Sample records for waals interaction energy

  1. Development of a picture of the van der Waals interaction energy between clusters of nanometer-range particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arunachalam, V.; Marlow, W.H.; Lu, J.X.

    1998-09-01

    The importance of the long-range Lifshitz{endash}van der Waals interaction energy between condensed bodies is well known. However, its implementation for interacting bodies that are highly irregular and separated by distances varying from contact to micrometers has received little attention. As part of a study of collisions of irregular aerosol particles, an approach based on the Lifshitz theory of van der Waals interaction has been developed to compute the interaction energy between a sphere and an aggregate of spheres at all separations. In the first part of this study, the iterated sum-over-dipole interactions between pairs of approximately spherical molecular clusters aremore » compared with the Lifshitz and Lifshitz-Hamaker interaction energies for continuum spheres of radii equal to those of the clusters{close_quote} circumscribed spheres and of the same masses as the clusters. The Lifshitz energy is shown to converge to the iterated dipolar energy for quasispherical molecular clusters for sufficiently large separations, while the energy calculated by using the Lifshitz-Hamaker approach does not. Next, the interaction energies between a contacting pair of these molecular clusters and a third cluster in different relative positions are calculated first by coupling all molecules in the three-cluster system and second by ignoring the interactions between the molecules of the adhering clusters. The error calculated by this omission is shown to be very small, and is an indication of the error in computing the long-range interaction energy between a pair of interacting spheres and a third sphere as a simple sum over the Lifshitz energies between individual, condensed-matter spheres. This Lifshitz energy calculation is then combined with the short-separation, nonsingular van der Waals energy calculation of Lu, Marlow, and Arunachalam, to provide an integrated picture of the van der Waals energy from large separations to contact. {copyright} {ital 1998} {ital The

  2. Dynamical screening of the van der Waals interaction between graphene layers.

    PubMed

    Dappe, Y J; Bolcatto, P G; Ortega, J; Flores, F

    2012-10-24

    The interaction between graphene layers is analyzed combining local orbital DFT and second order perturbation theory. For this purpose we use the linear combination of atomic orbitals-orbital occupancy (LCAO-OO) formalism, that allows us to separate the interaction energy as the sum of a weak chemical interaction between graphene layers plus the van der Waals interaction (Dappe et al 2006 Phys. Rev. B 74 205434). In this work, the weak chemical interaction is calculated by means of corrected-LDA calculations using an atomic-like sp(3)d(5) basis set. The van der Waals interaction is calculated by means of second order perturbation theory using an atom-atom interaction approximation and the atomic-like-orbital occupancies. We also analyze the effect of dynamical screening in the van der Waals interaction using a simple model. We find that this dynamical screening reduces by 40% the van der Waals interaction. Taking this effect into account, we obtain a graphene-graphene interaction energy of 70 ± 5 meV/atom in reasonable agreement with the experimental evidence.

  3. Effective field theories for van der Waals interactions

    NASA Astrophysics Data System (ADS)

    Brambilla, Nora; Shtabovenko, Vladyslav; Tarrús Castellà, Jaume; Vairo, Antonio

    2017-06-01

    Van der Waals interactions between two neutral but polarizable systems at a separation R much larger than the typical size of the systems are at the core of a broad sweep of contemporary problems in settings ranging from atomic, molecular and condensed matter physics to strong interactions and gravity. In this paper, we reexamine the dispersive van der Waals interactions between two hydrogen atoms. The novelty of the analysis resides in the usage of nonrelativistic effective field theories of quantum electrodynamics. In this framework, the van der Waals potential acquires the meaning of a matching coefficient in an effective field theory, dubbed van der Waals effective field theory, suited to describe the low-energy dynamics of an atom pair. It may be computed systematically as a series in R times some typical atomic scale and in the fine-structure constant α . The van der Waals potential gets short-range contributions and radiative corrections, which we compute in dimensional regularization and renormalize here for the first time. Results are given in d space-time dimensions. One can distinguish among different regimes depending on the relative size between 1 /R and the typical atomic bound-state energy, which is of order m α2. Each regime is characterized by a specific hierarchy of scales and a corresponding tower of effective field theories. The short-distance regime is characterized by 1 /R ≫m α2 and the leading-order van der Waals potential is the London potential. We also compute next-to-next-to-next-to-leading-order corrections. In the long-distance regime we have 1 /R ≪m α2. In this regime, the van der Waals potential contains contact terms, which are parametrically larger than the Casimir-Polder potential that describes the potential at large distances. In the effective field theory, the Casimir-Polder potential counts as a next-to-next-to-next-to-leading-order effect. In the intermediate-distance regime, 1 /R ˜m α2, a significantly more complex

  4. Thin Film Evaporation Model with Retarded Van Der Waals Interaction (Postprint)

    DTIC Science & Technology

    2013-11-01

    Waals interaction. The retarded van der Waals interaction is derived from Hamaker theory, the summation of retarded pair potentials for all molecules...interaction is derived from Hamaker theory, the summation of retarded pair potentials for all molecules for a given geometry. When combined, the governing...interaction force is the negative derivative with respect to distance of the interaction energy. The method due to Hamaker essentially sums all pair

  5. Materials perspective on Casimir and van der Waals interactions

    NASA Astrophysics Data System (ADS)

    Woods, L. M.; Dalvit, D. A. R.; Tkatchenko, A.; Rodriguez-Lopez, P.; Rodriguez, A. W.; Podgornik, R.

    2016-10-01

    Interactions induced by electromagnetic fluctuations, such as van der Waals and Casimir forces, are of universal nature present at any length scale between any types of systems. Such interactions are important not only for the fundamental science of materials behavior, but also for the design and improvement of micro- and nanostructured devices. In the past decade, many new materials have become available, which has stimulated the need for understanding their dispersive interactions. The field of van der Waals and Casimir forces has experienced an impetus in terms of developing novel theoretical and computational methods to provide new insights into related phenomena. The understanding of such forces has far reaching consequences as it bridges concepts in materials, atomic and molecular physics, condensed-matter physics, high-energy physics, chemistry, and biology. This review summarizes major breakthroughs and emphasizes the common origin of van der Waals and Casimir interactions. Progress related to novel ab initio modeling approaches and their application in various systems, interactions in materials with Dirac-like spectra, force manipulations through nontrivial boundary conditions, and applications of van der Waals forces in organic and biological matter are examined. The outlook of the review is to give the scientific community a materials perspective of van der Waals and Casimir phenomena and stimulate the development of experimental techniques and applications.

  6. Materials perspective on Casimir and van der Waals interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woods, L. M.; Dalvit, D. A. R.; Tkatchenko, A.

    Interactions induced by electromagnetic fluctuations, such as van der Waals and Casimir forces, are of universal nature present at any length scale between any types of systems. In such interactions these are important not only for the fundamental science of materials behavior, but also for the design and improvement of micro- and nanostructured devices. In the past decade, many new materials have become available, which has stimulated the need for understanding their dispersive interactions. The field of van der Waals and Casimir forces has experienced an impetus in terms of developing novel theoretical and computational methods to provide new insightsmore » into related phenomena. The understanding of such forces has far reaching consequences as it bridges concepts in materials, atomic and molecular physics, condensed-matter physics, high-energy physics, chemistry, and biology. Our review summarizes major breakthroughs and emphasizes the common origin of van der Waals and Casimir interactions. Progress related to novel ab initio modeling approaches and their application in various systems, interactions in materials with Dirac-like spectra, force manipulations through nontrivial boundary conditions, and applications of van der Waals forces in organic and biological matter are examined. Finally, the outlook of the review is to give the scientific community a materials perspective of van der Waals and Casimir phenomena and stimulate the development of experimental techniques and applications.« less

  7. Materials perspective on Casimir and van der Waals interactions

    DOE PAGES

    Woods, L. M.; Dalvit, D. A. R.; Tkatchenko, A.; ...

    2016-11-02

    Interactions induced by electromagnetic fluctuations, such as van der Waals and Casimir forces, are of universal nature present at any length scale between any types of systems. In such interactions these are important not only for the fundamental science of materials behavior, but also for the design and improvement of micro- and nanostructured devices. In the past decade, many new materials have become available, which has stimulated the need for understanding their dispersive interactions. The field of van der Waals and Casimir forces has experienced an impetus in terms of developing novel theoretical and computational methods to provide new insightsmore » into related phenomena. The understanding of such forces has far reaching consequences as it bridges concepts in materials, atomic and molecular physics, condensed-matter physics, high-energy physics, chemistry, and biology. Our review summarizes major breakthroughs and emphasizes the common origin of van der Waals and Casimir interactions. Progress related to novel ab initio modeling approaches and their application in various systems, interactions in materials with Dirac-like spectra, force manipulations through nontrivial boundary conditions, and applications of van der Waals forces in organic and biological matter are examined. Finally, the outlook of the review is to give the scientific community a materials perspective of van der Waals and Casimir phenomena and stimulate the development of experimental techniques and applications.« less

  8. Van der Waals interaction in uniaxial anisotropic media.

    PubMed

    Kornilovitch, Pavel E

    2013-01-23

    Van der Waals interactions between flat surfaces in uniaxial anisotropic media are investigated in the nonretarded limit. The main focus is the effect of nonzero tilt between the optical axis and the surface normal on the strength of the van der Waals attraction. General expressions for the van der Waals free energy are derived using the surface mode method and the transfer-matrix formalism. To facilitate numerical calculations a temperature-dependent three-band parameterization of the dielectric tensor of the liquid crystal 5CB is developed. A solid slab immersed in a liquid crystal experiences a van der Waals torque that aligns the surface normal relative to the optical axis of the medium. The preferred orientation is different for different materials. Two solid slabs in close proximity experience a van der Waals attraction that is strongest for homeotropic alignment of the intervening liquid crystal for all the materials studied. The results have implications for the stability of plate-like colloids in liquid crystal hosts.

  9. Cosmology with an interacting van der Waals fluid

    NASA Astrophysics Data System (ADS)

    Elizalde, E.; Khurshudyan, M.

    A model for the late-time accelerated expansion of the Universe is considered where a van der Waals fluid interacting with matter plays the role of dark energy. The transition towards this phase in the cosmic evolution history is discussed in detail and, moreover, a complete classification of the future finite-time singularities is obtained for six different possible forms of the nongravitational interaction between dark energy (the van der Waals fluid) and dark matter. This study shows, in particular, that a Universe with a noninteracting three-parameter van der Waals fluid can evolve into a Universe characterized by a type IV (generalized sudden) singularity. On the other hand, for certain values of the parameters, exit from the accelerated expanding phase is possible in the near future, what means that the expansion of the Universe in the future could become decelerated - to our knowledge, this interesting situation is not commonplace in the literature. On the other hand, our study shows that space can be divided into different regions. For some of them, in particular, the nongravitational interactions Q = 3Hbρde, Q = 3Hbρdm and Q = 3Hb(ρde + ρde) may completely suppress future finite-time singularity formation, for sufficiently high values of b. On the other hand, for some other regions of the parameter space, the mentioned interactions would not affect the singularity type, namely the type IV singularity generated in the case of the noninteracting model would be preserved. A similar conclusion has been archived for the cases of Q = 3bHρdeρdm/(ρde + ρdm), Q = 3bHρdm2/(ρ de + ρdm) and Q = 3bHρde2/(ρ de + ρdm) nongravitational interactions, with only one difference: the Q = 3bHρdm2/(ρ de + ρdm) interaction will change the type IV singularity of the noninteracting model into a type II (the sudden) singularity.

  10. Scaling laws for van der Waals interactions in nanostructured materials.

    PubMed

    Gobre, Vivekanand V; Tkatchenko, Alexandre

    2013-01-01

    Van der Waals interactions have a fundamental role in biology, physics and chemistry, in particular in the self-assembly and the ensuing function of nanostructured materials. Here we utilize an efficient microscopic method to demonstrate that van der Waals interactions in nanomaterials act at distances greater than typically assumed, and can be characterized by different scaling laws depending on the dimensionality and size of the system. Specifically, we study the behaviour of van der Waals interactions in single-layer and multilayer graphene, fullerenes of varying size, single-wall carbon nanotubes and graphene nanoribbons. As a function of nanostructure size, the van der Waals coefficients follow unusual trends for all of the considered systems, and deviate significantly from the conventionally employed pairwise-additive picture. We propose that the peculiar van der Waals interactions in nanostructured materials could be exploited to control their self-assembly.

  11. Enhanced Chiral Discriminatory van der Waals Interactions Mediated by Chiral Surfaces

    NASA Astrophysics Data System (ADS)

    Barcellona, Pablo; Safari, Hassan; Salam, A.; Buhmann, Stefan Yoshi

    2017-05-01

    We predict a discriminatory interaction between a chiral molecule and an achiral molecule which is mediated by a chiral body. To achieve this, we generalize the van der Waals interaction potential between two ground-state molecules with electric, magnetic, and chiral response to nontrivial environments. The force is evaluated using second-order perturbation theory with an effective Hamiltonian. Chiral media enhance or reduce the free interaction via many-body interactions, making it possible to measure the chiral contributions to the van der Waals force with current technology. The van der Waals interaction is discriminatory with respect to enantiomers of different handedness and could be used to separate enantiomers. We also suggest a specific geometric configuration where the electric contribution to the van der Waals interaction is zero, making the chiral component the dominant effect.

  12. Isotope engineering of van der Waals interactions in hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Vuong, T. Q. P.; Liu, S.; van der Lee, A.; Cuscó, R.; Artús, L.; Michel, T.; Valvin, P.; Edgar, J. H.; Cassabois, G.; Gil, B.

    2018-02-01

    Hexagonal boron nitride is a model lamellar compound where weak, non-local van der Waals interactions ensure the vertical stacking of two-dimensional honeycomb lattices made of strongly bound boron and nitrogen atoms. We study the isotope engineering of lamellar compounds by synthesizing hexagonal boron nitride crystals with nearly pure boron isotopes (10B and 11B) compared to those with the natural distribution of boron (20 at% 10B and 80 at% 11B). On the one hand, as with standard semiconductors, both the phonon energy and electronic bandgap varied with the boron isotope mass, the latter due to the quantum effect of zero-point renormalization. On the other hand, temperature-dependent experiments focusing on the shear and breathing motions of adjacent layers revealed the specificity of isotope engineering in a layered material, with a modification of the van der Waals interactions upon isotope purification. The electron density distribution is more diffuse between adjacent layers in 10BN than in 11BN crystals. Our results open perspectives in understanding and controlling van der Waals bonding in layered materials.

  13. Isotope engineering of van der Waals interactions in hexagonal boron nitride.

    PubMed

    Vuong, T Q P; Liu, S; Van der Lee, A; Cuscó, R; Artús, L; Michel, T; Valvin, P; Edgar, J H; Cassabois, G; Gil, B

    2018-02-01

    Hexagonal boron nitride is a model lamellar compound where weak, non-local van der Waals interactions ensure the vertical stacking of two-dimensional honeycomb lattices made of strongly bound boron and nitrogen atoms. We study the isotope engineering of lamellar compounds by synthesizing hexagonal boron nitride crystals with nearly pure boron isotopes ( 10 B and 11 B) compared to those with the natural distribution of boron (20 at% 10 B and 80 at% 11 B). On the one hand, as with standard semiconductors, both the phonon energy and electronic bandgap varied with the boron isotope mass, the latter due to the quantum effect of zero-point renormalization. On the other hand, temperature-dependent experiments focusing on the shear and breathing motions of adjacent layers revealed the specificity of isotope engineering in a layered material, with a modification of the van der Waals interactions upon isotope purification. The electron density distribution is more diffuse between adjacent layers in 10 BN than in 11 BN crystals. Our results open perspectives in understanding and controlling van der Waals bonding in layered materials.

  14. Effect of van der Waals interactions on the structural and binding properties of GaSe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkisov, Sergey Y., E-mail: sarkisov@mail.tsu.ru; Kosobutsky, Alexey V., E-mail: kosobutsky@kemsu.ru; Kemerovo State University, Krasnaya 6, 650043 Kemerovo

    The influence of van der Waals interactions on the lattice parameters, band structure, elastic moduli and binding energy of layered GaSe compound has been studied using projector-augmented wave method within density functional theory. We employed the conventional local/semilocal exchange-correlation functionals and recently developed van der Waals functionals which are able to describe dispersion forces. It is found that application of van der Waals density functionals allows to substantially increase the accuracy of calculations of the lattice constants a and c and interlayer distance in GaSe at ambient conditions and under hydrostatic pressure. The pressure dependences of the a-parameter, Ga–Ga, Ga–Semore » bond lengths and Ga–Ga–Se bond angle are characterized by a relatively low curvature, while c(p) has a distinct downward bowing due to nonlinear shrinking of the interlayer spacing. From the calculated binding energy curves we deduce the interlayer binding energy of GaSe, which is found to be in the range 0.172–0.197 eV/layer (14.2–16.2 meV/Å{sup 2}). - Highlights: • Effects of van der Waals interactions are analyzed using advanced density functionals. • Calculations with vdW-corrected functionals closely agree with experiment. • Interlayer binding energy of GaSe is estimated to be 14.2–16.2 meV/Å{sup 2}.« less

  15. Probing low-energy hyperbolic polaritons in van der Waals crystals with an electron microscope.

    PubMed

    Govyadinov, Alexander A; Konečná, Andrea; Chuvilin, Andrey; Vélez, Saül; Dolado, Irene; Nikitin, Alexey Y; Lopatin, Sergei; Casanova, Fèlix; Hueso, Luis E; Aizpurua, Javier; Hillenbrand, Rainer

    2017-07-21

    Van der Waals materials exhibit intriguing structural, electronic, and photonic properties. Electron energy loss spectroscopy within scanning transmission electron microscopy allows for nanoscale mapping of such properties. However, its detection is typically limited to energy losses in the eV range-too large for probing low-energy excitations such as phonons or mid-infrared plasmons. Here, we adapt a conventional instrument to probe energy loss down to 100 meV, and map phononic states in hexagonal boron nitride, a representative van der Waals material. The boron nitride spectra depend on the flake thickness and on the distance of the electron beam to the flake edges. To explain these observations, we developed a classical response theory that describes the interaction of fast electrons with (anisotropic) van der Waals slabs, revealing that the electron energy loss is dominated by excitation of hyperbolic phonon polaritons, and not of bulk phonons as often reported. Thus, our work is of fundamental importance for interpreting future low-energy loss spectra of van der Waals materials.Here the authors adapt a STEM-EELS system to probe energy loss down to 100 meV, and apply it to map phononic states in hexagonal boron nitride, revealing that the electron loss is dominated by hyperbolic phonon polaritons.

  16. The role of van der Waals interaction in the tilted binding of amine molecules to the Au(111) surface

    NASA Astrophysics Data System (ADS)

    Le, Duy; Aminpour, Maral; Kiejna, Adam; Rahman, Talat S.

    2012-06-01

    We present the results of ab initio electronic structure calculations for the adsorption characteristics of three amine molecules on Au(111), which show that the inclusion of van der Waals interactions between the isolated molecule and the surface leads in general to good agreement with experimental data on the binding energies. Each molecule, however, adsorbs with a small tilt angle (between -5 and 9°). For the specific case of 1,4-diaminobenzene (BDA) our calculations reproduce the larger tilt angle (close to 24°) measured by photoemission experiments, when intermolecular (van der Waals) interactions (for about 8% coverage) are included. These results point not only to the important contribution of van der Waals interactions to molecule-surface binding energy, but also that of intermolecular interactions, often considered secondary to that between the molecule and the surface, in determining the adsorption geometry and pattern formation.

  17. Graded Interface Models for more accurate Determination of van der Waals-London Dispersion Interactions across Grain Boundaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Benthem, Klaus; Tan, Guolong; French, Roger H

    2006-01-01

    Attractive van der Waals V London dispersion interactions between two half crystals arise from local physical property gradients within the interface layer separating the crystals. Hamaker coefficients and London dispersion energies were quantitatively determined for 5 and near- 13 grain boundaries in SrTiO3 by analysis of spatially resolved valence electron energy-loss spectroscopy (VEELS) data. From the experimental data, local complex dielectric functions were determined, from which optical properties can be locally analysed. Both local electronic structures and optical properties revealed gradients within the grain boundary cores of both investigated interfaces. The obtained results show that even in the presence ofmore » atomically structured grain boundary cores with widths of less than 1 nm, optical properties have to be represented with gradual changes across the grain boundary structures to quantitatively reproduce accurate van der Waals V London dispersion interactions. London dispersion energies of the order of 10% of the apparent interface energies of SrTiO3 were observed, demonstrating their significance in the grain boundary formation process. The application of different models to represent optical property gradients shows that long-range van der Waals V London dispersion interactions scale significantly with local, i.e atomic length scale property variations.« less

  18. Van der Waals Interactions in Aspirin

    NASA Astrophysics Data System (ADS)

    Reilly, Anthony; Tkatchenko, Alexandre

    2015-03-01

    The ability of molecules to yield multiple solid forms, or polymorphs, has significance for diverse applications ranging from drug design and food chemistry to nonlinear optics and hydrogen storage. In particular, aspirin has been used and studied for over a century, but has only recently been shown to have an additional polymorphic form, known as form II. Since the two observed solid forms of aspirin are degenerate in terms of lattice energy, kinetic effects have been suggested to determine the metastability of the less abundant form II. Here, first-principles calculations provide an alternative explanation based on free-energy differences at room temperature. The explicit consideration of many-body van der Waals interactions in the free energy demonstrates that the stability of the most abundant form of aspirin is due to a subtle coupling between collective electronic fluctuations and quantized lattice vibrations. In addition, a systematic analysis of the elastic properties of the two forms of aspirin rules out mechanical instability of form II as making it metastable.

  19. van der Waals Interactions on the Mesoscale: Open-Science Implementation, Anisotropy, Retardation, and Solvent Effects.

    PubMed

    Dryden, Daniel M; Hopkins, Jaime C; Denoyer, Lin K; Poudel, Lokendra; Steinmetz, Nicole F; Ching, Wai-Yim; Podgornik, Rudolf; Parsegian, Adrian; French, Roger H

    2015-09-22

    The self-assembly of heterogeneous mesoscale systems is mediated by long-range interactions, including van der Waals forces. Diverse mesoscale architectures, built of optically and morphologically anisotropic elements such as DNA, collagen, single-walled carbon nanotubes, and inorganic materials, require a tool to calculate the forces, torques, interaction energies, and Hamaker coefficients that govern assembly in such systems. The mesoscale Lifshitz theory of van der Waals interactions can accurately describe solvent and temperature effects, retardation, and optically and morphologically anisotropic materials for cylindrical and planar interaction geometries. The Gecko Hamaker open-science software implementation of this theory enables new and sophisticated insights into the properties of important organic/inorganic systems: interactions show an extended range of magnitudes and retardation rates, DNA interactions show an imprint of base pair composition, certain SWCNT interactions display retardation-dependent nonmonotonicity, and interactions are mapped across a range of material systems in order to facilitate rational mesoscale design.

  20. Electrostatics of electron-hole interactions in van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Cavalcante, L. S. R.; Chaves, A.; Van Duppen, B.; Peeters, F. M.; Reichman, D. R.

    2018-03-01

    The role of dielectric screening of electron-hole interaction in van der Waals heterostructures is theoretically investigated. A comparison between models available in the literature for describing these interactions is made and the limitations of these approaches are discussed. A simple numerical solution of Poisson's equation for a stack of dielectric slabs based on a transfer matrix method is developed, enabling the calculation of the electron-hole interaction potential at very low computational cost and with reasonable accuracy. Using different potential models, direct and indirect exciton binding energies in these systems are calculated within Wannier-Mott theory, and a comparison of theoretical results with recent experiments on excitons in two-dimensional materials is discussed.

  1. Van der Waals interaction mediated by an optically uniaxial layer

    NASA Astrophysics Data System (ADS)

    Šarlah, A.; Žumer, S.

    2001-11-01

    We study the van der Waals interaction between macroscopic bodies separated by a thin anisotropic film with a uniaxial permittivity tensor. We describe the effect of anisotropy of the media on the magnitude and sign of the interaction. The resulting differences in the van der Waals interaction are especially important for the stability of strongly confined liquid crystals, and nanostructures characterized by highly uniaxial macroscopic molecular arrangement, such as in self-assemblies of long organic molecules forming films, membranes, colloids, etc. We introduce an improved expression for the Hamaker constant which takes into account the uniaxial symmetry of a medium. In special cases neglecting the optical anisotropy even leads to an incorrect sign of the interaction.

  2. Van der Waals Interactions Involving Proteins

    NASA Technical Reports Server (NTRS)

    Roth, Charles M.; Neal, Brian L.; Lenhoff, Abraham M.

    1996-01-01

    Van der Waals (dispersion) forces contribute to interactions of proteins with other molecules or with surfaces, but because of the structural complexity of protein molecules, the magnitude of these effects is usually estimated based on idealized models of the molecular geometry, e.g., spheres or spheroids. The calculations reported here seek to account for both the geometric irregularity of protein molecules and the material properties of the interacting media. Whereas the latter are found to fall in the generally accepted range, the molecular shape is shown to cause the magnitudes of the interactions to differ significantly from those calculated using idealized models. with important consequences. First, the roughness of the molecular surface leads to much lower average interaction energies for both protein-protein and protein-surface cases relative to calculations in which the protein molecule is approximated as a sphere. These results indicate that a form of steric stabilization may be an important effect in protein solutions. Underlying this behavior is appreciable orientational dependence, one reflection of which is that molecules of complementary shape are found to exhibit very strong attractive dispersion interactions. Although this has been widely discussed previously in the context of molecular recognition processes, the broader implications of these phenomena may also be important at larger molecular separations, e.g., in the dynamics of aggregation, precipitation, and crystal growth.

  3. Quantum Monte Carlo calculations of van der Waals interactions between aromatic benzene rings

    NASA Astrophysics Data System (ADS)

    Azadi, Sam; Kühne, T. D.

    2018-05-01

    The magnitude of finite-size effects and Coulomb interactions in quantum Monte Carlo simulations of van der Waals interactions between weakly bonded benzene molecules are investigated. To that extent, two trial wave functions of the Slater-Jastrow and Backflow-Slater-Jastrow types are employed to calculate the energy-volume equation of state. We assess the impact of the backflow coordinate transformation on the nonlocal correlation energy. We found that the effect of finite-size errors in quantum Monte Carlo calculations on energy differences is particularly large and may even be more important than the employed trial wave function. In addition to the cohesive energy, the singlet excitonic energy gap and the energy gap renormalization of crystalline benzene at different densities are computed.

  4. Spin-Flavor van der Waals Forces and NN interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alvaro Calle Cordon, Enrique Ruiz Arriola

    A major goal in Nuclear Physics is the derivation of the Nucleon-Nucleon (NN) interaction from Quantum Chromodynamics (QCD). In QCD the fundamental degrees of freedom are colored quarks and gluons which are confined to form colorless strongly interacting hadrons. Because of this the resulting nuclear forces at sufficiently large distances correspond to spin-flavor excitations, very much like the dipole excitations generating the van der Waals (vdW) forces acting between atoms. We study the Nucleon-Nucleon interaction in the Born-Oppenheimer approximation at second order in perturbation theory including the Delta resonance as an intermediate state. The potential resembles strongly chiral potentials computedmore » either via soliton models or chiral perturbation theory and has a van der Waals like singularity at short distances which is handled by means of renormalization techniques. Results for the deuteron are discussed.« less

  5. Van-der-Waals interaction of atoms in dipolar Rydberg states

    NASA Astrophysics Data System (ADS)

    Kamenski, Aleksandr A.; Mokhnenko, Sergey N.; Ovsiannikov, Vitaly D.

    2018-02-01

    An asymptotic expression for the van-der-Waals constant C 6( n) ≈ -0.03 n 12 K p ( x) is derived for the long-range interaction between two highly excited hydrogen atoms A and B in their extreme Stark states of equal principal quantum numbers n A = n B = n ≫ 1 and parabolic quantum numbers n 1(2) = n - 1, n 2(1) = m = 0 in the case of collinear orientation of the Stark-state dipolar electric moments and the interatomic axis. The cubic polynomial K 3( x) in powers of reciprocal values of the principal quantum number x = 1/ n and quadratic polynomial K 2( y) in powers of reciprocal values of the principal quantum number squared y = 1/ n 2 were determined on the basis of the standard curve fitting polynomial procedure from the calculated data for C 6( n). The transformation of attractive van-der-Waals force ( C 6 > 0) for low-energy states n < 23 into repulsive force ( C 6 < 0) for all higher-energy states of n ≥ 23, is observed from the results of numerical calculations based on the second-order perturbation theory for the operator of the long-range interaction between neutral atoms. This transformation is taken into account in the asymptotic formulas (in both cases of p = 2, 3) by polynomials K p tending to unity at n → ∞ ( K p (0) = 1). The transformation from low- n attractive van-der-Waals force into high- n repulsive force demonstrates the gradual increase of the negative contribution to C 6( n) from the lower-energy two-atomic states, of the A(B)-atom principal quantum numbers n'A(B) = n-Δ n (where Δ n = 1, 2, … is significantly smaller than n for the terms providing major contribution to the second-order series), which together with the states of n″B(A) = n+Δ n make the joint contribution proportional to n 12. So, the hydrogen-like manifold structure of the energy spectrum is responsible for the transformation of the power-11 asymptotic dependence C 6( n) ∝ n 11of the low-angular-momenta Rydberg states in many-electron atoms into the power

  6. Isobaric first-principles molecular dynamics of liquid water with nonlocal van der Waals interactions

    NASA Astrophysics Data System (ADS)

    Miceli, Giacomo; de Gironcoli, Stefano; Pasquarello, Alfredo

    2015-01-01

    We investigate the structural properties of liquid water at near ambient conditions using first-principles molecular dynamics simulations based on a semilocal density functional augmented with nonlocal van der Waals interactions. The adopted scheme offers the advantage of simulating liquid water at essentially the same computational cost of standard semilocal functionals. Applied to the water dimer and to ice Ih, we find that the hydrogen-bond energy is only slightly enhanced compared to a standard semilocal functional. We simulate liquid water through molecular dynamics in the NpH statistical ensemble allowing for fluctuations of the system density. The structure of the liquid departs from that found with a semilocal functional leading to more compact structural arrangements. This indicates that the directionality of the hydrogen-bond interaction has a diminished role as compared to the overall attractions, as expected when dispersion interactions are accounted for. This is substantiated through a detailed analysis comprising the study of the partial radial distribution functions, various local order indices, the hydrogen-bond network, and the selfdiffusion coefficient. The explicit treatment of the van der Waals interactions leads to an overall improved description of liquid water.

  7. Van der waals forces on thin liquid films in capillary tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herdt, G.C.; Swanson, L.W.

    1993-10-01

    A theory of the van der Waals attraction between a thin liquid films and a capillary tube is presented assuming the presence of a vapor-liquid interface. The model is based on the surface mode analysis method of van Kampen et al. Values for the van der Waals interaction energy per unit area were calculated for liquid films of pentane on a gold substrate assuming a thin liquid film. Results indicate that the effect of capillary curvature on the van der Waals interaction increases as the ratio of the liquid film thickness to the capillary radius is increased. This trend ismore » consistent with predictions based on the Hamaker theory. Deviations from results based on the Hamaker theory are easily explained in terms of retardation of the van der Waals interaction. Because the effect of capillary curvature increases in the regime where retardation effects become important, curvature effects constitute a small correction to the van der Waals forces in a capillary tube.« less

  8. van der Waals interactions between nanostructures: Some analytic results from series expansions

    NASA Astrophysics Data System (ADS)

    Stedman, T.; Drosdoff, D.; Woods, L. M.

    2014-01-01

    The van der Waals force between objects of nontrivial geometries is considered. A technique based on a perturbation series approach is formulated in the dilute limit. We show that the dielectric response and object size can be decoupled and dominant contributions in terms of object separations can be obtained. This is a powerful method, which enables straightforward calculations of the interaction for different geometries. Our results for planar structures, such as thin sheets, infinitely long ribbons, and ribbons with finite dimensions, may be applicable for nanostructured devices where the van der Waals interaction plays an important role.

  9. Van der Waals interactions and the limits of isolated atom models at interfaces

    PubMed Central

    Kawai, Shigeki; Foster, Adam S.; Björkman, Torbjörn; Nowakowska, Sylwia; Björk, Jonas; Canova, Filippo Federici; Gade, Lutz H.; Jung, Thomas A.; Meyer, Ernst

    2016-01-01

    Van der Waals forces are among the weakest, yet most decisive interactions governing condensation and aggregation processes and the phase behaviour of atomic and molecular matter. Understanding the resulting structural motifs and patterns has become increasingly important in studies of the nanoscale regime. Here we measure the paradigmatic van der Waals interactions represented by the noble gas atom pairs Ar–Xe, Kr–Xe and Xe–Xe with a Xe-functionalized tip of an atomic force microscope at low temperature. Individual rare gas atoms were fixed at node sites of a surface-confined two-dimensional metal–organic framework. We found that the magnitude of the measured force increased with the atomic radius, yet detailed simulation by density functional theory revealed that the adsorption induced charge redistribution strengthened the van der Waals forces by a factor of up to two, thus demonstrating the limits of a purely atomic description of the interaction in these representative systems. PMID:27174162

  10. Ab-initio adsorption study of chitosan on functionalized graphene: critical role of van der Waals interactions.

    PubMed

    Rahman, R; Mazumdar, D

    2012-03-01

    We investigate the adsorption process of an organic biomolecule (chitosan) on epoxy-functionalized graphene using ab-initio density functional methods incorporating van-der-waals (vdW) interactions. The role of London dispersion force on the cohesive energy and conformal preference of the molecule is quantitatively elucidated. Functionalizing graphene with epoxy leads to weak hydrogen-bond interactions with chitosan. Binding energy values increase by over an order of magnitude after including vdW corrections, implying that dispersive interactions dominate the physisorption process. Conformal study show binding upto 30 kcal/mol when the molecule is oriented with the hydroxyl group approaching the functionalized graphene. Our study advances the promise of functionalized graphene for a variety of applications.

  11. Engineering Low Dimensional Materials with van der Waals Interaction

    NASA Astrophysics Data System (ADS)

    Jin, Chenhao

    Two-dimensional van der Waals materials grow into a hot and big field in condensed matter physics in the past decade. One particularly intriguing thing is the possibility to stack different layers together as one wish, like playing a Lego game, which can create artificial structures that do not exist in nature. These new structures can enable rich new physics from interlayer interaction: The interaction is strong, because in low-dimension materials electrons are exposed to the interface and are susceptible to other layers; and the screening of interaction is less prominent. The consequence is rich, not only from the extensive list of two-dimensional materials available nowadays, but also from the freedom of interlayer configuration, such as displacement and twist angle, which creates a gigantic parameter space to play with. On the other hand, however, the huge parameter space sometimes can make it challenging to describe consistently with a single picture. For example, the large periodicity or even incommensurability in van der Waals systems creates difficulty in using periodic boundary condition. Worse still, the huge superlattice unit cell and overwhelming computational efforts involved to some extent prevent the establishment of a simple physical picture to understand the evolution of system properties in the parameter space of interlayer configuration. In the first part of the dissertation, I will focus on classification of the huge parameter space into subspaces, and introduce suitable theoretical approaches for each subspace. For each approach, I will discuss its validity, limitation, general solution, as well as a specific example of application demonstrating how one can obtain the most important effects of interlayer interaction with little computation efforts. Combining all the approaches introduced will provide an analytic solution to cover majority of the parameter space, which will be very helpful in understanding the intuitive physical picture behind

  12. Many-body van der Waals interactions in molecules and condensed matter.

    PubMed

    DiStasio, Robert A; Gobre, Vivekanand V; Tkatchenko, Alexandre

    2014-05-28

    This work reviews the increasing evidence that many-body van der Waals (vdW) or dispersion interactions play a crucial role in the structure, stability and function of a wide variety of systems in biology, chemistry and physics. Starting with the exact expression for the electron correlation energy provided by the adiabatic connection fluctuation-dissipation theorem, we derive both pairwise and many-body interatomic methods for computing the long-range dispersion energy by considering a model system of coupled quantum harmonic oscillators within the random-phase approximation. By coupling this approach to density functional theory, the resulting many-body dispersion (MBD) method provides an accurate and efficient scheme for computing the frequency-dependent polarizability and many-body vdW energy in molecules and materials with a finite electronic gap. A select collection of applications are presented that ascertain the fundamental importance of these non-bonded interactions across the spectrum of intermolecular (the S22 and S66 benchmark databases), intramolecular (conformational energies of alanine tetrapeptide) and supramolecular (binding energy of the 'buckyball catcher') complexes, as well as molecular crystals (cohesive energies in oligoacenes). These applications demonstrate that electrodynamic response screening and beyond-pairwise many-body vdW interactions--both captured at the MBD level of theory--play a quantitative, and sometimes even qualitative, role in describing the properties considered herein. This work is then concluded with an in-depth discussion of the challenges that remain in the future development of reliable (accurate and efficient) methods for treating many-body vdW interactions in complex materials and provides a roadmap for navigating many of the research avenues that are yet to be explored.

  13. Thioarsenides: A case for long-range Lewis acid-base-directed van der Waals interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibbs, Gerald V.; Wallace, Adam F.; Downs, R. T.

    2011-04-01

    Electron density distributions, bond paths, Laplacian and local energy density properties have been calculated for a number of As4Sn (n = 3,4,5) thioarsenide molecular crystals. On the basis of the distributions, the intramolecular As-S and As-As interactions classify as shared bonded interactions and the intermolecular As-S, As-As and S-S interactions classify as closed-shell van der Waals bonded interactions. The bulk of the intermolecular As-S bond paths link regions of locally concentrated electron density (Lewis base regions) with aligned regions of locally depleted electron density (Lewis acid regions) on adjacent molecules. The paths are comparable with intermolecular paths reported for severalmore » other molecular crystals that link aligned Lewis base and acid regions in a key-lock fashion, interactions that classified as long range Lewis acid-base directed van der Waals interactions. As the bulk of the intermolecular As-S bond paths (~70%) link Lewis acid-base regions on adjacent molecules, it appears that molecules adopt an arrangement that maximizes the number of As-S Lewis acid-base intermolecular bonded interactions. The maximization of the number of Lewis acid-base interactions appears to be connected with the close-packed array adopted by molecules: distorted cubic close-packed arrays are adopted for alacránite, pararealgar, uzonite, realgar and β-AsS and the distorted hexagonal close-packed arrays adopted by α- and β-dimorphite. A growth mechanism is proposed for thioarsenide molecular crystals from aqueous species that maximizes the number of long range Lewis acid-base vdW As-S bonded interactions with the resulting directed bond paths structuralizing the molecules as a molecular crystal.« less

  14. Understanding the nanoscale local buckling behavior of vertically aligned MWCNT arrays with van der Waals interactions

    NASA Astrophysics Data System (ADS)

    Li, Yupeng; Kim, Hyung-Ick; Wei, Bingqing; Kang, Junmo; Choi, Jae-Boong; Nam, Jae-Do; Suhr, Jonghwan

    2015-08-01

    The local buckling behavior of vertically aligned carbon nanotubes (VACNTs) has been investigated and interpreted in the view of a collective nanotube response by taking van der Waals interactions into account. To the best of our knowledge, this is the first report on the case of collective VACNT behavior regarding van der Waals force among nanotubes as a lateral support effect during the buckling process. The local buckling propagation and development of VACNTs were experimentally observed and theoretically analyzed by employing finite element modeling with lateral support from van der Waals interactions among nanotubes. Both experimental and theoretical analyses show that VACNTs buckled in the bottom region with many short waves and almost identical wavelengths, indicating a high mode buckling. Furthermore, the propagation and development mechanism of buckling waves follow the wave damping effect.The local buckling behavior of vertically aligned carbon nanotubes (VACNTs) has been investigated and interpreted in the view of a collective nanotube response by taking van der Waals interactions into account. To the best of our knowledge, this is the first report on the case of collective VACNT behavior regarding van der Waals force among nanotubes as a lateral support effect during the buckling process. The local buckling propagation and development of VACNTs were experimentally observed and theoretically analyzed by employing finite element modeling with lateral support from van der Waals interactions among nanotubes. Both experimental and theoretical analyses show that VACNTs buckled in the bottom region with many short waves and almost identical wavelengths, indicating a high mode buckling. Furthermore, the propagation and development mechanism of buckling waves follow the wave damping effect. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03581c

  15. Computations of Lifshitz-van der Waals interaction energies between irregular particles and surfaces at all separations for resuspension modelling

    NASA Astrophysics Data System (ADS)

    Priye, Aashish; Marlow, William H.

    2013-10-01

    The phenomenon of particle resuspension plays a vital role in numerous fields. Among many aspects of particle resuspension dynamics, a dominant concern is the accurate description and formulation of the van der Waals (vdW) interactions between the particle and substrate. Current models treat adhesion by incorporating a material-dependent Hamaker's constant which relies on the heuristic Hamaker's two-body interactions. However, this assumption of pairwise summation of interaction energies can lead to significant errors in condensed matter as it does not take into account the many-body interaction and retardation effects. To address these issues, an approach based on Lifshitz continuum theory of vdW interactions has been developed to calculate the principal many-body interactions between arbitrary geometries at all separation distances to a high degree of accuracy through Lifshitz's theory. We have applied this numerical implementation to calculate the many-body vdW interactions between spherical particles and surfaces with sinusoidally varying roughness profile and also to non-spherical particles (cubes, cylinders, tetrahedron etc) orientated differently with respect to the surface. Our calculations revealed that increasing the surface roughness amplitude decreases the adhesion force and non-spherical particles adhere to the surfaces more strongly when their flatter sides are oriented towards the surface. Such practical shapes and structures of particle-surface systems have not been previously considered in resuspension models and this rigorous treatment of vdW interactions provides more realistic adhesion forces between the particle and the surface which can then be coupled with computational fluid dynamics models to improve the predictive capabilities of particle resuspension dynamics.

  16. Effects of van der Waals interaction and electric field on the electronic structure of bilayer MoS2.

    PubMed

    Xiao, Jin; Long, Mengqiu; Li, Xinmei; Zhang, Qingtian; Xu, Hui; Chan, K S

    2014-10-08

    The modification of the electronic structure of bilayer MoS2 by an external electric field can have potential applications in optoelectronics and valleytronics. Nevertheless, the underlying physical mechanism is not clearly understood, especially the effects of the van der Waals interaction. In this study, the spin orbit-coupled electronic structure of bilayer MoS2 has been investigated using the first-principle density functional theory. We find that the van der Waals interaction as well as the interlayer distance has significant effects on the band structure. When the interlayer distance of bilayer MoS2 increases from 0.614 nm to 0.71 nm, the indirect gap between the Γ and Λ points increases from 1.25 eV to 1.70 eV. Meanwhile, the energy gap of bilayer MoS2 transforms from an indirect one to a direct one. An external electric field can shift down (up) the energy bands of the bottom (top) MoS2 layer and also breaks the inversion symmetry of bilayer MoS2. As a result, the electric field can affect the band gaps, the spin-orbit interaction and splits the valance bands into two groups. The present study can help us understand more about the electronic structures of MoS2 materials for potential applications in electronics and optoelectronics.

  17. Use of Two-Body Correlated Basis Functions with van der Waals Interaction to Study the Shape-Independent Approximation for a Large Number of Trapped Interacting Bosons

    NASA Astrophysics Data System (ADS)

    Lekala, M. L.; Chakrabarti, B.; Das, T. K.; Rampho, G. J.; Sofianos, S. A.; Adam, R. M.; Haldar, S. K.

    2017-05-01

    We study the ground-state and the low-lying excitations of a trapped Bose gas in an isotropic harmonic potential for very small (˜ 3) to very large (˜ 10^7) particle numbers. We use the two-body correlated basis functions and the shape-dependent van der Waals interaction in our many-body calculations. We present an exhaustive study of the effect of inter-atomic correlations and the accuracy of the mean-field equations considering a wide range of particle numbers. We calculate the ground-state energy and the one-body density for different values of the van der Waals parameter C6. We compare our results with those of the modified Gross-Pitaevskii results, the correlated Hartree hypernetted-chain equations (which also utilize the two-body correlated basis functions), as well as of the diffusion Monte Carlo for hard sphere interactions. We observe the effect of the attractive tail of the van der Waals potential in the calculations of the one-body density over the truly repulsive zero-range potential as used in the Gross-Pitaevskii equation and discuss the finite-size effects. We also present the low-lying collective excitations which are well described by a hydrodynamic model in the large particle limit.

  18. Partitioning dynamic electron correlation energy: Viewing Møller-Plesset correlation energies through Interacting Quantum Atom (IQA) energy partitioning

    NASA Astrophysics Data System (ADS)

    McDonagh, James L.; Vincent, Mark A.; Popelier, Paul L. A.

    2016-10-01

    Here MP2, MP3 and MP4(SDQ) are energy-partitioned for the first time within the Interacting Quantum Atoms (IQA) context, as proof-of-concept for H2, He2 and HF. Energies are decomposed into four primary energy contributions: (i) atomic self-energies, and atomic interaction energies comprising of (ii) Coulomb, (iii) exchange and (iv) dynamic election correlation terms. We generate and partition one- and two-particle density-matrices to obtain all atomic energy components. This work suggests that, in terms of Van der Waals dispersion, the correlation energies represent an atomic stabilisation, by proximity to other atoms, as opposed to direct interactions with other nearby atoms.

  19. EDITORIAL: Van der Waals interactions in advanced materials, in memory of David C Langreth Van der Waals interactions in advanced materials, in memory of David C Langreth

    NASA Astrophysics Data System (ADS)

    Hyldgaard, Per; Rahman, Talat S.

    2012-10-01

    Solid State Commun. 17 1425 [4]Gunnarsson O and Lundqvist B I 1976 Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism Phys. Rev. B 13 4274 [5]Langreth D C and Mehl M J 1981 Beyond the local-density approximation in calculations of ground-state electronic properties Phys. Rev. B 47 446 [6]Dion M, Rydberg H, Schröder E, Langreth D C and Lundqvist B I 2004 Van der Waals density functional for general geometries Phys. Rev. Lett. 92 246401 Thonhauser T, Cooper V R, Li S, Puzder A, Hyldgaard P and Langreth D C 2007 Van der Waals density functional: self-consistent potential and the nature of the van der Waals bond Phys. Rev. B 76 125112 [7]Lee K, Murray E D, Kong L, Lundqvist B I and Langreth D C 2010 A higher-accuracy van der Waals density functional Phys. Rev. B 82 081101 [8]Rapcewicz K and Ashcroft N W 1991 Fluctuation attraction in condensed matter: a nonlocal functional approach Phys. Rev. B 44 4032 Lundqvist B I, Andersson Y, Shao H, Chan S and Langreth D C 1995 Density functional theory including van der Waals forces Int. J. Quant. Chem. 56 247 [9]Langreth D C et al 2009 A density functional for sparse matter J. Phys.: Condens. Matter 21 084203 [10]For example, Kohn W, Meir Y and Makarov D E 1998 The exchange-correlation energy of a metallic surface Phys. Rev. Lett. 80 4153 Kurth S and Perdew J P 1999 Phys. Rev. B 59 10461 Dobson J F and Wang J 1999 Phys. Rev. Lett. 82 2123 Pitarke J M and Perdew J P 2003 Phys. Rev. B 67 045101 Vydrov O A and van Voorhi T 2009 Phys. Rev. Lett. 103 063004 [11]For example, Grimme S 2004 J. Comput. Phys. 25 1463 Tkatchenko A and Scheffler M 2009 Phys. Rev. Lett. 102 073005 Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154004 [12]Burke K 2012 Perspectives on density functional theory J. Chem. Phys. 136 150901 Van der Waals interactions in advanced materials contents Van der Waals interactions in advanced materials, in memory of David C LangrethPer Hyldgaard and Talat S

  20. Spherical and hyperspherical harmonics representation of van der Waals aggregates

    NASA Astrophysics Data System (ADS)

    Lombardi, Andrea; Palazzetti, Federico; Aquilanti, Vincenzo; Grossi, Gaia; Albernaz, Alessandra F.; Barreto, Patricia R. P.; Cruz, Ana Claudia P. S.

    2016-12-01

    The representation of the potential energy surfaces of atom-molecule or molecular dimers interactions should account faithfully for the symmetry properties of the systems, preserving at the same time a compact analytical form. To this aim, the choice of a proper set of coordinates is a necessary precondition. Here we illustrate a description in terms of hyperspherical coordinates and the expansion of the intermolecular interaction energy in terms of hypersherical harmonics, as a general method for building potential energy surfaces suitable for molecular dynamics simulations of van der Waals aggregates. Examples for the prototypical case diatomic-molecule-diatomic-molecule interactions are shown.

  1. Quantifying electronic band interactions in van der Waals materials using angle-resolved reflected-electron spectroscopy.

    PubMed

    Jobst, Johannes; van der Torren, Alexander J H; Krasovskii, Eugene E; Balgley, Jesse; Dean, Cory R; Tromp, Rudolf M; van der Molen, Sense Jan

    2016-11-29

    High electron mobility is one of graphene's key properties, exploited for applications and fundamental research alike. Highest mobility values are found in heterostructures of graphene and hexagonal boron nitride, which consequently are widely used. However, surprisingly little is known about the interaction between the electronic states of these layered systems. Rather pragmatically, it is assumed that these do not couple significantly. Here we study the unoccupied band structure of graphite, boron nitride and their heterostructures using angle-resolved reflected-electron spectroscopy. We demonstrate that graphene and boron nitride bands do not interact over a wide energy range, despite their very similar dispersions. The method we use can be generally applied to study interactions in van der Waals systems, that is, artificial stacks of layered materials. With this we can quantitatively understand the 'chemistry of layers' by which novel materials are created via electronic coupling between the layers they are composed of.

  2. Electronic structure and spectra of the RbHe van der Waals system including spin orbit interaction

    NASA Astrophysics Data System (ADS)

    Dhiflaoui, Jamila; Bejaoui, Mohamed; Berriche, Hamid

    2017-12-01

    The potential energy interaction, the spectroscopic properties and dipole functions of the RbHe van der Waals dimer have been investigated. We used a one-electron pseudopotential approach and large Gaussian basis sets to represent the two atoms Rb and He. The Rb+ core and the electron-He interactions were replaced by semi-local pseudopotentials and a core-core interaction is included. Therefore, the number of active electrons of RbHe is reduced to only one electron. Consequently, the potential energy curves and dipole moments for many electronic states dissociating into Rb(5s,5p,4d,6s,6p,5d,7s)+He are performed at the SCF level. In addition, the spin-orbit coupling is included in the calculation. The Rb+He interaction, in its ground state, is taken from accurate CCSD (T) calculations and fitted to an analytical expression for a better description of the potential in all internuclear ranges. The spectroscopic properties of the RbHe electronic states are extracted. The comparison of these constants has shown a very good agreement for the ground state as well as for the lower excited states when compared with existing theoretical and experimental studies.

  3. Quantifying electronic band interactions in van der Waals materials using angle-resolved reflected-electron spectroscopy

    PubMed Central

    Jobst, Johannes; van der Torren, Alexander J. H.; Krasovskii, Eugene E.; Balgley, Jesse; Dean, Cory R.; Tromp, Rudolf M.; van der Molen, Sense Jan

    2016-01-01

    High electron mobility is one of graphene's key properties, exploited for applications and fundamental research alike. Highest mobility values are found in heterostructures of graphene and hexagonal boron nitride, which consequently are widely used. However, surprisingly little is known about the interaction between the electronic states of these layered systems. Rather pragmatically, it is assumed that these do not couple significantly. Here we study the unoccupied band structure of graphite, boron nitride and their heterostructures using angle-resolved reflected-electron spectroscopy. We demonstrate that graphene and boron nitride bands do not interact over a wide energy range, despite their very similar dispersions. The method we use can be generally applied to study interactions in van der Waals systems, that is, artificial stacks of layered materials. With this we can quantitatively understand the ‘chemistry of layers' by which novel materials are created via electronic coupling between the layers they are composed of. PMID:27897180

  4. Two dimensional graphene nanogenerator by coulomb dragging: Moving van der Waals heterostructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Huikai; Li, Xiaoqiang; Wu, Zhiqian

    2015-06-15

    Harvesting energy from environment is the current focus of scientific community. Here, we demonstrate a graphene nanogenerator, which is based on moving van der Waals heterostructure formed between graphene and two dimensional (2D) graphene oxide (GO). This nanogenerator can convert mechanical energy into electricity with a voltage output of around 10 mV. Systematic experiments reveal the generated electricity originates from the coulomb interaction induced momentum transfer between 2D GO and holes in graphene. 2D boron nitride was also demonstrated to be effective in the framework of moving van der Waals heterostructure nanogenerator. This investigation of nanogenerator based on the interaction betweenmore » 2D macromolecule materials will be important to understand the origin of the flow-induced potential in nanomaterials and may have great potential in practical applications.« less

  5. Combining density functional and incremental post-Hartree-Fock approaches for van der Waals dominated adsorbate-surface interactions: Ag{sub 2}/graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lara-Castells, María Pilar de, E-mail: Pilar.deLara.Castells@csic.es; Mitrushchenkov, Alexander O.; Stoll, Hermann

    2015-09-14

    A combined density functional (DFT) and incremental post-Hartree-Fock (post-HF) approach, proven earlier to calculate He-surface potential energy surfaces [de Lara-Castells et al., J. Chem. Phys. 141, 151102 (2014)], is applied to describe the van der Waals dominated Ag{sub 2}/graphene interaction. It extends the dispersionless density functional theory developed by Pernal et al. [Phys. Rev. Lett. 103, 263201 (2009)] by including periodic boundary conditions while the dispersion is parametrized via the method of increments [H. Stoll, J. Chem. Phys. 97, 8449 (1992)]. Starting with the elementary cluster unit of the target surface (benzene), continuing through the realistic cluster model (coronene), andmore » ending with the periodic model of the extended system, modern ab initio methodologies for intermolecular interactions as well as state-of-the-art van der Waals-corrected density functional-based approaches are put together both to assess the accuracy of the composite scheme and to better characterize the Ag{sub 2}/graphene interaction. The present work illustrates how the combination of DFT and post-HF perspectives may be efficient to design simple and reliable ab initio-based schemes in extended systems for surface science applications.« less

  6. An exact solution of the van der Waals interaction between two ground-state hydrogen atoms

    NASA Astrophysics Data System (ADS)

    Koga, Toshikatsu; Matsumoto, Shinya

    1985-06-01

    A momentum space treatment shows that perturbation equations for the H(1s)-H(1s) van der Waals interaction can be exactly solved in their Schrödinger forms without invoking any variational methods. Using the Fock transformation, which projects the momentum vector of an electron from the three-dimensional hyperplane onto the four-dimensional hypersphere, we solve the third order integral-type perturbation equation with respect to the reciprocal of the internuclear distance R. An exact third order wave function is found as a linear combination of infinite number of four-dimensional spherical harmonics. The result allows us to evaluate the exact dispersion energy E6R-6, which is completely determined by the first three coefficients of the above linear combination.

  7. van der Waals-type forces in spontaneously broken supersymmetries

    NASA Astrophysics Data System (ADS)

    Radescu, E. E.

    1983-03-01

    In spontaneously broken rigid supersymmetry, Goldstone-fermion pair exchange should lead to a universal interaction between massive bodies uniquely fixed by the existing low-energy theorem. The resulting van der Waals-type potential is shown to be V(r)=-Mmπ-3F-4r-7+O(r-8), where M and m are the masses of the interacting bodies while F is the scale of the breaking. The change in the situation when the supersymmetry is promoted to a local symmetry is briefly discussed.

  8. Anisotropic contribution to the van der Waals and the Casimir-Polder energies for CO2 and CH4 molecules near surfaces and thin films

    NASA Astrophysics Data System (ADS)

    Thiyam, Priyadarshini; Parashar, Prachi; Shajesh, K. V.; Persson, Clas; Schaden, Martin; Brevik, Iver; Parsons, Drew F.; Milton, Kimball A.; Malyi, Oleksandr I.; Boström, Mathias

    2015-11-01

    In order to understand why carbon dioxide (CO2) and methane (CH4) molecules interact differently with surfaces, we investigate the Casimir-Polder energy of a linearly polarizable CO2 molecule and an isotropically polarizable CH4 molecule in front of an atomically thin gold film and an amorphous silica slab. We quantitatively analyze how the anisotropy in the polarizability of the molecule influences the van der Waals contribution to the binding energy of the molecule.

  9. Effects of van der Waals Interactions in the Adsorption of Isooctane and Ethanol on Fe(100) Surfaces

    PubMed Central

    2014-01-01

    van der Waals (vdW) forces play a fundamental role in the structure and behavior of diverse systems. Because of development of functionals that include nonlocal correlation, it is possible to study the effects of vdW interactions in systems of industrial and tribological interest. Here we simulated within the framework of density functional theory (DFT) the adsorption of isooctane (2,2,4-trimethylpentane) and ethanol on an Fe(100) surface, employing various exchange–correlation functionals to take vdW forces into account. In particular, this paper discusses the effect of vdW forces on the magnitude of adsorption energies, equilibrium geometries, and their role in the binding mechanism. According to our calculations, vdW interactions increase the adsorption energies and reduce the equilibrium distances. Nevertheless, they do not influence the spatial configuration of the adsorbed molecules. Their effect on the electronic density is a nonisotropic, delocalized accumulation of charge between the molecule and the slab. In conclusion, vdW forces are essential for the adsorption of isooctane and ethanol on a bcc Fe(100) surface. PMID:25126156

  10. A variation-perturbation method for atomic and molecular interactions. I - Theory. II - The interaction potential and van der Waals molecule for Ne-HF

    NASA Astrophysics Data System (ADS)

    Gallup, G. A.; Gerratt, J.

    1985-09-01

    The van der Waals energy between the two parts of a system is a very small fraction of the total electronic energy. In such cases, calculations have been based on perturbation theory. However, such an approach involves certain difficulties. For this reason, van der Waals energies have also been directly calculated from total energies. But such a method has definite limitations as to the size of systems which can be treated, and recently ab initio calculations have been combined with damped semiempirical long-range dispersion potentials to treat larger systems. In this procedure, large basis set superposition errors occur, which must be removed by the counterpoise method. The present investigation is concerned with an approach which is intermediate between the previously considered procedures. The first step in the new approach involves a variational calculation based upon valence bond functions. The procedure includes also the optimization of excited orbitals, and an approximation of atomic integrals and Hamiltonian matrix elements.

  11. Application of Diffusion Monte Carlo to Materials Dominated by van der Waals Interactions

    DOE PAGES

    Benali, Anouar; Shulenburger, Luke; Romero, Nichols A.; ...

    2014-06-12

    Van der Waals forces are notoriously difficult to account for from first principles. We perform extensive calculation to assess the usefulness and validity of diffusion quantum Monte Carlo when applied to van der Waals forces. We present results for noble gas solids and clusters - archetypical van der Waals dominated assemblies, as well as a relevant pi-pi stacking supramolecular complex: DNA + intercalating anti-cancer drug Ellipticine.

  12. Li intercalation in graphite: A van der Waals density-functional study

    NASA Astrophysics Data System (ADS)

    Hazrati, E.; de Wijs, G. A.; Brocks, G.

    2014-10-01

    Modeling layered intercalation compounds from first principles poses a problem, as many of their properties are determined by a subtle balance between van der Waals interactions and chemical or Madelung terms, and a good description of van der Waals interactions is often lacking. Using van der Waals density functionals we study the structures, phonons and energetics of the archetype layered intercalation compound Li-graphite. Intercalation of Li in graphite leads to stable systems with calculated intercalation energies of -0.2 to -0.3 eV/Li atom, (referred to bulk graphite and Li metal). The fully loaded stage 1 and stage 2 compounds LiC6 and Li1 /2C6 are stable, corresponding to two-dimensional √{3 }×√{3 } lattices of Li atoms intercalated between two graphene planes. Stage N >2 structures are unstable compared to dilute stage 2 compounds with the same concentration. At elevated temperatures dilute stage 2 compounds easily become disordered, but the structure of Li3 /16C6 is relatively stable, corresponding to a √{7 }×√{7 } in-plane packing of Li atoms. First-principles calculations, along with a Bethe-Peierls model of finite temperature effects, allow for a microscopic description of the observed voltage profiles.

  13. Flocculation of deformable emulsion droplets. 2: Interaction energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petsev, D.N.; Denkov, N.D.; Kralchevsky, P.A.

    1995-12-01

    The effect of different factors (drop radius, interfacial tension, Hamaker constant, electrolyte, micellar concentrations, etc.) on the interaction energy of emulsion droplets is studied theoretically. It is demonstrated that the deformation of the colliding droplets considerably affects the interaction energy. The contributions of the electrostatic, van der Waals, depletion, steric, and oscillatory surface forces, as well as for the surface stretching and bending energies, are estimated and discussed. The calculations show that the droplets interact as nondeformed spheres when the attractive interactions are weak. At stronger attractions an equilibrium plane parallel film is formed between the droplets, corresponding to minimummore » interaction energy of the system. For droplets in concentrated micellar surfactant solutions the oscillatory surface forces become operative and one can observe several minima of the energy surface,each corresponding to a metastable state with a different number of micellar layers inside the film formed between the droplets. The present theoretical analysis can find applications in predicting the behavior and stability of miniemulsions (containing micrometer and submicrometer droplets), as well as in interpretation of data obtained by light scattering, phase behavior, rheological and osmotic pressure measurements, etc.« less

  14. Porous silicon film formation from silicon-nanoparticle inks: The possibility of effects of van der Waals interactions on uniform film formation

    NASA Astrophysics Data System (ADS)

    Tanaka, Kazuki; Nagoya, Wataru; Moriki, Kazuya; Sato, Seiichi

    2018-02-01

    Porous Si films were formed on electrically insulative, semiconductive, and conductive substrates by depositing aqueous and nonaqueous Si nanoparticle inks. In this study, we focused on whether the Si ink deposition resulted in the formation of uniform porous Si films on various substrates. As a result of the experiments, we found that the inks showing better substrate wettabilities did not necessarily result in more uniform film formation on the substrates. This implies that the ink-solvent wettability and the nanoparticle-substrate interactions play important roles in the uniform film formation. As one of the interactions, we discussed the influence of van der Waals interactions by calculating the Hamaker constants. The calculation results indicated that the uniform film formation was hampered when the nanoparticle surface had a repulsive van der Waals interaction with the substrate.

  15. Theory of coherent van der Waals matter.

    PubMed

    Kulić, Igor M; Kulić, Miodrag L

    2014-12-01

    We explain in depth the previously proposed theory of the coherent van der Waals (cvdW) interaction, the counterpart of van der Waals (vdW) force, emerging in spatially coherently fluctuating electromagnetic fields. We show that cvdW driven matter is dominated by many-body interactions, which are significantly stronger than those found in standard van der Waals (vdW) systems. Remarkably, the leading two- and three-body interactions are of the same order with respect to the distance (∝R(-6)), in contrast to the usually weak vdW three-body effects (∝R(-9)). From a microscopic theory we show that the anisotropic cvdW many-body interactions drive the formation of low-dimensional structures such as chains, membranes, and vesicles with very unusual, nonlocal properties. In particular, cvdW chains display a logarithmically growing stiffness with the chain length, while cvdW membranes have a bending modulus growing linearly with their size. We argue that the cvdW anisotropic many-body forces cause local cohesion but also a negative effective "surface tension." We conclude by deriving the equation of state for cvdW materials and propose experiments to test the theory, in particular the unusual three-body nature of cvdW.

  16. Theory of coherent van der Waals matter

    NASA Astrophysics Data System (ADS)

    Kulić, Igor M.; Kulić, Miodrag L.

    2014-12-01

    We explain in depth the previously proposed theory of the coherent van der Waals (cvdW) interaction, the counterpart of van der Waals (vdW) force, emerging in spatially coherently fluctuating electromagnetic fields. We show that cvdW driven matter is dominated by many-body interactions, which are significantly stronger than those found in standard van der Waals (vdW) systems. Remarkably, the leading two- and three-body interactions are of the same order with respect to the distance (∝R-6) , in contrast to the usually weak vdW three-body effects (∝R-9 ). From a microscopic theory we show that the anisotropic cvdW many-body interactions drive the formation of low-dimensional structures such as chains, membranes, and vesicles with very unusual, nonlocal properties. In particular, cvdW chains display a logarithmically growing stiffness with the chain length, while cvdW membranes have a bending modulus growing linearly with their size. We argue that the cvdW anisotropic many-body forces cause local cohesion but also a negative effective "surface tension." We conclude by deriving the equation of state for cvdW materials and propose experiments to test the theory, in particular the unusual three-body nature of cvdW.

  17. Isotope separation by photodissociation of Van der Waal's molecules

    DOEpatents

    Lee, Yuan T.

    1977-01-01

    A method of separating isotopes based on the dissociation of a Van der Waal's complex. A beam of molecules of a Van der Waal's complex containing, as one partner of the complex, a molecular species in which an element is present in a plurality of isotopes is subjected to radiation from a source tuned to a frequency which will selectively excite vibrational motion by a vibrational transition or through electronic transition of those complexed molecules of the molecular species which contain a desired isotope. Since the Van der Waal's binding energy is much smaller than the excitational energy of vibrational motion, the thus excited Van der Waal's complex dissociate into molecular components enriched in the desired isotope. The recoil velocity associated with vibrational to translational and rotational relaxation will send the separated molecules away from the beam whereupon the product enriched in the desired isotope can be separated from the constituents of the beam.

  18. Probing interlayer interactions in WS2 -graphene van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Chung, Ting Fung; Yuan, Long; Huang, Libai; Chen, Yong P.

    Two-dimensional crystals based van der Waals coupled heterostructures are of interest owing to their potential applications for flexible and transparent electronics and optoelectronics. The interaction between the 2D layered crystals at the interfaces of these heterostructures is crucial in determining the overall performance and is strongly affected by contamination and interfacial strain. We have fabricated heterostructures consisting of atomically thin exfoliated WS2 and chemical-vapor-deposited (CVD) graphene, and studied the interaction and coupling between the WS2 and graphene using atomic force microscopy (AFM), Raman spectroscopy and femtosecond transient absorption measurement (TAM). Information from Raman-active phonon modes allows us to estimate charge doping in graphene and interfacial strain on the crystals. Spatial imaging probed by TAM can be correlated to the heterostructure surface morphology measured by AFM and Raman maps of graphene and WS2, showing how the interlayer coupling alters exciton decay dynamics quantitatively.

  19. Interaction energy for a fullerene encapsulated in a carbon nanotorus

    NASA Astrophysics Data System (ADS)

    Sarapat, Pakhapoom; Baowan, Duangkamon; Hill, James M.

    2018-06-01

    The interaction energy of a fullerene symmetrically situated inside a carbon nanotorus is studied. For these non-bonded molecules, the main interaction originates from the van der Waals energy which is modelled by the 6-12 Lennard-Jones potential. Upon utilising the continuum approximation which assumes that there are infinitely many atoms that are uniformly distributed over the surfaces of the molecules, the total interaction energy between the two structures is obtained as a surface integral over the spherical and the toroidal surfaces. This analytical energy is employed to determine the most stable configuration of the torus encapsulating the fullerene. The results show that a torus with major radius around 20-22 Å and minor radius greater than 6.31 Å gives rise to the most stable arrangement. This study will pave the way for future developments in biomolecules design and drug delivery system.

  20. Application of mixed-mode, solid-phase extraction in environmental and clinical chemistry. Combining hydrogen-bonding, cation-exchange and Van der Waals interactions

    USGS Publications Warehouse

    Mills, M.S.; Thurman, E.M.; Pedersen, M.J.

    1993-01-01

    Silica- and styrene-divinylbenzene-based mixed-mode resins that contain C8, C18 and sulphonated cation-exchange groups were compared for their efficiency in isolation of neutral triazine compounds from water and of the basic drug, benzoylecgonine, from urine. The triazine compounds were isolated by a combination of Van der Waals and hydrogen-bonding interactions, and benzoylecgonine was isolated by Van der Waals interactions and cation exchange. All analytes were eluted with a polar organic solvent contaning 2% ammonium hydroxide. Larger recoveries (95%) were achieved on copolymerized mixed-mode resins where C18 and sulfonic acid are in closer proximity than on 'blended' mixed-mode resins (60-70% recovery).

  1. Heterogeneous nucleation of polymorphs on polymer surfaces: polymer-molecule interactions using a Coulomb and van der Waals model.

    PubMed

    Wahlberg, Nanna; Madsen, Anders Ø; Mikkelsen, Kurt V

    2018-06-09

    The nucleation processes of acetaminophen on poly(methyl methacrylate) and poly(vinyl acetate) have been investigated and the mechanisms of the processes are studied. This is achieved by a combination of theoretical models and computational investigations within the framework of a modified QM/MM method; a Coulomb-van der Waals model. We have combined quantum mechanical computations and electrostatic models at the atomistic level for investigating the stability of different orientations of acetaminophen on the polymer surfaces. Based on the Coulomb-van der Waals model, we have determined the most stable orientation to be a flat orientation, and the strongest interaction is seen between poly(vinyl acetate) and the molecule in a flat orientation in vacuum.

  2. Strain engineering of van der Waals heterostructures.

    PubMed

    Vermeulen, Paul A; Mulder, Jefta; Momand, Jamo; Kooi, Bart J

    2018-01-18

    Modifying the strain state of solids allows control over a plethora of functional properties. The weak interlayer bonding in van der Waals (vdWaals) materials such as graphene, hBN, MoS 2 , and Bi 2 Te 3 might seem to exclude strain engineering, since strain would immediately relax at the vdWaals interfaces. Here we present direct observations of the contrary by showing growth of vdWaals heterostructures with persistent in-plane strains up to 5% and we show that strain relaxation follows a not yet reported process distinctly different from strain relaxation in three-dimensionally bonded (3D) materials. For this, 2D bonded Bi 2 Te 3 -Sb 2 Te 3 and 2D/3D bonded Bi 2 Te 3 -GeTe multilayered films are grown using Pulsed Laser Deposition (PLD) and their structure is monitored in situ using Reflective High Energy Electron Diffraction (RHEED) and post situ analysis is performed using Transmission Electron Microscopy (TEM). Strain relaxation is modeled and found to solely depend on the layer being grown and its initial strain. This insight demonstrates that strain engineering of 2D bonded heterostructures obeys different rules than hold for epitaxial 3D materials and opens the door to precise tuning of the strain state of the individual layers to optimize functional performance of vdWaals heterostructures.

  3. Two-point correlation function in systems with van der Waals type interaction

    NASA Astrophysics Data System (ADS)

    Dantchev, D.

    2001-09-01

    The behavior of the bulk two-point correlation function G( r; T| d ) in d-dimensional system with van der Waals type interactions is investigated and its consequences on the finite-size scaling properties of the susceptibility in such finite systems with periodic boundary conditions is discussed within mean-spherical model which is an example of Ornstein and Zernike type theory. The interaction is supposed to decay at large distances r as r - (d + σ), with 2 < d < 4, 2 < σ < 4 and d + σ≤6. It is shown that G( r; T| d ) decays as r - (d - 2) for 1 ≪ r≪ξ, exponentially for ξ≪ r≪ r *, where r * = (σ - 2)ξlnξ, and again in a power law as r - (d + σ) for r≫ r *. The analytical form of the leading-order scaling function of G( r; T| d ) in any of these regimes is derived.

  4. van der Waals interaction between a moving nano-cylinder and a liquid thin film.

    PubMed

    Ledesma-Alonso, René; Raphaël, Elie; Salez, Thomas; Tordjeman, Philippe; Legendre, Dominique

    2017-05-24

    We study the static and dynamic interaction between a horizontal cylindrical nano-probe and a thin liquid film. The effects of the physical and geometrical parameters, with a special focus on the film thickness, the probe speed, and the distance between the probe and the free surface are analyzed. Deformation profiles have been computed numerically from a Reynolds lubrication equation, coupled to a modified Young-Laplace equation, which takes into account the probe/liquid and the liquid/substrate non-retarded van der Waals interactions. We have found that the film thickness and the probe speed have a significant effect on the threshold separation distance below which the jump-to-contact instability is triggered. These results encourage the use of horizontal cylindrical nano-probes to scan thin liquid films, in order to determine either the physical or geometrical properties of the latter, through the measurement of interaction forces.

  5. The Economics of van der Waals Force Engineering

    NASA Astrophysics Data System (ADS)

    Pinto, Fabrizio

    2008-01-01

    As micro-electro-mechanical system (MEMS) fabrication continues on an ever-decreasing scale, new technological challenges must be successfully negotiated if Moore's Law is to be an even approximately valid model of the future of device miniaturization. Among the most significant obstacles is the existence of strong surface forces related to quantum mechanical van der Waals interatomic interactions, which rapidly diverge as the distance between any two neutral boundaries decreases. The van der Waals force is a contributing factor in several device failures and limitations, including, for instance, stiction and oscillator non-linearities. In the last decade, however, it has been conclusively shown that van der Waals forces are not just a MEMS limitation but can be engineered in both magnitude and sign so as to enable classes of proprietary inventions which either deliver novel capabilities or improve upon existing ones. The evolution of van der Waals force research from an almost exclusively theoretical field in quantum-electro-dynamics to an enabling nanotechnology discipline represents a useful example of the ongoing paradigm shift from government-centered to private-capital funded R&D in cutting-edge physics leading to potentially profitable products. In this paper, we discuss the reasons van der Waals force engineering may lead to the creation of thriving markets both in the short and medium terms by highlighting technical challenges that can be competitively addressed by this novel approach. We also discuss some notable obstacles to the cultural transformation of the academic research community required for the emergence of a functional van der Waals force engineering industry worldwide.

  6. Dynamical importance of van der Waals saddle and excited potential surface in C(1D)+D2 complex-forming reaction

    PubMed Central

    Shen, Zhitao; Ma, Haitao; Zhang, Chunfang; Fu, Mingkai; Wu, Yanan; Bian, Wensheng; Cao, Jianwei

    2017-01-01

    Encouraged by recent advances in revealing significant effects of van der Waals wells on reaction dynamics, many people assume that van der Waals wells are inevitable in chemical reactions. Here we find that the weak long-range forces cause van der Waals saddles in the prototypical C(1D)+D2 complex-forming reaction that have very different dynamical effects from van der Waals wells at low collision energies. Accurate quantum dynamics calculations on our highly accurate ab initio potential energy surfaces with van der Waals saddles yield cross-sections in close agreement with crossed-beam experiments, whereas the same calculations on an earlier surface with van der Waals wells produce much smaller cross-sections at low energies. Further trajectory calculations reveal that the van der Waals saddle leads to a torsion then sideways insertion reaction mechanism, whereas the well suppresses reactivity. Quantum diffraction oscillations and sharp resonances are also predicted based on our ground- and excited-state potential energy surfaces. PMID:28094253

  7. Binding and Diffusion of Lithium in Graphite: Quantum Monte Carlo Benchmarks and Validation of van der Waals Density Functional Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganesh, P.; Kim, Jeongnim; Park, Changwon

    2014-11-03

    In highly accurate diffusion quantum Monte Carlo (QMC) studies of the adsorption and diffusion of atomic lithium in AA-stacked graphite are compared with van der Waals-including density functional theory (DFT) calculations. Predicted QMC lattice constants for pure AA graphite agree with experiment. Pure AA-stacked graphite is shown to challenge many van der Waals methods even when they are accurate for conventional AB graphite. Moreover, the highest overall DFT accuracy, considering pure AA-stacked graphite as well as lithium binding and diffusion, is obtained by the self-consistent van der Waals functional vdW-DF2, although errors in binding energies remain. Empirical approaches based onmore » point charges such as DFT-D are inaccurate unless the local charge transfer is assessed. Our results demonstrate that the lithium carbon system requires a simultaneous highly accurate description of both charge transfer and van der Waals interactions, favoring self-consistent approaches.« less

  8. A simplified implementation of van der Waals density functionals for first-principles molecular dynamics applications

    NASA Astrophysics Data System (ADS)

    Wu, Jun; Gygi, François

    2012-06-01

    We present a simplified implementation of the non-local van der Waals correlation functional introduced by Dion et al. [Phys. Rev. Lett. 92, 246401 (2004)] and reformulated by Román-Pérez et al. [Phys. Rev. Lett. 103, 096102 (2009)]. The proposed numerical approach removes the logarithmic singularity of the kernel function. Complete expressions of the self-consistent correlation potential and of the stress tensor are given. Combined with various choices of exchange functionals, five versions of van der Waals density functionals are implemented. Applications to the computation of the interaction energy of the benzene-water complex and to the computation of the equilibrium cell parameters of the benzene crystal are presented. As an example of crystal structure calculation involving a mixture of hydrogen bonding and dispersion interactions, we compute the equilibrium structure of two polymorphs of aspirin (2-acetoxybenzoic acid, C9H8O4) in the P21/c monoclinic structure.

  9. Properties of real metallic surfaces: Effects of density functional semilocality and van der Waals nonlocality

    PubMed Central

    Patra, Abhirup; Bates, Jefferson E.; Sun, Jianwei; Perdew, John P.

    2017-01-01

    We have computed the surface energies, work functions, and interlayer surface relaxations of clean (111), (100), and (110) surfaces of Al, Cu, Ru, Rh, Pd, Ag, Pt, and Au. We interpret the surface energy from liquid metal measurements as the mean of the solid-state surface energies over these three lowest-index crystal faces. We compare experimental (and random phase approximation) reference values to those of a family of nonempirical semilocal density functionals, from the basic local density approximation (LDA) to our most advanced general purpose meta-generalized gradient approximation, strongly constrained and appropriately normed (SCAN). The closest agreement is achieved by the simplest density functional LDA, and by the most sophisticated one, SCAN+rVV10 (Vydrov–Van Voorhis 2010). The long-range van der Waals interaction, incorporated through rVV10, increases the surface energies by about 10%, and increases the work functions by about 3%. LDA works for metal surfaces through two known error cancellations. The Perdew–Burke–Ernzerhof generalized gradient approximation tends to underestimate both surface energies (by about 24%) and work functions (by about 4%), yielding the least-accurate results. The amount by which a functional underestimates these surface properties correlates with the extent to which it neglects van der Waals attraction at intermediate and long range. Qualitative arguments are given for the signs of the van der Waals contributions to the surface energy and work function. A standard expression for the work function in Kohn–Sham (KS) theory is shown to be valid in generalized KS theory. Interlayer relaxations from different functionals are in reasonable agreement with one another, and usually with experiment. PMID:29042509

  10. Physisorption of three amine terminated molecules (TMBDA, BDA, TFBDA) on the Au(111) Surface: The Role of van der Waals Interaction

    NASA Astrophysics Data System (ADS)

    Aminpour, Maral; Le, Duy; Rahman, Talat S.

    2012-02-01

    Recently, the electronic properties and alignment of tetramethyl-1,4-benzenediamine (TMBDA), 1,4-benzenediamine (BDA) and tetrafluro-1,4-benzenediamine (TFBDA) molecules were studied experimentally. Discrepancies were found for both the binding energy and the molecule tilt angle with respect to the surface, when results were compared with density functional theory calculations [1]. We have included the effect of vdW interactions both between the molecules and the Au(111) surface and find binding energies which are in very good agreement with experiments. We also find that at low coverages each of these molecules would adsorb almost parallel to the surface. N-Au bond lengths and charge redistribution on adsorption of the molecules are also analyzed. Our calculations are based on DFT using vdW-DF exchange correlation functionals. For BDA (since we are aware of experimental data), we show that for higher coverage, inclusion of intermolecular van der Waals interaction leads to tilting of the molecules with respect to the surface and formation of line structures. Our results demonstrate the central role played by intermolecular interaction in pattern formation on this surface.[4pt] [1] M. Dell'Angela et al, Nano Lett. 2010, 10, 2470; M. Kamenetska et al, J. Phys. Chem. C, 2011, 115, 12625

  11. Redox levels in aqueous solution: Effect of van der Waals interactions and hybrid functionals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ambrosio, Francesco, E-mail: Francesco.Ambrosio@epfl.ch; Miceli, Giacomo; Pasquarello, Alfredo

    2015-12-28

    We investigate redox levels in aqueous solution using a combination of ab initio molecular dynamics (MD) simulations and thermodynamic integration methods. The molecular dynamics are performed with both the semilocal Perdew-Burke-Ernzerhof functional and a nonlocal functional (rVV10) accounting for van der Waals (vdW) interactions. The band edges are determined through three different schemes, namely, from the energy of the highest occupied and of the lowest unoccupied Kohn-Sham states, from total-energy differences, and from a linear extrapolation of the density of states. It is shown that the latter does not depend on the system size while the former two are subjectmore » to significant finite-size effects. For the redox levels, we provide a formulation in analogy to the definition of charge transition levels for defects in crystalline materials. We consider the H{sup +}/H{sub 2} level defining the standard hydrogen electrode, the OH{sup −}/OH{sup ∗} level corresponding to the oxidation of the hydroxyl ion, and the H{sub 2}O/OH{sup ∗} level for the dehydrogenation of water. In spite of the large structural modifications induced in liquid water, vdW interactions do not lead to any significant structural effect on the calculated band gap and band edges. The effect on the redox levels is also small since the solvation properties of ionic species are little affected by vdW interactions. Since the electronic properties are not significantly affected by the underlying structural properties, it is justified to perform hybrid functional calculations on the configurations of our MD simulations. The redox levels calculated as a function of the fraction α of Fock exchange are found to remain constant, reproducing a general behavior previously observed for charge transition levels of defects. Comparison with experimental values shows very good agreement. At variance, the band edges and the band gap evolve linearly with α. For α ≃ 0.40, we achieve a band gap

  12. Redox levels in aqueous solution: Effect of van der Waals interactions and hybrid functionals.

    PubMed

    Ambrosio, Francesco; Miceli, Giacomo; Pasquarello, Alfredo

    2015-12-28

    We investigate redox levels in aqueous solution using a combination of ab initio molecular dynamics (MD) simulations and thermodynamic integration methods. The molecular dynamics are performed with both the semilocal Perdew-Burke-Ernzerhof functional and a nonlocal functional (rVV10) accounting for van der Waals (vdW) interactions. The band edges are determined through three different schemes, namely, from the energy of the highest occupied and of the lowest unoccupied Kohn-Sham states, from total-energy differences, and from a linear extrapolation of the density of states. It is shown that the latter does not depend on the system size while the former two are subject to significant finite-size effects. For the redox levels, we provide a formulation in analogy to the definition of charge transition levels for defects in crystalline materials. We consider the H(+)/H2 level defining the standard hydrogen electrode, the OH(-)/OH(∗) level corresponding to the oxidation of the hydroxyl ion, and the H2O/OH(∗) level for the dehydrogenation of water. In spite of the large structural modifications induced in liquid water, vdW interactions do not lead to any significant structural effect on the calculated band gap and band edges. The effect on the redox levels is also small since the solvation properties of ionic species are little affected by vdW interactions. Since the electronic properties are not significantly affected by the underlying structural properties, it is justified to perform hybrid functional calculations on the configurations of our MD simulations. The redox levels calculated as a function of the fraction α of Fock exchange are found to remain constant, reproducing a general behavior previously observed for charge transition levels of defects. Comparison with experimental values shows very good agreement. At variance, the band edges and the band gap evolve linearly with α. For α ≃ 0.40, we achieve a band gap, band-edge positions, and redox levels in

  13. Redox levels in aqueous solution: Effect of van der Waals interactions and hybrid functionals

    NASA Astrophysics Data System (ADS)

    Ambrosio, Francesco; Miceli, Giacomo; Pasquarello, Alfredo

    2015-12-01

    We investigate redox levels in aqueous solution using a combination of ab initio molecular dynamics (MD) simulations and thermodynamic integration methods. The molecular dynamics are performed with both the semilocal Perdew-Burke-Ernzerhof functional and a nonlocal functional (rVV10) accounting for van der Waals (vdW) interactions. The band edges are determined through three different schemes, namely, from the energy of the highest occupied and of the lowest unoccupied Kohn-Sham states, from total-energy differences, and from a linear extrapolation of the density of states. It is shown that the latter does not depend on the system size while the former two are subject to significant finite-size effects. For the redox levels, we provide a formulation in analogy to the definition of charge transition levels for defects in crystalline materials. We consider the H+/H2 level defining the standard hydrogen electrode, the OH-/OH∗ level corresponding to the oxidation of the hydroxyl ion, and the H2O/OH∗ level for the dehydrogenation of water. In spite of the large structural modifications induced in liquid water, vdW interactions do not lead to any significant structural effect on the calculated band gap and band edges. The effect on the redox levels is also small since the solvation properties of ionic species are little affected by vdW interactions. Since the electronic properties are not significantly affected by the underlying structural properties, it is justified to perform hybrid functional calculations on the configurations of our MD simulations. The redox levels calculated as a function of the fraction α of Fock exchange are found to remain constant, reproducing a general behavior previously observed for charge transition levels of defects. Comparison with experimental values shows very good agreement. At variance, the band edges and the band gap evolve linearly with α. For α ≃ 0.40, we achieve a band gap, band-edge positions, and redox levels in overall

  14. Van der Waals equation of state revisited: importance of the dispersion correction.

    PubMed

    de Visser, Sam P

    2011-04-28

    One of the most basic equations of state describing nonideal gases and liquids is the van der Waals equation of state, and as a consequence, it is generally taught in most first year undergraduate chemistry courses. In this work, we show that the constants a and b in the van der Waals equation of state are linearly proportional to the polarizability volume of the molecules in a gas or liquid. Using this information, a new thermodynamic one-parameter equation of state is derived that contains experimentally measurable variables and physics constants only. This is the first equation of state apart from the Ideal Gas Law that contains experimentally measurable variables and physics constants only, and as such, it may be a very useful and practical equation for the description of dilute gases and liquids. The modified van der Waals equation of state describes pV as the sum of repulsive and attractive intermolecular interaction energies that are represented by an exponential repulsion function between the electron clouds of the molecules and a London dispersion component, respectively. The newly derived equation of state is tested against experimental data for several gas and liquid examples, and the agreement is satisfactory. The description of the equation of state as a one-parameter function also has implications on other thermodynamic functions, such as critical parameters, virial coefficients, and isothermal compressibilities. Using our modified van der Waals equation of state, we show that all of these properties are a function of the molecular polarizability volume. Correlations of experimental data confirm the derived proportionalities.

  15. Charge Versus Energy Transfer in Atomically Thin Graphene-Transition Metal Dichalcogenide van der Waals Heterostructures

    NASA Astrophysics Data System (ADS)

    Froehlicher, Guillaume; Lorchat, Etienne; Berciaud, Stéphane

    2018-01-01

    Made from stacks of two-dimensional materials, van der Waals heterostructures exhibit unique light-matter interactions and are promising for novel optoelectronic devices. The performance of such devices is governed by near-field coupling through, e.g., interlayer charge and/or energy transfer. New concepts and experimental methodologies are needed to properly describe two-dimensional heterointerfaces. Here, we report an original study of interlayer charge and energy transfer in atomically thin metal-semiconductor [i.e., graphene-transition metal dichalcogenide (TMD, here molybdenum diselenide, MoSe2 )] heterostructures using a combination of microphotoluminescence and Raman scattering spectroscopies. The photoluminescence intensity in graphene /MoSe2 is quenched by more than 2 orders of magnitude and rises linearly with the incident photon flux, demonstrating a drastically shortened (about 1 ps) room-temperature MoSe2 exciton lifetime. Key complementary insights are provided from a comprehensive analysis of the graphene and MoSe2 Raman modes, which reveals net photoinduced electron transfer from MoSe2 to graphene and hole accumulation in MoSe2 . Remarkably, the steady-state Fermi energy of graphene saturates at 290 ±15 meV above the Dirac point. This reproducible behavior is observed both in ambient air and in vacuum and is discussed in terms of intrinsic factors (i.e., band offsets) and environmental effects. In this saturation regime, balanced photoinduced flows of electrons and holes may transfer to graphene, a mechanism that effectively leads to energy transfer. Using a broad range of incident photon fluxes and diverse environmental conditions, we find that the presence of net photoinduced charge transfer has no measurable impact on the near-unity photoluminescence quenching efficiency in graphene /MoSe2 . This absence of correlation strongly suggests that energy transfer to graphene (either in the form of electron exchange or dipole-dipole interaction) is the

  16. The HCO+-H2 van der Waals interaction: Potential energy and scattering

    NASA Astrophysics Data System (ADS)

    Massó, H.; Wiesenfeld, L.

    2014-11-01

    We compute the rigid-body, four-dimensional interaction potential between HCO+ and H2. The ab initio energies are obtained at the coupled-cluster single double triple level of theory, corrected for Basis Set Superposition Errors. The ab initio points are fit onto the spherical basis relevant for quantum scattering. We present elastic and rotationally inelastic coupled channels scattering between low lying rotational levels of HCO+ and para-/ortho-H2. Results are compared with similar earlier computations with He or isotropic para-H2 as the projectile. Computations agree with earlier pressure broadening measurements.

  17. The HCO⁺-H₂ van der Waals interaction: potential energy and scattering.

    PubMed

    Massó, H; Wiesenfeld, L

    2014-11-14

    We compute the rigid-body, four-dimensional interaction potential between HCO(+) and H2. The ab initio energies are obtained at the coupled-cluster single double triple level of theory, corrected for Basis Set Superposition Errors. The ab initio points are fit onto the spherical basis relevant for quantum scattering. We present elastic and rotationally inelastic coupled channels scattering between low lying rotational levels of HCO(+) and para-/ortho-H2. Results are compared with similar earlier computations with He or isotropic para-H2 as the projectile. Computations agree with earlier pressure broadening measurements.

  18. Resonance oscillations of nonreciprocal long-range van der Waals forces between atoms in electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Sherkunov, Yury

    2018-03-01

    We study theoretically the van der Waals interaction between two atoms out of equilibrium with an isotropic electromagnetic field. We demonstrate that at large interatomic separations, the van der Waals forces are resonant, spatially oscillating, and nonreciprocal due to resonance absorption and emission of virtual photons. We suggest that the van der Waals forces can be controlled and manipulated by tuning the spectrum of artificially created random light.

  19. Free energy calculations of glycosaminoglycan-protein interactions.

    PubMed

    Gandhi, Neha S; Mancera, Ricardo L

    2009-10-01

    Glycosaminoglycans (GAGs) are complex highly charged linear polysaccharides that have a variety of roles in biological processes. We report the first use of molecular dynamics (MD) free energy calculations using the MM/PBSA method to investigate the binding of GAGs to protein molecules, namely the platelet endothelial cell adhesion molecule 1 (PECAM-1) and annexin A2. Calculations of the free energy of the binding of heparin fragments of different sizes reveal the existence of a region of low GAG-binding affinity in domains 5-6 of PECAM-1 and a region of high affinity in domains 2-3, consistent with experimental data and ligand-protein docking studies. A conformational hinge movement between domains 2 and 3 was observed, which allows the binding of heparin fragments of increasing size (pentasaccharides to octasaccharides) with an increasingly higher binding affinity. Similar simulations of the binding of a heparin fragment to annexin A2 reveal the optimization of electrostatic and hydrogen bonding interactions with the protein and protein-bound calcium ions. In general, these free energy calculations reveal that the binding of heparin to protein surfaces is dominated by strong electrostatic interactions for longer fragments, with equally important contributions from van der Waals interactions and vibrational entropy changes, against a large unfavorable desolvation penalty due to the high charge density of these molecules.

  20. van der Waals torque and force between dielectrically anisotropic layered media.

    PubMed

    Lu, Bing-Sui; Podgornik, Rudolf

    2016-07-28

    We analyse van der Waals interactions between a pair of dielectrically anisotropic plane-layered media interacting across a dielectrically isotropic solvent medium. We develop a general formalism based on transfer matrices to investigate the van der Waals torque and force in the limit of weak birefringence and dielectric matching between the ordinary axes of the anisotropic layers and the solvent. We apply this formalism to study the following systems: (i) a pair of single anisotropic layers, (ii) a single anisotropic layer interacting with a multilayered slab consisting of alternating anisotropic and isotropic layers, and (iii) a pair of multilayered slabs each consisting of alternating anisotropic and isotropic layers, looking at the cases where the optic axes lie parallel and/or perpendicular to the plane of the layers. For the first case, the optic axes of the oppositely facing anisotropic layers of the two interacting slabs generally possess an angular mismatch, and within each multilayered slab the optic axes may either be the same or undergo constant angular increments across the anisotropic layers. In particular, we examine how the behaviors of the van der Waals torque and force can be "tuned" by adjusting the layer thicknesses, the relative angular increment within each slab, and the angular mismatch between the slabs.

  1. A polarizable dipole-dipole interaction model for evaluation of the interaction energies for N-H···O=C and C-H···O=C hydrogen-bonded complexes.

    PubMed

    Li, Shu-Shi; Huang, Cui-Ying; Hao, Jiao-Jiao; Wang, Chang-Sheng

    2014-03-05

    In this article, a polarizable dipole-dipole interaction model is established to estimate the equilibrium hydrogen bond distances and the interaction energies for hydrogen-bonded complexes containing peptide amides and nucleic acid bases. We regard the chemical bonds N-H, C=O, and C-H as bond dipoles. The magnitude of the bond dipole moment varies according to its environment. We apply this polarizable dipole-dipole interaction model to a series of hydrogen-bonded complexes containing the N-H···O=C and C-H···O=C hydrogen bonds, such as simple amide-amide dimers, base-base dimers, peptide-base dimers, and β-sheet models. We find that a simple two-term function, only containing the permanent dipole-dipole interactions and the van der Waals interactions, can produce the equilibrium hydrogen bond distances compared favorably with those produced by the MP2/6-31G(d) method, whereas the high-quality counterpoise-corrected (CP-corrected) MP2/aug-cc-pVTZ interaction energies for the hydrogen-bonded complexes can be well-reproduced by a four-term function which involves the permanent dipole-dipole interactions, the van der Waals interactions, the polarization contributions, and a corrected term. Based on the calculation results obtained from this polarizable dipole-dipole interaction model, the natures of the hydrogen bonding interactions in these hydrogen-bonded complexes are further discussed. Copyright © 2013 Wiley Periodicals, Inc.

  2. Electronic charge rearrangement at metal/organic interfaces induced by weak van der Waals interactions

    NASA Astrophysics Data System (ADS)

    Ferri, Nicola; Ambrosetti, Alberto; Tkatchenko, Alexandre

    2017-07-01

    Electronic charge rearrangements at interfaces between organic molecules and solid surfaces play a key role in a wide range of applications in catalysis, light-emitting diodes, single-molecule junctions, molecular sensors and switches, and photovoltaics. It is common to utilize electrostatics and Pauli pushback to control the interface electronic properties, while the ubiquitous van der Waals (vdW) interactions are often considered to have a negligible direct contribution (beyond the obvious structural relaxation). Here, we apply a fully self-consistent Tkatchenko-Scheffler vdW density functional to demonstrate that the weak vdW interactions can induce sizable charge rearrangements at hybrid metal/organic systems (HMOS). The complex vdW correlation potential smears out the interfacial electronic density, thereby reducing the charge transfer in HMOS, changes the interface work functions by up to 0.2 eV, and increases the interface dipole moment by up to 0.3 Debye. Our results suggest that vdW interactions should be considered as an additional control parameter in the design of hybrid interfaces with the desired electronic properties.

  3. The adsorption of CH3 and C6H6 on corundum-type sesquioxides: The role of van der Waals interactions

    NASA Astrophysics Data System (ADS)

    Dabaghmanesh, Samira; Partoens, Bart; Neyts, Erik

    Van der Waals (vdW) interactions play an important role in the adsorption of atoms and molecules on the surface of solids. This role becomes more significant whenever the interaction between the adsorbate and surface is physisorption. Thanks to recent developments in density functional theory (DFT), we are now able to employ different vdW methods that helps us to account for the long-range vdW forces. However, the choice of the most efficient vdW functional for different materials is still an open question. In our study, we examine different vdW approaches to compute bulk and molecular adsorption properties of M2O3 oxides (M: Cr, Fe, and Al) as well-known examples of the corundum family. For the bulk properties, we compare our results for the heat of formation, cohesive energy, lattice parameters and bond distances as obtained using the different vdW functionals and available experimental data. Next we compute the adsorption energies of the benzene molecule (as an example of physisorption) and CH3 (as an example of chemisorption) on top of the (0001) M-terminated and MO-terminated surfaces. Calculating the vdW contributions into the adsorption energies, we find that the vdW functionals play important role not just in the weak adsorptions but even in strong adsorption.

  4. Adsorption of thiophene on transition metal surfaces with the inclusion of van der Waals effects

    NASA Astrophysics Data System (ADS)

    Malone, Walter; Matos, Jeronimo; Kara, Abdelkader

    2018-03-01

    We use density functional theory with the inclusion of the van der Waals interaction to study the adsorption of thiophene, C4H4S, on Pt, Rh, Pd, Au, and Ag (100) surfaces. The five van der Waals (vdW) inclusive functionals we employ are optB86b-vdW, optB88-vdW, optPBE-vdW, revPBE-vdW, and rPW86-vdW2. For comparison we also run calculations with the GGA- Perdew Burke and Ernzerhof (PBE) functional. We examine several adsorption sites with the plane of the molecule parallel or perpendicular to the surface. The most stable configuration on all metals was the site where the center of the thiophene lies over a 4-fold hollow site with the sulfur atom lying close to a top site. Furthermore, we examine several electronic and geometric properties of the adsorbate including charge transfer, modification of the d-band, adsorption energy, tilt angle, and adsorption height. For the coinage metals PBE gives the lowest adsorption energy. For reactive transition metal substrates, revPBE-vdW and rPW86-vdW2 give lower adsorption energies than PBE.

  5. Molecular adsorption on metal surfaces with van der Waals density functionals

    NASA Astrophysics Data System (ADS)

    Li, Guo; Tamblyn, Isaac; Cooper, Valentino R.; Gao, Hong-Jun; Neaton, Jeffrey B.

    2012-03-01

    The adsorption of 1,4-benzenediamine (BDA) on Au(111) and azobenzene on Ag(111) is investigated using density functional theory (DFT) with the nonlocal van der Waals density functional (vdW-DF) and the semilocal Perdew-Burke-Ernzerhof functional. For BDA on Au(111), the inclusion of London dispersion interactions not only dramatically enhances the molecule-substrate binding, resulting in adsorption energies consistent with experimental results, but also significantly alters the BDA binding geometry. For azobenzene on Ag(111), vdW-DFs produce superior adsorption energies compared to those obtained with other dispersion-corrected DFT approaches. These results provide evidence for the applicability of the vdW-DF approach and serve as practical benchmarks for the investigation of molecules adsorbed on noble-metal surfaces.

  6. Versatile van der Waals Density Functional Based on a Meta-Generalized Gradient Approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Haowei; Yang, Zeng-Hui; Perdew, John P.

    A “best-of-both-worlds” van der Waals (vdW) density functional is constructed, seamlessly supplementing the strongly constrained and appropriately normed (SCAN) meta-generalized gradient approximation for short- and intermediate-range interactions with the long-range vdW interaction from r VV 10 , the revised Vydrov–van Voorhis nonlocal correlation functional. The resultant SCAN + r VV 10 is the only vdW density functional to date that yields excellent interlayer binding energies and spacings, as well as intralayer lattice constants in 28 layered materials. Its versatility for various kinds of bonding is further demonstrated by its good performance for 22 interactions between molecules; the cohesive energies andmore » lattice constants of 50 solids; the adsorption energy and distance of a benzene molecule on coinage-metal surfaces; the binding energy curves for graphene on Cu(111), Ni(111), and Co(0001) surfaces; and the rare-gas solids. We argue that a good semilocal approximation should (as SCAN does) capture the intermediate-range vdW through its exchange term. We have found an effective range of the vdW interaction between 8 and 16 Å for systems considered here, suggesting that this interaction is negligibly small at the larger distances where it reaches its asymptotic power-law decay.« less

  7. Versatile van der Waals Density Functional Based on a Meta-Generalized Gradient Approximation

    DOE PAGES

    Peng, Haowei; Yang, Zeng-Hui; Perdew, John P.; ...

    2016-10-12

    A “best-of-both-worlds” van der Waals (vdW) density functional is constructed, seamlessly supplementing the strongly constrained and appropriately normed (SCAN) meta-generalized gradient approximation for short- and intermediate-range interactions with the long-range vdW interaction from r VV 10 , the revised Vydrov–van Voorhis nonlocal correlation functional. The resultant SCAN + r VV 10 is the only vdW density functional to date that yields excellent interlayer binding energies and spacings, as well as intralayer lattice constants in 28 layered materials. Its versatility for various kinds of bonding is further demonstrated by its good performance for 22 interactions between molecules; the cohesive energies andmore » lattice constants of 50 solids; the adsorption energy and distance of a benzene molecule on coinage-metal surfaces; the binding energy curves for graphene on Cu(111), Ni(111), and Co(0001) surfaces; and the rare-gas solids. We argue that a good semilocal approximation should (as SCAN does) capture the intermediate-range vdW through its exchange term. We have found an effective range of the vdW interaction between 8 and 16 Å for systems considered here, suggesting that this interaction is negligibly small at the larger distances where it reaches its asymptotic power-law decay.« less

  8. Van der Waals potential and vibrational energy levels of the ground state radon dimer

    NASA Astrophysics Data System (ADS)

    Sheng, Xiaowei; Qian, Shifeng; Hu, Fengfei

    2017-08-01

    In the present paper, the ground state van der Waals potential of the Radon dimer is described by the Tang-Toennies potential model, which requires five essential parameters. Among them, the two dispersion coefficients C6 and C8 are estimated from the well determined dispersion coefficients C6 and C8 of Xe2. C10 is estimated by using the approximation equation that C6C10/C82 has an average value of 1.221 for all the rare gas dimers. With these estimated dispersion coefficients and the well determined well depth De and Re the Born-Mayer parameters A and b are derived. Then the vibrational energy levels of the ground state radon dimer are calculated. 40 vibrational energy levels are observed in the ground state of Rn2 dimer. The last vibrational energy level is bound by only 0.0012 cm-1.

  9. Spherical solid model system: Exact evaluation of the van der Waals interaction between a microscopic or submacroscopic spherical solid and a deformable fluid interface

    NASA Astrophysics Data System (ADS)

    Wang, Y. Z.; Wang, B.; Xiong, X. M.; Zhang, J. X.

    2011-03-01

    In many previous research work associated with studying the deformation of the fluid interface interacting with a solid, the theoretical calculation of the surface energy density on the deformed fluid interface (or its interaction surface pressure) is often approximately obtained by using the expression for the interaction energy per unit area (or pressure) between two parallel macroscopic plates, e.g. σ(D) = - A / 12 πD2or π(D) = - A / 6 πD3for the van der Waals (vdW) interaction, through invoking the Derjaguin approximation (DA). This approximation however would result in over- or even inaccurate-prediction of the interaction force and the corresponding deformation of the fluid interface due to the invalidation of Derjaguin approximation in cases of microscopic or submacroscopic solids. To circumvent the above limitations existing in the previous DA-based theoretical work, a more accurate and quantitative theoretical model, available for exactly calculating the vdW-induced deformation of a planar fluid interface interacting with a sphere, and the interaction forces taking into account its change, is presented in this paper. The validity and advantage of the new mathematical and physical technique is rigorously verified by comparison with the numerical results on basis of the previous Paraboloid solid (PS) model and the Hamaker's sphere-flat expression (viz. F = - 2 Aa3 / (3 D2( D + 2 a) 2)), as well as its well-known DA-based general form of F / a = - A / 6z p02.

  10. Engineering graphene and TMDs based van der Waals heterostructures for photovoltaic and photoelectrochemical solar energy conversion.

    PubMed

    Li, Changli; Cao, Qi; Wang, Faze; Xiao, Yequan; Li, Yanbo; Delaunay, Jean-Jacques; Zhu, Hongwei

    2018-05-08

    Graphene and two-dimensional (2D) transition metal dichalcogenides (TMDs) have attracted significant interest due to their unique properties that cannot be obtained in their bulk counterparts. These atomically thin 2D materials have demonstrated strong light-matter interactions, tunable optical bandgap structures and unique structural and electrical properties, rendering possible the high conversion efficiency of solar energy with a minimal amount of active absorber material. The isolated 2D monolayer can be stacked into arbitrary van der Waals (vdWs) heterostructures without the need to consider lattice matching. Several combinations of 2D/3D and 2D/2D materials have been assembled to create vdWs heterojunctions for photovoltaic (PV) and photoelectrochemical (PEC) energy conversion. However, the complex, less-constrained, and more environmentally vulnerable interface in a vdWs heterojunction is different from that of a conventional, epitaxially grown heterojunction, engendering new challenges for surface and interface engineering. In this review, the physics of band alignment, the chemistry of surface modification and the behavior of photoexcited charge transfer at the interface during PV and PEC processes will be discussed. We will present a survey of the recent progress and challenges of 2D/3D and 2D/2D vdWs heterojunctions, with emphasis on their applicability to PV and PEC devices. Finally, we will discuss emerging issues yet to be explored for 2D materials to achieve high solar energy conversion efficiency and possible strategies to improve their performance.

  11. Van der Waals forces in pNRQED

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shtabovenko, Vladyslav

    2016-01-22

    We report on the calculation of electromagnetic van der Waals forces [1] between two hydrogen atoms using non-relativistic effective field theories (EFTs) of QED for large and small momentum transfers with respect to the intrinsic energy scale of the hydrogen atom. Our results reproduce the well known London and Casimir-Polder forces.

  12. Optimizing Protein-Protein van der Waals Interactions for the AMBER ff9x/ff12 Force Field.

    PubMed

    Chapman, Dail E; Steck, Jonathan K; Nerenberg, Paul S

    2014-01-14

    The quality of molecular dynamics (MD) simulations relies heavily on the accuracy of the underlying force field. In recent years, considerable effort has been put into developing more accurate dihedral angle potentials for MD force fields, but relatively little work has focused on the nonbonded parameters, many of which are two decades old. In this work, we assess the accuracy of protein-protein van der Waals interactions in the AMBER ff9x/ff12 force field. Across a test set of 44 neat organic liquids containing the moieties present in proteins, we find root-mean-square (RMS) errors of 1.26 kcal/mol in enthalpy of vaporization and 0.36 g/cm(3) in liquid densities. We then optimize the van der Waals radii and well depths for all of the relevant atom types using these observables, which lowers the RMS errors in enthalpy of vaporization and liquid density of our validation set to 0.59 kcal/mol (53% reduction) and 0.019 g/cm(3) (46% reduction), respectively. Limitations in our parameter optimization were evident for certain atom types, however, and we discuss the implications of these observations for future force field development.

  13. Effect of van der Waals interactions on the stability of SiC polytypes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawanishi, Sakiko, E-mail: s-kawa@tagen.tohoku.ac.jp; Mizoguchi, Teruyasu

    2016-05-07

    Density functional theory calculations with a correction of the long-range dispersion force, namely, the van der Waals (vdW) force, are performed for SiC polytypes. The lattice parameters are in good agreement with those obtained from the experiments. Furthermore, the stability of the polytypes in the experiments, which show 3C-SiC as the most stable, is reproduced by the present calculations. The effects of the vdW force on the electronic structure and the stability of polytypes are discussed. We observe that the vdW interaction is more sensitive to the cubic site than the hexagonal site. Thus, the influence of the vdW forcemore » increases with decreasing the hexagonality of the polytype, which results in the confirmation that the most stable polytype is 3C-SiC.« less

  14. van der Waals Interactions in Hadron Resonance Gas: From Nuclear Matter to Lattice QCD.

    PubMed

    Vovchenko, Volodymyr; Gorenstein, Mark I; Stoecker, Horst

    2017-05-05

    An extension of the ideal hadron resonance gas (HRG) model is constructed which includes the attractive and repulsive van der Waals (VDW) interactions between baryons. This VDW-HRG model yields the nuclear liquid-gas transition at low temperatures and high baryon densities. The VDW parameters a and b are fixed by the ground state properties of nuclear matter, and the temperature dependence of various thermodynamic observables at zero chemical potential are calculated within the VDW-HRG model. Compared to the ideal HRG model, the inclusion of VDW interactions between baryons leads to a qualitatively different behavior of second and higher moments of fluctuations of conserved charges, in particular in the so-called crossover region T∼140-190  MeV. For many observables this behavior resembles closely the results obtained from lattice QCD simulations. This hadronic model also predicts nontrivial behavior of net-baryon fluctuations in the region of phase diagram probed by heavy-ion collision experiments. These results imply that VDW interactions play a crucial role in the thermodynamics of hadron gas. Thus, the commonly performed comparisons of the ideal HRG model with the lattice and heavy-ion data may lead to misconceptions and misleading conclusions.

  15. Study of interaction in silica glass via model potential approach

    NASA Astrophysics Data System (ADS)

    Mann, Sarita; Rani, Pooja

    2016-05-01

    Silica is one of the most commonly encountered substances in daily life and in electronics industry. Crystalline SiO2 (in several forms: quartz, cristobalite, tridymite) is an important constituent of many minerals and gemstones, both in pure form and mixed with related oxides. Cohesive energy of amorphous SiO2 has been investigated via intermolecular potentials i.e weak Van der Waals interaction and Morse type short-range interaction. We suggest a simple atom-atom based Van der Waals as well as Morse potential to find cohesive energy of glass. It has been found that the study of silica structure using two different model potentials is significantly different. Van der Waals potential is too weak (P.E =0.142eV/molecule) to describe the interaction between silica molecules. Morse potential is a strong potential, earlier given for intramolecular bonding, but if applied for intermolecular bonding, it gives a value of P.E (=-21.92eV/molecule) to appropriately describe the structure of silica.

  16. Influence of Van der Waals interaction on the thermodynamics properties of NaCl

    NASA Astrophysics Data System (ADS)

    Marcondes, M. L.; Wentzcovitch, R. M.; Assali, L. V. C.

    2016-12-01

    Equations of state (EoS) are extremely important in several scientific domains. However, many applications require EoS parameters at high pressures and temperatures. Experimental determination of these parameters is limited in such conditions and ab initio calculations have become important in computing them. Density Functional Theory (DFT) with its various approximations for exchange and correlation energy is the method of choice, but lack of a good description of the exchange-correlation energy results in large errors in EoS parameters. It is well known that the alkali halides have been problematic from the onset and the quest for DFT functionals appropriate for such ionic and relatively weakly bonded systems has remained an active topic of research. Here we use DFT + van der Waals functionals to calculate the thermal equation of state and thermodynamic properties of the B1 NaCl phase. Our results show a remarkable improvement over the performance of standard the LDA and GGA functionals. This is hardly surprising given that ions in this system have nearly closed shell configurations.

  17. Thermionic Energy Conversion Based on Graphene van der Waals Heterostructures

    PubMed Central

    Liang, Shi-Jun; Liu, Bo; Hu, Wei; Zhou, Kun; Ang, L. K.

    2017-01-01

    Seeking for thermoelectric (TE) materials with high figure of merit (or ZT), which can directly converts low-grade wasted heat (400 to 500 K) into electricity, has been a big challenge. Inspired by the concept of multilayer thermionic devices, we propose and design a solid-state thermionic devices (as a power generator or a refrigerator) in using van der Waals (vdW) heterostructure sandwiched between two graphene electrodes, to achieve high energy conversion efficiency in the temperature range of 400 to 500 K. The vdW heterostructure is composed of suitable multiple layers of transition metal dichalcogenides (TMDs), such as MoS2, MoSe2, WS2 and WSe2. From our calculations, WSe2 and MoSe2 are identified as two ideal TMDs (using the reported experimental material’s properties), which can harvest waste heat at 400 K with efficiencies about 7% to 8%. To our best knowledge, this design is the first in combining the advantages of graphene electrodes and TMDs to function as a thermionic-based device. PMID:28387363

  18. Influence of van der Waals forces on increasing the strength and toughness in dynamic fracture of nanofibre networks: a peridynamic approach

    NASA Astrophysics Data System (ADS)

    Bobaru, F.

    2007-07-01

    The peridynamic method is used here to analyse the effect of van der Waals forces on the mechanical behaviour and strength and toughness properties of three-dimensional nanofibre networks under imposed stretch deformation. The peridynamic formulation allows for a natural inclusion of long-range forces (such as van der Waals forces) by considering all interactions as 'long-range'. We use van der Waals interactions only between different fibres and do not need to model individual atoms. Fracture is introduced at the microstructural (peridynamic bond) level for the microelastic type bonds, while van der Waals bonds can reform at any time. We conduct statistical studies to determine a certain volume element for which the network of randomly oriented fibres becomes quasi-isotropic and insensitive to statistical variations. This qualitative study shows that the presence of van der Waals interactions and of heterogeneities (sacrificial bonds) in the strength of the bonds at the crosslinks between fibres can help in increasing the strength and toughness of the nanofibre network. Two main mechanisms appear to control the deformation of nanofibre networks: fibre reorientation (caused by deformation and breakage) and fibre accretion (due to van der Waals interaction). Similarities to the observed toughness of polymer adhesive in the abalone shell composition are explained. The author would like to dedicate this work to the 60th anniversary of Professor Subrata Mukherjee.

  19. Accurate van der Waals coefficients from density functional theory

    PubMed Central

    Tao, Jianmin; Perdew, John P.; Ruzsinszky, Adrienn

    2012-01-01

    The van der Waals interaction is a weak, long-range correlation, arising from quantum electronic charge fluctuations. This interaction affects many properties of materials. A simple and yet accurate estimate of this effect will facilitate computer simulation of complex molecular materials and drug design. Here we develop a fast approach for accurate evaluation of dynamic multipole polarizabilities and van der Waals (vdW) coefficients of all orders from the electron density and static multipole polarizabilities of each atom or other spherical object, without empirical fitting. Our dynamic polarizabilities (dipole, quadrupole, octupole, etc.) are exact in the zero- and high-frequency limits, and exact at all frequencies for a metallic sphere of uniform density. Our theory predicts dynamic multipole polarizabilities in excellent agreement with more expensive many-body methods, and yields therefrom vdW coefficients C6, C8, C10 for atom pairs with a mean absolute relative error of only 3%. PMID:22205765

  20. Rapid estimation of the electron correlation energy for van der Waals complexes RgX (Rg = Kr, Xe, X = Br, I)

    NASA Astrophysics Data System (ADS)

    Xinying, Li; Yongfang, Zhao; Xiaogong, Jing; Fengli, Liu; Fengyou, Hao

    2006-01-01

    We present the rules of electron correlation energies for RgX (Rg = Kr, Xe, X = Br, I) van der Waals (vdW) complex systems at CCSD(T) theoretical level with SDB-cc-pVQZ basis set by the Gaussian 98 program. A new method to derive the dispersion coefficient C6 by fitting the intermonomer electron correlation energies to C6R-6 function is introduced. The present C6 values are compared with the corresponding theoretical ones.

  1. Unusual exciton–phonon interactions at van der Waals engineered interfaces

    DOE PAGES

    Chow, Colin M.; Yu, Hongyi; Jones, Aaron M.; ...

    2017-01-13

    Raman scattering is a ubiquitous phenomenon in light–matter interactions, which reveals a material’s electronic, structural, and thermal properties. Controlling this process would enable new ways of studying and manipulating fundamental material properties. Here, we report a novel Raman scattering process at the interface between different van der Waals (vdW) materials as well as between a monolayer semiconductor and 3D crystalline substrates. We find that interfacing a WSe 2 monolayer with materials such as SiO 2, sapphire, and hexagonal boron nitride (hBN) enables Raman transitions with phonons that are either traditionally inactive or weak. This Raman scattering can be amplified bymore » nearly 2 orders of magnitude when a foreign phonon mode is resonantly coupled to the A exciton in WSe 2 directly or via an A 1' optical phonon from WSe 2. We further showed that the interfacial Raman scattering is distinct between hBN-encapsulated and hBN-sandwiched WSe 2 sample geometries. Finally, this cross-platform electron–phonon coupling, as well as the sensitivity of 2D excitons to their phononic environments, will prove important in the understanding and engineering of optoelectronic devices based on vdW heterostructures.« less

  2. Unusual exciton–phonon interactions at van der Waals engineered interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chow, Colin M.; Yu, Hongyi; Jones, Aaron M.

    Raman scattering is a ubiquitous phenomenon in light–matter interactions, which reveals a material’s electronic, structural, and thermal properties. Controlling this process would enable new ways of studying and manipulating fundamental material properties. Here, we report a novel Raman scattering process at the interface between different van der Waals (vdW) materials as well as between a monolayer semiconductor and 3D crystalline substrates. We find that interfacing a WSe 2 monolayer with materials such as SiO 2, sapphire, and hexagonal boron nitride (hBN) enables Raman transitions with phonons that are either traditionally inactive or weak. This Raman scattering can be amplified bymore » nearly 2 orders of magnitude when a foreign phonon mode is resonantly coupled to the A exciton in WSe 2 directly or via an A 1' optical phonon from WSe 2. We further showed that the interfacial Raman scattering is distinct between hBN-encapsulated and hBN-sandwiched WSe 2 sample geometries. Finally, this cross-platform electron–phonon coupling, as well as the sensitivity of 2D excitons to their phononic environments, will prove important in the understanding and engineering of optoelectronic devices based on vdW heterostructures.« less

  3. Density, structure, and dynamics of water: The effect of van der Waals interactions

    NASA Astrophysics Data System (ADS)

    Wang, Jue; Román-Pérez, G.; Soler, Jose M.; Artacho, Emilio; Fernández-Serra, M.-V.

    2011-01-01

    It is known that ab initio molecular dynamics (AIMD) simulations of liquid water at ambient conditions, based on the generalized gradient approximation (GGA) to density functional theory (DFT), with commonly used functionals fail to produce structural and diffusive properties in reasonable agreement with experiment. This is true for canonical, constant temperature simulations where the density of the liquid is fixed to the experimental density. The equilibrium density, at ambient conditions, of DFT water has recently been shown by Schmidt et al. [J. Phys. Chem. B, 113, 11959 (2009)] to be underestimated by different GGA functionals for exchange and correlation, and corrected by the addition of interatomic pair potentials to describe van der Waals (vdW) interactions. In this contribution we present a DFT-AIMD study of liquid water using several GGA functionals as well as the van der Waals density functional (vdW-DF) of Dion et al. [Phys. Rev. Lett. 92, 246401 (2004)]. As expected, we find that the density of water is grossly underestimated by GGA functionals. When a vdW-DF is used, the density improves drastically and the experimental diffusivity is reproduced without the need of thermal corrections. We analyze the origin of the density differences between all the functionals. We show that the vdW-DF increases the population of non-H-bonded interstitial sites, at distances between the first and second coordination shells. However, it excessively weakens the H-bond network, collapsing the second coordination shell. This structural problem is partially associated to the choice of GGA exchange in the vdW-DF. We show that a different choice for the exchange functional is enough to achieve an overall improvement both in structure and diffusivity.

  4. Combination Rules for Morse-Based van der Waals Force Fields.

    PubMed

    Yang, Li; Sun, Lei; Deng, Wei-Qiao

    2018-02-15

    In traditional force fields (FFs), van der Waals interactions have been usually described by the Lennard-Jones potentials. Conventional combination rules for the parameters of van der Waals (VDW) cross-termed interactions were developed for the Lennard-Jones based FFs. Here, we report that the Morse potentials were a better function to describe VDW interactions calculated by highly precise quantum mechanics methods. A new set of combination rules was developed for Morse-based FFs, in which VDW interactions were described by Morse potentials. The new set of combination rules has been verified by comparing the second virial coefficients of 11 noble gas mixtures. For all of the mixed binaries considered in this work, the combination rules work very well and are superior to all three other existing sets of combination rules reported in the literature. We further used the Morse-based FF by using the combination rules to simulate the adsorption isotherms of CH 4 at 298 K in four covalent-organic frameworks (COFs). The overall agreement is great, which supports the further applications of this new set of combination rules in more realistic simulation systems.

  5. A notable difference between ideal gas and infinite molar volume limit of van der Waals gas

    NASA Astrophysics Data System (ADS)

    Liu, Q. H.; Shen, Y.; Bai, R. L.; Wang, X.

    2010-05-01

    The van der Waals equation of state does not sufficiently represent a gas unless a thermodynamic potential with two proper and independent variables is simultaneously determined. The limiting procedures under which the behaviour of the van der Waals gas approaches that of an ideal gas are letting two van der Waals coefficients be zero rather than letting the molar volume become infinitely large; otherwise, the partial derivative of internal energy with respect to pressure at a fixed temperature does not vanish.

  6. Signatures of van der Waals binding: A coupling-constant scaling analysis

    NASA Astrophysics Data System (ADS)

    Jiao, Yang; Schröder, Elsebeth; Hyldgaard, Per

    2018-02-01

    The van der Waals (vdW) density functional (vdW-DF) method [Rep. Prog. Phys. 78, 066501 (2015), 10.1088/0034-4885/78/6/066501] describes dispersion or vdW binding by tracking the effects of an electrodynamic coupling among pairs of electrons and their associated exchange-correlation holes. This is done in a nonlocal-correlation energy term Ecnl, which permits density functional theory calculation in the Kohn-Sham scheme. However, to map the nature of vdW forces in a fully interacting materials system, it is necessary to also account for associated kinetic-correlation energy effects. Here, we present a coupling-constant scaling analysis, which permits us to compute the kinetic-correlation energy Tcnl that is specific to the vdW-DF account of nonlocal correlations. We thus provide a more complete spatially resolved analysis of the electrodynamical-coupling nature of nonlocal-correlation binding, including vdW attraction, in both covalently and noncovalently bonded systems. We find that kinetic-correlation energy effects play a significant role in the account of vdW or dispersion interactions among molecules. Furthermore, our mapping shows that the total nonlocal-correlation binding is concentrated to pockets in the sparse electron distribution located between the material fragments.

  7. van der Waals Interactions and Hadron Resonance Gas: Role of resonance widths modeling on conserved charges fluctuations

    NASA Astrophysics Data System (ADS)

    Vovchenko, Volodymyr; Alba, Paolo; Gorenstein, Mark I.; Stoecker, Horst

    2018-02-01

    The quantum van der Waals (QvdW) extension of the ideal hadron resonance gas (HRG) model which includes the attractive and repulsive interactions between baryons - the QvdW-HRG model - is applied to study the behavior of the baryon number related susceptibilities in the crossover temperature region. Inclusion of the QvdW interactions leads to a qualitatively different behavior of susceptibilities, in many cases resembling lattice QCD simulations. It is shown that for some observables, in particular for χBQ11/χB2, effects of the QvdW interactions essentially cancel out. It is found that the inclusion of the finite resonance widths leads to an improved description of χB2, but it also leads to a worse description of χBQ11/χB2, as compared to the lattice data. On the other hand, inclusion of the extra, unconfirmed baryons into the hadron list leads to a simultaneous improvement in the description of both observables.

  8. A high-pressure van der Waals compound in solid nitrogen-helium mixtures

    NASA Technical Reports Server (NTRS)

    Vos, W. L.; Finger, L. W.; Hemley, R. J.; Hu, J. Z.; Mao, H. K.; Schouten, J. A.

    1992-01-01

    A detailed diamond anvil-cell study using synchrotron X-ray diffraction, Raman scattering, and optical microscopy has been conducted for the He-N system, with a view to the weakly-bound van der Waals molecule interactions that can be formed in the gas phase. High pressure is found to stabilize the formation of a stoichiometric, solid van der Waals compound of He(N2)11 composition which may exemplify a novel class of compounds found at high pressures in the interiors of the outer planets and their satellites.

  9. The role of the van der Waals interactions in the adsorption of anthracene and pentacene on the Ag(111) surface

    NASA Astrophysics Data System (ADS)

    Morbec, Juliana M.; Kratzer, Peter

    2017-01-01

    Using first-principles calculations based on density-functional theory (DFT), we investigated the effects of the van der Waals (vdW) interactions on the structural and electronic properties of anthracene and pentacene adsorbed on the Ag(111) surface. We found that the inclusion of vdW corrections strongly affects the binding of both anthracene/Ag(111) and pentacene/Ag(111), yielding adsorption heights and energies more consistent with the experimental results than standard DFT calculations with generalized gradient approximation (GGA). For anthracene/Ag(111) the effect of the vdW interactions is even more dramatic: we found that "pure" DFT-GGA calculations (without including vdW corrections) result in preference for a tilted configuration, in contrast to the experimental observations of flat-lying adsorption; including vdW corrections, on the other hand, alters the binding geometry of anthracene/Ag(111), favoring the flat configuration. The electronic structure obtained using a self-consistent vdW scheme was found to be nearly indistinguishable from the conventional DFT electronic structure once the correct vdW geometry is employed for these physisorbed systems. Moreover, we show that a vdW correction scheme based on a hybrid functional DFT calculation (HSE) results in an improved description of the highest occupied molecular level of the adsorbed molecules.

  10. Mixed Dimensional Van der Waals Heterostructures for Opto-Electronics.

    NASA Astrophysics Data System (ADS)

    Jariwala, Deep

    The isolation of a growing number of two-dimensional (2D) materials has inspired worldwide efforts to integrate distinct 2D materials into van der Waals (vdW) heterostructures. While a tremendous amount of research activity has occurred in assembling disparate 2D materials into ``all-2D'' van der Waals heterostructures, this concept is not limited to 2D materials alone. Given that any passivated, dangling bond-free surface will interact with another via vdW forces, the vdW heterostructure concept can be extended to include the integration of 2D materials with non-2D materials that adhere primarily through noncovalent interactions. In the first part of this talk I will present our work on emerging mixed-dimensional (2D + nD, where n is 0, 1 or 3) heterostructure devices performed at Northwestern University. I will present two distinct examples of gate-tunable p-n heterojunctions 1. Single layer n-type MoS2\\ (2D) combined with p-type semiconducting single walled carbon nanotubes (1D) and 2. Single layer MoS2 combined with 0D molecular semiconductor, pentacene. I will present the unique electrical properties, underlying charge transport mechanisms and photocurrent responses in both the above systems using a variety of scanning probe microscopy techniques as well as computational analysis. This work shows that van der Waals interactions are robust across different dimensionalities of materials and can allow fabrication of semiconductor devices with unique geometries and properties unforeseen in bulk semiconductors. Finally, I will briefly discuss our recent work from Caltech on near-unity absorption in atomically-thin photovoltaic devices. This work is supported by the Materials Research Center at Northwestern University, funded by the National Science Foundation (NSF DMR-1121262) and the Resnick Sustainability Institute at Caltech.

  11. Physical adsorption at the nanoscale: Towards controllable scaling of the substrate-adsorbate van der Waals interaction

    NASA Astrophysics Data System (ADS)

    Ambrosetti, Alberto; Silvestrelli, Pier Luigi; Tkatchenko, Alexandre

    2017-06-01

    The Lifshitz-Zaremba-Kohn (LZK) theory is commonly considered as the correct large-distance limit for the van der Waals (vdW) interaction of adsorbates (atoms, molecules, or nanoparticles) with solid substrates. In the standard approximate form, implicitly based on local dielectric functions, the LZK approach predicts universal power laws for vdW interactions depending only on the dimensionality of the interacting objects. However, recent experimental findings are challenging the universality of this theoretical approach at finite distances of relevance for nanoscale assembly. Here, we present a combined analytical and numerical many-body study demonstrating that physical adsorption can be significantly enhanced at the nanoscale. Regardless of the band gap or the nature of the adsorbate specie, we find deviations from conventional LZK power laws that extend to separation distances of up to 10-20 nm. Comparison with recent experimental observations of ultra-long-ranged vdW interactions in the delamination of graphene from a silicon substrate reveals qualitative agreement with the present theory. The sensitivity of vdW interactions to the substrate response and to the adsorbate characteristic excitation frequency also suggests that adsorption strength can be effectively tuned in experiments, paving the way to an improved control of physical adsorption at the nanoscale.

  12. The potential for fast van der Waals computations for layered materials using a Lifshitz model

    NASA Astrophysics Data System (ADS)

    Zhou, Yao; Pellouchoud, Lenson A.; Reed, Evan J.

    2017-06-01

    Computation of the van der Waals (vdW) interactions plays a crucial role in the study of layered materials. The adiabatic-connection fluctuation-dissipation theorem within random phase approximation (ACFDT-RPA) has been empirically reported to be the most accurate of commonly used methods, but it is limited to small systems due to its computational complexity. Without a computationally tractable vdW correction, fictitious strains are often introduced in the study of multilayer heterostructures, which, we find, can change the vdW binding energy by as much as 15%. In this work, we employed for the first time a defined Lifshitz model to provide the vdW potentials for a spectrum of layered materials orders of magnitude faster than the ACFDT-RPA for representative layered material structures. We find that a suitably defined Lifshitz model gives the correlation component of the binding energy to within 8-20% of the ACFDT-RPA calculations for a variety of layered heterostructures. Using this fast Lifshitz model, we studied the vdW binding properties of 210 three-layered heterostructures. Our results demonstrate that the three-body vdW effects are generally small (10% of the binding energy) in layered materials for most cases, and that non-negligible second-nearest neighbor layer interaction and three-body effects are observed for only those cases in which the middle layer is atomically thin (e.g. BN or graphene). We find that there is potential for particular combinations of stacked layers to exhibit repulsive three-body van der Waals effects, although these effects are likely to be much smaller than two-body effects.

  13. Interaction-component analysis of the hydration and urea effects on cytochrome c

    NASA Astrophysics Data System (ADS)

    Yamamori, Yu; Ishizuka, Ryosuke; Karino, Yasuhito; Sakuraba, Shun; Matubayasi, Nobuyuki

    2016-02-01

    Energetics was analyzed for cytochrome c in pure-water solvent and in a urea-water mixed solvent to elucidate the solvation effect in the structural variation of the protein. The solvation free energy was computed through all-atom molecular dynamics simulation combined with the solution theory in the energy representation, and its correlations were examined over sets of protein structures against the electrostatic and van der Waals components in the average interaction energy of the protein with the solvent and the excluded-volume component in the solvation free energy. It was observed in pure-water solvent that the solvation free energy varies in parallel to the electrostatic component with minor roles played by the van der Waals and excluded-volume components. The effect of urea on protein structure was then investigated in terms of the free-energy change upon transfer of the protein solute from pure-water solvent to the urea-water mixed solvent. The decomposition of the transfer free energy into the contributions from urea and water showed that the urea contribution is partially canceled by the water contribution and governs the total free energy of transfer. When correlated against the change in the solute-solvent interaction energy upon transfer and the corresponding changes in the electrostatic, van der Waals, and excluded-volume components, the transfer free energy exhibited strong correlations with the total change in the solute-solvent energy and its van der Waals component. The solute-solvent energy was decomposed into the contributions from the protein backbone and side chain, furthermore, and neither of the contributions was seen to be decisive in the correlation to the transfer free energy.

  14. van der Waals criticality in AdS black holes: A phenomenological study

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Krishnakanta; Majhi, Bibhas Ranjan; Samanta, Saurav

    2017-10-01

    Anti-de Sitter black holes exhibit van der Waals-type phase transition. In the extended phase-space formalism, the critical exponents for any spacetime metric are identical to the standard ones. Motivated by this fact, we give a general expression for the Helmholtz free energy near the critical point, which correctly reproduces these exponents. The idea is similar to the Landau model, which gives a phenomenological description of the usual second-order phase transition. Here, two main inputs are taken into account for the analysis: (a) black holes should have van der Waals-like isotherms, and (b) free energy can be expressed solely as a function of thermodynamic volume and horizon temperature. Resulting analysis shows that the form of Helmholtz free energy correctly encapsulates the features of the Landau function. We also discuss the isolated critical point accompanied by nonstandard values of critical exponents. The whole formalism is then extended to two other criticalities, namely, Y -X and T -S (based on the standard; i.e., nonextended phase space), where X and Y are generalized force and displacement, whereas T and S are the horizon temperature and entropy. We observe that in the former case Gibbs free energy plays the role of Landau function, whereas in the later case, that role is played by the internal energy (here, it is the black hole mass). Our analysis shows that, although the existence of a van der Waals phase transition depends on the explicit form of the black hole metric, the values of the critical exponents are universal in nature.

  15. The interaction of MnH(X 7Σ+) with He: Ab initio potential energy surface and bound states

    NASA Astrophysics Data System (ADS)

    Turpin, Florence; Halvick, Philippe; Stoecklin, Thierry

    2010-06-01

    The potential energy surface of the ground state of the He-MnH(X Σ7+) van der Waals complex is presented. Within the supermolecular approach of intermolecular energy calculations, a grid of ab initio points was computed at the multireference configuration interaction level using the aug-cc-pVQZ basis set for helium and hydrogen and the relativistic aug-cc-pVQZ-DK basis set for manganese. The potential energy surface was then fitted to a global analytical form which main features are discussed. As a first application of this potential energy surface, we present accurate calculations of bound energy levels of the H3e-MnH and H4e-MnH complexes.

  16. The interaction of MnH(X 7Sigma+) with He: ab initio potential energy surface and bound states.

    PubMed

    Turpin, Florence; Halvick, Philippe; Stoecklin, Thierry

    2010-06-07

    The potential energy surface of the ground state of the He-MnH(X (7)Sigma(+)) van der Waals complex is presented. Within the supermolecular approach of intermolecular energy calculations, a grid of ab initio points was computed at the multireference configuration interaction level using the aug-cc-pVQZ basis set for helium and hydrogen and the relativistic aug-cc-pVQZ-DK basis set for manganese. The potential energy surface was then fitted to a global analytical form which main features are discussed. As a first application of this potential energy surface, we present accurate calculations of bound energy levels of the (3)He-MnH and (4)He-MnH complexes.

  17. Compact two-electron wave function for bond dissociation and Van der Waals interactions: a natural amplitude assessment.

    PubMed

    Giesbertz, Klaas J H; van Leeuwen, Robert

    2014-05-14

    Electron correlations in molecules can be divided in short range dynamical correlations, long range Van der Waals type interactions, and near degeneracy static correlations. In this work, we analyze for a one-dimensional model of a two-electron system how these three types of correlations can be incorporated in a simple wave function of restricted functional form consisting of an orbital product multiplied by a single correlation function f (r12) depending on the interelectronic distance r12. Since the three types of correlations mentioned lead to different signatures in terms of the natural orbital (NO) amplitudes in two-electron systems, we make an analysis of the wave function in terms of the NO amplitudes for a model system of a diatomic molecule. In our numerical implementation, we fully optimize the orbitals and the correlation function on a spatial grid without restrictions on their functional form. Due to this particular form of the wave function, we can prove that none of the amplitudes vanishes and moreover that it displays a distinct sign pattern and a series of avoided crossings as a function of the bond distance in agreement with the exact solution. This shows that the wave function ansatz correctly incorporates the long range Van der Waals interactions. We further show that the approximate wave function gives an excellent binding curve and is able to describe static correlations. We show that in order to do this the correlation function f (r12) needs to diverge for large r12 at large internuclear distances while for shorter bond distances it increases as a function of r12 to a maximum value after which it decays exponentially. We further give a physical interpretation of this behavior.

  18. Energy and charge transfer effects in two-dimensional van der Waals hybrid nanostructures on periodic gold nanopost array

    NASA Astrophysics Data System (ADS)

    Kim, Jun Young; Kim, Sun Gyu; Youn, Jong Won; Lee, Yongjun; Kim, Jeongyong; Joo, Jinsoo

    2018-05-01

    Two-dimensional (2D) semiconducting MoS2 and WSe2 flakes grown by chemical vapor deposition were mechanically hybridized. A hexagonal boron nitride (h-BN) dielectric flake was inserted between MoS2 and WSe2 flakes to investigate the nanoscale optical properties of 2D van der Waals hybrid nanostructures. The fabricated MoS2/WSe2 and MoS2/h-BN/WSe2 van der Waals hybrid nanostructures were loaded on a periodic gold nanopost (Au-NPo) array to study energy and charge transfer effects at the surface plasmon resonance (SPR) condition. Nanoscale photoluminescence (PL) spectra of the 2D hybrid nanostructures were measured using a high-resolution laser confocal microscope (LCM). A shift of the LCM PL peak of the MoS2/WSe2 n-p hybrid nanostructures was observed owing to the charge transfer. In contrast, the shift of the LCM PL peak of the MoS2/h-BN/WSe2 n-insulator-p hybrid nanostructure was not considerable, as the inserted h-BN dielectric layer prevented the charge transfer. The intensity of the LCM PL peak of the MoS2/h-BN/WSe2 hybrid nanostructure considerably increased once the nanostructure was loaded on the Au-NPo array, owing to the energy transfer between the 2D materials and the Au-NPo array at the SPR condition, which was confirmed by the increase in the LCM Raman intensity.

  19. Anomalous van der Waals-Casimir interactions on graphene: A concerted effect of temperature, retardation, and non-locality

    NASA Astrophysics Data System (ADS)

    Ambrosetti, Alberto; Silvestrelli, Pier Luigi

    2018-04-01

    Dispersion forces play a major role in graphene, largely influencing adhesion of adsorbate moieties and stabilization of functional multilayered structures. However, the reliable prediction of dispersion interactions on graphene up to the relevant ˜10 nm scale is an extremely challenging task: in fact, electromagnetic retardation effects and the highly non-local character of π electrons can imply sizeable qualitative variations of the interaction with respect to known pairwise approaches. Here we address both issues, determining the finite-temperature van der Waals (vdW)-Casimir interaction for point-like and extended adsorbates on graphene, explicitly accounting for the non-local dielectric permittivity. We find that temperature, retardation, and non-locality play a crucial role in determining the actual vdW scaling laws and the stability of both atomic and larger molecular adsorbates. Our results highlight the importance of these effects for a proper description of systems of current high interest, such as graphene interacting with biomolecules, and self-assembly of complex nanoscale structures. Due to the generality of our approach and the observed non-locality of other 2D materials, our results suggest non-trivial vdW interactions from hexagonal mono-layered materials from group 14 of the periodic table, to transition metal dichalcogenides.

  20. Anomalous van der Waals-Casimir interactions on graphene: A concerted effect of temperature, retardation, and non-locality.

    PubMed

    Ambrosetti, Alberto; Silvestrelli, Pier Luigi

    2018-04-07

    Dispersion forces play a major role in graphene, largely influencing adhesion of adsorbate moieties and stabilization of functional multilayered structures. However, the reliable prediction of dispersion interactions on graphene up to the relevant ∼10 nm scale is an extremely challenging task: in fact, electromagnetic retardation effects and the highly non-local character of π electrons can imply sizeable qualitative variations of the interaction with respect to known pairwise approaches. Here we address both issues, determining the finite-temperature van der Waals (vdW)-Casimir interaction for point-like and extended adsorbates on graphene, explicitly accounting for the non-local dielectric permittivity. We find that temperature, retardation, and non-locality play a crucial role in determining the actual vdW scaling laws and the stability of both atomic and larger molecular adsorbates. Our results highlight the importance of these effects for a proper description of systems of current high interest, such as graphene interacting with biomolecules, and self-assembly of complex nanoscale structures. Due to the generality of our approach and the observed non-locality of other 2D materials, our results suggest non-trivial vdW interactions from hexagonal mono-layered materials from group 14 of the periodic table, to transition metal dichalcogenides.

  1. van der Waals forces in density functional theory: a review of the vdW-DF method.

    PubMed

    Berland, Kristian; Cooper, Valentino R; Lee, Kyuho; Schröder, Elsebeth; Thonhauser, T; Hyldgaard, Per; Lundqvist, Bengt I

    2015-06-01

    A density functional theory (DFT) that accounts for van der Waals (vdW) interactions in condensed matter, materials physics, chemistry, and biology is reviewed. The insights that led to the construction of the Rutgers-Chalmers van der Waals density functional (vdW-DF) are presented with the aim of giving a historical perspective, while also emphasizing more recent efforts which have sought to improve its accuracy. In addition to technical details, we discuss a range of recent applications that illustrate the necessity of including dispersion interactions in DFT. This review highlights the value of the vdW-DF method as a general-purpose method, not only for dispersion bound systems, but also in densely packed systems where these types of interactions are traditionally thought to be negligible.

  2. Characterization of van der Waals type bimodal,- lambda,- meta- and spinodal phase transitions in liquid mixtures, solid suspensions and thin films.

    PubMed

    Rosenholm, Jarl B

    2018-03-01

    The perfect gas law is used as a reference when selecting state variables (P, V, T, n) needed to characterize ideal gases (vapors), liquids and solids. Van der Waals equation of state is used as a reference for models characterizing interactions in liquids, solids and their mixtures. Van der Waals loop introduces meta- and unstable states between the observed gas (vapor)-liquid P-V transitions at low T. These intermediate states are shown to appear also between liquid-liquid, liquid-solid and solid-solid phase transitions. First-order phase transitions are characterized by a sharp discontinuity of first-order partial derivatives (P, S, V) of Helmholtz and Gibbs free energies. Second-order partial derivatives (K T , B, C V , C P , E) consist of a static contribution relating to second-order phase transitions and a relaxation contribution representing the degree of first-order phase transitions. Bimodal (first-order) and spinodal (second-order) phase boundaries are used to separate stable phases from metastable and unstable phases. The boundaries are identified and quantified by partial derivatives of molar Gibbs free energy or chemical potentials with respect to P, S, V and composition (mole fractions). Molecules confined to spread Langmuir monolayers or adsorbed Gibbs monolayers are characterized by equation of state and adsorption isotherms relating to a two-dimensional van der Waals equation of state. The basic work of two-dimensional wetting (cohesion, adsorption, spreading, immersion), have to be adjusted by a horizontal surface pressure in the presence of adsorbed vapor layers. If the adsorption is extended to liquid films a vertical surface pressure (Π) may be added to account for the lateral interaction, thus restoring PV = ΠAh dependence of thin films. Van der Waals attraction, Coulomb repulsion and structural hydration forces contribute to the vertical surface pressure. A van der Waals type coexistence of ordered (dispersed) and disordered

  3. Surface instability of an imperfectly bonded thin elastic film under surface van der Waals forces

    NASA Astrophysics Data System (ADS)

    Wang, Xu; Jing, Rong

    2017-02-01

    This paper studies surface instability of a thin elastic film imperfectly bonded to a rigid substrate interacting with a rigid contactor through van der Waals forces under plane strain conditions. The film-substrate interface is modeled as a linear spring with vanishing thickness described in terms of the normal and tangential interface parameters. Depending on the ratio of the two imperfect interface parameters, the critical value of the Poisson's ratio for the occurrence of surface wrinkling in the absence of surface energy can be greater than, equal to, or smaller than 0.25, which is the critical Poisson's ratio for a perfect film-substrate interface. The critical surface energy for the inhibition of the surface wrinkling is also obtained. Finally, we propose a very simple and effective method to study the surface instability of a multilayered elastic film with imperfect interfaces interacting with a rigid contactor or with another multilayered elastic film (or a multilayered simply supported plate) with imperfect interfaces.

  4. Phase-Defined van der Waals Schottky Junctions with Significantly Enhanced Thermoelectric Properties.

    PubMed

    Wang, Qiaoming; Yang, Liangliang; Zhou, Shengwen; Ye, Xianjun; Wang, Zhe; Zhu, Wenguang; McCluskey, Matthew D; Gu, Yi

    2017-07-06

    We demonstrate a van der Waals Schottky junction defined by crystalline phases of multilayer In 2 Se 3 . Besides ideal diode behaviors and the gate-tunable current rectification, the thermoelectric power is significantly enhanced in these junctions by more than three orders of magnitude compared with single-phase multilayer In 2 Se 3 , with the thermoelectric figure-of-merit approaching ∼1 at room temperature. Our results suggest that these significantly improved thermoelectric properties are not due to the 2D quantum confinement effects but instead are a consequence of the Schottky barrier at the junction interface, which leads to hot carrier transport and shifts the balance between thermally and field-driven currents. This "bulk" effect extends the advantages of van der Waals materials beyond the few-layer limit. Adopting such an approach of using energy barriers between van der Waals materials, where the interface states are minimal, is expected to enhance the thermoelectric performance in other 2D materials as well.

  5. Inflationary universe in terms of a van der Waals viscous fluid

    NASA Astrophysics Data System (ADS)

    Brevik, I.; Elizalde, E.; Odintsov, S. D.; Timoshkin, A. V.

    The inflationary expansion of our early-time universe is considered in terms of the van der Waals equation, as equation of state for the cosmic fluid, where a bulk viscosity contribution is assumed to be present. The corresponding gravitational equations for the energy density in a homogeneous and isotropic Friedmann-Lemaître-Robertson-Walker universe are solved, and an analytic expression for the scale factor is obtained. Attention is paid, specifically, to the role of the viscosity term in the accelerated expansion; the values of the slow-roll parameters, the spectral index, and the tensor-to-scalar ratio for the van der Waals model are calculated and compared with the most recent astronomical data from the Planck satellite. By imposing reasonable restrictions on the parameters of the van der Waals equation, in the presence of viscosity, it is shown to be possible for this model to comply quite precisely with the observational data. One can therefore conclude that the inclusion of viscosity in the theory of the inflationary epoch may definitely improve the cosmological models.

  6. Interaction-component analysis of the effects of urea and its alkylated derivatives on the structure of T4-lysozyme

    NASA Astrophysics Data System (ADS)

    Yamamori, Yu; Matubayasi, Nobuyuki

    2017-06-01

    The effects of urea and its alkylated derivatives on the structure of T4-lysozyme were analyzed from the standpoint of energetics. Molecular dynamics simulations were conducted with explicit solvent, and the energy-representation method was employed to compute the free energy of transfer of the protein from pure-water solvent to the mixed solvents of water with urea, methylurea, 1,1-dimethylurea, and isopropylurea. Through the decomposition of the transfer free energy into the cosolvent and water contributions, it was observed that the former is partially cancelled by the latter and governs the total free energy of transfer. To determine the interaction component responsible for the transfer energetics, the correlations of the transfer free energy were also examined against the change in the solute-solvent interaction energy upon transfer and the corresponding changes in the electrostatic, van der Waals, and excluded-volume components. It was then found over the set of protein structures ranging from native to (partially) unfolded ones that the transfer free energy changes in parallel with the van der Waals component even when the cosolvent is alkylated. The electrostatic and excluded-volume components play minor roles in the structure modification of the protein, and the denaturing ability of alkylurea is brought by the van der Waals interaction.

  7. Shaping van der Waals nanoribbons via torsional constraints: Scrolls, folds and supercoils

    NASA Astrophysics Data System (ADS)

    Shahabi, Alireza; Wang, Hailong; Upmanyu, Moneesh

    2014-11-01

    Interplay between structure and function in atomically thin crystalline nanoribbons is sensitive to their conformations yet the ability to prescribe them is a formidable challenge. Here, we report a novel paradigm for controlled nucleation and growth of scrolled and folded shapes in finite-length nanoribbons. All-atom computations on graphene nanoribbons (GNRs) and experiments on macroscale magnetic thin films reveal that decreasing the end distance of torsionally constrained ribbons below their contour length leads to formation of these shapes. The energy partitioning between twisted and bent shapes is modified in favor of these densely packed soft conformations due to the non-local van der Waals interactions in these 2D crystals; they subvert the formation of supercoils that are seen in their natural counterparts such as DNA and filamentous proteins. The conformational phase diagram is in excellent agreement with theoretical predictions. The facile route can be readily extended for tailoring the soft conformations of crystalline nanoscale ribbons, and more general self-interacting filaments.

  8. van der Waals forces in density functional theory: a review of the vdW-DF method

    DOE PAGES

    Berland, Kristian; Cooper, Valentino R.; Lee, Kyuho; ...

    2015-05-15

    We review a density functional theory (DFT) that accounts for van der Waals (vdW) interactions in condensed matter, materials physics, chemistry, and biology. The insights that led to the construction of the Rutgers–Chalmers van der Waals density functional (vdW-DF) are presented with the aim of giving a historical perspective, while also emphasizing more recent efforts which have sought to improve its accuracy. In addition to technical details, we discuss a range of recent applications that illustrate the necessity of including dispersion interactions in DFT. This review highlights the value of the vdW-DF method as a general-purpose method, not only formore » dispersion bound systems, but also in densely packed systems where these types of interactions are traditionally thought to be negligible.« less

  9. Accurate van der Waals force field for gas adsorption in porous materials.

    PubMed

    Sun, Lei; Yang, Li; Zhang, Ya-Dong; Shi, Qi; Lu, Rui-Feng; Deng, Wei-Qiao

    2017-09-05

    An accurate van der Waals force field (VDW FF) was derived from highly precise quantum mechanical (QM) calculations. Small molecular clusters were used to explore van der Waals interactions between gas molecules and porous materials. The parameters of the accurate van der Waals force field were determined by QM calculations. To validate the force field, the prediction results from the VDW FF were compared with standard FFs, such as UFF, Dreiding, Pcff, and Compass. The results from the VDW FF were in excellent agreement with the experimental measurements. This force field can be applied to the prediction of the gas density (H 2 , CO 2 , C 2 H 4 , CH 4 , N 2 , O 2 ) and adsorption performance inside porous materials, such as covalent organic frameworks (COFs), zeolites and metal organic frameworks (MOFs), consisting of H, B, N, C, O, S, Si, Al, Zn, Mg, Ni, and Co. This work provides a solid basis for studying gas adsorption in porous materials. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Intermolecular configurations dominated by quadrupole-quadrupole electrostatic interactions: explicit correlation treatment of the five-dimensional potential energy surface and infrared spectra for the CO-N2 complex.

    PubMed

    Liu, Jing-Min; Zhai, Yu; Zhang, Xiao-Long; Li, Hui

    2018-01-17

    A thorough understanding of the intermolecular configurations of van der Waals complexes is a great challenge due to their weak interactions, floppiness and anharmonic nature. Although high-resolution microwave or infrared spectroscopy provides one of the most direct and precise pieces of experimental evidence, the origin and key role in determining such intermolecular configurations of a van der Waals system strongly depend on its highly accurate potential energy surface (PES) and a detailed analysis of its ro-vibrational wavefunctions. Here, a new five-dimensional potential energy surface for the van der Waals complex of CO-N 2 which explicitly incorporates the dependence on the stretch coordinate of the CO monomer is generated using the explicitly correlated couple cluster (CCSD(T)-F12) method in conjunction with a large basis set. Analytic four-dimensional PESs are obtained by the least-squares fitting of vibrationally averaged interaction energies for v = 0 and v = 1 to the Morse/Long-Range potential mode (V MLR ). These fits to 7966 points have root-mean-square deviations (RMSD) of 0.131 cm -1 and 0.129 cm -1 for v = 0 and v = 1, respectively, with only 315 parameters. Energy decomposition analysis is carried out, and it reveals that the dominant factor in controlling intermolecular configurations is quadrupole-quadrupole electrostatic interactions. Moreover, the rovibrational levels and wave functions are obtained for the first time. The predicted infrared transitions and intensities for the ortho-N 2 -CO complex as well as the calculated energy levels for para-N 2 -CO are in good agreement with the available experimental data with RMSD discrepancies smaller than 0.068 cm -1 . The calculated infrared band origin shift associated with the fundamental band frequency of CO is -0.721 cm -1 for ortho-N 2 -CO which is in excellent agreement with the experimental value of -0.739 cm -1 . The agreement with experimental values validates the high quality of the PESs

  11. Spectral asymmetry of atoms in the van der Waals potential of an optical nanofiber

    NASA Astrophysics Data System (ADS)

    Patterson, B. D.; Solano, P.; Julienne, P. S.; Orozco, L. A.; Rolston, S. L.

    2018-03-01

    We measure the modification of the transmission spectra of cold 87Rb atoms in the proximity of an optical nanofiber (ONF). Van der Waals interactions between the atoms an the ONF surface decrease the resonance frequency of atoms closer to the surface. An asymmetric spectra of the atoms holds information of their spatial distribution around the ONF. We use a far-detuned laser beam coupled to the ONF to thermally excite atoms at the ONF surface. We study the change of transmission spectrum of these atoms as a function of heating laser power. A semiclassical phenomenological model for the thermal excitation of atoms in the atom-surface van der Waals bound states is in good agreement with the measurements. This result suggests that van der Waals potentials could be used to trap and probe atoms at few nanometers from a dielectric surface, a key tool for hybrid photonic-atomic quantum systems.

  12. Effective elastic properties of a van der Waals molecular monolayer at a metal surface

    NASA Astrophysics Data System (ADS)

    Sun, Dezheng; Kim, Dae-Ho; Le, Duy; Borck, Øyvind; Berland, Kristian; Kim, Kwangmoo; Lu, Wenhao; Zhu, Yeming; Luo, Miaomiao; Wyrick, Jonathan; Cheng, Zhihai; Einstein, T. L.; Rahman, Talat S.; Hyldgaard, Per; Bartels, Ludwig

    2010-11-01

    Adsorbing anthracene on a Cu(111) surface results in a wide range of complex and intriguing superstructures spanning a coverage range from 1 per 17 to 1 per 15 substrate atoms. In accompanying first-principles density-functional theory calculations we show the essential role of van der Waals interactions in estimating the variation in anthracene adsorption energy and height across the sample. We can thereby evaluate the compression of the anthracene film in terms of continuum elastic properties, which results in an effective Young’s modulus of 1.5 GPa and a Poisson ratio ≈0.1 . These values suggest interpretation of the molecular monolayer as a porous material—in marked congruence with our microscopic observations.

  13. Gold nanoparticle assemblies stabilized by bis(phthalocyaninato)lanthanide(III) complexes through van der Waals interactions

    NASA Astrophysics Data System (ADS)

    Noda, Yuki; Noro, Shin-Ichiro; Akutagawa, Tomoyuki; Nakamura, Takayoshi

    2014-01-01

    Gold nanoparticle assemblies possess diverse application potential, ranging from industrial nanotechnology to medical biotechnology. Because the structures and properties of assemblies are directly affected by the stabilization mechanism between the organic molecules serving as protecting ligands and the gold nanoparticle surface, it is crucial to find and investigate new stabilization mechanisms. Here, we report that π-conjugated phthalocyanine rings can serve as stabilizing ligands for gold nanoparticles. Bis(phthalocyaninato)lutetium(III) (LuPc2) or bis(phthalocyaninato)terbium(III) (TbPc2), even though complex, do not have specific binding units and stabilize gold nanoparticles through van der Waals interaction between parallel adsorbed phthalocyanine ligands and the gold nanoparticle surface. AC magnetic measurements and the electron-transport properties of the assemblies give direct evidence that the phthalocyanines are isolated from each other. Each nanoparticle shows weak electronic coupling despite the short internanoparticle distance (~1 nm), suggesting Efros-Shklovskii-type variable-range hopping and collective single-electron tunnelling behaviours.

  14. Van der Waals interactions between planar substrate and tubular lipid membranes undergoing pearling instability

    NASA Astrophysics Data System (ADS)

    Valchev, G. S.; Djondjorov, P. A.; Vassilev, V. M.; Dantchev, D. M.

    2017-10-01

    In the current article we study the behavior of the van der Waals force between a planar substrate and an axisymmetric bilayer lipid membrane undergoing pearling instability, caused by uniform hydrostatic pressure difference. To do so, the recently suggested "surface integration approach" is used, which can be considered a generalization of the well known and widely used Derjaguin approximation. The static equilibrium shape after the occurrence of the instability is described in the framework of Helfrich's spontaneous curvature model. Some specific classes of exact analytical solutions to the corresponding shape equation are considered, and the components of the respective position vectors given in terms of elliptic integrals and Jacobi elliptic functions. The mutual orientation between the interacting objects is chosen such that the axis of revolution of the distorted cylinder be parallel to the plane bounding the substrate. Based on the discussed models and approaches we made some estimations for the studied force in real experimentally realizable systems, thus showing the possibility of pearling as an useful technique for reduction of the adhesion in variety of industrial processes using lipid membranes as carriers.

  15. Resonance dispersion interaction of alkali metal atoms in Rydberg states

    NASA Astrophysics Data System (ADS)

    Kamenski, A. A.; Mokhnenko, S. N.; Ovsyannikov, V. D.

    2017-06-01

    With the use of second-order perturbation theory in the long-range interatomic interaction for the degenerate states of two Rydberg atoms we have obtained a general formula for the dependence of atomic interaction energy on the interatomic distance R in the presence of the Förster resonance. Inside of the ‘Förster sphere’ (R < RF) this dependence transforms to the formula for electric dipole interaction energy ΔEd - d = C3/R3 and for R > RF it transforms to the formula for the van der Waals interaction energy ΔEVdW = -C6/R6. The van der Waals constant C6 is represented as an expansion in terms of irreducible components which define the dependence on the interatomic axis orientation relative to the quantisation axis of projections M of the total angular momentum J. The numerical values of the irreducible components of tensor C6 were calculated for rubidium atoms in the same Rydberg states |nlJM> with large quantum numbers n. We present the calculated resonance interaction energy of two rubidium atoms in the states |43D5/2M>, whose total energy exceeds by only 8 MHz the total energy of one of the atoms in the state |45P3/2M> and of the other in the state |41F7/2M>.

  16. How far could energy transport within a single crystal

    NASA Astrophysics Data System (ADS)

    Zhang, Yifan; Che, Yanke; Zhao, Jincai; Steve, Granick

    Efficient transport of excitation energy over long distance is a vital process in light-harvesting systems and molecular electronics. The energy transfer distance is largely restricted by the probability decay of the exciton when hopping within a single crystal. Here, we fabricated an organic single crystal within which the energy could transfer more than 100 μm, a distance only limited by its crystal size. Our system could be regarded as a ``Sprint relay game'' performing on different surface of tracks. Photoinduced ``athletes'' (excitons) triggered intermolecular ``domino'' reaction to propagate energy for a long distance. In addition, athletes with the same ability runs much farther on smooth ideal track (single crystal assembled from merely van der Waals interaction) than bumpy mud track (crystal assembled from combination of pi-stacking, hydrogen bond and van der Waals interactions). Our finding presents new physics on enhancing energy transfer length within a single crystal. Current Affiliation: Institute for Basic Science, South Korea.

  17. Asymmetric van der Waals Forces Drive Orientation of Compositionally Anisotropic Nanocylinders within Smectic Arrays: Experiment and Simulation

    PubMed Central

    Smith, Benjamin D.; Fichthorn, Kristen A.; Kirby, David J.; Quimby, Lisa M.; Triplett, Derek A.; González, Pedro; Hernández, Darimar; Keating, Christine D.

    2014-01-01

    Understanding how micro- and nanoparticles interact is important for achieving bottom-up assembly of desired structures. Here, we examine the self-assembly of two-component, compositionally asymmetric nanocylinders that sediment from solution onto a solid surface. These particles spontaneously formed smectic arrays. Within the rows of an array, nanocylinders tended to assemble such that neighboring particles had the same orientation of their segments. As a probe of interparticle interactions, we classified nanocylinder alignments by measuring the segment orientations of many sets of neighboring particles. Monte Carlo simulations incorporating an exact expression for the van der Waals (vdW) energy indicate that differences in the vdW interactions, even when small, are the key factor in producing observed segment alignment. These results point to asymmetrical vdW interactions as a potentially powerful means of controlling orientation in multicomponent cylinder arrays, and suggest that designing for these interactions could yield new ways to control self-assembly. PMID:24308771

  18. Strong van der Waals attractive forces in nanotechnology

    NASA Astrophysics Data System (ADS)

    Reimers, Jeffrey

    The Dobson classification scheme for failure of London-like expressions for describing dispersion is reviewed. New ways to measure using STM data and calculate by first principles free energies of organic self-assembly processes from solution will be discussed, considering tetraalkylporphyrins on graphite. How strong van der Waals forces can compete against covalent bonding to produce new molecular isomers and reaction pathways will also be demonstrated, focusing on golds-sulfur bonds for sensors and stabilizing nanoparticles.

  19. Potential Energy Curves and Transport Properties for the Interaction of He with Other Ground-state Atoms

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Stallcop, James R.; Levin, Eugene; Arnold, Jim (Technical Monitor)

    2001-01-01

    The interactions of a He atom with a heavier atom are examined for 26 different elements, which are consecutive members selected from three rows (Li - Ne, Na - Ar, and K,Ca, Ga - Kr) and column 12 (Zn,Cd) of the periodic table. Interaction energies are determined wing high-quality ab initio calculations for the states of the molecule that would be formed from each pair of atoms in their ground states. Potential energies are tabulated for a broad range of Interatomic separation distances. The results show, for example, that the energy of an alkali interaction at small separations is nearly the same as that of a rare-gas interaction with the same electron configuration for the dosed shells. Furthermore, the repulsive-range parameter for this region is very short compared to its length for the repulsion dominated by the alkali-valence electron at large separations (beyond about 3-4 a(sub 0)). The potential energies in the region of the van der Waals minimum agree well with the most accurate results available. The ab initio energies are applied to calculate scattering cross sections and obtain the collision integrals that are needed to determine transport properties to second order. The theoretical values of Li-He total scattering cross sections and the rare-gas atom-He transport properties agree well (to within about 1%) with the corresponding measured data. Effective potential energies are constructed from the ab initio energies; the results have been shown to reproduce known transport data and can be readily applied to predict unknown transport properties for like-atom interactions.

  20. The effects of van der Waals attractions on cloud droplet growth by coalescence

    NASA Technical Reports Server (NTRS)

    Rogers, Jan R.; Davis, Robert H.

    1990-01-01

    The inclusion of van der Waals attractions in the interaction between cloud droplets has been recently shown to significantly increase the collision efficiencies of the smaller droplets. In the current work, these larger values for the collision efficiencies are used in a population dynamics model of the droplet size distribution evolution with time, in hopes of at least partially resolving the long-standing paradox in cloud microphysics that predicted rates of the onset of precipitation are generally much lower than those which are observed. Evolutions of several initial cloud droplet spectra have been tracked in time. Size evolutions are compared as predicted from the use of collision efficiencies computed using two different models to allow for droplet-droplet contact: one which considers slip flow effects only, and one which considers the combined effects of van der Waals forces and slip flow. The rate at which the droplet mass density function shifts to larger droplet sizes is increased by typically 20-25 percent, when collision efficiencies which include van der Waals forces are used.

  1. Sculpting proteins interactively: continual energy minimization embedded in a graphical modeling system.

    PubMed

    Surles, M C; Richardson, J S; Richardson, D C; Brooks, F P

    1994-02-01

    We describe a new paradigm for modeling proteins in interactive computer graphics systems--continual maintenance of a physically valid representation, combined with direct user control and visualization. This is achieved by a fast algorithm for energy minimization, capable of real-time performance on all atoms of a small protein, plus graphically specified user tugs. The modeling system, called Sculpt, rigidly constrains bond lengths, bond angles, and planar groups (similar to existing interactive modeling programs), while it applies elastic restraints to minimize the potential energy due to torsions, hydrogen bonds, and van der Waals and electrostatic interactions (similar to existing batch minimization programs), and user-specified springs. The graphical interface can show bad and/or favorable contacts, and individual energy terms can be turned on or off to determine their effects and interactions. Sculpt finds a local minimum of the total energy that satisfies all the constraints using an augmented Lagrange-multiplier method; calculation time increases only linearly with the number of atoms because the matrix of constraint gradients is sparse and banded. On a 100-MHz MIPS R4000 processor (Silicon Graphics Indigo), Sculpt achieves 11 updates per second on a 20-residue fragment and 2 updates per second on an 80-residue protein, using all atoms except non-H-bonding hydrogens, and without electrostatic interactions. Applications of Sculpt are described: to reverse the direction of bundle packing in a designed 4-helix bundle protein, to fold up a 2-stranded beta-ribbon into an approximate beta-barrel, and to design the sequence and conformation of a 30-residue peptide that mimics one partner of a protein subunit interaction. Computer models that are both interactive and physically realistic (within the limitations of a given force field) have 2 significant advantages: (1) they make feasible the modeling of very large changes (such as needed for de novo design), and

  2. Efimov states near a Feshbach resonance and the limits of van der Waals universality at finite background scattering length

    NASA Astrophysics Data System (ADS)

    Langmack, Christian; Schmidt, Richard; Zwerger, Wilhelm

    2018-03-01

    We calculate the spectrum of three-body Efimov bound states near a Feshbach resonance within a model which accounts both for the finite range of interactions and the presence of background scattering. The latter may be due to direct interactions in an open channel or a second overlapping Feshbach resonance. It is found that background scattering gives rise to substantial changes in the trimer spectrum as a function of the detuning away from a Feshbach resonance, in particular in the regime where the background channel supports Efimov states on its own. Compared to the situation with negligible background scattering, the regime where van der Waals universality applies is shifted to larger values of the resonance strength if the background scattering length is positive. For negative background scattering lengths, in turn, van der Waals universality extends to even small values of the resonance strength parameter, consistent with experimental results on Efimov states in 39K. Within a simple model, we show that short-range three-body forces do not affect van der Waals universality significantly. Repulsive three-body forces may, however, explain the observed variation between around -8 and -10 of the ratio between the scattering length where the first Efimov trimer appears and the van der Waals length.

  3. Enhanced energy transport owing to nonlinear interface interaction

    PubMed Central

    Su, Ruixia; Yuan, Zongqiang; Wang, Jun; Zheng, Zhigang

    2016-01-01

    It is generally expected that the interface coupling leads to the suppression of thermal transport through coupled nanostructures due to the additional interface phonon-phonon scattering. However, recent experiments demonstrated that the interface van der Waals interactions can significantly enhance the thermal transfer of bonding boron nanoribbons compared to a single freestanding nanoribbon. To obtain a more in-depth understanding on the important role of the nonlinear interface coupling in the heat transports, in the present paper, we explore the effect of nonlinearity in the interface interaction on the phonon transport by studying the coupled one-dimensional (1D) Frenkel-Kontorova lattices. It is found that the thermal conductivity increases with increasing interface nonlinear intensity for weak inter-chain nonlinearity. By developing the effective phonon theory of coupled systems, we calculate the dependence of heat conductivity on interfacial nonlinearity in weak inter-chain couplings regime which is qualitatively in good agreement with the result obtained from molecular dynamics simulations. Moreover, we demonstrate that, with increasing interface nonlinear intensity, the system dimensionless nonlinearity strength is reduced, which in turn gives rise to the enhancement of thermal conductivity. Our results pave the way for manipulating the energy transport through coupled nanostructures for future emerging applications. PMID:26787363

  4. Interfacial Interactions in Monolayer and Few-Layer SnS/CH3 NH3 PbI3 Perovskite van der Waals Heterostructures and Their Effects on Electronic and Optical Properties.

    PubMed

    Li, Jian-Cai; Wei, Zeng-Xi; Huang, Wei-Qing; Ma, Li-Li; Hu, Wangyu; Peng, Ping; Huang, Gui-Fang

    2018-02-05

    A high light-absorption coefficient and long-range hot-carrier transport of hybrid organic-inorganic perovskites give huge potential to their composites in solar energy conversion and environmental protection. Understanding interfacial interactions and their effects are paramount for designing perovskite-based heterostructures with desirable properties. Herein, we systematically investigated the interfacial interactions in monolayer and few-layer SnS/CH 3 NH 3 PbI 3 heterostructures and their effects on the electronic and optical properties of these structures by density functional theory. It was found that the interfacial interactions in SnS/CH 3 NH 3 PbI 3 heterostructures were van der Waals (vdW) interactions, and they were found to be insensitive to the layer number of 2D SnS sheets. Interestingly, although their band gap decreased upon increasing the layer number of SnS, the near-gap electronic states and optical absorption spectra of these heterostructures were found to be strikingly similar. This feature was determined to be critical for the design of 2D layered SnS-based heterostructures. Strong absorption in the ultraviolet and visible-light regions, type II staggered band alignment at the interface, and few-layer SnS as an active co-catalyst make 2D SnS/CH 3 NH 3 PbI 3 heterostructures promising candidates for photocatalysis, photodetectors, and solar energy harvesting and conversion. These results provide first insight into the nature of interfacial interactions and are useful for designing hybrid organic-inorganic perovskite-based devices with novel properties. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. van der Waals three-body force shell model (VTSM) for the lattice dynamical studies of thallous bromide

    NASA Astrophysics Data System (ADS)

    Tiwari, Sarvesh K.; Pandey, L. K.; Shukla, Lal Ji; Upadhyaya, K. S.

    2009-12-01

    The van der Waals three-body force shell model (VTSM) has been developed by modifying the three-body force shell model (TSM) for the lattice dynamics of ionic crystals with cesium chloride (CsCl) structure. This new model incorporates van der Waals interactions along with long-range Coulomb interactions, three-body interactions and short-range second neighbour interactions in the framework of a rigid shell model (RSM). In the present paper, VTSM has been used to study the lattice dynamics of thallous bromide (TlBr), from which adequacy of VTSM has been established. A comparative study of the dynamical behaviour of TlBr has also been done between the present model and TSM, the model over which modification has been made to obtain the present model VTSM. Good agreement has been observed between the theoretical and experimental results, which give confidence that it is an appropriate model for the complete description of ionic crystals with CsCl structure.

  6. Ab-initio study of structural and electronic properties of WS2/h-BN van der Waals heterostructure

    NASA Astrophysics Data System (ADS)

    Ghasemi majd, Zahra; Amiri, Peiman; Taghizadeh, Seyed Fardin

    2018-06-01

    First-principle calculations with different exchange-correlation functionals, including LDA, GGA, semi-empirical and ab-initio van der Waals in the forms of vdW-DF2B86R and vdW-DF2 were performed to evaluate the performance of different functionals in describing the bonding mechanism, adsorption energy and interlayer distance of WS2 monolayer on and between h-BN layers. The finding was that the vdW-DF2B86R seems to be the approach best lending itself to this purpose. In order to include the van der Waals (vdW) interactions in our calculations, we used the DFT-D2 and vdW methods, which gave rise to a physical adsorption with no net charge transfer between the WS2 layer and the corresponding substrates. In addition, we investigated the electronic and structural properties of WS2 and h-BN heterolayers, using vdW-DF2B86R functional. Based on density functional theory calculations, WS2 on and between h-BN layers showed a direct band gap at the K-point, which was experimentally observed.

  7. van der Waals interactions are critical in Car-Parrinello molecular dynamics simulations of porphyrin-fullerene dyads.

    PubMed

    Karilainen, Topi; Cramariuc, Oana; Kuisma, Mikael; Tappura, Kirsi; Hukka, Terttu I

    2015-04-05

    The interplay between electrostatic and van der Waals (vdW) interactions in porphyrin-C60 dyads is still under debate despite its importance in influencing the structural characteristics of such complexes considered for various applications in molecular photovoltaics. In this article, we sample the conformational space of a porphyrin-C60 dyad using Car-Parrinello molecular dynamics simulations with and without empirical vdW corrections. Long-range vdW interactions, which are poorly described by the commonly used density functional theory functionals, prove to be essential for a proper dynamics of the dyad moieties. Inclusion of vdW corrections brings porphyrin and C60 close together in an orientation that is in agreement with experimental observations. The structural differences arising from the vdW corrections are shown to be significant for several properties and potentially less important for others. Additionally, our Mulliken population analysis reveals that contrary to the common belief, porphyrin is not the primary electron donating moiety for C60 . In the considered dyad, fullerene's affinity for electrons is primarily satisfied by charge transfer from the amide group of the linker. However, we show that in the absence of another suitable bound donor, C60 can withdraw electrons from porphyrin if it is sufficiently close. © 2015 Wiley Periodicals, Inc.

  8. Calculations of predissociative lifetimes of RG...Hal2 Van der Waals complexes

    NASA Astrophysics Data System (ADS)

    Buchachenko, Alexei A.; Stepanov, N. F.

    1992-07-01

    Good examples of combined energy- and time-resolved techniques linked by the theoretical solution of a nuclear problem may be found in investigations of the dynamics of weakly bound Van der Waals (VdW) complexes, such as Ar-OH and He-stilbene. Our report concerns only the theoretical aspect of this complex approach. However, we shall stress the importance of energy-resolved spectroscopy for the dynamics and try to illustrate this with some numerical results.

  9. Importance of van der Waals interaction on structural, vibrational, and thermodynamic properties of NaCl

    NASA Astrophysics Data System (ADS)

    Marcondes, Michel L.; Wentzcovitch, Renata M.; Assali, Lucy V. C.

    2018-05-01

    Thermal equations of state (EOS) are essential in several scientific domains. However, experimental determination of EOS parameters may be limited at extreme conditions, therefore, ab initio calculations have become an important method to obtain them. Density functional theory (DFT) and its extensions with various degrees of approximations for the exchange and correlation (XC) energy is the method of choice, but large errors in the EOS parameters are still common. The alkali halides have been problematic from the onset of this field and the quest for appropriate DFT functionals for such ionic and relatively weakly bonded systems has remained an active topic of research. Here we use DFT + van der Waals functionals to calculate vibrational properties, thermal EOS, thermodynamic properties, and the B1 to B2 phase boundary of NaCl with high precision. Our results reveal a remarkable improvement over the performance of standard local density approximation and generalized gradient approximation functionals for all these properties and phase transition boundary, as well as great sensitivity of anharmonic effects on the choice of XC functional.

  10. Control of valence and conduction band energies in layered transition metal phosphates via surface functionalization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lentz, Levi C.; Kolb, Brian; Kolpak, Alexie M.

    Layered transition metal phosphates and phosphites (TMPs) are a class of 2D materials bound togetherviavan der Waals interactions. Through simple functionalization, band energies can be systematically controlled.

  11. Dipole-dipole interaction in cavity QED: The weak-coupling, nondegenerate regime

    NASA Astrophysics Data System (ADS)

    Donaire, M.; Muñoz-Castañeda, J. M.; Nieto, L. M.

    2017-10-01

    We compute the energies of the interaction between two atoms placed in the middle of a perfectly reflecting planar cavity, in the weak-coupling nondegenerate regime. Both inhibition and enhancement of the interactions can be obtained by varying the size of the cavity. We derive exact expressions for the dyadic Green's function of the cavity field which mediates the interactions and apply time-dependent quantum perturbation theory in the adiabatic approximation. We provide explicit expressions for the van der Waals potentials of two polarizable atomic dipoles and the electrostatic potential of two induced dipoles. We compute the van der Waals potentials in three different scenarios: two atoms in their ground states, two atoms excited, and two dissimilar atoms with one of them excited. In addition, we calculate the phase-shift rate of the two-atom wave function in each case. The effect of the two-dimensional confinement of the electromagnetic field on the dipole-dipole interactions is analyzed. This effect depends on the atomic polarization. For dipole moments oriented parallel to the cavity plates, both the electrostatic and the van der Waals interactions are exponentially suppressed for values of the cavity width much less than the interatomic distance, whereas for values of the width close to the interatomic distance, the strength of both interactions is higher than their values in the absence of cavity. For dipole moments perpendicular to the plates, the strength of the van der Waals interaction decreases for values of the cavity width close to the interatomic distance, while it increases for values of the width much less than the interatomic distance with respect to its strength in the absence of cavity. We illustrate these effects by computing the dipole-dipole interactions between two alkali atoms in circular Rydberg states.

  12. A review on data and predictions of water dielectric spectra for calculations of van der Waals surface forces.

    PubMed

    Wang, Jianlong; Nguyen, Anh V

    2017-12-01

    Van der Waals forces are one of the important components of intermolecular, colloidal and surface forces governing many phenomena and processes. The latest examples include the colloidal interactions between hydrophobic colloids and interfaces in ambient (non-degassed) water in which dissolved gases and nanobubbles are shown to affect the van der Waals attractions significantly. The advanced computation of van der Waals forces in aqueous systems by the Lifshitz theory requires reliable data for water dielectric spectra. In this paper we review the available predictions of water dielectric spectra for calculating colloidal and surface van der Waals forces. Specifically, the available experimental data for the real and imaginary parts of the complex dielectric function of liquid water in the microwave, IR and UV regions and various corresponding predictions of the water spectra are critically reviewed. The data in the UV region are critical, but the available predictions are still based on the outdated data obtained in 1974 (for frequency only up to 25.5eV). We also reviewed and analysed the experimental data obtained for the UV region in 2000 (for frequency up to 50eV) and 2015 (for frequency up to 100eV). The 1974 and 2000 data require extrapolations to higher frequencies needed for calculating the van der Waals forces but remain inaccurate. Our analysis shows that the latest data of 2015 do not require the extrapolation and can be used to reliably calculate van der Waals forces. The most recent water dielectric spectra gives the (non-retarded) Hamaker constant, A=5.20×10 -20 J, for foam films of liquid water. This review provides the most updated and reliable water dielectric spectra to compute van der Waals forces in aqueous systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Long-Range Repulsion Between Spatially Confined van der Waals Dimers

    NASA Astrophysics Data System (ADS)

    Sadhukhan, Mainak; Tkatchenko, Alexandre

    2017-05-01

    It is an undisputed textbook fact that nonretarded van der Waals (vdW) interactions between isotropic dimers are attractive, regardless of the polarizability of the interacting systems or spatial dimensionality. The universality of vdW attraction is attributed to the dipolar coupling between fluctuating electron charge densities. Here, we demonstrate that the long-range interaction between spatially confined vdW dimers becomes repulsive when accounting for the full Coulomb interaction between charge fluctuations. Our analytic results are obtained by using the Coulomb potential as a perturbation over dipole-correlated states for two quantum harmonic oscillators embedded in spaces with reduced dimensionality; however, the long-range repulsion is expected to be a general phenomenon for spatially confined quantum systems. We suggest optical experiments to test our predictions, analyze their relevance in the context of intermolecular interactions in nanoscale environments, and rationalize the recent observation of anomalously strong screening of the lateral vdW interactions between aromatic hydrocarbons adsorbed on metal surfaces.

  14. Interlayer interactions in graphites.

    PubMed

    Chen, Xiaobin; Tian, Fuyang; Persson, Clas; Duan, Wenhui; Chen, Nan-xian

    2013-11-06

    Based on ab initio calculations of both the ABC- and AB-stacked graphites, interlayer potentials (i.e., graphene-graphene interaction) are obtained as a function of the interlayer spacing using a modified Möbius inversion method, and are used to calculate basic physical properties of graphite. Excellent consistency is observed between the calculated and experimental phonon dispersions of AB-stacked graphite, showing the validity of the interlayer potentials. More importantly, layer-related properties for nonideal structures (e.g., the exfoliation energy, cleave energy, stacking fault energy, surface energy, etc.) can be easily predicted from the interlayer potentials, which promise to be extremely efficient and helpful in studying van der Waals structures.

  15. Optimizing energy functions for protein-protein interface design.

    PubMed

    Sharabi, Oz; Yanover, Chen; Dekel, Ayelet; Shifman, Julia M

    2011-01-15

    Protein design methods have been originally developed for the design of monomeric proteins. When applied to the more challenging task of protein–protein complex design, these methods yield suboptimal results. In particular, they often fail to recapitulate favorable hydrogen bonds and electrostatic interactions across the interface. In this work, we aim to improve the energy function of the protein design program ORBIT to better account for binding interactions between proteins. By using the advanced machine learning framework of conditional random fields, we optimize the relative importance of all the terms in the energy function, attempting to reproduce the native side-chain conformations in protein–protein interfaces. We evaluate the performance of several optimized energy functions, each describes the van der Waals interactions using a different potential. In comparison with the original energy function, our best energy function (a) incorporates a much “softer” repulsive van der Waals potential, suitable for the discrete rotameric representation of amino acid side chains; (b) does not penalize burial of polar atoms, reflecting the frequent occurrence of polar buried residues in protein–protein interfaces; and (c) significantly up-weights the electrostatic term, attesting to the high importance of these interactions for protein–protein complex formation. Using this energy function considerably improves side chain placement accuracy for interface residues in a large test set of protein–protein complexes. Moreover, the optimized energy function recovers the native sequences of protein–protein interface at a higher rate than the default function and performs substantially better in predicting changes in free energy of binding due to mutations.

  16. Adsorption of benzene on low index surfaces of platinum in the presence of van der Waals interactions

    NASA Astrophysics Data System (ADS)

    K, Ayishabi P.; Chatanathodi, Raghu

    2017-10-01

    We have studied the adsorption of benzene on three low index surfaces of platinum using plane-wave Density Functional Theory (DFT) calculations, taking into consideration van der Waals (vdW) interaction. Experimentally, it is known that benzene adsorbs at the bridge site on the (111) surface, but in case of (110) and (100), this is not known yet. Our calculations show that benzene preferably adsorbs on bridge position on Pt(111) surface, whereas on Pt(110) and Pt(100) surfaces, the hollow position is energetically more favoured. The structural and electronic modifications of molecule and the surfaces are also examined. In all cases, adsorption-induced distortions of adsorbate-substrate complex are found to be modest in character, but relatively maximum in case of the (110) facet. The molecule is bound most strongly to the (110) surface. Importantly, we find that adsorption at bridge and atop positions are energetically feasible on the (110) surface, with the canting of benzene ring at a small angle from the metal plane. We study changes in electronic structure and the net charge transfer upon adsorption of benzene on all three low index planes. Inclusion of vdW interactions is important for obtaining realistic adsorption strengths for benzene on various Pt facets.

  17. Br...Br and van der Waals interactions along a homologous series: crystal packing of 1,2-dibromo-4,5-dialkoxybenzenes.

    PubMed

    Suarez, Sebastián A; Muller, Federico; Gutiérrez Suburu, Matías E; Fonrouge, Ana; Baggio, Ricardo F; Cukiernik, Fabio D

    2016-10-01

    The crystalline structures of four homologues of the 1,2-dibromo-4,5-dialkoxybenzene series [Br 2 C 6 H 2 (OC n H 2n + 1 ) 2 for n = 2, 12, 14 and 18] have been solved by means of single-crystal crystallography. Comparison along the series, including the previously reported n = 10 and n = 16 derivatives, shows a clear metric trend (b and c essentially fixed along the series and a growing linearly with n), in spite of some subtle differences in space groups and/or packing modes. A uniform packing pattern for the aliphatic chains has been found for the n = 12 to 18 homologues, which slightly differs from that of the n = 10 derivative. The crystalline structures of all the higher homologues (n = 10-18) seem to arise from van der Waals interchain interactions and, to a lesser extent, type II Br...Br interactions. The dominant role of interchain interactions provides direct structural support for the usual interpretation of melting point trends like that found along this series. Atoms in Molecules (AIM) analysis allows a comparison of the relative magnitude of the interchain and Br...Br interactions, an analysis validated by the measured melting enthalpies.

  18. van der Waals torque

    NASA Astrophysics Data System (ADS)

    Esquivel-Sirvent, Raul; Schatz, George

    2014-03-01

    The theory of generalized van der Waals forces by Lifshtz when applied to optically anisotropic media predicts the existence of a torque. In this work we present a theoretical calculation of the van der Waals torque for two systems. First we consider two isotropic parallel plates where the anisotropy is induced using an external magnetic field. The anisotropy will in turn induce a torque. As a case study we consider III-IV semiconductors such as InSb that can support magneto plasmons. The calculations of the torque are done in the Voigt configuration, that occurs when the magnetic field is parallel to the surface of the slabs. The change in the dielectric function as the magnetic field increases has the effect of decreasing the van der Waals force and increasing the torque. Thus, the external magnetic field is used to tune both the force and torque. The second example we present is the use of the torque in the non retarded regime to align arrays of nano particle slabs. The torque is calculated within Barash and Ginzburg formalism in the nonretarded limit, and is quantified by the introduction of a Hamaker torque constant. Calculations are conducted between anisotropic slabs of materials including BaTiO3 and arrays of Ag nano particles. Depending on the shape and arrangement of the Ag nano particles the effective dielectric function of the array can be tuned as to make it more or less anisotropic. We show how this torque can be used in self assembly of arrays of nano particles. ref. R. Esquivel-Sirvent, G. C. Schatz, Phys. Chem C, 117, 5492 (2013). partial support from DGAPA-UNAM.

  19. Modified Van der Waals equation and law of corresponding states

    NASA Astrophysics Data System (ADS)

    Zhong, Wei; Xiao, Changming; Zhu, Yongkai

    2017-04-01

    It is well known that the Van der Waals equation is a modification of the ideal gas law, yet it can be used to describe both gas and liquid, and some important messages can be obtained from this state equation. However, the Van der Waals equation is not a precise state equation, and it does not give a good description of the law of corresponding states. In this paper, we expand the Van der Waals equation into its Taylor's series form, and then modify the fourth order expansion by changing the constant Virial coefficients into their analogous ones. Via this way, a more precise result about the law of corresponding states has been obtained, and the law of corresponding states can then be expressed as: in terms of the reduced variables, all fluids should obey the same equation with the analogous Virial coefficients. In addition, the system of 3 He with quantum effects has also been taken into consideration with our modified Van der Waals equation, and it is found that, for a normal system without quantum effect, the modification on ideal gas law from the Van der Waals equation is more significant than the real case, however, for a system with quantum effect, this modification is less significant than the real case, thus a factor is introduced in this paper to weaken or strengthen the modification of the Van der Waals equation, respectively.

  20. Quantifying intermolecular interactions of ionic liquids using cohesive energy densities.

    PubMed

    Lovelock, Kevin R J

    2017-12-01

    For ionic liquids (ILs), both the large number of possible cation + anion combinations and their ionic nature provide a unique challenge for understanding intermolecular interactions. Cohesive energy density, ced , is used to quantify the strength of intermolecular interactions for molecular liquids, and is determined using the enthalpy of vaporization. A critical analysis of the experimental challenges and data to obtain ced for ILs is provided. For ILs there are two methods to judge the strength of intermolecular interactions, due to the presence of multiple constituents in the vapour phase of ILs. Firstly, ced IP , where the ionic vapour constituent is neutral ion pairs, the major constituent of the IL vapour. Secondly, ced C+A , where the ionic vapour constituents are isolated ions. A ced IP dataset is presented for 64 ILs. For the first time an experimental ced C+A , a measure of the strength of the total intermolecular interaction for an IL, is presented. ced C+A is significantly larger for ILs than ced for most molecular liquids, reflecting the need to break all of the relatively strong electrostatic interactions present in ILs. However, the van der Waals interactions contribute significantly to IL volatility due to the very strong electrostatic interaction in the neutral ion pair ionic vapour. An excellent linear correlation is found between ced IP and the inverse of the molecular volume. A good linear correlation is found between IL ced IP and IL Gordon parameter (which are dependent primarily on surface tension). ced values obtained through indirect methods gave similar magnitude values to ced IP . These findings show that ced IP is very important for understanding IL intermolecular interactions, in spite of ced IP not being a measure of the total intermolecular interactions of an IL. In the outlook section, remaining challenges for understanding IL intermolecular interactions are outlined.

  1. Quantifying intermolecular interactions of ionic liquids using cohesive energy densities

    PubMed Central

    2017-01-01

    For ionic liquids (ILs), both the large number of possible cation + anion combinations and their ionic nature provide a unique challenge for understanding intermolecular interactions. Cohesive energy density, ced, is used to quantify the strength of intermolecular interactions for molecular liquids, and is determined using the enthalpy of vaporization. A critical analysis of the experimental challenges and data to obtain ced for ILs is provided. For ILs there are two methods to judge the strength of intermolecular interactions, due to the presence of multiple constituents in the vapour phase of ILs. Firstly, cedIP, where the ionic vapour constituent is neutral ion pairs, the major constituent of the IL vapour. Secondly, cedC+A, where the ionic vapour constituents are isolated ions. A cedIP dataset is presented for 64 ILs. For the first time an experimental cedC+A, a measure of the strength of the total intermolecular interaction for an IL, is presented. cedC+A is significantly larger for ILs than ced for most molecular liquids, reflecting the need to break all of the relatively strong electrostatic interactions present in ILs. However, the van der Waals interactions contribute significantly to IL volatility due to the very strong electrostatic interaction in the neutral ion pair ionic vapour. An excellent linear correlation is found between cedIP and the inverse of the molecular volume. A good linear correlation is found between IL cedIP and IL Gordon parameter (which are dependent primarily on surface tension). ced values obtained through indirect methods gave similar magnitude values to cedIP. These findings show that cedIP is very important for understanding IL intermolecular interactions, in spite of cedIP not being a measure of the total intermolecular interactions of an IL. In the outlook section, remaining challenges for understanding IL intermolecular interactions are outlined. PMID:29308254

  2. Quantum Monte Carlo Simulation of condensed van der Waals Systems

    NASA Astrophysics Data System (ADS)

    Benali, Anouar; Shulenburger, Luke; Romero, Nichols A.; Kim, Jeongnim; Anatole von Lilienfeld, O.

    2012-02-01

    Van der Waals forces are as ubiquitous as infamous. While post-Hartree-Fock methods enable accurate estimates of these forces in molecules and clusters, they remain elusive for dealing with many-electron condensed phase systems. We present Quantum Monte Carlo [1,2] results for condensed van der Waals systems. Interatomic many-body contributions to cohesive energies and bulk modulus will be discussed. Numerical evidence is presented for crystals of rare gas atoms, and compared to experiments and methods [3]. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DoE's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.[4pt] [1] J. Kim, K. Esler, J. McMinis and D. Ceperley, SciDAC 2010, J. of Physics: Conference series, Chattanooga, Tennessee, July 11 2011 [0pt] [2] QMCPACK simulation suite, http://qmcpack.cmscc.org (unpublished)[0pt] [3] O. A. von Lillienfeld and A. Tkatchenko, J. Chem. Phys. 132 234109 (2010)

  3. High-Performance Solid-State Thermionic Energy Conversion Based on 2D van der Waals Heterostructures: A First-Principles Study.

    PubMed

    Wang, Xiaoming; Zebarjadi, Mona; Esfarjani, Keivan

    2018-06-18

    Two-dimensional (2D) van der Waals heterostructures (vdWHs) have shown multiple functionalities with great potential in electronics and photovoltaics. Here, we show their potential for solid-state thermionic energy conversion and demonstrate a designing strategy towards high-performance devices. We propose two promising thermionic devices, namely, the p-type Pt-G-WSe 2 -G-Pt and n-type Sc-WSe 2 -MoSe 2 -WSe 2 -Sc. We characterize the thermionic energy conversion performance of the latter using first-principles GW calculations combined with real space Green's function (GF) formalism. The optimal barrier height and high thermal resistance lead to an excellent performance. The proposed device is found to have a room temperature equivalent figure of merit of 1.2 which increases to 3 above 600 K. A high performance with cooling efficiency over 30% of the Carnot efficiency above 450 K is achieved. Our designing and characterization method can be used to pursue other potential thermionic devices based on vdWHs.

  4. Interface thermal conductance of van der Waals monolayers on amorphous substrates

    NASA Astrophysics Data System (ADS)

    Correa, Gabriela C.; Foss, Cameron J.; Aksamija, Zlatan

    2017-03-01

    Heterostructures based on atomic monolayers are emerging as leading materials for future energy efficient and multifunctional electronics. Due to the single atom thickness of monolayers, their properties are strongly affected by interactions with the external environment. We develop a model for interface thermal conductance (ITC) in an atomic monolayer van der Waals bonded to a disordered substrate. Graphene on SiO2 is initially used in our model and contrasted against available experimental data; the model is then applied to monolayer molybdenum disulfide (MoS2) on SiO2 substrate. Our findings show the dominant carrier of heat in both graphene and MoS2 in the cross-plane direction is the flexural (ZA) phonon mode, owing to the large overlap between graphene ZA and substrate vibrational density of states. The rate of phonon transfer across the interface depends quadratically on the substrate coupling constant K a , but this interaction also causes a lifting of the lowest flexural phonon modes. As a result, ITC depends roughly linearly on the strength of the coupling between a monolayer and its substrate. We conclude that, in both graphene and MoS2 on SiO2, substrate adhesion plays a strong role in determining ITC, requiring further study of substrate coupling in TMDCs.

  5. Atomic layer MoS2-graphene van der Waals heterostructure nanomechanical resonators.

    PubMed

    Ye, Fan; Lee, Jaesung; Feng, Philip X-L

    2017-11-30

    Heterostructures play significant roles in modern semiconductor devices and micro/nanosystems in a plethora of applications in electronics, optoelectronics, and transducers. While state-of-the-art heterostructures often involve stacks of crystalline epi-layers each down to a few nanometers thick, the intriguing limit would be hetero-atomic-layer structures. Here we report the first experimental demonstration of freestanding van der Waals heterostructures and their functional nanomechanical devices. By stacking single-layer (1L) MoS 2 on top of suspended single-, bi-, tri- and four-layer (1L to 4L) graphene sheets, we realize an array of MoS 2 -graphene heterostructures with varying thickness and size. These heterostructures all exhibit robust nanomechanical resonances in the very high frequency (VHF) band (up to ∼100 MHz). We observe that fundamental-mode resonance frequencies of the heterostructure devices fall between the values of graphene and MoS 2 devices. Quality (Q) factors of heterostructure resonators are lower than those of graphene but comparable to those of MoS 2 devices, suggesting interface damping related to interlayer interactions in the van der Waals heterostructures. This study validates suspended atomic layer heterostructures as an effective device platform and provides opportunities for exploiting mechanically coupled effects and interlayer interactions in such devices.

  6. Temperature-Dependent and Gate-Tunable Rectification in a Black Phosphorus/WS2 van der Waals Heterojunction Diode.

    PubMed

    Dastgeer, Ghulam; Khan, Muhammad Farooq; Nazir, Ghazanfar; Afzal, Amir Muhammad; Aftab, Sikandar; Naqvi, Bilal Abbas; Cha, Janghwan; Min, Kyung-Ah; Jamil, Yasir; Jung, Jongwan; Hong, Suklyun; Eom, Jonghwa

    2018-04-18

    Heterostructures comprising two-dimensional (2D) semiconductors fabricated by individual stacking exhibit interesting characteristics owing to their 2D nature and atomically sharp interface. As an emerging 2D material, black phosphorus (BP) nanosheets have drawn much attention because of their small band gap semiconductor characteristics along with high mobility. Stacking structures composed of p-type BP and n-type transition metal dichalcogenides can produce an atomically sharp interface with van der Waals interaction which leads to p-n diode functionality. In this study, for the first time, we fabricated a heterojunction p-n diode composed of BP and WS 2 . The rectification effects are examined for monolayer, bilayer, trilayer, and multilayer WS 2 flakes in our BP/WS 2 van der Waals heterojunction diodes and also verified by density function theory calculations. We report superior functionalities as compared to other van der Waals heterojunction, such as efficient gate-dependent static rectification of 2.6 × 10 4 , temperature dependence, thickness dependence of rectification, and ideality factor of the device. The temperature dependence of Zener breakdown voltage and avalanche breakdown voltage were analyzed in the same device. Additionally, superior optoelectronic characteristics such as photoresponsivity of 500 mA/W and external quantum efficiency of 103% are achieved in the BP/WS 2 van der Waals p-n diode, which is unprecedented for BP/transition metal dichalcogenides heterostructures. The BP/WS 2 van der Waals p-n diodes have a profound potential to fabricate rectifiers, solar cells, and photovoltaic diodes in 2D semiconductor electronics and optoelectronics.

  7. Out-of-plane heat transfer in van der Waals stacks through electron-hyperbolic phonon coupling

    NASA Astrophysics Data System (ADS)

    Tielrooij, Klaas-Jan; Hesp, Niels C. H.; Principi, Alessandro; Lundeberg, Mark B.; Pogna, Eva A. A.; Banszerus, Luca; Mics, Zoltán; Massicotte, Mathieu; Schmidt, Peter; Davydovskaya, Diana; Purdie, David G.; Goykhman, Ilya; Soavi, Giancarlo; Lombardo, Antonio; Watanabe, Kenji; Taniguchi, Takashi; Bonn, Mischa; Turchinovich, Dmitry; Stampfer, Christoph; Ferrari, Andrea C.; Cerullo, Giulio; Polini, Marco; Koppens, Frank H. L.

    2018-01-01

    Van der Waals heterostructures have emerged as promising building blocks that offer access to new physics, novel device functionalities and superior electrical and optoelectronic properties1-7. Applications such as thermal management, photodetection, light emission, data communication, high-speed electronics and light harvesting8-16 require a thorough understanding of (nanoscale) heat flow. Here, using time-resolved photocurrent measurements, we identify an efficient out-of-plane energy transfer channel, where charge carriers in graphene couple to hyperbolic phonon polaritons17-19 in the encapsulating layered material. This hyperbolic cooling is particularly efficient, giving picosecond cooling times for hexagonal BN, where the high-momentum hyperbolic phonon polaritons enable efficient near-field energy transfer. We study this heat transfer mechanism using distinct control knobs to vary carrier density and lattice temperature, and find excellent agreement with theory without any adjustable parameters. These insights may lead to the ability to control heat flow in van der Waals heterostructures.

  8. Hybrid, Gate-Tunable, van der Waals p–n Heterojunctions from Pentacene and MoS 2

    DOE PAGES

    Jariwala, Deep; Howell, Sarah L.; Chen, Kan-Sheng; ...

    2015-12-18

    The recent emergence of a wide variety of two-dimensional (2D) materials has created new opportunities for device concepts and applications. In particular, the availability of semiconducting transition metal dichalcogenides, in addition to semimetallic graphene and insulating boron nitride, has enabled the fabrication of “all 2D” van der Waals heterostructure devices. Furthermore, the concept of van der Waals heterostructures has the potential to be significantly broadened beyond layered solids. For example, molecular and polymeric organic solids, whose surface atoms possess saturated bonds, are also known to interact via van der Waals forces and thus offer an alternative for scalable integration withmore » 2D materials. Here, we demonstrate the integration of an organic small molecule p-type semiconductor, pentacene, with a 2D n-type semiconductor, MoS2. The resulting p–n heterojunction is gate-tunable and shows asymmetric control over the antiambipolar transfer characteristic. In addition, the pentacene/MoS2 heterojunction exhibits a photovoltaic effect attributable to type II band alignment, which suggests that MoS2 can function as an acceptor in hybrid solar cells.« less

  9. Hybrid, Gate-Tunable, van der Waals p–n Heterojunctions from Pentacene and MoS 2

    DOE PAGES

    Jariwala, Deep; Howell, Sarah L.; Chen, Kan -Sheng; ...

    2015-12-10

    Here, the recent emergence of a wide variety of two-dimensional (2D) materials has created new opportunities for device concepts and applications. In particular, the availability of semiconducting transition metal dichalcogenides, in addition to semimetallic graphene and insulating boron nitride, has enabled the fabrication of “all 2D” van der Waals heterostructure devices. Furthermore, the concept of van der Waals heterostructures has the potential to be significantly broadened beyond layered solids. For example, molecular and polymeric organic solids, whose surface atoms possess saturated bonds, are also known to interact via van der Waals forces and thus offer an alternative for scalable integrationmore » with 2D materials. Here, we demonstrate the integration of an organic small molecule p-type semiconductor, pentacene, with a 2D n-type semiconductor, MoS 2. The resulting p–n heterojunction is gate-tunable and shows asymmetric control over the antiambipolar transfer characteristic. In addition, the pentacene/MoS 2 heterojunction exhibits a photovoltaic effect attributable to type II band alignment, which suggests that MoS 2 can function as an acceptor in hybrid solar cells.« less

  10. Hybrid, Gate-Tunable, van der Waals p–n Heterojunctions from Pentacene and MoS 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jariwala, Deep; Howell, Sarah L.; Chen, Kan -Sheng

    Here, the recent emergence of a wide variety of two-dimensional (2D) materials has created new opportunities for device concepts and applications. In particular, the availability of semiconducting transition metal dichalcogenides, in addition to semimetallic graphene and insulating boron nitride, has enabled the fabrication of “all 2D” van der Waals heterostructure devices. Furthermore, the concept of van der Waals heterostructures has the potential to be significantly broadened beyond layered solids. For example, molecular and polymeric organic solids, whose surface atoms possess saturated bonds, are also known to interact via van der Waals forces and thus offer an alternative for scalable integrationmore » with 2D materials. Here, we demonstrate the integration of an organic small molecule p-type semiconductor, pentacene, with a 2D n-type semiconductor, MoS 2. The resulting p–n heterojunction is gate-tunable and shows asymmetric control over the antiambipolar transfer characteristic. In addition, the pentacene/MoS 2 heterojunction exhibits a photovoltaic effect attributable to type II band alignment, which suggests that MoS 2 can function as an acceptor in hybrid solar cells.« less

  11. Communication: THz absorption spectrum of the CO2-H2O complex: observation and assignment of intermolecular van der Waals vibrations.

    PubMed

    Andersen, J; Heimdal, J; Mahler, D W; Nelander, B; Larsen, R Wugt

    2014-03-07

    Terahertz absorption spectra have been recorded for the weakly bound CO2-H2O complex embedded in cryogenic neon matrices at 2.8 K. The three high-frequency van der Waals vibrational transitions associated with out-of-plane wagging, in-plane rocking, and torsional motion of the isotopic H2O subunit have been assigned and provide crucial observables for benchmark theoretical descriptions of this systems' flat intermolecular potential energy surface. A (semi)-empirical value for the zero-point energy of 273 ± 15 cm(-1) from the class of intermolecular van der Waals vibrations is proposed and the combination with high-level quantum chemical calculations provides a value of 726 ± 15 cm(-1) for the dissociation energy D0.

  12. Binding mechanisms of DNA/RNA nucleobases adsorbed on graphene under charging: first-principles van der Waals study

    NASA Astrophysics Data System (ADS)

    Gürel, Hikmet Hakan; Salmankurt, Bahadır

    2017-06-01

    Graphene is a 2D material that has attracted much attention due to its outstanding properties. Because of its high surface area and unique chemical and physical properties, graphene is a good candidate for biological applications. For this reason, a deep understanding of the mechanism of interaction of graphene with biomolecules is required. In this study, theoretical investigation of van der Waals effects has been conducted using density functional theory. Here we show that the order of the binding energies of five nucleobases with graphene is G  >  A  >  T  >  C  >   U. This trend is in good agreement with most of the theoretical and experimental data. Also, the effects of charging on the electronic and structural properties of the graphene-nucleubase systems are studied for the first time. We show that the binding energy can be changed by adding or removing an electron from the system. The results presented in this work provide fundamental insights into the quantum interactions of DNA with carbon-based nanostructures and will be useful for developments in biotechnology and nanotechnology.

  13. Muonium formation at keV energies

    NASA Astrophysics Data System (ADS)

    Prokscha, T.; Morenzoni, E.; Garifianov, N.; Glückler, H.; Khasanov, R.; Luetkens, H.; Suter, A.

    2003-02-01

    Charge differentiation in μ + or muonium (Mu) as a consequence of the slowing down of μ + in matter is of fundamental interest in the μSR method. It is also of relevance for understanding the moderation process of μ + in van der Waals solids like s-Ne, s-Ar or s-N 2, which are the most suitable materials to generate epithermal μ + serving as a source for low-energy μ + (LE-μ +) beams. The LE-μ + beam at the Paul Scherrer Institut (PSI) allows us to study the formation of Mu at low implantation energies (0.5- 30 keV) in insulators and semiconductors. These investigations may help to clarify the interaction between the μ + and the electrons of its ionisation track since the number of track electrons can be tuned by varying the implantation energy. We present the first results of LE-μSR investigations on thin van der Waals solids (s-Ar, s-Xe), fused quartz ( SUPRASIL) and a quartz crystal, where the μ + and Mu fractions were measured as a function of the implantation energy.

  14. Nonlocal van der Waals functionals: The case of rare-gas dimers and solids

    NASA Astrophysics Data System (ADS)

    Tran, Fabien; Hutter, Jürg

    2013-05-01

    Recently, the nonlocal van der Waals (vdW) density functionals [M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004), 10.1103/PhysRevLett.92.246401] have attracted considerable attention due to their good performance for systems where weak interactions are important. Since the physics of dispersion is included in these functionals, they are usually more accurate and show less erratic behavior than the semilocal and hybrid methods. In this work, several variants of the vdW functionals have been tested on rare-gas dimers (from He2 to Kr2) and solids (Ne, Ar, and Kr) and their accuracy compared to standard semilocal approximations, supplemented or not by an atom-pairwise dispersion correction [S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys. 132, 154104 (2010), 10.1063/1.3382344]. An analysis of the results in terms of energy decomposition is also provided.

  15. Origin of the size-dependence of the equilibrium van der Waals binding between nanostructures

    NASA Astrophysics Data System (ADS)

    Tao, Jianmin; Perdew, John P.; Tang, Hong; Shahi, Chandra

    2018-02-01

    Nanostructures can be bound together at equilibrium by the van der Waals (vdW) effect, a small but ubiquitous many-body attraction that presents challenges to density functional theory. How does the binding energy depend upon the size or number of atoms in one of a pair of identical nanostructures? To answer this question, we treat each nanostructure as a whole object, not as a collection of atoms. Our calculations start from an accurate static dipole polarizability for each considered nanostructure, and an accurate equilibrium center-to-center distance for the pair (the latter from experiment or from the vdW-DF-cx functional). We consider the competition in each term -C2k/d2k (k = 3, 4, 5) of the long-range vdW series for the interaction energy, between the size dependence of the vdW coefficient C2k and that of the 2kth power of the center-to-center distance d. The damping of these vdW terms can be negligible, but in any case, it does not affect the size dependence for a given term in the absence of non-vdW binding. To our surprise, the vdW energy can be size-independent for quasi-spherical nanoclusters bound to one another by vdW interaction, even with strong nonadditivity of the vdW coefficient, as demonstrated for fullerenes. We also show that, for low-dimensional systems, the vdW interaction yields the strongest size-dependence, in stark contrast to that of fullerenes. We illustrate this with parallel planar polycyclic aromatic hydrocarbons. The size dependences of other morphologies or bonding types lie between, as shown by sodium clusters.

  16. Origin of the size-dependence of the equilibrium van der Waals binding between nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Jianmin

    Nanostructures can be bound together at equilibrium by the van der Waals (vdW) effect, a small but ubiquitous many-body attraction that presents challenges to density functional theory. How does the binding energy depend upon the size or number of atoms in one of a pair of identical nanostructures? To answer this question, we treat each nanostructure properly as a whole object, not as a collection of atoms. Our calculations start from an accurate static dipole polarizability for each considered nanostructure, and an accurate equilibrium center-to-center distance for the pair (the latter from experiment, or from the vdW-DF-cx functional). We consider the competition in each termmore » $$-C_{2k}/d^{2k}$$ ($k=3, 4, 5$) of the long-range vdW series for the interaction energy, between the size dependence of the vdW coefficient $$C_{2k}$$ and that of the $2k$-th power of the center-to-center distance $d$. The damping of these vdW terms can be negligible, but in any case it does not affect the size dependence for a given term in the absence of non-vdW binding. To our surprise, the vdW energy can be size-independent for quasi-spherical nanoclusters bound to one another by vdW interaction, even with strong nonadditivity of the vdW coefficient, as demonstrated for fullerenes. We also show that, for low-dimensional systems, the vdW interaction yields the strongest size-dependence, in stark contrast to that of fullerenes. We illustrate this with parallel planar polycyclic aromatic hydrocarbons. Other cases are between, as shown by sodium clusters.« less

  17. Origin of the size-dependence of the equilibrium van der Waals binding between nanostructures

    DOE PAGES

    Tao, Jianmin

    2018-02-21

    Nanostructures can be bound together at equilibrium by the van der Waals (vdW) effect, a small but ubiquitous many-body attraction that presents challenges to density functional theory. How does the binding energy depend upon the size or number of atoms in one of a pair of identical nanostructures? To answer this question, we treat each nanostructure properly as a whole object, not as a collection of atoms. Our calculations start from an accurate static dipole polarizability for each considered nanostructure, and an accurate equilibrium center-to-center distance for the pair (the latter from experiment, or from the vdW-DF-cx functional). We consider the competition in each termmore » $$-C_{2k}/d^{2k}$$ ($k=3, 4, 5$) of the long-range vdW series for the interaction energy, between the size dependence of the vdW coefficient $$C_{2k}$$ and that of the $2k$-th power of the center-to-center distance $d$. The damping of these vdW terms can be negligible, but in any case it does not affect the size dependence for a given term in the absence of non-vdW binding. To our surprise, the vdW energy can be size-independent for quasi-spherical nanoclusters bound to one another by vdW interaction, even with strong nonadditivity of the vdW coefficient, as demonstrated for fullerenes. We also show that, for low-dimensional systems, the vdW interaction yields the strongest size-dependence, in stark contrast to that of fullerenes. We illustrate this with parallel planar polycyclic aromatic hydrocarbons. Other cases are between, as shown by sodium clusters.« less

  18. A Scalable Implementation of Van der Waals Density Functionals

    NASA Astrophysics Data System (ADS)

    Wu, Jun; Gygi, Francois

    2010-03-01

    Recently developed Van der Waals density functionals[1] offer the promise to account for weak intermolecular interactions that are not described accurately by local exchange-correlation density functionals. In spite of recent progress [2], the computational cost of such calculations remains high. We present a scalable parallel implementation of the functional proposed by Dion et al.[1]. The method is implemented in the Qbox first-principles simulation code (http://eslab.ucdavis.edu/software/qbox). Application to large molecular systems will be presented. [4pt] [1] M. Dion et al. Phys. Rev. Lett. 92, 246401 (2004).[0pt] [2] G. Roman-Perez and J. M. Soler, Phys. Rev. Lett. 103, 096102 (2009).

  19. Nonadditivity of van der Waals forces on liquid surfaces

    NASA Astrophysics Data System (ADS)

    Venkataram, Prashanth S.; Whitton, Jeremy D.; Rodriguez, Alejandro W.

    2016-09-01

    We present an approach for modeling nanoscale wetting and dewetting of textured solid surfaces that exploits recently developed, sophisticated techniques for computing exact long-range dispersive van der Waals (vdW) or (more generally) Casimir forces in arbitrary geometries. We apply these techniques to solve the variational formulation of the Young-Laplace equation and predict the equilibrium shapes of liquid-vacuum interfaces near solid gratings. We show that commonly employed methods of computing vdW interactions based on additive Hamaker or Derjaguin approximations, which neglect important electromagnetic boundary effects, can result in large discrepancies in the shapes and behaviors of liquid surfaces compared to exact methods.

  20. Esaki Diodes in van der Waals Heterojunctions with Broken-Gap Energy Band Alignment.

    PubMed

    Yan, Rusen; Fathipour, Sara; Han, Yimo; Song, Bo; Xiao, Shudong; Li, Mingda; Ma, Nan; Protasenko, Vladimir; Muller, David A; Jena, Debdeep; Xing, Huili Grace

    2015-09-09

    van der Waals (vdW) heterojunctions composed of two-dimensional (2D) layered materials are emerging as a solid-state materials family that exhibits novel physics phenomena that can power a range of electronic and photonic applications. Here, we present the first demonstration of an important building block in vdW solids: room temperature Esaki tunnel diodes. The Esaki diodes were realized in vdW heterostructures made of black phosphorus (BP) and tin diselenide (SnSe2), two layered semiconductors that possess a broken-gap energy band offset. The presence of a thin insulating barrier between BP and SnSe2 enabled the observation of a prominent negative differential resistance (NDR) region in the forward-bias current-voltage characteristics, with a peak to valley ratio of 1.8 at 300 K and 2.8 at 80 K. A weak temperature dependence of the NDR indicates electron tunneling being the dominant transport mechanism, and a theoretical model shows excellent agreement with the experimental results. Furthermore, the broken-gap band alignment is confirmed by the junction photoresponse, and the phosphorus double planes in a single layer of BP are resolved in transmission electron microscopy (TEM) for the first time. Our results represent a significant advance in the fundamental understanding of vdW heterojunctions and broaden the potential applications of 2D layered materials.

  1. Structure-Energy Relationships of Halogen Bonds in Proteins.

    PubMed

    Scholfield, Matthew R; Ford, Melissa Coates; Carlsson, Anna-Carin C; Butta, Hawera; Mehl, Ryan A; Ho, P Shing

    2017-06-06

    The structures and stabilities of proteins are defined by a series of weak noncovalent electrostatic, van der Waals, and hydrogen bond (HB) interactions. In this study, we have designed and engineered halogen bonds (XBs) site-specifically to study their structure-energy relationship in a model protein, T4 lysozyme. The evidence for XBs is the displacement of the aromatic side chain toward an oxygen acceptor, at distances that are equal to or less than the sums of their respective van der Waals radii, when the hydroxyl substituent of the wild-type tyrosine is replaced by a halogen. In addition, thermal melting studies show that the iodine XB rescues the stabilization energy from an otherwise destabilizing substitution (at an equivalent noninteracting site), indicating that the interaction is also present in solution. Quantum chemical calculations show that the XB complements an HB at this site and that solvent structure must also be considered in trying to design molecular interactions such as XBs into biological systems. A bromine substitution also shows displacement of the side chain, but the distances and geometries do not indicate formation of an XB. Thus, we have dissected the contributions from various noncovalent interactions of halogens introduced into proteins, to drive the application of XBs, particularly in biomolecular design.

  2. van der Waals Layered Materials: Opportunities and Challenges.

    PubMed

    Duong, Dinh Loc; Yun, Seok Joon; Lee, Young Hee

    2017-12-26

    Since graphene became available by a scotch tape technique, a vast class of two-dimensional (2D) van der Waals (vdW) layered materials has been researched intensively. What is more intriguing is that the well-known physics and chemistry of three-dimensional (3D) bulk materials are often irrelevant, revealing exotic phenomena in 2D vdW materials. By further constructing heterostructures of these materials in the planar and vertical directions, which can be easily achieved via simple exfoliation techniques, numerous quantum mechanical devices have been demonstrated for fundamental research and technological applications. It is, therefore, necessary to review the special features in 2D vdW materials and to discuss the remaining issues and challenges. Here, we review the vdW materials library, technology relevance, and specialties of vdW materials covering the vdW interaction, strong Coulomb interaction, layer dependence, dielectric screening engineering, work function modulation, phase engineering, heterostructures, stability, growth issues, and the remaining challenges.

  3. Molecular dynamics simulation of the interactions between EHD1 EH domain and multiple peptides.

    PubMed

    Yu, Hua; Wang, Mao-jun; Xuan, Nan-xia; Shang, Zhi-cai; Wu, Jun

    2015-10-01

    To provide essential information for peptide inhibitor design, the interactions of Eps15 homology domain of Eps15 homology domain-containing protein 1 (EHD1 EH domain) with three peptides containing NPF (asparagine-proline-phenylalanine), DPF (aspartic acid-proline-phenylalanine), and GPF (glycine-proline-phenylalanine) motifs were deciphered at the atomic level. The binding affinities and the underlying structure basis were investigated. Molecular dynamics (MD) simulations were performed on EHD1 EH domain/peptide complexes for 60 ns using the GROMACS package. The binding free energies were calculated and decomposed by molecular mechanics/generalized Born surface area (MM/GBSA) method using the AMBER package. The alanine scanning was performed to evaluate the binding hot spot residues using FoldX software. The different binding affinities for the three peptides were affected dominantly by van der Waals interactions. Intermolecular hydrogen bonds provide the structural basis of contributions of van der Waals interactions of the flanking residues to the binding. van der Waals interactions should be the main consideration when we design peptide inhibitors of EHD1 EH domain with high affinities. The ability to form intermolecular hydrogen bonds with protein residues can be used as the factor for choosing the flanking residues.

  4. Molecular dynamics simulation of the interactions between EHD1 EH domain and multiple peptides* #

    PubMed Central

    Yu, Hua; Wang, Mao-Jun; Xuan, Nan-Xia; Shang, Zhi-Cai; Wu, Jun

    2015-01-01

    Objective: To provide essential information for peptide inhibitor design, the interactions of Eps15 homology domain of Eps15 homology domain-containing protein 1 (EHD1 EH domain) with three peptides containing NPF (asparagine-proline-phenylalanine), DPF (aspartic acid-proline-phenylalanine), and GPF (glycine-proline-phenylalanine) motifs were deciphered at the atomic level. The binding affinities and the underlying structure basis were investigated. Methods: Molecular dynamics (MD) simulations were performed on EHD1 EH domain/peptide complexes for 60 ns using the GROMACS package. The binding free energies were calculated and decomposed by molecular mechanics/generalized Born surface area (MM/GBSA) method using the AMBER package. The alanine scanning was performed to evaluate the binding hot spot residues using FoldX software. Results: The different binding affinities for the three peptides were affected dominantly by van der Waals interactions. Intermolecular hydrogen bonds provide the structural basis of contributions of van der Waals interactions of the flanking residues to the binding. Conclusions: van der Waals interactions should be the main consideration when we design peptide inhibitors of EHD1 EH domain with high affinities. The ability to form intermolecular hydrogen bonds with protein residues can be used as the factor for choosing the flanking residues. PMID:26465136

  5. Van der Waals pressure sensors using reduced graphene oxide composites

    NASA Astrophysics Data System (ADS)

    Jung, Ju Ra; Ahn, Sung Il

    2018-04-01

    Reduced graphene oxide (RGO) films intercalated with various polymers were fabricated by reaction-based self-assembly, and their characteristics as vacuum pressure sensors based on van der Waals interactions were studied. At low temperature, the electrical resistances of the samples decrease linearly with increasing vacuum pressure, whereas at high temperature the variation of the electrical resistance shows secondary order curves. Among all samples, the poly vinyl alcohol intercalated RGO shows the highest sensitivity, being almost two times more sensitive than reference RGO. All samples show almost the same signal for repetitive sudden pressure changes, indicating reasonable reproducibility and durability.

  6. Antiferromagnetism in the van der Waals layered spin-lozenge semiconductor CrTe 3

    DOE PAGES

    McGuire, Michael A.; Garlea, V. Ovidiu; KC, Santosh; ...

    2017-04-14

    We have investigated the crystallographic, magnetic, and transport properties of the van der Waals bonded, layered compound CrTe 3 on single-crystal and polycrystalline materials. Furthermore, the crystal structure contains layers made up of lozenge-shaped Cr 4 tetramers. Electrical resistivity measurements show the crystals to be semiconducting, with a temperature dependence consistent with a band gap of 0.3 eV. The magnetic susceptibility exhibits a broad maximum near 300 K characteristic of low dimensional magnetic systems. Weak anomalies are observed in the susceptibility and heat capacity near 55 K, and single-crystal neutron diffraction reveals the onset of long-range antiferromagnetic order at thismore » temperature. Strongly dispersive spin waves are observed in the ordered state. Significant magnetoelastic coupling is indicated by the anomalous temperature dependence of the lattice parameters and is evident in structural optimization in van der Waals density functional theory calculations for different magnetic configurations. The cleavability of the compound is apparent from its handling and is confirmed by first-principles calculations, which predict a cleavage energy 0.5 J / m 2 , similar to graphite. Based on our results, CrTe 3 is identified as a promising compound for studies of low dimensional magnetism in bulk crystals as well as magnetic order in monolayer materials and van der Waals heterostructures.« less

  7. Antiferromagnetism in the van der Waals layered spin-lozenge semiconductor CrTe 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGuire, Michael A.; Garlea, V. Ovidiu; KC, Santosh

    We have investigated the crystallographic, magnetic, and transport properties of the van der Waals bonded, layered compound CrTe 3 on single-crystal and polycrystalline materials. Furthermore, the crystal structure contains layers made up of lozenge-shaped Cr 4 tetramers. Electrical resistivity measurements show the crystals to be semiconducting, with a temperature dependence consistent with a band gap of 0.3 eV. The magnetic susceptibility exhibits a broad maximum near 300 K characteristic of low dimensional magnetic systems. Weak anomalies are observed in the susceptibility and heat capacity near 55 K, and single-crystal neutron diffraction reveals the onset of long-range antiferromagnetic order at thismore » temperature. Strongly dispersive spin waves are observed in the ordered state. Significant magnetoelastic coupling is indicated by the anomalous temperature dependence of the lattice parameters and is evident in structural optimization in van der Waals density functional theory calculations for different magnetic configurations. The cleavability of the compound is apparent from its handling and is confirmed by first-principles calculations, which predict a cleavage energy 0.5 J / m 2 , similar to graphite. Based on our results, CrTe 3 is identified as a promising compound for studies of low dimensional magnetism in bulk crystals as well as magnetic order in monolayer materials and van der Waals heterostructures.« less

  8. Study of interactions between metal ions and protein model compounds by energy decomposition analyses and the AMOEBA force field

    NASA Astrophysics Data System (ADS)

    Jing, Zhifeng; Qi, Rui; Liu, Chengwen; Ren, Pengyu

    2017-10-01

    The interactions between metal ions and proteins are ubiquitous in biology. The selective binding of metal ions has a variety of regulatory functions. Therefore, there is a need to understand the mechanism of protein-ion binding. The interactions involving metal ions are complicated in nature, where short-range charge-penetration, charge transfer, polarization, and many-body effects all contribute significantly, and a quantitative description of all these interactions is lacking. In addition, it is unclear how well current polarizable force fields can capture these energy terms and whether these polarization models are good enough to describe the many-body effects. In this work, two energy decomposition methods, absolutely localized molecular orbitals and symmetry-adapted perturbation theory, were utilized to study the interactions between Mg2+/Ca2+ and model compounds for amino acids. Comparison of individual interaction components revealed that while there are significant charge-penetration and charge-transfer effects in Ca complexes, these effects can be captured by the van der Waals (vdW) term in the AMOEBA force field. The electrostatic interaction in Mg complexes is well described by AMOEBA since the charge penetration is small, but the distance-dependent polarization energy is problematic. Many-body effects were shown to be important for protein-ion binding. In the absence of many-body effects, highly charged binding pockets will be over-stabilized, and the pockets will always favor Mg and thus lose selectivity. Therefore, many-body effects must be incorporated in the force field in order to predict the structure and energetics of metalloproteins. Also, the many-body effects of charge transfer in Ca complexes were found to be non-negligible. The absorption of charge-transfer energy into the additive vdW term was a main source of error for the AMOEBA many-body interaction energies.

  9. Colossal terahertz nonlinearity of tunneling van der Waals gap (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Bahk, Young-Mi; Kang, Bong Joo; Kim, Yong Seung; Kim, Joon-Yeon; Kim, Won Tae; Kim, Tae Yun; Kang, Taehee; Rhie, Ji Yeah; Han, Sanghoon; Park, Cheol-Hwan; Rotermund, Fabian; Kim, Dai-Sik

    2016-09-01

    We manufactured an array of three angstrom-wide, five millimeter-long van der Waals gaps of copper-graphene-copper composite, in which unprecedented nonlinearity was observed. To probe and manipulate van der Waals gaps with long wavelength electromagnetic waves such as terahertz waves, one is required to fabricate vertically oriented van der Waals gaps sandwiched between two metal planes with an infinite length in the sense of being much larger than any of the wavelengths used. By comparison with the simple vertical stacking of metal-graphene-metal structure, in our structure, background signals are completely blocked enabling all the light to squeeze through the gap without any strays. When the angstrom-sized van der Waals gaps are irradiated with intense terahertz pulses, the transient voltage across the gap reaches up to 5 V with saturation, sufficiently strong to deform the quantum barrier of angstrom gaps. The large transient potential difference across the gap facilitates electron tunneling through the quantum barrier, blocking terahertz waves completely. This negative feedback of electron tunneling leads to colossal nonlinear optical response, a 97% decrease in the normalized transmittance. Our technology for infinitely long van der Waals gaps can be utilized for other atomically thin materials than single layer graphene, enabling linear and nonlinear angstrom optics in a broad spectral range.

  10. Sub-bandgap Voltage Electroluminescence and Magneto-oscillations in a WSe2 Light-Emitting van der Waals Heterostructure.

    PubMed

    Binder, Johannes; Withers, Freddie; Molas, Maciej R; Faugeras, Clement; Nogajewski, Karol; Watanabe, Kenji; Taniguchi, Takashi; Kozikov, Aleksey; Geim, Andre K; Novoselov, Kostya S; Potemski, Marek

    2017-03-08

    We report on experimental investigations of an electrically driven WSe 2 based light-emitting van der Waals heterostructure. We observe a threshold voltage for electroluminescence significantly lower than the corresponding single particle band gap of monolayer WSe 2 . This observation can be interpreted by considering the Coulomb interaction and a tunneling process involving excitons, well beyond the picture of independent charge carriers. An applied magnetic field reveals pronounced magneto-oscillations in the electroluminescence of the free exciton emission intensity with a 1/B periodicity. This effect is ascribed to a modulation of the tunneling probability resulting from the Landau quantization in the graphene electrodes. A sharp feature in the differential conductance indicates that the Fermi level is pinned and allows for an estimation of the acceptor binding energy.

  11. Direct evidence of three-body interactions in a cold {sup 85}Rb Rydberg gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han Jianing

    2010-11-15

    Cold Rydberg atoms trapped in a magneto-optical trap (MOT) are not isolated and they interact through dipole-dipole and multipole-multipole interactions. First-order dipole-dipole interactions and van der Waals interactions between two atoms have been intensively studied. However, the facts that the first-order dipole-dipole interactions and van der Waals interactions show the same size of broadening [A. Reinhard, K. C. Younge, T. C. Liebisch, B. Knuffman, P. R. Berman, and G. Raithel, Phys. Rev. Lett. 100, 233201 (2008)] and there are transitions between two dimer states [S. M. Farooqi, D. Tong, S. Krishnan, J. Stanojevic, Y. P. Zhang, J. R. Ensher, A.more » S. Estrin, C. Boisseau, R. Cote, E. E. Eyler, and P. L. Gould, Phys. Rev. Lett. 91, 183002 (2003); K. R. Overstreet, Arne Schwettmann, Jonathan Tallant, and James P. Shaffer, Phys. Rev. A 76, 011403(R) (2007)] cannot be explained by the two-atom picture. The purpose of this article is to show the few-body nature of a dense cold Rydberg gas by studying the molecular-state microwave spectra. Specifically, three-body energy levels have been calculated. Moreover, the transition from three-body energy levels to two-body coupled molecular energy levels and to isolated atomic energy levels as a function of the internuclear spacing is studied. Finally, single-body, two-body, and three-body interaction regions are estimated according to the experimental data. The results reported here provides useful information for plasma formation, further cooling, and superfluid formation.« less

  12. Stacking interactions and DNA intercalation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Dr. Shen; Cooper, Valentino R; Thonhauser, Prof. Timo

    2009-01-01

    The relationship between stacking interactions and the intercalation of proflavine and ellipticine within DNA is investigated using a nonempirical van der Waals density functional for the correlation energy. Our results, employing a binary stack model, highlight fundamental, qualitative differences between base-pair base-pair interactions and that of the stacked intercalator base pair system. Most notable result is the paucity of torque which so distinctively defines the Twist of DNA. Surprisingly, this model, when combined with a constraint on the twist of the surrounding base-pair steps to match the observed unwinding of the sugar-phosphate backbone, was sufficient for explaining the experimentally observedmore » proflavine intercalator configuration. Our extensive mapping of the potential energy surface of base-pair intercalator interactions can provide valuable information for future nonempirical studies of DNA intercalation dynamics.« less

  13. Cosmological models constructed by van der Waals fluid approximation and volumetric expansion

    NASA Astrophysics Data System (ADS)

    Samanta, G. C.; Myrzakulov, R.

    The universe modeled with van der Waals fluid approximation, where the van der Waals fluid equation of state contains a single parameter ωv. Analytical solutions to the Einstein’s field equations are obtained by assuming the mean scale factor of the metric follows volumetric exponential and power-law expansions. The model describes a rapid expansion where the acceleration grows in an exponential way and the van der Waals fluid behaves like an inflation for an initial epoch of the universe. Also, the model describes that when time goes away the acceleration is positive, but it decreases to zero and the van der Waals fluid approximation behaves like a present accelerated phase of the universe. Finally, it is observed that the model contains a type-III future singularity for volumetric power-law expansion.

  14. Modulation of Metal and Insulator States in 2D Ferromagnetic VS2 by van der Waals Interaction Engineering.

    PubMed

    Guo, Yuqiao; Deng, Haitao; Sun, Xu; Li, Xiuling; Zhao, Jiyin; Wu, Junchi; Chu, Wangsheng; Zhang, Sijia; Pan, Haibin; Zheng, Xusheng; Wu, Xiaojun; Jin, Changqing; Wu, Changzheng; Xie, Yi

    2017-08-01

    2D transition-metal dichalcogenides (TMDCs) are currently the key to the development of nanoelectronics. However, TMDCs are predominantly nonmagnetic, greatly hindering the advancement of their spintronic applications. Here, an experimental realization of intrinsic magnetic ordering in a pristine TMDC lattice is reported, bringing a new class of ferromagnetic semiconductors among TMDCs. Through van der Waals (vdW) interaction engineering of 2D vanadium disulfide (VS 2 ), dual regulation of spin properties and bandgap brings about intrinsic ferromagnetism along with a small bandgap, unravelling the decisive role of vdW gaps in determining the electronic states in 2D VS 2 . An overall control of the electronic states of VS 2 is also demonstrated: bond-enlarging triggering a metal-to-semiconductor electronic transition and bond-compression inducing metallization in 2D VS 2 . The pristine VS 2 lattice thus provides a new platform for precise manipulation of both charge and spin degrees of freedom in 2D TMDCs availing spintronic applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Direct measurements of protein-stabilized gold nanoparticle interactions.

    PubMed

    Eichmann, Shannon L; Bevan, Michael A

    2010-09-21

    We report integrated video and total internal reflection microscopy measurements of protein stabilized 110 nm Au nanoparticles confined in 280 nm gaps in physiological media. Measured potential energy profiles display quantitative agreement with Brownian dynamic simulations that include hydrodynamic interactions and camera exposure time and noise effects. Our results demonstrate agreement between measured nonspecific van der Waals and adsorbed protein interactions with theoretical potentials. Confined, lateral nanoparticle diffusivity measurements also display excellent agreement with predictions. These findings provide a basis to interrogate specific biomacromolecular interactions in similar experimental configurations and to design future improved measurement methods.

  16. Strong interlayer coupling in phosphorene/graphene van der Waals heterostructure: A first-principles investigation

    NASA Astrophysics Data System (ADS)

    Hu, Xue-Rong; Zheng, Ji-Ming; Ren, Zhao-Yu

    2018-04-01

    Based on first-principles calculations within the framework of density functional theory, we study the electronic properties of phosphorene/graphene heterostructures. Band gaps with different sizes are observed in the heterostructure, and charges transfer from graphene to phosphorene, causing the Fermi level of the heterostructure to shift downward with respect to the Dirac point of graphene. Significantly, strong coupling between two layers is discovered in the band spectrum even though it has a van der Waals heterostructure. A tight-binding Hamiltonian model is used to reveal that the resonance of the Bloch states between the phosphorene and graphene layers in certain K points combines with the symmetry matching between band states, which explains the reason for the strong coupling in such heterostructures. This work may enhance the understanding of interlayer interaction and composition mechanisms in van der Waals heterostructures consisting of two-dimensional layered nanomaterials, and may indicate potential reference information for nanoelectronic and optoelectronic applications.

  17. Direct evidence of three-body interactions in a cold Rb85 Rydberg gas

    NASA Astrophysics Data System (ADS)

    Han, Jianing

    2010-11-01

    Cold Rydberg atoms trapped in a magneto-optical trap (MOT) are not isolated and they interact through dipole-dipole and multipole-multipole interactions. First-order dipole-dipole interactions and van der Waals interactions between two atoms have been intensively studied. However, the facts that the first-order dipole-dipole interactions and van der Waals interactions show the same size of broadening [A. Reinhard, K. C. Younge, T. C. Liebisch, B. Knuffman, P. R. Berman, and G. Raithel, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.100.233201 100, 233201 (2008)] and there are transitions between two dimer states [S. M. Farooqi, D. Tong, S. Krishnan, J. Stanojevic, Y. P. Zhang, J. R. Ensher, A. S. Estrin, C. Boisseau, R. Cote, E. E. Eyler, and P. L. Gould, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.91.183002 91, 183002 (2003); K. R. Overstreet, Arne Schwettmann, Jonathan Tallant, and James P. Shaffer, Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.76.011403 76, 011403(R) (2007)] cannot be explained by the two-atom picture. The purpose of this article is to show the few-body nature of a dense cold Rydberg gas by studying the molecular-state microwave spectra. Specifically, three-body energy levels have been calculated. Moreover, the transition from three-body energy levels to two-body coupled molecular energy levels and to isolated atomic energy levels as a function of the internuclear spacing is studied. Finally, single-body, two-body, and three-body interaction regions are estimated according to the experimental data. The results reported here provides useful information for plasma formation, further cooling, and superfluid formation.

  18. Character of intermolecular interaction in pyridine-argon complex: Ab initio potential energy surface, internal dynamics, and interrelations between SAPT energy components.

    PubMed

    Makarewicz, Jan; Shirkov, Leonid

    2016-05-28

    The pyridine-Ar (PAr) van der Waals (vdW) complex is studied using a high level ab initio method. Its structure, binding energy, and intermolecular vibrational states are determined from the analytical potential energy surface constructed from interaction energy (IE) values computed at the coupled cluster level of theory with single, double, and perturbatively included triple excitations with the augmented correlation consistent polarized valence double-ζ (aug-cc-pVDZ) basis set complemented by midbond functions. The structure of the complex at its global minimum with Ar at a distance of 3.509 Å from the pyridine plane and shifted by 0.218 Å from the center of mass towards nitrogen agrees well with the corresponding equilibrium structure derived previously from the rotational spectrum of PAr. The PAr binding energy De of 392 cm(-1) is close to that of 387 cm(-1) calculated earlier at the same ab initio level for the prototypical benzene-Ar (BAr) complex. However, under an extension of the basis set, De for PAr becomes slightly lower than De for BAr. The ab initio vdW vibrational energy levels allow us to estimate the reliability of the methods for the determination of the vdW fundamentals from the rotational spectra. To disclose the character of the intermolecular interaction in PAr, the symmetry-adapted perturbation theory (SAPT) is employed for the analysis of different physical contributions to IE. It is found that SAPT components of IE can be approximately expressed in the binding region by only two of them: the exchange repulsion and dispersion energy. The total induction effect is negligible. The interrelations between various SAPT components found for PAr are fulfilled for a few other complexes involving aromatic molecules and Ar or Ne, which indicates that they are valid for all rare gas (Rg) atoms and aromatics.

  19. Measuring the thermal boundary resistance of van der Waals contacts using an individual carbon nanotube.

    PubMed

    Hirotani, Jun; Ikuta, Tatsuya; Nishiyama, Takashi; Takahashi, Koji

    2013-01-16

    Interfacial thermal transport via van der Waals interaction is quantitatively evaluated using an individual multi-walled carbon nanotube bonded on a platinum hot-film sensor. The thermal boundary resistance per unit contact area was obtained at the interface between the closed end or sidewall of the nanotube and platinum, gold, or a silicon dioxide surface. When taking into consideration the surface roughness, the thermal boundary resistance at the sidewall is found to coincide with that at the closed end. A new finding is that the thermal boundary resistance between a carbon nanotube and a solid surface is independent of the materials within the experimental errors, which is inconsistent with a traditional phonon mismatch model, which shows a clear material dependence of the thermal boundary resistance. Our data indicate the inapplicability of existing phonon models when weak van der Waals forces are dominant at the interfaces.

  20. Spontaneous doping on high quality talc-graphene-hBN van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Mania, E.; Alencar, A. B.; Cadore, A. R.; Carvalho, B. R.; Watanabe, K.; Taniguchi, T.; Neves, B. R. A.; Chacham, H.; Campos, L. C.

    2017-09-01

    Steady doping, added to its remarkable electronic properties, would make graphene a valuable commodity in the solar cell market, as energy power conversion could be substantially increased. Here we report a graphene van der Waals heterostructure which is able to spontaneously dope graphene (p-type) up to n ~ 2.2  ×  1013 cm-2 while providing excellent charge mobility (μ ~ 25 000 cm2 V-1 s-1). Such properties are achieved via deposition of graphene on atomically flat layered talc, a natural and abundant dielectric crystal. Raman investigation shows a preferential charge accumulation on graphene-talc van der Waals heterostructures, which are investigated through the electronic properties of talc/graphene/hBN heterostructure devices. These heterostructures preserve graphene’s good electronic quality, verified by the observation of quantum Hall effect at low magnetic fields (B  =  0.4 T) at T  =  4.2 K. In order to investigate the physical mechanisms behind graphene-on-talc p-type doping, we performed first-principles calculations of their interface structural and electronic properties. In addition to potentially improving solar cell efficiency, graphene doping via van der Waals stacking is also a promising route towards controlling the band gap opening in bilayer graphene, promoting a steady n or p type doping in graphene and, eventually, providing a new path to access superconducting states in graphene, predicted to exist only at very high doping.

  1. Chemotherapy drugs form ion pores in membranes due to physical interactions with lipids.

    PubMed

    Ashrafuzzaman, Mohammad; Tseng, Chih-Yuan; Duszyk, Marek; Tuszynski, Jack A

    2012-12-01

    We demonstrate the effects on membrane of the tubulin-binding chemotherapy drugs: thiocolchicoside and taxol. Electrophysiology recordings across lipid membranes in aqueous phases containing drugs were used to investigate the drug effects on membrane conductance. Molecular dynamics simulation of the chemotherapy drug-lipid complexes was used to elucidate the mechanism at an atomistic level. Both drugs are observed to induce stable ion-flowing pores across membranes. Discrete pore current-time plots exhibit triangular conductance events in contrast to rectangular ones found for ion channels. Molecular dynamics simulations indicate that drugs and lipids experience electrostatic and van der Waals interactions for short periods of time when found within each other's proximity. The energies from these two interactions are found to be similar to the energies derived theoretically using the screened Coulomb and the van der Waals interactions between peptides and lipids due to mainly their charge properties while forming peptide-induced ion channels in lipid bilayers. Experimental and in silico studies together suggest that the chemotherapy drugs induce ion pores inside lipid membranes due to drug-lipid physical interactions. The findings reveal cytotoxic effects of drugs on the cell membrane, which may aid in novel drug development for treatment of cancer and other diseases. © 2012 John Wiley & Sons A/S.

  2. Optical spectroscopy of excited exciton states in MoS2 monolayers in van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Robert, C.; Semina, M. A.; Cadiz, F.; Manca, M.; Courtade, E.; Taniguchi, T.; Watanabe, K.; Cai, H.; Tongay, S.; Lassagne, B.; Renucci, P.; Amand, T.; Marie, X.; Glazov, M. M.; Urbaszek, B.

    2018-01-01

    The optical properties of MoS2 monolayers are dominated by excitons, but for spectrally broad optical transitions in monolayers exfoliated directly onto SiO2 substrates detailed information on excited exciton states is inaccessible. Encapsulation in hexagonal boron nitride (hBN) allows approaching the homogenous exciton linewidth, but interferences in the van der Waals heterostructures make direct comparison between transitions in optical spectra with different oscillator strength more challenging. Here we reveal in reflectivity and in photoluminescence excitation spectroscopy the presence of excited states of the A exciton in MoS2 monolayers encapsulated in hBN layers of calibrated thickness, allowing us to extrapolate an exciton binding energy of ≈220 meV. We theoretically reproduce the energy separations and oscillator strengths measured in reflectivity by combining the exciton resonances calculated for a screened two-dimensional Coulomb potential with transfer matrix calculations of the reflectivity for the van der Waals structure. Our analysis shows a very different evolution of the exciton oscillator strength with principal quantum number for the screened Coulomb potential as compared to the ideal two-dimensional hydrogen model.

  3. Structural Dynamics Investigation of Human Family 1 & 2 Cystatin-Cathepsin L1 Interaction: A Comparison of Binding Modes.

    PubMed

    Nandy, Suman Kumar; Seal, Alpana

    2016-01-01

    Cystatin superfamily is a large group of evolutionarily related proteins involved in numerous physiological activities through their inhibitory activity towards cysteine proteases. Despite sharing the same cystatin fold, and inhibiting cysteine proteases through the same tripartite edge involving highly conserved N-terminal region, L1 and L2 loop; cystatins differ widely in their inhibitory affinity towards C1 family of cysteine proteases and molecular details of these interactions are still elusive. In this study, inhibitory interactions of human family 1 & 2 cystatins with cathepsin L1 are predicted and their stability and viability are verified through protein docking & comparative molecular dynamics. An overall stabilization effect is observed in all cystatins on complex formation. Complexes are mostly dominated by van der Waals interaction but the relative participation of the conserved regions varied extensively. While van der Waals contacts prevail in L1 and L2 loop, N-terminal segment chiefly acts as electrostatic interaction site. In fact the comparative dynamics study points towards the instrumental role of L1 loop in directing the total interaction profile of the complex either towards electrostatic or van der Waals contacts. The key amino acid residues surfaced via interaction energy, hydrogen bonding and solvent accessible surface area analysis for each cystatin-cathepsin L1 complex influence the mode of binding and thus control the diverse inhibitory affinity of cystatins towards cysteine proteases.

  4. Structural Dynamics Investigation of Human Family 1 & 2 Cystatin-Cathepsin L1 Interaction: A Comparison of Binding Modes

    PubMed Central

    Nandy, Suman Kumar; Seal, Alpana

    2016-01-01

    Cystatin superfamily is a large group of evolutionarily related proteins involved in numerous physiological activities through their inhibitory activity towards cysteine proteases. Despite sharing the same cystatin fold, and inhibiting cysteine proteases through the same tripartite edge involving highly conserved N-terminal region, L1 and L2 loop; cystatins differ widely in their inhibitory affinity towards C1 family of cysteine proteases and molecular details of these interactions are still elusive. In this study, inhibitory interactions of human family 1 & 2 cystatins with cathepsin L1 are predicted and their stability and viability are verified through protein docking & comparative molecular dynamics. An overall stabilization effect is observed in all cystatins on complex formation. Complexes are mostly dominated by van der Waals interaction but the relative participation of the conserved regions varied extensively. While van der Waals contacts prevail in L1 and L2 loop, N-terminal segment chiefly acts as electrostatic interaction site. In fact the comparative dynamics study points towards the instrumental role of L1 loop in directing the total interaction profile of the complex either towards electrostatic or van der Waals contacts. The key amino acid residues surfaced via interaction energy, hydrogen bonding and solvent accessible surface area analysis for each cystatin-cathepsin L1 complex influence the mode of binding and thus control the diverse inhibitory affinity of cystatins towards cysteine proteases. PMID:27764212

  5. Hydration free energies of cyanide and hydroxide ions from molecular dynamics simulations with accurate force fields

    USGS Publications Warehouse

    Lee, M.W.; Meuwly, M.

    2013-01-01

    The evaluation of hydration free energies is a sensitive test to assess force fields used in atomistic simulations. We showed recently that the vibrational relaxation times, 1D- and 2D-infrared spectroscopies for CN(-) in water can be quantitatively described from molecular dynamics (MD) simulations with multipolar force fields and slightly enlarged van der Waals radii for the C- and N-atoms. To validate such an approach, the present work investigates the solvation free energy of cyanide in water using MD simulations with accurate multipolar electrostatics. It is found that larger van der Waals radii are indeed necessary to obtain results close to the experimental values when a multipolar force field is used. For CN(-), the van der Waals ranges refined in our previous work yield hydration free energy between -72.0 and -77.2 kcal mol(-1), which is in excellent agreement with the experimental data. In addition to the cyanide ion, we also study the hydroxide ion to show that the method used here is readily applicable to similar systems. Hydration free energies are found to sensitively depend on the intermolecular interactions, while bonded interactions are less important, as expected. We also investigate in the present work the possibility of applying the multipolar force field in scoring trajectories generated using computationally inexpensive methods, which should be useful in broader parametrization studies with reduced computational resources, as scoring is much faster than the generation of the trajectories.

  6. Ab initio molecular orbital studies of the vibrational spectra of the van der Waals complexes of boron trifluoride with the noble gases.

    PubMed

    Ford, Thomas A

    2005-05-01

    The molecular structures, interaction energies, charge transfer properties and vibrational spectra of the van der Waals complexes formed between boron trifluoride and the noble gases neon, argon, krypton and xenon have been computed using second and fourth order Møller-Plesset perturbation theory and the Los Alamos National Laboratory LANL2DZ basis set. The complexes are all symmetric tops, with the noble gas atom acting as a sigma electron donor along the C3 axis of the BF3 molecule. The interaction energies are all vanishingly small, and the amount of charge transferred in each case is of the order of 0.01e. The directions of the wavenumber shifts of the symmetric bending (nu2) and antisymmetric stretching (nu3) modes of the BF3 fragment confirm those determined experimentally, and the shifts are shown to correlate well with the polarizability of the noble gas atom and the inverse sixth power of the intermonomer separation. The nu2 mode is substantially more sensitive to complexation than the nu3 vibration.

  7. Crystal-phase intergradation in InAs nanostructures grown by van der Waals heteroepitaxy on graphene

    NASA Astrophysics Data System (ADS)

    Choi, Ji Eun; Yoo, Jinkyoung; Lee, Donghwa; Hong, Young Joon; Fukui, Takashi

    2018-04-01

    This study demonstrates the crystal-phase intergradation of InAs nanostructures grown on graphene via van der Waals epitaxy. InAs nanostructures with diverse diameters are yielded on graphene. High-resolution transmission electron microscopy (HR-TEM) reveals two crystallographic features of (i) wurtzite (WZ)-to-zinc blende (ZB) intergradation along the growth direction of InAs nanostructures and (ii) an increased mean fraction of ZB according to diameter increment. Based on the HR-TEM observations, a crystal-phase intergradation diagram is depicted. We discuss how the formation of a WZ-rich phase during the initial growth stage is an effective way of releasing heterointerfacial stress endowed by the lattice mismatch of InAs/graphene for energy minimization in terms of less in-plane lattice mismatching between WZ-InAs and graphene. The WZ-to-ZB evolution is responsible for the attenuation of the bottom-to-top surface charge interaction as growth proceeds.

  8. Toward a Mechanistic Understanding of Vertical Growth of van der Waals Stacked 2D Materials: A Multiscale Model and Experiments.

    PubMed

    Ye, Han; Zhou, Jiadong; Er, Dequan; Price, Christopher C; Yu, Zhongyuan; Liu, Yumin; Lowengrub, John; Lou, Jun; Liu, Zheng; Shenoy, Vivek B

    2017-12-26

    Vertical stacking of monolayers via van der Waals (vdW) interaction opens promising routes toward engineering physical properties of two-dimensional (2D) materials and designing atomically thin devices. However, due to the lack of mechanistic understanding, challenges remain in the controlled fabrication of these structures via scalable methods such as chemical vapor deposition (CVD) onto substrates. In this paper, we develop a general multiscale model to describe the size evolution of 2D layers and predict the necessary growth conditions for vertical (initial + subsequent layers) versus in-plane lateral (monolayer) growth. An analytic thermodynamic criterion is established for subsequent layer growth that depends on the sizes of both layers, the vdW interaction energies, and the edge energy of 2D layers. Considering the time-dependent growth process, we find that temperature and adatom flux from vapor are the primary criteria affecting the self-assembled growth. The proposed model clearly demonstrates the distinct roles of thermodynamic and kinetic mechanisms governing the final structure. Our model agrees with experimental observations of various monolayer and bilayer transition metal dichalcogenides grown by CVD and provides a predictive framework to guide the fabrication of vertically stacked 2D materials.

  9. Empathy's purity, sympathy's complexities; De Waal, Darwin and Adam Smith.

    PubMed

    van der Weele, Cor

    2011-07-01

    Frans de Waal's view that empathy is at the basis of morality directly seems to build on Darwin, who considered sympathy as the crucial instinct. Yet when we look closer, their understanding of the central social instinct differs considerably. De Waal sees our deeply ingrained tendency to sympathize (or rather: empathize) with others as the good side of our morally dualistic nature. For Darwin, sympathizing was not the whole story of the "workings of sympathy"; the (selfish) need to receive sympathy played just as central a role in the complex roads from sympathy to morality. Darwin's understanding of sympathy stems from Adam Smith, who argued that the presence of morally impure motives should not be a reason for cynicism about morality. I suggest that De Waal's approach could benefit from a more thorough alignment with the analysis of the workings of sympathy in the work of Darwin and Adam Smith.

  10. Atomically thin p-n junctions with van der Waals heterointerfaces.

    PubMed

    Lee, Chul-Ho; Lee, Gwan-Hyoung; van der Zande, Arend M; Chen, Wenchao; Li, Yilei; Han, Minyong; Cui, Xu; Arefe, Ghidewon; Nuckolls, Colin; Heinz, Tony F; Guo, Jing; Hone, James; Kim, Philip

    2014-09-01

    Semiconductor p-n junctions are essential building blocks for electronic and optoelectronic devices. In conventional p-n junctions, regions depleted of free charge carriers form on either side of the junction, generating built-in potentials associated with uncompensated dopant atoms. Carrier transport across the junction occurs by diffusion and drift processes influenced by the spatial extent of this depletion region. With the advent of atomically thin van der Waals materials and their heterostructures, it is now possible to realize a p-n junction at the ultimate thickness limit. Van der Waals junctions composed of p- and n-type semiconductors--each just one unit cell thick--are predicted to exhibit completely different charge transport characteristics than bulk heterojunctions. Here, we report the characterization of the electronic and optoelectronic properties of atomically thin p-n heterojunctions fabricated using van der Waals assembly of transition-metal dichalcogenides. We observe gate-tunable diode-like current rectification and a photovoltaic response across the p-n interface. We find that the tunnelling-assisted interlayer recombination of the majority carriers is responsible for the tunability of the electronic and optoelectronic processes. Sandwiching an atomic p-n junction between graphene layers enhances the collection of the photoexcited carriers. The atomically scaled van der Waals p-n heterostructures presented here constitute the ultimate functional unit for nanoscale electronic and optoelectronic devices.

  11. Correlational Effects of the Molecular-Tilt Configuration and the Intermolecular van der Waals Interaction on the Charge Transport in the Molecular Junction.

    PubMed

    Shin, Jaeho; Gu, Kyungyeol; Yang, Seunghoon; Lee, Chul-Ho; Lee, Takhee; Jang, Yun Hee; Wang, Gunuk

    2018-06-25

    Molecular conformation, intermolecular interaction, and electrode-molecule contacts greatly affect charge transport in molecular junctions and interfacial properties of organic devices by controlling the molecular orbital alignment. Here, we statistically investigated the charge transport in molecular junctions containing self-assembled oligophenylene molecules sandwiched between an Au probe tip and graphene according to various tip-loading forces ( F L ) that can control the molecular-tilt configuration and the van der Waals (vdW) interactions. In particular, the molecular junctions exhibited two distinct transport regimes according to the F L dependence (i.e., F L -dependent and F L -independent tunneling regimes). In addition, the charge-injection tunneling barriers at the junction interfaces are differently changed when the F L ≤ 20 nN. These features are associated to the correlation effects between the asymmetry-coupling factor (η), the molecular-tilt angle (θ), and the repulsive intermolecular vdW force ( F vdW ) on the molecular-tunneling barriers. A more-comprehensive understanding of these charge transport properties was thoroughly developed based on the density functional theory calculations in consideration of the molecular-tilt configuration and the repulsive vdW force between molecules.

  12. Van der Waals Interactions of Organic Molecules on Semiconductor and Metal Surfaces: a Comparative Study

    NASA Astrophysics Data System (ADS)

    Li, Guo; Cooper, Valentino; Cho, Jun-Hyung; Tamblyn, Isaac; Du, Shixuan; Neaton, Jeffrey; Gao, Hong-Jun; Zhang, Zhenyu

    2012-02-01

    We present a comparative investigation of vdW interactions of the organic molecules on semiconductor and metal surfaces using the DFT method implemented with vdW-DF. For styrene/H-Si(100), the vdW interactions reverse the effective intermolecular interaction from repulsive to attractive, ensuring preferred growth of long wires as observed experimentally. We further propose that an external E field and the selective creation of Si dangling bonds can drastically improve the ordered arrangement of the molecular nanowires [1]. For BDA/Au(111), the vdW interactions not only dramatically enhances the adsorption energies, but also significantly changes the molecular configurations. In the azobenzene/Ag(111) system, vdW-DF produces superior predictions for the adsorption energy than those obtained with other vdW corrected DFT approaches, providing evidence for the applicability of the vdW-DF method [2].

  13. Understanding interactions in the adsorption of gaseous organic compounds to indoor materials.

    PubMed

    Ongwandee, Maneerat; Chatsuvan, Thabtim; Suksawas Na Ayudhya, Wichitsawat; Morris, John

    2017-02-01

    We studied adsorption of organic compounds to a wide range of indoor materials, including plastics, gypsum board, carpet, and many others, under various relative humidity conditions by applying a conceptual model of the free energy of interfacial interactions of both van der Waals and Lewis acid-base (e-donor/acceptor) types. Data used for the analyses were partitioning coefficients of adsorbates between surface and gas phase obtained from three sources: our sorption experiments and two other published studies. Target organic compounds included apolars, monopolars, and bipolars. We established correlations of partitioning coefficients of adsorbates for a considered surface with the corresponding hexadecane/air partitioning coefficients of the adsorbates which are used as representative of a van der Waals descriptor instead of vapor pressure. The logarithmic adsorption coefficients of the apolars and weak bases, e.g., aliphatics and aromatics, to indoor materials linearly correlates well with the logarithmic hexadecane/air partitioning coefficients regardless of the surface polarity. The surface polarity in terms of e-donor/acceptor interactions becomes important for adsorption of the strong bases and bipolars, e.g., amines, phenols, and alcohols, to unpainted gypsum board. Under dry or humid conditions, the adsorption to flat plastic materials still linearly correlates well with the van der Waals interactions of the adsorbates, but no correlations were observed for the adsorption to fleecy or plush materials, e.g., carpet. Adsorption of highly bipolar compounds, e.g., phenol and isopropanol, is strongly affected by humidity, attributed to Lewis acid-base interactions with modified surfaces.

  14. Compressible liquid flow in nano- or micro-sized circular tubes considering wall-liquid Lifshitz-van der Waals interaction

    NASA Astrophysics Data System (ADS)

    Zhang, Xueling; Zhu, Weiyao; Cai, Qiang; Shi, Yutao; Wu, Xuehong; Jin, Tingxiang; Yang, Lianzhi; Song, Hongqing

    2018-06-01

    Although nano- and micro-scale phenomena for fluid flows are ubiquitous in tight oil reservoirs or in nano- or micro-sized channels, the mechanisms behind them remain unclear. In this study, we consider the wall-liquid interaction to investigate the flow mechanisms behind a compressible liquid flow in nano- or micro-sized circular tubes. We assume that the liquid is attracted by the wall surface primarily by the Lifshitz-van der Waals (LW) force, whereas electrostatic forces are negligible. The long-range LW force is thus introduced into the Navier-Stokes equations. The nonlinear equations of motion are decoupled by using the hydrodynamic vorticity-stream functions, from which an approximate analytical perturbation solution is obtained. The proposed model considers the LW force and liquid compressibility to obtain the velocity and pressure fields, which are consistent with experimentally observed micro-size effects. A smaller tube radius implies smaller dimensionless velocity, and when the tube radius decreases to a certain radius Rm, a fluid no longer flows, where Rm is the lower limit of the movable-fluid radius. The radius Rm is calculated, and the results are consistent with previous experimental results. These results reveal that micro-size effects are caused by liquid compressibility and wall-liquid interactions, such as the LW force, for a liquid flowing in nano- or micro-sized channels or pores. The attractive LW force enhances the flow's radial resistance, and the liquid compressibility transmits the radial resistance to the streaming direction via volume deformation, thereby decreasing the streaming velocity.

  15. Understanding decomposition and encapsulation energies of structure I and II clathrate hydrates

    NASA Astrophysics Data System (ADS)

    Alavi, Saman; Ohmura, Ryo

    2016-10-01

    When compressed with water or ice under high pressure and low temperature conditions, some gases form solid gas hydrate inclusion compounds which have higher melting points than ice under those pressures. In this work, we study the balance of the guest-water and water-water interaction energies that lead to the formation of the clathrate hydrate phases. In particular, molecular dynamics simulations with accurate water potentials are used to study the energetics of the formation of structure I (sI) and II (sII) clathrate hydrates of methane, ethane, and propane. The dissociation enthalpy of the clathrate hydrate phases, the encapsulation enthalpy of methane, ethane, and propane guests in the corresponding phases, and the average bonding enthalpy of water molecules are calculated and compared with accurate calorimetric measurements and previous classical and quantum mechanical calculations, when available. The encapsulation energies of methane, ethane, and propane guests stabilize the small and large sI and sII hydrate cages, with the larger molecules giving larger encapsulation energies. The average water-water interactions are weakened in the sI and sII phases compared to ice. The relative magnitudes of the van der Waals potential energy in ice and the hydrate phases are similar, but in the ice phase, the electrostatic interactions are stronger. The stabilizing guest-water "hydrophobic" interactions compensate for the weaker water-water interactions and stabilize the hydrate phases. A number of common assumptions regarding the guest-cage water interactions are used in the van der Waals-Platteeuw statistical mechanical theory to predict the clathrate hydrate phase stability under different pressure-temperature conditions. The present calculations show that some of these assumptions may not accurately reflect the physical nature of the interactions between guest molecules and the lattice waters.

  16. Understanding decomposition and encapsulation energies of structure I and II clathrate hydrates.

    PubMed

    Alavi, Saman; Ohmura, Ryo

    2016-10-21

    When compressed with water or ice under high pressure and low temperature conditions, some gases form solid gas hydrate inclusion compounds which have higher melting points than ice under those pressures. In this work, we study the balance of the guest-water and water-water interaction energies that lead to the formation of the clathrate hydrate phases. In particular, molecular dynamics simulations with accurate water potentials are used to study the energetics of the formation of structure I (sI) and II (sII) clathrate hydrates of methane, ethane, and propane. The dissociation enthalpy of the clathrate hydrate phases, the encapsulation enthalpy of methane, ethane, and propane guests in the corresponding phases, and the average bonding enthalpy of water molecules are calculated and compared with accurate calorimetric measurements and previous classical and quantum mechanical calculations, when available. The encapsulation energies of methane, ethane, and propane guests stabilize the small and large sI and sII hydrate cages, with the larger molecules giving larger encapsulation energies. The average water-water interactions are weakened in the sI and sII phases compared to ice. The relative magnitudes of the van der Waals potential energy in ice and the hydrate phases are similar, but in the ice phase, the electrostatic interactions are stronger. The stabilizing guest-water "hydrophobic" interactions compensate for the weaker water-water interactions and stabilize the hydrate phases. A number of common assumptions regarding the guest-cage water interactions are used in the van der Waals-Platteeuw statistical mechanical theory to predict the clathrate hydrate phase stability under different pressure-temperature conditions. The present calculations show that some of these assumptions may not accurately reflect the physical nature of the interactions between guest molecules and the lattice waters.

  17. Two body and multibody interaction in a cold Rydberg gas

    NASA Astrophysics Data System (ADS)

    Han, Jianing; Gallagher, Tom

    2009-05-01

    Cold Rydberg atoms trapped in a Magneto Optical Trap (MOT) are not isolated and they tend to bond through dipole-dipole and multiple-multiple interactions between Rydberg atoms. The dipole-dipole interaction and van der Waals interaction between two atoms have been intensively studied. However, the fact that the dipole-dipole interaction and van der Waals interaction show the same size of broadening, studied by Raithel's group, and there is transition between two molecular states, studied by Farooqi and Overstreet, can not be explained by the two atom picture. The purpose of this paper is to show the multibody nature of a dense cold Rydberg gas by studying the molecular state microwave spectrum. Specifically, single body, two body and three body interaction regions are separated. Moreover, the multibody energy levels for selected geometries are calculated. In addition, multibody blockade will be discussed. [3pt] [1] A. Reinhard, K. C. Younge, T. Cubel Liebisch, B. Knuffman, P. R. Berman, and G. Raithel, Phys. Rev. Lett. 100, 233201 (2008).[0pt] [2] S.M. Farooqi, D. Tong, S. Krishnan, J. Stanojevic,Y.P. Zhang, J.R. Ensher, A.S. Estrin, C. Boisseau, R. Cote, E.E. Eyler, and P.L. Gould, Phys. Rev. Lett. 91, 183002 (2003).[0pt] [3] K. Richard Overstreet, Arne Schwettmann, Jonathan Tallant, and James P. Shaffer, Phys. Rev. A 76, 011403 (2007).

  18. Precise, Self-Limited Epitaxy of Ultrathin Organic Semiconductors and Heterojunctions Tailored by van der Waals Interactions.

    PubMed

    Wu, Bing; Zhao, Yinghe; Nan, Haiyan; Yang, Ziyi; Zhang, Yuhan; Zhao, Huijuan; He, Daowei; Jiang, Zonglin; Liu, Xiaolong; Li, Yun; Shi, Yi; Ni, Zhenhua; Wang, Jinlan; Xu, Jian-Bin; Wang, Xinran

    2016-06-08

    Precise assembly of semiconductor heterojunctions is the key to realize many optoelectronic devices. By exploiting the strong and tunable van der Waals (vdW) forces between graphene and organic small molecules, we demonstrate layer-by-layer epitaxy of ultrathin organic semiconductors and heterostructures with unprecedented precision with well-defined number of layers and self-limited characteristics. We further demonstrate organic p-n heterojunctions with molecularly flat interface, which exhibit excellent rectifying behavior and photovoltaic responses. The self-limited organic molecular beam epitaxy (SLOMBE) is generically applicable for many layered small-molecule semiconductors and may lead to advanced organic optoelectronic devices beyond bulk heterojunctions.

  19. Hydrogen bonding and pi-stacking: how reliable are force fields? A critical evaluation of force field descriptions of nonbonded interactions.

    PubMed

    Paton, Robert S; Goodman, Jonathan M

    2009-04-01

    We have evaluated the performance of a set of widely used force fields by calculating the geometries and stabilization energies for a large collection of intermolecular complexes. These complexes are representative of a range of chemical and biological systems for which hydrogen bonding, electrostatic, and van der Waals interactions play important roles. Benchmark energies are taken from the high-level ab initio values in the JSCH-2005 and S22 data sets. All of the force fields underestimate stabilization resulting from hydrogen bonding, but the energetics of electrostatic and van der Waals interactions are described more accurately. OPLSAA gave a mean unsigned error of 2 kcal mol(-1) for all 165 complexes studied, and outperforms DFT calculations employing very large basis sets for the S22 complexes. The magnitude of hydrogen bonding interactions are severely underestimated by all of the force fields tested, which contributes significantly to the overall mean error; if complexes which are predominantly bound by hydrogen bonding interactions are discounted, the mean unsigned error of OPLSAA is reduced to 1 kcal mol(-1). For added clarity, web-based interactive displays of the results have been developed which allow comparisons of force field and ab initio geometries to be performed and the structures viewed and rotated in three dimensions.

  20. Magnetic behavior and spin-lattice coupling in cleavable van der Waals layered CrCl 3 crystals

    DOE PAGES

    McGuire, Michael A.; Clark, Genevieve; KC, Santosh; ...

    2017-06-19

    CrCl 3 is a layered insulator that undergoes a crystallographic phase transition below room temperature and orders antiferromagnetically at low temperature. Weak van der Waals bonding between the layers and ferromagnetic in-plane magnetic order make it a promising material for obtaining atomically thin magnets and creating van der Waals heterostructures. In this work we have grown crystals of CrCl 3, revisited the structural and thermodynamic properties of the bulk material, and explored mechanical exfoliation of the crystals. We find two distinct anomalies in the heat capacity at 14 and 17 K confirming that the magnetic order develops in two stagesmore » on cooling, with ferromagnetic correlations forming before long-range antiferromagnetic order develops between them. This scenario is supported by magnetization data. A magnetic phase diagram is constructed from the heat capacity and magnetization results. We also find an anomaly in the magnetic susceptibility at the crystallographic phase transition, indicating some coupling between the magnetism and the lattice. First-principles calculations accounting for van der Waals interactions also indicate spin-lattice coupling, and find multiple nearly degenerate crystallographic and magnetic structures consistent with the experimental observations. Lastly, we demonstrate that monolayer and few-layer CrCl 3 specimens can be produced from the bulk crystals by exfoliation, providing a path for the study of heterostructures and magnetism in ultrathin crystals down to the monolayer limit.« less

  1. Magnetic behavior and spin-lattice coupling in cleavable van der Waals layered CrCl 3 crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGuire, Michael A.; Clark, Genevieve; KC, Santosh

    CrCl 3 is a layered insulator that undergoes a crystallographic phase transition below room temperature and orders antiferromagnetically at low temperature. Weak van der Waals bonding between the layers and ferromagnetic in-plane magnetic order make it a promising material for obtaining atomically thin magnets and creating van der Waals heterostructures. In this work we have grown crystals of CrCl 3, revisited the structural and thermodynamic properties of the bulk material, and explored mechanical exfoliation of the crystals. We find two distinct anomalies in the heat capacity at 14 and 17 K confirming that the magnetic order develops in two stagesmore » on cooling, with ferromagnetic correlations forming before long-range antiferromagnetic order develops between them. This scenario is supported by magnetization data. A magnetic phase diagram is constructed from the heat capacity and magnetization results. We also find an anomaly in the magnetic susceptibility at the crystallographic phase transition, indicating some coupling between the magnetism and the lattice. First-principles calculations accounting for van der Waals interactions also indicate spin-lattice coupling, and find multiple nearly degenerate crystallographic and magnetic structures consistent with the experimental observations. Lastly, we demonstrate that monolayer and few-layer CrCl 3 specimens can be produced from the bulk crystals by exfoliation, providing a path for the study of heterostructures and magnetism in ultrathin crystals down to the monolayer limit.« less

  2. Highly accurate potential energy surface for the He-H2 dimer

    NASA Astrophysics Data System (ADS)

    Bakr, Brandon W.; Smith, Daniel G. A.; Patkowski, Konrad

    2013-10-01

    A new highly accurate interaction potential is constructed for the He-H2 van der Waals complex. This potential is fitted to 1900 ab initio energies computed at the very large-basis coupled-cluster level and augmented by corrections for higher-order excitations (up to full configuration interaction level) and the diagonal Born-Oppenheimer correction. At the vibrationally averaged H-H bond length of 1.448736 bohrs, the well depth of our potential, 15.870 ± 0.065 K, is nearly 1 K larger than the most accurate previous studies have indicated. In addition to constructing our own three-dimensional potential in the van der Waals region, we present a reparameterization of the Boothroyd-Martin-Peterson potential surface [A. I. Boothroyd, P. G. Martin, and M. R. Peterson, J. Chem. Phys. 119, 3187 (2003)] that is suitable for all configurations of the triatomic system. Finally, we use the newly developed potentials to compute the properties of the lone bound states of 4He-H2 and 3He-H2 and the interaction second virial coefficient of the hydrogen-helium mixture.

  3. Fluorimetric study on the interaction between Norfloxacin and Proflavine hemisulphate.

    PubMed

    More, Vishalkumar R; Anbhule, Prashant V; Lee, Sang H; Patil, Shivajirao R; Kolekar, Govind B

    2011-07-01

    The interaction between Norfloxacin (NF) and Proflavine hemisulphate (PF) was investigated by spectroscopic tools like UV-VIS absorption and Fluorescence spectroscopy. It was proved that fluorescence quenching of NF by PF is due to the formation of NF-PF complex which was supported by UV-VIS absorption study. The study of thermodynamic parameters suggested that the key interacting forces are hydrogen bond and van der Waal's interactions and the binding interaction was spontaneous. The distance r between NF and PF was obtained according to the Förster's theory of non-radiative energy transfer. The fluorescence quenching mechanism was applied to estimate PF directly from pharmaceutical samples. © Springer Science+Business Media, LLC 2011

  4. Thermal electron attachment to van der Waals molecules containing O/sub 2/

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huo, W.M.; Fessenden, R.W.; Bauschlicher C.W. Jr.

    1984-12-15

    Calculations on O/sub 2/xN/sub 2/ and O/sup -//sub 2/xN/sub 2/ have been carried out to explain the large enhancement in the attachment rate of thermal electrons found in van der Waals molecules containing O/sub 2/. Two geometries, T-shape and linear, are used. SCF wave functions are used to represent both the neutral molecule and the ion. The incoming electron is approximated by a plane wave. The width is determined using a shielded polarization potential. The effect of additional vibrational structures of the van der Waals molecule on the attachment process is investigated by studying the O/sub 2/--N/sub 2/ stretching modemore » using Lennard-Jones potentials. Symmetry breaking, which allows the molecule to attach a p wave electron, is shown to play a primary role. The lowering of resonance energy, due to a deeper Lennard-Jones potential of O/sup -//sub 2/xN/sub 2/ in comparison with O/sub 2/xN/sub 2/, furthers the enhancement. The calculated attachment rate is comparable to that determined by Shimamori and Fessenden, but differs from the recent values obtained by Toriumi and Hatano, who used a different set of reactions to interpret their data.« less

  5. Van der Waals Epitaxy of GaSe/Graphene Heterostructure: Electronic and Interfacial Properties.

    PubMed

    Ben Aziza, Zeineb; Henck, Hugo; Pierucci, Debora; Silly, Mathieu G; Lhuillier, Emmanuel; Patriarche, Gilles; Sirotti, Fausto; Eddrief, Mahmoud; Ouerghi, Abdelkarim

    2016-10-07

    Stacking two-dimensional materials in so-called van der Waals (vdW) heterostructures, like the combination of GaSe and graphene, provides the ability to obtain hybrid systems which are suitable to design optoelectronic devices. Here, we report the structural and electronic properties of the direct growth of multilayered GaSe by Molecular beam Epitaxy (MBE) on graphene. Reflection high-energy electron diffraction (RHEED) images exhibited sharp streaky features indicative of high quality GaSe layer produced via a vdW epitaxy. Micro-Raman spectroscopy showed that, after the vdW hetero-interface formation, the Raman signature of pristine graphene is preserved. However, the GaSe film tuned the charge density of graphene layer by shifting the Dirac point by about 80 meV toward lower binding energies, attesting an electron transfer from graphene to GaSe. Angle-resolved photoemission spectroscopy (ARPES) measurements showed that the maximum of the valence band of few layers of GaSe are located at the Γ point at a binding energy of about -0.73 eV relatively to the Fermi level (p-type doping). From the ARPES measurements, a hole effective mass defined along the ΓM direction and equal to about m*/m0 = -1.1 was determined. By coupling the ARPES data with high resolution X-ray photoemission spectroscopy (HR-XPS) measurements, the Schottky interface barrier height was estimated to be 1.2 eV. These findings allow deeper understanding of the interlayer interactions and the electronic structure of GaSe/graphene vdW heterostructure.

  6. Accurate prediction of polarised high order electrostatic interactions for hydrogen bonded complexes using the machine learning method kriging.

    PubMed

    Hughes, Timothy J; Kandathil, Shaun M; Popelier, Paul L A

    2015-02-05

    As intermolecular interactions such as the hydrogen bond are electrostatic in origin, rigorous treatment of this term within force field methodologies should be mandatory. We present a method able of accurately reproducing such interactions for seven van der Waals complexes. It uses atomic multipole moments up to hexadecupole moment mapped to the positions of the nuclear coordinates by the machine learning method kriging. Models were built at three levels of theory: HF/6-31G(**), B3LYP/aug-cc-pVDZ and M06-2X/aug-cc-pVDZ. The quality of the kriging models was measured by their ability to predict the electrostatic interaction energy between atoms in external test examples for which the true energies are known. At all levels of theory, >90% of test cases for small van der Waals complexes were predicted within 1 kJ mol(-1), decreasing to 60-70% of test cases for larger base pair complexes. Models built on moments obtained at B3LYP and M06-2X level generally outperformed those at HF level. For all systems the individual interactions were predicted with a mean unsigned error of less than 1 kJ mol(-1). Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Encapsulation of cisplatin as an anti-cancer drug into boron-nitride and carbon nanotubes: Molecular simulation and free energy calculation.

    PubMed

    Roosta, Sara; Hashemianzadeh, Seyed Majid; Ketabi, Sepideh

    2016-10-01

    Encapsulation of cisplatin anticancer drug into the single walled (10, 0) carbon nanotube and (10, 0) boron-nitride nanotube was investigated by quantum mechanical calculations and Monte Carlo Simulation in aqueous solution. Solvation free energies and complexation free energies of the cisplatin@ carbon nanotube and cisplatin@ boron-nitride nanotube complexes was determined as well as radial distribution functions of entitled compounds. Solvation free energies of cisplatin@ carbon nanotube and cisplatin@ boron-nitride nanotube were -4.128kcalmol(-1) and -2457.124kcalmol(-1) respectively. The results showed that cisplatin@ boron-nitride nanotube was more soluble species in water. In addition electrostatic contribution of the interaction of boron- nitride nanotube complex and solvent was -281.937kcalmol(-1) which really more than Van der Waals and so the electrostatic interactions play a distinctive role in the solvation free energies of boron- nitride nanotube compounds. On the other hand electrostatic part of the interaction of carbon nanotube complex and solvent were almost the same as Van der Waals contribution. Complexation free energies were also computed to study the stability of related structures and the free energies were negative (-374.082 and -245.766kcalmol(-1)) which confirmed encapsulation of drug into abovementioned nanotubes. However, boron-nitride nanotubes were more appropriate for encapsulation due to their larger solubility in aqueous solution. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Iterative combining rules for the van der Waals potentials of mixed rare gas systems

    NASA Astrophysics Data System (ADS)

    Wei, L. M.; Li, P.; Tang, K. T.

    2017-05-01

    An iterative procedure is introduced to make the results of some simple combining rules compatible with the Tang-Toennies potential model. The method is used to calculate the well locations Re and the well depths De of the van der Waals potentials of the mixed rare gas systems from the corresponding values of the homo-nuclear dimers. When the ;sizes; of the two interacting atoms are very different, several rounds of iteration are required for the results to converge. The converged results can be substantially different from the starting values obtained from the combining rules. However, if the sizes of the interacting atoms are close, only one or even no iteration is necessary for the results to converge. In either case, the converged results are the accurate descriptions of the interaction potentials of the hetero-nuclear dimers.

  9. Interfacial interactions between plastic particles in plastics flotation.

    PubMed

    Wang, Chong-qing; Wang, Hui; Gu, Guo-hua; Fu, Jian-gang; Lin, Qing-quan; Liu, You-nian

    2015-12-01

    Plastics flotation used for recycling of plastic wastes receives increasing attention for its industrial application. In order to study the mechanism of plastics flotation, the interfacial interactions between plastic particles in flotation system were investigated through calculation of Lifshitz-van der Waals (LW) function, Lewis acid-base (AB) Gibbs function, and the extended Derjaguin-Landau-Verwey-Overbeek potential energy profiles. The results showed that van der Waals force between plastic particles is attraction force in flotation system. The large hydrophobic attraction, caused by the AB Gibbs function, is the dominant interparticle force. Wetting agents present significant effects on the interfacial interactions between plastic particles. It is found that adsorption of wetting agents promotes dispersion of plastic particles and decreases the floatability. Pneumatic flotation may improve the recovery and purity of separated plastics through selective adsorption of wetting agents on plastic surface. The relationships between hydrophobic attraction and surface properties were also examined. It is revealed that there exists a three-order polynomial relationship between the AB Gibbs function and Lewis base component. Our finding provides some insights into mechanism of plastics flotation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Van der Waals corrected DFT study of adsorption of groups VA and VIA hydrides on graphene monoxide

    NASA Astrophysics Data System (ADS)

    Notash, M. Yaghoobi; Ebrahimzadeh, A. Rastkar

    2016-06-01

    Adsorption properties of H2O, H2S, NH3 and PH3 on graphene monoxide (GMO) nano flack are investigated using density functional theory (DFT). Calculations were carried out by van der Waals correction and general gradient approximation. The adsorption energies and charge transfer between species are obtained and discussed for the considered positions of adsorbate molecules. Charge transfer analysis show that the gas molecules act as an electron acceptor in all cases. The analysis of the adsorption energies suggest GMO can be a good candidate for the adsorption of these molecules.

  11. Investigation of allosteric modulation mechanism of metabotropic glutamate receptor 1 by molecular dynamics simulations, free energy and weak interaction analysis

    NASA Astrophysics Data System (ADS)

    Bai, Qifeng; Yao, Xiaojun

    2016-02-01

    Metabotropic glutamate receptor 1 (mGlu1), which belongs to class C G protein-coupled receptors (GPCRs), can be coupled with G protein to transfer extracellular signal by dimerization and allosteric regulation. Unraveling the dimer packing and allosteric mechanism can be of great help for understanding specific regulatory mechanism and designing more potential negative allosteric modulator (NAM). Here, we report molecular dynamics simulation studies of the modulation mechanism of FITM on the wild type, T815M and Y805A mutants of mGlu1 through weak interaction analysis and free energy calculation. The weak interaction analysis demonstrates that van der Waals (vdW) and hydrogen bonding play an important role on the dimer packing between six cholesterol molecules and mGlu1 as well as the interaction between allosteric sites T815, Y805 and FITM in wild type, T815M and Y805A mutants of mGlu1. Besides, the results of free energy calculations indicate that secondary binding pocket is mainly formed by the residues Thr748, Cys746, Lys811 and Ser735 except for FITM-bound pocket in crystal structure. Our results can not only reveal the dimer packing and allosteric regulation mechanism, but also can supply useful information for the design of potential NAM of mGlu1.

  12. A preference for edgewise interactions between aromatic rings and carboxylate anions: the biological relevance of anion-quadrupole interactions.

    PubMed

    Jackson, Michael R; Beahm, Robert; Duvvuru, Suman; Narasimhan, Chandrasegara; Wu, Jun; Wang, Hsin-Neng; Philip, Vivek M; Hinde, Robert J; Howell, Elizabeth E

    2007-07-19

    Noncovalent interactions are quite important in biological structure-function relationships. To study the pairwise interaction of aromatic amino acids (phenylalanine, tyrosine, tryptophan) with anionic amino acids (aspartic and glutamic acids), small molecule mimics (benzene, phenol or indole interacting with formate) were used at the MP2 level of theory. The overall energy associated with an anion-quadrupole interaction is substantial (-9.5 kcal/mol for a benzene-formate planar dimer at van der Waals contact distance), indicating the electropositive ring edge of an aromatic group can interact with an anion. Deconvolution of the long-range coplanar interaction energy into fractional contributions from charge-quadrupole interactions, higher-order electrostatic interactions, and polarization terms was achieved. The charge-quadrupole term contributes between 30 to 45% of the total MP2 benzene-formate interaction; most of the rest of the interaction arises from polarization contributions. Additional studies of the Protein Data Bank (PDB Select) show that nearly planar aromatic-anionic amino acid pairs occur more often than expected from a random angular distribution, while axial aromatic-anionic pairs occur less often than expected; this demonstrates the biological relevance of the anion-quadrupole interaction. While water may mitigate the strength of these interactions, they may be numerous in a typical protein structure, so their cumulative effect could be substantial.

  13. Near-Unity Absorption in van der Waals Semiconductors for Ultrathin Optoelectronics.

    PubMed

    Jariwala, Deep; Davoyan, Artur R; Tagliabue, Giulia; Sherrott, Michelle C; Wong, Joeson; Atwater, Harry A

    2016-09-14

    We demonstrate near-unity, broadband absorbing optoelectronic devices using sub-15 nm thick transition metal dichalcogenides (TMDCs) of molybdenum and tungsten as van der Waals semiconductor active layers. Specifically, we report that near-unity light absorption is possible in extremely thin (<15 nm) van der Waals semiconductor structures by coupling to strongly damped optical modes of semiconductor/metal heterostructures. We further fabricate Schottky junction devices using these highly absorbing heterostructures and characterize their optoelectronic performance. Our work addresses one of the key criteria to enable TMDCs as potential candidates to achieve high optoelectronic efficiency.

  14. Self-Aligned van der Waals Heterojunction Diodes and Transistors.

    PubMed

    Sangwan, Vinod K; Beck, Megan E; Henning, Alex; Luo, Jiajia; Bergeron, Hadallia; Kang, Junmo; Balla, Itamar; Inbar, Hadass; Lauhon, Lincoln J; Hersam, Mark C

    2018-02-14

    A general self-aligned fabrication scheme is reported here for a diverse class of electronic devices based on van der Waals materials and heterojunctions. In particular, self-alignment enables the fabrication of source-gated transistors in monolayer MoS 2 with near-ideal current saturation characteristics and channel lengths down to 135 nm. Furthermore, self-alignment of van der Waals p-n heterojunction diodes achieves complete electrostatic control of both the p-type and n-type constituent semiconductors in a dual-gated geometry, resulting in gate-tunable mean and variance of antiambipolar Gaussian characteristics. Through finite-element device simulations, the operating principles of source-gated transistors and dual-gated antiambipolar devices are elucidated, thus providing design rules for additional devices that employ self-aligned geometries. For example, the versatility of this scheme is demonstrated via contact-doped MoS 2 homojunction diodes and mixed-dimensional heterojunctions based on organic semiconductors. The scalability of this approach is also shown by fabricating self-aligned short-channel transistors with subdiffraction channel lengths in the range of 150-800 nm using photolithography on large-area MoS 2 films grown by chemical vapor deposition. Overall, this self-aligned fabrication method represents an important step toward the scalable integration of van der Waals heterojunction devices into more sophisticated circuits and systems.

  15. Investigation of a van der Waals complex with C 1 symmetry: the free-jet rotational spectrum of 1,2-difluoroethane-Ar

    NASA Astrophysics Data System (ADS)

    Melandri, Sonia; Velino, Biagio; Favero, Paolo G.; Dell'Erba, Adele; Caminati, Walther

    2000-04-01

    The van der Waals complex between Ar and 1,2-difluoroethane has been investigated by free-jet absorption millimeter-wave spectroscopy in the frequency range 60-78 GHz. The analysis of the spectroscopic constants derived from the rotational spectrum allowed the determination of the dimer's structure. 1,2-Difluoroethane is in the gauche conformation and the Ar atom is in a position stabilized by the interaction with one fluorine and the two carbon atoms. The distance between Ar and the center of mass (CM) of the monomer is 3.968 Å, the angle between the Ar-CM line and the C-C bond is 65° and the dihedral angle Ar-CM-C-C is 99°. From centrifugal distortion effects the dissociation energy of the complex has been estimated to be 2.1 kJ/mol.

  16. X-ray electron density investigation of chemical bonding in van der Waals materials

    NASA Astrophysics Data System (ADS)

    Kasai, Hidetaka; Tolborg, Kasper; Sist, Mattia; Zhang, Jiawei; Hathwar, Venkatesha R.; Filsø, Mette Ø.; Cenedese, Simone; Sugimoto, Kunihisa; Overgaard, Jacob; Nishibori, Eiji; Iversen, Bo B.

    2018-03-01

    Van der Waals (vdW) solids have attracted great attention ever since the discovery of graphene, with the essential feature being the weak chemical bonding across the vdW gap. The nature of these weak interactions is decisive for many extraordinary properties, but it is a strong challenge for current theory to accurately model long-range electron correlations. Here we use synchrotron X-ray diffraction data to precisely determine the electron density in the archetypal vdW solid, TiS2, and compare the results with density functional theory calculations. Quantitative agreement is observed for the chemical bonding description in the covalent TiS2 slabs, but significant differences are identified for the interactions across the gap, with experiment revealing more electron deformation than theory. The present data provide an experimental benchmark for testing theoretical models of weak chemical bonding.

  17. Finite-Size Effects on the Behavior of the Susceptibility in van der Waals Films Bounded by Strongly Absorbing Substrates

    NASA Technical Reports Server (NTRS)

    Dantchev, Daniel; Rudnick, Joseph; Barmatz, M.

    2007-01-01

    We study critical point finite-size effects in the case of the susceptibility of a film in which interactions are characterized by a van der Waals-type power law tail. The geometry is appropriate to a slab-like system with two bounding surfaces. Boundary conditions are consistent with surfaces that both prefer the same phase in the low temperature, or broken symmetry, state. We take into account both interactions within the system and interactions between the constituents of the system and the material surrounding it. Specific predictions are made with respect to the behavior of 3He and 4He films in the vicinity of their respective liquid-vapor critical points.

  18. Infrared Spectroscopy of the H2/HD/D2-O2 Van Der Waals Complexes

    NASA Astrophysics Data System (ADS)

    Raston, Paul; Bunn, Hayley

    2016-06-01

    Hydrogen is the most abundant element in the universe and oxygen is the third, so understanding the interaction between the two in their different forms is important to understanding astrochemical processes. The interaction between H2 and O2 has been explored in low energy scattering experiments and by far infrared synchrotron spectroscopy of the van der Waals complex. The far infrared spectra suggest a parallel stacked average structure with seven bound rotationally excited states. Here, we present the far infrared spectrum of HD/D2-O2 and the mid infrared spectrum of H2-O2 at 80 K, recorded at the infrared beamline facility of the Australian Synchrotron. We observed 'sharp' peaks in the mid infrared region, corresponding to the end over end rotation of H2-O2, that are comparatively noisier than analogous peaks in the far infrared where the synchrotron light is brightest. The larger reduced mass of HD and D2 compared to H2 is expected to result in more rotational bound states and narrower bands. The latest results in our ongoing efforts to explore this system will be presented. Y. Kalugina, et al., Phys. Chem. Chem. Phys. 14, 16458 (2012) S. Chefdeville et al. Science 341, 1094 (2013) H. Bunn et al. ApJ 799, 65 (2015)

  19. Excitons in one-dimensional van der Waals materials: Sb2S3 nanoribbons

    NASA Astrophysics Data System (ADS)

    Caruso, Fabio; Filip, Marina R.; Giustino, Feliciano

    2015-09-01

    Antimony sulphide Sb2S3 has emerged as a promising material for a variety of energy applications ranging from solar cells to thermoelectrics and solid-state batteries. The most distinctive feature of Sb2S3 is its crystal structure, which consists of parallel 1-nm-wide ribbons held together by weak van der Waals forces. This structure clearly suggests that it should be possible to isolate individual Sb2S3 ribbons using micromechanical or liquid-phase exfoliation techniques. However, it is not clear yet how to identify the ribbons postexfoliation using standard optical probes. Using state-of-the-art first-principles calculations based on many-body perturbation theory, here we show that individual ribbons of Sb2S3 carry optical signatures clearly distinct from those of bulk Sb2S3 . In particular, we find a large blueshift of the optical absorption edge (from 1.38 to 2.30 eV) resulting from the interplay between a reduced screening and the formation of bound excitons. In addition, we observe a transition from an indirect band gap to a direct gap, suggesting an enhanced photoluminescence in the green. These unique fingerprints will enable extending the research on van der Waals materials to the case of one-dimensional chalchogenides.

  20. [Noncovalent cation-π interactions--their role in nature].

    PubMed

    Fink, Krzysztof; Boratyński, Janusz

    2014-11-07

    Non-covalent interactions play an extremely important role in organisms. The main non-covalent interactions in nature are: ion-ion interactions, dipole-dipole interactions, hydrogen bonds, and van der Waals interactions. A new kind of intermolecular interactions--cation-π interactions--is gaining increasing attention. These interactions occur between a cation and a π system. The main contributors to cation-π interactions are electrostatic, polarization and, to a lesser extent, dispersion interactions. At first, cation-π interactions were studied in a gas phase, with metal cation-aromatic system complexes. The characteristics of these complexes are as follows: an increase of cation atomic number leads to a decrease of interaction energy, and an increase of cation charge leads to an increase of interaction energy. Aromatic amino acids bind with metal cations mainly through interactions with their main chain. Nevertheless, cation-π interaction with a hydrophobic side chain significantly enhances binding energy. In water solutions most cations preferentially interact with water molecules rather than aromatic systems. Cation-π interactions occur in environments with lower accessibility to a polar solvent. Cation-π interactions can have a stabilizing role on the secondary, tertiary and quaternary structure of proteins. These interactions play an important role in substrate or ligand binding sites in many proteins, which should be taken into consideration when the screening of effective inhibitors for these proteins is carried out. Cation-π interactions are abundant and play an important role in many biological processes.

  1. Two- and three-body interatomic dispersion energy contributions to binding in molecules and solids

    NASA Astrophysics Data System (ADS)

    Anatole von Lilienfeld, O.; Tkatchenko, Alexandre

    2010-06-01

    We present numerical estimates of the leading two- and three-body dispersion energy terms in van der Waals interactions for a broad variety of molecules and solids. The calculations are based on London and Axilrod-Teller-Muto expressions where the required interatomic dispersion energy coefficients, C6 and C9, are computed "on the fly" from the electron density. Inter- and intramolecular energy contributions are obtained using the Tang-Toennies (TT) damping function for short interatomic distances. The TT range parameters are equally extracted on the fly from the electron density using their linear relationship to van der Waals radii. This relationship is empiricially determined for all the combinations of He-Xe rare gas dimers, as well as for the He and Ar trimers. The investigated systems include the S22 database of noncovalent interactions, Ar, benzene and ice crystals, bilayer graphene, C60 dimer, a peptide (Ala10), an intercalated drug-DNA model [ellipticine-d(CG)2], 42 DNA base pairs, a protein (DHFR, 2616 atoms), double stranded DNA (1905 atoms), and 12 molecular crystal polymorphs from crystal structure prediction blind test studies. The two- and three-body interatomic dispersion energies are found to contribute significantly to binding and cohesive energies, for bilayer graphene the latter reaches 50% of experimentally derived binding energy. These results suggest that interatomic three-body dispersion potentials should be accounted for in atomistic simulations when modeling bulky molecules or condensed phase systems.

  2. Semi-empirical correlation for binary interaction parameters of the Peng-Robinson equation of state with the van der Waals mixing rules for the prediction of high-pressure vapor-liquid equilibrium.

    PubMed

    Fateen, Seif-Eddeen K; Khalil, Menna M; Elnabawy, Ahmed O

    2013-03-01

    Peng-Robinson equation of state is widely used with the classical van der Waals mixing rules to predict vapor liquid equilibria for systems containing hydrocarbons and related compounds. This model requires good values of the binary interaction parameter kij . In this work, we developed a semi-empirical correlation for kij partly based on the Huron-Vidal mixing rules. We obtained values for the adjustable parameters of the developed formula for over 60 binary systems and over 10 categories of components. The predictions of the new equation system were slightly better than the constant-kij model in most cases, except for 10 systems whose predictions were considerably improved with the new correlation.

  3. Intermolecular orbital interaction in π systems

    NASA Astrophysics Data System (ADS)

    Zhao, Rundong; Zhang, Rui-Qin

    2018-04-01

    Intermolecular interactions, in regard to which people tend to emphasise the noncovalent van der Waals (vdW) forces when conducting investigations throughout chemistry, can influence the structure, stability and function of molecules and materials. Despite the ubiquitous nature of vdW interactions, a simplified electrostatic model has been popularly adopted to explain common intermolecular interactions, especially those existing in π-involved systems. However, this classical model has come under fire in revealing specific issues such as substituent effects, due to its roughness; and it has been followed in past decades by sundry explanations which sometimes bring in nebulous descriptions. In this account, we try to summarise and present a unified model for describing and analysing the binding mechanism of such systems from the viewpoint of energy decomposition. We also emphasise a commonly ignored factor - orbital interaction, pointing out that the noncovalent intermolecular orbital interactions actually exhibit similar bonding and antibonding phenomena as those in covalent bonds.

  4. Vibration-rotation-tunneling spectroscopy of the van der Waals Bond: A new look at intermolecular forces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, R.C.; Saykally, R.J.

    Measurements of the low-frequency van der Waals vibrations in weakly bound complexes by high-resolution laser spectroscopy provide a means to probe intermolecular forces at unprecedented levels of detail and precision. Several new methods are presently being used to record vibration/rotation-tunneling (VRT) transitions associated with the motions of the weak bonds in van der Waals clusters. The most direct measurements are those probing only the van der Waals modes themselves, which occur at far-infrared wavelengths. This article presents a review of the information on both intramolecular forces and intramolecular dynamics that has been obtained from far-infrared VRT spectra of 18 complexesmore » during the past several years. Some rotationally resolved measurements of van der Waals modes observed in combination with electronic or vibrational excitation are also discussed. 185 refs., 15 figs., 1 tab.« less

  5. A crossover in anisotropic nanomechanochemistry of van der Waals crystals

    NASA Astrophysics Data System (ADS)

    Shimamura, Kohei; Misawa, Masaaki; Li, Ying; Kalia, Rajiv K.; Nakano, Aiichiro; Shimojo, Fuyuki; Vashishta, Priya

    2015-12-01

    In nanoscale mechanochemistry, mechanical forces selectively break covalent bonds to essentially control chemical reactions. An archetype is anisotropic detonation of layered energetic molecular crystals bonded by van der Waals (vdW) interactions. Here, quantum molecular dynamics simulations reveal a crossover of anisotropic nanomechanochemistry of vdW crystal. Within 10-13 s from the passage of shock front, lateral collision produces NO2 via twisting and bending of nitro-groups and the resulting inverse Jahn-Teller effect, which is mediated by strong intra-layer hydrogen bonds. Subsequently, as we transition from heterogeneous to homogeneous mechanochemical regimes around 10-12 s, shock normal to multilayers becomes more reactive, producing H2O assisted by inter-layer N-N bond formation. These time-resolved results provide much needed atomistic understanding of nanomechanochemistry that underlies a wider range of technologies.

  6. Geometrothermodynamics of Van der Waals black hole

    NASA Astrophysics Data System (ADS)

    Hu, Yumin; Chen, Juhua; Wang, Yongjiu

    2017-12-01

    We study the geometrothermodynamics of a special asymptotically AdS black hole, i.e. Van der Waals ( VdW) black hole, in the extended phase space where the negative cosmological constant Λ can be regarded as thermodynamic pressure. Analysing some special conditions of this black hole with geometrothermodynamical method, we find a good correlation with ordinary cases according to the state equation.

  7. The nature of the interlayer interaction in bulk and few-layer phosphorus

    DOE PAGES

    Shulenburger, Luke; Baczewski, A. D.; Zhu, Z.; ...

    2015-11-02

    Sensitive dependence of the electronic structure on the number of layers in few-layer phosphorene raises a question about the true nature of the interlayer interaction in so-called van der Waals (vdW) solids . We performed quantum Monte Carlo calculations and found that the interlayer interaction in bulk black phosphorus and related few-layer phosphorene is associated with a significant charge redistribution that is incompatible with purely dispersive forces and not captured by density functional theory calculations with different vdW corrected functionals. Lastly, these findings confirm the necessity of more sophisticated treatment of nonlocal electron correlation in total energy calculations.

  8. The Nature of the Interlayer Interaction in Bulk and Few-Layer Phosphorus.

    PubMed

    Shulenburger, L; Baczewski, A D; Zhu, Z; Guan, J; Tománek, D

    2015-12-09

    Sensitive dependence of the electronic structure on the number of layers in few-layer phosphorene raises a question about the true nature of the interlayer interaction in so-called "van der Waals (vdW) solids". We performed quantum Monte Carlo calculations and found that the interlayer interaction in bulk black phosphorus and related few-layer phosphorene is associated with a significant charge redistribution that is incompatible with purely dispersive forces and not captured by density functional theory calculations with different vdW corrected functionals. These findings confirm the necessity of more sophisticated treatment of nonlocal electron correlation in total energy calculations.

  9. Interface bonding in silicon oxide nanocontacts: interaction potentials and force measurements.

    PubMed

    Wierez-Kien, M; Craciun, A D; Pinon, A V; Roux, S Le; Gallani, J L; Rastei, M V

    2018-04-01

    The interface bonding between two silicon-oxide nanoscale surfaces has been studied as a function of atomic nature and size of contacting asperities. The binding forces obtained using various interaction potentials are compared with experimental force curves measured in vacuum with an atomic force microscope. In the limit of small nanocontacts (typically <10 3 nm 2 ) measured with sensitive probes the bonding is found to be influenced by thermal-induced fluctuations. Using interface interactions described by Morse, embedded atom model, or Lennard-Jones potential within reaction rate theory, we investigate three bonding types of covalent and van der Waals nature. The comparison of numerical and experimental results reveals that a Lennard-Jones-like potential originating from van der Waals interactions captures the binding characteristics of dry silicon oxide nanocontacts, and likely of other nanoscale materials adsorbed on silicon oxide surfaces. The analyses reveal the importance of the dispersive surface energy and of the effective contact area which is altered by stretching speeds. The mean unbinding force is found to decrease as the contact spends time in the attractive regime. This contact weakening is featured by a negative aging coefficient which broadens and shifts the thermal-induced force distribution at low stretching speeds.

  10. Interface bonding in silicon oxide nanocontacts: interaction potentials and force measurements

    NASA Astrophysics Data System (ADS)

    Wierez-Kien, M.; Craciun, A. D.; Pinon, A. V.; Le Roux, S.; Gallani, J. L.; Rastei, M. V.

    2018-04-01

    The interface bonding between two silicon-oxide nanoscale surfaces has been studied as a function of atomic nature and size of contacting asperities. The binding forces obtained using various interaction potentials are compared with experimental force curves measured in vacuum with an atomic force microscope. In the limit of small nanocontacts (typically <103 nm2) measured with sensitive probes the bonding is found to be influenced by thermal-induced fluctuations. Using interface interactions described by Morse, embedded atom model, or Lennard-Jones potential within reaction rate theory, we investigate three bonding types of covalent and van der Waals nature. The comparison of numerical and experimental results reveals that a Lennard-Jones-like potential originating from van der Waals interactions captures the binding characteristics of dry silicon oxide nanocontacts, and likely of other nanoscale materials adsorbed on silicon oxide surfaces. The analyses reveal the importance of the dispersive surface energy and of the effective contact area which is altered by stretching speeds. The mean unbinding force is found to decrease as the contact spends time in the attractive regime. This contact weakening is featured by a negative aging coefficient which broadens and shifts the thermal-induced force distribution at low stretching speeds.

  11. Characterization of rarefaction waves in van der Waals fluids

    NASA Astrophysics Data System (ADS)

    Yuen, Albert; Barnard, John J.

    2015-12-01

    We calculate the isentropic evolution of an instantaneously heated foil, assuming a van der Waals equation of state with the Maxwell construction. The analysis by Yuen and Barnard [Phys. Rev. E 92, 033019 (2015), 10.1103/PhysRevE.92.033019] is extended for the particular case of three degrees of freedom. We assume heating to temperatures in the vicinity of the critical point. The self-similar profiles of the rarefaction waves describing the evolution of the foil display plateaus in density and temperature due to a phase transition from the single-phase to the two-phase regime. The hydrodynamic equations are expressed in a dimensionless form and the solutions form a set of universal curves, depending on a single parameter: the dimensionless initial entropy. We characterize the rarefaction waves by calculating how the plateau length, density, pressure, temperature, velocity, internal energy, and sound speed vary with dimensionless initial entropy.

  12. A theoretical approach for estimation of ultimate size of bimetallic nanocomposites synthesized in microemulsion systems

    NASA Astrophysics Data System (ADS)

    Salabat, Alireza; Saydi, Hassan

    2012-12-01

    In this research a new idea for prediction of ultimate sizes of bimetallic nanocomposites synthesized in water-in-oil microemulsion system is proposed. In this method, by modifying Tabor Winterton approximation equation, an effective Hamaker constant was introduced. This effective Hamaker constant was applied in the van der Waals attractive interaction energy. The obtained effective van der Waals interaction energy was used as attractive contribution in the total interaction energy. The modified interaction energy was applied successfully to predict some bimetallic nanoparticles, at different mass fraction, synthesized in microemulsion system of dioctyl sodium sulfosuccinate (AOT)/isooctane.

  13. Communication: Local energetic analysis of the interfacial and surface energies of graphene from the single layer to graphite

    NASA Astrophysics Data System (ADS)

    Kocherlakota, Lakshmi S.; Krajina, Brad A.; Overney, René M.

    2015-12-01

    Recent advances in scanning probe methods that provide direct access to the surface free energy of inorganic layered materials in terms of the Hamaker constant yield energetic values for monolayer graphene that differ substantially, by a factor of around 0.4, from bulk graphite. The onset of bulk deviating energy values was observed at a multilayer slab thickness of ˜3 nm, corresponding to a layer number of 10. The findings, complemented with extractions from water contact angle measurements and calculated interlayer binding energies, find short-range ordinary van der Waals interactions to be most prominently affected by dimensional constraints and many-body interactions.

  14. Communication: Local energetic analysis of the interfacial and surface energies of graphene from the single layer to graphite.

    PubMed

    Kocherlakota, Lakshmi S; Krajina, Brad A; Overney, René M

    2015-12-28

    Recent advances in scanning probe methods that provide direct access to the surface free energy of inorganic layered materials in terms of the Hamaker constant yield energetic values for monolayer graphene that differ substantially, by a factor of around 0.4, from bulk graphite. The onset of bulk deviating energy values was observed at a multilayer slab thickness of ∼3 nm, corresponding to a layer number of 10. The findings, complemented with extractions from water contact angle measurements and calculated interlayer binding energies, find short-range ordinary van der Waals interactions to be most prominently affected by dimensional constraints and many-body interactions.

  15. Assessing Ion-Water Interactions in the AMOEBA Force Field Using Energy Decomposition Analysis of Electronic Structure Calculations.

    PubMed

    Mao, Yuezhi; Demerdash, Omar; Head-Gordon, Martin; Head-Gordon, Teresa

    2016-11-08

    AMOEBA is a molecular mechanics force field that addresses some of the shortcomings of a fixed partial charge model, by including permanent atomic point multipoles through quadrupoles, as well as many-body polarization through the use of point inducible dipoles. In this work, we investigate how well AMOEBA formulates its non-bonded interactions, and how it implicitly incorporates quantum mechanical effects such as charge penetration (CP) and charge transfer (CT), for water-water and water-ion interactions. We find that AMOEBA's total interaction energies, as a function of distance and over angular scans for the water dimer and for a range of water-monovalent cations, agree well with an advanced density functional theory (DFT) model, whereas the water-halides and water-divalent cations show significant disagreement with the DFT result, especially in the compressed region when the two fragments overlap. We use a second-generation energy decomposition analysis (EDA) scheme based on absolutely localized molecular orbitals (ALMOs) to show that in the best cases AMOEBA relies on cancellation of errors by softening of the van der Waals (vdW) wall to balance permanent electrostatics that are too unfavorable, thereby compensating for the missing CP effect. CT, as another important stabilizing effect not explicitly taken into account in AMOEBA, is also found to be incorporated by the softened vdW interaction. For the water-halides and water-divalent cations, this compensatory approach is not as well executed by AMOEBA over all distances and angles, wherein permanent electrostatics remains too unfavorable and polarization is overdamped in the former while overestimated in the latter. We conclude that the DFT-based EDA approach can help refine a next-generation AMOEBA model that either realizes a better cancellation of errors for problematic cases like those illustrated here, or serves to guide the parametrization of explicit functional forms for short-range contributions from

  16. Molecular Handshake: Recognition through Weak Noncovalent Interactions

    ERIC Educational Resources Information Center

    Murthy, Parvathi S.

    2006-01-01

    The weak noncovalent interactions between substances, the handshake in the form of electrostatic interactions, van der Waals' interactions or hydrogen bonding is universal to all living and nonliving matter. They significantly influence the molecular and bulk properties and behavior of matter. Their transient nature affects chemical reactions and…

  17. Direction-specific van der Waals attraction between rutile TiO2 nanocrystals

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; He, Yang; Sushko, Maria L.; Liu, Jia; Luo, Langli; De Yoreo, James J.; Mao, Scott X.; Wang, Chongmin; Rosso, Kevin M.

    2017-04-01

    Mutual lattice orientations dictate the types and magnitudes of forces between crystalline particles. When lattice polarizability is anisotropic, the van der Waals dispersion attraction can, in principle, contribute to this direction dependence. We report measurement of this attraction between rutile nanocrystals, as a function of their mutual orientation and surface hydration extent. At tens of nanometers of separation, the attraction is weak and shows no dependence on azimuthal alignment or surface hydration. At separations of approximately one hydration layer, the attraction is strongly dependent on azimuthal alignment and systematically decreases as intervening water density increases. Measured forces closely agree with predictions from Lifshitz theory and show that dispersion forces can generate a torque between particles interacting in solution and between grains in materials.

  18. Application of Van Der Waals Density Functional Theory to Study Physical Properties of Energetic Materials

    NASA Astrophysics Data System (ADS)

    Conroy, M. W.; Budzevich, M. M.; Lin, Y.; Oleynik, I. I.; White, C. T.

    2009-12-01

    An empirical correction to account for van der Waals interactions based on the work of Neumann and Perrin [J. Phys. Chem. B 109, 15531 (2005)] was applied to density functional theory calculations of energetic molecular crystals. The calculated equilibrium unit-cell volumes of FOX-7, β-HMX, solid nitromethane, PETN-I, α-RDX, and TATB show a significant improvement in the agreement with experimental results. Hydrostatic-compression simulations of β-HMX, PETN-I, and α-RDX were also performed. The isothermal equations of state calculated from the results show increased agreement with experiment in the pressure intervals studied.

  19. Enhanced van der Waals epitaxy via electron transfer enabled interfacial dative bond formation

    DOE PAGES

    Xie, Weiyu; Lu, Toh -Ming; Wang, Gwo -Ching; ...

    2017-11-14

    Enhanced van der Waals (vdW) epitaxy of semiconductors on a layered vdW substrate is identified as the formation of dative bonds. For example, despite that NbSe 2 is a vdW layeredmaterial, first-principles calculations reveal that the bond strength at a CdTe-NbSe 2 interface is five times as large as that of vdW interactions at a CdTe-graphene interface. Finally, the unconventional chemistry here is enabled by an effective net electron transfer from Cd dangling-bond states at a CdTe surface to metallic nonbonding NbSe 2 states, which is a necessary condition to activate the Cd for enhanced binding with Se.

  20. Enhanced van der Waals epitaxy via electron transfer enabled interfacial dative bond formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Weiyu; Lu, Toh -Ming; Wang, Gwo -Ching

    Enhanced van der Waals (vdW) epitaxy of semiconductors on a layered vdW substrate is identified as the formation of dative bonds. For example, despite that NbSe 2 is a vdW layeredmaterial, first-principles calculations reveal that the bond strength at a CdTe-NbSe 2 interface is five times as large as that of vdW interactions at a CdTe-graphene interface. Finally, the unconventional chemistry here is enabled by an effective net electron transfer from Cd dangling-bond states at a CdTe surface to metallic nonbonding NbSe 2 states, which is a necessary condition to activate the Cd for enhanced binding with Se.

  1. Weak competing interactions control assembly of strongly bonded TCNQ ionic acceptor molecules on silver surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Changwon; Rojas, Geoffrey A.; Jeon, Seokmin

    2014-09-19

    The energy scales of interactions that control molecular adsorption and assembly on surfaces can vary by several orders of magnitude, yet the importance of each contributing interaction is not apparent a priori. Tetracyanoquinodimethane (TCNQ) is an archetypal electron acceptor molecule and it is a key component of organic metals. On metal surfaces, this molecule also acts as an electron acceptor, producing negatively charged adsorbates. It is therefore rather intriguing to observe attractive molecular interactions in this system that were reported previously for copper and silver surfaces. In this paper, our experiments compared TCNQ adsorption on noble metal surfaces of Ag(100)more » and Ag(111). In both cases we found net attractive interactions down to the lowest coverage. However, the morphology of the assemblies was strikingly different, with two-dimensional islands on Ag(100) and one-dimensional chains on Ag(111) surfaces. This observation suggests that the registry effect governed by the molecular interaction with the underlying lattice potential is critical in determining the dimensionality of the molecular assembly. Using first-principles density functional calculations with a van der Waals correction scheme, we revealed that the strengths of major interactions (i.e., lattice potential corrugation, intermolecular attraction, and charge-transfer-induced repulsion) are all similar in energy. The van der Waals interactions, in particular, almost double the strength of attractive interactions, making the intermolecular potential comparable in strength to the diffusion potential and promoting self-assembly. However, it is the anisotropy of local intermolecular interactions that is primarily responsible for the difference in the topology of the molecular islands on Ag(100) and Ag(111) surfaces. Finally, we anticipate that the intermolecular potential will become more attractive and dominant over the diffusion potential with increasing molecular size

  2. The multiple roles of histidine in protein interactions

    PubMed Central

    2013-01-01

    Background Among the 20 natural amino acids histidine is the most active and versatile member that plays the multiple roles in protein interactions, often the key residue in enzyme catalytic reactions. A theoretical and comprehensive study on the structural features and interaction properties of histidine is certainly helpful. Results Four interaction types of histidine are quantitatively calculated, including: (1) Cation-π interactions, in which the histidine acts as the aromatic π-motif in neutral form (His), or plays the cation role in protonated form (His+); (2) π-π stacking interactions between histidine and other aromatic amino acids; (3) Hydrogen-π interactions between histidine and other aromatic amino acids; (4) Coordinate interactions between histidine and metallic cations. The energies of π-π stacking interactions and hydrogen-π interactions are calculated using CCSD/6-31+G(d,p). The energies of cation-π interactions and coordinate interactions are calculated using B3LYP/6-31+G(d,p) method and adjusted by empirical method for dispersion energy. Conclusions The coordinate interactions between histidine and metallic cations are the strongest one acting in broad range, followed by the cation-π, hydrogen-π, and π-π stacking interactions. When the histidine is in neutral form, the cation-π interactions are attractive; when it is protonated (His+), the interactions turn to repulsive. The two protonation forms (and pKa values) of histidine are reversibly switched by the attractive and repulsive cation-π interactions. In proteins the π-π stacking interaction between neutral histidine and aromatic amino acids (Phe, Tyr, Trp) are in the range from -3.0 to -4.0 kcal/mol, significantly larger than the van der Waals energies. PMID:23452343

  3. DFT-based method for more accurate adsorption energies: An adaptive sum of energies from RPBE and vdW density functionals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hensley, Alyssa J. R.; Ghale, Kushal; Rieg, Carolin

    In recent years, the popularity of density functional theory with periodic boundary conditions (DFT) has surged for the design and optimization of functional materials. However, no single DFT exchange–correlation functional currently available gives accurate adsorption energies on transition metals both when bonding to the surface is dominated by strong covalent or ionic bonding and when it has strong contributions from van der Waals interactions (i.e., dispersion forces). Here we present a new, simple method for accurately predicting adsorption energies on transition-metal surfaces based on DFT calculations, using an adaptively weighted sum of energies from RPBE and optB86b-vdW (or optB88-vdW) densitymore » functionals. This method has been benchmarked against a set of 39 reliable experimental energies for adsorption reactions. Our results show that this method has a mean absolute error and root mean squared error relative to experiments of 13.4 and 19.3 kJ/mol, respectively, compared to 20.4 and 26.4 kJ/mol for the BEEF-vdW functional. For systems with large van der Waals contributions, this method decreases these errors to 11.6 and 17.5 kJ/mol. Furthermore, this method provides predictions of adsorption energies both for processes dominated by strong covalent or ionic bonding and for those dominated by dispersion forces that are more accurate than those of any current standard DFT functional alone.« less

  4. DFT-based method for more accurate adsorption energies: An adaptive sum of energies from RPBE and vdW density functionals

    DOE PAGES

    Hensley, Alyssa J. R.; Ghale, Kushal; Rieg, Carolin; ...

    2017-01-26

    In recent years, the popularity of density functional theory with periodic boundary conditions (DFT) has surged for the design and optimization of functional materials. However, no single DFT exchange–correlation functional currently available gives accurate adsorption energies on transition metals both when bonding to the surface is dominated by strong covalent or ionic bonding and when it has strong contributions from van der Waals interactions (i.e., dispersion forces). Here we present a new, simple method for accurately predicting adsorption energies on transition-metal surfaces based on DFT calculations, using an adaptively weighted sum of energies from RPBE and optB86b-vdW (or optB88-vdW) densitymore » functionals. This method has been benchmarked against a set of 39 reliable experimental energies for adsorption reactions. Our results show that this method has a mean absolute error and root mean squared error relative to experiments of 13.4 and 19.3 kJ/mol, respectively, compared to 20.4 and 26.4 kJ/mol for the BEEF-vdW functional. For systems with large van der Waals contributions, this method decreases these errors to 11.6 and 17.5 kJ/mol. Furthermore, this method provides predictions of adsorption energies both for processes dominated by strong covalent or ionic bonding and for those dominated by dispersion forces that are more accurate than those of any current standard DFT functional alone.« less

  5. Study on the interaction mechanism between aromatic amino acids and quercetin

    NASA Astrophysics Data System (ADS)

    Gou, Xingxing; Pu, Xiaohua; Li, Zongxiao

    2017-11-01

    In this paper, we selected quercetin and aromatic amino acids (tryptophan, tyrosine, phenylalanine) as the research objects to investigate the change rules in the reaction process. The thermodynamic functions (Ka, Δ G, and Δ S) of the interactions between quercetin and aromatic amino acids (tryptophan, tyrosine, phenylalanine) were measured by isothermal titration calorimetry. The values of binding constant (Ka) reached maximum at 25°C; the entropies and Gibbs free energies were both negative at different temperatures. The kinetic parameters of quercetin and amino acids in the interaction process was determined by microcalorimetry. The results inferred that the driving force of the reaction was hydrogen bond or van der Waals force.

  6. Photovoltaic Effect in an Electrically Tunable van der Waals Heterojunction

    PubMed Central

    2014-01-01

    Semiconductor heterostructures form the cornerstone of many electronic and optoelectronic devices and are traditionally fabricated using epitaxial growth techniques. More recently, heterostructures have also been obtained by vertical stacking of two-dimensional crystals, such as graphene and related two-dimensional materials. These layered designer materials are held together by van der Waals forces and contain atomically sharp interfaces. Here, we report on a type-II van der Waals heterojunction made of molybdenum disulfide and tungsten diselenide monolayers. The junction is electrically tunable, and under appropriate gate bias an atomically thin diode is realized. Upon optical illumination, charge transfer occurs across the planar interface and the device exhibits a photovoltaic effect. Advances in large-scale production of two-dimensional crystals could thus lead to a new photovoltaic solar technology. PMID:25057817

  7. Simple Physics-Based Analytical Formulas for the Potentials of Mean Force of the Interaction of Amino Acid Side Chains in Water. VII. Charged-Hydrophobic/Polar and Polar-Hydrophobic/Polar Side Chains.

    PubMed

    Makowski, Mariusz; Liwo, Adam; Scheraga, Harold A

    2017-01-19

    The physics-based potentials of side-chain-side-chain interactions corresponding to pairs composed of charged and polar, polar and polar, charged and hydrophobic, and hydrophobic and hydrophobic side chains have been determined. A total of 144 four-dimensional potentials of mean force (PMFs) of all possible pairs of molecules modeling these pairs were determined by umbrella-sampling molecular dynamics simulations in explicit water as functions of distance and orientation, and the analytical expressions were then fitted to the PMFs. Depending on the type of interacting sites, the analytical approximation to the PMF is a sum of terms corresponding to van der Waals interactions and cavity-creation involving the nonpolar sections of the side chains and van der Waals, cavity-creation, and electrostatic (charge-dipole or dipole-dipole) interaction energies and polarization energies involving the charged or polar sections of the side chains. The model used in this work reproduces all features of the interacting pairs. The UNited RESidue force field with the new side-chain-side-chain interaction potentials was preliminarily tested with the N-terminal part of the B-domain of staphylococcal protein A (PDBL 1BDD ; a three-α-helix bundle) and UPF0291 protein YnzC from Bacillus subtilis (PDB: 2HEP ; an α-helical hairpin).

  8. Two and three-body interatomic dispersion energy contributions to binding in molecules and solids.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    von Lilienfeld-Toal, Otto Anatole; Tkatchenko, Alexandre

    We present numerical estimates of the leading two- and three-body dispersion energy terms in van der Waals interactions for a broad variety of molecules and solids. The calculations are based on London and Axilrod-Teller-Muto expressions where the required interatomic dispersion energy coefficients, C{sub 6} and C{sub 9}, are computed 'on the fly' from the electron density. Inter- and intramolecular energy contributions are obtained using the Tang-Toennies (TT) damping function for short interatomic distances. The TT range parameters are equally extracted on the fly from the electron density using their linear relationship to van der Waals radii. This relationship is empiriciallymore » determined for all the combinations of He-Xe rare gas dimers, as well as for the He and Ar trimers. The investigated systems include the S22 database of noncovalent interactions, Ar, benzene and ice crystals, bilayer graphene, C{sub 60} dimer, a peptide (Ala{sub 10}), an intercalated drug-DNA model [ellipticine-d(CG){sub 2}], 42 DNA base pairs, a protein (DHFR, 2616 atoms), double stranded DNA (1905 atoms), and 12 molecular crystal polymorphs from crystal structure prediction blind test studies. The two- and three-body interatomic dispersion energies are found to contribute significantly to binding and cohesive energies, for bilayer graphene the latter reaches 50% of experimentally derived binding energy. These results suggest that interatomic three-body dispersion potentials should be accounted for in atomistic simulations when modeling bulky molecules or condensed phase systems.« less

  9. Hadron-nucleus interactions at high energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiu, C.B.; He, Z.; Tow, D.M.

    1982-06-01

    A simple space-time description of high-energy hadron-nucleus interactions is presented. The model is based on the DTU (dual topologial unitarization)-parton-model description of soft multiparticle production in hadron-hadron interactions. The essentially parameter-free model agrees well with the general features of high-energy data for hadron-nucleus interactions; in particular, this DTU-parton model has a natural explanation for an approximate nu-bar universality. The expansion to high-energy nucleus-nucleus interactions is presented. We also compare and contrast this model with several previously proposed models.

  10. Hadron-nucleus interactions at high energies

    NASA Astrophysics Data System (ADS)

    Chiu, Charles B.; He, Zuoxiu; Tow, Don M.

    1982-06-01

    A simple space-time description of high-energy hadron-nucleus interactions is presented. The model is based on the DTU (dual topological unitarization) -parton-model description of soft multiparticle production in hadron-hadron interactions. The essentially parameter-free model agrees well with the general features of high-energy data for hadron-nucleus interactions; in particular, this DTU-parton model has a natural explanation for an approximate ν¯ universality. The extension to high-energy nucleus-nucleus interactions is presented. We also compare and contrast this model with several previously proposed models.

  11. Outer membrane cytochromes/flavin interactions in Shewanella spp.—A molecular perspective

    DOE PAGES

    Babanova, Sofia; Matanovic, Ivana; Cornejo, Jose; ...

    2017-05-31

    Extracellular electron transfer (EET) is intrinsically associated with the core phenomena of energy harvesting/energy conversion in natural ecosystems and biotechnology applications. But, the mechanisms associated with EET are complex and involve molecular interactions that take place at the “bionano interface” where biotic/abiotic interactions are usually explored. Our work provides molecular perspective on the electron transfer mechanism(s) employed by Shewanella oneidensis MR-1. Molecular docking simulations were used to explain the interfacial relationships between two outer-membrane cytochromes (OMC) OmcA and MtrC and riboflavin (RF) and flavin mononucleotide (FMN), respectively. OMC-flavin interactions were analyzed by studying the electrostatic potential, the hydrophilic/hydrophobic surface properties,more » and the van der Waals surface of the OMC proteins. As a result, it was proposed that the interactions between flavins and OMCs are based on geometrical recognition event. The possible docking positions of RF and FMN to OmcA and MtrC were also shown.« less

  12. Franckeite as a naturally occurring van der Waals heterostructure

    PubMed Central

    Molina-Mendoza, Aday J.; Giovanelli, Emerson; Paz, Wendel S.; Niño, Miguel Angel; Island, Joshua O.; Evangeli, Charalambos; Aballe, Lucía; Foerster, Michael; van der Zant, Herre S. J.; Rubio-Bollinger, Gabino; Agraït, Nicolás; Palacios, J. J.; Pérez, Emilio M.; Castellanos-Gomez, Andres

    2017-01-01

    The fabrication of van der Waals heterostructures, artificial materials assembled by individual stacking of 2D layers, is among the most promising directions in 2D materials research. Until now, the most widespread approach to stack 2D layers relies on deterministic placement methods, which are cumbersome and tend to suffer from poor control over the lattice orientations and the presence of unwanted interlayer adsorbates. Here, we present a different approach to fabricate ultrathin heterostructures by exfoliation of bulk franckeite which is a naturally occurring and air stable van der Waals heterostructure (composed of alternating SnS2-like and PbS-like layers stacked on top of each other). Presenting both an attractive narrow bandgap (<0.7 eV) and p-type doping, we find that the material can be exfoliated both mechanically and chemically down to few-layer thicknesses. We present extensive theoretical and experimental characterizations of the material's electronic properties and crystal structure, and explore applications for near-infrared photodetectors. PMID:28194037

  13. Reexamination of the interaction of atoms with a LiF(001) surface

    NASA Astrophysics Data System (ADS)

    Miraglia, J. E.; Gravielle, M. S.

    2017-02-01

    Pairwise additive potentials for multielectronic atoms interacting with a LiF(001) surface are revisited by including an improved description of the electron density associated with the different lattice sites, as well as nonlocal electron density contributions. Within this model, the electron distribution around each ionic site of the crystal is described by means of a so-called "onion" approach that accounts for the influence of the Madelung potential. From such densities, binary interatomic potentials are then derived by using well-known nonlocal functionals. Rumpling and long-range contributions due to projectile polarization and van der Waals forces are also included. We apply this pairwise additive approximation to evaluate the interaction potential between closed-shell (He, Ne, Ar, Kr, and Xe) and open-shell (N, S, and Cl) atoms and the LiF surface, analyzing the relative importance of the different contributions. The performance of the proposed potentials is assessed by contrasting angular positions of rainbow and supernumerary rainbow maxima produced by fast grazing incidence with available experimental data. One important result of our model is that both van der Waals contributions and thermal lattice vibrations play a negligible role for normal energies in the eV range.

  14. Structure and properties of fullerene molecular crystals with linear-scaling van der Waals density functional theory

    NASA Astrophysics Data System (ADS)

    Mostofi, Arash; Andrinopoulos, Lampros; Hine, Nicholas

    2014-03-01

    Fullerene molecular crystals are of technological promise for their use in heterojunction photovoltaic cells. An improved theoretical understanding of their structure and properties would be a step towards the rational design of new devices. Simulations based on density-functional theory (DFT) are invaluable for developing such insight, but standard semi-local functionals do not capture the important inter-molecular van der Waals (vdW) interactions in fullerene crystals. Furthermore the computational cost associated with the large unit cells needed are at the limit or beyond the capabilities of traditional DFT methods. In this work we overcome these limitations by using our implementation of a number of vdW-DFs in the ONETEP linear-scaling DFT code to study the structural properties of C60 molecular crystals. Powder neutron diffraction shows that the low-temperature Pa-3 phase is orientationally ordered with individual C60 units rotated around the [111] direction. We fully explore the energy landscape associated with the rotation angle and find two stable structures that are energetically very close, one of which corresponds to the experimentally observed structure. We further consider the effect of orientational disorder in very large supercells of thousands of atoms.

  15. Super-Coulombic atom–atom interactions in hyperbolic media

    PubMed Central

    Cortes, Cristian L.; Jacob, Zubin

    2017-01-01

    Dipole–dipole interactions, which govern phenomena such as cooperative Lamb shifts, superradiant decay rates, Van der Waals forces and resonance energy transfer rates, are conventionally limited to the Coulombic near-field. Here we reveal a class of real-photon and virtual-photon long-range quantum electrodynamic interactions that have a singularity in media with hyperbolic dispersion. The singularity in the dipole–dipole coupling, referred to as a super-Coulombic interaction, is a result of an effective interaction distance that goes to zero in the ideal limit irrespective of the physical distance. We investigate the entire landscape of atom–atom interactions in hyperbolic media confirming the giant long-range enhancement. We also propose multiple experimental platforms to verify our predicted effect with phonon–polaritonic hexagonal boron nitride, plasmonic super-lattices and hyperbolic meta-surfaces as well. Our work paves the way for the control of cold atoms above hyperbolic meta-surfaces and the study of many-body physics with hyperbolic media. PMID:28120826

  16. Super-Coulombic atom-atom interactions in hyperbolic media

    NASA Astrophysics Data System (ADS)

    Cortes, Cristian L.; Jacob, Zubin

    2017-01-01

    Dipole-dipole interactions, which govern phenomena such as cooperative Lamb shifts, superradiant decay rates, Van der Waals forces and resonance energy transfer rates, are conventionally limited to the Coulombic near-field. Here we reveal a class of real-photon and virtual-photon long-range quantum electrodynamic interactions that have a singularity in media with hyperbolic dispersion. The singularity in the dipole-dipole coupling, referred to as a super-Coulombic interaction, is a result of an effective interaction distance that goes to zero in the ideal limit irrespective of the physical distance. We investigate the entire landscape of atom-atom interactions in hyperbolic media confirming the giant long-range enhancement. We also propose multiple experimental platforms to verify our predicted effect with phonon-polaritonic hexagonal boron nitride, plasmonic super-lattices and hyperbolic meta-surfaces as well. Our work paves the way for the control of cold atoms above hyperbolic meta-surfaces and the study of many-body physics with hyperbolic media.

  17. Direction-specific van der Waals attraction between rutile TiO2 nanocrystals.

    PubMed

    Zhang, Xin; He, Yang; Sushko, Maria L; Liu, Jia; Luo, Langli; De Yoreo, James J; Mao, Scott X; Wang, Chongmin; Rosso, Kevin M

    2017-04-28

    Mutual lattice orientations dictate the types and magnitudes of forces between crystalline particles. When lattice polarizability is anisotropic, the van der Waals dispersion attraction can, in principle, contribute to this direction dependence. We report measurement of this attraction between rutile nanocrystals, as a function of their mutual orientation and surface hydration extent. At tens of nanometers of separation, the attraction is weak and shows no dependence on azimuthal alignment or surface hydration. At separations of approximately one hydration layer, the attraction is strongly dependent on azimuthal alignment and systematically decreases as intervening water density increases. Measured forces closely agree with predictions from Lifshitz theory and show that dispersion forces can generate a torque between particles interacting in solution and between grains in materials. Copyright © 2017, American Association for the Advancement of Science.

  18. Direction-specific van der Waals attraction between rutile TiO 2 nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xin; He, Yang; Sushko, Maria L.

    Mutual lattice orientations dictate the types and magnitudes of forces between crystalline particles. When lattice polarizability is anisotropic, the van der Waals dispersion attraction can, in principle, contribute to this direction dependence. Here we report direct measurement of this attraction between rutile nanocrystals, as a function of their mutual orientation and surface hydration extent. At tens of nanometers of separation the attraction is weak and shows no dependence on azimuthal alignment nor surface hydration. At separations of approximately one hydration layer the attraction is strongly dependent on azimuthal alignment, and systematically decreases as intervening water density increases. Measured forces aremore » in close agreement with predictions from Lifshitz theory, and show that dispersion forces are capable of generating a torque between particles interacting in solution and between grains in materials.« less

  19. Combinations of coupled cluster, density functionals, and the random phase approximation for describing static and dynamic correlation, and van der Waals interactions

    NASA Astrophysics Data System (ADS)

    Garza, Alejandro J.; Bulik, Ireneusz W.; Alencar, Ana G. Sousa; Sun, Jianwei; Perdew, John P.; Scuseria, Gustavo E.

    2016-04-01

    Contrary to standard coupled cluster doubles (CCD) and Brueckner doubles (BD), singlet-paired analogues of CCD and BD (denoted here as CCD0 and BD0) do not break down when static correlation is present, but neglect substantial amounts of dynamic correlation. In fact, CCD0 and BD0 do not account for any contributions from multielectron excitations involving only same-spin electrons at all. We exploit this feature to add - without introducing double counting, self-interaction, or increase in cost - the missing correlation to these methods via meta-GGA (generalised gradient approximation) density functionals (Tao-Perdew-Staroverov-Scuseria and strongly constrained and appropriately normed). Furthermore, we improve upon these CCD0+DFT blends by invoking range separation: the short- and long-range correlations absent in CCD0/BD0 are evaluated with density functional theory and the direct random phase approximation, respectively. This corrects the description of long-range van der Waals forces. Comprehensive benchmarking shows that the combinations presented here are very accurate for weakly correlated systems, while also providing a reasonable description of strongly correlated problems without resorting to symmetry breaking.

  20. Consistent van der Waals radii for the whole main group.

    PubMed

    Mantina, Manjeera; Chamberlin, Adam C; Valero, Rosendo; Cramer, Christopher J; Truhlar, Donald G

    2009-05-14

    Atomic radii are not precisely defined but are nevertheless widely used parameters in modeling and understanding molecular structure and interactions. The van der Waals radii determined by Bondi from molecular crystals and data for gases are the most widely used values, but Bondi recommended radius values for only 28 of the 44 main-group elements in the periodic table. In the present Article, we present atomic radii for the other 16; these new radii were determined in a way designed to be compatible with Bondi's scale. The method chosen is a set of two-parameter correlations of Bondi's radii with repulsive-wall distances calculated by relativistic coupled-cluster electronic structure calculations. The newly determined radii (in A) are Be, 1.53; B, 1.92; Al, 1.84; Ca, 2.31; Ge, 2.11; Rb, 3.03; Sr, 2.49; Sb, 2.06; Cs, 3.43; Ba, 2.68; Bi, 2.07; Po, 1.97; At, 2.02; Rn, 2.20; Fr, 3.48; and Ra, 2.83.

  1. Electronic interaction anisotropy between open-shell lanthanide atoms and helium from cold collision experiment

    NASA Astrophysics Data System (ADS)

    Krems, R. V.; Buchachenko, A. A.

    2005-09-01

    Based on measurements of the Zeeman relaxation in a cold gas of He3 [C. I. Hancox, S. C. Doret, M. I. Hummon, L. Luo, and J. M. Doyle, Nature (London) 431, 281 (2004)], we show that the electronic interaction anisotropy between rare-earth atoms with nonzero electronic orbital angular momenta and helium is extremely small. The interaction of the rare-earth atoms with He gives rise to several adiabatic potentials with different electronic symmetries. It is demonstrated that the energy splitting between these potentials does not exceed 0.09cm-1 at interatomic distances larger than the turning point for collisions at 0.8K, including the region of the van der Waals interaction minima.

  2. Strong magnetization and Chern insulators in compressed graphene/CrI 3 van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Zhang, Jiayong; Zhao, Bao; Zhou, Tong; Xue, Yang; Ma, Chunlan; Yang, Zhongqin

    2018-02-01

    Graphene-based heterostructures are a promising material system for designing the topologically nontrivial Chern insulating devices. Recently, a two-dimensional monolayer ferromagnetic insulator CrI3 was successfully synthesized in experiments [B. Huang et al., Nature (London) 546, 270 (2017), 10.1038/nature22391]. Here, these two interesting materials are proposed to build a heterostructure (Gr /CrI3). Our first-principles calculations show that the system forms a van der Waals (vdW) heterostructure, which is relatively facilely fabricated in experiments. A Chern insulating state is acquired in the Gr /CrI3 heterostructure if the vdW gap is compressed to a distance between about 3.3 and 2.4 Å, corresponding to a required external pressure between about 1.4 and 18.3 GPa. Amazingly, very strong magnetization (about 150 meV) is found in graphene, induced by the substrate CrI3, despite the vdW interactions between them. A low-energy effective model is employed to understand the mechanism. The work functions, contact types, and band alignments of the Gr /CrI3 heterostructure system are also studied. Our work demonstrates that the Gr /CrI3 heterostructure is a promising system to observe the quantum anomalous Hall effect at high temperatures (up to 45 K) in experiments.

  3. Aqueous gating of van der Waals materials on bilayer nanopaper.

    PubMed

    Bao, Wenzhong; Fang, Zhiqiang; Wan, Jiayu; Dai, Jiaqi; Zhu, Hongli; Han, Xiaogang; Yang, Xiaofeng; Preston, Colin; Hu, Liangbing

    2014-10-28

    In this work, we report transistors made of van der Waals materials on a mesoporous paper with a smooth nanoscale surface. The aqueous transistor has a novel planar structure with source, drain, and gate electrodes on the same surface of the paper, while the mesoporous paper is used as an electrolyte reservoir. These transistors are enabled by an all-cellulose paper with nanofibrillated cellulose (NFC) on the top surface that leads to an excellent surface smoothness, while the rest of the microsized cellulose fibers can absorb electrolyte effectively. Based on two-dimensional van der Waals materials, including MoS2 and graphene, we demonstrate high-performance transistors with a large on-off ratio and low subthreshold swing. Such planar transistors with absorbed electrolyte gating can be used as sensors integrated with other components to form paper microfluidic systems. This study is significant for future paper-based electronics and biosensors.

  4. FDE-vdW: A van der Waals inclusive subsystem density-functional theory.

    PubMed

    Kevorkyants, Ruslan; Eshuis, Henk; Pavanello, Michele

    2014-07-28

    We present a formally exact van der Waals inclusive electronic structure theory, called FDE-vdW, based on the Frozen Density Embedding formulation of subsystem Density-Functional Theory. In subsystem DFT, the energy functional is composed of subsystem additive and non-additive terms. We show that an appropriate definition of the long-range correlation energy is given by the value of the non-additive correlation functional. This functional is evaluated using the fluctuation-dissipation theorem aided by a formally exact decomposition of the response functions into subsystem contributions. FDE-vdW is derived in detail and several approximate schemes are proposed, which lead to practical implementations of the method. We show that FDE-vdW is Casimir-Polder consistent, i.e., it reduces to the generalized Casimir-Polder formula for asymptotic inter-subsystems separations. Pilot calculations of binding energies of 13 weakly bound complexes singled out from the S22 set show a dramatic improvement upon semilocal subsystem DFT, provided that an appropriate exchange functional is employed. The convergence of FDE-vdW with basis set size is discussed, as well as its dependence on the choice of associated density functional approximant.

  5. FDE-vdW: A van der Waals inclusive subsystem density-functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kevorkyants, Ruslan; Pavanello, Michele, E-mail: m.pavanello@rutgers.edu; Eshuis, Henk

    2014-07-28

    We present a formally exact van der Waals inclusive electronic structure theory, called FDE-vdW, based on the Frozen Density Embedding formulation of subsystem Density-Functional Theory. In subsystem DFT, the energy functional is composed of subsystem additive and non-additive terms. We show that an appropriate definition of the long-range correlation energy is given by the value of the non-additive correlation functional. This functional is evaluated using the fluctuation–dissipation theorem aided by a formally exact decomposition of the response functions into subsystem contributions. FDE-vdW is derived in detail and several approximate schemes are proposed, which lead to practical implementations of the method.more » We show that FDE-vdW is Casimir-Polder consistent, i.e., it reduces to the generalized Casimir-Polder formula for asymptotic inter-subsystems separations. Pilot calculations of binding energies of 13 weakly bound complexes singled out from the S22 set show a dramatic improvement upon semilocal subsystem DFT, provided that an appropriate exchange functional is employed. The convergence of FDE-vdW with basis set size is discussed, as well as its dependence on the choice of associated density functional approximant.« less

  6. Graphene Substrate for van der Waals Epitaxy of Layer-Structured Bismuth Antimony Telluride Thermoelectric Film.

    PubMed

    Kim, Eun Sung; Hwang, Jae-Yeol; Lee, Kyu Hyoung; Ohta, Hiromichi; Lee, Young Hee; Kim, Sung Wng

    2017-02-01

    Graphene as a substrate for the van der Waals epitaxy of 2D layered materials is utilized for the epitaxial growth of a layer-structured thermoelectric film. Van der Waals epitaxial Bi 0.5 Sb 1.5 Te 3 film on graphene synthesized via a simple and scalable fabrication method exhibits good crystallinity and high thermoelectric transport properties comparable to single crystals. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. a Study of the Role of Large-Amplitude Motions in Unimolecular Energy Transfer Using Molecular Beam Optothermal Spectroscopy.

    NASA Astrophysics Data System (ADS)

    Miller, Carl Cameron

    1995-01-01

    The role of molecular structure in energy transfer reactions in the ground and excited electronic states was explored using optothermal spectroscopy. In the ground state, the relationship between intramolecular van der Waals interactions and vibrational mode coupling was explored in a homologous series of disubstituted ethanes, including Gg^' -2-fluoroethanol, g-1,2-difluoroethane, g-1-chloro-2-fluoroethane, t-1-chloro-2-fluoroethane, and 1,1,2-trifluoroethane. This series of substituted ethanes varies in degree of van der Waals interactions that hinder internal rotation about the C-C bond. High resolution infrared molecular beam spectroscopy was used to determine the extent of vibrational mode coupling. Perturbations in the rotational structure of these molecules provided a measure of vibrational mode coupling. We have observed that the degree of intramolecular interaction, which is dependent on the van der Waals separation of the substituents and the shape of the potential well, correlates with the extent of vibrational mode coupling. The extent of vibrational mode coupling in this series of molecules did not correlate with the density of states available for coupling. Therefore, density of states alone is insufficient to explain the observed trend. In the excited electronic state, optothermal detection has been used to observe non-radiative relaxation channels in aniline, p-bromoaniline and trans-stilbene. p-Bromoaniline has no detectable fluorescence due to a heavy atom effect which increases the rate of intersystem crossing to the triplet state. An optothermal spectrum of p-bromoaniline was observed with the origin at 32625 cm^ {-1}. For trans-stilbene the differences between the laser excitation spectrum and the optothermal spectrum of the S_1 state clearly show the onset of isomerization at ~1250 cm^{-1} above the origin. Absolute quantum yields of fluorescence, Frank-Condon factors, non -radiative rates, and radiative rates have been obtained for a series

  8. Molecular simulations of the pairwise interaction of monoclonal antibodies.

    PubMed

    Lapelosa, Mauro; Patapoff, Thomas W; Zarraga, Isidro E

    2014-11-20

    Molecular simulations are employed to compute the free energy of pairwise monoclonal antibodies (mAbs) association using a conformational sampling algorithm with a scoring function. The work reported here is aimed at investigating the mAb-mAb association driven by weak interactions with a computational method capable of predicting experimental observations of low binding affinity. The simulations are able to explore the free energy landscape. A steric interaction component, electrostatic interactions, and a nonpolar component of the free energy form the energy scoring function. Electrostatic interactions are calculated by solving the Poisson-Boltzmann equation. The nonpolar component is derived from the van der Waals interactions upon close contact of the protein surfaces. Two mAbs with similar IgG1 framework but with small sequence differences, mAb1 and mAb2, are considered for their different viscosity and propensity to form a weak interacting dimer. mAb1 presents favorable free energy of association at pH 6 with 15 mM of ion concentration reproducing experimental trends of high viscosity and dimer formation at high concentration. Free energy landscape and minimum free energy configurations of the dimer, as well as the second virial coefficient (B22) values are calculated. The energy distributions for mAb1 are obtained, and the most probable configurations are seen to be consistent with experimental measurements. In contrast, mAb2 shows an unfavorable average free energy at the same buffer conditions due to poor electrostatic complementarity, and reversible dimer configurations with favorable free energy are found to be unlikely. Finally, the simulations of the mAb association dynamics provide insights on the self-association responsible for bulk solution behavior and aggregation, which are important to the processing and the quality of biopharmaceuticals.

  9. General theoretical description of angle-resolved photoemission spectroscopy of van der Waals structures

    NASA Astrophysics Data System (ADS)

    Amorim, B.

    2018-04-01

    We develop a general theory to model the angle-resolved photoemission spectroscopy (ARPES) of commensurate and incommensurate van der Waals (vdW) structures, formed by lattice mismatched and/or misaligned stacked layers of two-dimensional materials. The present theory is based on a tight-binding description of the structure and the concept of generalized umklapp processes, going beyond previous descriptions of ARPES in incommensurate vdW structures, which are based on continuous, low-energy models, being limited to structures with small lattice mismatch/misalignment. As applications of the general formalism, we study the ARPES bands and constant energy maps for two structures: twisted bilayer graphene and twisted bilayer MoS2. The present theory should be useful in correctly interpreting experimental results of ARPES of vdW structures and other systems displaying competition between different periodicities, such as two-dimensional materials weakly coupled to a substrate and materials with density wave phases.

  10. The waaL gene mutation compromised the inhabitation of Enterobacter sp. Ag1 in the mosquito gut environment.

    PubMed

    Pei, Dong; Jiang, Jinjin; Yu, Wanqin; Kukutla, Phanidhar; Uentillie, Alejandro; Xu, Jiannong

    2015-08-27

    The mosquito gut harbors a variety of bacteria that are dynamically associated with mosquitoes in various contexts. However, little is known about bacterial factors that affect bacterial inhabitation in the gut microbial community. Enterobacter sp. Ag1 is a predominant Gram negative bacterium in the mosquito midgut. In a mutant library that was generated using transposon Tn5-mediated mutagenesis, a mutant was identified, in which the gene waaL was disrupted by the Tn5 insertion. The waaL encodes O antigen ligase, which is required for the attachment of O antigen to the outer core oligosaccharide of the lipopolysaccharide (LPS). The waaL(-) mutation caused the O antigen repeat missing in the LPS. The normal LPS structure was restored when the mutant was complemented with a plasmid containing waaL gene. The waaL(-) mutation did not affect bacterial proliferation in LB culture, the mutant cells grew at a rate the same as the wildtype (wt) cells. However, when waaL(-) strain were co-cultured with the wt strain or complemented strain, the mutant cells proliferated with a slower rate, indicating that the mutants were less competitive than wt cells in a community setting. Similarly, in a co-feeding assay, when fluorescently tagged wt strain and waaL(-) strain were orally co-introduced into the gut of Anopheles stephensi mosquitoes, the mutant cells were less prevalent in both sugar-fed and blood-fed guts. The data suggest that the mutation compromised the bacterial inhabitation in the gut community. Besides, the mutant was more sensitive to oxidative stress, demonstrated by lower survival rate upon exposure to 20 mM H₂O₂. Lack of the O antigen structure in LPS of Enterobacter compromised the effective growth in co-culture and co-feeding assays. In addition, O-antigen was involved in protection against oxidative stress. The findings suggest that intact LPS is crucial for the bacteria to steadily stay in the gut microbial community.

  11. Holographic Van der Waals phase transition of the higher-dimensional electrically charged hairy black hole

    NASA Astrophysics Data System (ADS)

    Li, Hui-Ling; Feng, Zhong-Wen; Zu, Xiao-Tao

    2018-01-01

    With motivation by holography, employing black hole entropy, two-point connection function and entanglement entropy, we show that, for the higher-dimensional Anti-de Sitter charged hairy black hole in the fixed charged ensemble, a Van der Waals-like phase transition can be observed. Furthermore, based on the Maxwell equal-area construction, we check numerically the equal-area law for a first order phase transition in order to further characterize the Van der Waals-like phase transition.

  12. Chirality-induced spin polarization places symmetry constraints on biomolecular interactions.

    PubMed

    Kumar, Anup; Capua, Eyal; Kesharwani, Manoj K; Martin, Jan M L; Sitbon, Einat; Waldeck, David H; Naaman, Ron

    2017-03-07

    Noncovalent interactions between molecules are key for many biological processes. Necessarily, when molecules interact, the electronic charge in each of them is redistributed. Here, we show experimentally that, in chiral molecules, charge redistribution is accompanied by spin polarization. We describe how this spin polarization adds an enantioselective term to the forces, so that homochiral interaction energies differ from heterochiral ones. The spin polarization was measured by using a modified Hall effect device. An electric field that is applied along the molecules causes charge redistribution, and for chiral molecules, a Hall voltage is measured that indicates the spin polarization. Based on this observation, we conjecture that the spin polarization enforces symmetry constraints on the biorecognition process between two chiral molecules, and we describe how these constraints can lead to selectivity in the interaction between enantiomers based on their handedness. Model quantum chemistry calculations that rigorously enforce these constraints show that the interaction energy for methyl groups on homochiral molecules differs significantly from that found for heterochiral molecules at van der Waals contact and shorter (i.e., ∼0.5 kcal/mol at 0.26 nm).

  13. A combined spectroscopic, molecular docking and molecular dynamic simulation study on the interaction of quercetin with β-casein nanoparticles.

    PubMed

    Mehranfar, Fahimeh; Bordbar, Abdol-Khalegh; Parastar, Hadi

    2013-10-05

    The interaction of quercetin with β-casein nanoparticle micelle was studied at various temperatures in order to do a complete thermodynamic and molecular analysis on the binding process. The results of fluorescence studies showed the possibility of fluorescence energy transfer between excited tryptophan and quercetin. The determined values of critical transfers distance and the mean distance of ligand from Trp-143 residues in β-casein micelle represents a non-radiative energy transfer mechanism for quenching and the existence of a significant interaction between this flavonoid and β-casein nanoparticle. The equilibrium binding of quercetin with β-casein micelle at different temperatures was studied by using UV-Vis absorption spectroscopy. The chemometric analysis (principal component analysis (PCA) and multivariate curve resolution-alternating least squares (MCR-ALS) methods) on spectrophotometric data revealed the existence of two components in solution (quercetin and β-casein-quercetin complex) and resolved their pure concentration and spectral profiles. This information let us to calculate the equilibrium binding constant at various temperatures and the relevant thermodynamic parameters of interaction (enthalpy, entropy and Gibbs free energy) with low uncertainty. The negative values of entropy and enthalpy changes represent the predominate role of hydrogen binding and van der Waals interactions in the binding process. Docking calculations showed the probable binding site of quercetin is located in the hydrophobic core of β-casein where the quercetin molecule is lined by hydrophobic residues and make five hydrogen bonds and several van der Waals contacts with them. Moreover, molecular dynamic (MD) simulation results suggested that this flavonoid can interact with β-casein, without affecting the secondary structure of β-casein. Simulations, molecular docking and experimental data reciprocally supported each other. Copyright © 2013 Elsevier B.V. All

  14. Rotational study on the van der Waals complex 1-chloro-1,1-difluoroethane-argon

    NASA Astrophysics Data System (ADS)

    Wang, Juan; Chen, Junhua; Feng, Gang; Xia, Zhining; Gou, Qian

    2018-03-01

    The rotational spectrum of the van der Waals complex formed between 1-chloro-1,1-difluoroethane and argon has been investigated by using a pulsed jet Fourier transform microwave spectrometer. Only one set of rotational transitions belonging to the lowest energy conformer has been observed and assigned, although theoretical calculations suggest six stable conformers that might be observed. The observed conformer, according to the experimental evidence from two isotopologues (35Cl and 37Cl), adopts a configuration in which the argon atom is located, close to the sbnd CF2Cl top, between the CCF and CCCl planes (the dihedral angle ∠ ArCCCl is 65.2°). The distance between argon atom and the center of mass of CH3CF2Cl is 3.949(2) Å. The dissociation energy, with pseudo diatomic approximation, is evaluated to be 2.4 kJ mol- 1.

  15. Evaluation of van der Waals density functionals for layered materials

    NASA Astrophysics Data System (ADS)

    Tawfik, Sherif Abdulkader; Gould, Tim; Stampfl, Catherine; Ford, Michael J.

    2018-03-01

    In 2012, Björkman et al. posed the question "Are we van der Waals ready?" [T. Björkman et al., J. Phys.: Condens. Matter 24, 424218 (2012), 10.1088/0953-8984/24/42/424218] about the ability of ab initio modeling to reproduce van der Waals (vdW) dispersion forces in layered materials. The answer at that time was no, however. Here we report on a new generation of vdW dispersion models and show that one, i.e., the fractionally ionic atom theory with many-body dispersions, offers close to quantitative predictions for layered structures. Furthermore, it does so from a qualitatively correct picture of dispersion forces. Other methods, such as D3 and optB88vdW, also work well, albeit with some exceptions. We thus argue that we are nearly vdW ready and that some modern dispersion methods are accurate enough to be used for nanomaterial prediction, albeit with some caution required.

  16. A density functional theory study on the interactions between dibenzothiophene and tetrafluoroborate-based ionic liquids.

    PubMed

    Lin, Jin; Lü, Renqing; Wu, Chongchong; Xiao, Ye; Liang, Fei; Famakinwa, Temilola

    2017-04-01

    The interactions between dibenzothiophene (DBT) and N-butyl-N-methylimidazolium tetrafluoroborate ([BMIM][BF 4 ]), N-butyl-N-methylmorpholinium tetrafluoroborate ([Bmmorpholinium][BF 4 ]), N-butyl-N-methylpiperdinium tetrafluoroborate ([BMPiper][BF 4 ]), N-butyl-N-methylpyrrolidinium tetrafluoroborate ([BMPyrro][BF 4 ]), and N-butylpyridinium tetrafluoroborate ([BPY][BF 4 ]) were investigated using density functional theory approach. Geometric, electron, and topological properties were analyzed using natural bond orbital, atoms in molecules theory, and noncovalent interaction methods in order to understand intermolecular interactions between DBT and ionic liquids. The result shows that hydrogen bond and van der Waals interactions are widespread in all the ionic liquids-DBT systems. Ion-π interactions between DBT and cation or anion are also observed, while π + -π interactions are only found in the [BMIM][BF 4 ]-DBT and [BPY][BF 4 ]-DBT systems. The order of interaction energy is [BPY][BF4]-DBT > [BMIM][BF 4 ]-DBT > [BMPiper][BF 4 ]-DBT > [BMPyrro][BF 4 ]-DBT > [BMmorpholinum][BF 4 ]-DBT. The energies between DBT and the two ionic liquids containing aromatic cations are significantly higher.

  17. Van der Waals model for phase transitions in thermoresponsive surface films.

    PubMed

    McCoy, John D; Curro, John G

    2009-05-21

    Phase transitions in polymeric surface films are studied with a simple model based on the van der Waals equation of state. Each chain is modeled by a single bead attached to the surface by an entropic-Hooke's law spring. The surface coverage is controlled by adjusting the chemical potential, and the equilibrium density profile is calculated with density functional theory. The interesting feature of this model is the multivalued nature of the density profile seen at low temperature. This van der Waals loop behavior is resolved with a Maxwell construction between a high-density phase near the wall and a low-density phase in a "vertical" phase transition. Signatures of the phase transition in experimentally measurable quantities are then found. Numerical calculations are presented for isotherms of surface pressure, for the Poisson ratio, and for the swelling ratio.

  18. Statistical substantiation of the van der Waals theory of inhomogeneous fluids

    NASA Astrophysics Data System (ADS)

    Baidakov, V. G.; Protsenko, S. P.; Chernykh, G. G.; Boltachev, G. Sh.

    2002-04-01

    Computer experiments on simulation of thermodynamic properties and structural characteristics of a Lennard-Jones fluid in one- and two-phase models have been performed for the purpose of checking the base concepts of the van der Waals theory. Calculations have been performed by the method of molecular dynamics at cutoff radii of the intermolecular potential rc,1=2.6σ and rc,2=6.78σ. The phase equilibrium parameters, surface tension, and density distribution have been determined in a two-phase model with a flat liquid-vapor interface. The strong dependence of these properties on the value of rc is shown. The p,ρ,T properties and correlation functions have been calculated in a homogeneous model for a stable and a metastable fluid. An equation of state for a Lennard-Jones fluid describing stable, metastable, and labile regions has been built. It is shown that at T>=1.1 the properties of a flat interface within the computer experimental error can be described by the van der Waals square-gradient theory with an influence parameter κ independent of the density. Taking into account the density dependence of κ through the second moment of the direct correlation function will deteriorate the agreement of the theory with data of computer simulation. The contribution of terms of a higher order than (∇ρ)2 to the Helmholtz free energy of an inhomogeneous system has been considered. It is shown that taking into account terms proportional to (∇ρ)4 leaves no way of obtaining agreement between the theory and simulation data, while taking into consideration of terms proportional to (∇ρ)6 makes it possible to describe with adequate accuracy all the properties of a flat interface in the temperature range from the triple to the critical point.

  19. Programmable Synaptic Metaplasticity and below Femtojoule Spiking Energy Realized in Graphene-Based Neuromorphic Memristor.

    PubMed

    Liu, Bo; Liu, Zhiwei; Chiu, In-Shiang; Di, MengFu; Wu, YongRen; Wang, Jer-Chyi; Hou, Tuo-Hung; Lai, Chao-Sung

    2018-06-20

    Memristors with rich interior dynamics of ion migration are promising for mimicking various biological synaptic functions in neuromorphic hardware systems. A graphene-based memristor shows an extremely low energy consumption of less than a femtojoule per spike, by taking advantage of weak surface van der Waals interaction of graphene. The device also shows an intriguing programmable metaplasticity property in which the synaptic plasticity depends on the history of the stimuli and yet allows rapid reconfiguration via an immediate stimulus. This graphene-based memristor could be a promising building block toward designing highly versatile and extremely energy efficient neuromorphic computing systems.

  20. Light-matter interaction in transition metal dichalcogenides and their heterostructures

    NASA Astrophysics Data System (ADS)

    Wurstbauer, Ursula; Miller, Bastian; Parzinger, Eric; Holleitner, Alexander W.

    2017-05-01

    The investigation of two-dimensional (2D) van der Waals materials is a vibrant, fast-moving and still growing interdisciplinary area of research. These materials are truly 2D crystals with strong covalent in-plane bonds and weak van der Waals interaction between the layers, and have a variety of different electronic, optical and mechanical properties. Transition metal dichalcogenides are a very prominent class of 2D materials, particularly the semiconducting subclass. Their properties include bandgaps in the near-infrared to the visible range, decent charge carrier mobility together with high (photo-) catalytic and mechanical stability, and exotic many-body phenomena. These characteristics make the materials highly attractive for both fundamental research as well as innovative device applications. Furthermore, the materials exhibit a strong light-matter interaction, providing a high sunlight absorbance of up to 15% in the monolayer limit, strong scattering cross section in Raman experiments, and access to excitonic phenomena in van der Waals heterostructures. This review focuses on the light-matter interaction in MoS2, WS2, MoSe2 and WSe2, which is dictated by the materials’ complex dielectric functions, and on the multiplicity of studying the first-order phonon modes by Raman spectroscopy to gain access to several material properties such as doping, strain, defects and temperature. 2D materials provide an interesting platform for stacking them into van der Waals heterostructures without the limitation of lattice mismatch, resulting in novel devices for applications but also to enable the study of exotic many-body interaction phenomena such as interlayer excitons. Future perspectives of semiconducting transition metal dichalcogenides and their heterostructures for applications in optoelectronic devices will be examined, and routes to study emergent fundamental problems and many-body quantum phenomena under excitations with photons will be discussed.

  1. van der Waals epitaxial ZnTe thin film on single-crystalline graphene

    NASA Astrophysics Data System (ADS)

    Sun, Xin; Chen, Zhizhong; Wang, Yiping; Lu, Zonghuan; Shi, Jian; Washington, Morris; Lu, Toh-Ming

    2018-01-01

    Graphene template has long been promoted as a promising host to support van der Waals flexible electronics. However, van der Waals epitaxial growth of conventional semiconductors in planar thin film form on transferred graphene sheets is challenging because the nucleation rate of film species on graphene is significantly low due to the passive surface of graphene. In this work, we demonstrate the epitaxy of zinc-blende ZnTe thin film on single-crystalline graphene supported by an amorphous glass substrate. Given the amorphous nature and no obvious remote epitaxy effect of the glass substrate, this study clearly proves the van der Waals epitaxy of a 3D semiconductor thin film on graphene. X-ray pole figure analysis reveals the existence of two ZnTe epitaxial orientational domains on graphene, a strong X-ray intensity observed from the ZnTe [ 1 ¯ 1 ¯ 2] ǁ graphene [10] orientation domain, and a weaker intensity from the ZnTe [ 1 ¯ 1 ¯ 2] ǁ graphene [11] orientation domain. Furthermore, this study systematically investigates the optoelectronic properties of this epitaxial ZnTe film on graphene using temperature-dependent Raman spectroscopy, steady-state and time-resolved photoluminescence spectroscopy, and fabrication and characterization of a ZnTe-graphene photodetector. The research suggests an effective approach towards graphene-templated flexible electronics.

  2. Defect mediated van der Waals epitaxy of hexagonal boron nitride on graphene

    NASA Astrophysics Data System (ADS)

    Heilmann, M.; Bashouti, M.; Riechert, H.; Lopes, J. M. J.

    2018-04-01

    Van der Waals heterostructures comprising of hexagonal boron nitride and graphene are promising building blocks for novel two-dimensional devices such as atomically thin transistors or capacitors. However, demonstrators of those devices have been so far mostly fabricated by mechanical assembly, a non-scalable and time-consuming method, where transfer processes can contaminate the surfaces. Here, we investigate a direct growth process for the fabrication of insulating hexagonal boron nitride on high quality epitaxial graphene using plasma assisted molecular beam epitaxy. Samples were grown at varying temperatures and times and studied using atomic force microscopy, revealing a growth process limited by desorption at high temperatures. Nucleation was mostly commencing from morphological defects in epitaxial graphene, such as step edges or wrinkles. Raman spectroscopy combined with x-ray photoelectron measurements confirm the formation of hexagonal boron nitride and prove the resilience of graphene against the nitrogen plasma used during the growth process. The electrical properties and defects in the heterostructures were studied with high lateral resolution by tunneling current and Kelvin probe force measurements. This correlated approach revealed a nucleation apart from morphological defects in epitaxial graphene, which is mediated by point defects. The presented results help understanding the nucleation and growth behavior during van der Waals epitaxy of 2D materials, and point out a route for a scalable production of van der Waals heterostructures.

  3. Consistent van der Waals Radii for the Whole Main Group

    PubMed Central

    Mantina, Manjeera; Chamberlin, Adam C.; Valero, Rosendo; Cramer, Christopher J.; Truhlar, Donald G.

    2013-01-01

    Atomic radii are not precisely defined but are nevertheless widely used parameters in modeling and understanding molecular structure and interactions. The van der Waals radii determined by Bondi from molecular crystals and noble gas crystals are the most widely used values, but Bondi recommended radius values for only 28 of the 44 main-group elements in the periodic table. In the present article we present atomic radii for the other 16; these new radii were determined in a way designed to be compatible with Bondi’s scale. The method chosen is a set of two-parameter correlations of Bondi’s radii with repulsive-wall distances calculated by relativistic coupled-cluster electronic structure calculations. The newly determined radii (in Å) are Be, 1.53; B, 1.92; Al, 1.84; Ca, 2.31; Ge, 2.11; Rb, 3.03; Sr, 2.50; Sb, 2.06; Cs, 3.43; Ba, 2.68; Bi, 2.07; Po, 1.97; At, 2.02; Rn, 2.20; Fr, 3.48; and Ra, 2.83. PMID:19382751

  4. Energy Fluctuations Shape Free Energy of Nonspecific Biomolecular Interactions

    NASA Astrophysics Data System (ADS)

    Elkin, Michael; Andre, Ingemar; Lukatsky, David B.

    2012-01-01

    Understanding design principles of biomolecular recognition is a key question of molecular biology. Yet the enormous complexity and diversity of biological molecules hamper the efforts to gain a predictive ability for the free energy of protein-protein, protein-DNA, and protein-RNA binding. Here, using a variant of the Derrida model, we predict that for a large class of biomolecular interactions, it is possible to accurately estimate the relative free energy of binding based on the fluctuation properties of their energy spectra, even if a finite number of the energy levels is known. We show that the free energy of the system possessing a wider binding energy spectrum is almost surely lower compared with the system possessing a narrower energy spectrum. Our predictions imply that low-affinity binding scores, usually wasted in protein-protein and protein-DNA docking algorithms, can be efficiently utilized to compute the free energy. Using the results of Rosetta docking simulations of protein-protein interactions from Andre et al. (Proc. Natl. Acad. Sci. USA 105:16148, 2008), we demonstrate the power of our predictions.

  5. Dynamic polarizabilities and Van der Waals coefficients for alkali atoms Li, Na and alkali dimer molecules Li2, Na2 and NaLi

    NASA Astrophysics Data System (ADS)

    Mérawa, M.; Dargelos, A.

    1998-07-01

    The present paper gives an account of investigations of the polarizability of the alkali atoms Li, Na, diatomics homonuclear and heteronuclear Li2, Na2 and NaLi at SCF (Self Consistent Field) level of approximation and at correlated level, using a time Time-Dependent Gauge Invariant method (TDGI). Our static polarizability values agree with the best experimental and theoretical determinations. The Van der Waals C6 coefficients for the atom-atom, atom-dimer and dimer-dimer interactions have been evaluated. Les polarisabilités des atomes alcalins Li, Na, et des molécules diatomiques homonucléaires et hétéronucléaire Li2, Na2 et NaLi, ont été calculées au niveau SCF (Self Consistent Field) et au niveau corrélé à partir d'une méthode invariante de jauge dépendante du temps(TDGI). Nos valeurs des polarisabilités statiques sont en accord avec les meilleurs déterminations expérimentales et théoriques. Les coefficients C6 de Van de Waals pour les interactions atome-atome, atome-dimère et dimère-dimère ont également été évalués.

  6. Communication: Multiple-property-based diabatization for open-shell van der Waals molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karman, Tijs; Avoird, Ad van der; Groenenboom, Gerrit C., E-mail: gerritg@theochem.ru.nl

    2016-03-28

    We derive a new multiple-property-based diabatization algorithm. The transformation between adiabatic and diabatic representations is determined by requiring a set of properties in both representations to be related by a similarity transformation. This set of properties is determined in the adiabatic representation by rigorous electronic structure calculations. In the diabatic representation, the same properties are determined using model diabatic states defined as products of undistorted monomer wave functions. This diabatic model is generally applicable to van der Waals molecules in arbitrary electronic states. Application to locating seams of conical intersections and collisional transfer of electronic excitation energy is demonstrated formore » O{sub 2} − O{sub 2} in low-lying excited states. Property-based diabatization for this test system included all components of the electric quadrupole tensor, orbital angular momentum, and spin-orbit coupling.« less

  7. Ab initio Potential Energy Surface for H-H2

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Bauschlicher, Charles W., Jr.; Stallcop, James R.; Levin, Eugene

    1993-01-01

    Ab initio calculations employing large basis sets are performed to determine an accurate potential energy surface for H-H2 interactions for a broad range of separation distances. At large distances, the spherically averaged potential determined from the calculated energies agrees well with the corresponding results determined from dispersion coefficients; the van der Waals well depth is predicted to be 75 +/- (mu)E(sub h). Large basis sets have also been applied to reexamine the accuracy of theoretical repulsive potential energy surfaces. Multipolar expansions of the computed H-H2 potential energy surface are reported for four internuclear separation distances (1.2, 1.401, 1.449, and 1.7a(sub 0) of the hydrogen molecule. The differential elastic scattering cross section calculated from the present results is compared with the measurements from a crossed beam experiment.

  8. Interlayer excitons in a bulk van der Waals semiconductor.

    PubMed

    Arora, Ashish; Drüppel, Matthias; Schmidt, Robert; Deilmann, Thorsten; Schneider, Robert; Molas, Maciej R; Marauhn, Philipp; Michaelis de Vasconcellos, Steffen; Potemski, Marek; Rohlfing, Michael; Bratschitsch, Rudolf

    2017-09-21

    Bound electron-hole pairs called excitons govern the electronic and optical response of many organic and inorganic semiconductors. Excitons with spatially displaced wave functions of electrons and holes (interlayer excitons) are important for Bose-Einstein condensation, superfluidity, dissipationless current flow, and the light-induced exciton spin Hall effect. Here we report on the discovery of interlayer excitons in a bulk van der Waals semiconductor. They form due to strong localization and spin-valley coupling of charge carriers. By combining high-field magneto-reflectance experiments and ab initio calculations for 2H-MoTe 2 , we explain their salient features: the positive sign of the g-factor and the large diamagnetic shift. Our investigations solve the long-standing puzzle of positive g-factors in transition metal dichalcogenides, and pave the way for studying collective phenomena in these materials at elevated temperatures.Excitons, quasi-particles of bound electron-hole pairs, are at the core of the optoelectronic properties of layered transition metal dichalcogenides. Here, the authors unveil the presence of interlayer excitons in bulk van der Waals semiconductors, arising from strong localization and spin-valley coupling of charge carriers.

  9. Van der Waals Epitaxy of Functional Oxide Heterostructures

    NASA Astrophysics Data System (ADS)

    Chu, Ying-Hao

    In the diligent pursuit of low-power consumption, multifunctional, and environmentally friendly electronics, more sophisticated requirements on functional materials are on demand. Recently, the discovery of 2D layered materials has created a revolution to this field. Pioneered by graphene, these new 2D materials exhibit abundant unusual physical phenomena that is undiscovered in bulk forms. These materials are characterized with their layer form and almost pure 2D electronic behavior. The confinement of charge and heat transport at such ultrathin planes offers possibilities to overcome the bottleneck of present device development in thickness limitation, and thus push the technologies into next generation. Van der Waals epitaxy, an epitaxial growth method to combine 2D and 3D materials, is one of current reliable manufacturing processes to fabricate 2D materials by growing these 2D materials epitaxially on 3D materials. Then, transferring the 2D materials to the substrates for practical applications. In the mean time, van der Waals epitaxy has also been used to create free-standing 3D materials by growing 3D materials on 2D materials and then removing them from 2D materials since the interfacial boding between 2D and 3D materials should be weak van der Waals bonds. In this study, we intend to take the same concept, but to integrate a family of functional materials in order to open new avenue to flexible electronics. Due to the interplay of lattice, charge, orbital, and spin degrees of freedom, correlated electrons in oxides generate a rich spectrum of competing phases and physical properties. Recently, lots of studies have suggested that oxide heterostructures provide a powerful route to create and manipulate the degrees of freedom and offer new possibilities for next generation devices, thus create a new playground for researchers to investigate novel physics and the emergence of fascinating states of condensed matter. In this talk, we use a 2D layered material as

  10. Control of excitons in multi-layer van der Waals heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calman, E. V., E-mail: ecalman@gmail.com; Dorow, C. J.; Fogler, M. M.

    2016-03-07

    We report an experimental study of excitons in a double quantum well van der Waals heterostructure made of atomically thin layers of MoS{sub 2} and hexagonal boron nitride. The emission of neutral and charged excitons is controlled by gate voltage, temperature, and both the helicity and the power of optical excitation.

  11. Rotational study on the van der Waals complex 1-chloro-1,1-difluoroethane-argon.

    PubMed

    Wang, Juan; Chen, Junhua; Feng, Gang; Xia, Zhining; Gou, Qian

    2018-03-15

    The rotational spectrum of the van der Waals complex formed between 1-chloro-1,1-difluoroethane and argon has been investigated by using a pulsed jet Fourier transform microwave spectrometer. Only one set of rotational transitions belonging to the lowest energy conformer has been observed and assigned, although theoretical calculations suggest six stable conformers that might be observed. The observed conformer, according to the experimental evidence from two isotopologues ( 35 Cl and 37 Cl), adopts a configuration in which the argon atom is located, close to the CF 2 Cl top, between the CCF and CCCl planes (the dihedral angle ∠ArCCCl is 65.2°). The distance between argon atom and the center of mass of CH 3 CF 2 Cl is 3.949(2) Å. The dissociation energy, with pseudo diatomic approximation, is evaluated to be 2.4kJmol -1 . Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Van der Waals Layered Materials: Surface Morphology, Interlayer Interaction, and Electronic Structure

    NASA Astrophysics Data System (ADS)

    Yeh, Po-Chun

    The search for new ultrathin materials as the "new silicon" has begun. In this dissertation, I examine (1) the surface structure, including the growth, the crystal quality, and thin film surface corrugation of a monolayer sample and a few layers of MoS2 and WSe2, and (2) their electronic structure. The characteristics of these electronic systems depend intimately on the morphology of the surfaces they inhabit, and their interactions with the substrate or within layers. These physical properties will be addressed in each chapter. This thesis has dedicated to the characterization of mono- and a few layers of MoS2 and WSe2 that uses surface-sensitive probes such as low-energy electron microscopy and diffraction (LEEM and LEED). Prior to our studies, the characterization of monolayer MoS2 and WSe2 has been generally limited to optical and transport probes. Furthermore, the heavy use of thick silicon oxide layer as the supporting substrate has been important in order to allow optical microscopic characterization of the 2D material. Hence, to the best of our knowledge, this has prohibited studies of this material on other surfaces, and it has precluded the discovery of potentially rich interface interactions that may exist between MoS 2 and its supporting substrate. Thus, in our study, we use a so-called SPELEEM system (Spectroscopic Photo-Emission and Low Energy Electron Microscopy) to address these imaging modalities: (1) real-space microscopy, which would allow locating of monolayer MoS2 samples, (2) spatially-resolved low-energy diffraction which would allow confirmation of the crystalline quality and domain orientation of MoS2 samples, and, (3) spatially-resolved spectroscopy, which would allow electronic structure mapping of MoS2 samples. Moreover, we have developed a preparation procedure for samples that yield, a surface-probe ready, ultra-clean, and can be transferred on an arbitrary substrate. To fully understand the physics in MoS2 such as direct

  13. Spatial Imaging of Strongly Interacting Rydberg Atoms

    NASA Astrophysics Data System (ADS)

    Thaicharoen, Nithiwadee

    The strong interactions between Rydberg excitations can result in spatial correlations between the excitations. The ability to control the interaction strength and the correlations between Rydberg atoms is applicable in future technological implementations of quantum computation. In this thesis, I investigates how both the character of the Rydberg-Rydberg interactions and the details of the excitation process affect the nature of the spatial correlations and the evolution of those correlations in time. I first describes the experimental apparatus and methods used to perform high-magnification Rydberg-atom imaging, as well as three experiments in which these methods play an important role. The obtained Rydberg-atom positions reveal the correlations in the many-body Rydberg-atom system and their time dependence with sub-micron spatial resolution. In the first experiment, atoms are excited to a Rydberg state that experiences a repulsive van der Waals interaction. The Rydberg excitations are prepared with a well-defined initial separation, and the effect of van der Waals forces is observed by tracking the interatomic distance between the Rydberg atoms. The atom trajectories and thereby the interaction coefficient C6 are extracted from the pair correlation functions of the Rydberg atom positions. In the second experiment, the Rydberg atoms are prepared in a highly dipolar state by using adiabatic state transformation. The atom-pair kinetics that follow from the strong dipole-dipole interactions are observed. The pair correlation results provide the first direct visualization of the electric-dipole interaction and clearly exhibit its anisotropic nature. In both the first and the second experiment, results of semi-classical simulations of the atom-pair trajectories agree well with the experimental data. In the analysis, I use energy conservation and measurements of the initial positions and the terminal velocities of the atom pairs to extract the C6 and C 3 interaction

  14. Molecular modeling and molecular dynamics simulation studies on the interactions of hydroxylated polychlorinated biphenyls with estrogen receptor-β.

    PubMed

    Li, Xiaolin; Ye, Li; Wang, Xiaoxiang; Shi, Wei; Qian, XiangPing; Zhu, YongLiang; Yu, HongXia

    2013-10-01

    Endocrine-disrupting chemicals have attracted great concern. As major metabolites of polychlorinated biphenyls (PCBs), hydroxylated polychlorinated biphenyls (HO-PCBs) may disrupt estrogen hormone status because of their structural similarity to estrogen endogenous compounds. However, interactions between HO-PCBs and estrogen receptors (ERs) are not fully understood. In the present work, a molecular modeling study combining molecular docking, molecular dynamics simulations, and binding free energy calculations was performed to characterize the interactions of three HO-PCBs (4'-HO-PCB50, 2'-HO-PCB65, and 4'-HO-PCB69) having much different estrogenic activities with ERβ. Docking results showed that binding between ligands and ERβ was stabilized by hydrogen bond and hydrophobic interactions. The binding free energies of three ligands with ERβ were calculated, and further binding free energy decomposition analysis indicated that the dominating driving force of the binding between the ligands and ERβ was the van der Waals interaction. Some key residues, such as Leu298, Phe356, Gly472, His475, and Leu476, played important roles in ligand-receptor interactions by forming hydrophobic and hydrogen bond interactions with ligands. The results may be beneficial to increase understanding of the interactions between HO-PCBs and ERβ.

  15. Effect of van der Waals forces on thermal conductance at the interface of a single-wall carbon nanotube array and silicon

    NASA Astrophysics Data System (ADS)

    Feng, Ya; Zhu, Jie; Tang, Dawei

    2014-12-01

    Molecular dynamics simulations are performed to evaluate the effect of van der Waals forces among single-wall carbon nanotubes (SWNTs) on the interfacial thermal conductance between a SWNT array and silicon substrate. First, samples of SWNTs vertically aligned on silicon substrate are simulated, where both the number and arrangement of SWNTs are varied. Results reveal that the interfacial thermal conductance of a SWNT array/Si with van der Waals forces present is higher than when they are absent. To better understand how van der Waals forces affect heat transfer through the interface between SWNTs and silicon, further constructs of one SWNT surrounded by different numbers of other ones are studied, and the results show that the interfacial thermal conductance of the central SWNT increases with increasing van der Waals forces. Through analysis of the covalent bonds and vibrational density of states at the interface, we find that heat transfer across the interface is enhanced with a greater number of chemical bonds and that improved vibrational coupling of the two sides of the interface results in higher interfacial thermal conductance. Van der Waals forces stimulate heat transfer at the interface.

  16. Communication: Determining the structure of the N{sub 2}Ar van der Waals complex with laser-based channel-selected Coulomb explosion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Chengyin, E-mail: cywu@pku.edu.cn; Liu, Yunquan; Gong, Qihuang

    2014-04-14

    We experimentally reconstructed the structure of the N{sub 2}Ar van der Waals complex with the technique of laser-based channel-selected Coulomb explosion imaging. The internuclear distance between the N{sub 2} center of mass and the Ar atom, i.e., the length of the van der Waals bond, was determined to be 3.88 Å from the two-body explosion channels. The angle between the van der Waals bond and the N{sub 2} principal axis was determined to be 90° from the three-body explosion channels. The reconstructed structure was contrasted with our high level ab initio calculations. The agreement demonstrated the potential application of laser-basedmore » Coulomb explosion in imaging transient molecular structure, particularly for floppy van der Waals complexes, whose structures remain difficult to be determined by conventional spectroscopic methods.« less

  17. Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics

    DOE PAGES

    Zhong, Ding; Seyler, Kyle L.; Linpeng, Xiayu; ...

    2017-05-31

    The integration of magnetic material with semiconductors has been fertile ground for fundamental science as well as of great practical interest toward the seamless integration of information processing and storage. We create van der Waals heterostructures formed by an ultrathin ferromagnetic semiconductor CrI 3 and a monolayer of WSe 2. We observe unprecedented control of the spin and valley pseudospin in WSe 2, where we detect a large magnetic exchange field of nearly 13 T and rapid switching of the WSe 2 valley splitting and polarization via flipping of the CrI 3 magnetization. The WSe2 photoluminescence intensity strongly depends onmore » the relative alignment between photoexcited spins in WSe 2 and the CrI 3 magnetization, because of ultrafast spin-dependent charge hopping across the heterostructure interface. The photoluminescence detection of valley pseudospin provides a simple and sensitive method to probe the intriguing domain dynamics in the ultrathin magnet, as well as the rich spin interactions within the heterostructure.« less

  18. Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Ding; Seyler, Kyle L.; Linpeng, Xiayu

    The integration of magnetic material with semiconductors has been fertile ground for fundamental science as well as of great practical interest toward the seamless integration of information processing and storage. We create van der Waals heterostructures formed by an ultrathin ferromagnetic semiconductor CrI 3 and a monolayer of WSe 2. We observe unprecedented control of the spin and valley pseudospin in WSe 2, where we detect a large magnetic exchange field of nearly 13 T and rapid switching of the WSe 2 valley splitting and polarization via flipping of the CrI 3 magnetization. The WSe2 photoluminescence intensity strongly depends onmore » the relative alignment between photoexcited spins in WSe 2 and the CrI 3 magnetization, because of ultrafast spin-dependent charge hopping across the heterostructure interface. The photoluminescence detection of valley pseudospin provides a simple and sensitive method to probe the intriguing domain dynamics in the ultrathin magnet, as well as the rich spin interactions within the heterostructure.« less

  19. van der Waals-Tonks-type equations of state for hard-hypersphere fluids in four and five dimensions

    NASA Astrophysics Data System (ADS)

    Wang, Xian-Zhi

    2004-04-01

    Recently, we developed accurate van der Waals-Tonks-type equations of state for hard-disk and hard-sphere fluids by using the known virial coefficients. In this paper, we derive the van der Waals-Tonks-type equations of state. We further apply these equations of state to hard-hypersphere fluids in four and five dimensions. In the low-density fluid regime, these equations of state are in good agreement with the simulation results and existing equations of state.

  20. Tuning electronic transport in epitaxial graphene-based van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Chuan; Li, Jun; de La Barrera, Sergio C.; Eichfeld, Sarah M.; Nie, Yifan; Addou, Rafik; Mende, Patrick C.; Wallace, Robert M.; Cho, Kyeongjae; Feenstra, Randall M.; Robinson, Joshua A.

    2016-04-01

    Two-dimensional tungsten diselenide (WSe2) has been used as a component in atomically thin photovoltaic devices, field effect transistors, and tunneling diodes in tandem with graphene. In some applications it is necessary to achieve efficient charge transport across the interface of layered WSe2-graphene, a semiconductor to semimetal junction with a van der Waals (vdW) gap. In such cases, band alignment engineering is required to ensure a low-resistance, ohmic contact. In this work, we investigate the impact of graphene electronic properties on the transport at the WSe2-graphene interface. Electrical transport measurements reveal a lower resistance between WSe2 and fully hydrogenated epitaxial graphene (EGFH) compared to WSe2 grown on partially hydrogenated epitaxial graphene (EGPH). Using low-energy electron microscopy and reflectivity on these samples, we extract the work function difference between the WSe2 and graphene and employ a charge transfer model to determine the WSe2 carrier density in both cases. The results indicate that WSe2-EGFH displays ohmic behavior at small biases due to a large hole density in the WSe2, whereas WSe2-EGPH forms a Schottky barrier junction.Two-dimensional tungsten diselenide (WSe2) has been used as a component in atomically thin photovoltaic devices, field effect transistors, and tunneling diodes in tandem with graphene. In some applications it is necessary to achieve efficient charge transport across the interface of layered WSe2-graphene, a semiconductor to semimetal junction with a van der Waals (vdW) gap. In such cases, band alignment engineering is required to ensure a low-resistance, ohmic contact. In this work, we investigate the impact of graphene electronic properties on the transport at the WSe2-graphene interface. Electrical transport measurements reveal a lower resistance between WSe2 and fully hydrogenated epitaxial graphene (EGFH) compared to WSe2 grown on partially hydrogenated epitaxial graphene (EGPH). Using low-energy

  1. Long-range interactions of hydrogen atoms in excited states. III. n S -1 S interactions for n ≥3

    NASA Astrophysics Data System (ADS)

    Adhikari, C. M.; Debierre, V.; Jentschura, U. D.

    2017-09-01

    The long-range interaction of excited neutral atoms has a number of interesting and surprising properties such as the prevalence of long-range oscillatory tails and the emergence of numerically large van der Waals C6 coefficients. Furthermore, the energetically quasidegenerate n P states require special attention and lead to mathematical subtleties. Here we analyze the interaction of excited hydrogen atoms in n S states (3 ≤n ≤12 ) with ground-state hydrogen atoms and find that the C6 coefficients roughly grow with the fourth power of the principal quantum number and can reach values in excess of 240 000 (in atomic units) for states with n =12 . The nonretarded van der Waals result is relevant to the distance range R ≪a0/α , where a0 is the Bohr radius and α is the fine-structure constant. The Casimir-Polder range encompasses the interatomic distance range a0/α ≪R ≪ℏ c /L , where L is the Lamb shift energy. In this range, the contribution of quasidegenerate excited n P states remains nonretarded and competes with the 1 /R2 and 1 /R4 tails of the pole terms, which are generated by lower-lying m P states with 2 ≤m ≤n -1 , due to virtual resonant emission. The dominant pole terms are also analyzed in the Lamb shift range R ≫ℏ c /L . The familiar 1 /R7 asymptotics from the usual Casimir-Polder theory is found to be completely irrelevant for the analysis of excited-state interactions. The calculations are carried out to high precision using computer algebra in order to handle a large number of terms in intermediate steps of the calculation for highly excited states.

  2. Nonperturbative theory of atom-surface interaction: corrections at short separations

    NASA Astrophysics Data System (ADS)

    Bordag, M.; Klimchitskaya, G. L.; Mostepanenko, V. M.

    2018-02-01

    The nonperturbative expressions for the free energy and force of interaction between a ground-state atom and a real-material surface at any temperature are presented. The transition to the Matsubara representation is performed, whereupon the comparison is made with the commonly used perturbative results based on the standard Lifshitz theory. It is shown that the Lifshitz formulas for the free energy and force of an atom-surface interaction follow from the nonperturbative ones in the lowest order of the small parameter. Numerical computations of the free energy and force for the atoms of He{\\hspace{0pt}}\\ast and Na interacting with a surface of an Au plate have been performed using the frequency-dependent dielectric permittivity of Au and highly accurate dynamic atomic polarizabilities in the framework of both the nonperturbative and perturbative theories. According to our results, the maximum deviations between the two theories are reached at the shortest atom-surface separations of about 1 nm. Simple analytic expressions for the atom-surface free energy are derived in the classical limit and for an ideal-metal plane. In the lowest order of the small parameter, they are found in agreement with the perturbative ones following from the standard Lifshitz theory. Possible applications of the obtained results in the theory of van der Waals adsorption are discussed.

  3. Effect of adding Te to layered GaSe crystals to increase the van der Waals bonding force

    NASA Astrophysics Data System (ADS)

    Tanabe, Tadao; Zhao, Shu; Sato, Yohei; Oyama, Yutaka

    2017-10-01

    The interplanar binding strength of layered GaSe1-xTex crystals was directly measured using a tensile testing machine. The GaSe1-xTex crystals were grown by a low temperature liquid phase solution method under a controlled Se vapor pressure. The stoichiometry-controlled GaSe1-xTex crystal has the ɛ-polytype structure of GaSe, where the Te atoms are substituted for some of the Se atoms in the GaSe crystal. The effect of adding Te on the bonding strength between the GaSe layers was determined from direct measurements of the van der Waals bonding energy. The bonding energy was increased from 0.023 × 106 N/m2 for GaSe to 0.16 × 106 N/m2 for GaSe1-xTex (x = 0.106).

  4. Energetics of drug-DNA interactions.

    PubMed

    Chaires, J B

    1997-01-01

    Understanding the thermodynamics of drug binding to DNA is of both practical and fundamental interest. The practical interest lies in the contribution that thermodynamics can make to the rational design process for the development of new DNA targeted drugs. Thermodynamics offer key insights into the molecular forces that drive complex formation that cannot be obtained by structural or computational studies alone. The fundamental interest in these interactions lies in what they can reveal about the general problems of parsing and predicting ligand binding free energies. For these problems, drug-DNA interactions offer several distinct advantages, among them being that the structures of many drug-DNA complexes are known at high resolution and that such structures reveal that in many cases the drug acts as a rigid body, with little conformational change upon binding. Complete thermodynamic profiles (delta G, delta H, delta S, delta Cp) for numerous drug-DNA interactions have been obtained, with the help of high-sensitivity microcalorimetry. The purpose of this article is to offer a perspective on the interpretation of these thermodynamics parameters, and in particular how they might be correlated with known structural features. Obligatory conformational changes in the DNA to accommodate intercalators and the loss of translational and rotational freedom upon complex formation both present unfavorable free energy barriers for binding. Such barriers must be overcome by favorable free energy contributions from the hydrophobic transfer of ligand from solution into the binding site, polyelectrolyte contributions from coupled ion release, and molecular interactions (hydrogen and ionic bonds, van der Waals interactions) that form within the binding site. Theoretical and semiempirical tools that allow estimates of these contributions to be made will be discussed, and their use in dissecting experimental data illustrated. This process, even at the current level of approximation

  5. Drug-polymer interactions at water-crystal interfaces and implications for crystallization inhibition: molecular dynamics simulations of amphiphilic block copolymer interactions with tolazamide crystals.

    PubMed

    Gao, Yi; Olsen, Kenneth W

    2015-07-01

    A diblock copolymer, poly(ethylene glycol)-block-poly(lactic acid) (PEG-b-PLA), modulates the crystal growth of tolazamide (TLZ), resulting in a crystal morphology change from needles to plates in aqueous media. To understand this crystal surface drug-polymer interaction, we conducted molecular dynamics simulations on crystal surfaces of TLZ in water containing PEG-b-PLA. A 130-ns simulation of the polymer in a large water box was run before initiating 50 ns simulations with each of the crystal surfaces. The simulations demonstrated differentiated drug-polymer interactions that are consistent with experimental studies. Interaction of PEG-b-PLA with the (001) face occurred more rapidly (≤10 ns) and strongly (total interaction energy of -121.1 kJ/mol/monomer) than that with the (010) face (∼35 ns, -85.4 kJ/mol/monomer). There was little interaction with the (100) face. Hydrophobic and van der Waals (VDW) interactions were the dominant forces, accounting for more than 90% of total interaction energies. It suggests that polymers capable of forming strong hydrophobic and VDW interactions might be more effective in inhibiting crystallization of poorly water-soluble and hydrophobic drugs in aqueous media (such as gastrointestinal fluid) than those with hydrogen-bonding capacities. Such in-depth analysis and understanding facilitate the rational selection of polymers in designing supersaturation-based enabling formulations. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  6. A new ab initio potential energy surface for the Ne-H 2 interaction

    NASA Astrophysics Data System (ADS)

    Lique, François

    2009-03-01

    A new accurate three-dimensional potential energy surface for the Ne-H 2 system, which explicitly takes into account the r-dependence of the H 2 vibration, was determined from ab initio calculations. It was obtained with the single and double excitation coupled-cluster method with noniterative perturbational treatment of triple excitation [CCSD(T)]. Calculations was been performed using the augmented correlation-consistent polarized quintuple zeta basis set (aug-cc-pV5Z) for the three atoms. We checked the accuracy of the present ab initio calculations. We have determined, using the new Ne-H 2 potential energy surface, differential cross-sections for the rotational excitation of the H 2 and D 2 molecules in collision with Ne and we have compared them with experimental results of Faubel et al. [M. Faubel, F.A. Gianturco, F. Ragnetti, L.Y. Rusin, F. Sondermann, U. Tappe, J.P. Toennies, J. Chem. Phys. 101 (1994) 8800]. The overall agreement confirms that the new potential energy surface can be used for the simulation of molecular collisions and/or molecular spectroscopy of the van der Waals complex Ne-H 2.

  7. Electric-field switching of two-dimensional van der Waals magnets

    NASA Astrophysics Data System (ADS)

    Jiang, Shengwei; Shan, Jie; Mak, Kin Fai

    2018-05-01

    Controlling magnetism by purely electrical means is a key challenge to better information technology1. A variety of material systems, including ferromagnetic (FM) metals2-4, FM semiconductors5, multiferroics6-8 and magnetoelectric (ME) materials9,10, have been explored for the electric-field control of magnetism. The recent discovery of two-dimensional (2D) van der Waals magnets11,12 has opened a new door for the electrical control of magnetism at the nanometre scale through a van der Waals heterostructure device platform13. Here we demonstrate the control of magnetism in bilayer CrI3, an antiferromagnetic (AFM) semiconductor in its ground state12, by the application of small gate voltages in field-effect devices and the detection of magnetization using magnetic circular dichroism (MCD) microscopy. The applied electric field creates an interlayer potential difference, which results in a large linear ME effect, whose sign depends on the interlayer AFM order. We also achieve a complete and reversible electrical switching between the interlayer AFM and FM states in the vicinity of the interlayer spin-flip transition. The effect originates from the electric-field dependence of the interlayer exchange bias.

  8. Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials.

    PubMed

    Ding, Wenjun; Zhu, Jianbao; Wang, Zhe; Gao, Yanfei; Xiao, Di; Gu, Yi; Zhang, Zhenyu; Zhu, Wenguang

    2017-04-07

    Interest in two-dimensional (2D) van der Waals materials has grown rapidly across multiple scientific and engineering disciplines in recent years. However, ferroelectricity, the presence of a spontaneous electric polarization, which is important in many practical applications, has rarely been reported in such materials so far. Here we employ first-principles calculations to discover a branch of the 2D materials family, based on In 2 Se 3 and other III 2 -VI 3 van der Waals materials, that exhibits room-temperature ferroelectricity with reversible spontaneous electric polarization in both out-of-plane and in-plane orientations. The device potential of these 2D ferroelectric materials is further demonstrated using the examples of van der Waals heterostructures of In 2 Se 3 /graphene, exhibiting a tunable Schottky barrier, and In 2 Se 3 /WSe 2 , showing a significant band gap reduction in the combined system. These findings promise to substantially broaden the tunability of van der Waals heterostructures for a wide range of applications.

  9. Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials

    PubMed Central

    Ding, Wenjun; Zhu, Jianbao; Wang, Zhe; Gao, Yanfei; Xiao, Di; Gu, Yi; Zhang, Zhenyu; Zhu, Wenguang

    2017-01-01

    Interest in two-dimensional (2D) van der Waals materials has grown rapidly across multiple scientific and engineering disciplines in recent years. However, ferroelectricity, the presence of a spontaneous electric polarization, which is important in many practical applications, has rarely been reported in such materials so far. Here we employ first-principles calculations to discover a branch of the 2D materials family, based on In2Se3 and other III2-VI3 van der Waals materials, that exhibits room-temperature ferroelectricity with reversible spontaneous electric polarization in both out-of-plane and in-plane orientations. The device potential of these 2D ferroelectric materials is further demonstrated using the examples of van der Waals heterostructures of In2Se3/graphene, exhibiting a tunable Schottky barrier, and In2Se3/WSe2, showing a significant band gap reduction in the combined system. These findings promise to substantially broaden the tunability of van der Waals heterostructures for a wide range of applications. PMID:28387225

  10. Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials

    NASA Astrophysics Data System (ADS)

    Ding, Wenjun; Zhu, Jianbao; Wang, Zhe; Gao, Yanfei; Xiao, Di; Gu, Yi; Zhang, Zhenyu; Zhu, Wenguang

    2017-04-01

    Interest in two-dimensional (2D) van der Waals materials has grown rapidly across multiple scientific and engineering disciplines in recent years. However, ferroelectricity, the presence of a spontaneous electric polarization, which is important in many practical applications, has rarely been reported in such materials so far. Here we employ first-principles calculations to discover a branch of the 2D materials family, based on In2Se3 and other III2-VI3 van der Waals materials, that exhibits room-temperature ferroelectricity with reversible spontaneous electric polarization in both out-of-plane and in-plane orientations. The device potential of these 2D ferroelectric materials is further demonstrated using the examples of van der Waals heterostructures of In2Se3/graphene, exhibiting a tunable Schottky barrier, and In2Se3/WSe2, showing a significant band gap reduction in the combined system. These findings promise to substantially broaden the tunability of van der Waals heterostructures for a wide range of applications.

  11. DFT study of the energetic and noncovalent interactions between imidazolium ionic liquids and hydrofluoric acid.

    PubMed

    Velarde, Marco V; Gallo, Marco; Alonso, P A; Miranda, A D; Dominguez, J M

    2015-04-16

    In this work, we evaluated the energetic interactions between imidazolium ionic liquids (ILs) and hydrofluoric acid, as well as the cation-anion interactions in ILs. We used DFT calculations that include dispersion corrections employing the PBE and M06 functionals. We tested 22 ILs, including [C4MIM][PF6], [C4MIM][NTf2], and [C4MIM][CH3COO], obtaining interaction energies in the range of -27 to -13 kcal/mol with the PBE functional. The NCI (noncovalent interaction) index developed by Yang and collaborators ( J. Am. Chem. Soc. 2010 , 132 , 6498 - 6506 ; J. Chem. Theory Comput. 2011 , 7 , 625 - 632 ) also was used for mapping the key noncovalent interactions (hydrogen bonds, van der Waals, and steric repulsions) between the anions and cations of ILs and also for interactions of ILs with hydrofluoric acid (HF). The results obtained show that the anions have a stronger effect with respect to cations in their capacity for interacting with hydrofluoric acid, and the strongest interaction energies occur in systems where the key noncovalent interactions are mainly hydrogen bonds. The [C4MIM][PF6], [C4MIM][NTf2], and [C4MIM][BF4] ionic liquids displayed the weakest cation-anion interactions.

  12. Comparative molecular dynamics simulations of histone deacetylase-like protein: binding modes and free energy analysis to hydroxamic acid inhibitors.

    PubMed

    Yan, Chunli; Xiu, Zhilong; Li, Xiaohui; Li, Shenmin; Hao, Ce; Teng, Hu

    2008-10-01

    Histone deacetylases (HDACs) play an important role in gene transcription, and inhibitors of HDACs can induce cell differentiation and suppress cell proliferation in tumor cells. Histone deacetylase1 (HDAC1) binds suberanilohydroxamic acid (SAHA) and 7-phenyl-2, 4, 6-hepta-trienoyl hydroxamic acid (CG-1521) with moderately low affinity (DeltaG = -8.6 and -7.8 kcal mol(-1)). The structurally related (E)-2-(3-(3-(hydroxyamino)-3-oxoprop-1-enyl)phenyl)-N(1),N(3)-diphenylmalonamide (SK-683), a Trichostatin A (TSA)-like HDAC1 inhibitor, and TSA are bound to the HDAC1 with -12.3 and -10.3 kcal mol(-1) of DeltaG, higher binding free energies than SAHA and CG-1521. Histone deacetylase-like protein (HDLP), an HDAC homologue, shows a 35.2% sequence identity of HDLP and human HDAC1. Molecular dynamics simulation and the molecular mechanics/generalized-Born surface area (MM-GBSA) free energy calculations were applied to investigate the factors responsible for the relatively activity of these four inhibitors to HDLP. In addition, computational alanine scanning of the binding site residues was carried out to determine the contribution components from van der Waals, electrostatic interaction, nonpolar and polar energy of solvation as well as the effects of backbones and side-chains with the MM-GBSA method. MM-GBSA methods reproduced the experimental relative affinities of the four inhibitors in good agreement (R(2) = 0.996) between experimental and computed binding energies. The MM-GBSA calculations showed that, the number of hydrogen bonds formed between the HDLP and inhibitors, which varied in the system studied, and electrostatic interactions determined the magnitude of the free energies for HDLP-inhibitor interactions. The MM-GBSA calculations revealed that the binding of HDLP to these four hydroxamic acid inhibitors is mainly driven by van der Waals/nonpolar interactions. This study can be a guide for the optimization of HDAC inhibitors and future design of new therapeutic

  13. Effects of van der Waals Force and Thermal Stresses on Pull-in Instability of Clamped Rectangular Microplates.

    PubMed

    Batra, Romesh C; Porfiri, Maurizio; Spinello, Davide

    2008-02-15

    We study the influence of von Karman nonlinearity, van der Waals force, and a athermal stresses on pull-in instability and small vibrations of electrostatically actuated mi-croplates. We use the Galerkin method to develop a tractable reduced-order model for elec-trostatically actuated clamped rectangular microplates in the presence of van der Waals forcesand thermal stresses. More specifically, we reduce the governing two-dimensional nonlineartransient boundary-value problem to a single nonlinear ordinary differential equation. For thestatic problem, the pull-in voltage and the pull-in displacement are determined by solving apair of nonlinear algebraic equations. The fundamental vibration frequency corresponding toa deflected configuration of the microplate is determined by solving a linear algebraic equa-tion. The proposed reduced-order model allows for accurately estimating the combined effectsof van der Waals force and thermal stresses on the pull-in voltage and the pull-in deflectionprofile with an extremely limited computational effort.

  14. Effects of van der Waals Force and Thermal Stresses on Pull-in Instability of Clamped Rectangular Microplates

    PubMed Central

    Batra, Romesh C.; Porfiri, Maurizio; Spinello, Davide

    2008-01-01

    We study the influence of von Kármán nonlinearity, van der Waals force, and thermal stresses on pull-in instability and small vibrations of electrostatically actuated microplates. We use the Galerkin method to develop a tractable reduced-order model for electrostatically actuated clamped rectangular microplates in the presence of van der Waals forces and thermal stresses. More specifically, we reduce the governing two-dimensional nonlinear transient boundary-value problem to a single nonlinear ordinary differential equation. For the static problem, the pull-in voltage and the pull-in displacement are determined by solving a pair of nonlinear algebraic equations. The fundamental vibration frequency corresponding to a deflected configuration of the microplate is determined by solving a linear algebraic equation. The proposed reduced-order model allows for accurately estimating the combined effects of van der Waals force and thermal stresses on the pull-in voltage and the pull-in deflection profile with an extremely limited computational effort. PMID:27879752

  15. Interacting dark energy: Dynamical system analysis

    NASA Astrophysics Data System (ADS)

    Golchin, Hanif; Jamali, Sara; Ebrahimi, Esmaeil

    We investigate the impacts of interaction between dark matter (DM) and dark energy (DE) in the context of two DE models, holographic (HDE) and ghost dark energy (GDE). In fact, using the dynamical system analysis, we obtain the cosmological consequence of several interactions, considering all relevant component of universe, i.e. matter (dark and luminous), radiation and DE. Studying the phase space for all interactions in detail, we show the existence of unstable matter-dominated and stable DE-dominated phases. We also show that linear interactions suffer from the absence of standard radiation-dominated epoch. Interestingly, this failure resolved by adding the nonlinear interactions to the models. We find an upper bound for the value of the coupling constant of the interaction between DM and DE as b < 0.57in the case of holographic model, and b < 0.61 in the case of GDE model, to result in a cosmological viable matter-dominated epoch. More specifically, this bound is vital to satisfy instability and deceleration of matter-dominated epoch.

  16. Role of ligand-ligand vs. core-core interactions in gold nanoclusters.

    PubMed

    Milowska, Karolina Z; Stolarczyk, Jacek K

    2016-05-14

    The controlled assembly of ligand-coated gold nanoclusters (NCs) into larger structures paves the way for new applications ranging from electronics to nanomedicine. Here, we demonstrate through rigorous density functional theory (DFT) calculations employing novel functionals accounting for van der Waals forces that the ligand-ligand interactions determine whether stable assemblies can be formed. The study of NCs with different core sizes, symmetry forms, ligand lengths, mutual crystal orientations, and in the presence of a solvent suggests that core-to-core van der Waals interactions play a lesser role in the assembly. The dominant interactions originate from combination of steric effects, augmented by ligand bundling on NC facets, and related to them changes in electronic properties induced by neighbouring NCs. We also show that, in contrast to standard colloidal theory approach, DFT correctly reproduces the surprising experimental trends in the strength of the inter-particle interaction observed when varying the length of the ligands. The results underpin the importance of understanding NC interactions in designing gold NCs for a specific function.

  17. Variable sound speed in interacting dark energy models

    NASA Astrophysics Data System (ADS)

    Linton, Mark S.; Pourtsidou, Alkistis; Crittenden, Robert; Maartens, Roy

    2018-04-01

    We consider a self-consistent and physical approach to interacting dark energy models described by a Lagrangian, and identify a new class of models with variable dark energy sound speed. We show that if the interaction between dark energy in the form of quintessence and cold dark matter is purely momentum exchange this generally leads to a dark energy sound speed that deviates from unity. Choosing a specific sub-case, we study its phenomenology by investigating the effects of the interaction on the cosmic microwave background and linear matter power spectrum. We also perform a global fitting of cosmological parameters using CMB data, and compare our findings to ΛCDM.

  18. Pattern-free thermal modulator via thermal radiation between Van der Waals materials

    NASA Astrophysics Data System (ADS)

    Liu, Xianglei; Shen, Jiadong; Xuan, Yimin

    2017-10-01

    Modulating heat flux provides a platform for a plethora of emerging devices such as thermal diodes, thermal transistors, and thermal memories. Here, a pattern-free noncontact thermal modulator is proposed based on the mechanical rotation between two Van der Waals films with optical axes parallel to the surfaces. A modulation contrast can reach a value higher than 5 for hexagonal Boron Nitride (hBN) films separated by a nanoscale gap distance. The dominant radiative heat exchange comes from the excitation of both Type I and Type II hyperbolic surface phonon polaritons (HSPhPs) at the vacuum-hBN interface for different orientations, while the large modulation contrast is mainly attributed to the mismatching Type I HSPhPs induced by rotation. This work opens the possibility to design cheap thermal modulators without relying on nanofabrication techniques, and paves the way to apply natural Van der Waals materials in manipulating heat currents in an active way.

  19. Interacting holographic dark energy models: a general approach

    NASA Astrophysics Data System (ADS)

    Som, S.; Sil, A.

    2014-08-01

    Dark energy models inspired by the cosmological holographic principle are studied in homogeneous isotropic spacetime with a general choice for the dark energy density . Special choices of the parameters enable us to obtain three different holographic models, including the holographic Ricci dark energy (RDE) model. Effect of interaction between dark matter and dark energy on the dynamics of those models are investigated for different popular forms of interaction. It is found that crossing of phantom divide can be avoided in RDE models for β>0.5 irrespective of the presence of interaction. A choice of α=1 and β=2/3 leads to a varying Λ-like model introducing an IR cutoff length Λ -1/2. It is concluded that among the popular choices an interaction of the form Q∝ Hρ m suits the best in avoiding the coincidence problem in this model.

  20. Controlling the electronic properties of van der Waals heterostructures by applying electrostatic design

    NASA Astrophysics Data System (ADS)

    Winkler, Christian; Harivyasi, Shashank S.; Zojer, Egbert

    2018-07-01

    Van der Waals heterostructures based on the heteroassembly of 2D materials represent a recently developed class of materials with promising properties especially for optoelectronic applications. The alignment of electronic energy bands between consecutive layers of these heterostructures crucially determines their functionality. In the present paper, relying on dispersion-corrected density-functional theory calculations, we present electrostatic design as a promising tool for manipulating this band alignment. The latter is achieved by inserting a layer of aligned polar molecules between consecutive transition-metal dichalcogenide (TMD) sheets. As a consequence, collective electrostatic effects induce a shift of as much as 0.3 eV in the band edges of successive TMD layers. Building on that, the proposed approach can be used to design electronically more complex systems, like quantum cascades or quantum wells, or to change the type of band lineup between type II and type I.

  1. Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode.

    PubMed

    Deng, Yexin; Luo, Zhe; Conrad, Nathan J; Liu, Han; Gong, Yongji; Najmaei, Sina; Ajayan, Pulickel M; Lou, Jun; Xu, Xianfan; Ye, Peide D

    2014-08-26

    Phosphorene, a elemental 2D material, which is the monolayer of black phosphorus, has been mechanically exfoliated recently. In its bulk form, black phosphorus shows high carrier mobility (∼10,000 cm(2)/V·s) and a ∼0.3 eV direct band gap. Well-behaved p-type field-effect transistors with mobilities of up to 1000 cm(2)/V·s, as well as phototransistors, have been demonstrated on few-layer black phosphorus, showing its promise for electronics and optoelectronics applications due to its high hole mobility and thickness-dependent direct band gap. However, p–n junctions, the basic building blocks of modern electronic and optoelectronic devices, have not yet been realized based on black phosphorus. In this paper, we demonstrate a gate-tunable p–n diode based on a p-type black phosphorus/n-type monolayer MoS2 van der Waals p–n heterojunction. Upon illumination, these ultrathin p–n diodes show a maximum photodetection responsivity of 418 mA/W at the wavelength of 633 nm and photovoltaic energy conversion with an external quantum efficiency of 0.3%. These p–n diodes show promise for broad-band photodetection and solar energy harvesting.

  2. Vibrations of double-nanotube systems with mislocation via a newly developed van der Waals model

    NASA Astrophysics Data System (ADS)

    Kiani, Keivan

    2015-06-01

    This study deals with transverse vibrations of two adjacent-parallel-mislocated single-walled carbon nanotubes (SWCNTs) under various end conditions. These tubes interact with each other and their surrounding medium through the intertube van der Waals (vdW) forces, and existing bonds between their atoms and those of the elastic medium. The elastic energy of such forces due to the deflections of nanotubes is appropriately modeled by defining a vdW force density function. In the previous works, vdW forces between two identical tubes were idealized by a uniform form of this function. The newly introduced function enables us to investigate the influences of both intertube free distance and longitudinal mislocation on the natural transverse frequencies of the nanosystem which consists of two dissimilar tubes. Such crucial issues have not been addressed yet, even for simply supported tubes. Using nonlocal Timoshenko and higher-order beam theories as well as Hamilton's principle, the strong form of the equations of motion is established. Seeking for an explicit solution to these integro-partial differential equations is a very problematic task. Thereby, an energy-based method in conjunction with an efficient meshfree method is proposed and the nonlocal frequencies of the elastically embedded nanosystem are determined. For simply supported nanosystems, the predicted first five frequencies of the proposed model are checked with those of assumed mode method, and a reasonably good agreement is achieved. Through various studies, the roles of the tube's length ratio, intertube free space, mislocation, small-scale effect, slenderness ratio, radius of SWCNTs, and elastic constants of the elastic matrix on the natural frequencies of the nanosystem with various end conditions are explained. The limitations of the nonlocal Timoshenko beam theory are also addressed. This work can be considered as a vital step towards better realizing of a more complex system that consists of

  3. Grippers Based on Opposing Van Der Waals Adhesive Pads

    NASA Technical Reports Server (NTRS)

    Parness, Aaron (Inventor); Kennedy, Brett A. (Inventor); Heverly, Matthew C (Inventor); Cutkosky, Mark R. (Inventor); Hawkes, Elliot Wright (Inventor)

    2016-01-01

    Novel gripping structures based on van der Waals adhesive forces are disclosed. Pads covered with fibers can be activated in pairs by opposite forces, thereby enabling control of the adhesive force in an ON or OFF state. Pads can be used in groups, each comprising a group of opposite pads. The adhesive structures enable anchoring forces that can resist adverse forces from different directions. The adhesive structures can be used to enable the operation of robots on surfaces of space vehicles.

  4. Effects of van der Waals density functional corrections on trends in furfural adsorption and hydrogenation on close-packed transition metal surfaces

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Cheng, Lei; Curtiss, Larry; Greeley, Jeffrey

    2014-04-01

    The hydrogenation of furfural to furfuryl alcohol on Pd(111), Cu(111) and Pt(111) is studied with both standard Density Functional Theory (DFT)-GGA functionals and with van der Waals-corrected density functionals. VdW-DF functionals, including optPBE, optB88, optB86b, and Grimme's method, are used to optimize the adsorption configurations of furfural, furfuryl alcohol, and related intermediates resulting from hydrogenation of furfural, and the results are compared to corresponding values determined with GGA functionals, including PW91 and PBE. On Pd(111) and Pt(111), the adsorption geometries of the intermediates are not noticeably different between the two classes of functionals, while on Cu(111), modest changes are seen in both the perpendicular distance and the orientation of the aromatic ring with respect to the planar surface. In general, the binding energies increase substantially in magnitude as a result of van der Waals contributions on all metals. In contrast, however, dispersion effects on the kinetics of hydrogenation are relatively small. It is found that activation barriers are not significantly affected by the inclusion of dispersion effects, and a Brønsted-Evans-Polanyi relationship developed solely from PW91 calculations on Pd(111) is capable of describing corresponding results on Cu(111) and Pt(111), even when the dispersion effects are included. Finally, the reaction energies and barriers derived from the dispersion-corrected and pure GGA calculations are used to plot simple potential energy profiles for furfural hydrogenation to furfuryl alcohol on the three considered metals, and an approximately constant downshift of the energetics due to the dispersion corrections is observed.

  5. FY04 LDRD Final Report: Interaction of Viruses with Membranes and Soil Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaldach, C M

    2005-02-08

    The influence of ionic strength on the electrostatic interaction of viruses with environmentally relevant surfaces was determined for three viruses, MS2, Q{beta} and Norwalk. The environmental surface is modeled as charged Gouy-Chapman plane with and without a finite atomistic region (patch) of opposite charge. The virus is modeled as a particle comprised of ionizable amino acid residues in a shell surrounding a spherical RNA core of negative charge, these charges being compensated for by a Coulomb screening due to intercalated ions. Surface potential calculations for each of the viruses show excellent agreement with electrophoretic mobility and zeta potential measurements asmore » a function of pH. The results indicate that the electrostatic interaction between the virus and the planar surface, mitigated by the ionic strength of the solute, is dependent upon the spatial distribution of the amino acid residues in the different viruses. Specifically, the order of interaction energies with the patch (MS2 greatest at 5 mM; Norwalk greatest at 20 mM) is dependent upon the ionic strength of the fluid as a direct result of the viral coat amino acid distributions. We have developed an atomistic-scale method of calculation of the binding energy of viruses to surfaces including electrostatic, van der Waals, electron-overlap repulsion, surface charge polarization (images), and hydrophobic effects. The surface is treated as a Gouy-Chapman plane allowing inclusion of pH and ionic strength effects on the electrostatic potential at each amino acid charge. Van der Waals parameters are obtained from the DREIDING force field and from Hamaker constant measurements. We applied this method to the calculation of the Cowpea Mosaic Virus (CPMV), a negatively charged virus at a pH of 7.0, and find that the viral-gold surface interaction is very long range for both signs of surface potential, a result due to the electrostatic forces. For a negative (Au) surface potential of -0.05 volts

  6. Direct Measurement of the Surface Energy of Graphene.

    PubMed

    van Engers, Christian D; Cousens, Nico E A; Babenko, Vitaliy; Britton, Jude; Zappone, Bruno; Grobert, Nicole; Perkin, Susan

    2017-06-14

    Graphene produced by chemical vapor deposition (CVD) is a promising candidate for implementing graphene in a range of technologies. In most device configurations, one side of the graphene is supported by a solid substrate, wheras the other side is in contact with a medium of interest, such as a liquid or other two-dimensional material within a van der Waals stack. In such devices, graphene interacts on both faces via noncovalent interactions and therefore surface energies are key parameters for device fabrication and operation. In this work, we directly measured adhesive forces and surface energies of CVD-grown graphene in dry nitrogen, water, and sodium cholate using a modified surface force balance. For this, we fabricated large (∼1 cm 2 ) and clean graphene-coated surfaces with smooth topography at both macro- and nanoscales. By bringing two such surfaces into contact and measuring the force required to separate them, we measured the surface energy of single-layer graphene in dry nitrogen to be 115 ± 4 mJ/m 2 , which was similar to that of few-layer graphene (119 ± 3 mJ/m 2 ). In water and sodium cholate, we measured interfacial energies of 83 ± 7 and 29 ± 6 mJ/m 2 , respectively. Our work provides the first direct measurement of graphene surface energy and is expected to have an impact both on the development of graphene-based devices and contribute to the fundamental understanding of surface interactions.

  7. Fighting detection using interaction energy force

    NASA Astrophysics Data System (ADS)

    Wateosot, Chonthisa; Suvonvorn, Nikom

    2017-02-01

    Fighting detection is an important issue in security aimed to prevent criminal or undesirable events in public places. Many researches on computer vision techniques have studied to detect the specific event in crowded scenes. In this paper we focus on fighting detection using social-based Interaction Energy Force (IEF). The method uses low level features without object extraction and tracking. The interaction force is modeled using the magnitude and direction of optical flows. A fighting factor is developed under this model to detect fighting events using thresholding method. An energy map of interaction force is also presented to identify the corresponding events. The evaluation is performed using NUSHGA and BEHAVE datasets. The results show the efficiency with high accuracy regardless of various conditions.

  8. Interaction of sucralose with whey protein: Experimental and molecular modeling studies

    NASA Astrophysics Data System (ADS)

    Zhang, Hongmei; Sun, Shixin; Wang, Yanqing; Cao, Jian

    2017-12-01

    The objective of this research was to study the interactions of sucralose with whey protein isolate (WPI) by using the three-dimensional fluorescence spectroscopy, circular dichroism spectroscopy and molecular modeling. The results showed that the peptide strands structure of WPI had been changed by sucralose. Sucralose binding induced the secondary structural changes and increased content of aperiodic structure of WPI. Sucralose decreased the thermal stability of WPI and acted as a structure destabilizer during the thermal unfolding process of protein. In addition, the existence of sucralose decreased the reversibility of the unfolding of WPI. Nonetheless, sucralose-WPI complex was less stable than protein alone. The molecular modeling result showed that van der Waals and hydrogen bonding interactions contribute to the complexation free binding energy. There are more than one possible binding sites of WPI with sucralose by surface binding mode.

  9. Quantitative study of interactions between oxygen lone pair and aromatic rings: substituent effect and the importance of closeness of contact.

    PubMed

    Gung, Benjamin W; Zou, Yan; Xu, Zhigang; Amicangelo, Jay C; Irwin, Daniel G; Ma, Shengqian; Zhou, Hong-Cai

    2008-01-18

    Current models describe aromatic rings as polar groups based on the fact that benzene and hexafluorobenzene are known to have large and permanent quadrupole moments. This report describes a quantitative study of the interactions between oxygen lone pair and aromatic rings. We found that even electron-rich aromatic rings and oxygen lone pairs exhibit attractive interactions. Free energies of interactions are determined using the triptycene scaffold and the equilibrium constants were determined by low-temperature 1H NMR spectroscopy. An X-ray structure analysis for one of the model compounds confirms the close proximity between the oxygen and the center of the aromatic ring. Theoretical calculations at the MP2/aug-cc-pVTZ level corroborate the experimental results. The origin of attractive interactions was explored by using aromatic rings with a wide range of substituents. The interactions between an oxygen lone pair and an aromatic ring are attractive at van der Waals' distance even with electron-donating substituents. Electron-withdrawing groups increase the strength of the attractive interactions. The results from this study can be only partly rationalized by using the current models of aromatic system. Electrostatic-based models are consistent with the fact that stronger electron-withdrawing groups lead to stronger attractions, but fail to predict or rationalize the fact that weak attractions even exist between electron-rich arenes and oxygen lone pairs. The conclusion from this study is that aromatic rings cannot be treated as a simple quadrupolar functional group at van der Waals' distance. Dispersion forces and local dipole should also be considered.

  10. Layer-dependent band alignment of few layers of blue phosphorus and their van der Waals heterostructures with graphene

    NASA Astrophysics Data System (ADS)

    Pontes, Renato B.; Miwa, Roberto H.; da Silva, Antônio J. R.; Fazzio, Adalberto; Padilha, José E.

    2018-06-01

    The structural and electronic properties of few layers of blue phosphorus and their van der Waals heterostructures with graphene were investigated by means of first-principles electronic structure calculations. We study the four energetically most stable stacking configurations for multilayers of blue phosphorus. For all of them, the indirect band-gap semiconductor character, are preserved. We show that the properties of monolayer graphene and single-layer (bilayer) blue phosphorus are preserved in the van der Waals heterostructures. Further, our results reveal that under a perpendicular applied electric field, the position of the band structure of blue phosphorus with respect to that of graphene is tunable, enabling the effective control of the Schottky barrier height. Indeed, for the bilayer blue phosphorene on top of graphene, it is possible to even move the system into an Ohmic contact and induce a doping level of the blue phosphorene. All of these features are fundamental for the design of new nanodevices based on van der Waals heterostructures.

  11. Role of dispersion interactions in the polymorphism and entropic stabilization of the aspirin crystal.

    PubMed

    Reilly, Anthony M; Tkatchenko, Alexandre

    2014-08-01

    Aspirin has been used and studied for over a century but has only recently been shown to have an additional polymorphic form, known as form II. Since the two observed solid forms of aspirin are degenerate in terms of lattice energy, kinetic effects have been suggested to determine the metastability of the less abundant form II. Here, first-principles calculations provide an alternative explanation based on free-energy differences at room temperature. The explicit consideration of many-body van der Waals interactions in the free energy demonstrates that the stability of the most abundant form of aspirin is due to a subtle coupling between collective electronic fluctuations and quantized lattice vibrations. In addition, a systematic analysis of the elastic properties of the two forms of aspirin rules out mechanical instability of form II as making it metastable.

  12. Role of Dispersion Interactions in the Polymorphism and Entropic Stabilization of the Aspirin Crystal

    NASA Astrophysics Data System (ADS)

    Reilly, Anthony M.; Tkatchenko, Alexandre

    2014-08-01

    Aspirin has been used and studied for over a century but has only recently been shown to have an additional polymorphic form, known as form II. Since the two observed solid forms of aspirin are degenerate in terms of lattice energy, kinetic effects have been suggested to determine the metastability of the less abundant form II. Here, first-principles calculations provide an alternative explanation based on free-energy differences at room temperature. The explicit consideration of many-body van der Waals interactions in the free energy demonstrates that the stability of the most abundant form of aspirin is due to a subtle coupling between collective electronic fluctuations and quantized lattice vibrations. In addition, a systematic analysis of the elastic properties of the two forms of aspirin rules out mechanical instability of form II as making it metastable.

  13. Metal-phthalocyanine ordered layers on Au(110): Metal-dependent adsorption energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massimi, Lorenzo, E-mail: lorenzo.massimi@uniroma1.it; Angelucci, Marco; Gargiani, Pierluigi

    2014-06-28

    Iron-phthalocyanine and cobalt-phthalocyanine chains, assembled along the Au(110)-(1×2) reconstructed channels, present a strong interaction with the Au metallic states, via the central metal ion. X-ray photoemission spectroscopy from the metal-2p core-levels and valence band high-resolution ultraviolet photoelectron spectroscopy bring to light signatures of the interaction of the metal-phthalocyanine single-layer with gold. The charge transfer from Au to the molecule causes the emerging of a metal-2p core level component at lower binding energy with respect to that measured in the molecular thin films, while the core-levels associated to the organic macrocycle (C and N 1s) are less influenced by the adsorption,more » and the macrocycles stabilize the interaction, inducing a strong interface dipole. Temperature Programmed Desorption experiments and photoemission as a function of temperature allow to estimate the adsorption energy for the thin-films, mainly due to the molecule-molecule van der Waals interaction, while the FePc and CoPc single-layers remain adsorbed on the Au surface up to at least 820 K.« less

  14. 3D Localized Trions in Monolayer WSe2 in a Charge Tunable van der Waals Heterostructure.

    PubMed

    Chakraborty, Chitraleema; Qiu, Liangyu; Konthasinghe, Kumarasiri; Mukherjee, Arunabh; Dhara, Sajal; Vamivakas, Nick

    2018-05-09

    Monolayer transition metal dichalcogenides (TMDCs) have recently emerged as a host material for localized optically active quantum emitters that generate single photons. (1-5) Here, we investigate fully localized excitons and trions from such TMDC quantum emitters embedded in a van der Waals heterostructure. We use direct electrostatic doping through the vertical heterostructure device assembly to generate quantum confined trions. Distinct spectral jumps as a function of applied voltage bias, and excitation power-dependent charging, demonstrate the observation of the two different excitonic complexes. We also observe a reduction of the intervalley electron-hole exchange interaction in the confined trion due to the addition of an extra electron, which is manifested by a decrease in its fine structure splitting. We further confirm this decrease of exchange interaction for the case of the charged states by a comparative study of the circular polarization resolved photoluminescence from individual excitonic states. The valley polarization selection rules inherited by the localized trions will provide a pathway toward realizing a localized spin-valley-photon interface.

  15. A Van der Waals-like theory of plasma double layers

    NASA Technical Reports Server (NTRS)

    Katz, Ira; Davis, V. A.

    1989-01-01

    A theory describing plasma double layers in terms of multiple roots of the charge density expression is presented. The theory presented uses the fact that equilibrium plasmas shield small potential perturbations linearly; for high potentials, the shielding decreases. The approach is analogous to Van der Waals' theory of simple fluids in which inclusion of approximate expressions for both excluded volume and long range attractive forces sufficiently describes the first-order liquid-gas phase transition.

  16. van der Waals torque and force between anisotropic topological insulator slabs

    NASA Astrophysics Data System (ADS)

    Lu, Bing-Sui

    2018-01-01

    We investigate the character of the van der Waals (vdW) torque and force between two coplanar and dielectrically anisotropic topological insulator (TI) slabs separated by a vacuum gap in the nonretardation regime, where the optic axes of the slabs are each perpendicular to the normal direction to the slab-gap interface and also generally differently oriented from each other. We find that in addition to the magnetoelectric coupling strength, the anisotropy can also influence the sign of the vdW force, viz., a repulsive vdW force can become attractive if the anisotropy is increased sufficiently. In addition, the vdW force oscillates as a function of the angular difference between the optic axes of the TI slabs, being most repulsive/least attractive (least repulsive/most attractive) for angular differences that are integer (half-integer) multiples of π . Our third finding is that the vdW torque for TI slabs is generally weaker than that for ordinary dielectric slabs. Our work provides an instance in which the vector potential appears in a calculation of the vdW interaction for which the limit is nonretarded or static.

  17. Surface and interface of epitaxial CdTe film on CdS buffered van der Waals mica substrate

    NASA Astrophysics Data System (ADS)

    Yang, Y.-B.; Seewald, L.; Mohanty, Dibyajyoti; Wang, Y.; Zhang, L. H.; Kisslinger, K.; Xie, Weiyu; Shi, J.; Bhat, I.; Zhang, Shengbai; Lu, T.-M.; Wang, G.-C.

    2017-08-01

    Single crystal CdTe films are desirable for optoelectronic device applications. An important strategy of creating films with high crystallinity is through epitaxial growth on a proper single crystal substrate. We report the metalorganic chemical vapor deposition of epitaxial CdTe films on the CdS/mica substrate. The epitaxial CdS film was grown on a mica surface by thermal evaporation. Due to the weak van der Waals forces, epitaxy is achieved despite the very large interface lattice mismatch between CdS and mica (∼21-55%). The surface morphology of mica, CdS and CdTe were quantified by atomic force microscopy. The near surface structures, orientations and texture of CdTe and CdS films were characterized by the unique reflection high-energy electron diffraction surface pole figure technique. The interfaces of CdTe and CdS films and mica were characterized by X-ray pole figure technique and transmission electron microscopy. The out-of-plane and in-plane epitaxy of the heteroepitaxial films stack are determined to be CdTe(111)//CdS(0001)//mica(001) and [1 bar2 1 bar]CdTe//[ 1 bar100]CdS//[010]mica, respectively. The measured photoluminescence (PL), time resolved PL, photoresponse, and Hall mobility of the CdTe/CdS/mica indicate quality films. The use of van der Waals surface to grow epitaxial CdTe/CdS films offers an alternative strategy towards infrared imaging and solar cell applications.

  18. Two-dimensional antimonene single crystals grown by van der Waals epitaxy.

    PubMed

    Ji, Jianping; Song, Xiufeng; Liu, Jizi; Yan, Zhong; Huo, Chengxue; Zhang, Shengli; Su, Meng; Liao, Lei; Wang, Wenhui; Ni, Zhenhua; Hao, Yufeng; Zeng, Haibo

    2016-11-15

    Unlike the unstable black phosphorous, another two-dimensional group-VA material, antimonene, was recently predicted to exhibit good stability and remarkable physical properties. However, the synthesis of high-quality monolayer or few-layer antimonenes, sparsely reported, has greatly hindered the development of this new field. Here, we report the van der Waals epitaxy growth of few-layer antimonene monocrystalline polygons, their atomical microstructure and stability in ambient condition. The high-quality, few-layer antimonene monocrystalline polygons can be synthesized on various substrates, including flexible ones, via van der Waals epitaxy growth. Raman spectroscopy and transmission electron microscopy reveal that the obtained antimonene polygons have buckled rhombohedral atomic structure, consistent with the theoretically predicted most stable β-phase allotrope. The very high stability of antimonenes was observed after aging in air for 30 days. First-principle and molecular dynamics simulation results confirmed that compared with phosphorene, antimonene is less likely to be oxidized and possesses higher thermodynamic stability in oxygen atmosphere at room temperature. Moreover, antimonene polygons show high electrical conductivity up to 10 4  S m -1 and good optical transparency in the visible light range, promising in transparent conductive electrode applications.

  19. Two-dimensional antimonene single crystals grown by van der Waals epitaxy

    PubMed Central

    Ji, Jianping; Song, Xiufeng; Liu, Jizi; Yan, Zhong; Huo, Chengxue; Zhang, Shengli; Su, Meng; Liao, Lei; Wang, Wenhui; Ni, Zhenhua; Hao, Yufeng; Zeng, Haibo

    2016-01-01

    Unlike the unstable black phosphorous, another two-dimensional group-VA material, antimonene, was recently predicted to exhibit good stability and remarkable physical properties. However, the synthesis of high-quality monolayer or few-layer antimonenes, sparsely reported, has greatly hindered the development of this new field. Here, we report the van der Waals epitaxy growth of few-layer antimonene monocrystalline polygons, their atomical microstructure and stability in ambient condition. The high-quality, few-layer antimonene monocrystalline polygons can be synthesized on various substrates, including flexible ones, via van der Waals epitaxy growth. Raman spectroscopy and transmission electron microscopy reveal that the obtained antimonene polygons have buckled rhombohedral atomic structure, consistent with the theoretically predicted most stable β-phase allotrope. The very high stability of antimonenes was observed after aging in air for 30 days. First-principle and molecular dynamics simulation results confirmed that compared with phosphorene, antimonene is less likely to be oxidized and possesses higher thermodynamic stability in oxygen atmosphere at room temperature. Moreover, antimonene polygons show high electrical conductivity up to 104 S m−1 and good optical transparency in the visible light range, promising in transparent conductive electrode applications. PMID:27845327

  20. Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities

    PubMed Central

    Dufferwiel, S.; Schwarz, S.; Withers, F.; Trichet, A. A. P.; Li, F.; Sich, M.; Del Pozo-Zamudio, O.; Clark, C.; Nalitov, A.; Solnyshkov, D. D.; Malpuech, G.; Novoselov, K. S.; Smith, J. M.; Skolnick, M. S.; Krizhanovskii, D. N.; Tartakovskii, A. I.

    2015-01-01

    Layered materials can be assembled vertically to fabricate a new class of van der Waals heterostructures a few atomic layers thick, compatible with a wide range of substrates and optoelectronic device geometries, enabling new strategies for control of light–matter coupling. Here, we incorporate molybdenum diselenide/hexagonal boron nitride (MoSe2/hBN) quantum wells in a tunable optical microcavity. Part-light–part-matter polariton eigenstates are observed as a result of the strong coupling between MoSe2 excitons and cavity photons, evidenced from a clear anticrossing between the neutral exciton and the cavity modes with a splitting of 20 meV for a single MoSe2 monolayer, enhanced to 29 meV in MoSe2/hBN/MoSe2 double-quantum wells. The splitting at resonance provides an estimate of the exciton radiative lifetime of 0.4 ps. Our results pave the way for room-temperature polaritonic devices based on multiple-quantum-well van der Waals heterostructures, where polariton condensation and electrical polariton injection through the incorporation of graphene contacts may be realized. PMID:26446783

  1. van der Waals epitaxy of Ge films on mica

    NASA Astrophysics Data System (ADS)

    Littlejohn, A. J.; Xiang, Y.; Rauch, E.; Lu, T.-M.; Wang, G.-C.

    2017-11-01

    To date, many materials have been successfully grown on substrates through van der Waals epitaxy without adhering to the constraint of lattice matching as is required for traditional chemical epitaxy. However, for elemental semiconductors such as Ge, this has been challenging and therefore it has not been achieved thus far. In this paper, we report the observation of Ge epitaxially grown on mica at a narrow substrate temperature range around 425 °C. Despite the large lattice mismatch (23%) and the lack of high in-plane symmetry in the mica surface, an epitaxial Ge film with [111] out-of-plane orientation is observed. Crystallinity and electrical properties degrade upon deviation from the ideal growth temperature, as shown by Raman spectroscopy, X-ray diffraction, and Hall effect measurements. X-ray pole figure analysis reveals that there exist multiple rotational domains in the epitaxial Ge film with dominant in-plane orientations between Ge [" separators="|1 ¯10 ] and mica[100] of (20 n )°, where n = 0, 1, 2, 3, 4, 5. A superlattice area mismatch model was used to account for the likelihood of the in-plane orientation formation and was found to be qualitatively consistent with the observed dominant orientations. Our observation of Ge epitaxy with one out-of-plane growth direction through van der Waals forces is a step toward the growth of single crystal Ge films without the constraint in the lattice and symmetry matches with the substrates.

  2. Observation of novel photochemistry in the multiphoton ionization of Mo(CO) sub 6 van der Waals clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peifer, W.R.; Garvey, J.F.

    1989-07-27

    van der Waals clusters of Mo(CO){sub 6} generated in the free-jet expansion of a pulsed beam of seeded helium are subjected to multiphoton ionization and the product ions analyzed by quadrupole mass spectrometry. Oxomolybdenum and dioxomolybdenum ions are observed to be produced with high efficiency. This behavior is in striking contrast to that of metal carbonyl monomers and covalently bound cluster carbonyls, which under complete ligand loss prior to ionization. The observed photochemistry is ascribed to reactions between a photoproduced molybdenum atom and the ligands of neighboring Mo(CO){sub 6} solvent molecules within the van der Waals cluster.

  3. Interacting scales and energy transfer in isotropic turbulence

    NASA Technical Reports Server (NTRS)

    Zhou, YE

    1993-01-01

    The dependence of the energy transfer process on the disparity of the interacting scales is investigated in the inertial and far-dissipation ranges of isotropic turbulence. The strategy for generating the simulated flow fields and the choice of a disparity parameter to characterize the scaling of the interactions is discussed. The inertial range is found to be dominated by relatively local interactions, in agreement with the Kolmogorov assumption. The far-dissipation is found to be dominated by relatively non-local interactions, supporting the classical notion that the far-dissipation range is slaved to the Kolmogorov scales. The measured energy transfer is compared with the classical models of Heisenberg, Obukhov, and the more detailed analysis of Tennekes and Lumley. The energy transfer statistics measured in the numerically simulated flows are found to be nearly self-similar for wave numbers in the inertial range. Using the self-similar form measured within the limited scale range of the simulation, an 'ideal' energy transfer function and the corresponding energy flux rate for an inertial range of infinite extent are constructed. From this flux rate, the Kolmogorov constant is calculated to be 1.5, in excellent agreement with experiments.

  4. Interaction between Saikosaponin D, Paeoniflorin, and Human Serum Albumin.

    PubMed

    Liang, Guo-Wu; Chen, Yi-Cun; Wang, Yi; Wang, Hong-Mei; Pan, Xiang-Yu; Chen, Pei-Hong; Niu, Qing-Xia

    2018-01-27

    Saikosaponin D (SSD) and paeoniflorin (PF) are the major active constituents of Bupleuri Radix and Paeonia lactiflora Pall , respectively, and have been widely used in China to treat liver and other diseases for many centuries. We explored the binding of SSD/PF to human serum albumin (HSA) by using fluorospectrophotometry, circular dichroism (CD) and molecular docking. Both SSD and PF produced a conformational change in HSA. Fluorescence quenching was accompanied by a blue shift in the fluorescence spectra. Co-binding of PF and SSD also induced quenching and a conformational change in HSA. The Stern-Volmer equation showed that quenching was dominated by static quenching. The binding constant for ternary interaction was below that for binary interaction. Site-competitive experiments demonstrated that SSD/PF bound to site I (subdomain IIA) and site II (subdomain IIIA) in HSA. Analysis of thermodynamic parameters indicated that hydrogen bonding and van der Waals forces were mostly responsible for the binary association. Also, there was energy transfer upon binary interaction. Molecular docking supported the experimental findings in conformation, binding sites and binding forces.

  5. A general transformation to canonical form for potentials in pairwise interatomic interactions.

    PubMed

    Walton, Jay R; Rivera-Rivera, Luis A; Lucchese, Robert R; Bevan, John W

    2015-06-14

    A generalized formulation of explicit force-based transformations is introduced to investigate the concept of a canonical potential in both fundamental chemical and intermolecular bonding. Different classes of representative ground electronic state pairwise interatomic interactions are referenced to a chosen canonical potential illustrating application of such transformations. Specifically, accurately determined potentials of the diatomic molecules H2, H2(+), HF, LiH, argon dimer, and one-dimensional dissociative coordinates in Ar-HBr, OC-HF, and OC-Cl2 are investigated throughout their bound potentials. Advantages of the current formulation for accurately evaluating equilibrium dissociation energies and a fundamentally different unified perspective on nature of intermolecular interactions will be emphasized. In particular, this canonical approach has significance to previous assertions that there is no very fundamental distinction between van der Waals bonding and covalent bonding or for that matter hydrogen and halogen bonds.

  6. Low-Voltage Complementary Electronics from Ion-Gel-Gated Vertical Van der Waals Heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Yongsuk; Kang, Junmo; Jariwala, Deep

    2016-03-22

    Low-voltage complementary circuits comprising n-type and p-type van der Waals heterojunction vertical field-effect transistors (VFETs) are demonstrated. The resulting VFETs possess high on-state current densities (>3000 A cm-2) and on/off current ratios (>104) in a narrow voltage window (<3 V).

  7. Giant magnetic splitting inducing near-unity valley polarization in van der Waals heterostructures.

    PubMed

    Nagler, Philipp; Ballottin, Mariana V; Mitioglu, Anatolie A; Mooshammer, Fabian; Paradiso, Nicola; Strunk, Christoph; Huber, Rupert; Chernikov, Alexey; Christianen, Peter C M; Schüller, Christian; Korn, Tobias

    2017-11-16

    Monolayers of semiconducting transition metal dichalcogenides exhibit intriguing fundamental physics of strongly coupled spin and valley degrees of freedom for charge carriers. While the possibility of exploiting these properties for information processing stimulated concerted research activities towards the concept of valleytronics, maintaining control over spin-valley polarization proved challenging in individual monolayers. A promising alternative route explores type II band alignment in artificial van der Waals heterostructures. The resulting formation of interlayer excitons combines the advantages of long carrier lifetimes and spin-valley locking. Here, we demonstrate artificial design of a two-dimensional heterostructure enabling intervalley transitions that are not accessible in monolayer systems. The resulting giant effective g factor of -15 for interlayer excitons induces near-unity valley polarization via valley-selective energetic splitting in high magnetic fields, even after nonselective excitation. Our results highlight the potential to deterministically engineer novel valley properties in van der Waals heterostructures using crystallographic alignment.

  8. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates

    NASA Astrophysics Data System (ADS)

    Bonilla, Manuel; Kolekar, Sadhu; Ma, Yujing; Diaz, Horacio Coy; Kalappattil, Vijaysankar; Das, Raja; Eggers, Tatiana; Gutierrez, Humberto R.; Phan, Manh-Huong; Batzill, Matthias

    2018-04-01

    Reduced dimensionality and interlayer coupling in van der Waals materials gives rise to fundamentally different electronic1, optical2 and many-body quantum3-5 properties in monolayers compared with the bulk. This layer-dependence permits the discovery of novel material properties in the monolayer regime. Ferromagnetic order in two-dimensional materials is a coveted property that would allow fundamental studies of spin behaviour in low dimensions and enable new spintronics applications6-8. Recent studies have shown that for the bulk-ferromagnetic layered materials CrI3 (ref. 9) and Cr2Ge2Te6 (ref. 10), ferromagnetic order is maintained down to the ultrathin limit at low temperatures. Contrary to these observations, we report the emergence of strong ferromagnetic ordering for monolayer VSe2, a material that is paramagnetic in the bulk11,12. Importantly, the ferromagnetic ordering with a large magnetic moment persists to above room temperature, making VSe2 an attractive material for van der Waals spintronics applications.

  9. Ab Initio Potential Energy Surface for H-H2

    NASA Technical Reports Server (NTRS)

    Patridge, Harry; Bauschlicher, Charles W., Jr.; Stallcop, James R.; Levin, Eugene

    1993-01-01

    Ab initio calculations employing large basis sets are performed to determine an accurate potential energy surface for H-H2 interactions for a broad range of separation distances. At large distances, the spherically averaged potential determined from the calculated energies agrees well with the corresponding results determined from dispersion coefficients; the van der Waals well depth is predicted to be 75 +/- 3 micro E(h). Large basis sets have also been applied to reexamine the accuracy of theoretical repulsive potential energy surfaces (25-70 kcal/mol above the H-H2 asymptote) at small interatomic separations; the Boothroyd, Keogh, Martin, and Peterson (BKMP) potential energy surface is found to agree with results of the present calculations within the expected uncertainty (+/- 1 kcal/mol) of the fit. Multipolar expansions of the computed H-H2 potential energy surface are reported for four internuclear separation distances (1.2, 1.401, 1.449, and 1.7a(0)) of the hydrogen molecule. The differential elastic scattering cross section calculated from the present results is compared with the measurements from a crossed beam experiment.

  10. Tuning the Schottky barrier in the arsenene/graphene van der Waals heterostructures by electric field

    NASA Astrophysics Data System (ADS)

    Li, Wei; Wang, Tian-Xing; Dai, Xian-Qi; Wang, Xiao-Long; Ma, Ya-Qiang; Chang, Shan-Shan; Tang, Ya-Nan

    2017-04-01

    Using density functional theory calculations, we investigate the electronic properties of arsenene/graphene van der Waals (vdW) heterostructures by applying external electric field perpendicular to the layers. It is demonstrated that weak vdW interactions dominate between arsenene and graphene with their intrinsic electronic properties preserved. We find that an n-type Schottky contact is formed at the arsenene/graphene interface with a Schottky barrier of 0.54 eV. Moreover, the vertical electric field can not only control the Schottky barrier height but also the Schottky contacts (n-type and p-type) and Ohmic contacts (n-type) at the interface. Tunable p-type doping in graphene is achieved under the negative electric field because electrons can transfer from the Dirac point of graphene to the conduction band of arsenene. The present study would open a new avenue for application of ultrathin arsenene/graphene heterostructures in future nano- and optoelectronics.

  11. The role of collective motion in the ultrafast charge transfer in van der Waals heterostructures

    DOE PAGES

    Wang, Han; Bang, Junhyeok; Sun, Yiyang; ...

    2016-05-10

    Here, the success of van der Waals (vdW) heterostructures, made of graphene, metal dichalcogenides, and other layered materials, hinges on the understanding of charge transfer across the interface as the foundation for new device concepts and applications. In contrast to conventional heterostructures, where a strong interfacial coupling is essential to charge transfer, recent experimental findings indicate that vdW heterostructues can exhibit ultra-fast charge transfer despite the weak binding of the heterostructure. Using time-dependent density functional theory molecular dynamics, we identify a strong dynamic coupling between the vdW layers associated with charge transfer. This dynamic coupling results in rapid nonlinear coherentmore » charge oscillations which constitute a purely electronic phenomenon and are shown to be a general feature of vdW heterostructures provided they have a critical minimum dipole coupling. Application to MoS2/WS2 heterostructure yields good agreement with experiment, indicating near complete charge transfer within a timescale of 100 fs.The success of van der Waals heterostructures made of graphene, metal dichalcogenides and other layered materials, hinges on the understanding of charge transfer across the interface as the foundation for new device concepts and applications. In contrast to conventional heterostructures, where a strong interfacial coupling is essential to charge transfer, recent experimental findings indicate that van der Waals heterostructues can exhibit ultrafast charge transfer despite the weak binding of these heterostructures. Here we find, using time-dependent density functional theory molecular dynamics, that the collective motion of excitons at the interface leads to plasma oscillations associated with optical excitation. By constructing a simple model of the van der Waals heterostructure, we show that there exists an unexpected criticality of the oscillations, yielding rapid charge transfer across the

  12. The role of collective motion in the ultrafast charge transfer in van der Waals heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Han; Bang, Junhyeok; Sun, Yiyang

    Here, the success of van der Waals (vdW) heterostructures, made of graphene, metal dichalcogenides, and other layered materials, hinges on the understanding of charge transfer across the interface as the foundation for new device concepts and applications. In contrast to conventional heterostructures, where a strong interfacial coupling is essential to charge transfer, recent experimental findings indicate that vdW heterostructues can exhibit ultra-fast charge transfer despite the weak binding of the heterostructure. Using time-dependent density functional theory molecular dynamics, we identify a strong dynamic coupling between the vdW layers associated with charge transfer. This dynamic coupling results in rapid nonlinear coherentmore » charge oscillations which constitute a purely electronic phenomenon and are shown to be a general feature of vdW heterostructures provided they have a critical minimum dipole coupling. Application to MoS2/WS2 heterostructure yields good agreement with experiment, indicating near complete charge transfer within a timescale of 100 fs.The success of van der Waals heterostructures made of graphene, metal dichalcogenides and other layered materials, hinges on the understanding of charge transfer across the interface as the foundation for new device concepts and applications. In contrast to conventional heterostructures, where a strong interfacial coupling is essential to charge transfer, recent experimental findings indicate that van der Waals heterostructues can exhibit ultrafast charge transfer despite the weak binding of these heterostructures. Here we find, using time-dependent density functional theory molecular dynamics, that the collective motion of excitons at the interface leads to plasma oscillations associated with optical excitation. By constructing a simple model of the van der Waals heterostructure, we show that there exists an unexpected criticality of the oscillations, yielding rapid charge transfer across the

  13. Forces dictating colloidal interactions between viruses and soil

    USGS Publications Warehouse

    Chattopadhyay, Sandip; Puls, Robert W.

    2000-01-01

    The fate and transport of viruses in soil and aquatic environments were studied with respect to the different forces involved in the process of sorption of these viruses on soil particles. In accordance with the classical DLVO theory, we have calculated the repulsive electrostatic forces and the attractive van der Waals forces. Bacteriophages have been used as model sorbates, while different clays have been used as model sorbents. The equations used for the determination of the change in free energy for the process (ΔG) takes into consideration the roughness of the sorbent surfaces. Results indicate that attractive van der Waals forces predominate the process of sorption of the selected bacteriophages on clays.

  14. Electrotunable artificial molecules based on van der Waals heterostructures

    PubMed Central

    Zhang, Zhuo-Zhi; Song, Xiang-Xiang; Luo, Gang; Deng, Guang-Wei; Mosallanejad, Vahid; Taniguchi, Takashi; Watanabe, Kenji; Li, Hai-Ou; Cao, Gang; Guo, Guang-Can; Nori, Franco; Guo, Guo-Ping

    2017-01-01

    Quantum confinement has made it possible to detect and manipulate single-electron charge and spin states. The recent focus on two-dimensional (2D) materials has attracted significant interests on possible applications to quantum devices, including detecting and manipulating either single-electron charging behavior or spin and valley degrees of freedom. However, the most popular model systems, consisting of tunable double-quantum-dot molecules, are still extremely difficult to realize in these materials. We show that an artificial molecule can be reversibly formed in atomically thin MoS2 sandwiched in hexagonal boron nitride, with each artificial atom controlled separately by electrostatic gating. The extracted values for coupling energies at different regimes indicate a single-electron transport behavior, with the coupling strength between the quantum dots tuned monotonically. Moreover, in the low-density regime, we observe a decrease of the conductance with magnetic field, suggesting the observation of Coulomb blockade weak anti-localization. Our experiments demonstrate for the first time the realization of an artificial quantum-dot molecule in a gated MoS2 van der Waals heterostructure, which could be used to investigate spin-valley physics. The compatibility with large-scale production, gate controllability, electron-hole bipolarity, and new quantum degrees of freedom in the family of 2D materials opens new possibilities for quantum electronics and its applications. PMID:29062893

  15. Deconstructing Free Energies in the Law of Matching Water Affinities.

    PubMed

    Shi, Yu; Beck, Thomas

    2017-03-09

    The law of matching water affinities (LMWA) is explored in classical molecular dynamics simulations of several alkali halide ion pairs, spanning the size range from small kosmotropes to large chaotropes. The ion-ion potentials of mean force (PMFs) are computed using three methods: the local molecular field theory (LMFT), the weighted histogram analysis method (WHAM), and integration of the average force. All three methods produce the same total PMF for a given ion pair. In addition, LMFT-based partitioning into van der Waals and local and far-field electrostatic free energies and assessment of the enthalpic, entropic, and ion-water components yield insights into the origins of the observed free energy profiles in water. The results highlight the importance of local electrostatic interactions in determining the shape of the PMFs, while longer-ranged interactions enhance the overall ion-ion attraction, as expected in a dielectric continuum model. The association equilibrium constants are estimated from the smooth WHAM curves and compared to available experimental conductance data. By examining the variations in the average hydration numbers of ions with ion-ion distance, a correlation of the water structure in the hydration shells with the free energy features is found.

  16. Phenomenology of ultrahigh energy neutrino interactions and fluxes

    NASA Astrophysics Data System (ADS)

    Hussain, Shahid

    There are several models that predict the existence of high and ultrahigh energy (UHE) neutrinos; neutrinos that have amazingly high energies---energies above 10 15 eV. No man-made machines, existing or planned, can produce any particles of this high energies. It is the energies of these neutrinos that make them very interesting for the particle physics and astrophysics community; these neutrinos can be a unique tool to study the unknown regimes of energy, space, and time. Consequently, there is intense experimental activity focused on the detection of these neutrinos; no UHE neutrinos have been detected by these experiments so far. However, most of the UHE neutrino flux models predict that the fluxes of these neutrinos might be too small to be detected by the current detectors. Therefore, more powerful detectors are being built and we are at the beginning of a new and exciting era in neutrino astronomy. The interactions and fluxes of UHE neutrinos both are unknown experimentally. Our focus here is to explore, by numerically calculating observable signals from these neutrinos, different scenarios that can arise by the inter play of UHE neutrino interaction and flux models. Given several AGN and cosmogenic neutrino flux models, we look at two possibilities for neutrino interactions: (i) Neutrinos have standard model weak interactions at ultrahigh energies. (ii) neutrino interactions are enhanced around a TeV mass-scale, as implied by low scale gravity models with extra dimensions. The standard model weak and low scale gravity enhanced neutrino-nucleon interactions of UHE neutrinos both produce observable signals. In standard model, the charged current neutrino-nucleon interactions give muons, taus, and particle showers, and the neutral current interactions give particle showers. In low scale gravity, the micro black hole formation (and its subsequent decay) and the graviton exchange both give particle showers. Muons, taus, and the showers can be detected by the

  17. Probing interaction and spatial curvature in the holographic dark energy model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Miao; Li, Xiao-Dong; Wang, Shuang

    2009-12-01

    In this paper we place observational constraints on the interaction and spatial curvature in the holographic dark energy model. We consider three kinds of phenomenological interactions between holographic dark energy and matter, i.e., the interaction term Q is proportional to the energy densities of dark energy (ρ{sub Λ}), matter (ρ{sub m}), and matter plus dark energy (ρ{sub m}+ρ{sub Λ}). For probing the interaction and spatial curvature in the holographic dark energy model, we use the latest observational data including the type Ia supernovae (SNIa) Constitution data, the shift parameter of the cosmic microwave background (CMB) given by the five-year Wilkinsonmore » Microwave Anisotropy Probe (WMAP5) observations, and the baryon acoustic oscillation (BAO) measurement from the Sloan Digital Sky Survey (SDSS). Our results show that the interaction and spatial curvature in the holographic dark energy model are both rather small. Besides, it is interesting to find that there exists significant degeneracy between the phenomenological interaction and the spatial curvature in the holographic dark energy model.« less

  18. Tunneling Photocurrent Assisted by Interlayer Excitons in Staggered van der Waals Hetero-Bilayers.

    PubMed

    Luong, Dinh Hoa; Lee, Hyun Seok; Neupane, Guru Prakash; Roy, Shrawan; Ghimire, Ganesh; Lee, Jin Hee; Vu, Quoc An; Lee, Young Hee

    2017-09-01

    Vertically stacked van der Waals (vdW) heterostructures have been suggested as a robust platform for studying interfacial phenomena and related electric/optoelectronic devices. While the interlayer Coulomb interaction mediated by the vdW coupling has been extensively studied for carrier recombination processes in a diode transport, its correlation with the interlayer tunneling transport has not been elucidated. Here, a contrast is reported between tunneling and drift photocurrents tailored by the interlayer coupling strength in MoSe 2 /MoS 2 hetero-bilayers (HBs). The interfacial coupling modulated by thermal annealing is identified by the interlayer phonon coupling in Raman spectra and the emerging interlayer exciton peak in photoluminescence spectra. In strongly coupled HBs, positive photocurrents are observed owing to the inelastic band-to-band tunneling assisted by interlayer excitons that prevail over exciton recombinations. By contrast, weakly coupled HBs exhibit a negative photovoltaic diode behavior, manifested as a drift current without interlayer excitonic emissions. This study sheds light on tailoring the tunneling transport for numerous optoelectronic HB devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. A van der Waals Equation of State for a Dilute Boson Gas

    ERIC Educational Resources Information Center

    Deeney, F. A.; O'Leary, J. P.

    2012-01-01

    An equation of state of a system is a relationship that connects the thermodynamic variables of the system such as pressure and temperature. Such equations are well known for classical gases but less so for quantum systems. In this paper we develop a van der Waals equation of state for a dilute boson gas that may be used to explain the occurrence…

  20. Free energy decomposition of protein-protein interactions.

    PubMed

    Noskov, S Y; Lim, C

    2001-08-01

    A free energy decomposition scheme has been developed and tested on antibody-antigen and protease-inhibitor binding for which accurate experimental structures were available for both free and bound proteins. Using the x-ray coordinates of the free and bound proteins, the absolute binding free energy was computed assuming additivity of three well-defined, physical processes: desolvation of the x-ray structures, isomerization of the x-ray conformation to a nearby local minimum in the gas-phase, and subsequent noncovalent complex formation in the gas phase. This free energy scheme, together with the Generalized Born model for computing the electrostatic solvation free energy, yielded binding free energies in remarkable agreement with experimental data. Two assumptions commonly used in theoretical treatments; viz., the rigid-binding approximation (which assumes no conformational change upon complexation) and the neglect of vdW interactions, were found to yield large errors in the binding free energy. Protein-protein vdW and electrostatic interactions between complementary surfaces over a relatively large area (1400--1700 A(2)) were found to drive antibody-antigen and protease-inhibitor binding.

  1. Ghost Dark Energy with Non-Linear Interaction Term

    NASA Astrophysics Data System (ADS)

    Ebrahimi, E.

    2016-06-01

    Here we investigate ghost dark energy (GDE) in the presence of a non-linear interaction term between dark matter and dark energy. To this end we take into account a general form for the interaction term. Then we discuss about different features of three choices of the non-linear interacting GDE. In all cases we obtain equation of state parameter, w D = p/ ρ, the deceleration parameter and evolution equation of the dark energy density parameter (Ω D ). We find that in one case, w D cross the phantom line ( w D < -1). However in two other classes w D can not cross the phantom divide. The coincidence problem can be solved in these models completely and there exist good agreement between the models and observational values of w D , q. We study squared sound speed {vs2}, and find that for one case of non-linear interaction term {vs2} can achieves positive values at late time of evolution.

  2. Layer specific optical band gap measurement at nanoscale in MoS{sub 2} and ReS{sub 2} van der Waals compounds by high resolution electron energy loss spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dileep, K., E-mail: dileep@jncasr.ac.in, E-mail: ranjan@jncasr.ac.in; Sahu, R.; Datta, R., E-mail: dileep@jncasr.ac.in, E-mail: ranjan@jncasr.ac.in

    2016-03-21

    Layer specific direct measurement of optical band gaps of two important van der Waals compounds, MoS{sub 2} and ReS{sub 2}, is performed at nanoscale by high resolution electron energy loss spectroscopy. For monolayer MoS{sub 2}, the twin excitons (1.8 and 1.95 eV) originating at the K point of the Brillouin zone are observed. An indirect band gap of 1.27 eV is obtained from the multilayer regions. Indirect to direct band gap crossover is observed which is consistent with the previously reported strong photoluminescence from the monolayer MoS{sub 2}. For ReS{sub 2}, the band gap is direct, and a value of 1.52 andmore » 1.42 eV is obtained for the monolayer and multilayer, respectively. The energy loss function is dominated by features due to high density of states at both the valence and conduction band edges, and the difference in analyzing band gap with respect to ZnO is highlighted. Crystalline 1T ReS{sub 2} forms two dimensional chains like superstructure due to the clustering between four Re atoms. The results demonstrate the power of HREELS technique as a nanoscale optical absorption spectroscopy tool.« less

  3. Micro-Environmental Signature of The Interactions between Druggable Target Protein, Dipeptidyl Peptidase-IV, and Anti-Diabetic Drugs.

    PubMed

    Chakraborty, Chiranjib; Mallick, Bidyut; Sharma, Ashish Ranjan; Sharma, Garima; Jagga, Supriya; Doss, C George Priya; Nam, Ju-Suk; Lee, Sang-Soo

    2017-01-01

    Druggability of a target protein depends on the interacting micro-environment between the target protein and drugs. Therefore, a precise knowledge of the interacting micro-environment between the target protein and drugs is requisite for drug discovery process. To understand such micro-environment, we performed in silico interaction analysis between a human target protein, Dipeptidyl Peptidase-IV (DPP-4), and three anti-diabetic drugs (saxagliptin, linagliptin and vildagliptin). During the theoretical and bioinformatics analysis of micro-environmental properties, we performed drug-likeness study, protein active site predictions, docking analysis and residual interactions with the protein-drug interface. Micro-environmental landscape properties were evaluated through various parameters such as binding energy, intermolecular energy, electrostatic energy, van der Waals'+H-bond+desolvo energy (E VHD ) and ligand efficiency (LE) using different in silico methods. For this study, we have used several servers and software, such as Molsoft prediction server, CASTp server, AutoDock software and LIGPLOT server. Through micro-environmental study, highest log P value was observed for linagliptin (1.07). Lowest binding energy was also observed for linagliptin with DPP-4 in the binding plot. We also identified the number of H-bonds and residues involved in the hydrophobic interactions between the DPP-4 and the anti-diabetic drugs. During interaction, two H-bonds and nine residues, two H-bonds and eleven residues as well as four H-bonds and nine residues were found between the saxagliptin, linagliptin as well as vildagliptin cases and DPP-4, respectively. Our in silico data obtained for drug-target interactions and micro-environmental signature demonstrates linagliptin as the most stable interacting drug among the tested anti-diabetic medicines.

  4. In silico prediction of drug solubility: 2. Free energy of solvation in pure melts.

    PubMed

    Lüder, Kai; Lindfors, Lennart; Westergren, Jan; Nordholm, Sture; Kjellander, Roland

    2007-02-22

    The solubility of drugs in water is investigated in a series of papers and in the current work. The free energy of solvation, DeltaG*(vl), of a drug molecule in its pure drug melt at 673.15 K (400 degrees C) has been obtained for 46 drug molecules using the free energy perturbation method. The simulations were performed in two steps where first the Coulomb and then the Lennard-Jones interactions were scaled down from full to no interaction. The results have been interpreted using a theory assuming that DeltaG*(vl) = DeltaG(cav) + E(LJ) + E(C)/2 where the free energy of cavity formation, DeltaG(cav), in these pure drug systems was obtained using hard body theories, and E(LJ) and E(C) are the Lennard-Jones and Coulomb interaction energies, respectively, of one molecule with the other ones. Since the main parameter in hard body theories is the volume fraction, an equation of state approach was used to estimate the molecular volume. Promising results were obtained using a theory for hard oblates, in which the oblate axial ratio was calculated from the molecular surface area and volume obtained from simulations. The Coulomb term, E(C)/2, is half of the Coulomb energy in accord with linear response, which showed good agreement with our simulation results. In comparison with our previous results on free energy of hydration, the Coulomb interactions in pure drug systems are weaker, and the van der Waals interactions play a more important role.

  5. Estimation of the Binding Free Energy of AC1NX476 to HIV-1 Protease Wild Type and Mutations Using Free Energy Perturbation Method.

    PubMed

    Ngo, Son Tung; Mai, Binh Khanh; Hiep, Dinh Minh; Li, Mai Suan

    2015-10-01

    The binding mechanism of AC1NX476 to HIV-1 protease wild type and mutations was studied by the docking and molecular dynamics simulations. The binding free energy was calculated using the double-annihilation binding free energy method. It is shown that the binding affinity of AC1NX476 to wild type is higher than not only ritonavir but also darunavir, making AC1NX476 become attractive candidate for HIV treatment. Our theoretical results are in excellent agreement with the experimental data as the correlation coefficient between calculated and experimentally measured binding free energies R = 0.993. Residues Asp25-A, Asp29-A, Asp30-A, Ile47-A, Gly48-A, and Val50-A from chain A, and Asp25-B from chain B play a crucial role in the ligand binding. The mutations were found to reduce the receptor-ligand interaction by widening the binding cavity, and the binding propensity is mainly driven by the van der Waals interaction. Our finding may be useful for designing potential drugs to combat with HIV. © 2015 John Wiley & Sons A/S.

  6. Linear relationship between water wetting behavior and microscopic interactions of super-hydrophilic surfaces.

    PubMed

    Liu, Jian; Wang, Chunlei; Guo, Pan; Shi, Guosheng; Fang, Haiping

    2013-12-21

    Using molecular dynamics simulations, we show a fine linear relationship between surface energies and microscopic Lennard-Jones parameters of super-hydrophilic surfaces. The linear slope of the super-hydrophilic surfaces is consistent with the linear slope of the super-hydrophobic, hydrophobic, and hydrophilic surfaces where stable water droplets can stand, indicating that there is a universal linear behavior of the surface energies with the water-surface van der Waals interaction that extends from the super-hydrophobic to super-hydrophilic surfaces. Moreover, we find that the linear relationship exists for various substrate types, and the linear slopes of these different types of substrates are dependent on the surface atom density, i.e., higher surface atom densities correspond to larger linear slopes. These results enrich our understanding of water behavior on solid surfaces, especially the water wetting behaviors on uncharged super-hydrophilic metal surfaces.

  7. Model lipid bilayers mimic non-specific interactions of gold nanoparticles with macrophage plasma membranes.

    PubMed

    Montis, Costanza; Generini, Viola; Boccalini, Giulia; Bergese, Paolo; Bani, Daniele; Berti, Debora

    2018-04-15

    Understanding the interaction between nanomaterials and biological interfaces is a key unmet goal that still hampers clinical translation of nanomedicine. Here we investigate and compare non-specific interaction of gold nanoparticles (AuNPs) with synthetic lipid and wild type macrophage membranes. A comprehensive data set was generated by systematically varying the structural and physicochemical properties of the AuNPs (size, shape, charge, surface functionalization) and of the synthetic membranes (composition, fluidity, bending properties and surface charge), which allowed to unveil the matching conditions for the interaction of the AuNPs with macrophage plasma membranes in vitro. This effort directly proved for the first time that synthetic bilayers can be set to mimic and predict with high fidelity key aspects of nanoparticle interaction with macrophage eukaryotic plasma membranes. It then allowed to model the experimental observations according to classical interface thermodynamics and in turn determine the paramount role played by non-specific contributions, primarily electrostatic, Van der Waals and bending energy, in driving nanoparticle-plasma membrane interactions. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Interaction energy and itinerant ferromagnetism in a strongly interacting Fermi gas in the absence of molecule formation

    DOE PAGES

    He, Lianyi

    2014-11-26

    In this study, we investigate the interaction energy and the possibility of itinerant ferromagnetism in a strongly interacting Fermi gas at zero temperature in the absence of molecule formation. The interaction energy is obtained by summing the perturbative contributions of Galitskii-Feynman type to all orders in the gas parameter. It can be expressed by a simple phase-space integral of an in-medium scattering phase shift. In both three and two dimensions (3D and 2D), the interaction energy shows a maximum before reaching the resonance from the Bose-Einstein condensate side, which provides a possible explanation of the experimental measurements of the interactionmore » energy. This phenomenon can be theoretically explained by the qualitative change of the nature of the binary interaction in the medium. The appearance of an energy maximum has significant effects on the itinerant ferromagnetism. In 3D, the ferromagnetic transition is reentrant and itinerant ferromagnetism exists in a narrow window around the energy maximum. In 2D, the present theoretical approach suggests that itinerant ferromagnetism does not exist, which reflects the fact that the energy maximum becomes much lower than the energy of the fully polarized state.« less

  9. Reconstruction of interaction rate in holographic dark energy

    NASA Astrophysics Data System (ADS)

    Mukherjee, Ankan

    2016-11-01

    The present work is based on the holographic dark energy model with Hubble horizon as the infrared cut-off. The interaction rate between dark energy and dark matter has been reconstructed for three different parameterizations of the deceleration parameter. Observational constraints on the model parameters have been obtained by maximum likelihood analysis using the observational Hubble parameter data (OHD), type Ia supernovab data (SNe), baryon acoustic oscillation data (BAO) and the distance prior of cosmic microwave background (CMB) namely the CMB shift parameter data (CMBShift). The interaction rate obtained in the present work remains always positive and increases with expansion. It is very similar to the result obtained by Sen and Pavon [1] where the interaction rate has been reconstructed for a parametrization of the dark energy equation of state. Tighter constraints on the interaction rate have been obtained in the present work as it is based on larger data sets. The nature of the dark energy equation of state parameter has also been studied for the present models. Though the reconstruction is done from different parametrizations, the overall nature of the interaction rate is very similar in all the cases. Different information criteria and the Bayesian evidence, which have been invoked in the context of model selection, show that the these models are at close proximity of each other.

  10. Reconstruction of interaction rate in holographic dark energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukherjee, Ankan, E-mail: ankan_ju@iiserkol.ac.in

    2016-11-01

    The present work is based on the holographic dark energy model with Hubble horizon as the infrared cut-off. The interaction rate between dark energy and dark matter has been reconstructed for three different parameterizations of the deceleration parameter. Observational constraints on the model parameters have been obtained by maximum likelihood analysis using the observational Hubble parameter data (OHD), type Ia supernovab data (SNe), baryon acoustic oscillation data (BAO) and the distance prior of cosmic microwave background (CMB) namely the CMB shift parameter data (CMBShift). The interaction rate obtained in the present work remains always positive and increases with expansion. Itmore » is very similar to the result obtained by Sen and Pavon [1] where the interaction rate has been reconstructed for a parametrization of the dark energy equation of state. Tighter constraints on the interaction rate have been obtained in the present work as it is based on larger data sets. The nature of the dark energy equation of state parameter has also been studied for the present models. Though the reconstruction is done from different parametrizations, the overall nature of the interaction rate is very similar in all the cases. Different information criteria and the Bayesian evidence, which have been invoked in the context of model selection, show that the these models are at close proximity of each other.« less

  11. Decoupling interface effect on the phase stability of CdS thin films by van der Waals heteroepitaxy

    NASA Astrophysics Data System (ADS)

    Sun, Xin; Wang, Yiping; Seewald, Lucas J.; Chen, Zhizhong; Shi, Jian; Washington, Morris A.; Lu, Toh-Ming

    2017-01-01

    Wurtzite (W) and zinc-blende (ZB) polytypism has long been observed in epitaxial CdS thin films. The present work, based on van der Waals epitaxial CdS thin films, is an attempt to explain which crystal modification, W or ZB, is favored under different growth conditions. In this van der Waals epitaxy system where the substrate influence is considered weak, it is found that the substrate temperature plays a crucial role in determining the crystal modification of CdS, that is, W and ZB CdS are more stable at low and high ends of substrate temperature, respectively. We attribute this temperature effect to the entropy difference (SW < SZB), a conclusion well supported by the thermodynamic hard sphere model formulation of the entropy difference between hexagonal close-packed and face-centered cubic structures. By summarizing other works, we find that the entropy difference model can also be applied to large mismatched (≳3%) CdS-substrate chemical epitaxy systems but not for small mismatched (≲3%) ones. In the latter case, the energy benefit in terms of high density of bonding contributed by the substrate-film interface is believed to be too overwhelming for the intrinsic entropy difference to overcome. Furthermore, the deposition rate is found to affect the crystalline quality and strain level in CdS films but not the crystal modification of the CdS films. Last, Raman and photoluminescence spectroscopies reveal the strain behaviors in the films. The phase change from W to ZB CdS is well-correlated with the observed peak shifts in Raman and photoluminescence spectroscopies.

  12. Surface and interface of epitaxial CdTe film on CdS buffered van der Waals mica substrate

    DOE PAGES

    Yang, Y. -B.; Seewald, L.; Mohanty, Dibyajyoti; ...

    2017-03-31

    We report single crystal CdTe films are desirable for optoelectronic device applications. An important strategy of creating films with high crystallinity is through epitaxial growth on a proper single crystal substrate. We report the metalorganic chemical vapor deposition of epitaxial CdTe films on the CdS/mica substrate. The epitaxial CdS film was grown on a mica surface by thermal evaporation. Due to the weak van der Waals forces, epitaxy is achieved despite the very large interface lattice mismatch between CdS and mica (~21–55%). The surface morphology of mica, CdS and CdTe were quantified by atomic force microscopy. The near surface structures, orientations and texture of CdTe and CdS films were characterized by the unique reflection high-energy electron diffraction surface pole figure technique. The interfaces of CdTe and CdS films and mica were characterized by X-ray pole figure technique and transmission electron microscopy. The out-of-plane and in-plane epitaxy of the heteroepitaxial films stack are determined to be CdTe(111)//CdS(0001)//mica(001) and [more » $$\\overline{1}2\\overline{1}$$] CdTe//[$$\\overline{1}100$$] CdS//[010] mica, respectively. The measured photoluminescence (PL), time resolved PL, photoresponse, and Hall mobility of the CdTe/CdS/mica indicate quality films. Finally, the use of van der Waals surface to grow epitaxial CdTe/CdS films offers an alternative strategy towards infrared imaging and solar cell applications.« less

  13. Surface and interface of epitaxial CdTe film on CdS buffered van der Waals mica substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Y. -B.; Seewald, L.; Mohanty, Dibyajyoti

    We report single crystal CdTe films are desirable for optoelectronic device applications. An important strategy of creating films with high crystallinity is through epitaxial growth on a proper single crystal substrate. We report the metalorganic chemical vapor deposition of epitaxial CdTe films on the CdS/mica substrate. The epitaxial CdS film was grown on a mica surface by thermal evaporation. Due to the weak van der Waals forces, epitaxy is achieved despite the very large interface lattice mismatch between CdS and mica (~21–55%). The surface morphology of mica, CdS and CdTe were quantified by atomic force microscopy. The near surface structures, orientations and texture of CdTe and CdS films were characterized by the unique reflection high-energy electron diffraction surface pole figure technique. The interfaces of CdTe and CdS films and mica were characterized by X-ray pole figure technique and transmission electron microscopy. The out-of-plane and in-plane epitaxy of the heteroepitaxial films stack are determined to be CdTe(111)//CdS(0001)//mica(001) and [more » $$\\overline{1}2\\overline{1}$$] CdTe//[$$\\overline{1}100$$] CdS//[010] mica, respectively. The measured photoluminescence (PL), time resolved PL, photoresponse, and Hall mobility of the CdTe/CdS/mica indicate quality films. Finally, the use of van der Waals surface to grow epitaxial CdTe/CdS films offers an alternative strategy towards infrared imaging and solar cell applications.« less

  14. Thermo-acoustical molecular interaction study in binary mixtures of glycerol and ethylene glycol

    NASA Astrophysics Data System (ADS)

    Kaur, Kirandeep; Juglan, K. C.; Kumar, Harsh

    2017-07-01

    Ultrasonic velocity, density and viscosity are measured over the entire composition range for binary liquid mixtures of glycerol (CH2OH-CHOH-CH2OH) and ethylene glycol (HOCH2CH2OH) at different temperatures and constant frequency of 2MHz using ultrasonic interferometer, specific gravity bottle and viscometer respectively. Measured experimental values are used to obtained various acoustical parameters such as adiabatic compressibility, acoustic impedance, intermolecular free length, relaxation time, ultrasonic attenuation, effective molar weight, free volume, available volume, molar volume, Wada's constant, Rao's constant, Vander Waal's constant, internal pressure, Gibb's free energy and enthalpy. The variation in acoustical parameters are interpreted in terms of molecular interactions between the components of molecules of binary liquid mixtures.

  15. Prediction of Ras-effector interactions using position energy matrices.

    PubMed

    Kiel, Christina; Serrano, Luis

    2007-09-01

    One of the more challenging problems in biology is to determine the cellular protein interaction network. Progress has been made to predict protein-protein interactions based on structural information, assuming that structural similar proteins interact in a similar way. In a previous publication, we have determined a genome-wide Ras-effector interaction network based on homology models, with a high accuracy of predicting binding and non-binding domains. However, for a prediction on a genome-wide scale, homology modelling is a time-consuming process. Therefore, we here successfully developed a faster method using position energy matrices, where based on different Ras-effector X-ray template structures, all amino acids in the effector binding domain are sequentially mutated to all other amino acid residues and the effect on binding energy is calculated. Those pre-calculated matrices can then be used to score for binding any Ras or effector sequences. Based on position energy matrices, the sequences of putative Ras-binding domains can be scanned quickly to calculate an energy sum value. By calibrating energy sum values using quantitative experimental binding data, thresholds can be defined and thus non-binding domains can be excluded quickly. Sequences which have energy sum values above this threshold are considered to be potential binding domains, and could be further analysed using homology modelling. This prediction method could be applied to other protein families sharing conserved interaction types, in order to determine in a fast way large scale cellular protein interaction networks. Thus, it could have an important impact on future in silico structural genomics approaches, in particular with regard to increasing structural proteomics efforts, aiming to determine all possible domain folds and interaction types. All matrices are deposited in the ADAN database (http://adan-embl.ibmc.umh.es/). Supplementary data are available at Bioinformatics online.

  16. Systematic Uncertainties in High-Energy Hadronic Interaction Models

    NASA Astrophysics Data System (ADS)

    Zha, M.; Knapp, J.; Ostapchenko, S.

    2003-07-01

    Hadronic interaction models for cosmic ray energies are uncertain since our knowledge of hadronic interactions is extrap olated from accelerator experiments at much lower energies. At present most high-energy models are based on Grib ov-Regge theory of multi-Pomeron exchange, which provides a theoretical framework to evaluate cross-sections and particle production. While experimental data constrain some of the model parameters, others are not well determined and are therefore a source of systematic uncertainties. In this paper we evaluate the variation of results obtained with the QGSJET model, when modifying parameters relating to three ma jor sources of uncertainty: the form of the parton structure function, the role of diffractive interactions, and the string hadronisation. Results on inelastic cross sections, on secondary particle production and on the air shower development are discussed.

  17. Ultra-confined surface phonon polaritons in molecular layers of van der Waals dielectrics.

    PubMed

    Dubrovkin, Alexander M; Qiang, Bo; Krishnamoorthy, Harish N S; Zheludev, Nikolay I; Wang, Qi Jie

    2018-05-02

    Improvements in device density in photonic circuits can only be achieved with interconnects exploiting highly confined states of light. Recently this has brought interest to highly confined plasmon and phonon polaritons. While plasmonic structures have been extensively studied, the ultimate limits of phonon polariton squeezing, in particular enabling the confinement (the ratio between the excitation and polariton wavelengths) exceeding 10 2 , is yet to be explored. Here, exploiting unique structure of 2D materials, we report for the first time that atomically thin van der Waals dielectrics (e.g., transition-metal dichalcogenides) on silicon carbide substrate demonstrate experimentally record-breaking propagating phonon polaritons confinement resulting in 190-times squeezed surface waves. The strongly dispersive confinement can be potentially tuned to greater than 10 3 near the phonon resonance of the substrate, and it scales with number of van der Waals layers. We argue that our findings are a substantial step towards infrared ultra-compact phonon polaritonic circuits and resonators, and would stimulate further investigations on nanophotonics in non-plasmonic atomically thin interface platforms.

  18. Adhesive interactions of biologically inspired soft condensed matter

    NASA Astrophysics Data System (ADS)

    Anderson, Travers Heath

    Improving our fundamental understanding of the surface interactions between complex materials is needed to improve existing materials and products as well as develop new ones. The object of this research was to apply the measurements of fundamental surface interactions to real world problems facing chemical engineers and materials scientists. I focus on three systems of biologically inspired soft condensed matter, with an emphasis on the adhesive interactions between them. The formation of phospholipid bilayers of the neutral lipid, dimyristoyl-phosphatidylcholine (DMPC) on silica surfaces from vesicles in aqueous solutions was investigated. The process involves five stages: vesicle adhesion to the substrate surfaces, steric interactions with neighboring vesicles, rupture, spreading via hydrophobic fusion of bilayer edges, and ejection of excess lipid, trapped water and ions into the solution. The forces between DMPC bilayers and silica were measured in the Surface Forces Apparatus (SFA) in phosphate buffered saline. The adhesion energy was found to be much stronger than the expected adhesion predicted by van der Waals interactions, likely due to an attractive electrostatic interaction. The effects of non-adsorbing cationic polyelectrolytes on the interactions between supported cationic surfactant bilayers were studied using the SFA. Addition of polyelectrolyte has a number of effects on the interactions including the induction of a depletion-attraction and screening of the double-layer repulsion. Calculations are made that allow for the conversion of the adhesion energy measured in the SFA to the overall interaction energy between vesicles in solution, which determines the stability behavior of vesicle dispersions. Mussels use a variety of dihydroxyphenyl-alanine (DOPA) rich proteins specifically tailored to adhering to wet surfaces. The SFA was used to study the role of DOPA on the adhesive properties of these proteins to TiO 2 and mica using both real mussel

  19. Near-resonant rotational energy transfer in HCl–H{sub 2} inelastic collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lanza, Mathieu; Lique, François, E-mail: francois.lique@univ-lehavre.fr; Kalugina, Yulia

    2014-02-14

    We present a new four-dimensional (4D) potential energy surface for the HCl–H{sub 2} van der Waals system. Both molecules were treated as rigid rotors. Potential energy surface was obtained from electronic structure calculations using a coupled cluster with single, double, and perturbative triple excitations method. The four atoms were described using the augmented correlation-consistent quadruple zeta basis set and bond functions were placed at mid-distance between the HCl and H{sub 2} centers of mass for a better description of the van der Waals interaction. The global minimum is characterized by the well depth of 213.38 cm{sup −1} corresponding to themore » T-shape structure with H{sub 2} molecule on the H side of the HCl molecule. The dissociation energies D{sub 0} are 34.7 cm{sup −1} and 42.3 cm{sup −1} for the complex with para- and ortho-H{sub 2}, respectively. These theoretical results obtained using our new PES are in good agreement with experimental values [D. T. Anderson, M. Schuder, and D. J. Nesbitt, Chem. Phys. 239, 253 (1998)]. Close coupling calculations of the inelastic integral rotational cross sections of HCl in collisions with para-H{sub 2} and ortho-H{sub 2} were performed at low and intermediate collisional energies. Significant differences exist between para- and ortho-H{sub 2} results. The strongest collision-induced rotational HCl transitions are the transitions with Δj = 1 for collisions with both para-H{sub 2} and ortho-H{sub 2}. Rotational relaxation of HCl in collision with para-H{sub 2} in the rotationally excited states j = 2 is dominated by near-resonant energy transfer.« less

  20. Observing Imperfection in Atomic Interfaces for van der Waals Heterostructures.

    PubMed

    Rooney, Aidan P; Kozikov, Aleksey; Rudenko, Alexander N; Prestat, Eric; Hamer, Matthew J; Withers, Freddie; Cao, Yang; Novoselov, Kostya S; Katsnelson, Mikhail I; Gorbachev, Roman; Haigh, Sarah J

    2017-09-13

    Vertically stacked van der Waals heterostructures are a lucrative platform for exploring the rich electronic and optoelectronic phenomena in two-dimensional materials. Their performance will be strongly affected by impurities and defects at the interfaces. Here we present the first systematic study of interfaces in van der Waals heterostructure using cross-sectional scanning transmission electron microscope (STEM) imaging. By measuring interlayer separations and comparing these to density functional theory (DFT) calculations we find that pristine interfaces exist between hBN and MoS 2 or WS 2 for stacks prepared by mechanical exfoliation in air. However, for two technologically important transition metal dichalcogenide (TMDC) systems, MoSe 2 and WSe 2 , our measurement of interlayer separations provide the first evidence for impurity species being trapped at buried interfaces with hBN interfaces that are flat at the nanometer length scale. While decreasing the thickness of encapsulated WSe 2 from bulk to monolayer we see a systematic increase in the interlayer separation. We attribute these differences to the thinnest TMDC flakes being flexible and hence able to deform mechanically around a sparse population of protruding interfacial impurities. We show that the air sensitive two-dimensional (2D) crystal NbSe 2 can be fabricated into heterostructures with pristine interfaces by processing in an inert-gas environment. Finally we find that adopting glovebox transfer significantly improves the quality of interfaces for WSe 2 compared to processing in air.

  1. Van der Waals metal-semiconductor junction: Weak Fermi level pinning enables effective tuning of Schottky barrier

    PubMed Central

    Liu, Yuanyue; Stradins, Paul; Wei, Su-Huai

    2016-01-01

    Two-dimensional (2D) semiconductors have shown great potential for electronic and optoelectronic applications. However, their development is limited by a large Schottky barrier (SB) at the metal-semiconductor junction (MSJ), which is difficult to tune by using conventional metals because of the effect of strong Fermi level pinning (FLP). We show that this problem can be overcome by using 2D metals, which are bounded with 2D semiconductors through van der Waals (vdW) interactions. This success relies on a weak FLP at the vdW MSJ, which is attributed to the suppression of metal-induced gap states. Consequently, the SB becomes tunable and can vanish with proper 2D metals (for example, H-NbS2). This work not only offers new insights into the fundamental properties of heterojunctions but also uncovers the great potential of 2D metals for device applications. PMID:27152360

  2. Van der Waals metal-semiconductor junction: Weak Fermi level pinning enables effective tuning of Schottky barrier

    DOE PAGES

    Liu, Yuanyue; Stradins, Paul; Wei, Su -Huai

    2016-04-22

    Two-dimensional (2D) semiconductors have shown great potential for electronic and optoelectronic applications. However, their development is limited by a large Schottky barrier (SB) at the metal-semiconductor junction (MSJ), which is difficult to tune by using conventional metals because of the effect of strong Fermi level pinning (FLP). We show that this problem can be overcome by using 2D metals, which are bounded with 2D semiconductors through van der Waals (vdW) interactions. This success relies on a weak FLP at the vdW MSJ, which is attributed to the suppression of metal-induced gap states. Consequently, the SB becomes tunable and can vanishmore » with proper 2D metals (for example, H-NbS2). This work not only offers new insights into the fundamental properties of heterojunctions but also uncovers the great potential of 2D metals for device applications.« less

  3. Strong electrically tunable MoTe2/graphene van der Waals heterostructures for high-performance electronic and optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Yin, Lei; Wang, Zhenxing; Xu, Kai; Wang, Fengmei; Shifa, Tofik Ahmed; Huang, Yun; Wen, Yao; Jiang, Chao; He, Jun

    2016-11-01

    MoTe2 is an emerging two-dimensional layered material showing ambipolar/p-type conductivity, which makes it an important supplement to n-type two-dimensional layered material like MoS2. However, the properties based on its van der Waals heterostructures have been rarely studied. Here, taking advantage of the strong Fermi level tunability of monolayer graphene (G) and the feature of van der Waals interfaces that is free from Fermi level pinning effect, we fabricate G/MoTe2/G van der Waals heterostructures and systematically study the electronic and optoelectronic properties. We demonstrate the G/MoTe2/G FETs with low Schottky barriers for both holes (55.09 meV) and electrons (122.37 meV). Moreover, the G/MoTe2/G phototransistors show high photoresponse performances with on/off ratio, responsivity, and detectivity of ˜105, 87 A/W, and 1012 Jones, respectively. Finally, we find the response time of the phototransistors is effectively tunable and a mechanism therein is proposed to explain our observation. This work provides an alternative choice of contact for high-performance devices based on p-type and ambipolar two-dimensional layered materials.

  4. MoS2 monolayers on nanocavities: enhancement in light-matter interaction

    NASA Astrophysics Data System (ADS)

    Janisch, Corey; Song, Haomin; Zhou, Chanjing; Lin, Zhong; Elías, Ana Laura; Ji, Dengxin; Terrones, Mauricio; Gan, Qiaoqiang; Liu, Zhiwen

    2016-06-01

    Two-dimensional (2D) atomic crystals and van der Waals heterostructures constitute an emerging platform for developing new functional ultra-thin electronic and optoelectronic materials for novel energy-efficient devices. However, in most thin-film optical applications, there is a long-existing trade-off between the effectiveness of light-matter interactions and the thickness of semiconductor materials, especially when the materials are scaled down to atom thick dimensions. Consequently, enhancement strategies can introduce significant advances to these atomically thick materials and devices. Here we demonstrate enhanced absorption and photoluminescence generation from MoS2 monolayers coupled with a planar nanocavity. This nanocavity consists of an alumina nanolayer spacer sandwiched between monolayer MoS2 and an aluminum reflector, and can strongly enhance the light-matter interaction within the MoS2, increasing the exclusive absorption of monolayer MoS2 to nearly 70% at a wavelength of 450 nm. The nanocavity also modifies the spontaneous emission rate, providing an additional design freedom to control the interaction between light and 2D materials.

  5. Establishing conditions for simulating hydrophobic solutes in electric fields by molecular dynamics: effects of the long-range van der Waals treatment on the apparent particle mobility.

    PubMed

    Miličević, Zoran; Marrink, Siewert J; Smith, Ana-Sunčana; Smith, David M

    2014-08-01

    Despite considerable effort over the last decade, the interactions between solutes and solvents in the presence of electric fields have not yet been fully understood. A very useful manner in which to study these systems is through the application of molecular dynamics (MD) simulations. However, a number of MD studies have shown a tremendous sensitivity of the migration rate of a hydrophobic solute to the treatment of the long range part of the van der Waals interactions. While the origin of this sensitivity was never explained, the mobility is currently regarded as an artifact of an improper simulation setup. We explain the spread in observed mobilites by performing extensive molecular dynamics simulations using the GROMACS software package on a system consisting of a model hydrophobic object (Lennard-Jones particle) immersed in water both in the presence and absence of a static electric field. We retrieve a unidirectional field-induced mobility of the hydrophobic object when the forces are simply truncated. Careful analysis of the data shows that, only in the specific case of truncated forces, a non-zero van der Waals force acts, on average, on the Lennard-Jones particle. Using the Stokes law we demonstrate that this force yields quantitative agreement with the field-induced mobility found within this setup. In contrast, when the treatment of forces is continuous, no net force is observed. In this manner, we provide a simple explanation for the previously controversial reports.

  6. High energy interactions of cosmic ray particles

    NASA Technical Reports Server (NTRS)

    Jones, L. W.

    1986-01-01

    The highlights of seven sessions of the Conference dealing with high energy interactions of cosmic rays are discussed. High energy cross section measurements; particle production-models of experiments; nuclei and nuclear matter; nucleus-nucleus collision; searches for magnetic monopoles; and studies of nucleon decay are covered.

  7. Diatomics-in-molecules description of the Rg-Hal2 rare gas-halogen van der Waals complexes with applications to He-Cl2

    NASA Astrophysics Data System (ADS)

    Grigorenko, B. L.; Nemukhin, A. V.; Buchachenko, A. A.; Stepanov, N. F.; Umanskii, S. Ya.

    1997-03-01

    The diatomics-in-molecules (DIM) technique is applied for a description of the low-lying states of the Rg-Hal2 van der Waals complexes correlating with the lowest states of constituent atoms Rg(1S)+Hal(2Pj)+Hal(2Pj). The important feature of this approach is the construction of polyatomic basis functions as products of the Hal2 diatomic eigenstates classified within the Hund "c" scheme and the atomic rare gas wave function. Necessary transformations to the other basis set representations are described, and finally all the matrix elements are expressed in terms of nonrelativistic adiabatic energies of Hal2 and Rg Hal fragments and spin-orbit splitting constant of the halogen atom. Our main concern is to test the DIM-based approximations of different levels taking the He-Cl2 system as an example. Namely, we have compared the results obtained within a hierarchy of approaches: (1) the simplest pairwise potential scheme as a far extreme of the DIM model, (2) the same as (1) but with the different components (Σ and Π) for He-Cl interaction, (3) the accurate DIM technique without spin-orbit terms, and (4) the highest level which takes into account all these contributions. The results have been compared to the other DIM like models as well. The shapes of two-dimensional potential surfaces for the ground (X) and excited (B) states of HeCl2, binding energies De with respect to He+Cl2, stretching and bending vibrational frequencies of the complex, binding energies D0, and spectral shifts for the B←X transition are discussed.

  8. Surface stress induced by interactions of adsorbates and its effect on deformation and frequency of microcantilever sensors

    NASA Astrophysics Data System (ADS)

    Yi, X.; Duan, H. L.

    2009-08-01

    Surface stress is widely used to characterize the adsorption effect on the mechanical response of nanomaterials and nanodevices. However, quantitative relations between continuum-level descriptions of surface stress and molecular-level descriptions of adsorbate interactions are not well established. In this paper, we first obtain the relations between the adsorption-induced surface stress and the van der Waals and Coulomb interactions in terms of the physical and chemical interactions between adsorbates and solid surfaces. Then, we present a theoretical framework to predict the deflection and resonance frequencies of microcantilevers with the simultaneous effects of the eigenstrain, surface stress and adsorption mass. Finally, the adsorption-induced deflection and resonance frequency shift of microcantilevers are numerically analyzed for the van der Waals and Coulomb interactions. The present theoretical framework quantifies the mechanisms of the adsorption-induced surface stress, and thus provides guidelines to the analysis of the sensitivities, and the identification of the detected substance in the design and application of micro- and nanocantilever sensors.

  9. Structural and electronic properties of multilayer graphene on monolayer hexagonal boron nitride/nickel (111) interface system: A van der Waals density functional study

    NASA Astrophysics Data System (ADS)

    Yelgel, Celal

    2016-02-01

    The structural and electronic properties of multilayer graphene adsorbed on monolayer hexagonal boron nitride (h-BN)/Ni(111) interface system are investigated using the density functional theory with a recently developed non-local van der Waals density functional (rvv10). The most energetically favourable configuration for a monolayer h-BN/Ni(111) interface is found to be N atom atop the Ni atoms and B atom in fcc site with the interlayer distance of 2.04 Å and adsorption energy of 302 meV/BN. Our results show that increasing graphene layers on a monolayer h-BN/Ni(111) interface leads to a weakening of the interfacial interaction between the monolayer h-BN and Ni(111) surface. The adsorption energy of graphene layers on the h-BN/Ni(111) interface is found to be in the range of the 50-120 meV/C atom as the vertical distance from h-BN to the bottommost graphene layers decreases. With the adsorption of a multilayer graphene on the monolayer h-BN/Ni(111) interface system, the band gap of 0.12 eV and 0.25 eV opening in monolayer graphene and bilayer graphene near the K point is found with an upward shifting of the Fermi level. However, a stacking-sensitive band gap is opened in trilayer graphene. We obtain the band gap of 0.35 eV close to the K point with forming a Mexican hat band structure for ABC-stacked trilayer graphene.

  10. Ionic Intercalation in Two-Dimensional van der Waals Materials: In Situ Characterization and Electrochemical Control of the Anisotropic Thermal Conductivity of Black Phosphorus.

    PubMed

    Kang, Joon Sang; Ke, Ming; Hu, Yongjie

    2017-03-08

    Two-dimensional van der Waals materials have shown novel fundamental properties and promise for wide applications. Here, we report for the first time an experimental demonstration of the in situ characterization and highly reversible control of the anisotropic thermal conductivity of black phosphorus. We develop a novel platform based on lithium ion batteries that integrates ultrafast optical spectroscopy and electrochemical control to investigate the interactions between lithium ions and the lattices of the black phosphorus electrode. We discover a strong dependence of the thermal conductivity on battery charge states (lithium concentrations) during the discharge/charge process. The thermal conductivity of black phosphorus is reversibly tunable over a wide range of 2.45-3.86, 62.67-85.80, and 21.66-27.58 W·m -1 ·K -1 in the cross-plan, zigzag, and armchair directions, respectively. The modulation in thermal conductivity is attributed to phonon scattering introduced by the ionic intercalation in between the interspacing layers and shows anisotropic phonon scattering mechanism based on semiclassical model. At the fully discharged state (x ∼ 3 in Li x P), a dramatic reduction of thermal conductivity by up to 6 times from that of the pristine crystal has been observed. This study provides a unique approach to explore the fundamental energy transport involving lattices and ions in the layered structures and may open up new opportunities in controlling energy transport based on novel operation mechanisms and the rational design of nanostructures.

  11. Including screening in van der Waals corrected density functional theory calculations: the case of atoms and small molecules physisorbed on graphene.

    PubMed

    Silvestrelli, Pier Luigi; Ambrosetti, Alberto

    2014-03-28

    The Density Functional Theory (DFT)/van der Waals-Quantum Harmonic Oscillator-Wannier function (vdW-QHO-WF) method, recently developed to include the vdW interactions in approximated DFT by combining the quantum harmonic oscillator model with the maximally localized Wannier function technique, is applied to the cases of atoms and small molecules (X=Ar, CO, H2, H2O) weakly interacting with benzene and with the ideal planar graphene surface. Comparison is also presented with the results obtained by other DFT vdW-corrected schemes, including PBE+D, vdW-DF, vdW-DF2, rVV10, and by the simpler Local Density Approximation (LDA) and semilocal generalized gradient approximation approaches. While for the X-benzene systems all the considered vdW-corrected schemes perform reasonably well, it turns out that an accurate description of the X-graphene interaction requires a proper treatment of many-body contributions and of short-range screening effects, as demonstrated by adopting an improved version of the DFT/vdW-QHO-WF method. We also comment on the widespread attitude of relying on LDA to get a rough description of weakly interacting systems.

  12. The nature of three-body interactions in DFT: Exchange and polarization effects

    NASA Astrophysics Data System (ADS)

    Hapka, Michał; Rajchel, Łukasz; Modrzejewski, Marcin; Schäffer, Rainer; Chałasiński, Grzegorz; Szcześniak, Małgorzata M.

    2017-08-01

    We propose a physically motivated decomposition of density functional theory (DFT) 3-body nonadditive interaction energies into the exchange and density-deformation (polarization) components. The exchange component represents the effect of the Pauli exclusion in the wave function of the trimer and is found to be challenging for density functional approximations (DFAs). The remaining density-deformation nonadditivity is less dependent upon the DFAs. Numerical demonstration is carried out for rare gas atom trimers, Ar2-HX (X = F, Cl) complexes, and small hydrogen-bonded and van der Waals molecular systems. None of the tested semilocal, hybrid, and range-separated DFAs properly accounts for the nonadditive exchange in dispersion-bonded trimers. By contrast, for hydrogen-bonded systems, range-separated DFAs achieve a qualitative agreement to within 20% of the reference exchange energy. A reliable performance for all systems is obtained only when the monomers interact through the Hartree-Fock potential in the dispersion-free Pauli blockade scheme. Additionally, we identify the nonadditive second-order exchange-dispersion energy as an important but overlooked contribution in force-field-like dispersion corrections. Our results suggest that range-separated functionals do not include this component, although semilocal and global hybrid DFAs appear to imitate it in the short range.

  13. The free-energy cost of interaction between DNA loops.

    PubMed

    Huang, Lifang; Liu, Peijiang; Yuan, Zhanjiang; Zhou, Tianshou; Yu, Jianshe

    2017-10-03

    From the viewpoint of thermodynamics, the formation of DNA loops and the interaction between them, which are all non-equilibrium processes, result in the change of free energy, affecting gene expression and further cell-to-cell variability as observed experimentally. However, how these processes dissipate free energy remains largely unclear. Here, by analyzing a mechanic model that maps three fundamental topologies of two interacting DNA loops into a 4-state model of gene transcription, we first show that a longer DNA loop needs more mean free energy consumption. Then, independent of the type of interacting two DNA loops (nested, side-by-side or alternating), the promotion between them always consumes less mean free energy whereas the suppression dissipates more mean free energy. More interestingly, we find that in contrast to the mechanism of direct looping between promoter and enhancer, the facilitated-tracking mechanism dissipates less mean free energy but enhances the mean mRNA expression, justifying the facilitated-tracking hypothesis, a long-standing debate in biology. Based on minimal energy principle, we thus speculate that organisms would utilize the mechanisms of loop-loop promotion and facilitated tracking to survive in complex environments. Our studies provide insights into the understanding of gene expression regulation mechanism from the view of energy consumption.

  14. Attractive interactions between reverse aggregates and phase separation in concentrated malonamide extractant solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erlinger, C.; Belloni, L.; Zemb, T.

    1999-03-30

    Using small angle X-ray scattering, conductivity, and phase behavior determination, the authors show that concentrated solutions of malonamide extractants, dimethyldibutyltetradecylmalonamide (DMDBTDMA), are organized in reverse oligomeric aggregates which have many features in common with reverse micelles. The aggregation numbers of these reverse globular aggregates as well as their interaction potential are determined from absolute scattering curves. An attractive interaction is responsible for the demixing of the oil phase when in equilibrium with excess oil. Prediction of conductivity as well as the formation conditions for the third phase is possible using standard liquid theory applied to the extractant aggregates. The interactions,more » modeled with the sticky sphere model proposed by Baster, are shown to be due to steric interactions resulting from the hydrophobic tails of the extractant molecule and van der Waals forces between the highly polarizable water core of the reverse micelles. The attractive interaction in the oil phase, equilibrated with water, is determined as a function of temperature, extractant molecule concentration, and proton and neodynium(III) cation concentration. It is shown that van der Waals interactions, with an effective Hamaker constant of 3kT, quantitatively explain the behavior of DMDBTDMA in n-dodecane in terms of scattering as well as phase stability limits.« less

  15. SIMPLE estimate of the free energy change due to aliphatic mutations: superior predictions based on first principles.

    PubMed

    Bueno, Marta; Camacho, Carlos J; Sancho, Javier

    2007-09-01

    The bioinformatics revolution of the last decade has been instrumental in the development of empirical potentials to quantitatively estimate protein interactions for modeling and design. Although computationally efficient, these potentials hide most of the relevant thermodynamics in 5-to-40 parameters that are fitted against a large experimental database. Here, we revisit this longstanding problem and show that a careful consideration of the change in hydrophobicity, electrostatics, and configurational entropy between the folded and unfolded state of aliphatic point mutations predicts 20-30% less false positives and yields more accurate predictions than any published empirical energy function. This significant improvement is achieved with essentially no free parameters, validating past theoretical and experimental efforts to understand the thermodynamics of protein folding. Our first principle analysis strongly suggests that both the solute-solute van der Waals interactions in the folded state and the electrostatics free energy change of exposed aliphatic mutations are almost completely compensated by similar interactions operating in the unfolded ensemble. Not surprisingly, the problem of properly accounting for the solvent contribution to the free energy of polar and charged group mutations, as well as of mutations that disrupt the protein backbone remains open. 2007 Wiley-Liss, Inc.

  16. Ferrocene Orientation Determined Intramolecular Interactions Using Energy Decomposition Analysis.

    PubMed

    Wang, Feng; Islam, Shawkat; Vasilyev, Vladislav

    2015-11-16

    Two very different quantum mechanically based energy decomposition analyses (EDA) schemes are employed to study the dominant energy differences between the eclipsed and staggered ferrocene conformers. One is the extended transition state (ETS) based on the Amsterdam Density Functional (ADF) package and the other is natural EDA (NEDA) based in the General Atomic and Molecular Electronic Structure System (GAMESS) package. It reveals that in addition to the model (theory and basis set), the fragmentation channels more significantly affect the interaction energy terms (Δ E ) between the conformers. It is discovered that such an interaction energy can be absorbed into the pre-partitioned fragment channels so that to affect the interaction energies in a particular conformer of Fc. To avoid this, the present study employs a complete fragment channel-the fragments of ferrocene are individual neutral atoms. It therefore discovers that the major difference between the ferrocene conformers is due to the quantum mechanical Pauli repulsive energy and orbital attractive energy, leading to the eclipsed ferrocene the energy preferred structure. The NEDA scheme further indicates that the sum of attractive (negative) polarization (POL) and charge transfer (CL) energies prefers the eclipsed ferrocene. The repulsive (positive) deformation (DEF) energy, which is dominated by the cyclopentadienyle (Cp) rings, prefers the staggered ferrocene. Again, the cancellation results in a small energy residue in favour of the eclipsed ferrocene, in agreement with the ETS scheme. Further Natural Bond Orbital (NBO) analysis indicates that all NBO energies, total Lewis (no Fe) and lone pair (LP) deletion all prefer the eclipsed Fc conformer. The most significant energy preferring the eclipsed ferrocene without cancellation is the interactions between the donor lone pairs (LP) of the Fe atom and the acceptor antibond (BD*) NBOs of all C-C and C-H bonds in the ligand, LP(Fe)-BD*(C-C & C-H), which

  17. Inter-layer and intra-layer heat transfer in bilayer/monolayer graphene van der Waals heterostructure: Is there a Kapitza resistance analogous?

    NASA Astrophysics Data System (ADS)

    Rajabpour, Ali; Fan, Zheyong; Vaez Allaei, S. Mehdi

    2018-06-01

    Van der Waals heterostructures have exhibited interesting physical properties. In this paper, heat transfer in hybrid coplanar bilayer/monolayer (BL-ML) graphene, as a model layered van der Waals heterostructure, was studied using non-equilibrium molecular dynamics (MD) simulations. The temperature profile and inter- and intra-layer heat fluxes of the BL-ML graphene indicated that, there is no fully developed thermal equilibrium between layers and the drop in the average temperature profile at the step-like BL-ML interface is not attributable to the effect of Kapitza resistance. By increasing the length of the system up to 1 μm in the studied MD simulations, the thermally non-equilibrium region was reduced to a small area near the step-like interface. All MD results were compared to a continuum model and a good match was observed between the two approaches. Our results provide a useful understanding of heat transfer in nano- and micro-scale layered materials and van der Waals heterostructures.

  18. Estimation of Some Parameters from Morse-Morse-Spline-Van Der Waals Intermolecular Potential

    NASA Astrophysics Data System (ADS)

    Coroiu, I.

    2007-04-01

    Some parameters such as transport cross-sections and isotopic thermal diffusion factor have been calculated from an improved intermolecular potential, Morse-Morse-Spline-van der Waals (MMSV) potential proposed by R.A. Aziz et al. The treatment was completely classical and no corrections for quantum effects were made. The results would be employed for isotope separations of different spherical and quasi-spherical molecules.

  19. Protein-ligand binding free energy estimation using molecular mechanics and continuum electrostatics. Application to HIV-1 protease inhibitors

    NASA Astrophysics Data System (ADS)

    Zoete, V.; Michielin, O.; Karplus, M.

    2003-12-01

    A method is proposed for the estimation of absolute binding free energy of interaction between proteins and ligands. Conformational sampling of the protein-ligand complex is performed by molecular dynamics (MD) in vacuo and the solvent effect is calculated a posteriori by solving the Poisson or the Poisson-Boltzmann equation for selected frames of the trajectory. The binding free energy is written as a linear combination of the buried surface upon complexation, SAS bur, the electrostatic interaction energy between the ligand and the protein, Eelec, and the difference of the solvation free energies of the complex and the isolated ligand and protein, ΔGsolv. The method uses the buried surface upon complexation to account for the non-polar contribution to the binding free energy because it is less sensitive to the details of the structure than the van der Waals interaction energy. The parameters of the method are developed for a training set of 16 HIV-1 protease-inhibitor complexes of known 3D structure. A correlation coefficient of 0.91 was obtained with an unsigned mean error of 0.8 kcal/mol. When applied to a set of 25 HIV-1 protease-inhibitor complexes of unknown 3D structures, the method provides a satisfactory correlation between the calculated binding free energy and the experimental pIC 50 without reparametrization.

  20. DIFFUSED SOLUTE-SOLVENT INTERFACE WITH POISSON-BOLTZMANN ELECTROSTATICS: FREE-ENERGY VARIATION AND SHARP-INTERFACE LIMIT.

    PubMed

    Li, B O; Liu, Yuan

    A phase-field free-energy functional for the solvation of charged molecules (e.g., proteins) in aqueous solvent (i.e., water or salted water) is constructed. The functional consists of the solute volumetric and solute-solvent interfacial energies, the solute-solvent van der Waals interaction energy, and the continuum electrostatic free energy described by the Poisson-Boltzmann theory. All these are expressed in terms of phase fields that, for low free-energy conformations, are close to one value in the solute phase and another in the solvent phase. A key property of the model is that the phase-field interpolation of dielectric coefficient has the vanishing derivative at both solute and solvent phases. The first variation of such an effective free-energy functional is derived. Matched asymptotic analysis is carried out for the resulting relaxation dynamics of the diffused solute-solvent interface. It is shown that the sharp-interface limit is exactly the variational implicit-solvent model that has successfully captured capillary evaporation in hydrophobic confinement and corresponding multiple equilibrium states of underlying biomolecular systems as found in experiment and molecular dynamics simulations. Our phase-field approach and analysis can be used to possibly couple the description of interfacial fluctuations for efficient numerical computations of biomolecular interactions.

  1. Interaction between Pin1 and its natural product inhibitor epigallocatechin-3-gallate by spectroscopy and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Xi, Lei; Wang, Yu; He, Qing; Zhang, Qingyan; Du, Linfang

    2016-12-01

    The binding of epigallocatechin-3-gallate (EGCG) to wild type Pin1 in solution was studied by spectroscopic methods and molecular dynamics simulations in this research to explore the binding mode and inhibition mechanism. The binding constants and number of binding sites per Pin1 for EGCG were calculated through the Stern-Volmer equation. The values of binding free energy and thermodynamic parameters were calculated and indicated that hydrogen bonds, electrostatic interaction and Van der Waals interaction played the major role in the binding process. The alterations of Pin1 secondary structure in the presence of EGCG were confirmed by far-UV circular dichroism spectra. The binding model at atomic-level revealed that EGCG was bound to the Glu12, Lys13, Arg14, Met15 and Arg17 in WW domain. Furthermore, EGCG could also interact with Arg69, Asp112, Cys113 and Ser114 in PPIase domain.

  2. Schottky barrier tuning of the graphene/SnS2 van der Waals heterostructures through electric field

    NASA Astrophysics Data System (ADS)

    Zhang, Fang; Li, Wei; Ma, Yaqiang; Dai, Xianqi

    2018-03-01

    Combining the electronic structures of two-dimensional monolayers in ultrathin hybrid nanocomposites is expected to display new properties beyond their single components. The effects of external electric field (Eext) on the electronic structures of monolayer SnS2 with graphene hybrid heterobilayers are studied by using the first-principle calculations. It is demonstrated that the intrinsic electronic properties of SnS2 and graphene are quite well preserved due to the weak van der Waals (vdW) interactions. We find that the n-type Schottky contacts with the significantly small Schottky barrier are formed at the graphene/SnS2 interface. In the graphene/SnS2 heterostructure, the vertical Eext can control not only the Schottky barriers (n-type and p-type) but also contact types (Schottky contact or Ohmic contact) at the interface. The present study would open a new avenue for application of ultrathin graphene/SnS2 heterostructures in future nano- and optoelectronics.

  3. Imaginary-frequency polarizability and van der Waals force constants of two-electron atoms, with rigorous bounds

    NASA Technical Reports Server (NTRS)

    Glover, R. M.; Weinhold, F.

    1977-01-01

    Variational functionals of Braunn and Rebane (1972) for the imagery-frequency polarizability (IFP) have been generalized by the method of Gramian inequalities to give rigorous upper and lower bounds, valid even when the true (but unknown) unperturbed wavefunction must be represented by a variational approximation. Using these formulas in conjunction with flexible variational trial functions, tight error bounds are computed for the IFP and the associated two- and three-body van der Waals interaction constants of the ground 1(1S) and metastable 2(1,3S) states of He and Li(+). These bounds generally establish the ground-state properties to within a fraction of a per cent and metastable properties to within a few per cent, permitting a comparative assessment of competing theoretical methods at this level of accuracy. Unlike previous 'error bounds' for these properties, the present results have a completely a priori theoretical character, with no empirical input data.

  4. [Energetics of complex formation of the DNA hairpin structure d(GCGAAGC) with aromatic ligands].

    PubMed

    Kostiukov, V V

    2011-01-01

    The energy contributions of various physical interactions to the total Gibbs energy of complex formation of the biologically important DNA hairpin d(GCGAAGC) with aromatic antitumor antibiotics daunomycin and novantron and the mutagens ethidium and proflavine have been calculated. It has been shown that the relatively small value of the total energy of binding of the ligands to the hairpin is the sum of components great in absolute value and different in sign. The contributions of van der Waals interactions and both intra- and intermolecular hydrogen bonds and bonds with aqueous environment have been studied. According to the calculations, the hydrophobic and van der Waals components are energetically favorable in complex formation of the ligands with the DNA pairpin d(GCGAAGC), whereas the electrostatic (with consideration of hydrogen bonds) and entropic components are unfavorable.

  5. Characterization of the Interaction between Gallic Acid and Lysozyme by Molecular Dynamics Simulation and Optical Spectroscopy

    PubMed Central

    Zhan, Minzhong; Guo, Ming; Jiang, Yanke; Wang, Xiaomeng

    2015-01-01

    The binding interaction between gallic acid (GA) and lysozyme (LYS) was investigated and compared by molecular dynamics (MD) simulation and spectral techniques. The results from spectroscopy indicate that GA binds to LYS to generate a static complex. The binding constants and thermodynamic parameters were calculated. MD simulation revealed that the main driving forces for GA binding to LYS are hydrogen bonding and hydrophobic interactions. The root-mean-square deviation verified that GA and LYS bind to form a stable complex, while the root-mean-square fluctuation results showed that the stability of the GA-LYS complex at 298 K was higher than that at 310 K. The calculated free binding energies from the molecular mechanics/Poisson-Boltzmann surface area method showed that van der Waals forces and electrostatic interactions are the predominant intermolecular forces. The MD simulation was consistent with the spectral experiments. This study provides a reference for future study of the pharmacological mechanism of GA. PMID:26140374

  6. Characterization of the Interaction between Gallic Acid and Lysozyme by Molecular Dynamics Simulation and Optical Spectroscopy.

    PubMed

    Zhan, Minzhong; Guo, Ming; Jiang, Yanke; Wang, Xiaomeng

    2015-07-01

    The binding interaction between gallic acid (GA) and lysozyme (LYS) was investigated and compared by molecular dynamics (MD) simulation and spectral techniques. The results from spectroscopy indicate that GA binds to LYS to generate a static complex. The binding constants and thermodynamic parameters were calculated. MD simulation revealed that the main driving forces for GA binding to LYS are hydrogen bonding and hydrophobic interactions. The root-mean-square deviation verified that GA and LYS bind to form a stable complex, while the root-mean-square fluctuation results showed that the stability of the GA-LYS complex at 298 K was higher than that at 310 K. The calculated free binding energies from the molecular mechanics/Poisson-Boltzmann surface area method showed that van der Waals forces and electrostatic interactions are the predominant intermolecular forces. The MD simulation was consistent with the spectral experiments. This study provides a reference for future study of the pharmacological mechanism of GA.

  7. A combining rule calculation of the ground-state van der Waals potentials of the magnesium rare-gas complexes

    NASA Astrophysics Data System (ADS)

    Saidi, Samah; Alharzali, Nissrin; Berriche, Hamid

    2017-04-01

    The potential energy curves and spectroscopic constants of the ground-state of the Mg-Rg (Rg = He, Ne, Ar, Kr, and Xe) van der Waals complexes are generated by the Tang-Toennies potential model and a set of derived combining rules. The parameters of the model are calculated from the potentials of the homonuclear magnesium and rare-gas dimers. The predicted spectroscopic constants are comparable to other available theoretical and experimental results, except in the case of Mg-He, we note that there are large differences between various determinations. Moreover, in order to reveal relative differences between species more obviously we calculated the reduced potential of these five systems. The curves are clumped closely together, but at intermediate range the Mg-He reduced potential is clearly very different from the others.

  8. Wide-range light-harvesting donor-acceptor assemblies through specific intergelator interactions via self-assembly.

    PubMed

    Samanta, Suman K; Bhattacharya, Santanu

    2012-12-03

    We have synthesized two new low-molecular-mass organogelators based on tri-p-phenylene vinylene derivatives, one of which could be designated as the donor whereas the other one is an acceptor. These were prepared specifically to show the intergelator interactions at the molecular level by using donor-acceptor self-assembly to achieve appropriate control over their macroscopic properties. Intermolecular hydrogen-bonding, π-stacking, and van der Waals interactions operate for both the individual components and the mixtures, leading to the formation of gels in the chosen organic solvents. Evidence for intergelator interactions was acquired from various spectroscopic, microscopic, thermal, and mechanical investigations. Due to the photochromic nature of these molecules, interesting photophysical properties, such as solvatochromism and J-type aggregation, were clearly observed. An efficient energy transfer was exhibited by the mixture of donor-acceptor assemblies. An array of four chromophores was built up by inclusion of two known dyes (anthracene and rhodamine 6G) for the energy-transfer studies. Interestingly, an energy-transfer cascade was observed in the assembly of four chromophores in a particular order (anthracene-donor-acceptor-rhodamine 6G), and if one of the components was removed from the assembly the energy transfer process was discontinued. This allowed the build up of a light-harvesting process with a wide range. Excitation at one end produces an emission at the other end of the assembly. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. gRINN: a tool for calculation of residue interaction energies and protein energy network analysis of molecular dynamics simulations.

    PubMed

    Serçinoglu, Onur; Ozbek, Pemra

    2018-05-25

    Atomistic molecular dynamics (MD) simulations generate a wealth of information related to the dynamics of proteins. If properly analyzed, this information can lead to new insights regarding protein function and assist wet-lab experiments. Aiming to identify interactions between individual amino acid residues and the role played by each in the context of MD simulations, we present a stand-alone software called gRINN (get Residue Interaction eNergies and Networks). gRINN features graphical user interfaces (GUIs) and a command-line interface for generating and analyzing pairwise residue interaction energies and energy correlations from protein MD simulation trajectories. gRINN utilizes the features of NAMD or GROMACS MD simulation packages and automatizes the steps necessary to extract residue-residue interaction energies from user-supplied simulation trajectories, greatly simplifying the analysis for the end-user. A GUI, including an embedded molecular viewer, is provided for visualization of interaction energy time-series, distributions, an interaction energy matrix, interaction energy correlations and a residue correlation matrix. gRINN additionally offers construction and analysis of Protein Energy Networks, providing residue-based metrics such as degrees, betweenness-centralities, closeness centralities as well as shortest path analysis. gRINN is free and open to all users without login requirement at http://grinn.readthedocs.io.

  10. Binding energies of benzene on coinage metal surfaces: Equal stability on different metals

    NASA Astrophysics Data System (ADS)

    Maaß, Friedrich; Jiang, Yingda; Liu, Wei; Tkatchenko, Alexandre; Tegeder, Petra

    2018-06-01

    Interfaces between organic molecules and inorganic solids adapt a prominent role in fundamental science, catalysis, molecular sensors, and molecular electronics. The molecular adsorption geometry, which is dictated by the strength of lateral and vertical interactions, determines the electronic structure of the molecule/substrate system. In this study, we investigate the binding properties of benzene on the noble metal surfaces Au(111), Ag(111), and Cu(111), respectively, using temperature-programmed desorption and first-principles calculations that account for non-locality of both electronic exchange and correlation effects. In the monolayer regime, we observed for all three systems a decrease of the binding energy with increasing coverage due to repulsive adsorbate/adsorbate interactions. Although the electronic properties of the noble metal surfaces are rather different, the binding strength of benzene on these surfaces is equal within the experimental error (accuracy of 0.05 eV), in excellent agreement with our calculations. This points toward the existence of a universal trend for the binding energy of aromatic molecules resulting from a subtle balance between Pauli repulsion and many-body van der Waals attraction.

  11. Supramolecular liquid crystalline π-conjugates: the role of aromatic π-stacking and van der Waals forces on the molecular self-assembly of oligophenylenevinylenes.

    PubMed

    Goel, Mahima; Jayakannan, M

    2010-10-07

    Here, we report a unique design strategy to trace the role of aromatic π-stacking and van der Waals interactions on the molecular self-organization of π-conjugated building blocks in a single system. A new series of bulky oligophenylenevinylenes (OPVs) bearing a tricyclodecanemethylene (TCD) unit in the aromatic π-core with flexible long methylene chains (n = 0-12 and 16) in the longitudinal position were designed and synthesized. The OPVs were found to be liquid crystalline, and their enthalpies of phase transitions (also entropies) showed odd-even oscillation with respect to the number of carbon atoms in alkyl chains. OPVs with an even number of methylene units in the side chains showed higher enthalpies with respect to their highly packed solid structures compared to odd-numbered ones. Polarized light microscopic analysis confirmed the formation of cholesteric liquid crystalline (LC) phases of fan shaped textures with focal conics in OPVs with 5 ≤ n ≤ 9. OPVs with longer alkyl chains (OPV-10 to OPV-12) produced a birefringence pattern consisting of dark and bright ring-banded suprastructures. The melting temperature followed a sigmoidal trend, indicating the transformation of molecular self-organization in OPVs from solid to ring-banded suprastructures via cholesteric LC intermediates. At longer alkyl chain lengths, the van der Waals interactions among the alkyl chains became predominant and translated the mesogenic effect across the lamellae; as a consequence, the lamellae underwent twisted self-organization along the radial growth direction of the spherulites to produce bright and dark bands. Scanning electron microscope (SEM) analysis of cholesteric LC and ring-banded textures strongly supported the existence of twisted lamellae in the OPVs with ring-banded textures. Variable temperature X-ray diffraction analysis confirmed the reversibility of the molecular self-organization in the solid state and also showed the existence of the higher ordered

  12. Binding interaction of atorvastatin with bovine serum albumin: Spectroscopic methods and molecular docking

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Huang, Chuan-ren; Jiang, Min; Zhu, Ying-yao; Wang, Jing; Chen, Jun; Shi, Jie-hua

    2016-03-01

    The interaction of atorvastatin with bovine serum albumin (BSA) was investigated using multi-spectroscopic methods and molecular docking technique for providing important insight into further elucidating the store and transport process of atorvastatin in the body and the mechanism of action and pharmacokinetics. The experimental results revealed that the fluorescence quenching mechanism of BSA induced atorvastatin was a combined dynamic and static quenching. The binding constant and number of binding site of atorvastatin with BSA under simulated physiological conditions (pH = 7.4) were 1.41 × 105 M- 1 and about 1 at 310 K, respectively. The values of the enthalpic change (ΔH0), entropic change (ΔS0) and Gibbs free energy (ΔG0) in the binding process of atorvastatin with BSA at 310 K were negative, suggesting that the binding process of atorvastatin and BSA was spontaneous and the main interaction forces were van der Waals force and hydrogen bonding interaction. Moreover, atorvastatin was bound into the subdomain IIA (site I) of BSA, resulting in a slight change of the conformation of BSA.

  13. Fourier Transform Microwave Spectroscopy of Multiconformational Molecules and Van Der Waals Complexes.

    NASA Astrophysics Data System (ADS)

    Hight Walker, Angela Renee

    1995-01-01

    With the use of a Fourier transform microwave (FTM) spectrometer, structural determinations of two types of species; multiconformational molecules and van der Waals complexes, have been performed. Presented in this thesis are three sections summarizing this research effort. The first section contains a detailed explanation of the FTM instrument. In Section II, the study of three multiconformational molecules is presented as two chapters. Finally, three chapters in Section III outline the work still in progress on many van der Waals complexes. Section I was written to be a "manual" for the FTM spectrometer and to aid new additions to the group in their understanding of the instrument. An instruction guide is necessary for home-built instruments such as this one due to their unique design and application. Vital techniques and theories are discussed and machine operation is outlined. A brief explanation of general microwave spectroscopy as performed on an FTM spectrometer is also given. Section II is composed of two chapters pertaining to multiconformational molecules. In Chapter 2, a complete structural analysis of dipropyl ether is reported. The only conformer assigned had C_{rm s} symmetry. Many transitions are yet unassigned. Chapter 3 summarizes an investigation of two nitrosamines; methyl ethyl and methyl propyl nitrosamine. Only one conformer was observed for methyl ethyl nitrosamine, but two were assigned to methyl propyl nitrosamine. Nuclear hyperfine structure and internal methyl rotation complicated the spectra. The final section, Section III, contains the ongoing progress on weakly bound van der Waals complexes. The analysis of the OCS--HBr complex identified the structure as quasi-linear with large amplitude bending motions. Five separate isotopomers were assigned. Transitions originating from the HBr--DBr complex were measured and presented in Chapter 5. Although early in the analysis, the structure was determined to be bent and deuterium bonded. The

  14. h-BN/graphene van der Waals vertical heterostructure: a fully spin-polarized photocurrent generator.

    PubMed

    Tao, Xixi; Zhang, Lei; Zheng, Xiaohong; Hao, Hua; Wang, Xianlong; Song, Lingling; Zeng, Zhi; Guo, Hong

    2017-12-21

    By constructing transport junctions using graphene-based van der Waals (vdW) heterostructures in which a zigzag-edged graphene nanoribbon (ZGNR) is sandwiched between two hexagonal boron-nitride sheets, we computationally demonstrate a new scheme for generating perfect spin-polarized quantum transport in ZGNRs by light irradiation. The mechanism lies in the lift of spin degeneracy of ZGNR induced by the stagger potential it receives from the BN sheets and the subsequent possibility of single spin excitation of electrons from the valence band to the conduction band by properly tuning the photon energy. This scheme is rather robust in that we always achieve desirable results irrespective of whether we decrease or increase the interlayer distance by applying compressive or tensile strain vertically to the sheets or shift the BN sheets in-plane relative to the graphene nanoribbons. More importantly, this scheme overcomes the long-standing difficulties in traditional ways of using solely electrical field or chemical modification for obtaining half-metallic transport in ZGNRs and thus paves a more feasible way for their application in spintronics.

  15. Investigating Intermolecular Interactions via Scanning Tunneling Microscopy: An Experiment for the Physical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Pullman, David; Peterson, Karen I.

    2004-01-01

    A scanning tunneling microscope (STM) project designed as a module for the undergraduate physical chemistry laboratory is described. The effects of van der Waals interactions on the condensed-phase structure are examined by the analysis of the pattern of the monolayer structures.

  16. Utilizing van der Waals Slippery Interfaces to Enhance the Electrochemical Stability of Silicon Film Anodes in Lithium-Ion Batteries.

    PubMed

    Basu, Swastik; Suresh, Shravan; Ghatak, Kamalika; Bartolucci, Stephen F; Gupta, Tushar; Hundekar, Prateek; Kumar, Rajesh; Lu, Toh-Ming; Datta, Dibakar; Shi, Yunfeng; Koratkar, Nikhil

    2018-04-25

    High specific capacity anode materials such as silicon (Si) are increasingly being explored for next-generation, high performance lithium (Li)-ion batteries. In this context, Si films are advantageous compared to Si nanoparticle based anodes since in films the free volume between nanoparticles is eliminated, resulting in very high volumetric energy density. However, Si undergoes volume expansion (contraction) under lithiation (delithiation) of up to 300%. This large volume expansion leads to stress build-up at the interface between the Si film and the current collector, leading to delamination of Si from the surface of the current collector. To prevent this, adhesion promotors (such as chromium interlayers) are often used to strengthen the interface between the Si and the current collector. Here, we show that such approaches are in fact counter-productive and that far better electrochemical stability can be obtained by engineering a van der Waals "slippery" interface between the Si film and the current collector. This can be accomplished by simply coating the current collector surface with graphene sheets. For such an interface, the Si film slips with respect to the current collector under lithiation/delithiation, while retaining electrical contact with the current collector. Molecular dynamics simulations indicate (i) less stress build-up and (ii) less stress "cycling" on a van der Waals slippery substrate as opposed to a fixed interface. Electrochemical testing confirms more stable performance and much higher Coulombic efficiency for Si films deposited on graphene-coated nickel (i.e., slippery interface) as compared to conventional nickel current collectors.

  17. Ghost Dark Energy with Sign-changeable Interaction Term

    NASA Astrophysics Data System (ADS)

    Zadeh, M. Abdollahi; Sheykhi, A.; Moradpour, H.

    2017-11-01

    Regarding the Veneziano ghost of QCD and its generalized form, we consider a Friedmann-Robertson-Walker (FRW) universe filled by a pressureless matter and a dark energy component interacting with each other through a mutual sign-changeable interaction of positive coupling constant. Our study shows that, at the late time, for the deceleration parameter we have q → -1, while the equation of state parameter of the interacting ghost dark energy (GDE) does not cross the phantom line, namely ω D ≥ -1. We also extend our study to the generalized ghost dark energy (GGDE) model and show that, at late time, the equation of state parameter of the interacting GGDE also respects the phantom line in both flat and non-flat universes. Moreover, we find out that, unlike the non-flat universe, we have q → -1 at late time for flat FRW universe. In order to make the behavior of the underlying models more clear, the deceleration parameter q as well as the equation of state parameter w D for flat and closed universes have been plotted against the redshift parameter, z. All of the studied cases admit a transition in the expansion history of universe from a deceleration phase to an accelerated one around z ≈ 0.6.

  18. Theoretical structures and binding energies of RNA-RNA/cyanine dyes and spectroscopic properties of cyanine dyes

    NASA Astrophysics Data System (ADS)

    Salaeh, Salsabila; Chong, Wei Lim; Dokmaisrijan, Supaporn; Payaka, Apirak; Yana, Janchai; Nimmanpipug, Piyarat; Lee, Vannajan Sanghiran; Dumri, Kanchana; Anh, Dau Hung

    2014-10-01

    Cyanine dyes have been widely used as a fluorescence probe for biomolecules and protein labeling. The mostly used cyanine dyes for nucleic acids labeling are DiSC2(3), DiSC2(5), and DiSC2(7). The possible structures and binding energies of RNA-RNA/Cyanine dyes were predicted theoretically using AutoDock Vina. The results showed that cyanine dyes and bases of RNA-RNA have the van der Waals and pi-pi interactions. The maximum absorption wavelength in the visible region obtained from the TD-DFT calculations of all cyanine dyes in the absence of the RNA-RNA double strand showed the bathochromic shift.

  19. Trends on band alignments: Validity of Anderson's rule in SnS2- and SnSe2-based van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Koda, Daniel S.; Bechstedt, Friedhelm; Marques, Marcelo; Teles, Lara K.

    2018-04-01

    Van der Waals (vdW) heterostructures are promising candidates for building blocks in novel electronic and optoelectronic devices with tailored properties, since their electronic action is dominated by the band alignments upon their contact. In this work, we analyze 10 vdW heterobilayers based on tin dichalcogenides by first-principles calculations. Structural studies show that all systems are stable, and that commensurability leads to smaller interlayer distances. Using hybrid functional calculations, we derive electronic properties and band alignments for all the heterosystems and isolated two-dimensional (2D) crystals. Natural band offsets are derived from calculated electron affinities and ionization energies of 11 freestanding 2D crystals. They are compared with band alignments in true heterojunctions, using a quantum mechanical criterion, and available experimental data. For the hBN/SnSe 2 system, we show that hBN suffers an increase in band gap, while leaving almost unchanged the electronic properties of SnSe2. Similarly, MX2 (M = Mo, W; X = S, Se) over SnX2 preserve the natural discontinuities from each side of the heterobilayer. Significant charge transfer occurs in junctions with graphene, which becomes p-doped and forms an Ohmic contact with SnX2. Zirconium and hafnium dichalcogenides display stronger interlayer interactions, leading to larger shifts in band alignments with tin dichalcogenides. Significant orbital overlap is found, which creates zero conduction band offset systems. The validity of the Anderson electron affinity rule is discussed. Failures of this model are traced back to interlayer interaction, band hybridization, and quantum dipoles. The systematic work sheds light on interfacial engineering for future vdW electronic and optoelectronic devices.

  20. Insights into the effects of mutations on Cren7-DNA binding using molecular dynamics simulations and free energy calculations.

    PubMed

    Chen, Lin; Zheng, Qing-Chuan; Zhang, Hong-Xing

    2015-02-28

    A novel, highly conserved chromatin protein, Cren7 is involved in regulating essential cellular processes such as transcription, replication and repair. Although mutations in the DNA-binding loop of Cren7 destabilize the structure and reduce DNA-binding activity, the details are not very clear. Focusing on the specific Cren7-dsDNA complex (PDB code ), we applied molecular dynamics (MD) simulations and the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) free energy calculations to explore the structural and dynamic effects of W26A, L28A, and K53A mutations in comparison to the wild-type protein. The energetic analysis indicated that the intermolecular van der Waals interaction and nonpolar solvation energy play an important role in the binding process of Cren7 and dsDNA. Compared with the wild type Cren7, all the studied mutants W26A, L28A, and K53A have obviously reduced binding free energies with dsDNA in the reduction of the polar and/or nonpolar interactions. These results further elucidated the previous experiments to understand the Cren7-DNA interaction comprehensively. Our work also would provide support for an understanding of the interactions of proteins with nucleic acids.

  1. Calculating the sensitivity and robustness of binding free energy calculations to force field parameters

    PubMed Central

    Rocklin, Gabriel J.; Mobley, David L.; Dill, Ken A.

    2013-01-01

    Binding free energy calculations offer a thermodynamically rigorous method to compute protein-ligand binding, and they depend on empirical force fields with hundreds of parameters. We examined the sensitivity of computed binding free energies to the ligand’s electrostatic and van der Waals parameters. Dielectric screening and cancellation of effects between ligand-protein and ligand-solvent interactions reduce the parameter sensitivity of binding affinity by 65%, compared with interaction strengths computed in the gas-phase. However, multiple changes to parameters combine additively on average, which can lead to large changes in overall affinity from many small changes to parameters. Using these results, we estimate that random, uncorrelated errors in force field nonbonded parameters must be smaller than 0.02 e per charge, 0.06 Å per radius, and 0.01 kcal/mol per well depth in order to obtain 68% (one standard deviation) confidence that a computed affinity for a moderately-sized lead compound will fall within 1 kcal/mol of the true affinity, if these are the only sources of error considered. PMID:24015114

  2. Macroscopic self-reorientation of interacting two-dimensional crystals

    PubMed Central

    Woods, C. R.; Withers, F.; Zhu, M. J.; Cao, Y.; Yu, G.; Kozikov, A.; Ben Shalom, M.; Morozov, S. V.; van Wijk, M. M.; Fasolino, A.; Katsnelson, M. I.; Watanabe, K.; Taniguchi, T.; Geim, A. K.; Mishchenko, A.; Novoselov, K. S.

    2016-01-01

    Microelectromechanical systems, which can be moved or rotated with nanometre precision, already find applications in such fields as radio-frequency electronics, micro-attenuators, sensors and many others. Especially interesting are those which allow fine control over the motion on the atomic scale because of self-alignment mechanisms and forces acting on the atomic level. Such machines can produce well-controlled movements as a reaction to small changes of the external parameters. Here we demonstrate that, for the system of graphene on hexagonal boron nitride, the interplay between the van der Waals and elastic energies results in graphene mechanically self-rotating towards the hexagonal boron nitride crystallographic directions. Such rotation is macroscopic (for graphene flakes of tens of micrometres the tangential movement can be on hundreds of nanometres) and can be used for reproducible manufacturing of aligned van der Waals heterostructures. PMID:26960435

  3. GaN: From three- to two-dimensional single-layer crystal and its multilayer van der Waals solids

    NASA Astrophysics Data System (ADS)

    Onen, A.; Kecik, D.; Durgun, E.; Ciraci, S.

    2016-02-01

    Three-dimensional (3D) GaN is a III-V compound semiconductor with potential optoelectronic applications. In this paper, starting from 3D GaN in wurtzite and zinc-blende structures, we investigated the mechanical, electronic, and optical properties of the 2D single-layer honeycomb structure of GaN (g -GaN ) and its bilayer, trilayer, and multilayer van der Waals solids using density-functional theory. Based on high-temperature ab initio molecular-dynamics calculations, we first showed that g -GaN can remain stable at high temperature. Then we performed a comparative study to reveal how the physical properties vary with dimensionality. While 3D GaN is a direct-band-gap semiconductor, g -GaN in two dimensions has a relatively wider indirect band gap. Moreover, 2D g -GaN displays a higher Poisson ratio and slightly less charge transfer from cation to anion. In two dimensions, the optical-absorption spectra of 3D crystalline phases are modified dramatically, and their absorption onset energy is blueshifted. We also showed that the physical properties predicted for freestanding g -GaN are preserved when g -GaN is grown on metallic as well as semiconducting substrates. In particular, 3D layered blue phosphorus, being nearly lattice-matched to g -GaN , is found to be an excellent substrate for growing g -GaN . Bilayer, trilayer, and van der Waals crystals can be constructed by a special stacking sequence of g -GaN , and they can display electronic and optical properties that can be controlled by the number of g -GaN layers. In particular, their fundamental band gap decreases and changes from indirect to direct with an increasing number of g -GaN layers.

  4. Molecular dynamics analysis of the influence of Coulomb and van der Waals interactions on the work of adhesion at the solid-liquid interface

    NASA Astrophysics Data System (ADS)

    Surblys, Donatas; Leroy, Frédéric; Yamaguchi, Yasutaka; Müller-Plathe, Florian

    2018-04-01

    We investigated the solid-liquid work of adhesion of water on a model silica surface by molecular dynamics simulations, where a methodology previously developed to determine the work of adhesion through thermodynamic integration was extended to a system with long-range electrostatic interactions between solid and liquid. In agreement with previous studies, the work of adhesion increased when the magnitude of the surface polarity was increased. On the other hand, we found that when comparing two systems with and without solid-liquid electrostatic interactions, which were set to have approximately the same total solid-liquid interfacial energy, former had a significantly smaller work of adhesion and a broader distribution in the interfacial energies, which has not been previously reported in detail. This was explained by the entropy contribution to the adhesion free energy; i.e., the former with a broader energy distribution had a larger interfacial entropy than the latter. While the entropy contribution to the work of adhesion has already been known, as a work of adhesion itself is free energy, these results indicate that, contrary to common belief, wetting behavior such as the contact angle is not only governed by the interfacial energy but also significantly affected by the interfacial entropy. Finally, a new interpretation of interfacial entropy in the context of solid-liquid energy variance was offered, from which a fast way to qualitatively estimate the work of adhesion was also presented.

  5. Flexible ferroelectric element based on van der Waals heteroepitaxy.

    PubMed

    Jiang, Jie; Bitla, Yugandhar; Huang, Chun-Wei; Do, Thi Hien; Liu, Heng-Jui; Hsieh, Ying-Hui; Ma, Chun-Hao; Jang, Chi-Yuan; Lai, Yu-Hong; Chiu, Po-Wen; Wu, Wen-Wei; Chen, Yi-Chun; Zhou, Yi-Chun; Chu, Ying-Hao

    2017-06-01

    We present a promising technology for nonvolatile flexible electronic devices: A direct fabrication of epitaxial lead zirconium titanate (PZT) on flexible mica substrate via van der Waals epitaxy. These single-crystalline flexible ferroelectric PZT films not only retain their performance, reliability, and thermal stability comparable to those on rigid counterparts in tests of nonvolatile memory elements but also exhibit remarkable mechanical properties with robust operation in bent states (bending radii down to 2.5 mm) and cycling tests (1000 times). This study marks the technological advancement toward realizing much-awaited flexible yet single-crystalline nonvolatile electronic devices for the design and development of flexible, lightweight, and next-generation smart devices with potential applications in electronics, robotics, automotive, health care, industrial, and military systems.

  6. Flexible ferroelectric element based on van der Waals heteroepitaxy

    PubMed Central

    Jiang, Jie; Bitla, Yugandhar; Huang, Chun-Wei; Do, Thi Hien; Liu, Heng-Jui; Hsieh, Ying-Hui; Ma, Chun-Hao; Jang, Chi-Yuan; Lai, Yu-Hong; Chiu, Po-Wen; Wu, Wen-Wei; Chen, Yi-Chun; Zhou, Yi-Chun; Chu, Ying-Hao

    2017-01-01

    We present a promising technology for nonvolatile flexible electronic devices: A direct fabrication of epitaxial lead zirconium titanate (PZT) on flexible mica substrate via van der Waals epitaxy. These single-crystalline flexible ferroelectric PZT films not only retain their performance, reliability, and thermal stability comparable to those on rigid counterparts in tests of nonvolatile memory elements but also exhibit remarkable mechanical properties with robust operation in bent states (bending radii down to 2.5 mm) and cycling tests (1000 times). This study marks the technological advancement toward realizing much-awaited flexible yet single-crystalline nonvolatile electronic devices for the design and development of flexible, lightweight, and next-generation smart devices with potential applications in electronics, robotics, automotive, health care, industrial, and military systems. PMID:28630922

  7. Reconstructing the interaction between dark energy and dark matter using Gaussian processes

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Guo, Zong-Kuan; Cai, Rong-Gen

    2015-06-01

    We present a nonparametric approach to reconstruct the interaction between dark energy and dark matter directly from SNIa Union 2.1 data using Gaussian processes, which is a fully Bayesian approach for smoothing data. In this method, once the equation of state (w ) of dark energy is specified, the interaction can be reconstructed as a function of redshift. For the decaying vacuum energy case with w =-1 , the reconstructed interaction is consistent with the standard Λ CDM model, namely, there is no evidence for the interaction. This also holds for the constant w cases from -0.9 to -1.1 and for the Chevallier-Polarski-Linder (CPL) parametrization case. If the equation of state deviates obviously from -1 , the reconstructed interaction exists at 95% confidence level. This shows the degeneracy between the interaction and the equation of state of dark energy when they get constraints from the observational data.

  8. Exfoliation and van der Waals heterostructure assembly of intercalated ferromagnet Cr1/3TaS2

    NASA Astrophysics Data System (ADS)

    Yamasaki, Yuji; Moriya, Rai; Arai, Miho; Masubuchi, Satoru; Pyon, Sunseng; Tamegai, Tsuyoshi; Ueno, Keiji; Machida, Tomoki

    2017-12-01

    Ferromagnetic van der Waals (vdW) materials are in demand for spintronic devices with all-two-dimensional-materials heterostructures. Here, we demonstrate mechanical exfoliation of magnetic-atom-intercalated transition metal dichalcogenide Cr1/3TaS2 from its bulk crystal; previously such intercalated materials were thought difficult to exfoliate. Magnetotransport in exfoliated tens-of-nanometres-thick flakes revealed ferromagnetic ordering below its Curie temperature T C ~ 110 K as well as strong in-plane magnetic anisotropy; these are identical to its bulk properties. Further, van der Waals heterostructure assembly of Cr1/3TaS2 with another intercalated ferromagnet Fe1/4TaS2 is demonstrated using a dry-transfer method. The fabricated heterojunction composed of Cr1/3TaS2 and Fe1/4TaS2 with a native Ta2O5 oxide tunnel barrier in between exhibits tunnel magnetoresistance (TMR), revealing possible spin injection and detection with these exfoliatable ferromagnetic materials through the vdW junction.

  9. Rotational superstructure in van der Waals heterostructure of self-assembled C 60 monolayer on the WSe 2 surface

    DOE PAGES

    Santos, Elton J. G.; Scullion, Declan; Chu, Ximo S.; ...

    2017-08-23

    Hybrid van der Waals (vdW) heterostructures composed of two-dimensional (2D) layered materials and self-assembled organic molecules are promising systems for electronic and optoelectronic applications with enhanced properties and performance. Control of molecular assembly is therefore paramount to fundamentally understand the nucleation, ordering, alignment, and electronic interaction of organic molecules with 2D materials. Here, we report the formation and detailed study of highly ordered, crystalline monolayers of C 60 molecules self-assembled on the surface of WSe 2 in well-ordered arrays with large grain sizes (~5 μm). Using high-resolution scanning tunneling microscopy (STM), we observe a periodic 2 × 2 superstructure inmore » the C 60 monolayer and identify four distinct molecular appearances. Using vdW-corrected ab initio density functional theory (DFT) simulations, we determine that the interplay between vdW and Coulomb interactions as well as adsorbate–adsorbate and adsorbate–substrate interactions results in specific rotational arrangements of the molecules forming the superstructure. The orbital ordering through the relative positions of bonds in adjacent molecules creates a charge redistribution that links the molecule units in a long-range network. Furthermore, this rotational superstructure extends throughout the self-assembled monolayer and opens a pathway towards engineering aligned hybrid organic/inorganic vdW heterostructures with 2D layered materials in a precise and controlled way.« less

  10. Rotational superstructure in van der Waals heterostructure of self-assembled C 60 monolayer on the WSe 2 surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santos, Elton J. G.; Scullion, Declan; Chu, Ximo S.

    Hybrid van der Waals (vdW) heterostructures composed of two-dimensional (2D) layered materials and self-assembled organic molecules are promising systems for electronic and optoelectronic applications with enhanced properties and performance. Control of molecular assembly is therefore paramount to fundamentally understand the nucleation, ordering, alignment, and electronic interaction of organic molecules with 2D materials. Here, we report the formation and detailed study of highly ordered, crystalline monolayers of C 60 molecules self-assembled on the surface of WSe 2 in well-ordered arrays with large grain sizes (~5 μm). Using high-resolution scanning tunneling microscopy (STM), we observe a periodic 2 × 2 superstructure inmore » the C 60 monolayer and identify four distinct molecular appearances. Using vdW-corrected ab initio density functional theory (DFT) simulations, we determine that the interplay between vdW and Coulomb interactions as well as adsorbate–adsorbate and adsorbate–substrate interactions results in specific rotational arrangements of the molecules forming the superstructure. The orbital ordering through the relative positions of bonds in adjacent molecules creates a charge redistribution that links the molecule units in a long-range network. Furthermore, this rotational superstructure extends throughout the self-assembled monolayer and opens a pathway towards engineering aligned hybrid organic/inorganic vdW heterostructures with 2D layered materials in a precise and controlled way.« less

  11. Post-Planck constraints on interacting vacuum energy

    NASA Astrophysics Data System (ADS)

    Wang, Yuting; Wands, David; Zhao, Gong-Bo; Xu, Lixin

    2014-07-01

    We present improved constraints on an interacting vacuum model using updated astronomical observations including the first data release from Planck. We consider a model with one dimensionless parameter, α, describing the interaction between dark matter and vacuum energy (with fixed equation of state w=-1). The background dynamics correspond to a generalized Chaplygin gas cosmology, but the perturbations have a zero sound speed. The tension between the value of the Hubble constant, H0, determined by Planck data plus WMAP polarization (Planck +WP) and that determined by the Hubble Space Telescope (HST) can be alleviated by energy transfer from dark matter to vacuum (α>0). A positive α increases the allowed values of H0 due to parameter degeneracy within the model using only cosmic microwave background data. Combining with additional data sets of including supernova type Ia (SN Ia) and baryon acoustic oscillation (BAO), we can significantly tighten the bounds on α. Redshift-space distortions (RSD), which constrain the linear growth of structure, provide the tightest constraints on vacuum interaction when combined with Planck+WP, and prefer energy transfer from vacuum to dark matter (α<0) which suppresses the growth of structure. Using the combined data sets of Planck +WP+Union2.1+BAO+RSD, we obtain the constraint on α to be -0.083<α<-0.006 (95% C.L.), allowing low H0 consistent with the measurement from 6dF Galaxy survey. This interacting vacuum model can alleviate the tension between RSD and Planck +WP in the ΛCDM model for α <0, or between HST measurements of H0 and Planck+WP for α>0, but not both at the same time.

  12. Jet-Cooled Infrared Laser Spectroscopy in the Umbrella νb{2} Vibration Region of NH_3: Improving the Potential Energy Surface Model of the NH_3-Ar Van Der Waals Complex

    NASA Astrophysics Data System (ADS)

    Asselin, Pierre; Jabri, Atef; Potapov, Alexey; Loreau, Jérome; van der Avoird, Ad

    2017-06-01

    Taking advantage of our sensitive laser spectrometer coupled to a pulsed slit jet, we recorded near the νb{2} vibration a series of rovibrational transitions of the NH_3-Ar van der Waals (vdW) complex. These transitions involve in the ground vibrational state several internal rotor states corresponding to the ortho{NH_3} and para{NH_3} spin modifications of the complex. They are labeled by Σ_{a}(j,k), Σ_{s}(j,k), Π_{a}(j,k) and Π_{s}(j,k) where Σ(K=0) and Π(K=1) indicate the projection K of the total rotational angular momentum J on the vdW axis, the superscripts s and a designate a symmetric or antisymmetric NH_3 inversion wave function, and j, k quantum numbers indicate the correlation between the internal-rotor state of the complex and the j, k rotational state of the free NH_3 monomer. Five bands have been identified, only one of which was partly observed before. They include transitions starting from the Σ_{a}(j=0 or j=1) state without any internal angular momentum, consequently they can be assigned from the band contour of a linear-molecule-like K=0, ΔJ=1 transition. The energies and splittings of the rovibrational levels of the νb{2}=1←0 spectrum derived from the analysis of the Π_{s}, Σ_{s}(j=1)← Σ_{a}(j=0), k=0 bands and mostly of the Σ_{s}, Π_{s} and Σ_{a}(j=1)←Σ_{a}(j=1), k=1 bands bring relevant information about the νb{2} dependence of the NH_3-Ar interaction, the rovibrational dynamics of the NH_3-Ar complex and provide a sensitive test of a recently developed 4D potential energy surface that includes explicitly its dependence on the umbrella motion. P. Asselin, Y. Berger, T. R. Huet, R. Motiyenko, L. Margulès, R. J. Hendricks, M. R. Tarbutt, S. Tokunaga, B. Darquié, PCCP 19, 4576 (2017), G. T. Fraser, A.S. Pine and W. A. Kreiner, J. Chem. Phys. 94, 7061 (1991). J. Loreau, J. Liévin, Y. Scribano and A. van der Avoird, J. Chem. Phys. 141, 224303 (2014).

  13. Interaction of glutathione with bovine serum albumin: Spectroscopy and molecular docking.

    PubMed

    Jahanban-Esfahlan, Ali; Panahi-Azar, Vahid

    2016-07-01

    This study aims to investigate the interaction between glutathione and bovine serum albumin (BSA) using ultraviolet-visible (UV-vis) absorption, fluorescence spectroscopies under simulated physiological conditions (pH 7.4) and molecular docking methods. The results of fluorescence spectroscopy indicated that the fluorescence intensity of BSA was decreased considerably upon the addition of glutathione through a static quenching mechanism. The fluorescence quenching obtained was related to the formation of BSA-glutathione complex. The values of KSV, Ka and Kb for the glutathione and BSA interaction were in the order of 10(5). The thermodynamic parameters including enthalpy change (ΔH), entropy change (ΔS) and also Gibb's free energy (ΔG) were determined using Van't Hoff equation. These values showed that hydrogen bonding and van der Waals forces were the main interactions in the binding of glutathione to BSA and the stabilization of the complex. Also, the interaction of glutathione and BSA was spontaneous. The effects of glutathione on the BSA conformation were determined using UV-vis spectroscopy. Moreover, glutathione was docked in BSA using ArgusLab as a molecular docking program. It was recognized that glutathione binds within the sub-domain IIA pocket in domain II of BSA. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Soft matter interactions at the molecular scale: interaction forces and energies between single hydrophobic model peptides.

    PubMed

    Stock, Philipp; Utzig, Thomas; Valtiner, Markus

    2017-02-08

    In all realms of soft matter research a fundamental understanding of the structure/property relationships based on molecular interactions is crucial for developing a framework for the targeted design of soft materials. However, a molecular picture is often difficult to ascertain and yet essential for understanding the many different competing interactions at play, including entropies and cooperativities, hydration effects, and the enormous design space of soft matter. Here, we characterized for the first time the interaction between single hydrophobic molecules quantitatively using atomic force microscopy, and demonstrated that single molecular hydrophobic interaction free energies are dominated by the area of the smallest interacting hydrophobe. The interaction free energy amounts to 3-4 kT per hydrophobic unit. Also, we find that the transition state of the hydrophobic interactions is located at 3 Å with respect to the ground state, based on Bell-Evans theory. Our results provide a new path for understanding the nature of hydrophobic interactions at the single molecular scale. Our approach enables us to systematically vary hydrophobic and any other interaction type by utilizing peptide chemistry providing a strategic advancement to unravel molecular surface and soft matter interactions at the single molecular scale.

  15. Evaluation of Structural Isomers, Molecular Interactions, Reactivity Descriptors, and Vibrational Analysis of Tretinoin.

    PubMed

    Karthick, T; Tandon, Poonam; Singh, Swapnil

    2017-01-01

    Tretinoin is known to be a pharmaceutical drug for treating acne vulgaris, keratosis pilaris, and acute promyelocytic leukemia. In order to reveal the possible conformers of tretinoin, the energies of all the conformers through rotational bonds have been evaluated by systematic rotor search analysis. The intramolecular interactions ranging from strong hydrogen bonds to weak van der Waals forces present in tretinoin have been distinguished with the help of electron density mapping and wavefunction analysis. The global reactivity descriptors and Fukui functions of tretinoin have been calculated and discussed. The sites suitable for electrophilic attack and nucleophilic attack have been identified with the help of Hirshfeld partitioning. The vibrational spectroscopic signature of tretinoin and mixed mode band assignments have been elucidated with the help of experimental and simulated spectra.

  16. Ion specific effects: decoupling ion-ion and ion-water interactions

    PubMed Central

    Song, Jinsuk; Kang, Tae Hui; Kim, Mahn Won; Han, Songi

    2015-01-01

    Ion-specific effects in aqueous solution, known as the Hofmeister effect is prevalent in diverse systems ranging from pure ionic to complex protein solutions. The objective of this paper is to explicitly demonstrate how complex ion-ion and ion-water interactions manifest themselves in the Hofmeister effects, based on a series of recent experimental observation. These effects are not considered in the classical description of ion effects, such as the Deryaguin-Landau-Verwey-Overbeek (DLVO) theory that, likely for that reason, fail to describe the origin of the phenomenological Hofmeister effect. However, given that models considering the basic forces of electrostatic and van der Waals interactions can offer rationalization for the core experimental observations, a universal interaction model stands a chance to be developed. In this perspective, we separately derive the contribution from ion-ion electrostatic interaction and ion-water interaction from second harmonic generation (SHG) data at the air-ion solution interface, which yields an estimate of ion-water interactions in solution. Hofmeister ion effects observed on biological solutes in solution should be similarly influenced by contributions from ion-ion and ion-water interactions, where the same ion-water interaction parameters derived from SHG data at the air-ion solution interface could be applicable. A key experimental data set available from solution systems to probe ion-water interaction is the modulation of water diffusion dynamics near ions in bulk ion solution, as well as near biological liposome surfaces. It is obtained from Overhauser dynamic nuclear polarization (ODNP), a nuclear magnetic resonance (NMR) relaxometry technique. The surface water diffusivity is influenced by the contribution from ion-water interactions, both from localized surface charges and adsorbed ions, although the relative contribution of the former is larger on liposome surfaces. In this perspective, ion-water interaction

  17. Improved Potential Energy Surface of Ozone Constructed Using the Fitting by Permutationally Invariant Polynomial Function

    DOE PAGES

    Ayouz, Mehdi; Babikov, Dmitri

    2012-01-01

    New global potential energy surface for the ground electronic state of ozone is constructed at the complete basis set level of the multireference configuration interaction theory. A method of fitting the data points by analytical permutationally invariant polynomial function is adopted. A small set of 500 points is preoptimized using the old surface of ozone. In this procedure the positions of points in the configuration space are chosen such that the RMS deviation of the fit is minimized. New ab initio calculations are carried out at these points and are used to build new surface. Additional points are added tomore » the vicinity of the minimum energy path in order to improve accuracy of the fit, particularly in the region where the surface of ozone exhibits a shallow van der Waals well. New surface can be used to study formation of ozone at thermal energies and its spectroscopy near the dissociation threshold.« less

  18. Symmetry-adapted perturbation theory interaction energy decomposition for some noble gas complexes

    NASA Astrophysics Data System (ADS)

    Cukras, Janusz; Sadlej, Joanna

    2008-06-01

    This Letter contains a study of the interaction energy in HArF⋯N 2 and HArF⋯P 2 complexes. Symmetry-adapted perturbation theory (SAPT) has been applied to analyze the electrostatic, induction, dispersion and exchange contributions to the total interaction energy. The interaction energy has also been obtained by supermolecular method at the MP2, MP4, CCSD, CCSD(T) levels. The interaction energy for the studied complexes results from a partial cancelation of large attractive electrostatic, induction, dispersion terms by a strong repulsive exchange contribution. The induction and dispersion effects proved to be crucial in establishing the preference for the colinear HArF⋯N 2 and HArF⋯P 2 structures and shift direction of νHAr stretching vibrations.

  19. Molecular modeling and spectroscopic studies on the interaction of the chiral drug venlafaxine hydrochloride with bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Shahabadi, Nahid; Hadidi, Saba

    2014-03-01

    This study was designed to examine the interaction of racemic antidepressant drug "S,R-venlafaxine hydrochloride (VEN)" with bovine serum albumin (BSA) under physiological conditions. The mechanism of interaction was studied by spectroscopic techniques combination with molecular modeling. Stern-Volmer analysis of fluorescence quenching data shows the presence of the static quenching mechanism. The thermodynamic parameters indicated that the hydrogen bonding and weak van der Waals interactions are the predominant intermolecular forces stabilizing the complex. The number of binding sites (n) was calculated. Through the site marker competitive experiment, VEN was confirmed to be located in subdomain IIIA of BSA. The binding distance (r = 4.93 nm) between the donor BSA and acceptor VEN was obtained according to Förster's non-radiative energy transfer theory. According to UV-vis spectra and CD data binding of VEN leaded to conformational changes of BSA. Molecular docking simulations of S and R-VEN revealed that both isomers have similar interaction and the same binding sites, from this point of view S and R isomers are equal.

  20. Interaction of methotrexate with trypsin analyzed by spectroscopic and molecular modeling methods

    NASA Astrophysics Data System (ADS)

    Wang, Yanqing; Zhang, Hongmei; Cao, Jian; Zhou, Qiuhua

    2013-11-01

    Trypsin is one of important digestive enzymes that have intimate correlation with human health and illness. In this work, the interaction of trypsin with methotrexate was investigated by spectroscopic and molecular modeling methods. The results revealed that methotrexate could interact with trypsin with about one binding site. Methotrexate molecule could enter into the primary substrate-binding pocket, resulting in inhibition of trypsin activity. Furthermore, the thermodynamic analysis implied that electrostatic force, hydrogen bonding, van der Waals and hydrophobic interactions were the main interactions for stabilizing the trypsin-methotrexate system, which agreed well with the results from the molecular modeling study.

  1. Electrodynamics of Lipid Membrane Interactions in the Presence of Zwitterionic Buffers

    PubMed Central

    Koerner, Megan M.; Palacio, Luis A.; Wright, Johnnie W.; Schweitzer, Kelly S.; Ray, Bruce D.; Petrache, Horia I.

    2011-01-01

    Due to thermal motion and molecular polarizability, electrical interactions in biological systems have a dynamic character. Zwitterions are dipolar molecules that typically are highly polarizable and exhibit both a positive and a negative charge depending on the pH of the solution. We use multilamellar structures of common lipids to identify and quantify the effects of zwitterionic buffers that go beyond the control of pH. We use the fact that the repeat spacing of multilamellar lipid bilayers is a sensitive and accurate indicator of the force balance between membranes. We show that common buffers can in fact charge up neutral membranes. However, this electrostatic effect is not immediately recognized because of the concomitant modification of dispersion (van der Waals) forces. We show that although surface charging can be weak, electrostatic forces are significant even at large distances because of reduced ionic screening and reduced van der Waals attraction. The zwitterionic interactions that we identify are expected to be relevant for interfacial biological processes involving lipid bilayers, and for a wide range of biomaterials, including amino acids, detergents, and pharmaceutical drugs. An appreciation of zwitterionic electrodynamic character can lead to a better understanding of molecular interactions in biological systems and in soft materials in general. PMID:21767488

  2. Tunable far infrared laser spectroscopy of van der Waals bonds: The intermolecular stretching vibration and effective radial potentials for Ar--H sub 2 O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, R.C.; Busarow, K.L.; Lee, Y.T.

    1990-01-01

    Measurements of the fundamental van der Waals stretching vibration {Sigma}(0{sub 00},{ital v}{sub {ital s}}=1) {l arrow}{Sigma}(0{sub 00},{ital v}{sub {ital s}}=0) of Ar--H{sub 2}O ({nu}{sub 0}=907 322.08(94) MHz) and a transition from the lowest excited internal rotor state {Sigma}(1{sub 01},{ital v}{sub {ital s}}=0) to the {Sigma}(1{sub 01},{ital v}{sub {ital s}}=1) level ({nu}{sub 0}=1019 239.4(1.0) MHz) are presented. A simultaneous rotational analysis of the new stretching data with the internal rotor bands observed by us previously (J. Chem. Phys. {bold 89}, 4494 (1988)), including the effects of Coriolis interactions, provides experimental evidence for the new assignment of the internal rotor transitions suggestedmore » by Hutson in the accompanying paper. Fits to the rotational term values for the {ital v}{sub {ital s}}=0 states are used to derive effective radial potential energy surfaces for each of the {Sigma} internal rotor states. The results show the well depth (153.4 cm{sup {minus}1}) of the effective radial potential for the {Sigma}(1{sub 01},{ital v}{sub {ital s}}=0) level to be approximately 25 cm{sup {minus}1} deeper than that for the {Sigma}(0{sub 00},{ital v}{sub {ital s}}=0) ground state of the complex, indicating that the former is stabilized considerably more by the anisotropic intermolecular potential energy surface than is the ground state.« less

  3. Energy economy in the actomyosin interaction: lessons from simple models.

    PubMed

    Lehman, Steven L

    2010-01-01

    The energy economy of the actomyosin interaction in skeletal muscle is both scientifically fascinating and practically important. This chapter demonstrates how simple cross-bridge models have guided research regarding the energy economy of skeletal muscle. Parameter variation on a very simple two-state strain-dependent model shows that early events in the actomyosin interaction strongly influence energy efficiency, and late events determine maximum shortening velocity. Addition of a weakly-bound state preceding force production allows weak coupling of cross-bridge mechanics and ATP turnover, so that a simple three-state model can simulate the velocity-dependence of ATP turnover. Consideration of the limitations of this model leads to a review of recent evidence regarding the relationship between ligand binding states, conformational states, and macromolecular structures of myosin cross-bridges. Investigation of the fine structure of the actomyosin interaction during the working stroke continues to inform fundamental research regarding the energy economy of striated muscle.

  4. Communication: Accurate higher-order van der Waals coefficients between molecules from a model dynamic multipole polarizability

    DOE PAGES

    Tao, Jianmin; Rappe, Andrew M.

    2016-01-20

    Due to the absence of the long-range van der Waals (vdW) interaction, conventional density functional theory (DFT) often fails in the description of molecular complexes and solids. In recent years, considerable progress has been made in the development of the vdW correction. However, the vdW correction based on the leading-order coefficient C 6 alone can only achieve limited accuracy, while accurate modeling of higher-order coefficients remains a formidable task, due to the strong non-additivity effect. Here, we apply a model dynamic multipole polarizability within a modified single-frequency approximation to calculate C 8 and C 10 between small molecules. We findmore » that the higher-order vdW coefficients from this model can achieve remarkable accuracy, with mean absolute relative deviations of 5% for C 8 and 7% for C 10. As a result, inclusion of accurate higher-order contributions in the vdW correction will effectively enhance the predictive power of DFT in condensed matter physics and quantum chemistry.« less

  5. Biophysical study on the interaction of ceftriaxone sodium with bovine serum albumin using spectroscopic methods.

    PubMed

    Pan, Jiongwei; Ye, Zaiting; Cai, Xiaoping; Wang, Liangxing; Cao, Zhuo

    2012-12-01

    The interaction of ceftriaxone sodium (CS), a cephalosporin antibiotic, with the major transport protein, bovine serum albumin (BSA), was investigated using different spectroscopic techniques such as fluorescence, circular dichroism (CD), and UV-vis spectroscopy. Values of binding parameters for BSA-CS interaction in terms of binding constant and number of binding sides were found to be 9.00 × 10(3), 3.24 × 10(3), and 2.30 × 10(3) M(-1) at 281, 301, and 321 K, respectively. Thermodynamic analysis of the binding data obtained at different temperatures showed that the binding process was spontaneous and was primarily mediated by van der Waals force or hydrogen bonding. CS binding to BSA caused secondary structural alterations in the protein as revealed by CD results. The distance between CS and Trp of BSA was determined as 3.23 nm according to the Förster resonance energy transfer theory. © 2012 Wiley Periodicals, Inc.

  6. Properties of Organic Liquids when Simulated with Long-Range Lennard-Jones Interactions.

    PubMed

    Fischer, Nina M; van Maaren, Paul J; Ditz, Jonas C; Yildirim, Ahmet; van der Spoel, David

    2015-07-14

    In order to increase the accuracy of classical computer simulations, existing methodologies may need to be adapted. Hitherto, most force fields employ a truncated potential function to model van der Waals interactions, sometimes augmented with an analytical correction. Although such corrections are accurate for homogeneous systems with a long cutoff, they should not be used in inherently inhomogeneous systems such as biomolecular and interface systems. For such cases, a variant of the particle mesh Ewald algorithm (Lennard-Jones PME) was already proposed 20 years ago (Essmann et al. J. Chem. Phys. 1995, 103, 8577-8593), but it was implemented only recently (Wennberg et al. J. Chem. Theory Comput. 2013, 9, 3527-3537) in a major simulation code (GROMACS). The availability of this method allows surface tensions of liquids as well as bulk properties to be established, such as density and enthalpy of vaporization, without approximations due to truncation. Here, we report on simulations of ≈150 liquids (taken from a force field benchmark: Caleman et al. J. Chem. Theory Comput. 2012, 8, 61-74) using three different force fields and compare simulations with and without explicit long-range van der Waals interactions. We find that the density and enthalpy of vaporization increase for most liquids using the generalized Amber force field (GAFF, Wang et al. J. Comput. Chem. 2004, 25, 1157-1174) and the Charmm generalized force field (CGenFF, Vanommeslaeghe et al. J. Comput. Chem. 2010, 31, 671-690) but less so for OPLS/AA (Jorgensen and Tirado-Rives, Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 6665-6670), which was parametrized with an analytical correction to the van der Waals potential. The surface tension increases by ≈10(-2) N/m for all force fields. These results suggest that van der Waals attractions in force fields are too strong, in particular for the GAFF and CGenFF. In addition to the simulation results, we introduce a new version of a web server, http

  7. Molecular docking and molecular dynamics studies on the interactions of hydroxylated polybrominated diphenyl ethers to estrogen receptor alpha.

    PubMed

    Lu, Qun; Cai, Zhengqing; Fu, Jie; Luo, Siyi; Liu, Chunsheng; Li, Xiaolin; Zhao, Dongye

    2014-03-01

    Environmental estrogens have attracted great concerns. Recent studies have indicated that some hydroxylated polybrominated diphenyl ethers (HO-PBDEs) can interact with estrogen receptor (ER), and exhibit estrogenic activity. However, interactions between HO-PBDEs and ER are not well understood. In this work, molecular docking and molecular dynamics (MD) simulations were performed to characterize interactions of two HO-PBDEs (4'-HO-BDE30 and 4'-HO-BDE121) with ERα. Surflex-Dock was employed to reveal the probable binding conformations of the compounds at the active site of ERα; MD simulation was used to determine the detailed binding process. The driving forces of the binding between HO-PBDEs and ERα were van der Waals and electrostatic interactions. The decomposition of the binding free energy indicated that the hydrogen bonds between the residues Glu353, Gly521 and ligands were crucial for anchoring the ligands into the active site of ERα and stabilizing their conformations. The results showed that different interaction modes and different specific interactions with some residues were responsible for the different estrogenic activities of the two HO-PBDEs. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Interacting 3-form dark energy models: Distinguishing interactions and avoiding the Little Sibling of the Big Rip

    NASA Astrophysics Data System (ADS)

    Morais, João; Bouhmadi-López, Mariam; Kumar, K. Sravan; Marto, João; Tavakoli, Yaser

    2017-03-01

    In this paper we consider 3-form dark energy (DE) models with interactions in the dark sector. We aim to distinguish the phenomenological interactions that are defined through the dark matter (DM) and the DE energy densities. We do our analysis mainly in two stages. In the first stage, we identify the non-interacting 3-form DE model which generically leads to an abrupt late-time cosmological event which is known as the little sibling of the Big Rip (LSBR). We classify the interactions which can possibly avoid this late-time abrupt event. We also study the parameter space of the model that is consistent with the interaction between DM and DE energy densities at present as indicated by recent studies based on BAO and SDSS data. In the later stage, we observationally distinguish those interactions using the statefinder hierarchy parameters S3(1), S4(1), S3(1), S5(1). We also compute the growth factor parameter ɛ(z) for the various interactions we consider herein and use the composite null diagnostic (CND) S3(1), ɛ(z) } as a tool to characterise those interactions by measuring their departures from the concordance model. In addition, we make a preliminary analysis of our model in light of the recently released data by SDSS III on the measurement of the linear growth rate of structure.

  9. Weak Van der Waals Stacking, Wide-Range Band Gap, and Raman Study on Ultrathin Layers of Metal Phosphorus Trichalcogenides.

    PubMed

    Du, Ke-zhao; Wang, Xing-zhi; Liu, Yang; Hu, Peng; Utama, M Iqbal Bakti; Gan, Chee Kwan; Xiong, Qihua; Kloc, Christian

    2016-02-23

    2D semiconducting metal phosphorus trichalcogenides, particularly the bulk crystals of MPS3 (M = Fe, Mn, Ni, Cd and Zn) sulfides and MPSe3 (M = Fe and Mn) selenides, have been synthesized, crystallized and exfoliated into monolayers. The Raman spectra of monolayer FePS3 and 3-layer FePSe3 show the strong intralayer vibrations and structural stability of the atomically thin layers under ambient condition. The band gaps can be adjusted by element choices in the range of 1.3-3.5 eV. The wide-range band gaps suggest their optoelectronic applications in a broad wavelength range. The calculated cleavage energies of MPS3 are smaller than that of graphite. Therefore, the monolayers used for building of heterostructures by van der Waals stacking could be considered as the candidates for artificial 2D materials with unusual ferroelectric and magnetic properties.

  10. Polymorphism and thermodynamic ground state of silver fulminate studied from van der Waals density functional calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yedukondalu, N.; Vaitheeswaran, G., E-mail: gvsp@uohyd.ernet.in

    2014-06-14

    Silver fulminate (AgCNO) is a primary explosive, which exists in two polymorphic phases, namely, orthorhombic (Cmcm) and trigonal (R3{sup ¯}) forms at ambient conditions. In the present study, we have investigated the effect of pressure and temperature on relative phase stability of the polymorphs using planewave pseudopotential approaches based on Density Functional Theory (DFT). van der Waals interactions play a significant role in predicting the phase stability and they can be effectively captured by semi-empirical dispersion correction methods in contrast to standard DFT functionals. Based on our total energy calculations using DFT-D2 method, the Cmcm structure is found to bemore » the preferred thermodynamic equilibrium phase under studied pressure and temperature range. Hitherto Cmcm and R3{sup ¯} phases denoted as α- and β-forms of AgCNO, respectively. Also a pressure induced polymorphic phase transition is seen using DFT functionals and the same was not observed with DFT-D2 method. The equation of state and compressibility of both polymorphic phases were investigated. Electronic structure and optical properties were calculated using full potential linearized augmented plane wave method within the Tran-Blaha modified Becke-Johnson potential. The calculated electronic structure shows that α, β phases are indirect bandgap insulators with a bandgap values of 3.51 and 4.43 eV, respectively. The nature of chemical bonding is analyzed through the charge density plots and partial density of states. Optical anisotropy, electric-dipole transitions, and photo sensitivity to light of the polymorphs are analyzed from the calculated optical spectra. Overall, the present study provides an early indication to experimentalists to avoid the formation of unstable β-form of AgCNO.« less

  11. Dynamical system analysis for DBI dark energy interacting with dark matter

    NASA Astrophysics Data System (ADS)

    Mahata, Nilanjana; Chakraborty, Subenoy

    2015-01-01

    A dynamical system analysis related to Dirac-Born-Infeld (DBI) cosmological model has been investigated in this present work. For spatially flat FRW spacetime, the Einstein field equation for DBI scenario has been used to study the dynamics of DBI dark energy interacting with dark matter. The DBI dark energy model is considered as a scalar field with a nonstandard kinetic energy term. An interaction between the DBI dark energy and dark matter is considered through a phenomenological interaction between DBI scalar field and the dark matter fluid. The field equations are reduced to an autonomous dynamical system by a suitable redefinition of the basic variables. The potential of the DBI scalar field is assumed to be exponential. Finally, critical points are determined, their nature have been analyzed and corresponding cosmological scenario has been discussed.

  12. The effects of intermolecular interactions on the physical properties of organogels in edible oils.

    PubMed

    Lupi, Francesca R; Greco, Valeria; Baldino, Noemi; de Cindio, Bruno; Fischer, Peter; Gabriele, Domenico

    2016-12-01

    The microstructure of organogels based on monoglycerides of fatty acids (MAGs) and policosanol and on different edible oils was investigated by using different techniques (calorimetry, nuclear magnetic resonance, infrared spectroscopy, rheology, polarized light microscopy) towards a better understanding and control of the oil gelation phenomena. Dynamic moduli were related via a fractal model to microstructural information such as solid content and fractal dimension. Infrared spectroscopy evidenced that network structure in MAGs gel is mainly due to hydrogen bonding, whereas in policosanol system is mainly given by van der Waals interactions. Because of the different relative contribution of molecular interactions, the investigated organogelators exhibit a distinguished macroscopic behavior. MAGs are sensitive to the utilized oil and structuration occurs quickly, even though at a temperature lower than policosanol. Policosanol organogels exhibit a behavior independent of the used oil and a slower gelation rate, as a result of the weaker van der Waals interactions. Nevertheless, at lower concentration a stronger final gel is obtained, probably due to of the large number of interactions arising among the long alkyl chains of the fatty alcohols. Obtained results evidenced that policosanol is very effective in gelation of different oils and seems promising for potential commercial uses. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. An extended hybrid density functional (X3LYP) with improved descriptions of nonbond interactions and thermodynamic properties of molecular systems.

    PubMed

    Xu, Xin; Zhang, Qingsong; Muller, Richard P; Goddard, William A

    2005-01-01

    We derive here the form for the exact exchange energy density for a density that decays with Gaussian-type behavior at long range. This functional is intermediate between the B88 and the PW91 exchange functionals. Using this modified functional to match the form expected for Gaussian densities, we propose the X3LYP extended functional. We find that X3LYP significantly outperforms Becke three parameter Lee-Yang-Parr (B3LYP) for describing van der Waals and hydrogen bond interactions, while performing slightly better than B3LYP for predicting heats of formation, ionization potentials, electron affinities, proton affinities, and total atomic energies as validated with the extended G2 set of atoms and molecules. Thus X3LYP greatly enlarges the field of applications for density functional theory. In particular the success of X3LYP in describing the water dimer (with R(e) and D(e) within the error bars of the most accurate determinations) makes it an excellent candidate for predicting accurate ligand-protein and ligand-DNA interactions. (c) 2005 American Institute of Physics.

  14. An extended hybrid density functional (X3LYP) with improved descriptions of nonbond interactions and thermodynamic properties of molecular systems

    NASA Astrophysics Data System (ADS)

    Xu, Xin; Zhang, Qingsong; Muller, Richard P.; Goddard, William A.

    2005-01-01

    We derive here the form for the exact exchange energy density for a density that decays with Gaussian-type behavior at long range. This functional is intermediate between the B88 and the PW91 exchange functionals. Using this modified functional to match the form expected for Gaussian densities, we propose the X3LYP extended functional. We find that X3LYP significantly outperforms Becke three parameter Lee-Yang-Parr (B3LYP) for describing van der Waals and hydrogen bond interactions, while performing slightly better than B3LYP for predicting heats of formation, ionization potentials, electron affinities, proton affinities, and total atomic energies as validated with the extended G2 set of atoms and molecules. Thus X3LYP greatly enlarges the field of applications for density functional theory. In particular the success of X3LYP in describing the water dimer (with Re and De within the error bars of the most accurate determinations) makes it an excellent candidate for predicting accurate ligand-protein and ligand-DNA interactions.

  15. Towards understanding the effects of van der Waals strengths on the electric double-layer structures and capacitive behaviors

    NASA Astrophysics Data System (ADS)

    Yang, Huachao; Bo, Zheng; Yang, Jinyuan; Yan, Jianhua; Cen, Kefa

    2017-10-01

    Solid-liquid interactions are considered to play a crucial role in charge storage capability of electric double-layer capacitors (EDLCs). In this work, effects of van der Waals (VDW) strengths on the EDL structures and capacitive performances within two representative electrolytes of solvated aqueous solutions and solvent-free ionic liquids are illuminated by molecular dynamics simulations. Single crystalline metals with similar lattice constant but diverse VDW potentials are employed as electrodes. Upon enhancing VDW strengths, capacitance of aqueous electrolytes first increases conspicuously by ∼34.0% and then descends, manifesting a non-monotonic trend, which goes beyond traditional perspectives. Such unusual observation is interpreted by the excluded-volume effects stemmed from ion-solvent competitions. Stimulated by predominant coulombic interactions, more ions are aggregated at the interface despite of the increasing VDW potentials, facilitating superior screening efficiency and capacitance. However, further enhancing strengths preferentially attracts more solvents instead of ions to the electrified surface, which in turn strikingly repels ions from Helmholtz layers, deteriorating electrode capacitance. An essentially similar feather is also recognized for ionic liquids, while the corresponding mechanisms are prominently ascribed to the suppressed ionic separations issued from cation-anion competitions. We highlight that constructing electrode materials with a moderate-hydrophilicity could further advance the performances of EDLCs.

  16. Nonvolatile infrared memory in MoS2/PbS van der Waals heterostructures

    PubMed Central

    Wen, Yao; Cai, Kaiming; Cheng, Ruiqing; Yin, Lei; Zhang, Yu; Li, Jie; Wang, Zhenxing; Wang, Feng; Wang, Fengmei; Shifa, Tofik Ahmed; Jiang, Chao; Yang, Hyunsoo

    2018-01-01

    Optoelectronic devices for information storage and processing are at the heart of optical communication technology due to their significant applications in optical recording and computing. The infrared radiations of 850, 1310, and 1550 nm with low energy dissipation in optical fibers are typical optical communication wavebands. However, optoelectronic devices that could convert and store the infrared data into electrical signals, thereby enabling optical data communications, have not yet been realized. We report an infrared memory device using MoS2/PbS van der Waals heterostructures, in which the infrared pulse intrigues a persistent resistance state that hardly relaxes within our experimental time scales (more than 104 s). The device fully retrieves the memory state even after powering off for 3 hours, indicating its potential for nonvolatile storage devices. Furthermore, the device presents a reconfigurable switch of 2000 stable cycles. Supported by a theoretical model with quantitative analysis, we propose that the optical memory and the electrical erasing phenomenon, respectively, originate from the localization of infrared-induced holes in PbS and gate voltage pulse-enhanced tunneling of electrons from MoS2 to PbS. The demonstrated MoS2 heterostructure–based memory devices open up an exciting field for optoelectronic infrared memory and programmable logic devices. PMID:29770356

  17. Nonvolatile infrared memory in MoS2/PbS van der Waals heterostructures.

    PubMed

    Wang, Qisheng; Wen, Yao; Cai, Kaiming; Cheng, Ruiqing; Yin, Lei; Zhang, Yu; Li, Jie; Wang, Zhenxing; Wang, Feng; Wang, Fengmei; Shifa, Tofik Ahmed; Jiang, Chao; Yang, Hyunsoo; He, Jun

    2018-04-01

    Optoelectronic devices for information storage and processing are at the heart of optical communication technology due to their significant applications in optical recording and computing. The infrared radiations of 850, 1310, and 1550 nm with low energy dissipation in optical fibers are typical optical communication wavebands. However, optoelectronic devices that could convert and store the infrared data into electrical signals, thereby enabling optical data communications, have not yet been realized. We report an infrared memory device using MoS 2 /PbS van der Waals heterostructures, in which the infrared pulse intrigues a persistent resistance state that hardly relaxes within our experimental time scales (more than 10 4 s). The device fully retrieves the memory state even after powering off for 3 hours, indicating its potential for nonvolatile storage devices. Furthermore, the device presents a reconfigurable switch of 2000 stable cycles. Supported by a theoretical model with quantitative analysis, we propose that the optical memory and the electrical erasing phenomenon, respectively, originate from the localization of infrared-induced holes in PbS and gate voltage pulse-enhanced tunneling of electrons from MoS 2 to PbS. The demonstrated MoS 2 heterostructure-based memory devices open up an exciting field for optoelectronic infrared memory and programmable logic devices.

  18. Continuous approximation for interaction energy of adamantane encapsulated inside carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Baowan, Duangkamon; Hill, James M.; Bacsa, Wolfgang

    2018-02-01

    The interaction energy for two adjacent adamantane molecules and that of adamantane molecules encapsulated inside carbon nanotubes are investigated considering only dipole-dipole induced interaction. The Lennard-Jones potential and the continuous approximation are utilised to derive analytical expressions for these interaction energies. The equilibrium distance 3.281 Å between two adamantane molecules is determined. The smallest carbon nanotube radius b0 that can encapsulate the adamantane molecule and the radius of the tube bmax that gives the maximum suction energy, linearly depend on the adamantane radius, are calculated. For larger diameter tubes, the off axis position has been calculated, and equilibrium distance between molecule and tube wall is found to be close to the interlayer spacing in graphene.

  19. van der Waals epitaxy of CdTe thin film on graphene

    NASA Astrophysics Data System (ADS)

    Mohanty, Dibyajyoti; Xie, Weiyu; Wang, Yiping; Lu, Zonghuan; Shi, Jian; Zhang, Shengbai; Wang, Gwo-Ching; Lu, Toh-Ming; Bhat, Ishwara B.

    2016-10-01

    van der Waals epitaxy (vdWE) facilitates the epitaxial growth of materials having a large lattice mismatch with the substrate. Although vdWE of two-dimensional (2D) materials on 2D materials have been extensively studied, the vdWE for three-dimensional (3D) materials on 2D substrates remains a challenge. It is perceived that a 2D substrate passes little information to dictate the 3D growth. In this article, we demonstrated the vdWE growth of the CdTe(111) thin film on a graphene buffered SiO2/Si substrate using metalorganic chemical vapor deposition technique, despite a 46% large lattice mismatch between CdTe and graphene and a symmetry change from cubic to hexagonal. Our CdTe films produce a very narrow X-ray rocking curve, and the X-ray pole figure analysis showed 12 CdTe (111) peaks at a chi angle of 70°. This was attributed to two sets of parallel epitaxy of CdTe on graphene with a 30° relative orientation giving rise to a 12-fold symmetry in the pole figure. First-principles calculations reveal that, despite the relatively small energy differences, the graphene buffer layer does pass epitaxial information to CdTe as the parallel epitaxy, obtained in the experiment, is energetically favored. The work paves a way for the growth of high quality CdTe film on a large area as well as on the amorphous substrates.

  20. A theoretical study on the characteristics of the intermolecular interactions in the active site of human androsterone sulphotransferase: DFT calculations of NQR and NMR parameters and QTAIM analysis.

    PubMed

    Astani, Elahe K; Heshmati, Emran; Chen, Chun-Jung; Hadipour, Nasser L

    2016-07-01

    A theoretical study at the level of density functional theory (DFT) was performed to characterize noncovalent intermolecular interactions, especially hydrogen bond interactions, in the active site of enzyme human androsterone sulphotransferase (SULT2A1/ADT). Geometry optimization, interaction energy, (2)H, (14)N, and (17)O electric field gradient (EFG) tensors, (1)H, (13)C, (17)O, and (15)N chemical shielding (CS) tensors, Natural Bonding Orbital (NBO) analysis, and quantum theory of atoms in molecules (QTAIM) analysis of this active site were investigated. It was found that androsterone (ADT) is able to form hydrogen bonds with residues Ser80, Ile82, and His99 of the active site. The interaction energy calculations and NBO analysis revealed that the ADT molecule forms the strongest hydrogen bond with Ser80. Results revealed that ADT interacts with the other residues through electrostatic and Van der Waals interactions. Results showed that these hydrogen bonds influence on the calculated (2)H, (14)N, and (17)O quadrupole coupling constants (QCCs), as well as (1)H, (13)C, (17)O, and (15)N CS tensors. The magnitude of the QCC and CS changes at each nucleus depends directly on its amount of contribution to the hydrogen bond interaction. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Interactive energy atlas for Colorado and New Mexico: an online resource for decisionmakers

    USGS Publications Warehouse

    Carr, Natasha B.; Ignizio, Drew A.; Diffendorfer, James E.; Latysh, Natalie; Matherne, Ann Marie; Linard, Joshua I.; Leib, Kenneth J.; Hawkins, Sarah J.

    2013-01-01

    Throughout the western United States, increased demand for energy is driving the rapid development of nonrenewable and renewable energy resources. Resource managers must balance the benefits of energy development with the potential consequences for ecological resources and ecosystem services. To facilitate access to geospatial data related to energy resources, energy infrastructure, and natural resources that may be affected by energy development, the U.S. Geological Survey has developed an online Interactive Energy Atlas (Energy Atlas) for Colorado and New Mexico. The Energy Atlas is designed to meet the needs of varied users who seek information about energy in the western United States. The Energy Atlas has two primary capabilities: a geographic information system (GIS) data viewer and an interactive map gallery. The GIS data viewer allows users to preview and download GIS data related to energy potential and development in Colorado and New Mexico. The interactive map gallery contains a collection of maps that compile and summarize thematically related data layers in a user-friendly format. The maps are dynamic, allowing users to explore data at different resolutions and obtain information about the features being displayed. The Energy Atlas also includes an interactive decision-support tool, which allows users to explore the potential consequences of energy development for species that vary in their sensitivity to disturbance.

  2. Structure and stability of fluorine-substituted benzene-argon complexes: The decisive role of exchange-repulsion and dispersion interactions

    NASA Astrophysics Data System (ADS)

    Tarakeshwar, P.; Kim, Kwang S.; Kraka, Elfi; Cremer, Dieter

    2001-10-01

    The van der Waals complexes benzene-argon (BAr), fluorobenzene-argon (FAr), p-difluorobenzene-argon (DAr) are investigated at the second-order Møller-Plesset (MP2) level of theory using the 6-31+G(d), cc-pVDZ, aug-cc-pVTZ, and [7s4p2d1f/4s3p1d/3s1p] basis sets. Geometries, binding energies, harmonic vibrational frequencies, and density distribution are calculated where basis set superposition errors are corrected with the counterpoise method. Binding energies turn out to be almost identical (MP2/[7s4p2d1f/4s3p1d/3s1p]: 408, 409, 408 cm-1) for BAr, FAr, and DAr. Vibrationally corrected binding energies (357, 351, 364 cm-1) agree well with experimental values (340, 344, and 339 cm-1). Symmetry adapted perturbation theory (SAPT) is used to decompose binding energies and to examine the influence of attractive and repulsive components. Fluorine substituents lead to a contraction of the π density of the benzene ring, thus reducing the destabilizing exchange-repulsion and exchange-induction effects. At the same time, both the polarizing power and the polarizability of the π-density of the benzene derivative decreases thus reducing stabilizing induction and dispersion interactions. Stabilizing and destabilizing interactions largely cancel each other out to give comparable binding energies. The equilibrium geometry of the Ar complex is also a result of the decisive influence of exchange-repulsion and dispersive interactions.

  3. Analysis of dispersive interactions at polymer/TiAlN interfaces by means of dynamic force spectroscopy.

    PubMed

    Wiesing, M; de Los Arcos, T; Gebhard, M; Devi, A; Grundmeier, G

    2017-12-20

    The structural and electronic origins of the interactions between polycarbonate and sputter deposited TiAlN were analysed using a combined electron and force spectroscopic approach. Interaction forces were measured by means of dynamic force spectroscopy and the surface polarizability was analysed by X-ray photoelectron valence band spectroscopy. It could be shown that the adhesive interactions between polycarbonate and TiAlN are governed by van der Waals forces. Different surface cleansing and oxidizing treatments were investigated and the effect of the surface chemistry on the force interactions was analysed. Intense surface oxidation resulted in a decreased adhesion force by a factor of two due to the formation of a 2 nm thick Ti 0.21 Al 0.45 O surface oxide layer. The origin of the residual adhesion forces caused by the mixed Ti 0.21 Al 0.45 O surface oxide was clarified by considering the non-retarded Hamaker coefficients as calculated by Lifshitz theory, based on optical data from Reflection Electron Energy Loss Spectroscopy. This disclosed increased dispersion forces of Ti 0.21 Al 0.45 O due to the presence of Ti(iv) ions and related Ti 3d band optical transitions.

  4. Infrared hyperbolic metasurface based on nanostructured van der Waals materials

    NASA Astrophysics Data System (ADS)

    Li, Peining; Dolado, Irene; Alfaro-Mozaz, Francisco Javier; Casanova, Fèlix; Hueso, Luis E.; Liu, Song; Edgar, James H.; Nikitin, Alexey Y.; Vélez, Saül; Hillenbrand, Rainer

    2018-02-01

    Metasurfaces with strongly anisotropic optical properties can support deep subwavelength-scale confined electromagnetic waves (polaritons), which promise opportunities for controlling light in photonic and optoelectronic applications. We developed a mid-infrared hyperbolic metasurface by nanostructuring a thin layer of hexagonal boron nitride that supports deep subwavelength-scale phonon polaritons that propagate with in-plane hyperbolic dispersion. By applying an infrared nanoimaging technique, we visualize the concave (anomalous) wavefronts of a diverging polariton beam, which represent a landmark feature of hyperbolic polaritons. The results illustrate how near-field microscopy can be applied to reveal the exotic wavefronts of polaritons in anisotropic materials and demonstrate that nanostructured van der Waals materials can form a highly variable and compact platform for hyperbolic infrared metasurface devices and circuits.

  5. Assessing many-body contributions to intermolecular interactions of the AMOEBA force field using energy decomposition analysis of electronic structure calculations.

    PubMed

    Demerdash, Omar; Mao, Yuezhi; Liu, Tianyi; Head-Gordon, Martin; Head-Gordon, Teresa

    2017-10-28

    In this work, we evaluate the accuracy of the classical AMOEBA model for representing many-body interactions, such as polarization, charge transfer, and Pauli repulsion and dispersion, through comparison against an energy decomposition method based on absolutely localized molecular orbitals (ALMO-EDA) for the water trimer and a variety of ion-water systems. When the 2- and 3-body contributions according to the many-body expansion are analyzed for the ion-water trimer systems examined here, the 3-body contributions to Pauli repulsion and dispersion are found to be negligible under ALMO-EDA, thereby supporting the validity of the pairwise-additive approximation in AMOEBA's 14-7 van der Waals term. However AMOEBA shows imperfect cancellation of errors for the missing effects of charge transfer and incorrectness in the distance dependence for polarization when compared with the corresponding ALMO-EDA terms. We trace the larger 2-body followed by 3-body polarization errors to the Thole damping scheme used in AMOEBA, and although the width parameter in Thole damping can be changed to improve agreement with the ALMO-EDA polarization for points about equilibrium, the correct profile of polarization as a function of intermolecular distance cannot be reproduced. The results suggest that there is a need for re-examining the damping and polarization model used in the AMOEBA force field and provide further insights into the formulations of polarizable force fields in general.

  6. Assessing many-body contributions to intermolecular interactions of the AMOEBA force field using energy decomposition analysis of electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Demerdash, Omar; Mao, Yuezhi; Liu, Tianyi; Head-Gordon, Martin; Head-Gordon, Teresa

    2017-10-01

    In this work, we evaluate the accuracy of the classical AMOEBA model for representing many-body interactions, such as polarization, charge transfer, and Pauli repulsion and dispersion, through comparison against an energy decomposition method based on absolutely localized molecular orbitals (ALMO-EDA) for the water trimer and a variety of ion-water systems. When the 2- and 3-body contributions according to the many-body expansion are analyzed for the ion-water trimer systems examined here, the 3-body contributions to Pauli repulsion and dispersion are found to be negligible under ALMO-EDA, thereby supporting the validity of the pairwise-additive approximation in AMOEBA's 14-7 van der Waals term. However AMOEBA shows imperfect cancellation of errors for the missing effects of charge transfer and incorrectness in the distance dependence for polarization when compared with the corresponding ALMO-EDA terms. We trace the larger 2-body followed by 3-body polarization errors to the Thole damping scheme used in AMOEBA, and although the width parameter in Thole damping can be changed to improve agreement with the ALMO-EDA polarization for points about equilibrium, the correct profile of polarization as a function of intermolecular distance cannot be reproduced. The results suggest that there is a need for re-examining the damping and polarization model used in the AMOEBA force field and provide further insights into the formulations of polarizable force fields in general.

  7. The direct-to-indirect band gap crossover in two-dimensional van der Waals Indium Selenide crystals

    PubMed Central

    Mudd, G. W.; Molas, M. R.; Chen, X.; Zólyomi, V.; Nogajewski, K.; Kudrynskyi, Z. R.; Kovalyuk, Z. D.; Yusa, G.; Makarovsky, O.; Eaves, L.; Potemski, M.; Fal’ko, V. I.; Patanè, A.

    2016-01-01

    The electronic band structure of van der Waals (vdW) layered crystals has properties that depend on the composition, thickness and stacking of the component layers. Here we use density functional theory and high field magneto-optics to investigate the metal chalcogenide InSe, a recent addition to the family of vdW layered crystals, which transforms from a direct to an indirect band gap semiconductor as the number of layers is reduced. We investigate this direct-to-indirect bandgap crossover, demonstrate a highly tuneable optical response from the near infrared to the visible spectrum with decreasing layer thickness down to 2 layers, and report quantum dot-like optical emissions distributed over a wide range of energy. Our analysis also indicates that electron and exciton effective masses are weakly dependent on the layer thickness and are significantly smaller than in other vdW crystals. These properties are unprecedented within the large family of vdW crystals and demonstrate the potential of InSe for electronic and photonic technologies. PMID:28008964

  8. The direct-to-indirect band gap crossover in two-dimensional van der Waals Indium Selenide crystals.

    PubMed

    Mudd, G W; Molas, M R; Chen, X; Zólyomi, V; Nogajewski, K; Kudrynskyi, Z R; Kovalyuk, Z D; Yusa, G; Makarovsky, O; Eaves, L; Potemski, M; Fal'ko, V I; Patanè, A

    2016-12-23

    The electronic band structure of van der Waals (vdW) layered crystals has properties that depend on the composition, thickness and stacking of the component layers. Here we use density functional theory and high field magneto-optics to investigate the metal chalcogenide InSe, a recent addition to the family of vdW layered crystals, which transforms from a direct to an indirect band gap semiconductor as the number of layers is reduced. We investigate this direct-to-indirect bandgap crossover, demonstrate a highly tuneable optical response from the near infrared to the visible spectrum with decreasing layer thickness down to 2 layers, and report quantum dot-like optical emissions distributed over a wide range of energy. Our analysis also indicates that electron and exciton effective masses are weakly dependent on the layer thickness and are significantly smaller than in other vdW crystals. These properties are unprecedented within the large family of vdW crystals and demonstrate the potential of InSe for electronic and photonic technologies.

  9. All-Electrical Spin Field Effect Transistor in van der Waals Heterostructures at Room Temperature

    NASA Astrophysics Data System (ADS)

    Dankert, André; Dash, Saroj

    Spintronics aims to exploit the spin degree of freedom in solid state devices for data storage and information processing. Its fundamental concepts (creation, manipulation and detection of spin polarization) have been demonstrated in semiconductors and spin transistor structures using electrical and optical methods. However, an unsolved challenge is the realization of all-electrical methods to control the spin polarization in a transistor manner at ambient temperatures. Here we combine graphene and molybdenum disulfide (MoS2) in a van der Waals heterostructure to realize a spin field-effect transistor (spin-FET) at room temperature. These two-dimensional crystals offer a unique platform due to their contrasting properties, such as weak spin-orbit coupling (SOC) in graphene and strong SOC in MoS2. The gate-tuning of the Schottky barrier at the MoS2/graphene interface and MoS2 channel yields spins to interact with high SOC material and allows us to control the spin polarization and lifetime. This all-electrical spin-FET at room temperature is a substantial step in the field of spintronics and opens a new platform for testing a plethora of exotic physical phenomena, which can be key building blocks in future device architectures.

  10. Mechanistic Origin of the Ultrastrong Adhesion between Graphene and a-SiO2: Beyond van der Waals.

    PubMed

    Kumar, Sandeep; Parks, David; Kamrin, Ken

    2016-07-26

    The origin of the ultrastrong adhesion between graphene and a-SiO2 has remained a mystery. This adhesion is believed to be predominantly van der Waals (vdW) in nature. By rigorously analyzing recently reported blistering and nanoindentation experiments, we show that the ultrastrong adhesion between graphene and a-SiO2 cannot be attributed to vdW forces alone. Our analyses show that the fracture toughness of the graphene/a-SiO2 interface, when the interfacial adhesion is modeled with vdW forces alone, is anomalously weak compared to the measured values. The anomaly is related to an ultrasmall fracture process zone (FPZ): owing to the lack of a third dimension in graphene, the FPZ for the graphene/a-SiO2 interface is extremely small, and the combination of predominantly tensile vdW forces, distributed over such a small area, is bound to result in a correspondingly small interfacial fracture toughness. Through multiscale modeling, combining the results of finite element analysis and molecular dynamics simulations, we show that the adhesion between graphene and a-SiO2 involves two different kinds of interactions: one, a weak, long-range interaction arising from vdW adhesion and, second, discrete, short-range interactions originating from graphene clinging to the undercoordinated Si (≡Si·) and the nonbridging O (≡Si-O·) defects on a-SiO2. A strong resistance to relative opening and sliding provided by the latter mechanism is identified as the operative mechanism responsible for the ultrastrong adhesion between graphene and a-SiO2.

  11. [Study of the interaction mechanism between brodifacoum and DNA by spectroscopy].

    PubMed

    Duan, Yun-qing; Min, Shun-geng

    2009-04-01

    The interaction between brodifacoum (3-[3-(4'-bromophenyl-4) 1,2,3,4-tetralin-10]-4-hydroxyl-coumarin) (BDF), an anticoagulant rodenticide, and calf thymus DNA (ct-DNA) was studied by UV spectrum and fluorescence spectrum. The results were summarized as follows: There was a hypochromic effect of low concentration ct-DNA on the UV spectra. The fluorescence quenching studies showed a regular decrease in the fluorescence intensity after addition of ct-DNA by the static quenching mode with a quenching constant (Ksv) of 1.21 x 10(4) L x mol(-1) at 27 degrees C. The BDF possibly bonded to ct-DNA mainly via Van der Waals forces by the corresponding thermodynamics parameter. KI quenching experiment found that there was not obvious protection of ct-DNA to BDF. The fluorescence intensity of BDF/ct-DNA system changed with the variation in ionic strength Quenching of ct-DNA on the fluorescence of BDF/beta-CD inclusion complex was reduced in contrast with the free BDF, which showed that beta-CD could provide BDF with protection. So the comprehensive interaction mode of BDF with ct-DNA may be the groove binding by the above results. It was indicated that there had been static-electro interaction between BDF and ct-DNA at the same time. The conjunct action of Van der Waals forces and electrostatic attraction favorably provide BDF bonding interaction in the groove of ct-DNA.

  12. High-level ab initio studies of NO(X2Π)-O2(X3Σg -) van der Waals complexes in quartet states

    NASA Astrophysics Data System (ADS)

    Grein, Friedrich

    2018-05-01

    Geometry optimisations were performed on nine different structures of NO(X2Π)-O2(X3Σg-) van der Waals complexes in their quartet states, using the explicitly correlated RCCSD(T)-F12b method with basis sets up to the cc-pVQZ-F12 level. For the most stable configurations, counterpoise-corrected optimisations as well as extrapolations to the complete basis set (CBS) were performed. The X structure in the 4A‧ state was found to be most stable, with a CBS binding energy of -157 cm-1. The slipped tilted structures with N closer to O2 (Slipt-N), as well as the slipped parallel structure with O of NO closer to O2 (Slipp-O) in 4A″ states have binding energies of about -130 cm-1. C2v and linear complexes are less stable. According to calculated harmonic frequencies, the X isomer is bound. Isotropic hyperfine coupling constants of the complex are compared with those of the monomers.

  13. Investigations of the Rg-BrCl (Rg = He, Ne, Ar, Kr, Xe) binary van der Waals complexes: ab initio intermolecular potential energy surfaces, vibrational states and predicted pure rotational transition frequencies

    NASA Astrophysics Data System (ADS)

    Li, Song; Zheng, Rui; Chen, Shan-Jun; Chen, Yan; Chen, Peng

    2017-03-01

    The intermolecular potential energy surfaces (PESs) of the ground electronic state for the Rg-BrCl (Rg = He, Ne, Ar, Kr, Xe) van der Waals complexes have been constructed by using the coupled-cluster method in combination with the augmented quadruple-zeta correlation-consistent basis sets supplemented with an additional set of bond functions. The features of the anisotropic PESs for these complexes are remarkably similar, which are characterized by three minima and two saddle points between them. The global minimum corresponds to a collinear Rg-Br-Cl configuration. Two local minima, correlate with an anti-linear Rg-Cl-Br geometry and a nearly T-shaped structure, can also be located on each PES. The quantum bound state calculations enable us to investigate intermolecular vibrational states and rotational energy levels of the complexes. The transition frequencies are predicted and are fitted to obtain their corresponding spectroscopic constants. In general, the periodic trends are observed for this complex family. Comparisons with available experimental data for the collinear isomer of Ar-BrCl demonstrate reliability of our theoretical predictions, and our results for the other two isomers of Ar-BrCl as well as for other members of the complex family are also anticipated to be trustable. Except for the collinear isomer of Ar-BrCl, the data presented in this paper would be beneficial to improve our knowledge for these experimentally unknown species.

  14. Investigations of the Rg-BrCl (Rg=He, Ne, Ar, Kr, Xe) binary van der Waals complexes: ab initio intermolecular potential energy surfaces, vibrational states and predicted pure rotational transition frequencies.

    PubMed

    Li, Song; Zheng, Rui; Chen, Shan-Jun; Chen, Yan; Chen, Peng

    2017-03-05

    The intermolecular potential energy surfaces (PESs) of the ground electronic state for the Rg-BrCl (Rg=He, Ne, Ar, Kr, Xe) van der Waals complexes have been constructed by using the coupled-cluster method in combination with the augmented quadruple-zeta correlation-consistent basis sets supplemented with an additional set of bond functions. The features of the anisotropic PESs for these complexes are remarkably similar, which are characterized by three minima and two saddle points between them. The global minimum corresponds to a collinear Rg-Br-Cl configuration. Two local minima, correlate with an anti-linear Rg-Cl-Br geometry and a nearly T-shaped structure, can also be located on each PES. The quantum bound state calculations enable us to investigate intermolecular vibrational states and rotational energy levels of the complexes. The transition frequencies are predicted and are fitted to obtain their corresponding spectroscopic constants. In general, the periodic trends are observed for this complex family. Comparisons with available experimental data for the collinear isomer of Ar-BrCl demonstrate reliability of our theoretical predictions, and our results for the other two isomers of Ar-BrCl as well as for other members of the complex family are also anticipated to be trustable. Except for the collinear isomer of Ar-BrCl, the data presented in this paper would be beneficial to improve our knowledge for these experimentally unknown species. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Intramolecular energies of the cytotoxic protein CagA of Helicobacter pylori as a possible descriptor of strains' pathogenicity level.

    PubMed

    Rojas-Rengifo, Diana F; Alvarez-Silva, Maria Camila; Ulloa-Guerrero, Cindy P; Nuñez-Velez, Vanessa Lucía; Del Pilar Delgado, Maria; Aguilera, Sonia Milena; Castro, Harold; Jaramillo, Carlos Alberto; Fernando González Barrios, Andrés

    2018-05-25

    The Helicobacter pylori cytotoxin-associated gene A (CagA) is known for causing gastroduodenal diseases, such as atrophic gastritis and peptic ulcerations. Furthermore Helicobacter pylori CagA positive strains has been reported as one of the main risk factors for gastric cancer (Parsonnet et al., 1997). Structural variations in the CagA structure can alter its affinity with the host proteins, inducing differences in the pathogenicity of H. pylori. CagA N-terminal region is characterized for be conserved among all H. pylori strains since the C-terminal region is characterized by an intrinsically disorder behavior. We generated complete structural models of CagA using different conformations of the C-terminal region for two H. pylori strains. These models contain the same EPIYA (ABC 1 C 2 ) motifs but different level of pathogenicity: gastric cancer and duodenal ulcer. Using these structural models we evaluated the pathogenicity level of the H. pylori strain, based on the affinity of the interaction with SHP-2 and Grb2 receptors and on the number of interactions with the EPIYA motif. We found that the main differences in the interaction was due to the contributions of certain types of energies from each strain and not from the total energy of the molecule. Specifically, the electrostatic energy, helix dipole energy, Wander Waals clashes, torsional clash, backbone clash and cis bond energy allowed a separation between severe and mild pathology for the interaction of only CagA with SHP2. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Low-energy antikaon nucleon and nucleus interaction studies

    NASA Astrophysics Data System (ADS)

    Marton, Johann; Leannis Collaboration

    2011-04-01

    The antikaon (K-) interaction on nucleons and nuclei at low energy is neither simple nor well understood. Kaonic hydrogen is a very interesting case where the strong interaction of K- with the proton leads to an energy shift and a broadening of the 1s ground state. These two observables can be precisely studied with x-ray spectroscopy. The behavior at threshold is influenced strongly by the elusive Lambda(1405) resonance. In Europe the DAFNE electron-positron collider at Laboratori Nazionali di Frascati (LNF) provides an unique source of monoenergetic kaons emitted in the Phi meson decay. Recently the experiment SIDDHARTA on kaonic hydrogen and helium isotopes was successfully performed at LNF. A European network LEANNIS with an outreach to J-PARC in Japan was set up which is promoting the research on the antikaon interactions with nucleons and nuclei. This talk will give an overview of LEANNIS research tasks, the present status and an outlook to future perspectives. Financial support by the EU project HadronPhysics2 is gratefully acknowledged.

  17. Extent of Fock-exchange mixing for a hybrid van der Waals density functional?

    NASA Astrophysics Data System (ADS)

    Jiao, Yang; Schröder, Elsebeth; Hyldgaard, Per

    2018-05-01

    The vdW-DF-cx0 exchange-correlation hybrid design [K. Berland et al., J. Chem. Phys. 146, 234106 (2017)] has a truly nonlocal correlation component and aims to facilitate concurrent descriptions of both covalent and non-covalent molecular interactions. The vdW-DF-cx0 design mixes a fixed ratio, a, of the Fock exchange into the consistent-exchange van der Waals density functional, vdW-DF-cx [K. Berland and P. Hyldgaard, Phys. Rev. B 89, 035412 (2014)]. The mixing value a is sometimes taken as a semi-empirical parameter in hybrid formulations. Here, instead, we assert a plausible optimum average a value for the vdW-DF-cx0 design from a formal analysis; A new, independent determination of the mixing a is necessary since the Becke fit [A. D. Becke, J. Chem. Phys. 98, 5648 (1993)], yielding a' = 0.2, is restricted to semilocal correlation and does not reflect non-covalent interactions. To proceed, we adapt the so-called two-legged hybrid construction [K. Burke et al., Chem. Phys. Lett. 265, 115 (1997)] to a starting point in the vdW-DF-cx functional. For our approach, termed vdW-DF-tlh, we estimate the properties of the adiabatic-connection specification of the exact exchange-correlation functional, by combining calculations of the Fock exchange and of the coupling-constant variation in vdW-DF-cx. We find that such vdW-DF-tlh hybrid constructions yield accurate characterizations of molecular interactions (even if they lack self-consistency). The accuracy motivates trust in the vdW-DF-tlh determination of system-specific values of the Fock-exchange mixing. We find that an average value a' = 0.2 best characterizes the vdW-DF-tlh description of covalent and non-covalent interactions, although there exists some scatter. This finding suggests that the original Becke value, a' = 0.2, also represents an optimal average Fock-exchange mixing for the new, truly nonlocal-correlation hybrids. To enable self-consistent calculations, we furthermore define and test a zero

  18. Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures.

    PubMed

    Lin, Yu-Chuan; Ghosh, Ram Krishna; Addou, Rafik; Lu, Ning; Eichfeld, Sarah M; Zhu, Hui; Li, Ming-Yang; Peng, Xin; Kim, Moon J; Li, Lain-Jong; Wallace, Robert M; Datta, Suman; Robinson, Joshua A

    2015-06-19

    Vertical integration of two-dimensional van der Waals materials is predicted to lead to novel electronic and optical properties not found in the constituent layers. Here, we present the direct synthesis of two unique, atomically thin, multi-junction heterostructures by combining graphene with the monolayer transition-metal dichalcogenides: molybdenum disulfide (MoS2), molybdenum diselenide (MoSe2) and tungsten diselenide (WSe2). The realization of MoS2-WSe2-graphene and WSe2-MoS2-graphene heterostructures leads to resonant tunnelling in an atomically thin stack with spectrally narrow, room temperature negative differential resistance characteristics.

  19. Solvation Free Energies of Alanine Peptides: The Effect of Flexibility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kokubo, Hironori; Harris, Robert C.; Asthagiri, Dilip

    The electrostatic (?Gel), cavity-formation (?Gvdw), and total (?G) solvation free energies for 10 alanine peptides ranging in length (n) from 1 to 10 monomers were calculated. The free energies were computed both with xed, extended conformations of the peptides and again for some of the peptides without constraints. The solvation free energies, ?Gel, ?Gvdw, and ?G, were found to be linear in n, with the slopes of the best-fit lines being gamma_el, gamma_vdw, and gamma, respectively. Both gamma_el and gamma were negative for fixed and flexible peptides, and gamma_vdw was negative for fixed peptides. That gamma_vdw was negative was surprising,more » as experimental data on alkanes, theoretical models, and MD computations on small molecules and model systems generally suggest that gamma_vdw should be positive. A negative gamma_vdw seemingly contradicts the notion that ?Gvdw drives the initial collapse of the protein when it folds by favoring conformations with small surface areas, but when we computed ?Gvdw for the flexible peptides, thereby allowing the peptides to assume natural ensembles of more compact conformations, gamma-vdw was positive. Because most proteins do not assume extended conformations, a ?Gvdw that increases with increasing surface area may be typical for globular proteins. An alternative hypothesis is that the collapse is driven by intramolecular interactions. We show that the intramolecular van der Waal's interaction energy is more favorable for the flexible than for the extended peptides, seemingly favoring this hypothesis, but the large fluctuations in this energy may make attributing the collapse of the peptide to this intramolecular energy difficult.« less

  20. Intuitive Density Functional Theory-Based Energy Decomposition Analysis for Protein-Ligand Interactions.

    PubMed

    Phipps, M J S; Fox, T; Tautermann, C S; Skylaris, C-K

    2017-04-11

    First-principles quantum mechanical calculations with methods such as density functional theory (DFT) allow the accurate calculation of interaction energies between molecules. These interaction energies can be dissected into chemically relevant components such as electrostatics, polarization, and charge transfer using energy decomposition analysis (EDA) approaches. Typically EDA has been used to study interactions between small molecules; however, it has great potential to be applied to large biomolecular assemblies such as protein-protein and protein-ligand interactions. We present an application of EDA calculations to the study of ligands that bind to the thrombin protein, using the ONETEP program for linear-scaling DFT calculations. Our approach goes beyond simply providing the components of the interaction energy; we are also able to provide visual representations of the changes in density that happen as a result of polarization and charge transfer, thus pinpointing the functional groups between the ligand and protein that participate in each kind of interaction. We also demonstrate with this approach that we can focus on studying parts (fragments) of ligands. The method is relatively insensitive to the protocol that is used to prepare the structures, and the results obtained are therefore robust. This is an application to a real protein drug target of a whole new capability where accurate DFT calculations can produce both energetic and visual descriptors of interactions. These descriptors can be used to provide insights for tailoring interactions, as needed for example in drug design.