo calculations on energy differences is particularly large and may even be more important than the employed trial wave function. In addition to the cohesive energy, the singlet excitonic energy gap and the energy gap renormalization of crystalline benzene at different densities are computed.

  20. Isotope engineering of van der Waals interactions in hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Vuong, T. Q. P.; Liu, S.; van der Lee, A.; Cuscó, R.; Artús, L.; Michel, T.; Valvin, P.; Edgar, J. H.; Cassabois, G.; Gil, B.

    2018-02-01

    Hexagonal boron nitride is a model lamellar compound where weak, non-local van der Waals interactions ensure the vertical stacking of two-dimensional honeycomb lattices made of strongly bound boron and nitrogen atoms. We study the isotope engineering of lamellar compounds by synthesizing hexagonal boron nitride crystals with nearly pure boron isotopes (10B and 11B) compared to those with the natural distribution of boron (20 at% 10B and 80 at% 11B). On the one hand, as with standard semiconductors, both the phonon energy and electronic bandgap varied with the boron isotope mass, the latter due to the quantum effect of zero-point renormalization. On the other hand, temperature-dependent experiments focusing on the shear and breathing motions of adjacent layers revealed the specificity of isotope engineering in a layered material, with a modification of the van der Waals interactions upon isotope purification. The electron density distribution is more diffuse between adjacent layers in 10BN than in 11BN crystals. Our results open perspectives in understanding and controlling van der Waals bonding in layered materials.

  1. Isotope engineering of van der Waals interactions in hexagonal boron nitride.

    PubMed

    Vuong, T Q P; Liu, S; Van der Lee, A; Cuscó, R; Artús, L; Michel, T; Valvin, P; Edgar, J H; Cassabois, G; Gil, B

    2018-02-01

    Hexagonal boron nitride is a model lamellar compound where weak, non-local van der Waals interactions ensure the vertical stacking of two-dimensional honeycomb lattices made of strongly bound boron and nitrogen atoms. We study the isotope engineering of lamellar compounds by synthesizing hexagonal boron nitride crystals with nearly pure boron isotopes ( 10 B and 11 B) compared to those with the natural distribution of boron (20 at% 10 B and 80 at% 11 B). On the one hand, as with standard semiconductors, both the phonon energy and electronic bandgap varied with the boron isotope mass, the latter due to the quantum effect of zero-point renormalization. On the other hand, temperature-dependent experiments focusing on the shear and breathing motions of adjacent layers revealed the specificity of isotope engineering in a layered material, with a modification of the van der Waals interactions upon isotope purification. The electron density distribution is more diffuse between adjacent layers in 10 BN than in 11 BN crystals. Our results open perspectives in understanding and controlling van der Waals bonding in layered materials.

  2. Inflationary universe in terms of a van der Waals viscous fluid

    NASA Astrophysics Data System (ADS)

    Brevik, I.; Elizalde, E.; Odintsov, S. D.; Timoshkin, A. V.

    The inflationary expansion of our early-time universe is considered in terms of the van der Waals equation, as equation of state for the cosmic fluid, where a bulk viscosity contribution is assumed to be present. The corresponding gravitational equations for the energy density in a homogeneous and isotropic Friedmann-Lemaître-Robertson-Walker universe are solved, and an analytic expression for the scale factor is obtained. Attention is paid, specifically, to the role of the viscosity term in the accelerated expansion; the values of the slow-roll parameters, the spectral index, and the tensor-to-scalar ratio for the van der Waals model are calculated and compared with the most recent astronomical data from the Planck satellite. By imposing reasonable restrictions on the parameters of the van der Waals equation, in the presence of viscosity, it is shown to be possible for this model to comply quite precisely with the observational data. One can therefore conclude that the inclusion of viscosity in the theory of the inflationary epoch may definitely improve the cosmological models.

  3. Importance of van der Waals interaction on structural, vibrational, and thermodynamic properties of NaCl

    NASA Astrophysics Data System (ADS)

    Marcondes, Michel L.; Wentzcovitch, Renata M.; Assali, Lucy V. C.

    2018-05-01

    Thermal equations of state (EOS) are essential in several scientific domains. However, experimental determination of EOS parameters may be limited at extreme conditions, therefore, ab initio calculations have become an important method to obtain them. Density functional theory (DFT) and its extensions with various degrees of approximations for the exchange and correlation (XC) energy is the method of choice, but large errors in the EOS parameters are still common. The alkali halides have been problematic from the onset of this field and the quest for appropriate DFT functionals for such ionic and relatively weakly bonded systems has remained an active topic of research. Here we use DFT + van der Waals functionals to calculate vibrational properties, thermal EOS, thermodynamic properties, and the B1 to B2 phase boundary of NaCl with high precision. Our results reveal a remarkable improvement over the performance of standard local density approximation and generalized gradient approximation functionals for all these properties and phase transition boundary, as well as great sensitivity of anharmonic effects on the choice of XC functional.

  4. Nuclear spin-spin coupling in a van der Waals-bonded system: xenon dimer.

    PubMed

    Vaara, Juha; Hanni, Matti; Jokisaari, Jukka

    2013-03-14

    Nuclear spin-spin coupling over van der Waals bond has recently been observed via the frequency shift of solute protons in a solution containing optically hyperpolarized (129)Xe nuclei. We carry out a first-principles computational study of the prototypic van der Waals-bonded xenon dimer, where the spin-spin coupling between two magnetically non-equivalent isotopes, J((129)Xe - (131)Xe), is observable. We use relativistic theory at the four-component Dirac-Hartree-Fock and Dirac-density-functional theory levels using novel completeness-optimized Gaussian basis sets and choosing the functional based on a comparison with correlated ab initio methods at the nonrelativistic level. J-coupling curves are provided at different levels of theory as functions of the internuclear distance in the xenon dimer, demonstrating cross-coupling effects between relativity and electron correlation for this property. Calculations on small Xe clusters are used to estimate the importance of many-atom effects on J((129)Xe - (131)Xe). Possibilities of observing J((129)Xe - (131)Xe) in liquid xenon are critically examined, based on molecular dynamics simulation. A simplistic spherical model is set up for the xenon dimer confined in a cavity, such as in microporous materials. It is shown that the on the average shorter internuclear distance enforced by the confinement increases the magnitude of the coupling as compared to the bulk liquid case, rendering J((129)Xe - (131)Xe) in a cavity a feasible target for experimental investigation.

  5. Revisiting the adsorption of copper-phthalocyanine on Au(111) including van der Waals corrections.

    PubMed

    Lüder, Johann; Eriksson, Olle; Sanyal, Biplab; Brena, Barbara

    2014-03-28

    We have studied the adsorption of copper-phthalocyanine on Au(111) by means of van der Waals corrected density functional theory using the Tkatchenko-Scheffler method. We have compared the element and site resolved adsorption distances to recent experimental normal-incident X-ray standing wave measurements. The measured adsorption distances could be reproduced within a deviation of 1% for the Cu atom, 1% for the C atoms, and 2% for the N atoms. The molecule was found to have a magnetic moment of 1 μB distributed over the Cu and the N atoms of the pyrrole ring. Simulated scanning tunnel microscopy images based on the total and on the spin-resolved differential charge densities are provided for bias voltages of -1.45 and 1.45 eV.

  6. Revisiting the adsorption of copper-phthalocyanine on Au(111) including van der Waals corrections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lüder, Johann; Eriksson, Olle; Sanyal, Biplab

    2014-03-28

    We have studied the adsorption of copper-phthalocyanine on Au(111) by means of van der Waals corrected density functional theory using the Tkatchenko-Scheffler method. We have compared the element and site resolved adsorption distances to recent experimental normal-incident X-ray standing wave measurements. The measured adsorption distances could be reproduced within a deviation of 1% for the Cu atom, 1% for the C atoms, and 2% for the N atoms. The molecule was found to have a magnetic moment of 1 μ{sub B} distributed over the Cu and the N atoms of the pyrrole ring. Simulated scanning tunnel microscopy images based onmore » the total and on the spin-resolved differential charge densities are provided for bias voltages of −1.45 and 1.45 eV.« less

  7. Adsorption and oxidation of SO2 by graphene oxides: A van der Waals density functional theory study

    NASA Astrophysics Data System (ADS)

    Zhang, Huijuan; Cen, Wanglai; Liu, Jie; Guo, Jiaxiu; Yin, Huaqiang; Ning, Ping

    2015-01-01

    Carbon materials have been used for low temperature (20-150 °C) catalytic removal of SO2 from the coal-burned flue gases for a long time, but the mechanism at atomic level is still controversial. Density functional theory was used to investigate the adsorption and oxidation of SO2 on elaborated graphene oxides (GOs) to discover the insights. It is found that the hydroxyl groups on GO surface possess bi-functional effects: both enhancing the adsorption of SO2 through H-bonding interaction and reducing the reaction barrier for its oxidation to SO3. The promotion of oxidation is related to a pre-activation of the surface epoxy group. Based on Bader population, charge difference and electron localization function analysis, a charge transfer channel is proposed to explain the pre-activation.

  8. Van der Waals equation of state revisited: importance of the dispersion correction.

    PubMed

    de Visser, Sam P

    2011-04-28

    One of the most basic equations of state describing nonideal gases and liquids is the van der Waals equation of state, and as a consequence, it is generally taught in most first year undergraduate chemistry courses. In this work, we show that the constants a and b in the van der Waals equation of state are linearly proportional to the polarizability volume of the molecules in a gas or liquid. Using this information, a new thermodynamic one-parameter equation of state is derived that contains experimentally measurable variables and physics constants only. This is the first equation of state apart from the Ideal Gas Law that contains experimentally measurable variables and physics constants only, and as such, it may be a very useful and practical equation for the description of dilute gases and liquids. The modified van der Waals equation of state describes pV as the sum of repulsive and attractive intermolecular interaction energies that are represented by an exponential repulsion function between the electron clouds of the molecules and a London dispersion component, respectively. The newly derived equation of state is tested against experimental data for several gas and liquid examples, and the agreement is satisfactory. The description of the equation of state as a one-parameter function also has implications on other thermodynamic functions, such as critical parameters, virial coefficients, and isothermal compressibilities. Using our modified van der Waals equation of state, we show that all of these properties are a function of the molecular polarizability volume. Correlations of experimental data confirm the derived proportionalities.

  9. Redox levels in aqueous solution: Effect of van der Waals interactions and hybrid functionals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ambrosio, Francesco, E-mail: Francesco.Ambrosio@epfl.ch; Miceli, Giacomo; Pasquarello, Alfredo

    2015-12-28

    We investigate redox levels in aqueous solution using a combination of ab initio molecular dynamics (MD) simulations and thermodynamic integration methods. The molecular dynamics are performed with both the semilocal Perdew-Burke-Ernzerhof functional and a nonlocal functional (rVV10) accounting for van der Waals (vdW) interactions. The band edges are determined through three different schemes, namely, from the energy of the highest occupied and of the lowest unoccupied Kohn-Sham states, from total-energy differences, and from a linear extrapolation of the density of states. It is shown that the latter does not depend on the system size while the former two are subjectmore » to significant finite-size effects. For the redox levels, we provide a formulation in analogy to the definition of charge transition levels for defects in crystalline materials. We consider the H{sup +}/H{sub 2} level defining the standard hydrogen electrode, the OH{sup −}/OH{sup ∗} level corresponding to the oxidation of the hydroxyl ion, and the H{sub 2}O/OH{sup ∗} level for the dehydrogenation of water. In spite of the large structural modifications induced in liquid water, vdW interactions do not lead to any significant structural effect on the calculated band gap and band edges. The effect on the redox levels is also small since the solvation properties of ionic species are little affected by vdW interactions. Since the electronic properties are not significantly affected by the underlying structural properties, it is justified to perform hybrid functional calculations on the configurations of our MD simulations. The redox levels calculated as a function of the fraction α of Fock exchange are found to remain constant, reproducing a general behavior previously observed for charge transition levels of defects. Comparison with experimental values shows very good agreement. At variance, the band edges and the band gap evolve linearly with α. For α ≃ 0.40, we achieve a band gap

  10. Redox levels in aqueous solution: Effect of van der Waals interactions and hybrid functionals.

    PubMed

    Ambrosio, Francesco; Miceli, Giacomo; Pasquarello, Alfredo

    2015-12-28

    We investigate redox levels in aqueous solution using a combination of ab initio molecular dynamics (MD) simulations and thermodynamic integration methods. The molecular dynamics are performed with both the semilocal Perdew-Burke-Ernzerhof functional and a nonlocal functional (rVV10) accounting for van der Waals (vdW) interactions. The band edges are determined through three different schemes, namely, from the energy of the highest occupied and of the lowest unoccupied Kohn-Sham states, from total-energy differences, and from a linear extrapolation of the density of states. It is shown that the latter does not depend on the system size while the former two are subject to significant finite-size effects. For the redox levels, we provide a formulation in analogy to the definition of charge transition levels for defects in crystalline materials. We consider the H(+)/H2 level defining the standard hydrogen electrode, the OH(-)/OH(∗) level corresponding to the oxidation of the hydroxyl ion, and the H2O/OH(∗) level for the dehydrogenation of water. In spite of the large structural modifications induced in liquid water, vdW interactions do not lead to any significant structural effect on the calculated band gap and band edges. The effect on the redox levels is also small since the solvation properties of ionic species are little affected by vdW interactions. Since the electronic properties are not significantly affected by the underlying structural properties, it is justified to perform hybrid functional calculations on the configurations of our MD simulations. The redox levels calculated as a function of the fraction α of Fock exchange are found to remain constant, reproducing a general behavior previously observed for charge transition levels of defects. Comparison with experimental values shows very good agreement. At variance, the band edges and the band gap evolve linearly with α. For α ≃ 0.40, we achieve a band gap, band-edge positions, and redox levels in

  11. Redox levels in aqueous solution: Effect of van der Waals interactions and hybrid functionals

    NASA Astrophysics Data System (ADS)

    Ambrosio, Francesco; Miceli, Giacomo; Pasquarello, Alfredo

    2015-12-01

    We investigate redox levels in aqueous solution using a combination of ab initio molecular dynamics (MD) simulations and thermodynamic integration methods. The molecular dynamics are performed with both the semilocal Perdew-Burke-Ernzerhof functional and a nonlocal functional (rVV10) accounting for van der Waals (vdW) interactions. The band edges are determined through three different schemes, namely, from the energy of the highest occupied and of the lowest unoccupied Kohn-Sham states, from total-energy differences, and from a linear extrapolation of the density of states. It is shown that the latter does not depend on the system size while the former two are subject to significant finite-size effects. For the redox levels, we provide a formulation in analogy to the definition of charge transition levels for defects in crystalline materials. We consider the H+/H2 level defining the standard hydrogen electrode, the OH-/OH∗ level corresponding to the oxidation of the hydroxyl ion, and the H2O/OH∗ level for the dehydrogenation of water. In spite of the large structural modifications induced in liquid water, vdW interactions do not lead to any significant structural effect on the calculated band gap and band edges. The effect on the redox levels is also small since the solvation properties of ionic species are little affected by vdW interactions. Since the electronic properties are not significantly affected by the underlying structural properties, it is justified to perform hybrid functional calculations on the configurations of our MD simulations. The redox levels calculated as a function of the fraction α of Fock exchange are found to remain constant, reproducing a general behavior previously observed for charge transition levels of defects. Comparison with experimental values shows very good agreement. At variance, the band edges and the band gap evolve linearly with α. For α ≃ 0.40, we achieve a band gap, band-edge positions, and redox levels in overall

  12. mBEEF-vdW: Robust fitting of error estimation density functionals

    NASA Astrophysics Data System (ADS)

    Lundgaard, Keld T.; Wellendorff, Jess; Voss, Johannes; Jacobsen, Karsten W.; Bligaard, Thomas

    2016-06-01

    We propose a general-purpose semilocal/nonlocal exchange-correlation functional approximation, named mBEEF-vdW. The exchange is a meta generalized gradient approximation, and the correlation is a semilocal and nonlocal mixture, with the Rutgers-Chalmers approximation for van der Waals (vdW) forces. The functional is fitted within the Bayesian error estimation functional (BEEF) framework [J. Wellendorff et al., Phys. Rev. B 85, 235149 (2012), 10.1103/PhysRevB.85.235149; J. Wellendorff et al., J. Chem. Phys. 140, 144107 (2014), 10.1063/1.4870397]. We improve the previously used fitting procedures by introducing a robust MM-estimator based loss function, reducing the sensitivity to outliers in the datasets. To more reliably determine the optimal model complexity, we furthermore introduce a generalization of the bootstrap 0.632 estimator with hierarchical bootstrap sampling and geometric mean estimator over the training datasets. Using this estimator, we show that the robust loss function leads to a 10 % improvement in the estimated prediction error over the previously used least-squares loss function. The mBEEF-vdW functional is benchmarked against popular density functional approximations over a wide range of datasets relevant for heterogeneous catalysis, including datasets that were not used for its training. Overall, we find that mBEEF-vdW has a higher general accuracy than competing popular functionals, and it is one of the best performing functionals on chemisorption systems, surface energies, lattice constants, and dispersion. We also show the potential-energy curve of graphene on the nickel(111) surface, where mBEEF-vdW matches the experimental binding length. mBEEF-vdW is currently available in gpaw and other density functional theory codes through Libxc, version 3.0.0.

  13. Accurate van der Waals force field for gas adsorption in porous materials.

    PubMed

    Sun, Lei; Yang, Li; Zhang, Ya-Dong; Shi, Qi; Lu, Rui-Feng; Deng, Wei-Qiao

    2017-09-05

    An accurate van der Waals force field (VDW FF) was derived from highly precise quantum mechanical (QM) calculations. Small molecular clusters were used to explore van der Waals interactions between gas molecules and porous materials. The parameters of the accurate van der Waals force field were determined by QM calculations. To validate the force field, the prediction results from the VDW FF were compared with standard FFs, such as UFF, Dreiding, Pcff, and Compass. The results from the VDW FF were in excellent agreement with the experimental measurements. This force field can be applied to the prediction of the gas density (H 2 , CO 2 , C 2 H 4 , CH 4 , N 2 , O 2 ) and adsorption performance inside porous materials, such as covalent organic frameworks (COFs), zeolites and metal organic frameworks (MOFs), consisting of H, B, N, C, O, S, Si, Al, Zn, Mg, Ni, and Co. This work provides a solid basis for studying gas adsorption in porous materials. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Tuning electronic transport in epitaxial graphene-based van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Chuan; Li, Jun; de La Barrera, Sergio C.; Eichfeld, Sarah M.; Nie, Yifan; Addou, Rafik; Mende, Patrick C.; Wallace, Robert M.; Cho, Kyeongjae; Feenstra, Randall M.; Robinson, Joshua A.

    2016-04-01

    Two-dimensional tungsten diselenide (WSe2) has been used as a component in atomically thin photovoltaic devices, field effect transistors, and tunneling diodes in tandem with graphene. In some applications it is necessary to achieve efficient charge transport across the interface of layered WSe2-graphene, a semiconductor to semimetal junction with a van der Waals (vdW) gap. In such cases, band alignment engineering is required to ensure a low-resistance, ohmic contact. In this work, we investigate the impact of graphene electronic properties on the transport at the WSe2-graphene interface. Electrical transport measurements reveal a lower resistance between WSe2 and fully hydrogenated epitaxial graphene (EGFH) compared to WSe2 grown on partially hydrogenated epitaxial graphene (EGPH). Using low-energy electron microscopy and reflectivity on these samples, we extract the work function difference between the WSe2 and graphene and employ a charge transfer model to determine the WSe2 carrier density in both cases. The results indicate that WSe2-EGFH displays ohmic behavior at small biases due to a large hole density in the WSe2, whereas WSe2-EGPH forms a Schottky barrier junction.Two-dimensional tungsten diselenide (WSe2) has been used as a component in atomically thin photovoltaic devices, field effect transistors, and tunneling diodes in tandem with graphene. In some applications it is necessary to achieve efficient charge transport across the interface of layered WSe2-graphene, a semiconductor to semimetal junction with a van der Waals (vdW) gap. In such cases, band alignment engineering is required to ensure a low-resistance, ohmic contact. In this work, we investigate the impact of graphene electronic properties on the transport at the WSe2-graphene interface. Electrical transport measurements reveal a lower resistance between WSe2 and fully hydrogenated epitaxial graphene (EGFH) compared to WSe2 grown on partially hydrogenated epitaxial graphene (EGPH). Using low

  15. van der Waals-Tonks-type equations of state for hard-hypersphere fluids in four and five dimensions

    NASA Astrophysics Data System (ADS)

    Wang, Xian-Zhi

    2004-04-01

    Recently, we developed accurate van der Waals-Tonks-type equations of state for hard-disk and hard-sphere fluids by using the known virial coefficients. In this paper, we derive the van der Waals-Tonks-type equations of state. We further apply these equations of state to hard-hypersphere fluids in four and five dimensions. In the low-density fluid regime, these equations of state are in good agreement with the simulation results and existing equations of state.

  16. Low-Voltage Complementary Electronics from Ion-Gel-Gated Vertical Van der Waals Heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Yongsuk; Kang, Junmo; Jariwala, Deep

    2016-03-22

    Low-voltage complementary circuits comprising n-type and p-type van der Waals heterojunction vertical field-effect transistors (VFETs) are demonstrated. The resulting VFETs possess high on-state current densities (>3000 A cm-2) and on/off current ratios (>104) in a narrow voltage window (<3 V).

  17. Van der Waals corrected DFT study of adsorption of groups VA and VIA hydrides on graphene monoxide

    NASA Astrophysics Data System (ADS)

    Notash, M. Yaghoobi; Ebrahimzadeh, A. Rastkar

    2016-06-01

    Adsorption properties of H2O, H2S, NH3 and PH3 on graphene monoxide (GMO) nano flack are investigated using density functional theory (DFT). Calculations were carried out by van der Waals correction and general gradient approximation. The adsorption energies and charge transfer between species are obtained and discussed for the considered positions of adsorbate molecules. Charge transfer analysis show that the gas molecules act as an electron acceptor in all cases. The analysis of the adsorption energies suggest GMO can be a good candidate for the adsorption of these molecules.

  18. Modeling of Materials for Energy Storage: A Challenge for Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Kaltak, Merzuk; Fernandez-Serra, Marivi; Hybertsen, Mark S.

    Hollandite α-MnO2 is a promising material for rechargeable batteries and is studied extensively in the community because of its interesting tunnel structure and the corresponding large capacity for lithium as well as sodium ions. However, the presence of partially reduced Mn ions due to doping with Ag or during lithiation makes hollandite a challenging system for density functional theory and the conventionally employed PBE+U method. A naive attempt to model the ternary system LixAgyMnO2 with density functionals, similar to those employed for the case y = 0 , fails and predicts a strong monoclinic distortion of the experimentally observed tetragonal unit cell for Ag2Mn8O16. Structure and binding energies are compared with experimental data and show the importance of van der Waals interactions as well as the necessity for an accurate description of the cooperative Jan-Teller effects for silver hollandite AgyMnO2. Based on these observations a ternary phase diagram is calculated allowing to predict the physical and chemical properties of LixAgyMnO2, such as stable stoichiometries, open circuit voltages, the formation of Ag metal and the structural change during lithiation. Department of Energy (DOE) under award #DE-SC0012673.

  19. Direction-specific van der Waals attraction between rutile TiO2 nanocrystals

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; He, Yang; Sushko, Maria L.; Liu, Jia; Luo, Langli; De Yoreo, James J.; Mao, Scott X.; Wang, Chongmin; Rosso, Kevin M.

    2017-04-01

    Mutual lattice orientations dictate the types and magnitudes of forces between crystalline particles. When lattice polarizability is anisotropic, the van der Waals dispersion attraction can, in principle, contribute to this direction dependence. We report measurement of this attraction between rutile nanocrystals, as a function of their mutual orientation and surface hydration extent. At tens of nanometers of separation, the attraction is weak and shows no dependence on azimuthal alignment or surface hydration. At separations of approximately one hydration layer, the attraction is strongly dependent on azimuthal alignment and systematically decreases as intervening water density increases. Measured forces closely agree with predictions from Lifshitz theory and show that dispersion forces can generate a torque between particles interacting in solution and between grains in materials.

  20. Observing Imperfection in Atomic Interfaces for van der Waals Heterostructures.

    PubMed

    Rooney, Aidan P; Kozikov, Aleksey; Rudenko, Alexander N; Prestat, Eric; Hamer, Matthew J; Withers, Freddie; Cao, Yang; Novoselov, Kostya S; Katsnelson, Mikhail I; Gorbachev, Roman; Haigh, Sarah J

    2017-09-13

    Vertically stacked van der Waals heterostructures are a lucrative platform for exploring the rich electronic and optoelectronic phenomena in two-dimensional materials. Their performance will be strongly affected by impurities and defects at the interfaces. Here we present the first systematic study of interfaces in van der Waals heterostructure using cross-sectional scanning transmission electron microscope (STEM) imaging. By measuring interlayer separations and comparing these to density functional theory (DFT) calculations we find that pristine interfaces exist between hBN and MoS 2 or WS 2 for stacks prepared by mechanical exfoliation in air. However, for two technologically important transition metal dichalcogenide (TMDC) systems, MoSe 2 and WSe 2 , our measurement of interlayer separations provide the first evidence for impurity species being trapped at buried interfaces with hBN interfaces that are flat at the nanometer length scale. While decreasing the thickness of encapsulated WSe 2 from bulk to monolayer we see a systematic increase in the interlayer separation. We attribute these differences to the thinnest TMDC flakes being flexible and hence able to deform mechanically around a sparse population of protruding interfacial impurities. We show that the air sensitive two-dimensional (2D) crystal NbSe 2 can be fabricated into heterostructures with pristine interfaces by processing in an inert-gas environment. Finally we find that adopting glovebox transfer significantly improves the quality of interfaces for WSe 2 compared to processing in air.

  1. Modeling solvation effects in real-space and real-time within density functional approaches

    NASA Astrophysics Data System (ADS)

    Delgado, Alain; Corni, Stefano; Pittalis, Stefano; Rozzi, Carlo Andrea

    2015-10-01

    The Polarizable Continuum Model (PCM) can be used in conjunction with Density Functional Theory (DFT) and its time-dependent extension (TDDFT) to simulate the electronic and optical properties of molecules and nanoparticles immersed in a dielectric environment, typically liquid solvents. In this contribution, we develop a methodology to account for solvation effects in real-space (and real-time) (TD)DFT calculations. The boundary elements method is used to calculate the solvent reaction potential in terms of the apparent charges that spread over the van der Waals solute surface. In a real-space representation, this potential may exhibit a Coulomb singularity at grid points that are close to the cavity surface. We propose a simple approach to regularize such singularity by using a set of spherical Gaussian functions to distribute the apparent charges. We have implemented the proposed method in the Octopus code and present results for the solvation free energies and solvatochromic shifts for a representative set of organic molecules in water.

  2. Modeling solvation effects in real-space and real-time within density functional approaches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delgado, Alain; Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear, Calle 30 # 502, 11300 La Habana; Corni, Stefano

    2015-10-14

    The Polarizable Continuum Model (PCM) can be used in conjunction with Density Functional Theory (DFT) and its time-dependent extension (TDDFT) to simulate the electronic and optical properties of molecules and nanoparticles immersed in a dielectric environment, typically liquid solvents. In this contribution, we develop a methodology to account for solvation effects in real-space (and real-time) (TD)DFT calculations. The boundary elements method is used to calculate the solvent reaction potential in terms of the apparent charges that spread over the van der Waals solute surface. In a real-space representation, this potential may exhibit a Coulomb singularity at grid points that aremore » close to the cavity surface. We propose a simple approach to regularize such singularity by using a set of spherical Gaussian functions to distribute the apparent charges. We have implemented the proposed method in the OCTOPUS code and present results for the solvation free energies and solvatochromic shifts for a representative set of organic molecules in water.« less

  3. Van der Waals heterojunction diode composed of WS2 flake placed on p-type Si substrate

    NASA Astrophysics Data System (ADS)

    Aftab, Sikandar; Farooq Khan, M.; Min, Kyung-Ah; Nazir, Ghazanfar; Afzal, Amir Muhammad; Dastgeer, Ghulam; Akhtar, Imtisal; Seo, Yongho; Hong, Suklyun; Eom, Jonghwa

    2018-01-01

    P-N junctions represent the fundamental building blocks of most semiconductors for optoelectronic functions. This work demonstrates a technique for forming a WS2/Si van der Waals junction based on mechanical exfoliation. Multilayered WS2 nanoflakes were exfoliated on the surface of bulk p-type Si substrates using a polydimethylsiloxane stamp. We found that the fabricated WS2/Si p-n junctions exhibited rectifying characteristics. We studied the effect of annealing processes on the performance of the WS2/Si van der Waals p-n junction and demonstrated that annealing improved its electrical characteristics. However, devices with vacuum annealing have an enhanced forward-bias current compared to those annealed in a gaseous environment. We also studied the top-gate-tunable rectification characteristics across the p-n junction interface in experiments as well as density functional theory calculations. Under various temperatures, Zener breakdown occurred at low reverse-bias voltages, and its breakdown voltage exhibited a negative coefficient of temperature. Another breakdown voltage was observed, which increased with temperature, suggesting a positive coefficient of temperature. Therefore, such a breakdown can be assigned to avalanche breakdown. This work demonstrates a promising application of two-dimensional materials placed directly on conventional bulk Si substrates.

  4. Adsorption of lactic acid on chiral Pt surfaces—A density functional theory study

    NASA Astrophysics Data System (ADS)

    Franke, J.-H.; Kosov, D. S.

    2013-02-01

    The adsorption of the chiral molecule lactic acid on chiral Pt surfaces is studied by density functional theory calculations. First, we study the adsorption of L-lactic acid on the flat Pt(111) surface. Using the optimed PBE - van der Waals (oPBE-vdW) functional, which includes van der Waals forces on an ab initio level, it is shown that the molecule has two binding sites, a carboxyl and the hydroxyl oxygen atoms. Since real chiral surfaces are (i) known to undergo thermal roughening that alters the distribution of kinks and step edges but not the overall chirality and (ii) kink sites and edge sites are usually the energetically most favored adsorption sites, we focus on two surfaces that allow qualitative sampling of the most probable adsorption sites. We hereby consider chiral surfaces exhibiting (111) facets, in particular, Pt(321) and Pt(643). The binding sites are either both on kink sites—which is the case for Pt(321) or on one kink site—as on Pt(643). The binding energy of the molecule on the chiral surfaces is much higher than on the Pt(111) surface. We show that the carboxyl group interacts more strongly than the hydroxyl group with the kink sites. The results indicate the possible existence of very small chiral selectivities of the order of 20 meV for the Pt(321) and Pt(643) surfaces. L-lactic acid is more stable on Pt(321)S than D-lactic acid, while the chiral selectivity is inverted on Pt(643)S. The most stable adsorption configurations of L- and D-lactic acid are similar for Pt(321) but differ for Pt(643). We explore the impact of the different adsorption geometries on the work function, which is important for field ion microscopy.

  5. DFT-based method for more accurate adsorption energies: An adaptive sum of energies from RPBE and vdW density functionals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hensley, Alyssa J. R.; Ghale, Kushal; Rieg, Carolin

    In recent years, the popularity of density functional theory with periodic boundary conditions (DFT) has surged for the design and optimization of functional materials. However, no single DFT exchange–correlation functional currently available gives accurate adsorption energies on transition metals both when bonding to the surface is dominated by strong covalent or ionic bonding and when it has strong contributions from van der Waals interactions (i.e., dispersion forces). Here we present a new, simple method for accurately predicting adsorption energies on transition-metal surfaces based on DFT calculations, using an adaptively weighted sum of energies from RPBE and optB86b-vdW (or optB88-vdW) densitymore » functionals. This method has been benchmarked against a set of 39 reliable experimental energies for adsorption reactions. Our results show that this method has a mean absolute error and root mean squared error relative to experiments of 13.4 and 19.3 kJ/mol, respectively, compared to 20.4 and 26.4 kJ/mol for the BEEF-vdW functional. For systems with large van der Waals contributions, this method decreases these errors to 11.6 and 17.5 kJ/mol. Furthermore, this method provides predictions of adsorption energies both for processes dominated by strong covalent or ionic bonding and for those dominated by dispersion forces that are more accurate than those of any current standard DFT functional alone.« less

  6. DFT-based method for more accurate adsorption energies: An adaptive sum of energies from RPBE and vdW density functionals

    DOE PAGES

    Hensley, Alyssa J. R.; Ghale, Kushal; Rieg, Carolin; ...

    2017-01-26

    In recent years, the popularity of density functional theory with periodic boundary conditions (DFT) has surged for the design and optimization of functional materials. However, no single DFT exchange–correlation functional currently available gives accurate adsorption energies on transition metals both when bonding to the surface is dominated by strong covalent or ionic bonding and when it has strong contributions from van der Waals interactions (i.e., dispersion forces). Here we present a new, simple method for accurately predicting adsorption energies on transition-metal surfaces based on DFT calculations, using an adaptively weighted sum of energies from RPBE and optB86b-vdW (or optB88-vdW) densitymore » functionals. This method has been benchmarked against a set of 39 reliable experimental energies for adsorption reactions. Our results show that this method has a mean absolute error and root mean squared error relative to experiments of 13.4 and 19.3 kJ/mol, respectively, compared to 20.4 and 26.4 kJ/mol for the BEEF-vdW functional. For systems with large van der Waals contributions, this method decreases these errors to 11.6 and 17.5 kJ/mol. Furthermore, this method provides predictions of adsorption energies both for processes dominated by strong covalent or ionic bonding and for those dominated by dispersion forces that are more accurate than those of any current standard DFT functional alone.« less

  7. A Van der Waals-like theory of plasma double layers

    NASA Technical Reports Server (NTRS)

    Katz, Ira; Davis, V. A.

    1989-01-01

    A theory describing plasma double layers in terms of multiple roots of the charge density expression is presented. The theory presented uses the fact that equilibrium plasmas shield small potential perturbations linearly; for high potentials, the shielding decreases. The approach is analogous to Van der Waals' theory of simple fluids in which inclusion of approximate expressions for both excluded volume and long range attractive forces sufficiently describes the first-order liquid-gas phase transition.

  8. Electronic charge rearrangement at metal/organic interfaces induced by weak van der Waals interactions

    NASA Astrophysics Data System (ADS)

    Ferri, Nicola; Ambrosetti, Alberto; Tkatchenko, Alexandre

    2017-07-01

    Electronic charge rearrangements at interfaces between organic molecules and solid surfaces play a key role in a wide range of applications in catalysis, light-emitting diodes, single-molecule junctions, molecular sensors and switches, and photovoltaics. It is common to utilize electrostatics and Pauli pushback to control the interface electronic properties, while the ubiquitous van der Waals (vdW) interactions are often considered to have a negligible direct contribution (beyond the obvious structural relaxation). Here, we apply a fully self-consistent Tkatchenko-Scheffler vdW density functional to demonstrate that the weak vdW interactions can induce sizable charge rearrangements at hybrid metal/organic systems (HMOS). The complex vdW correlation potential smears out the interfacial electronic density, thereby reducing the charge transfer in HMOS, changes the interface work functions by up to 0.2 eV, and increases the interface dipole moment by up to 0.3 Debye. Our results suggest that vdW interactions should be considered as an additional control parameter in the design of hybrid interfaces with the desired electronic properties.

  9. Signatures of van der Waals binding: A coupling-constant scaling analysis

    NASA Astrophysics Data System (ADS)

    Jiao, Yang; Schröder, Elsebeth; Hyldgaard, Per

    2018-02-01

    The van der Waals (vdW) density functional (vdW-DF) method [Rep. Prog. Phys. 78, 066501 (2015), 10.1088/0034-4885/78/6/066501] describes dispersion or vdW binding by tracking the effects of an electrodynamic coupling among pairs of electrons and their associated exchange-correlation holes. This is done in a nonlocal-correlation energy term Ecnl, which permits density functional theory calculation in the Kohn-Sham scheme. However, to map the nature of vdW forces in a fully interacting materials system, it is necessary to also account for associated kinetic-correlation energy effects. Here, we present a coupling-constant scaling analysis, which permits us to compute the kinetic-correlation energy Tcnl that is specific to the vdW-DF account of nonlocal correlations. We thus provide a more complete spatially resolved analysis of the electrodynamical-coupling nature of nonlocal-correlation binding, including vdW attraction, in both covalently and noncovalently bonded systems. We find that kinetic-correlation energy effects play a significant role in the account of vdW or dispersion interactions among molecules. Furthermore, our mapping shows that the total nonlocal-correlation binding is concentrated to pockets in the sparse electron distribution located between the material fragments.

  10. Accurate first-principles structures and energies of diversely bonded systems from an efficient density functional

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Jianwei; Remsing, Richard C.; Zhang, Yubo

    2016-06-13

    One atom or molecule binds to another through various types of bond, the strengths of which range from several meV to several eV. Although some computational methods can provide accurate descriptions of all bond types, those methods are not efficient enough for many studies (for example, large systems, ab initio molecular dynamics and high-throughput searches for functional materials). Here, we show that the recently developed non-empirical strongly constrained and appropriately normed (SCAN) meta-generalized gradient approximation (meta-GGA) within the density functional theory framework predicts accurate geometries and energies of diversely bonded molecules and materials (including covalent, metallic, ionic, hydrogen and vanmore » der Waals bonds). This represents a significant improvement at comparable efficiency over its predecessors, the GGAs that currently dominate materials computation. Often, SCAN matches or improves on the accuracy of a computationally expensive hybrid functional, at almost-GGA cost. SCAN is therefore expected to have a broad impact on chemistry and materials science.« less

  11. Accurate first-principles structures and energies of diversely bonded systems from an efficient density functional.

    PubMed

    Sun, Jianwei; Remsing, Richard C; Zhang, Yubo; Sun, Zhaoru; Ruzsinszky, Adrienn; Peng, Haowei; Yang, Zenghui; Paul, Arpita; Waghmare, Umesh; Wu, Xifan; Klein, Michael L; Perdew, John P

    2016-09-01

    One atom or molecule binds to another through various types of bond, the strengths of which range from several meV to several eV. Although some computational methods can provide accurate descriptions of all bond types, those methods are not efficient enough for many studies (for example, large systems, ab initio molecular dynamics and high-throughput searches for functional materials). Here, we show that the recently developed non-empirical strongly constrained and appropriately normed (SCAN) meta-generalized gradient approximation (meta-GGA) within the density functional theory framework predicts accurate geometries and energies of diversely bonded molecules and materials (including covalent, metallic, ionic, hydrogen and van der Waals bonds). This represents a significant improvement at comparable efficiency over its predecessors, the GGAs that currently dominate materials computation. Often, SCAN matches or improves on the accuracy of a computationally expensive hybrid functional, at almost-GGA cost. SCAN is therefore expected to have a broad impact on chemistry and materials science.

  12. Atomically thin p-n junctions with van der Waals heterointerfaces.

    PubMed

    Lee, Chul-Ho; Lee, Gwan-Hyoung; van der Zande, Arend M; Chen, Wenchao; Li, Yilei; Han, Minyong; Cui, Xu; Arefe, Ghidewon; Nuckolls, Colin; Heinz, Tony F; Guo, Jing; Hone, James; Kim, Philip

    2014-09-01

    Semiconductor p-n junctions are essential building blocks for electronic and optoelectronic devices. In conventional p-n junctions, regions depleted of free charge carriers form on either side of the junction, generating built-in potentials associated with uncompensated dopant atoms. Carrier transport across the junction occurs by diffusion and drift processes influenced by the spatial extent of this depletion region. With the advent of atomically thin van der Waals materials and their heterostructures, it is now possible to realize a p-n junction at the ultimate thickness limit. Van der Waals junctions composed of p- and n-type semiconductors--each just one unit cell thick--are predicted to exhibit completely different charge transport characteristics than bulk heterojunctions. Here, we report the characterization of the electronic and optoelectronic properties of atomically thin p-n heterojunctions fabricated using van der Waals assembly of transition-metal dichalcogenides. We observe gate-tunable diode-like current rectification and a photovoltaic response across the p-n interface. We find that the tunnelling-assisted interlayer recombination of the majority carriers is responsible for the tunability of the electronic and optoelectronic processes. Sandwiching an atomic p-n junction between graphene layers enhances the collection of the photoexcited carriers. The atomically scaled van der Waals p-n heterostructures presented here constitute the ultimate functional unit for nanoscale electronic and optoelectronic devices.

  13. Van der Waals interaction in uniaxial anisotropic media.

    PubMed

    Kornilovitch, Pavel E

    2013-01-23

    Van der Waals interactions between flat surfaces in uniaxial anisotropic media are investigated in the nonretarded limit. The main focus is the effect of nonzero tilt between the optical axis and the surface normal on the strength of the van der Waals attraction. General expressions for the van der Waals free energy are derived using the surface mode method and the transfer-matrix formalism. To facilitate numerical calculations a temperature-dependent three-band parameterization of the dielectric tensor of the liquid crystal 5CB is developed. A solid slab immersed in a liquid crystal experiences a van der Waals torque that aligns the surface normal relative to the optical axis of the medium. The preferred orientation is different for different materials. Two solid slabs in close proximity experience a van der Waals attraction that is strongest for homeotropic alignment of the intervening liquid crystal for all the materials studied. The results have implications for the stability of plate-like colloids in liquid crystal hosts.

  14. Effective elastic properties of a van der Waals molecular monolayer at a metal surface

    NASA Astrophysics Data System (ADS)

    Sun, Dezheng; Kim, Dae-Ho; Le, Duy; Borck, Øyvind; Berland, Kristian; Kim, Kwangmoo; Lu, Wenhao; Zhu, Yeming; Luo, Miaomiao; Wyrick, Jonathan; Cheng, Zhihai; Einstein, T. L.; Rahman, Talat S.; Hyldgaard, Per; Bartels, Ludwig

    2010-11-01

    Adsorbing anthracene on a Cu(111) surface results in a wide range of complex and intriguing superstructures spanning a coverage range from 1 per 17 to 1 per 15 substrate atoms. In accompanying first-principles density-functional theory calculations we show the essential role of van der Waals interactions in estimating the variation in anthracene adsorption energy and height across the sample. We can thereby evaluate the compression of the anthracene film in terms of continuum elastic properties, which results in an effective Young’s modulus of 1.5 GPa and a Poisson ratio ≈0.1 . These values suggest interpretation of the molecular monolayer as a porous material—in marked congruence with our microscopic observations.

  15. Direction-specific van der Waals attraction between rutile TiO2 nanocrystals.

    PubMed

    Zhang, Xin; He, Yang; Sushko, Maria L; Liu, Jia; Luo, Langli; De Yoreo, James J; Mao, Scott X; Wang, Chongmin; Rosso, Kevin M

    2017-04-28

    Mutual lattice orientations dictate the types and magnitudes of forces between crystalline particles. When lattice polarizability is anisotropic, the van der Waals dispersion attraction can, in principle, contribute to this direction dependence. We report measurement of this attraction between rutile nanocrystals, as a function of their mutual orientation and surface hydration extent. At tens of nanometers of separation, the attraction is weak and shows no dependence on azimuthal alignment or surface hydration. At separations of approximately one hydration layer, the attraction is strongly dependent on azimuthal alignment and systematically decreases as intervening water density increases. Measured forces closely agree with predictions from Lifshitz theory and show that dispersion forces can generate a torque between particles interacting in solution and between grains in materials. Copyright © 2017, American Association for the Advancement of Science.

  16. Direction-specific van der Waals attraction between rutile TiO 2 nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xin; He, Yang; Sushko, Maria L.

    Mutual lattice orientations dictate the types and magnitudes of forces between crystalline particles. When lattice polarizability is anisotropic, the van der Waals dispersion attraction can, in principle, contribute to this direction dependence. Here we report direct measurement of this attraction between rutile nanocrystals, as a function of their mutual orientation and surface hydration extent. At tens of nanometers of separation the attraction is weak and shows no dependence on azimuthal alignment nor surface hydration. At separations of approximately one hydration layer the attraction is strongly dependent on azimuthal alignment, and systematically decreases as intervening water density increases. Measured forces aremore » in close agreement with predictions from Lifshitz theory, and show that dispersion forces are capable of generating a torque between particles interacting in solution and between grains in materials.« less

  17. Van der Waals epitaxy of functional MoO{sub 2} film on mica for flexible electronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Chun-Hao; Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan; Lin, Jheng-Cyuan

    Flexible electronics have a great potential to impact consumer electronics and with that our daily life. Currently, no direct growth of epitaxial functional oxides on commercially available flexible substrates is possible. In this study, in order to address this challenge, muscovite, a common layered oxide, is used as a flexible substrate that is chemically similar to typical functional oxides. We fabricated epitaxial MoO{sub 2} films on muscovite via pulsed laser deposition technique. A combination of X-ray diffraction and transmission electron microscopy confirms van der Waals epitaxy of the heterostructures. The electrical transport properties of MoO{sub 2} films are similar tomore » those of the bulk. Flexible or free-standing MoO{sub 2} thin film can be obtained and serve as a template to integrate additional functional oxide layers. Our study demonstrates a remarkable concept to create flexible electronics based on functional oxides.« less

  18. Controlling the electronic properties of van der Waals heterostructures by applying electrostatic design

    NASA Astrophysics Data System (ADS)

    Winkler, Christian; Harivyasi, Shashank S.; Zojer, Egbert

    2018-07-01

    Van der Waals heterostructures based on the heteroassembly of 2D materials represent a recently developed class of materials with promising properties especially for optoelectronic applications. The alignment of electronic energy bands between consecutive layers of these heterostructures crucially determines their functionality. In the present paper, relying on dispersion-corrected density-functional theory calculations, we present electrostatic design as a promising tool for manipulating this band alignment. The latter is achieved by inserting a layer of aligned polar molecules between consecutive transition-metal dichalcogenide (TMD) sheets. As a consequence, collective electrostatic effects induce a shift of as much as 0.3 eV in the band edges of successive TMD layers. Building on that, the proposed approach can be used to design electronically more complex systems, like quantum cascades or quantum wells, or to change the type of band lineup between type II and type I.

  19. Influence of Van der Waals interaction on the thermodynamics properties of NaCl

    NASA Astrophysics Data System (ADS)

    Marcondes, M. L.; Wentzcovitch, R. M.; Assali, L. V. C.

    2016-12-01

    Equations of state (EoS) are extremely important in several scientific domains. However, many applications require EoS parameters at high pressures and temperatures. Experimental determination of these parameters is limited in such conditions and ab initio calculations have become important in computing them. Density Functional Theory (DFT) with its various approximations for exchange and correlation energy is the method of choice, but lack of a good description of the exchange-correlation energy results in large errors in EoS parameters. It is well known that the alkali halides have been problematic from the onset and the quest for DFT functionals appropriate for such ionic and relatively weakly bonded systems has remained an active topic of research. Here we use DFT + van der Waals functionals to calculate the thermal equation of state and thermodynamic properties of the B1 NaCl phase. Our results show a remarkable improvement over the performance of standard the LDA and GGA functionals. This is hardly surprising given that ions in this system have nearly closed shell configurations.

  20. Effects of van der Waals Interactions in the Adsorption of Isooctane and Ethanol on Fe(100) Surfaces

    PubMed Central

    2014-01-01

    van der Waals (vdW) forces play a fundamental role in the structure and behavior of diverse systems. Because of development of functionals that include nonlocal correlation, it is possible to study the effects of vdW interactions in systems of industrial and tribological interest. Here we simulated within the framework of density functional theory (DFT) the adsorption of isooctane (2,2,4-trimethylpentane) and ethanol on an Fe(100) surface, employing various exchange–correlation functionals to take vdW forces into account. In particular, this paper discusses the effect of vdW forces on the magnitude of adsorption energies, equilibrium geometries, and their role in the binding mechanism. According to our calculations, vdW interactions increase the adsorption energies and reduce the equilibrium distances. Nevertheless, they do not influence the spatial configuration of the adsorbed molecules. Their effect on the electronic density is a nonisotropic, delocalized accumulation of charge between the molecule and the slab. In conclusion, vdW forces are essential for the adsorption of isooctane and ethanol on a bcc Fe(100) surface. PMID:25126156

  1. Multiconfiguration Pair-Density Functional Theory.

    PubMed

    Li Manni, Giovanni; Carlson, Rebecca K; Luo, Sijie; Ma, Dongxia; Olsen, Jeppe; Truhlar, Donald G; Gagliardi, Laura

    2014-09-09

    We present a new theoretical framework, called Multiconfiguration Pair-Density Functional Theory (MC-PDFT), which combines multiconfigurational wave functions with a generalization of density functional theory (DFT). A multiconfigurational self-consistent-field (MCSCF) wave function with correct spin and space symmetry is used to compute the total electronic density, its gradient, the on-top pair density, and the kinetic and Coulomb contributions to the total electronic energy. We then use a functional of the total density, its gradient, and the on-top pair density to calculate the remaining part of the energy, which we call the on-top-density-functional energy in contrast to the exchange-correlation energy of Kohn-Sham DFT. Because the on-top pair density is an element of the two-particle density matrix, this goes beyond the Hohenberg-Kohn theorem that refers only to the one-particle density. To illustrate the theory, we obtain first approximations to the required new type of density functionals by translating conventional density functionals of the spin densities using a simple prescription, and we perform post-SCF density functional calculations using the total density, density gradient, and on-top pair density from the MCSCF calculations. Double counting of dynamic correlation or exchange does not occur because the MCSCF energy is not used. The theory is illustrated by applications to the bond energies and potential energy curves of H2, N2, F2, CaO, Cr2, and NiCl and the electronic excitation energies of Be, C, N, N(+), O, O(+), Sc(+), Mn, Co, Mo, Ru, N2, HCHO, C4H6, c-C5H6, and pyrazine. The method presented has a computational cost and scaling similar to MCSCF, but a quantitative accuracy, even with the present first approximations to the new types of density functionals, that is comparable to much more expensive multireference perturbation theory methods.

  2. Dynamic density functional theory with hydrodynamic interactions: theoretical development and application in the study of phase separation in gas-liquid systems.

    PubMed

    Kikkinides, E S; Monson, P A

    2015-03-07

    Building on recent developments in dynamic density functional theory, we have developed a version of the theory that includes hydrodynamic interactions. This is achieved by combining the continuity and momentum equations eliminating velocity fields, so the resulting model equation contains only terms related to the fluid density and its time and spatial derivatives. The new model satisfies simultaneously continuity and momentum equations under the assumptions of constant dynamic or kinematic viscosity and small velocities and/or density gradients. We present applications of the theory to spinodal decomposition of subcritical temperatures for one-dimensional and three-dimensional density perturbations for both a van der Waals fluid and for a lattice gas model in mean field theory. In the latter case, the theory provides a hydrodynamic extension to the recently studied dynamic mean field theory. We find that the theory correctly describes the transition from diffusive phase separation at short times to hydrodynamic behaviour at long times.

  3. Dynamic density functional theory with hydrodynamic interactions: Theoretical development and application in the study of phase separation in gas-liquid systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kikkinides, E. S.; Monson, P. A.

    Building on recent developments in dynamic density functional theory, we have developed a version of the theory that includes hydrodynamic interactions. This is achieved by combining the continuity and momentum equations eliminating velocity fields, so the resulting model equation contains only terms related to the fluid density and its time and spatial derivatives. The new model satisfies simultaneously continuity and momentum equations under the assumptions of constant dynamic or kinematic viscosity and small velocities and/or density gradients. We present applications of the theory to spinodal decomposition of subcritical temperatures for one-dimensional and three-dimensional density perturbations for both a van dermore » Waals fluid and for a lattice gas model in mean field theory. In the latter case, the theory provides a hydrodynamic extension to the recently studied dynamic mean field theory. We find that the theory correctly describes the transition from diffusive phase separation at short times to hydrodynamic behaviour at long times.« less

  4. Effective field theories for van der Waals interactions

    NASA Astrophysics Data System (ADS)

    Brambilla, Nora; Shtabovenko, Vladyslav; Tarrús Castellà, Jaume; Vairo, Antonio

    2017-06-01

    Van der Waals interactions between two neutral but polarizable systems at a separation R much larger than the typical size of the systems are at the core of a broad sweep of contemporary problems in settings ranging from atomic, molecular and condensed matter physics to strong interactions and gravity. In this paper, we reexamine the dispersive van der Waals interactions between two hydrogen atoms. The novelty of the analysis resides in the usage of nonrelativistic effective field theories of quantum electrodynamics. In this framework, the van der Waals potential acquires the meaning of a matching coefficient in an effective field theory, dubbed van der Waals effective field theory, suited to describe the low-energy dynamics of an atom pair. It may be computed systematically as a series in R times some typical atomic scale and in the fine-structure constant α . The van der Waals potential gets short-range contributions and radiative corrections, which we compute in dimensional regularization and renormalize here for the first time. Results are given in d space-time dimensions. One can distinguish among different regimes depending on the relative size between 1 /R and the typical atomic bound-state energy, which is of order m α2. Each regime is characterized by a specific hierarchy of scales and a corresponding tower of effective field theories. The short-distance regime is characterized by 1 /R ≫m α2 and the leading-order van der Waals potential is the London potential. We also compute next-to-next-to-next-to-leading-order corrections. In the long-distance regime we have 1 /R ≪m α2. In this regime, the van der Waals potential contains contact terms, which are parametrically larger than the Casimir-Polder potential that describes the potential at large distances. In the effective field theory, the Casimir-Polder potential counts as a next-to-next-to-next-to-leading-order effect. In the intermediate-distance regime, 1 /R ˜m α2, a significantly more complex

  5. Density Functional Theory (DFT) Simulations of Shocked Liquid Xenon

    NASA Astrophysics Data System (ADS)

    Mattsson, Thomas R.; Magyar, Rudolph J.

    2009-06-01

    Xenon is not only a technologically important element used in laser technologies and jet propulsion, but it is also one of the most accessible materials in which to study the metal-insulator transition with increasing pressure. Because of its closed shell electronic configuration, Xenon is often assumed to be chemically inert, interacting almost entirely through the van der Waals interaction, and at liquid density, is typically modeled well using Leonard-Jones potentials. However, such modeling has a limited range of validity as Xenon is known to form compounds at normal conditions and likely exhibits considerably more chemistry at higher densities when hybridization of occupied orbitals becomes significant. In this talk, we present DFT-MD simulations of shocked liquid Xenon with the goal of developing an improved equation of state. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  6. Holographic Van der Waals phase transition of the higher-dimensional electrically charged hairy black hole

    NASA Astrophysics Data System (ADS)

    Li, Hui-Ling; Feng, Zhong-Wen; Zu, Xiao-Tao

    2018-01-01

    With motivation by holography, employing black hole entropy, two-point connection function and entanglement entropy, we show that, for the higher-dimensional Anti-de Sitter charged hairy black hole in the fixed charged ensemble, a Van der Waals-like phase transition can be observed. Furthermore, based on the Maxwell equal-area construction, we check numerically the equal-area law for a first order phase transition in order to further characterize the Van der Waals-like phase transition.

  7. Effect of van der Waals forces on thermal conductance at the interface of a single-wall carbon nanotube array and silicon

    NASA Astrophysics Data System (ADS)

    Feng, Ya; Zhu, Jie; Tang, Dawei

    2014-12-01

    Molecular dynamics simulations are performed to evaluate the effect of van der Waals forces among single-wall carbon nanotubes (SWNTs) on the interfacial thermal conductance between a SWNT array and silicon substrate. First, samples of SWNTs vertically aligned on silicon substrate are simulated, where both the number and arrangement of SWNTs are varied. Results reveal that the interfacial thermal conductance of a SWNT array/Si with van der Waals forces present is higher than when they are absent. To better understand how van der Waals forces affect heat transfer through the interface between SWNTs and silicon, further constructs of one SWNT surrounded by different numbers of other ones are studied, and the results show that the interfacial thermal conductance of the central SWNT increases with increasing van der Waals forces. Through analysis of the covalent bonds and vibrational density of states at the interface, we find that heat transfer across the interface is enhanced with a greater number of chemical bonds and that improved vibrational coupling of the two sides of the interface results in higher interfacial thermal conductance. Van der Waals forces stimulate heat transfer at the interface.

  8. Effect of van der Waals interactions on the stability of SiC polytypes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawanishi, Sakiko, E-mail: s-kawa@tagen.tohoku.ac.jp; Mizoguchi, Teruyasu

    2016-05-07

    Density functional theory calculations with a correction of the long-range dispersion force, namely, the van der Waals (vdW) force, are performed for SiC polytypes. The lattice parameters are in good agreement with those obtained from the experiments. Furthermore, the stability of the polytypes in the experiments, which show 3C-SiC as the most stable, is reproduced by the present calculations. The effects of the vdW force on the electronic structure and the stability of polytypes are discussed. We observe that the vdW interaction is more sensitive to the cubic site than the hexagonal site. Thus, the influence of the vdW forcemore » increases with decreasing the hexagonality of the polytype, which results in the confirmation that the most stable polytype is 3C-SiC.« less

  9. Spectral asymmetry of atoms in the van der Waals potential of an optical nanofiber

    NASA Astrophysics Data System (ADS)

    Patterson, B. D.; Solano, P.; Julienne, P. S.; Orozco, L. A.; Rolston, S. L.

    2018-03-01

    We measure the modification of the transmission spectra of cold 87Rb atoms in the proximity of an optical nanofiber (ONF). Van der Waals interactions between the atoms an the ONF surface decrease the resonance frequency of atoms closer to the surface. An asymmetric spectra of the atoms holds information of their spatial distribution around the ONF. We use a far-detuned laser beam coupled to the ONF to thermally excite atoms at the ONF surface. We study the change of transmission spectrum of these atoms as a function of heating laser power. A semiclassical phenomenological model for the thermal excitation of atoms in the atom-surface van der Waals bound states is in good agreement with the measurements. This result suggests that van der Waals potentials could be used to trap and probe atoms at few nanometers from a dielectric surface, a key tool for hybrid photonic-atomic quantum systems.

  10. van der Waals criticality in AdS black holes: A phenomenological study

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Krishnakanta; Majhi, Bibhas Ranjan; Samanta, Saurav

    2017-10-01

    Anti-de Sitter black holes exhibit van der Waals-type phase transition. In the extended phase-space formalism, the critical exponents for any spacetime metric are identical to the standard ones. Motivated by this fact, we give a general expression for the Helmholtz free energy near the critical point, which correctly reproduces these exponents. The idea is similar to the Landau model, which gives a phenomenological description of the usual second-order phase transition. Here, two main inputs are taken into account for the analysis: (a) black holes should have van der Waals-like isotherms, and (b) free energy can be expressed solely as a function of thermodynamic volume and horizon temperature. Resulting analysis shows that the form of Helmholtz free energy correctly encapsulates the features of the Landau function. We also discuss the isolated critical point accompanied by nonstandard values of critical exponents. The whole formalism is then extended to two other criticalities, namely, Y -X and T -S (based on the standard; i.e., nonextended phase space), where X and Y are generalized force and displacement, whereas T and S are the horizon temperature and entropy. We observe that in the former case Gibbs free energy plays the role of Landau function, whereas in the later case, that role is played by the internal energy (here, it is the black hole mass). Our analysis shows that, although the existence of a van der Waals phase transition depends on the explicit form of the black hole metric, the values of the critical exponents are universal in nature.

  11. Density Functional Theory (dft) Simulations of Shocked Liquid Xenon

    NASA Astrophysics Data System (ADS)

    Mattsson, Thomas R.; Magyar, Rudolph J.

    2009-12-01

    Xenon is not only a technologically important element used in laser technologies and jet propulsion, but it is also one of the most accessible materials in which to study the metal-insulator transition with increasing pressure. Because of its closed shell electronic configuration, xenon is often assumed to be chemically inert, interacting almost entirely through the van der Waals interaction, and at liquid density, is typically modeled well using Leonard-Jones potentials. However, such modeling has a limited range of validity as xenon is known to form compounds under normal conditions and likely exhibits considerably more chemistry at higher densities when hybridization of occupied orbitals becomes significant. We present DFT-MD simulations of shocked liquid xenon with the goal of developing an improved equation of state. The calculated Hugoniot to 2 MPa compares well with available experimental shock data. Sandia is a mul-tiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  12. Characterization of rarefaction waves in van der Waals fluids

    NASA Astrophysics Data System (ADS)

    Yuen, Albert; Barnard, John J.

    2015-12-01

    We calculate the isentropic evolution of an instantaneously heated foil, assuming a van der Waals equation of state with the Maxwell construction. The analysis by Yuen and Barnard [Phys. Rev. E 92, 033019 (2015), 10.1103/PhysRevE.92.033019] is extended for the particular case of three degrees of freedom. We assume heating to temperatures in the vicinity of the critical point. The self-similar profiles of the rarefaction waves describing the evolution of the foil display plateaus in density and temperature due to a phase transition from the single-phase to the two-phase regime. The hydrodynamic equations are expressed in a dimensionless form and the solutions form a set of universal curves, depending on a single parameter: the dimensionless initial entropy. We characterize the rarefaction waves by calculating how the plateau length, density, pressure, temperature, velocity, internal energy, and sound speed vary with dimensionless initial entropy.

  13. Molecular surface mesh generation by filtering electron density map.

    PubMed

    Giard, Joachim; Macq, Benoît

    2010-01-01

    Bioinformatics applied to macromolecules are now widely spread and in continuous expansion. In this context, representing external molecular surface such as the Van der Waals Surface or the Solvent Excluded Surface can be useful for several applications. We propose a fast and parameterizable algorithm giving good visual quality meshes representing molecular surfaces. It is obtained by isosurfacing a filtered electron density map. The density map is the result of the maximum of Gaussian functions placed around atom centers. This map is filtered by an ideal low-pass filter applied on the Fourier Transform of the density map. Applying the marching cubes algorithm on the inverse transform provides a mesh representation of the molecular surface.

  14. Isotope separation by photodissociation of Van der Waal's molecules

    DOEpatents

    Lee, Yuan T.

    1977-01-01

    A method of separating isotopes based on the dissociation of a Van der Waal's complex. A beam of molecules of a Van der Waal's complex containing, as one partner of the complex, a molecular species in which an element is present in a plurality of isotopes is subjected to radiation from a source tuned to a frequency which will selectively excite vibrational motion by a vibrational transition or through electronic transition of those complexed molecules of the molecular species which contain a desired isotope. Since the Van der Waal's binding energy is much smaller than the excitational energy of vibrational motion, the thus excited Van der Waal's complex dissociate into molecular components enriched in the desired isotope. The recoil velocity associated with vibrational to translational and rotational relaxation will send the separated molecules away from the beam whereupon the product enriched in the desired isotope can be separated from the constituents of the beam.

  15. Diffusion quantum Monte Carlo and density functional calculations of the structural stability of bilayer arsenene

    NASA Astrophysics Data System (ADS)

    Kadioglu, Yelda; Santana, Juan A.; Özaydin, H. Duygu; Ersan, Fatih; Aktürk, O. Üzengi; Aktürk, Ethem; Reboredo, Fernando A.

    2018-06-01

    We have studied the structural stability of monolayer and bilayer arsenene (As) in the buckled (b) and washboard (w) phases with diffusion quantum Monte Carlo (DMC) and density functional theory (DFT) calculations. DMC yields cohesive energies of 2.826(2) eV/atom for monolayer b-As and 2.792(3) eV/atom for w-As. In the case of bilayer As, DMC and DFT predict that AA-stacking is the more stable form of b-As, while AB is the most stable form of w-As. The DMC layer-layer binding energies for b-As-AA and w-As-AB are 30(1) and 53(1) meV/atom, respectively. The interlayer separations were estimated with DMC at 3.521(1) Å for b-As-AA and 3.145(1) Å for w-As-AB. A comparison of DMC and DFT results shows that the van der Waals density functional method yields energetic properties of arsenene close to DMC, while the DFT + D3 method closely reproduced the geometric properties from DMC. The electronic properties of monolayer and bilayer arsenene were explored with various DFT methods. The bandgap values vary significantly with the DFT method, but the results are generally qualitatively consistent. We expect the present work to be useful for future experiments attempting to prepare multilayer arsenene and for further development of DFT methods for weakly bonded systems.

  16. Materials perspective on Casimir and van der Waals interactions

    NASA Astrophysics Data System (ADS)

    Woods, L. M.; Dalvit, D. A. R.; Tkatchenko, A.; Rodriguez-Lopez, P.; Rodriguez, A. W.; Podgornik, R.

    2016-10-01

    Interactions induced by electromagnetic fluctuations, such as van der Waals and Casimir forces, are of universal nature present at any length scale between any types of systems. Such interactions are important not only for the fundamental science of materials behavior, but also for the design and improvement of micro- and nanostructured devices. In the past decade, many new materials have become available, which has stimulated the need for understanding their dispersive interactions. The field of van der Waals and Casimir forces has experienced an impetus in terms of developing novel theoretical and computational methods to provide new insights into related phenomena. The understanding of such forces has far reaching consequences as it bridges concepts in materials, atomic and molecular physics, condensed-matter physics, high-energy physics, chemistry, and biology. This review summarizes major breakthroughs and emphasizes the common origin of van der Waals and Casimir interactions. Progress related to novel ab initio modeling approaches and their application in various systems, interactions in materials with Dirac-like spectra, force manipulations through nontrivial boundary conditions, and applications of van der Waals forces in organic and biological matter are examined. The outlook of the review is to give the scientific community a materials perspective of van der Waals and Casimir phenomena and stimulate the development of experimental techniques and applications.

  17. Materials perspective on Casimir and van der Waals interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woods, L. M.; Dalvit, D. A. R.; Tkatchenko, A.

    Interactions induced by electromagnetic fluctuations, such as van der Waals and Casimir forces, are of universal nature present at any length scale between any types of systems. In such interactions these are important not only for the fundamental science of materials behavior, but also for the design and improvement of micro- and nanostructured devices. In the past decade, many new materials have become available, which has stimulated the need for understanding their dispersive interactions. The field of van der Waals and Casimir forces has experienced an impetus in terms of developing novel theoretical and computational methods to provide new insightsmore » into related phenomena. The understanding of such forces has far reaching consequences as it bridges concepts in materials, atomic and molecular physics, condensed-matter physics, high-energy physics, chemistry, and biology. Our review summarizes major breakthroughs and emphasizes the common origin of van der Waals and Casimir interactions. Progress related to novel ab initio modeling approaches and their application in various systems, interactions in materials with Dirac-like spectra, force manipulations through nontrivial boundary conditions, and applications of van der Waals forces in organic and biological matter are examined. Finally, the outlook of the review is to give the scientific community a materials perspective of van der Waals and Casimir phenomena and stimulate the development of experimental techniques and applications.« less

  18. Materials perspective on Casimir and van der Waals interactions

    DOE PAGES

    Woods, L. M.; Dalvit, D. A. R.; Tkatchenko, A.; ...

    2016-11-02

    Interactions induced by electromagnetic fluctuations, such as van der Waals and Casimir forces, are of universal nature present at any length scale between any types of systems. In such interactions these are important not only for the fundamental science of materials behavior, but also for the design and improvement of micro- and nanostructured devices. In the past decade, many new materials have become available, which has stimulated the need for understanding their dispersive interactions. The field of van der Waals and Casimir forces has experienced an impetus in terms of developing novel theoretical and computational methods to provide new insightsmore » into related phenomena. The understanding of such forces has far reaching consequences as it bridges concepts in materials, atomic and molecular physics, condensed-matter physics, high-energy physics, chemistry, and biology. Our review summarizes major breakthroughs and emphasizes the common origin of van der Waals and Casimir interactions. Progress related to novel ab initio modeling approaches and their application in various systems, interactions in materials with Dirac-like spectra, force manipulations through nontrivial boundary conditions, and applications of van der Waals forces in organic and biological matter are examined. Finally, the outlook of the review is to give the scientific community a materials perspective of van der Waals and Casimir phenomena and stimulate the development of experimental techniques and applications.« less

  19. Van der waals forces on thin liquid films in capillary tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herdt, G.C.; Swanson, L.W.

    1993-10-01

    A theory of the van der Waals attraction between a thin liquid films and a capillary tube is presented assuming the presence of a vapor-liquid interface. The model is based on the surface mode analysis method of van Kampen et al. Values for the van der Waals interaction energy per unit area were calculated for liquid films of pentane on a gold substrate assuming a thin liquid film. Results indicate that the effect of capillary curvature on the van der Waals interaction increases as the ratio of the liquid film thickness to the capillary radius is increased. This trend ismore » consistent with predictions based on the Hamaker theory. Deviations from results based on the Hamaker theory are easily explained in terms of retardation of the van der Waals interaction. Because the effect of capillary curvature increases in the regime where retardation effects become important, curvature effects constitute a small correction to the van der Waals forces in a capillary tube.« less

  20. Charge localization and ordering in A 2 Mn 8 O 16 hollandite group oxides: Impact of density functional theory approaches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaltak, Merzuk; Fernandez-Serra, Marivi; Hybertsen, Mark S.

    The phases of A 2Mn 8O 16 hollandite group oxides emerge from the competition between ionic interactions, Jahn-Teller effects, charge ordering, and magnetic interactions. Their balanced treatment with feasible computational approaches can be challenging for commonly used approximations in density functional theory. Three examples (A = Ag, Li, and K) are studied with a sequence of different approximate exchange-correlation functionals. Starting from a generalized gradient approximation (GGA), an extension to include van der Waals interactions and a recently proposed meta-GGA are considered. Then local Coulomb interactions for the Mn 3d electrons are more explicitly considered with the DFT + Umore » approach. Finally, selected results from a hybrid functional approach provide a reference. Results for the binding energy of the A species in the parent oxide highlight the role of van der Waals interactions. Relatively accurate results for insertion energies can be achieved with a low-U and a high-U approach. In the low-U case, the materials are described as band metals with a high-symmetry, tetragonal crystal structure. In the high-U case, the electrons donated by A result in formation of local Mn 3+ centers and corresponding Jahn-Teller distortions characterized by a local order parameter. The resulting degree of monoclinic distortion depends on charge ordering and magnetic interactions in the phase formed. The reference hybrid functional results show charge localization and ordering. Comparison to low-temperature experiments of related compounds suggests that charge localization is the physically correct result for the hollandite group oxides studied here. Lastly, while competing effects in the local magnetic coupling are subtle, the fully anisotropic implementation of DFT + U gives the best overall agreement with results from the hybrid functional.« less

  1. Charge localization and ordering in A 2 Mn 8 O 16 hollandite group oxides: Impact of density functional theory approaches

    DOE PAGES

    Kaltak, Merzuk; Fernandez-Serra, Marivi; Hybertsen, Mark S.

    2017-12-01

    The phases of A 2Mn 8O 16 hollandite group oxides emerge from the competition between ionic interactions, Jahn-Teller effects, charge ordering, and magnetic interactions. Their balanced treatment with feasible computational approaches can be challenging for commonly used approximations in density functional theory. Three examples (A = Ag, Li, and K) are studied with a sequence of different approximate exchange-correlation functionals. Starting from a generalized gradient approximation (GGA), an extension to include van der Waals interactions and a recently proposed meta-GGA are considered. Then local Coulomb interactions for the Mn 3d electrons are more explicitly considered with the DFT + Umore » approach. Finally, selected results from a hybrid functional approach provide a reference. Results for the binding energy of the A species in the parent oxide highlight the role of van der Waals interactions. Relatively accurate results for insertion energies can be achieved with a low-U and a high-U approach. In the low-U case, the materials are described as band metals with a high-symmetry, tetragonal crystal structure. In the high-U case, the electrons donated by A result in formation of local Mn 3+ centers and corresponding Jahn-Teller distortions characterized by a local order parameter. The resulting degree of monoclinic distortion depends on charge ordering and magnetic interactions in the phase formed. The reference hybrid functional results show charge localization and ordering. Comparison to low-temperature experiments of related compounds suggests that charge localization is the physically correct result for the hollandite group oxides studied here. Lastly, while competing effects in the local magnetic coupling are subtle, the fully anisotropic implementation of DFT + U gives the best overall agreement with results from the hybrid functional.« less

  2. Charge localization and ordering in A2Mn8O16 hollandite group oxides: Impact of density functional theory approaches

    NASA Astrophysics Data System (ADS)

    Kaltak, Merzuk; Fernández-Serra, Marivi; Hybertsen, Mark S.

    2017-12-01

    The phases of A2Mn8O16 hollandite group oxides emerge from the competition between ionic interactions, Jahn-Teller effects, charge ordering, and magnetic interactions. Their balanced treatment with feasible computational approaches can be challenging for commonly used approximations in density functional theory. Three examples (A = Ag, Li, and K) are studied with a sequence of different approximate exchange-correlation functionals. Starting from a generalized gradient approximation (GGA), an extension to include van der Waals interactions and a recently proposed meta-GGA are considered. Then local Coulomb interactions for the Mn 3 d electrons are more explicitly considered with the DFT + U approach. Finally, selected results from a hybrid functional approach provide a reference. Results for the binding energy of the A species in the parent oxide highlight the role of van der Waals interactions. Relatively accurate results for insertion energies can be achieved with a low-U and a high-U approach. In the low-U case, the materials are described as band metals with a high-symmetry, tetragonal crystal structure. In the high-U case, the electrons donated by A result in formation of local Mn3 + centers and corresponding Jahn-Teller distortions characterized by a local order parameter. The resulting degree of monoclinic distortion depends on charge ordering and magnetic interactions in the phase formed. The reference hybrid functional results show charge localization and ordering. Comparison to low-temperature experiments of related compounds suggests that charge localization is the physically correct result for the hollandite group oxides studied here. Finally, while competing effects in the local magnetic coupling are subtle, the fully anisotropic implementation of DFT + U gives the best overall agreement with results from the hybrid functional.

  3. Modified Van der Waals equation and law of corresponding states

    NASA Astrophysics Data System (ADS)

    Zhong, Wei; Xiao, Changming; Zhu, Yongkai

    2017-04-01

    It is well known that the Van der Waals equation is a modification of the ideal gas law, yet it can be used to describe both gas and liquid, and some important messages can be obtained from this state equation. However, the Van der Waals equation is not a precise state equation, and it does not give a good description of the law of corresponding states. In this paper, we expand the Van der Waals equation into its Taylor's series form, and then modify the fourth order expansion by changing the constant Virial coefficients into their analogous ones. Via this way, a more precise result about the law of corresponding states has been obtained, and the law of corresponding states can then be expressed as: in terms of the reduced variables, all fluids should obey the same equation with the analogous Virial coefficients. In addition, the system of 3 He with quantum effects has also been taken into consideration with our modified Van der Waals equation, and it is found that, for a normal system without quantum effect, the modification on ideal gas law from the Van der Waals equation is more significant than the real case, however, for a system with quantum effect, this modification is less significant than the real case, thus a factor is introduced in this paper to weaken or strengthen the modification of the Van der Waals equation, respectively.

  4. Density functional theory and an experimentally-designed energy functional of electron density.

    PubMed

    Miranda, David A; Bueno, Paulo R

    2016-09-21

    We herein demonstrate that capacitance spectroscopy (CS) experimentally allows access to the energy associated with the quantum mechanical ground state of many-electron systems. Priorly, electrochemical capacitance, C [small mu, Greek, macron] [ρ], was previously understood from conceptual and computational density functional theory (DFT) calculations. Thus, we herein propose a quantum mechanical experiment-based variational method for electron charging processes based on an experimentally-designed functional of the ground state electron density. In this methodology, the electron state density, ρ, and an energy functional of the electron density, E [small mu, Greek, macron] [ρ], can be obtained from CS data. CS allows the derivative of the electrochemical potential with respect to the electron density, (δ[small mu, Greek, macron][ρ]/δρ), to be obtained as a unique functional of the energetically minimised system, i.e., β/C [small mu, Greek, macron] [ρ], where β is a constant (associated with the size of the system) and C [small mu, Greek, macron] [ρ] is an experimentally observable quantity. Thus the ground state energy (at a given fixed external potential) can be obtained simply as E [small mu, Greek, macron] [ρ], from the experimental measurement of C [small mu, Greek, macron] [ρ]. An experimental data-set was interpreted to demonstrate the potential of this quantum mechanical experiment-based variational principle.

  5. Density Functionals of Chemical Bonding

    PubMed Central

    Putz, Mihai V.

    2008-01-01

    The behavior of electrons in general many-electronic systems throughout the density functionals of energy is reviewed. The basic physico-chemical concepts of density functional theory are employed to highlight the energy role in chemical structure while its extended influence in electronic localization function helps in chemical bonding understanding. In this context the energy functionals accompanied by electronic localization functions may provide a comprehensive description of the global-local levels electronic structures in general and of chemical bonds in special. Becke-Edgecombe and author’s Markovian electronic localization functions are discussed at atomic, molecular and solid state levels. Then, the analytical survey of the main workable kinetic, exchange, and correlation density functionals within local and gradient density approximations is undertaken. The hierarchy of various energy functionals is formulated by employing both the parabolic and statistical correlation degree of them with the electronegativity and chemical hardness indices by means of quantitative structure-property relationship (QSPR) analysis for basic atomic and molecular systems. PMID:19325846

  6. Time-dependent density functional theory for the charging kinetics of electric double layer containing room-temperature ionic liquids

    DOE PAGES

    Lian, Cheng; Univ. of California, Riverside, CA; Zhao, Shuangliang; ...

    2016-11-29

    Understanding the charging kinetics of electric double layers is of fundamental importance for the design and development of novel electrochemical devices such as supercapacitors and field-effect transistors. In this paper, we study the dynamic behavior of room-temperature ionic liquids using a classical time-dependent density functional theory that accounts for the molecular excluded volume effects, the electrostatic correlations, and the dispersion forces. While the conventional models predict a monotonic increase of the surface charge with time upon application of an electrode voltage, our results show that dispersion between ions results in a non-monotonic increase of the surface charge with the durationmore » of charging. Finally and furthermore, we investigate the effects of van der Waals attraction between electrode/ionic-liquid interactions on the charging processes.« less

  7. Density functional theory meta-GGA + U study of water incorporation in the metal-organic framework material Cu-BTC.

    PubMed

    Cockayne, Eric; Nelson, Eric B

    2015-07-14

    Water absorption in the metal-organic framework (MOF) material Cu-BTC, up to a concentration of 3.5 H2O per Cu ion, is studied via density functional theory at the meta-GGA + U level. The stable arrangements of water molecules show chains of hydrogen-bonded water molecules and a tendency to form closed cages at high concentration. Water clusters are stabilized primarily by a combination of water-water hydrogen bonding and Cu-water oxygen interactions. Stability is further enhanced by van der Waals interactions, electric field enhancement of water-water bonding, and hydrogen bonding of water to framework oxygens. We hypothesize that the tendency to form such stable clusters explains the particularly strong affinity of water to Cu-BTC and related MOFs with exposed metal sites.

  8. Thioarsenides: A case for long-range Lewis acid-base-directed van der Waals interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibbs, Gerald V.; Wallace, Adam F.; Downs, R. T.

    2011-04-01

    Electron density distributions, bond paths, Laplacian and local energy density properties have been calculated for a number of As4Sn (n = 3,4,5) thioarsenide molecular crystals. On the basis of the distributions, the intramolecular As-S and As-As interactions classify as shared bonded interactions and the intermolecular As-S, As-As and S-S interactions classify as closed-shell van der Waals bonded interactions. The bulk of the intermolecular As-S bond paths link regions of locally concentrated electron density (Lewis base regions) with aligned regions of locally depleted electron density (Lewis acid regions) on adjacent molecules. The paths are comparable with intermolecular paths reported for severalmore » other molecular crystals that link aligned Lewis base and acid regions in a key-lock fashion, interactions that classified as long range Lewis acid-base directed van der Waals interactions. As the bulk of the intermolecular As-S bond paths (~70%) link Lewis acid-base regions on adjacent molecules, it appears that molecules adopt an arrangement that maximizes the number of As-S Lewis acid-base intermolecular bonded interactions. The maximization of the number of Lewis acid-base interactions appears to be connected with the close-packed array adopted by molecules: distorted cubic close-packed arrays are adopted for alacránite, pararealgar, uzonite, realgar and β-AsS and the distorted hexagonal close-packed arrays adopted by α- and β-dimorphite. A growth mechanism is proposed for thioarsenide molecular crystals from aqueous species that maximizes the number of long range Lewis acid-base vdW As-S bonded interactions with the resulting directed bond paths structuralizing the molecules as a molecular crystal.« less

  9. The X3LYP extended density functional accurately describes H-bonding but fails completely for stacking.

    PubMed

    Cerný, Jirí; Hobza, Pavel

    2005-04-21

    The performance of the recently introduced X3LYP density functional which was claimed to significantly improve the accuracy for H-bonded and van der Waals complexes was tested for extended H-bonded and stacked complexes (nucleic acid base pairs and amino acid pairs). In the case of planar H-bonded complexes (guanine...cytosine, adenine...thymine) the DFT results nicely agree with accurate correlated ab initio results. For the stacked pairs (uracil dimer, cytosine dimer, adenine...thymine and guanine...cytosine) the DFT fails completely and it was even not able to localize any minimum at the stacked subspace of the potential energy surface. The geometry optimization of all these stacked clusters leads systematically to the planar H-bonded pairs. The amino acid pairs were investigated in the crystal geometry. DFT again strongly underestimates the accurate correlated ab initio stabilization energies and usually it was not able to describe the stabilization of a pair. The X3LYP functional thus behaves similarly to other current functionals. Stacking of nucleic acid bases as well as interaction of amino acids was described satisfactorily by using the tight-binding DFT method, which explicitly covers the London dispersion energy.

  10. Adsorption of TCDD molecule onto CNTs and BNNTs: Ab initio van der Waals density-functional study

    NASA Astrophysics Data System (ADS)

    Darvish Ganji, M.; Alinezhad, H.; Soleymani, E.; Tajbakhsh, M.

    2015-03-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCCD) is one of the most dangerous compounds that infect the environment and hence its removal is crucial for safety in human life. In this work, we have investigated the interaction of TCDD with boron nitride nanotubes (BNNTs) and carbon nanotubes (CNTs) by using the density functional theory (DFT) calculations. Our first-principles results have been validated by experiment and also other theoretical values for the similar system. The adsorption energies for TCDD molecule on the BNNTs and CNT are calculated. It was found that TCDD adsorption ability of BNNT is slightly stronger than that of CNT and TCDD molecule prefers to be adsorbed on BNNTs with molecular axis parallel to the tube axis. The results obtained indicate that TCDD is weakly bound to the outer surface of all the considered nanotubes and the obtained adsorption energy values and binding distance are typical for the physisorption. We also evaluated the influence of curvature and introduced defects on the TCDD adsorption ability of BNNTs. Furthermore, we have analyzed the electronic structure and charge population for the energetically most favorable complexes and the results indicate that no significant hybridization between the respective orbitals of the two entities was accomplished.

  11. Structure and Stability of Molecular Crystals with Many-Body Dispersion-Inclusive Density Functional Tight Binding.

    PubMed

    Mortazavi, Majid; Brandenburg, Jan Gerit; Maurer, Reinhard J; Tkatchenko, Alexandre

    2018-01-18

    Accurate prediction of structure and stability of molecular crystals is crucial in materials science and requires reliable modeling of long-range dispersion interactions. Semiempirical electronic structure methods are computationally more efficient than their ab initio counterparts, allowing structure sampling with significant speedups. We combine the Tkatchenko-Scheffler van der Waals method (TS) and the many-body dispersion method (MBD) with third-order density functional tight-binding (DFTB3) via a charge population-based method. We find an overall good performance for the X23 benchmark database of molecular crystals, despite an underestimation of crystal volume that can be traced to the DFTB parametrization. We achieve accurate lattice energy predictions with DFT+MBD energetics on top of vdW-inclusive DFTB3 structures, resulting in a speedup of up to 3000 times compared with a full DFT treatment. This suggests that vdW-inclusive DFTB3 can serve as a viable structural prescreening tool in crystal structure prediction.

  12. The stability of DOTA-chelated radiopharmaceuticals within 225Ac decay pathway studied with density functional theory.

    NASA Astrophysics Data System (ADS)

    Karolak, Aleksandra; Khabibullin, Artem; Budzevich, Mikalai; Martinez, M.; Doliganski, Michael; McLaughlin, Mark; Woods, Lilia; Morse, David

    Ligand structures encapsulating metal ions play a central role as contrast agents in Magnetic Resonance Imaging (MRI) or as agents delivering toxic cargo directly to tumor cells in targeted cancer therapy. The structural stability and interaction with solutions of such complexes are the key elements in understanding the foundation of delivery process. We present a comparative study for the 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelated to radioactive isotopes of 225Ac, 221Fr, 217At, 213Bi and a control 68Gd. Using density functional theory methods we investigate the structural stability of complexes for cancer therapy including binding energies, charge transfer, electron densities. The van der Waals interactions are included in the simulations to take into account weak dispersion forces present in such structures. Our results reveal that Ac-DOTA, Bi-DOTA and Gd-DOTA are the most stable complexes in the group. We also show that the water environment is a key ingredient for the structural coordination of the DOTA structures. Support from the US Department of Energy under Grant No. DE-FG02-06ER46297 is acknowledged.

  13. Ultra-confined surface phonon polaritons in molecular layers of van der Waals dielectrics.

    PubMed

    Dubrovkin, Alexander M; Qiang, Bo; Krishnamoorthy, Harish N S; Zheludev, Nikolay I; Wang, Qi Jie

    2018-05-02

    Improvements in device density in photonic circuits can only be achieved with interconnects exploiting highly confined states of light. Recently this has brought interest to highly confined plasmon and phonon polaritons. While plasmonic structures have been extensively studied, the ultimate limits of phonon polariton squeezing, in particular enabling the confinement (the ratio between the excitation and polariton wavelengths) exceeding 10 2 , is yet to be explored. Here, exploiting unique structure of 2D materials, we report for the first time that atomically thin van der Waals dielectrics (e.g., transition-metal dichalcogenides) on silicon carbide substrate demonstrate experimentally record-breaking propagating phonon polaritons confinement resulting in 190-times squeezed surface waves. The strongly dispersive confinement can be potentially tuned to greater than 10 3 near the phonon resonance of the substrate, and it scales with number of van der Waals layers. We argue that our findings are a substantial step towards infrared ultra-compact phonon polaritonic circuits and resonators, and would stimulate further investigations on nanophotonics in non-plasmonic atomically thin interface platforms.

  14. Enhanced Chiral Discriminatory van der Waals Interactions Mediated by Chiral Surfaces

    NASA Astrophysics Data System (ADS)

    Barcellona, Pablo; Safari, Hassan; Salam, A.; Buhmann, Stefan Yoshi

    2017-05-01

    We predict a discriminatory interaction between a chiral molecule and an achiral molecule which is mediated by a chiral body. To achieve this, we generalize the van der Waals interaction potential between two ground-state molecules with electric, magnetic, and chiral response to nontrivial environments. The force is evaluated using second-order perturbation theory with an effective Hamiltonian. Chiral media enhance or reduce the free interaction via many-body interactions, making it possible to measure the chiral contributions to the van der Waals force with current technology. The van der Waals interaction is discriminatory with respect to enantiomers of different handedness and could be used to separate enantiomers. We also suggest a specific geometric configuration where the electric contribution to the van der Waals interaction is zero, making the chiral component the dominant effect.

  15. Shape information from a critical point analysis of calculated electron density maps: application to DNA-drug systems

    NASA Astrophysics Data System (ADS)

    Leherte, L.; Allen, F. H.; Vercauteren, D. P.

    1995-04-01

    A computational method is described for mapping the volume within the DNA double helix accessible to a groove-binding antibiotic, netropsin. Topological critical point analysis is used to locate maxima in electron density maps reconstructed from crystallographically determined atomic coordinates. The peaks obtained in this way are represented as ellipsoids with axes related to local curvature of the electron density function. Combining the ellipsoids produces a single electron density function which can be probed to estimate effective volumes of the interacting species. Close complementarity between host and ligand in this example shows the method to be a good representation of the electron density function at various resolutions; while at the atomic level the ellipsoid method gives results which are in close agreement with those from the conventional, spherical, van der Waals approach.

  16. Shape information from a critical point analysis of calculated electron density maps: Application to DNA-drug systems

    NASA Astrophysics Data System (ADS)

    Leherte, Laurence; Allen, Frank H.

    1994-06-01

    A computational method is described for mapping the volume within the DNA double helix accessible to the groove-binding antibiotic netropsin. Topological critical point analysis is used to locate maxima in electron density maps reconstructed from crystallographically determined atomic coordinates. The peaks obtained in this way are represented as ellipsoids with axes related to local curvature of the electron density function. Combining the ellipsoids produces a single electron density function which can be probed to estimate effective volumes of the interacting species. Close complementarity between host and ligand in this example shows the method to give a good representation of the electron density function at various resolutions. At the atomic level, the ellipsoid method gives results which are in close agreement with those from the conventional spherical van der Waals approach.

  17. Multicomponent density functional theory embedding formulation.

    PubMed

    Culpitt, Tanner; Brorsen, Kurt R; Pak, Michael V; Hammes-Schiffer, Sharon

    2016-07-28

    Multicomponent density functional theory (DFT) methods have been developed to treat two types of particles, such as electrons and nuclei, quantum mechanically at the same level. In the nuclear-electronic orbital (NEO) approach, all electrons and select nuclei, typically key protons, are treated quantum mechanically. For multicomponent DFT methods developed within the NEO framework, electron-proton correlation functionals based on explicitly correlated wavefunctions have been designed and used in conjunction with well-established electronic exchange-correlation functionals. Herein a general theory for multicomponent embedded DFT is developed to enable the accurate treatment of larger systems. In the general theory, the total electronic density is separated into two subsystem densities, denoted as regular and special, and different electron-proton correlation functionals are used for these two electronic densities. In the specific implementation, the special electron density is defined in terms of spatially localized Kohn-Sham electronic orbitals, and electron-proton correlation is included only for the special electron density. The electron-proton correlation functional depends on only the special electron density and the proton density, whereas the electronic exchange-correlation functional depends on the total electronic density. This scheme includes the essential electron-proton correlation, which is a relatively local effect, as well as the electronic exchange-correlation for the entire system. This multicomponent DFT-in-DFT embedding theory is applied to the HCN and FHF(-) molecules in conjunction with two different electron-proton correlation functionals and three different electronic exchange-correlation functionals. The results illustrate that this approach provides qualitatively accurate nuclear densities in a computationally tractable manner. The general theory is also easily extended to other types of partitioning schemes for multicomponent systems.

  18. Pyridine adsorption and diffusion on Pt(111) investigated with density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolsbjerg, Esben L.; Groves, Michael N.; Hammer, Bjørk, E-mail: hammer@phys.au.dk

    2016-04-28

    The adsorption, diffusion, and dissociation of pyridine, C{sub 5}H{sub 5}N, on Pt(111) are investigated with van der Waals-corrected density functional theory. An elaborate search for local minima in the adsorption potential energy landscape reveals that the intact pyridine adsorbs with the aromatic ring parallel to the surface. Piecewise interconnections of the local minima in the energy landscape reveal that the most favourable diffusion path for pyridine has a barrier of 0.53 eV. In the preferred path, the pyridine remains parallel to the surface while performing small single rotational steps with a carbon-carbon double bond hinged above a single Pt atom.more » The origin of the diffusion pathway is discussed in terms of the C{sub 2}–Pt π-bond being stronger than the corresponding CN–Pt π-bond. The energy barrier and reaction enthalpy for dehydrogenation of adsorbed pyridine into an adsorbed, upright bound α-pyridyl species are calculated to 0.71 eV and 0.18 eV, respectively (both zero-point energy corrected). The calculations are used to rationalize previous experimental observations from the literature for pyridine on Pt(111).« less

  19. A review on data and predictions of water dielectric spectra for calculations of van der Waals surface forces.

    PubMed

    Wang, Jianlong; Nguyen, Anh V

    2017-12-01

    Van der Waals forces are one of the important components of intermolecular, colloidal and surface forces governing many phenomena and processes. The latest examples include the colloidal interactions between hydrophobic colloids and interfaces in ambient (non-degassed) water in which dissolved gases and nanobubbles are shown to affect the van der Waals attractions significantly. The advanced computation of van der Waals forces in aqueous systems by the Lifshitz theory requires reliable data for water dielectric spectra. In this paper we review the available predictions of water dielectric spectra for calculating colloidal and surface van der Waals forces. Specifically, the available experimental data for the real and imaginary parts of the complex dielectric function of liquid water in the microwave, IR and UV regions and various corresponding predictions of the water spectra are critically reviewed. The data in the UV region are critical, but the available predictions are still based on the outdated data obtained in 1974 (for frequency only up to 25.5eV). We also reviewed and analysed the experimental data obtained for the UV region in 2000 (for frequency up to 50eV) and 2015 (for frequency up to 100eV). The 1974 and 2000 data require extrapolations to higher frequencies needed for calculating the van der Waals forces but remain inaccurate. Our analysis shows that the latest data of 2015 do not require the extrapolation and can be used to reliably calculate van der Waals forces. The most recent water dielectric spectra gives the (non-retarded) Hamaker constant, A=5.20×10 -20 J, for foam films of liquid water. This review provides the most updated and reliable water dielectric spectra to compute van der Waals forces in aqueous systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Multicomponent density functional theory embedding formulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Culpitt, Tanner; Brorsen, Kurt R.; Pak, Michael V.

    Multicomponent density functional theory (DFT) methods have been developed to treat two types of particles, such as electrons and nuclei, quantum mechanically at the same level. In the nuclear-electronic orbital (NEO) approach, all electrons and select nuclei, typically key protons, are treated quantum mechanically. For multicomponent DFT methods developed within the NEO framework, electron-proton correlation functionals based on explicitly correlated wavefunctions have been designed and used in conjunction with well-established electronic exchange-correlation functionals. Herein a general theory for multicomponent embedded DFT is developed to enable the accurate treatment of larger systems. In the general theory, the total electronic density ismore » separated into two subsystem densities, denoted as regular and special, and different electron-proton correlation functionals are used for these two electronic densities. In the specific implementation, the special electron density is defined in terms of spatially localized Kohn-Sham electronic orbitals, and electron-proton correlation is included only for the special electron density. The electron-proton correlation functional depends on only the special electron density and the proton density, whereas the electronic exchange-correlation functional depends on the total electronic density. This scheme includes the essential electron-proton correlation, which is a relatively local effect, as well as the electronic exchange-correlation for the entire system. This multicomponent DFT-in-DFT embedding theory is applied to the HCN and FHF{sup −} molecules in conjunction with two different electron-proton correlation functionals and three different electronic exchange-correlation functionals. The results illustrate that this approach provides qualitatively accurate nuclear densities in a computationally tractable manner. The general theory is also easily extended to other types of partitioning schemes for multicomponent

  1. Analytical gradients for subsystem density functional theory within the slater-function-based amsterdam density functional program.

    PubMed

    Schlüns, Danny; Franchini, Mirko; Götz, Andreas W; Neugebauer, Johannes; Jacob, Christoph R; Visscher, Lucas

    2017-02-05

    We present a new implementation of analytical gradients for subsystem density-functional theory (sDFT) and frozen-density embedding (FDE) into the Amsterdam Density Functional program (ADF). The underlying theory and necessary expressions for the implementation are derived and discussed in detail for various FDE and sDFT setups. The parallel implementation is numerically verified and geometry optimizations with different functional combinations (LDA/TF and PW91/PW91K) are conducted and compared to reference data. Our results confirm that sDFT-LDA/TF yields good equilibrium distances for the systems studied here (mean absolute deviation: 0.09 Å) compared to reference wave-function theory results. However, sDFT-PW91/PW91k quite consistently yields smaller equilibrium distances (mean absolute deviation: 0.23 Å). The flexibility of our new implementation is demonstrated for an HCN-trimer test system, for which several different setups are applied. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Optimizing Protein-Protein van der Waals Interactions for the AMBER ff9x/ff12 Force Field.

    PubMed

    Chapman, Dail E; Steck, Jonathan K; Nerenberg, Paul S

    2014-01-14

    The quality of molecular dynamics (MD) simulations relies heavily on the accuracy of the underlying force field. In recent years, considerable effort has been put into developing more accurate dihedral angle potentials for MD force fields, but relatively little work has focused on the nonbonded parameters, many of which are two decades old. In this work, we assess the accuracy of protein-protein van der Waals interactions in the AMBER ff9x/ff12 force field. Across a test set of 44 neat organic liquids containing the moieties present in proteins, we find root-mean-square (RMS) errors of 1.26 kcal/mol in enthalpy of vaporization and 0.36 g/cm(3) in liquid densities. We then optimize the van der Waals radii and well depths for all of the relevant atom types using these observables, which lowers the RMS errors in enthalpy of vaporization and liquid density of our validation set to 0.59 kcal/mol (53% reduction) and 0.019 g/cm(3) (46% reduction), respectively. Limitations in our parameter optimization were evident for certain atom types, however, and we discuss the implications of these observations for future force field development.

  3. Interlayer excitons in a bulk van der Waals semiconductor.

    PubMed

    Arora, Ashish; Drüppel, Matthias; Schmidt, Robert; Deilmann, Thorsten; Schneider, Robert; Molas, Maciej R; Marauhn, Philipp; Michaelis de Vasconcellos, Steffen; Potemski, Marek; Rohlfing, Michael; Bratschitsch, Rudolf

    2017-09-21

    Bound electron-hole pairs called excitons govern the electronic and optical response of many organic and inorganic semiconductors. Excitons with spatially displaced wave functions of electrons and holes (interlayer excitons) are important for Bose-Einstein condensation, superfluidity, dissipationless current flow, and the light-induced exciton spin Hall effect. Here we report on the discovery of interlayer excitons in a bulk van der Waals semiconductor. They form due to strong localization and spin-valley coupling of charge carriers. By combining high-field magneto-reflectance experiments and ab initio calculations for 2H-MoTe 2 , we explain their salient features: the positive sign of the g-factor and the large diamagnetic shift. Our investigations solve the long-standing puzzle of positive g-factors in transition metal dichalcogenides, and pave the way for studying collective phenomena in these materials at elevated temperatures.Excitons, quasi-particles of bound electron-hole pairs, are at the core of the optoelectronic properties of layered transition metal dichalcogenides. Here, the authors unveil the presence of interlayer excitons in bulk van der Waals semiconductors, arising from strong localization and spin-valley coupling of charge carriers.

  4. Tuning the Schottky barrier in the arsenene/graphene van der Waals heterostructures by electric field

    NASA Astrophysics Data System (ADS)

    Li, Wei; Wang, Tian-Xing; Dai, Xian-Qi; Wang, Xiao-Long; Ma, Ya-Qiang; Chang, Shan-Shan; Tang, Ya-Nan

    2017-04-01

    Using density functional theory calculations, we investigate the electronic properties of arsenene/graphene van der Waals (vdW) heterostructures by applying external electric field perpendicular to the layers. It is demonstrated that weak vdW interactions dominate between arsenene and graphene with their intrinsic electronic properties preserved. We find that an n-type Schottky contact is formed at the arsenene/graphene interface with a Schottky barrier of 0.54 eV. Moreover, the vertical electric field can not only control the Schottky barrier height but also the Schottky contacts (n-type and p-type) and Ohmic contacts (n-type) at the interface. Tunable p-type doping in graphene is achieved under the negative electric field because electrons can transfer from the Dirac point of graphene to the conduction band of arsenene. The present study would open a new avenue for application of ultrathin arsenene/graphene heterostructures in future nano- and optoelectronics.

  5. Density dependence of the nuclear energy-density functional

    NASA Astrophysics Data System (ADS)

    Papakonstantinou, Panagiota; Park, Tae-Sun; Lim, Yeunhwan; Hyun, Chang Ho

    2018-01-01

    Background: The explicit density dependence in the coupling coefficients entering the nonrelativistic nuclear energy-density functional (EDF) is understood to encode effects of three-nucleon forces and dynamical correlations. The necessity for the density-dependent coupling coefficients to assume the form of a preferably small fractional power of the density ρ is empirical and the power is often chosen arbitrarily. Consequently, precision-oriented parametrizations risk overfitting in the regime of saturation and extrapolations in dilute or dense matter may lose predictive power. Purpose: Beginning with the observation that the Fermi momentum kF, i.e., the cubic root of the density, is a key variable in the description of Fermi systems, we first wish to examine if a power hierarchy in a kF expansion can be inferred from the properties of homogeneous matter in a domain of densities, which is relevant for nuclear structure and neutron stars. For subsequent applications we want to determine a functional that is of good quality but not overtrained. Method: For the EDF, we fit systematically polynomial and other functions of ρ1 /3 to existing microscopic, variational calculations of the energy of symmetric and pure neutron matter (pseudodata) and analyze the behavior of the fits. We select a form and a set of parameters, which we found robust, and examine the parameters' naturalness and the quality of resulting extrapolations. Results: A statistical analysis confirms that low-order terms such as ρ1 /3 and ρ2 /3 are the most relevant ones in the nuclear EDF beyond lowest order. It also hints at a different power hierarchy for symmetric vs. pure neutron matter, supporting the need for more than one density-dependent term in nonrelativistic EDFs. The functional we propose easily accommodates known or adopted properties of nuclear matter near saturation. More importantly, upon extrapolation to dilute or asymmetric matter, it reproduces a range of existing microscopic

  6. Density-functional theory for internal magnetic fields

    NASA Astrophysics Data System (ADS)

    Tellgren, Erik I.

    2018-01-01

    A density-functional theory is developed based on the Maxwell-Schrödinger equation with an internal magnetic field in addition to the external electromagnetic potentials. The basic variables of this theory are the electron density and the total magnetic field, which can equivalently be represented as a physical current density. Hence, the theory can be regarded as a physical current density-functional theory and an alternative to the paramagnetic current density-functional theory due to Vignale and Rasolt. The energy functional has strong enough convexity properties to allow a formulation that generalizes Lieb's convex analysis formulation of standard density-functional theory. Several variational principles as well as a Hohenberg-Kohn-like mapping between potentials and ground-state densities follow from the underlying convex structure. Moreover, the energy functional can be regarded as the result of a standard approximation technique (Moreau-Yosida regularization) applied to the conventional Schrödinger ground-state energy, which imposes limits on the maximum curvature of the energy (with respect to the magnetic field) and enables construction of a (Fréchet) differentiable universal density functional.

  7. Effects of van der Waals interaction and electric field on the electronic structure of bilayer MoS2.

    PubMed

    Xiao, Jin; Long, Mengqiu; Li, Xinmei; Zhang, Qingtian; Xu, Hui; Chan, K S

    2014-10-08

    The modification of the electronic structure of bilayer MoS2 by an external electric field can have potential applications in optoelectronics and valleytronics. Nevertheless, the underlying physical mechanism is not clearly understood, especially the effects of the van der Waals interaction. In this study, the spin orbit-coupled electronic structure of bilayer MoS2 has been investigated using the first-principle density functional theory. We find that the van der Waals interaction as well as the interlayer distance has significant effects on the band structure. When the interlayer distance of bilayer MoS2 increases from 0.614 nm to 0.71 nm, the indirect gap between the Γ and Λ points increases from 1.25 eV to 1.70 eV. Meanwhile, the energy gap of bilayer MoS2 transforms from an indirect one to a direct one. An external electric field can shift down (up) the energy bands of the bottom (top) MoS2 layer and also breaks the inversion symmetry of bilayer MoS2. As a result, the electric field can affect the band gaps, the spin-orbit interaction and splits the valance bands into two groups. The present study can help us understand more about the electronic structures of MoS2 materials for potential applications in electronics and optoelectronics.

  8. Colossal terahertz nonlinearity of tunneling van der Waals gap (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Bahk, Young-Mi; Kang, Bong Joo; Kim, Yong Seung; Kim, Joon-Yeon; Kim, Won Tae; Kim, Tae Yun; Kang, Taehee; Rhie, Ji Yeah; Han, Sanghoon; Park, Cheol-Hwan; Rotermund, Fabian; Kim, Dai-Sik

    2016-09-01

    We manufactured an array of three angstrom-wide, five millimeter-long van der Waals gaps of copper-graphene-copper composite, in which unprecedented nonlinearity was observed. To probe and manipulate van der Waals gaps with long wavelength electromagnetic waves such as terahertz waves, one is required to fabricate vertically oriented van der Waals gaps sandwiched between two metal planes with an infinite length in the sense of being much larger than any of the wavelengths used. By comparison with the simple vertical stacking of metal-graphene-metal structure, in our structure, background signals are completely blocked enabling all the light to squeeze through the gap without any strays. When the angstrom-sized van der Waals gaps are irradiated with intense terahertz pulses, the transient voltage across the gap reaches up to 5 V with saturation, sufficiently strong to deform the quantum barrier of angstrom gaps. The large transient potential difference across the gap facilitates electron tunneling through the quantum barrier, blocking terahertz waves completely. This negative feedback of electron tunneling leads to colossal nonlinear optical response, a 97% decrease in the normalized transmittance. Our technology for infinitely long van der Waals gaps can be utilized for other atomically thin materials than single layer graphene, enabling linear and nonlinear angstrom optics in a broad spectral range.

  9. CuPc/Au(1 1 0): Determination of the azimuthal alignment by a combination of angle-resolved photoemission and density functional theory

    PubMed Central

    Lüftner, Daniel; Milko, Matus; Huppmann, Sophia; Scholz, Markus; Ngyuen, Nam; Wießner, Michael; Schöll, Achim; Reinert, Friedrich; Puschnig, Peter

    2014-01-01

    Here we report on a combined experimental and theoretical study on the structural and electronic properties of a monolayer of Copper-Phthalocyanine (CuPc) on the Au(1 1 0) surface. Low-energy electron diffraction reveals a commensurate overlayer unit cell containing one adsorbate species. The azimuthal alignment of the CuPc molecule is revealed by comparing experimental constant binding energy (kxky)-maps using angle-resolved photoelectron spectroscopy with theoretical momentum maps of the free molecule's highest occupied molecular orbital (HOMO). This structural information is confirmed by total energy calculations within the framework of van-der-Waals corrected density functional theory. The electronic structure is further analyzed by computing the molecule-projected density of states, using both a semi-local and a hybrid exchange-correlation functional. In agreement with experiment, the HOMO is located about 1.2 eV below the Fermi-level, while there is no significant charge transfer into the molecule and the CuPc LUMO remains unoccupied on the Au(1 1 0) surface. PMID:25284953

  10. Application of Diffusion Monte Carlo to Materials Dominated by van der Waals Interactions

    DOE PAGES

    Benali, Anouar; Shulenburger, Luke; Romero, Nichols A.; ...

    2014-06-12

    Van der Waals forces are notoriously difficult to account for from first principles. We perform extensive calculation to assess the usefulness and validity of diffusion quantum Monte Carlo when applied to van der Waals forces. We present results for noble gas solids and clusters - archetypical van der Waals dominated assemblies, as well as a relevant pi-pi stacking supramolecular complex: DNA + intercalating anti-cancer drug Ellipticine.

  11. Cosmological models constructed by van der Waals fluid approximation and volumetric expansion

    NASA Astrophysics Data System (ADS)

    Samanta, G. C.; Myrzakulov, R.

    The universe modeled with van der Waals fluid approximation, where the van der Waals fluid equation of state contains a single parameter ωv. Analytical solutions to the Einstein’s field equations are obtained by assuming the mean scale factor of the metric follows volumetric exponential and power-law expansions. The model describes a rapid expansion where the acceleration grows in an exponential way and the van der Waals fluid behaves like an inflation for an initial epoch of the universe. Also, the model describes that when time goes away the acceleration is positive, but it decreases to zero and the van der Waals fluid approximation behaves like a present accelerated phase of the universe. Finally, it is observed that the model contains a type-III future singularity for volumetric power-law expansion.

  12. Development of a multi-space constrained density functional theory approach and its application to graphene-based vertical transistors

    NASA Astrophysics Data System (ADS)

    Kim, Han Seul; Kim, Yong-Hoon

    We have been developing a multi-space-constrained density functional theory approach for the first-principles calculations of nano-scale junctions subjected to non-equilibrium conditions and charge transport through them. In this presentation, we apply the method to vertically-stacked graphene/hexagonal boron nitride (hBN)/graphene Van der Waals heterostructures in the context of tunneling transistor applications. Bias-dependent changes in energy level alignment, wavefunction hybridization, and current are extracted. In particular, we compare quantum transport properties of single-layer (graphene) and infinite (graphite) electrode limits on the same ground, which is not possible within the traditional non-equilibrium Green function formalism. The effects of point defects within hBN on the current-voltage characteristics will be also discussed. Global Frontier Program (2013M3A6B1078881), Nano-Material Technology Development Programs (2016M3A7B4024133, 2016M3A7B4909944, and 2012M3A7B4049888), and Pioneer Program (2016M3C1A3906149) of the National Research Foundation.

  13. Acetylene chain reaction on hydrogenated boron nitride monolayers: a density functional theory study.

    PubMed

    Ponce-Pérez, R; Cocoletzi, Gregorio H; Takeuchi, Noboru

    2017-11-28

    Spin-polarized first-principles total-energy calculations have been performed to investigate the possible chain reaction of acetylene molecules mediated by hydrogen abstraction on hydrogenated hexagonal boron nitride monolayers. Calculations have been done within the periodic density functional theory (DFT), employing the PBE exchange correlation potential, with van der Waals corrections (vdW-DF). Reactions at two different sites have been considered: hydrogen vacancies on top of boron and on top of nitrogen atoms. As previously calculated, at the intermediate state of the reaction, when the acetylene molecule is attached to the surface, the adsorption energy is of the order of -0.82 eV and -0.20 eV (measured with respect to the energy of the non interacting molecule-substrate system) for adsorption on top of boron and nitrogen atoms, respectively. After the hydrogen abstraction takes place, the system gains additional energy, resulting in adsorption energies of -1.52 eV and -1.30 eV, respectively. These results suggest that the chain reaction is energetically favorable. The calculated minimum energy path (MEP) for hydrogen abstraction shows very small energy barriers of the order of 5 meV and 22 meV for the reaction on top of boron and nitrogen atoms, respectively. Finally, the density of states (DOS) evolution study helps to understand the chain reaction mechanism. Graphical abstract Acetylene chain reaction on hydrogenated boron nitride monolayers.

  14. Theory of coherent van der Waals matter.

    PubMed

    Kulić, Igor M; Kulić, Miodrag L

    2014-12-01

    We explain in depth the previously proposed theory of the coherent van der Waals (cvdW) interaction, the counterpart of van der Waals (vdW) force, emerging in spatially coherently fluctuating electromagnetic fields. We show that cvdW driven matter is dominated by many-body interactions, which are significantly stronger than those found in standard van der Waals (vdW) systems. Remarkably, the leading two- and three-body interactions are of the same order with respect to the distance (∝R(-6)), in contrast to the usually weak vdW three-body effects (∝R(-9)). From a microscopic theory we show that the anisotropic cvdW many-body interactions drive the formation of low-dimensional structures such as chains, membranes, and vesicles with very unusual, nonlocal properties. In particular, cvdW chains display a logarithmically growing stiffness with the chain length, while cvdW membranes have a bending modulus growing linearly with their size. We argue that the cvdW anisotropic many-body forces cause local cohesion but also a negative effective "surface tension." We conclude by deriving the equation of state for cvdW materials and propose experiments to test the theory, in particular the unusual three-body nature of cvdW.

  15. Theory of coherent van der Waals matter

    NASA Astrophysics Data System (ADS)

    Kulić, Igor M.; Kulić, Miodrag L.

    2014-12-01

    We explain in depth the previously proposed theory of the coherent van der Waals (cvdW) interaction, the counterpart of van der Waals (vdW) force, emerging in spatially coherently fluctuating electromagnetic fields. We show that cvdW driven matter is dominated by many-body interactions, which are significantly stronger than those found in standard van der Waals (vdW) systems. Remarkably, the leading two- and three-body interactions are of the same order with respect to the distance (∝R-6) , in contrast to the usually weak vdW three-body effects (∝R-9 ). From a microscopic theory we show that the anisotropic cvdW many-body interactions drive the formation of low-dimensional structures such as chains, membranes, and vesicles with very unusual, nonlocal properties. In particular, cvdW chains display a logarithmically growing stiffness with the chain length, while cvdW membranes have a bending modulus growing linearly with their size. We argue that the cvdW anisotropic many-body forces cause local cohesion but also a negative effective "surface tension." We conclude by deriving the equation of state for cvdW materials and propose experiments to test the theory, in particular the unusual three-body nature of cvdW.

  16. Spectral function from Reduced Density Matrix Functional Theory

    NASA Astrophysics Data System (ADS)

    Romaniello, Pina; di Sabatino, Stefano; Berger, Jan A.; Reining, Lucia

    2015-03-01

    In this work we focus on the calculation of the spectral function, which determines, for example, photoemission spectra, from reduced density matrix functional theory. Starting from its definition in terms of the one-body Green's function we derive an expression for the spectral function that depends on the natural occupation numbers and on an effective energy which accounts for all the charged excitations. This effective energy depends on the two-body as well as higher-order density matrices. Various approximations to this expression are explored by using the exactly solvable Hubbard chains.

  17. Ground-state densities from the Rayleigh-Ritz variation principle and from density-functional theory.

    PubMed

    Kvaal, Simen; Helgaker, Trygve

    2015-11-14

    The relationship between the densities of ground-state wave functions (i.e., the minimizers of the Rayleigh-Ritz variation principle) and the ground-state densities in density-functional theory (i.e., the minimizers of the Hohenberg-Kohn variation principle) is studied within the framework of convex conjugation, in a generic setting covering molecular systems, solid-state systems, and more. Having introduced admissible density functionals as functionals that produce the exact ground-state energy for a given external potential by minimizing over densities in the Hohenberg-Kohn variation principle, necessary and sufficient conditions on such functionals are established to ensure that the Rayleigh-Ritz ground-state densities and the Hohenberg-Kohn ground-state densities are identical. We apply the results to molecular systems in the Born-Oppenheimer approximation. For any given potential v ∈ L(3/2)(ℝ(3)) + L(∞)(ℝ(3)), we establish a one-to-one correspondence between the mixed ground-state densities of the Rayleigh-Ritz variation principle and the mixed ground-state densities of the Hohenberg-Kohn variation principle when the Lieb density-matrix constrained-search universal density functional is taken as the admissible functional. A similar one-to-one correspondence is established between the pure ground-state densities of the Rayleigh-Ritz variation principle and the pure ground-state densities obtained using the Hohenberg-Kohn variation principle with the Levy-Lieb pure-state constrained-search functional. In other words, all physical ground-state densities (pure or mixed) are recovered with these functionals and no false densities (i.e., minimizing densities that are not physical) exist. The importance of topology (i.e., choice of Banach space of densities and potentials) is emphasized and illustrated. The relevance of these results for current-density-functional theory is examined.

  18. Density functional theory calculations of the turbostratically disordered compound [ ( SnSe ) 1 + y ] m ( VSe 2 ) n

    DOE PAGES

    Rudin, Sven P.; Johnson, David C.

    2015-04-30

    Among composite materials that layer constituent substances of nanoscale thicknesses, [(SnSe)1+y ]m(VSe2)n emerges as an example where the constituents retain incommensurate lattice structures. Perpendicular to the stacking direction, the system exhibits random translations and random rotations on average, i.e., turbostratic disorder, with local regions showing twelvefold diffraction patterns. Earlier theoretical work on these structures showed that combining density functional theory with an empirical treatment of the van der Waals interaction gave structural parameters in good agreement with experiment, but no attempt was made to examine the relative orientations. Here we approximate the extended system with one extended constituent and onemore » finite constituent, which allows the treatment of all relative orientations on equal footing. Furthermore, the calculations show how the twelvefold periodicity follows from how the ions of the SnSe layer lock in with favored positions relative to the VSe2 layer, and the associated energy scale supports arguments for the overall turbostratic disorder.« less

  19. Chalcogenide-based van der Waals epitaxy: Interface conductivity of tellurium on Si(111)

    NASA Astrophysics Data System (ADS)

    Lüpke, Felix; Just, Sven; Bihlmayer, Gustav; Lanius, Martin; Luysberg, Martina; Doležal, Jiří; Neumann, Elmar; Cherepanov, Vasily; Ošt'ádal, Ivan; Mussler, Gregor; Grützmacher, Detlev; Voigtländer, Bert

    2017-07-01

    We present a combined experimental and theoretical analysis of a Te rich interface layer which represents a template for chalcogenide-based van der Waals epitaxy on Si(111). On a clean Si(111)-(1 ×1 ) surface, we find Te to form a Te/Si(111)-(1 ×1 ) reconstruction to saturate the substrate bonds. A problem arising is that such an interface layer can potentially be highly conductive, undermining the applicability of the on-top grown films in electric devices. We perform here a detailed structural analysis of the pristine Te termination and present direct measurements of its electrical conductivity by in situ distance-dependent four-probe measurements. The experimental results are analyzed with respect to density functional theory calculations and the implications of the interface termination with respect to the electrical conductivity of chalcogenide-based topological insulator thin films are discussed. In detail, we find a Te/Si(111)-(1 ×1 ) interface conductivity of σ2D Te=2.6 (5 ) ×10-7S /□ , which is small compared to the typical conductivity of topological surface states.

  20. A density functional theory study on the interactions between dibenzothiophene and tetrafluoroborate-based ionic liquids.

    PubMed

    Lin, Jin; Lü, Renqing; Wu, Chongchong; Xiao, Ye; Liang, Fei; Famakinwa, Temilola

    2017-04-01

    The interactions between dibenzothiophene (DBT) and N-butyl-N-methylimidazolium tetrafluoroborate ([BMIM][BF 4 ]), N-butyl-N-methylmorpholinium tetrafluoroborate ([Bmmorpholinium][BF 4 ]), N-butyl-N-methylpiperdinium tetrafluoroborate ([BMPiper][BF 4 ]), N-butyl-N-methylpyrrolidinium tetrafluoroborate ([BMPyrro][BF 4 ]), and N-butylpyridinium tetrafluoroborate ([BPY][BF 4 ]) were investigated using density functional theory approach. Geometric, electron, and topological properties were analyzed using natural bond orbital, atoms in molecules theory, and noncovalent interaction methods in order to understand intermolecular interactions between DBT and ionic liquids. The result shows that hydrogen bond and van der Waals interactions are widespread in all the ionic liquids-DBT systems. Ion-π interactions between DBT and cation or anion are also observed, while π + -π interactions are only found in the [BMIM][BF 4 ]-DBT and [BPY][BF 4 ]-DBT systems. The order of interaction energy is [BPY][BF4]-DBT > [BMIM][BF 4 ]-DBT > [BMPiper][BF 4 ]-DBT > [BMPyrro][BF 4 ]-DBT > [BMmorpholinum][BF 4 ]-DBT. The energies between DBT and the two ionic liquids containing aromatic cations are significantly higher.

  1. Electronic structures and enhanced optical properties of blue phosphorene/transition metal dichalcogenides van der Waals heterostructures.

    PubMed

    Peng, Qiong; Wang, Zhenyu; Sa, Baisheng; Wu, Bo; Sun, Zhimei

    2016-08-24

    As a fast emerging topic, van der Waals (vdW) heterostructures have been proposed to modify two-dimensional layered materials with desired properties, thus greatly extending the applications of these materials. In this work, the stacking characteristics, electronic structures, band edge alignments, charge density distributions and optical properties of blue phosphorene/transition metal dichalcogenides (BlueP/TMDs) vdW heterostructures were systematically studied based on vdW corrected density functional theory. Interestingly, the valence band maximum and conduction band minimum are located in different parts of BlueP/MoSe2, BlueP/WS2 and BlueP/WSe2 heterostructures. The MoSe2, WS2 or WSe2 layer can be used as the electron donor and the BlueP layer can be used as the electron acceptor. We further found that the optical properties under visible-light irradiation of BlueP/TMDs vdW heterostructures are significantly improved. In particular, the predicted upper limit energy conversion efficiencies of BlueP/MoS2 and BlueP/MoSe2 heterostructures reach as large as 1.16% and 0.98%, respectively, suggesting their potential applications in efficient thin-film solar cells and optoelectronic devices.

  2. Single-particle energies and density of states in density functional theory

    NASA Astrophysics Data System (ADS)

    van Aggelen, H.; Chan, G. K.-L.

    2015-07-01

    Time-dependent density functional theory (TD-DFT) is commonly used as the foundation to obtain neutral excited states and transition weights in DFT, but does not allow direct access to density of states and single-particle energies, i.e. ionisation energies and electron affinities. Here we show that by extending TD-DFT to a superfluid formulation, which involves operators that break particle-number symmetry, we can obtain the density of states and single-particle energies from the poles of an appropriate superfluid response function. The standard Kohn- Sham eigenvalues emerge as the adiabatic limit of the superfluid response under the assumption that the exchange- correlation functional has no dependence on the superfluid density. The Kohn- Sham eigenvalues can thus be interpreted as approximations to the ionisation energies and electron affinities. Beyond this approximation, the formalism provides an incentive for creating a new class of density functionals specifically targeted at accurate single-particle eigenvalues and bandgaps.

  3. Density-dependent covariant energy density functionals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lalazissis, G. A.

    2012-10-20

    Relativistic nuclear energy density functionals are applied to the description of a variety of nuclear structure phenomena at and away fromstability line. Isoscalar monopole, isovector dipole and isoscalar quadrupole giant resonances are calculated using fully self-consistent relativistic quasiparticle randomphase approximation, based on the relativistic Hartree-Bogoliubovmodel. The impact of pairing correlations on the fission barriers in heavy and superheavy nuclei is examined. The role of pion in constructing desnity functionals is also investigated.

  4. Combination Rules for Morse-Based van der Waals Force Fields.

    PubMed

    Yang, Li; Sun, Lei; Deng, Wei-Qiao

    2018-02-15

    In traditional force fields (FFs), van der Waals interactions have been usually described by the Lennard-Jones potentials. Conventional combination rules for the parameters of van der Waals (VDW) cross-termed interactions were developed for the Lennard-Jones based FFs. Here, we report that the Morse potentials were a better function to describe VDW interactions calculated by highly precise quantum mechanics methods. A new set of combination rules was developed for Morse-based FFs, in which VDW interactions were described by Morse potentials. The new set of combination rules has been verified by comparing the second virial coefficients of 11 noble gas mixtures. For all of the mixed binaries considered in this work, the combination rules work very well and are superior to all three other existing sets of combination rules reported in the literature. We further used the Morse-based FF by using the combination rules to simulate the adsorption isotherms of CH 4 at 298 K in four covalent-organic frameworks (COFs). The overall agreement is great, which supports the further applications of this new set of combination rules in more realistic simulation systems.

  5. Dynamical screening of the van der Waals interaction between graphene layers.

    PubMed

    Dappe, Y J; Bolcatto, P G; Ortega, J; Flores, F

    2012-10-24

    The interaction between graphene layers is analyzed combining local orbital DFT and second order perturbation theory. For this purpose we use the linear combination of atomic orbitals-orbital occupancy (LCAO-OO) formalism, that allows us to separate the interaction energy as the sum of a weak chemical interaction between graphene layers plus the van der Waals interaction (Dappe et al 2006 Phys. Rev. B 74 205434). In this work, the weak chemical interaction is calculated by means of corrected-LDA calculations using an atomic-like sp(3)d(5) basis set. The van der Waals interaction is calculated by means of second order perturbation theory using an atom-atom interaction approximation and the atomic-like-orbital occupancies. We also analyze the effect of dynamical screening in the van der Waals interaction using a simple model. We find that this dynamical screening reduces by 40% the van der Waals interaction. Taking this effect into account, we obtain a graphene-graphene interaction energy of 70 ± 5 meV/atom in reasonable agreement with the experimental evidence.

  6. Hybrid, Gate-Tunable, van der Waals p–n Heterojunctions from Pentacene and MoS 2

    DOE PAGES

    Jariwala, Deep; Howell, Sarah L.; Chen, Kan-Sheng; ...

    2015-12-18

    The recent emergence of a wide variety of two-dimensional (2D) materials has created new opportunities for device concepts and applications. In particular, the availability of semiconducting transition metal dichalcogenides, in addition to semimetallic graphene and insulating boron nitride, has enabled the fabrication of “all 2D” van der Waals heterostructure devices. Furthermore, the concept of van der Waals heterostructures has the potential to be significantly broadened beyond layered solids. For example, molecular and polymeric organic solids, whose surface atoms possess saturated bonds, are also known to interact via van der Waals forces and thus offer an alternative for scalable integration withmore » 2D materials. Here, we demonstrate the integration of an organic small molecule p-type semiconductor, pentacene, with a 2D n-type semiconductor, MoS2. The resulting p–n heterojunction is gate-tunable and shows asymmetric control over the antiambipolar transfer characteristic. In addition, the pentacene/MoS2 heterojunction exhibits a photovoltaic effect attributable to type II band alignment, which suggests that MoS2 can function as an acceptor in hybrid solar cells.« less

  7. Hybrid, Gate-Tunable, van der Waals p–n Heterojunctions from Pentacene and MoS 2

    DOE PAGES

    Jariwala, Deep; Howell, Sarah L.; Chen, Kan -Sheng; ...

    2015-12-10

    Here, the recent emergence of a wide variety of two-dimensional (2D) materials has created new opportunities for device concepts and applications. In particular, the availability of semiconducting transition metal dichalcogenides, in addition to semimetallic graphene and insulating boron nitride, has enabled the fabrication of “all 2D” van der Waals heterostructure devices. Furthermore, the concept of van der Waals heterostructures has the potential to be significantly broadened beyond layered solids. For example, molecular and polymeric organic solids, whose surface atoms possess saturated bonds, are also known to interact via van der Waals forces and thus offer an alternative for scalable integrationmore » with 2D materials. Here, we demonstrate the integration of an organic small molecule p-type semiconductor, pentacene, with a 2D n-type semiconductor, MoS 2. The resulting p–n heterojunction is gate-tunable and shows asymmetric control over the antiambipolar transfer characteristic. In addition, the pentacene/MoS 2 heterojunction exhibits a photovoltaic effect attributable to type II band alignment, which suggests that MoS 2 can function as an acceptor in hybrid solar cells.« less

  8. Hybrid, Gate-Tunable, van der Waals p–n Heterojunctions from Pentacene and MoS 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jariwala, Deep; Howell, Sarah L.; Chen, Kan -Sheng

    Here, the recent emergence of a wide variety of two-dimensional (2D) materials has created new opportunities for device concepts and applications. In particular, the availability of semiconducting transition metal dichalcogenides, in addition to semimetallic graphene and insulating boron nitride, has enabled the fabrication of “all 2D” van der Waals heterostructure devices. Furthermore, the concept of van der Waals heterostructures has the potential to be significantly broadened beyond layered solids. For example, molecular and polymeric organic solids, whose surface atoms possess saturated bonds, are also known to interact via van der Waals forces and thus offer an alternative for scalable integrationmore » with 2D materials. Here, we demonstrate the integration of an organic small molecule p-type semiconductor, pentacene, with a 2D n-type semiconductor, MoS 2. The resulting p–n heterojunction is gate-tunable and shows asymmetric control over the antiambipolar transfer characteristic. In addition, the pentacene/MoS 2 heterojunction exhibits a photovoltaic effect attributable to type II band alignment, which suggests that MoS 2 can function as an acceptor in hybrid solar cells.« less

  9. Effect of physisorbed molecules and an external external fields on the metallic Shockley surface state of Cu(111): A density functional theory study

    NASA Astrophysics Data System (ADS)

    Berland, Kristian; Einstein, T. L.; Hyldgaard, Per

    2012-02-01

    To manipulate the Cu(111) partially-filled Shockley surface state, we study its response to an external fieldootnotetextKB, TLE, PH; arXiv 1109:6706 E and physisorbed PAHs and quinone molecules. We use density-functional theory calculations with periodic-boundary conditions. The van der Waals density functional version vdW-DF2 accounts for the molecular adsorption. The issue that the Kohn-Sham wave functions couple to both sides of the Cu slab is handled with a decoupling scheme based on a rotation in Hilbert space. A convergence study reveals that to obtain a proper Shockley surface state, 6 Cu layers is sufficient, while 15 is optimal. We use 6 layers for the response to the molecules and 15 to external field. We find that the surface state displays isotropic dispersion (up to order k^6), free-electron like until the Fermi wave vector but with a significant quartic component beyond. The shift in band minimum and effective mass depend linearly on E, with a smaller fractional change in the latter. Charge transfer occurs beyond the outermost copper atoms, and most of the screening is due to bulk electrons. We find that the molecular physisorption increases the band minimum, with the effect the of a quinone being much stronger than the corresponding PAH.

  10. Exchange-correlation energies of atoms from efficient density functionals: influence of the electron density

    NASA Astrophysics Data System (ADS)

    Tao, Jianmin; Ye, Lin-Hui; Duan, Yuhua

    2017-12-01

    The primary goal of Kohn-Sham density functional theory is to evaluate the exchange-correlation contribution to electronic properties. However, the accuracy of a density functional can be affected by the electron density. Here we apply the nonempirical Tao-Mo (TM) semilocal functional to study the influence of the electron density on the exchange and correlation energies of atoms and ions, and compare the results with the commonly used nonempirical semilocal functionals local spin-density approximation (LSDA), Perdew-Burke-Ernzerhof (PBE), Tao-Perdew-Staroverov-Scuseria (TPSS), and hybrid functional PBE0. We find that the spin-restricted Hartree-Fock density yields the exchange and correlation energies in good agreement with the Optimized Effective Potential method, particularly for spherical atoms and ions. However, the errors of these semilocal and hybrid functionals become larger for self-consistent densities. We further find that the quality of the electron density have greater effect on the exchange-correlation energies of kinetic energy density-dependent meta-GGA functionals TPSS and TM than on those of the LSDA and GGA, and therefore, should have greater influence on the performance of meta-GGA functionals. Finally, we show that the influence of the density quality on PBE0 is slightly reduced, compared to that of PBE, due to the exact mixing.

  11. High density of (pseudo) periodic twin-grain boundaries in molecular beam epitaxy-grown van der Waals heterostructure: MoTe{sub 2}/MoS{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diaz, Horacio Coy; Ma, Yujing; Chaghi, Redhouane

    2016-05-09

    Growth of transition metal dichalcogenide heterostructures by molecular beam epitaxy (MBE) promises synthesis of artificial van der Waals materials with controllable layer compositions and separations. Here, we show that MBE growth of 2H-MoTe{sub 2} monolayers on MoS{sub 2} substrates results in a high density of mirror-twins within the films. The grain boundaries are tellurium deficient, suggesting that Te-deficiency during growth causes their formation. Scanning tunneling microscopy and spectroscopy reveal that the grain boundaries arrange in a pseudo periodic “wagon wheel” pattern with only ∼2.6 nm repetition length. Defect states from these domain boundaries fill the band gap and thus give themore » monolayer an almost metallic property. The band gap states pin the Fermi-level in MoTe{sub 2} and thus determine the band-alignment in the MoTe{sub 2}/MoS{sub 2} interface.« less

  12. Exchange-correlation energies of atoms from efficient density functionals: influence of the electron density

    DOE PAGES

    Tao, Jianmin; Ye, Lin -Hui; Duan, Yuhua

    2017-11-20

    The primary goal of Kohn–Sham density functional theory is to evaluate the exchange-correlation contribution to electronic properties. However, the accuracy of a density functional can be affected by the electron density. Here we apply the nonempirical Tao–Mo (TM) semilocal functional to study the influence of the electron density on the exchange and correlation energies of atoms and ions, and compare the results with the commonly used nonempirical semilocal functionals local spin-density approximation (LSDA), Perdew–Burke–Ernzerhof (PBE), Tao–Perdew–Staroverov–Scuseria (TPSS), and hybrid functional PBE0. We find that the spin-restricted Hartree–Fock density yields the exchange and correlation energies in good agreement with the Optimizedmore » Effective Potential method, particularly for spherical atoms and ions. However, the errors of these semilocal and hybrid functionals become larger for self-consistent densities. We further find that the quality of the electron density have greater effect on the exchange-correlation energies of kinetic energy density-dependent meta-GGA functionals TPSS and TM than on those of the LSDA and GGA, and therefore, should have greater influence on the performance of meta-GGA functionals. Lastly, we show that the influence of the density quality on PBE0 is slightly reduced, compared to that of PBE, due to the exact mixing.« less

  13. Exchange-correlation energies of atoms from efficient density functionals: influence of the electron density

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Jianmin; Ye, Lin -Hui; Duan, Yuhua

    The primary goal of Kohn–Sham density functional theory is to evaluate the exchange-correlation contribution to electronic properties. However, the accuracy of a density functional can be affected by the electron density. Here we apply the nonempirical Tao–Mo (TM) semilocal functional to study the influence of the electron density on the exchange and correlation energies of atoms and ions, and compare the results with the commonly used nonempirical semilocal functionals local spin-density approximation (LSDA), Perdew–Burke–Ernzerhof (PBE), Tao–Perdew–Staroverov–Scuseria (TPSS), and hybrid functional PBE0. We find that the spin-restricted Hartree–Fock density yields the exchange and correlation energies in good agreement with the Optimizedmore » Effective Potential method, particularly for spherical atoms and ions. However, the errors of these semilocal and hybrid functionals become larger for self-consistent densities. We further find that the quality of the electron density have greater effect on the exchange-correlation energies of kinetic energy density-dependent meta-GGA functionals TPSS and TM than on those of the LSDA and GGA, and therefore, should have greater influence on the performance of meta-GGA functionals. Lastly, we show that the influence of the density quality on PBE0 is slightly reduced, compared to that of PBE, due to the exact mixing.« less

  14. Fabrication of functional ultrathin single-crystal nanowires from quasi-one dimensional van der Waals crystals Ta2(Pd or Pt)3Se8

    NASA Astrophysics Data System (ADS)

    Liu, Xue; Liu, Jinyu; Hu, Jin; Yue, Chunlei; Mao, Zhiqiang; Wei, Jiang; Zhu, Yibo; Sanchez, Ana; Antipina, Liubov; Sorokin, Pavel

    Micromechanical exfoliation or wet exfoliation of two-dimensional van der Waals materials has triggered an explosive interest in 2D material research. In our work, we extend this idea to 1D van der Waals material. By using micromechanical exfoliation or wet exfoliation, 1D nanowire with size as small as six molecular ribbons can be readily achieved in the Ta2(Pd or Pt)3Se8 system. The semiconducting properties of exfoliated Ta2Pd3Se8 nanowires show n-type, whereas Ta2Pt3Se8 nanowires are p-type. Our electronic band structure calculation for Ta2Pd3Se8 nanowire reveals that from multi-ribbon to single-ribbon the band gap evolves from indirect 0.5eV in bulk to direct 1eV in single-ribbon. A functional ``NOT'' gate consisting of field-effect transistors based on these two types of complementary nanowires has also been successfully realized. Moreover, the photocurrent response of Ta2Pd3Se8 nanowire transistors has been studied as well. Ta2(Pd or Pt)3Se8 system, as an intrinsic quasi-1D material, provides a viable platform for the study of low dimensional condensed matter physics. We acknowledge the financial support from DOE and BoRSF.

  15. Locality of correlation in density functional theory.

    PubMed

    Burke, Kieron; Cancio, Antonio; Gould, Tim; Pittalis, Stefano

    2016-08-07

    The Hohenberg-Kohn density functional was long ago shown to reduce to the Thomas-Fermi (TF) approximation in the non-relativistic semiclassical (or large-Z) limit for all matter, i.e., the kinetic energy becomes local. Exchange also becomes local in this limit. Numerical data on the correlation energy of atoms support the conjecture that this is also true for correlation, but much less relevant to atoms. We illustrate how expansions around a large particle number are equivalent to local density approximations and their strong relevance to density functional approximations. Analyzing highly accurate atomic correlation energies, we show that EC → -AC ZlnZ + BCZ as Z → ∞, where Z is the atomic number, AC is known, and we estimate BC to be about 37 mhartree. The local density approximation yields AC exactly, but a very incorrect value for BC, showing that the local approximation is less relevant for the correlation alone. This limit is a benchmark for the non-empirical construction of density functional approximations. We conjecture that, beyond atoms, the leading correction to the local density approximation in the large-Z limit generally takes this form, but with BC a functional of the TF density for the system. The implications for the construction of approximate density functionals are discussed.

  16. Rarefaction waves in van der Waals fluids with an arbitrary number of degrees of freedom

    DOE PAGES

    Yuen, Albert; Barnard, John J.

    2015-09-30

    The isentropic expansion of an instantaneously and homogeneously heated foil is calculated using a 1D fluid model. The initial temperature and density are assumed to be in the vicinity of the critical temperature and solid density, respectively. The fluid is assumed to satisfy the van der Waals equation of state with an arbitrary number of degrees of freedom. Self-similar Riemann solutions are found. With a larger number of degrees of freedom f, depending on the initial dimensionless entropymore » $$˜\\atop{s_0}$$, a richer family of foil expansion behaviors have been found. We calculate the domain in parameter space where these behaviors occur. In total, eight types of rarefaction waves are found and described.« less

  17. Empathy's purity, sympathy's complexities; De Waal, Darwin and Adam Smith.

    PubMed

    van der Weele, Cor

    2011-07-01

    Frans de Waal's view that empathy is at the basis of morality directly seems to build on Darwin, who considered sympathy as the crucial instinct. Yet when we look closer, their understanding of the central social instinct differs considerably. De Waal sees our deeply ingrained tendency to sympathize (or rather: empathize) with others as the good side of our morally dualistic nature. For Darwin, sympathizing was not the whole story of the "workings of sympathy"; the (selfish) need to receive sympathy played just as central a role in the complex roads from sympathy to morality. Darwin's understanding of sympathy stems from Adam Smith, who argued that the presence of morally impure motives should not be a reason for cynicism about morality. I suggest that De Waal's approach could benefit from a more thorough alignment with the analysis of the workings of sympathy in the work of Darwin and Adam Smith.

  18. Efficient Carrier-to-Exciton Conversion in Field Emission Tunnel Diodes Based on MIS-Type van der Waals Heterostack.

    PubMed

    Wang, Shunfeng; Wang, Junyong; Zhao, Weijie; Giustiniano, Francesco; Chu, Leiqiang; Verzhbitskiy, Ivan; Zhou Yong, Justin; Eda, Goki

    2017-08-09

    We report on efficient carrier-to-exciton conversion and planar electroluminescence from tunnel diodes based on a metal-insulator-semiconductor (MIS) van der Waals heterostack consisting of few-layer graphene (FLG), hexagonal boron nitride (hBN), and monolayer tungsten disulfide (WS 2 ). These devices exhibit excitonic electroluminescence with extremely low threshold current density of a few pA·μm -2 , which is several orders of magnitude lower compared to the previously reported values for the best planar EL devices. Using a reference dye, we estimate the EL quantum efficiency to be ∼1% at low current density limit, which is of the same order of magnitude as photoluminescence quantum yield at the equivalent excitation rate. Our observations reveal that the efficiency of our devices is not limited by carrier-to-exciton conversion efficiency but by the inherent exciton-to-photon yield of the material. The device characteristics indicate that the light emission is triggered by injection of hot minority carriers (holes) to n-doped WS 2 by Fowler-Nordheim tunneling and that hBN serves as an efficient hole-transport and electron-blocking layer. Our findings offer insight into the intelligent design of van der Waals heterostructures and avenues for realizing efficient excitonic devices.

  19. Engineering Low Dimensional Materials with van der Waals Interaction

    NASA Astrophysics Data System (ADS)

    Jin, Chenhao

    the consequence of interlayer interaction, as well as its systematic evolution in the parameter space. Experimentally, optical spectroscopy is a powerful tool to investigate properties of materials, owing to its insusceptibility to extrinsic effects like defects, capability of obtaining information in large spectral range, and the sensitivity to not only density of states but also wavefunction through transition matrix element. Following the classification of interlayer interaction, I will present optical spectroscopy studies of three van der Waals systems: Two-dimensional few layer phosphorene, one-dimensional double-walled nanotubes, and two-dimensional graphene/hexagonal Boron Nitride heterostructure. Experimental results exhibit rich and distinctively different effects of interlayer interaction in these systems, as a demonstration of the colorful physics from the large parameter space. On the other hand, all these cases can be well-described by the methods developed in the theory part, which explains experimental results quantitatively through only a few parameters each with clear physical meaning. Therefore, the formalism given here, both from theoretical and experimental aspects, offers a generally useful methodology to study, understand and design van der Waals materials for both fascinating physics and novel applications.

  20. Density functional theory study on the interactions of l-cysteine with graphene: adsorption stability and magnetism

    NASA Astrophysics Data System (ADS)

    Luo, Huijuan; Li, Hejun; Fu, Qiangang; Chu, Yanhui; Cao, Xiaoyu; Sun, Can; Yuan, Xiaoyan; Liu, Lei

    2013-12-01

    Understanding the interactions between graphene and biomolecules is of fundamental relevance to the area of nanobiotechnology. Herein, we take l-cysteine as the probe biomolecule and investigate its adsorption on pristine graphene and B-, N-, Al-, Ni-, Ga-, Pd-doped graphene using density functional theory calculations. Three kinds of upright adsorption configurations, via unprotonated functional groups (-SH, -NH2, -COOH), are considered. The calculations reveal pristine graphene physically adsorbs l-cysteine. N-doped graphene shows physisorption towards the S-end and N-end l-cysteine, and chemisorption towards the O-end radical. Strong chemisorption, with site-specific preference, occurs on Al-, Ni-, Ga- and Pd-doped graphene, accompanied by severe structural changes. Spin polarization with an unusual mirror symmetry on Ni- and Pd-doped graphene is induced by chemisorption of unprotonated l-cysteine, except for O-end adsorption on Pd-doped graphene. The magnetization arises mainly from spin polarization of the C 2pz orbital, with a minor magnetism located on Ni or Pd. The influence of van der Waals forces is also evaluated. A thorough analysis of the adsorption stability and magnetism of these systems would be beneficial to facilitate applications in graphene-based biosensing, biomolecule immobilization, magnetic bio-separation and other fields in bionanotechnology.

  1. Efimov states near a Feshbach resonance and the limits of van der Waals universality at finite background scattering length

    NASA Astrophysics Data System (ADS)

    Langmack, Christian; Schmidt, Richard; Zwerger, Wilhelm

    2018-03-01

    We calculate the spectrum of three-body Efimov bound states near a Feshbach resonance within a model which accounts both for the finite range of interactions and the presence of background scattering. The latter may be due to direct interactions in an open channel or a second overlapping Feshbach resonance. It is found that background scattering gives rise to substantial changes in the trimer spectrum as a function of the detuning away from a Feshbach resonance, in particular in the regime where the background channel supports Efimov states on its own. Compared to the situation with negligible background scattering, the regime where van der Waals universality applies is shifted to larger values of the resonance strength if the background scattering length is positive. For negative background scattering lengths, in turn, van der Waals universality extends to even small values of the resonance strength parameter, consistent with experimental results on Efimov states in 39K. Within a simple model, we show that short-range three-body forces do not affect van der Waals universality significantly. Repulsive three-body forces may, however, explain the observed variation between around -8 and -10 of the ratio between the scattering length where the first Efimov trimer appears and the van der Waals length.

  2. Molecular density functional theory of water including density-polarization coupling.

    PubMed

    Jeanmairet, Guillaume; Levy, Nicolas; Levesque, Maximilien; Borgis, Daniel

    2016-06-22

    We present a three-dimensional molecular density functional theory of water derived from first-principles that relies on the particle's density and multipolar polarization density and includes the density-polarization coupling. This brings two main benefits: (i) scalar density and vectorial multipolar polarization density fields are much more tractable and give more physical insight than the full position and orientation densities, and (ii) it includes the full density-polarization coupling of water, that is known to be non-vanishing but has never been taken into account. Furthermore, the theory requires only the partial charge distribution of a water molecule and three measurable bulk properties, namely the structure factor and the Fourier components of the longitudinal and transverse dielectric susceptibilities.

  3. Thin Film Evaporation Model with Retarded Van Der Waals Interaction (Postprint)

    DTIC Science & Technology

    2013-11-01

    Waals interaction. The retarded van der Waals interaction is derived from Hamaker theory, the summation of retarded pair potentials for all molecules...interaction is derived from Hamaker theory, the summation of retarded pair potentials for all molecules for a given geometry. When combined, the governing...interaction force is the negative derivative with respect to distance of the interaction energy. The method due to Hamaker essentially sums all pair

  4. Locality of correlation in density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burke, Kieron; Cancio, Antonio; Gould, Tim

    The Hohenberg-Kohn density functional was long ago shown to reduce to the Thomas-Fermi (TF) approximation in the non-relativistic semiclassical (or large-Z) limit for all matter, i.e., the kinetic energy becomes local. Exchange also becomes local in this limit. Numerical data on the correlation energy of atoms support the conjecture that this is also true for correlation, but much less relevant to atoms. We illustrate how expansions around a large particle number are equivalent to local density approximations and their strong relevance to density functional approximations. Analyzing highly accurate atomic correlation energies, we show that E{sub C} → −A{sub C} ZlnZ +more » B{sub C}Z as Z → ∞, where Z is the atomic number, A{sub C} is known, and we estimate B{sub C} to be about 37 mhartree. The local density approximation yields A{sub C} exactly, but a very incorrect value for B{sub C}, showing that the local approximation is less relevant for the correlation alone. This limit is a benchmark for the non-empirical construction of density functional approximations. We conjecture that, beyond atoms, the leading correction to the local density approximation in the large-Z limit generally takes this form, but with B{sub C} a functional of the TF density for the system. The implications for the construction of approximate density functionals are discussed.« less

  5. Density-functional expansion methods: Grand challenges.

    PubMed

    Giese, Timothy J; York, Darrin M

    2012-03-01

    We discuss the source of errors in semiempirical density functional expansion (VE) methods. In particular, we show that VE methods are capable of well-reproducing their standard Kohn-Sham density functional method counterparts, but suffer from large errors upon using one or more of these approximations: the limited size of the atomic orbital basis, the Slater monopole auxiliary basis description of the response density, and the one- and two-body treatment of the core-Hamiltonian matrix elements. In the process of discussing these approximations and highlighting their symptoms, we introduce a new model that supplements the second-order density-functional tight-binding model with a self-consistent charge-dependent chemical potential equalization correction; we review our recently reported method for generalizing the auxiliary basis description of the atomic orbital response density; and we decompose the first-order potential into a summation of additive atomic components and many-body corrections, and from this examination, we provide new insights and preliminary results that motivate and inspire new approximate treatments of the core-Hamiltonian.

  6. Resonance oscillations of nonreciprocal long-range van der Waals forces between atoms in electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Sherkunov, Yury

    2018-03-01

    We study theoretically the van der Waals interaction between two atoms out of equilibrium with an isotropic electromagnetic field. We demonstrate that at large interatomic separations, the van der Waals forces are resonant, spatially oscillating, and nonreciprocal due to resonance absorption and emission of virtual photons. We suggest that the van der Waals forces can be controlled and manipulated by tuning the spectrum of artificially created random light.

  7. Periodic subsystem density-functional theory

    NASA Astrophysics Data System (ADS)

    Genova, Alessandro; Ceresoli, Davide; Pavanello, Michele

    2014-11-01

    By partitioning the electron density into subsystem contributions, the Frozen Density Embedding (FDE) formulation of subsystem Density Functional Theory (DFT) has recently emerged as a powerful tool for reducing the computational scaling of Kohn-Sham DFT. To date, however, FDE has been employed to molecular systems only. Periodic systems, such as metals, semiconductors, and other crystalline solids have been outside the applicability of FDE, mostly because of the lack of a periodic FDE implementation. To fill this gap, in this work we aim at extending FDE to treat subsystems of molecular and periodic character. This goal is achieved by a dual approach. On one side, the development of a theoretical framework for periodic subsystem DFT. On the other, the realization of the method into a parallel computer code. We find that periodic FDE is capable of reproducing total electron densities and (to a lesser extent) also interaction energies of molecular systems weakly interacting with metallic surfaces. In the pilot calculations considered, we find that FDE fails in those cases where there is appreciable density overlap between the subsystems. Conversely, we find FDE to be in semiquantitative agreement with Kohn-Sham DFT when the inter-subsystem density overlap is low. We also conclude that to make FDE a suitable method for describing molecular adsorption at surfaces, kinetic energy density functionals that go beyond the GGA level must be employed.

  8. Periodic subsystem density-functional theory.

    PubMed

    Genova, Alessandro; Ceresoli, Davide; Pavanello, Michele

    2014-11-07

    By partitioning the electron density into subsystem contributions, the Frozen Density Embedding (FDE) formulation of subsystem Density Functional Theory (DFT) has recently emerged as a powerful tool for reducing the computational scaling of Kohn-Sham DFT. To date, however, FDE has been employed to molecular systems only. Periodic systems, such as metals, semiconductors, and other crystalline solids have been outside the applicability of FDE, mostly because of the lack of a periodic FDE implementation. To fill this gap, in this work we aim at extending FDE to treat subsystems of molecular and periodic character. This goal is achieved by a dual approach. On one side, the development of a theoretical framework for periodic subsystem DFT. On the other, the realization of the method into a parallel computer code. We find that periodic FDE is capable of reproducing total electron densities and (to a lesser extent) also interaction energies of molecular systems weakly interacting with metallic surfaces. In the pilot calculations considered, we find that FDE fails in those cases where there is appreciable density overlap between the subsystems. Conversely, we find FDE to be in semiquantitative agreement with Kohn-Sham DFT when the inter-subsystem density overlap is low. We also conclude that to make FDE a suitable method for describing molecular adsorption at surfaces, kinetic energy density functionals that go beyond the GGA level must be employed.

  9. Raman Optical Activity Spectra from Density Functional Perturbation Theory and Density-Functional-Theory-Based Molecular Dynamics.

    PubMed

    Luber, Sandra

    2017-03-14

    We describe the calculation of Raman optical activity (ROA) tensors from density functional perturbation theory, which has been implemented into the CP2K software package. Using the mixed Gaussian and plane waves method, ROA spectra are evaluated in the double-harmonic approximation. Moreover, an approach for the calculation of ROA spectra by means of density functional theory-based molecular dynamics is derived and used to obtain an ROA spectrum via time correlation functions, which paves the way for the calculation of ROA spectra taking into account anharmonicities and dynamic effects at ambient conditions.

  10. Dispersion interactions in room-temperature ionic liquids: Results from a non-empirical density functional

    NASA Astrophysics Data System (ADS)

    Kohanoff, Jorge; Pinilla, Carlos; Youngs, Tristan G. A.; Artacho, Emilio; Soler, José M.

    2011-10-01

    The role of dispersion or van de Waals (VDW) interactions in imidazolium-based room-temperature ionic liquids is studied within the framework of density functional theory, using a recently developed non-empirical functional [M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004), 10.1103/PhysRevLett.92.246401], as efficiently implemented in the SIESTA code [G. Román-Pérez and J. M. Soler, Phys. Rev. Lett. 103, 096102 (2009), 10.1103/PhysRevLett.103.096102]. We present results for the equilibrium structure and lattice parameters of several crystalline phases, finding a general improvement with respect to both the local density (LDA) and the generalized gradient approximations (GGA). Similar to other systems characterized by VDW bonding, such as rare gas and benzene dimers as well as solid argon, equilibrium distances and volumes are consistently overestimated by ≈7%, compared to -11% within LDA and 11% within GGA. The intramolecular geometries are retained, while the intermolecular distances and orientations are significantly improved relative to LDA and GGA. The quality is superior to that achieved with tailor-made empirical VDW corrections ad hoc [M. G. Del Pópolo, C. Pinilla, and P. Ballone, J. Chem. Phys. 126, 144705 (2007), 10.1063/1.2715571]. We also analyse the performance of an optimized version of this non-empirical functional, where the screening properties of the exchange have been tuned to reproduce high-level quantum chemical calculations [J. Klimes, D. Bowler, and A. Michaelides, J. Phys.: Condens. Matter 22, 074203 (2010), 10.1088/0953-8984/22/7/074203]. The results for solids are even better with volumes and geometries reproduced within 2% of experimental data. We provide some insight into the issue of polymorphism of [bmim][Cl] crystals, and we present results for the geometry and energetics of [bmim][Tf] and [mmim][Cl] neutral and charged clusters, which validate the use of empirical force

  11. Gedanken densities and exact constraints in density functional theory.

    PubMed

    Perdew, John P; Ruzsinszky, Adrienn; Sun, Jianwei; Burke, Kieron

    2014-05-14

    Approximations to the exact density functional for the exchange-correlation energy of a many-electron ground state can be constructed by satisfying constraints that are universal, i.e., valid for all electron densities. Gedanken densities are designed for the purpose of this construction, but need not be realistic. The uniform electron gas is an old gedanken density. Here, we propose a spherical two-electron gedanken density in which the dimensionless density gradient can be an arbitrary positive constant wherever the density is non-zero. The Lieb-Oxford lower bound on the exchange energy can be satisfied within a generalized gradient approximation (GGA) by bounding its enhancement factor or simplest GGA exchange-energy density. This enhancement-factor bound is well known to be sufficient, but our gedanken density shows that it is also necessary. The conventional exact exchange-energy density satisfies no such local bound, but energy densities are not unique, and the simplest GGA exchange-energy density is not an approximation to it. We further derive a strongly and optimally tightened bound on the exchange enhancement factor of a two-electron density, which is satisfied by the local density approximation but is violated by all published GGA's or meta-GGA's. Finally, some consequences of the non-uniform density-scaling behavior for the asymptotics of the exchange enhancement factor of a GGA or meta-GGA are given.

  12. Demixing in simple dipolar mixtures: Integral equation versus density functional results

    NASA Astrophysics Data System (ADS)

    Range, Gabriel M.; Klapp, Sabine H. L.

    2004-09-01

    Using reference hypernetted chain (RHNC) integral equations and density functional theory in the modified mean-field (MMF) approximation we investigate the phase behavior of binary mixtures of dipolar hard spheres. The two species ( A and B ) differ only in their dipole moments mA and mB , and the central question investigated is under which conditions these asymmetric mixtures can exhibit demixing phase transitions in the fluid phase regime. Results from our two theoretical approaches turn out to strongly differ. Within the RHNC (which we apply to the isotropic high-temperature phase) demixing does indeed occur for dense systems with small interaction parameters Γ=mB2/mA2 . This result generalizes previously reported observations on demixing in mixtures of dipolar and neutral hard spheres (Γ=0) to the case of true dipolar hard sphere mixtures. The RHNC approach also indicates that these demixed fluid phases are isotropic at temperatures accessible by the theory, whereas isotropic-to-ferroelectric transitions occur only at larger Γ . The MMF theory, on the other hand, yields a different picture in which demixing occurs in combination with spontaneous ferroelectricity at all Γ considered. This discrepancy underlines the relevance of correlational effects for the existence of demixing transitions in dipolar systems without dispersive interactions. Indeed, supplementing the dipolar interactions by small, asymmetric amounts of van der Waals-like interactions (and thereby supporting the systems tendency to demix) one finally reaches good agreement between MMF and RHNC results.

  13. Thermally programmable gas storage and release in single crystals of an organic van der Waals host.

    PubMed

    Enright, Gary D; Udachin, Konstantin A; Moudrakovski, Igor L; Ripmeester, John A

    2003-08-20

    A single crystal of a low density form of guest-free p-tert-butylcalix[4]arene can take up and release small guest molecules by controlling the temperature and pressure without changing the structure. Using NMR spectroscopy with flowing hyperpolarized xenon, we have shown that at room temperature access of xenon to the pore system is difficult, whereas it is relatively easy at 100 degrees C. There are good prospects for simple van der Waals materials such as the title material to be used as programmable zeolite mimics.

  14. A real-space stochastic density matrix approach for density functional electronic structure.

    PubMed

    Beck, Thomas L

    2015-12-21

    The recent development of real-space grid methods has led to more efficient, accurate, and adaptable approaches for large-scale electrostatics and density functional electronic structure modeling. With the incorporation of multiscale techniques, linear-scaling real-space solvers are possible for density functional problems if localized orbitals are used to represent the Kohn-Sham energy functional. These methods still suffer from high computational and storage overheads, however, due to extensive matrix operations related to the underlying wave function grid representation. In this paper, an alternative stochastic method is outlined that aims to solve directly for the one-electron density matrix in real space. In order to illustrate aspects of the method, model calculations are performed for simple one-dimensional problems that display some features of the more general problem, such as spatial nodes in the density matrix. This orbital-free approach may prove helpful considering a future involving increasingly parallel computing architectures. Its primary advantage is the near-locality of the random walks, allowing for simultaneous updates of the density matrix in different regions of space partitioned across the processors. In addition, it allows for testing and enforcement of the particle number and idempotency constraints through stabilization of a Feynman-Kac functional integral as opposed to the extensive matrix operations in traditional approaches.

  15. Beyond Kohn-Sham Approximation: Hybrid Multistate Wave Function and Density Functional Theory.

    PubMed

    Gao, Jiali; Grofe, Adam; Ren, Haisheng; Bao, Peng

    2016-12-15

    A multistate density functional theory (MSDFT) is presented in which the energies and densities for the ground and excited states are treated on the same footing using multiconfigurational approaches. The method can be applied to systems with strong correlation and to correctly describe the dimensionality of the conical intersections between strongly coupled dissociative potential energy surfaces. A dynamic-then-static framework for treating electron correlation is developed to first incorporate dynamic correlation into contracted state functions through block-localized Kohn-Sham density functional theory (KSDFT), followed by diagonalization of the effective Hamiltonian to include static correlation. MSDFT can be regarded as a hybrid of wave function and density functional theory. The method is built on and makes use of the current approximate density functional developed in KSDFT, yet it retains its computational efficiency to treat strongly correlated systems that are problematic for KSDFT but too large for accurate WFT. The results presented in this work show that MSDFT can be applied to photochemical processes involving conical intersections.

  16. Adsorption and ring-opening of lactide on the chiral metal surface Pt(321)S studied by density functional theory

    NASA Astrophysics Data System (ADS)

    Franke, J.-H.; Kosov, D. S.

    2015-01-01

    We study the adsorption and ring-opening of lactide on the naturally chiral metal surface Pt(321)S. Lactide is a precursor for polylactic acid ring-opening polymerization, and Pt is a well known catalyst surface. We study, here, the energetics of the ring-opening of lactide on a surface that has a high density of kink atoms. These sites are expected to be present on a realistic Pt surface and show enhanced catalytic activity. The use of a naturally chiral surface also enables us to study potential chiral selectivity effects of the reaction at the same time. Using density functional theory with a functional that includes the van der Waals forces in a first-principles manner, we find modest adsorption energies of around 1.4 eV for the pristine molecule and different ring-opened states. The energy barrier to be overcome in the ring-opening reaction is found to be very small at 0.32 eV and 0.30 eV for LL- and its chiral partner DD-lactide, respectively. These energies are much smaller than the activation energy for a dehydrogenation reaction of 0.78 eV. Our results thus indicate that (a) ring-opening reactions of lactide on Pt(321) can be expected already at very low temperatures, and Pt might be a very effective catalyst for this reaction; (b) the ring-opening reaction rate shows noticeable enantioselectivity.

  17. Periodic subsystem density-functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genova, Alessandro; Pavanello, Michele, E-mail: m.pavanello@rutgers.edu; Ceresoli, Davide

    2014-11-07

    By partitioning the electron density into subsystem contributions, the Frozen Density Embedding (FDE) formulation of subsystem Density Functional Theory (DFT) has recently emerged as a powerful tool for reducing the computational scaling of Kohn–Sham DFT. To date, however, FDE has been employed to molecular systems only. Periodic systems, such as metals, semiconductors, and other crystalline solids have been outside the applicability of FDE, mostly because of the lack of a periodic FDE implementation. To fill this gap, in this work we aim at extending FDE to treat subsystems of molecular and periodic character. This goal is achieved by a dualmore » approach. On one side, the development of a theoretical framework for periodic subsystem DFT. On the other, the realization of the method into a parallel computer code. We find that periodic FDE is capable of reproducing total electron densities and (to a lesser extent) also interaction energies of molecular systems weakly interacting with metallic surfaces. In the pilot calculations considered, we find that FDE fails in those cases where there is appreciable density overlap between the subsystems. Conversely, we find FDE to be in semiquantitative agreement with Kohn–Sham DFT when the inter-subsystem density overlap is low. We also conclude that to make FDE a suitable method for describing molecular adsorption at surfaces, kinetic energy density functionals that go beyond the GGA level must be employed.« less

  18. Comparison of approximations in density functional theory calculations: Energetics and structure of binary oxides

    NASA Astrophysics Data System (ADS)

    Hinuma, Yoyo; Hayashi, Hiroyuki; Kumagai, Yu; Tanaka, Isao; Oba, Fumiyasu

    2017-09-01

    High-throughput first-principles calculations based on density functional theory (DFT) are a powerful tool in data-oriented materials research. The choice of approximation to the exchange-correlation functional is crucial as it strongly affects the accuracy of DFT calculations. This study compares performance of seven approximations, six of which are based on Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA) with and without Hubbard U and van der Waals corrections (PBE, PBE+U, PBED3, PBED3+U, PBEsol, and PBEsol+U), and the strongly constrained and appropriately normed (SCAN) meta-GGA on the energetics and crystal structure of elementary substances and binary oxides. For the latter, only those with closed-shell electronic structures are considered, examples of which include C u2O , A g2O , MgO, ZnO, CdO, SnO, PbO, A l2O3 , G a2O3 , I n2O3 , L a2O3 , B i2O3 , Si O2 , Sn O2 , Pb O2 , Ti O2 , Zr O2 , Hf O2 , V2O5 , N b2O5 , T a2O5 , Mo O3 , and W O3 . Prototype crystal structures are selected from the Inorganic Crystal Structure Database (ICSD) and cation substitution is used to make a set of existing and hypothetical oxides. Two indices are proposed to quantify the extent of lattice and internal coordinate relaxation during a calculation. The former is based on the second invariant and determinant of the transformation matrix of basis vectors from before relaxation to after relaxation, and the latter is derived from shifts of internal coordinates of atoms in the unit cell. PBED3, PBEsol, and SCAN reproduce experimental lattice parameters of elementary substances and oxides well with few outliers. Notably, PBEsol and SCAN predict the lattice parameters of low dimensional structures comparably well with PBED3, even though these two functionals do not explicitly treat van der Waals interactions. SCAN gives formation enthalpies and Gibbs free energies closest to experimental data, with mean errors (MEs) of 0.01 and -0.04 eV, respectively, and root

  19. Self-Interaction Error in Density Functional Theory: An Appraisal.

    PubMed

    Bao, Junwei Lucas; Gagliardi, Laura; Truhlar, Donald G

    2018-05-03

    Self-interaction error (SIE) is considered to be one of the major sources of error in most approximate exchange-correlation functionals for Kohn-Sham density-functional theory (KS-DFT), and it is large with all local exchange-correlation functionals and with some hybrid functionals. In this work, we consider systems conventionally considered to be dominated by SIE. For these systems, we demonstrate that by using multiconfiguration pair-density functional theory (MC-PDFT), the error of a translated local density-functional approximation is significantly reduced (by a factor of 3) when using an MCSCF density and on-top density, as compared to using KS-DFT with the parent functional; the error in MC-PDFT with local on-top functionals is even lower than the error in some popular KS-DFT hybrid functionals. Density-functional theory, either in MC-PDFT form with local on-top functionals or in KS-DFT form with some functionals having 50% or more nonlocal exchange, has smaller errors for SIE-prone systems than does CASSCF, which has no SIE.

  20. Rational Density Functional Selection Using Game Theory.

    PubMed

    McAnanama-Brereton, Suzanne; Waller, Mark P

    2018-01-22

    Theoretical chemistry has a paradox of choice due to the availability of a myriad of density functionals and basis sets. Traditionally, a particular density functional is chosen on the basis of the level of user expertise (i.e., subjective experiences). Herein we circumvent the user-centric selection procedure by describing a novel approach for objectively selecting a particular functional for a given application. We achieve this by employing game theory to identify optimal functional/basis set combinations. A three-player (accuracy, complexity, and similarity) game is devised, through which Nash equilibrium solutions can be obtained. This approach has the advantage that results can be systematically improved by enlarging the underlying knowledge base, and the deterministic selection procedure mathematically justifies the density functional and basis set selections.

  1. Density Functional Calculations for the Neutron Star Matter at Subnormal Density

    NASA Astrophysics Data System (ADS)

    Kashiwaba, Yu; Nakatsukasa, Takashi

    The pasta phases of nuclear matter, whose existence is suggested at low density, may influence observable properties of neutron stars. In order to investigate properties of the neutron star matter, we calculate self-consistent solutions for the ground states of slab-like phase using the microscopic density functional theory with Bloch wave functions. The calculations are performed at each point of fixed average density and proton fraction (\\bar{ρ },Yp), varying the lattice constant of the unit cell. For small Yp values, the dripped neutrons emerge in the ground state, while the protons constitute the slab (crystallized) structure. The shell effect of protons affects the thickness of the slab nuclei.

  2. Subsystem density functional theory with meta-generalized gradient approximation exchange-correlation functionals.

    PubMed

    Śmiga, Szymon; Fabiano, Eduardo; Laricchia, Savio; Constantin, Lucian A; Della Sala, Fabio

    2015-04-21

    We analyze the methodology and the performance of subsystem density functional theory (DFT) with meta-generalized gradient approximation (meta-GGA) exchange-correlation functionals for non-bonded molecular systems. Meta-GGA functionals depend on the Kohn-Sham kinetic energy density (KED), which is not known as an explicit functional of the density. Therefore, they cannot be directly applied in subsystem DFT calculations. We propose a Laplacian-level approximation to the KED which overcomes this limitation and provides a simple and accurate way to apply meta-GGA exchange-correlation functionals in subsystem DFT calculations. The so obtained density and energy errors, with respect to the corresponding supermolecular calculations, are comparable with conventional approaches, depending almost exclusively on the approximations in the non-additive kinetic embedding term. An embedding energy error decomposition explains the accuracy of our method.

  3. Excitation energies from range-separated time-dependent density and density matrix functional theory.

    PubMed

    Pernal, Katarzyna

    2012-05-14

    Time-dependent density functional theory (TD-DFT) in the adiabatic formulation exhibits known failures when applied to predicting excitation energies. One of them is the lack of the doubly excited configurations. On the other hand, the time-dependent theory based on a one-electron reduced density matrix functional (time-dependent density matrix functional theory, TD-DMFT) has proven accurate in determining single and double excitations of H(2) molecule if the exact functional is employed in the adiabatic approximation. We propose a new approach for computing excited state energies that relies on functionals of electron density and one-electron reduced density matrix, where the latter is applied in the long-range region of electron-electron interactions. A similar approach has been recently successfully employed in predicting ground state potential energy curves of diatomic molecules even in the dissociation limit, where static correlation effects are dominating. In the paper, a time-dependent functional theory based on the range-separation of electronic interaction operator is rigorously formulated. To turn the approach into a practical scheme the adiabatic approximation is proposed for the short- and long-range components of the coupling matrix present in the linear response equations. In the end, the problem of finding excitation energies is turned into an eigenproblem for a symmetric matrix. Assignment of obtained excitations is discussed and it is shown how to identify double excitations from the analysis of approximate transition density matrix elements. The proposed method used with the short-range local density approximation (srLDA) and the long-range Buijse-Baerends density matrix functional (lrBB) is applied to H(2) molecule (at equilibrium geometry and in the dissociation limit) and to Be atom. The method accounts for double excitations in the investigated systems but, unfortunately, the accuracy of some of them is poor. The quality of the other

  4. Enhanced gas adsorption on graphitic substrates via defects and local curvature: A density functional theory study

    DOE PAGES

    Dutta, Debosruti; Wood, Brandon C.; Bhide, Shreyas Y.; ...

    2014-03-24

    Using van-der-Waals-corrected density functional theory calculations, we explore the possibility of engineering the local structure and morphology of high-surface-area graphene-derived materials to improve the uptake of methane and carbon dioxide for gas storage and sensing. We test the sensitivity of the gas adsorption energy to the introduction of native point defects, curvature, and the application of strain. The binding energy at topological point defect sites is inversely correlated with the number of missing carbon atoms, causing Stone–Wales defects to show the largest enhancement with respect to pristine graphene (~20%). Improvements of similar magnitude are observed at concavely curved surfaces inmore » buckled graphene sheets under compressive strain, whereas tensile strain tends to weaken gas binding. Trends for CO 2 and CH 4 are similar, although CO 2 binding is generally stronger by ~4 to 5 kJ mol –1. Furthermore, the differential between the adsorption of CO 2 and CH 4 is much higher on folded graphene sheets and at concave curvatures; this could possibly be leveraged for CH 4/CO 2 flow separation and gas-selective sensors.« less

  5. Soft Functionals for Hard Matter

    NASA Astrophysics Data System (ADS)

    Cooper, Valentino R.; Yuk, Simuck F.; Krogel, Jaron T.

    Theory and computation are critical to the materials discovery process. While density functional theory (DFT) has become the standard for predicting materials properties, it is often plagued by inaccuracies in the underlying exchange-correlation functionals. Using high-throughput DFT calculations we explore the accuracy of various exchange-correlation functionals for modeling the structural and thermodynamic properties of a wide range of complex oxides. In particular, we examine the feasibility of using the nonlocal van der Waals density correlation functional with C09 exchange (C09x), which was designed for sparsely packed soft matter, for investigating the properties of hard matter like bulk oxides. Preliminary results show unprecedented performance for some prototypical bulk ferroelectrics, which can be correlated with similarities between C09x and PBEsol. This effort lays the groundwork for understanding how these soft functionals can be employed as general purpose functionals for studying a wide range of materials where strong internal bonds and nonlocal interactions coexist. Research was sponsored by the US DOE, Office of Science, BES, MSED and Early Career Research Programs and used resources at NERSC.

  6. Uniform magnetic fields in density-functional theory

    NASA Astrophysics Data System (ADS)

    Tellgren, Erik I.; Laestadius, Andre; Helgaker, Trygve; Kvaal, Simen; Teale, Andrew M.

    2018-01-01

    We construct a density-functional formalism adapted to uniform external magnetic fields that is intermediate between conventional density functional theory and Current-Density Functional Theory (CDFT). In the intermediate theory, which we term linear vector potential-DFT (LDFT), the basic variables are the density, the canonical momentum, and the paramagnetic contribution to the magnetic moment. Both a constrained-search formulation and a convex formulation in terms of Legendre-Fenchel transformations are constructed. Many theoretical issues in CDFT find simplified analogs in LDFT. We prove results concerning N-representability, Hohenberg-Kohn-like mappings, existence of minimizers in the constrained-search expression, and a restricted analog to gauge invariance. The issue of additivity of the energy over non-interacting subsystems, which is qualitatively different in LDFT and CDFT, is also discussed.

  7. Uniform magnetic fields in density-functional theory.

    PubMed

    Tellgren, Erik I; Laestadius, Andre; Helgaker, Trygve; Kvaal, Simen; Teale, Andrew M

    2018-01-14

    We construct a density-functional formalism adapted to uniform external magnetic fields that is intermediate between conventional density functional theory and Current-Density Functional Theory (CDFT). In the intermediate theory, which we term linear vector potential-DFT (LDFT), the basic variables are the density, the canonical momentum, and the paramagnetic contribution to the magnetic moment. Both a constrained-search formulation and a convex formulation in terms of Legendre-Fenchel transformations are constructed. Many theoretical issues in CDFT find simplified analogs in LDFT. We prove results concerning N-representability, Hohenberg-Kohn-like mappings, existence of minimizers in the constrained-search expression, and a restricted analog to gauge invariance. The issue of additivity of the energy over non-interacting subsystems, which is qualitatively different in LDFT and CDFT, is also discussed.

  8. Long-range corrected density functional through the density matrix expansion based semilocal exchange hole.

    PubMed

    Patra, Bikash; Jana, Subrata; Samal, Prasanjit

    2018-03-28

    The exchange hole, which is one of the principal constituents of the density functional formalism, can be used to design accurate range-separated hybrid functionals in association with appropriate correlation. In this regard, the exchange hole derived from the density matrix expansion has gained attention due to its fulfillment of some of the desired exact constraints. Thus, the new long-range corrected density functional proposed here combines the meta generalized gradient approximation level exchange functional designed from the density matrix expansion based exchange hole coupled with the ab initio Hartree-Fock exchange through the range separation of the Coulomb interaction operator using the standard error function technique. Then, in association with the Lee-Yang-Parr correlation functional, the assessment and benchmarking of the above newly constructed range-separated functional with various well-known test sets shows its reasonable performance for a broad range of molecular properties, such as thermochemistry, non-covalent interaction and barrier heights of the chemical reactions.

  9. The direct-to-indirect band gap crossover in two-dimensional van der Waals Indium Selenide crystals

    PubMed Central

    Mudd, G. W.; Molas, M. R.; Chen, X.; Zólyomi, V.; Nogajewski, K.; Kudrynskyi, Z. R.; Kovalyuk, Z. D.; Yusa, G.; Makarovsky, O.; Eaves, L.; Potemski, M.; Fal’ko, V. I.; Patanè, A.

    2016-01-01

    The electronic band structure of van der Waals (vdW) layered crystals has properties that depend on the composition, thickness and stacking of the component layers. Here we use density functional theory and high field magneto-optics to investigate the metal chalcogenide InSe, a recent addition to the family of vdW layered crystals, which transforms from a direct to an indirect band gap semiconductor as the number of layers is reduced. We investigate this direct-to-indirect bandgap crossover, demonstrate a highly tuneable optical response from the near infrared to the visible spectrum with decreasing layer thickness down to 2 layers, and report quantum dot-like optical emissions distributed over a wide range of energy. Our analysis also indicates that electron and exciton effective masses are weakly dependent on the layer thickness and are significantly smaller than in other vdW crystals. These properties are unprecedented within the large family of vdW crystals and demonstrate the potential of InSe for electronic and photonic technologies. PMID:28008964

  10. The direct-to-indirect band gap crossover in two-dimensional van der Waals Indium Selenide crystals.

    PubMed

    Mudd, G W; Molas, M R; Chen, X; Zólyomi, V; Nogajewski, K; Kudrynskyi, Z R; Kovalyuk, Z D; Yusa, G; Makarovsky, O; Eaves, L; Potemski, M; Fal'ko, V I; Patanè, A

    2016-12-23

    The electronic band structure of van der Waals (vdW) layered crystals has properties that depend on the composition, thickness and stacking of the component layers. Here we use density functional theory and high field magneto-optics to investigate the metal chalcogenide InSe, a recent addition to the family of vdW layered crystals, which transforms from a direct to an indirect band gap semiconductor as the number of layers is reduced. We investigate this direct-to-indirect bandgap crossover, demonstrate a highly tuneable optical response from the near infrared to the visible spectrum with decreasing layer thickness down to 2 layers, and report quantum dot-like optical emissions distributed over a wide range of energy. Our analysis also indicates that electron and exciton effective masses are weakly dependent on the layer thickness and are significantly smaller than in other vdW crystals. These properties are unprecedented within the large family of vdW crystals and demonstrate the potential of InSe for electronic and photonic technologies.

  11. Communication: Accurate higher-order van der Waals coefficients between molecules from a model dynamic multipole polarizability

    DOE PAGES

    Tao, Jianmin; Rappe, Andrew M.

    2016-01-20

    Due to the absence of the long-range van der Waals (vdW) interaction, conventional density functional theory (DFT) often fails in the description of molecular complexes and solids. In recent years, considerable progress has been made in the development of the vdW correction. However, the vdW correction based on the leading-order coefficient C 6 alone can only achieve limited accuracy, while accurate modeling of higher-order coefficients remains a formidable task, due to the strong non-additivity effect. Here, we apply a model dynamic multipole polarizability within a modified single-frequency approximation to calculate C 8 and C 10 between small molecules. We findmore » that the higher-order vdW coefficients from this model can achieve remarkable accuracy, with mean absolute relative deviations of 5% for C 8 and 7% for C 10. As a result, inclusion of accurate higher-order contributions in the vdW correction will effectively enhance the predictive power of DFT in condensed matter physics and quantum chemistry.« less

  12. Density functional study of double ionization energies

    NASA Astrophysics Data System (ADS)

    Chong, D. P.

    2008-02-01

    In this paper, double ionization energies (DIEs) of gas-phase atoms and molecules are calculated by energy difference method with density functional theory. To determine the best functional for double ionization energies, we first study 24 main group atoms in the second, third, and fourth periods. An approximation is used in which the electron density is first obtained from a density functional computation with the exchange-correlation potential Vxc known as statistical average of orbital potentials, after which the energy is computed from that density with 59 different exchange-correlation energy functionals Exc. For the 24 atoms, the two best Exc functional providing DIEs with average absolute deviation (AAD) of only 0.25eV are the Perdew-Burke-Ernzerhof functional modified by Hammer et al. [Phys. Rev. B 59, 6413 (1999)] and one known as the Krieger-Chen-Iafrate-Savin functional modified by Krieger et al. (unpublished). Surprisingly, none of the 20 available hybrid functionals is among the top 15 functionals for the DIEs of the 24 atoms. A similar procedure is then applied to molecules, with opposite results: Only hybrid functionals are among the top 15 functionals for a selection of 29molecules. The best Exc functional for the 29molecules is found to be the Becke 1997 functional modified by Wilson et al. [J. Chem. Phys. 115, 9233 (2001)]. With that functional, the AAD from experiment for DIEs of 29molecules is just under 0.5eV. If the two suspected values for C2H2 and Fe(CO)5 are excluded, the AAD improves to 0.32eV. Many other hybrid functionals perform almost as well.

  13. Van der Waals forces in pNRQED

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shtabovenko, Vladyslav

    2016-01-22

    We report on the calculation of electromagnetic van der Waals forces [1] between two hydrogen atoms using non-relativistic effective field theories (EFTs) of QED for large and small momentum transfers with respect to the intrinsic energy scale of the hydrogen atom. Our results reproduce the well known London and Casimir-Polder forces.

  14. Energy density functional on a microscopic basis

    NASA Astrophysics Data System (ADS)

    Baldo, M.; Robledo, L.; Schuck, P.; Viñas, X.

    2010-06-01

    In recent years impressive progress has been made in the development of highly accurate energy density functionals, which allow us to treat medium-heavy nuclei. In this approach one tries to describe not only the ground state but also the first relevant excited states. In general, higher accuracy requires a larger set of parameters, which must be carefully chosen to avoid redundancy. Following this line of development, it is unavoidable that the connection of the functional with the bare nucleon-nucleon interaction becomes more and more elusive. In principle, the construction of a density functional from a density matrix expansion based on the effective nucleon-nucleon interaction is possible, and indeed the approach has been followed by few authors. However, to what extent a density functional based on such a microscopic approach can reach the accuracy of the fully phenomenological ones remains an open question. A related question is to establish which part of a functional can be actually derived by a microscopic approach and which part, in contrast, must be left as purely phenomenological. In this paper we discuss the main problems that are encountered when the microscopic approach is followed. To this purpose we will use the method we have recently introduced to illustrate the different aspects of these problems. In particular we will discuss the possible connection of the density functional with the nuclear matter equation of state and the distinct features of finite-size effect typical of nuclei.

  15. Multiconfiguration Pair-Density Functional Theory Outperforms Kohn-Sham Density Functional Theory and Multireference Perturbation Theory for Ground-State and Excited-State Charge Transfer.

    PubMed

    Ghosh, Soumen; Sonnenberger, Andrew L; Hoyer, Chad E; Truhlar, Donald G; Gagliardi, Laura

    2015-08-11

    The correct description of charge transfer in ground and excited states is very important for molecular interactions, photochemistry, electrochemistry, and charge transport, but it is very challenging for Kohn-Sham (KS) density functional theory (DFT). KS-DFT exchange-correlation functionals without nonlocal exchange fail to describe both ground- and excited-state charge transfer properly. We have recently proposed a theory called multiconfiguration pair-density functional theory (MC-PDFT), which is based on a combination of multiconfiguration wave function theory with a new type of density functional called an on-top density functional. Here we have used MC-PDFT to study challenging ground- and excited-state charge-transfer processes by using on-top density functionals obtained by translating KS exchange-correlation functionals. For ground-state charge transfer, MC-PDFT performs better than either the PBE exchange-correlation functional or CASPT2 wave function theory. For excited-state charge transfer, MC-PDFT (unlike KS-DFT) shows qualitatively correct behavior at long-range with great improvement in predicted excitation energies.

  16. Functional renormalization group and Kohn-Sham scheme in density functional theory

    NASA Astrophysics Data System (ADS)

    Liang, Haozhao; Niu, Yifei; Hatsuda, Tetsuo

    2018-04-01

    Deriving accurate energy density functional is one of the central problems in condensed matter physics, nuclear physics, and quantum chemistry. We propose a novel method to deduce the energy density functional by combining the idea of the functional renormalization group and the Kohn-Sham scheme in density functional theory. The key idea is to solve the renormalization group flow for the effective action decomposed into the mean-field part and the correlation part. Also, we propose a simple practical method to quantify the uncertainty associated with the truncation of the correlation part. By taking the φ4 theory in zero dimension as a benchmark, we demonstrate that our method shows extremely fast convergence to the exact result even for the highly strong coupling regime.

  17. Density functional theory: Foundations reviewed

    NASA Astrophysics Data System (ADS)

    Kryachko, Eugene S.; Ludeña, Eduardo V.

    2014-11-01

    Guided by the above motto (quotation), we review a broad range of issues lying at the foundations of Density Functional Theory, DFT, a theory which is currently omnipresent in our everyday computational study of atoms and molecules, solids and nano-materials, and which lies at the heart of modern many-body computational technologies. The key goal is to demonstrate that there are definitely the ways to improve DFT. We start by considering DFT in the larger context provided by reduced density matrix theory (RDMT) and natural orbital functional theory (NOFT), and examine the implications that N-representability conditions on the second-order reduced density matrix (2-RDM) have not only on RDMT and NOFT but, also, by extension, on the functionals of DFT. This examination is timely in view of the fact that necessary and sufficient N-representability conditions on the 2-RDM have recently been attained. In the second place, we review some problems appearing in the original formulation of the first Hohenberg-Kohn theorem which is still a subject of some controversy. In this vein we recall Lieb's comment on this proof and the extension to this proof given by Pino et al. (2009), and in this context examine the conditions that must be met in order that the one-to-one correspondence between ground-state densities and external potentials remains valid for finite subspaces (namely, the subspaces where all Kohn-Sham solutions are obtained in practical applications). We also consider the issue of whether the Kohn-Sham equations can be derived from basic principles or whether they are postulated. We examine this problem in relation to ab initio DFT. The possibility of postulating arbitrary Kohn-Sham-type equations, where the effective potential is by definition some arbitrary mixture of local and non-local terms, is discussed. We also deal with the issue of whether there exists a universal functional, or whether one should advocate instead the construction of problem

  18. Basis convergence of range-separated density-functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franck, Odile, E-mail: odile.franck@etu.upmc.fr; Mussard, Bastien, E-mail: bastien.mussard@upmc.fr; CNRS, UMR 7616, Laboratoire de Chimie Théorique, F-75005 Paris

    2015-02-21

    Range-separated density-functional theory (DFT) is an alternative approach to Kohn-Sham density-functional theory. The strategy of range-separated density-functional theory consists in separating the Coulomb electron-electron interaction into long-range and short-range components and treating the long-range part by an explicit many-body wave-function method and the short-range part by a density-functional approximation. Among the advantages of using many-body methods for the long-range part of the electron-electron interaction is that they are much less sensitive to the one-electron atomic basis compared to the case of the standard Coulomb interaction. Here, we provide a detailed study of the basis convergence of range-separated density-functional theory. Wemore » study the convergence of the partial-wave expansion of the long-range wave function near the electron-electron coalescence. We show that the rate of convergence is exponential with respect to the maximal angular momentum L for the long-range wave function, whereas it is polynomial for the case of the Coulomb interaction. We also study the convergence of the long-range second-order Møller-Plesset correlation energy of four systems (He, Ne, N{sub 2}, and H{sub 2}O) with cardinal number X of the Dunning basis sets cc − p(C)V XZ and find that the error in the correlation energy is best fitted by an exponential in X. This leads us to propose a three-point complete-basis-set extrapolation scheme for range-separated density-functional theory based on an exponential formula.« less

  19. Basis convergence of range-separated density-functional theory.

    PubMed

    Franck, Odile; Mussard, Bastien; Luppi, Eleonora; Toulouse, Julien

    2015-02-21

    Range-separated density-functional theory (DFT) is an alternative approach to Kohn-Sham density-functional theory. The strategy of range-separated density-functional theory consists in separating the Coulomb electron-electron interaction into long-range and short-range components and treating the long-range part by an explicit many-body wave-function method and the short-range part by a density-functional approximation. Among the advantages of using many-body methods for the long-range part of the electron-electron interaction is that they are much less sensitive to the one-electron atomic basis compared to the case of the standard Coulomb interaction. Here, we provide a detailed study of the basis convergence of range-separated density-functional theory. We study the convergence of the partial-wave expansion of the long-range wave function near the electron-electron coalescence. We show that the rate of convergence is exponential with respect to the maximal angular momentum L for the long-range wave function, whereas it is polynomial for the case of the Coulomb interaction. We also study the convergence of the long-range second-order Møller-Plesset correlation energy of four systems (He, Ne, N2, and H2O) with cardinal number X of the Dunning basis sets cc - p(C)V XZ and find that the error in the correlation energy is best fitted by an exponential in X. This leads us to propose a three-point complete-basis-set extrapolation scheme for range-separated density-functional theory based on an exponential formula.

  20. Dynamical importance of van der Waals saddle and excited potential surface in C(1D)+D2 complex-forming reaction

    PubMed Central

    Shen, Zhitao; Ma, Haitao; Zhang, Chunfang; Fu, Mingkai; Wu, Yanan; Bian, Wensheng; Cao, Jianwei

    2017-01-01

    Encouraged by recent advances in revealing significant effects of van der Waals wells on reaction dynamics, many people assume that van der Waals wells are inevitable in chemical reactions. Here we find that the weak long-range forces cause van der Waals saddles in the prototypical C(1D)+D2 complex-forming reaction that have very different dynamical effects from van der Waals wells at low collision energies. Accurate quantum dynamics calculations on our highly accurate ab initio potential energy surfaces with van der Waals saddles yield cross-sections in close agreement with crossed-beam experiments, whereas the same calculations on an earlier surface with van der Waals wells produce much smaller cross-sections at low energies. Further trajectory calculations reveal that the van der Waals saddle leads to a torsion then sideways insertion reaction mechanism, whereas the well suppresses reactivity. Quantum diffraction oscillations and sharp resonances are also predicted based on our ground- and excited-state potential energy surfaces. PMID:28094253

  1. van der Waals interactions are critical in Car-Parrinello molecular dynamics simulations of porphyrin-fullerene dyads.

    PubMed

    Karilainen, Topi; Cramariuc, Oana; Kuisma, Mikael; Tappura, Kirsi; Hukka, Terttu I

    2015-04-05

    The interplay between electrostatic and van der Waals (vdW) interactions in porphyrin-C60 dyads is still under debate despite its importance in influencing the structural characteristics of such complexes considered for various applications in molecular photovoltaics. In this article, we sample the conformational space of a porphyrin-C60 dyad using Car-Parrinello molecular dynamics simulations with and without empirical vdW corrections. Long-range vdW interactions, which are poorly described by the commonly used density functional theory functionals, prove to be essential for a proper dynamics of the dyad moieties. Inclusion of vdW corrections brings porphyrin and C60 close together in an orientation that is in agreement with experimental observations. The structural differences arising from the vdW corrections are shown to be significant for several properties and potentially less important for others. Additionally, our Mulliken population analysis reveals that contrary to the common belief, porphyrin is not the primary electron donating moiety for C60 . In the considered dyad, fullerene's affinity for electrons is primarily satisfied by charge transfer from the amide group of the linker. However, we show that in the absence of another suitable bound donor, C60 can withdraw electrons from porphyrin if it is sufficiently close. © 2015 Wiley Periodicals, Inc.

  2. Near-Unity Absorption in van der Waals Semiconductors for Ultrathin Optoelectronics.

    PubMed

    Jariwala, Deep; Davoyan, Artur R; Tagliabue, Giulia; Sherrott, Michelle C; Wong, Joeson; Atwater, Harry A

    2016-09-14

    We demonstrate near-unity, broadband absorbing optoelectronic devices using sub-15 nm thick transition metal dichalcogenides (TMDCs) of molybdenum and tungsten as van der Waals semiconductor active layers. Specifically, we report that near-unity light absorption is possible in extremely thin (<15 nm) van der Waals semiconductor structures by coupling to strongly damped optical modes of semiconductor/metal heterostructures. We further fabricate Schottky junction devices using these highly absorbing heterostructures and characterize their optoelectronic performance. Our work addresses one of the key criteria to enable TMDCs as potential candidates to achieve high optoelectronic efficiency.

  3. Graded Interface Models for more accurate Determination of van der Waals-London Dispersion Interactions across Grain Boundaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Benthem, Klaus; Tan, Guolong; French, Roger H

    2006-01-01

    Attractive van der Waals V London dispersion interactions between two half crystals arise from local physical property gradients within the interface layer separating the crystals. Hamaker coefficients and London dispersion energies were quantitatively determined for 5 and near- 13 grain boundaries in SrTiO3 by analysis of spatially resolved valence electron energy-loss spectroscopy (VEELS) data. From the experimental data, local complex dielectric functions were determined, from which optical properties can be locally analysed. Both local electronic structures and optical properties revealed gradients within the grain boundary cores of both investigated interfaces. The obtained results show that even in the presence ofmore » atomically structured grain boundary cores with widths of less than 1 nm, optical properties have to be represented with gradual changes across the grain boundary structures to quantitatively reproduce accurate van der Waals V London dispersion interactions. London dispersion energies of the order of 10% of the apparent interface energies of SrTiO3 were observed, demonstrating their significance in the grain boundary formation process. The application of different models to represent optical property gradients shows that long-range van der Waals V London dispersion interactions scale significantly with local, i.e atomic length scale property variations.« less

  4. The force distribution probability function for simple fluids by density functional theory.

    PubMed

    Rickayzen, G; Heyes, D M

    2013-02-28

    Classical density functional theory (DFT) is used to derive a formula for the probability density distribution function, P(F), and probability distribution function, W(F), for simple fluids, where F is the net force on a particle. The final formula for P(F) ∝ exp(-AF(2)), where A depends on the fluid density, the temperature, and the Fourier transform of the pair potential. The form of the DFT theory used is only applicable to bounded potential fluids. When combined with the hypernetted chain closure of the Ornstein-Zernike equation, the DFT theory for W(F) agrees with molecular dynamics computer simulations for the Gaussian and bounded soft sphere at high density. The Gaussian form for P(F) is still accurate at lower densities (but not too low density) for the two potentials, but with a smaller value for the constant, A, than that predicted by the DFT theory.

  5. Self-Aligned van der Waals Heterojunction Diodes and Transistors.

    PubMed

    Sangwan, Vinod K; Beck, Megan E; Henning, Alex; Luo, Jiajia; Bergeron, Hadallia; Kang, Junmo; Balla, Itamar; Inbar, Hadass; Lauhon, Lincoln J; Hersam, Mark C

    2018-02-14

    A general self-aligned fabrication scheme is reported here for a diverse class of electronic devices based on van der Waals materials and heterojunctions. In particular, self-alignment enables the fabrication of source-gated transistors in monolayer MoS 2 with near-ideal current saturation characteristics and channel lengths down to 135 nm. Furthermore, self-alignment of van der Waals p-n heterojunction diodes achieves complete electrostatic control of both the p-type and n-type constituent semiconductors in a dual-gated geometry, resulting in gate-tunable mean and variance of antiambipolar Gaussian characteristics. Through finite-element device simulations, the operating principles of source-gated transistors and dual-gated antiambipolar devices are elucidated, thus providing design rules for additional devices that employ self-aligned geometries. For example, the versatility of this scheme is demonstrated via contact-doped MoS 2 homojunction diodes and mixed-dimensional heterojunctions based on organic semiconductors. The scalability of this approach is also shown by fabricating self-aligned short-channel transistors with subdiffraction channel lengths in the range of 150-800 nm using photolithography on large-area MoS 2 films grown by chemical vapor deposition. Overall, this self-aligned fabrication method represents an important step toward the scalable integration of van der Waals heterojunction devices into more sophisticated circuits and systems.

  6. Local and linear chemical reactivity response functions at finite temperature in density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franco-Pérez, Marco, E-mail: francopj@mcmaster.ca, E-mail: ayers@mcmaster.ca, E-mail: jlgm@xanum.uam.mx, E-mail: avela@cinvestav.mx; Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, México, D.F. 09340; Ayers, Paul W., E-mail: francopj@mcmaster.ca, E-mail: ayers@mcmaster.ca, E-mail: jlgm@xanum.uam.mx, E-mail: avela@cinvestav.mx

    2015-12-28

    We explore the local and nonlocal response functions of the grand canonical potential density functional at nonzero temperature. In analogy to the zero-temperature treatment, local (e.g., the average electron density and the local softness) and nonlocal (e.g., the softness kernel) intrinsic response functions are defined as partial derivatives of the grand canonical potential with respect to its thermodynamic variables (i.e., the chemical potential of the electron reservoir and the external potential generated by the atomic nuclei). To define the local and nonlocal response functions of the electron density (e.g., the Fukui function, the linear density response function, and the dualmore » descriptor), we differentiate with respect to the average electron number and the external potential. The well-known mathematical relationships between the intrinsic response functions and the electron-density responses are generalized to nonzero temperature, and we prove that in the zero-temperature limit, our results recover well-known identities from the density functional theory of chemical reactivity. Specific working equations and numerical results are provided for the 3-state ensemble model.« less

  7. Local and linear chemical reactivity response functions at finite temperature in density functional theory.

    PubMed

    Franco-Pérez, Marco; Ayers, Paul W; Gázquez, José L; Vela, Alberto

    2015-12-28

    We explore the local and nonlocal response functions of the grand canonical potential density functional at nonzero temperature. In analogy to the zero-temperature treatment, local (e.g., the average electron density and the local softness) and nonlocal (e.g., the softness kernel) intrinsic response functions are defined as partial derivatives of the grand canonical potential with respect to its thermodynamic variables (i.e., the chemical potential of the electron reservoir and the external potential generated by the atomic nuclei). To define the local and nonlocal response functions of the electron density (e.g., the Fukui function, the linear density response function, and the dual descriptor), we differentiate with respect to the average electron number and the external potential. The well-known mathematical relationships between the intrinsic response functions and the electron-density responses are generalized to nonzero temperature, and we prove that in the zero-temperature limit, our results recover well-known identities from the density functional theory of chemical reactivity. Specific working equations and numerical results are provided for the 3-state ensemble model.

  8. A bi-stable nanoelectromechanical non-volatile memory based on van der Waals force

    NASA Astrophysics Data System (ADS)

    Soon, Bo Woon; Jiaqiang Ng, Eldwin; Qian, You; Singh, Navab; Julius Tsai, Minglin; Lee, Chengkuo

    2013-07-01

    By using complementary-metal-oxide-semiconductor processes, a silicon based bi-stable nanoelectromechanical non-volatile memory is fabricated and characterized. The main feature of this device is an 80 nm wide and 3 μm high silicon nanofin (SiNF) of a high aspect ratio (1:35). The switching mechanism is realized by electrostatic actuation between two lateral electrodes, i.e., terminals. Bi-stable hysteresis behavior is demonstrated when the SiNF maintains its contact to one of the two terminals by leveraging on van der Waals force even after voltage bias is turned off. The compelling results indicate that this design is promising for realization of high density non-volatile memory application due to its nano-scale footprint and zero on-hold power consumption.

  9. A notable difference between ideal gas and infinite molar volume limit of van der Waals gas

    NASA Astrophysics Data System (ADS)

    Liu, Q. H.; Shen, Y.; Bai, R. L.; Wang, X.

    2010-05-01

    The van der Waals equation of state does not sufficiently represent a gas unless a thermodynamic potential with two proper and independent variables is simultaneously determined. The limiting procedures under which the behaviour of the van der Waals gas approaches that of an ideal gas are letting two van der Waals coefficients be zero rather than letting the molar volume become infinitely large; otherwise, the partial derivative of internal energy with respect to pressure at a fixed temperature does not vanish.

  10. Reformulation of Density Functional Theory for N-Representable Densities and the Resolution of the v-Representability Problem

    DOE PAGES

    Gonis, A.; Zhang, X. G.; Stocks, G. M.; ...

    2015-10-23

    Density functional theory for the case of general, N-representable densities is reformulated in terms of density functional derivatives of expectation values of operators evaluated with wave functions leading to a density, making no reference to the concept of potential. The developments provide a complete solution of the v-representability problem by establishing a mathematical procedure that determines whether a density is v-representable and in the case of an affirmative answer determines the potential (within an additive constant) as a derivative with respect to the density of a constrained search functional. It also establishes the existence of an energy functional of themore » density that, for v-representable densities, assumes its minimum value at the density describing the ground state of an interacting many-particle system. The theorems of Hohenberg and Kohn emerge as special cases of the formalism.« less

  11. Long-Range Repulsion Between Spatially Confined van der Waals Dimers

    NASA Astrophysics Data System (ADS)

    Sadhukhan, Mainak; Tkatchenko, Alexandre

    2017-05-01

    It is an undisputed textbook fact that nonretarded van der Waals (vdW) interactions between isotropic dimers are attractive, regardless of the polarizability of the interacting systems or spatial dimensionality. The universality of vdW attraction is attributed to the dipolar coupling between fluctuating electron charge densities. Here, we demonstrate that the long-range interaction between spatially confined vdW dimers becomes repulsive when accounting for the full Coulomb interaction between charge fluctuations. Our analytic results are obtained by using the Coulomb potential as a perturbation over dipole-correlated states for two quantum harmonic oscillators embedded in spaces with reduced dimensionality; however, the long-range repulsion is expected to be a general phenomenon for spatially confined quantum systems. We suggest optical experiments to test our predictions, analyze their relevance in the context of intermolecular interactions in nanoscale environments, and rationalize the recent observation of anomalously strong screening of the lateral vdW interactions between aromatic hydrocarbons adsorbed on metal surfaces.

  12. On the calculation of charge transfer transitions with standard density functionals using constrained variational density functional theory.

    PubMed

    Ziegler, Tom; Krykunov, Mykhaylo

    2010-08-21

    It is well known that time-dependent density functional theory (TD-DFT) based on standard gradient corrected functionals affords both a quantitative and qualitative incorrect picture of charge transfer transitions between two spatially separated regions. It is shown here that the well known failure can be traced back to the use of linear response theory. Further, it is demonstrated that the inclusion of higher order terms readily affords a qualitatively correct picture even for simple functionals based on the local density approximation. The inclusion of these terms is done within the framework of a newly developed variational approach to excitation energies called constrained variational density functional theory (CV-DFT). To second order [CV(2)-DFT] this theory is identical to adiabatic TD-DFT within the Tamm-Dancoff approximation. With inclusion of fourth order corrections [CV(4)-DFT] it affords a qualitative correct description of charge transfer transitions. It is finally demonstrated that the relaxation of the ground state Kohn-Sham orbitals to first order in response to the change in density on excitation together with CV(4)-DFT affords charge transfer excitations in good agreement with experiment. The new relaxed theory is termed R-CV(4)-DFT. The relaxed scheme represents an effective way in which to introduce double replacements into the description of single electron excitations, something that would otherwise require a frequency dependent kernel.

  13. Many-body van der Waals interactions in molecules and condensed matter.

    PubMed

    DiStasio, Robert A; Gobre, Vivekanand V; Tkatchenko, Alexandre

    2014-05-28

    This work reviews the increasing evidence that many-body van der Waals (vdW) or dispersion interactions play a crucial role in the structure, stability and function of a wide variety of systems in biology, chemistry and physics. Starting with the exact expression for the electron correlation energy provided by the adiabatic connection fluctuation-dissipation theorem, we derive both pairwise and many-body interatomic methods for computing the long-range dispersion energy by considering a model system of coupled quantum harmonic oscillators within the random-phase approximation. By coupling this approach to density functional theory, the resulting many-body dispersion (MBD) method provides an accurate and efficient scheme for computing the frequency-dependent polarizability and many-body vdW energy in molecules and materials with a finite electronic gap. A select collection of applications are presented that ascertain the fundamental importance of these non-bonded interactions across the spectrum of intermolecular (the S22 and S66 benchmark databases), intramolecular (conformational energies of alanine tetrapeptide) and supramolecular (binding energy of the 'buckyball catcher') complexes, as well as molecular crystals (cohesive energies in oligoacenes). These applications demonstrate that electrodynamic response screening and beyond-pairwise many-body vdW interactions--both captured at the MBD level of theory--play a quantitative, and sometimes even qualitative, role in describing the properties considered herein. This work is then concluded with an in-depth discussion of the challenges that remain in the future development of reliable (accurate and efficient) methods for treating many-body vdW interactions in complex materials and provides a roadmap for navigating many of the research avenues that are yet to be explored.

  14. Nonlinear functional for solvation in Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Gunceler, Deniz; Sundararaman, Ravishankar; Schwarz, Kathleen; Letchworth-Weaver, Kendra; Arias, T. A.

    2013-03-01

    Density functional calculations of molecules and surfaces in a liquid can accelerate the development of many technologies ranging from solar energy harvesting to lithium batteries. Such studies require the development of robust functionals describing the liquid. Polarizable continuum models (PCM's) have been applied to some solvated systems; but they do not sufficiently capture solvation effects to describe highly polar systems like surfaces of ionic solids. In this work, we present a nonlinear fluid functional within the framework of Joint Density Functional Theory. The fluid is treated not as a linear dielectric, but as a distribution of dipoles that responds to the solute, which we describe starting from the exact free energy functional for point dipoles. We also show PCM's can be recovered as the linear limit of our functional. Our description is of similar computational cost to PCM's, and captures complex solvation effects like dielectric saturation without requiring new fit parameters. For polar and nonpolar molecules, it achieves millihartree level agreement with experimental solvation energies. Furthermore, our functional now makes it possible to investigate chemistry on the surface of lithium battery materials, which PCM's predict to be unstable. Supported as part of the Energy Materials Center at Cornell, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001086

  15. Combining Density Functional Theory and Green's Function Theory: Range-Separated, Nonlocal, Dynamic, and Orbital-Dependent Hybrid Functional.

    PubMed

    Kananenka, Alexei A; Zgid, Dominika

    2017-11-14

    We present a rigorous framework which combines single-particle Green's function theory with density functional theory based on a separation of electron-electron interactions into short- and long-range components. Short-range contribution to the total energy and exchange-correlation potential is provided by a density functional approximation, while the long-range contribution is calculated using an explicit many-body Green's function method. Such a hybrid results in a nonlocal, dynamic, and orbital-dependent exchange-correlation functional of a single-particle Green's function. In particular, we present a range-separated hybrid functional called srSVWN5-lrGF2 which combines the local-density approximation and the second-order Green's function theory. We illustrate that similarly to density functional approximations, the new functional is weakly basis-set dependent. Furthermore, it offers an improved description of the short-range dynamic correlation. The many-body contribution to the functional mitigates the many-electron self-interaction error present in many density functional approximations and provides a better description of molecular properties. Additionally, we illustrate that the new functional can be used to scale down the self-energy and, therefore, introduce an additional sparsity to the self-energy matrix that in the future can be exploited in calculations for large molecules or periodic systems.

  16. A Safari Through Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Dreizler, Reiner M.; Lüdde, Cora S.

    Density functional theory is widely used to treat quantum many body problems in many areas of physics and related fields. A brief survey of this method covering foundations, functionals and applications is presented here.

  17. Comparing ab initio density-functional and wave function theories: the impact of correlation on the electronic density and the role of the correlation potential.

    PubMed

    Grabowski, Ireneusz; Teale, Andrew M; Śmiga, Szymon; Bartlett, Rodney J

    2011-09-21

    The framework of ab initio density-functional theory (DFT) has been introduced as a way to provide a seamless connection between the Kohn-Sham (KS) formulation of DFT and wave-function based ab initio approaches [R. J. Bartlett, I. Grabowski, S. Hirata, and S. Ivanov, J. Chem. Phys. 122, 034104 (2005)]. Recently, an analysis of the impact of dynamical correlation effects on the density of the neon atom was presented [K. Jankowski, K. Nowakowski, I. Grabowski, and J. Wasilewski, J. Chem. Phys. 130, 164102 (2009)], contrasting the behaviour for a variety of standard density functionals with that of ab initio approaches based on second-order Møller-Plesset (MP2) and coupled cluster theories at the singles-doubles (CCSD) and singles-doubles perturbative triples [CCSD(T)] levels. In the present work, we consider ab initio density functionals based on second-order many-body perturbation theory and coupled cluster perturbation theory in a similar manner, for a range of small atomic and molecular systems. For comparison, we also consider results obtained from MP2, CCSD, and CCSD(T) calculations. In addition to this density based analysis, we determine the KS correlation potentials corresponding to these densities and compare them with those obtained for a range of ab initio density functionals via the optimized effective potential method. The correlation energies, densities, and potentials calculated using ab initio DFT display a similar systematic behaviour to those derived from electronic densities calculated using ab initio wave function theories. In contrast, typical explicit density functionals for the correlation energy, such as VWN5 and LYP, do not show behaviour consistent with this picture of dynamical correlation, although they may provide some degree of correction for already erroneous explicitly density-dependent exchange-only functionals. The results presented here using orbital dependent ab initio density functionals show that they provide a treatment of

  18. Van der Waals interaction mediated by an optically uniaxial layer

    NASA Astrophysics Data System (ADS)

    Šarlah, A.; Žumer, S.

    2001-11-01

    We study the van der Waals interaction between macroscopic bodies separated by a thin anisotropic film with a uniaxial permittivity tensor. We describe the effect of anisotropy of the media on the magnitude and sign of the interaction. The resulting differences in the van der Waals interaction are especially important for the stability of strongly confined liquid crystals, and nanostructures characterized by highly uniaxial macroscopic molecular arrangement, such as in self-assemblies of long organic molecules forming films, membranes, colloids, etc. We introduce an improved expression for the Hamaker constant which takes into account the uniaxial symmetry of a medium. In special cases neglecting the optical anisotropy even leads to an incorrect sign of the interaction.

  19. Phase-Defined van der Waals Schottky Junctions with Significantly Enhanced Thermoelectric Properties.

    PubMed

    Wang, Qiaoming; Yang, Liangliang; Zhou, Shengwen; Ye, Xianjun; Wang, Zhe; Zhu, Wenguang; McCluskey, Matthew D; Gu, Yi

    2017-07-06

    We demonstrate a van der Waals Schottky junction defined by crystalline phases of multilayer In 2 Se 3 . Besides ideal diode behaviors and the gate-tunable current rectification, the thermoelectric power is significantly enhanced in these junctions by more than three orders of magnitude compared with single-phase multilayer In 2 Se 3 , with the thermoelectric figure-of-merit approaching ∼1 at room temperature. Our results suggest that these significantly improved thermoelectric properties are not due to the 2D quantum confinement effects but instead are a consequence of the Schottky barrier at the junction interface, which leads to hot carrier transport and shifts the balance between thermally and field-driven currents. This "bulk" effect extends the advantages of van der Waals materials beyond the few-layer limit. Adopting such an approach of using energy barriers between van der Waals materials, where the interface states are minimal, is expected to enhance the thermoelectric performance in other 2D materials as well.

  20. GaN: From three- to two-dimensional single-layer crystal and its multilayer van der Waals solids

    NASA Astrophysics Data System (ADS)

    Onen, A.; Kecik, D.; Durgun, E.; Ciraci, S.

    2016-02-01

    Three-dimensional (3D) GaN is a III-V compound semiconductor with potential optoelectronic applications. In this paper, starting from 3D GaN in wurtzite and zinc-blende structures, we investigated the mechanical, electronic, and optical properties of the 2D single-layer honeycomb structure of GaN (g -GaN ) and its bilayer, trilayer, and multilayer van der Waals solids using density-functional theory. Based on high-temperature ab initio molecular-dynamics calculations, we first showed that g -GaN can remain stable at high temperature. Then we performed a comparative study to reveal how the physical properties vary with dimensionality. While 3D GaN is a direct-band-gap semiconductor, g -GaN in two dimensions has a relatively wider indirect band gap. Moreover, 2D g -GaN displays a higher Poisson ratio and slightly less charge transfer from cation to anion. In two dimensions, the optical-absorption spectra of 3D crystalline phases are modified dramatically, and their absorption onset energy is blueshifted. We also showed that the physical properties predicted for freestanding g -GaN are preserved when g -GaN is grown on metallic as well as semiconducting substrates. In particular, 3D layered blue phosphorus, being nearly lattice-matched to g -GaN , is found to be an excellent substrate for growing g -GaN . Bilayer, trilayer, and van der Waals crystals can be constructed by a special stacking sequence of g -GaN , and they can display electronic and optical properties that can be controlled by the number of g -GaN layers. In particular, their fundamental band gap decreases and changes from indirect to direct with an increasing number of g -GaN layers.

  1. Atomic layer MoS2-graphene van der Waals heterostructure nanomechanical resonators.

    PubMed

    Ye, Fan; Lee, Jaesung; Feng, Philip X-L

    2017-11-30

    Heterostructures play significant roles in modern semiconductor devices and micro/nanosystems in a plethora of applications in electronics, optoelectronics, and transducers. While state-of-the-art heterostructures often involve stacks of crystalline epi-layers each down to a few nanometers thick, the intriguing limit would be hetero-atomic-layer structures. Here we report the first experimental demonstration of freestanding van der Waals heterostructures and their functional nanomechanical devices. By stacking single-layer (1L) MoS 2 on top of suspended single-, bi-, tri- and four-layer (1L to 4L) graphene sheets, we realize an array of MoS 2 -graphene heterostructures with varying thickness and size. These heterostructures all exhibit robust nanomechanical resonances in the very high frequency (VHF) band (up to ∼100 MHz). We observe that fundamental-mode resonance frequencies of the heterostructure devices fall between the values of graphene and MoS 2 devices. Quality (Q) factors of heterostructure resonators are lower than those of graphene but comparable to those of MoS 2 devices, suggesting interface damping related to interlayer interactions in the van der Waals heterostructures. This study validates suspended atomic layer heterostructures as an effective device platform and provides opportunities for exploiting mechanically coupled effects and interlayer interactions in such devices.

  2. Thermal electron attachment to van der Waals molecules containing O/sub 2/

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huo, W.M.; Fessenden, R.W.; Bauschlicher C.W. Jr.

    1984-12-15

    Calculations on O/sub 2/xN/sub 2/ and O/sup -//sub 2/xN/sub 2/ have been carried out to explain the large enhancement in the attachment rate of thermal electrons found in van der Waals molecules containing O/sub 2/. Two geometries, T-shape and linear, are used. SCF wave functions are used to represent both the neutral molecule and the ion. The incoming electron is approximated by a plane wave. The width is determined using a shielded polarization potential. The effect of additional vibrational structures of the van der Waals molecule on the attachment process is investigated by studying the O/sub 2/--N/sub 2/ stretching modemore » using Lennard-Jones potentials. Symmetry breaking, which allows the molecule to attach a p wave electron, is shown to play a primary role. The lowering of resonance energy, due to a deeper Lennard-Jones potential of O/sup -//sub 2/xN/sub 2/ in comparison with O/sub 2/xN/sub 2/, furthers the enhancement. The calculated attachment rate is comparable to that determined by Shimamori and Fessenden, but differs from the recent values obtained by Toriumi and Hatano, who used a different set of reactions to interpret their data.« less

  3. Density Functional Investigation of the Adsorption of Isooctane, Ethanol, and Acetic Acid on a Water-Covered Fe(100) Surface

    PubMed Central

    2014-01-01

    The presence of water in biofuels poses the question of how it affects the frictional performance of additives in fuels containing organic substances. To investigate the effect of water on the adsorption of molecules present in fuel and its additives we simulated within the framework of density functional theory the adsorption of ethanol, isooctane (2,2,4-trimethylpentane), and acetic acid on a bare and a water-covered Fe(100) surface. Van der Waals interactions are taken into account in our computations. In those molecules, where dispersion forces contribute significantly to the binding mechanism, the water layer has a stronger screening effect. Additionally, this effect can be enhanced by the presence of polar functional groups in the molecule. Thus, with the introduction of a water layer, the adsorption energy of isooctane and ethanol is reduced but it is increased in the case of the acetic acid. The adsorption configuration of ethanol is changed, while the one of acetic acid is moderately, and for isooctane only very slightly altered. Therefore, the effect of a water layer in the adsorption of organic molecules on an Fe(100) surface strongly depends on the type of bond and consequently, so do the tribological properties. PMID:25243045

  4. Vibration-rotation-tunneling spectroscopy of the van der Waals Bond: A new look at intermolecular forces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, R.C.; Saykally, R.J.

    Measurements of the low-frequency van der Waals vibrations in weakly bound complexes by high-resolution laser spectroscopy provide a means to probe intermolecular forces at unprecedented levels of detail and precision. Several new methods are presently being used to record vibration/rotation-tunneling (VRT) transitions associated with the motions of the weak bonds in van der Waals clusters. The most direct measurements are those probing only the van der Waals modes themselves, which occur at far-infrared wavelengths. This article presents a review of the information on both intramolecular forces and intramolecular dynamics that has been obtained from far-infrared VRT spectra of 18 complexesmore » during the past several years. Some rotationally resolved measurements of van der Waals modes observed in combination with electronic or vibrational excitation are also discussed. 185 refs., 15 figs., 1 tab.« less

  5. An oscillation free shock-capturing method for compressible van der Waals supercritical fluid flows

    DOE PAGES

    Pantano, C.; Saurel, R.; Schmitt, T.

    2017-02-01

    Numerical solutions of the Euler equations using real gas equations of state (EOS) often exhibit serious inaccuracies. The focus here is the van der Waals EOS and its variants (often used in supercritical fluid computations). The problems are not related to a lack of convexity of the EOS since the EOS are considered in their domain of convexity at any mesh point and at any time. The difficulties appear as soon as a density discontinuity is present with the rest of the fluid in mechanical equilibrium and typically result in spurious pressure and velocity oscillations. This is reminiscent of well-knownmore » pressure oscillations occurring with ideal gas mixtures when a mass fraction discontinuity is present, which can be interpreted as a discontinuity in the EOS parameters. We are concerned with pressure oscillations that appear just for a single fluid each time a density discontinuity is present. As a result, the combination of density in a nonlinear fashion in the EOS with diffusion by the numerical method results in violation of mechanical equilibrium conditions which are not easy to eliminate, even under grid refinement.« less

  6. An oscillation free shock-capturing method for compressible van der Waals supercritical fluid flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pantano, C.; Saurel, R.; Schmitt, T.

    Numerical solutions of the Euler equations using real gas equations of state (EOS) often exhibit serious inaccuracies. The focus here is the van der Waals EOS and its variants (often used in supercritical fluid computations). The problems are not related to a lack of convexity of the EOS since the EOS are considered in their domain of convexity at any mesh point and at any time. The difficulties appear as soon as a density discontinuity is present with the rest of the fluid in mechanical equilibrium and typically result in spurious pressure and velocity oscillations. This is reminiscent of well-knownmore » pressure oscillations occurring with ideal gas mixtures when a mass fraction discontinuity is present, which can be interpreted as a discontinuity in the EOS parameters. We are concerned with pressure oscillations that appear just for a single fluid each time a density discontinuity is present. As a result, the combination of density in a nonlinear fashion in the EOS with diffusion by the numerical method results in violation of mechanical equilibrium conditions which are not easy to eliminate, even under grid refinement.« less

  7. Spin-Multiplet Components and Energy Splittings by Multistate Density Functional Theory.

    PubMed

    Grofe, Adam; Chen, Xin; Liu, Wenjian; Gao, Jiali

    2017-10-05

    Kohn-Sham density functional theory has been tremendously successful in chemistry and physics. Yet, it is unable to describe the energy degeneracy of spin-multiplet components with any approximate functional. This work features two contributions. (1) We present a multistate density functional theory (MSDFT) to represent spin-multiplet components and to determine multiplet energies. MSDFT is a hybrid approach, taking advantage of both wave function theory and density functional theory. Thus, the wave functions, electron densities and energy density-functionals for ground and excited states and for different components are treated on the same footing. The method is illustrated on valence excitations of atoms and molecules. (2) Importantly, a key result is that for cases in which the high-spin components can be determined separately by Kohn-Sham density functional theory, the transition density functional in MSDFT (which describes electronic coupling) can be defined rigorously. The numerical results may be explored to design and optimize transition density functionals for configuration coupling in multiconfigurational DFT.

  8. Geometrothermodynamics of Van der Waals black hole

    NASA Astrophysics Data System (ADS)

    Hu, Yumin; Chen, Juhua; Wang, Yongjiu

    2017-12-01

    We study the geometrothermodynamics of a special asymptotically AdS black hole, i.e. Van der Waals ( VdW) black hole, in the extended phase space where the negative cosmological constant Λ can be regarded as thermodynamic pressure. Analysing some special conditions of this black hole with geometrothermodynamical method, we find a good correlation with ordinary cases according to the state equation.

  9. Active Space Dependence in Multiconfiguration Pair-Density Functional Theory.

    PubMed

    Sharma, Prachi; Truhlar, Donald G; Gagliardi, Laura

    2018-02-13

    In multiconfiguration pair-density functional theory (MC-PDFT), multiconfiguration self-consistent-field calculations and on-top density functionals are combined to describe both static and dynamic correlation. Here, we investigate how the MC-PDFT total energy and its components depend on the active space choice in the case of the H 2 and N 2 molecules. The active space dependence of the on-top pair density, the total density, the ratio of on-top pair density to half the square of the electron density, and the satisfaction of the virial theorem are also explored. We find that the density and on-top pair density do not change significantly with changes in the active space. However, the on-top ratio does change significantly with respect to active space change, and this affects the on-top energy. This study provides a foundation for designing on-top density functionals and automatizing the active space choice in MC-PDFT.

  10. Extended screened exchange functional derived from transcorrelated density functional theory.

    PubMed

    Umezawa, Naoto

    2017-09-14

    We propose a new formulation of the correlation energy functional derived from the transcorrelated method in use in density functional theory (TC-DFT). An effective Hamiltonian, H TC , is introduced by a similarity transformation of a many-body Hamiltonian, H, with respect to a complex function F: H TC =1FHF. It is proved that an expectation value of H TC for a normalized single Slater determinant, D n , corresponds to the total energy: E[n] = ⟨Ψ n |H|Ψ n ⟩/⟨Ψ n |Ψ n ⟩ = ⟨D n |H TC |D n ⟩ under the two assumptions: (1) The electron density nr associated with a trial wave function Ψ n = D n F is v-representable and (2) Ψ n and D n give rise to the same electron density nr. This formulation, therefore, provides an alternative expression of the total energy that is useful for the development of novel correlation energy functionals. By substituting a specific function for F, we successfully derived a model correlation energy functional, which resembles the functional form of the screened exchange method. The proposed functional, named the extended screened exchange (ESX) functional, is described within two-body integrals and is parametrized for a numerically exact correlation energy of the homogeneous electron gas. The ESX functional does not contain any ingredients of (semi-)local functionals and thus is totally free from self-interactions. The computational cost for solving the self-consistent-field equation is comparable to that of the Hartree-Fock method. We apply the ESX functional to electronic structure calculations for a solid silicon, H - ion, and small atoms. The results demonstrate that the TC-DFT formulation is promising for the systematic improvement of the correlation energy functional.

  11. Exact conditions on the temperature dependence of density functionals

    DOE PAGES

    Burke, K.; Smith, J. C.; Grabowski, P. E.; ...

    2016-05-15

    Universal exact conditions guided the construction of most ground-state density functional approximations in use today. Here, we derive the relation between the entropy and Mermin free energy density functionals for thermal density functional theory. Both the entropy and sum of kinetic and electron-electron repulsion functionals are shown to be monotonically increasing with temperature, while the Mermin functional is concave downwards. Analogous relations are found for both exchange and correlation. The importance of these conditions is illustrated in two extremes: the Hubbard dimer and the uniform gas.

  12. Quantum Crystallography: Density Matrix-Density Functional Theory and the X-Ray Diffraction Experiment

    NASA Astrophysics Data System (ADS)

    Soirat, Arnaud J. A.

    Density Matrix Theory is a Quantum Mechanical formalism in which the wavefunction is eliminated and its role taken over by reduced density matrices. The interest of this is that, it allows one, in principle, to calculate any electronic property of a physical system, without having to solve the Schrodinger equation, using only two entities much simpler than an N-body wavefunction: first and second -order reduced density matrices. In practice, though, this very promising possibility faces the tremendous theoretical problem of N-representability, which has been solved for the former, but, until now, voids any hope of theoretically determining the latter. However, it has been shown that single determinant reduced density matrices of any order may be recovered from coherent X-ray diffraction data, if one provides a proper Quantum Mechanical description of the Crystallography experiment. A deeper investigation of this method is the purpose of this work, where we, first, further study the calculation of X-ray reduced density matrices N-representable by a single Slater determinant. In this context, we independently derive necessary and sufficient conditions for the uniqueness of the method. We then show how to account for electron correlation in this model. For the first time, indeed, we derive highly accurate, yet practical, density matrices approximately N-representable by correlated-determinant wavefunctions. The interest of such a result lies in the Quantum Mechanical validity of these density matrices, their property of being entirely obtainable from X-ray coherent diffraction data, their very high accuracy conferred by this known property of the N-representing wavefunction, as well as their definition as explicit functionals of the density. All of these properties are finally used in both a theoretical and a numerical application: in the former, we show that these density matrices may be used in the context of Density Functional Theory to highly accurately determine

  13. Spin-Flavor van der Waals Forces and NN interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alvaro Calle Cordon, Enrique Ruiz Arriola

    A major goal in Nuclear Physics is the derivation of the Nucleon-Nucleon (NN) interaction from Quantum Chromodynamics (QCD). In QCD the fundamental degrees of freedom are colored quarks and gluons which are confined to form colorless strongly interacting hadrons. Because of this the resulting nuclear forces at sufficiently large distances correspond to spin-flavor excitations, very much like the dipole excitations generating the van der Waals (vdW) forces acting between atoms. We study the Nucleon-Nucleon interaction in the Born-Oppenheimer approximation at second order in perturbation theory including the Delta resonance as an intermediate state. The potential resembles strongly chiral potentials computedmore » either via soliton models or chiral perturbation theory and has a van der Waals like singularity at short distances which is handled by means of renormalization techniques. Results for the deuteron are discussed.« less

  14. Critical lines for an unequal size of molecules in a binary gas-liquid mixture around the van Laar point using the combination of the Tompa model and the van der Waals equation.

    PubMed

    Gençaslan, Mustafa; Keskin, Mustafa

    2012-02-14

    We combine the modified Tompa model with the van der Waals equation to study critical lines for an unequal size of molecules in a binary gas-liquid mixture around the van Laar point. The van Laar point is coined by Meijer and it is the only point at which the mathematical double point curve is stable. It is the intersection of the tricritical point and the double critical end point. We calculate the critical lines as a function of χ(1) and χ(2), the density of type I molecules and the density of type II molecules for various values of the system parameters; hence the global phase diagrams are presented and discussed in the density-density plane. We also investigate the connectivity of critical lines at the van Laar point and its vicinity and discuss these connections according to the Scott and van Konynenburg classifications. It is also found that the critical lines and phase behavior are extremely sensitive to small modifications in the system parameters. © 2012 American Institute of Physics

  15. Functional thermo-dynamics: a generalization of dynamic density functional theory to non-isothermal situations.

    PubMed

    Anero, Jesús G; Español, Pep; Tarazona, Pedro

    2013-07-21

    We present a generalization of Density Functional Theory (DFT) to non-equilibrium non-isothermal situations. By using the original approach set forth by Gibbs in his consideration of Macroscopic Thermodynamics (MT), we consider a Functional Thermo-Dynamics (FTD) description based on the density field and the energy density field. A crucial ingredient of the theory is an entropy functional, which is a concave functional. Therefore, there is a one to one connection between the density and energy fields with the conjugate thermodynamic fields. The connection between the three levels of description (MT, DFT, FTD) is clarified through a bridge theorem that relates the entropy of different levels of description and that constitutes a generalization of Mermin's theorem to arbitrary levels of description whose relevant variables are connected linearly. Although the FTD level of description does not provide any new information about averages and correlations at equilibrium, it is a crucial ingredient for the dynamics in non-equilibrium states. We obtain with the technique of projection operators the set of dynamic equations that describe the evolution of the density and energy density fields from an initial non-equilibrium state towards equilibrium. These equations generalize time dependent density functional theory to non-isothermal situations. We also present an explicit model for the entropy functional for hard spheres.

  16. A high-pressure van der Waals compound in solid nitrogen-helium mixtures

    NASA Technical Reports Server (NTRS)

    Vos, W. L.; Finger, L. W.; Hemley, R. J.; Hu, J. Z.; Mao, H. K.; Schouten, J. A.

    1992-01-01

    A detailed diamond anvil-cell study using synchrotron X-ray diffraction, Raman scattering, and optical microscopy has been conducted for the He-N system, with a view to the weakly-bound van der Waals molecule interactions that can be formed in the gas phase. High pressure is found to stabilize the formation of a stoichiometric, solid van der Waals compound of He(N2)11 composition which may exemplify a novel class of compounds found at high pressures in the interiors of the outer planets and their satellites.

  17. Thermal density functional theory, ensemble density functional theory, and potential functional theory for warm dense matter

    NASA Astrophysics Data System (ADS)

    Pribram-Jones, Aurora

    Warm dense matter (WDM) is a high energy phase between solids and plasmas, with characteristics of both. It is present in the centers of giant planets, within the earth's core, and on the path to ignition of inertial confinement fusion. The high temperatures and pressures of warm dense matter lead to complications in its simulation, as both classical and quantum effects must be included. One of the most successful simulation methods is density functional theory-molecular dynamics (DFT-MD). Despite great success in a diverse array of applications, DFT-MD remains computationally expensive and it neglects the explicit temperature dependence of electron-electron interactions known to exist within exact DFT. Finite-temperature density functional theory (FT DFT) is an extension of the wildly successful ground-state DFT formalism via thermal ensembles, broadening its quantum mechanical treatment of electrons to include systems at non-zero temperatures. Exact mathematical conditions have been used to predict the behavior of approximations in limiting conditions and to connect FT DFT to the ground-state theory. An introduction to FT DFT is given within the context of ensemble DFT and the larger field of DFT is discussed for context. Ensemble DFT is used to describe ensembles of ground-state and excited systems. Exact conditions in ensemble DFT and the performance of approximations depend on ensemble weights. Using an inversion method, exact Kohn-Sham ensemble potentials are found and compared to approximations. The symmetry eigenstate Hartree-exchange approximation is in good agreement with exact calculations because of its inclusion of an ensemble derivative discontinuity. Since ensemble weights in FT DFT are temperature-dependent Fermi weights, this insight may help develop approximations well-suited to both ground-state and FT DFT. A novel, highly efficient approach to free energy calculations, finite-temperature potential functional theory, is derived, which has the

  18. Current Density Functional Theory Using Meta-Generalized Gradient Exchange-Correlation Functionals.

    PubMed

    Furness, James W; Verbeke, Joachim; Tellgren, Erik I; Stopkowicz, Stella; Ekström, Ulf; Helgaker, Trygve; Teale, Andrew M

    2015-09-08

    We present the self-consistent implementation of current-dependent (hybrid) meta-generalized gradient approximation (mGGA) density functionals using London atomic orbitals. A previously proposed generalized kinetic energy density is utilized to implement mGGAs in the framework of Kohn-Sham current density functional theory (KS-CDFT). A unique feature of the nonperturbative implementation of these functionals is the ability to seamlessly explore a wide range of magnetic fields up to 1 au (∼235 kT) in strength. CDFT functionals based on the TPSS and B98 forms are investigated, and their performance is assessed by comparison with accurate coupled-cluster singles, doubles, and perturbative triples (CCSD(T)) data. In the weak field regime, magnetic properties such as magnetizabilities and nuclear magnetic resonance shielding constants show modest but systematic improvements over generalized gradient approximations (GGA). However, in the strong field regime, the mGGA-based forms lead to a significantly improved description of the recently proposed perpendicular paramagnetic bonding mechanism, comparing well with CCSD(T) data. In contrast to functionals based on the vorticity, these forms are found to be numerically stable, and their accuracy at high field suggests that the extension of mGGAs to CDFT via the generalized kinetic energy density should provide a useful starting point for further development of CDFT approximations.

  19. Adsorption and oxidation of oxalic acid on anatase TiO2 (001) surface: A density functional theory study.

    PubMed

    Sun, Tao; Wang, Yun; Zhang, Haimin; Liu, Porun; Zhao, Huijun

    2015-09-15

    Anatase TiO2 (001) surfaces have attracted great interest for photo-degradation of organic species recently due to their high reactivity. In this work, adsorption properties and oxidation mechanisms of oxalic acid on the anatase TiO2 (001) surface have been theoretically investigated using the first-principles density functional theory. Various possible adsorption configurations are considered by diversifying the connectivity of carboxylic groups with the surface. It is found that the adsorption of oxalic acid on the anatase (001) surface prefer the dissociative states. A novel double-bidentate configuration has been found due to the structural match between oxalic acid and the (001) surface. More charge is transferred from the adsorbed oxalic acid to the surface with the double-bidentate configuration when comparing with other adsorption structures. Thus, there is a positive correlation relationship between the transferred charge amount and the interfacial bond numbers when oxalic acid adsorbs on the anatase TiO2 (001) surface. The adsorption energies with dispersion corrections have demonstrated that the van der Waals interactions play an important role in the adsorption, especially when adsorbates are close to the surface. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Trivial constraints on orbital-free kinetic energy density functionals

    NASA Astrophysics Data System (ADS)

    Luo, Kai; Trickey, S. B.

    2018-03-01

    Approximate kinetic energy density functionals (KEDFs) are central to orbital-free density functional theory. Limitations on the spatial derivative dependencies of KEDFs have been claimed from differential virial theorems. We identify a central defect in the argument: the relationships are not true for an arbitrary density but hold only for the minimizing density and corresponding chemical potential. Contrary to the claims therefore, the relationships are not constraints and provide no independent information about the spatial derivative dependencies of approximate KEDFs. A simple argument also shows that validity for arbitrary v-representable densities is not restored by appeal to the density-potential bijection.

  1. Stretched hydrogen molecule from a constrained-search density-functional perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valone, Steven M; Levy, Mel

    2009-01-01

    Constrained-search density functional theory gives valuable insights into the fundamentals of density functional theory. It provides exact results and bounds on the ground- and excited-state density functionals. An important advantage of the theory is that it gives guidance in the construction of functionals. Here they engage constrained search theory to explore issues associated with the functional behavior of 'stretched bonds' in molecular hydrogen. A constrained search is performed with familiar valence bond wavefunctions ordinarily used to describe molecular hydrogen. The effective, one-electron hamiltonian is computed and compared to the corresponding uncorrelated, Hartree-Fock effective hamiltonian. Analysis of the functional suggests themore » need to construct different functionals for the same density and to allow a competition among these functions. As a result the correlation energy functional is composed explicitly of energy gaps from the different functionals.« less

  2. Photovoltaic Effect in an Electrically Tunable van der Waals Heterojunction

    PubMed Central

    2014-01-01

    Semiconductor heterostructures form the cornerstone of many electronic and optoelectronic devices and are traditionally fabricated using epitaxial growth techniques. More recently, heterostructures have also been obtained by vertical stacking of two-dimensional crystals, such as graphene and related two-dimensional materials. These layered designer materials are held together by van der Waals forces and contain atomically sharp interfaces. Here, we report on a type-II van der Waals heterojunction made of molybdenum disulfide and tungsten diselenide monolayers. The junction is electrically tunable, and under appropriate gate bias an atomically thin diode is realized. Upon optical illumination, charge transfer occurs across the planar interface and the device exhibits a photovoltaic effect. Advances in large-scale production of two-dimensional crystals could thus lead to a new photovoltaic solar technology. PMID:25057817

  3. van der Waals interactions between nanostructures: Some analytic results from series expansions

    NASA Astrophysics Data System (ADS)

    Stedman, T.; Drosdoff, D.; Woods, L. M.

    2014-01-01

    The van der Waals force between objects of nontrivial geometries is considered. A technique based on a perturbation series approach is formulated in the dilute limit. We show that the dielectric response and object size can be decoupled and dominant contributions in terms of object separations can be obtained. This is a powerful method, which enables straightforward calculations of the interaction for different geometries. Our results for planar structures, such as thin sheets, infinitely long ribbons, and ribbons with finite dimensions, may be applicable for nanostructured devices where the van der Waals interaction plays an important role.

  4. Probing low-energy hyperbolic polaritons in van der Waals crystals with an electron microscope.

    PubMed

    Govyadinov, Alexander A; Konečná, Andrea; Chuvilin, Andrey; Vélez, Saül; Dolado, Irene; Nikitin, Alexey Y; Lopatin, Sergei; Casanova, Fèlix; Hueso, Luis E; Aizpurua, Javier; Hillenbrand, Rainer

    2017-07-21

    Van der Waals materials exhibit intriguing structural, electronic, and photonic properties. Electron energy loss spectroscopy within scanning transmission electron microscopy allows for nanoscale mapping of such properties. However, its detection is typically limited to energy losses in the eV range-too large for probing low-energy excitations such as phonons or mid-infrared plasmons. Here, we adapt a conventional instrument to probe energy loss down to 100 meV, and map phononic states in hexagonal boron nitride, a representative van der Waals material. The boron nitride spectra depend on the flake thickness and on the distance of the electron beam to the flake edges. To explain these observations, we developed a classical response theory that describes the interaction of fast electrons with (anisotropic) van der Waals slabs, revealing that the electron energy loss is dominated by excitation of hyperbolic phonon polaritons, and not of bulk phonons as often reported. Thus, our work is of fundamental importance for interpreting future low-energy loss spectra of van der Waals materials.Here the authors adapt a STEM-EELS system to probe energy loss down to 100 meV, and apply it to map phononic states in hexagonal boron nitride, revealing that the electron loss is dominated by hyperbolic phonon polaritons.

  5. The role of the anionic and cationic pt sites in the adsorption site preference of water and ethanol on defected Pt4/Pt(111) substrates: A density functional theory investigation within the D3 van der waals corrections

    NASA Astrophysics Data System (ADS)

    Seminovski, Yohanna; Amaral, Rafael C.; Tereshchuk, Polina; Da Silva, Juarez L. F.

    2018-01-01

    Platinum (Pt) atoms in the bulk face-centered cubic structure have neutral charge because they are equivalent by symmetry, however, in clean Pt surfaces, the effective charge on Pt atoms can turn slightly negative (anionic) or positive (cationic) while increasing substantially in magnitude for defected (low-coordinated) Pt sites. The effective charge affect the adsorption properties of molecular species on Pt surfaces and it can compete in importance with the coupling of the substrate-molecule electronic states. Although several studies have been reported due to the importance of Pt for catalysis, our understanding of the role played by low-coordinated sites is still limited. Here, we employ density functional theory within the Perdew-Burke-Ernzerhof exchange-correlation functional and the D3 van der Waals (vdW) correction to investigate the role of the cationic and anionic Pt sites on the adsorption properties of ethanol and water on defected Pt4/Pt(111) substrates. Four substrates were carefully selected, namely, two two-dimensional (2D) Pt4 configurations (2D-strand and 2D-island) and two tri-dimensional (3D) Pt4 (3D-fcc and 3D-hcp), to understand the role of coordination, effective charge, and coupling of the electronic states in the adsorption properties. From the Bader charge analysis, we identified the cationic and anionic sites among the Pt atoms exposed to the vacuum region in the Pt4/Pt(111) substrates. We found that ethanol and water bind via the anionic O atoms to the low-coordinated defected Pt sites of the substrates, where the angle PtOH is nearly 100° for most configurations. In the 3D-fcc or 3D-hcp defected configurations, the lowest-coordinated Pt atoms are anionic, hence, those Pt sites are not preferable for the adsorption of O atoms. The charge transfer from water and ethanol to the Pt substrates has similar magnitude for all cases, which implies similar Coulomb contribution to the adsorption energy. Moreover, we found a correlation of the

  6. van der Waals Layered Materials: Opportunities and Challenges.

    PubMed

    Duong, Dinh Loc; Yun, Seok Joon; Lee, Young Hee

    2017-12-26

    Since graphene became available by a scotch tape technique, a vast class of two-dimensional (2D) van der Waals (vdW) layered materials has been researched intensively. What is more intriguing is that the well-known physics and chemistry of three-dimensional (3D) bulk materials are often irrelevant, revealing exotic phenomena in 2D vdW materials. By further constructing heterostructures of these materials in the planar and vertical directions, which can be easily achieved via simple exfoliation techniques, numerous quantum mechanical devices have been demonstrated for fundamental research and technological applications. It is, therefore, necessary to review the special features in 2D vdW materials and to discuss the remaining issues and challenges. Here, we review the vdW materials library, technology relevance, and specialties of vdW materials covering the vdW interaction, strong Coulomb interaction, layer dependence, dielectric screening engineering, work function modulation, phase engineering, heterostructures, stability, growth issues, and the remaining challenges.

  7. Time-dependent density-functional tight-binding method with the third-order expansion of electron density

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishimoto, Yoshio, E-mail: nishimoto.yoshio@fukui.kyoto-u.ac.jp

    2015-09-07

    We develop a formalism for the calculation of excitation energies and excited state gradients for the self-consistent-charge density-functional tight-binding method with the third-order contributions of a Taylor series of the density functional theory energy with respect to the fluctuation of electron density (time-dependent density-functional tight-binding (TD-DFTB3)). The formulation of the excitation energy is based on the existing time-dependent density functional theory and the older TD-DFTB2 formulae. The analytical gradient is computed by solving Z-vector equations, and it requires one to calculate the third-order derivative of the total energy with respect to density matrix elements due to the inclusion of themore » third-order contributions. The comparison of adiabatic excitation energies for selected small and medium-size molecules using the TD-DFTB2 and TD-DFTB3 methods shows that the inclusion of the third-order contributions does not affect excitation energies significantly. A different set of parameters, which are optimized for DFTB3, slightly improves the prediction of adiabatic excitation energies statistically. The application of TD-DFTB for the prediction of absorption and fluorescence energies of cresyl violet demonstrates that TD-DFTB3 reproduced the experimental fluorescence energy quite well.« less

  8. Time-dependent density-functional tight-binding method with the third-order expansion of electron density.

    PubMed

    Nishimoto, Yoshio

    2015-09-07

    We develop a formalism for the calculation of excitation energies and excited state gradients for the self-consistent-charge density-functional tight-binding method with the third-order contributions of a Taylor series of the density functional theory energy with respect to the fluctuation of electron density (time-dependent density-functional tight-binding (TD-DFTB3)). The formulation of the excitation energy is based on the existing time-dependent density functional theory and the older TD-DFTB2 formulae. The analytical gradient is computed by solving Z-vector equations, and it requires one to calculate the third-order derivative of the total energy with respect to density matrix elements due to the inclusion of the third-order contributions. The comparison of adiabatic excitation energies for selected small and medium-size molecules using the TD-DFTB2 and TD-DFTB3 methods shows that the inclusion of the third-order contributions does not affect excitation energies significantly. A different set of parameters, which are optimized for DFTB3, slightly improves the prediction of adiabatic excitation energies statistically. The application of TD-DFTB for the prediction of absorption and fluorescence energies of cresyl violet demonstrates that TD-DFTB3 reproduced the experimental fluorescence energy quite well.

  9. van der Waals torque and force between dielectrically anisotropic layered media.

    PubMed

    Lu, Bing-Sui; Podgornik, Rudolf

    2016-07-28

    We analyse van der Waals interactions between a pair of dielectrically anisotropic plane-layered media interacting across a dielectrically isotropic solvent medium. We develop a general formalism based on transfer matrices to investigate the van der Waals torque and force in the limit of weak birefringence and dielectric matching between the ordinary axes of the anisotropic layers and the solvent. We apply this formalism to study the following systems: (i) a pair of single anisotropic layers, (ii) a single anisotropic layer interacting with a multilayered slab consisting of alternating anisotropic and isotropic layers, and (iii) a pair of multilayered slabs each consisting of alternating anisotropic and isotropic layers, looking at the cases where the optic axes lie parallel and/or perpendicular to the plane of the layers. For the first case, the optic axes of the oppositely facing anisotropic layers of the two interacting slabs generally possess an angular mismatch, and within each multilayered slab the optic axes may either be the same or undergo constant angular increments across the anisotropic layers. In particular, we examine how the behaviors of the van der Waals torque and force can be "tuned" by adjusting the layer thicknesses, the relative angular increment within each slab, and the angular mismatch between the slabs.

  10. Franckeite as a naturally occurring van der Waals heterostructure

    PubMed Central

    Molina-Mendoza, Aday J.; Giovanelli, Emerson; Paz, Wendel S.; Niño, Miguel Angel; Island, Joshua O.; Evangeli, Charalambos; Aballe, Lucía; Foerster, Michael; van der Zant, Herre S. J.; Rubio-Bollinger, Gabino; Agraït, Nicolás; Palacios, J. J.; Pérez, Emilio M.; Castellanos-Gomez, Andres

    2017-01-01

    The fabrication of van der Waals heterostructures, artificial materials assembled by individual stacking of 2D layers, is among the most promising directions in 2D materials research. Until now, the most widespread approach to stack 2D layers relies on deterministic placement methods, which are cumbersome and tend to suffer from poor control over the lattice orientations and the presence of unwanted interlayer adsorbates. Here, we present a different approach to fabricate ultrathin heterostructures by exfoliation of bulk franckeite which is a naturally occurring and air stable van der Waals heterostructure (composed of alternating SnS2-like and PbS-like layers stacked on top of each other). Presenting both an attractive narrow bandgap (<0.7 eV) and p-type doping, we find that the material can be exfoliated both mechanically and chemically down to few-layer thicknesses. We present extensive theoretical and experimental characterizations of the material's electronic properties and crystal structure, and explore applications for near-infrared photodetectors. PMID:28194037

  11. Force Density Function Relationships in 2-D Granular Media

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C.; Metzger, Philip T.; Kilts, Kelly N.

    2004-01-01

    An integral transform relationship is developed to convert between two important probability density functions (distributions) used in the study of contact forces in granular physics. Developing this transform has now made it possible to compare and relate various theoretical approaches with one another and with the experimental data despite the fact that one may predict the Cartesian probability density and another the force magnitude probability density. Also, the transforms identify which functional forms are relevant to describe the probability density observed in nature, and so the modified Bessel function of the second kind has been identified as the relevant form for the Cartesian probability density corresponding to exponential forms in the force magnitude distribution. Furthermore, it is shown that this transform pair supplies a sufficient mathematical framework to describe the evolution of the force magnitude distribution under shearing. Apart from the choice of several coefficients, whose evolution of values must be explained in the physics, this framework successfully reproduces the features of the distribution that are taken to be an indicator of jamming and unjamming in a granular packing. Key words. Granular Physics, Probability Density Functions, Fourier Transforms

  12. Quest for a universal density functional: the accuracy of density functionals across a broad spectrum of databases in chemistry and physics.

    PubMed

    Peverati, Roberto; Truhlar, Donald G

    2014-03-13

    Kohn-Sham density functional theory is in principle an exact formulation of quantum mechanical electronic structure theory, but in practice we have to rely on approximate exchange-correlation (xc) functionals. The objective of our work has been to design an xc functional with broad accuracy across as wide an expanse of chemistry and physics as possible, leading--as a long-range goal--to a functional with good accuracy for all problems, i.e. a universal functional. To guide our path towards that goal and to measure our progress, we have developed-building on earlier work of our group-a set of databases of reference data for a variety of energetic and structural properties in chemistry and physics. These databases include energies of molecular processes, such as atomization, complexation, proton addition and ionization; they also include molecular geometries and solid-state lattice constants, chemical reaction barrier heights, and cohesive energies and band gaps of solids. For this paper, we gather many of these databases into four comprehensive databases, two with 384 energetic data for chemistry and solid-state physics and another two with 68 structural data for chemistry and solid-state physics, and we test two wave function methods and 77 density functionals (12 Minnesota meta functionals and 65 others) in a consistent way across this same broad set of data. We especially highlight the Minnesota density functionals, but the results have broader implications in that one may see the successes and failures of many kinds of density functionals when they are all applied to the same data. Therefore, the results provide a status report on the quest for a universal functional.

  13. Investigation of estimators of probability density functions

    NASA Technical Reports Server (NTRS)

    Speed, F. M.

    1972-01-01

    Four research projects are summarized which include: (1) the generation of random numbers on the IBM 360/44, (2) statistical tests used to check out random number generators, (3) Specht density estimators, and (4) use of estimators of probability density functions in analyzing large amounts of data.

  14. Microscopically based energy density functionals for nuclei using the density matrix expansion: Implementation and pre-optimization

    NASA Astrophysics Data System (ADS)

    Stoitsov, M.; Kortelainen, M.; Bogner, S. K.; Duguet, T.; Furnstahl, R. J.; Gebremariam, B.; Schunck, N.

    2010-11-01

    In a recent series of articles, Gebremariam, Bogner, and Duguet derived a microscopically based nuclear energy density functional by applying the density matrix expansion (DME) to the Hartree-Fock energy obtained from chiral effective field theory two- and three-nucleon interactions. Owing to the structure of the chiral interactions, each coupling in the DME functional is given as the sum of a coupling constant arising from zero-range contact interactions and a coupling function of the density arising from the finite-range pion exchanges. Because the contact contributions have essentially the same structure as those entering empirical Skyrme functionals, a microscopically guided Skyrme phenomenology has been suggested in which the contact terms in the DME functional are released for optimization to finite-density observables to capture short-range correlation energy contributions from beyond Hartree-Fock. The present article is the first attempt to assess the ability of the newly suggested DME functional, which has a much richer set of density dependencies than traditional Skyrme functionals, to generate sensible and stable results for nuclear applications. The results of the first proof-of-principle calculations are given, and numerous practical issues related to the implementation of the new functional in existing Skyrme codes are discussed. Using a restricted singular value decomposition optimization procedure, it is found that the new DME functional gives numerically stable results and exhibits a small but systematic reduction of our test χ2 function compared to standard Skyrme functionals, thus justifying its suitability for future global optimizations and large-scale calculations.

  15. π-π stacking tackled with density functional theory

    PubMed Central

    Swart, Marcel; van der Wijst, Tushar; Fonseca Guerra, Célia

    2007-01-01

    Through comparison with ab initio reference data, we have evaluated the performance of various density functionals for describing π-π interactions as a function of the geometry between two stacked benzenes or benzene analogs, between two stacked DNA bases, and between two stacked Watson–Crick pairs. Our main purpose is to find a robust and computationally efficient density functional to be used specifically and only for describing π-π stacking interactions in DNA and other biological molecules in the framework of our recently developed QM/QM approach "QUILD". In line with previous studies, most standard density functionals recover, at best, only part of the favorable stacking interactions. An exception is the new KT1 functional, which correctly yields bound π-stacked structures. Surprisingly, a similarly good performance is achieved with the computationally very robust and efficient local density approximation (LDA). Furthermore, we show that classical electrostatic interactions determine the shape and depth of the π-π stacking potential energy surface. Figure Additivity approximation for the π-π interaction between two stacked Watson–Crick base pairs in terms of pairwise interactions between individual bases Electronic supplementary material The online version of this article (doi:10.1007/s00894-007-0239-y) contains supplementary material, which is available to authorized users. PMID:17874150

  16. Understanding the nanoscale local buckling behavior of vertically aligned MWCNT arrays with van der Waals interactions

    NASA Astrophysics Data System (ADS)

    Li, Yupeng; Kim, Hyung-Ick; Wei, Bingqing; Kang, Junmo; Choi, Jae-Boong; Nam, Jae-Do; Suhr, Jonghwan

    2015-08-01

    The local buckling behavior of vertically aligned carbon nanotubes (VACNTs) has been investigated and interpreted in the view of a collective nanotube response by taking van der Waals interactions into account. To the best of our knowledge, this is the first report on the case of collective VACNT behavior regarding van der Waals force among nanotubes as a lateral support effect during the buckling process. The local buckling propagation and development of VACNTs were experimentally observed and theoretically analyzed by employing finite element modeling with lateral support from van der Waals interactions among nanotubes. Both experimental and theoretical analyses show that VACNTs buckled in the bottom region with many short waves and almost identical wavelengths, indicating a high mode buckling. Furthermore, the propagation and development mechanism of buckling waves follow the wave damping effect.The local buckling behavior of vertically aligned carbon nanotubes (VACNTs) has been investigated and interpreted in the view of a collective nanotube response by taking van der Waals interactions into account. To the best of our knowledge, this is the first report on the case of collective VACNT behavior regarding van der Waals force among nanotubes as a lateral support effect during the buckling process. The local buckling propagation and development of VACNTs were experimentally observed and theoretically analyzed by employing finite element modeling with lateral support from van der Waals interactions among nanotubes. Both experimental and theoretical analyses show that VACNTs buckled in the bottom region with many short waves and almost identical wavelengths, indicating a high mode buckling. Furthermore, the propagation and development mechanism of buckling waves follow the wave damping effect. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03581c

  17. General dynamical density functional theory for classical fluids.

    PubMed

    Goddard, Benjamin D; Nold, Andreas; Savva, Nikos; Pavliotis, Grigorios A; Kalliadasis, Serafim

    2012-09-21

    We study the dynamics of a colloidal fluid including inertia and hydrodynamic interactions, two effects which strongly influence the nonequilibrium properties of the system. We derive a general dynamical density functional theory which shows very good agreement with full Langevin dynamics. In suitable limits, we recover existing dynamical density functional theories and a Navier-Stokes-like equation with additional nonlocal terms.

  18. A density functional approach to ferrogels

    NASA Astrophysics Data System (ADS)

    Cremer, P.; Heinen, M.; Menzel, A. M.; Löwen, H.

    2017-07-01

    Ferrogels consist of magnetic colloidal particles embedded in an elastic polymer matrix. As a consequence, their structural and rheological properties are governed by a competition between magnetic particle-particle interactions and mechanical matrix elasticity. Typically, the particles are permanently fixed within the matrix, which makes them distinguishable by their positions. Over time, particle neighbors do not change due to the fixation by the matrix. Here we present a classical density functional approach for such ferrogels. We map the elastic matrix-induced interactions between neighboring colloidal particles distinguishable by their positions onto effective pairwise interactions between indistinguishable particles similar to a ‘pairwise pseudopotential’. Using Monte-Carlo computer simulations, we demonstrate for one-dimensional dipole-spring models of ferrogels that this mapping is justified. We then use the pseudopotential as an input into classical density functional theory of inhomogeneous fluids and predict the bulk elastic modulus of the ferrogel under various conditions. In addition, we propose the use of an ‘external pseudopotential’ when one switches from the viewpoint of a one-dimensional dipole-spring object to a one-dimensional chain embedded in an infinitely extended bulk matrix. Our mapping approach paves the way to describe various inhomogeneous situations of ferrogels using classical density functional concepts of inhomogeneous fluids.

  19. Recent developments in LIBXC - A comprehensive library of functionals for density functional theory

    NASA Astrophysics Data System (ADS)

    Lehtola, Susi; Steigemann, Conrad; Oliveira, Micael J. T.; Marques, Miguel A. L.

    2018-01-01

    LIBXC is a library of exchange-correlation functionals for density-functional theory. We are concerned with semi-local functionals (or the semi-local part of hybrid functionals), namely local-density approximations, generalized-gradient approximations, and meta-generalized-gradient approximations. Currently we include around 400 functionals for the exchange, correlation, and the kinetic energy, spanning more than 50 years of research. Moreover, LIBXC is by now used by more than 20 codes, not only from the atomic, molecular, and solid-state physics, but also from the quantum chemistry communities.

  20. Double-hybrid density-functional theory with meta-generalized-gradient approximations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souvi, Sidi M. O., E-mail: sidi.souvi@irsn.fr; Sharkas, Kamal; Toulouse, Julien, E-mail: julien.toulouse@upmc.fr

    2014-02-28

    We extend the previously proposed one-parameter double-hybrid density-functional theory [K. Sharkas, J. Toulouse, and A. Savin, J. Chem. Phys. 134, 064113 (2011)] to meta-generalized-gradient-approximation (meta-GGA) exchange-correlation density functionals. We construct several variants of one-parameter double-hybrid approximations using the Tao-Perdew-Staroverov-Scuseria (TPSS) meta-GGA functional and test them on test sets of atomization energies and reaction barrier heights. The most accurate variant uses the uniform coordinate scaling of the density and of the kinetic energy density in the correlation functional, and improves over both standard Kohn-Sham TPSS and second-order Møller-Plesset calculations.

  1. Adiabatic corrections to density functional theory energies and wave functions.

    PubMed

    Mohallem, José R; Coura, Thiago de O; Diniz, Leonardo G; de Castro, Gustavo; Assafrão, Denise; Heine, Thomas

    2008-09-25

    The adiabatic finite-nuclear-mass-correction (FNMC) to the electronic energies and wave functions of atoms and molecules is formulated for density-functional theory and implemented in the deMon code. The approach is tested for a series of local and gradient corrected density functionals, using MP2 results and diagonal-Born-Oppenheimer corrections from the literature for comparison. In the evaluation of absolute energy corrections of nonorganic molecules the LDA PZ81 functional works surprisingly better than the others. For organic molecules the GGA BLYP functional has the best performance. FNMC with GGA functionals, mainly BLYP, show a good performance in the evaluation of relative corrections, except for nonorganic molecules containing H atoms. The PW86 functional stands out with the best evaluation of the barrier of linearity of H2O and the isotopic dipole moment of HDO. In general, DFT functionals display an accuracy superior than the common belief and because the corrections are based on a change of the electronic kinetic energy they are here ranked in a new appropriate way. The approach is applied to obtain the adiabatic correction for full atomization of alcanes C(n)H(2n+2), n = 4-10. The barrier of 1 mHartree is approached for adiabatic corrections, justifying its insertion into DFT.

  2. Subsystem functional and the missing ingredient of confinement physics in density functionals.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armiento, Rickard Roberto; Mattsson, Ann Elisabet; Hao, Feng

    2010-08-01

    The subsystem functional scheme is a promising approach recently proposed for constructing exchange-correlation density functionals. In this scheme, the physics in each part of real materials is described by mapping to a characteristic model system. The 'confinement physics,' an essential physical ingredient that has been left out in present functionals, is studied by employing the harmonic-oscillator (HO) gas model. By performing the potential {yields} density and the density {yields} exchange energy per particle mappings based on two model systems characterizing the physics in the interior (uniform electron-gas model) and surface regions (Airy gas model) of materials for the HO gases,more » we show that the confinement physics emerges when only the lowest subband of the HO gas is occupied by electrons. We examine the approximations of the exchange energy by several state-of-the-art functionals for the HO gas, and none of them produces adequate accuracy in the confinement dominated cases. A generic functional that incorporates the description of the confinement physics is needed.« less

  3. Binding mechanisms of DNA/RNA nucleobases adsorbed on graphene under charging: first-principles van der Waals study

    NASA Astrophysics Data System (ADS)

    Gürel, Hikmet Hakan; Salmankurt, Bahadır

    2017-06-01

    Graphene is a 2D material that has attracted much attention due to its outstanding properties. Because of its high surface area and unique chemical and physical properties, graphene is a good candidate for biological applications. For this reason, a deep understanding of the mechanism of interaction of graphene with biomolecules is required. In this study, theoretical investigation of van der Waals effects has been conducted using density functional theory. Here we show that the order of the binding energies of five nucleobases with graphene is G  >  A  >  T  >  C  >   U. This trend is in good agreement with most of the theoretical and experimental data. Also, the effects of charging on the electronic and structural properties of the graphene-nucleubase systems are studied for the first time. We show that the binding energy can be changed by adding or removing an electron from the system. The results presented in this work provide fundamental insights into the quantum interactions of DNA with carbon-based nanostructures and will be useful for developments in biotechnology and nanotechnology.

  4. Self-contained filtered density function

    NASA Astrophysics Data System (ADS)

    Nouri, A. G.; Nik, M. B.; Givi, P.; Livescu, D.; Pope, S. B.

    2017-09-01

    The filtered density function (FDF) closure is extended to a "self-contained" format to include the subgrid-scale (SGS) statistics of all of the hydro-thermo-chemical variables in turbulent flows. These are the thermodynamic pressure, the specific internal energy, the velocity vector, and the composition field. In this format, the model is comprehensive and facilitates large-eddy simulation (LES) of flows at both low and high compressibility levels. A transport equation is developed for the joint pressure-energy-velocity-composition filtered mass density function (PEVC-FMDF). In this equation, the effect of convection appears in closed form. The coupling of the hydrodynamics and thermochemistry is modeled via a set of stochastic differential equation for each of the transport variables. This yields a self-contained SGS closure. For demonstration, LES is conducted of a turbulent shear flow with transport of a passive scalar. The consistency of the PEVC-FMDF formulation is established, and its overall predictive capability is appraised via comparison with direct numerical simulation (DNS) data.

  5. Connection formulas for thermal density functional theory

    DOE PAGES

    Pribram-Jones, A.; Burke, K.

    2016-05-23

    We show that the adiabatic connection formula of ground-state density functional theory relates the correlation energy to a coupling-constant integral over a purely potential contribution, and is widely used to understand and improve approximations. The corresponding formula for thermal density functional theory is cast as an integral over temperatures instead, ranging upward from the system's physical temperature. We also show how to relate different correlation components to each other, either in terms of temperature or coupling-constant integrations. Lastly, we illustrate our results on the uniform electron gas.

  6. Ground state structure of high-energy-density polymeric carbon monoxide

    NASA Astrophysics Data System (ADS)

    Xia, Kang; Sun, Jian; Pickard, Chris J.; Klug, Dennis D.; Needs, Richard J.

    2017-04-01

    Crystal structure prediction methods and first-principles calculations have been used to explore low-energy structures of carbon monoxide (CO). Contrary to the standard wisdom, the most stable structure of CO at ambient pressure was found to be a polymeric structure of P n a 21 symmetry rather than a molecular solid. This phase is formed from six-membered (four carbon + two oxygen) rings connected by C=C double bonds with two double-bonded oxygen atoms attached to each ring. Interestingly, the polymeric P n a 21 phase of CO has a much higher energy density than trinitrotoluene (TNT). On compression to about 7 GPa, P n a 21 is found to transform into another chainlike phase of C c symmetry which has similar ring units to P n a 21 . On compression to 12 GPa, it is energetically favorable for CO to polymerize into a purely single bonded C m c a phase, which is stable over a wide pressure range and transforms into the previously known C m c m phase at around 100 GPa. Thermodynamic stability of these structures was verified using calculations with different density functionals, including hybrid and van der Waals corrected functionals.

  7. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit.

    PubMed

    Huang, Bevin; Clark, Genevieve; Navarro-Moratalla, Efrén; Klein, Dahlia R; Cheng, Ran; Seyler, Kyle L; Zhong, Ding; Schmidgall, Emma; McGuire, Michael A; Cobden, David H; Yao, Wang; Xiao, Di; Jarillo-Herrero, Pablo; Xu, Xiaodong

    2017-06-07

    Since the discovery of graphene, the family of two-dimensional materials has grown, displaying a broad range of electronic properties. Recent additions include semiconductors with spin-valley coupling, Ising superconductors that can be tuned into a quantum metal, possible Mott insulators with tunable charge-density waves, and topological semimetals with edge transport. However, no two-dimensional crystal with intrinsic magnetism has yet been discovered; such a crystal would be useful in many technologies from sensing to data storage. Theoretically, magnetic order is prohibited in the two-dimensional isotropic Heisenberg model at finite temperatures by the Mermin-Wagner theorem. Magnetic anisotropy removes this restriction, however, and enables, for instance, the occurrence of two-dimensional Ising ferromagnetism. Here we use magneto-optical Kerr effect microscopy to demonstrate that monolayer chromium triiodide (CrI 3 ) is an Ising ferromagnet with out-of-plane spin orientation. Its Curie temperature of 45 kelvin is only slightly lower than that of the bulk crystal, 61 kelvin, which is consistent with a weak interlayer coupling. Moreover, our studies suggest a layer-dependent magnetic phase, highlighting thickness-dependent physical properties typical of van der Waals crystals. Remarkably, bilayer CrI 3 displays suppressed magnetization with a metamagnetic effect, whereas in trilayer CrI 3 the interlayer ferromagnetism observed in the bulk crystal is restored. This work creates opportunities for studying magnetism by harnessing the unusual features of atomically thin materials, such as electrical control for realizing magnetoelectronics, and van der Waals engineering to produce interface phenomena.

  8. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit

    DOE PAGES

    Huang, Bevin; Clark, Genevieve; Navarro-Moratalla, Efrén; ...

    2017-06-07

    Since the celebrated discovery of graphene, the family of two-dimensional (2D) materials has grown to encompass a broad range of electronic properties. Recent additions include spin-valley coupled semiconductors, Ising superconductors that can be tuned into a quantum metal, possible Mott insulators with tunable charge-density waves, and topological semi-metals with edge transport. Despite this progress, there is still no 2D crystal with intrinsic magnetism, which would be useful for many technologies such as sensing, information, and data storage. Theoretically, magnetic order is prohibited in the 2D isotropic Heisenberg model at finite temperatures by the Mermin-Wagner theorem. However, magnetic anisotropy removes thismore » restriction and enables, for instance, the occurrence of 2D Ising ferromagnetism. Here, we use magneto-optical Kerr effect (MOKE) microscopy to demonstrate that monolayer chromium triiodide (CrI 3) is an Ising ferromagnet with out-of-plane spin orientation. Its Curie temperature of 45 K is only slightly lower than the 61 K of the bulk crystal, consistent with a weak interlayer coupling. Moreover, our studies suggest a layer-dependent magnetic phases, showcasing the hallmark thickness dependent physical properties typical of van der Waals crystals. Remarkably, bilayer CrI3 displays suppressed magnetization with a metamagnetic effect, while in trilayer the interlayer ferromagnetism observed in the bulk crystal is restored. Our work creates opportunities for studying magnetism by harnessing the unique features of atomically-thin materials, such as electrical control for realizing magnetoelectronics, and van der Waals engineering for novel interface phenomena.« less

  9. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Bevin; Clark, Genevieve; Navarro-Moratalla, Efrén

    Since the celebrated discovery of graphene, the family of two-dimensional (2D) materials has grown to encompass a broad range of electronic properties. Recent additions include spin-valley coupled semiconductors, Ising superconductors that can be tuned into a quantum metal, possible Mott insulators with tunable charge-density waves, and topological semi-metals with edge transport. Despite this progress, there is still no 2D crystal with intrinsic magnetism, which would be useful for many technologies such as sensing, information, and data storage. Theoretically, magnetic order is prohibited in the 2D isotropic Heisenberg model at finite temperatures by the Mermin-Wagner theorem. However, magnetic anisotropy removes thismore » restriction and enables, for instance, the occurrence of 2D Ising ferromagnetism. Here, we use magneto-optical Kerr effect (MOKE) microscopy to demonstrate that monolayer chromium triiodide (CrI 3) is an Ising ferromagnet with out-of-plane spin orientation. Its Curie temperature of 45 K is only slightly lower than the 61 K of the bulk crystal, consistent with a weak interlayer coupling. Moreover, our studies suggest a layer-dependent magnetic phases, showcasing the hallmark thickness dependent physical properties typical of van der Waals crystals. Remarkably, bilayer CrI3 displays suppressed magnetization with a metamagnetic effect, while in trilayer the interlayer ferromagnetism observed in the bulk crystal is restored. Our work creates opportunities for studying magnetism by harnessing the unique features of atomically-thin materials, such as electrical control for realizing magnetoelectronics, and van der Waals engineering for novel interface phenomena.« less

  10. Microscopically based energy density functionals for nuclei using the density matrix expansion. II. Full optimization and validation

    NASA Astrophysics Data System (ADS)

    Navarro Pérez, R.; Schunck, N.; Dyhdalo, A.; Furnstahl, R. J.; Bogner, S. K.

    2018-05-01

    Background: Energy density functional methods provide a generic framework to compute properties of atomic nuclei starting from models of nuclear potentials and the rules of quantum mechanics. Until now, the overwhelming majority of functionals have been constructed either from empirical nuclear potentials such as the Skyrme or Gogny forces, or from systematic gradient-like expansions in the spirit of the density functional theory for atoms. Purpose: We seek to obtain a usable form of the nuclear energy density functional that is rooted in the modern theory of nuclear forces. We thus consider a functional obtained from the density matrix expansion of local nuclear potentials from chiral effective field theory. We propose a parametrization of this functional carefully calibrated and validated on selected ground-state properties that is suitable for large-scale calculations of nuclear properties. Methods: Our energy functional comprises two main components. The first component is a non-local functional of the density and corresponds to the direct part (Hartree term) of the expectation value of local chiral potentials on a Slater determinant. Contributions to the mean field and the energy of this term are computed by expanding the spatial, finite-range components of the chiral potential onto Gaussian functions. The second component is a local functional of the density and is obtained by applying the density matrix expansion to the exchange part (Fock term) of the expectation value of the local chiral potential. We apply the UNEDF2 optimization protocol to determine the coupling constants of this energy functional. Results: We obtain a set of microscopically constrained functionals for local chiral potentials from leading order up to next-to-next-to-leading order with and without three-body forces and contributions from Δ excitations. These functionals are validated on the calculation of nuclear and neutron matter, nuclear mass tables, single-particle shell structure

  11. The adsorption of CH3 and C6H6 on corundum-type sesquioxides: The role of van der Waals interactions

    NASA Astrophysics Data System (ADS)

    Dabaghmanesh, Samira; Partoens, Bart; Neyts, Erik

    Van der Waals (vdW) interactions play an important role in the adsorption of atoms and molecules on the surface of solids. This role becomes more significant whenever the interaction between the adsorbate and surface is physisorption. Thanks to recent developments in density functional theory (DFT), we are now able to employ different vdW methods that helps us to account for the long-range vdW forces. However, the choice of the most efficient vdW functional for different materials is still an open question. In our study, we examine different vdW approaches to compute bulk and molecular adsorption properties of M2O3 oxides (M: Cr, Fe, and Al) as well-known examples of the corundum family. For the bulk properties, we compare our results for the heat of formation, cohesive energy, lattice parameters and bond distances as obtained using the different vdW functionals and available experimental data. Next we compute the adsorption energies of the benzene molecule (as an example of physisorption) and CH3 (as an example of chemisorption) on top of the (0001) M-terminated and MO-terminated surfaces. Calculating the vdW contributions into the adsorption energies, we find that the vdW functionals play important role not just in the weak adsorptions but even in strong adsorption.

  12. Self-assembled monolayer structures of hexadecylamine on Cu surfaces: density-functional theory.

    PubMed

    Liu, Shih-Hsien; Balankura, Tonnam; Fichthorn, Kristen A

    2016-12-07

    We used dispersion-corrected density-functional theory to probe possible structures for adsorbed layers of hexadecylamine (HDA) on Cu(100) and Cu(111). HDA forms self-assembled layers on these surfaces, analogous to alkanethiols on various metal surfaces, and it binds by donating electrons in the amine group to the Cu surface atoms, consistent with experiment. van der Waals interactions between the alkyl tails of HDA molecules are stronger than the interaction between the amine group and the Cu surfaces. Strong HDA-tail interactions lead to coverage-dependent tilting of the HDA layers, such that the tilt angle is larger for lower coverages. At full monolayer coverage, the energetically preferred binding configuration for HDA on Cu(100) is a (5 × 3) pattern - although we cannot rule out incommensurate structures - while the pattern is preferred on Cu(111). A major motivation for this study is to understand the experimentally observed capability of HDA as a capping agent for producing {100}-faceted Cu nanocrystals. Consistent with experiment, we find that HDA binds more strongly to Cu(100) than to Cu(111). This strong binding stems from the capability of HDA to form more densely packed layers on Cu(100), which leads to stronger HDA-tail interactions, as well as the stronger binding of the amine group to Cu(100). We estimate the surface energies of HDA-covered Cu(100) and Cu(111) surfaces and find that these surfaces are nearly isoenergetic. By drawing analogies to previous theoretical work, it seems likely that HDA-covered Cu nanocrystals could have kinetic shapes that primarily express {100} facets, as is seen experimentally.

  13. Magnetic-Field Density-Functional Theory (BDFT): Lessons from the Adiabatic Connection.

    PubMed

    Reimann, Sarah; Borgoo, Alex; Tellgren, Erik I; Teale, Andrew M; Helgaker, Trygve

    2017-09-12

    We study the effects of magnetic fields in the context of magnetic field density-functional theory (BDFT), where the energy is a functional of the electron density ρ and the magnetic field B. We show that this approach is a worthwhile alternative to current-density functional theory (CDFT) and may provide a viable route to the study of many magnetic phenomena using density-functional theory (DFT). The relationship between BDFT and CDFT is developed and clarified within the framework of the four-way correspondence of saddle functions and their convex and concave parents in convex analysis. By decomposing the energy into its Kohn-Sham components, we demonstrate that the magnetizability is mainly determined by those energy components that are related to the density. For existing density functional approximations, this implies that, for the magnetizability, improvements of the density will be more beneficial than introducing a magnetic-field dependence in the correlation functional. However, once a good charge density is achieved, we show that high accuracy is likely only obtainable by including magnetic-field dependence. We demonstrate that adiabatic-connection (AC) curves at different field strengths resemble one another closely provided each curve is calculated at the equilibrium geometry of that field strength. In contrast, if all AC curves are calculated at the equilibrium geometry of the field-free system, then the curves change strongly with increasing field strength due to the increasing importance of static correlation. This holds also for density functional approximations, for which we demonstrate that the main error encountered in the presence of a field is already present at zero field strength, indicating that density-functional approximations may be applied to systems in strong fields, without the need to treat additional static correlation.

  14. The generalized van der Waals theory of pure fluids and mixtures: Annual report for September 1985 to November 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandler, S.I.

    1986-01-01

    The objective of the work is to use the generalized van der Waals theory, as derived earlier (''The Generalized van der Waals Partition Function I. Basic Theory'' by S.I. Sandler, Fluid Phase Equilibria 19, 233 (1985)) to: (1) understand the molecular level assumptions inherent in current thermodynamic models; (2) use theory and computer simulation studies to test these assumptions; and (3) develop new, improved thermodynamic models based on better molecular level assumptions. From such a fundamental study, thermodynamic models will be developed that will be applicable to mixtures of molecules of widely different size and functionality, as occurs in themore » processing of heavy oils, coal liquids and other synthetic fuels. An important aspect of our work is to reduce our fundamental theoretical developments to engineering practice through extensive testing and evaluation with experimental data on real mixtures. During the first year of this project important progress was made in the areas specified in the original proposal, as well as several subsidiary areas identified as the work progressed. Some of this work has been written up and submitted for publication. Manuscripts acknowledging DOE support, together with a very brief description, are listed herein.« less

  15. Density functional theory studies on the nano-scaled composites consisted of graphene and acyl hydrazone molecules

    NASA Astrophysics Data System (ADS)

    Ren, J. L.; Zhou, L.; Lv, Z. C.; Ding, C. H.; Wu, Y. H.; Bai, H. C.

    2016-07-01

    Graphene, which is the first obtained single atomic layer 2D materials, has drawn a great of concern in nano biotechnology due to the unique property. On one hand, acyl hydrazone compounds belonging to the Schif bases have aroused considerable attention in medicine, pharmacy, and analytical reagent. However, few understanding about the interaction between graphene and acyl hydrazone molecules is now available. And such investigations are much crucial for the applications of these new nano-scaled composites. The current work revealed theoretical investigations on the nano-scaled composites built by acyl hydrazone molecules loaded on the surface of graphene. The relative energy, electronic property and the interaction between the counterparts of graphene/acyl hydrazone composites are investigated based on the density functional theory calculations. According to the obtained adsorption energy, the formation of the nano-scaled composite from the isolated graphene and acyl hydrazone molecule is exothermic, and thus it is energetically favorable to form these nano composites in viewpoint of total energy change. The frontier molecular orbital for the nano composite is mainly distributed at the graphene part, leading to that the energy levels of the frontier molecular orbital of the nano composites are very close to that of isolated graphene. Moreover, the counterpart interaction for the graphene/acyl hydrazone composites is also explored based on the discussions of orbital hybridization, charge redistribution and Van der Waals interaction.

  16. Probability density function learning by unsupervised neurons.

    PubMed

    Fiori, S

    2001-10-01

    In a recent work, we introduced the concept of pseudo-polynomial adaptive activation function neuron (FAN) and presented an unsupervised information-theoretic learning theory for such structure. The learning model is based on entropy optimization and provides a way of learning probability distributions from incomplete data. The aim of the present paper is to illustrate some theoretical features of the FAN neuron, to extend its learning theory to asymmetrical density function approximation, and to provide an analytical and numerical comparison with other known density function estimation methods, with special emphasis to the universal approximation ability. The paper also provides a survey of PDF learning from incomplete data, as well as results of several experiments performed on real-world problems and signals.

  17. Aqueous gating of van der Waals materials on bilayer nanopaper.

    PubMed

    Bao, Wenzhong; Fang, Zhiqiang; Wan, Jiayu; Dai, Jiaqi; Zhu, Hongli; Han, Xiaogang; Yang, Xiaofeng; Preston, Colin; Hu, Liangbing

    2014-10-28

    In this work, we report transistors made of van der Waals materials on a mesoporous paper with a smooth nanoscale surface. The aqueous transistor has a novel planar structure with source, drain, and gate electrodes on the same surface of the paper, while the mesoporous paper is used as an electrolyte reservoir. These transistors are enabled by an all-cellulose paper with nanofibrillated cellulose (NFC) on the top surface that leads to an excellent surface smoothness, while the rest of the microsized cellulose fibers can absorb electrolyte effectively. Based on two-dimensional van der Waals materials, including MoS2 and graphene, we demonstrate high-performance transistors with a large on-off ratio and low subthreshold swing. Such planar transistors with absorbed electrolyte gating can be used as sensors integrated with other components to form paper microfluidic systems. This study is significant for future paper-based electronics and biosensors.

  18. Cosmology with an interacting van der Waals fluid

    NASA Astrophysics Data System (ADS)

    Elizalde, E.; Khurshudyan, M.

    A model for the late-time accelerated expansion of the Universe is considered where a van der Waals fluid interacting with matter plays the role of dark energy. The transition towards this phase in the cosmic evolution history is discussed in detail and, moreover, a complete classification of the future finite-time singularities is obtained for six different possible forms of the nongravitational interaction between dark energy (the van der Waals fluid) and dark matter. This study shows, in particular, that a Universe with a noninteracting three-parameter van der Waals fluid can evolve into a Universe characterized by a type IV (generalized sudden) singularity. On the other hand, for certain values of the parameters, exit from the accelerated expanding phase is possible in the near future, what means that the expansion of the Universe in the future could become decelerated - to our knowledge, this interesting situation is not commonplace in the literature. On the other hand, our study shows that space can be divided into different regions. For some of them, in particular, the nongravitational interactions Q = 3Hbρde, Q = 3Hbρdm and Q = 3Hb(ρde + ρde) may completely suppress future finite-time singularity formation, for sufficiently high values of b. On the other hand, for some other regions of the parameter space, the mentioned interactions would not affect the singularity type, namely the type IV singularity generated in the case of the noninteracting model would be preserved. A similar conclusion has been archived for the cases of Q = 3bHρdeρdm/(ρde + ρdm), Q = 3bHρdm2/(ρ de + ρdm) and Q = 3bHρde2/(ρ de + ρdm) nongravitational interactions, with only one difference: the Q = 3bHρdm2/(ρ de + ρdm) interaction will change the type IV singularity of the noninteracting model into a type II (the sudden) singularity.

  19. Graphene Substrate for van der Waals Epitaxy of Layer-Structured Bismuth Antimony Telluride Thermoelectric Film.

    PubMed

    Kim, Eun Sung; Hwang, Jae-Yeol; Lee, Kyu Hyoung; Ohta, Hiromichi; Lee, Young Hee; Kim, Sung Wng

    2017-02-01

    Graphene as a substrate for the van der Waals epitaxy of 2D layered materials is utilized for the epitaxial growth of a layer-structured thermoelectric film. Van der Waals epitaxial Bi 0.5 Sb 1.5 Te 3 film on graphene synthesized via a simple and scalable fabrication method exhibits good crystallinity and high thermoelectric transport properties comparable to single crystals. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Density-Decomposed Orbital-Free Density Functional Theory for Covalent Systems and Application to Li-Si alloys

    NASA Astrophysics Data System (ADS)

    Xia, Junchao; Carter, Emily

    2014-03-01

    We propose a density decomposition scheme using a Wang-Govind-Carter (WGC)-based kinetic energy density functional (KEDF) to accurately and efficiently simulate covalent systems within orbital-free (OF) density functional theory (DFT). By using a local, density-dependent scale function, the total density is decomposed into a localized density within covalent bond regions and a flattened delocalized density, with the former described by semilocal KEDFs and the latter treated by the WGC KEDF. The new model predicts reasonable equilibrium volumes, bulk moduli, and phase ordering energies for various semiconductors compared to Kohn-Sham (KS) DFT benchmarks. The surface energy of Si(100) also agrees well with KSDFT. We further apply the model to study mechanical properties of Li-Si alloys, which have been recently recognized as a promising candidate for next-generation anodes of Li-ion batteries with outstanding capacity. We study multiple crystalline Li-Si alloys. The WGCD KEDF predicts accurate cell lattice vectors, equilibrium volumes, elastic moduli, electron densities, alloy formation and Li adsorption energies. Because of its quasilinear scaling, coupled with the level of accuracy shown here, OFDFT appears quite promising for large-scale simulation of such materials phenomena. Office of Naval Research, National Science Foundation, Tigress High Performance Computing Center.

  1. Course 4: Density Functional Theory, Methods, Techniques, and Applications

    NASA Astrophysics Data System (ADS)

    Chrétien, S.; Salahub, D. R.

    Contents 1 Introduction 2 Density functional theory 2.1 Hohenberg and Kohn theorems 2.2 Levy's constrained search 2.3 Kohn-Sham method 3 Density matrices and pair correlation functions 4 Adiabatic connection or coupling strength integration 5 Comparing and constrasting KS-DFT and HF-CI 6 Preparing new functionals 7 Approximate exchange and correlation functionals 7.1 The Local Spin Density Approximation (LSDA) 7.2 Gradient Expansion Approximation (GEA) 7.3 Generalized Gradient Approximation (GGA) 7.4 meta-Generalized Gradient Approximation (meta-GGA) 7.5 Hybrid functionals 7.6 The Optimized Effective Potential method (OEP) 7.7 Comparison between various approximate functionals 8 LAP correlation functional 9 Solving the Kohn-Sham equations 9.1 The Kohn-Sham orbitals 9.2 Coulomb potential 9.3 Exchange-correlation potential 9.4 Core potential 9.5 Other choices and sources of error 9.6 Functionality 10 Applications 10.1 Ab initio molecular dynamics for an alanine dipeptide model 10.2 Transition metal clusters: The ecstasy, and the agony... 10.3 The conversion of acetylene to benzene on Fe clusters 11 Conclusions

  2. Mixed Dimensional Van der Waals Heterostructures for Opto-Electronics.

    NASA Astrophysics Data System (ADS)

    Jariwala, Deep

    The isolation of a growing number of two-dimensional (2D) materials has inspired worldwide efforts to integrate distinct 2D materials into van der Waals (vdW) heterostructures. While a tremendous amount of research activity has occurred in assembling disparate 2D materials into ``all-2D'' van der Waals heterostructures, this concept is not limited to 2D materials alone. Given that any passivated, dangling bond-free surface will interact with another via vdW forces, the vdW heterostructure concept can be extended to include the integration of 2D materials with non-2D materials that adhere primarily through noncovalent interactions. In the first part of this talk I will present our work on emerging mixed-dimensional (2D + nD, where n is 0, 1 or 3) heterostructure devices performed at Northwestern University. I will present two distinct examples of gate-tunable p-n heterojunctions 1. Single layer n-type MoS2\\ (2D) combined with p-type semiconducting single walled carbon nanotubes (1D) and 2. Single layer MoS2 combined with 0D molecular semiconductor, pentacene. I will present the unique electrical properties, underlying charge transport mechanisms and photocurrent responses in both the above systems using a variety of scanning probe microscopy techniques as well as computational analysis. This work shows that van der Waals interactions are robust across different dimensionalities of materials and can allow fabrication of semiconductor devices with unique geometries and properties unforeseen in bulk semiconductors. Finally, I will briefly discuss our recent work from Caltech on near-unity absorption in atomically-thin photovoltaic devices. This work is supported by the Materials Research Center at Northwestern University, funded by the National Science Foundation (NSF DMR-1121262) and the Resnick Sustainability Institute at Caltech.

  3. A classical density functional theory of ionic liquids.

    PubMed

    Forsman, Jan; Woodward, Clifford E; Trulsson, Martin

    2011-04-28

    We present a simple, classical density functional approach to the study of simple models of room temperature ionic liquids. Dispersion attractions as well as ion correlation effects and excluded volume packing are taken into account. The oligomeric structure, common to many ionic liquid molecules, is handled by a polymer density functional treatment. The theory is evaluated by comparisons with simulations, with an emphasis on the differential capacitance, an experimentally measurable quantity of significant practical interest.

  4. Self-contained filtered density function

    DOE PAGES

    Nouri, Arash G.; Nik, Mehdi B.; Givi, Pope; ...

    2017-09-18

    The filtered density function (FDF) closure is extended to a “self-contained” format to include the subgrid-scale (SGS) statistics of all of the hydro-thermo-chemical variables in turbulent flows. These are the thermodynamic pressure, the specific internal energy, the velocity vector, and the composition field. In this format, the model is comprehensive and facilitates large-eddy simulation (LES) of flows at both low and high compressibility levels. A transport equation is developed for the joint pressure-energy-velocity-composition filtered mass density function (PEVC-FMDF). In this equation, the effect of convection appears in closed form. The coupling of the hydrodynamics and thermochemistry is modeled via amore » set of stochastic differential equation for each of the transport variables. This yields a self-contained SGS closure. We demonstrated how LES is conducted of a turbulent shear flow with transport of a passive scalar. Finally, the consistency of the PEVC-FMDF formulation is established, and its overall predictive capability is appraised via comparison with direct numerical simulation (DNS) data.« less

  5. Self-contained filtered density function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nouri, Arash G.; Nik, Mehdi B.; Givi, Pope

    The filtered density function (FDF) closure is extended to a “self-contained” format to include the subgrid-scale (SGS) statistics of all of the hydro-thermo-chemical variables in turbulent flows. These are the thermodynamic pressure, the specific internal energy, the velocity vector, and the composition field. In this format, the model is comprehensive and facilitates large-eddy simulation (LES) of flows at both low and high compressibility levels. A transport equation is developed for the joint pressure-energy-velocity-composition filtered mass density function (PEVC-FMDF). In this equation, the effect of convection appears in closed form. The coupling of the hydrodynamics and thermochemistry is modeled via amore » set of stochastic differential equation for each of the transport variables. This yields a self-contained SGS closure. We demonstrated how LES is conducted of a turbulent shear flow with transport of a passive scalar. Finally, the consistency of the PEVC-FMDF formulation is established, and its overall predictive capability is appraised via comparison with direct numerical simulation (DNS) data.« less

  6. The role of the van der Waals interactions in the adsorption of anthracene and pentacene on the Ag(111) surface

    NASA Astrophysics Data System (ADS)

    Morbec, Juliana M.; Kratzer, Peter

    2017-01-01

    Using first-principles calculations based on density-functional theory (DFT), we investigated the effects of the van der Waals (vdW) interactions on the structural and electronic properties of anthracene and pentacene adsorbed on the Ag(111) surface. We found that the inclusion of vdW corrections strongly affects the binding of both anthracene/Ag(111) and pentacene/Ag(111), yielding adsorption heights and energies more consistent with the experimental results than standard DFT calculations with generalized gradient approximation (GGA). For anthracene/Ag(111) the effect of the vdW interactions is even more dramatic: we found that "pure" DFT-GGA calculations (without including vdW corrections) result in preference for a tilted configuration, in contrast to the experimental observations of flat-lying adsorption; including vdW corrections, on the other hand, alters the binding geometry of anthracene/Ag(111), favoring the flat configuration. The electronic structure obtained using a self-consistent vdW scheme was found to be nearly indistinguishable from the conventional DFT electronic structure once the correct vdW geometry is employed for these physisorbed systems. Moreover, we show that a vdW correction scheme based on a hybrid functional DFT calculation (HSE) results in an improved description of the highest occupied molecular level of the adsorbed molecules.

  7. The waaL gene mutation compromised the inhabitation of Enterobacter sp. Ag1 in the mosquito gut environment.

    PubMed

    Pei, Dong; Jiang, Jinjin; Yu, Wanqin; Kukutla, Phanidhar; Uentillie, Alejandro; Xu, Jiannong

    2015-08-27

    The mosquito gut harbors a variety of bacteria that are dynamically associated with mosquitoes in various contexts. However, little is known about bacterial factors that affect bacterial inhabitation in the gut microbial community. Enterobacter sp. Ag1 is a predominant Gram negative bacterium in the mosquito midgut. In a mutant library that was generated using transposon Tn5-mediated mutagenesis, a mutant was identified, in which the gene waaL was disrupted by the Tn5 insertion. The waaL encodes O antigen ligase, which is required for the attachment of O antigen to the outer core oligosaccharide of the lipopolysaccharide (LPS). The waaL(-) mutation caused the O antigen repeat missing in the LPS. The normal LPS structure was restored when the mutant was complemented with a plasmid containing waaL gene. The waaL(-) mutation did not affect bacterial proliferation in LB culture, the mutant cells grew at a rate the same as the wildtype (wt) cells. However, when waaL(-) strain were co-cultured with the wt strain or complemented strain, the mutant cells proliferated with a slower rate, indicating that the mutants were less competitive than wt cells in a community setting. Similarly, in a co-feeding assay, when fluorescently tagged wt strain and waaL(-) strain were orally co-introduced into the gut of Anopheles stephensi mosquitoes, the mutant cells were less prevalent in both sugar-fed and blood-fed guts. The data suggest that the mutation compromised the bacterial inhabitation in the gut community. Besides, the mutant was more sensitive to oxidative stress, demonstrated by lower survival rate upon exposure to 20 mM H₂O₂. Lack of the O antigen structure in LPS of Enterobacter compromised the effective growth in co-culture and co-feeding assays. In addition, O-antigen was involved in protection against oxidative stress. The findings suggest that intact LPS is crucial for the bacteria to steadily stay in the gut microbial community.

  8. Multiconfiguration Pair-Density Functional Theory Is Free From Delocalization Error.

    PubMed

    Bao, Junwei Lucas; Wang, Ying; He, Xiao; Gagliardi, Laura; Truhlar, Donald G

    2017-11-16

    Delocalization error has been singled out by Yang and co-workers as the dominant error in Kohn-Sham density functional theory (KS-DFT) with conventional approximate functionals. In this Letter, by computing the vertical first ionization energy for well separated He clusters, we show that multiconfiguration pair-density functional theory (MC-PDFT) is free from delocalization error. To put MC-PDFT in perspective, we also compare it with some Kohn-Sham density functionals, including both traditional and modern functionals. Whereas large delocalization errors are almost universal in KS-DFT (the only exception being the very recent corrected functionals of Yang and co-workers), delocalization error is removed by MC-PDFT, which bodes well for its future as a step forward from KS-DFT.

  9. Ensemble density variational methods with self- and ghost-interaction-corrected functionals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pastorczak, Ewa; Pernal, Katarzyna, E-mail: pernalk@gmail.com

    2014-05-14

    Ensemble density functional theory (DFT) offers a way of predicting excited-states energies of atomic and molecular systems without referring to a density response function. Despite a significant theoretical work, practical applications of the proposed approximations have been scarce and they do not allow for a fair judgement of the potential usefulness of ensemble DFT with available functionals. In the paper, we investigate two forms of ensemble density functionals formulated within ensemble DFT framework: the Gross, Oliveira, and Kohn (GOK) functional proposed by Gross et al. [Phys. Rev. A 37, 2809 (1988)] alongside the orbital-dependent eDFT form of the functional introducedmore » by Nagy [J. Phys. B 34, 2363 (2001)] (the acronym eDFT proposed in analogy to eHF – ensemble Hartree-Fock method). Local and semi-local ground-state density functionals are employed in both approaches. Approximate ensemble density functionals contain not only spurious self-interaction but also the so-called ghost-interaction which has no counterpart in the ground-state DFT. We propose how to correct the GOK functional for both kinds of interactions in approximations that go beyond the exact-exchange functional. Numerical applications lead to a conclusion that functionals free of the ghost-interaction by construction, i.e., eDFT, yield much more reliable results than approximate self- and ghost-interaction-corrected GOK functional. Additionally, local density functional corrected for self-interaction employed in the eDFT framework yields excitations energies of the accuracy comparable to that of the uncorrected semi-local eDFT functional.« less

  10. Infrared photodetectors based on graphene van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Ryzhii, V.; Ryzhii, M.; Svintsov, D.; Leiman, V.; Mitin, V.; Shur, M. S.; Otsuji, T.

    2017-08-01

    We propose and evaluate the graphene layer (GL) infrared photodetectors (GLIPs) based on the van der Waals (vdW) heterostructures with the radiation absorbing GLs. The operation of the GLIPs is associated with the electron photoexcitation from the GL valence band to the continuum states above the inter-GL barriers (either via tunneling or direct transitions to the continuum states). Using the developed device model, we calculate the photodetector characteristics as functions of the GL-vdW heterostructure parameters. We show that due to a relatively large efficiency of the electron photoexcitation and low capture efficiency of the electrons propagating over the barriers in the inter-GL layers, GLIPs should exhibit the elevated photoelectric gain and detector responsivity as well as relatively high detectivity. The possibility of high-speed operation, high conductivity, transparency of the GLIP contact layers, and the sensitivity to normally incident IR radiation provides additional potential advantages in comparison with other IR photodetectors. In particular, the proposed GLIPs can compete with unitravelling-carrier photodetectors.

  11. Density-functional energy gaps of solids demystified

    NASA Astrophysics Data System (ADS)

    Perdew, John P.; Ruzsinszky, Adrienn

    2018-06-01

    The fundamental energy gap of a solid is a ground-state second energy difference. Can one find the fundamental gap from the gap in the band structure of Kohn-Sham density functional theory? An argument of Williams and von Barth (WB), 1983, suggests that one can. In fact, self-consistent band-structure calculations within the local density approximation or the generalized gradient approximation (GGA) yield the fundamental gap within the same approximation for the energy. Such a calculation with the exact density functional would yield a band gap that also underestimates the fundamental gap, because the exact Kohn-Sham potential in a solid jumps up by an additive constant when one electron is added, and the WB argument does not take this effect into account. The WB argument has been extended recently to generalized Kohn-Sham theory, the simplest way to implement meta-GGAs and hybrid functionals self-consistently, with an exchange-correlation potential that is a non-multiplication operator. Since this operator is continuous, the band gap is again the fundamental gap within the same approximation, but, because the approximations are more realistic, so is the band gap. What approximations might be even more realistic?

  12. Recent progress in density functional theory

    NASA Astrophysics Data System (ADS)

    Truhlar, Donald

    2014-03-01

    Ongoing work involves several areas of density functional theory: new methods for computing electronic excitation energies, including a new way to remove spin contamination in the spin-flip Tamm-Dancoff approximation and a configuration-interaction-corrected Tamm-Dancoff Approximation for treating conical intersections; new ways to treat open-shell states, including a reinterpreted broken-symmetry method and multi-configuration Kohn-Sham theory; a new exchange-correlation functional; new tests of density functional theory against databases for electronic transition energies and molecules and solids containing metal atoms; and applications. A selection of results will be presented. I am grateful to the following collaborators for contributions to the ongoing work: Boris Averkiev, Rebecca Carlson, Laura Fernandez, Laura Gagliardi, Chad Hoyer, Francesc Illas, Miho Isegawa, Shaohong Li, Giovanni Li Manni, Sijie Luo, Dongxia Ma, Remi Maurice, Rubén Means-Pañeda, Roberto Peverati, Nora Planas, Prasenjit Seal, Pragya Verma, Bo Wang, Xuefei Xu, Ke R. Yang, Haoyu Yu, Wenjing Zhang, and Jingjing Zheng. Supported in part by the AFOSR and U.S. DOE.

  13. Optimization of constrained density functional theory

    NASA Astrophysics Data System (ADS)

    O'Regan, David D.; Teobaldi, Gilberto

    2016-07-01

    Constrained density functional theory (cDFT) is a versatile electronic structure method that enables ground-state calculations to be performed subject to physical constraints. It thereby broadens their applicability and utility. Automated Lagrange multiplier optimization is necessary for multiple constraints to be applied efficiently in cDFT, for it to be used in tandem with geometry optimization, or with molecular dynamics. In order to facilitate this, we comprehensively develop the connection between cDFT energy derivatives and response functions, providing a rigorous assessment of the uniqueness and character of cDFT stationary points while accounting for electronic interactions and screening. In particular, we provide a nonperturbative proof that stable stationary points of linear density constraints occur only at energy maxima with respect to their Lagrange multipliers. We show that multiple solutions, hysteresis, and energy discontinuities may occur in cDFT. Expressions are derived, in terms of convenient by-products of cDFT optimization, for quantities such as the dielectric function and a condition number quantifying ill definition in multiple constraint cDFT.

  14. Surface chemistry of oxygen on aluminum--Performance of the density functionals: PBE, PBE0, M06, and M06-L.

    PubMed

    Lousada, Cláudio M; Korzhavyi, Pavel A

    2016-04-05

    We investigated the performance of the density functional theory (DFT) functionals PBE, PBE0, M06, and M06-L for describing the molecular and dissociative adsorption of O2 onto pure and doped Al(111) surfaces. Adsorption of O2 was studied at the perfect Al(111) surface and compared with the case where an additional Al atom was present as an adatom. Additionally, we studied how these functionals perform when different dopants are present at the Al(111) surface in two distinct geometries: as an adatom or as a substitutional atom replacing an Al atom. The performance of the different functionals is greatly affected by the surface geometry. The inclusion of Hartree-Fock exchange in the functional leads to slight differences in adsorption energies for molecular adsorption of O2 . These differences become very pronounced for dissociative adsorption, with the hybrids PBE0 and M06 predicting more exergonic adsorption than PBE and M06-L. Furthermore, PBE0 and M06 predicted trends in adsorption energies for defective and perfect surfaces which are in line with the experimental knowledge of the effects of surface defects in adsorption energies. The predictions of the non-hybrids PBE and M06-L point in the opposite direction. The analysis of the contributions of the van der Waals (vdW) forces to the adsorption energies reveals that the PBE and PBE0 functionals have similar difficulties in describing vdW interactions for molecular adsorption of O2 while the M06 functional can give a description of these forces with an accuracy which is at least similar to that of the correction of the D3 type. © 2015 Wiley Periodicals, Inc.

  15. Linear-response time-dependent density-functional theory with pairing fields.

    PubMed

    Peng, Degao; van Aggelen, Helen; Yang, Yang; Yang, Weitao

    2014-05-14

    Recent development in particle-particle random phase approximation (pp-RPA) broadens the perspective on ground state correlation energies [H. van Aggelen, Y. Yang, and W. Yang, Phys. Rev. A 88, 030501 (2013), Y. Yang, H. van Aggelen, S. N. Steinmann, D. Peng, and W. Yang, J. Chem. Phys. 139, 174110 (2013); D. Peng, S. N. Steinmann, H. van Aggelen, and W. Yang, J. Chem. Phys. 139, 104112 (2013)] and N ± 2 excitation energies [Y. Yang, H. van Aggelen, and W. Yang, J. Chem. Phys. 139, 224105 (2013)]. So far Hartree-Fock and approximated density-functional orbitals have been utilized to evaluate the pp-RPA equation. In this paper, to further explore the fundamentals and the potential use of pairing matrix dependent functionals, we present the linear-response time-dependent density-functional theory with pairing fields with both adiabatic and frequency-dependent kernels. This theory is related to the density-functional theory and time-dependent density-functional theory for superconductors, but is applied to normal non-superconducting systems for our purpose. Due to the lack of the proof of the one-to-one mapping between the pairing matrix and the pairing field for time-dependent systems, the linear-response theory is established based on the representability assumption of the pairing matrix. The linear response theory justifies the use of approximated density-functionals in the pp-RPA equation. This work sets the fundamentals for future density-functional development to enhance the description of ground state correlation energies and N ± 2 excitation energies.

  16. High Density Methane Storage in Nanoporous Carbon

    NASA Astrophysics Data System (ADS)

    Rash, Tyler; Dohnke, Elmar; Soo, Yuchoong; Maland, Brett; Doynov, Plamen; Lin, Yuyi; Pfeifer, Peter; Mriglobal Collaboration; All-Craft Team

    2014-03-01

    Development of low-pressure, high-capacity adsorbent based storage technology for natural gas (NG) as fuel for advanced transportation (flat-panel tank for NG vehicles) is necessary in order to address the temperature, pressure, weight, and volume constraints present in conventional storage methods (CNG & LNG.) Subcritical nitrogen adsorption experiments show that our nanoporous carbon hosts extended narrow channels which generate a high surface area and strong Van der Waals forces capable of increasing the density of NG into a high-density fluid. This improvement in storage density over compressed natural gas without an adsorbent occurs at ambient temperature and pressures ranging from 0-260 bar (3600 psi.) The temperature, pressure, and storage capacity of a 40 L flat-panel adsorbed NG tank filled with 20 kg of nanoporous carbon will be featured.

  17. Accelerating large scale Kohn-Sham density functional theory calculations with semi-local functionals and hybrid functionals

    NASA Astrophysics Data System (ADS)

    Lin, Lin

    The computational cost of standard Kohn-Sham density functional theory (KSDFT) calculations scale cubically with respect to the system size, which limits its use in large scale applications. In recent years, we have developed an alternative procedure called the pole expansion and selected inversion (PEXSI) method. The PEXSI method solves KSDFT without solving any eigenvalue and eigenvector, and directly evaluates physical quantities including electron density, energy, atomic force, density of states, and local density of states. The overall algorithm scales as at most quadratically for all materials including insulators, semiconductors and the difficult metallic systems. The PEXSI method can be efficiently parallelized over 10,000 - 100,000 processors on high performance machines. The PEXSI method has been integrated into a number of community electronic structure software packages such as ATK, BigDFT, CP2K, DGDFT, FHI-aims and SIESTA, and has been used in a number of applications with 2D materials beyond 10,000 atoms. The PEXSI method works for LDA, GGA and meta-GGA functionals. The mathematical structure for hybrid functional KSDFT calculations is significantly different. I will also discuss recent progress on using adaptive compressed exchange method for accelerating hybrid functional calculations. DOE SciDAC Program, DOE CAMERA Program, LBNL LDRD, Sloan Fellowship.

  18. Postfragmentation density function for bacterial aggregates in laminar flow.

    PubMed

    Byrne, Erin; Dzul, Steve; Solomon, Michael; Younger, John; Bortz, David M

    2011-04-01

    The postfragmentation probability density of daughter flocs is one of the least well-understood aspects of modeling flocculation. We use three-dimensional positional data of Klebsiella pneumoniae bacterial flocs in suspension and the knowledge of hydrodynamic properties of a laminar flow field to construct a probability density function of floc volumes after a fragmentation event. We provide computational results which predict that the primary fragmentation mechanism for large flocs is erosion. The postfragmentation probability density function has a strong dependence on the size of the original floc and indicates that most fragmentation events result in clumps of one to three bacteria eroding from the original floc. We also provide numerical evidence that exhaustive fragmentation yields a limiting density inconsistent with the log-normal density predicted in the literature, most likely due to the heterogeneous nature of K. pneumoniae flocs. To support our conclusions, artificial flocs were generated and display similar postfragmentation density and exhaustive fragmentation. ©2011 American Physical Society

  19. Postfragmentation density function for bacterial aggregates in laminar flow

    PubMed Central

    Byrne, Erin; Dzul, Steve; Solomon, Michael; Younger, John

    2014-01-01

    The postfragmentation probability density of daughter flocs is one of the least well-understood aspects of modeling flocculation. We use three-dimensional positional data of Klebsiella pneumoniae bacterial flocs in suspension and the knowledge of hydrodynamic properties of a laminar flow field to construct a probability density function of floc volumes after a fragmentation event. We provide computational results which predict that the primary fragmentation mechanism for large flocs is erosion. The postfragmentation probability density function has a strong dependence on the size of the original floc and indicates that most fragmentation events result in clumps of one to three bacteria eroding from the original floc. We also provide numerical evidence that exhaustive fragmentation yields a limiting density inconsistent with the log-normal density predicted in the literature, most likely due to the heterogeneous nature of K. pneumoniae flocs. To support our conclusions, artificial flocs were generated and display similar postfragmentation density and exhaustive fragmentation. PMID:21599205

  20. Van der Waals Epitaxial Growth of Atomic Layered HfS2 Crystals for Ultrasensitive Near-Infrared Phototransistors.

    PubMed

    Fu, Lei; Wang, Feng; Wu, Bin; Wu, Nian; Huang, Wei; Wang, Hanlin; Jin, Chuanhong; Zhuang, Lin; He, Jun; Fu, Lei; Liu, Yunqi

    2017-08-01

    As a member of the group IVB transition metal dichalcogenides (TMDs) family, hafnium disulfide (HfS 2 ) is recently predicted to exhibit higher carrier mobility and higher tunneling current density than group VIB (Mo and W) TMDs. However, the synthesis of high-quality HfS 2 crystals, sparsely reported, has greatly hindered the development of this new field. Here, a facile strategy for controlled synthesis of high-quality atomic layered HfS 2 crystals by van der Waals epitaxy is reported. Density functional theory calculations are applied to elucidate the systematic epitaxial growth process of the S-edge and Hf-edge. Impressively, the HfS 2 back-gate field-effect transistors display a competitive mobility of 7.6 cm 2 V -1 s -1 and an ultrahigh on/off ratio exceeding 10 8 . Meanwhile, ultrasensitive near-infrared phototransistors based on the HfS 2 crystals (indirect bandgap ≈1.45 eV) exhibit an ultrahigh responsivity exceeding 3.08 × 10 5 A W -1 , which is 10 9 -fold higher than 9 × 10 -5 A W -1 obtained from the multilayer MoS 2 in near-infrared photodetection. Moreover, an ultrahigh photogain exceeding 4.72 × 10 5 and an ultrahigh detectivity exceeding 4.01 × 10 12 Jones, superior to the vast majority of the reported 2D-materials-based phototransistors, imply a great promise in TMD-based 2D electronic and optoelectronic applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Linking density functional and mode coupling models for supercooled liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Premkumar, Leishangthem; Bidhoodi, Neeta; Das, Shankar P.

    2016-03-28

    We compare predictions from two familiar models of the metastable supercooled liquid, respectively, constructed with thermodynamic and dynamic approaches. In the so called density functional theory the free energy F[ρ] of the liquid is a functional of the inhomogeneous density ρ(r). The metastable state is identified as a local minimum of F[ρ]. The sharp density profile characterizing ρ(r) is identified as a single particle oscillator, whose frequency is obtained from the parameters of the optimum density function. On the other hand, a dynamic approach to supercooled liquids is taken in the mode coupling theory (MCT) which predict a sharp ergodicity-non-ergodicitymore » transition at a critical density. The single particle dynamics in the non-ergodic state, treated approximately, represents a propagating mode whose characteristic frequency is computed from the corresponding memory function of the MCT. The mass localization parameters in the above two models (treated in their simplest forms) are obtained, respectively, in terms of the corresponding natural frequencies depicted and are shown to have comparable magnitudes.« less

  2. Origin of the size-dependence of the equilibrium van der Waals binding between nanostructures

    NASA Astrophysics Data System (ADS)

    Tao, Jianmin; Perdew, John P.; Tang, Hong; Shahi, Chandra

    2018-02-01

    Nanostructures can be bound together at equilibrium by the van der Waals (vdW) effect, a small but ubiquitous many-body attraction that presents challenges to density functional theory. How does the binding energy depend upon the size or number of atoms in one of a pair of identical nanostructures? To answer this question, we treat each nanostructure as a whole object, not as a collection of atoms. Our calculations start from an accurate static dipole polarizability for each considered nanostructure, and an accurate equilibrium center-to-center distance for the pair (the latter from experiment or from the vdW-DF-cx functional). We consider the competition in each term -C2k/d2k (k = 3, 4, 5) of the long-range vdW series for the interaction energy, between the size dependence of the vdW coefficient C2k and that of the 2kth power of the center-to-center distance d. The damping of these vdW terms can be negligible, but in any case, it does not affect the size dependence for a given term in the absence of non-vdW binding. To our surprise, the vdW energy can be size-independent for quasi-spherical nanoclusters bound to one another by vdW interaction, even with strong nonadditivity of the vdW coefficient, as demonstrated for fullerenes. We also show that, for low-dimensional systems, the vdW interaction yields the strongest size-dependence, in stark contrast to that of fullerenes. We illustrate this with parallel planar polycyclic aromatic hydrocarbons. The size dependences of other morphologies or bonding types lie between, as shown by sodium clusters.

  3. Origin of the size-dependence of the equilibrium van der Waals binding between nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Jianmin

    Nanostructures can be bound together at equilibrium by the van der Waals (vdW) effect, a small but ubiquitous many-body attraction that presents challenges to density functional theory. How does the binding energy depend upon the size or number of atoms in one of a pair of identical nanostructures? To answer this question, we treat each nanostructure properly as a whole object, not as a collection of atoms. Our calculations start from an accurate static dipole polarizability for each considered nanostructure, and an accurate equilibrium center-to-center distance for the pair (the latter from experiment, or from the vdW-DF-cx functional). We consider the competition in each termmore » $$-C_{2k}/d^{2k}$$ ($k=3, 4, 5$) of the long-range vdW series for the interaction energy, between the size dependence of the vdW coefficient $$C_{2k}$$ and that of the $2k$-th power of the center-to-center distance $d$. The damping of these vdW terms can be negligible, but in any case it does not affect the size dependence for a given term in the absence of non-vdW binding. To our surprise, the vdW energy can be size-independent for quasi-spherical nanoclusters bound to one another by vdW interaction, even with strong nonadditivity of the vdW coefficient, as demonstrated for fullerenes. We also show that, for low-dimensional systems, the vdW interaction yields the strongest size-dependence, in stark contrast to that of fullerenes. We illustrate this with parallel planar polycyclic aromatic hydrocarbons. Other cases are between, as shown by sodium clusters.« less

  4. Origin of the size-dependence of the equilibrium van der Waals binding between nanostructures

    DOE PAGES

    Tao, Jianmin

    2018-02-21

    Nanostructures can be bound together at equilibrium by the van der Waals (vdW) effect, a small but ubiquitous many-body attraction that presents challenges to density functional theory. How does the binding energy depend upon the size or number of atoms in one of a pair of identical nanostructures? To answer this question, we treat each nanostructure properly as a whole object, not as a collection of atoms. Our calculations start from an accurate static dipole polarizability for each considered nanostructure, and an accurate equilibrium center-to-center distance for the pair (the latter from experiment, or from the vdW-DF-cx functional). We consider the competition in each termmore » $$-C_{2k}/d^{2k}$$ ($k=3, 4, 5$) of the long-range vdW series for the interaction energy, between the size dependence of the vdW coefficient $$C_{2k}$$ and that of the $2k$-th power of the center-to-center distance $d$. The damping of these vdW terms can be negligible, but in any case it does not affect the size dependence for a given term in the absence of non-vdW binding. To our surprise, the vdW energy can be size-independent for quasi-spherical nanoclusters bound to one another by vdW interaction, even with strong nonadditivity of the vdW coefficient, as demonstrated for fullerenes. We also show that, for low-dimensional systems, the vdW interaction yields the strongest size-dependence, in stark contrast to that of fullerenes. We illustrate this with parallel planar polycyclic aromatic hydrocarbons. Other cases are between, as shown by sodium clusters.« less

  5. General theoretical description of angle-resolved photoemission spectroscopy of van der Waals structures

    NASA Astrophysics Data System (ADS)

    Amorim, B.

    2018-04-01

    We develop a general theory to model the angle-resolved photoemission spectroscopy (ARPES) of commensurate and incommensurate van der Waals (vdW) structures, formed by lattice mismatched and/or misaligned stacked layers of two-dimensional materials. The present theory is based on a tight-binding description of the structure and the concept of generalized umklapp processes, going beyond previous descriptions of ARPES in incommensurate vdW structures, which are based on continuous, low-energy models, being limited to structures with small lattice mismatch/misalignment. As applications of the general formalism, we study the ARPES bands and constant energy maps for two structures: twisted bilayer graphene and twisted bilayer MoS2. The present theory should be useful in correctly interpreting experimental results of ARPES of vdW structures and other systems displaying competition between different periodicities, such as two-dimensional materials weakly coupled to a substrate and materials with density wave phases.

  6. van der Waals epitaxial ZnTe thin film on single-crystalline graphene

    NASA Astrophysics Data System (ADS)

    Sun, Xin; Chen, Zhizhong; Wang, Yiping; Lu, Zonghuan; Shi, Jian; Washington, Morris; Lu, Toh-Ming

    2018-01-01

    Graphene template has long been promoted as a promising host to support van der Waals flexible electronics. However, van der Waals epitaxial growth of conventional semiconductors in planar thin film form on transferred graphene sheets is challenging because the nucleation rate of film species on graphene is significantly low due to the passive surface of graphene. In this work, we demonstrate the epitaxy of zinc-blende ZnTe thin film on single-crystalline graphene supported by an amorphous glass substrate. Given the amorphous nature and no obvious remote epitaxy effect of the glass substrate, this study clearly proves the van der Waals epitaxy of a 3D semiconductor thin film on graphene. X-ray pole figure analysis reveals the existence of two ZnTe epitaxial orientational domains on graphene, a strong X-ray intensity observed from the ZnTe [ 1 ¯ 1 ¯ 2] ǁ graphene [10] orientation domain, and a weaker intensity from the ZnTe [ 1 ¯ 1 ¯ 2] ǁ graphene [11] orientation domain. Furthermore, this study systematically investigates the optoelectronic properties of this epitaxial ZnTe film on graphene using temperature-dependent Raman spectroscopy, steady-state and time-resolved photoluminescence spectroscopy, and fabrication and characterization of a ZnTe-graphene photodetector. The research suggests an effective approach towards graphene-templated flexible electronics.

  7. Defect mediated van der Waals epitaxy of hexagonal boron nitride on graphene

    NASA Astrophysics Data System (ADS)

    Heilmann, M.; Bashouti, M.; Riechert, H.; Lopes, J. M. J.

    2018-04-01

    Van der Waals heterostructures comprising of hexagonal boron nitride and graphene are promising building blocks for novel two-dimensional devices such as atomically thin transistors or capacitors. However, demonstrators of those devices have been so far mostly fabricated by mechanical assembly, a non-scalable and time-consuming method, where transfer processes can contaminate the surfaces. Here, we investigate a direct growth process for the fabrication of insulating hexagonal boron nitride on high quality epitaxial graphene using plasma assisted molecular beam epitaxy. Samples were grown at varying temperatures and times and studied using atomic force microscopy, revealing a growth process limited by desorption at high temperatures. Nucleation was mostly commencing from morphological defects in epitaxial graphene, such as step edges or wrinkles. Raman spectroscopy combined with x-ray photoelectron measurements confirm the formation of hexagonal boron nitride and prove the resilience of graphene against the nitrogen plasma used during the growth process. The electrical properties and defects in the heterostructures were studied with high lateral resolution by tunneling current and Kelvin probe force measurements. This correlated approach revealed a nucleation apart from morphological defects in epitaxial graphene, which is mediated by point defects. The presented results help understanding the nucleation and growth behavior during van der Waals epitaxy of 2D materials, and point out a route for a scalable production of van der Waals heterostructures.

  8. van der Waals epitaxial two-dimensional CdSxSe(1-x) semiconductor alloys with tunable-composition and application to flexible optoelectronics.

    PubMed

    Xia, Jing; Zhao, Yun-Xuan; Wang, Lei; Li, Xuan-Ze; Gu, Yi-Yi; Cheng, Hua-Qiu; Meng, Xiang-Min

    2017-09-21

    Despite the substantial progress in the development of two-dimensional (2D) materials from conventional layered crystals, it still remains particularly challenging to produce high-quality 2D non-layered semiconductor alloys which may bring in some unique properties and new functions. In this work, the synthesis of well-oriented 2D non-layered CdS x Se (1-x) semiconductor alloy flakes with tunable compositions and optical properties is established. Structural analysis reveals that the 2D non-layered alloys follow an incommensurate van der Waals epitaxial growth pattern. Photoluminescence measurements show that the 2D alloys have composition-dependent direct bandgaps with the emission peak varying from 1.8 eV to 2.3 eV, coinciding well with the density functional theory calculations. Furthermore, photodetectors based on the CdS x Se (1-x) flakes exhibit a high photoresponsivity of 703 A W -1 with an external quantum efficiency of 1.94 × 10 3 and a response time of 39 ms. Flexible devices fabricated on a thin mica substrate display good mechanical stability upon repeated bending. This work suggests a facile and general method to produce high-quality 2D non-layered semiconductor alloys for next-generation optoelectronic devices.

  9. Physisorption of three amine terminated molecules (TMBDA, BDA, TFBDA) on the Au(111) Surface: The Role of van der Waals Interaction

    NASA Astrophysics Data System (ADS)

    Aminpour, Maral; Le, Duy; Rahman, Talat S.

    2012-02-01

    Recently, the electronic properties and alignment of tetramethyl-1,4-benzenediamine (TMBDA), 1,4-benzenediamine (BDA) and tetrafluro-1,4-benzenediamine (TFBDA) molecules were studied experimentally. Discrepancies were found for both the binding energy and the molecule tilt angle with respect to the surface, when results were compared with density functional theory calculations [1]. We have included the effect of vdW interactions both between the molecules and the Au(111) surface and find binding energies which are in very good agreement with experiments. We also find that at low coverages each of these molecules would adsorb almost parallel to the surface. N-Au bond lengths and charge redistribution on adsorption of the molecules are also analyzed. Our calculations are based on DFT using vdW-DF exchange correlation functionals. For BDA (since we are aware of experimental data), we show that for higher coverage, inclusion of intermolecular van der Waals interaction leads to tilting of the molecules with respect to the surface and formation of line structures. Our results demonstrate the central role played by intermolecular interaction in pattern formation on this surface.[4pt] [1] M. Dell'Angela et al, Nano Lett. 2010, 10, 2470; M. Kamenetska et al, J. Phys. Chem. C, 2011, 115, 12625

  10. Developing Thermal Density Functional Theory Using the Asymmetric Hubbard Dimer

    NASA Astrophysics Data System (ADS)

    Smith, Justin Clifford

    In this dissertation, I introduce both ground-state and thermal density functional theory. Throughout I use the asymmetric two-site Hubbard model, called the Hubbard dimer for short, to better understand and/or develop these theories. This model is used because it can be solved analytically and it contains all the necessary physics while still being conceptually simple enough to tease apart the various aspects of density functional theory. Ground-state density functional theory has seen broad use in many disciplines including physics, chemistry, geology, and material science and has led to a number of important physical and technological successes. In the first two chapters I elucidate the behavior of the ground-state theory using the Hubbard dimer. The simplicity of the model allows me to showcase aspects of the theory that are common points of confusion within the electronic structure community, e.g. the fundamental gap problem. The next two chapters focus on thermal density functional theory which has been coming to prominence as the study of warm dense matter has become a growing interest at the national laboratories and in the astronomical body community. The Hubbard dimer allows me to do the first ever exact thermal density functional theory calculation. In this work I am better able to understand the approximations used in thermal density functional theory and can point to why they succeed and fail. This also allows me to illustrate old conditions and derive new ones. I conclude with an overview of the work and a few different directions in which the asymmetric Hubbard dimer could be used further.

  11. Source-Free Exchange-Correlation Magnetic Fields in Density Functional Theory.

    PubMed

    Sharma, S; Gross, E K U; Sanna, A; Dewhurst, J K

    2018-03-13

    Spin-dependent exchange-correlation energy functionals in use today depend on the charge density and the magnetization density: E xc [ρ, m]. However, it is also correct to define the functional in terms of the curl of m for physical external fields: E xc [ρ,∇ × m]. The exchange-correlation magnetic field, B xc , then becomes source-free. We study this variation of the theory by uniquely removing the source term from local and generalized gradient approximations to the functional. By doing so, the total Kohn-Sham moments are improved for a wide range of materials for both functionals. Significantly, the moments for the pnictides are now in good agreement with experiment. This source-free method is simple to implement in all existing density functional theory codes.

  12. Adsorption of benzene on low index surfaces of platinum in the presence of van der Waals interactions

    NASA Astrophysics Data System (ADS)

    K, Ayishabi P.; Chatanathodi, Raghu

    2017-10-01

    We have studied the adsorption of benzene on three low index surfaces of platinum using plane-wave Density Functional Theory (DFT) calculations, taking into consideration van der Waals (vdW) interaction. Experimentally, it is known that benzene adsorbs at the bridge site on the (111) surface, but in case of (110) and (100), this is not known yet. Our calculations show that benzene preferably adsorbs on bridge position on Pt(111) surface, whereas on Pt(110) and Pt(100) surfaces, the hollow position is energetically more favoured. The structural and electronic modifications of molecule and the surfaces are also examined. In all cases, adsorption-induced distortions of adsorbate-substrate complex are found to be modest in character, but relatively maximum in case of the (110) facet. The molecule is bound most strongly to the (110) surface. Importantly, we find that adsorption at bridge and atop positions are energetically feasible on the (110) surface, with the canting of benzene ring at a small angle from the metal plane. We study changes in electronic structure and the net charge transfer upon adsorption of benzene on all three low index planes. Inclusion of vdW interactions is important for obtaining realistic adsorption strengths for benzene on various Pt facets.

  13. Influence of van der Waals forces on increasing the strength and toughness in dynamic fracture of nanofibre networks: a peridynamic approach

    NASA Astrophysics Data System (ADS)

    Bobaru, F.

    2007-07-01

    The peridynamic method is used here to analyse the effect of van der Waals forces on the mechanical behaviour and strength and toughness properties of three-dimensional nanofibre networks under imposed stretch deformation. The peridynamic formulation allows for a natural inclusion of long-range forces (such as van der Waals forces) by considering all interactions as 'long-range'. We use van der Waals interactions only between different fibres and do not need to model individual atoms. Fracture is introduced at the microstructural (peridynamic bond) level for the microelastic type bonds, while van der Waals bonds can reform at any time. We conduct statistical studies to determine a certain volume element for which the network of randomly oriented fibres becomes quasi-isotropic and insensitive to statistical variations. This qualitative study shows that the presence of van der Waals interactions and of heterogeneities (sacrificial bonds) in the strength of the bonds at the crosslinks between fibres can help in increasing the strength and toughness of the nanofibre network. Two main mechanisms appear to control the deformation of nanofibre networks: fibre reorientation (caused by deformation and breakage) and fibre accretion (due to van der Waals interaction). Similarities to the observed toughness of polymer adhesive in the abalone shell composition are explained. The author would like to dedicate this work to the 60th anniversary of Professor Subrata Mukherjee.

  14. Control of excitons in multi-layer van der Waals heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calman, E. V., E-mail: ecalman@gmail.com; Dorow, C. J.; Fogler, M. M.

    2016-03-07

    We report an experimental study of excitons in a double quantum well van der Waals heterostructure made of atomically thin layers of MoS{sub 2} and hexagonal boron nitride. The emission of neutral and charged excitons is controlled by gate voltage, temperature, and both the helicity and the power of optical excitation.

  15. Density functional theory studies of etoricoxib

    NASA Astrophysics Data System (ADS)

    Sachdeva, Ritika; Kaur, Prabhjot; Singh, V. P.; Saini, G. S. S.

    2016-05-01

    Etoricoxib is a COX-2 selective inhibitor drug with molecular formula C18H15ClN2O2S. It is primarily used for the treatment of arthritis(rheumatoid, psoriatic, osteoarthritis), ankylosing spondylitis, gout and chronic low back pain. Theoretical studies of the molecule including geometry optimization and vibrational frequency calculations were carried out with the help of density functional theory calculations using 6-311++ g (d, p) basis set and B3LYP functional.

  16. Vibrations of double-nanotube systems with mislocation via a newly developed van der Waals model

    NASA Astrophysics Data System (ADS)

    Kiani, Keivan

    2015-06-01

    This study deals with transverse vibrations of two adjacent-parallel-mislocated single-walled carbon nanotubes (SWCNTs) under various end conditions. These tubes interact with each other and their surrounding medium through the intertube van der Waals (vdW) forces, and existing bonds between their atoms and those of the elastic medium. The elastic energy of such forces due to the deflections of nanotubes is appropriately modeled by defining a vdW force density function. In the previous works, vdW forces between two identical tubes were idealized by a uniform form of this function. The newly introduced function enables us to investigate the influences of both intertube free distance and longitudinal mislocation on the natural transverse frequencies of the nanosystem which consists of two dissimilar tubes. Such crucial issues have not been addressed yet, even for simply supported tubes. Using nonlocal Timoshenko and higher-order beam theories as well as Hamilton's principle, the strong form of the equations of motion is established. Seeking for an explicit solution to these integro-partial differential equations is a very problematic task. Thereby, an energy-based method in conjunction with an efficient meshfree method is proposed and the nonlocal frequencies of the elastically embedded nanosystem are determined. For simply supported nanosystems, the predicted first five frequencies of the proposed model are checked with those of assumed mode method, and a reasonably good agreement is achieved. Through various studies, the roles of the tube's length ratio, intertube free space, mislocation, small-scale effect, slenderness ratio, radius of SWCNTs, and elastic constants of the elastic matrix on the natural frequencies of the nanosystem with various end conditions are explained. The limitations of the nonlocal Timoshenko beam theory are also addressed. This work can be considered as a vital step towards better realizing of a more complex system that consists of

  17. Strong van der Waals attractive forces in nanotechnology

    NASA Astrophysics Data System (ADS)

    Reimers, Jeffrey

    The Dobson classification scheme for failure of London-like expressions for describing dispersion is reviewed. New ways to measure using STM data and calculate by first principles free energies of organic self-assembly processes from solution will be discussed, considering tetraalkylporphyrins on graphite. How strong van der Waals forces can compete against covalent bonding to produce new molecular isomers and reaction pathways will also be demonstrated, focusing on golds-sulfur bonds for sensors and stabilizing nanoparticles.

  18. Multiconfiguration Pair-Density Functional Theory Spectral Calculations Are Stable to Adding Diffuse Basis Functions.

    PubMed

    Hoyer, Chad E; Gagliardi, Laura; Truhlar, Donald G

    2015-11-05

    Time-dependent Kohn-Sham density functional theory (TD-KS-DFT) is useful for calculating electronic excitation spectra of large systems, but the low-energy spectra are often complicated by artificially lowered higher-energy states. This affects even the lowest energy excited states. Here, by calculating the lowest energy spin-conserving excited state for atoms from H to K and for formaldehyde, we show that this problem does not occur in multiconfiguration pair-density functional theory (MC-PDFT). We use the tPBE on-top density functional, which is a translation of the PBE exchange-correlation functional. We compare to a robust multireference method, namely, complete active space second-order perturbation theory (CASPT2), and to TD-KS-DFT with two popular exchange-correlation functionals, PBE and PBE0. We find for atoms that the mean unsigned error (MUE) of MC-PDFT with the tPBE functional improves from 0.42 to 0.40 eV with a double set of diffuse functions, whereas the MUEs for PBE and PBE0 drastically increase from 0.74 to 2.49 eV and from 0.45 to 1.47 eV, respectively.

  19. Relativistic density functional theory with picture-change corrected electron density based on infinite-order Douglas-Kroll-Hess method

    NASA Astrophysics Data System (ADS)

    Oyama, Takuro; Ikabata, Yasuhiro; Seino, Junji; Nakai, Hiromi

    2017-07-01

    This Letter proposes a density functional treatment based on the two-component relativistic scheme at the infinite-order Douglas-Kroll-Hess (IODKH) level. The exchange-correlation energy and potential are calculated using the electron density based on the picture-change corrected density operator transformed by the IODKH method. Numerical assessments indicated that the picture-change uncorrected density functional terms generate significant errors, on the order of hartree for heavy atoms. The present scheme was found to reproduce the energetics in the four-component treatment with high accuracy.

  20. Orbital-dependent density functionals: Theory and applications

    NASA Astrophysics Data System (ADS)

    Kümmel, Stephan; Kronik, Leeor

    2008-01-01

    This review provides a perspective on the use of orbital-dependent functionals, which is currently considered one of the most promising avenues in modern density-functional theory. The focus here is on four major themes: the motivation for orbital-dependent functionals in terms of limitations of semilocal functionals; the optimized effective potential as a rigorous approach to incorporating orbital-dependent functionals within the Kohn-Sham framework; the rationale behind and advantages and limitations of four popular classes of orbital-dependent functionals; and the use of orbital-dependent functionals for predicting excited-state properties. For each of these issues, both formal and practical aspects are assessed.

  1. Density functional theory for polymeric systems in 2D.

    PubMed

    Słyk, Edyta; Roth, Roland; Bryk, Paweł

    2016-06-22

    We propose density functional theory for polymeric fluids in two dimensions. The approach is based on Wertheim's first order thermodynamic perturbation theory (TPT) and closely follows density functional theory for polymers proposed by Yu and Wu (2002 J. Chem. Phys. 117 2368). As a simple application we evaluate the density profiles of tangent hard-disk polymers at hard walls. The theoretical predictions are compared against the results of the Monte Carlo simulations. We find that for short chain lengths the theoretical density profiles are in an excellent agreement with the Monte Carlo data. The agreement is less satisfactory for longer chains. The performance of the theory can be improved by recasting the approach using the self-consistent field theory formalism. When the self-avoiding chain statistics is used, the theory yields a marked improvement in the low density limit. Further improvements for long chains could be reached by going beyond the first order of TPT.

  2. Quantum Monte Carlo Simulation of condensed van der Waals Systems

    NASA Astrophysics Data System (ADS)

    Benali, Anouar; Shulenburger, Luke; Romero, Nichols A.; Kim, Jeongnim; Anatole von Lilienfeld, O.

    2012-02-01

    Van der Waals forces are as ubiquitous as infamous. While post-Hartree-Fock methods enable accurate estimates of these forces in molecules and clusters, they remain elusive for dealing with many-electron condensed phase systems. We present Quantum Monte Carlo [1,2] results for condensed van der Waals systems. Interatomic many-body contributions to cohesive energies and bulk modulus will be discussed. Numerical evidence is presented for crystals of rare gas atoms, and compared to experiments and methods [3]. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DoE's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.[4pt] [1] J. Kim, K. Esler, J. McMinis and D. Ceperley, SciDAC 2010, J. of Physics: Conference series, Chattanooga, Tennessee, July 11 2011 [0pt] [2] QMCPACK simulation suite, http://qmcpack.cmscc.org (unpublished)[0pt] [3] O. A. von Lillienfeld and A. Tkatchenko, J. Chem. Phys. 132 234109 (2010)

  3. Central depression in nucleonic densities: Trend analysis in the nuclear density functional theory approach

    NASA Astrophysics Data System (ADS)

    Schuetrumpf, B.; Nazarewicz, W.; Reinhard, P.-G.

    2017-08-01

    Background: The central depression of nucleonic density, i.e., a reduction of density in the nuclear interior, has been attributed to many factors. For instance, bubble structures in superheavy nuclei are believed to be due to the electrostatic repulsion. In light nuclei, the mechanism behind the density reduction in the interior has been discussed in terms of shell effects associated with occupations of s orbits. Purpose: The main objective of this work is to reveal mechanisms behind the formation of central depression in nucleonic densities in light and heavy nuclei. To this end, we introduce several measures of the internal nucleonic density. Through the statistical analysis, we study the information content of these measures with respect to nuclear matter properties. Method: We apply nuclear density functional theory with Skyrme functionals. Using the statistical tools of linear least square regression, we inspect correlations between various measures of central depression and model parameters, including nuclear matter properties. We study bivariate correlations with selected quantities as well as multiple correlations with groups of parameters. Detailed correlation analysis is carried out for 34Si for which a bubble structure has been reported recently, 48Ca, and N =82 , 126, and 184 isotonic chains. Results: We show that the central depression in medium-mass nuclei is very sensitive to shell effects, whereas for superheavy systems it is firmly driven by the electrostatic repulsion. An appreciable semibubble structure in proton density is predicted for 294Og, which is currently the heaviest nucleus known experimentally. Conclusion: Our correlation analysis reveals that the central density indicators in nuclei below 208Pb carry little information on parameters of nuclear matter; they are predominantly driven by shell structure. On the other hand, in the superheavy nuclei there exists a clear relationship between the central nucleonic density and symmetry energy.

  4. Density Functional Methods for Shock Physics and High Energy Density Science

    NASA Astrophysics Data System (ADS)

    Desjarlais, Michael

    2017-06-01

    Molecular dynamics with density functional theory has emerged over the last two decades as a powerful and accurate framework for calculating thermodynamic and transport properties with broad application to dynamic compression, high energy density science, and warm dense matter. These calculations have been extensively validated against shock and ramp wave experiments, are a principal component of high-fidelity equation of state generation, and are having wide-ranging impacts on inertial confinement fusion, planetary science, and shock physics research. In addition to thermodynamic properties, phase boundaries, and the equation of state, one also has access to electrical conductivity, thermal conductivity, and lower energy optical properties. Importantly, all these properties are obtained within the same theoretical framework and are manifestly consistent. In this talk I will give a brief history and overview of molecular dynamics with density functional theory and its use in calculating a wide variety of thermodynamic and transport properties for materials ranging from ambient to extreme conditions and with comparisons to experimental data. I will also discuss some of the limitations and difficulties, as well as active research areas. Sandia is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  5. The maximal-density mass function for primordial black hole dark matter

    NASA Astrophysics Data System (ADS)

    Lehmann, Benjamin V.; Profumo, Stefano; Yant, Jackson

    2018-04-01

    The advent of gravitational wave astronomy has rekindled interest in primordial black holes (PBH) as a dark matter candidate. As there are many different observational probes of the PBH density across different masses, constraints on PBH models are dependent on the functional form of the PBH mass function. This complicates general statements about the mass functions allowed by current data, and, in particular, about the maximum total density of PBH. Numerical studies suggest that some forms of extended mass functions face tighter constraints than monochromatic mass functions, but they do not preclude the existence of a functional form for which constraints are relaxed. We use analytical arguments to show that the mass function which maximizes the fraction of the matter density in PBH subject to all constraints is a finite linear combination of monochromatic mass functions. We explicitly compute the maximum fraction of dark matter in PBH for different combinations of current constraints, allowing for total freedom of the mass function. Our framework elucidates the dependence of the maximum PBH density on the form of observational constraints, and we discuss the implications of current and future constraints for the viability of the PBH dark matter paradigm.

  6. Exchange Energy Density Functionals that reproduce the Linear Response Function of the Free Electron Gas

    NASA Astrophysics Data System (ADS)

    García-Aldea, David; Alvarellos, J. E.

    2009-03-01

    We present several nonlocal exchange energy density functionals that reproduce the linear response function of the free electron gas. These nonlocal functionals are constructed following a similar procedure used previously for nonlocal kinetic energy density functionals by Chac'on-Alvarellos-Tarazona, Garc'ia-Gonz'alez et al., Wang-Govind-Carter and Garc'ia-Aldea-Alvarellos. The exchange response function is not known but we have used the approximate response function developed by Utsumi and Ichimaru, even we must remark that the same ansatz can be used to reproduce any other response function with the same scaling properties. We have developed two families of new nonlocal functionals: one is constructed with a mathematical structure based on the LDA approximation -- the Dirac functional for the exchange - and for the second one the structure of the second order gradient expansion approximation is took as a model. The functionals are constructed is such a way that they can be used in localized systems (using real space calculations) and in extended systems (using the momentum space, and achieving a quasilinear scaling with the system size if a constant reference electron density is defined).

  7. Dispersion-correcting potentials can significantly improve the bond dissociation enthalpies and noncovalent binding energies predicted by density-functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DiLabio, Gino A., E-mail: Gino.DiLabio@nrc.ca; Department of Chemistry, University of British Columbia, Okanagan, 3333 University Way, Kelowna, British Columbia V1V 1V7; Koleini, Mohammad

    2014-05-14

    Dispersion-correcting potentials (DCPs) are atom-centered Gaussian functions that are applied in a manner that is similar to effective core potentials. Previous work on DCPs has focussed on their use as a simple means of improving the ability of conventional density-functional theory methods to predict the binding energies of noncovalently bonded molecular dimers. We show in this work that DCPs developed for use with the LC-ωPBE functional along with 6-31+G(2d,2p) basis sets are capable of simultaneously improving predicted noncovalent binding energies of van der Waals dimer complexes and covalent bond dissociation enthalpies in molecules. Specifically, the DCPs developed herein for themore » C, H, N, and O atoms provide binding energies for a set of 66 noncovalently bonded molecular dimers (the “S66” set) with a mean absolute error (MAE) of 0.21 kcal/mol, which represents an improvement of more than a factor of 10 over unadorned LC-ωPBE/6-31+G(2d,2p) and almost a factor of two improvement over LC-ωPBE/6-31+G(2d,2p) used in conjunction with the “D3” pairwise dispersion energy corrections. In addition, the DCPs reduce the MAE of calculated X-H and X-Y (X,Y = C, H, N, O) bond dissociation enthalpies for a set of 40 species from 3.2 kcal/mol obtained with unadorned LC-ωPBE/6-31+G(2d,2p) to 1.6 kcal/mol. Our findings demonstrate that broad improvements to the performance of DFT methods may be achievable through the use of DCPs.« less

  8. Communication: Determining the structure of the N{sub 2}Ar van der Waals complex with laser-based channel-selected Coulomb explosion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Chengyin, E-mail: cywu@pku.edu.cn; Liu, Yunquan; Gong, Qihuang

    2014-04-14

    We experimentally reconstructed the structure of the N{sub 2}Ar van der Waals complex with the technique of laser-based channel-selected Coulomb explosion imaging. The internuclear distance between the N{sub 2} center of mass and the Ar atom, i.e., the length of the van der Waals bond, was determined to be 3.88 Å from the two-body explosion channels. The angle between the van der Waals bond and the N{sub 2} principal axis was determined to be 90° from the three-body explosion channels. The reconstructed structure was contrasted with our high level ab initio calculations. The agreement demonstrated the potential application of laser-basedmore » Coulomb explosion in imaging transient molecular structure, particularly for floppy van der Waals complexes, whose structures remain difficult to be determined by conventional spectroscopic methods.« less

  9. Excitation energies of molecules within time-independent density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hemanadhan, M., E-mail: hemanadh@iitk.ac.in; Harbola, Manoj K., E-mail: hemanadh@iitk.ac.in

    2014-04-24

    Recently proposed exchange energy functional for excited-states is tested for obtaining excitation energies of diatomic molecules. The functional is the ground-state counterpart of the local-density approximation, the modified local spin density (MLSD). The MLSD functional is tested for the N{sub 2} and CO diatomic molecules. The excitation energy obtained with the MLSD functional for the N{sub 2} molecule is in close vicinity to that obtained from the exact exchange orbital functional, Krieger, Li and Iafrate (KLI). For the CO molecule, the departure in excitation energy is observed and is due to the overcorrection of self-interaction.

  10. Excitation energies of molecules within time-independent density functional theory

    NASA Astrophysics Data System (ADS)

    Hemanadhan, M.; Harbola, Manoj K.

    2014-04-01

    Recently proposed exchange energy functional for excited-states is tested for obtaining excitation energies of diatomic molecules. The functional is the ground-state counterpart of the local-density approximation, the modified local spin density (MLSD). The MLSD functional is tested for the N2 and CO diatomic molecules. The excitation energy obtained with the MLSD functional for the N2 molecule is in close vicinity to that obtained from the exact exchange orbital functional, Krieger, Li and Iafrate (KLI). For the CO molecule, the departure in excitation energy is observed and is due to the overcorrection of self-interaction.

  11. Two dimensional graphene nanogenerator by coulomb dragging: Moving van der Waals heterostructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Huikai; Li, Xiaoqiang; Wu, Zhiqian

    2015-06-15

    Harvesting energy from environment is the current focus of scientific community. Here, we demonstrate a graphene nanogenerator, which is based on moving van der Waals heterostructure formed between graphene and two dimensional (2D) graphene oxide (GO). This nanogenerator can convert mechanical energy into electricity with a voltage output of around 10 mV. Systematic experiments reveal the generated electricity originates from the coulomb interaction induced momentum transfer between 2D GO and holes in graphene. 2D boron nitride was also demonstrated to be effective in the framework of moving van der Waals heterostructure nanogenerator. This investigation of nanogenerator based on the interaction betweenmore » 2D macromolecule materials will be important to understand the origin of the flow-induced potential in nanomaterials and may have great potential in practical applications.« less

  12. Electrotunable artificial molecules based on van der Waals heterostructures

    PubMed Central

    Zhang, Zhuo-Zhi; Song, Xiang-Xiang; Luo, Gang; Deng, Guang-Wei; Mosallanejad, Vahid; Taniguchi, Takashi; Watanabe, Kenji; Li, Hai-Ou; Cao, Gang; Guo, Guang-Can; Nori, Franco; Guo, Guo-Ping

    2017-01-01

    Quantum confinement has made it possible to detect and manipulate single-electron charge and spin states. The recent focus on two-dimensional (2D) materials has attracted significant interests on possible applications to quantum devices, including detecting and manipulating either single-electron charging behavior or spin and valley degrees of freedom. However, the most popular model systems, consisting of tunable double-quantum-dot molecules, are still extremely difficult to realize in these materials. We show that an artificial molecule can be reversibly formed in atomically thin MoS2 sandwiched in hexagonal boron nitride, with each artificial atom controlled separately by electrostatic gating. The extracted values for coupling energies at different regimes indicate a single-electron transport behavior, with the coupling strength between the quantum dots tuned monotonically. Moreover, in the low-density regime, we observe a decrease of the conductance with magnetic field, suggesting the observation of Coulomb blockade weak anti-localization. Our experiments demonstrate for the first time the realization of an artificial quantum-dot molecule in a gated MoS2 van der Waals heterostructure, which could be used to investigate spin-valley physics. The compatibility with large-scale production, gate controllability, electron-hole bipolarity, and new quantum degrees of freedom in the family of 2D materials opens new possibilities for quantum electronics and its applications. PMID:29062893

  13. Joint density-functional theory and its application to systems in solution

    NASA Astrophysics Data System (ADS)

    Petrosyan, Sahak A.

    The physics of solvation, the interaction of water with solutes, plays a central role in chemistry and biochemistry, and it is essential for the very existence of life. Despite the central importance of water and the advent of the quantum theory early in the twentieth century, the link between the fundamental laws of physics and the observable properties of water remain poorly understood to this day. The central goal of this thesis is to develop a new formalism and framework to make the study of systems (solutes or surfaces) in contact with liquid water as practical and accurate as standard electronic structure calculations without the need for explicit averaging over large ensembles of configurations of water molecules. The thesis introduces a new form of density functional theory for the ab initio description of electronic systems in contact with a molecular liquid environment. This theory rigorously joins an electron density-functional for the electrons of a solute with a classical density-functional theory for the liquid into a single variational principle for the free energy of the combined system. Using the new form of density-functional theory for the ab initio description of electronic systems in contact with a molecular liquid environment, the thesis then presents the first detailed study of the impact of a solvent on the surface chemistry of Cr2O3, the passivating layer of stainless steel alloys. In comparison to a vacuum, we predict that the presence of water has little impact on the adsorption of chloride ions to the oxygen-terminated surface but has a dramatic effect on the binding of hydrogen to that surface. A key ingredient of a successful joint density functional theory is a good approximate functional for describing the solvent. We explore how the simplest examples of the best known class of approximate forms for the classical density functional fail when applied directly to water. The thesis then presents a computationally efficient density-functional

  14. Optimization of an exchange-correlation density functional for water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fritz, Michelle; Fernández-Serra, Marivi; Institute for Advanced Computational Science, Stony Brook University, Stony Brook, New York 11794-3800

    2016-06-14

    We describe a method, that we call data projection onto parameter space (DPPS), to optimize an energy functional of the electron density, so that it reproduces a dataset of experimental magnitudes. Our scheme, based on Bayes theorem, constrains the optimized functional not to depart unphysically from existing ab initio functionals. The resulting functional maximizes the probability of being the “correct” parameterization of a given functional form, in the sense of Bayes theory. The application of DPPS to water sheds new light on why density functional theory has performed rather poorly for liquid water, on what improvements are needed, and onmore » the intrinsic limitations of the generalized gradient approximation to electron exchange and correlation. Finally, we present tests of our water-optimized functional, that we call vdW-DF-w, showing that it performs very well for a variety of condensed water systems.« less

  15. Orbital nodal surfaces: Topological challenges for density functionals

    NASA Astrophysics Data System (ADS)

    Aschebrock, Thilo; Armiento, Rickard; Kümmel, Stephan

    2017-06-01

    Nodal surfaces of orbitals, in particular of the highest occupied one, play a special role in Kohn-Sham density-functional theory. The exact Kohn-Sham exchange potential, for example, shows a protruding ridge along such nodal surfaces, leading to the counterintuitive feature of a potential that goes to different asymptotic limits in different directions. We show here that nodal surfaces can heavily affect the potential of semilocal density-functional approximations. For the functional derivatives of the Armiento-Kümmel (AK13) [Phys. Rev. Lett. 111, 036402 (2013), 10.1103/PhysRevLett.111.036402] and Becke88 [Phys. Rev. A 38, 3098 (1988), 10.1103/PhysRevA.38.3098] energy functionals, i.e., the corresponding semilocal exchange potentials, as well as the Becke-Johnson [J. Chem. Phys. 124, 221101 (2006), 10.1063/1.2213970] and van Leeuwen-Baerends (LB94) [Phys. Rev. A 49, 2421 (1994), 10.1103/PhysRevA.49.2421] model potentials, we explicitly demonstrate exponential divergences in the vicinity of nodal surfaces. We further point out that many other semilocal potentials have similar features. Such divergences pose a challenge for the convergence of numerical solutions of the Kohn-Sham equations. We prove that for exchange functionals of the generalized gradient approximation (GGA) form, enforcing correct asymptotic behavior of the potential or energy density necessarily leads to irregular behavior on or near orbital nodal surfaces. We formulate constraints on the GGA exchange enhancement factor for avoiding such divergences.

  16. Introduction to Classical Density Functional Theory by a Computational Experiment

    ERIC Educational Resources Information Center

    Jeanmairet, Guillaume; Levy, Nicolas; Levesque, Maximilien; Borgis, Daniel

    2014-01-01

    We propose an in silico experiment to introduce the classical density functional theory (cDFT). Density functional theories, whether quantum or classical, rely on abstract concepts that are nonintuitive; however, they are at the heart of powerful tools and active fields of research in both physics and chemistry. They led to the 1998 Nobel Prize in…

  17. Applications of Density Functional Theory in Soft Condensed Matter

    NASA Astrophysics Data System (ADS)

    Löwen, Hartmut

    Applications of classical density functional theory (DFT) to soft matter systems like colloids, liquid crystals and polymer solutions are discussed with a focus on the freezing transition and on nonequilibrium Brownian dynamics. First, after a brief reminder of equilibrium density functional theory, DFT is applied to the freezing transition of liquids into crystalline lattices. In particular, spherical particles with radially symmetric pair potentials will be treated (like hard spheres, the classical one-component plasma or Gaussian-core particles). Second, the DFT will be generalized towards Brownian dynamics in order to tackle nonequilibrium problems. After a general introduction to Brownian dynamics using the complementary Smoluchowski and Langevin pictures appropriate for the dynamics of colloidal suspensions, the dynamical density functional theory (DDFT) will be derived from the Smoluchowski equation. This will be done first for spherical particles (e.g. hard spheres or Gaussian-cores) without hydrodynamic interactions. Then we show how to incorporate hydrodynamic interactions between the colloidal particles into the DDFT framework and compare to Brownian dynamics computer simulations. Third orientational degrees of freedom (rod-like particles) will be considered as well. In the latter case, the stability of intermediate liquid crystalline phases (isotropic, nematic, smectic-A, plastic crystals etc) can be predicted. Finally, the corresponding dynamical extension of density functional theory towards orientational degrees of freedom is proposed and the collective behaviour of "active" (self-propelled) Brownian particles is briefly discussed.

  18. Electric field modulation of Schottky barrier height in graphene/MoSe{sub 2} van der Waals heterointerface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sata, Yohta; Moriya, Rai, E-mail: moriyar@iis.u-tokyo.ac.jp, E-mail: tmachida@iis.u-tokyo.ac.jp; Morikawa, Sei

    2015-07-13

    We demonstrate a vertical field-effect transistor based on a graphene/MoSe{sub 2} van der Waals (vdW) heterostructure. The vdW interface between the graphene and MoSe{sub 2} exhibits a Schottky barrier with an ideality factor of around 1.3, suggesting a high-quality interface. Owing to the low density of states in graphene, the position of the Fermi level in the graphene can be strongly modulated by an external electric field. Therefore, the Schottky barrier height at the graphene/MoSe{sub 2} vdW interface is also modulated. We demonstrate a large current ON-OFF ratio of 10{sup 5}. These results point to the potential high performance ofmore » the graphene/MoSe{sub 2} vdW heterostructure for electronics applications.« less

  19. Plato: A localised orbital based density functional theory code

    NASA Astrophysics Data System (ADS)

    Kenny, S. D.; Horsfield, A. P.

    2009-12-01

    The Plato package allows both orthogonal and non-orthogonal tight-binding as well as density functional theory (DFT) calculations to be performed within a single framework. The package also provides extensive tools for analysing the results of simulations as well as a number of tools for creating input files. The code is based upon the ideas first discussed in Sankey and Niklewski (1989) [1] with extensions to allow high-quality DFT calculations to be performed. DFT calculations can utilise either the local density approximation or the generalised gradient approximation. Basis sets from minimal basis through to ones containing multiple radial functions per angular momenta and polarisation functions can be used. Illustrations of how the package has been employed are given along with instructions for its utilisation. Program summaryProgram title: Plato Catalogue identifier: AEFC_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFC_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 219 974 No. of bytes in distributed program, including test data, etc.: 1 821 493 Distribution format: tar.gz Programming language: C/MPI and PERL Computer: Apple Macintosh, PC, Unix machines Operating system: Unix, Linux and Mac OS X Has the code been vectorised or parallelised?: Yes, up to 256 processors tested RAM: Up to 2 Gbytes per processor Classification: 7.3 External routines: LAPACK, BLAS and optionally ScaLAPACK, BLACS, PBLAS, FFTW Nature of problem: Density functional theory study of electronic structure and total energies of molecules, crystals and surfaces. Solution method: Localised orbital based density functional theory. Restrictions: Tight-binding and density functional theory only, no exact exchange. Unusual features: Both atom centred and uniform meshes available

  20. General framework for fluctuating dynamic density functional theory

    NASA Astrophysics Data System (ADS)

    Durán-Olivencia, Miguel A.; Yatsyshin, Peter; Goddard, Benjamin D.; Kalliadasis, Serafim

    2017-12-01

    We introduce a versatile bottom-up derivation of a formal theoretical framework to describe (passive) soft-matter systems out of equilibrium subject to fluctuations. We provide a unique connection between the constituent-particle dynamics of real systems and the time evolution equation of their measurable (coarse-grained) quantities, such as local density and velocity. The starting point is the full Hamiltonian description of a system of colloidal particles immersed in a fluid of identical bath particles. Then, we average out the bath via Zwanzig’s projection-operator techniques and obtain the stochastic Langevin equations governing the colloidal-particle dynamics. Introducing the appropriate definition of the local number and momentum density fields yields a generalisation of the Dean-Kawasaki (DK) model, which resembles the stochastic Navier-Stokes description of a fluid. Nevertheless, the DK equation still contains all the microscopic information and, for that reason, does not represent the dynamical law of observable quantities. We address this controversial feature of the DK description by carrying out a nonequilibrium ensemble average. Adopting a natural decomposition into local-equilibrium and nonequilibrium contribution, where the former is related to a generalised version of the canonical distribution, we finally obtain the fluctuating-hydrodynamic equation governing the time-evolution of the mesoscopic density and momentum fields. Along the way, we outline the connection between the ad hoc energy functional introduced in previous DK derivations and the free-energy functional from classical density-functional theory. The resultant equation has the structure of a dynamical density-functional theory (DDFT) with an additional fluctuating force coming from the random interactions with the bath. We show that our fluctuating DDFT formalism corresponds to a particular version of the fluctuating Navier-Stokes equations, originally derived by Landau and Lifshitz

  1. Dispersion corrected hartree-fock and density functional theory for organic crystal structure prediction.

    PubMed

    Brandenburg, Jan Gerit; Grimme, Stefan

    2014-01-01

    We present and evaluate dispersion corrected Hartree-Fock (HF) and Density Functional Theory (DFT) based quantum chemical methods for organic crystal structure prediction. The necessity of correcting for missing long-range electron correlation, also known as van der Waals (vdW) interaction, is pointed out and some methodological issues such as inclusion of three-body dispersion terms are discussed. One of the most efficient and widely used methods is the semi-classical dispersion correction D3. Its applicability for the calculation of sublimation energies is investigated for the benchmark set X23 consisting of 23 small organic crystals. For PBE-D3 the mean absolute deviation (MAD) is below the estimated experimental uncertainty of 1.3 kcal/mol. For two larger π-systems, the equilibrium crystal geometry is investigated and very good agreement with experimental data is found. Since these calculations are carried out with huge plane-wave basis sets they are rather time consuming and routinely applicable only to systems with less than about 200 atoms in the unit cell. Aiming at crystal structure prediction, which involves screening of many structures, a pre-sorting with faster methods is mandatory. Small, atom-centered basis sets can speed up the computation significantly but they suffer greatly from basis set errors. We present the recently developed geometrical counterpoise correction gCP. It is a fast semi-empirical method which corrects for most of the inter- and intramolecular basis set superposition error. For HF calculations with nearly minimal basis sets, we additionally correct for short-range basis incompleteness. We combine all three terms in the HF-3c denoted scheme which performs very well for the X23 sublimation energies with an MAD of only 1.5 kcal/mol, which is close to the huge basis set DFT-D3 result.

  2. 2D halide perovskite-based van der Waals heterostructures: contact evaluation and performance modulation

    NASA Astrophysics Data System (ADS)

    Guo, Yaguang; Saidi, Wissam A.; Wang, Qian

    2017-09-01

    Halide perovskites and van der Waals (vdW) heterostructures are both of current interest owing to their novel properties and potential applications in nano-devices. Here, we show the great potential of 2D halide perovskite sheets (C4H9NH3)2PbX4 (X  =  Cl, Br and I) that were synthesized recently (Dou et al 2015 Science 349 1518-21) as the channel materials contacting with graphene and other 2D metallic sheets to form van der Waals heterostructures for field effect transistor (FET). Based on state-of-the-art theoretical simulations, we show that the intrinsic properties of the 2D halide perovskites are preserved in the heterojunction, which is different from the conventional contact with metal surfaces. The 2D halide perovskites form a p-type Schottky barrier (Φh) contact with graphene, where tunneling barrier exists, and a negative band bending occurs at the lateral interface. We demonstrate that the Schottky barrier can be turned from p-type to n-type by doping graphene with nitrogen atoms, and a low-Φh or an Ohmic contact can be realized by doping graphene with boron atoms or replacing graphene with other high-work-function 2D metallic sheets such as ZT-MoS2, ZT-MoSe2 and H-NbS2. This study not only predicts a 2D halide perovskite-based FETs, but also enhances the understanding of tuning Schottky barrier height in device applications.

  3. Some new exact solitary wave solutions of the van der Waals model arising in nature

    NASA Astrophysics Data System (ADS)

    Bibi, Sadaf; Ahmed, Naveed; Khan, Umar; Mohyud-Din, Syed Tauseef

    2018-06-01

    This work proposes two well-known methods, namely, Exponential rational function method (ERFM) and Generalized Kudryashov method (GKM) to seek new exact solutions of the van der Waals normal form for the fluidized granular matter, linked with natural phenomena and industrial applications. New soliton solutions such as kink, periodic and solitary wave solutions are established coupled with 2D and 3D graphical patterns for clarity of physical features. Our comparison reveals that the said methods excel several existing methods. The worked-out solutions show that the suggested methods are simple and reliable as compared to many other approaches which tackle nonlinear equations stemming from applied sciences.

  4. What Density Functional Theory could do for Quantum Information

    NASA Astrophysics Data System (ADS)

    Mattsson, Ann

    2015-03-01

    The Hohenberg-Kohn theorem of Density Functional Theory (DFT), and extensions thereof, tells us that all properties of a system of electrons can be determined through their density, which uniquely determines the many-body wave-function. Given access to the appropriate, universal, functionals of the density we would, in theory, be able to determine all observables of any electronic system, without explicit reference to the wave-function. On the other hand, the wave-function is at the core of Quantum Information (QI), with the wave-function of a set of qubits being the central computational resource in a quantum computer. While there is seemingly little overlap between DFT and QI, reliance upon observables form a key connection. Though the time-evolution of the wave-function and associated phase information is fundamental to quantum computation, the initial and final states of a quantum computer are characterized by observables of the system. While observables can be extracted directly from a system's wave-function, DFT tells us that we may be able to intuit a method for extracting them from its density. In this talk, I will review the fundamentals of DFT and how these principles connect to the world of QI. This will range from DFT's utility in the engineering of physical qubits, to the possibility of using it to efficiently (but approximately) simulate Hamiltonians at the logical level. The apparent paradox of describing algorithms based on the quantum mechanical many-body wave-function with a DFT-like theory based on observables will remain a focus throughout. The ultimate goal of this talk is to initiate a dialog about what DFT could do for QI, in theory and in practice. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  5. Effective model hierarchies for dynamic and static classical density functional theories

    NASA Astrophysics Data System (ADS)

    Majaniemi, S.; Provatas, N.; Nonomura, M.

    2010-09-01

    The origin and methodology of deriving effective model hierarchies are presented with applications to solidification of crystalline solids. In particular, it is discussed how the form of the equations of motion and the effective parameters on larger scales can be obtained from the more microscopic models. It will be shown that tying together the dynamic structure of the projection operator formalism with static classical density functional theories can lead to incomplete (mass) transport properties even though the linearized hydrodynamics on large scales is correctly reproduced. To facilitate a more natural way of binding together the dynamics of the macrovariables and classical density functional theory, a dynamic generalization of density functional theory based on the nonequilibrium generating functional is suggested.

  6. Subsystem real-time time dependent density functional theory.

    PubMed

    Krishtal, Alisa; Ceresoli, Davide; Pavanello, Michele

    2015-04-21

    We present the extension of Frozen Density Embedding (FDE) formulation of subsystem Density Functional Theory (DFT) to real-time Time Dependent Density Functional Theory (rt-TDDFT). FDE is a DFT-in-DFT embedding method that allows to partition a larger Kohn-Sham system into a set of smaller, coupled Kohn-Sham systems. Additional to the computational advantage, FDE provides physical insight into the properties of embedded systems and the coupling interactions between them. The extension to rt-TDDFT is done straightforwardly by evolving the Kohn-Sham subsystems in time simultaneously, while updating the embedding potential between the systems at every time step. Two main applications are presented: the explicit excitation energy transfer in real time between subsystems is demonstrated for the case of the Na4 cluster and the effect of the embedding on optical spectra of coupled chromophores. In particular, the importance of including the full dynamic response in the embedding potential is demonstrated.

  7. Accuracy of electron densities obtained via Koopmans-compliant hybrid functionals

    NASA Astrophysics Data System (ADS)

    Elmaslmane, A. R.; Wetherell, J.; Hodgson, M. J. P.; McKenna, K. P.; Godby, R. W.

    2018-04-01

    We evaluate the accuracy of electron densities and quasiparticle energy gaps given by hybrid functionals by directly comparing these to the exact quantities obtained from solving the many-electron Schrödinger equation. We determine the admixture of Hartree-Fock exchange to approximate exchange-correlation in our hybrid functional via one of several physically justified constraints, including the generalized Koopmans' theorem. We find that hybrid functionals yield strikingly accurate electron densities and gaps in both exchange-dominated and correlated systems. We also discuss the role of the screened Fock operator in the success of hybrid functionals.

  8. Level densities and γ-ray strength functions in Sn isotopes

    NASA Astrophysics Data System (ADS)

    Toft, H. K.; Larsen, A. C.; Agvaanluvsan, U.; Bürger, A.; Guttormsen, M.; Mitchell, G. E.; Nyhus, H. T.; Schiller, A.; Siem, S.; Syed, N. U. H.; Voinov, A.

    2010-06-01

    The nuclear level densities of Sn118,119 and the γ-ray strength functions of Sn116,118,119 below the neutron separation energy are extracted with the Oslo method using the (He3,αγ) and (He3,He3'γ) reactions. The level-density function of Sn119 displays steplike structures. The microcanonical entropies are deduced from the level densities, and the single neutron entropy of Sn119 is determined to be 1.7 ± 0.2 kB. Results from a combinatorial model support the interpretation that some of the low-energy steps in the level density function are caused by neutron pair breaking. An enhancement in all the γ-ray strength functions of Sn116-119, compared to standard models for radiative strength, is observed for the γ-ray energy region of ≃4-11 MeV. These small resonances all have a centroid energy of 8.0(1) MeV and an integrated strength corresponding to 1.7(9)% of the classical Thomas-Reiche-Kuhn sum rule. The Sn resonances may be due to electric dipole neutron skin oscillations or to an enhancement of the giant magnetic dipole resonance.

  9. Decoupling interface effect on the phase stability of CdS thin films by van der Waals heteroepitaxy

    NASA Astrophysics Data System (ADS)

    Sun, Xin; Wang, Yiping; Seewald, Lucas J.; Chen, Zhizhong; Shi, Jian; Washington, Morris A.; Lu, Toh-Ming

    2017-01-01

    Wurtzite (W) and zinc-blende (ZB) polytypism has long been observed in epitaxial CdS thin films. The present work, based on van der Waals epitaxial CdS thin films, is an attempt to explain which crystal modification, W or ZB, is favored under different growth conditions. In this van der Waals epitaxy system where the substrate influence is considered weak, it is found that the substrate temperature plays a crucial role in determining the crystal modification of CdS, that is, W and ZB CdS are more stable at low and high ends of substrate temperature, respectively. We attribute this temperature effect to the entropy difference (SW < SZB), a conclusion well supported by the thermodynamic hard sphere model formulation of the entropy difference between hexagonal close-packed and face-centered cubic structures. By summarizing other works, we find that the entropy difference model can also be applied to large mismatched (≳3%) CdS-substrate chemical epitaxy systems but not for small mismatched (≲3%) ones. In the latter case, the energy benefit in terms of high density of bonding contributed by the substrate-film interface is believed to be too overwhelming for the intrinsic entropy difference to overcome. Furthermore, the deposition rate is found to affect the crystalline quality and strain level in CdS films but not the crystal modification of the CdS films. Last, Raman and photoluminescence spectroscopies reveal the strain behaviors in the films. The phase change from W to ZB CdS is well-correlated with the observed peak shifts in Raman and photoluminescence spectroscopies.

  10. Differentiability of energy functionals in spin-density-functional theory

    NASA Astrophysics Data System (ADS)

    Gál, Tamás

    2007-06-01

    Recently, nonuniqueness of external electrostatic and magnetic fields yielding a given many-electron ground state has been pointed out [K. Capelle and G. Vignale, Phys. Rev. Lett. 86, 5546 (2001); H. Eschrig and W. E. Pickett, Solid State Commun. 118, 123 (2001)], implying the nondifferentiability of the ground-state energy functional of spin-density-functional theory (SDFT), on the basis of which the applicability of widely used DFT methods in SDFT has been put into question and the need for a critical reexamination of those applications has been concluded. Here it is shown, for collinear magnetic fields, that the nonuniqueness of the external potentials in SDFT does not imply the nonexistence of number-conserving functional derivatives as well, with the use of which therefore problems arising from the nondifferentiability are avoided.

  11. Electric-field switching of two-dimensional van der Waals magnets

    NASA Astrophysics Data System (ADS)

    Jiang, Shengwei; Shan, Jie; Mak, Kin Fai

    2018-05-01

    Controlling magnetism by purely electrical means is a key challenge to better information technology1. A variety of material systems, including ferromagnetic (FM) metals2-4, FM semiconductors5, multiferroics6-8 and magnetoelectric (ME) materials9,10, have been explored for the electric-field control of magnetism. The recent discovery of two-dimensional (2D) van der Waals magnets11,12 has opened a new door for the electrical control of magnetism at the nanometre scale through a van der Waals heterostructure device platform13. Here we demonstrate the control of magnetism in bilayer CrI3, an antiferromagnetic (AFM) semiconductor in its ground state12, by the application of small gate voltages in field-effect devices and the detection of magnetization using magnetic circular dichroism (MCD) microscopy. The applied electric field creates an interlayer potential difference, which results in a large linear ME effect, whose sign depends on the interlayer AFM order. We also achieve a complete and reversible electrical switching between the interlayer AFM and FM states in the vicinity of the interlayer spin-flip transition. The effect originates from the electric-field dependence of the interlayer exchange bias.

  12. Semi-local machine-learned kinetic energy density functional with third-order gradients of electron density

    NASA Astrophysics Data System (ADS)

    Seino, Junji; Kageyama, Ryo; Fujinami, Mikito; Ikabata, Yasuhiro; Nakai, Hiromi

    2018-06-01

    A semi-local kinetic energy density functional (KEDF) was constructed based on machine learning (ML). The present scheme adopts electron densities and their gradients up to third-order as the explanatory variables for ML and the Kohn-Sham (KS) kinetic energy density as the response variable in atoms and molecules. Numerical assessments of the present scheme were performed in atomic and molecular systems, including first- and second-period elements. The results of 37 conventional KEDFs with explicit formulae were also compared with those of the ML KEDF with an implicit formula. The inclusion of the higher order gradients reduces the deviation of the total kinetic energies from the KS calculations in a stepwise manner. Furthermore, our scheme with the third-order gradient resulted in the closest kinetic energies to the KS calculations out of the presented functionals.

  13. Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials.

    PubMed

    Ding, Wenjun; Zhu, Jianbao; Wang, Zhe; Gao, Yanfei; Xiao, Di; Gu, Yi; Zhang, Zhenyu; Zhu, Wenguang

    2017-04-07

    Interest in two-dimensional (2D) van der Waals materials has grown rapidly across multiple scientific and engineering disciplines in recent years. However, ferroelectricity, the presence of a spontaneous electric polarization, which is important in many practical applications, has rarely been reported in such materials so far. Here we employ first-principles calculations to discover a branch of the 2D materials family, based on In 2 Se 3 and other III 2 -VI 3 van der Waals materials, that exhibits room-temperature ferroelectricity with reversible spontaneous electric polarization in both out-of-plane and in-plane orientations. The device potential of these 2D ferroelectric materials is further demonstrated using the examples of van der Waals heterostructures of In 2 Se 3 /graphene, exhibiting a tunable Schottky barrier, and In 2 Se 3 /WSe 2 , showing a significant band gap reduction in the combined system. These findings promise to substantially broaden the tunability of van der Waals heterostructures for a wide range of applications.

  14. Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials

    PubMed Central

    Ding, Wenjun; Zhu, Jianbao; Wang, Zhe; Gao, Yanfei; Xiao, Di; Gu, Yi; Zhang, Zhenyu; Zhu, Wenguang

    2017-01-01

    Interest in two-dimensional (2D) van der Waals materials has grown rapidly across multiple scientific and engineering disciplines in recent years. However, ferroelectricity, the presence of a spontaneous electric polarization, which is important in many practical applications, has rarely been reported in such materials so far. Here we employ first-principles calculations to discover a branch of the 2D materials family, based on In2Se3 and other III2-VI3 van der Waals materials, that exhibits room-temperature ferroelectricity with reversible spontaneous electric polarization in both out-of-plane and in-plane orientations. The device potential of these 2D ferroelectric materials is further demonstrated using the examples of van der Waals heterostructures of In2Se3/graphene, exhibiting a tunable Schottky barrier, and In2Se3/WSe2, showing a significant band gap reduction in the combined system. These findings promise to substantially broaden the tunability of van der Waals heterostructures for a wide range of applications. PMID:28387225

  15. Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials

    NASA Astrophysics Data System (ADS)

    Ding, Wenjun; Zhu, Jianbao; Wang, Zhe; Gao, Yanfei; Xiao, Di; Gu, Yi; Zhang, Zhenyu; Zhu, Wenguang

    2017-04-01

    Interest in two-dimensional (2D) van der Waals materials has grown rapidly across multiple scientific and engineering disciplines in recent years. However, ferroelectricity, the presence of a spontaneous electric polarization, which is important in many practical applications, has rarely been reported in such materials so far. Here we employ first-principles calculations to discover a branch of the 2D materials family, based on In2Se3 and other III2-VI3 van der Waals materials, that exhibits room-temperature ferroelectricity with reversible spontaneous electric polarization in both out-of-plane and in-plane orientations. The device potential of these 2D ferroelectric materials is further demonstrated using the examples of van der Waals heterostructures of In2Se3/graphene, exhibiting a tunable Schottky barrier, and In2Se3/WSe2, showing a significant band gap reduction in the combined system. These findings promise to substantially broaden the tunability of van der Waals heterostructures for a wide range of applications.

  16. The QTP family of consistent functionals and potentials in Kohn-Sham density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Yifan; Bartlett, Rodney J., E-mail: bartlett@qtp.ufl.edu

    This manuscript presents the second, consistent density functional in the QTP (Quantum Theory Project) family, that is, the CAM-QTP(01). It is a new range-separated exchange-correlation functional in which the non-local exchange contribution is 100% at large separation. It follows the same basic principles of this family that the Kohn-Sham eigenvalues of the occupied orbitals approximately equal the vertical ionization energies, which is not fulfilled by most of the traditional density functional methods. This new CAM-QTP(01) functional significantly improves the accuracy of the vertical excitation energies especially for the Rydberg states in the test set. It also reproduces many other propertiesmore » such as geometries, reaction barrier heights, and atomization energies.« less

  17. Communication: Multiple-property-based diabatization for open-shell van der Waals molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karman, Tijs; Avoird, Ad van der; Groenenboom, Gerrit C., E-mail: gerritg@theochem.ru.nl

    2016-03-28

    We derive a new multiple-property-based diabatization algorithm. The transformation between adiabatic and diabatic representations is determined by requiring a set of properties in both representations to be related by a similarity transformation. This set of properties is determined in the adiabatic representation by rigorous electronic structure calculations. In the diabatic representation, the same properties are determined using model diabatic states defined as products of undistorted monomer wave functions. This diabatic model is generally applicable to van der Waals molecules in arbitrary electronic states. Application to locating seams of conical intersections and collisional transfer of electronic excitation energy is demonstrated formore » O{sub 2} − O{sub 2} in low-lying excited states. Property-based diabatization for this test system included all components of the electric quadrupole tensor, orbital angular momentum, and spin-orbit coupling.« less

  18. A density difference based analysis of orbital-dependent exchange-correlation functionals

    NASA Astrophysics Data System (ADS)

    Grabowski, Ireneusz; Teale, Andrew M.; Fabiano, Eduardo; Śmiga, Szymon; Buksztel, Adam; Della Sala, Fabio

    2014-03-01

    We present a density difference based analysis for a range of orbital-dependent Kohn-Sham functionals. Results for atoms, some members of the neon isoelectronic series and small molecules are reported and compared with ab initio wave function calculations. Particular attention is paid to the quality of approximations to the exchange-only optimised effective potential (OEP) approach: we consider both the localised Hartree-Fock as well as the Krieger-Li-Iafrate methods. Analysis of density differences at the exchange-only level reveals the impact of the approximations on the resulting electronic densities. These differences are further quantified in terms of the ground state energies, frontier orbital energy differences and highest occupied orbital energies obtained. At the correlated level, an OEP approach based on a perturbative second-order correlation energy expression is shown to deliver results comparable with those from traditional wave function approaches, making it suitable for use as a benchmark against which to compare standard density functional approximations.

  19. On extending Kohn-Sham density functionals to systems with fractional number of electrons.

    PubMed

    Li, Chen; Lu, Jianfeng; Yang, Weitao

    2017-06-07

    We analyze four ways of formulating the Kohn-Sham (KS) density functionals with a fractional number of electrons, through extending the constrained search space from the Kohn-Sham and the generalized Kohn-Sham (GKS) non-interacting v-representable density domain for integer systems to four different sets of densities for fractional systems. In particular, these density sets are (I) ensemble interacting N-representable densities, (II) ensemble non-interacting N-representable densities, (III) non-interacting densities by the Janak construction, and (IV) non-interacting densities whose composing orbitals satisfy the Aufbau occupation principle. By proving the equivalence of the underlying first order reduced density matrices associated with these densities, we show that sets (I), (II), and (III) are equivalent, and all reduce to the Janak construction. Moreover, for functionals with the ensemble v-representable assumption at the minimizer, (III) reduces to (IV) and thus justifies the previous use of the Aufbau protocol within the (G)KS framework in the study of the ground state of fractional electron systems, as defined in the grand canonical ensemble at zero temperature. By further analyzing the Aufbau solution for different density functional approximations (DFAs) in the (G)KS scheme, we rigorously prove that there can be one and only one fractional occupation for the Hartree Fock functional, while there can be multiple fractional occupations for general DFAs in the presence of degeneracy. This has been confirmed by numerical calculations using the local density approximation as a representative of general DFAs. This work thus clarifies important issues on density functional theory calculations for fractional electron systems.

  20. Accurate Semilocal Density Functional for Condensed-Matter Physics and Quantum Chemistry.

    PubMed

    Tao, Jianmin; Mo, Yuxiang

    2016-08-12

    Most density functionals have been developed by imposing the known exact constraints on the exchange-correlation energy, or by a fit to a set of properties of selected systems, or by both. However, accurate modeling of the conventional exchange hole presents a great challenge, due to the delocalization of the hole. Making use of the property that the hole can be made localized under a general coordinate transformation, here we derive an exchange hole from the density matrix expansion, while the correlation part is obtained by imposing the low-density limit constraint. From the hole, a semilocal exchange-correlation functional is calculated. Our comprehensive test shows that this functional can achieve remarkable accuracy for diverse properties of molecules, solids, and solid surfaces, substantially improving upon the nonempirical functionals proposed in recent years. Accurate semilocal functionals based on their associated holes are physically appealing and practically useful for developing nonlocal functionals.

  1. Nonlocal and Nonadiabatic Effects in the Charge-Density Response of Solids: A Time-Dependent Density-Functional Approach

    NASA Astrophysics Data System (ADS)

    Panholzer, Martin; Gatti, Matteo; Reining, Lucia

    2018-04-01

    The charge-density response of extended materials is usually dominated by the collective oscillation of electrons, the plasmons. Beyond this feature, however, intriguing many-body effects are observed. They cannot be described by one of the most widely used approaches for the calculation of dielectric functions, which is time-dependent density functional theory (TDDFT) in the adiabatic local density approximation (ALDA). Here, we propose an approximation to the TDDFT exchange-correlation kernel which is nonadiabatic and nonlocal. It is extracted from correlated calculations in the homogeneous electron gas, where we have tabulated it for a wide range of wave vectors and frequencies. A simple mean density approximation allows one to use it in inhomogeneous materials where the density varies on a scale of 1.6 rs or faster. This kernel contains effects that are completely absent in the ALDA; in particular, it correctly describes the double plasmon in the dynamic structure factor of sodium, and it shows the characteristic low-energy peak that appears in systems with low electronic density. It also leads to an overall quantitative improvement of spectra.

  2. Nonlocal and Nonadiabatic Effects in the Charge-Density Response of Solids: A Time-Dependent Density-Functional Approach.

    PubMed

    Panholzer, Martin; Gatti, Matteo; Reining, Lucia

    2018-04-20

    The charge-density response of extended materials is usually dominated by the collective oscillation of electrons, the plasmons. Beyond this feature, however, intriguing many-body effects are observed. They cannot be described by one of the most widely used approaches for the calculation of dielectric functions, which is time-dependent density functional theory (TDDFT) in the adiabatic local density approximation (ALDA). Here, we propose an approximation to the TDDFT exchange-correlation kernel which is nonadiabatic and nonlocal. It is extracted from correlated calculations in the homogeneous electron gas, where we have tabulated it for a wide range of wave vectors and frequencies. A simple mean density approximation allows one to use it in inhomogeneous materials where the density varies on a scale of 1.6 r_{s} or faster. This kernel contains effects that are completely absent in the ALDA; in particular, it correctly describes the double plasmon in the dynamic structure factor of sodium, and it shows the characteristic low-energy peak that appears in systems with low electronic density. It also leads to an overall quantitative improvement of spectra.

  3. Effects of van der Waals Force and Thermal Stresses on Pull-in Instability of Clamped Rectangular Microplates.

    PubMed

    Batra, Romesh C; Porfiri, Maurizio; Spinello, Davide

    2008-02-15

    We study the influence of von Karman nonlinearity, van der Waals force, and a athermal stresses on pull-in instability and small vibrations of electrostatically actuated mi-croplates. We use the Galerkin method to develop a tractable reduced-order model for elec-trostatically actuated clamped rectangular microplates in the presence of van der Waals forcesand thermal stresses. More specifically, we reduce the governing two-dimensional nonlineartransient boundary-value problem to a single nonlinear ordinary differential equation. For thestatic problem, the pull-in voltage and the pull-in displacement are determined by solving apair of nonlinear algebraic equations. The fundamental vibration frequency corresponding toa deflected configuration of the microplate is determined by solving a linear algebraic equa-tion. The proposed reduced-order model allows for accurately estimating the combined effectsof van der Waals force and thermal stresses on the pull-in voltage and the pull-in deflectionprofile with an extremely limited computational effort.

  4. Effects of van der Waals Force and Thermal Stresses on Pull-in Instability of Clamped Rectangular Microplates

    PubMed Central

    Batra, Romesh C.; Porfiri, Maurizio; Spinello, Davide

    2008-01-01

    We study the influence of von Kármán nonlinearity, van der Waals force, and thermal stresses on pull-in instability and small vibrations of electrostatically actuated microplates. We use the Galerkin method to develop a tractable reduced-order model for electrostatically actuated clamped rectangular microplates in the presence of van der Waals forces and thermal stresses. More specifically, we reduce the governing two-dimensional nonlinear transient boundary-value problem to a single nonlinear ordinary differential equation. For the static problem, the pull-in voltage and the pull-in displacement are determined by solving a pair of nonlinear algebraic equations. The fundamental vibration frequency corresponding to a deflected configuration of the microplate is determined by solving a linear algebraic equation. The proposed reduced-order model allows for accurately estimating the combined effects of van der Waals force and thermal stresses on the pull-in voltage and the pull-in deflection profile with an extremely limited computational effort. PMID:27879752

  5. Rapid estimation of the electron correlation energy for van der Waals complexes RgX (Rg = Kr, Xe, X = Br, I)

    NASA Astrophysics Data System (ADS)

    Xinying, Li; Yongfang, Zhao; Xiaogong, Jing; Fengli, Liu; Fengyou, Hao

    2006-01-01

    We present the rules of electron correlation energies for RgX (Rg = Kr, Xe, X = Br, I) van der Waals (vdW) complex systems at CCSD(T) theoretical level with SDB-cc-pVQZ basis set by the Gaussian 98 program. A new method to derive the dispersion coefficient C6 by fitting the intermonomer electron correlation energies to C6R-6 function is introduced. The present C6 values are compared with the corresponding theoretical ones.

  6. Comment on "Nonuniqueness of algebraic first-order density-matrix functionals"

    NASA Astrophysics Data System (ADS)

    Gritsenko, O. V.

    2018-02-01

    Wang and Knowles (WK) [Phys. Rev. A 92, 012520 (2015), 10.1103/PhysRevA.92.012520] have given a counterexample to the conventional in reduced density-matrix functional theory representation of the second-order reduced density matrix (2RDM) Γi j ,k l in the basis of the natural orbitals as a function Γi j ,k l(n ) of the orbital occupation numbers (ONs) ni. The observed nonuniqueness of Γi j ,k l for prototype systems of different symmetry has been interpreted as the inherent inability of ON functions to reproduce the 2RDM, due to the insufficient information contained in the 1RDM spectrum. In this Comment, it is argued that, rather than totally invalidating Γi j ,k l(n ) , the WK example exposes its symmetry dependence which, as well as the previously established analogous dependence in density functional theory, is demonstrated with a general formulation based on the Levy constrained search.

  7. Bandgap engineering and charge separation in two-dimensional GaS-based van der Waals heterostructures for photocatalytic water splitting

    NASA Astrophysics Data System (ADS)

    Wang, Biao; Kuang, Anlong; Luo, Xukai; Wang, Guangzhao; Yuan, Hongkuan; Chen, Hong

    2018-05-01

    Two-dimensional (2D) gallium sulfide (GaS), hexagonal boron nitride (h-BN) and graphitic carbon nitride (g-C3N4) have been fabricated and expected to be promising photocatalysts under ultraviolet irradiation. Here, we employ hybrid density functional calculations to explore the potential of the 2D GaS-based heterojunctions GaS/h-BN (g-C3N4) for the design of efficient water redox photocatalysts. Both heterostructures can be formed via van der Waals (vdW) interaction and are direct bandgap semiconductors, whose bandgaps are reduced comparing with isolated GaS, h-BN or g-C3N4 monolayers and whose bandedges straddle water redox potentials. Furthermore, the optical absorption of GaS/h-BN (g-C3N4) heterostructures is observably enhanced in the ultraviolet-visible (UV-vis) light range. The electron-hole pairs in GaS/h-BN (g-C3N4) heterostructures are completely separated from different layers. In addition, the in-plane biaxial strain can effectively modulate the electronic properties of GaS/h-BN (g-C3N4) heterostructures. Thus the GaS/h-BN (g-C3N4) heterostructures are anticipated to be promising candidates for photocatalytic water splitting to produce hydrogen.

  8. Nanoscale measurement of Nernst effect in two-dimensional charge density wave material 1T-TaS 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Stephen M.; Luican-Mayer, Adina; Bhattacharya, Anand

    Advances in nanoscale material characterization on two-dimensional van der Waals layered materials primarily involve their optical and electronic properties. The thermal properties of these materials are harder to access due to the difficulty of thermal measurements at the nanoscale. In this work, we create a nanoscale magnetothermal device platform to access the basic out-of-plane magnetothermal transport properties of ultrathin van der Waals materials. Specifically, the Nernst effect in the charge density wave transition metal dichalcogenide 1T-TaS 2 is examined on nano-thin flakes in a patterned device structure. It is revealed that near the commensurate charge density wave (CCDW) to nearlymore » commensurate charge density wave (NCCDW) phase transition, the polarity of the Nernst effect changes. Since the Nernst effect is especially sensitive to changes in the Fermi surface, this suggests that large changes are occurring in the out-of-plane electronic structure of 1T-TaS 2, which are otherwise unresolved in just in-plane electronic transport measurements. This may signal a coherent evolution of out-of-plane stacking in the CCDW! NCCDW transition.« less

  9. Spontaneous doping on high quality talc-graphene-hBN van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Mania, E.; Alencar, A. B.; Cadore, A. R.; Carvalho, B. R.; Watanabe, K.; Taniguchi, T.; Neves, B. R. A.; Chacham, H.; Campos, L. C.

    2017-09-01

    Steady doping, added to its remarkable electronic properties, would make graphene a valuable commodity in the solar cell market, as energy power conversion could be substantially increased. Here we report a graphene van der Waals heterostructure which is able to spontaneously dope graphene (p-type) up to n ~ 2.2  ×  1013 cm-2 while providing excellent charge mobility (μ ~ 25 000 cm2 V-1 s-1). Such properties are achieved via deposition of graphene on atomically flat layered talc, a natural and abundant dielectric crystal. Raman investigation shows a preferential charge accumulation on graphene-talc van der Waals heterostructures, which are investigated through the electronic properties of talc/graphene/hBN heterostructure devices. These heterostructures preserve graphene’s good electronic quality, verified by the observation of quantum Hall effect at low magnetic fields (B  =  0.4 T) at T  =  4.2 K. In order to investigate the physical mechanisms behind graphene-on-talc p-type doping, we performed first-principles calculations of their interface structural and electronic properties. In addition to potentially improving solar cell efficiency, graphene doping via van der Waals stacking is also a promising route towards controlling the band gap opening in bilayer graphene, promoting a steady n or p type doping in graphene and, eventually, providing a new path to access superconducting states in graphene, predicted to exist only at very high doping.

  10. Semilocal density functional obeying a strongly tightened bound for exchange

    PubMed Central

    Sun, Jianwei; Perdew, John P.; Ruzsinszky, Adrienn

    2015-01-01

    Because of its useful accuracy and efficiency, density functional theory (DFT) is one of the most widely used electronic structure theories in physics, materials science, and chemistry. Only the exchange-correlation energy is unknown, and needs to be approximated in practice. Exact constraints provide useful information about this functional. The local spin-density approximation (LSDA) was the first constraint-based density functional. The Lieb–Oxford lower bound on the exchange-correlation energy for any density is another constraint that plays an important role in the development of generalized gradient approximations (GGAs) and meta-GGAs. Recently, a strongly and optimally tightened lower bound on the exchange energy was proved for one- and two-electron densities, and conjectured for all densities. In this article, we present a realistic “meta-GGA made very simple” (MGGA-MVS) for exchange that respects this optimal bound, which no previous beyond-LSDA approximation satisfies. This constraint might have been expected to worsen predicted thermochemical properties, but in fact they are improved over those of the Perdew–Burke–Ernzerhof GGA, which has nearly the same correlation part. MVS exchange is however radically different from that of other GGAs and meta-GGAs. Its exchange enhancement factor has a very strong dependence upon the orbital kinetic energy density, which permits accurate energies even with the drastically tightened bound. When this nonempirical MVS meta-GGA is hybridized with 25% of exact exchange, the resulting global hybrid gives excellent predictions for atomization energies, reaction barriers, and weak interactions of molecules. PMID:25561554

  11. Semilocal density functional obeying a strongly tightened bound for exchange.

    PubMed

    Sun, Jianwei; Perdew, John P; Ruzsinszky, Adrienn

    2015-01-20

    Because of its useful accuracy and efficiency, density functional theory (DFT) is one of the most widely used electronic structure theories in physics, materials science, and chemistry. Only the exchange-correlation energy is unknown, and needs to be approximated in practice. Exact constraints provide useful information about this functional. The local spin-density approximation (LSDA) was the first constraint-based density functional. The Lieb-Oxford lower bound on the exchange-correlation energy for any density is another constraint that plays an important role in the development of generalized gradient approximations (GGAs) and meta-GGAs. Recently, a strongly and optimally tightened lower bound on the exchange energy was proved for one- and two-electron densities, and conjectured for all densities. In this article, we present a realistic "meta-GGA made very simple" (MGGA-MVS) for exchange that respects this optimal bound, which no previous beyond-LSDA approximation satisfies. This constraint might have been expected to worsen predicted thermochemical properties, but in fact they are improved over those of the Perdew-Burke-Ernzerhof GGA, which has nearly the same correlation part. MVS exchange is however radically different from that of other GGAs and meta-GGAs. Its exchange enhancement factor has a very strong dependence upon the orbital kinetic energy density, which permits accurate energies even with the drastically tightened bound. When this nonempirical MVS meta-GGA is hybridized with 25% of exact exchange, the resulting global hybrid gives excellent predictions for atomization energies, reaction barriers, and weak interactions of molecules.

  12. Pattern-free thermal modulator via thermal radiation between Van der Waals materials

    NASA Astrophysics Data System (ADS)

    Liu, Xianglei; Shen, Jiadong; Xuan, Yimin

    2017-10-01

    Modulating heat flux provides a platform for a plethora of emerging devices such as thermal diodes, thermal transistors, and thermal memories. Here, a pattern-free noncontact thermal modulator is proposed based on the mechanical rotation between two Van der Waals films with optical axes parallel to the surfaces. A modulation contrast can reach a value higher than 5 for hexagonal Boron Nitride (hBN) films separated by a nanoscale gap distance. The dominant radiative heat exchange comes from the excitation of both Type I and Type II hyperbolic surface phonon polaritons (HSPhPs) at the vacuum-hBN interface for different orientations, while the large modulation contrast is mainly attributed to the mismatching Type I HSPhPs induced by rotation. This work opens the possibility to design cheap thermal modulators without relying on nanofabrication techniques, and paves the way to apply natural Van der Waals materials in manipulating heat currents in an active way.

  13. Electronic Coupling Calculations for Bridge-Mediated Charge Transfer Using Constrained Density Functional Theory (CDFT) and Effective Hamiltonian Approaches at the Density Functional Theory (DFT) and Fragment-Orbital Density Functional Tight Binding (FODFTB) Level.

    PubMed

    Gillet, Natacha; Berstis, Laura; Wu, Xiaojing; Gajdos, Fruzsina; Heck, Alexander; de la Lande, Aurélien; Blumberger, Jochen; Elstner, Marcus

    2016-10-11

    In this article, four methods to calculate charge transfer integrals in the context of bridge-mediated electron transfer are tested. These methods are based on density functional theory (DFT). We consider two perturbative Green's function effective Hamiltonian methods (first, at the DFT level of theory, using localized molecular orbitals; second, applying a tight-binding DFT approach, using fragment orbitals) and two constrained DFT implementations with either plane-wave or local basis sets. To assess the performance of the methods for through-bond (TB)-dominated or through-space (TS)-dominated transfer, different sets of molecules are considered. For through-bond electron transfer (ET), several molecules that were originally synthesized by Paddon-Row and co-workers for the deduction of electronic coupling values from photoemission and electron transmission spectroscopies, are analyzed. The tested methodologies prove to be successful in reproducing experimental data, the exponential distance decay constant and the superbridge effects arising from interference among ET pathways. For through-space ET, dedicated π-stacked systems with heterocyclopentadiene molecules were created and analyzed on the basis of electronic coupling dependence on donor-acceptor distance, structure of the bridge, and ET barrier height. The inexpensive fragment-orbital density functional tight binding (FODFTB) method gives similar results to constrained density functional theory (CDFT) and both reproduce the expected exponential decay of the coupling with donor-acceptor distances and the number of bridging units. These four approaches appear to give reliable results for both TB and TS ET and present a good alternative to expensive ab initio methodologies for large systems involving long-range charge transfers.

  14. Density-functional expansion methods: evaluation of LDA, GGA, and meta-GGA functionals and different integral approximations.

    PubMed

    Giese, Timothy J; York, Darrin M

    2010-12-28

    We extend the Kohn-Sham potential energy expansion (VE) to include variations of the kinetic energy density and use the VE formulation with a 6-31G* basis to perform a "Jacob's ladder" comparison of small molecule properties using density functionals classified as being either LDA, GGA, or meta-GGA. We show that the VE reproduces standard Kohn-Sham DFT results well if all integrals are performed without further approximation, and there is no substantial improvement in using meta-GGA functionals relative to GGA functionals. The advantages of using GGA versus LDA functionals becomes apparent when modeling hydrogen bonds. We furthermore examine the effect of using integral approximations to compute the zeroth-order energy and first-order matrix elements, and the results suggest that the origin of the short-range repulsive potential within self-consistent charge density-functional tight-binding methods mainly arises from the approximations made to the first-order matrix elements.

  15. Multiconfiguration pair-density functional theory: barrier heights and main group and transition metal energetics.

    PubMed

    Carlson, Rebecca K; Li Manni, Giovanni; Sonnenberger, Andrew L; Truhlar, Donald G; Gagliardi, Laura

    2015-01-13

    Kohn-Sham density functional theory, resting on the representation of the electronic density and kinetic energy by a single Slater determinant, has revolutionized chemistry, but for open-shell systems, the Kohn-Sham Slater determinant has the wrong symmetry properties as compared to an accurate wave function. We have recently proposed a theory, called multiconfiguration pair-density functional theory (MC-PDFT), in which the electronic kinetic energy and classical Coulomb energy are calculated from a multiconfiguration wave function with the correct symmetry properties, and the rest of the energy is calculated from a density functional, called the on-top density functional, that depends on the density and the on-top pair density calculated from this wave function. We also proposed a simple way to approximate the on-top density functional by translation of Kohn-Sham exchange-correlation functionals. The method is much less expensive than other post-SCF methods for calculating the dynamical correlation energy starting with a multiconfiguration self-consistent-field wave function as the reference wave function, and initial tests of the theory were quite encouraging. Here, we provide a broader test of the theory by applying it to bond energies of main-group molecules and transition metal complexes, barrier heights and reaction energies for diverse chemical reactions, proton affinities, and the water dimerization energy. Averaged over 56 data points, the mean unsigned error is 3.2 kcal/mol for MC-PDFT, as compared to 6.9 kcal/mol for Kohn-Sham theory with a comparable density functional. MC-PDFT is more accurate on average than complete active space second-order perturbation theory (CASPT2) for main-group small-molecule bond energies, alkyl bond dissociation energies, transition-metal-ligand bond energies, proton affinities, and the water dimerization energy.

  16. Grippers Based on Opposing Van Der Waals Adhesive Pads

    NASA Technical Reports Server (NTRS)

    Parness, Aaron (Inventor); Kennedy, Brett A. (Inventor); Heverly, Matthew C (Inventor); Cutkosky, Mark R. (Inventor); Hawkes, Elliot Wright (Inventor)

    2016-01-01

    Novel gripping structures based on van der Waals adhesive forces are disclosed. Pads covered with fibers can be activated in pairs by opposite forces, thereby enabling control of the adhesive force in an ON or OFF state. Pads can be used in groups, each comprising a group of opposite pads. The adhesive structures enable anchoring forces that can resist adverse forces from different directions. The adhesive structures can be used to enable the operation of robots on surfaces of space vehicles.

  17. Interface thermal conductance of van der Waals monolayers on amorphous substrates

    NASA Astrophysics Data System (ADS)

    Correa, Gabriela C.; Foss, Cameron J.; Aksamija, Zlatan

    2017-03-01

    Heterostructures based on atomic monolayers are emerging as leading materials for future energy efficient and multifunctional electronics. Due to the single atom thickness of monolayers, their properties are strongly affected by interactions with the external environment. We develop a model for interface thermal conductance (ITC) in an atomic monolayer van der Waals bonded to a disordered substrate. Graphene on SiO2 is initially used in our model and contrasted against available experimental data; the model is then applied to monolayer molybdenum disulfide (MoS2) on SiO2 substrate. Our findings show the dominant carrier of heat in both graphene and MoS2 in the cross-plane direction is the flexural (ZA) phonon mode, owing to the large overlap between graphene ZA and substrate vibrational density of states. The rate of phonon transfer across the interface depends quadratically on the substrate coupling constant K a , but this interaction also causes a lifting of the lowest flexural phonon modes. As a result, ITC depends roughly linearly on the strength of the coupling between a monolayer and its substrate. We conclude that, in both graphene and MoS2 on SiO2, substrate adhesion plays a strong role in determining ITC, requiring further study of substrate coupling in TMDCs.

  18. Thermionic Energy Conversion Based on Graphene van der Waals Heterostructures

    PubMed Central

    Liang, Shi-Jun; Liu, Bo; Hu, Wei; Zhou, Kun; Ang, L. K.

    2017-01-01

    Seeking for thermoelectric (TE) materials with high figure of merit (or ZT), which can directly converts low-grade wasted heat (400 to 500 K) into electricity, has been a big challenge. Inspired by the concept of multilayer thermionic devices, we propose and design a solid-state thermionic devices (as a power generator or a refrigerator) in using van der Waals (vdW) heterostructure sandwiched between two graphene electrodes, to achieve high energy conversion efficiency in the temperature range of 400 to 500 K. The vdW heterostructure is composed of suitable multiple layers of transition metal dichalcogenides (TMDs), such as MoS2, MoSe2, WS2 and WSe2. From our calculations, WSe2 and MoSe2 are identified as two ideal TMDs (using the reported experimental material’s properties), which can harvest waste heat at 400 K with efficiencies about 7% to 8%. To our best knowledge, this design is the first in combining the advantages of graphene electrodes and TMDs to function as a thermionic-based device. PMID:28387363

  19. Vertical dielectric screening of few-layer van der Waals semiconductors.

    PubMed

    Koo, Jahyun; Gao, Shiyuan; Lee, Hoonkyung; Yang, Li

    2017-10-05

    Vertical dielectric screening is a fundamental parameter of few-layer van der Waals two-dimensional (2D) semiconductors. However, unlike the widely-accepted wisdom claiming that the vertical dielectric screening is sensitive to the thickness, our first-principles calculation based on the linear response theory (within the weak field limit) reveals that this screening is independent of the thickness and, in fact, it is the same as the corresponding bulk value. This conclusion is verified in a wide range of 2D paraelectric semiconductors, covering narrow-gap ones and wide-gap ones with different crystal symmetries, providing an efficient and reliable way to calculate and predict static dielectric screening of reduced-dimensional materials. Employing this conclusion, we satisfactorily explain the tunable band gap in gated 2D semiconductors. We further propose to engineer the vertical dielectric screening by changing the interlayer distance via vertical pressure or hybrid structures. Our predicted vertical dielectric screening can substantially simplify the understanding of a wide range of measurements and it is crucial for designing 2D functional devices.

  20. A variation-perturbation method for atomic and molecular interactions. I - Theory. II - The interaction potential and van der Waals molecule for Ne-HF

    NASA Astrophysics Data System (ADS)

    Gallup, G. A.; Gerratt, J.

    1985-09-01

    The van der Waals energy between the two parts of a system is a very small fraction of the total electronic energy. In such cases, calculations have been based on perturbation theory. However, such an approach involves certain difficulties. For this reason, van der Waals energies have also been directly calculated from total energies. But such a method has definite limitations as to the size of systems which can be treated, and recently ab initio calculations have been combined with damped semiempirical long-range dispersion potentials to treat larger systems. In this procedure, large basis set superposition errors occur, which must be removed by the counterpoise method. The present investigation is concerned with an approach which is intermediate between the previously considered procedures. The first step in the new approach involves a variational calculation based upon valence bond functions. The procedure includes also the optimization of excited orbitals, and an approximation of atomic integrals and Hamiltonian matrix elements.

  1. Correlational Effects of the Molecular-Tilt Configuration and the Intermolecular van der Waals Interaction on the Charge Transport in the Molecular Junction.

    PubMed

    Shin, Jaeho; Gu, Kyungyeol; Yang, Seunghoon; Lee, Chul-Ho; Lee, Takhee; Jang, Yun Hee; Wang, Gunuk

    2018-06-25

    Molecular conformation, intermolecular interaction, and electrode-molecule contacts greatly affect charge transport in molecular junctions and interfacial properties of organic devices by controlling the molecular orbital alignment. Here, we statistically investigated the charge transport in molecular junctions containing self-assembled oligophenylene molecules sandwiched between an Au probe tip and graphene according to various tip-loading forces ( F L ) that can control the molecular-tilt configuration and the van der Waals (vdW) interactions. In particular, the molecular junctions exhibited two distinct transport regimes according to the F L dependence (i.e., F L -dependent and F L -independent tunneling regimes). In addition, the charge-injection tunneling barriers at the junction interfaces are differently changed when the F L ≤ 20 nN. These features are associated to the correlation effects between the asymmetry-coupling factor (η), the molecular-tilt angle (θ), and the repulsive intermolecular vdW force ( F vdW ) on the molecular-tunneling barriers. A more-comprehensive understanding of these charge transport properties was thoroughly developed based on the density functional theory calculations in consideration of the molecular-tilt configuration and the repulsive vdW force between molecules.

  2. Density functional with full exact exchange, balanced nonlocality of correlations, and constraint satisfaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Jianmin; Perdew, John P; Staroverov, Viktor N

    2008-01-01

    We construct a nonlocal density functional approximation with full exact exchange, while preserving the constraint-satisfaction approach and justified error cancellations of simpler semilocal functionals. This is achieved by interpolating between different approximations suitable for two extreme regions of the electron density. In a 'normal' region, the exact exchange-correlation hole density around an electron is semilocal because its spatial range is reduced by correlation and because it integrates over a narrow range to -1. These regions are well described by popular semilocal approximations (many of which have been constructed nonempirically), because of proper accuracy for a slowly-varying density or because ofmore » error cancellation between exchange and correlation. 'Abnormal' regions, where non locality is unveiled, include those in which exchange can dominate correlation (one-electron, nonuniform high-density, and rapidly-varying limits), and those open subsystems of fluctuating electron number over which the exact exchange-correlation hole integrates to a value greater than -1. Regions between these extremes are described by a hybrid functional mixing exact and semi local exchange energy densities locally (i.e., with a mixing fraction that is a function of position r and a functional of the density). Because our mixing fraction tends to 1 in the high-density limit, we employ full exact exchange according to the rigorous definition of the exchange component of any exchange-correlation energy functional. Use of full exact exchange permits the satisfaction of many exact constraints, but the nonlocality of exchange also requires balanced nonlocality of correlation. We find that this nonlocality can demand at least five empirical parameters (corresponding roughly to the four kinds of abnormal regions). Our local hybrid functional is perhaps the first accurate size-consistent density functional with full exact exchange. It satisfies other known exact

  3. Exact density functional theory for ideal polymer fluids with nearest neighbor bonding constraints.

    PubMed

    Woodward, Clifford E; Forsman, Jan

    2008-08-07

    We present a new density functional theory of ideal polymer fluids, assuming nearest-neighbor bonding constraints. The free energy functional is expressed in terms of end site densities of chain segments and thus has a simpler mathematical structure than previously used expressions using multipoint distributions. This work is based on a formalism proposed by Tripathi and Chapman [Phys. Rev. Lett. 94, 087801 (2005)]. Those authors obtain an approximate free energy functional for ideal polymers in terms of monomer site densities. Calculations on both repulsive and attractive surfaces show that their theory is reasonably accurate in some cases, but does differ significantly from the exact result for longer polymers with attractive surfaces. We suggest that segment end site densities, rather than monomer site densities, are the preferred choice of "site functions" for expressing the free energy functional of polymer fluids. We illustrate the application of our theory to derive an expression for the free energy of an ideal fluid of infinitely long polymers.

  4. Efficient molecular density functional theory using generalized spherical harmonics expansions.

    PubMed

    Ding, Lu; Levesque, Maximilien; Borgis, Daniel; Belloni, Luc

    2017-09-07

    We show that generalized spherical harmonics are well suited for representing the space and orientation molecular density in the resolution of the molecular density functional theory. We consider the common system made of a rigid solute of arbitrary complexity immersed in a molecular solvent, both represented by molecules with interacting atomic sites and classical force fields. The molecular solvent density ρ(r,Ω) around the solute is a function of the position r≡(x,y,z) and of the three Euler angles Ω≡(θ,ϕ,ψ) describing the solvent orientation. The standard density functional, equivalent to the hypernetted-chain closure for the solute-solvent correlations in the liquid theory, is minimized with respect to ρ(r,Ω). The up-to-now very expensive angular convolution products are advantageously replaced by simple products between projections onto generalized spherical harmonics. The dramatic gain in speed of resolution enables to explore in a systematic way molecular solutes of up to nanometric sizes in arbitrary solvents and to calculate their solvation free energy and associated microscopic solvent structure in at most a few minutes. We finally illustrate the formalism by tackling the solvation of molecules of various complexities in water.

  5. Layer-dependent band alignment of few layers of blue phosphorus and their van der Waals heterostructures with graphene

    NASA Astrophysics Data System (ADS)

    Pontes, Renato B.; Miwa, Roberto H.; da Silva, Antônio J. R.; Fazzio, Adalberto; Padilha, José E.

    2018-06-01

    The structural and electronic properties of few layers of blue phosphorus and their van der Waals heterostructures with graphene were investigated by means of first-principles electronic structure calculations. We study the four energetically most stable stacking configurations for multilayers of blue phosphorus. For all of them, the indirect band-gap semiconductor character, are preserved. We show that the properties of monolayer graphene and single-layer (bilayer) blue phosphorus are preserved in the van der Waals heterostructures. Further, our results reveal that under a perpendicular applied electric field, the position of the band structure of blue phosphorus with respect to that of graphene is tunable, enabling the effective control of the Schottky barrier height. Indeed, for the bilayer blue phosphorene on top of graphene, it is possible to even move the system into an Ohmic contact and induce a doping level of the blue phosphorene. All of these features are fundamental for the design of new nanodevices based on van der Waals heterostructures.

  6. Restoring the consistency with the contact density theorem of a classical density functional theory of ions at a planar electrical double layer.

    PubMed

    Gillespie, Dirk

    2014-11-01

    Classical density functional theory (DFT) of fluids is a fast and efficient theory to compute the structure of the electrical double layer in the primitive model of ions where ions are modeled as charged, hard spheres in a background dielectric. While the hard-core repulsive component of this ion-ion interaction can be accurately computed using well-established DFTs, the electrostatic component is less accurate. Moreover, many electrostatic functionals fail to satisfy a basic theorem, the contact density theorem, that relates the bulk pressure, surface charge, and ion densities at their distances of closest approach for ions in equilibrium at a smooth, hard, planar wall. One popular electrostatic functional that fails to satisfy the contact density theorem is a perturbation approach developed by Kierlik and Rosinberg [Phys. Rev. A 44, 5025 (1991)PLRAAN1050-294710.1103/PhysRevA.44.5025] and Rosenfeld [J. Chem. Phys. 98, 8126 (1993)JCPSA60021-960610.1063/1.464569], where the full free-energy functional is Taylor-expanded around a bulk (homogeneous) reference fluid. Here, it is shown that this functional fails to satisfy the contact density theorem because it also fails to satisfy the known low-density limit. When the functional is corrected to satisfy this limit, a corrected bulk pressure is derived and it is shown that with this pressure both the contact density theorem and the Gibbs adsorption theorem are satisfied.

  7. Correlation functional in screened-exchange density functional theory procedures.

    PubMed

    Chan, Bun; Kawashima, Yukio; Hirao, Kimihiko

    2017-10-15

    In the present study, we have explored several prospects for the further development of screened-exchange density functional theory (SX-DFT) procedures. Using the performance of HSE06 as our measure, we find that the use of alternative correlation functionals (as oppose to PBEc in HSE06) also yields adequate results for a diverse set of thermochemical properties. We have further examined the performance of new SX-DFT procedures (termed HSEB-type methods) that comprise the HSEx exchange and a (near-optimal) reparametrized B97c (c OS,0  = c SS,0  = 1, c OS,1  = -1.5, c OS,2  = -0.644, c SS,1  = -0.5, and c SS,2  = 1.10) correlation functionals. The different variants of HSEB all perform comparably to or slightly better than the original HSE-type procedures. These results, together with our fundamental analysis of correlation functionals, point toward various directions for advancing SX-DFT methods. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Electronic Coupling Calculations for Bridge-Mediated Charge Transfer Using Constrained Density Functional Theory (CDFT) and Effective Hamiltonian Approaches at the Density Functional Theory (DFT) and Fragment-Orbital Density Functional Tight Binding (FODFTB) Level

    DOE PAGES

    Gillet, Natacha; Berstis, Laura; Wu, Xiaojing; ...

    2016-09-09

    In this paper, four methods to calculate charge transfer integrals in the context of bridge-mediated electron transfer are tested. These methods are based on density functional theory (DFT). We consider two perturbative Green's function effective Hamiltonian methods (first, at the DFT level of theory, using localized molecular orbitals; second, applying a tight-binding DFT approach, using fragment orbitals) and two constrained DFT implementations with either plane-wave or local basis sets. To assess the performance of the methods for through-bond (TB)-dominated or through-space (TS)-dominated transfer, different sets of molecules are considered. For through-bond electron transfer (ET), several molecules that were originally synthesizedmore » by Paddon-Row and co-workers for the deduction of electronic coupling values from photoemission and electron transmission spectroscopies, are analyzed. The tested methodologies prove to be successful in reproducing experimental data, the exponential distance decay constant and the superbridge effects arising from interference among ET pathways. For through-space ET, dedicated p-stacked systems with heterocyclopentadiene molecules were created and analyzed on the basis of electronic coupling dependence on donor-acceptor distance, structure of the bridge, and ET barrier height. The inexpensive fragment-orbital density functional tight binding (FODFTB) method gives similar results to constrained density functional theory (CDFT) and both reproduce the expected exponential decay of the coupling with donor-acceptor distances and the number of bridging units. Finally, these four approaches appear to give reliable results for both TB and TS ET and present a good alternative to expensive ab initio methodologies for large systems involving long-range charge transfers.« less

  9. Electronic Coupling Calculations for Bridge-Mediated Charge Transfer Using Constrained Density Functional Theory (CDFT) and Effective Hamiltonian Approaches at the Density Functional Theory (DFT) and Fragment-Orbital Density Functional Tight Binding (FODFTB) Level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gillet, Natacha; Berstis, Laura; Wu, Xiaojing

    In this paper, four methods to calculate charge transfer integrals in the context of bridge-mediated electron transfer are tested. These methods are based on density functional theory (DFT). We consider two perturbative Green's function effective Hamiltonian methods (first, at the DFT level of theory, using localized molecular orbitals; second, applying a tight-binding DFT approach, using fragment orbitals) and two constrained DFT implementations with either plane-wave or local basis sets. To assess the performance of the methods for through-bond (TB)-dominated or through-space (TS)-dominated transfer, different sets of molecules are considered. For through-bond electron transfer (ET), several molecules that were originally synthesizedmore » by Paddon-Row and co-workers for the deduction of electronic coupling values from photoemission and electron transmission spectroscopies, are analyzed. The tested methodologies prove to be successful in reproducing experimental data, the exponential distance decay constant and the superbridge effects arising from interference among ET pathways. For through-space ET, dedicated p-stacked systems with heterocyclopentadiene molecules were created and analyzed on the basis of electronic coupling dependence on donor-acceptor distance, structure of the bridge, and ET barrier height. The inexpensive fragment-orbital density functional tight binding (FODFTB) method gives similar results to constrained density functional theory (CDFT) and both reproduce the expected exponential decay of the coupling with donor-acceptor distances and the number of bridging units. Finally, these four approaches appear to give reliable results for both TB and TS ET and present a good alternative to expensive ab initio methodologies for large systems involving long-range charge transfers.« less

  10. Rotational superstructure in van der Waals heterostructure of self-assembled C 60 monolayer on the WSe 2 surface

    DOE PAGES

    Santos, Elton J. G.; Scullion, Declan; Chu, Ximo S.; ...

    2017-08-23

    Hybrid van der Waals (vdW) heterostructures composed of two-dimensional (2D) layered materials and self-assembled organic molecules are promising systems for electronic and optoelectronic applications with enhanced properties and performance. Control of molecular assembly is therefore paramount to fundamentally understand the nucleation, ordering, alignment, and electronic interaction of organic molecules with 2D materials. Here, we report the formation and detailed study of highly ordered, crystalline monolayers of C 60 molecules self-assembled on the surface of WSe 2 in well-ordered arrays with large grain sizes (~5 μm). Using high-resolution scanning tunneling microscopy (STM), we observe a periodic 2 × 2 superstructure inmore » the C 60 monolayer and identify four distinct molecular appearances. Using vdW-corrected ab initio density functional theory (DFT) simulations, we determine that the interplay between vdW and Coulomb interactions as well as adsorbate–adsorbate and adsorbate–substrate interactions results in specific rotational arrangements of the molecules forming the superstructure. The orbital ordering through the relative positions of bonds in adjacent molecules creates a charge redistribution that links the molecule units in a long-range network. Furthermore, this rotational superstructure extends throughout the self-assembled monolayer and opens a pathway towards engineering aligned hybrid organic/inorganic vdW heterostructures with 2D layered materials in a precise and controlled way.« less

  11. Rotational superstructure in van der Waals heterostructure of self-assembled C 60 monolayer on the WSe 2 surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santos, Elton J. G.; Scullion, Declan; Chu, Ximo S.

    Hybrid van der Waals (vdW) heterostructures composed of two-dimensional (2D) layered materials and self-assembled organic molecules are promising systems for electronic and optoelectronic applications with enhanced properties and performance. Control of molecular assembly is therefore paramount to fundamentally understand the nucleation, ordering, alignment, and electronic interaction of organic molecules with 2D materials. Here, we report the formation and detailed study of highly ordered, crystalline monolayers of C 60 molecules self-assembled on the surface of WSe 2 in well-ordered arrays with large grain sizes (~5 μm). Using high-resolution scanning tunneling microscopy (STM), we observe a periodic 2 × 2 superstructure inmore » the C 60 monolayer and identify four distinct molecular appearances. Using vdW-corrected ab initio density functional theory (DFT) simulations, we determine that the interplay between vdW and Coulomb interactions as well as adsorbate–adsorbate and adsorbate–substrate interactions results in specific rotational arrangements of the molecules forming the superstructure. The orbital ordering through the relative positions of bonds in adjacent molecules creates a charge redistribution that links the molecule units in a long-range network. Furthermore, this rotational superstructure extends throughout the self-assembled monolayer and opens a pathway towards engineering aligned hybrid organic/inorganic vdW heterostructures with 2D layered materials in a precise and controlled way.« less

  12. van der Waals-type forces in spontaneously broken supersymmetries

    NASA Astrophysics Data System (ADS)

    Radescu, E. E.

    1983-03-01

    In spontaneously broken rigid supersymmetry, Goldstone-fermion pair exchange should lead to a universal interaction between massive bodies uniquely fixed by the existing low-energy theorem. The resulting van der Waals-type potential is shown to be V(r)=-Mmπ-3F-4r-7+O(r-8), where M and m are the masses of the interacting bodies while F is the scale of the breaking. The change in the situation when the supersymmetry is promoted to a local symmetry is briefly discussed.

  13. A Density Functional for Liquid 3He Based on the Aziz Potential

    NASA Astrophysics Data System (ADS)

    Barranco, M.; Hernández, E. S.; Mayol, R.; Navarro, J.; Pi, M.; Szybisz, L.

    2006-09-01

    We propose a new class of density functionals for liquid 3He based on the Aziz helium-helium interaction screened at short distances by the microscopically calculated two-body distribution function g(r). Our aim is to reduce to a minumum the unavoidable phenomenological ingredients inherent to any density functional approach. Results for the homogeneous liquid and droplets are presented and discussed.

  14. Layered uranium(VI) hydroxides: structural and thermodynamic properties of dehydrated schoepite α-UO₂(OH)₂.

    PubMed

    Weck, Philippe F; Kim, Eunja

    2014-12-07

    The structure of dehydrated schoepite, α-UO2(OH)2, was investigated using computational approaches that go beyond standard density functional theory and include van der Waals dispersion corrections (DFT-D). Thermal properties of α-UO2(OH)2, were also obtained from phonon frequencies calculated with density functional perturbation theory (DFPT) including van der Waals dispersion corrections. While the isobaric heat capacity computed from first-principles reproduces available calorimetric data to within 5% up to 500 K, some entropy estimates based on calorimetric measurements for UO3·0.85H2O were found to overestimate by up to 23% the values computed in this study.

  15. Generalized Pauli constraints in reduced density matrix functional theory.

    PubMed

    Theophilou, Iris; Lathiotakis, Nektarios N; Marques, Miguel A L; Helbig, Nicole

    2015-04-21

    Functionals of the one-body reduced density matrix (1-RDM) are routinely minimized under Coleman's ensemble N-representability conditions. Recently, the topic of pure-state N-representability conditions, also known as generalized Pauli constraints, received increased attention following the discovery of a systematic way to derive them for any number of electrons and any finite dimensionality of the Hilbert space. The target of this work is to assess the potential impact of the enforcement of the pure-state conditions on the results of reduced density-matrix functional theory calculations. In particular, we examine whether the standard minimization of typical 1-RDM functionals under the ensemble N-representability conditions violates the pure-state conditions for prototype 3-electron systems. We also enforce the pure-state conditions, in addition to the ensemble ones, for the same systems and functionals and compare the correlation energies and optimal occupation numbers with those obtained by the enforcement of the ensemble conditions alone.

  16. Density functional theory for d- and f-electron materials and compounds

    DOE PAGES

    Mattson, Ann E.; Wills, John M.

    2016-02-12

    Here, the fundamental requirements for a computationally tractable Density Functional Theory-based method for relativistic f- and (nonrelativistic) d-electron materials and compounds are presented. The need for basing the Kohn–Sham equations on the Dirac equation is discussed. The full Dirac scheme needs exchange-correlation functionals in terms of four-currents, but ordinary functionals, using charge density and spin-magnetization, can be used in an approximate Dirac treatment. The construction of a functional that includes the additional confinement physics needed for these materials is illustrated using the subsystem-functional scheme. If future studies show that a full Dirac, four-current based, exchange-correlation functional is needed, the subsystemmore » functional scheme is one of the few schemes that can still be used for constructing functional approximations.« less

  17. Multiconfiguration Pair-Density Functional Theory Is as Accurate as CASPT2 for Electronic Excitation.

    PubMed

    Hoyer, Chad E; Ghosh, Soumen; Truhlar, Donald G; Gagliardi, Laura

    2016-02-04

    A correct description of electronically excited states is critical to the interpretation of visible-ultraviolet spectra, photochemical reactions, and excited-state charge-transfer processes in chemical systems. We have recently proposed a theory called multiconfiguration pair-density functional theory (MC-PDFT), which is based on a combination of multiconfiguration wave function theory and a new kind of density functional called an on-top density functional. Here, we show that MC-PDFT with a first-generation on-top density functional performs as well as CASPT2 for an organic chemistry database including valence, Rydberg, and charge-transfer excitations. The results are very encouraging for practical applications.

  18. Extending density functional embedding theory for covalently bonded systems.

    PubMed

    Yu, Kuang; Carter, Emily A

    2017-12-19

    Quantum embedding theory aims to provide an efficient solution to obtain accurate electronic energies for systems too large for full-scale, high-level quantum calculations. It adopts a hierarchical approach that divides the total system into a small embedded region and a larger environment, using different levels of theory to describe each part. Previously, we developed a density-based quantum embedding theory called density functional embedding theory (DFET), which achieved considerable success in metals and semiconductors. In this work, we extend DFET into a density-matrix-based nonlocal form, enabling DFET to study the stronger quantum couplings between covalently bonded subsystems. We name this theory density-matrix functional embedding theory (DMFET), and we demonstrate its performance in several test examples that resemble various real applications in both chemistry and biochemistry. DMFET gives excellent results in all cases tested thus far, including predicting isomerization energies, proton transfer energies, and highest occupied molecular orbital-lowest unoccupied molecular orbital gaps for local chromophores. Here, we show that DMFET systematically improves the quality of the results compared with the widely used state-of-the-art methods, such as the simple capped cluster model or the widely used ONIOM method.

  19. Structural, Electronic and Dynamical Properties of Curium Monopnictides: Density Functional Calculations

    NASA Astrophysics Data System (ADS)

    Roondhe, Basant; Upadhyay, Deepak; Som, Narayan; Pillai, Sharad B.; Shinde, Satyam; Jha, Prafulla K.

    2017-03-01

    The structural, electronic, dynamical and thermodynamical properties of CmX (X = N, P, As, Sb, and Bi) compounds are studied using first principles calculations within density functional theory. The Perdew-Burke-Ernzerhof spin polarized generalized gradient approximation and Perdew-Wang (PW) spin polarized local density approximation as the exchange correlational functionals are used in these calculations. There is a good agreement between the present and previously reported data. The calculated electronic density of states suggests that the curium monopnictides are metallic in nature, which is consistent with earlier studies. The significant values of magnetic moment suggest their magnetic nature. The phonon dispersion curves and phonon density of states are also calculated, which depict the dynamical stability of these compounds. There is a significant separation between the optical and acoustical phonon branches. The temperature dependence of the thermodynamical functions are also calculated and discussed. Internal energy and vibrational contribution to the Helmholtz free energy increases and decreases, respectively, with temperature. The entropy increases with temperature. The specific heat at constant volume and Debye temperature obey Debye theory. The temperature variation of the considered thermodynamical functions is in line with those of other crystalline solids.

  20. Two-dimensional antimonene single crystals grown by van der Waals epitaxy.

    PubMed

    Ji, Jianping; Song, Xiufeng; Liu, Jizi; Yan, Zhong; Huo, Chengxue; Zhang, Shengli; Su, Meng; Liao, Lei; Wang, Wenhui; Ni, Zhenhua; Hao, Yufeng; Zeng, Haibo

    2016-11-15

    Unlike the unstable black phosphorous, another two-dimensional group-VA material, antimonene, was recently predicted to exhibit good stability and remarkable physical properties. However, the synthesis of high-quality monolayer or few-layer antimonenes, sparsely reported, has greatly hindered the development of this new field. Here, we report the van der Waals epitaxy growth of few-layer antimonene monocrystalline polygons, their atomical microstructure and stability in ambient condition. The high-quality, few-layer antimonene monocrystalline polygons can be synthesized on various substrates, including flexible ones, via van der Waals epitaxy growth. Raman spectroscopy and transmission electron microscopy reveal that the obtained antimonene polygons have buckled rhombohedral atomic structure, consistent with the theoretically predicted most stable β-phase allotrope. The very high stability of antimonenes was observed after aging in air for 30 days. First-principle and molecular dynamics simulation results confirmed that compared with phosphorene, antimonene is less likely to be oxidized and possesses higher thermodynamic stability in oxygen atmosphere at room temperature. Moreover, antimonene polygons show high electrical conductivity up to 10 4  S m -1 and good optical transparency in the visible light range, promising in transparent conductive electrode applications.

  1. Two-dimensional antimonene single crystals grown by van der Waals epitaxy

    PubMed Central

    Ji, Jianping; Song, Xiufeng; Liu, Jizi; Yan, Zhong; Huo, Chengxue; Zhang, Shengli; Su, Meng; Liao, Lei; Wang, Wenhui; Ni, Zhenhua; Hao, Yufeng; Zeng, Haibo

    2016-01-01

    Unlike the unstable black phosphorous, another two-dimensional group-VA material, antimonene, was recently predicted to exhibit good stability and remarkable physical properties. However, the synthesis of high-quality monolayer or few-layer antimonenes, sparsely reported, has greatly hindered the development of this new field. Here, we report the van der Waals epitaxy growth of few-layer antimonene monocrystalline polygons, their atomical microstructure and stability in ambient condition. The high-quality, few-layer antimonene monocrystalline polygons can be synthesized on various substrates, including flexible ones, via van der Waals epitaxy growth. Raman spectroscopy and transmission electron microscopy reveal that the obtained antimonene polygons have buckled rhombohedral atomic structure, consistent with the theoretically predicted most stable β-phase allotrope. The very high stability of antimonenes was observed after aging in air for 30 days. First-principle and molecular dynamics simulation results confirmed that compared with phosphorene, antimonene is less likely to be oxidized and possesses higher thermodynamic stability in oxygen atmosphere at room temperature. Moreover, antimonene polygons show high electrical conductivity up to 104 S m−1 and good optical transparency in the visible light range, promising in transparent conductive electrode applications. PMID:27845327

  2. Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities

    PubMed Central

    Dufferwiel, S.; Schwarz, S.; Withers, F.; Trichet, A. A. P.; Li, F.; Sich, M.; Del Pozo-Zamudio, O.; Clark, C.; Nalitov, A.; Solnyshkov, D. D.; Malpuech, G.; Novoselov, K. S.; Smith, J. M.; Skolnick, M. S.; Krizhanovskii, D. N.; Tartakovskii, A. I.

    2015-01-01

    Layered materials can be assembled vertically to fabricate a new class of van der Waals heterostructures a few atomic layers thick, compatible with a wide range of substrates and optoelectronic device geometries, enabling new strategies for control of light–matter coupling. Here, we incorporate molybdenum diselenide/hexagonal boron nitride (MoSe2/hBN) quantum wells in a tunable optical microcavity. Part-light–part-matter polariton eigenstates are observed as a result of the strong coupling between MoSe2 excitons and cavity photons, evidenced from a clear anticrossing between the neutral exciton and the cavity modes with a splitting of 20 meV for a single MoSe2 monolayer, enhanced to 29 meV in MoSe2/hBN/MoSe2 double-quantum wells. The splitting at resonance provides an estimate of the exciton radiative lifetime of 0.4 ps. Our results pave the way for room-temperature polaritonic devices based on multiple-quantum-well van der Waals heterostructures, where polariton condensation and electrical polariton injection through the incorporation of graphene contacts may be realized. PMID:26446783

  3. Quantum electronic stress: density-functional-theory formulation and physical manifestation.

    PubMed

    Hu, Hao; Liu, Miao; Wang, Z F; Zhu, Junyi; Wu, Dangxin; Ding, Hepeng; Liu, Zheng; Liu, Feng

    2012-08-03

    The concept of quantum electronic stress (QES) is introduced and formulated within density functional theory to elucidate extrinsic electronic effects on the stress state of solids and thin films in the absence of lattice strain. A formal expression of QES (σ(QE)) is derived in relation to deformation potential of electronic states (Ξ) and variation of electron density (Δn), σ(QE) = ΞΔn as a quantum analog of classical Hooke's law. Two distinct QES manifestations are demonstrated quantitatively by density functional theory calculations: (1) in the form of bulk stress induced by charge carriers and (2) in the form of surface stress induced by quantum confinement. Implications of QES in some physical phenomena are discussed to underlie its importance.

  4. Turbulent mixing of a slightly supercritical van der Waals fluid at low-Mach number

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battista, F.; Casciola, C. M.; Picano, F.

    2014-05-15

    Supercritical fluids near the critical point are characterized by liquid-like densities and gas-like transport properties. These features are purposely exploited in different contexts ranging from natural products extraction/fractionation to aerospace propulsion. Large part of studies concerns this last context, focusing on the dynamics of supercritical fluids at high Mach number where compressibility and thermodynamics strictly interact. Despite the widespread use also at low Mach number, the turbulent mixing properties of slightly supercritical fluids have still not investigated in detail in this regime. This topic is addressed here by dealing with Direct Numerical Simulations of a coaxial jet of a slightlymore » supercritical van der Waals fluid. Since acoustic effects are irrelevant in the low Mach number conditions found in many industrial applications, the numerical model is based on a suitable low-Mach number expansion of the governing equation. According to experimental observations, the weakly supercritical regime is characterized by the formation of finger-like structures – the so-called ligaments – in the shear layers separating the two streams. The mechanism of ligament formation at vanishing Mach number is extracted from the simulations and a detailed statistical characterization is provided. Ligaments always form whenever a high density contrast occurs, independently of real or perfect gas behaviors. The difference between real and perfect gas conditions is found in the ligament small-scale structure. More intense density gradients and thinner interfaces characterize the near critical fluid in comparison with the smoother behavior of the perfect gas. A phenomenological interpretation is here provided on the basis of the real gas thermodynamics properties.« less

  5. The role of van der Waals interaction in the tilted binding of amine molecules to the Au(111) surface

    NASA Astrophysics Data System (ADS)

    Le, Duy; Aminpour, Maral; Kiejna, Adam; Rahman, Talat S.

    2012-06-01

    We present the results of ab initio electronic structure calculations for the adsorption characteristics of three amine molecules on Au(111), which show that the inclusion of van der Waals interactions between the isolated molecule and the surface leads in general to good agreement with experimental data on the binding energies. Each molecule, however, adsorbs with a small tilt angle (between -5 and 9°). For the specific case of 1,4-diaminobenzene (BDA) our calculations reproduce the larger tilt angle (close to 24°) measured by photoemission experiments, when intermolecular (van der Waals) interactions (for about 8% coverage) are included. These results point not only to the important contribution of van der Waals interactions to molecule-surface binding energy, but also that of intermolecular interactions, often considered secondary to that between the molecule and the surface, in determining the adsorption geometry and pattern formation.

  6. van der Waals epitaxy of Ge films on mica

    NASA Astrophysics Data System (ADS)

    Littlejohn, A. J.; Xiang, Y.; Rauch, E.; Lu, T.-M.; Wang, G.-C.

    2017-11-01

    To date, many materials have been successfully grown on substrates through van der Waals epitaxy without adhering to the constraint of lattice matching as is required for traditional chemical epitaxy. However, for elemental semiconductors such as Ge, this has been challenging and therefore it has not been achieved thus far. In this paper, we report the observation of Ge epitaxially grown on mica at a narrow substrate temperature range around 425 °C. Despite the large lattice mismatch (23%) and the lack of high in-plane symmetry in the mica surface, an epitaxial Ge film with [111] out-of-plane orientation is observed. Crystallinity and electrical properties degrade upon deviation from the ideal growth temperature, as shown by Raman spectroscopy, X-ray diffraction, and Hall effect measurements. X-ray pole figure analysis reveals that there exist multiple rotational domains in the epitaxial Ge film with dominant in-plane orientations between Ge [" separators="|1 ¯10 ] and mica[100] of (20 n )°, where n = 0, 1, 2, 3, 4, 5. A superlattice area mismatch model was used to account for the likelihood of the in-plane orientation formation and was found to be qualitatively consistent with the observed dominant orientations. Our observation of Ge epitaxy with one out-of-plane growth direction through van der Waals forces is a step toward the growth of single crystal Ge films without the constraint in the lattice and symmetry matches with the substrates.

  7. Observation of novel photochemistry in the multiphoton ionization of Mo(CO) sub 6 van der Waals clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peifer, W.R.; Garvey, J.F.

    1989-07-27

    van der Waals clusters of Mo(CO){sub 6} generated in the free-jet expansion of a pulsed beam of seeded helium are subjected to multiphoton ionization and the product ions analyzed by quadrupole mass spectrometry. Oxomolybdenum and dioxomolybdenum ions are observed to be produced with high efficiency. This behavior is in striking contrast to that of metal carbonyl monomers and covalently bound cluster carbonyls, which under complete ligand loss prior to ionization. The observed photochemistry is ascribed to reactions between a photoproduced molybdenum atom and the ligands of neighboring Mo(CO){sub 6} solvent molecules within the van der Waals cluster.

  8. Lattice density functional theory for confined Ising fluids: comparison between different functional approximations in slit pore

    NASA Astrophysics Data System (ADS)

    Chen, Xueqian; Feng, Wei; Liu, Honglai; Hu, Ying

    2016-09-01

    In this paper, Lafuente and Cuesta's cluster density functional theory (CDFT) and lattice mean field approximation (LMFA) are formulated and compared within the framework of lattice density functional theory (LDFT). As a comparison, an LDFT based on our previous work on nonrandom correction to LMFA is also developed, where local density approximation is adopted on the correction. The numerical results of density distributions of an Ising fluid confined in a slit pore obtained from Monte Carlo simulation are used to check these functional approximations. Due to rational treatment on the coupling between site-excluding entropic effect and contact-attracting enthalpic effect by CDFT with Bethe-Peierls approximation (named as BPA-CDFT for short), the improvement of BPA-CDFT beyond LMFA is checked as expected. And it is interesting that our LDFT has a comparative accuracy with BPA-CDFT. Apparent differences between the profiles such as solvation force, excess adsorption quantity and interfacial tension from LMFA and non-LMFAs are found in our calculations. We also discuss some possible theoretical extensions of BPA-CDFT.

  9. Interconfigurational energies in transition-metal atoms using gradient-corrected density-functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kutzler, F.W.; Painter, G.S.

    1991-03-15

    The rapid variation of charge and spin densities in atoms and molecules provides a severe test for local-density-functional theory and for the use of gradient corrections. In the study reported in this paper, we use the Langreth, Mehl, and Hu (LMH) functional and the generalized gradient approximation (GGA) of Perdew and Yue to calculate {ital s}-{ital d} transition energies, 4{ital s} ionization energies, and 3{ital d} ionization energies for the 3{ital d} transition-metal atoms. These calculations are compared with results from the local-density functional of Vosko, Wilk, and Nusair. By comparison with experimental energies, we find that the gradient functionalsmore » are only marginally more successful than the local-density approximation in calculating energy differences between states in transition-metal atoms. The GGA approximation is somewhat better than the LMH functional for most of the atoms studied, although there are several exceptions.« less

  10. Two-Component Noncollinear Time-Dependent Spin Density Functional Theory for Excited State Calculations.

    PubMed

    Egidi, Franco; Sun, Shichao; Goings, Joshua J; Scalmani, Giovanni; Frisch, Michael J; Li, Xiaosong

    2017-06-13

    We present a linear response formalism for the description of the electronic excitations of a noncollinear reference defined via Kohn-Sham spin density functional methods. A set of auxiliary variables, defined using the density and noncollinear magnetization density vector, allows the generalization of spin density functional kernels commonly used in collinear DFT to noncollinear cases, including local density, GGA, meta-GGA and hybrid functionals. Working equations and derivations of functional second derivatives with respect to the noncollinear density, required in the linear response noncollinear TDDFT formalism, are presented in this work. This formalism takes all components of the spin magnetization into account independent of the type of reference state (open or closed shell). As a result, the method introduced here is able to afford a nonzero local xc torque on the spin magnetization while still satisfying the zero-torque theorem globally. The formalism is applied to a few test cases using the variational exact-two-component reference including spin-orbit coupling to illustrate the capabilities of the method.

  11. Surface symmetry energy of nuclear energy density functionals

    NASA Astrophysics Data System (ADS)

    Nikolov, N.; Schunck, N.; Nazarewicz, W.; Bender, M.; Pei, J.

    2011-03-01

    We study the bulk deformation properties of the Skyrme nuclear energy density functionals (EDFs). Following simple arguments based on the leptodermous expansion and liquid drop model, we apply the nuclear density functional theory to assess the role of the surface symmetry energy in nuclei. To this end, we validate the commonly used functional parametrizations against the data on excitation energies of superdeformed band heads in Hg and Pb isotopes and fission isomers in actinide nuclei. After subtracting shell effects, the results of our self-consistent calculations are consistent with macroscopic arguments and indicate that experimental data on strongly deformed configurations in neutron-rich nuclei are essential for optimizing future nuclear EDFs. The resulting survey provides a useful benchmark for further theoretical improvements. Unlike in nuclei close to the stability valley, whose macroscopic deformability hangs on the balance of surface and Coulomb terms, the deformability of neutron-rich nuclei strongly depends on the surface symmetry energy; hence, its proper determination is crucial for the stability of deformed phases of the neutron-rich matter and description of fission rates for r-process nucleosynthesis.

  12. Clustering and pasta phases in nuclear density functional theory

    DOE PAGES

    Schuetrumpf, Bastian; Zhang, Chunli; Nazarewicz, Witold

    2017-05-23

    Nuclear density functional theory is the tool of choice in describing properties of complex nuclei and intricate phases of bulk nucleonic matter. It is a microscopic approach based on an energy density functional representing the nuclear interaction. An attractive feature of nuclear DFT is that it can be applied to both finite nuclei and pasta phases appearing in the inner crust of neutron stars. While nuclear pasta clusters in a neutron star can be easily characterized through their density distributions, the level of clustering of nucleons in a nucleus can often be difficult to assess. To this end, we usemore » the concept of nucleon localization. We demonstrate that the localization measure provides us with fingerprints of clusters in light and heavy nuclei, including fissioning systems. Furthermore we investigate the rod-like pasta phase using twist-averaged boundary conditions, which enable calculations in finite volumes accessible by state of the art DFT solvers.« less

  13. JDFTx: Software for joint density-functional theory

    DOE PAGES

    Sundararaman, Ravishankar; Letchworth-Weaver, Kendra; Schwarz, Kathleen A.; ...

    2017-11-14

    Density-functional theory (DFT) has revolutionized computational prediction of atomic-scale properties from first principles in physics, chemistry and materials science. Continuing development of new methods is necessary for accurate predictions of new classes of materials and properties, and for connecting to nano- and mesoscale properties using coarse-grained theories. JDFTx is a fully-featured open-source electronic DFT software designed specifically to facilitate rapid development of new theories, models and algorithms. Using an algebraic formulation as an abstraction layer, compact C++11 code automatically performs well on diverse hardware including GPUs (Graphics Processing Units). This code hosts the development of joint density-functional theory (JDFT) thatmore » combines electronic DFT with classical DFT and continuum models of liquids for first-principles calculations of solvated and electrochemical systems. In addition, the modular nature of the code makes it easy to extend and interface with, facilitating the development of multi-scale toolkits that connect to ab initio calculations, e.g. photo-excited carrier dynamics combining electron and phonon calculations with electromagnetic simulations.« less

  14. JDFTx: Software for joint density-functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sundararaman, Ravishankar; Letchworth-Weaver, Kendra; Schwarz, Kathleen A.

    Density-functional theory (DFT) has revolutionized computational prediction of atomic-scale properties from first principles in physics, chemistry and materials science. Continuing development of new methods is necessary for accurate predictions of new classes of materials and properties, and for connecting to nano- and mesoscale properties using coarse-grained theories. JDFTx is a fully-featured open-source electronic DFT software designed specifically to facilitate rapid development of new theories, models and algorithms. Using an algebraic formulation as an abstraction layer, compact C++11 code automatically performs well on diverse hardware including GPUs (Graphics Processing Units). This code hosts the development of joint density-functional theory (JDFT) thatmore » combines electronic DFT with classical DFT and continuum models of liquids for first-principles calculations of solvated and electrochemical systems. In addition, the modular nature of the code makes it easy to extend and interface with, facilitating the development of multi-scale toolkits that connect to ab initio calculations, e.g. photo-excited carrier dynamics combining electron and phonon calculations with electromagnetic simulations.« less

  15. Coarse-grained density functional theories for metallic alloys: Generalized coherent-potential approximations and charge-excess functional theory

    NASA Astrophysics Data System (ADS)

    Bruno, Ezio; Mammano, Francesco; Fiorino, Antonino; Morabito, Emanuela V.

    2008-04-01

    The class of the generalized coherent-potential approximations (GCPAs) to the density functional theory (DFT) is introduced within the multiple scattering theory formalism with the aim of dealing with ordered or disordered metallic alloys. All GCPA theories are based on a common ansatz for the kinetic part of the Hohenberg-Kohn functional and each theory of the class is specified by an external model concerning the potential reconstruction. Most existing DFT implementations of CPA-based theories belong to the GCPA class. The analysis of the formal properties of the density functional defined by GCPA theories shows that it consists of marginally coupled local contributions. Furthermore, it is shown that the GCPA functional does not depend on the details of the charge density and that it can be exactly rewritten as a function of the appropriate charge multipole moments to be associated with each lattice site. A general procedure based on the integration of the qV laws is described that allows for the explicit construction of the same function. The coarse-grained nature of the GCPA density functional implies a great deal of computational advantages and is connected with the O(N) scalability of GCPA algorithms. Moreover, it is shown that a convenient truncated series expansion of the GCPA functional leads to the charge-excess functional (CEF) theory [E. Bruno , Phys. Rev. Lett. 91, 166401 (2003)], which here is offered in a generalized version that includes multipolar interactions. CEF and the GCPA numerical results are compared with status of art linearized augmented plane wave (LAPW) full-potential density functional calculations for 62 bcc- and fcc-based ordered CuZn alloys, in all the range of concentrations. Two facts clearly emerge from these extensive tests. In the first place, the discrepancies between GCPA and CEF results are always within the numerical accuracy of the calculations, both for the site charges and the total energies. In the second place, the

  16. An exact solution of the van der Waals interaction between two ground-state hydrogen atoms

    NASA Astrophysics Data System (ADS)

    Koga, Toshikatsu; Matsumoto, Shinya

    1985-06-01

    A momentum space treatment shows that perturbation equations for the H(1s)-H(1s) van der Waals interaction can be exactly solved in their Schrödinger forms without invoking any variational methods. Using the Fock transformation, which projects the momentum vector of an electron from the three-dimensional hyperplane onto the four-dimensional hypersphere, we solve the third order integral-type perturbation equation with respect to the reciprocal of the internuclear distance R. An exact third order wave function is found as a linear combination of infinite number of four-dimensional spherical harmonics. The result allows us to evaluate the exact dispersion energy E6R-6, which is completely determined by the first three coefficients of the above linear combination.

  17. The scaling of contact rates with population density for the infectious disease models.

    PubMed

    Hu, Hao; Nigmatulina, Karima; Eckhoff, Philip

    2013-08-01

    Contact rates and patterns among individuals in a geographic area drive transmission of directly-transmitted pathogens, making it essential to understand and estimate contacts for simulation of disease dynamics. Under the uniform mixing assumption, one of two mechanisms is typically used to describe the relation between contact rate and population density: density-dependent or frequency-dependent. Based on existing evidence of population threshold and human mobility patterns, we formulated a spatial contact model to describe the appropriate form of transmission with initial growth at low density and saturation at higher density. We show that the two mechanisms are extreme cases that do not capture real population movement across all scales. Empirical data of human and wildlife diseases indicate that a nonlinear function may work better when looking at the full spectrum of densities. This estimation can be applied to large areas with population mixing in general activities. For crowds with unusually large densities (e.g., transportation terminals, stadiums, or mass gatherings), the lack of organized social contact structure deviates the physical contacts towards a special case of the spatial contact model - the dynamics of kinetic gas molecule collision. In this case, an ideal gas model with van der Waals correction fits well; existing movement observation data and the contact rate between individuals is estimated using kinetic theory. A complete picture of contact rate scaling with population density may help clarify the definition of transmission rates in heterogeneous, large-scale spatial systems. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Towards time-dependent current-density-functional theory in the non-linear regime

    NASA Astrophysics Data System (ADS)

    Escartín, J. M.; Vincendon, M.; Romaniello, P.; Dinh, P. M.; Reinhard, P.-G.; Suraud, E.

    2015-02-01

    Time-Dependent Density-Functional Theory (TDDFT) is a well-established theoretical approach to describe and understand irradiation processes in clusters and molecules. However, within the so-called adiabatic local density approximation (ALDA) to the exchange-correlation (xc) potential, TDDFT can show insufficiencies, particularly in violently dynamical processes. This is because within ALDA the xc potential is instantaneous and is a local functional of the density, which means that this approximation neglects memory effects and long-range effects. A way to go beyond ALDA is to use Time-Dependent Current-Density-Functional Theory (TDCDFT), in which the basic quantity is the current density rather than the density as in TDDFT. This has been shown to offer an adequate account of dissipation in the linear domain when the Vignale-Kohn (VK) functional is used. Here, we go beyond the linear regime and we explore this formulation in the time domain. In this case, the equations become very involved making the computation out of reach; we hence propose an approximation to the VK functional which allows us to calculate the dynamics in real time and at the same time to keep most of the physics described by the VK functional. We apply this formulation to the calculation of the time-dependent dipole moment of Ca, Mg and Na2. Our results show trends similar to what was previously observed in model systems or within linear response. In the non-linear domain, our results show that relaxation times do not decrease with increasing deposited excitation energy, which sets some limitations to the practical use of TDCDFT in such a domain of excitations.

  19. Towards time-dependent current-density-functional theory in the non-linear regime.

    PubMed

    Escartín, J M; Vincendon, M; Romaniello, P; Dinh, P M; Reinhard, P-G; Suraud, E

    2015-02-28

    Time-Dependent Density-Functional Theory (TDDFT) is a well-established theoretical approach to describe and understand irradiation processes in clusters and molecules. However, within the so-called adiabatic local density approximation (ALDA) to the exchange-correlation (xc) potential, TDDFT can show insufficiencies, particularly in violently dynamical processes. This is because within ALDA the xc potential is instantaneous and is a local functional of the density, which means that this approximation neglects memory effects and long-range effects. A way to go beyond ALDA is to use Time-Dependent Current-Density-Functional Theory (TDCDFT), in which the basic quantity is the current density rather than the density as in TDDFT. This has been shown to offer an adequate account of dissipation in the linear domain when the Vignale-Kohn (VK) functional is used. Here, we go beyond the linear regime and we explore this formulation in the time domain. In this case, the equations become very involved making the computation out of reach; we hence propose an approximation to the VK functional which allows us to calculate the dynamics in real time and at the same time to keep most of the physics described by the VK functional. We apply this formulation to the calculation of the time-dependent dipole moment of Ca, Mg and Na2. Our results show trends similar to what was previously observed in model systems or within linear response. In the non-linear domain, our results show that relaxation times do not decrease with increasing deposited excitation energy, which sets some limitations to the practical use of TDCDFT in such a domain of excitations.

  20. Characterizing the Spatial Density Functions of Neural Arbors

    NASA Astrophysics Data System (ADS)

    Teeter, Corinne Michelle

    Recently, it has been proposed that a universal function describes the way in which all arbors (axons and dendrites) spread their branches over space. Data from fish retinal ganglion cells as well as cortical and hippocampal arbors from mouse, rat, cat, monkey and human provide evidence that all arbor density functions (adf) can be described by a Gaussian function truncated at approximately two standard deviations. A Gaussian density function implies that there is a minimal set of parameters needed to describe an adf: two or three standard deviations (depending on the dimensionality of the arbor) and an amplitude. However, the parameters needed to completely describe an adf could be further constrained by a scaling law found between the product of the standard deviations and the amplitude of the function. In the following document, I examine the scaling law relationship in order to determine the minimal set of parameters needed to describe an adf. First, I find that the at, two-dimensional arbors of fish retinal ganglion cells require only two out of the three fundamental parameters to completely describe their density functions. Second, the three-dimensional, volume filling, cortical arbors require four fundamental parameters: three standard deviations and the total length of an arbor (which corresponds to the amplitude of the function). Next, I characterize the shape of arbors in the context of the fundamental parameters. I show that the parameter distributions of the fish retinal ganglion cells are largely homogenous. In general, axons are bigger and less dense than dendrites; however, they are similarly shaped. The parameter distributions of these two arbor types overlap and, therefore, can only be differentiated from one another probabilistically based on their adfs. Despite artifacts in the cortical arbor data, different types of arbors (apical dendrites, non-apical dendrites, and axons) can generally be differentiated based on their adfs. In addition, within

  1. Multireference Density Functional Theory with Generalized Auxiliary Systems for Ground and Excited States.

    PubMed

    Chen, Zehua; Zhang, Du; Jin, Ye; Yang, Yang; Su, Neil Qiang; Yang, Weitao

    2017-09-21

    To describe static correlation, we develop a new approach to density functional theory (DFT), which uses a generalized auxiliary system that is of a different symmetry, such as particle number or spin, from that of the physical system. The total energy of the physical system consists of two parts: the energy of the auxiliary system, which is determined with a chosen density functional approximation (DFA), and the excitation energy from an approximate linear response theory that restores the symmetry to that of the physical system, thus rigorously leading to a multideterminant description of the physical system. The electron density of the physical system is different from that of the auxiliary system and is uniquely determined from the functional derivative of the total energy with respect to the external potential. Our energy functional is thus an implicit functional of the physical system density, but an explicit functional of the auxiliary system density. We show that the total energy minimum and stationary states, describing the ground and excited states of the physical system, can be obtained by a self-consistent optimization with respect to the explicit variable, the generalized Kohn-Sham noninteracting density matrix. We have developed the generalized optimized effective potential method for the self-consistent optimization. Among options of the auxiliary system and the associated linear response theory, reformulated versions of the particle-particle random phase approximation (pp-RPA) and the spin-flip time-dependent density functional theory (SF-TDDFT) are selected for illustration of principle. Numerical results show that our multireference DFT successfully describes static correlation in bond dissociation and double bond rotation.

  2. Giant magnetic splitting inducing near-unity valley polarization in van der Waals heterostructures.

    PubMed

    Nagler, Philipp; Ballottin, Mariana V; Mitioglu, Anatolie A; Mooshammer, Fabian; Paradiso, Nicola; Strunk, Christoph; Huber, Rupert; Chernikov, Alexey; Christianen, Peter C M; Schüller, Christian; Korn, Tobias

    2017-11-16

    Monolayers of semiconducting transition metal dichalcogenides exhibit intriguing fundamental physics of strongly coupled spin and valley degrees of freedom for charge carriers. While the possibility of exploiting these properties for information processing stimulated concerted research activities towards the concept of valleytronics, maintaining control over spin-valley polarization proved challenging in individual monolayers. A promising alternative route explores type II band alignment in artificial van der Waals heterostructures. The resulting formation of interlayer excitons combines the advantages of long carrier lifetimes and spin-valley locking. Here, we demonstrate artificial design of a two-dimensional heterostructure enabling intervalley transitions that are not accessible in monolayer systems. The resulting giant effective g factor of -15 for interlayer excitons induces near-unity valley polarization via valley-selective energetic splitting in high magnetic fields, even after nonselective excitation. Our results highlight the potential to deterministically engineer novel valley properties in van der Waals heterostructures using crystallographic alignment.

  3. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates

    NASA Astrophysics Data System (ADS)

    Bonilla, Manuel; Kolekar, Sadhu; Ma, Yujing; Diaz, Horacio Coy; Kalappattil, Vijaysankar; Das, Raja; Eggers, Tatiana; Gutierrez, Humberto R.; Phan, Manh-Huong; Batzill, Matthias

    2018-04-01

    Reduced dimensionality and interlayer coupling in van der Waals materials gives rise to fundamentally different electronic1, optical2 and many-body quantum3-5 properties in monolayers compared with the bulk. This layer-dependence permits the discovery of novel material properties in the monolayer regime. Ferromagnetic order in two-dimensional materials is a coveted property that would allow fundamental studies of spin behaviour in low dimensions and enable new spintronics applications6-8. Recent studies have shown that for the bulk-ferromagnetic layered materials CrI3 (ref. 9) and Cr2Ge2Te6 (ref. 10), ferromagnetic order is maintained down to the ultrathin limit at low temperatures. Contrary to these observations, we report the emergence of strong ferromagnetic ordering for monolayer VSe2, a material that is paramagnetic in the bulk11,12. Importantly, the ferromagnetic ordering with a large magnetic moment persists to above room temperature, making VSe2 an attractive material for van der Waals spintronics applications.

  4. Derivative discontinuity and exchange-correlation potential of meta-GGAs in density-functional theory.

    PubMed

    Eich, F G; Hellgren, Maria

    2014-12-14

    We investigate fundamental properties of meta-generalized-gradient approximations (meta-GGAs) to the exchange-correlation energy functional, which have an implicit density dependence via the Kohn-Sham kinetic-energy density. To this purpose, we construct the most simple meta-GGA by expressing the local exchange-correlation energy per particle as a function of a fictitious density, which is obtained by inverting the Thomas-Fermi kinetic-energy functional. This simple functional considerably improves the total energy of atoms as compared to the standard local density approximation. The corresponding exchange-correlation potentials are then determined exactly through a solution of the optimized effective potential equation. These potentials support an additional bound state and exhibit a derivative discontinuity at integer particle numbers. We further demonstrate that through the kinetic-energy density any meta-GGA incorporates a derivative discontinuity. However, we also find that for commonly used meta-GGAs the discontinuity is largely underestimated and in some cases even negative.

  5. Derivative discontinuity and exchange-correlation potential of meta-GGAs in density-functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eich, F. G., E-mail: eichf@missouri.edu; Hellgren, Maria

    2014-12-14

    We investigate fundamental properties of meta-generalized-gradient approximations (meta-GGAs) to the exchange-correlation energy functional, which have an implicit density dependence via the Kohn-Sham kinetic-energy density. To this purpose, we construct the most simple meta-GGA by expressing the local exchange-correlation energy per particle as a function of a fictitious density, which is obtained by inverting the Thomas-Fermi kinetic-energy functional. This simple functional considerably improves the total energy of atoms as compared to the standard local density approximation. The corresponding exchange-correlation potentials are then determined exactly through a solution of the optimized effective potential equation. These potentials support an additional bound state andmore » exhibit a derivative discontinuity at integer particle numbers. We further demonstrate that through the kinetic-energy density any meta-GGA incorporates a derivative discontinuity. However, we also find that for commonly used meta-GGAs the discontinuity is largely underestimated and in some cases even negative.« less

  6. Utilizing van der Waals Slippery Interfaces to Enhance the Electrochemical Stability of Silicon Film Anodes in Lithium-Ion Batteries.

    PubMed

    Basu, Swastik; Suresh, Shravan; Ghatak, Kamalika; Bartolucci, Stephen F; Gupta, Tushar; Hundekar, Prateek; Kumar, Rajesh; Lu, Toh-Ming; Datta, Dibakar; Shi, Yunfeng; Koratkar, Nikhil

    2018-04-25

    High specific capacity anode materials such as silicon (Si) are increasingly being explored for next-generation, high performance lithium (Li)-ion batteries. In this context, Si films are advantageous compared to Si nanoparticle based anodes since in films the free volume between nanoparticles is eliminated, resulting in very high volumetric energy density. However, Si undergoes volume expansion (contraction) under lithiation (delithiation) of up to 300%. This large volume expansion leads to stress build-up at the interface between the Si film and the current collector, leading to delamination of Si from the surface of the current collector. To prevent this, adhesion promotors (such as chromium interlayers) are often used to strengthen the interface between the Si and the current collector. Here, we show that such approaches are in fact counter-productive and that far better electrochemical stability can be obtained by engineering a van der Waals "slippery" interface between the Si film and the current collector. This can be accomplished by simply coating the current collector surface with graphene sheets. For such an interface, the Si film slips with respect to the current collector under lithiation/delithiation, while retaining electrical contact with the current collector. Molecular dynamics simulations indicate (i) less stress build-up and (ii) less stress "cycling" on a van der Waals slippery substrate as opposed to a fixed interface. Electrochemical testing confirms more stable performance and much higher Coulombic efficiency for Si films deposited on graphene-coated nickel (i.e., slippery interface) as compared to conventional nickel current collectors.

  7. Shaping van der Waals nanoribbons via torsional constraints: Scrolls, folds and supercoils

    NASA Astrophysics Data System (ADS)

    Shahabi, Alireza; Wang, Hailong; Upmanyu, Moneesh

    2014-11-01

    Interplay between structure and function in atomically thin crystalline nanoribbons is sensitive to their conformations yet the ability to prescribe them is a formidable challenge. Here, we report a novel paradigm for controlled nucleation and growth of scrolled and folded shapes in finite-length nanoribbons. All-atom computations on graphene nanoribbons (GNRs) and experiments on macroscale magnetic thin films reveal that decreasing the end distance of torsionally constrained ribbons below their contour length leads to formation of these shapes. The energy partitioning between twisted and bent shapes is modified in favor of these densely packed soft conformations due to the non-local van der Waals interactions in these 2D crystals; they subvert the formation of supercoils that are seen in their natural counterparts such as DNA and filamentous proteins. The conformational phase diagram is in excellent agreement with theoretical predictions. The facile route can be readily extended for tailoring the soft conformations of crystalline nanoscale ribbons, and more general self-interacting filaments.

  8. Many-Body Spectral Functions from Steady State Density Functional Theory.

    PubMed

    Jacob, David; Kurth, Stefan

    2018-03-14

    We propose a scheme to extract the many-body spectral function of an interacting many-electron system from an equilibrium density functional theory (DFT) calculation. To this end we devise an ideal scanning tunneling microscope (STM) setup and employ the recently proposed steady-state DFT formalism (i-DFT) which allows one to calculate the steady current through a nanoscopic region coupled to two biased electrodes. In our setup, one of the electrodes serves as a probe ("STM tip"), which is weakly coupled to the system we want to measure. In the ideal STM limit of vanishing coupling to the tip, the system is restored to quasi-equilibrium and the normalized differential conductance yields the exact equilibrium many-body spectral function. Calculating this quantity from i-DFT, we derive an exact relation expressing the interacting spectral function in terms of the Kohn-Sham one. As illustrative examples, we apply our scheme to calculate the spectral functions of two nontrivial model systems, namely the single Anderson impurity model and the Constant Interaction Model.

  9. KIDS Nuclear Energy Density Functional: 1st Application in Nuclei

    NASA Astrophysics Data System (ADS)

    Gil, Hana; Papakonstantinou, Panagiota; Hyun, Chang Ho; Oh, Yongseok

    We apply the KIDS (Korea: IBS-Daegu-Sungkyunkwan) nuclear energy density functional model, which is based on the Fermi momentum expansion, to the study of properties of lj-closed nuclei. The parameters of the model are determined by the nuclear properties at the saturation density and theoretical calculations on pure neutron matter. For applying the model to the study of nuclei, we rely on the Skyrme force model, where the Skyrme force parameters are determined through the KIDS energy density functional. Solving Hartree-Fock equations, we obtain the energies per particle and charge radii of closed magic nuclei, namely, 16O, 28O, 40Ca, 48Ca, 60Ca, 90Zr, 132Sn, and 208Pb. The results are compared with the observed data and further improvement of the model is shortly mentioned.

  10. Magnetic engineering in InSe/black-phosphorus heterostructure by transition-metal-atom Sc-Zn doping in the van der Waals gap

    NASA Astrophysics Data System (ADS)

    Ding, Yi-min; Shi, Jun-jie; Zhang, Min; Zhu, Yao-hui; Wu, Meng; Wang, Hui; Cen, Yu-lang; Guo, Wen-hui; Pan, Shu-hang

    2018-07-01

    Within the framework of the spin-polarized density-functional theory, we have studied the electronic and magnetic properties of InSe/black-phosphorus (BP) heterostructure doped with 3d transition-metal (TM) atoms from Sc to Zn. The calculated binding energies show that TM-atom doping in the van der Waals (vdW) gap of InSe/BP heterostructure is energetically favorable. Our results indicate that magnetic moments are induced in the Sc-, Ti-, V-, Cr-, Mn- and Co-doped InSe/BP heterostructures due to the existence of non-bonding 3d electrons. The Ni-, Cu- and Zn-doped InSe/BP heterostructures still show nonmagnetic semiconductor characteristics. Furthermore, in the Fe-doped InSe/BP heterostructure, the half-metal property is found and a high spin polarization of 100% at the Fermi level is achieved. The Cr-doped InSe/BP has the largest magnetic moment of 4.9 μB. The Sc-, Ti-, V-, Cr- and Mn-doped InSe/BP heterostructures exhibit antiferromagnetic ground state. Moreover, the Fe- and Co-doped systems display a weak ferromagnetic and paramagnetic coupling, respectively. Our studies demonstrate that the TM doping in the vdW gap of InSe/BP heterostructure is an effective way to modify its electronic and magnetic properties.

  11. Density-functional theory based on the electron distribution on the energy coordinate

    NASA Astrophysics Data System (ADS)

    Takahashi, Hideaki

    2018-03-01

    We developed an electronic density functional theory utilizing a novel electron distribution n(ɛ) as a basic variable to compute ground state energy of a system. n(ɛ) is obtained by projecting the electron density n({\\boldsymbol{r}}) defined on the space coordinate {\\boldsymbol{r}} onto the energy coordinate ɛ specified with the external potential {\\upsilon }ext}({\\boldsymbol{r}}) of interest. It was demonstrated that the Kohn-Sham equation can also be formulated with the exchange-correlation functional E xc[n(ɛ)] that employs the density n(ɛ) as an argument. It turned out an exchange functional proposed in our preliminary development suffices to describe properly the potential energies of several types of chemical bonds with comparable accuracies to the corresponding functional based on local density approximation. As a remarkable feature of the distribution n(ɛ) it inherently involves the spatially non-local information of the exchange hole at the bond dissociation limit in contrast to conventional approximate functionals. By taking advantage of this property we also developed a prototype of the static correlation functional E sc including no empirical parameters, which showed marked improvements in describing the dissociations of covalent bonds in {{{H}}}2,{{{C}}}2{{{H}}}4 and {CH}}4 molecules.

  12. Hartree and Exchange in Ensemble Density Functional Theory: Avoiding the Nonuniqueness Disaster.

    PubMed

    Gould, Tim; Pittalis, Stefano

    2017-12-15

    Ensemble density functional theory is a promising method for the efficient and accurate calculation of excitations of quantum systems, at least if useful functionals can be developed to broaden its domain of practical applicability. Here, we introduce a guaranteed single-valued "Hartree-exchange" ensemble density functional, E_{Hx}[n], in terms of the right derivative of the universal ensemble density functional with respect to the coupling constant at vanishing interaction. We show that E_{Hx}[n] is straightforwardly expressible using block eigenvalues of a simple matrix [Eq. (14)]. Specialized expressions for E_{Hx}[n] from the literature, including those involving superpositions of Slater determinants, can now be regarded as originating from the unifying picture presented here. We thus establish a clear and practical description for Hartree and exchange in ensemble systems.

  13. Multiconfiguration Pair-Density Functional Theory: A New Way To Treat Strongly Correlated Systems.

    PubMed

    Gagliardi, Laura; Truhlar, Donald G; Li Manni, Giovanni; Carlson, Rebecca K; Hoyer, Chad E; Bao, Junwei Lucas

    2017-01-17

    The electronic energy of a system provides the Born-Oppenheimer potential energy for internuclear motion and thus determines molecular structure and spectra, bond energies, conformational energies, reaction barrier heights, and vibrational frequencies. The development of more efficient and more accurate ways to calculate the electronic energy of systems with inherently multiconfigurational electronic structure is essential for many applications, including transition metal and actinide chemistry, systems with partially broken bonds, many transition states, and most electronically excited states. Inherently multiconfigurational systems are called strongly correlated systems or multireference systems, where the latter name refers to the need for using more than one ("multiple") configuration state function to provide a good zero-order reference wave function. This Account describes multiconfiguration pair-density functional theory (MC-PDFT), which was developed as a way to combine the advantages of wave function theory (WFT) and density functional theory (DFT) to provide a better treatment of strongly correlated systems. First we review background material: the widely used Kohn-Sham DFT (which uses only a single Slater determinant as reference wave function), multiconfiguration WFT methods that treat inherently multiconfigurational systems based on an active space, and previous attempts to combine multiconfiguration WFT with DFT. Then we review the formulation of MC-PDFT. It is a generalization of Kohn-Sham DFT in that the electron kinetic energy and classical electrostatic energy are calculated from a reference wave function, while the rest of the energy is obtained from a density functional. However, there are two main differences with respent to Kohn-Sham DFT: (i) The reference wave function is multiconfigurational rather than being a single Slater determinant. (ii) The density functional is a function of the total density and the on-top pair density rather than

  14. Density functional theory and chromium: Insights from the dimers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Würdemann, Rolf; Kristoffersen, Henrik H.; Moseler, Michael

    2015-03-28

    The binding in small Cr clusters is re-investigated, where the correct description of the dimer in three charge states is used as criterion to assign the most suitable density functional theory approximation. The difficulty in chromium arises from the subtle interplay between energy gain from hybridization and energetic cost due to exchange between s and d based molecular orbitals. Variations in published bond lengths and binding energies are shown to arise from insufficient numerical representation of electron density and Kohn-Sham wave-functions. The best functional performance is found for gradient corrected (GGA) functionals and meta-GGAs, where we find severe differences betweenmore » functionals from the same family due to the importance of exchange. Only the “best fit” from Bayesian error estimation is able to predict the correct energetics for all three charge states unambiguously. With this knowledge, we predict small bond-lengths to be exclusively present in Cr{sub 2} and Cr{sub 2}{sup −}. Already for the dimer cation, solely long bond-lengths appear, similar to what is found in the trimer and in chromium bulk.« less

  15. Artificial cognitive memory—changing from density driven to functionality driven

    NASA Astrophysics Data System (ADS)

    Shi, L. P.; Yi, K. J.; Ramanathan, K.; Zhao, R.; Ning, N.; Ding, D.; Chong, T. C.

    2011-03-01

    Increasing density based on bit size reduction is currently a main driving force for the development of data storage technologies. However, it is expected that all of the current available storage technologies might approach their physical limits in around 15 to 20 years due to miniaturization. To further advance the storage technologies, it is required to explore a new development trend that is different from density driven. One possible direction is to derive insights from biological counterparts. Unlike physical memories that have a single function of data storage, human memory is versatile. It contributes to functions of data storage, information processing, and most importantly, cognitive functions such as adaptation, learning, perception, knowledge generation, etc. In this paper, a brief review of current data storage technologies are presented, followed by discussions of future storage technology development trend. We expect that the driving force will evolve from density to functionality, and new memory modules associated with additional functions other than only data storage will appear. As an initial step toward building a future generation memory technology, we propose Artificial Cognitive Memory (ACM), a memory based intelligent system. We also present the characteristics of ACM, new technologies that can be used to develop ACM components such as bioinspired element cells (silicon, memristor, phase change, etc.), and possible methodologies to construct a biologically inspired hierarchical system.

  16. Optimal atomic structure of amorphous silicon obtained from density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Pedersen, Andreas; Pizzagalli, Laurent; Jónsson, Hannes

    2017-06-01

    Atomic structure of amorphous silicon consistent with several reported experimental measurements has been obtained from annealing simulations using electron density functional theory calculations and a systematic removal of weakly bound atoms. The excess energy and density with respect to the crystal are well reproduced in addition to radial distribution function, angular distribution functions, and vibrational density of states. No atom in the optimal configuration is locally in a crystalline environment as deduced by ring analysis and common neighbor analysis, but coordination defects are present at a level of 1%-2%. The simulated samples provide structural models of this archetypal disordered covalent material without preconceived notion of the atomic ordering or fitting to experimental data.

  17. Exact density functional and wave function embedding schemes based on orbital localization

    NASA Astrophysics Data System (ADS)

    Hégely, Bence; Nagy, Péter R.; Ferenczy, György G.; Kállay, Mihály

    2016-08-01

    Exact schemes for the embedding of density functional theory (DFT) and wave function theory (WFT) methods into lower-level DFT or WFT approaches are introduced utilizing orbital localization. First, a simple modification of the projector-based embedding scheme of Manby and co-workers [J. Chem. Phys. 140, 18A507 (2014)] is proposed. We also use localized orbitals to partition the system, but instead of augmenting the Fock operator with a somewhat arbitrary level-shift projector we solve the Huzinaga-equation, which strictly enforces the Pauli exclusion principle. Second, the embedding of WFT methods in local correlation approaches is studied. Since the latter methods split up the system into local domains, very simple embedding theories can be defined if the domains of the active subsystem and the environment are treated at a different level. The considered embedding schemes are benchmarked for reaction energies and compared to quantum mechanics (QM)/molecular mechanics (MM) and vacuum embedding. We conclude that for DFT-in-DFT embedding, the Huzinaga-equation-based scheme is more efficient than the other approaches, but QM/MM or even simple vacuum embedding is still competitive in particular cases. Concerning the embedding of wave function methods, the clear winner is the embedding of WFT into low-level local correlation approaches, and WFT-in-DFT embedding can only be more advantageous if a non-hybrid density functional is employed.

  18. Use of the rVV10 Nonlocal Correlation Functional in the B97M-V Density Functional: Defining B97M-rV and Related Functionals [On the Use of the rVV10 Nonlocal Correlation Functional in the B97M-V Density Functional: Defining B97M-rV and Related Functionals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mardirossian, Narbe; Ruiz Pestana, Luis; Womack, James C.

    The VV10 and rVV10 nonlocal correlation functionals are consistently implemented and assessed, with the goal of determining if the rVV10 nonlocal correlation functional can replace the VV10 nonlocal correlation functional in the recently developed B97M-V density functional, to give the B97M-rV density functional. Along the way, four density functionals are simultaneously tested: VV10, rVV10, B97M-V, and B97M-rV. An initial assessment is carried out across the S22 data set, and the short-range damping variable, b, is varied for all four density functionals in order to determine the sensitivity of the functionals to the empirical parameter. The results of this test indicatemore » that a value of b = 6 (fortuitously the same as that in B97M-V) is suitable for B97M-rV. The functionals are then compared across an extensive database of interaction energies, and it is demonstrated that B97M-rV either matches or outperforms B97M-V for all of the tests considered. Finally, the optimization of b across the S22 data set is extended to two range-separated hybrid density functionals, ωB97X-V and ωB97M-V, and a value of b = 6.2 is recommended for both ωB97X-rV and ωB97M-rV.« less

  19. Use of the rVV10 Nonlocal Correlation Functional in the B97M-V Density Functional: Defining B97M-rV and Related Functionals [On the Use of the rVV10 Nonlocal Correlation Functional in the B97M-V Density Functional: Defining B97M-rV and Related Functionals

    DOE PAGES

    Mardirossian, Narbe; Ruiz Pestana, Luis; Womack, James C.; ...

    2016-12-06

    The VV10 and rVV10 nonlocal correlation functionals are consistently implemented and assessed, with the goal of determining if the rVV10 nonlocal correlation functional can replace the VV10 nonlocal correlation functional in the recently developed B97M-V density functional, to give the B97M-rV density functional. Along the way, four density functionals are simultaneously tested: VV10, rVV10, B97M-V, and B97M-rV. An initial assessment is carried out across the S22 data set, and the short-range damping variable, b, is varied for all four density functionals in order to determine the sensitivity of the functionals to the empirical parameter. The results of this test indicatemore » that a value of b = 6 (fortuitously the same as that in B97M-V) is suitable for B97M-rV. The functionals are then compared across an extensive database of interaction energies, and it is demonstrated that B97M-rV either matches or outperforms B97M-V for all of the tests considered. Finally, the optimization of b across the S22 data set is extended to two range-separated hybrid density functionals, ωB97X-V and ωB97M-V, and a value of b = 6.2 is recommended for both ωB97X-rV and ωB97M-rV.« less

  20. Alternative derivation of an exchange-only density-functional optimized effective potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joubert, D. P.

    2007-10-15

    An alternative derivation of the exchange-only density-functional optimized effective potential equation is given. It is shown that the localized Hartree-Fock-common energy denominator Green's function approximation (LHF-CEDA) for the density-functional exchange potential proposed independently by Della Sala and Goerling [J. Chem. Phys. 115, 5718 (2001)] and Gritsenko and Baerends [Phys. Rev. A 64, 42506 (2001)] can be derived as an approximation to the OEP exchange potential in a similar way that the KLI approximation [Phys. Rev. A 45, 5453 (1992)] was derived. An exact expression for the correction term to the LHF-CEDA approximation can thus be found. The correction term canmore » be expressed in terms of the first-order perturbation-theory many-electron wave function shift when the Kohn-Sham Hamiltonian is subjected to a perturbation equal to the difference between the density-functional exchange potential and the Hartree-Fock nonlocal potential, expressed in terms of the Kohn-Sham orbitals. An explicit calculation shows that the density weighted mean of the correction term is zero, confirming that the LHF-CEDA approximation can be interpreted as a mean-field approximation. The corrected LHF-CEDA equation and the optimized effective potential equation are shown to be identical, with information distributed differently between terms in the equations. For a finite system the correction term falls off at least as fast as 1/r{sup 4} for large r.« less

  1. Alternative derivation of an exchange-only density-functional optimized effective potential

    NASA Astrophysics Data System (ADS)

    Joubert, D. P.

    2007-10-01

    An alternative derivation of the exchange-only density-functional optimized effective potential equation is given. It is shown that the localized Hartree-Fock common energy denominator Green’s function approximation (LHF-CEDA) for the density-functional exchange potential proposed independently by Della Sala and Görling [J. Chem. Phys. 115, 5718 (2001)] and Gritsenko and Baerends [Phys. Rev. A 64, 42506 (2001)] can be derived as an approximation to the OEP exchange potential in a similar way that the KLI approximation [Phys. Rev. A 45, 5453 (1992)] was derived. An exact expression for the correction term to the LHF-CEDA approximation can thus be found. The correction term can be expressed in terms of the first-order perturbation-theory many-electron wave function shift when the Kohn-Sham Hamiltonian is subjected to a perturbation equal to the difference between the density-functional exchange potential and the Hartree-Fock nonlocal potential, expressed in terms of the Kohn-Sham orbitals. An explicit calculation shows that the density weighted mean of the correction term is zero, confirming that the LHF-CEDA approximation can be interpreted as a mean-field approximation. The corrected LHF-CEDA equation and the optimized effective potential equation are shown to be identical, with information distributed differently between terms in the equations. For a finite system the correction term falls off at least as fast as 1/r4 for large r .

  2. A long-range-corrected density functional that performs well for both ground-state properties and time-dependent density functional theory excitation energies, including charge-transfer excited states.

    PubMed

    Rohrdanz, Mary A; Martins, Katie M; Herbert, John M

    2009-02-07

    We introduce a hybrid density functional that asymptotically incorporates full Hartree-Fock exchange, based on the long-range-corrected exchange-hole model of Henderson et al. [J. Chem. Phys. 128, 194105 (2008)]. The performance of this functional, for ground-state properties and for vertical excitation energies within time-dependent density functional theory, is systematically evaluated, and optimal values are determined for the range-separation parameter, omega, and for the fraction of short-range Hartree-Fock exchange. We denote the new functional as LRC-omegaPBEh, since it reduces to the standard PBEh hybrid functional (also known as PBE0 or PBE1PBE) for a certain choice of its two parameters. Upon optimization of these parameters against a set of ground- and excited-state benchmarks, the LRC-omegaPBEh functional fulfills three important requirements: (i) It outperforms the PBEh hybrid functional for ground-state atomization energies and reaction barrier heights; (ii) it yields statistical errors comparable to PBEh for valence excitation energies in both small and medium-sized molecules; and (iii) its performance for charge-transfer excitations is comparable to its performance for valence excitations. LRC-omegaPBEh, with the parameters determined herein, is the first density functional that satisfies all three criteria. Notably, short-range Hartree-Fock exchange appears to be necessary in order to obtain accurate ground-state properties and vertical excitation energies using the same value of omega.

  3. Density Dependent Functional Forms Drive Compensation in Populations Exposed to Stressors

    EPA Science Inventory

    The interaction between density dependence (DD) and environmental stressors can result in a compensatory or synergistic response in population growth, and population models that use density-independent demographic rates or generic DD functions may be introducing bias into managem...

  4. Magnetic behavior study of samarium nitride using density functional theory

    NASA Astrophysics Data System (ADS)

    Som, Narayan N.; Mankad, Venu H.; Dabhi, Shweta D.; Patel, Anjali; Jha, Prafulla K.

    2018-02-01

    In this work, the state-of-art density functional theory is employed to study the structural, electronic and magnetic properties of samarium nitride (SmN). We have performed calculation for both ferromagnetic and antiferromagnetic states in rock-salt phase. The calculated results of optimized lattice parameter and magnetic moment agree well with the available experimental and theoretical values. From energy band diagram and electronic density of states, we observe a half-metallic behaviour in FM phase of rock salt SmN in while metallicity in AFM I and AFM III phases. We present and discuss our current understanding of the possible half-metallicity together with the magnetic ordering in SmN. The calculated phonon dispersion curves shows dynamical stability of the considered structures. The phonon density of states and Eliashberg functional have also been analysed to understand the superconductivity in SmN.

  5. Invertibility of retarded response functions for Laplace transformable potentials: Application to one-body reduced density matrix functional theory.

    PubMed

    Giesbertz, K J H

    2015-08-07

    A theorem for the invertibility of arbitrary response functions is presented under the following conditions: the time dependence of the potentials should be Laplace transformable and the initial state should be a ground state, though it might be degenerate. This theorem provides a rigorous foundation for all density-functional-like theories in the time-dependent linear response regime. Especially for time-dependent one-body reduced density matrix (1RDM) functional theory, this is an important step forward, since a solid foundation has currently been lacking. The theorem is equally valid for static response functions in the non-degenerate case, so can be used to characterize the uniqueness of the potential in the ground state version of the corresponding density-functional-like theory. Such a classification of the uniqueness of the non-local potential in ground state 1RDM functional theory has been lacking for decades. With the aid of presented invertibility theorem presented here, a complete classification of the non-uniqueness of the non-local potential in 1RDM functional theory can be given for the first time.

  6. Path Integrals for Electronic Densities, Reactivity Indices, and Localization Functions in Quantum Systems

    PubMed Central

    Putz, Mihai V.

    2009-01-01

    The density matrix theory, the ancestor of density functional theory, provides the immediate framework for Path Integral (PI) development, allowing the canonical density be extended for the many-electronic systems through the density functional closure relationship. Yet, the use of path integral formalism for electronic density prescription presents several advantages: assures the inner quantum mechanical description of the system by parameterized paths; averages the quantum fluctuations; behaves as the propagator for time-space evolution of quantum information; resembles Schrödinger equation; allows quantum statistical description of the system through partition function computing. In this framework, four levels of path integral formalism were presented: the Feynman quantum mechanical, the semiclassical, the Feynman-Kleinert effective classical, and the Fokker-Planck non-equilibrium ones. In each case the density matrix or/and the canonical density were rigorously defined and presented. The practical specializations for quantum free and harmonic motions, for statistical high and low temperature limits, the smearing justification for the Bohr’s quantum stability postulate with the paradigmatic Hydrogen atomic excursion, along the quantum chemical calculation of semiclassical electronegativity and hardness, of chemical action and Mulliken electronegativity, as well as by the Markovian generalizations of Becke-Edgecombe electronic focalization functions – all advocate for the reliability of assuming PI formalism of quantum mechanics as a versatile one, suited for analytically and/or computationally modeling of a variety of fundamental physical and chemical reactivity concepts characterizing the (density driving) many-electronic systems. PMID:20087467

  7. Path integrals for electronic densities, reactivity indices, and localization functions in quantum systems.

    PubMed

    Putz, Mihai V

    2009-11-10

    The density matrix theory, the ancestor of density functional theory, provides the immediate framework for Path Integral (PI) development, allowing the canonical density be extended for the many-electronic systems through the density functional closure relationship. Yet, the use of path integral formalism for electronic density prescription presents several advantages: assures the inner quantum mechanical description of the system by parameterized paths; averages the quantum fluctuations; behaves as the propagator for time-space evolution of quantum information; resembles Schrödinger equation; allows quantum statistical description of the system through partition function computing. In this framework, four levels of path integral formalism were presented: the Feynman quantum mechanical, the semiclassical, the Feynman-Kleinert effective classical, and the Fokker-Planck non-equilibrium ones. In each case the density matrix or/and the canonical density were rigorously defined and presented. The practical specializations for quantum free and harmonic motions, for statistical high and low temperature limits, the smearing justification for the Bohr's quantum stability postulate with the paradigmatic Hydrogen atomic excursion, along the quantum chemical calculation of semiclassical electronegativity and hardness, of chemical action and Mulliken electronegativity, as well as by the Markovian generalizations of Becke-Edgecombe electronic focalization functions - all advocate for the reliability of assuming PI formalism of quantum mechanics as a versatile one, suited for analytically and/or computationally modeling of a variety of fundamental physical and chemical reactivity concepts characterizing the (density driving) many-electronic systems.

  8. Stochastic Optimally Tuned Range-Separated Hybrid Density Functional Theory.

    PubMed

    Neuhauser, Daniel; Rabani, Eran; Cytter, Yael; Baer, Roi

    2016-05-19

    We develop a stochastic formulation of the optimally tuned range-separated hybrid density functional theory that enables significant reduction of the computational effort and scaling of the nonlocal exchange operator at the price of introducing a controllable statistical error. Our method is based on stochastic representations of the Coulomb convolution integral and of the generalized Kohn-Sham density matrix. The computational cost of the approach is similar to that of usual Kohn-Sham density functional theory, yet it provides a much more accurate description of the quasiparticle energies for the frontier orbitals. This is illustrated for a series of silicon nanocrystals up to sizes exceeding 3000 electrons. Comparison with the stochastic GW many-body perturbation technique indicates excellent agreement for the fundamental band gap energies, good agreement for the band edge quasiparticle excitations, and very low statistical errors in the total energy for large systems. The present approach has a major advantage over one-shot GW by providing a self-consistent Hamiltonian that is central for additional postprocessing, for example, in the stochastic Bethe-Salpeter approach.

  9. Dynamic kinetic energy potential for orbital-free density functional theory.

    PubMed

    Neuhauser, Daniel; Pistinner, Shlomo; Coomar, Arunima; Zhang, Xu; Lu, Gang

    2011-04-14

    A dynamic kinetic energy potential (DKEP) is developed for time-dependent orbital-free (TDOF) density function theory applications. This potential is constructed to affect only the dynamical (ω ≠ 0) response of an orbital-free electronic system. It aims at making the orbital-free simulation respond in the same way as that of a noninteracting homogenous electron gas (HEG), as required by a correct kinetic energy, therefore enabling extension of the success of orbital-free density functional theory in the static case (e.g., for embedding and description of processes in bulk materials) to dynamic processes. The potential is constructed by expansions of terms, each of which necessitates only simple time evolution (concurrent with the TDOF evolution) and a spatial convolution at each time-step. With 14 such terms a good fit is obtained to the response of the HEG at a large range of frequencies, wavevectors, and densities. The method is demonstrated for simple jellium spheres, approximating Na(9)(+) and Na(65)(+) clusters. It is applicable both to small and large (even ultralarge) excitations and the results converge (i.e., do not blow up) as a function of time. An extension to iterative frequency-resolved extraction is briefly outlined, as well as possibly numerically simpler expansions. The approach could also be extended to fit, instead of the HEG susceptibility, either an experimental susceptibility or a theoretically derived one for a non-HEG system. The DKEP potential should be a powerful tool for embedding a dynamical system described by a more accurate method (such as time-dependent density functional theory, TDDFT) in a large background described by TDOF with a DKEP potential. The type of expansions used and envisioned should be useful for other approaches, such as memory functionals in TDDFT. Finally, an appendix details the formal connection between TDOF and TDDFT.

  10. A van der Waals Equation of State for a Dilute Boson Gas

    ERIC Educational Resources Information Center

    Deeney, F. A.; O'Leary, J. P.

    2012-01-01

    An equation of state of a system is a relationship that connects the thermodynamic variables of the system such as pressure and temperature. Such equations are well known for classical gases but less so for quantum systems. In this paper we develop a van der Waals equation of state for a dilute boson gas that may be used to explain the occurrence…

  11. Cyanographone and isocyanographone — Two asymmetrically functionalized graphene pseudohalides and their potential use in chemical sensing

    NASA Astrophysics Data System (ADS)

    Marsoner Steinkasserer, Lukas Eugen; Pohl, Vincent; Paulus, Beate

    2018-02-01

    Graphene pseudohalides are natural candidates for use in molecular sensing due to their greater chemical activity as compared to both graphene halides and pristine graphene. Though their study is still in its infancy, being hindered until recently by the unavailability of both selective and efficient procedures for their synthesis, they promise to considerably widen the application potential of chemically modified graphenes. Herein, we employ van der Waals density functional theory to study the structural and electronic properties of two selected graphene pseudohalides, namely, cyanographone and isocyanographone and investigate the potential use of the latter as a chemical sensor via electron transport calculations.

  12. Some Fundamental Issues in Ground-State Density Functional Theory: A Guide for the Perplexed.

    PubMed

    Perdew, John P; Ruzsinszky, Adrienn; Constantin, Lucian A; Sun, Jianwei; Csonka, Gábor I

    2009-04-14

    Some fundamental issues in ground-state density functional theory are discussed without equations: (1) The standard Hohenberg-Kohn and Kohn-Sham theorems were proven for a Hamiltonian that is not quite exact for real atoms, molecules, and solids. (2) The density functional for the exchange-correlation energy, which must be approximated, arises from the tendency of electrons to avoid one another as they move through the electron density. (3) In the absence of a magnetic field, either spin densities or total electron density can be used, although the former choice is better for approximations. (4) "Spin contamination" of the determinant of Kohn-Sham orbitals for an open-shell system is not wrong but right. (5) Only to the extent that symmetries of the interacting wave function are reflected in the spin densities should those symmetries be respected by the Kohn-Sham noninteracting or determinantal wave function. Functionals below the highest level of approximations should however sometimes break even those symmetries, for good physical reasons. (6) Simple and commonly used semilocal (lower-level) approximations for the exchange-correlation energy as a functional of the density can be accurate for closed systems near equilibrium and yet fail for open systems of fluctuating electron number. (7) The exact Kohn-Sham noninteracting state need not be a single determinant, but common approximations can fail when it is not. (8) Over an open system of fluctuating electron number, connected to another such system by stretched bonds, semilocal approximations make the exchange-correlation energy and hole-density sum rule too negative. (9) The gap in the exact Kohn-Sham band structure of a crystal underestimates the real fundamental gap but may approximate the first exciton energy in the large-gap limit. (10) Density functional theory is not really a mean-field theory, although it looks like one. The exact functional includes strong correlation, and semilocal approximations often

  13. Phase space explorations in time dependent density functional theory

    NASA Astrophysics Data System (ADS)

    Rajam, Aruna K.

    Time dependent density functional theory (TDDFT) is one of the useful tools for the study of the dynamic behavior of correlated electronic systems under the influence of external potentials. The success of this formally exact theory practically relies on approximations for the exchange-correlation potential which is a complicated functional of the co-ordinate density, non-local in space and time. Adiabatic approximations (such as ALDA), which are local in time, are most commonly used in the increasing applications of the field. Going beyond ALDA, has been proved difficult leading to mathematical inconsistencies. We explore the regions where the theory faces challenges, and try to answer some of them via the insights from two electron model systems. In this thesis work we propose a phase-space extension of the TDDFT. We want to answer the challenges the theory is facing currently by exploring the one-body phase-space. We give a general introduction to this theory and its mathematical background in the first chapter. In second chapter, we carryout a detailed study of instantaneous phase-space densities and argue that the functionals of distributions can be a better alternative to the nonlocality issue of the exchange-correlation potentials. For this we study in detail the interacting and the non-interacting phase-space distributions for Hookes atom model. The applicability of ALDA-based TDDFT for the dynamics in strongfields can become severely problematic due to the failure of single-Slater determinant picture.. In the third chapter, we analyze how the phase-space distributions can shine some light into this problem. We do a comparative study of Kohn-Sham and interacting phase-space and momentum distributions for single ionization and double ionization systems. Using a simple model of two-electron systems, we have showed that the momentum distribution computed directly from the exact KS system contains spurious oscillations: a non-classical description of the

  14. A classical density-functional theory for describing water interfaces.

    PubMed

    Hughes, Jessica; Krebs, Eric J; Roundy, David

    2013-01-14

    We develop a classical density functional for water which combines the White Bear fundamental-measure theory (FMT) functional for the hard sphere fluid with attractive interactions based on the statistical associating fluid theory variable range (SAFT-VR). This functional reproduces the properties of water at both long and short length scales over a wide range of temperatures and is computationally efficient, comparable to the cost of FMT itself. We demonstrate our functional by applying it to systems composed of two hard rods, four hard rods arranged in a square, and hard spheres in water.

  15. Functional connectivity density mapping: comparing multiband and conventional EPI protocols.

    PubMed

    Cohen, Alexander D; Tomasi, Dardo; Shokri-Kojori, Ehsan; Nencka, Andrew S; Wang, Yang

    2018-06-01

    Functional connectivity density mapping (FCDM) is a newly developed data-driven technique that quantifies the number of local and global functional connections for each voxel in the brain. In this study, we evaluated reproducibility, sensitivity, and specificity of both local functional connectivity density (lFCD) and global functional connectivity density (gFCD). We compared these metrics using the human connectome project (HCP) compatible high-resolution (2 mm isotropic, TR = 0.8 s) multiband (MB), and more typical, lower resolution (3.5 mm isotropic, TR = 2.0 s) single-band (SB) resting state functional MRI (rs-fMRI) acquisitions. Furthermore, in order to be more clinically feasible, only rs-fMRI scans that lasted seven minutes were tested. Subjects were scanned twice within a two-week span. We found sensitivity and specificity increased and reproducibility either increased or did not change for the MB compared to the SB acquisitions. The MB scans also showed improved gray matter/white matter contrast compared to the SB scans. The lFCD and gFCD patterns were similar across MB and SB scans and confined predominantly to gray matter. We also observed a strong spatial correlation of FCD between MB and SB scans indicating the two acquisitions provide similar information. These findings indicate high-resolution MB acquisitions improve the quality of FCD data, and seven minute rs-fMRI scan can provide robust FCD measurements.

  16. Work-function calculations for a symmetrical total-charge-density profile at the metallic surface

    NASA Astrophysics Data System (ADS)

    Wojciechowski, K. F.; Sobańska-Nowotnik, M.

    1983-07-01

    It is shown that, if the total-charge-density profile nT(x) at the surface of jellium satisfies the Budd-Vannimenus constraint and also is a symmetrical function of x, relative to the ordinate axis, then the work-function variation versus the Wigner-Seitz radius rs does not depend on the form of nT(x). Also the simple linear-density profile is used to calculate the work function by application of the variational principle for the energy, including the first and second density-gradient corrections to the kinetic energy and the first gradient correction to the exchange and correlation energy. The results for the work function are in good agreement with the polycrystalline values for low-density metals.

  17. Semiclassical neutral atom as a reference system in density functional theory.

    PubMed

    Constantin, Lucian A; Fabiano, E; Laricchia, S; Della Sala, F

    2011-05-06

    We use the asymptotic expansions of the semiclassical neutral atom as a reference system in density functional theory to construct accurate generalized gradient approximations (GGAs) for the exchange-correlation and kinetic energies without any empiricism. These asymptotic functionals are among the most accurate GGAs for molecular systems, perform well for solid state, and overcome current GGA state of the art in frozen density embedding calculations. Our results also provide evidence for the conjointness conjecture between exchange and kinetic energies of atomic systems.

  18. Orthogonality of embedded wave functions for different states in frozen-density embedding theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zech, Alexander; Wesolowski, Tomasz A.; Aquilante, Francesco

    2015-10-28

    Other than lowest-energy stationary embedded wave functions obtained in Frozen-Density Embedding Theory (FDET) [T. A. Wesolowski, Phys. Rev. A 77, 012504 (2008)] can be associated with electronic excited states but they can be mutually non-orthogonal. Although this does not violate any physical principles — embedded wave functions are only auxiliary objects used to obtain stationary densities — working with orthogonal functions has many practical advantages. In the present work, we show numerically that excitation energies obtained using conventional FDET calculations (allowing for non-orthogonality) can be obtained using embedded wave functions which are strictly orthogonal. The used method preserves the mathematicalmore » structure of FDET and self-consistency between energy, embedded wave function, and the embedding potential (they are connected through the Euler-Lagrange equations). The orthogonality is built-in through the linearization in the embedded density of the relevant components of the total energy functional. Moreover, we show formally that the differences between the expectation values of the embedded Hamiltonian are equal to the excitation energies, which is the exact result within linearized FDET. Linearized FDET is shown to be a robust approximation for a large class of reference densities.« less

  19. Importance of the Kinetic Energy Density for Band Gap Calculations in Solids with Density Functional Theory.

    PubMed

    Tran, Fabien; Blaha, Peter

    2017-05-04

    Recently, exchange-correlation potentials in density functional theory were developed with the goal of providing improved band gaps in solids. Among them, the semilocal potentials are particularly interesting for large systems since they lead to calculations that are much faster than with hybrid functionals or methods like GW. We present an exhaustive comparison of semilocal exchange-correlation potentials for band gap calculations on a large test set of solids, and particular attention is paid to the potential HLE16 proposed by Verma and Truhlar. It is shown that the most accurate potential is the modified Becke-Johnson potential, which, most noticeably, is much more accurate than all other semilocal potentials for strongly correlated systems. This can be attributed to its additional dependence on the kinetic energy density. It is also shown that the modified Becke-Johnson potential is at least as accurate as the hybrid functionals and more reliable for solids with large band gaps.

  20. Probability density function approach for compressible turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Hsu, A. T.; Tsai, Y.-L. P.; Raju, M. S.

    1994-01-01

    The objective of the present work is to extend the probability density function (PDF) tubulence model to compressible reacting flows. The proability density function of the species mass fractions and enthalpy are obtained by solving a PDF evolution equation using a Monte Carlo scheme. The PDF solution procedure is coupled with a compression finite-volume flow solver which provides the velocity and pressure fields. A modeled PDF equation for compressible flows, capable of treating flows with shock waves and suitable to the present coupling scheme, is proposed and tested. Convergence of the combined finite-volume Monte Carlo solution procedure is discussed. Two super sonic diffusion flames are studied using the proposed PDF model and the results are compared with experimental data; marked improvements over solutions without PDF are observed.