Sample records for wabash river plant

  1. Flood-inundation maps for the Wabash River at Lafayette, Indiana

    USGS Publications Warehouse

    Kim, Moon H.

    2018-05-10

    Digital flood-inundation maps for an approximately 4.8-mile reach of the Wabash River at Lafayette, Indiana (Ind.) were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Office of Community and Rural Affairs. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science web site at https://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at USGS streamgage 03335500, Wabash River at Lafayette, Ind. Current streamflow conditions for estimating near-real-time areas of inundation using USGS streamgage information may be obtained on the internet at https://waterdata.usgs.gov/in/nwis/uv?site_no=03335500. In addition, information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood-warning system (https://water.weather.gov/ahps/). The NWS AHPS forecasts flood hydrographs at many places that are often colocated with USGS streamgages, including the Wabash River at Lafayette, Ind. NWS AHPS-forecast peak-stage information may be used with the maps developed in this study to show predicted areas of flood inundation.For this study, flood profiles were computed for the Wabash River reach by means of a one-dimensional step-backwater model. The hydraulic model was calibrated by using the most current stage-discharge relations at USGS streamgage 03335500, Wabash River at Lafayette, Ind., and high-water marks from the flood of July 2003 (U.S. Army Corps of Engineers [USACE], 2007). The calibrated hydraulic model was then used to determine 23 water-surface profiles for flood stages at 1-foot intervals referenced to the streamgage datum and ranging from bankfull to the highest stage of the current stage-discharge rating curve. The simulated water-surface profiles were then combined with a geographic information system digital elevation model derived

  2. Estimating Nitrogen Loading in the Wabash River Subwatershed Using a GIS Schematic Processing Network in Support of Sustainable Watershed Management Planning

    EPA Science Inventory

    The Wabash River is a tributary of the Ohio River. This river system consists of headwaters and small streams, medium river reaches in the upper Wabash watershed, and large river reaches in the lower Wabash watershed. A large part of the river system is situated in agricultural a...

  3. River meander modeling of the Wabash River near the Interstate 64 Bridge near Grayville, Illinois

    USGS Publications Warehouse

    Lant, Jeremiah G.; Boldt, Justin A.

    2018-01-16

    Natural river channels continually evolve and change shape over time. As a result, channel evolution or migration can cause problems for bridge structures that are fixed in the flood plain. A once-stable bridge structure that was uninfluenced by a river’s shape could be encroached upon by a migrating river channel. The potential effect of the actively meandering Wabash River on the Interstate 64 Bridge at the border with Indiana near Grayville, Illinois, was studied using a river migration model called RVR Meander. RVR Meander is a toolbox that can be used to model river channel meander migration with physically based bank erosion methods. This study assesses the Wabash River meandering processes through predictive modeling of natural meandering over the next 100 years, climate change effects through increased river flows, and bank protection measures near the Interstate 64 Bridge.

  4. Wabash River coal gasification repowering project -- first year operation experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troxclair, E.J.; Stultz, J.

    1997-12-31

    The Wabash River Coal Gasification Repowering Project (WRCGRP), a joint venture between Destec Energy, Inc. and PSI Energy, Inc., began commercial operation in November of 1995. The Project, selected by the United States Department of Energy (DOE) under the Clean Coal Program (Round IV) represents the largest operating coal gasification combined cycle plant in the world. This Demonstration Project has allowed PSI Energy to repower a 1950`s vintage steam turbine and install a new syngas fired combustion turbine to provide 262 MW (net) of electricity in a clean, efficient manner in a commercial utility setting while utilizing locally mined highmore » sulfur Indiana bituminous coal. In doing so, the Project is also demonstrating some novel technology while advancing the commercialization of integrated coal gasification combined cycle technology. This paper discusses the first year operation experience of the Wabash Project, focusing on the progress towards achievement of the demonstration objectives.« less

  5. Anthropogenic modifications to drainage conditions on streamflow variability in the Wabash River basin, Indiana

    NASA Astrophysics Data System (ADS)

    Chiu, C.; Bowling, L. C.

    2011-12-01

    The Wabash River watershed is the largest watershed in Indiana and includes the longest undammed river reach east of the Mississippi River. The land use of the Wabash River basin began to significantly change from mixed woodland dominated by small lakes and wetlands to agriculture in the mid-1800s and agriculture is now the predominant land use. Over 80% of natural wetland areas were drained to facilitate better crop production through both surface and subsurface drainage applications. Quantifying the change in hydrologic response in this intensively managed landscape requires a hydrologic model that can represent wetlands, crop growth, and impervious area as well as subsurface and surface drainage enhancements, coupled with high resolution soil and topographic inputs. The Variable Infiltration Capacity (VIC) model wetland algorithm has been previously modified to incorporate spatially-varying estimates of water table distribution using a topographic index approach, as well as a simple urban representation. Now, the soil water characteristics curve and a derived drained to equilibrium moisture profile are used to improve the model's estimation of the water table. In order to represent subsurface (tile) drainage, the tile drainage component of subsurface flow is calculated when the simulated water table rises above a specified drain depth. A map of the current estimated extent of subsurface tile drainage for the Wabash River based on a decision tree classifier of soil drainage class, soil slope and agricultural land use is used to activate the new tile drainage feature in the VIC model, while wetland depressional storage capacity is extracted from digital elevation and soil information. This modified VIC model is used to evaluate the performance of model physical variations in the intensively managed hydrologic regime of the Wabash River system and to understand the role of surface and subsurface storage, and land use and land cover change on hydrologic change.

  6. Flood inundation maps for the Wabash River at New Harmony, Indiana

    USGS Publications Warehouse

    Fowler, Kathleen K.

    2016-10-11

    Digital flood-inundation maps for a 3.68-mile reach of the Wabash River extending 1.77 miles upstream and 1.91 miles downstream from streamgage 03378500 at New Harmony, Indiana, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Office of Community and Rural Affairs. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage at Wabash River at New Harmony, Ind. (station 03378500). Near-real-time stages at this streamgage may be obtained from the USGS National Water Information System at http://waterdata.usgs.gov/ or the National Weather Service (NWS) Advanced Hydrologic Prediction Service at http://water.weather.gov/ahps/, which also forecasts flood hydrographs at this site (NHRI3).Flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The hydraulic model was calibrated by using the most current stage-discharge relations at the Wabash River at New Harmony, Ind., streamgage and the documented high-water marks from the flood of April 27–28, 2013. The calibrated hydraulic model was then used to compute 17 water-surface profiles for flood stages at approximately 1-foot intervals referenced to the streamgage datum and ranging from 10.0 feet, or near bankfull, to 25.4 feet, the highest stage of the stage-discharge rating curve used in the model. The simulated water-surface profiles were then combined with a geographic information system digital elevation model (derived from light detection and ranging (lidar) data having a 0.98-ft vertical accuracy and 4.9-ft horizontal resolution) to delineate the area flooded at each water level.The availability of these maps along with Internet information regarding current stage from the USGS streamgage at Wabash River at New

  7. Flood-inundation maps for the Wabash River at Terre Haute, Indiana

    USGS Publications Warehouse

    Lombard, Pamela J.

    2013-01-01

    Digital flood-inundation maps for a 6.3-mi reach of the Wabash River from 0.1 mi downstream of the Interstate 70 bridge to 1.1 miles upstream of the Route 63 bridge, Terre Haute, Indiana, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Department of Transportation. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent of flooding corresponding to select water levels (stages) at the USGS streamgage Wabash River at Terre Haute (station number 03341500). Current conditions at the USGS streamgage may be obtained on the Internet from the USGS National Water Information System (http://waterdata.usgs.gov/in/nwis/uv/?site_no=03341500&agency_cd=USGS&p"). In addition, the same data are provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood warning system (http://water.weather.gov/ahps//). Within this system, the NWS forecasts flood hydrographs for the Wabash River at Terre Haute that may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The model was calibrated using the most current stage-discharge relation at the Wabash River at the Terre Haute streamgage. The hydraulic model was then used to compute 22 water-surface profiles for flood stages at 1-ft interval referenced to the streamgage datum and ranging from bank-full to approximately the highest recorded water level at the streamgage. The simulated water-surface profiles were then combined with a geographic information system digital elevation model (derived from Light Detection and Ranging (LiDAR) data having a 0.37-ft vertical accuracy and a 1.02-ft horizontal accuracy) to delineate the area flooded at each water

  8. Flood inundation maps for the Wabash and Eel Rivers at Logansport, Indiana

    USGS Publications Warehouse

    Fowler, Kathleen K.

    2014-01-01

    Digital flood-inundation maps for an 8.3-mile reach of the Wabash River and a 7.6-mile reach of the Eel River at Logansport, Indiana (Ind.), were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Office of Community and Rural Affairs. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at USGS streamgage Wabash River at Logansport, Ind. (sta. no. 03329000) and USGS streamgage Eel River near Logansport, Ind. (sta. no. 03328500). Current conditions for estimating near-real-time areas of inundation using USGS streamgage information may be obtained on the Internet at http://waterdata.usgs.gov/. In addition, information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood warning system http:/water.weather.gov/ahps/). The NWS forecasts flood hydrographs at many places that are often colocated with USGS streamgages. NWS-forecasted peak-stage information may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. For this study, flood profiles were computed for the stream reaches by means of a one-dimensional step-backwater model developed by the U.S. Army Corps of Engineers. The hydraulic model was calibrated by using the most current stage-discharge relations at USGS streamgages 03329000, Wabash River at Logansport, Ind., and 03328500, Eel River near Logansport, Ind. The calibrated hydraulic model was then used to determine five water-surface profiles for flood stage at 1-foot intervals referenced to the Wabash River streamgage datum, and four water-surface profiles for flood stages at 1-foot intervals referenced to the Eel River streamgage datum. The stages range from bankfull to approximately the highest

  9. Flood-inundation maps for the Wabash River at Memorial Bridge at Vincennes, Indiana

    USGS Publications Warehouse

    Fowler, Kathleen K.; Menke, Chad D.

    2017-08-23

    Digital flood-inundation maps for a 10.2-mile reach of the Wabash River from Sevenmile Island to 3.7 mile downstream of Memorial Bridge (officially known as Lincoln Memorial Bridge) at Vincennes, Indiana, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Office of Community and Rural Affairs. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/ depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at USGS streamgage 03343010, Wabash River at Memorial Bridge at Vincennes, Ind. Near-real-time stages at this streamgage may be obtained on the Internet from the USGS National Water Information System at http://waterdata.usgs.gov/ or the National Weather Service (NWS) Advanced Hydrologic Prediction Service at http:/water.weather.gov/ahps/, which also forecasts flood hydrographs at this site.For this study, flood profiles were computed for the Wabash River reach by means of a one-dimensional stepbackwater model. The hydraulic model was calibrated by using the most current stage-discharge relations at USGS streamgage 03343010, Wabash River at Memorial Bridge at Vincennes, Ind., and preliminary high-water marks from a high-water event on April 27, 2013. The calibrated hydraulic model was then used to determine 19 water-surface profiles for flood stages at 1-foot intervals referenced to the streamgage datum and ranging from 10 feet (ft) or near bankfull to 28 ft, the highest stage of the current stage-discharge rating curve. The simulated water-surface profiles were then combined with a Geographic Information System (GIS) digital elevation model (DEM, derived from Light Detection and Ranging [lidar] data having a 0.98-ft vertical accuracy and 4.9-ft horizontal resolution) in order to delineate the area flooded at each water level.The availability of these maps—along with Internet information

  10. Quantification of Water Quality Parameters for the Wabash River Using Hyperspectral Remote Sensing

    NASA Astrophysics Data System (ADS)

    Tan, J.; Cherkauer, K. A.; Chaubey, I.

    2011-12-01

    Increasingly impaired water bodies in the agriculturally dominated Midwestern United States pose a risk to water supplies, aquatic ecology and contribute to the eutrophication of the Gulf of Mexico. Improving regional water quality calls for new techniques for monitoring and managing water quality over large river systems. Optical indicators of water quality enable a timely and cost-effective method for observing and quantifying water quality conditions by remote sensing. Compared to broad spectral sensors such as Landsat, which observe reflectance over limited spectral bands, hyperspectral sensors should have significant advantages in their ability to estimate water quality parameters because they are designed to split the spectral signature into hundreds of very narrow spectral bands increasing their ability to resolve optically sensitive water quality indicators. Two airborne hyperspectral images were acquired over the Wabash River using a ProSpecTIR-VS2 sensor system on May 15th, 2010. These images were analyzed together with concurrent in-stream water quality data collected to assess our ability to extract optically sensitive constituents. Utilizing the correlation between in-stream data and reflectance from the hyperspectral images, models were developed to estimate the concentrations of chlorophyll a, dissolved organic carbon and total suspended solids. Models were developed using the full array of hyperspectral bands, as well as Landsat bands synthesized by averaging hyperspectral bands within the Landsat spectral range. Higher R2 and lower RMSE values were found for the models taking full advantage of the hyperspectral sensor, supporting the conclusion that the hyperspectral sensor was better at predicting the in-stream concentrations of chlorophyll a, dissolved organic carbon and total suspended solids in the Wabash River. Results also suggest that predictive models may not be the same for the Wabash River as for its tributaries.

  11. Development of a hydraulic model and flood-inundation maps for the Wabash River near the Interstate 64 Bridge near Grayville, Illinois

    USGS Publications Warehouse

    Boldt, Justin A.

    2018-01-16

    A two-dimensional hydraulic model and digital flood‑inundation maps were developed for a 30-mile reach of the Wabash River near the Interstate 64 Bridge near Grayville, Illinois. The flood-inundation maps, which can be accessed through the U.S. Geological Survey (USGS) Flood Inundation Mapping Science web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage on the Wabash River at Mount Carmel, Ill (USGS station number 03377500). Near-real-time stages at this streamgage may be obtained on the internet from the USGS National Water Information System at http://waterdata.usgs.gov/ or the National Weather Service (NWS) Advanced Hydrologic Prediction Service (AHPS) at http://water.weather.gov/ahps/, which also forecasts flood hydrographs at this site (NWS AHPS site MCRI2). The NWS AHPS forecasts peak stage information that may be used with the maps developed in this study to show predicted areas of flood inundation.Flood elevations were computed for the Wabash River reach by means of a two-dimensional, finite-volume numerical modeling application for river hydraulics. The hydraulic model was calibrated by using global positioning system measurements of water-surface elevation and the current stage-discharge relation at both USGS streamgage 03377500, Wabash River at Mount Carmel, Ill., and USGS streamgage 03378500, Wabash River at New Harmony, Indiana. The calibrated hydraulic model was then used to compute 27 water-surface elevations for flood stages at 1-foot (ft) intervals referenced to the streamgage datum and ranging from less than the action stage (9 ft) to the highest stage (35 ft) of the current stage-discharge rating curve. The simulated water‑surface elevations were then combined with a geographic information system digital elevation model, derived from light detection and ranging data, to delineate the area flooded at each water

  12. The Potential Importance of Conservation, Restoration and Altered Management Practices for Water Quality in the Wabash River Watershed

    EPA Science Inventory

    The Potential Importance of Conservation, Restoration and Altered Management Practices for Water Quality in the Wabash River Watershed Guoxiang Yang1, Elly P.H. Best2, Staci Goodwin3 1 ORISE Postdoc Research Associate at U.S. Environmental Protection Agency, National Risk...

  13. Geomorphic response to tectonically-induced ground deformation in the Wabash Valley

    USGS Publications Warehouse

    Fraser, G.S.; Thompson, T.A.; Olyphant, G.A.; Furer, L.; Bennett, S.W.

    1997-01-01

    Numerous low- to moderate-intensity earthquakes have been recorded in a zone of diffuse modern seismicity in southwest Indiana, southeast Illinois, and northernmost Kentucky. Structural elements within the zone include the Wabash Valley Fault System, the LaSalle Anticlinal Belt in western Illinois, and the Rough Creek-Shawneetown Fault System in northern Kentucky. The presence of seismically-induced liquefaction features in the near-surface alluvial sediments in the region indicates that strong ground motion has occurred in the recent geological past, but because the glacial and alluvial sediments in the Wabash Valley appear to be otherwise undisturbed, post-Paleozoic ground deformation resulting from movement on these structural elements has not yet been documented. Morphometric analysis of the land surface, detailed mapping of geomorphic elements in the valley, reconnaissance drilling of the Holocene and Pleistocene alluvium, and structural analysis of the bedrock underlying the valley were used to determine whether the geomorphology of the valley and the patterns of alluviation of the Wabash River were affected by surface deformation associated with the seismic zone during the late Pleistocene and Holocene. Among the observed features in the valley that can be attributed to deformation are: (1) tilting of the modern land surface to the west, (2) preferred channel migration toward the west side of the valley, with concomitant impact on patterns of soil development and sedimentation rate, (3) a convex longitudinal profile of the Wabash River where it crosses the LaSalle Anticlinal Belt, and (4) increased incision of the river into its floodplain downstream from the anticlinal belt.

  14. A one-dimensional, steady-state, dissolved-oxygen model and waste-load assimilation study for Wabash River, Huntington County, Indiana

    USGS Publications Warehouse

    Crawford, Charles G.; Wilber, William G.; Peters, James G.

    1980-01-01

    A digital model calibrated to conditions in the Wabash River in Huntington County, Ind., was used to predict alternatives for future waste loadings that would be compatible with Indiana stream water-quality standards defined for two critical hydrologic conditons, summer and winter low flows. The major point-source waste load affecting the Wabash River in Huntington County is the Huntington wastewater-treatment facility. The most significnt factor potentially affecting the dissolved-oxygen concentration during summer low flows is nitrification. However, nitrification should not be a limiting factor on the allowable nitrogenous and carbonaceous waste loads for the Huntington wastewater-treatment facility during summer low flows if the ammonia-nitrogen toxicity standard for Indiana streams is met. The disolved-oxygen standard for Indiana stream, an average of 5.0 milligrams per liter, should be met during summer and winter low flows if the National Pollution Discharge Elimination System 's 5-day, carbonaceous biochemical-oxygen demands of a monthly average concentration of 30 milligrams per liter and a maximum weekly average of 45 milligrams per liter are not exceeded. 

  15. Determination of reaeration-rate coefficients of the Wabash River, Indiana, by the modified tracer technique

    USGS Publications Warehouse

    Crawford, Charles G.

    1985-01-01

    The modified tracer technique was used to determine reaeration-rate coefficients in the Wabash River in reaches near Lafayette and Terre Haute, Indiana, at streamflows ranging from 2,310 to 7,400 cu ft/sec. Chemically pure (CP grade) ethylene was used as the tracer gas, and rhodamine-WT dye was used as the dispersion-dilution tracer. Reaeration coefficients determined for a 13.5-mi reach near Terre Haute, Indiana, at streamflows of 3,360 and 7,400 cu ft/sec (71% and 43% flow duration) were 1.4/day and 1.1/day at 20 C, respectively. Reaeration-rate coefficients determined for a 18.4-mile reach near Lafayette, Indiana, at streamflows of 2,310 and 3,420 cu ft/sec (70% and 53 % flow duration), were 1.2/day and 0.8/day at 20 C, respectively. None of the commonly used equations found in the literature predicted reaeration-rate coefficients similar to those measured for reaches of the Wabash River near Lafayette and Terre Haute. The average absolute prediction error for 10 commonly used reaeration equations ranged from 22% to 154%. Prediction error was much smaller in the reach near Terre Haute than in the reach near Lafayette. The overall average of the absolute prediction error for all 10 equations was 22% for the reach near Terre Haute and 128% for the reach near Lafayette. Confidence limits of results obtained from the modified tracer technique were smaller than those obtained from the equations in the literature. 

  16. Ohio River backwater flood-inundation maps for the Saline and Wabash Rivers in southern Illinois

    USGS Publications Warehouse

    Murphy, Elizabeth A.; Sharpe, Jennifer B.; Soong, David T.

    2012-01-01

    Digital flood-inundation maps for the Saline and Wabash Rivers referenced to elevations on the Ohio River in southern Illinois were created by the U.S. Geological Survey (USGS). The inundation maps, accessible through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent of flooding corresponding to selected water levels (gage heights) at the USGS streamgage at Ohio River at Old Shawneetown, Illinois-Kentucky (station number 03381700). Current gage height and flow conditions at this USGS streamgage may be obtained on the Internet at http://waterdata.usgs.gov/usa/nwis/uv?03381700. In addition, this streamgage is incorporated into the Advanced Hydrologic Prediction Service (AHPS) flood warning system (http://water.weather.gov/ahps/) by the National Weather Service (NWS). The NWS forecasts flood hydrographs at many places that are often co-located at USGS streamgages. That NWS forecasted peak-stage information, also shown on the Ohio River at Old Shawneetown inundation Web site, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, eight water-surface elevations were mapped at 5-foot (ft) intervals referenced to the streamgage datum ranging from just above the NWS Action Stage (31 ft) to above the maximum historical gage height (66 ft). The elevations of the water surfaces were compared to a Digital Elevation Model (DEM) by using a Geographic Information System (GIS) in order to delineate the area flooded at each water level. These maps, along with information on the Internet regarding current gage heights from USGS streamgages and forecasted stream stages from the NWS, provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, as well as for post-flood recovery efforts.

  17. Reconnaissance Report for Upper Mississippi River Navigation Study. (Revised)

    DTIC Science & Technology

    1992-09-01

    Contaminants may include ammonia, arsenic, cadmium , chlordane, chromium, copper, dioxins, lead, nickel, nitrogen, PCBs, phosphorus, zinc, various...al 1981 Rock River, Upper Mississippi River, Little Wabash River, Lower Wabash River Units (I, III-north, aid VIII). In Predictive Models in Illinois

  18. Geophysical character of the intraplate Wabash Fault System from the Wabash EarthScope FlexArray

    NASA Astrophysics Data System (ADS)

    Conder, J. A.; Zhu, L.; Wood, J. D.

    2017-12-01

    The Wabash Seismic Array was an EarthScope funded FlexArray deployment across the Wabash Fault System. The Wabash system is long known for oil and gas production. The fault system is often characterized as an intraplate seismic zone as it has produced several earthquakes above M4 in the last 50 years and potentially several above M7 in the Holocene. While earthquakes are far less numerous in the Wabash system than in the nearby New Madrid seismic zone, the seismic moment is nearly twice that of New Madrid over the past 50 years. The array consisted of 45 broadband instruments deployed across the axis to study the larger structure and 3 smaller phased arrays of 9 short-period instruments each to get a better sense of the local seismic output of smaller events. First results from the northern phased array indicate that seismicity in the Wabash behaves markedly differently than in New Madrid, with a low b-value around 0.7. Receiver functions show a 50 km thick crust beneath the system, thickening somewhat to the west. A variable-depth, positive-amplitude conversion in the deep crust gives evidence for a rift pillow at the base of the system within a dense lowermost crustal layer. Low Vs and a moderate negative amplitude conversion in the mid crust suggest a possible weak zone that could localize deformation. Shear wave splitting shows fast directions consistent with absolute plate motion across the system. Split times drop in magnitude to 0.5-0.7 seconds within the valley while in the 1-1.5 second range outside the valley. This magnitude decrease suggests a change in mantle signature beneath the fault system, possibly resulting from a small degree of local flow in the asthenosphere either along axis (as may occur with a thinned lithosphere) or by vertical flow (e.g., from delamination or dripping). We are building a 2D tomographic model across the region, relying primarily on teleseismic body waves. The tomography will undoubtedly show variations in crustal structure

  19. Geophysical setting of the Wabash Valley fault system

    USGS Publications Warehouse

    Hildenbrand, T.G.; Ravat, D.

    1997-01-01

    Interpretation of existing regional magnetic and gravity data and new local high-resolution aeromagnetic data provides new insights on the tectonic history and structural development of the Wabash Valley Fault System in Illinois and Indiana. Enhancement of short-wavelength magnetic anomalies reveal numerous NW- to NNE-trending ultramafic dikes and six intrusive complexes (including those at Hicks Dome and Omaha Dome). Inversion models indicate that the interpreted dikes are narrow (???3 m), lie at shallow depths (500 km long and generally >50 km wide) and with deep basins (locally >3 km thick), the ancestral Wabash Valley faults express, in comparison, minor tectonic structures and probably do not represent a failed rift arm. There is a lack of any obvious relation between the Wabash Valley Fault System and the epicenters of historic and prehistoric earthquakes. Five prehistoric earthquakes lie conspicuously near structures associated with the Commerce geophysical lineament, a NE-trending magnetic and gravity lineament lying oblique to the Wabash Valley Fault System and possibly extending over 600 km from NE Arkansas to central Indiana.

  20. Lessons from the Wabash National Study of Liberal Arts Education

    ERIC Educational Resources Information Center

    Pascarella, Ernest T.; Blaich, Charles

    2013-01-01

    Funded by the Center of Inquiry in the Liberal Arts (CILA) at Wabash College, the Wabash National Study of Liberal Arts Education (WNS) is a multi-institution, multi-year, longitudinal study designed to identify the academic and non-academic collegiate experiences that foster liberal learning. This article describes how the study was done and…

  1. Relations of principal components analysis site scores to algal-biomass, habitat, basin-characteristics, nutrient, and biological-community data in the Upper Wabash River Basin, Indiana, 2003

    USGS Publications Warehouse

    Leer, Donald R.; Caskey, Brian J.; Frey, Jeffrey W.; Lowe, B. Scott

    2007-01-01

    The values for nutrients (nitrate, total Kjeldahl nitrogen, total nitrogen, and total phosphorus) and chlorophyll a (periphyton and seston) were compared to published U.S. Environmental Protection Agency (USEPA) values for Aggregate Nutrient Ecoregions VI and VII and USEPA Level III Ecoregions 55 and 56. Several nutrient values were greater than the 25th percentile of the published USEPA values. Chlorophyll a (periphyton and seston) values either were greater than the 25th percentile of published USEPA values or extended data ranges in the Aggregate Nutrient and Level III Ecoregions. If the proposed values for the 25th percentile were adopted as nutrient water-quality criteria, many samples in the Upper Wabash River Basin would have exceeded the criteria.

  2. Spatial relationships of levees and wetland systems within floodplains of the Wabash Basin, USA

    NASA Astrophysics Data System (ADS)

    Bray, E. N.; Morrison, R. R.; Nardi, F.; Annis, A.; Dong, Q.

    2017-12-01

    Given the unique biogeochemical, physical, and hydrologic services provided by floodplain wetlands, proper management of river systems should include an understanding of how floodplain modifications influences wetland ecosystems. The construction of levees can reduce river-floodplain connectivity, yet it is unclear how levees affect wetlands within a river system, let alone the cumulative impacts within an entire watershed. This paper explores spatial relationships between levee and floodplain wetland systems in the Wabash basin, United States. We used a hydrogeomorphic floodplain delineation technique to map floodplain extents and identify wetlands that may be hydrologically connected to river networks. We then spatially examined the relationship between levee presence, wetland area, and other river network attributes within discrete HUC-12 sub-basins. Our results show that cumulative wetland area is relatively constant in sub-basins that contain levees, regardless of maximum stream order within the sub-basin. In sub-basins that do not contain levees, cumulative wetland area increases with maximum stream order. However, we found that wetland distributions around levees can be complex, and further studies on the influence of levees on wetland habitat may need to be evaluated at finer-resolution spatial scales.

  3. An Evaluation of Reed Bed Technology to Dewater Army Wastewater Treatment Plant Sludge

    DTIC Science & Technology

    1993-09-01

    speculated that the plants produced "root exudations" that were active against pathogens, and that the plants specifically showed an affinity for cadmium , zinc...Schwenksville, PA Topton Sewage Treatment Topton. PA Wabash WWTP Wabash . IN Wallingford Fire District #lWastewater Treatment Plant Wallingford. VT...Navy Group 06/88 Tom Severance Security 207-963-5534 Winter Harbour. ME Wabash WWTP. IN 09/91 Vincent J. Bauco 219-563-2941 20 Table 4 (Cont’d

  4. Method for estimating potential wetland extent by utilizing streamflow statistics and flood-inundation mapping techniques: Pilot study for land along the Wabash River near Terre Haute, Indiana

    USGS Publications Warehouse

    Kim, Moon H.; Ritz, Christian T.; Arvin, Donald V.

    2012-01-01

    Potential wetland extents were estimated for a 14-mile reach of the Wabash River near Terre Haute, Indiana. This pilot study was completed by the U.S. Geological Survey in cooperation with the U.S. Department of Agriculture, Natural Resources Conservation Service (NRCS). The study showed that potential wetland extents can be estimated by analyzing streamflow statistics with the available streamgage data, calculating the approximate water-surface elevation along the river, and generating maps by use of flood-inundation mapping techniques. Planning successful restorations for Wetland Reserve Program (WRP) easements requires a determination of areas that show evidence of being in a zone prone to sustained or frequent flooding. Zone determinations of this type are used by WRP planners to define the actively inundated area and make decisions on restoration-practice installation. According to WRP planning guidelines, a site needs to show evidence of being in an "inundation zone" that is prone to sustained or frequent flooding for a period of 7 consecutive days at least once every 2 years on average in order to meet the planning criteria for determining a wetland for a restoration in agricultural land. By calculating the annual highest 7-consecutive-day mean discharge with a 2-year recurrence interval (7MQ2) at a streamgage on the basis of available streamflow data, one can determine the water-surface elevation corresponding to the calculated flow that defines the estimated inundation zone along the river. By using the estimated water-surface elevation ("inundation elevation") along the river, an approximate extent of potential wetland for a restoration in agricultural land can be mapped. As part of the pilot study, a set of maps representing the estimated potential wetland extents was generated in a geographic information system (GIS) application by combining (1) a digital water-surface plane representing the surface of inundation elevation that sloped in the downstream

  5. The Potential Importance of Conservation, Restoration and Altered Management Practices for Water Quality in the Wabash River Watershed

    NASA Astrophysics Data System (ADS)

    Yang, G.; Best, E. P.; Goodwin, S.

    2013-12-01

    Non-point source (NPS) pollution is one of the leading causes of water quality impairment within the United States. Conservation, restoration and altered management (CRAM) practices may effectively reduce NPS pollutants to receiving water bodies and enhance local and regional ecosystem services. Barriers for the implementation of CRAM include uncertainties related to the extent to which nutrients are removed by CRAM at various spatial and temporal scales, longevity, optimal placement of CRAM within the landscape, and implementation / operation / maintenance costs. We conducted a study aimed at the identification of optimal placement of CRAM in watersheds that reduces N loading to an environmentally sustainable level, at an acceptable, known, cost. For this study, we used a recently developed screening-level modeling approach, WQM-TMDL-N, running in the ArcGIS environment, to estimate nitrogen loading under current land use conditions (NLCD 2006). This model was equipped with a new option to explore the performances of placement of various CRAM types and areas to reduce nitrogen loading to a State-accepted Total Maximum Daily Load (TMDL) standard, with related annual average TN concentration, and a multi-objective algorithm optimizing load and cost. CRAM practices explored for implementation in rural area included buffer strips, nutrient management practices, and wetland restoration. We initially applied this modeling approach to the Tippecanoe River (TR) watershed (8-digit HUC), a headwater of the Wabash River (WR) watershed, where CRAM implementation in rural and urban areas is being planned and implemented at various spatial scales. Consequences of future land use are explored using a 2050 land use/land cover map forecasted by the Land Transformation Model. The WR watershed, IN, drains two-thirds of the state's 92 counties and supports predominantly agricultural land use. Because the WR accounts for over 40% of the nutrient loads of the Ohio River and

  6. 76 FR 62055 - Wabash Gas Storage, LLC; Notice of Intent To Prepare an Environmental Assessment for the Planned...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-06

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PF11-6-000] Wabash Gas Storage, LLC; Notice of Intent To Prepare an Environmental Assessment for the Planned Wabash Gas Storage Project, Request for Comments on Environmental Issues, and Notice of Public Scoping Meeting The staff of the Federal Energy Regulatory Commission ...

  7. Lucinda Huffaker and the Hospitality of the Wabash Center

    ERIC Educational Resources Information Center

    Placher, William C.

    2007-01-01

    As associate director and then director of the Wabash Center for Teaching and Learning in Theology and Religion, Lucinda Huffaker has been a key factor in the Center's reputation for hospitality. The Center's work presupposes that reflection on teaching improves teaching and learning, and good reflection on one's teaching requires taking risks and…

  8. "Hospes": The Wabash Center as a Site of Transformative Hospitality

    ERIC Educational Resources Information Center

    Jones, Carolyn M.

    2007-01-01

    The Wabash Center for Teaching and Learning in Theology and Religion is a place of hospitality and its staff the epitome of the "good host." This essay explores the meaning of hospitality, including its problematic dimensions, drawing on a number of voices and texts: Jacques Derrida's "Of Hospitality"; Henri M. Nouwen's "Reaching Out: The Three…

  9. 2. PHOTOGRAPH LOOKING SOUTHEAST, OF THE SOUTH BANK OF THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. PHOTOGRAPH LOOKING SOUTHEAST, OF THE SOUTH BANK OF THE RIVER, SHOWING THE SOUTH ABUTMENTS, AND THE IMMEDIATE ENVIRONMENT. THE SOUTH BANK RISES STEEPLY AND RESIDENCES ARE LOCATED ON THE UPPER ESCARPMENT. - Wabash County Bridge No. 509, Spanning Wabash River at Carroll & Smith Streets, Wabash, Wabash County, IN

  10. Estimating Strain Accumulation in the New Madrid and Wabash Valley Seismic Zones

    NASA Astrophysics Data System (ADS)

    Craig, T. J.; Calais, E.

    2014-12-01

    The mechanical behaviour -- and hence earthquake potential -- of faults in continental interiors is a question of critical importance for the resultant seismic hazard, but no consensus has yet been reached on this controversial topic. The debate has focused on the central and eastern United States, in particular the New Madrid Seismic Zone, struck by three magnitude 7 or greater earthquakes in 1811--1812, and to a lesser extent the Wabash Valley Seismic Zone just to the north. A key aspect of this issue is the rate at which strain is currently accruing on those faults in the plate interior, a quantity that remains debated. Understanding if the present-day strain rates indicate sufficient motion to account for the historical and paleoseismological earthquakes by steady-state fault behaviour, or if strain accumulation is time-dependent in this area, is critical for investigating the causative process driving this seismicity in the plate interior, and how regional strain reflects the interplay between stresses arising from different geological processes. Here we address this issue with an analysis of up to 14 years of continuous GPS data from a network of 200 sites in the central United States centred on the New Madrid and Wabash Valley seismic zones. We find that high-quality sites in these regions show motions that are consistently within the 95% confidence limit of zero deformation relative to a rigid background. These results place an upper bound on regional strain accrual of 0.2 mm/yr and 0.5 mm/yr in the New Madrid and Wabash Valley Seismic Zones, respectively. These results, together with increasing evidence for temporal clustering and spatial migration of earthquake sequences in continental interiors, indicate that either tectonic loading rates or fault properties vary with time in the NMSZ and possibly plate-wide.

  11. Application of a calibrated/validated Agricultural Policy/Environmental eXtender model to assess sediment and nutrient delivery from the Wildcat Creek Mississippi River Basin Initiative – Cooperative Conservation Partnership

    USDA-ARS?s Scientific Manuscript database

    The Wildcat Creek, a tributary to the Wabash River was identified by the USDA Natural Resources Conservation Service (NRCS) as a priority watershed for its high sediment and nutrient loading contributions to the Mississippi River. As part of the Mississippi River Basin Initiative (MRBI), the incorpo...

  12. Atomic Energy Division plant capacity manual Savannah River Plant and Dana Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1960-05-01

    This report is a summary of plant service capacities at the Savannah River Plant and the Dana Plant. The report is divided into different areas of the plants, and includes information on services such as process steam, clarified water, deionized water, electric distribution systems, electric generating capacity, filtered water, process water, river water, well water, etc.

  13. 76 FR 13178 - Wabash Valley Power Association, Inc.; Notice of Petition for Declaratory Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-10

    ... (Formula Rate Tariff) and the related Wholesale Power Supply Contract between WVPA and Northeastern Rural... Power Association, Inc.; Notice of Petition for Declaratory Order Take notice that on March 3, 2011...), Wabash Valley Power Association, Inc. (WVPA) filed a Petition Declaratory Order that finds (i) the...

  14. 8. A VIEW LOOKING NORTHEAST, FROM CARROLL STREET, OF THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. A VIEW LOOKING NORTHEAST, FROM CARROLL STREET, OF THE SOUTH PORTAL OF THE BRIDGE, THE HEIGHT WARNING MEMBER, GUARD RAILS, VERTICAL AND DIAGONAL MEMBERS AND LATTICE WORK. - Wabash County Bridge No. 509, Spanning Wabash River at Carroll & Smith Streets, Wabash, Wabash County, IN

  15. Wabash Valley Integrated Gasification Combined Cycle, Coal to Fischer Tropsch Jet Fuel Conversion Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shah, Jayesh; Hess, Fernando; Horzen, Wessel van

    This reports examines the feasibility of converting the existing Wabash Integrated Gasification Combined Cycle (IGCC) plant into a liquid fuel facility, with the goal of maximizing jet fuel production. The fuels produced are required to be in compliance with Section 526 of the Energy Independence and Security Act of 2007 (EISA 2007 §526) lifecycle greenhouse gas (GHG) emissions requirements, so lifecycle GHG emissions from the fuel must be equal to or better than conventional fuels. Retrofitting an existing gasification facility reduces the technical risk and capital costs associated with a coal to liquids project, leading to a higher probability ofmore » implementation and more competitive liquid fuel prices. The existing combustion turbine will continue to operate on low cost natural gas and low carbon fuel gas from the gasification facility. The gasification technology utilized at Wabash is the E-Gas™ Technology and has been in commercial operation since 1995. In order to minimize capital costs, the study maximizes reuse of existing equipment with minimal modifications. Plant data and process models were used to develop process data for downstream units. Process modeling was utilized for the syngas conditioning, acid gas removal, CO 2 compression and utility units. Syngas conversion to Fischer Tropsch (FT) liquids and upgrading of the liquids was modeled and designed by Johnson Matthey Davy Technologies (JM Davy). In order to maintain the GHG emission profile below that of conventional fuels, the CO 2 from the process must be captured and exported for sequestration or enhanced oil recovery. In addition the power utilized for the plant’s auxiliary loads had to be supplied by a low carbon fuel source. Since the process produces a fuel gas with sufficient energy content to power the plant’s loads, this fuel gas was converted to hydrogen and exported to the existing gas turbine for low carbon power production. Utilizing low carbon fuel gas and process steam

  16. Good Practices for Student Learning: Mixed-Method Evidence from the Wabash National Study

    ERIC Educational Resources Information Center

    Goodman, Kathleen M.; Magolda, Marcia Baxter; Seifert, Tricia A.; King, Patricia M.

    2011-01-01

    Since 2006, 19 institutions across the United States have been trying to figure out how to work smarter through their participation in the Wabash National Study of Liberal Arts Education. Drawing on data from the first year of the study, the robust, mixed-methods study the authors report in this article evaluated growth in the first year of…

  17. Arbuscular mycorrhizal fungi associations of vascular plants confined to river valleys: towards understanding the river corridor plant distribution.

    PubMed

    Nobis, Agnieszka; Błaszkowski, Janusz; Zubek, Szymon

    2015-01-01

    The group of river corridor plants (RCP) includes vascular plant species which grow mainly or exclusively in the valleys of large rivers. Despite the long recognized fact that some plant species display a corridor-like distribution pattern in Central Europe, there is still no exhaustive explanation of the mechanisms generating this peculiar distribution. The main goal of this study was therefore to investigate whether arbuscular mycorrhizal fungi (AMF) and fungal root endophytes influence the RCP distribution. Arbuscular mycorrhizae (AM) were observed in 19 out of 33 studied RCP. Dark septate endophytes (DSE) and Olpidium spp. were recorded with low abundance in 15 and 10 plant species, respectively. The spores of AMF were found only in 32% of trap cultures established from the soils collected in the river corridor habitats. In total, six widespread AMF species were identified. Because the percentage of non-mycorrhizal species in the group of RCP is significant and the sites in river corridors are characterized by low AMF species diversity, RCP can be outcompeted outside river valleys by the widespread species that are able to benefit from AM associations in more stable plant-AMF communities in non-river habitats.

  18. MIDDLE GORGE POWER PLANT, OWENS RIVER STREAM FLOWING OVER TAIL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MIDDLE GORGE POWER PLANT, OWENS RIVER STREAM FLOWING OVER TAIL RACE OF POWER PLANT AND PENSTOCK HEADGATE TO LOWER GORGE CONTROL PLANT. A MINIMAL FLOW OF RIVER WATER IS REQUIRED TO MAINTAIN FISH LIFE - Los Angeles Aqueduct, Middle Gorge Power Plant, Los Angeles, Los Angeles County, CA

  19. Biological surveys on the Savannah River in the vicinity of the Savannah River Plant (1951-1976)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, R. A.

    In 1951, the Academy of Natural Sciences of Philadelphia was contracted by the Savannah River Plant to initiate a long-term monitoring program in the Savannah River. The purpose of this program was to determine the effect of the Savannah River Plant on the Savannah River aquatic ecosystem. The data from this monitoring program have been computerized by the Savannah River Laboratory, and are summarized in this report. During the period from 1951-1976, 16 major surveys were conducted by the Academy in the Savannah River. Water chemistry analyses were made, and all major biological communities were sampled qualitatively during the springmore » and fall of each survey year. In addition, quantitative diatom data have been collected quarterly since 1953. Major changes in the Savannah River basin, in the Savannah River Plant's activities, and in the Academy sampling patterns are discussed to provide a historical overview of the biomonitoring program. Appendices include a complete taxonomic listing of species collected from the Savannah River, and summaries of the entire biological and physicochemical data base.« less

  20. Producing fired bricks using coal slag from a gasification plant in indiana

    USGS Publications Warehouse

    Chen, L.-M.; Chou, I.-Ming; Chou, S.-F.J.; Stucki, J.W.

    2009-01-01

    Integrated gasification combined cycle (IGCC) is a promising power generation technology which increases the efficiency of coal-to-power conversion and enhances carbon dioxide concentration in exhaust emissions for better greenhouse gas capture. Two major byproducts from IGCC plants are bottom slag and sulfur. The sulfur can be processed into commercially viable products, but high value applications need to be developed for the slag material in order to improve economics of the process. The purpose of this study was to evaluate the technical feasibility of incorporating coal slag generated by the Wabash River IGCC plant in Indiana as a raw material for the production of fired bricks. Full-size bricks containing up to 20 wt% of the coal slag were successfully produced at a bench-scale facility. These bricks have color and texture similar to those of regular fired bricks and their water absorption properties met the ASTM specifications for a severe weathering grade. Other engineering properties tests, including compressive strength tests, are in progress.

  1. Sacramento River Water Treatment Plant Intake Pier & Access Bridge, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA

  2. River channel morphology and hydraulics properties due to introduction of plant basket hydraulic structures for river channel management

    NASA Astrophysics Data System (ADS)

    Kałuża, Tomasz; Radecki-Pawlik, Artur; Plesiński, Karol; Walczak, Natalia; Szoszkiewicz, Krzysztof; Radecki-Pawlik, Bartosz

    2016-04-01

    In the present time integrated water management is directly connected with management and direct works in river channels themselves which are taking into account morphological processes in rivers and improve flow conditions. Our work focused on the hydraulic and hydrodynamic consequences upon the introduction of the concept of the improvement of the hydromorphological conditions of the Flinta River in a given reach following river channel management concept. Based on a comprehensive study of the hydromorphological state of the river, four sections were selected where restoration measures can efficiently improve river habitat conditions in the river. For each section a set of technical and biological measures were proposed and implemented in practice. One of the proposed solutions was to construct plant basket hydraulic structures (PBHS) within the river channel, which are essentially plant barriers working as sediment traps, changing river channel morphology and are in line with concepts of Water Framework Directive. These relatively small structures work as crested weirs and unquestionably change the channel morphology. Along our work we show the results of three-year long (2013-2015) systematic measurements that provided information on the morphological consequences of introducing such structures into a river channel. Our main conclusions are as follows: 1. Plant basket hydraulic structures cause changes in hydrodynamic conditions and result in sediment accumulation and the formation of river backwaters upstream and downstream the obstacle; 2. The introduced plant basket hydraulic structures cause plant debris accumulation which influences the hydrodynamic flow conditions; 3. The installation of plant basket hydraulic structures on the river bed changes flow pattern as well as flow hydrodynamic conditions causing river braiding process; 4. The erosion rate below the plant basket hydraulic structures is due to the hydraulic work conditions of the PBHS and its

  3. Hydro power plants on the Middle Sava River section

    NASA Astrophysics Data System (ADS)

    Kryžanowski, A.; Horvat, A.; Brilly, M.

    2008-11-01

    Construction of a chain of hydro power plants is planned on the Sava River from Medvode to the Slovenian-Croatian border which will, apart from the chain of HPPs on the Drava River, represent the linchpin of renewable energy production within the Slovenian power system. The mentioned chain of HPPs will also be one of the country's main renewable energy sources that can still be developed for power generation. Three hydro power plants, Moste, Mavčciče and Medvode, are already operating on the Upper Sava River section. Construction of the chain is underway in the lower part of the stream where Vrhovo and Bošstanj HPPs are already in operation; HPP Blanca is under construction and the site planning procedures are taking place for Krško, Brežice and Mokrice HPPs. The planned HPPs on the Middle Sava River section between Medvode and Zidani most will connect the HPPs on the Upper and Lower Sava River into a closed chain which will operate on the principle of run-of-river type power plants with daily storage. Completion of all stages will enable optimal development of available hydro potential. Apart from the energy effects, also other beneficial effects of hydro power plant construction in the region can be expected: flood protection; better water supply; waste water treatment; development of transport and energy networks as well as positive economic and social effects.

  4. Plant basket hydraulic structures (PBHS) as a new river restoration measure.

    PubMed

    Kałuża, Tomasz; Radecki-Pawlik, Artur; Szoszkiewicz, Krzysztof; Plesiński, Karol; Radecki-Pawlik, Bartosz; Laks, Ireneusz

    2018-06-15

    River restoration has become increasingly attractive worldwide as it provides considerable benefits to the environment as well as to the economy. This study focuses on changes of hydromorphological conditions in a small lowland river recorded during an experiment carried out in the Flinta River, central Poland. The proposed solution was a pilot project of the construction of vegetative sediment traps (plant basket hydraulic structures - PBHS). A set of three PBSH was installed in the riverbed in one row and a range of hydraulic parameters were recorded over a period of three years (six measurement sessions). Changes of sediment grain size were analysed, and the amount and size of plant debris in the plant barriers were recorded. Plant debris accumulation influencing flow hydrodynamics was detected as a result of the installation of vegetative sediment traps. Moreover, various hydromorphological processes in the river were initiated. Additional simulations based on the detected processes showed that the proposed plant basket hydraulic structures can improve the hydromorphological status of the river. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Run-of-river power plants in Alpine regions: Whither optimal capacity?

    NASA Astrophysics Data System (ADS)

    Lazzaro, G.; Botter, G.

    2015-07-01

    Although run-of-river hydropower represents a key source of renewable energy, it cannot prevent stresses on river ecosystems and human well-being. This is especially true in Alpine regions, where the outflow of a plant is placed several kilometers downstream of the intake, inducing the depletion of river reaches of considerable length. Here multiobjective optimization is used in the design of the capacity of run-of-river plants to identify optimal trade-offs between two contrasting objectives: the maximization of the profitability and the minimization of the hydrologic disturbance between the intake and the outflow. The latter is evaluated considering different flow metrics: mean discharge, temporal autocorrelation, and streamflow variability. Efficient and Pareto-optimal plant sizes are devised for two representative case studies belonging to the Piave river (Italy). Our results show that the optimal design capacity is strongly affected by the flow regime at the plant intake. In persistent regimes with a reduced flow variability, the optimal trade-off between economic exploitation and hydrologic disturbance is obtained for a narrow range of capacities sensibly smaller than the economic optimum. In erratic regimes featured by an enhanced flow variability, instead, the Pareto front is discontinuous and multiple trade-offs can be identified, which imply either smaller or larger plants compared to the economic optimum. In particular, large capacities reduce the impact of the plant on the streamflow variability at seasonal and interannual time scale. Multiobjective analysis could provide a clue for the development of policy actions based on the evaluation of the environmental footprint of run-of-river plants.

  6. Streamflow variability and optimal capacity of run-of-river hydropower plants

    NASA Astrophysics Data System (ADS)

    Basso, S.; Botter, G.

    2012-10-01

    The identification of the capacity of a run-of-river plant which allows for the optimal utilization of the available water resources is a challenging task, mainly because of the inherent temporal variability of river flows. This paper proposes an analytical framework to describe the energy production and the economic profitability of small run-of-river power plants on the basis of the underlying streamflow regime. We provide analytical expressions for the capacity which maximize the produced energy as a function of the underlying flow duration curve and minimum environmental flow requirements downstream of the plant intake. Similar analytical expressions are derived for the capacity which maximize the economic return deriving from construction and operation of a new plant. The analytical approach is applied to a minihydro plant recently proposed in a small Alpine catchment in northeastern Italy, evidencing the potential of the method as a flexible and simple design tool for practical application. The analytical model provides useful insight on the major hydrologic and economic controls (e.g., streamflow variability, energy price, costs) on the optimal plant capacity and helps in identifying policy strategies to reduce the current gap between the economic and energy optimizations of run-of-river plants.

  7. Interior River Lowland Ecoregion Summary Report

    USGS Publications Warehouse

    Karstensen, Krista A.

    2008-01-01

    ECOREGION DESCRIPTION The Interior River Lowlands ecoregion encompasses 93,200 square kilometers (km2) across southern and western Illinois, southwest Indiana, east-central Missouri, and fractions of northwest Kentucky and southeast Iowa. The ecoregion includes the confluence areas of the Mississippi, Missouri, Ohio, Illinois, and Wabash Rivers, and their tributaries. This ecoregion was formed in non-resident, non-calcareous sedimentary rock (U.S. Environmental Protection Agency, 2006). The unstratified soil deposits present north of the White River in Indiana are evidence that pre-Wisconsinan ice once covered much of the Interior River Lowlands. The geomorphic characteristics of this area also include terraced valleys filled with alluvium as well as outwash, acolian, and lacustrine deposits. Historically, agricultural land use has been a vital economic resource for this region. The drained alluvial soils are farmed for feed grains and soybeans, whereas the valley uplands also are used for forage crops, pasture, woodlots, mixed farming, and livestock (USEPA, 2006). This ecoregion provides a key component of national energy resources as it contains the second largest coal reserve in the United States, and the largest reserve of bituminous coal (Varanka and Shaver, 2007). One of the primary reasons for change in the ecoregion is urbanization.

  8. Run-of-river power plants in Alpine regions: whither optimal capacity?

    NASA Astrophysics Data System (ADS)

    Lazzaro, Gianluca; Botter, Gianluca

    2015-04-01

    Hydropower is the major renewable electricity generation technology worldwide. The future expansion of this technology mostly relies on the development of small run-of-river projects, in which a fraction of the running flows is diverted from the river to a turbine for energy production. Even though small hydro inflicts a smaller impact on aquatic ecosystems and local communities compared to large dams, it cannot prevent stresses on plant, animal, and human well-being. This is especially true in mountain regions where the plant outflow is located several kilometers downstream of the intake, thereby inducing the depletion of river reaches of considerable length. Moreover, the negative cumulative effects of run-of-river systems operating along the same river threaten the ability of stream networks to supply ecological corridors for plants, invertebrates or fishes, and support biodiversity. Research in this area is severely lacking. Therefore, the prediction of the long-term impacts associated to the expansion of run-of-river projects induced by global-scale incentive policies remains highly uncertain. This contribution aims at providing objective tools to address the preliminary choice of the capacity of a run-of-river hydropower plant when the economic value of the plant and the alteration of the flow regime are simultaneously accounted for. This is done using the concepts of Pareto-optimality and Pareto-dominance, which are powerful tools suited to face multi-objective optimization in presence of conflicting goals, such as the maximization of the profitability and the minimization of the hydrologic disturbance induced by the plant in the river reach between the intake and the outflow. The application to a set of case studies belonging to the Piave River basin (Italy) suggests that optimal solutions are strongly dependent the natural flow regime at the plant intake. While in some cases (namely, reduced streamflow variability) the optimal trade-off between economic

  9. Influence of deposition of fine plant debris in river floodplain shrubs on flood flow conditions - The Warta River case study

    NASA Astrophysics Data System (ADS)

    Mazur, Robert; Kałuża, Tomasz; Chmist, Joanna; Walczak, Natalia; Laks, Ireneusz; Strzeliński, Paweł

    2016-08-01

    This paper presents problems caused by organic material transported by flowing water. This material is usually referred to as plant debris or organic debris. Its composition depends on the characteristic of the watercourse. For lowland rivers, the share of the so-called small organic matter in plant debris is considerable. This includes both various parts of water plants and floodplain vegetation (leaves, stems, blades of grass, twigs, etc.). During floods, larger woody debris poses a significant risk to bridges or other water engineering structures. It may cause river jams and may lead to damming of the flowing water. This, in turn, affects flood safety and increases flood risk in river valleys, both directly and indirectly. The importance of fine plant debris for the phenomenon being studied comes down to the hydrodynamic aspect (plant elements carried by water end up on trees and shrubs, increase hydraulic flow resistance and contribute to the nature of flow through vegetated areas changed from micro-to macro-structural). The key part of the research problem under analysis was to determine qualitative and quantitative debris parameters and to establish the relationship between the type of debris and the type of land use of river valleys (crop fields, meadows and forested river sections). Another problem was to identify parameters of plant debris for various flow conditions (e.g. for low, medium and flood flows). The research also included an analysis of the materials deposited on the structure of shrubs under flood flow conditions during the 2010 flood on the Warta River.

  10. Visual sensitivity of river recreation to power plants

    Treesearch

    David H. Blau; Michael C. Bowie

    1979-01-01

    The consultants were asked by the Power Plant Siting Staff of the Minnesota Environmental Quality Council to develop a methodology for evaluating the sensitivity of river-related recreational activities to visual intrusion by large coal-fired power plants. The methodology, which is applicable to any major stream in the state, was developed and tested on a case study...

  11. Hydrologic alteration affects aquatic plant assemblages in an arid-land river

    USGS Publications Warehouse

    Vinson, Mark; Hestmark, Bennett; Barkworth, Mary E.

    2014-01-01

    We evaluated the effects of long-term flow alteration on primary-producer assemblages. In 1962, Flaming Gorge Dam was constructed on the Green River. The Yampa River has remained an unregulated hydrologically variable river that joins the Green River 100 km downstream from Flaming Gorge Dam. In the 1960s before dam construction only sparse occurrences of two macroalgae, Cladophora and Chara, and no submerged vascular plants were recorded in the Green and Yampa rivers. In 2009–2010, aquatic plants were abundant and widespread in the Green River from the dam downstream to the confluence with the Yampa River. The assemblage consisted of six vascular species, Elodea canadensis, Myriophyllum sibiricum, Nasturtium officinale,Potamogeton crispus, Potamogeton pectinatus, and Ranunculus aquatilis, the macroalgae Chara and Cladophora, and the bryophyte, Amblystegium riparium. In the Green River downstream from the Yampa River, and in the Yampa River, only sparse patches of Chara and Cladophora growing in the splash zone on boulders were collected. We attribute the observed changes in the Green River to an increase in water transparency and a reduction in suspended and bed-load sediment and high flow disturbances. The lack of hydrophyte colonization downstream from the confluence with the Yampa River has implications for understanding tributary amelioration of dam effects and for designing more natural flow-regime schedules downstream from large dams.

  12. 78 FR 79709 - Duke Energy Florida, Inc., Crystal River Unit 3 Nuclear Generating Plant Post-Shutdown...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-31

    ...., Crystal River Unit 3 Nuclear Generating Plant Post-Shutdown Decommissioning Activities Report AGENCY...) Accession No. ML13340A009), for the Crystal River Unit 3 Nuclear Generating Plant (CR-3). The PSDAR provides.... until 9 p.m., EST, at the Crystal River Nuclear Plant Training Center/Emergency Operations Facility...

  13. Do invasive alien plants really threaten river bank vegetation? A case study based on plant communities typical for Chenopodium ficifolium-An indicator of large river valleys.

    PubMed

    Nobis, Agnieszka; Nowak, Arkadiusz; Rola, Kaja

    2018-01-01

    Riparian zones are very rich in species but subjected to strong anthropogenic changes and extremely prone to alien plant invasions, which are considered to be a serious threat to biodiversity. Our aim was to determine the spatial distribution of Chenopodium ficifolium, a species demonstrating strong confinement to large river valleys in Central Europe and an indicator of annual pioneer nitrophilous vegetation developing on river banks, which are considered to be of importance to the European Community. Additionally, the habitat preferences of the species were analysed. Differences in the richness and abundance of species diagnostic for riverside habitats, as well as the contribution of resident and invasive alien species in vegetation plots along three rivers differing in terms of size and anthropogenic impact were also examined. Finally, the effect of invaders on the phytocoenoses typical for C. ficifolium was assessed. The frequency of C. ficifolium clearly decreased with an increasing distance from the river. Among natural habitats, the species mostly preferred the banks of large rivers. The vegetation plots developing on the banks of the three studied rivers differed in total species richness, the number and cover of resident, diagnostic and invasive alien species, as well as in species composition. Our research indicates that abiotic and anthropogenic factors are the most significant drivers of species richness and plant cover of riverbank vegetation, and invasive alien plants affect this type of vegetation to a small extent.

  14. Do invasive alien plants really threaten river bank vegetation? A case study based on plant communities typical for Chenopodium ficifolium—An indicator of large river valleys

    PubMed Central

    Nowak, Arkadiusz; Rola, Kaja

    2018-01-01

    Riparian zones are very rich in species but subjected to strong anthropogenic changes and extremely prone to alien plant invasions, which are considered to be a serious threat to biodiversity. Our aim was to determine the spatial distribution of Chenopodium ficifolium, a species demonstrating strong confinement to large river valleys in Central Europe and an indicator of annual pioneer nitrophilous vegetation developing on river banks, which are considered to be of importance to the European Community. Additionally, the habitat preferences of the species were analysed. Differences in the richness and abundance of species diagnostic for riverside habitats, as well as the contribution of resident and invasive alien species in vegetation plots along three rivers differing in terms of size and anthropogenic impact were also examined. Finally, the effect of invaders on the phytocoenoses typical for C. ficifolium was assessed. The frequency of C. ficifolium clearly decreased with an increasing distance from the river. Among natural habitats, the species mostly preferred the banks of large rivers. The vegetation plots developing on the banks of the three studied rivers differed in total species richness, the number and cover of resident, diagnostic and invasive alien species, as well as in species composition. Our research indicates that abiotic and anthropogenic factors are the most significant drivers of species richness and plant cover of riverbank vegetation, and invasive alien plants affect this type of vegetation to a small extent. PMID:29543919

  15. Flora of the Savannah River Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batson, W.T.; Jones, J.T.; Angerman, J.S.

    1985-01-01

    The Savannah River Plant (SRP) occupies an area of approximately 300 square miles in the upper Coastal Plain of South Carolina. Since the early 1950's it has been the subject of numerous ecological and botanical studies, many of which are focused on environmental effects of industrial activities. Early surveys of the flora have been succeeded by ecological studies of various habitats and species. Reported here are results of a survey of the vascular plants of the SRP, and a compilation of species reported on the site in previous studies. This project was undertaken to provide a list of the naturally-occurringmore » vascular plants found on the SRP for the use of on-site researchers and visiting investigators, and to prepare a local herbarium as a reference collection of SRP plants. 60 refs., 1 fig., 1 tab.« less

  16. Utilization potential evaluation of plant resources in the dry-hot valley of Jinsha River

    NASA Astrophysics Data System (ADS)

    Xi, Rong; Xu, Naizhong; Liu, Shengxiang; Ren, Tingyan

    2017-08-01

    Plant resources in the dry-hot valley of Jinsha River are endemic to a class of district. The article adopts the analytic hierarchy process method to evaluate the exploitation and utilization potential of plant resources of thirty typical plant resources on the basis of their characteristics in the dry-hot valley of Jinsha River, which provide scientific evidence for quantitative evaluation of regional plant resources, and we also suggest pathways offering protection and development.

  17. Abandoned floodplain plant communities along a regulated dryland river

    USGS Publications Warehouse

    Reynolds, L. V.; Shafroth, Patrick B.; House, P. K.

    2014-01-01

    Rivers and their floodplains worldwide have changed dramatically over the last century because of regulation by dams, flow diversions and channel stabilization. Floodplains no longer inundated by river flows following dam-induced flood reduction comprise large areas of bottomland habitat, but the effects of abandonment on plant communities are not well understood. Using a hydraulic flow model, geomorphic mapping and field surveys, we addressed the following questions along the Bill Williams River, Arizona: (i) What per cent of the bottomland do abandoned floodplains comprise? and (ii) Are abandoned floodplains quantitatively different from adjacent xeric and riparian surfaces in terms of vegetation composition and surface sediment? We found that nearly 70% of active channel and floodplain area was abandoned following dam installation. Abandoned floodplains along the Bill Williams River tend to be similar to each other yet distinct from neighbouring habitats: they have been altered physically from their historic state, leading to distinct combinations of surface sediments, hydrology and plant communities. Abandoned floodplains may transition to xeric communities over time but are likely to retain some riparian qualities as long as there is access to relatively shallow ground water. With expected increases in water demand and drying climatic conditions in many regions, these surfaces and associated vegetation will continue to be extensive in riparian landscapes worldwide

  18. Discovery of ammocrypta clara (western sand darter) in the Upper Ohio River of West Virginia

    USGS Publications Warehouse

    Cincotta, Dan A.; Welsh, Stuart A.

    2010-01-01

    Ammocrypta clara Jordan and Meek (western sand darter) occurs primarily in the western portions of Mississippi River system, but also has been reported from a Lake Michigan drainage and a few eastern Texas Gulf Slope rivers. Additional range records depict a semi-disjunct distribution within the Ohio River drainage, including collections from Wabash River in Indiana, the Cumberland, Green, Kentucky and Big Sandy rivers of Kentucky, and the upper Tennessee River in Tennessee and Virginia. This paper documents the occurrence of A. clara from the upper Ohio River drainage within the lower Elk River, West Virginia, based on collections from 1986, 1991, 1995, 2005 and 2006. The Elk River population, consistent with those of other Ohio River drainages, has slightly higher counts for numbers of dorsal-fin rays, scales below lateral line and lateral line scales when compared to data from populations outside of the Ohio River drainage. Modal counts of meristic characters are similar among populations, except for higher modal counts of lateral line scales in the Ohio River population. The discovery of the Elk River population extends the range distribution of A. clara in the Eastern Highlands region, documents wide distributional overlap and additional sympatry with its sister species,A. pellucida (eastern sand darter), and softens support for an east-west Central Highlands vicariance hypothesis for the present distribution of A. clara and A. pellucida.

  19. Survival results of a biomass planting in the Missouri River floodplain

    Treesearch

    W. D. ' Dusty' Walter; John P. Dwyer

    2003-01-01

    A factor essential to successful tree planting in unprotected floodplain environments is survival. Two-year survival results from tree planting in an unprotected floodplain adjacent to the Missouri River are presented. Species planted included silver maple, locally collected cottonwood, and a superior cottonwood selection from Westvaco Corporation. Two spacings, 4 x 4...

  20. Dredged Illinois River Sediments: Plant Growth and Metal Uptake

    USGS Publications Warehouse

    Darmody, R.G.; Marlin, J.C.; Talbott, J.; Green, R.A.; Brewer, E.F.; Stohr, C.

    2004-01-01

    Sedimentation of the Illinois River in central Illinois has greatly diminished the utility and ecological value of the Peoria Lakes reach of the river. Consequently, a large dredging project has been proposed to improve its wildlife habitat and recreation potential, but disposal of the dredged sediment presents a challenge. Land placement is an attractive option. Previous work in Illinois has demonstrated that sediments are potentially capable of supporting agronomic crops due to their high natural fertility and water holding capacity. However, Illinois River sediments have elevated levels of heavy metals, which may be important if they are used as garden or agricultural soil. A greenhouse experiment was conducted to determine if these sediments could serve as a plant growth medium. A secondary objective was to determine if plants grown on sediments accumulated significant heavy metal concentrations. Our results indicated that lettuce (Lactuca sativa L.), barley (Hordeum vulgare L.), radish (Raphanus sativus L.), tomato (Lycopersicon lycopersicum L.), and snap bean (Phaseolus vulagaris L. var. humillis) grown in sediment and a reference topsoil did not show significant or consistent differences in germination or yields. In addition, there was not a consistent statistically significant difference in metal content among tomatoes grown in sediments, topsoil, or grown locally in gardens. In the other plants grown on sediments, while Cd and Cu in all cases and As in lettuce and snap bean were elevated, levels were below those considered excessive. Results indicate that properly managed, these relatively uncontaminated calcareous sediments can make productive soils and that metal uptake of plants grown in these sediments is generally not a concern.

  1. Ethno medicinal survey of plants used by the indigenes of Rivers State of Nigeria.

    PubMed

    Ajibesin, Kola' K; Bala, Danladi N; Umoh, Uwemedimo F

    2012-09-01

    The medicinal plants used in the traditional medicine of Rivers State of Nigeria were surveyed. The survey aims to identify and document the plants used amongst the indigenes of Rivers State. Semi-structured interviews were conducted during a field trip to gather information from traditional medical practitioners (TMPs) and community elders. Medicinal plant species (188) representing 169 genera and 82 families used in the ethno medicine of the people of Rivers State were recorded from 460 households. The most represented genera were Ipomoea and Citrus providing four species each. The most important species showed the highest Fidelity level (FL) value and these included Ageratum conyzoides L. (Asteraceae) (100%) and Tridax procumbens L. (Asteraceae) (100%). The most important categories of diseases were those that showed the highest Informant consensus factor (ICF) value of 0.99, such as dermal or digestive problems and fever/malaria. The most used plant part was leaves (42%), while decoction was the main method of drug preparation (36%). The survey shows that more than half of the medicinal plants gathered in Rivers State are also used in other countries of the world for various ailments. The high values of ICF recorded indicate high degree of agreement among the informants, while the high FL values suggest the popular use of the plants. The survey provides a useful source of information for TMPs and medicinal plant researchers. These medicinal plants gathered may bring about drug discovery and may also be incorporated into the healthcare delivery system of the country.

  2. Chemical fractionation of radionuclides and stable elements in aquatic plants of the Yenisei River.

    PubMed

    Bolsunovsky, Alexander

    2011-09-01

    The Yenisei River is contaminated with artificial radionuclides released by one of the Russian nuclear plants. The aquatic plants growing in the radioactively contaminated parts of the river contain artificial radionuclides. The aim of the study was to investigate accumulation of artificial radionuclides and stable elements by submerged plants of the Yenisei River and estimate the strength of their binding to plant biomass by using a new sequential extraction scheme. The aquatic plants sampled were: Potamogeton lucens, Fontinalis antipyretica, and Batrachium kauffmanii. Gamma-spectrometric analysis of the samples of aquatic plants has revealed more than 20 radionuclides. We also investigated the chemical fractionation of radionuclides and stable elements in the biomass and rated radionuclides and stable elements based on their distribution in biomass. The greatest number of radionuclides strongly bound to biomass cell structures was found for Potamogeton lucens and the smallest for Batrachium kauffmanii. For Fontinalis antipyretica, the number of distribution patterns that were similar for both radioactive isotopes and their stable counterparts was greater than for the other studied species. The transuranic elements (239)Np and (241)Am were found in the intracellular fraction of the biomass, and this suggested their active accumulation by the plants.

  3. Potential contribution of ecosystem services associated with altered management activities in the Wabash River watershed to sustainable water management in the Ohio River Basin

    EPA Science Inventory

    The Ohio River (OR) is an important river in North America. It has many different functions for use by humans and wildlife. Water quality of the OR main stem is 50% impaired. The impairment originates from point sources located on the shores of the OR, from non-point sources and ...

  4. Carolina bays of the Savannah River Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schalles, J.F.; Sharitz, R.R.; Gibbons, J.W.

    1989-01-01

    Much of the research to date on the Carolina bays of the Savannah River Plant and elsewhere has focused on certain species or on environmental features. Different levels of detail exist for different groups of organisms and reflect the diverse interests of previous investigators. This report summarizes aspects of research to date and presents data from numerous studies. 70 refs., 14 figs., 12 tabs.

  5. Tracking plant-derived biomarkers from source to sink in the Miners River, Upper Peninsula of Michigan (USA)

    NASA Astrophysics Data System (ADS)

    Giri, S. J.; Diefendorf, A. F.; Lowell, T. V.

    2012-12-01

    Biogeochemical cycling of terrestrial organic matter and it subsequent burial plays a vital role in the global carbon cycle. Rivers provide a pathway for terrestrial organic carbon dispersal and integration into sediments. Terrestrial plant biomarkers are useful tools for studying carbon cycling because they can provide an indication of the source of organic carbon in both modern and ancient sediments. Biomarkers can also be used as paleovegetation proxies in geologic sediments where fossils are absent. However, limited information is available about the dispersal and deposition of plant biomarkers in modern river systems, especially for compounds that provide taxonomic specificity such as di- and triterpenoids (diagnostic for conifers and angiosperms, respectively). To better resolve the modes of biomarker transport within fluvial and riparian systems, we characterized plant biomarker transport in the Miners River, a small river basin within a mixed angiosperm-conifer forest at Pictured Rocks National Lakeshore (MI, USA). To assess the transport of biomarkers in river systems, we collected plants, soils, river sediments, and filtered particulate and dissolved organic carbon from seven sites from the headwaters to Lake Superior along the Miners River (~20 km pathway). All samples contained long-chain n-alkyl lipids, sterols, diterpenoids (abietane and pimarane classes), and triterpenoids (oleanane, ursane, and lupane classes). With the exception of a soil sample taken at a depth of 30 cm, triterpenoids are found in higher concentrations than diterpenoids in riparian soils and river sediments. Biomarker compositions in riparian soils, point bar, and overbank deposits are similar to the surrounding vegetation, albeit much lower in concentration. The composition of di- and triterpenoids in the river-suspended particulate organic carbon is similar in composition to the surrounding vegetation and soils. We developed a method to isolate biomarkers in the dissolved

  6. Organic contaminants associated with suspended sediment collected during five cruises of the Mississippi River and its principal tributaries, May 1988 to June 1990

    USGS Publications Warehouse

    Rostad, Colleen E.; Bishop, LaDonna M.; Ellis, Geoffrey S.; Leiker, Thomas J.; Monsterleet, Stephanie G.; Pereira, Wilfred E.

    2004-01-01

    Suspended-sediment samples were obtained from sites along the Mississippi River and its principal tributaries to determine the presence of halogenated hydrophobic organic compounds on the suspended sediment smaller than 63 micrometers. Sample collection involved pumping discharge-weighted volumes of river water along a cross section of the river into a continuous-flow centrifuge to isolate the suspended sediment. The suspended sediment was analyzed by gas chromatography/mass spectrometry for pentachlorobenzene, hexachlorobenzene, pentachloroanisole, chlorothalonil, pentachlorophenol, dachthal, chlordane, nonachlor, and penta-, hexa-, hepta-, and octachlorobiphenyls. Samples collected during June 1989 and February-March 1990 also were analyzed for U.S. Environmental Protection Agency priority pollutants, including polycyclic aromatic hydrocarbons, phthalate esters, and triazines. Samples were collected at sites on the Mississippi River from above St. Louis, Missouri to below New Orleans, Louisiana, and on the Illinois, Missouri, Ohio, Wabash, Cumberland, Tennessee, White, Arkansas, and Yazoo Rivers. Masses of selected halogenated hydrophobic organic compounds associated with the suspended sediment at each site are presented in this report in tabular format, along with suspended-sediment concentration, water discharge, and organic-carbon content.

  7. Planted floating bed performance in treatment of eutrophic river water.

    PubMed

    Bu, Faping; Xu, Xiaoyi

    2013-11-01

    The objective of the study was to treat eutrophic river water using floating beds and to identify ideal plant species for design of floating beds. Four parallel pilot-scale units were established and vegetated with Canna indica (U1), Accords calamus (U2), Cyperus alternifolius (U3), and Vetiveria zizanioides (U4), respectively, to treat eutrophic river water. The floating bed was made of polyethylene foam, and plants were vegetated on it. Results suggest that the floating bed is a viable alternative for treating eutrophic river water, especially for inhibiting algae growth. When the influent chemical oxygen demand (COD) varied from 6.53 to 18.45 mg/L, total nitrogen (TN) from 6.82 to 12.25 mg/L, total phosphorus (TP) from 0.65 to 1.64 mg/L, and Chla from 6.22 to 66.46 g/m(3), the removal of COD, TN, TP, and Chla was 15.3%-38.4%, 25.4%-48.4%, 16.1%-42.1%, and 29.9 %-88.1%, respectively. Ranked by removal performance, U1 was best, followed by U2, U3, and U4. In the floating bed, more than 60% TN and TP were removed by sedimentation; plant uptake was quantitatively of low importance with an average removal of 20.2% of TN and 29.4% of TP removed. The loss of TN (TP) was of the least importance. Compared with the other three, U1 exhibited better dissolved oxygen (DO) gradient distributions, higher DO levels, higher hydraulic efficiency, and a higher percentage of nutrient removal attributable to plant uptake; in addition, plant development and the volume of nutrient storage in the C. indica tissues outperformed the other three species. C. indica thus could be selected when designing floating beds for the Three Gorges Reservoir region of P. R. China.

  8. Random River Fluctuations Shape the Root Profile of Riparian Plants

    NASA Astrophysics Data System (ADS)

    Perona, P.; Tron, S.; Gorla, L.; Schwarz, M.; Laio, F.; Ridolfi, L.

    2015-12-01

    Plant roots are recognized to play a key role in the riparian ecosystems: they contribute to the plant as well as to the streambank and bedforms stability, help to enhance the water quality of the river, and sustain the belowground biodiversity. The complexity of the root-system architecture recalls their remarkable ability to respond to environmental conditions, notably including soil heterogeneity, resource availability, and climate. In fluvial environments where nutrient availability is not a limiting factor for plant to grow, the root growth of phreatophytic plants is strongly influenced by water and oxygen availability in the soil. In this work, we demonstrate that the randomness of water table fluctuations, determined by streamflow stochastic variability, is likely to be the main driver for the root development strategy of riparian plants. A collection of root measurements from field and outdoor controlled experiments is used to demonstrate that the vertical root density distribution can be described by a simple analytical expression, whose parameters are linked to properties of soil, plant and water table fluctuations. This physically-based expression is able to predict riparian plant roots adaptability to different hydrological and pedologic scenarios in riverine environments. Hence, this model has great potential towards the comprehension of the effects of future climate and environmental changing conditions on plant adaptation and river ecomorphodynamic processes. Finally, we present an open access graphical user interface that we developed in order to estimate the vertical root distribution in fluvial environments and to make the model easily available to a wider scientific and professional audience.

  9. Responses of Aquatic Plants to Eutrophication in Rivers: A Revised Conceptual Model

    PubMed Central

    O’Hare, Matthew T.; Baattrup-Pedersen, Annette; Baumgarte, Inga; Freeman, Anna; Gunn, Iain D. M.; Lázár, Attila N.; Sinclair, Raeannon; Wade, Andrew J.; Bowes, Michael J.

    2018-01-01

    Compared to research on eutrophication in lakes, there has been significantly less work carried out on rivers despite the importance of the topic. However, over the last decade, there has been a surge of interest in the response of aquatic plants to eutrophication in rivers. This is an area of applied research and the work has been driven by the widespread nature of the impacts and the significant opportunities for system remediation. A conceptual model has been put forward to describe how aquatic plants respond to eutrophication. Since the model was created, there have been substantial increases in our understanding of a number of the underlying processes. For example, we now know the threshold nutrient concentrations at which nutrients no longer limit algal growth. We also now know that the physical habitat template of rivers is a primary selector of aquatic plant communities. As such, nutrient enrichment impacts on aquatic plant communities are strongly influenced, both directly and indirectly, by physical habitat. A new conceptual model is proposed that incorporates these findings. The application of the model to management, system remediation, target setting, and our understanding of multi-stressor systems is discussed. We also look to the future and the potential for new numerical models to guide management. PMID:29755484

  10. Hydro-economic performances of streamflow withdrawal strategies: the case of small run-of-river power plants

    NASA Astrophysics Data System (ADS)

    Basso, Stefano; Lazzaro, Gianluca; Schirmer, Mario; Botter, Gianluca

    2014-05-01

    River flows withdrawals to supply small run-of-river hydropower plants have been increasing significantly in recent years - particularly in the Alpine area - as a consequence of public incentives aimed at enhancing energy production from renewable sources. This growth further raised the anthropic pressure in areas traditionally characterized by an intense exploitation of water resources, thereby triggering social conflicts among local communities, hydropower investors and public authorities. This brought to the attention of scientists and population the urgency for novel and quantitative tools for assessing the hydrologic impact of these type of plants, and trading between economic interests and ecologic concerns. In this contribution we propose an analytical framework that allows for the estimate of the streamflow availability for hydropower production and the selection of the run-of-river plant capacity, as well as the assessment of the related profitability and environmental impacts. The method highlights the key role of the streamflow variability in the design process, by showing the significance control of the coefficient of variation of daily flows on the duration of the optimal capacity of small run-of-river plants. Moreover, the analysis evidences a gap between energy and economic optimizations, which may result in the under-exploitation of the available hydropower potential at large scales. The disturbances to the natural flow regime produced between the intake and the outflow of run-of-river power plants are also estimated within the proposed framework. The altered hydrologic regime, described through the probability distribution and the correlation function of streamflows, is analytically expressed as a function of the natural regime for different management strategies. The deviations from pristine conditions of a set of hydrologic statistics are used, jointly with an economic index, to compare environmental and economic outcomes of alternative plant

  11. Waterfowl of the Savannah River Plant: Comprehensive cooling water study. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayer, J.J.; Kennamer, R.A.; Hoppe, R.T.

    1986-06-01

    Thirty-one species of waterfowl have been documented on the Savannah River Plant (SPR). The Savannah River Ecology Laboratory (SREL) has been conducting waterfowl research on the site for the past 15 years. This research has included work on waterfowl utilization of the SRP, wood duck reproductive biology, and waterfowl wintering ecology. Results are described.

  12. Plant diversity in riparian forests in northwest Colorado: Effects of time and river regulation

    Treesearch

    Amanda L. Uowolo; Dan Binkley; E. Carol Adair

    2005-01-01

    During the 20th Century the flow of most rivers in the United States was regulated by diversions and dams, with major impacts on riparian forests. Few unregulated rivers remain to provide baseline information for assessing these impacts. We characterized patterns in riparian plant communities along chronosequences on the unregulated Yampa River and the regulated Green...

  13. Estimating Nitrogen Loads, BMPs, and Target Loads Exceedance Risks

    EPA Science Inventory

    The Wabash River (WR) watershed, IN, drains two-thirds of the state’s 92 counties and has primarily agricultural land use. The nutrient and sediment loads of the WR significantly increase loads of the Ohio River ultimately polluting the Gulf of Mexico. The objective of this study...

  14. Floods of March 1982, Indiana, Michigan, and Ohio

    USGS Publications Warehouse

    Glatfelter, D.R.; Butch, G.K.; Stewart, J.A.

    1984-01-01

    Rapid melting of a snowpack containing 2 to 6 inches of water equivalent coinciding with moderate rainfall caused flooding in March 1982 across northern Indiana, southern Michigan, and northwestern Ohio. Millions of dollars in property damage and the loss of four lives resulted from the flooding. Peak discharges at several gaging stations in each of the following river basins have recurrence intervals of 50 to greater than 100 years: Wabash, St. Joseph, River Raisin, Maumee, and Kankakee. Flooding in the Wabash River basin was confined to major tributaries draining from the north. The St. Joseph River experienced flooding having a recurrence interval of about 50 years. Peak discharges having recurrence intervals of 50 to greater than 100 years were recorded on the River Raisin. Flooding on most large streams in the Maumee River basin was the worst since 1913. The Kankakee River and its major tributary, Yellow River, recorded peak discharges having recurrence intervals greater than 100 years. Hydrologic data have been tabulated for 83 gaging stations and partial-record sites. Maps are presented to emphasize the severity and untimely sequence of meteorological conditions that provided the potential and triggered the floods. Hydrographs are shown for 32 gaging stations.

  15. Reptiles and amphibians of the Savannah River Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibbons, J.W.; Patterson, K.K.

    1978-11-01

    Taxonomic, distributional, and ecological information on the reptiles and amphibians of the Savannah River Plant (SRP) is provided. The purpose of such a presentation is to give a professional biologist an initial familiarity with herpetology on the SRP, and to provide sufficient comprehensive information to an ecologist, regardless of his experience in herpetology, to permit him to undertake studies that in some manner incorporate the herpetofauna of the SRP. (ERB)

  16. Numerical Estimation of the Outer Bank Resistance Characteristics in AN Evolving Meandering River

    NASA Astrophysics Data System (ADS)

    Wang, D.; Konsoer, K. M.; Rhoads, B. L.; Garcia, M. H.; Best, J.

    2017-12-01

    Few studies have examined the three-dimensional flow structure and its interaction with bed morphology within elongate loops of large meandering rivers. The present study uses a numerical model to simulate the flow pattern and sediment transport, especially the flow close to the outer-bank, at two elongate meandering loops in Wabash River, USA. The numerical grid for the model is based on a combination of airborne LIDAR data on floodplains and the multibeam data within the river channel. A Finite Element Method (FEM) is used to solve the non-hydrostatic RANS equation using a K-epsilon turbulence closure scheme. High-resolution topographic data allows detailed numerical simulation of flow patterns along the outer bank and model calibration involves comparing simulated velocities to ADCP measurements at 41 cross sections near this bank. Results indicate that flow along the outer bank is strongly influenced by large resistance elements, including woody debris, large erosional scallops within the bank face, and outcropping bedrock. In general, patterns of bank migration conform with zones of high near-bank velocity and shear stress. Using the existing model, different virtual events can be simulated to explore the impacts of different resistance characteristics on patterns of flow, sediment transport, and bank erosion.

  17. UV disinfection pilot plant study at the Savannah River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huffines, R.L.; Beavers, B.A.

    1993-05-01

    An ultraviolet light disinfection system pilot plant was operated at the Savannah River Site Central Shops sanitary wastewater treatment package plant July 14, 1992 through August 13, 1992. The purpose was to determine the effectiveness of ultraviolet light disinfection on the effluent from the small package-type wastewater treatment plants currently used on-site. This pilot plant consisted of a rack of UV lights suspended in a stainless steel channel through which a sidestream of effluent from the treatment plant clarifier was pumped. Fecal coliform analyses were performed on the influent to and effluent from the pilot unit to verify the disinfectionmore » process. UV disinfection was highly effective in reducing fecal coliform colonies within NPDES permit limitations even under process upset conditions. The average fecal coliform reduction exceeded 99.7% using ultraviolet light disinfection under normal operating conditions at the package treatment plants.« less

  18. UV disinfection pilot plant study at the Savannah River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huffines, R.L.; Beavers, B.A.

    1993-01-01

    An ultraviolet light disinfection system pilot plant was operated at the Savannah River Site Central Shops sanitary wastewater treatment package plant July 14, 1992 through August 13, 1992. The purpose was to determine the effectiveness of ultraviolet light disinfection on the effluent from the small package-type wastewater treatment plants currently used on-site. This pilot plant consisted of a rack of UV lights suspended in a stainless steel channel through which a sidestream of effluent from the treatment plant clarifier was pumped. Fecal coliform analyses were performed on the influent to and effluent from the pilot unit to verify the disinfectionmore » process. UV disinfection was highly effective in reducing fecal coliform colonies within NPDES permit limitations even under process upset conditions. The average fecal coliform reduction exceeded 99.7% using ultraviolet light disinfection under normal operating conditions at the package treatment plants.« less

  19. Horizontal Cross Bracing Detail, Vertical Cross Bracing Detail, Horizontal Cross ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Horizontal Cross Bracing Detail, Vertical Cross Bracing Detail, Horizontal Cross Bracing Joint, Vertical Cross Bracing End Detail - Ceylon Covered Bridge, Limberlost Park, spanning Wabash River at County Road 900 South, Geneva, Adams County, IN

  20. Low-flow study for southwest Ohio streams

    USGS Publications Warehouse

    Webber, Earl E.; Mayo, Ronald I.

    1971-01-01

    Low-flow discharges at 60 sites on streams in the Little Miami River, Mill Creek, Great Miami River and Wabash River basins are presented in this report. The average annual minimum flows in cubic feet per second (cfs) for a 7-day period of 10-year frequency and a 1-day period of 30-year frequency are computed for each of the 60 sites.

  1. On the control of riverbed incision induced by run-of-river power plant

    NASA Astrophysics Data System (ADS)

    Bizzi, Simone; Dinh, Quang; Bernardi, Dario; Denaro, Simona; Schippa, Leonardo; Soncini-Sessa, Rodolfo

    2015-07-01

    Water resource management (WRM) through dams or reservoirs is worldwide necessary to support key human-related activities, ranging from hydropower production to water allocation and flood risk mitigation. Designing of reservoir operations aims primarily to fulfill the main purpose (or purposes) for which the structure has been built. However, it is well known that reservoirs strongly influence river geomorphic processes, causing sediment deficits downstream, altering water, and sediment fluxes, leading to riverbed incision and causing infrastructure instability and ecological degradation. We propose a framework that, by combining physically based modeling, surrogate modeling techniques, and multiobjective (MO) optimization, allows to include fluvial geomorphology into MO optimization whose main objectives are the maximization of hydropower revenue and the minimization of riverbed degradation. The case study is a run-of-the-river power plant on the River Po (Italy). A 1-D mobile-bed hydro-morphological model simulated the riverbed evolution over a 10 year horizon for alternatives operation rules of the power plant. The knowledge provided by such a physically based model is integrated into a MO optimization routine via surrogate modeling using the response surface methodology. Hence, this framework overcomes the high computational costs that so far hindered the integration of river geomorphology into WRM. We provided numerical proof that river morphologic processes and hydropower production are indeed in conflict but that the conflict may be mitigated with appropriate control strategies.

  2. The 'Ahakhav Native Plant Nursery on the Colorado River Indian Reservation: Growing trees and shrubs for southwest restoration

    Treesearch

    Jennifer Kleffner

    2002-01-01

    The Colorado River Indian Reservation is located in southwestern Arizona on the California/Arizona border. On the reservation is the 'Ahakhav Tribal Preserve, located on the banks of the Lower Colorado River. On the preserve is the 'Ahakhav Native Plant Nursery, specializing in plants used for southwest riparian restoration. The nursery primarily grows native...

  3. Preliminary Results of Crustal Structure beneath the Wabash Valley Seismic Zone Using Teleseismic Receiver Functions and Ambient Noise Tomography

    NASA Astrophysics Data System (ADS)

    Zhu, L.; Aziz Zanjani, A.; Hu, S.; Liu, Y.; Herrmann, R. B.; Conder, J. A.

    2015-12-01

    As part of a on-going EarthScope FlexArray project, we deployed 45 broadband seismographs in a 300-km-long linear profile across the Wabash Valley Seismic Zone (WVSZ). Here we present preliminary results of crustal structure beneath WVSZ based on teleseismic receiver functions and ambient noise tomography. We combined waveform data of the temporary stations in 2014 with those of permanent seismic stations and the transportable array stations in our study area since 2011. We found 656 teleseismic events with clear P-wave signals and obtained 2657 good-quality receiver functions of 84 stations using a time-domain iterative deconvolution method. We estimated crustal thickness and Vp/Vs ratio beneath each station using the H-κ stacking method. A high-resolution crustal structural image along the linear profile was obtained using the Common-Conversion-Point (CCP) stacking method. We also measured Rayleigh-wave phase and group velocities from 5 to 50 s by cross-correlating ambient noises between stations and did joint-inversion of receiver functions and surface wave dispersions for S-velocity structures beneath selected stations. The results show that the average crustal thickness in the region is 47 km with a gentle increase of crustal thickness from southeast to northwest. A mid-crustal interface is identified in the CCP image that also deepens from 15 km in the southeastern end to >20 km in the northwest. The CCP image shows that the low-velocity sedimentary layer along the profile is broad and is thickest (~10 km) near the center of the Wabash Valley. Beneath the center of the Valley there is a 40-km-wide positive velocity discontinuity at a depth of 40 km in the lower crust that might be the top of a rift pillow in this failed continental rift. Further results using 3D joint inversion and CCP migration will be presented at the meeting.

  4. Community analysis of pitcher plant bogs of the Little River Canyon National Preserve, Alabama

    Treesearch

    Robert Carter; Terry Boyer; Heather McCoy; Andrew J. Londo

    2006-01-01

    Pitcher plant bogs of the Little River Canyon National Preserve in northern Alabama contain the federally endangered green pitcher plant [Sarracenia oreophila (Kearney) Wherry]. Multivariate analysis of the bog vegetation and environmental variables revealed three communities with unique species compositions and soil characteristics. The significant...

  5. Selenium in water, sediment, plants, invertebrates, and fish in the Blackfoot River drainage

    USGS Publications Warehouse

    Hamilton, S.J.; Buhl, K.J.

    2004-01-01

    Nine stream sites in the Blackfoot River watershed in southeastern Idaho were sampled in September 2000 for water, surficial sediment, aquatic plants, aquatic invertebrates, and fish. Selenium was measured in these aquatic ecosystem components, and a hazard assessment was performed on the data. Water quality characteristics such as pH, hardness, and specific conductance were relatively uniform among the nine sites examined. Selenium was elevated in water, sediment, aquatic plants, aquatic invertebrates, and fish from several sites suggesting deposition in sediments and food web cycling through plants and invertebrates. Selenium was elevated to concentrations of concern in water at eight sites (>5 ??g/L), sediment at three sites (>2 ??g/g), aquatic plants at four sites (>4 ??g/g), aquatic invertebrates at five sites (>3 ??g/g), and fish at seven sites (>4 ??g/g in whole body). The hazard assessment of selenium in the aquatic environment suggested low hazard at Sheep Creek, moderate hazard at Trail Creek, upper Slug Creek, lower Slug Creek, and lower Blackfoot River, and high hazard at Angus Creek, upper East Mill Creek, lower East Mill Creek, and Dry Valley Creek. The results of this study are consistent with results of a previous investigation and indicate that selenium concentrations from the phosphate mining area of southeastern Idaho were sufficiently elevated in several ecosystem components to cause adverse effects to aquatic resources in the Blackfoot River watershed. ?? 2004 Kluwer Academic Publishers.

  6. The role of large predators in maintaining riparian plant communities and river morphology

    NASA Astrophysics Data System (ADS)

    Beschta, Robert L.; Ripple, William J.

    2012-07-01

    Studies assessing the potential for large predators to affect, via trophic cascades, the dynamics of riparian plant communities and the morphology of river channels have been largely absent in the scientific literature. Herein, we consider the results of recent studies involving three national parks in the western United States: Yellowstone, Olympic, and Zion. Within each park, key large predators were extirpated or displaced in the early 1900s and subsequent browsing pressure by native ungulates initiated long-term declines in recruitment (i.e., growth of seedlings/sprouts into tall saplings and trees) of palatable woody species and impairment of other resources. Channel responses to browsing-suppressed riparian vegetation included increased widths of active channels via accelerated bank erosion, erosion of floodplains and erraces, increased area of unvegetated alluvium, channel incision, and increased braiding. A reduced frequency of overbank flows indicated these rivers have become increasingly disconnected from historical floodplains because of channel widening/incision. Results from Zion National Park also identified major biodiversity affects (e.g., reduced abundance of plant and animal species). Although these studies were conducted in national parks, results may have implications concerning riparian plant communities, biodiversity, and channel morphology for streams and rivers draining other public lands in the western US. It is on these lands that native and introduced ungulates have often heavily utilized riparian areas, largely in the absence of key predators, with significant consequences to plant communities and channels.

  7. Stability analysis of a run-of-river diversion hydropower plant with surge tank and spillway in the head pond.

    PubMed

    Sarasúa, José Ignacio; Elías, Paz; Martínez-Lucas, Guillermo; Pérez-Díaz, Juan Ignacio; Wilhelmi, José Román; Sánchez, José Ángel

    2014-01-01

    Run-of-river hydropower plants usually lack significant storage capacity; therefore, the more adequate control strategy would consist of keeping a constant water level at the intake pond in order to harness the maximum amount of energy from the river flow or to reduce the surface flooded in the head pond. In this paper, a standard PI control system of a run-of-river diversion hydropower plant with surge tank and a spillway in the head pond that evacuates part of the river flow plant is studied. A stability analysis based on the Routh-Hurwitz criterion is carried out and a practical criterion for tuning the gains of the PI controller is proposed. Conclusions about the head pond and surge tank areas are drawn from the stability analysis. Finally, this criterion is applied to a real hydropower plant in design state; the importance of considering the spillway dimensions and turbine characteristic curves for adequate tuning of the controller gains is highlighted.

  8. Stability Analysis of a Run-of-River Diversion Hydropower Plant with Surge Tank and Spillway in the Head Pond

    PubMed Central

    Sarasúa, José Ignacio; Elías, Paz; Wilhelmi, José Román; Sánchez, José Ángel

    2014-01-01

    Run-of-river hydropower plants usually lack significant storage capacity; therefore, the more adequate control strategy would consist of keeping a constant water level at the intake pond in order to harness the maximum amount of energy from the river flow or to reduce the surface flooded in the head pond. In this paper, a standard PI control system of a run-of-river diversion hydropower plant with surge tank and a spillway in the head pond that evacuates part of the river flow plant is studied. A stability analysis based on the Routh-Hurwitz criterion is carried out and a practical criterion for tuning the gains of the PI controller is proposed. Conclusions about the head pond and surge tank areas are drawn from the stability analysis. Finally, this criterion is applied to a real hydropower plant in design state; the importance of considering the spillway dimensions and turbine characteristic curves for adequate tuning of the controller gains is highlighted. PMID:25405237

  9. Aquatic snails (Gastropoda) of the Savannah River Plant, Aiken, South Carolina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, D.H.

    1982-04-01

    A system of taxonomic aids to the snails of the Savannah River Plant (SRP) area is presented. The first part of the system is a dichotomous key. Descriptive terms not used in general ecology have been defined in a glossary. The second part of the system is a series of illustrated descriptions which will confirm identifications made using the key. Illustrations were prepared from specimens collected on the SRP or in the Savannah River on or near the SRP, with the exception of a few uncommon species which have been illustrated by using specimens from the Academy of Natural Sciencesmore » of Philadelphia (ANSP). The Academy collected those specimens in surveys of the Savannah River from 1952 through 1975. Ecological and distributional notes, where available, are included with the species descriptions.« less

  10. Comparison of balance of tritium activity in waste water from nuclear power plants and at selected monitoring sites in the Vltava River, Elbe River and Jihlava (Dyje) River catchments in the Czech Republic.

    PubMed

    Hanslík, Eduard; Marešová, Diana; Juranová, Eva; Sedlářová, Barbora

    2017-12-01

    During the routine operation, nuclear power plants discharge waste water containing a certain amount of radioactivity, whose main component is the artificial radionuclide tritium. The amounts of tritium released into the environment are kept within the legal requirements, which minimize the noxious effects of radioactivity, but the activity concentration is well measurable in surface water of the recipient. This study compares amount of tritium activity in waste water from nuclear power plants and the tritium activity detected at selected relevant sites of surface water quality monitoring. The situation is assessed in the catchment of the Vltava and Elbe Rivers, affected by the Temelín Nuclear Power Plant as well as in the Jihlava River catchment (the Danube River catchment respectively), where the waste water of the Dukovany Nuclear Power Plant is discharged. The results show a good agreement of the amount of released tritium stated by the power plant operator and the tritium amount detected in the surface water and highlighted the importance of a robust independent monitoring of tritium discharged from a nuclear power plant which could be carried out by water management authorities. The outputs of independent monitoring allow validating the values reported by a polluter and expand opportunities of using tritium as e.g. tracer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Solanaceae plant malformation in Chongqing City, China, reveals a pollution threat to the Yangtze River.

    PubMed

    Zhang, Hongbo; Liu, Guanshan; Timko, Michael P; Li, Jiana; Wang, Wenjing; Ma, Haoran

    2014-10-21

    Water quality is under increasing threat from industrial and natural sources of pollutants. Here, we present our findings about a pollution incident involving the tap water of Chongqing City in China. In recent years, Solanaceae plants grown in greenhouses in this city have displayed symptoms of cupped, strappy leaves. These symptoms resembled those caused by chlorinated auxinic herbicides. We have determined that these symptoms were caused by the tap water used for irrigation. Using a bioactivity-guided fractionation method, we isolated a substance with corresponding auxinic activity from the tap water. The substance was named "solanicide" because of its strong bioactivity against Solanaceae plants. Further investigation revealed that the solanicide in the water system of Chongqing City is derived from the Jialing River, a major tributary of the Yangtze River. Therefore, it is also present in the Yangtze River downstream of Chongqing after the inflow of the Jialing River. Biological analyses indicated that solanicide is functionally similar to, but distinct from, other known chlorinated auxinic herbicides. Chemical assays further showed that solanicide structurally differs from those compounds. This study has highlighted a water pollution threat to the Yangtze River and its floodplain ecosystem.

  12. Analysis of water use strategies of the desert riparian forest plant community in inland rivers of two arid regions in northwestern China

    NASA Astrophysics Data System (ADS)

    Chen, Y. N.; Li, W. H.; Zhou, H. H.; Chen, Y. P.; Hao, X. M.; Fu, A. H.; Ma, J. X.

    2014-10-01

    Studies of the water use of the desert riparian forest plant community in arid regions and analyses of the response and adaptive strategies of plants to environmental stress are of great significance to the formulation of effective ecological conservation and restoration strategies. Taking two inland rivers in the arid regions of northwestern China, downstream of the Tarim River and Heihe River Basin as the research target regions, this paper explored the stem water potential, sap flow, root hydraulic lift, and characteristics of plant water sources of the major constructive species in the desert riparian forest, Populus euphratica and Tamarix ramosissima. Specifically, this was accomplished by combining the monitoring of field physiological and ecological indicators, and the analysis of laboratory tests. Then, the water use differences of species in different ecological environments and their ecological significance were analyzed. This study indicated that: (1) in terms of water sources, Populus euphratica and Tamarix ramosissima mainly used deep subsoil water and underground water, but the plant root system in the downstream of the Tarim River was more diversified than that in the downstream of the Heihe River in water absorption, (2) in terms of water distribution, Populus euphratica root possessed hydraulic lift capacity, but Populus euphratica root in the downstream of the Tarim River presented stronger hydraulic lift capacity and more significant ecological effect of water redistribution, (3) in terms of water transport, the plants in the downstream of the Heihe River can adapt to the environment through the current limiting of branch xylem, while plants in the downstream of the Tarim River substantially increased the survival probability of the whole plant by sacrificing weak branches and improving the water acquisition capacity of dominant branches; and (4) in terms of water dissipation, the water use and consumption of Populus euphratica at night exhibited

  13. Biogeochemical features of aquatic plants in the Selenga River delta

    NASA Astrophysics Data System (ADS)

    Shinkareva, Galina; Lychagin, Mikhail

    2014-05-01

    The Selenga River system provides more than a half of the Lake Baikal total inflow. The river collects a significant amount of pollutants (e.g. heavy metals) from the whole basin. These substances are partially deposited within the Selenga delta, and partially are transported further to the lake. A generous amount of aquatic plants grow in the delta area according to its favorable conditions. This vegetation works as a specific biofilter. It accumulates suspended particles and sorbs some heavy metals from the water. The study aimed to reveal the species of macrophytes which could be mostly important for biomonitoring according to their chemical composition. The field campaign took place in the Selenga River delta in July-August of 2011 (high water period) and in June of 2012 (low water period). 14 species of aquatic plants were collected: water starwort Callitriche hermaphroditica, small yellow pond lily Nuphar pumila, pondweeds Potamogeton crispus, P. pectinatus, P. friesii, broadleaf cattail Typha latifolia, hornwort or coontail Ceratophyllum demersum, arrowhead Sagittaria natans, flowering rush (or grass rush) Butomus umbellatus, reed Phragmites australis, parrot's feather Myriophyllum spicatum, the common mare's tail Hippuris vulgaris, Batrachium trichophyllum, canadian waterweed Elodea canadensis. The samples were dried, grinded up and digested in a mixture of HNO3 and H2O2. The chemical composition of the plant material was defined using ICP-MS and ICP-AES methods. Concentrations of Fe, Mn, Cr, Ni, Cu, B, Zn, V, Co, As, Mo, Pb, and U were considered. The study revealed that Potamogeton pectinatus and Myriophyllum spicatum concentrate elements during both high and low water periods. Conversely the Butomus umbellatus and Phragmites australis contain small amount of heavy metals. The reed as true grasses usually accumulates fewer amounts of elements than other macrophytes. To compare biogeochemical specialization of different species we suggest to use

  14. 76 FR 18213 - Ameren Services Company, Northern Indiana Public Service Company v. Midwest Independent...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-01

    .... Midwest Independent Transmission System Operator, Inc.; Great Lakes Utilities, Indiana Municipal Power Agency, Missouri Joint Municipal Electric Utility Commission, Missouri River Energy Services, Prairie... Independent Transmission System Operator, Operator, Inc.; Wabash Valley Power Association, Inc. v. Midwest...

  15. Monitoring and assessment of radionuclide discharges from Temelín Nuclear Power Plant into the Vltava River (Czech Republic).

    PubMed

    Hanslík, Eduard; Ivanovová, Diana; Juranová, Eva; Simonek, Pavel; Jedináková-Krízová, Vĕra

    2009-02-01

    The paper summarizes impacts of the Temelín Nuclear Power Plant (NPP) on the Vltava and Labe River basins. The study is based on the results of long-term monitoring carried out before the plant operation (1989-2000), and subsequently during the plant operation (2001-2005). In the first period, the main objective was to determine background radionuclide levels remaining in the environment after global fallout and due to the Chernobyl accident. A decrease in the concentrations of (90)Sr, (134)Cs and (137)Cs, which was observed before the plant operation, continued also during the subsequent period. Apart from tritium, the results of the observation did not indicate any impacts of the plant on the concentrations of activation and fission products in the hydrosphere. The annual average tritium concentrations in the Vltava River were in agreement with predicted values. The maximum annual average tritium concentration (13.5 Bq L(-1)) was observed in 2004 downstream from the wastewater discharge in the Vltava River at Solenice. Estimated radiation doses for adults due to intakes of river water as drinking water contaminated by tritium are below 0.1 microSv y(-1).

  16. Seasonal trends in eDNA detection and occupancy of bigheaded carps

    USGS Publications Warehouse

    Erickson, Richard A.; Merkes, Christopher; Jackson, Craig; Goforth, Reuben; Amberg, Jon J.

    2017-01-01

    Bigheaded carps, which include silver and bighead carp, are threatening to invade the Great Lakes. These species vary seasonally in distribution and abundance due to environmental conditions such as precipitation and temperature. Monitoring this seasonal movement is important for management to control the population size and spread of the species. We examined if environmental DNA (eDNA) approaches could detect seasonal changes of these species. To do this, we developed a novel genetic marker that was able to both detect and differentiate bighead and silver carp DNA. We used the marker, combined with a novel occupancy model, to study the occurrence of bigheaded carps at 3 sites on the Wabash River over the course of a year. We studied the Wabash River because of concerns that carps may be able to use the system to invade the Great Lakes via a now closed (ca. 2017) connection at Eagle Marsh between the Wabash River's watershed and the Great Lakes' watershed. We found seasonal trends in the probability of detection and occupancy that varied across sites. These findings demonstrate that eDNA methods can detect seasonal changes in bigheaded carps densities and suggest that the amount of eDNA present changes seasonally. The site that was farthest upstream and had the lowest carp densities exhibited the strongest seasonal trends for both detection probabilities and sample occupancy probabilities. Furthermore, other observations suggest that carps seasonally leave this site, and we were able to detect this with our eDNA approach.

  17. Riparian Plant Water Relations Along the North Fork Kings River, California

    Treesearch

    Janet L. Nachlinger; Stanley D. Smith; Roland J. Risser

    1989-01-01

    Plant water relations of five obligate riparian species were studied along California's North Fork Kings River. Diurnal stomatal conductance, transpiration, and xylem pressure potentials were measured throughout the 1986 growing season and in mid-season in 1987. Patterns were similar for all species although absolute values varied considerably. Maximum stomatal...

  18. 78 FR 16302 - Crystal River Unit 3 Nuclear Generating Plant, Application for Amendment to Facility Operating...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-14

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-302; NRC-2011-0301] Crystal River Unit 3 Nuclear... the Crystal River Unit 3 Nuclear Generating Plant (CR-3), located in Florida, Citrus County. The... notice (if that document is available in ADAMS) is provided the first time that a document is referenced...

  19. The Detroit River: Effects of contaminants and human activities on aquatic plants and animals and their habitats

    USGS Publications Warehouse

    Manny, Bruce A.; Kenaga, David

    1991-01-01

    Despite the extensive urbanization of its watershed, the Detroit River still supports diverse fish and wildlife populations. Conflicting uses of the river for waste disposal, water withdrawals, shipping, recreation, and fishing require innovative management. Chemicals added by man to the Detroit River have adversely affected the health and habitats of the river's plants and animals. In 1985, as part of an Upper Great Lakes Connecting Channels Study sponsored by Environment Canada and the U.S. Environmental Protection Agency, researchers exposed healthy bacteria, plankton, benthic macroinvertebrates, fish, and birds to Detroit River sediments and sediment porewater. Negative impacts included genetic mutations in bacteria; death of macroinvertebrates; accumulation of contaminants in insects, clams, fish, and ducks; and tumor formation in fish. Field surveys showed areas of the river bottom that were otherwise suitable for habitation by a variety of plants and animals were contaminated with chlorinated hydrocarbons and heavy metals and occupied only by pollution-tolerant worms. Destruction of shoreline wetlands and disposal of sewage and toxic substances in the Detroit River have reduced habitat and conflict with basic biological processes, including the sustained production of fish and wildlife. Current regulations do not adequately control pollution loadings. However, remedial actions are being formulated by the U.S. and Canada to restore degraded benthic habitats and eliminate discharges of toxic contaminants into the Detroit River.

  20. Nutrient removal by up-scaling a hybrid floating treatment bed (HFTB) using plant and periphyton: From laboratory tank to polluted river.

    PubMed

    Liu, Junzhuo; Wang, Fengwu; Liu, Wei; Tang, Cilai; Wu, Chenxi; Wu, Yonghong

    2016-05-01

    Planted floating treatment bed (FTB) is an innovative technique of removing nutrients from polluted water but limited in deep water and cold seasons. Periphyton was integrated into FTB for a hybrid floating treatment bed (HFTB) to improve its nutrient removal capacity. To assess its potential for treating nutrient-polluted rivers, HFTB was up-scaled from 5L laboratory tanks to 350L outdoor tanks and then to a commercial-scale 900m section of polluted river. Plants and periphyton interacted in HFTB with periphyton limiting plant root growth and plants having shading effects on periphyton. Non-overlapping distribution of plants and periphyton can minimize the negative interactions in HFTB. HFTB successfully kept TN and TP of the river at less than 2.0 and 0.02mgL(-1), respectively. This study indicates that HFTB can be easily up-scaled for nutrients removal from polluted rivers in different seasons providing a long-term, environmentally-friendly method to remediate polluted ecosystems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Climatic and geomorphic drivers of plant organic matter transport in the Arun River, E Nepal

    NASA Astrophysics Data System (ADS)

    Hoffmann, Bernd; Feakins, Sarah J.; Bookhagen, Bodo; Olen, Stephanie M.; Adhikari, Danda P.; Mainali, Janardan; Sachse, Dirk

    2016-10-01

    Fixation of atmospheric CO2 in terrestrial vegetation, and subsequent export and deposition of terrestrial plant organic matter in marine sediments is an important component of the global carbon cycle, yet it is difficult to quantify. This is partly due to the lack of understanding of relevant processes and mechanisms responsible for organic-matter transport throughout a landscape. Here we present a new approach to identify terrestrial plant organic matter source areas, quantify contributions and ascertain the role of ecologic, climatic, and geomorphic controls on plant wax export in the Arun River catchment spanning the world's largest elevation gradient from 205 to 8848 m asl, in eastern Nepal. Our approach takes advantage of the distinct stable hydrogen isotopic composition (expressed as δD values) of plant wax n-alkanes produced along this gradient, transported in river waters and deposited in flood deposits alongside the Arun River and its tributaries. In mainstem-flood deposits, we found that plant wax n-alkanes were mostly derived from the lower elevations constituting only a small fraction (15%) of the catchment. Informed by remote sensing data, we tested four differently weighted isotopic mixing models that quantify sourcing of tributary plant-derived organic matter along the Arun and compare it to our field observations. The weighting parameters included catchment area, net primary productivity (NPP) and annual rainfall amount as well as catchment relief as erosion proxy. When weighted by catchment area the isotopic mixing model could not explain field observations on plant wax δD values along the Arun, which is not surprising because the large arid Tibetan Plateau is not expected to be a major source. Weighting areal contributions by annual rainfall and NPP captured field observations within model prediction errors suggesting that plant productivity may influence source strength. However weighting by a combination of rainfall and catchment relief also

  2. Reconstructing the Historical Series of Plant Functional Types in the Three-River Headwaters Region in China

    NASA Astrophysics Data System (ADS)

    Mao, X.; Li, T.

    2016-12-01

    This study uses a physiological biome model to reconstruct the 5910 years historical plant functional type series based on the mechanisms about how environmental constraints affect plant growths. The study area is the Three-Rivers Source Headwaters Region (TRHR) in the south of Qinghai Province of China, which is the source area of the Yangtse River, Yellow River, and Lantsang River, with mean altitude above 4000 meters. The environmental constraints we use are temperature and precipitation. Our results demonstrate that there are only three kinds of biomes existing in this area in the history: the Cool Grass/Shrub, Tundra, and Semidesert. The evolutions of biomes are ruled by two basic patterns. The first is the precipitation driving interconversion of the Semidesert and Tundra and the conversion from the Cool Grass/Shrub to the Semidesert. The second is the temperature driving interconversion of the Tundra and Cool Grass/Shrub. The conversion from the Semidesert to the Cool Grass/Shrub can be generated by the permutations of the first process and the second process. The frequency of the first mode is far higher than the second one, which means that precipitation plays a more active role in the biome evolutions while the temperature makes a long and stable influence on these processes. In the spatial and temporal plant type series generated above, we find that the proportion of the area covered by high quality plants (the Cool Grass/Shrub and Tundra) in around 600 AD is higher than most of other periods in the history, which may led to the rise of the Tibetan Empire. The proportion above, however, decreased sharply in around 1600 AD, which was caused by the Little Ice Age. From this research, we can find the influences of major climatic events on the plant distribution, and understand the interaction or co-evolution of climates and plants more clearly. This study will help us protect our environment more scientifically and with a clearer direction.

  3. Seismic interpretation of the deep structure of the Wabash Valley Fault System

    USGS Publications Warehouse

    Bear, G.W.; Rupp, J.A.; Rudman, A.J.

    1997-01-01

    Interpretations of newly available seismic reflection profiles near the center of the Illinois Basin indicate that the Wabash Valley Fault System is rooted in a series of basement-penetrating faults. The fault system is composed predominantly of north-northeast-trending high-angle normal faults. The largest faults in the system bound the 22-km wide 40-km long Grayville Graben. Structure contour maps drawn on the base of the Mount Simon Sandstone (Cambrian System) and a deeper pre-Mount Simon horizon show dip-slip displacements totaling at least 600 meters across the New Harmony fault. In contrast to previous interpretations, the N-S extent of significant fault offsets is restricted to a region north of 38?? latitude and south of 38.35?? latitude. This suggests that the graben is not a NE extension of the structural complex composed of the Rough Creek Fault System and the Reelfoot Rift as previously interpreted. Structural complexity on the graben floor also decreases to the south. Structural trends north of 38?? latitude are offset laterally across several large faults, indicating strike-slip motions of 2 to 4 km. Some of the major faults are interpreted to penetrate to depths of 7 km or more. Correlation of these faults with steep potential field gradients suggests that the fault positions are controlled by major lithologic contacts within the basement and that the faults may extend into the depth range where earthquakes are generated, revealing a potential link between specific faults and recently observed low-level seismicity in the area.

  4. Western Lake Erie Shore Study, Ohio. Reconnaissance Report (Stage 1) on Flood Protection and Shoreline Erosion Control,

    DTIC Science & Technology

    1981-06-01

    standards. High cadmium and mercury levels were recorded from Locust Point to Port Clinton while high iron content occurred from the Maumee River to...Railway Company, the Wabash Railroad Company, the Pennsylvania Railroad Company, the Norfolk and Western Railroad Company, the Chesapeake and Ohio

  5. Draft Programmatic Environmental Impact Statement: U.S. Lake Erie Natural Gas Resource Development in Offshore Waters of New York, Pennsylvania and Ohio

    DTIC Science & Technology

    1980-11-01

    by the Wabash River faults in southeast Illinois and suggests control by basement faults (Hadley and Devine 1974). A smaller cluster of epicenters...E.2). Anthropogenic input to Lake Erie of mercury, lead, zinc, and cadmium exceeds that derived from natural weathering and atmospheric deposition

  6. Responses of selected aquatic biota to discharges from Colbert Steam Plant, Tennessee River, 1978 and 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dycus, D.L.; Harned, R.D.; Laborde, S.M.

    1981-06-01

    Results of studies of hydrothermodynamics, water quality, nonfisheries and fisheries biology, supplemented by water chemistry, phytoplankton, periphyton, zooplankton, and benthic macroinvertebrate collections are presented and evaluated. The objective was to examine the effects of thermal discharges from the Colbert Steam Electric Plant, situated in northwest Alabama on Pickwick Reservoir of the Tennessee River, on the aquatic biota of the Tennessee River. (ACR)

  7. Characteristics of Four Plant Species Used for Soil Bioengineering Techniques in River Bank Stabilization

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Gao, J. R.; Lou, H. P.; Zhang, J. R.; Rauch, H. P.

    2010-05-01

    Use the potential values of soil bioengineering techniques are important for the wide attention river ecological restoration works in Beijing. At first, demand for basic knowledge of the technical and biological properties of plants is essential for development of such techniques. Species for each chosen plant material type should be selected with an emphasis on the following: suitability for anticipated environment conditions, reasonable availability in desired quantity and probability of successful establishment. Account on these criteria, four species which used as live staking and rooted cutting techniques were selected, namely, Salix X aureo-pendula, Salix cheilophila, Vitex negundo var. heterophylla and Amorpha fruticosa L.. And monitoring work was performed on three construction sites of Beijing. Various survival rates and morphological parameters data were collected. Concerning plants hydraulic and hydrological behavior, bending tests were used to analysis the flexibility of each plant species. The results from rate and morphological parameters monitoring show that: Salix cheilophila performed the best. Other three plants behaved satisfactorily in shoots or roots development respectively. In the bending test mornitoring, Salix cheilophila branch had the least broken number. Then were Salix X aureo-pendula and Amorpha fruticosa L.. Vitex negundo var. branch had the highest broken number, but it tolerated the highest amount of stress. All plant species should be considered in the future scientific research and construction works in Beijing. Keywords: River bank stabilization, live staking, rooted cutting

  8. Use Of limestone resources in flue-gas desulfurization power plants in the Ohio River Valley

    USGS Publications Warehouse

    Foose, M.P.; Barsotti, A.F.

    1999-01-01

    In 1994, more than 41 of the approximately 160 coal-fired, electrical- power plants within the six-state Ohio River Valley region used flue-gas desulfurization (FGD) units to desulfurize their emissions, an approximately 100% increase over the number of plants using FGD units in 1989. This increase represents a trend that may continue with greater efforts to meet Federal Clean Air Act standards. Abundant limestone resources exist in the Ohio River Valley and are accessed by approximately 975 quarries. However, only 35 of these are believed to have supplied limestone for FGD electrical generating facilities. The locations of these limestone suppliers do not show a simple spatial correlation with FGD facilities, and the closest quarries are not being used in most cases. Thus, reduction in transportation costs may be possible in some cases. Most waste generated by FGD electrical-generating plants is not recycled. However, many FGD sites are relatively close to gypsum wallboard producers that may be able to process some of their waste.

  9. PRODUCTION OF HEAVY WATER SAVANNAH RIVER AND DANA PLANTS. Technical Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bebbington, W.P.; Thayer, V.R. eds.; Proctor, J.F. comp.

    1959-07-01

    A summary is presented of the basic technical iniormation that pertains to processes that are used at the Dana and Savannah River Plants for the production of heavy water. The manual is intended primarily for plant operating and technical personnel and was prepared to supplement and provide technical support for detailed operating procedures. Introductory sections contain some background information on the history, uses, available processes, and analytical procedures for heavy water. They also include a general comparison of the design and laserformance of the two plants and an analysis of their differences. The technology of the heavy water separation processesmore » used, namely hydrogen sulfide exchange, distillation of water, and electrolysis is discussed in detail. The manufacture and storage of hydrogen sulfide gas and the process water treatment facilities are also discussed. (auth)« less

  10. Multiple plant-wax compounds record differential sources and ecosystem structure in large river catchments

    NASA Astrophysics Data System (ADS)

    Hemingway, Jordon D.; Schefuß, Enno; Dinga, Bienvenu Jean; Pryer, Helena; Galy, Valier V.

    2016-07-01

    The concentrations, distributions, and stable carbon isotopes (δ13C) of plant waxes carried by fluvial suspended sediments contain valuable information about terrestrial ecosystem characteristics. To properly interpret past changes recorded in sedimentary archives it is crucial to understand the sources and variability of exported plant waxes in modern systems on seasonal to inter-annual timescales. To determine such variability, we present concentrations and δ13C compositions of three compound classes (n-alkanes, n-alcohols, n-alkanoic acids) in a 34-month time series of suspended sediments from the outflow of the Congo River. We show that exported plant-dominated n-alkanes (C25-C35) represent a mixture of C3 and C4 end members, each with distinct molecular distributions, as evidenced by an 8.1 ± 0.7‰ (±1σ standard deviation) spread in δ13C values across chain-lengths, and weak correlations between individual homologue concentrations (r = 0.52-0.94). In contrast, plant-dominated n-alcohols (C26-C36) and n-alkanoic acids (C26-C36) exhibit stronger positive correlations (r = 0.70-0.99) between homologue concentrations and depleted δ13C values (individual homologues average ⩽-31.3‰ and -30.8‰, respectively), with lower δ13C variability across chain-lengths (2.6 ± 0.6‰ and 2.0 ± 1.1‰, respectively). All individual plant-wax lipids show little temporal δ13C variability throughout the time-series (1σ ⩽ 0.9‰), indicating that their stable carbon isotopes are not a sensitive tracer for temporal changes in plant-wax source in the Congo basin on seasonal to inter-annual timescales. Carbon-normalized concentrations and relative abundances of n-alcohols (19-58% of total plant-wax lipids) and n-alkanoic acids (26-76%) respond rapidly to seasonal changes in runoff, indicating that they are mostly derived from a recently entrained local source. In contrast, a lack of correlation with discharge and low, stable relative abundances (5-16%) indicate that

  11. Fluctuations of dissolved organic matter in river used for drinking water and impacts on conventional treatment plant performance.

    PubMed

    Volk, Christian; Kaplan, Louis A; Robinson, Jeff; Johnson, Bruce; Wood, Larry; Zhu, Hai Wei; LeChevallier, Mark

    2005-06-01

    Natural organic matter (NOM) in drinking water supplies can provide precursors for disinfectant byproducts, molecules that impact taste and odors, compounds that influence the efficacy of treatment, and other compounds that are a source of energy and carbon for the regrowth of microorganisms during distribution. NOM, measured as dissolved organic carbon (DOC), was monitored daily in the White River and the Indiana-American water treatment plant over 22 months. Other parameters were either measured daily (UV-absorbance, alkalinity, color, temperature) or continuously (turbidity, pH, and discharge) and used with stepwise linear regressions to predict DOC concentrations. The predictive models were validated with monthly samples of the river water and treatment plant effluent taken over a 2-year period after the daily monitoring had ended. Biodegradable DOC (BDOC) concentrations were measured in the river water and plant effluent twice monthly for 18 months. The BDOC measurements, along with measurements of humic and carbohydrate constituents within the DOC and BDOC pools, revealed that carbohydrates were the organic fraction with the highest percent removal during treatment, followed by BDOC, humic substances, and refractory DOC.

  12. Vegetation Cover Affects Mammal Herbivory on Planted Oaks and Success of Reforesting Missouri River Bottomland Fields

    Treesearch

    Shannon Dugger; Daniel C. Dey; Joshua J. Millspaugh

    2004-01-01

    We are evaluating oak regeneration methods at Plowboy Bend and Smoky Waters Conservation Areas in the Missouri River floodplain by planting oak seedlings in different cover types (redtop grass vs. natural vegetation) on four 40- acre fields. After 1 year, survival of planted oaks was high; however, herbivory from rabbits was intense depending on cover type. Damage to...

  13. Presence of Emerging Per- and Polyfluoroalkyl Substances (PFASs) in River and Drinking Water near a Fluorochemical Production Plant in the Netherlands.

    PubMed

    Gebbink, Wouter A; van Asseldonk, Laura; van Leeuwen, Stefan P J

    2017-10-03

    The present study investigated the presence of legacy and emerging per- and polyfluoroalkyl substances (PFASs) in river water collected in 2016 up- and downstream from a fluorochemical production plant, as well as in river water from control sites, in The Netherlands. Additionally, drinking water samples were collected from municipalities in the vicinity from the production plant, as well as in other regions in The Netherlands. The PFOA replacement chemical GenX was detected at all downstream river sampling sites with the highest concentration (812 ng/L) at the first sampling location downstream from the production plant, which was 13 times higher than concentrations of sum perfluoroalkylcarboxylic acids and perfluoroalkanesulfonates (∑PFCA+∑PFSA). Using high resolution mass spectrometry, 11 polyfluoroalkyl acids belonging to the C 2n H 2n F 2n O 2 , C 2n H 2n+2 F 2n SO 4 or C 2n+1 H 2n F 2n+4 SO 4 homologue series were detected, but only in downstream water samples. These emerging PFASs followed a similar distribution as GenX among the downstream sampling sites, suggesting the production plant as the source. Polyfluoroalkyl sulfonates (C 2n H 2 F 4n SO 3 ) were detected in all collected river water samples, and therefore appear to be ubiquitous contaminants in Dutch rivers. GenX was also detected in drinking water collected from 3 out of 4 municipalities in the vicinity of the production plant, with highest concentration at 11 ng/L. Drinking water containing the highest level of GenX also contained two C 2n H 2n F 2n O 2 homologues.

  14. Presence of Emerging Per- and Polyfluoroalkyl Substances (PFASs) in River and Drinking Water near a Fluorochemical Production Plant in the Netherlands

    PubMed Central

    2017-01-01

    The present study investigated the presence of legacy and emerging per- and polyfluoroalkyl substances (PFASs) in river water collected in 2016 up- and downstream from a fluorochemical production plant, as well as in river water from control sites, in The Netherlands. Additionally, drinking water samples were collected from municipalities in the vicinity from the production plant, as well as in other regions in The Netherlands. The PFOA replacement chemical GenX was detected at all downstream river sampling sites with the highest concentration (812 ng/L) at the first sampling location downstream from the production plant, which was 13 times higher than concentrations of sum perfluoroalkylcarboxylic acids and perfluoroalkanesulfonates (∑PFCA+∑PFSA). Using high resolution mass spectrometry, 11 polyfluoroalkyl acids belonging to the C2nH2nF2nO2, C2nH2n+2F2nSO4 or C2n+1H2nF2n+4SO4 homologue series were detected, but only in downstream water samples. These emerging PFASs followed a similar distribution as GenX among the downstream sampling sites, suggesting the production plant as the source. Polyfluoroalkyl sulfonates (C2nH2F4nSO3) were detected in all collected river water samples, and therefore appear to be ubiquitous contaminants in Dutch rivers. GenX was also detected in drinking water collected from 3 out of 4 municipalities in the vicinity of the production plant, with highest concentration at 11 ng/L. Drinking water containing the highest level of GenX also contained two C2nH2nF2nO2 homologues. PMID:28853567

  15. Industrial-hygiene survey report, Wabash Magnetic Company, Huntington, Indiana, May 24-26, 1988. [4,4'-methylenedianiline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boeniger, M.F.

    1989-01-01

    A walk-through survey was made at Wabash Magnetic Company, located in Huntington, Indiana for the purpose of determining the extent of worker exposure to 4,4'-methylenedianiline (MDA) in a batch type mixing operation and user of B-stage resins. At this site the chemical was used as a hardening agent to produce the resins used to make transfer-molded parts. Air, wipe, bulk, and urine samples were taken to determine exposure levels. In both the formulating and molding departments, evidence was found for the possible inhalation of and dermal contact with MDA. Air concentrations were detectable, but were below the permissible exposure levelmore » of 10 parts per billion (ppb) proposed by OSHA. Of seven workers monitored by urinalysis, two were excreting detectable amounts of MDA with the higher concentration being 16 ppb. The author recommends a combination of modified work practices and alternative personal protection to reduce exposures. A vacuum installed with a HEPA filter should be used in the dry cleanup processes in the mixing and formulating departments and workers should wear a glove more resistant to permeation than the cotton ones now in use at the site. Gloves made of polyvinylchloride or natural latex are suggested.« less

  16. Plant Community Development, Site Quality Analysis and River Dynamics in the Design of Riparian Preserves on the Middle Sacramento River, California

    Treesearch

    Niall F. McCarten

    1989-01-01

    Loss of riparian habitat along the Middle Sacramento River, over the last 100 years, has reduced a once contiguous riparian forest to a series of disjunct remnants of varying size and quality. With limited financial resources to purchase and protect some of the remaining riparian plant communities, it has become necessary to develop methods to select which of the...

  17. Snakes of the Savannah River Plant with Information About Snakebite Prevention and Treatment.

    ERIC Educational Resources Information Center

    Gibbons, Whit

    This booklet is intended to provide information on the snakes of South Carolina, to point out the necessary steps to avoid a snakebite, and to indicate the current medical treatment for poisonous snakebite. It includes a checklist of South Carolina reptiles and a taxonomic key for the identification of snakes in the Savannah River Plant. Three…

  18. Exotic plant colonization and occupancy within riparian areas of the Interior Columbia River and Upper Missouri River basins, USA

    USGS Publications Warehouse

    Al-Chokhachy, Robert K.; Ray, Andrew M.; Roper, Brett B.; Archer, Eric

    2013-01-01

    Exotic plant invasions into riparia often result in shifts in vegetative composition, altered stream function, and cascading effects to biota at multiple scales. Characterizing the distribution patterns of exotic plants is an important step in directing targeted research to identify mechanisms of invasion and potential management strategies. In this study, we employed occupancy models to examine the associations of landscape, climate, and disturbance attributes with the colonization and occupancy patterns for spotted knapweed (Centaurea stoebe L.), Canada thistle (Cirsium arvense L., Scop.), and cheatgrass (Bromus tectorum L.) in the riparia of headwater streams (n = 1,091) in the Interior Columbia River and Upper Missouri River Basins. We found relatively low occupancy rates for cheatgrass (0.06, SE = 0.02) and spotted knapweed (0.04, SE = 0.01), but moderate occupancy of Canada thistle (0.28, SE = 0.05); colonization rates were low across all species (<0.01). We found the distributions of spotted knapweed, Canada thistle, and cheatgrass to exhibit significant associations with both ambient climate conditions and anthropogenic and natural disturbances. We attribute the low to moderate occupancy and colonization rates to the relatively remote locations of our sample sites within headwater streams and urge consideration of means to prevent further invasions.

  19. Development and Testing of Prototype Commercial Gasifier Sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zelepouga, Serguei; Moery, Nathan; Wu, Mengbai

    This report presents the results of the sensor development and testing at the Wabash River gasifier. The project work was initiated with modification of the sensor software (Task 2) to enable real time temperature data acquisition, and to process and provide the obtained gasifier temperature information to the gasifier operators. The software modifications were conducted by the North Carolina State University (NCSU) researchers. The modified software was tested at the Gas Technology Institute (GTI) combustion laboratory to assess the temperature recognition algorithm accuracy and repeatability. Task 3 was focused on the sensor hardware modifications needed to improve reliability of themore » sensor system. NCSU conducted numerical modeling of the sensor probe’s purging flow. Based on the modeling results the probe purging system was redesigned to prevent carbon particulates deposition on the probe’s sapphire window. The modified design was evaluated and approved by the Wabash representative. The modified gasifier sensor was built and installed at the Wabash River gasifier on May 1 2014. (Task 4) The sensor was tested from the startup of the gasifier on May 5, 2015 until the planned autumn gasifier outage starting in the beginning of October, 2015. (Task 5) The project team successfully demonstrated the Gasifier Sensor system’s ability to monitor gasifier temperature while maintaining unobstructed optical access for six months without any maintenance. The sensor examination upon completion of the trial revealed that the system did not sustain any damage.« less

  20. Thermal pollution impacts on rivers and power supply in the Mississippi River watershed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miara, Ariel; Vorosmarty, Charles J.; Macknick, Jordan E.

    Thermal pollution from power plants degrades riverine ecosystems with ramifications beyond the natural environment as it affects power supply. The transport of thermal effluents along river reaches may lead to plant-to-plant interferences by elevating condenser inlet temperatures at downstream locations, which lower thermal efficiencies and trigger regulatory-forced power curtailments. We evaluate thermal pollution impacts on rivers and power supply across 128 plants with once-through cooling technologies in the Mississippi River watershed. By leveraging river network topologies with higher resolutions (0.05 degrees) than previous studies, we reveal the need to address the issue in a more spatially resolved manner, capable ofmore » uncovering diverse impacts across individual plants, river reaches and sub-basins. Results show that the use of coarse river network resolutions may lead to substantial overestimations in magnitude and length of impaired river reaches. Overall, there is a modest limitation on power production due to thermal pollution, given existing infrastructure, regulatory and climate conditions. However, tradeoffs between thermal pollution and electricity generation show important implications for the role of alternative cooling technologies and environmental regulation under current and future climates. Recirculating cooling technologies may nearly eliminate thermal pollution and improve power system reliability under stressed climate-water conditions. Regulatory limits also reduce thermal pollution, but at the expense of significant reductions in electricity generation capacity. However, results show several instances when power production capacity rises at individual plants when regulatory limits reduce upstream thermal pollution. Furthermore, these dynamics across energy-water systems highlight the need for high-resolution simulations and the value of coherent planning and optimization across infrastructure with mutual dependencies on natural

  1. Thermal pollution impacts on rivers and power supply in the Mississippi River watershed

    DOE PAGES

    Miara, Ariel; Vorosmarty, Charles J.; Macknick, Jordan E.; ...

    2018-03-08

    Thermal pollution from power plants degrades riverine ecosystems with ramifications beyond the natural environment as it affects power supply. The transport of thermal effluents along river reaches may lead to plant-to-plant interferences by elevating condenser inlet temperatures at downstream locations, which lower thermal efficiencies and trigger regulatory-forced power curtailments. We evaluate thermal pollution impacts on rivers and power supply across 128 plants with once-through cooling technologies in the Mississippi River watershed. By leveraging river network topologies with higher resolutions (0.05 degrees) than previous studies, we reveal the need to address the issue in a more spatially resolved manner, capable ofmore » uncovering diverse impacts across individual plants, river reaches and sub-basins. Results show that the use of coarse river network resolutions may lead to substantial overestimations in magnitude and length of impaired river reaches. Overall, there is a modest limitation on power production due to thermal pollution, given existing infrastructure, regulatory and climate conditions. However, tradeoffs between thermal pollution and electricity generation show important implications for the role of alternative cooling technologies and environmental regulation under current and future climates. Recirculating cooling technologies may nearly eliminate thermal pollution and improve power system reliability under stressed climate-water conditions. Regulatory limits also reduce thermal pollution, but at the expense of significant reductions in electricity generation capacity. However, results show several instances when power production capacity rises at individual plants when regulatory limits reduce upstream thermal pollution. Furthermore, these dynamics across energy-water systems highlight the need for high-resolution simulations and the value of coherent planning and optimization across infrastructure with mutual dependencies on natural

  2. Thermal pollution impacts on rivers and power supply in the Mississippi River watershed

    NASA Astrophysics Data System (ADS)

    Miara, Ariel; Vörösmarty, Charles J.; Macknick, Jordan E.; Tidwell, Vincent C.; Fekete, Balazs; Corsi, Fabio; Newmark, Robin

    2018-03-01

    Thermal pollution from power plants degrades riverine ecosystems with ramifications beyond the natural environment as it affects power supply. The transport of thermal effluents along river reaches may lead to plant-to-plant interferences by elevating condenser inlet temperatures at downstream locations, which lower thermal efficiencies and trigger regulatory-forced power curtailments. We evaluate thermal pollution impacts on rivers and power supply across 128 plants with once-through cooling technologies in the Mississippi River watershed. By leveraging river network topologies with higher resolutions (0.05°) than previous studies, we reveal the need to address the issue in a more spatially resolved manner, capable of uncovering diverse impacts across individual plants, river reaches and sub-basins. Results show that the use of coarse river network resolutions may lead to substantial overestimations in magnitude and length of impaired river reaches. Overall, there is a modest limitation on power production due to thermal pollution, given existing infrastructure, regulatory and climate conditions. However, tradeoffs between thermal pollution and electricity generation show important implications for the role of alternative cooling technologies and environmental regulation under current and future climates. Recirculating cooling technologies may nearly eliminate thermal pollution and improve power system reliability under stressed climate-water conditions. Regulatory limits also reduce thermal pollution, but at the expense of significant reductions in electricity generation capacity. However, results show several instances when power production capacity rises at individual plants when regulatory limits reduce upstream thermal pollution. These dynamics across energy-water systems highlight the need for high-resolution simulations and the value of coherent planning and optimization across infrastructure with mutual dependencies on natural resources to overcome

  3. Trade-offs Between Electricity Production from Small Hydropower Plants and Ecosystem Services in Alpine River Basins

    NASA Astrophysics Data System (ADS)

    Meier, Philipp; Schwemmle, Robin; Viviroli, Daniel

    2015-04-01

    The need for a reduction in greenhouse gas emissions and the decision to phase out nuclear power plants in Switzerland and Germany increases pressure to develop the remaining hydropower potential in Alpine catchments. Since most of the potential for large reservoirs is already exploited, future development focusses on small run-of-the-river hydropower plants (SHP). Being considered a relatively environment-friendly electricity source, investment in SHP is promoted through subsidies. However, SHP can have a significant impact on riverine ecosystems, especially in the Alpine region where residual flow reaches tend to be long. An increase in hydropower exploitation will therefore increase pressure on ecosystems. While a number of studies assessed the potential for hydropower development in the Alps, two main factors were so far not assessed in detail: (i) ecological impacts within a whole river network, and (ii) economic conditions under which electricity is sold. We present a framework that establishes trade-offs between multiple objectives regarding environmental impacts, electricity production and economic evaluation. While it is inevitable that some ecosystems are compromised by hydropower plants, the context of these impacts within a river network should be considered when selecting suitable sites for SHP. From an ecological point of view, the diversity of habitats, and therefore the diversity of species, should be maintained within a river basin. This asks for objectives that go beyond lumped parameters of hydrological alteration, but also consider habitat diversity and the spatial configuration. Energy production in run-of-the-river power plants depends on available discharge, which can have large fluctuations. In a deregulated electricity market with strong price variations, an economic valuation should therefore be based on the expected market value of energy produced. Trade-off curves between different objectives can help decision makers to define policies

  4. Nest-location and nest-survival of black-chinned hummingbirds in New Mexico: A comparison between rivers with differing levels of regulation and invasion of nonnative plants

    Treesearch

    D. Max Smith; Deborah M. Finch; Scott H. Stoleson

    2014-01-01

    We compared plants used as sites for nests and survival of nests of black-chinned hummingbirds (Archilochus alexandri) along two rivers in New Mexico. Along the free-flowing Gila River which was dominated by native plants, most nests were constructed in boxelder (Acer negundo). Along the flow-restricted Middle Rio Grande which was dominated by nonnative plants, most...

  5. [Effects of gravel mulch technology on soil erosion resistance and plant growth of river flinty slope].

    PubMed

    Zhu, Wei; Xie, San-Tao; Ruan, Ai-Dong; Bian, Xun-Wen

    2008-03-01

    Aiming at the technical difficulties such as the stability and water balance in the ecological rehabilitation of river flinty slope, a gravel mulch technology was proposed, with the effects of different gravel mulch treatments on the soil anti-erosion capacity, soil water retention property, and plant growth investigated by anti-erosion and pot experiments. The results showed that mulching with the gravels 1.5-2 cm in size could obviously enhance the soil anti-erosion capacity, soil water retention property and plant biomass, but no obvious differences were observed between the mulch thickness of 5 cm and 8 cm. It was indicated that mulching with the gravels 1.5-2 cm in size and 5 cm in thickness was an effective and economical technology for the ecological rehabilitation of river flinty slope.

  6. Comparison of plant cover of river valley fragments by using GIS tools and multivariate analysis

    NASA Astrophysics Data System (ADS)

    Waldon-Rudzionek, Barbara

    2017-11-01

    Selected landscape registers and results of ecological analyses of flora used in studies of transformations of anthropogenic plant cover and river valley landscapes were presented. The results were shown pursuant to a comparison of fragments of two adjacent valleys in north-western Poland.

  7. U.S. Geological Survey and Bureau of Land Management Cooperative Coalbed Methane Project in the Powder River Basin, Wyoming

    USGS Publications Warehouse

    ,

    2006-01-01

    Introduction: Evidence that earthquakes threaten the Mississippi, Ohio, and Wabash River valleys of the Central United States abounds. In fact, several of the largest historical earthquakes to strike the continental United States occurred in the winter of 1811-1812 along the New Madrid seismic zone, which stretches from just west of Memphis, Tenn., into southern Illinois (fig. 1). Several times in the past century, moderate earthquakes have been widely felt in the Wabash Valley seismic zone along the southern border of Illinois and Indiana (fig. 1). Throughout the region, between 150 and 200 earthquakes are recorded annually by a network of monitoring instruments, although most are too small to be felt by people. Geologic evidence for prehistoric earthquakes throughout the region has been mounting since the late 1970s. But how significant is the threat? How likely are large earthquakes and, more importantly, what is the chance that the shaking they cause will be damaging?The Bureau of Land Management (BLM) Wyoming Reservoir Management Group and the U.S. Geological Survey (USGS) began a cooperative project in 1999 to collect technical and analytical data on coalbed methane (CBM) resources and quality of the water produced from coalbeds in the Wyoming part of the Powder River Basin. The agencies have complementary but divergent goals and these kinds of data are essential to accomplish their respective resource evaluation and management tasks. The project also addresses the general public need for information pertaining to Powder River Basin CBM resources and development. BLM needs, which relate primarily to the management of CBM resources, include improved gas content and gas in-place estimates for reservoir characterization and resource/reserve assessment, evaluation, and utilization. USGS goals include a basinwide assessment of CBM resources, an improved understanding of the nature and origin of coalbed gases and formation waters, and the development of predictive

  8. Riparian plant composition along hydrologic gradients in a dryland river basin and implications for a warming climate

    USGS Publications Warehouse

    Reynolds, Lindsay; Shafroth, Patrick B.

    2017-01-01

    Droughts in dryland regions on all continents are expected to increase in severity and duration under future climate projections. In dryland regions, it is likely that minimum streamflow will decrease with some perennial streams shifting to intermittent flow under climate-driven changes in precipitation and runoff and increases in temperature. Decreasing base flow and shifting flow regimes from perennial to intermittent could have significant implications for stream-dependent biota, including riparian vegetation. In this study, we asked, how do riparian plant communities vary along wet-to-dry hydrologic gradients on small (first–third order) streams? We collected data on geomorphic, hydrologic, and plant community characteristics on 54 stream sites ranging in hydrology from intermittent to perennial flow across the Upper Colorado River Basin (284,898 km2). We found that plant communities varied along hydrologic gradients from high to low elevation between streams, and perennial to intermittent flow. We identified indicator species associated with different hydrologic conditions and suggest how plant communities may shift under warmer, drier conditions. Our results indicate that species richness and cover of total, perennial, wetland, and native plant groups will decrease while annual plants will increase under drying conditions. Understanding how plant communities respond to regional drivers such as hydroclimate requires broad-scale approaches such as sampling across whole river basins. With increasingly arid conditions in many regions of the globe, understanding plant community shifts is key to understanding the future of riparian ecosystems.

  9. Purification effects of five landscape plants on river landscape water

    NASA Astrophysics Data System (ADS)

    Ling, Sun; Lei, Zheng; Mao, Qinqing; Ji, Qingxin

    2017-12-01

    Five species of landscape plants which are scindapsus aureus, water hyacinth, cockscomb, calendula officinalis and salvia splendens were used as experimental materials to study their removal effects on nitrogen, phosphorus, chemical oxygen demand (CODMn) and suspended solids (SS) in urban river water. The results show that the 5 landscape plants have good adaptability and vitality in water body, among them, water hyacinth had the best life signs than the other 4 plants, and its plant height and root length increased significantly. They have certain removal effects on the nitrogen, phosphorus, CODMn (Chemical Oxygen Demand) and SS (Suspended Substance) in the landscape water of Dalong Lake, Xuzhou. Scindapsus aureus, water hyacinth, cockscomb, calendula officinalis and salvia splendens on the removal rate of total nitrogen were 76.69%, 78.57%, 71.42%, 69.64%, 67.86%; the ammonia nitrogen removal rate were 71.06%, 74.28%, 67.85%, 63.02%, 59.81%;the total phosphorus removal rate were 78.70%, 81.48%, 73.15%, 72.22%, 68.52%;the orthophosphate removal rates were 78.37%, 80.77%, 75.96%, 75.96%, 71.15%;the removal rate of CODMn was 52.5%, 55.35%, 46.02%, 45.42%, 44.19%; the removal rate of SS was 81.4%, 86%, 79.1%, 76.7%, 74.42%.The purification effect of 5 kinds of landscape plants of Dalong Lake in Xuzhou City: water hyacinth> scindapsus aureus>cockscomb>calendula officinalis>salvia splendens.

  10. Levee Presence and Wetland Areas within the 100-Year Floodplain of the Wabash Basin

    NASA Astrophysics Data System (ADS)

    Morrison, R. R.; Dong, Q.; Nardi, F.; Grantham, T.; Annis, A.

    2016-12-01

    Wetlands have declined over the past century due to land use changes and water management activities in the United States. Levees have been extensively built to provide protection against flooding events, and can fundamentally alter the water distribution and hydrologic dynamics within floodplains. Although levees can reduce wetlands in many places, it is unclear how much wetland areas are impacted at a basin-scale. This study explores the relationship between wetlands, levee presence, and other important hydrologic metrics within a 100-year floodplain. We estimated total wetland area, levee length, floodplain area and other variables, in discrete 12-digit hydrologic units (HUC-12) of the Wabash Basin (n=854) and examined the relationship between these variables using non-parametric statistical tests. We found greater areas of wetland habitat in HUC12 units that contain levees compared to those without levees when we aggregated the results across the entire basin. Factors such as stream order, mean annual flow, and HUC12 area are not correlated with the wetland area in HUC-12 units that contain levees. In addition, median wetland area in HUC12 units with levees is surprisingly consistent regardless of maximum stream order. Visual observations of wetland distributions indicate that wetland presence may be dependent on its location relative to levees. These results indicate that refined geospatial analyses may be necessary to explore the complex influence of levees on wetland habitat, and that additional basins should be explored to develop more generalized trends. This information is preliminary and subject to revision.

  11. Responses of selected aquatic biota to discharges from Colbert Steam Plant, Tennessee River, 1978 and 1979. Volume 2, appendices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-01-01

    Results of studies of hydrothermodynamics, water quality, nonfisheries and fisheries biology, supplemented by water chemistry, phytoplankton, periphyton, zooplankton, and benthic macroinvertebrate collections are presented. The objective was to examine the effects of thermal discharges from the Colbert Steam Electric Plant, situated in northwest Alabama on Pickwick Reservoir of the Tennessee River, on the aquatic biota of the Tennessee River. (ACR)

  12. Inputs of fossil carbon from wastewater treatment plants to U.S. Rivers and oceans

    USGS Publications Warehouse

    Griffith, D.R.; Barnes, R.T.; Raymond, P.A.

    2009-01-01

    Every day more than 500 million cubic meters of treated wastewater are discharged into rivers, estuaries, and oceans, an amount slightly less than the average flow of the Danube River. Typically, wastewaters have high organic carbon (OC) concentrations and represent a large fraction of total river flow and a higher fraction of river OC in densely populated watersheds. Here, we report the first direct measurements of radiocarbon (14C) in municipal wastewater treatment plant (WWTP) effluent. The radiocarbon ages of particulate and dissolved organic carbon (POC and DOC) in effluent are old and relatively uniform across a range of WWTPs in New York and Connecticut. Wastewater DOC has a mean radiocarbon age of 1630 ?? 500 years B.P. and a mean ??13C of -26.0 ?? 1???. Mass balance calculations indicate that 25% of wastewater DOC is fossil carbon, which is likely derived from petroleumbased household products such as detergents and pharmaceuticals. Thesefindings warrant reevaluation of the "apparent age" of riverine DOC, the total flux of petroleum carbon to U.S. oceans, and OC source assignments in waters impacted by sewage. ?? 2009 American Chemical Society.

  13. Master Environmental Plan, Jefferson Proving Ground, Madison, Indiana

    DTIC Science & Technology

    1990-11-15

    Act Comprehensive Environmental Response, Compensation, and Liability Act cadmium Code of Federal Regulations carbon monoxide carbon dioxide...T) Arsenic (III)@ 360 190 0.175 (C) 0.022 (C) Barium 1,000 (D) Beryl 1i urn 1.17 (C) 0.068 (C) Cadmium #@ (1.128[ln Hard*]-3.828) p(0.7852[ln...all waters. Fluoride shall not exceed 2.0 mg/1 in all waters, except the Ohio River and Interstate Wabash River where it shall not exceed 1.0 mg/1

  14. Sequestration and Enhanced Coal Bed Methane: Tanquary Farms Test Site, Wabash County, Illinois

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frailey, Scott; Parris, Thomas; Damico, James

    The Midwest Geological Sequestration Consortium (MGSC) carried out a pilot project to test storage of carbon dioxide (CO{sub 2}) in the Springfield Coal Member of the Carbondale Formation (Pennsylvanian System), in order to gauge the potential for large-scale CO{sub 2} sequestration and/or enhanced coal bed methane recovery from Illinois Basin coal beds. The pilot was conducted at the Tanquary Farms site in Wabash County, southeastern Illinois. A four-well design an injection well and three monitoring wells was developed and implemented, based on numerical modeling and permeability estimates from literature and field data. Coal cores were taken during the drilling processmore » and were characterized in detail in the lab. Adsorption isotherms indicated that at least three molecules of CO{sub 2} can be stored for each displaced methane (CH{sub 4}) molecule. Microporosity contributes significantly to total porosity. Coal characteristics that affect sequestration potential vary laterally between wells at the site and vertically within a given seam, highlighting the importance of thorough characterization of injection site coals to best predict CO{sub 2} storage capacity. Injection of CO{sub 2} gas took place from June 25, 2008, to January 13, 2009. A continuous injection period ran from July 21, 2008, to December 23, 2008, but injection was suspended several times during this period due to equipment failures and other interruptions. Injection equipment and procedures were adjusted in response to these problems. Approximately 92.3 tonnes (101.7 tons) of CO{sub 2} were injected over the duration of the project, at an average rate of 0.93 tonne (1.02 tons) per day, and a mode injection rate of 0.6-0.7 tonne/day (0.66-0.77 ton/day). A Monitoring, Verification, and Accounting (MVA) program was set up to detect CO{sub 2 leakage. Atmospheric CO{sub 2} levels were monitored as were indirect indicators of CO{sub 2} leakage such as plant stress, changes in gas composition at

  15. 13. Photograph of sheet 1 (index and title sheet) of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Photograph of sheet 1 (index and title sheet) of the Indiana State Highway Commission repair plans of 1969 for the Cicott Street Bridge. Photograph of a 24' by 36' print made from microfilm in the archives of the Indiana Department of Transportation in Indianapolis. - Cicott Street Bridge, Spanning Wabash River at State Road 25, Logansport, Cass County, IN

  16. 8. Photograph of post card, 'Cicotte Street Bridge, Logansport, Ind.' ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Photograph of post card, 'Cicotte Street Bridge, Logansport, Ind.' Logansport News Agency, Logansport, Ind., Curteich-Chicago 'C.T. American Art' post card {Reg. U.S. Pat. Off.}, postmarked October 17, 1949. Card in the Cass County photograph file at the Indiana State Library, Indianapolis. - Cicott Street Bridge, Spanning Wabash River at State Road 25, Logansport, Cass County, IN

  17. 33 CFR 162.205 - Suisun Bay, San Joaquin River, Sacramento River, and connecting waters, CA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... executing river and harbor improvement work for the United States, and displaying the signals prescribed by... exercise special caution to avoid interference with the work on which the plant is engaged. Dredges...); a wharf or other structure; work under construction; plant engaged in river and harbor improvement...

  18. Mercury contamination of riverine sediments in the vicinity of a mercury cell chlor-alkali plant in Sagua River, Cuba.

    PubMed

    Bolaños-Álvarez, Yoelvis; Alonso-Hernández, Carlos Manuel; Morabito, Roberto; Díaz-Asencio, Misael; Pinto, Valentina; Gómez-Batista, Miguel

    2016-06-01

    Sediment is a great indicator for assessing coastal mercury contamination. The objective of this study was to assess the magnitude of mercury pollution in the sediments of the Sagua River, Cuba, where a mercury-cell chlor-alkali plant has operated since the beginning of the 1980s. Surface sediments and a sediment core were collected in the Sagua River and analyzed for mercury using an Advanced Mercury Analyser (LECO AMA-254). Total mercury concentrations ranged from 0.165 to 97 μg g(-1) dry weight surface sediments. Enrichment Factor (EF), Index of Geoaccumulation (Igeo) and Sediment Quality Guidelines were applied to calculate the degrees of sediment contamination. The EF showed the significant role of anthropogenic mercury inputs in sediments of the Sagua River. The result also determined that in all stations downstream from the chlor-alkali plant effluents, the mercury concentrations in the sediments were higher than the Probable Effect Levels value, indicating a high potential for adverse biological effects. The Igeo index indicated that the sediments in the Sagua River are evaluated as heavily polluted to extremely contaminated and should be remediated as a hazardous material. This study could provide the latest benchmark of mercury pollution and prove beneficial to future pollution studies in relation to monitoring works in sediments from tropical rivers and estuaries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. The ecological risk assessment of heavy metals in the Kuihe River basin (Xuzhou section) and the characteristics of plant enrichment

    NASA Astrophysics Data System (ADS)

    Sun, Ling; Zheng, Lei

    2018-01-01

    In order to investigate Kuihe River basin of heavy metals (As, Cd, Cr, Cu, Mn, Ni, Pb and Zn) pollution, the determination of the Kuihe River water body, the bottom of the river silt, riparian soil plants and heavy metal content of 9 kinds of riparian plants, investigate the pollution situation, so as to screen out the plants that has potential of enrichment and rehabilitation of heavy metal pollution. The results showed that Cd and Mn in the water body exceed bid; The pollution of Zn and Cu in the bottom mud is serious, potential ecological risk of heavy metals is Zn>Cu>Pb>Ni>Cd>As>Cr>Mn Riparian soil affected by sewage and overflow of sediment has significant positive correlation with soil heavy metals, among them, the Zn and Cu are heavy pollution; The selective absorption of heavy metals by 9 kinds of dominant plant leads to its bio concentration factor (BCF) of Cr and Pb on the low side, are all less than 1, from the translocation factor (TF), Setcreasea purpurea and Poa annua showed obvious roots type hoarding. Poa annua and Lycium chinense have a resistance on the absorption of heavy metals, Lythrum salicaria, Photinia serrulata and Broussonetia papyrifera have a unique advantage on enrichment of heavy metals, Broussonetia papyri era on a variety of strong ability of enrichment and transfer of heavy metals suggests that the woody plants in the vast application prospect in the field of rehabilitation technology of heavy metals.

  20. GREAT II Upper Mississippi River (Guttenberg, Iowa to Saverton, Missouri). Plan Formulation Addendum

    DTIC Science & Technology

    1980-12-01

    than in GREAT I or III. Soils of the Genessee-Huntsville- Wabash association are nearly level, brown or black loams, ranging in silt and clay content...manganese, cadmium , chromium, copper, lead, zinc and mer- cury. 3. PFWG CONFLICTS WITH RECOMMENDATION: Evaluation: No conflicts. Possible benefits to

  1. Polycyclic aromatic hydrocarbons in water, sediment, soil, and plants of the Aojiang River waterway in Wenzhou, China

    PubMed Central

    Li, Jianwang; Shang, Xu; Zhao, Zhixu; Tanguay, Robert L.; Dong, Qiaoxiang; Huang, Changjiang

    2012-01-01

    The town of Shuitou was renowned as the leather capital of China because of its large-scale tanning industry, but the industry’s lack of pollution controls has caused severe damage to the local water system. This study determined 15 priority polycyclic aromatic hydrocarbons (PAHs) in water, sediment, soil, and plant samples collected from Aojiang River and its estuary. The total PAHs ranged from 910 to 1520 ng/L in water samples. The total PAH in sediments were moderate to low in comparison with other rivers and estuaries in China, but the relative proportions of PAHs per million people are high when considering the population size associated with each watershed. Ratios of fluoranthene/pyrene and PAHs with low/high molecular weight suggest a petrogenic PAH origin. The PAH composition profile in soil was similar to that in sediment with 4–6 ring PAHs being dominant. The PAHs with 2–3 rings were the dominant species in plant leaves. There were no correlations between PAHs in soils and in plants, suggesting that PAHs accumulate in plant leaves through absorption from the air. The general observation of elevated PAH concentrations in all matrix suggests a possible contribution by the local leather industry on the PAH concentrations in the Aojiang watershed. PMID:19726127

  2. Solidification of Savannah River plant high level waste

    NASA Astrophysics Data System (ADS)

    Maher, R.; Shafranek, L. F.; Kelley, J. A.; Zeyfang, R. W.

    1981-11-01

    Authorization for construction of the Defense Waste Processing Facility (DWPF) is expected in FY-83. The optimum time for stage 2 authorization is about three years later. Detailed design and construction will require approximately five years for stage 1, with stage 2 construction completed about two to three years later. Production of canisters of waste glass would begin in 1988, and the existing backlog of high level waste sludge stored at SRP would be worked off by about the year 2000. Stage 2 operation could begin in 1990. The technology and engineering are ready for construction and eventual operation of the DWPF for immobilizing high level radioactive waste at Savannah River Plant (SRP). Proceeding with this project will provide the public, and the leadership of this country, with a crucial demonstration that a major quanitity of existing high level nuclear wastes can be safely and permanently immobilized.

  3. Colorado River Vegetation, and Climate: Five Decades of Spatio-Temporal Dynamics in the Grand Canyon in Response to River Regulation

    NASA Astrophysics Data System (ADS)

    Ralston, B. E.; Sankey, J. B.

    2013-12-01

    Recent analysis of remotely sensed imagery of 400 km of the Colorado River confirms a net increase in vegetated area has occurred since the completion of Glen Canyon Dam in 1963. The rates and magnitude of vegetation change appear to be river stage-dependent. Riparian vegetation expansion on geomorphic surfaces at lower elevations relative to the river was greater for decades with lower peak and average discharges. Vegetation change at higher elevation relative to the river indicate that increases and decreases in vegetated area reflect regional precipitation patterns, and respectively coincide with regionally significant wet and dry periods that include the current early 21st century drought. The objective of this work was to examine the temporal persistence, and changes, in the spatial distribution of riparian vegetation relative to geomorphic characteristics of the Colorado River in Grand Canyon, dam and reservoir management, and regional climate over the 5-decade period from the mid-1960s to present. We employed archived riparian vegetation classifications that used aerial imagery from 1965, 1973, 1984, 1992, 2002, and 2009 coupled with flow regime data that is primarily related to operations of Glen Canyon Dam, field-measured rating relations, predictions of rating relations based on 1-D modeling, and detailed, geomorphic field mapping. Documentation of the effects of river regulation on riparian habitats in the SW USA has traditionally been limited to either small segments of river channels (e.g., 0.1-10km), or focused on specific plant species. The smaller geographic scale approach evaluates local hydrology, river channel changes, and serial recruitment events of riparian plants. The species-specific plant response informs larger scale patterns of riparian plant distributions across the landscape, but is less sensitive to differences of climate and hydrology among rivers. Our study is unique in that it employs datasets that allow both large-scale change

  4. The Savannah River and its environs: Proceedings of a symposium in honor of Dr. Ruth Patrick for 35 years of studies on the Savannah River

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-12-01

    The symposium was focussed on the interrelationships of Savannah River Plant operations and the environment of the Savannah River area. Environmental programs at the Savannah River Plant site began with baseline measurements before plant startup and continued with data collection into the 1980's. (ACR)

  5. Fluvial Transport and Processing of Sediment and Nutrients in Large Agricultural River Basins.

    DTIC Science & Technology

    1982-02-01

    glacial plains composed of ground moraine crossed by the Defiance, Fort Wayne, and Wabash end moraines (Figure 2). North of Tiffin and in several...clean out. Nitrate and Nitrite Nitrogen (automated cadmium reduction) Storet No. C0631 Prior to analysis by cadmium reduction from Method 353.2 from

  6. 9. Photograph of sheet 1 (index and title sheet) of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Photograph of sheet 1 (index and title sheet) of the State Highway Department of Indiana repair plans of 1957 for the Cicott Street Bridge. Photograph of a 24' by 36' print made from microfilm in the archives of the Indiana Department of Transportation in Indianapolis. - Cicott Street Bridge, Spanning Wabash River at State Road 25, Logansport, Cass County, IN

  7. Planform Dynamics of a Mixed Bedrock-Alluvial Meandering River

    NASA Astrophysics Data System (ADS)

    Rhoads, B. L.; Konsoer, K. M.; Best, J.; Garcia, M. H.; Abad, J. D.

    2013-12-01

    The planform evolution of meandering rivers involves dynamic interactions among planform geometry, three-dimensional flow structure, bed morphology, sediment transport, and bank resistance. Modes of interaction among these factors in different types of bends have yet to be completely determined. This paper examines flow structure, bed morphology, and planform evolution in three different types of bends on the Wabash River, Illinois: an elongated loop with forested banks and extensive bedrock at the downstream end of the bend (Horseshoe Bend), an elongated loop with unforested banks and local bedrock control within the bend (Maier Bend), and a series of simple bends with forested banks and no bedrock control. Data consist of velocity measurements obtained between May 2011 and February 2013 for bankfull or near-bankfull flows using acoustic Doppler current profilers. Rates of migration and planform evolution were determined through GIS-based analysis of historical aerial photography from 1938 to present, including annual photos in recent years. Lidar data, sediment samples, and multi-beam echosounding data provide information on bed morphology, on the spatial extent of bedrock, and on bank materials. Horseshoe Bend has not moved substantially over the historical period of record. This lack of migration is in part related to extensive bedrock control, but also reflects high near-bank flow resistance produced by LWD and the relatively high resistance of bank materials to erosion. At Maier Bend, migration rates are high due to low resistance of bank materials to erosion, resulting in bend extension; however, the pattern of extension has been strongly influenced by the local outcropping of bedrock into the channel. In the simple bends, planform evolution has been dominated by translation, despite migration of the channel into forested sections of the floodplain. Bed morphology in these bends, especially the structure of point bars, strongly influences flow structure

  8. The reactivity of plant-derived organic matter and the potential importance of priming effects along the lower Amazon River

    NASA Astrophysics Data System (ADS)

    Ward, Nicholas D.; Bianchi, Thomas S.; Sawakuchi, Henrique O.; Gagne-Maynard, William; Cunha, Alan C.; Brito, Daimio C.; Neu, Vania; de Matos Valerio, Aline; da Silva, Rodrigo; Krusche, Alex V.; Richey, Jeffrey E.; Keil, Richard G.

    2016-06-01

    Here we present direct measurements of the biological breakdown of 13C-labeled substrates to CO2 at seven locations along the lower Amazon River, from Óbidos to the mouth. Dark incubation experiments were performed at high and low water periods using vanillin, a lignin phenol derived from vascular plants, and at the high water period using four different 13C-labeled plant litter leachates. Leachates derived from oak wood were degraded most slowly with vanillin monomers, macrophyte leaves, macrophyte stems, and whole grass leachates being converted to CO2 1.2, 1.3, 1.7, and 2.3 times faster, respectively, at the upstream boundary, Óbidos. Relative to Óbidos, the sum degradation rate of all four leachates was 3.3 and 2.6 times faster in the algae-rich Tapajós and Xingu Rivers, respectively. Likewise, the leachates were broken down 3.2 times more quickly at Óbidos when algal biomass from the Tapajós River was simultaneously added. Leachate reactivity similarly increased from Óbidos to the mouth with leachates breaking down 1.7 times more quickly at Almeirim (midway to the mouth) and 2.8 times more quickly across the river mouth. There was no discernible correlation between in situ nutrient levels and remineralization rates, suggesting that priming effects were an important factor controlling reactivity along the continuum. Further, continuous measurements of CO2, O2, and conductivity along the confluence of the Tapajós and Amazon Rivers and the Xingu and Jarauçu Rivers revealed in situ evidence for enhanced O2 drawdown and CO2 production along the mixing zone of these confluences.

  9. Determining the Origin and Fate of Particulate Plant-Derived Organic Matter in the Rhone River (France) : A Lipid Tracer Review

    NASA Astrophysics Data System (ADS)

    Galeron, M. A.; Amiraux, R.; Charriere, B.; Radakovitch, O.; Raimbault, P.; Garcia, N.; Lagadec, V.; Vaultier, F.; Rontani, J. F.

    2014-12-01

    A number of lipid tracers including fatty acids, hydroxyacids, n-alkanols, sterols and triterpenoids were used to determine the origin and fate of suspended particulate organic matter (POM) collected in the Rhone River (France), with a main focus on phytosterols, such as sitosterol, desmosterol, brassicasterol and cholesterol. This seasonal survey (April 2011 to May 2013) revealed a year-round strong terrigenous contribution to the plant derived particulate organic matter (POM) with significant algal inputs observed in March and attributed to phytoplanktonic blooms likely dominated by diatoms. Specific sitosterol and cholesterol degradation products were quantified and used to estimate the part of biotic and abiotic degradation of POM within the river. Plant-derived organic matter appears to be mainly affected by photo-oxidation and autoxidation (free radical oxidation), while organic matter of human origin, evidenced by the presence of coprostanol, is clearly more prone to bacterial degradation. Despite the involvement of an intense autoxidation inducing homolytic cleavage of peroxy bonds, a significant proportion of hydroperoxides is still intact in higher plant debris. These compounds could play a role in the degradation of terrestrial material by inducing an intense autoxidation upon its arrival at sea. Although sitosterol has been commonly used as a tracer of the terrestrial origin of POM in rivers, we show here that is it also found in phytoplankton, which highlights the need to use different tracers to determine the origin of POM in rivers. As part of the set of tracers we use, we have identified betulin to be an interesting candidate, although limited to a number of angiosperms species. Not only can we trace betulin to an unequivocal terrestrial origin, we also identified its specific degradation products, allowing us to trace the degradation state of angiosperm particulate debris in rivers, as well as the type of degradation undergone.

  10. [Ecological risk assessment of dam construction for terrestrial plant species in middle reach of Lancangjiang River, Southwest China].

    PubMed

    Li, Xiao-Yan; Dong, Shi-Kui; Liu, Shi-Liang; Peng, Ming-Chun; Li, Jin-Peng; Zhao, Qing-He; Zhang, Zhao-Ling

    2012-08-01

    Taking the surrounding areas of Xiaowan Reservoir in the middle reach of Lancangjiang River as study area, and based on the vegetation investigation at three sites including electricity transmission area (site 1), electricity-transfer substation and roadsides to the substation (site 2), and emigration area (site 3) in 1997 (before dam construction), another investigation was conducted on the vegetation composition, plant coverage, and dominant species at the same sites in 2010 (after dam construction), aimed to evaluate the ecological risk of the dam construction for the terrestrial plant species in middle reach of Lancangjiang River. There was an obvious difference in the summed dominance ratio of dominant species at the three sites before and after the dam construction. According the types of species (dominant and non-dominant species) and the changes of plant dominance, the ecological risk (ER) for the plant species was categorized into 0 to IV, i.e., no or extremely low ecological risk (0), low ecological risk (I), medium ecological risk (II), high ecological risk (III), and extremely high ecological risk (IV). As affected by the dam construction, the majority of the species were at ER III, and a few species were at ER IV. The percentage of the plant species at ER III and ER IV at site 3 was higher than that at sites 1 and 2. The decrease or loss of native plants and the increase of alien or invasive plants were the major ecological risks caused by the dam construction. Effective protection strategies should be adopted to mitigate the ecological risk of the dam construction for the terrestrial plants at species level.

  11. Towards Biological Restoration of Tehran Megalopolis River Valleys- Case Study: Farahzad River

    NASA Astrophysics Data System (ADS)

    Samadi, Nafishe; Oveis Torabi, Seyed; Akhani, Hossein

    2017-04-01

    Towards biological restoration of Tehran megalopolis river-valleys: case study Farahzad river 1Nafiseh Samadi, 2OveisTorabi, 3Hossein Akhani 1Mahsab Shargh Company, Tehran ,Iran, nafiseh19@gmail.com 2 Mahsab Shargh Company, Tehran ,Iran, weg@tna-co.com 3Department of Plant Sciences, Halophytes and C4 Research Laboratory, School of Biology, College of Sciences, University of Tehran, PO Box 14155-6455, Tehran, Iran, akhani@khayam.ut.ac.ir Tehran is located in northcentral parts of Iran on the alluvium of southern Alborz Mountains. Seven rivers originated from the highlands of N Tehran run inside and around the city. Many of these river valleys have been deformed by a variety of urban utilizations such as garden, building, canal, park, autobahn etc. Tehran with more than eight million populations suffered from adverse environmental conditions such as pollution and scarcity of natural habitats for recreational activities. Ecological restoration of altered river valleys of Tehran is one of the priorities of Tehran municipality started as a pilot project in Farahzad river. Intensive disturbance, conversion into various urban utilization, illegal building construction, waste water release into the river, garbage accumulation, artificial park constructions and domination of invasive species have largely altered the river. Parts of the river located in Pardisan Nature Park was studied before its complete deformation into a modern park. The riparian vegetation consisted of Tamarix ramosissima and Salix acmophylla shrubs with large number of aquatic and palustric plants. The norther parts of the river still contain semi-natural vegetation which change into patchy and intensive degraded habitats towards its southern parts. In northern parts of valley there are old gardens of Morus alba and Juglans regia, and planted trees such as Plataneus oreientalis and Acer negundo. Salix acmophylla, Fraxinus excelsior and Celtis caucasica are native species growing on river margin or

  12. The Upper Mississippi River floodscape: spatial patterns of flood inundation and associated plant community distributions

    USGS Publications Warehouse

    DeJager, Nathan R.; Rohweder, Jason J.; Yin, Yao; Hoy, Erin E.

    2016-01-01

    Questions How is the distribution of different plant communities associated with patterns of flood inundation across a large floodplain landscape? Location Thirty-eight thousand nine hundred and seventy hectare of floodplain, spanning 320 km of the Upper Mississippi River (UMR). Methods High-resolution elevation data (Lidar) and 30 yr of daily river stage data were integrated to produce a ‘floodscape’ map of growing season flood inundation duration. The distributions of 16 different remotely sensed plant communities were quantified along the gradient of flood duration. Results Models fitted to the cumulative frequency of occurrence of different vegetation types as a function of flood duration showed that most types exist along a continuum of flood-related occurrence. The diversity of community types was greatest at high elevations (0–10 d of flooding), where both upland and lowland community types were found, as well as at very low elevations (70–180 d of flooding), where a variety of lowland herbaceous communities were found. Intermediate elevations (20–60 d of flooding) tended to be dominated by floodplain forest and had the lowest diversity of community types. Conclusions Although variation in flood inundation is often considered to be the main driver of spatial patterns in floodplain plant communities, few studies have quantified flood–vegetation relationships at broad scales. Our results can be used to identify targets for restoration of historical hydrological regimes or better anticipate hydro-ecological effects of climate change at broad scales.

  13. Modeling the fate of a photoproduct of ketoprofen in urban rivers receiving wastewater treatment plant effluent.

    PubMed

    Hanamoto, Seiya; Hasegawa, Eisuke; Nakada, Norihide; Yamashita, Naoyuki; Tanaka, Hiroaki

    2016-12-15

    Photoproducts of pharmaceuticals have been studied in order not to overlook their potential risks to aquatic organisms. However, no studies have verified an equation for predicting the fate of photoproducts in aquatic environment (Poiger equation) by field measurements, leaving uncertainties in its practical utility. Therefore, we conducted this study to test the applicability of the Poiger equation to 3-ethylbenzophenone (EBP), a photoproduct of ketoprofen (KTP). Photolysis experiments determined the fraction of KTP transformed into EBP as 0.744±0.074 and the quantum yield of EBP degradation as 0.000418±0.000090. Field studies in urban rivers and wastewater treatment plants (WWTPs) revealed that EBP was produced by sunlight, mainly in the rivers, but also appreciably in outdoor primary and secondary clarifiers in the WWTPs. We developed a model in the secondary clarifiers, disinfection tanks, and rivers by incorporating the Poiger equation, which was effective at predicting the concentrations of EBP in the river waters and wastewaters. Thus, our first trial of verification by field measurements enhanced the practical utility of the Poiger equation, though further study including several photoproducts should be conducted. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Heavy metals in soils and plants of the don river estuary and the Taganrog Bay coast

    NASA Astrophysics Data System (ADS)

    Minkina, T. M.; Fedorov, Yu. A.; Nevidomskaya, D. G.; Pol'shina, T. N.; Mandzhieva, S. S.; Chaplygin, V. A.

    2017-09-01

    Natural and anthropogenic factors determining the distribution and accumulation features of Pb, Cu, Zn, Cr, Ni, Cd, Mn, and As in the soil-plant system of the Don River estuary and the northern and southern Russian coasts of Taganrog Bay estuary have been studied. High mobility of Cu, Zn, Pb, and Cd has been revealed in alluvial soils. This is confirmed by the significant bioavailability of Cu, Zn, and, to a lesser degree, Cd and the technophily of Pb, which are accumulated in tissues of macrophytic plants. Statistically significant positive correlations have been found between the mobile forms of Cu, Zn, Cd, and Mn in the soil and the accumulation of metals in plants. Impact zones with increased metal contents in aquatic ecosystems can be revealed by bioindication from the morphofunctional parameters of macrophytic plants (with Typha L. as an example).

  15. Rivers: Nature's Wondrous Waterways.

    ERIC Educational Resources Information Center

    Harrison, David L.

    Rivers play a vital role in the life of the planet. They provide water for wildlife, plant life, and people, and they help to fertilize fields where corn and other crops grow. But how were these rivers made? This children's book takes readers/students on a journey down a river from its source at the top of a mountain to its mouth where it meets…

  16. The Middle Sacramento River: Human Impacts on Physical and Ecological Processes Along a Meandering River

    Treesearch

    Koll Buer; Dave Forwalter; Mike Kissel; Bill Stohlert

    1989-01-01

    Native plant and wildlife communities along Northern California's middle Sacramento River (Red Bluff to Colusa) originally adapted to a changing pattern of erosion and deposition across a broad meander belt. The erosion-deposition process was in balance, with the river alternately building and eroding terraces. Human-induced changes to the Sacramento River,...

  17. Influence of plant communities on denitrification in a tidal freshwater marsh of the Potomac River, United States.

    PubMed

    Hopfensperger, Kristine N; Kaushal, Sujay S; Findlay, Stuart E G; Cornwell, Jeffrey C

    2009-01-01

    We investigated whether marsh surface elevation, plant community composition (annuals vs. perennials), and organic matter quantity/quality were associated with differences in denitrification rates in an urban tidal freshwater marsh of the Potomac River, United States. We measured denitrification rates using both denitrification enzyme activity (DEA) with acetylene inhibition (June: n = 38, 3234 +/- 303; October: n = 38, 1557 +/- 368 ng N g dry soil(-1) h(-1)) and direct N(2) flux measurements with membrane inlet mass spectrometry (MIMS) (November: n = 6, 147 +/- 24 mumol m(-2) h(-1)). Organic carbon content and nitrate concentrations in soil, and plant community composition were correlated with elevation, but DEA rates did not differ across marsh surface elevation. Soil organic carbon was highest in plots dominated by perennial graminoids, but DEA rates did not differ across plant community types. The DEA rates increased with increasing soil ammonium concentrations and total N content, and DEA rates differed between summer and fall sampling. The MIMS rates did not differ across plant community types, but were correlated with soil organic N content. Denitrification rates suggest that potential N removal at the site could be substantial. In addition, denitrification rates measured in Dyke Marsh were higher than rates for sediments measured in the adjacent Potomac River. Tidal freshwater marshes can represent an important site for denitrification, and factors fostering denitrification should be considered when restoring urban tidal freshwater wetlands as they are faced with pressures from increasing land use change and sea level rise.

  18. Spatial distribution and importance of potential perfluoroalkyl acid precursors in urban rivers and sewage treatment plant effluent--case study of Tama River, Japan.

    PubMed

    Ye, Feng; Tokumura, Masahiro; Islam, Md Saiful; Zushi, Yasuyuki; Oh, Jungkeun; Masunaga, Shigeki

    2014-12-15

    Production and use of perfluorooctane sulfonate (PFOS) is regulated worldwide. However, numerous potential precursors that eventually decompose into PFOS and other perfluoroalkyl acids (PFAAs) such as perfluorooctanoic acid (PFOA) are still being used and have not been studied in detail. Therefore, knowledge about the levels and sources of the precursors is essential. We investigated the total concentration of potential PFAA precursors in the Tama River, which is one of the major rivers flowing into the Tokyo Bay, by converting all the perfluorinated carboxylic acid (PFCA) and perfluoroalkyl sulfonic acid (PFSA) precursors into PFCAs by chemical oxidation. The importance of controlling PFAA precursors was determined by calculating the ratios of PFCAs formed by oxidation to the PFAAs originally present (ΣΔ[PFCAC4-C12]/Σ[PFAAs]before oxidation) (average = 0.28 and 0.69 for main and tributary branch rivers, respectively). Higher total concentrations of Δ[PFCAs] were found in sewage treatment plant (STP) effluents. However, the ratios found in the effluents were lower (average = 0.21) than those found in the river water samples, which implies the decomposition of some precursors into PFAAs during the treatment process. On the other hand, higher ratios were observed in the upstream water samples and the existence of emission sources other than the STP effluents was indicated. This study showed that although the treatment process converting a part of the PFAA precursors into PFAAs, STPs were important sources of precursors to the Tama River. To reduce the levels of PFAAs in the aquatic environment, it is necessary to reduce the emission of the PFAA precursors as well. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Dynamics of organochlorine contaminants in surface water and in Myriophyllum aquaticum plants of the River Xanaes in central Argentina during the annual dry season.

    PubMed

    Schreiber, René; Harguinteguy, Carlos A; Manetti, Martin D

    2013-10-01

    The dynamics of organochlorine pesticides (OCPs) and their major metabolites were studied in surface waters and plants of the River Xanaes (province of Córdoba, Argentina) during the annual dry season. The results of the 5-month monitoring study (April to August 2010) showed similar low contamination levels in nonagricultural mountain and agricultural areas in both water and plants. The concentrations of compounds detected in the surface water were <4.5 ng L(-1), whereas concentrations of these substances in Myriophyllum aquaticum plants were <5 μg kg(-1) (dry weight) with the exception of trans-permethrin (17.6 μg kg(-1), dry weight). Because no notable differences in the contamination level between samples from the mountain and the agricultural area were observed, it was assumed that OCPs may not play an important role in today's pesticide use in this area. Furthermore, the concentration-time trends for OCPs in the submerged plants showed a generally similar elimination behaviour independent of compound and sampling site, thus indicating an integral rather then a substance-specific process, such as partitioning between the plant and the ambient water. As known, rooted macrophytes can take up contaminants by way of roots, so sediments may be the principal source. To understand the dynamics of these compounds in the river area more deeply, thus further research should include study of the river sediment.

  20. A Synthesis of Environmental and Plant Community Data for Tidal Wetland Restoration Planning in the Lower Columbia River and Estuary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diefenderfer, Heida L.; Borde, Amy B.; Cullinan, Valerie I.

    This report reanalyzes and synthesizes previously existing environmental and plant community data collected by PNNL at 55 tidal wetlands and 3 newly restored sites in the lower Columbia River and estuary (LCRE) between 2005 and 2011. Whereas data were originally collected for various research or monitoring objectives of five studies, the intent of this report is to provide only information that will have direct utility in planning tidal wetland restoration projects. Therefore, for this report, all tidal wetland data on plants and the physical environment, which were originally developed and reported by separate studies, were tabulated and reanalyzed as amore » whole. The geographic scope of the data collected in this report is from Bonneville Lock and Dam to the mouth of the Columbia River« less

  1. Flow around an individual morphologically complex plant: investigating the role of plant aspect in the numerical prediction of complex river flow

    NASA Astrophysics Data System (ADS)

    Boothroyd, R.; Hardy, R. J.; Warburton, J.; Marjoribanks, T.

    2015-12-01

    Aquatic vegetation has a significant influence on the hydraulic functioning of river systems. Plant morphology has previously been shown to alter the mean and turbulent properties of flow, influenced by the spatial distribution of branches and foliage, and these effects can be further investigated through numerical models. We report on a novel method for the measurement and incorporation of complex plant morphologies into a computational fluid dynamics (CFD) model. The morphological complexity of Prunus laurocerasus is captured under foliated and defoliated states through terrestrial laser scanning (TLS). Point clouds are characterised by a voxelised representation and incorporated into a CFD scheme using a mass flux scaling algorithm, allowing the numerical prediction of flows around individual plants. Here we examine the sensitivity of plant aspect, i.e. the positioning of the plant relative to the primary flow direction, by rotating the voxelised plant representation through 15° increments (24 rotations) about the vertical axis. This enables the impact of plant aspect to be quantified upon the velocity and pressure fields, and in particular how this effects species-specific drag forces and drag coefficients. Plant aspect is shown to considerably influence the flow field response, producing spatially heterogeneous downstream velocity fields with both symmetric and asymmetric wake shapes, and point of reattachments that extend up to seven plant lengths downstream. For the same plant, changes in aspect are shown to account for a maximum variation in drag force of 168%, which equates to a 65% difference in the drag coefficient. An explicit consideration of plant aspect is therefore important in studies concerning flow-vegetation interactions, especially when reducing the uncertainty in parameterising the effect of vegetation in numerical models.

  2. Earthquake Hazard in the Heart of the Homeland

    USGS Publications Warehouse

    Gomberg, Joan; Schweig, Eugene

    2007-01-01

    Evidence that earthquakes threaten the Mississippi, Ohio, and Wabash River valleys of the Central United States abounds. In fact, several of the largest historical earthquakes to strike the continental United States occurred in the winter of 1811-1812 along the New Madrid seismic zone, which stretches from just west of Memphis, Tenn., into southern Illinois. Several times in the past century, moderate earthquakes have been widely felt in the Wabash Valley seismic zone along the southern border of Illinois and Indiana. Throughout the region, between 150 and 200 earthquakes are recorded annually by a network of monitoring instruments, although most are too small to be felt by people. Geologic evidence for prehistoric earthquakes throughout the region has been mounting since the late 1970s. But how significant is the threat? How likely are large earthquakes and, more importantly, what is the chance that the shaking they cause will be damaging?

  3. Ecological effects of roads on the plant diversity of coastal wetland in the Yellow River Delta.

    PubMed

    Li, Yunzhao; Yu, Junbao; Ning, Kai; Du, Siyao; Han, Guangxuan; Qu, Fanzhu; Wang, Guangmei; Fu, Yuqin; Zhan, Chao

    2014-01-01

    The 26 sample sites in 7 study plots adjacent to asphalt road and earth road in coastal wetland in the Yellow River Delta were selected to quantify plant diversity using quadrat sampling method in plant bloom phase of July and August 2012. The indice of β T and Jaccard's coefficient were applied to evaluate the species diversity. The results showed that the plant diversities and alien plants were high in the range of 0-20 m to the road verge. There were more exotics and halophytes in plots of asphalt roadside than that of earth roadside. However, proportion of halophytes in habitats of asphalt roadsides was lower than that of earth roadside. By comparing β-diversity, there were more common species in the asphalt roadsides than that in the earth roadsides. The similarity of plant communities in studied plots of asphalt roadsides and earth roadsides increased with increasing the distance to road verge. The effect range of roads for plant diversity in study region was about 20 m to road verge. Our results indicate that the construction and maintenance of roads in wetland could increase the plant species diversities of communities and risk of alien species invasion.

  4. Effect of eco-remediation using planted floating bed system on nutrients and heavy metals in urban river water and sediment: a field study in China.

    PubMed

    Ning, Daliang; Huang, Yong; Pan, Ruisong; Wang, Fayuan; Wang, Hui

    2014-07-01

    To investigate the effect of the eco-remediation on nutrients and heavy metals in river water and sediment, a field study was carried out in a site of a 2-year eco-remediation mainly using planted floating bed system in an urban river in China. Before remediation, the tested properties of water and sediment in the will-be remediated area were not different from the control area, except higher concentrations of chemical oxygen demand (COD) and total nitrogen (TN) in the river water. After remediation, the remediation area showed effective removal of in-stream nutrients and elevation of dissolved oxygen and transparency. Compared to the control area, the remediation area had higher concentration of nitrate and lower concentrations of COD, ammonium, Mn and hexavalent Cr in the river water after a 2-year remediation. The remediation area also showed higher concentrations of organic carbon, TN, nitrate, sulfate, Fe, Cu, Pb and Zn in the sediment than in the control area. Accordingly, special attention should be paid to the ecological risk of heavy metals in sediments and plants in river eco-remediation projects especially in rivers polluted by heavy metals, although the metals were lower than the level of considerable ecological risk in this study. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Analysis and occurrence of pharmaceuticals, estrogens, progestogens and polar pesticides in sewage treatment plant effluents, river water and drinking water in the Llobregat river basin (Barcelona, Spain)

    NASA Astrophysics Data System (ADS)

    Kuster, Marina; López de Alda, Maria José; Hernando, Maria Dolores; Petrovic, Mira; Martín-Alonso, Jordi; Barceló, Damià

    2008-08-01

    SummaryThis work investigated the presence of 21 emerging contaminants of various chemical groups (7 estrogens, 3 progestogens, 6 pharmaceuticals and personal care products (PPCPs), and 5 acidic pesticides) in the Llobregat river basin (NE Spain). Waters from the outlet of various sewage treatment plants (STP) and waterworks located along the river basin, as well as water samples from the river or its tributaries upstream and downstream of these plants were analysed in two pilot monitoring studies. Chemical analyses were performed by means of on-line or off-line solid-phase extraction followed by liquid chromatography-electrospray-tandem mass spectrometry. Methods detection limits (in ng/L) were ⩽0.85 for estrogens, ⩽3.94 for progestogens, ⩽30 for PPCPs, and ⩽0.99 for pesticides. Of the estrogens and progestogens analysed, only estrone-3-sulfate, estrone, estriol and progesterone were found to be present in the low nanogram per liter range in some of the samples investigated. Except for atenolol, all PPCPs studied (ibuprofen, diclofenac, clofibric acid, salicylic acid, and triclosan) could be identified at levels usually lower than 250 ng/L and up to 1200 ng/l (diclofenac). Of the various pesticides investigated (2,4-D, bentazone; MCPA, mecoprop and propanil) MCPA and 2,4-D were the most ubiquitous and abundant and bentazone the only one not detected. Individual concentrations were most often below 100 ng/L and never surpassed the EU limits.

  6. Comprehensive evaluation of the main technology for new sewage treatment plants in small towns along the Duliujian river basin

    NASA Astrophysics Data System (ADS)

    Chen, Yiming; Zhou, Beihai; Yuan, Rongfang; Bao, Xiangming; Li, Dongwei

    2018-02-01

    In recent years, water contamination problem has been becoming more and more serious due to increasing wastewater discharge. So our country has accelerated the pace of constructing sewage treatment plant in small towns. But in China it has not been issued any corresponding technical specifications about the choice of treatment technology. So the article is based on the basin of Duliujian river, through field research, data collection and analysis of relevant documentations, preliminarily elects seven kinds of technology: Improved A2/O, Integrated oxidation ditch, Orbal oxidation ditch, CASS, A/O+refined diatomite, BIOLAK and UNITANK as alternatives for Tianjin sewage discharge local standard.Then the article use the analytic hierarchy process (AHP) to evaluate the seven kinds of alternatives, finally it is concluded that CASS technology is most suitable for the main technology of new sewage treatment plants in small towns along the Duliujian River basin.

  7. Changes in community-level riparian plant traits over inundation gradients, Colorado River, Grand Canyon

    USGS Publications Warehouse

    McCoy-Sulentic, Miles; Kolb, Thomas; Merritt, David; Palmquist, Emily C.; Ralston, Barbara E.; Sarr, Daniel; Shafroth, Patrick B.

    2017-01-01

    Comparisons of community-level functional traits across environmental gradients have potential for identifying links among plant characteristics, adaptations to stress and disturbance, and community assembly. We investigated community-level variation in specific leaf area (SLA), plant mature height, seed mass, stem specific gravity (SSG), relative cover of C4 species, and total plant cover over hydrologic zones and gradients in years 2013 and 2014 in the riparian plant community along the Colorado River in the Grand Canyon. Vegetation cover was lowest in the frequently inundated active channel zone, indicating constraints on plant establishment and production by flood disturbance and anaerobic stress. Changes in trait values over hydrologic zones and inundation gradients indicate that frequently inundated plots exhibit a community-level ruderal strategy with adaptation to submergence (high SLA and low SSG, height, seed mass, C4 relative cover), whereas less frequently inundated plots exhibit adaptation to drought and infrequent flood disturbance (low SLA and high SSG, height, seed mass, C4 relative cover). Variation in traits not associated with inundation suggests niche differentiation and multiple modes of community assembly. The results enhance understanding of future responses of riparian communities of the Grand Canyon to anticipated drying and changes in hydrologic regime.

  8. Preliminary estimate of possible flood elevations in the Columbia River at Trojan Nuclear Power Plant due to failure of debris dam blocking Spirit Lake, Washington

    USGS Publications Warehouse

    Kresch, D.L.; Laenen, Antonius

    1984-01-01

    Failure of the debris dam, blocking the outflow of Spirit Lake near Mount St. Helens, could result in a mudflow down the Toutle and Cowlitz Rivers into the Columbia River. Flood elevations at the Trojan Nuclear Power Plant on the Columbia River, 5 mi upstream from the Cowlitz River, were simulated with a hydraulic routing model. The simulations are made for four Columbia River discharges in each of two scenarios, one in which Columbia River floods coincide with a mudflow and the other in which Columbia River floods follow a mudflow sediment deposit upstream from the Cowlitz River. In the first scenario, Manning 's roughness coefficients for clear water and for mudflow in the Columbia River are used; in the second scenario only clear water coefficients are used. The grade elevation at the power plant is 45 ft above sea level. The simulated elevations exceed 44 ft if the mudflow coincides with a Columbia River discharge that has a recurrence interval greater than 10 years (610,000 cu ft/sec); the mudflow is assumed to extend downstream from the Cowlitz River to the mouth of the Columbia River, and Manning 's roughness coefficients for a mudflow are used. The simulated elevation is 32 ft if the mudflow coincides with a 100-yr flood (820,000 cu ft/sec) and clear-water Manning 's coefficients are used throughout the entire reach of the Columbia River. The elevations exceed 45 ft if a flow exceeding the 2-yr peak discharge in the Columbia River (410,000 cu ft/sec) follows the deposit of 0.5 billion cu yd of mudflow sediment upstream of the Cowlitz River before there has been any appreciable scour or dredging of the deposit. In this simulation it is assumed that: (1) the top of the sediment deposited in the Columbia River is at an elevation of 30 ft at the mouth of the Cowlitz River, (2) the surface elevation of the sediment deposit decreases in an upstream direction at a rate of 2.5 ft/mi, and (3) clear water Manning 's coefficients apply to the entire modeled reach of

  9. Contaminant removal by wastewater treatment plants in the Stillaguamish River Basin, Washington

    USGS Publications Warehouse

    Barbash, Jack E.; Moran, Patrick W.; Wagner, Richard J.; Wolanek, Michael

    2015-01-01

    Human activities in most areas of the developed world typically release nutrients, pharmaceuticals, personal care products, pesticides, and other contaminants into the environment, many of which reach freshwater ecosystems. In urbanized areas, wastewater treatment plants (WWTPs) are critical facilities for collecting and reducing the amounts of wastewater contaminants (WWCs) that ultimately discharge to rivers, coastal areas, and groundwater. Most WWTPs use multiple methods to remove contaminants from wastewater. These include physical methods to remove solid materials (primary treatment), biological and chemical methods to remove most organic matter (secondary treatment), advanced methods to reduce the concentrations of various contaminants such as nitrogen, phosphorus and (or) synthetic organic compounds (tertiary treatment), and disinfection prior to discharge (Metcalf and Eddy, Inc., 1979). This study examined the extent to which 114 organic WWCs were removed by each of three WWTPs, prior to discharge to freshwater and marine ecosystems, in a rapidly developing area in northwestern Washington State. Removal percentages for each WWC were estimated by comparing the concentrations measured in the WWTP influents with those measured in the effluents. The investigation was carried out in the 700-mi2Stillaguamish River Basin, the fifth largest watershed that discharges to Puget Sound (fig. 1).

  10. Relative importance of wastewater treatment plants and non-point sources of perfluorinated compounds to Washington State rivers.

    PubMed

    Furl, Chad V; Meredith, Callie A; Strynar, Mark J; Nakayama, Shoji F

    2011-07-01

    Perfluorinated compounds (PFCs) were measured in 10 Washington State rivers and 4 wastewater treatment plants (WWTPs) under periods of low and high flows to investigate the relative importance of point and non-point sources to rivers. PFCs were detected in all samples with summed values ranging from 1.11 to 74.9 ng/L in surface waters and 62.3-418 ng/L in WWTP effluent. Concentrations in 6 of the 10 rivers exhibited a positive relationship with flow, indicating runoff as a contributing source, with PFC loads greatest at all 10 waterbodies during high flows. Perfluoroheptanoic acid:perfluorooctanoic acid homologue ratios suggest atmospheric contributions to the waterbodies are important throughout the year. Principal component analysis (PCA) indicated distinct homologue profiles for high flow, low flow, and effluent samples. The PCA demonstrates that during the spring when flows and loads are at their greatest; WWTP discharges are not the primary sources of PFCs to the river systems. Taken together, the evidence provided signifies non-point inputs are a major pathway for PFCs to surface waters in Washington State. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. [Interrelations between plant communities and environmental factors of wetlands and surrounding lands in mid- and lower reaches of Tarim River].

    PubMed

    Zhao, Ruifeng; Zhou, Huarong; Qian, Yibing; Zhang, Jianjun

    2006-06-01

    A total of 16 quadrants of wetlands and surrounding lands in the mid- and lower reaches of Tarim River were surveyed, and the data about the characteristics of plant communities and environmental factors were collected and counted. By using PCA (principal component analysis) ordination and regression procedure, the distribution patterns of plant communities and the relationships between the characteristics of plant community structure and environmental factors were analyzed. The results showed that the distribution of the plant communities was closely related to soil moisture, salt, and nutrient contents. The accumulative contribution rate of soil moisture and salt contents in the first principal component accounted for 35.70%, and that of soil nutrient content in the second principal component reached 25.97%. There were 4 types of habitats for the plant community distribution, i. e., fenny--light salt--medium nutrient, moist--medium salt--medium nutrient, mesophytic--medium salt--low nutrient, and medium xerophytic-heavy salt--low nutrient. Along these habitats, swamp vegetation, meadow vegetation, riparian sparse forest, halophytic desert, and salinized shrub were distributed. In the wetlands and surrounding lands of mid- and lower reaches of Tarim River, the ecological dominance of the plant communities was markedly and unitary-linearly correlated with the compound gradient of soil moisture and salt contents. The relationships between species diversity, ecological dominance, and compound gradient of soil moisture and salt contents were significantly accorded to binary-linear regression model.

  12. Floods of January-February 1959 in Indiana

    USGS Publications Warehouse

    Hale, Malcolm D.; Hoggatt, Richard Earl

    1961-01-01

    Previous maximum stages during the period of record were exceeded at 26 gaging stations. The peak discharge of Big Indian Creek near Corydon, and peak stages of Laughery Creek near Farmers Retreat and Vernon Fork at Vernon on January 21, were greater than any since at least 1897. The peak stage of Wabash River at Huntington on February 10 exceeded that of the historical 1913 flood by 0.5 foot.

  13. 33 CFR 162.90 - White River, Arkansas Post Canal, Arkansas River, and Verdigris River between Mississippi River...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... used, or capable of being used, as a means of transportation on water, other than rafts. (b) Waterways... to result in a condition whereby the movement of vessel (and tow) cannot be completely halted or... construction, plant engaged in river and harbor improvement, levees withstanding floodwaters, buildings...

  14. 33 CFR 162.90 - White River, Arkansas Post Canal, Arkansas River, and Verdigris River between Mississippi River...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... used, or capable of being used, as a means of transportation on water, other than rafts. (b) Waterways... to result in a condition whereby the movement of vessel (and tow) cannot be completely halted or... construction, plant engaged in river and harbor improvement, levees withstanding floodwaters, buildings...

  15. 33 CFR 162.90 - White River, Arkansas Post Canal, Arkansas River, and Verdigris River between Mississippi River...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... used, or capable of being used, as a means of transportation on water, other than rafts. (b) Waterways... to result in a condition whereby the movement of vessel (and tow) cannot be completely halted or... construction, plant engaged in river and harbor improvement, levees withstanding floodwaters, buildings...

  16. B, As, and F contamination of river water due to wastewater discharge of the Yangbajing geothermal power plant, Tibet, China

    NASA Astrophysics Data System (ADS)

    Guo, Qinghai; Wang, Yanxin; Liu, Wei

    2008-11-01

    Thermal waters from the Yangbajing geothermal field, Tibet, contain high concentrations of B, As, and F, up to 119, 5.7 and 19.6 mg/L, respectively. In this paper, the distribution of B, As, and F in the aquatic environment at Yangbajing was surveyed. The results show that most river water samples collected downstream of the Zangbo River have comparatively higher concentrations of B, As, and F (up to 3.82, 0.27 and 1.85 mg/L, respectively), indicating that the wastewater discharge of the geothermal power plant at Yangbajing has resulted in B, As, and F contamination in the river. Although the concentrations of B, As, and F of the Zangbo river waters decline downstream of the wastewater discharge site due to dilution effect and sorption onto bottom sediments, the sample from the conjunction of the Zangbo River and the Yangbajing River has higher contents of B, As, and F as compared with their predicted values obtained using our regression analysis models. The differences between actual and calculated contents of B, As, and F can be attributed to the contribution from upstream of the Yangbajing River. Water quality deterioration of the river has induced health problems among dwellers living in and downstream of Yangbajing. Effective measures, such as decontamination of wastewater and reinjection into the geothermal field, should be taken to protect the environment at Yangbajing.

  17. Characteristics of radiocesium runoff between five river basins near to the Fukushima Daiichi Nuclear Power Plant over heavy rainfall events

    NASA Astrophysics Data System (ADS)

    Sakuma, Kazuyuki; Malins, Alex; Kurikami, Hiroshi; Kitamura, Akihiro

    2017-04-01

    Due to the Fukushima Daiichi Nuclear Power Plant accident triggered by the earthquake and subsequent tsunami on 11 March 2011, many radionuclides were released into environments such as forests, rivers, dam reservoirs, and the ocean. 137Cs is one of the most important radio-contaminants. In order to investigate 137Cs transport and discharge from contaminated basins, in this study we developed a three dimensional model of five river basins near to the Fukushima Daiichi Nuclear Power Plant. We applied the General-purpose Terrestrial fluid-Flow Simulator (GETFLOWS) watershed code to the Odaka, Ukedo, Maeda, Kuma, and Tomioka River basins. The main land uses in these areas are forests, rice paddy fields, crop fields and urban. The Ukedo, Kuma and Tomioka Rivers have relatively large dam reservoirs (>106 m3) in the upper basins. The radiocesium distribution was initiated based on the Second Airborne Monitoring Survey. The simulation periods were 2011 Typhoon Roke, nine heavy rainfall events in 2013, Typhoons Man-yi and Wipha, and tropical storm Etau in 2015. Water, sediment, and radiocesium discharge from the basins was calculated for these events. The characteristics of 137Cs runoff between the different basins were evaluated in terms of land use, the effect of dam reservoirs, geology, and the fraction of the initial radiocesium inventory discharged. The absolute 137Cs discharge from the Ukedo River basin was highest, however the 137Cs discharge ratio was lowest due to the Ogaki Dam and the inventory being mainly concentrated in upstream forests. The results for the water, suspended sediment and radiocesium discharge as a function of total precipitation over the various rainfall events can be used to predict discharges for other typhoons.

  18. A metagenomic assessment of viral contamination on fresh parsley plants irrigated with fecally tainted river water.

    PubMed

    Fernandez-Cassi, X; Timoneda, N; Gonzales-Gustavson, E; Abril, J F; Bofill-Mas, S; Girones, R

    2017-09-18

    Microbial food-borne diseases are still frequently reported despite the implementation of microbial quality legislation to improve food safety. Among all the microbial agents, viruses are the most important causative agents of food-borne outbreaks. The development and application of a new generation of sequencing techniques to test for viral contaminants in fresh produce is an unexplored field that allows for the study of the viral populations that might be transmitted by the fecal-oral route through the consumption of contaminated food. To advance this promising field, parsley was planted and grown under controlled conditions and irrigated using contaminated river water. Viruses polluting the irrigation water and the parsley leaves were studied by using metagenomics. To address possible contamination due to sample manipulation, library preparation, and other sources, parsley plants irrigated with nutritive solution were used as a negative control. In parallel, viruses present in the river water used for plant irrigation were analyzed using the same methodology. It was possible to assign viral taxons from 2.4 to 74.88% of the total reads sequenced depending on the sample. Most of the viral reads detected in the river water were related to the plant viral families Tymoviridae (66.13%) and Virgaviridae (14.45%) and the phage viral families Myoviridae (5.70%), Siphoviridae (5.06%), and Microviridae (2.89%). Less than 1% of the viral reads were related to viral families that infect humans, including members of the Adenoviridae, Reoviridae, Picornaviridae and Astroviridae families. On the surface of the parsley plants, most of the viral reads that were detected were assigned to the Dicistroviridae family (41.52%). Sequences related to important viral pathogens, such as the hepatitis E virus, several picornaviruses from species A and B as well as human sapoviruses and GIV noroviruses were detected. The high diversity of viral sequences found in the parsley plants

  19. Balancing hydropower production and river bed incision in operating a run-of-river hydropower scheme along the River Po

    NASA Astrophysics Data System (ADS)

    Denaro, Simona; Dinh, Quang; Bizzi, Simone; Bernardi, Dario; Pavan, Sara; Castelletti, Andrea; Schippa, Leonardo; Soncini-Sessa, Rodolfo

    2013-04-01

    Water management through dams and reservoirs is worldwide necessary to support key human-related activities ranging from hydropower production to water allocation, and flood risk mitigation. Reservoir operations are commonly planned in order to maximize these objectives. However reservoirs strongly influence river geomorphic processes causing sediment deficit downstream, altering the flow regime, leading, often, to process of river bed incision: for instance the variations of river cross sections over few years can notably affect hydropower production, flood mitigation, water supply strategies and eco-hydrological processes of the freshwater ecosystem. The river Po (a major Italian river) has experienced severe bed incision in the last decades. For this reason infrastructure stability has been negatively affected, and capacity to derive water decreased, navigation, fishing and tourism are suffering economic damages, not to mention the impact on the environment. Our case study analyzes the management of Isola Serafini hydropower plant located on the main Po river course. The plant has a major impact to the geomorphic river processes downstream, affecting sediment supply, connectivity (stopping sediment upstream the dam) and transport capacity (altering the flow regime). Current operation policy aims at maximizing hydropower production neglecting the effects in term of geomorphic processes. A new improved policy should also consider controlling downstream river bed incision. The aim of this research is to find suitable modeling framework to identify an operating policy for Isola Serafini reservoir able to provide an optimal trade-off between these two conflicting objectives: hydropower production and river bed incision downstream. A multi-objective simulation-based optimization framework is adopted. The operating policy is parameterized as a piecewise linear function and the parameters optimized using an interactive response surface approach. Global and local

  20. Nutrient input from the Loxahatchee River Environmental Control District sewage-treatment plant to the Loxahatchee River Estuary, southeastern Florida

    USGS Publications Warehouse

    Sonntag, W.H.; McPherson, B.F.

    1984-01-01

    Two test discharges of treated-sewage effluent were made to the Loxahatchee River in February and September 1981 from the ENCON sewage-treatment plant to document nutrient loading and downstream transport of the effluent to the estuary under maximum daily discharge allowable by law (4 million gallons per day). Concentrations of total nitrogen in the effluent exceeded background concentrations by as much as 7 times during the February test, while concentrations of total phosphorus exceeded background concentrations by as much as 112 times during the September test. The effluent was transported downstream to the estuary in less than 24 hours. Discharge of treated sewage effluent to the river-estuary system in the 1981 water year accounted for less than 0.5 percent of the total nitrogen and 8 percent of the total phosphorus discharged from the major tributaries to the estuary. If maximum discharges of effluent (4 million gallons per day) were sustained throughout the year, annual nitrogen loading from the effluent would account for 5 to 18 percent of the total nitrogen input by the major tributaries to the estuary. With maximum discharges of effluent, annual phosphorus loading would exceed the amount of phosphorus input by the major tributaries to the estuary by 54 to 167 percent. (USGS)

  1. 4. STEAM PLANT MARINE BOILERS WEST OF STEAM PLANT AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. STEAM PLANT MARINE BOILERS WEST OF STEAM PLANT AND SOUTH OF ORIGINAL STEAM PLANT BOILERS, FROM SOUTH. November 13, 1990 - Crosscut Steam Plant, North side Salt River near Mill Avenue & Washington Street, Tempe, Maricopa County, AZ

  2. 14. VIEW OF WESTERN CANAL AT THE SALT RIVER PROJECT'S ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. VIEW OF WESTERN CANAL AT THE SALT RIVER PROJECT'S KYRENE STEAM POWER PLANT, TEMPE. THE WESTERN CANAL BEGINS TO TURN NORTH AT THIS POINT, AND DIVERTS WATER TO THE HIGHLINE PUMP PLANT AND THE KYRENE LATERAL. THE KYRENE PLANT INLET (LEFT-CENTER) ALSO DIVERTS CANAL WATER FOR PLANT OPERATION AND COOLING. - Western Canal, South side of Salt River between Tempe, Phoenix & Mesa, Mesa, Maricopa County, AZ

  3. Ecological Effects of Roads on the Plant Diversity of Coastal Wetland in the Yellow River Delta

    PubMed Central

    Li, Yunzhao; Du, Siyao; Han, Guangxuan; Qu, Fanzhu; Wang, Guangmei; Fu, Yuqin; Zhan, Chao

    2014-01-01

    The 26 sample sites in 7 study plots adjacent to asphalt road and earth road in coastal wetland in the Yellow River Delta were selected to quantify plant diversity using quadrat sampling method in plant bloom phase of July and August 2012. The indice of β T and Jaccard's coefficient were applied to evaluate the species diversity. The results showed that the plant diversities and alien plants were high in the range of 0–20 m to the road verge. There were more exotics and halophytes in plots of asphalt roadside than that of earth roadside. However, proportion of halophytes in habitats of asphalt roadsides was lower than that of earth roadside. By comparing β-diversity, there were more common species in the asphalt roadsides than that in the earth roadsides. The similarity of plant communities in studied plots of asphalt roadsides and earth roadsides increased with increasing the distance to road verge. The effect range of roads for plant diversity in study region was about 20 m to road verge. Our results indicate that the construction and maintenance of roads in wetland could increase the plant species diversities of communities and risk of alien species invasion. PMID:25147872

  4. 33 CFR 207.200 - Mississippi River below mouth of Ohio River, including South and Southwest Passes; use...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... banks of the river, and no floating plant other than launches and similar small craft shall land against... white background readable from the waterway side, placed on each side of the river near the point where...

  5. 77 FR 31357 - Proposed Agreement Pursuant to the Comprehensive Environmental Response, Compensation, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-25

    ... Environmental Response, Compensation, and Liability Act for the Wabash Environmental Technologies Site AGENCY...)(1) agreement with 21 parties for the Wabash Environmental Technologies Superfund Site. SUMMARY: In... concerning the Wabash Environmental Technologies hazardous waste site in Terre Haute, Indiana (the ``Site...

  6. Altered hydrologic and geomorphic processes and bottomland hardwood plant communities of the lower White River Basin

    USGS Publications Warehouse

    King, Sammy L.; Keim, Richard F.; Hupp, Cliff R.; Edwards, Brandon L.; Kroschel, Whitney A.; Johnson, Erin L.; Cochran, J. Wesley

    2016-09-12

    Determine stand establishment patterns of bottomland hardwoods within selected plant communities along three sections of the floodplain. This study provides baseline information on the current geomorphic and hydrologic conditions of the river and can assist in the interpretation of forest responses to past hydrologic and geomorphic processes. Understanding the implications for floodplain forests of geomorphic adjustment in the Lower Mississippi Alluvial Valley is key to managing the region’s valuable resources for a sustainable future.

  7. The Wind River Arboretum 1912-1956.

    Treesearch

    Roy R. Silen; Leonard R. Woike

    1959-01-01

    Wind River Arboretum, located in the Wind River valley near Carson, Wash., was established in 1912 with the planting of a few species of introduced trees on stump land adjacent to the Wind River Nursery. It is the oldest arboretum in the Northwest and ranks among the earliest forestry projects of an experimental nature still in existence in the region. The initial...

  8. Attenuation of pharmaceuticals and their transformation products in a wastewater treatment plant and its receiving river ecosystem.

    PubMed

    Aymerich, I; Acuña, V; Barceló, D; García, M J; Petrovic, M; Poch, M; Rodriguez-Mozaz, S; Rodríguez-Roda, I; Sabater, S; von Schiller, D; Corominas, Ll

    2016-09-01

    Pharmaceuticals are designed to improve human and animal health, but may also be a threat to freshwater ecosystems, particularly after receiving urban or wastewater treatment plant (WWTP) effluents. Knowledge on the fate and attenuation of pharmaceuticals in engineered and natural ecosystems is rather fragmented, and comparable methods are needed to facilitate the comprehension of those processes amongst systems. In this study the dynamics of 8 pharmaceuticals (acetaminophen, sulfapyridine, sulfamethoxazole, carbamazepine, venlafaxine, ibuprofen, diclofenac, diazepam) and 11 of their transformation products were investigated in a WWTP and the associated receiving river ecosystem. During 3 days, concentrations of these compounds were quantified at the influents, effluents, and wastage of the WWTP, and at different distances downstream the effluent at the river. Attenuation (net balance between removal and release from and to the water column) was estimated in both engineered and natural systems using a comparable model-based approach by considering different uncertainty sources (e.g. chemical analysis, sampling, and flow measurements). Results showed that pharmaceuticals load reduction was higher in the WWTP, but attenuation efficiencies (as half-life times) were higher in the river. In particular, the load of only 5 out of the 19 pharmaceuticals was reduced by more than 90% at the WWTP, while the rest were only partially or non-attenuated (or released) and discharged into the receiving river. At the river, only the load of ibuprofen was reduced by more than 50% (out of the 6 parent compounds present in the river), while partial and non-attenuation (or release) was observed for some of their transformation products. Linkages in the routing of some pharmaceuticals (venlafaxine, carbamazepine, ibuprofen and diclofenac) and their corresponding transformation products were also identified at both WWTP and river. Finally, the followed procedure showed that dynamic

  9. Raft River Geothermal Area Data Models - Conceptual, Logical and Fact Models

    DOE Data Explorer

    Cuyler, David

    2012-07-19

    Conceptual and Logical Data Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses at Raft River a. Logical Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses, David Cuyler 2010 b. Fact Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses, David Cuyler 2010 Derived from Tables, Figures and other Content in Reports from the Raft River Geothermal Project: "Technical Report on the Raft River Geothermal Resource, Cassia County, Idaho," GeothermEx, Inc., August 2002. "Results from the Short-Term Well Testing Program at the Raft River Geothermal Field, Cassia County, Idaho," GeothermEx, Inc., October 2004.

  10. Bisphenols: Application, occurrence, safety, and biodegradation mediated by bacterial communities in wastewater treatment plants and rivers.

    PubMed

    Noszczyńska, Magdalena; Piotrowska-Seget, Zofia

    2018-06-01

    Numerous data indicate that most of bisphenols (BPs) are endocrine disrupters and exhibit cytotoxicity, neurotoxicity, genotoxicity and reproductive toxicity against vertebrates. Nevertheless, they are widely applied in material production what result in their ubiquitous occurrence in ecosystems. While BPA is the most frequently detected in environment, BPAF, BPF and BPS are also often found. Ecosystem particularly exposed to BPs pollution is industrial and municipal wastewater being a common source of BPA in river waters. Different techniques to remove BPs from these ecosystems have been applied, among which biodegradation seems to be the most effective. In this review the current state of knowledge in the field of BPs application, distribution in the environment, effects on animal and human health, and biodegradation mediated by bacterial populations in wastewater treatment plants and rivers is presented. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Nutrient cycling, connectivity, and free-floating plant abundance in backwater lakes of the Upper Mississippi River

    USGS Publications Warehouse

    Houser, Jeff N.; Giblin, Shawn M.; James, William F.; Langrehr, H.A.; Rogala, James T.; Sullivan, John F.; Gray, Brian R.

    2013-01-01

    River eutrophication may cause the formation of dense surface mats of free floating plants (FFP; e.g., duckweeds and filamentous algae) which may adversely affect the ecosystem. We investigated associations among hydraulic connectivity to the channel, nutrient cycling, FFP, submersed aquatic vegetation (SAV), and dissolved oxygen concentration (DO) in ten backwater lakes of the Upper Mississippi River (UMR) that varied in connectivity to the channel. Greater connectivity was associated with higher water column nitrate (NO3-N) concentration, higher rates of sediment phosphorus (P) release, and higher rates of NO3-N flux to the sediments. Rates of sediment P and N (as NH4-N) release were similar to those of eutrophic lakes. Water column nutrient concentrations were high, and FFP tissue was nutrient rich suggesting that the eutrophic condition of the UMR often facilitated abundant FFP. However, tissue nutrient concentrations, and the associations between FFP biomass and water column nutrient concentrations, suggested that nutrients constrained FFP abundance at some sites. FFP abundance was positively associated with SAV abundance and negatively associated with dissolved oxygen concentration. These results illustrate important connections among hydraulic connectivity, nutrient cycling, FFP, SAV, and DO in the backwaters of a large, floodplain river.

  12. Development of an Acoustic Sensor On-Line Gas Temperature Measurement in Gasifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peter Ariessohn

    2008-06-30

    for a port rodding mechanism was developed to deal with potential slagging issues and was incorporated into the prototype sensor. This port rodding mechanism operated flawlessly during the field testing, but because these tests were performed in a region of the gasifier that experiences little slagging, the effectiveness of the rodding mechanism in dealing with highly slagging conditions was not fully demonstrated. This report describes the design and operation of the automated Gasifier Acoustic Pyrometer (autoGAP) which was tested at the Wabash River facility. The results of the tests are reported and analyzed in detail. All of the objectives of the initial R&D project were achieved and a field prototype acoustic pyrometer sensor was successfully tested at the Wabash River gasifier plant.« less

  13. Savannah River Plant engineering, design, and construction history of ``S`` projects and other work, January 1961--December 1964. Volume 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1970-03-01

    The work described in this volume of ``S`` Projects History is an extension of the type of work described in Volume I. E.I. du Pont de flemours & Company had entered into Contract AT (07-2)-l with the United States Atomic Energy Commission to develop, design, construct, install, and operate facilities to produce heavy water, fissionable materials, and related products. Under this contract,, Du Pont constructed and operated the Savannah River Plant. The engineering, design, and construction for most of the larger ``S`` projects was performed by the Engineering DeDartment. For some of the large and many of the smaller projectsmore » the Engineering Department was responsible only for the construction because the Atomic Energy Division (AED) of the Explosives Department handled the other phases. The Engineering Department Costruction Division also performed the physical work for many of the plant work orders. This volume includes a general description of the Du Pont Engineering Department activities pertaining to the engineering, design, and construction of the ``S`` projects at the Savannah River Plant; brief summaries of the projects and principal work requests; and supplementary informaticn on a few subjects in Volume I for which final data was not available at the closing date. Projects and other plant engineering work which were handled entirely by the Explosives Department -- AED are not included in this history.« less

  14. Numerical and in-situ investigations of water hammer effects in Drava river Kaplan turbine hydropower plants

    NASA Astrophysics Data System (ADS)

    Bergant, A.; Gregorc, B.; Gale, J.

    2012-11-01

    This paper deals with critical flow regimes that may induce unacceptable water hammer in Kaplan turbine hydropower plants. Water hammer analysis should be performed for normal, emergency and catastrophic operating conditions. Hydropower plants with Kaplan turbines are usually comprised of relatively short inlet and outlet conduits. The rigid water hammer theory can be used for this case. For hydropower plants with long penstocks the elastic water hammer should be used. Some Kaplan turbine units are installed in systems with long open channels. In this case, water level oscillations in the channels should be carefully investigated. Computational results are compared with results of measurements in recently rehabilitated seven Drava river hydroelectric power plants in Slovenia. Water hammer in the six power plants is controlled by appropriate adjustment of the wicket gates and runner blades closing/opening manoeuvres. Due to very long inflow and outflow open channels in Zlatoličje HPP a special vaned pressure regulating device attenuates extreme pressures in Kaplan turbine flow-passage system and controls unsteady flow in both open channels. Comparisons of results include normal operating regimes. The agreement between computed and measured results is reasonable.

  15. Plants used by native Amazonian groups from the Nanay River (Peru) for the treatment of malaria.

    PubMed

    Ruiz, Lastenia; Ruiz, Liliana; Maco, Martha; Cobos, Marianela; Gutierrez-Choquevilca, Andréa-Luz; Roumy, Vincent

    2011-01-27

    In order to evaluate the antimalarial potential of traditional remedies used in Peru, Indigenous and Mestizo populations from the river Nanay in Loreto were interviewed about traditional medication for the treatment of malaria. The survey took place on six villages and led to the collection of 59 plants. 35 hydro-alcoholic extractions were performed on the 21 most cited plants. The extracts were then tested for antiplasmodial activity in vitro on Plasmodium falciparum chloroquine resistant strain (FCR-3), and ferriprotoporphyrin inhibition test was also performed in order to assume pharmacological properties. Extracts from 9 plants on twenty-one tested (Abuta rufescens, Ayapana lanceolata, Capsiandra angustifolia, Citrus limon, Citrus paradise, Minquartia guianensis, Potalia resinífera, Scoparia dulcis, and Physalis angulata) displayed an interesting antiplasmodial activity (IC(50)<10 μg/ml) and 16 remedies were active on the ferriprotoporphyrin inhibition test. The results give scientific validation to the traditional medical knowledge of the Amerindian and Mestizo populations from Loreto and exhibit a source of potentially active plants. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  16. 5. STEAM PLANT COOLING TOWER LOCATED WEST OF STEAM PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. STEAM PLANT COOLING TOWER LOCATED WEST OF STEAM PLANT BUILDING, FROM SOUTH. SHOWS CURRENT LEVEL OF DISREPAIR. December 4, 1990 - Crosscut Steam Plant, North side Salt River near Mill Avenue & Washington Street, Tempe, Maricopa County, AZ

  17. 78 FR 57146 - Combined Notice of Filings #1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-17

    ...-1258-003. Applicants: Wabash Valley Power Association, Inc., Wabash Valley Energy Marketing, Inc. Description: Notice of Non Material Change in Status of Wabash Valley Power Association, Inc., et al. Filed...-015. Applicants: Safe Harbor Water Power Corporation. Description: Notice of Change in Status of Safe...

  18. The interaction of heavy metals and nutrients present in soil and native plants with arbuscular mycorrhizae on the riverside in the Matanza-Riachuelo River Basin (Argentina).

    PubMed

    Mendoza, Rodolfo E; García, Ileana V; de Cabo, Laura; Weigandt, Cristian F; Fabrizio de Iorio, Alicia

    2015-02-01

    This study assessed the contamination by heavy metals (Cr, Cu, Pb, Zn), and nutrients (N, P) in soils and native plants, and the effect of the concentration of those elements with the density of arbuscular-mycorrhizal (AM) spores in soil and colonization in roots from the riverside of the Matanza-Riachuelo River Basin (MRRB). The concentration of metals and nutrients in soils and plants (Eleocharis montana, Cyperus eragrostis, Hydrocotyle bonariensis) increased from the upper sites (8 km from headwaters) to the lower sites (6 km from the mouth of the Riachuelo River) of the basin. AM-colonization on the roots of H. bonariensis and spore density in soil decreased as the concentrations of metals in soil and plant tissues increased from the upper to lower sites of the basin within a consistent gradient of contamination associated with land use, soil disturbance, population, and chemicals discharged into the streams and rivers along the MRRB. The general trends for all metals in plant tissue were to have highest concentrations in roots, then in rhizomes and lowest in aerial biomass. The translocation (TF) and bioconcentration (BCF) factors decreased in plants which grow from the upper sites to the lower sites of the basin. The plants tolerated a wide range in type and quantity of contamination along the basin by concentrating more metals and nutrients in roots than in aboveground tissue. The AM spore density in soil and colonization in roots of H. bonariensis decreased with the increase of the degree of contamination (Dc) in soil. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. The Irrigation Effect: How River Regulation Can Promote Some Riparian Vegetation.

    PubMed

    Gill, Karen M; Goater, Lori A; Braatne, Jeffrey H; Rood, Stewart B

    2018-04-01

    River regulation impacts riparian ecosystems by altering the hydrogeomorphic conditions that support streamside vegetation. Obligate riparian plants are often negatively impacted since they are ecological specialists with particular instream flow requirements. Conversely, facultative riparian plants are generalists and may be less vulnerable to river regulation, and could benefit from augmented flows that reduce drought stress during hot and dry periods. To consider this 'irrigation effect' we studied the facultative shrub, netleaf hackberry (Celtis reticulata), the predominant riparian plant along the Hells Canyon corridor of the Snake River, Idaho, USA, where dams produce hydropeaking, diurnal flow variation. Inventories of 235 cross-sectional transects revealed that hackberry was uncommon upstream from the reservoirs, sparse along the reservoir with seasonal draw-down and common along two reservoirs with stabilized water levels. Along the Snake River downstream, hackberry occurred in fairly continuous, dense bands along the high water line. In contrast, hackberry was sparsely scattered along the free-flowing Salmon River, where sandbar willow (Salix exigua), an obligate riparian shrub, was abundant. Below the confluence of the Snake and Salmon rivers, the abundance and distribution of hackberry were intermediate between the two upstream reaches. Thus, river regulation apparently benefited hackberry along the Snake River through Hells Canyon, probably due to diurnal pulsing that wets the riparian margin. We predict similar benefits for some other facultative riparian plants along other regulated rivers with hydropeaking during warm and dry intervals. To analyze the ecological impacts of hydropeaking we recommend assessing daily maxima, as well as daily mean river flows.

  20. The Irrigation Effect: How River Regulation Can Promote Some Riparian Vegetation

    NASA Astrophysics Data System (ADS)

    Gill, Karen M.; Goater, Lori A.; Braatne, Jeffrey H.; Rood, Stewart B.

    2018-04-01

    River regulation impacts riparian ecosystems by altering the hydrogeomorphic conditions that support streamside vegetation. Obligate riparian plants are often negatively impacted since they are ecological specialists with particular instream flow requirements. Conversely, facultative riparian plants are generalists and may be less vulnerable to river regulation, and could benefit from augmented flows that reduce drought stress during hot and dry periods. To consider this `irrigation effect' we studied the facultative shrub, netleaf hackberry ( Celtis reticulata), the predominant riparian plant along the Hells Canyon corridor of the Snake River, Idaho, USA, where dams produce hydropeaking, diurnal flow variation. Inventories of 235 cross-sectional transects revealed that hackberry was uncommon upstream from the reservoirs, sparse along the reservoir with seasonal draw-down and common along two reservoirs with stabilized water levels. Along the Snake River downstream, hackberry occurred in fairly continuous, dense bands along the high water line. In contrast, hackberry was sparsely scattered along the free-flowing Salmon River, where sandbar willow ( Salix exigua), an obligate riparian shrub, was abundant. Below the confluence of the Snake and Salmon rivers, the abundance and distribution of hackberry were intermediate between the two upstream reaches. Thus, river regulation apparently benefited hackberry along the Snake River through Hells Canyon, probably due to diurnal pulsing that wets the riparian margin. We predict similar benefits for some other facultative riparian plants along other regulated rivers with hydropeaking during warm and dry intervals. To analyze the ecological impacts of hydropeaking we recommend assessing daily maxima, as well as daily mean river flows.

  1. Occurrence of betablockers in effluents of wastewater treatment plants from the Lyon area (France) and risk assessment for the downstream rivers.

    PubMed

    Miège, Cécile; Favier, Maxime; Brosse, Corinne; Canler, Jean-Pierre; Coquery, Marina

    2006-11-15

    Five betablockers (oxprenolol, metoprolol, propranolol, bisoprolol, betaxolol) were analysed in effluents collected over a 3-month period from wastewater treatment plants (WTP) from the Lyon area in France. The analytical protocol consisted of solid phase extraction of the dissolved aqueous phase on HLB cartridges and analysis by gas chromatography coupled with mass detection (GC-MS) after derivatization. Concentrations of metoprolol, propranolol and bisoprolol varied from 45 to 2838ng/L whereas oxprenolol and betaxolol were never detected in these effluent samples. A high variability of betablockers concentrations and fluxes was observed between WTP effluents and within each WTP over the time period studied. Considering a flux per person for a dry weather period, Fontaine plant was pointed out as the less efficient WTP, which might be explained by its type of treatment (biological aerated filters). But we need additional analysis of effluent and influent waters to confirm this hypothesis. A tentative approach of local environmental risk assessment of propranolol based on the calculation of PEC/PNEC (predicted environmental concentration/predicted non effect concentration) ratio approach lead us to conclude on a negligible risk for the downstream rivers (Rhône river at Ternay and Saône river at Couzon Mt d'Or).

  2. Modeling wetland plant community response to assess water-level regulation scenarios in the Lake Ontario-St. Lawrence River basin

    USGS Publications Warehouse

    Hudon, Christiane; Wilcox, Douglas; Ingram, Joel

    2006-01-01

    The International Joint Commission has recently completed a five-year study (2000-2005) to review the operation of structures controlling the flows and levels of the Lake Ontario - St. Lawrence River system. In addition to addressing the multitude of stakeholder interests, the regulation plan review also considers environmental sustainability and integrity of wetlands and various ecosystem components. The present paper outlines the general approach, scientific methodology and applied management considerations of studies quantifying the relationships between hydrology and wetland plant assemblages (% occurrence, surface area) in Lake Ontario and the Upper and Lower St. Lawrence River. Although similar study designs were used across the study region, different methodologies were required that were specifically adapted to suit the important regional differences between the lake and river systems, range in water-level variations, and confounding factors (geomorphic types, exposure, sediment characteristics, downstream gradient of water quality, origin of water masses in the Lower River). Performance indicators (metrics), such as total area of wetland in meadow marsh vegetation type, that link wetland response to water levels will be used to assess the effects of different regulation plans under current and future (climate change) water-supply scenarios.

  3. Relating river geomorphology to the abundance of periphyton in New Zealand rivers

    NASA Astrophysics Data System (ADS)

    Hoyle, Jo; Hicks, Murray; Kilroy, Cathy

    2013-04-01

    Aquatic plants (including both periphyton and macrophytes) are a natural component of stream and river systems. However, abundant growth of instream plants can have detrimental impacts on the values of rivers. For example, periphyton in rivers provides basal resources for food webs and provides an important ecological service by removing dissolved nutrients and contaminants from the water column. However, high abundance of periphyton can have negative effects on habitat quality, water chemistry and biodiversity, and can reduce recreation and aesthetic values. The abundance of periphyton in rivers is influenced by a number of factors, but two key factors can be directly influenced by human activities: flow regimes and nutrient concentrations. Establishing quantitative relationships between periphyton abundance and these factors has proven to be difficult but remains an urgent priority due to the need to manage the ecological impacts of water abstraction and eutrophication of rivers worldwide. This need is particularly strong in New Zealand, where there is increasing demand for water for industry, power generation and agriculture. However, we currently have limited ability to predict the effects of changes in the mid-range flow regime on the presence/absence, abundance and composition of aquatic plants. Current water allocation limits are based on simple flow statistics, such as multiples of the median flow, but these are regional averages and can be quite unreliable on a site-specific basis. This stems largely from our limited ability to transform flow data into ecologically meaningful physical processes that directly affect plants (e.g., drag, abrasion, bed movement). The research we will present examines whether geomorphic variables, such as frequency of bed movement, are useful co-predictors in periphyton abundance-flow relationships. We collected topographic survey data and bed sediment data for 20 study reaches in the Manawatu-Wanganui region of New Zealand

  4. Vascular plant biodiversity of the lower Coppermine River valley and vicinity (Nunavut, Canada): an annotated checklist of an Arctic flora

    PubMed Central

    Bull, Roger D.

    2017-01-01

    The Coppermine River in western Nunavut is one of Canada’s great Arctic rivers, yet its vascular plant flora is poorly known. Here, we report the results of a floristic inventory of the lower Coppermine River valley and vicinity, including Kugluk (Bloody Falls) Territorial Park and the hamlet of Kugluktuk. The study area is approximately 1,200 km2, extending from the forest-tundra south of the treeline to the Arctic coast. Vascular plant floristic data are based on a review of all previous collections from the area and more than 1,200 new collections made in 2014. Results are presented in an annotated checklist, including citation of all specimens examined, comments on taxonomy and distribution, and photographs for a subset of taxa. The vascular plant flora comprises 300 species (311 taxa), a 36.6% increase from the 190 species documented by previous collections made in the area over the last century, and is considerably more diverse than other local floras on mainland Nunavut. We document 207 taxa for Kugluk (Bloody Falls) Territorial Park, an important protected area for plants on mainland Nunavut. A total of 190 taxa are newly recorded for the study area. Of these, 14 taxa (13 species and one additional variety) are newly recorded for Nunavut (Allium schoenoprasum, Carex capitata, Draba lonchocarpa, Eremogone capillaris subsp. capillaris, Sabulina elegans, Eleocharis quinqueflora, Epilobium cf. anagallidifolium, Botrychium neolunaria, Botrychium tunux, Festuca altaica, Polygonum aviculare, Salix ovalifolia var. arctolitoralis, Salix ovalifolia var. ovalifolia and Stuckenia pectinata), seven species are newly recorded for mainland Nunavut (Carex gynocrates, Carex livida, Cryptogramma stelleri, Draba simmonsii, Festuca viviparoidea subsp. viviparoidea, Juncus alpinoarticulatus subsp. americanus and Salix pseudomyrsinites) and 56 range extensions are reported. The psbA-trnH and rbcL DNA sequence data were used to help identify the three Botrychium taxa recorded

  5. Plant community succession in modern Yellow River Delta, China*

    PubMed Central

    Zhang, Gao-sheng; Wang, Ren-qing; Song, Bai-min

    2007-01-01

    Data were collected in different successional stages using a simultaneous sampling method and analyzed through quantitative classification method. Three large groups and 12 classes were made to represent the community patterns of three succession stages and 12 succession communities. The succession series of plant community in the study area was as follows: saline bare land→community Suaeda salsa→community Tamarix chinensis→grassland. Succession degree and succession process of 12 succession communities were calculated. Most of these communities were in the lower succession stage, however, community Phragmites communis+Glycine soja and community Imperata cylindrica+G. soja were close to the succession stage of grassland climax. Five species diversity indices were used to study the changes in species richness, species evenness and diversity during succession of community. Heterogeneity index and richness index increased gradually during the community succession process, but species evenness tended to decrease with succession development. The relation between succession and environment was studied by ordination technique, and the results showed that the soil salt content was an important factor to halarch succession of the modern Yellow River Delta. It affected community structure, species composition and succession process. PMID:17657854

  6. Ecology of invasive Melilotus albus on Alaskan glacial river floodplains

    USGS Publications Warehouse

    Conn, Jeff S.; Werdin-Pfisterer, Nancy R.; Beattie, Katherine L.; Densmore, Roseann V.

    2011-01-01

    Melilotus albus (white sweetclover) has invaded Alaskan glacial river floodplains. We measured cover and density of plant species and environmental variables along transects perpendicular to the Nenana, Matanuska, and Stikine Rivers to study interactions between M. albus and other plant species and to characterize the environment where it establishes. Melilotus albus was a pioneer species on recently disturbed sites and did not persist into closed canopy forests. The relationships between M. albus cover and density and other species were site-specific.Melilotus albus was negatively correlated with native species Elaeagnus commutata at the Nenana River, but not at the Matanuska River. Melilotus albus was positively correlated with the exotic species Crepis tectorumand Taraxacum officinale at the Matanuska River and T. officinale on the upper Stikine River. However, the high density of M. albus at a lower Stikine River site was negatively correlated with T. officinale and several native species including Lathyrus japonicus var. maritimus and Salix alaxensis. Glacial river floodplains in Alaska are highly disturbed and are corridors for exotic plant species movement. Melilotus albus at moderate to low densities may facilitate establishment of exotic species, but at high densities can reduce the cover and density of both exotic and native species.

  7. Wildflowers of the Savannah River Site

    Treesearch

    T. Segar

    2015-01-01

    This guidebook is a resource to help field personnel (nonbotanists) identify plants on the Savannah River Site (SRS) premises. Although not a complete flora guide, this publication contains information about 123 plant species found on the SRS. Plants are listed by their common names and arranged by the color of the flower.

  8. Wood Storks of the birdsville colony and swamps of the Savannah River Plant. Annual report, 1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coulter, M.C.

    1986-01-01

    Studies have been carried out to assess the potential impact of the operation of the Savannah River Plant (SRP) on Wood Storks foraging in the Savannah River Swamp System (SRSS). The objectives were: (1) to determine the locations of foraging sites of Wood Storks from the Birdsville colony and to examine the year-to-year variation in sites used, (2) to characterize in detail the habitat, vegetation, water quality and prey density/biomass at foraging sites, (3) to observe the breeding birds to determine the times when food demands at the colony are greatest, (4) to examine the movement of storks from themore » rookery to foraging sites and to relate seasonal trends to the breeding biology, (5) to examine the importance of the SRSS to foraging Wood Storks, and (6) to examine the movements of individual birds to determine the generality of the observed patterns. 27 refs., 54 figs., 23 tabs.« less

  9. Organochlorine compounds in European catfish (Silurus glanis) living in river areas under the influence of a chlor-alkali plant (Ebro River basin).

    PubMed

    Huertas, David; Grimalt, Joan O; Benito, Josep; Benejam, Lluís; García-Berthou, Emili

    2016-01-01

    European catfish, Silurus glanis, were used as sentinel organisms of the influence of recent and past discharges of organochlorine compounds (OCs) from a chlor-alkali plant located in the Ebro River. The fish concentrations of hexachlorobenzene (HCB), polychlorobiphenyls (PCBs) and DDTs were very high along the last 100 km of the river, including the irrigation channels, e.g. 1.2-27 ng/g wet weight of HCB, 6.3-100 ng/g ww of PCBs and 1-270 ng/g ww of total DDT compounds. These concentrations were much higher than those found upstream from the chlor-alkali discharge site, 0.2 ng/g ww for HCB, 5.6 ng/g ww for PCBs and 7.5 ng/g for DDT compounds. These concentrations were also standing out among those previously described in this fish species. The European catfish collected in sites under lower water flows, Ribarroja reservoir and irrigation channels, showed higher muscle lipid content, 1.09-7.2%, than those from sites of higher current intensities, river bed, 0.27%-0.67%. In these lower water current areas catfish exhibited OC ww concentrations that were correlated to % lipids. These differences suggest that normalization to lipid content is necessary for comparison of the OC accumulation in specimens from riverine systems living under different flow intensities. Accordingly, OC concentrations referred to lipid content showed more uniform downriver distribution which was consistent with a single focal point as main source of these compounds for the European catfish collected in the last 100 km of river stretch. This geographic distribution was also consistent with the uniform composition of PCB congeners in the studied European catfish. The distribution of DDT compounds was predominated by 4,4'-DDE which is common in most currently examined fish from aquatic environments. However, it included a high proportion of 4,4'-DDD and 2,4'-DDD which was consistent with the high contribution of benthic organisms from anoxic environments in the diet of these fish. Copyright

  10. [Distribution of HCB discharged from a chemical plant in plants].

    PubMed

    Chen, Jing; Wang, Lin-Ling; Lu, Xiao-Hua; Yuan, Song-Hu; Liu, Xi-Xiang; Wang, Yue; Zhao, Qian; Mei, Ling-Fang

    2009-04-15

    The distribution characteristics of hexachlorobenzene (HCB) in plant and rhizosphere soil in contamination conduit, a nearby river and a cropland were studied and the impact factors were also discussed. The results are summarized as follows: the range of the HCB concentration in plant and rhizosphere soil in investigation area were respectively from 4.45 microg x kg(-1) to 1,189.89 microg x kg(-1) (dw) and from 27.93 microg x kg(-1) to 3,480.71 microg x kg(-1) (dw). Higher enrichment of HCB in woodplant than herbs due to higher fat concentration in woodplant in the contamination conduit and the rich concentrtion factor of woodplant and herbs were 0.41-2.55 and 0.01-1.34. The range of HCB concentrations in plants in nearby croplands was significantly wide (4.45-333.1 microg x kg(-1)) while HCB concentrations in different parts of plant were various, e.g. HCB concentrations in fruit, root and shoot of taro were 318.77 microg x kg(-1), 281.02 microg x kg(-1) and 10.94 microg x kg(-1). There was a remarkable positive relation between the concentrations of HCB in plant and fat concentration of plant while no relativity between the concentrations of HCB in plant and those in ground soils in the contamination conduit and cropland. The concentration levels of HCB in plant and rhizosphere soil in river were dramatically decreased with increasing distance from contaminated conduit. There was a remarkable positive relation between the concentrations of HCB in plant and those in ground soils but no relation between concentrations of HCB in plant and fat concentration of plant in river. The distribution characteristics of HCB in plants were influenced by contaminated levels, fat concentration and Partition-transfer model.

  11. The effect of river damming on vegetation: is it always unfavourable? A case study from the River Tiber (Italy).

    PubMed

    Ceschin, Simona; Tombolini, Ilaria; Abati, Silverio; Zuccarello, Vincenzo

    2015-05-01

    River damming leads to strong hydromorphological alterations of the watercourse, consequently affecting river vegetation pattern. A multitemporal and spatial analysis of the dam effect on composition, structure and dynamic of the upstream vegetation was performed on Tiber River at Nazzano-dam (Rome). The main research questions were as follows: How does plant landscape vary over time and along the river? Where does the dam effect on vegetation end? How does naturalistic importance of the vegetation affected by damming change over time? Data collection was performed mapping the vegetation in aerial photos related to the period before (1944), during (1954) and after dam construction (1984, 2000). The plant landscape has significantly changed over time and along the river, particularly as a result of the dam construction (1953). The major vegetation changes have involved riparian forests and macrophytes. Dam effect on vegetation is evident up to 3 km, and gradually decreases along an attenuation zone for about another 3 km. Despite the fact that the damming has caused strong local hydromorphological modification of the river ecosystem transforming it into a sub-lacustrine habitat, it has also led to the formation of wetlands of considerable naturalistic importance. Indeed, in these man-made wetlands, optimal hydrological conditions have been created by favouring both the expansion of pre-existing riparian communities and the rooting of new aquatic communities, albeit typical of lacustrine ecosystems. Some of these plant communities have become an important food resource, refuge or nesting habitats for aquatic fauna, while others fall into category of Natura 2000 habitats. Therefore, river damming seems to have indirectly had a "favourable" effect for habitat conservation and local biodiversity.

  12. Shift in a Large River Fish Assemblage: Body-Size and Trophic Structure Dynamics

    PubMed Central

    Broadway, Kyle J.; Pyron, Mark; Gammon, James R.; Murry, Brent A.

    2015-01-01

    As the intensity and speed of environmental change increase at both local and global scales it is imperative that we gain a better understanding of the ecological implications of community shifts. While there has been substantial progress toward understanding the drivers and subsequent responses of community change (e.g. lake trophic state), the ecological impacts of food web changes are far less understood. We analyzed Wabash River fish assemblage data collected from 1974-2008, to evaluate temporal variation in body-size structure and functional group composition. Two parameters derived from annual community size-spectra were our major response variables: (1) the regression slope is an index of ecological efficiency and predator-prey biomass ratios, and (2) spectral elevation (regression midpoint height) is a proxy for food web capacity. We detected a large assemblage shift, over at least a seven year period, defined by dramatic changes in abundance (measured as catch-per-unit-effort) of the dominant functional feeding groups among two time periods; from an assemblage dominated by planktivore-omnivores to benthic invertivores. There was a concurrent increase in ecological efficiency (slopes increased over time) following the shift associated with an increase in large-bodied low trophic level fish. Food web capacity remained relatively stable with no clear temporal trends. Thus, increased ecological efficiency occurred simultaneous to a compensatory response that shifted biomass among functional feeding groups. PMID:25902144

  13. Distribution of trace metals in the vicinity of a wastewater treatment plant on the Potomac River, Washington, DC, USA

    NASA Astrophysics Data System (ADS)

    Smith, J. P.; Muller, A. C.

    2013-05-01

    Predicting the fate and distribution of anthropogenic-sourced trace metals in riverine and estuarine systems is challenging due to multiple and varying source functions and dynamic physiochemical conditions. Between July 2011 and November 2012, sediment and water column samples were collected from over 20 sites in the tidal-fresh Potomac River estuary, Washington, DC near the outfall of the Blue Plains Advanced Wastewater Treatment Plant (BPWTP) for measurement of select trace metals. Field observations of water column parameters (conductivity, temperature, pH, turbidity) were also made at each sampling site. Trace metal concentrations were normalized to the "background" composition of the river determined from control sites in order to investigate the distribution BPWTP-sourced in local Potomac River receiving waters. Temporal differences in the observed distribution of trace metals were attributed to changes in the relative contribution of metals from different sources (wastewater, riverine, other) coupled with differences in the physiochemical conditions of the water column. Results show that normalizing near-source concentrations to the background composition of the water body and also to key environmental parameters can aid in predicting the fate and distribution of anthropogenic-sourced trace metals in dynamic riverine and estuarine systems like the tidal-fresh Potomac River.

  14. Ecotoxicological bioassays of sediment leachates in a river bed flanked by decommissioned pesticide plants in Nantong City, East China.

    PubMed

    Zhou, Yan; Wang, Fenghe; Wan, Jinzhong; He, Jian; Li, Qun; Qiang Chen; Gao, Jay; Lin, Yusuo; Zhang, Shengtian

    2017-03-01

    Traditionally, the toxicity of river contaminants is analyzed chemically or physically through river bed sediments. The biotoxicity of polluted sediment leachates has not caught our attention. This study aims to overcome this deficiency through a battery of biotests which were conducted to monitor comprehensive toxicity of sediment leachates for the Yaogang River in East Jiangsu Province of China, which is in close proximity to former pesticide plants. The general physical and chemical parameters of major pollutants were analyzed from river bed sediments collected at five strategic locations. The ecotoxicity analyses undertaken include overall fish (adult zebrafish) acute toxicity, luminescent bacteria (Vibrio fischeri) bioassay, and zebrafish embryo toxicity assay. Compared with the control group, sediment leachates increased the lethality, inhibited the embryos hatching and induced development abnormalities of zebrafish embryos, and inhibited the luminescence of V. fischeri. The results show that sediment leachates may assume various toxic effects, depending on the test organism. This diverse toxicity to aquatic organisms reflects their different sensitivity to sediment leachates. It is found clearly that V. fischeri was the organism which was characterized by the highest sensitivity to the sediment leachates. The complicated toxicity of leachates was not caused by one single factor but by multiple pollutants together. This indicates the need of estimations of sediment leachate not only taking into account chemical detection but also of applying the biotests to the problem. Thus, multigroup bioassays are necessary to realistically evaluate river ecological risks imposed by leachates.

  15. Effects of advanced wastewater treatment on the quality of White River, Indiana

    USGS Publications Warehouse

    Crawford, Charles G.; Wangsness, David J.

    1991-01-01

    In 1983, the City of Indianapolis, Indiana, completed construction of advanced wastewater treatment (AWT) systems to enlarge and upgrade its existing Belmont Road and Southport Road secondary treatment plants. A nonparametric statistical procedure, a modified form of the Wilcoxon-Mann-Whitney rank-sum test, was used to test for trends in water quality at two upstream and two downstream sites on White River and at the two treatment plants. Results comparing the pre- (1978-1980) and post- (1983-1988) AWT periods show statistically significant improvements in the quality of the treated effluent and of the White River downstream from the plants. Water quality at sites upstream from the city was relatively constant during the period of study. Total ammonia (as N) decreased 14.6 mg/L and BOD5 (five-day biochemical oxygen demand) decreased 10 to 19 mg/L in the two effluents. Total ammonia in the river downstream from the plants decreased 0.8 to 1.9 mg/L and BOD5 decreased 2.3 to 2.5 mg/L. Nitrate (as N) increased 14.5 mg/L in the plant effluents and 2.0 to 2.4 mg/L in the river because of in-plant nitrification. Dissolved oxygen concentration in the river increased about 3 mg/L because of reduced oxygen demand for nitrification and biochemical oxidation processes.

  16. Intra- and Inter-Pandemic Variations of Antiviral, Antibiotics and Decongestants in Wastewater Treatment Plants and Receiving Rivers

    PubMed Central

    Singer, Andrew C.; Järhult, Josef D.; Grabic, Roman; Khan, Ghazanfar A.; Lindberg, Richard H.; Fedorova, Ganna; Fick, Jerker; Bowes, Michael J.; Olsen, Björn; Söderström, Hanna

    2014-01-01

    The concentration of eleven antibiotics (trimethoprim, oxytetracycline, ciprofloxacin, azithromycin, cefotaxime, doxycycline, sulfamethoxazole, erythromycin, clarithromycin, ofloxacin, norfloxacin), three decongestants (naphazoline, oxymetazoline, xylometazoline) and the antiviral drug oseltamivir’s active metabolite, oseltamivir carboxylate (OC), were measured weekly at 21 locations within the River Thames catchment in England during the month of November 2009, the autumnal peak of the influenza A[H1N1]pdm09 pandemic. The aim was to quantify the pharmaceutical response to the pandemic and compare this to drug use during the late pandemic (March 2010) and the inter-pandemic periods (May 2011). A large and small wastewater treatment plant (WWTP) were sampled in November 2009 to understand the differential fate of the analytes in the two WWTPs prior to their entry in the receiving river and to estimate drug users using a wastewater epidemiology approach. Mean hourly OC concentrations in the small and large WWTP’s influent were 208 and 350 ng/L (max, 2070 and 550 ng/L, respectively). Erythromycin was the most concentrated antibiotic measured in Benson and Oxford WWTPs influent (max = 6,870 and 2,930 ng/L, respectively). Napthazoline and oxymetazoline were the most frequently detected and concentrated decongestant in the Benson WWTP influent (1650 and 67 ng/L) and effluent (696 and 307 ng/L), respectively, but were below detection in the Oxford WWTP. OC was found in 73% of November 2009’s weekly river samples (max = 193 ng/L), but only in 5% and 0% of the late- and inter-pandemic river samples, respectively. The mean river concentration of each antibiotic during the pandemic largely fell between 17–74 ng/L, with clarithromycin (max = 292 ng/L) and erythromycin (max = 448 ng/L) yielding the highest single measure. In general, the concentration and frequency of detecting antibiotics in the river increased during the pandemic. OC was uniquely well

  17. Legacies of flood reduction on a dryland river

    USGS Publications Warehouse

    Stromberg, J.C.; Shafroth, P.B.; Hazelton, A.F.

    2012-01-01

    The Bill Williams (Arizona) is a regulated dryland river that is being managed, in part, for biodiversity via flow management. To inform management, we contrasted riparian plant communities between the Bill Williams and an upstream free-flowing tributary (Santa Maria). Goals of a first study (1996-1997) were to identify environmental controls on herbaceous species richness and compare richness among forest types. Analyses revealed that herbaceous species richness was negatively related to woody stem density, basal area and litter cover and positively related to light levels. Introduced Tamarix spp. was more frequent at the Bill Williams, but all three main forest types (Tamarix, Salix/Populus, Prosopis) had low understory richness, as well as high stem density and low light, on the Bill Williams as compared to the Santa Maria. The few edaphic differences between rivers (higher salinity at Bill Williams) had only weak connections with richness. A second study (2006-2007) focused on floristic richness at larger spatial scales. It revealed that during spring, and for the study cumulatively (spring and fall samplings combined), the riparian zone of the unregulated river had considerably more plant species. Annuals (vs. herbaceous perennials and woody species) showed the largest between-river difference. Relative richness of exotic (vs. native) species did not differ. We conclude that: (1) The legacy of reduced scouring frequency and extent at the Bill Williams has reduced the open space available for colonization by annuals; and (2) Change in forest biomass structure, more so than change in forest composition, is the major driver of changes in plant species richness along this flow-altered river. Our study informs dryland river management options by revealing trade-offs that exist between forest biomass structure and plant species richness. ?? 2010 John Wiley & Sons, Ltd.

  18. Water-quality data for water- and wastewater-treatment plants along the Red River of the North, North Dakota and Minnesota, January through October 2006

    USGS Publications Warehouse

    Damschen, William C.; Hansel, John A.; Nustad, Rochelle A.

    2008-01-01

    From January through October 2006, six sets of water-quality samples were collected at 28 sites, which included inflow and outflow from seven major municipal water-treatment plants (14 sites) and influent and effluent samples from seven major municipal wastewater treatment plants (14 sites) along the Red River of the North in North Dakota and Minnesota. Samples were collected in cooperation with the Bureau of Reclamation for use in the development of return-flow boundary conditions in a 2006 water-quality model for the Red River of the North. All samples were analyzed for nutrients and major ions. For one set of effluent samples from each of the wastewater-treatment plants, water was analyzed for Eschirichia coli, fecal coliform, 20-day biochemical oxygen demand, 20-day nitrogenous biochemical oxygen demand, total organic carbon, and dissolved organic carbon. In general, results from the field equipment blank and replicate samples indicate that the overall process of sample collection, processing, and analysis did not introduce substantial contamination and that consistent results were obtained.

  19. 2. VIEW OF POWER PLANT LOOKING SOUTHEAST. Potomac Power ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW OF POWER PLANT LOOKING SOUTHEAST. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  20. Early and Middle Holocene evidence for plant use and cultivation in the Middle Cauca River Basin, Cordillera Central (Colombia)

    NASA Astrophysics Data System (ADS)

    Aceituno, Francisco J.; Loaiza, Nicolás

    2014-02-01

    This paper presents the latest results of research done in the Colombian Andean region known as Middle Cauca River Basin, an important location for the study of the origins of plant use and the dispersal of domesticates throughout the Americas due to its geographical position in northwest South America. We discuss human-environment interactions during Pleistocene/Holocene transition to middle Holocene (ca 10,000-4000 BP), specifically human-plant interaction and environmental factors that led to the adoption of horticultural practices. Three lines of evidence are analyzed: archaeological stratigraphy, lithic technology, and microbotanical remains. Our results suggest that early Holocene environmental stability allowed Middle Cauca settlers to use the diverse local resources for several millennia, altering the local vegetation, and leading to the development of horticultural practices that included the use of both local and foreign plants. These results inform the ongoing debate about the antiquity and nature of plant domestication and dispersals in the Americas.

  1. A network model to help land managers predict and prevent spread of invasive plants from roads to river systems in Alaska

    Treesearch

    Matthew J. Macander; Tricia L. Wurtz

    2007-01-01

    Alaska has relatively few invasive plants, and most of them are found only along the state's limited road system. Melilotus alba, or sweetclover, is one of the most widely distributed invasives in the state. Melilotus has recently moved from roadsides to the flood plains of at least three glacial rivers. We developed a network...

  2. Plants of restricted use indicated by three cultures in Brazil (Caboclo-river dweller, Indian and Quilombola).

    PubMed

    Rodrigues, Eliana

    2007-05-04

    A detailed record of plants cited during ethnopharmacological surveys, suspected of being toxic or of triggering adverse reactions, may be an auxiliary means to pharmacovigilance of phytomedicines, in that it provides greater knowledge of a "bad side" to plant resources in the Brazilian flora. This study describes 57 plant species of restricted use (abortive, contraceptive, contraindicated for pregnancy, prescribed in lesser doses for children and the elderly, to easy delivery, in addition to poisons to humans and animals) as indicated during ethnopharmacological surveys carried out among three cultures in Brazil (Caboclos-river dwellers, inhabitants of the Amazon forest; the Quilombolas, from the pantanal wetlands; the Krahô Indians, living in the cerrado savannahs). These groups of humans possess notions, to a remarkable extent, of the toxicity, contraindications, and interaction among plants. A bibliographical survey in the Pubmed, Web of Science and Dr. Duke's Phytochemical and Ethnobotanical Databases has shown that 5 out of the 57 species have some toxic properties described up to the present time, they are: Anacardium occidentale L. (Anacardiaceae), Brosimum gaudichaudii Trécul (Moraceae), Senna alata (L.) Roxb. (Fabaceae), Senna occidentalis (L.) Link (Fabaceae), Strychnos pseudoquina A. St.-Hil. (Loganiaceae) and Vernonia brasiliana (L.) Druce (Asteraceae).

  3. 4. NORTH ELEVATION OF POWER PLANT LOOKING SOUTH SOUTHWEST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. NORTH ELEVATION OF POWER PLANT LOOKING SOUTH SOUTHWEST. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  4. 11. EAST WALL OF POWER PLANT BUILDING LOOKING WEST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. EAST WALL OF POWER PLANT BUILDING LOOKING WEST. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  5. The sedimentary record of Carboniferous rivers: Continuing influence of land plant evolution on alluvial processes and Palaeozoic ecosystems

    NASA Astrophysics Data System (ADS)

    Davies, Neil S.; Gibling, Martin R.

    2013-05-01

    Evidence from modern rivers and the deep-time geological record attests to the fundamental importance of plant life for the construction of physical habitats within fluvial environments. Data from an extensive literature review and original fieldwork demonstrates that many landforms and geomorphic features of modern river systems appear in the Palaeozoic stratigraphic record once terrestrial vegetation had adopted certain evolutionary advances. For example, stable point bars are associated with the onset of rooted plants in the Siluro-Devonian and avulsive and anabranching fluvial systems become common at the same time as extensive arborescent vegetation in the Carboniferous. In this paper, we demonstrate a correlation between the diversification of physical fluvial environments and the expansion of terrestrial fauna and flora, with an emphasis on the culmination of these trends within Carboniferous alluvial systems. Many extrinsic factors have been considered as possible controls on the evolutionary timelines of terrestrialization for organisms. However, a fundamental prerequisite for achieving terrestrial biodiversity was the variety of physical habitats, especially riparian systems, available for newly evolved organisms. In association with abundant lowland meandering systems, the widespread appearance across Carboniferous alluvial plains of fixed-channel and anabranching reaches created further physical landforms for colonization and would have promoted increasingly complex hyporheic flow regimes. Furthermore the associated increase in arborescent vegetation and supply of large woody debris to inland and coastal rivers would have created a wealth of microhabitats for continental organisms. We argue that the expanding extent and diversity of physical alluvial niches during the Palaeozoic is an underappreciated driver of the terrestrialization of early continental life. The study of the deep-time fossil and stratigraphic record also illustrates that vegetation is

  6. United States Air Force Summer Faculty Research Program (1987). Program Technical Report. Volume 1.

    DTIC Science & Technology

    1987-12-01

    Mechanical Engineering Specialty: Engineering Science Rose-Hulman Institute Assigned: APL 5500 Wabash Avenue - Terre Haute, IN 47803 (812) 877-1511 Dr...Professor/Di rector 1973 Dept. of Humanities Specialty: Literature/Language Rose-Hulman Inst. of Technology Assigned: HRL/LR 5500 Wabash Avenue - Terre...1976 Assistant Professor Specialty: Computer Science Dept. of Computer Science Assigned: AL Rose-Hulman Inst. of Technology 5500 Wabash Ave. Terre Haute

  7. Source Hierarchy List. Volume 2. E through N

    DTIC Science & Technology

    1994-07-01

    SEE CONTINENTAL AG HANNOVER (GERMANY F R) 421628 02 GENERAL TIRE AND RUBBER CO MARION IN 151750 02 GENERAL TIRE ANO RUBBER CO WABASH IN...151800 03 GENERAL TIRE AND RUBBER CO WABASH IN 151820 INDUSTRIAL PRODUCTS DIV...GENERAL TIRE AND RUBBER CO WABASH IN 151800 FOR HIGHEST ORGANIZATIONAL LEVEL SEE CONTINENTAL AG HANNOVER (GERMANY F R) G3 GENERAL TIRE AND RUBBER CO

  8. Occurrence of pharmaceuticals in river water and their elimination in a pilot-scale drinking water treatment plant.

    PubMed

    Vieno, Niina M; Härkki, Heli; Tuhkanen, Tuula; Kronberg, Leif

    2007-07-15

    The occurrence of four beta blockers, one antiepileptic drug, one lipid regulator, four anti-inflammatories, and three fluoroquinolones was studied in a river receiving sewage effluents. All compounds but two of the fluoroquinolones were observed in the water above their limit of quantification concentrations. The highest concentrations (up to 107 ng L(-1)) of the compounds were measured during the winter months. The river water was passed to a pilot-scale drinking water treatment plant, and the elimination of the pharmaceuticals was followed during the treatment. The processes applied by the plant consisted of ferric salt coagulation, rapid sand filtration, ozonation, two-stage granular activated carbon filtration (GAC), and UV disinfection. Following the coagulation, sedimentation, and rapid sand filtration, the studied pharmaceuticals were found to be eliminated only by an average of 13%. An efficient elimination was found to take place during ozonation at an ozone dose of about 1 mg L(-1) (i.e., 0.2-0.4 mg of O3/ mg of TOC). Following this treatment, the concentrations of the pharmaceuticals dropped to below the quantification limits with the exception of ciprofloxacin. Atenolol, sotalol, and ciprofloxacin, the most hydrophilic of the studied pharmaceuticals, were not fully eliminated during the GAC filtrations. All in all, the treatment train was found to very effectively eliminate the pharmaceuticals from the rawwater. The only compound that was found to pass almost unaffected through all the treatment steps was ciprofloxacin.

  9. Modeling invasive alien plant species in river systems: Interaction with native ecosystem engineers and effects on hydro-morphodynamic processes

    NASA Astrophysics Data System (ADS)

    van Oorschot, M.; Kleinhans, M. G.; Geerling, G. W.; Egger, G.; Leuven, R. S. E. W.; Middelkoop, H.

    2017-08-01

    Invasive alien plant species negatively impact native plant communities by out-competing species or changing abiotic and biotic conditions in their introduced range. River systems are especially vulnerable to biological invasions, because waterways can function as invasion corridors. Understanding interactions of invasive and native species and their combined effects on river dynamics is essential for developing cost-effective management strategies. However, numerical models for simulating long-term effects of these processes are lacking. This paper investigates how an invasive alien plant species affects native riparian vegetation and hydro-morphodynamics. A morphodynamic model has been coupled to a dynamic vegetation model that predicts establishment, growth and mortality of riparian trees. We introduced an invasive alien species with life-history traits based on Japanese Knotweed (Fallopia japonica), and investigated effects of low- and high propagule pressure on invasion speed, native vegetation and hydro-morphodynamic processes. Results show that high propagule pressure leads to a decline in native species cover due to competition and the creation of unfavorable native colonization sites. With low propagule pressure the invader facilitates native seedling survival by creating favorable hydro-morphodynamic conditions at colonization sites. With high invader abundance, water levels are raised and sediment transport is reduced during the growing season. In winter, when the above-ground invader biomass is gone, results are reversed and the floodplain is more prone to erosion. Invasion effects thus depend on seasonal above- and below ground dynamic vegetation properties and persistence of the invader, on the characteristics of native species it replaces, and the combined interactions with hydro-morphodynamics.

  10. Terrestrial Contributions to the Aquatic Food Web in the Middle Yangtze River

    PubMed Central

    Wang, Jianzhu; Gu, Binhe; Huang, Jianhui; Han, Xingguo; Lin, Guanghui; Zheng, Fawen; Li, Yuncong

    2014-01-01

    Understanding the carbon sources supporting aquatic consumers in large rivers is essential for the protection of ecological integrity and for wildlife management. The relative importance of terrestrial and algal carbon to the aquatic food webs is still under intensive debate. The Yangtze River is the largest river in China and the third longest river in the world. The completion of the Three Gorges Dam (TGD) in 2003 has significantly altered the hydrological regime of the middle Yangtze River, but its immediate impact on carbon sources supporting the river food web is unknown. In this study, potential production sources from riparian and the main river channel, and selected aquatic consumers (invertebrates and fish) at an upstream constricted-channel site (Luoqi), a midstream estuarine site (Huanghua) and a near dam limnetic site (Maoping) of the TGD were collected for stable isotope (δ13C and δ15N) and IsoSource analyses. Model estimates indicated that terrestrial plants were the dominant carbon sources supporting the consumer taxa at the three study sites. Algal production appeared to play a supplemental role in supporting consumer production. The contribution from C4 plants was more important than that of C3 plants at the upstream site while C3 plants were the more important carbon source to the consumers at the two impacted sites (Huanghua and Maoping), particularly at the midstream site. There was no trend of increase in the contribution of autochthonous production from the upstream to the downstream sites as the flow rate decreased dramatically along the main river channel due to the construction of TGD. Our findings, along with recent studies in rivers and lakes, are contradictory to studies that demonstrate the importance of algal carbon in the aquatic food web. Differences in system geomorphology, hydrology, habitat heterogeneity, and land use may account for these contradictory findings reported in various studies. PMID:25047656

  11. Terrestrial contributions to the aquatic food web in the middle Yangtze River.

    PubMed

    Wang, Jianzhu; Gu, Binhe; Huang, Jianhui; Han, Xingguo; Lin, Guanghui; Zheng, Fawen; Li, Yuncong

    2014-01-01

    Understanding the carbon sources supporting aquatic consumers in large rivers is essential for the protection of ecological integrity and for wildlife management. The relative importance of terrestrial and algal carbon to the aquatic food webs is still under intensive debate. The Yangtze River is the largest river in China and the third longest river in the world. The completion of the Three Gorges Dam (TGD) in 2003 has significantly altered the hydrological regime of the middle Yangtze River, but its immediate impact on carbon sources supporting the river food web is unknown. In this study, potential production sources from riparian and the main river channel, and selected aquatic consumers (invertebrates and fish) at an upstream constricted-channel site (Luoqi), a midstream estuarine site (Huanghua) and a near dam limnetic site (Maoping) of the TGD were collected for stable isotope (δ13C and δ15N) and IsoSource analyses. Model estimates indicated that terrestrial plants were the dominant carbon sources supporting the consumer taxa at the three study sites. Algal production appeared to play a supplemental role in supporting consumer production. The contribution from C4 plants was more important than that of C3 plants at the upstream site while C3 plants were the more important carbon source to the consumers at the two impacted sites (Huanghua and Maoping), particularly at the midstream site. There was no trend of increase in the contribution of autochthonous production from the upstream to the downstream sites as the flow rate decreased dramatically along the main river channel due to the construction of TGD. Our findings, along with recent studies in rivers and lakes, are contradictory to studies that demonstrate the importance of algal carbon in the aquatic food web. Differences in system geomorphology, hydrology, habitat heterogeneity, and land use may account for these contradictory findings reported in various studies.

  12. Physiological acclimation strategies of riparian plants to environment change in the delta of the Tarim River, China

    NASA Astrophysics Data System (ADS)

    Ruan, Xiao; Wang, Qiang; Pan, Cun-De; Chen, Ya-Ning; Jiang, Hao

    2009-06-01

    The occurrence and development of riparian forests, which were mainly dominated by mesophytes species related closely with surface water. Since there was no water discharged to the lower reaches of Tarim River in the past three decade years, the riparian forests degrade severely. The groundwater table, the saline content of the groundwater, as well as the content of free proline, soluble sugars, plant endogenous hormones (abscisic acid (ABA), and cytokinins (CTK)) of the leaves and relative rates of sap flow of the Populus euphratica Oliv. (arbor species), Tamarix ramosissima Ldb. (bush species), and Apocynum venetum L. (herb species) were monitored and analyzed at the lower reaches of the Tarim River in the study area where five positions on a transect were fixed at 100 m intervals along a sampling direction from riverbank to the sand dunes before and after water release. The physiological responses and acclimation strategies of three species to variations in water and salinity stress were discussed. It was found that A. venetum population recovered to groundwater table ranging from -1.73 to -3.56 m, and when exposed to saline content of the groundwater ranging from 36.59 to 93.48 m mol/L; P. euphratica appeared to be more sensitive to the elevation of groundwater table than the A. venetum and T. ramosissima at groundwater table ranging from -5.08 to -5.80 m, and when exposed to saline content of the groundwater ranging from 42.17 to 49.55 m mol/L. T. ramosissima tended to be the best candidate species for reclamation in this hyper-arid area because it responded to groundwater table ranging from -1.73 to -7.05 m, and when exposed to saline content of the groundwater ranging from 36.59 to 93.48 m mol/L. These results explained the distribution patterns of desert vegetation in the lower reaches of the Tarim River. Understanding the relationships among ecological factors variables, physiological response and acclimation strategies of plant individuals could provide

  13. Status Report and Research Plan for Cables Harvested from Crystal River Unit 3 Nuclear Generating Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fifield, Leonard S.

    Harvested cables from operating or decommissioned nuclear power plants present an important opportunity to validate models, understanding material aging behavior, and validate characterization techniques. Crystal River Unit 3 Nuclear Generating Plant is a pressurized water reactor that was licensed to operate from 1976 to 2013. Cable segments were harvested and made available to the Light Water Reactor Sustainability research program through the Electric Power Research Institute. Information on the locations and circuits within the reactor from whence the cable segments came, cable construction, sourcing and installation information, and photographs of the cable locations prior to harvesting were provided. The cablemore » variations provided represent six of the ten most common cable insulations in the nuclear industry and experienced service usage for periods from 15 to 42 years. Subsequently, these cables constitute a valuable asset for research to understand aging behavior and measurement of nuclear cables. Received cables harvested from Crystal River Unit 3 Nuclear Generating Plant consist of low voltage, insulated conductor surrounded by jackets in lengths from 24 to 100 feet each. Cable materials will primarily be used to investigate aging under simultaneous thermal and gamma radiation exposure. Each cable insulation and jacket material will be characterized in its as-received condition, including determination of the temperatures associated with endothermic transitions in the material using differential scanning calorimetry and dynamic mechanical analysis. Temperatures for additional thermal exposure aging will be selected following the thermal analysis to avoid transitions in accelerated laboratory aging that do not occur in field conditions. Aging temperatures above thermal transitions may also be targeted to investigate the potential for artifacts in lifetime prediction from rapid accelerated aging. Total gamma doses and dose rates targeted for each

  14. Impact of Different Time Series Streamflow Data on Energy Generation of a Run-of-River Hydropower Plant

    NASA Astrophysics Data System (ADS)

    Kentel, E.; Cetinkaya, M. A.

    2013-12-01

    Global issues such as population increase, power supply crises, oil prices, social and environmental concerns have been forcing countries to search for alternative energy sources such as renewable energy to satisfy the sustainable development goals. Hydropower is the most common form of renewable energy in the world. Hydropower does not require any fuel, produces relatively less pollution and waste and it is a reliable energy source with relatively low operating cost. In order to estimate the average annual energy production of a hydropower plant, sufficient and dependable streamflow data is required. The goal of this study is to investigate impact of streamflow data on annual energy generation of Balkusan HEPP which is a small run-of-river hydropower plant at Karaman, Turkey. Two different stream gaging stations are located in the vicinity of Balkusan HEPP and these two stations have different observation periods: one from 1986 to 2004 and the other from 2000 to 2009. These two observation periods show different climatic characteristics. Thus, annual energy estimations based on data from these two different stations differ considerably. Additionally, neither of these stations is located at the power plant axis, thus streamflow observations from these two stream gaging stations need to be transferred to the plant axis. This requirement introduces further errors into energy estimations. Impact of different streamflow data and transfer of streamflow observations to plant axis on annual energy generation of a small hydropower plant is investigated in this study.

  15. 10. WEST WALL OF POWER PLANT BUILDING LOOKING EAST SOUTHEAST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. WEST WALL OF POWER PLANT BUILDING LOOKING EAST SOUTHEAST. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  16. 14. INTERIOR OF POWER PLANT LOOKING SOUTHEAST AT ELECTRICAL PANEL. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. INTERIOR OF POWER PLANT LOOKING SOUTHEAST AT ELECTRICAL PANEL. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  17. 12. CANAL SLUICE GATE LOCATED 150' WEST OF POWER PLANT. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. CANAL SLUICE GATE LOCATED 150' WEST OF POWER PLANT. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  18. Assessment of River Habitat Quality in the Hai River Basin, Northern China.

    PubMed

    Ding, Yuekui; Shan, Baoqing; Zhao, Yu

    2015-09-17

    We applied a river habitat quality (RHQ) assessment method to the Hai River Basin (HRB); an important economic centre in China; to obtain baseline information for water quality improvement; river rehabilitation; and watershed management. The results of the assessment showed that the river habitat in the HRB is seriously degraded. Specifically; 42.41% of the sites; accounting for a river length of 3.31 × 10⁴ km; were designated poor and bad. Habitat in the plain areas is seriously deteriorated; and nearly 50% of the sites; accounting for a river length of 1.65 × 10⁴ km; had either poor or bad habitats. River habitat degradation was attributable to the limited width of the riparian zone (≤5 m); lower coverage of riparian vegetation (≤40%); artificial land use patterns (public and industrial land); frequent occurrence of farming on the river banks and high volumes of solid waste (nearly 10 m³); single flow channels; and rare aquatic plants (≤1 category). At the regional scale; intensive artificial land use types caused by urbanization had a significant impact on the RHQ in the HRB. RHQ was significantly and negatively correlated with farmland (r = 1.000; p < 0.01) and urban land (r = 0.998; p < 0.05); and was significantly and positively correlated with grassland and woodland (r = 1.000; p < 0.01). Intensive artificial land use; created through urbanization processes; has led to a loss of the riparian zone and its native vegetation; and has disrupted the lateral connectivity of the rivers. The degradation of the already essentially black rivers is exacerbated by poor longitudinal connectivity (index of connectivity is 2.08-16.56); caused by reservoirs and sluices. For river habitat rehabilitation to be successful; land use patterns need to be changed and reservoirs and sluices will have to be regulated.

  19. Assessment of River Habitat Quality in the Hai River Basin, Northern China

    PubMed Central

    Ding, Yuekui; Shan, Baoqing; Zhao, Yu

    2015-01-01

    We applied a river habitat quality (RHQ) assessment method to the Hai River Basin (HRB); an important economic centre in China; to obtain baseline information for water quality improvement; river rehabilitation; and watershed management. The results of the assessment showed that the river habitat in the HRB is seriously degraded. Specifically; 42.41% of the sites; accounting for a river length of 3.31 × 104 km; were designated poor and bad. Habitat in the plain areas is seriously deteriorated; and nearly 50% of the sites; accounting for a river length of 1.65 × 104 km; had either poor or bad habitats. River habitat degradation was attributable to the limited width of the riparian zone (≤5 m); lower coverage of riparian vegetation (≤40%); artificial land use patterns (public and industrial land); frequent occurrence of farming on the river banks and high volumes of solid waste (nearly 10 m3); single flow channels; and rare aquatic plants (≤1 category). At the regional scale; intensive artificial land use types caused by urbanization had a significant impact on the RHQ in the HRB. RHQ was significantly and negatively correlated with farmland (r = 1.000; p < 0.01) and urban land (r = 0.998; p < 0.05); and was significantly and positively correlated with grassland and woodland (r = 1.000; p < 0.01). Intensive artificial land use; created through urbanization processes; has led to a loss of the riparian zone and its native vegetation; and has disrupted the lateral connectivity of the rivers. The degradation of the already essentially black rivers is exacerbated by poor longitudinal connectivity (index of connectivity is 2.08–16.56); caused by reservoirs and sluices. For river habitat rehabilitation to be successful; land use patterns need to be changed and reservoirs and sluices will have to be regulated. PMID:26393628

  20. Impact on the Columbia River of an outburst of Spirit Lake

    USGS Publications Warehouse

    Sikonia, W.G.

    1985-01-01

    A one-dimensional sediment-transport computer model was used to study the effects of an outburst of Spirit Lake on the Columbia River. According to the model, flood sediment discharge to the Columbia from the Cowlitz would form a blockage to a height of 44 feet above the current streambed of the Columbia River, corresponding to a new streambed elevation of -3 feet, that would impound the waters of the Columbia River. For an average flow of 233,000 cubic feet in that river, water surface elevations would continue to increase for 16 days after the blockage had been formed. The river elevation at the Trojan nuclear power plant, 5 miles upstream of the Cowlitz River, would rise to 32 feet, compared to a critical elevation of 45 feet, above which the plant would be flooded. For comparison, the Columbia River at average flow without the blockage has an elevation at this location of 6 feet. Correspondingly high water surface elevations would occur along the river to Bonneville Dam , with that at Portland, Oregon, for example, rising also to 32 feet, compared to 10 feet without the blockage. (USGS)

  1. Mapping invasive wetland plants in the Hudson River National Estuarine Research Reserve using quickbird satellite imagery

    USGS Publications Warehouse

    Laba, M.; Downs, R.; Smith, S.; Welsh, S.; Neider, C.; White, S.; Richmond, M.; Philpot, W.; Baveye, P.

    2008-01-01

    The National Estuarine Research Reserve (NERR) program is a nationally coordinated research and monitoring program that identifies and tracks changes in ecological resources of representative estuarine ecosystems and coastal watersheds. In recent years, attention has focused on using high spatial and spectral resolution satellite imagery to map and monitor wetland plant communities in the NERRs, particularly invasive plant species. The utility of this technology for that purpose has yet to be assessed in detail. To that end, a specific high spatial resolution satellite imagery, QuickBird, was used to map plant communities and monitor invasive plants within the Hudson River NERR (HRNERR). The HRNERR contains four diverse tidal wetlands (Stockport Flats, Tivoli Bays, Iona Island, and Piermont), each with unique water chemistry (i.e., brackish, oligotrophic and fresh) and, consequently, unique assemblages of plant communities, including three invasive plants (Trapa natans, Phragmites australis, and Lythrum salicaria). A maximum-likelihood classification was used to produce 20-class land cover maps for each of the four marshes within the HRNERR. Conventional contingency tables and a fuzzy set analysis served as a basis for an accuracy assessment of these maps. The overall accuracies, as assessed by the contingency tables, were 73.6%, 68.4%, 67.9%, and 64.9% for Tivoli Bays, Stockport Flats, Piermont, and Iona Island, respectively. Fuzzy assessment tables lead to higher estimates of map accuracies of 83%, 75%, 76%, and 76%, respectively. In general, the open water/tidal channel class was the most accurately mapped class and Scirpus sp. was the least accurately mapped. These encouraging accuracies suggest that high-resolution satellite imagery offers significant potential for the mapping of invasive plant species in estuarine environments. ?? 2007 Elsevier Inc. All rights reserved.

  2. 8. VIEW OF WESTERN END OF THE POWER PLANT BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW OF WESTERN END OF THE POWER PLANT BUILDING LOOKING NORTH. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  3. Chlor-alkali plant contamination of Aussa River sediments induced a large Hg-resistant bacterial community

    NASA Astrophysics Data System (ADS)

    Baldi, Franco; Marchetto, Davide; Gallo, Michele; Fani, Renato; Maida, Isabel; Covelli, Stefano; Fajon, Vesna; Zizek, Suzana; Hines, Mark; Horvat, Milena

    2012-11-01

    A closed chlor-alkali plant (CAP) discharged Hg for decades into the Aussa River, which flows into Marano Lagoon, resulting in the large-scale pollution of the lagoon. In order to get information on the role of bacteria as mercury detoxifying agents, analyses of anions in the superficial part (0-1 cm) of sediments were conducted at four stations in the Aussa River. In addition, measurements of biopolymeric carbon (BPC) as a sum of the carbon equivalent of proteins (PRT), lipids (LIP), and carbohydrates (CHO) were performed to correlate with bacterial biomass such as the number of aerobic heterotrophic cultivable bacteria and their percentage of Hg-resistant bacteria. All these parameters were used to assess the bioavailable Hg fraction in sediments and the potential detoxification activity of bacteria. In addition, fifteen isolates were characterized by a combination of molecular techniques, which permitted their assignment into six different genera. Four out of fifteen were Gram negative with two strains of Stenotrophomonas maltophilia, one Enterobacter sp., and one strain of Brevibacterium frigoritolerans. The remaining strains (11) were Gram positive belonging to the genera Bacillus and Staphylococcus. We found merA genes in only a few isolates. Mercury volatilization from added HgCl2 and the presence of plasmids with the merA gene were also used to confirm Hg reductase activity. We found the highest number of aerobic heterotrophic Hg-resistant bacteria (one order magnitude higher) and the highest number of Hg-resistant species (11 species out of 15) at the confluence of the River Aussa and Banduzzi's channel, which transport Hg from the CAP, suggesting that Hg is strongly detoxified [reduced to Hg(0)] at this location.

  4. Thresholds in the response of free-floating plant abundance to variation in hydraulic connectivity, nutrients, and macrophyte abundance in a large floodplain river

    USGS Publications Warehouse

    Giblin, Shawn M.; Houser, Jeffrey N.; Sullivan, John F.; Langrehr, H.A.; Rogala, James T.; Campbell, Benjamin D.

    2014-01-01

    Duckweed and other free-floating plants (FFP) can form dense surface mats that affect ecosystem condition and processes, and can impair public use of aquatic resources. FFP obtain their nutrients from the water column, and the formation of dense FFP mats can be a consequence and indicator of river eutrophication. We conducted two complementary surveys of diverse aquatic areas of the Upper Mississippi River as an in situ approach for estimating thresholds in the response of FFP abundance to nutrient concentration and physical conditions in a large, floodplain river. Local regression analysis was used to estimate thresholds in the relations between FFP abundance and phosphorus (P) concentration (0.167 mg l−1L), nitrogen (N) concentration (0.808 mg l−1), water velocity (0.095 m s−1), and aquatic macrophyte abundance (65 % cover). FFP tissue concentrations suggested P limitation was more likely in spring, N limitation was more likely in late summer, and N limitation was most likely in backwaters with minimal hydraulic connection to the channel. The thresholds estimated here, along with observed patterns in nutrient limitation, provide river scientists and managers with criteria to consider when attempting to modify FFP abundance in off-channel areas of large river systems.

  5. Integrated assessment of wastewater treatment plant effluent estrogenicity in the Upper Murray River, Australia, using the native Murray rainbowfish (Melanotaenia fluviatilis)

    USGS Publications Warehouse

    Vajda, Alan M.; Kumar, Anupama; Woods, Marianne; Williams, Mike; Doan, Hai; Tolsher, Peter; Kookana, Rai S.; Barber, Larry B.

    2016-01-01

    The contamination of major continental river systems by endocrine-active chemicals (EACs) derived from the discharge of wastewater treatment plant (WWTP) effluents can affect human and ecosystem health. As part of a long-term effort to develop a native fish model organism for assessment of endocrine disruption in Australia's largest watershed, the Murray-Darling River Basin, the present study evaluated endocrine disruption in adult males of the native Australian Murray rainbowfish (Melanotaenia fluviatilis) exposed to effluent from an activated sludge WWTP and water from the Murray River during a 28-d, continuous-flow, on-site experiment. Analysis of the WWTP effluent and river water detected estrone and 17β-estradiol at concentrations up to approximately 25 ng L−1. Anti-estrogenicity of effluent samples was detected in vitro using yeast-based bioassays (yeast estrogen screen) throughout the experiment, but estrogenicity was limited to the first week of the experiment. Histological evaluation of the testes indicated significant suppression of spermatogenesis by WWTP effluent after 28 d of exposure. Plasma vitellogenin concentrations and expression of vitellogenin messenger RNA in liver were not significantly affected by exposure to WWTP effluent. The combination of low contaminant concentrations in the WWTP effluent, limited endocrine disrupting effects in the Murray rainbowfish, and high in-stream dilution factors (>99%) suggest minimal endocrine disruption impacts on native Australian fish in the Murray River downstream from the WWTP outfall. 

  6. Aquatic Trophic Productivity model: A decision support model for river restoration planning in the Methow River, Washington

    USGS Publications Warehouse

    Benjamin, Joseph R.; Bellmore, J. Ryan

    2016-05-19

    In this report, we outline the structure of a stream food-web model constructed to explore how alternative river restoration strategies may affect stream fish populations. We have termed this model the “Aquatic Trophic Productivity model” (ATP). We present the model structure, followed by three case study applications of the model to segments of the Methow River watershed in northern Washington. For two case studies (middle Methow River and lower Twisp River floodplain), we ran a series of simulations to explore how food-web dynamics respond to four distinctly different, but applied, strategies in the Methow River watershed: (1) reconnection of floodplain aquatic habitats, (2) riparian vegetation planting, (3) nutrient augmentation (that is, salmon carcass addition), and (4) enhancement of habitat suitability for fish. For the third case study, we conducted simulations to explore the potential fish and food-web response to habitat improvements conducted in 2012 at the Whitefish Island Side Channel, located in the middle Methow River.

  7. Evaluation of a Combined Cyclone and Gas Filtration System for Particulate Removal in the Gasification Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rizzo, Jeffrey J.

    2010-04-30

    The Wabash gasification facility, owned and operated by sgSolutions LLC, is one of the largest single train solid fuel gasification facilities in the world capable of transforming 2,000 tons per day of petroleum coke or 2,600 tons per day of bituminous coal into synthetic gas for electrical power generation. The Wabash plant utilizes Phillips66 proprietary E-Gas (TM) Gasification Process to convert solid fuels such as petroleum coke or coal into synthetic gas that is fed to a combined cycle combustion turbine power generation facility. During plant startup in 1995, reliability issues were realized in the gas filtration portion of themore » gasification process. To address these issues, a slipstream test unit was constructed at the Wabash facility to test various filter designs, materials and process conditions for potential reliability improvement. The char filtration slipstream unit provided a way of testing new materials, maintenance procedures, and process changes without the risk of stopping commercial production in the facility. It also greatly reduced maintenance expenditures associated with full scale testing in the commercial plant. This char filtration slipstream unit was installed with assistance from the United States Department of Energy (built under DOE Contract No. DE-FC26-97FT34158) and began initial testing in November of 1997. It has proven to be extremely beneficial in the advancement of the E-Gas (TM) char removal technology by accurately predicting filter behavior and potential failure mechanisms that would occur in the commercial process. After completing four (4) years of testing various filter types and configurations on numerous gasification feed stocks, a decision was made to investigate the economic and reliability effects of using a particulate removal gas cyclone upstream of the current gas filtration unit. A paper study had indicated that there was a real potential to lower both installed capital and operating costs by implementing a

  8. 6. VIEW OF POWER PLANT BUILDING LOOKING NORTHWEST. DRY CANAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW OF POWER PLANT BUILDING LOOKING NORTHWEST. DRY CANAL BED TO THE LEFT. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  9. 9. EXTERIOR PERSPECTIVE OF POWER PLANT BUILDING LOOKING NORTHEAST. DRY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. EXTERIOR PERSPECTIVE OF POWER PLANT BUILDING LOOKING NORTHEAST. DRY CANAL BED IN FOREGROUND. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  10. 3. VIEW OF POWER PLANT LOOKING SOUTH INTO THE REMAINS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW OF POWER PLANT LOOKING SOUTH INTO THE REMAINS OF THE TURBINE FLUMES. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  11. 7. EXTERIOR OF POWER PLANT BUILDING LOOKING NORTHWEST. DETAIL OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. EXTERIOR OF POWER PLANT BUILDING LOOKING NORTHWEST. DETAIL OF TRASH RACK IN FOREGROUND. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  12. Environmental impact of pesticides after sewage treatment plants removal in four Spanish Mediterranean rivers

    NASA Astrophysics Data System (ADS)

    Campo, Julian; Masiá, Ana; Blasco, Cristina; Picó, Yolanda; Andreu, Vicente

    2013-04-01

    The re-use of sewage treatment plant (STP) effluents is currently one of the most employed strategies in several countries to deal with the water shortage problem. Some pesticides are bio-accumulative and due to their toxicity they can affect non-target organisms, especially in the aquatic ecosystems, threating their ecological status. Despite these facts, and to our knowledge, there are few peer-reviewed articles that report concentrations of pesticides in Spanish STPs. This work presents the results of an extensive survey that was carried out in October of 2010 in 15 of the STPs of Ebro, Guadalquivir, Jucar and Llobregat rivers in Spain. Forty-three currently used pesticides, belonging to anilide, neonicotinoid, thiocarbamate, acaricide, juvenile hormone mimic, insect growth regulator, urea, azole, carbamate, chloroacetanilide, triazine and organophosphorus, have been monitored. Integrated samples of influent and effluent, and dehydrated, lyophilized sludge from 15 STPs located along the rivers were analyzed for pesticide residues. With these data, removal efficiencies are also calculated. Extraction of water samples was performed through Solid Phase Extraction (SPE) and sludge samples were extracted using the QuEchERS method. Pesticide determination was carried out using Liquid Chromatograph - tandem Mass Spectrometry (LC-MS/MS). Recoveries ranged from 48% to 70%, in water samples, and from 40 to 105 %, in sludge samples. The limits of quantification were 0.01-5 ng L-1 for the former, and 0.1-5.0 ng g-1 for the latter. In terms of frequency of detection, 31 analytes were detected in influent, 29 in effluent and 11 in sludge samples. Organophosphorus pesticides were the most frequently detected in all wastewater samples, but azole, urea, triazine, neonicotinoid and the insect growth regulator were also commonly found. Imazalil revealed the maximum concentration in wastewater samples from all rivers except the Guadalquivir, in which diuron presented the maximum

  13. Mitigation and enhancement techniques for the Upper Mississippi River system and other large river systems

    USGS Publications Warehouse

    Schnick, Rosalie A.; Morton, John M.; Mochalski, Jeffrey C.; Beall, Jonathan T.

    1982-01-01

    Extensive information is provided on techniques that can reduce or eliminate the negative impact of man's activities (particularly those related to navigation) on large river systems, with special reference to the Upper Mississippi River. These techniques should help resource managers who are concerned with such river systems to establish sound environmental programs. Discussion of each technique or group of techniques include (1) situation to be mitigated or enhanced; (2) description of technique; (3) impacts on the environment; (4) costs; and (5) evaluation for use on the Upper Mississippi River Systems. The techniques are divided into four primary categories: Bank Stabilization Techniques, Dredging and Disposal of Dredged Material, Fishery Management Techniques, and Wildlife Management Techniques. Because techniques have been grouped by function, rather than by structure, some structures are discussed in several contexts. For example, gabions are discussed for use in revetments, river training structures, and breakwaters. The measures covered under Bank Stabilization Techniques include the use of riprap revetments, other revetments, bulkheads, river training structures, breakwater structures, chemical soil stabilizers, erosion-control mattings, and filter fabrics; the planting of vegetation; the creation of islands; the creation of berms or enrichment of beaches; and the control of water level and boat traffic. The discussions of Dredging and the Disposal of Dredged Material consider dredges, dredging methods, and disposal of dredged material. The following subjects are considered under Fishery Management Techniques: fish attractors; spawning structures; nursery ponds, coves, and marshes; fish screens and barriers; fish passage; water control structures; management of water levels and flows; wing dam modification; side channel modification; aeration techniques; control of nuisance aquatic plants; and manipulated of fish populations. Wildlife Management

  14. 1. VIEW OF POWER PLANT LOOKING SOUTHEAST. SEVEN TURBINE FLUMES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW OF POWER PLANT LOOKING SOUTHEAST. SEVEN TURBINE FLUMES VISIBLE IN FRONT OF BUILDING. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  15. 21. VIEW OF MIANUS RIVER RAILROAD BRIDGE LOOKING NORTHEAST FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. VIEW OF MIANUS RIVER RAILROAD BRIDGE LOOKING NORTHEAST FROM THE REMAINS OF THE COS COB POWER PLANT COALING DOCK. THE BRIDGE IS A ROLLING LIFT BASCULE TYPE BUILT IN 1894-1895. NOTE THE ABSENCE OF CATENARY OVER THE CHANNEL AND THE METHOD OF CARRYING POWER FEED OVER THE RIVER ON THE HIGH TOWERS ADJACENT TO THE LIFT SECTION OF THE BRIDGE. - New York, New Haven & Hartford Railroad, Cos Cob Power Plant, Sound Shore Drive, Greenwich, Fairfield County, CT

  16. Functional traits and ecological affinities of riparian plants along the Colorado River in Grand Canyon

    USGS Publications Warehouse

    Palmquist, Emily C.; Ralston, Barbara E.; Sarr. Daniel,; Merritt, David; Shafroth, Patrick B; Scott, Julian

    2017-01-01

    Trait-based approaches to vegetation analyses are becoming more prevalent in studies of riparian vegetation dynamics, including responses to flow regulation, groundwater pumping, and climate change. These analyses require species trait data compiled from the literature and floras or original field measurements. Gathering such data makes trait-based research time intensive at best and impracticable in some cases. To support trait-based analysis of vegetation along the Colorado River through Grand Canyon, a data set of 20 biological traits and ecological affinities for 179 species occurring in that study area was compiled. This diverse flora shares species with many riparian areas in the western USA and includes species that occur across a wide moisture gradient. Data were compiled from published scientific papers, unpublished reports, plant fact sheets, existing trait databases, regional floras, and plant guides. Data for ordinal environmental tolerances were more readily available than were quantitative traits. More publicly available data are needed for traits of both common and rare southwestern U.S. plant species to facilitate comprehensive, trait-based research. The trait data set is free to use and can be downloaded from ScienceBase: https://www.sciencebase.gov/catalog/item/58af41dee4b01ccd54f9f2ff and https://dx.doi.org/10.5066/F7QV3JN1

  17. 33 CFR 162.105 - Missouri River; administration and navigation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... on the river. (b) Navigation. During critical flood stages on any particular limited reach of the Missouri River when lives, floating plant, or major shore installations and levees are endangered, the... destruction from wave action. The period of closure and all speed regulations prescribed by the District...

  18. Patterns of fish assemblage structure and dynamics in waters of the Savannah River Plant. Comprehensive Cooling Water Study final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aho, J.M.; Anderson, C.S.; Floyd, K.B.

    1986-06-01

    Research conducted as part of the Comprehensive Cooling Water Study (CCWS) has elucidated many factors that are important to fish population and community dynamics in a variety of habitats on the Savannah River Plant (SRP). Information gained from these studies is useful in predicting fish responses to SRP operations. The overall objective of the CCWS was (1) to determine the environmental effects of SRP cooling water withdrawals and discharges and (2) to determine the significance of the cooling water impacts on the environment. The purpose of this study was to: (1) examine the effects of thermal plumes on anadromous andmore » resident fishes, including overwintering effects, in the SRP swamp and associated tributary streams; (2) assess fish spawning and locate nursery grounds on the SRP; (3) examine the level of use of the SRP by spawning fish from the Savannah River, this objective was shared with the Savannah River Laboratory, E.I. du Pont de Nemours and Company; and (4) determine impacts of cooling-water discharges on fish population and community attributes. Five studies were designed to address the above topics. The specific objectives and a summary of the findings of each study are presented.« less

  19. Selenium in the Blackfoot, Salt, and Bear River Watersheds

    USGS Publications Warehouse

    Hamilton, S.J.; Buhl, K.J.

    2005-01-01

    Nine stream sites in the Blackfoot River, Salt River, and Bear River watersheds in southeast Idaho, USA were sampled in May 2001 for water, surficial sediment, aquatic plants, aquatic invertebrates, and fish. Selenium was measured in these aquatic ecosystem components, and a hazard assessment was performed on the data. Water quality characteristics such as pH, hardness, and specific conductance were relatively uniform among the nine sites. Of the aquatic components assessed, water was the least contaminated with selenium because measured concentrations were below the national water quality criterion of 5 μ g/L at eight of the nine sites. In contrast, selenium was elevated in sediment, aquatic plants, aquatic invertebrates, and fish from several sites, suggesting deposition in sediments and food web cycling through plants and invertebrates. Selenium was elevated to concentrations of concern in fish at eight sites (> 4 μ g/g in whole body). A hazard assessment of selenium in the aquatic environment suggested a moderate hazard at upper Angus Creek (UAC) and Smoky Creek (SC), and high hazard at Little Blackfoot River (LiB), Blackfoot River gaging station (BGS), State Land Creek (SLC), upper (UGC) and lower Georgetown Creek (LGC), Deer Creek (DC), and Crow Creek (CC). The results of this study indicate that selenium concentrations from the phosphate mining area of southeast Idaho were sufficiently elevated in several ecosystem components to cause adverse effects to aquatic resources in southeastern Idaho.

  20. Influence of agricultural practice on trace metals in soils and vegetation in the water conservation area along the East River (Dongjiang River), South China.

    PubMed

    Luo, Chunling; Yang, Renxiu; Wang, Yan; Li, Jun; Zhang, Gan; Li, Xiangdong

    2012-08-01

    Dongjiang (East River) is the key resource of potable water for the Pearl River Delta region, South China. Although industrial activities are limited in the water conservation area along this river, agriculture is very intensive. The present study evaluated trace metals in four soils under different cultivation. The total concentrations of trace metals decreased in the order orchard soil>vegetable soil>paddy soil>natural soil, reflecting decreasing inputs of agrochemicals to soils. Relatively high concentrations of Cd were recorded in the 60-cm soil profiles. The (206)Pb/(207)Pb ratio in the above-ground tissues of plant was significantly lower than their corresponding soils. In combination with the low transfer factor of Pb from soil to plant shoots, atmospheric deposition is probably a major pathway for Pb to enter plant leaves. Regular monitoring on the soil quality in this area is recommended for the safety of water resource and agricultural products. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Lower food chain community study: thermal effects and post-thermal recovery in the streams and swamps of the Savannah River Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kondratieff, P.; Kondratieff, B.C.

    1985-07-01

    The effects of thermal stress on lower food chain communities of streams and swamps of the Savannah River Plant. Both the autotroph assemblages and the macro invertebrate communities were studied in streams receiving heated reactor effluent. To document stream and swamp ecosystem recovery from thermal stress, the same communities of organisms were studied in a stream/swamp ecosystem which had received heated reactor effluent in the past. (ACR)

  2. Worker Alienation and Compensation at the Savannah River Site.

    PubMed

    Ashwood, Loka; Wing, Steve

    2016-05-01

    Corporations operating U.S. nuclear weapons plants for the federal government began tracking occupational exposures to ionizing radiation in 1943. However, workers, scholars, and policy makers have questioned the accuracy and completeness of radiation monitoring and its capacity to provide a basis for workers' compensation. We use interviews to explore the limitations of broad-scale, corporate epidemiological surveillance through worker accounts from the Savannah River Site nuclear weapons plant. Interviewees report inadequate monitoring, overbearing surveillance, limited venues to access medical support and exposure records, and administrative failure to report radiation and other exposures at the plant. The alienation of workers from their records and toil is relevant to worker compensation programs and the accuracy of radiation dose measurements used in epidemiologic studies of occupational radiation exposures at the Savannah River Site and other weapons plants. © The Author(s) 2016.

  3. Development of a 3D Stream Network and Topography for Improved Large-Scale Hydraulic Modeling

    NASA Astrophysics Data System (ADS)

    Saksena, S.; Dey, S.; Merwade, V.

    2016-12-01

    Most digital elevation models (DEMs) used for hydraulic modeling do not include channel bed elevations. As a result, the DEMs are complimented with additional bathymetric data for accurate hydraulic simulations. Existing methods to acquire bathymetric information through field surveys or through conceptual models are limited to reach-scale applications. With an increasing focus on large scale hydraulic modeling of rivers, a framework to estimate and incorporate bathymetry for an entire stream network is needed. This study proposes an interpolation-based algorithm to estimate bathymetry for a stream network by modifying the reach-based empirical River Channel Morphology Model (RCMM). The effect of a 3D stream network that includes river bathymetry is then investigated by creating a 1D hydraulic model (HEC-RAS) and 2D hydrodynamic model (Integrated Channel and Pond Routing) for the Upper Wabash River Basin in Indiana, USA. Results show improved simulation of flood depths and storage in the floodplain. Similarly, the impact of river bathymetry incorporation is more significant in the 2D model as compared to the 1D model.

  4. 15. INTERIOR OF POWER PLANT LOOKING SOUTHWEST. BACK SIDE OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. INTERIOR OF POWER PLANT LOOKING SOUTHWEST. BACK SIDE OF ELECTRICAL PANEL ON LEFT, AND C. 1910 GENERATOR COVER ON RIGHT. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  5. Occurrence of tetracycline-resistant fecal coliforms and their resistance genes in an urban river impacted by municipal wastewater treatment plant discharges.

    PubMed

    Zhang, Chong-Miao; Du, Cong; Xu, Huan; Miao, Yan-Hui; Cheng, Yan-Yan; Tang, Hao; Zhou, Jin-Hong; Wang, Xiao-Chang

    2015-01-01

    Antibiotic resistance of fecal coliforms in an urban river poses great threats to both human health and the environment. To investigate the occurrence and distribution of antibiotic resistant bacteria in an urban river, water samples were collected from the Chanhe River in Xi'an, China. After membrane filtration of water samples, the tetracycline resistance rate of fecal coliforms and their resistance genes were detected by plating and polymerase chain reaction (PCR), respectively. We found that fecal coliforms were generally resistant to tetracycline and saw average resistance rates of 44.7%. The genes tetA and tetB were widely detected, and their positive rate was 60%-100% and 40%-90%, respectively. We found few strains containing tetC, tetK, tetQ and tetX, and we did not identify any strains containing tetG, tetM or tetO. The prevalence of tetA and tetB over other genes indicated that the main mechanism for resistance to tetracycline is by changes to the efflux pump. Our analysis of the types and proportion of tetracycline resistance genes in the Chanhe River at locations upstream and downstream of the urban center suggests that the increased number of tetracycline-resistant fecal coliforms and spatial variation of tetracycline resistance genes diversity were related to municipal wastewater treatment plant discharge.

  6. 7. VIEW TO NORTH. FROM WEST PLATFORM. SAME AS IL1D3, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW TO NORTH. FROM WEST PLATFORM. SAME AS IL-1D-3, AFTER TRAIN HAS DEPARTED EAST PLATFORM. - Union Elevated Railroad, Randolph-Wabash Avenue Station, Randolph Street & Wabash Avenue, Chicago, Cook County, IL

  7. 76 FR 44572 - Plants for Planting Whose Importation Is Not Authorized Pending Pest Risk Analysis; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-26

    ... available to the public for review and comment. DATES: We will consider all comments that we receive on or... Development, PPD, APHIS, Station 3A-03.8, 4700 River Road Unit 118, Riverdale, MD 20737- 1238. The data sheets... importation of plants for planting (including living plants, plant parts, seeds, and plant cuttings) to...

  8. A field guide to valuable underwater aquatic plants of the Great Lakes

    USGS Publications Warehouse

    Schloesser, Donald W.

    1986-01-01

    The purpose of this field guide is to aid in the identification of common underwater plants in the Great Lakes. These plants are found mostly in shallow, nearshore waters along sheltered bays, peninsulas, and the four connecting rivers of the Great Lakes, including the St. Lawrence River (Figure 1). Connecting rivers are especially favorable for aquatic plants because they are shallow, have a consistent flow of water, and are protected from heavy wave action typical of other Great Lakes shorelines.

  9. The assessment of water use and reuse through reported data: A US case study.

    PubMed

    Wiener, Maria J; Jafvert, Chad T; Nies, Loring F

    2016-01-01

    Increasing demands for freshwater make it necessary to find innovative ways to extend the life of our water resources, and to manage them in a sustainable way. Indirect water reuse plays a role in meeting freshwater demands but there is limited documentation of it. There is a need to analyze its current status for water resources planning and conservation, and for understanding how it potentially impacts human health. However, the fact that data are archived in discrete uncoordinated databases by different state and federal entities, limits the capacity to complete holistic analysis of critical resources at large watershed scales. Humans alter the water cycle for food production, manufacturing, energy production, provision of potable water and recreation. Ecosystems services are affected at watershed scales but there are also global scale impacts from greenhouse gas emissions enabled by access to cooling, processing and irrigation water. To better document these issues and to demonstrate the utility of such an analysis, we studied the Wabash River Watershed located in the U.S. Midwest. Data for water extraction, use, discharge, and river flow were collected, curated and reorganized in order to characterize the water use and reuse within the basin. Indirect water reuse was estimated by comparing treated wastewater discharges with stream flows at selected points within the watershed. Results show that during the low flow months of July-October, wastewater discharges into the Wabash River basin contributed 82 to 121% of the stream flow, demonstrating that the level of water use and unplanned reuse is significant. These results suggest that intentional water reuse for consumptive purposes such as landscape or agricultural irrigation could have substantial ecological impacts by diminishing stream flow during vulnerable low flow periods. Copyright © 2015. Published by Elsevier B.V.

  10. Health evaluation indicator system for urban landscape rivers, case study of the Bailianjing River in Shanghai

    NASA Astrophysics Data System (ADS)

    Wang, Juan; Wang, Yue; Yang, Haizhen; Lu, Zhibo; Xu, Xiaotian

    2010-11-01

    The River Bailianjing is an iconic landscape feature known to all residents in Pudong area and running through the Shanghai Expo 2010 Park. The river and its basin was a complex living ecosystem which supports a unique variety of flora and fauna several decades ago. However, as a result of unsuccessful pollution source control, sewage and first flow of the storm water is directly coming into the river in some catchment. The water quality of the river is seriously organically polluted now. The typical organic pollutants are COD, NH3-N, TN and TP, which cause the extinction of the water plants and aquatic. Furthermore, the artificial hard river banks isolate the river course and the land, which damaged the whole ecological system totally. The nature of the River Bailianjing and its history has resulted in many government departments and authorities and non government organizations having jurisdiction and/or an interest in the river's management. As a new tool to improve river management, the river health assessment has become the major focus of ecological and environmental science. Consequently, research on river health evaluation and its development on river management are of great theoretical and practical significance. In order to evaluate the healthy status of the River Bailianjing and prepare comprehensive scientific background data for the integrated river ecological rehabilitation planning, the health evaluation indicator system for River Bailianjing is brought forward. The indicator system has three levels: the first is target layer; the second is criteria layer, including five fields: water quality characteristics, hydrology characteristics, river morphology, biological characteristics and river scenic beauty; the third is an index layer, a total of 15 specific indicators included. Fuzzy AHP method is used to evaluate the target river's health status, and five grades are set up to describe it: healthy, sub health, marginal, unhealthy and pathological. The

  11. 14. VIEW TO WEST, NORTHWEST. FROM GROUND LEVEL. EAST FACE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. VIEW TO WEST, NORTHWEST. FROM GROUND LEVEL. EAST FACE MEZZANINE AND PLATFORM LEVEL DETAILS OF CONSTRUCTION METHODS AND MATERIALS. - Union Elevated Railroad, Randolph-Wabash Avenue Station, Randolph Street & Wabash Avenue, Chicago, Cook County, IL

  12. Effects of stream flow intermittency on riparian vegetation of a semiarid region river (San Pedro River, Arizona)

    USGS Publications Warehouse

    Stromberg, J.C.; Bagstad, K.J.; Leenhouts, J.M.; Lite, S.J.; Makings, E.

    2005-01-01

    The San Pedro River in the southwestern United States retains a natural flood regime and has several reaches with perennial stream flow and shallow ground water. However, much of the river flows intermittently. Urbanization-linked declines in regional ground-water levels have raised concerns over the future status of the riverine ecosystem in some parts of the river, while restoration-linked decreases in agricultural ground-water pumping are expected to increase stream flows in other parts. This study describes the response of the streamside herbaceous vegetation to changes in stream flow permanence. During the early summer dry season, streamside herbaceous cover and species richness declined continuously across spatial gradients of flow permanence, and composition shifted from hydric to mesic species at sites with more intermittent flow. Hydrologic threshold values were evident for one plant functional group: Schoenoplectus acutus, Juncus torreyi, and other hydric riparian plants declined sharply in cover with loss of perennial stream flow. In contrast, cover of mesic riparian perennials (including Cynodon dactylon, an introduced species) increased at sites with intermittent flow. Patterns of hydric and mesic riparian annuals varied by season: in the early summer dry season their cover declined continuously as flow became more intermittent, while in the late summer wet season their cover increased as the flow became more intermittent. Periodic drought at the intermittent sites may increase opportunities for establishment of these annuals during the monsoonal flood season. During the late summer flood season, stream flow was present at most sites, and fewer vegetation traits were correlated with flow permanence; cover and richness were correlated with other environmental factors including site elevation and substrate nitrate level and particle size. Although perennial-flow and intermittent-flow sites support different streamside plant communities, all of the plant

  13. The Detroit River, Michigan: an ecological profile

    USGS Publications Warehouse

    Manny, Bruce A.; Edsall, Thomas A.; Jaworski, Eugene

    1988-01-01

    A part of the connecting channel system between Lake Huron and Lake Erie, the Detroit River forms an integral link between the two lakes for both humans and biological resources such as fish, nutrients, and plant detritus. This profile summarizes existing scientific information on the ecological structure and functioning of this ecosystem. Topics include the geological history of the region, climatic influences, river hydrology, lower trophic-level biotic components, native and introduced fishes, waterfowl use, ecological interrelationships, commercial and recreational uses of the river, and current management issues. Despite urbanization, the river still supports diverse fish, waterfowl, and benthic populations. Management issues include sewer overflows; maintenance dredging for navigation and port activities; industrial discharges of potentially hazardous materials; and wetland, fishery, and waterfowl protection and enhancement.

  14. 78 FR 26316 - Plants for Planting Whose Importation is Not Authorized Pending Pest Risk Analysis; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-06

    ... pests. We are making these data sheets available to the public for review and comment. DATES: We will...-2012-0076, Regulatory Analysis and Development, PPD, APHIS, Station 3A-03.8, 4700 River Road Unit 118... prohibits or restricts the importation of plants for planting (including living plants, plant parts, seeds...

  15. Quantifying the extent of river fragmentation by hydropower dams in the Sarapiquí River Basin, Costa Rica

    USGS Publications Warehouse

    Anderson, Elizabeth P.; Pringle, Catherine M.; Freeman, Mary C.

    2008-01-01

    Costa Rica has recently experienced a rapid proliferation of dams for hydropower on rivers draining its northern Caribbean slope. In the Sarapiquí River Basin, eight hydropower plants were built between 1990 and 1999 and more projects are either under construction or proposed. The majority of these dams are small (<15 m tall) and operate as water diversion projects.While the potential environmental effects of individual projects are evaluated prior to dam construction, there is a need for consideration of the basin-scale ecological consequences of hydropower development. This study was a first attempt to quantify the extent of river fragmentation by dams in the Sarapiquí River Basin.Using simple spatial analyses, the length of river upstream from dams and the length of de-watered reaches downstream from dams was measured. Results indicated that there are currently 306.8 km of river (9.4% of the network) upstream from eight existing dams in the Sarapiquí River Basin and 30.6 km of rivers (0.9% of the network) with significantly reduced flow downstream from dams. Rivers upstream from dams primarily drain two life zones: Premontane Rain Forest (107.9 km) and Lower Montane Rain Forest (168.2 km).Simple spatial analyses can be used as a predictive or planning tool for considering the effects of future dams in a basin-scale context. In the Sarapiquí River Basin, we recommend that future dam projects be constructed on already dammed rivers to minimize additional river fragmentation and to protect remaining riverine connectivity.

  16. Ice Jams the Ob River

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Russia's Ob River flows from south to north, and each summer, it thaws in the same direction. The result is that an ice jam sits downstream from thawed portions of the river, which is laden with heavy runoff from melted snow. On June 29, 2007, the Moderate Resolution Imaging Spectroradiometer (MODIS) flying on NASA's Terra satellite captured this image of the almost completely thawed Ob River. The scene is typical for early summer. South of the ice jam, the Gulf of Ob is swollen with pent-up run-off, and upstream from that, the river is widened as well. Unable to carve through frozen land, the river has little choice but to overflow its banks. For a comparison of early summer and autumn conditions, see Flooding on the Ob River in the Earth Observatory's Natural Hazards section. Besides the annual overflow, this image captures other circumstances of early summer. Sea ice is retreating from the Kara Sea. A lingering line of snow cover snakes its way along the Ob River, to the west. And while the land is lush and green in the south, it appears barren and brown in the north. Near the mouth of the river and the Kara Sea, the land is cold-adapted tundra, with diminutive plants and a short growing season. Just as the ice plugging the river had yet to thaw in the Far North's short summer, the tundra had not yet to greened up either. In this image it still appears lifeless beige. NASA image courtesy Jeff Schmaltz, MODIS Rapid Response Team, Goddard Space Flight Center

  17. Novel plant communities limit the effects of a managed flood to restore riparian forests along a large regulated river

    USGS Publications Warehouse

    Cooper, D.J.; Andersen, D.C.

    2012-01-01

    Dam releases used to create downstream flows that mimic historic floods in timing, peak magnitude and recession rate are touted as key tools for restoring riparian vegetation on large regulated rivers. We analysed a flood on the 5th-order Green River below Flaming Gorge Dam, Colorado, in a broad alluvial valley where Fremont cottonwood riparian forests have senesced and little recruitment has occurred since dam completion in 1962. The stable post dam flow regime triggered the development of novel riparian communities with dense herbaceous plant cover. We monitored cottonwood recruitment on landforms inundated by a managed flood equal in magnitude and timing to the average pre-dam flood. To understand the potential for using managed floods as a riparian restoration tool, we implemented a controlled and replicated experiment to test the effects of artificially modified ground layer vegetation on cottonwood seedling establishment. Treatments to remove herbaceous vegetation and create bare ground included herbicide application (H), ploughing (P), and herbicide plus ploughing (H+P). Treatment improved seedling establishment. Initial seedling densities on treated areas were as much as 1200% higher than on neighbouring control (C) areas, but varied over three orders of magnitude among the five locations where manipulations were replicated. Only two replicates showed the expected seedling density rank of (H+P)>P>H>C. Few seedlings established in control plots and none survived 1 year. Seedling density was strongly affected by seed rain density. Herbivory affected growth and survivorship of recruits, and few survived nine growing seasons. Our results suggest that the novel plant communities are ecologically and geomorphically resistant to change. Managed flooding alone, using flows equal to the pre-dam mean annual peak flood, is an ineffective riparian restoration tool where such ecosystem states are present and floods cannot create new habitat for seedling establishment

  18. Integrated resource assessment of the Drina River Basin

    NASA Astrophysics Data System (ADS)

    Almulla, Youssef; Ramos, Eunice; Gardumi, Francesco; Howells, Mark

    2017-04-01

    The integrated assessment and management of resources: water, energy, food and environment is of fundamental importance, yet it is a very challenging task especially when it is carried out on the transboundary level. This study focuses on the Drina River Basin (DRB) which is a transboundary basin in South East Europe spreading across Bosnia and Herzegovina, Serbia and Montenegro with a total surface area of 19,982 km2. Water resources from the Drina River Basin are shared among many activities in the basin: domestic water supply, electricity generation, fishery, tourism and, to a lesser extent, irrigation, industry and mining. The region has recently experienced repeated events of floods and droughts causing significant damage to the economy, showing a high vulnerability of the area to the effects of climate change. The assessment of the Drina River Basin is carried out in the framework of the project "Water food energy ecosystems nexus in transboundary river basins" under the UNECE Water Convention. This study aims to: 1) Improve the cooperation in the operation of dams and hydropower plants in the DRB for optimized production; 2) Explore the opportunities generated by electricity trade between the DRB countries as a mechanism to enhance cooperation and as an enabler for the synchronised operation of hydropower plants; 3) Motivate the implementation of energy efficiency measures to reduce the electricity production requirement from hydro and thermal power. In order to achieve that, a multi-country electricity system model was developed for the three countries of Drina river basin using the Open Source energy MOdelling SYStem (OSeMOSYS). The model represents the whole electricity system of each country, with special cascade representation of hydropower plants along Drina river and its tributaries. The results show that, in a scenario of synchronised operation of all power plants along Drina and its tributaries, those downstream can significantly increase their

  19. 16. INTERIOR OF POWER PLANT BUILDING LOOKING SOUTH AT 1925 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. INTERIOR OF POWER PLANT BUILDING LOOKING SOUTH AT 1925 GE GENERATOR. GOVERNOR MECHANISM IN FOREGROUND MANUFACTURED BY THE WOODWARD GOVERNOR COMPANY, ROCKFORD, ILLINOIS (NAMEPLATE ON LEFT). - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  20. Ecohydrology of an Embanked Lowland UK River Meadow and the Effects of Embankment Removal

    NASA Astrophysics Data System (ADS)

    Clilverd, H.; Thompson, J.; Sayer, C.; Heppell, K.; Axmacher, J.

    2012-12-01

    Pristine riparian and floodplain ecosystems are in a state of dynamic balance due to the regular floods that continuously reshape river channels and their banks, and transport water, sediment and nutrients onto the floodplain. However, the natural flow regime of many rivers has been altered by channelization and artificial embankments designed to protect agricultural and urban developments from flooding. This has had a lasting impact on the hydrological characteristics of floodplain ecosystems and the biological communities that inhabit them. Floodplain restoration, through embankment removal and the reconfiguration of river channels, is now being increasingly employed to re-establish river-floodplain connections and assist the recovery of lost or declining species. In order to manage a river restoration site for plant biodiversity, it is necessary to understand the physical and nutritional status of the root environment. We conducted fine scale (10 × 10 m) botanical and chemical sampling on a 3 ha embanked grassland meadow in Norfolk (Eastern England) and assessed the spatial pattern of plant communities in relation to soil physicochemical conditions. Continuous measurements of groundwater depth and river stage were collectively used to determine changes in the hydrological regime following embankment-removal. Prior to the restoration the meadow plant community was dominated by Holcus lanatus, Ranunculus repens and Agrostis stolonifera. Species richness was fairly low (mean: 8 spp. per m2), and indices of alpha-diversity suggest low heterogeneity of the plant assemblages (mean values for Shannon's Diversity and 1/Simpson's Diversity = 1.4 and 3.4, respectively). Top soils were moderately fertile, with mean respective Olsen P and plant available potassium concentrations of 9.1 mg P kg-1and 1.6 mg K+g-1. Plant available ammonium and nitrate concentrations were on average 31.7 mg NH4+-N kg-1 and 2.8 mg NO3--N kg-1, respectively. River water was enriched in nitrate

  1. INTERIOR VIEW OF MIANUS RIVER PUMP STATION LOOKING SOUTHEAST. THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW OF MIANUS RIVER PUMP STATION LOOKING SOUTHEAST. THE CYLINDRICAL TANKS ON THE RIGHT SIDE OF THE PHOTOGRAPH ARE SAND-GRAVEL FILTERS. THE DIESEL POWERED PUMPS LOCATED IN THE CENTER LEFT FOREGOUND SUPPLIED FRESH WATER THROUGH A 16" LINE TO THE POWER PLANT BOILERS LOCATED ONE MILE SOUTH OF THE PUMP STATION - New York, New Haven & Hartford Railroad, Mianus River Pumping Station, River Road & Boston Post Road, Greenwich, Fairfield County, CT

  2. Recent water quality trends in a typical semi-arid river with a sharp decrease in streamflow and construction of sewage treatment plants

    NASA Astrophysics Data System (ADS)

    Cheng, Peng; Li, Xuyong; Su, Jingjun; Hao, Shaonan

    2018-01-01

    Identification of the interactive responses of water quantity and quality to changes in nature and human stressors is important for the effective management of water resources. Many studies have been conducted to determine the influence of these stressors on river discharge and water quality. However, there is little information about whether sewage treatment plants can improve water quality in a region where river streamflow has decreased sharply. In this study, a seasonal trend decomposition method was used to analyze long-term (1996-2015) and seasonal trends in the streamflow and water quality of the Guanting Reservoir Basin, which is located in a semi-arid region of China. The results showed that the streamflow in the Guanting Reservoir Basin decreased sharply from 1996-2000 due to precipitation change and human activities (human use and reservoir regulation), while the streamflow decline over the longer period of time (1996-2015) could be attributed to human activities. During the same time, the river water quality improved significantly, having a positive relationship with the capacity of wastewater treatment facilities. The water quality in the Guanting Reservoir showed a deferred response to the reduced external loading, due to internal loading from sediments. These results implied that for rivers in which streamflow has declined sharply, the water quality could be improved significantly by actions to control water pollution control. This study not only provides useful information for water resource management in the Guanting Reservoir Basin, but also supports the implementation of water pollution control measures in other rivers with a sharp decline in streamflow.

  3. Recent vegetation changes along the Colorado River between Glen Canyon Dam and Lake Mead, Arizona

    USGS Publications Warehouse

    Turner, Raymond Marriner; Karpiscak, Martin M.

    1980-01-01

    Vegetation changes in the canyon of the Colorado River between Glen Canyon Dam and Lake Mead were studied by comparing photographs taken prior to completion of Glen Canyon Dam in 1963 with photographs taken afterwards at the same sites. In general, the older pictures show an absence of riparian plants along the banks of the river. The newer photographs of each pair were taken in 1972 through 1976 and reveal an increased density of many plant species. Exotic species, such as saltcedar and camel-thorn, and native riparian plants such as sandbar willow, arrowweed, desert broom and cattail, now form a new riparian community along much of the channel of the Colorado River between Glen Canyon Dam and Lake Mead. The matched photographs also reveal that changes have occurred in the amount of sand and silt deposited along the banks. Detailed maps are presented showing distribution of 25 plant species along the reach of the Colorado River studied. Data showing changes in the hydrologic regime since completion of Glen Canyon Dam are presented. (Kosco-USGS)

  4. 5. SOUTH ELEVATION OF POWER PLANT BUILDING. GRATE COVERED 'TRASH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. SOUTH ELEVATION OF POWER PLANT BUILDING. GRATE COVERED 'TRASH RACK' VISIBLE IN CENTER. THE STEEL FRAME STRUCTURE SUPPORTS MACHINES TO CLEAR DEBRIS CAUGHT ON THE TRASH RACK. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  5. Red River of the North Reconnaissance Report: Ottertail River Subbasin.

    DTIC Science & Technology

    1980-12-01

    Excessive drainage in the future could diminish the ecological and recreational diversity of the subbasin. Water Quality Problems Some quality...manufacturing establishments are involved with agricultural or wood products. The two largest employers (between 750 and 1,250) are plants that process...RIVER SUBBASIN Estimated SIC Description Employment 20 Food and Kindred Products 1,850 23 Apparel made from fabrics 200 24 Lumber and Wood Products 600 25

  6. Landscape-scale processes influence riparian plant composition along a regulated river

    USGS Publications Warehouse

    Palmquist, Emily C.; Ralston, Barbara; Merritt, David M.; Shafroth, Patrick B.

    2018-01-01

    Hierarchical frameworks are useful constructs when exploring landscape- and local-scale factors affecting patterns of vegetation in riparian areas. In drylands, which have steep environmental gradients and high habitat heterogeneity, landscape-scale variables, such as climate, can change rapidly along a river's course, affecting the relative influence of environmental variables at different scales. To assess how landscape-scale factors change the structure of riparian vegetation, we measured riparian vegetation composition along the Colorado River through Grand Canyon, determined which factors best explain observed changes, identified how richness and functional diversity vary, and described the implications of our results for river management. Cluster analysis identified three divergent floristic groups that are distributed longitudinally along the river. These groups were distributed along gradients of elevation, temperature and seasonal precipitation, but were not associated with annual precipitation or local-scale factors. Species richness and functional diversity decreased as a function of distance downstream showing that changing landscape-scale factors result in changes to ecosystem characteristics. Species composition and distribution remain closely linked to seasonal precipitation and temperature. These patterns in floristic composition in a semiarid system inform management and provide insights into potential future changes as a result of shifts in climate and changes in flow management.

  7. PLANT AND PIER #2 EXCAVATION. View is to the northeast, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PLANT AND PIER #2 EXCAVATION. View is to the northeast, looking from Humboldt County side of river toward Trinity County side - South Fork Trinity River Bridge, State Highway 299 spanning South Fork Trinity River, Salyer, Trinity County, CA

  8. Radiocesium dynamics in the Hirose River basin

    NASA Astrophysics Data System (ADS)

    Kuramoto, T.; Taniguchi, K.; Arai, H.; Onuma, S.; Onishi, Y.

    2017-12-01

    A significant amount of radiocesium was deposited in Fukushima Prefecture during the accident of Fukushima Daiichi Nuclear Power Plant. In river systems, radiocesium is transported to downstream in rivers. For the safe use of river and its water, it is needed to clarify the dynamics of radiocesium in river systems. We started the monitoring of the Hirose River from December 2015. The Hirose River is a tributary of the Abukuma River flowing into the Pacific Ocean, and its catchment is close to areas where a large amount of radiocesium was deposited. We set up nine monitoring points in the Hirose River watershed. The Water level and turbidity data are continuously observed at each monitoring point. We regularly collected about 100 liters of water at each monitoring point. Radiocesium in water samples was separated into two forms; the one is the dissolved form, and the other is the suspended particulate form. Radionuclide concentrations of radiocesium in both forms were measured by a germanium semiconductor detector. Furthermore, we applied the TODAM (Time-dependent One-dimensional Degradation And Migration) code to the Hirose River basin using the monitoring data. The objectives of the modeling are to understand a redistribution pattern of radiocesium adsorbed by sediments during flooding events and to determine the amount of radiocesium flux into the Abukuma River.

  9. Influence of the Nogales International Wastewater Treatment Plant on surface water in the Santa Cruz River and local aquifers

    NASA Astrophysics Data System (ADS)

    LaBrie, H. M.; Brusseau, M. L.; Huth, H.

    2015-12-01

    As water resources become limited in Arizona due to drought and excessive use of ground water, treated wastewater effluent is becoming essential in creating natural ecosystems and recharging the decreasing groundwater supplies. Therefore, future water supplies are heavily dependent of the flow (quantity) and quality of the treated effluent. The Nogales International Wastewater Treatment Plant (NIWTP) releases treated wastewater from both Nogales, Arizona and Nogales, Sonora, Mexico into the Santa Cruz River. This released effluent not only has the potential to impact surface water, but also groundwater supplies in Southern Arizona. In the recent past, the NIWTP has had reoccurring issues with elevated levels of cadmium, in addition to other, more infrequent, releases of high amounts of other metals. The industrial demographic of the region, as well as limited water quality regulations in Mexico makes the NIWTP and its treated effluent an important area of study. In addition, outdated infrastructure can potentially lead to damaging environmental impacts, as well as human health concerns. The Santa Cruz River has been monitored and studied in the past, but in recent years, there has been a halt in research regarding the state of the river. Data from existing water quality databases and recent sampling reports are used to address research questions regarding the state of the Santa Cruz River. These questions include: 1) How will change in flow eventually impact surface water and future groundwater supplies 2) What factors influence this flow (such as extreme flooding and drought) 3) What is the impact of effluent on surface water quality 4) Can changes in surface water quality impact groundwater quality 5) How do soil characteristics and surface flow impact the transport of released contaminants Although outreach to stakeholders across the border and updated infrastructure has improved the quality of water in the river, there are many areas to improve upon as the

  10. Plant biomass in the Tanana River Basin, Alaska.

    Treesearch

    Bert R. Mead

    1995-01-01

    Vegetation biomass tables are presented for the Tanana River basin. Average biomass for each species of tree, shrub, grass, forb, lichen, and moss in the 13 forest and 30 nonforest vegetation types is shown. These data combined with area estimates for each vegetation type provide a tool for estimating habitat carrying capacity for many wildlife species. Tree biomass is...

  11. Occurrence of sulfonamide residues along the Ebro River basin: removal in wastewater treatment plants and environmental impact assessment.

    PubMed

    García-Galán, M Jesús; Díaz-Cruz, M Silvia; Barceló, Damià

    2011-02-01

    Sulfonamides (SAs) have become one of the antibiotic families most frequently found in all kind of environmental waters. In the present work, the presence of 16 SAs and one of their acetylated metabolites in different water matrices of the Ebro River basin has been evaluated during two different sampling campaigns carried out in 2007 and 2008. Influent and effluent samples from seven wastewater treatment plants (WWTPs), together with a total of 28 river water samples were analyzed by on-line solid phase extraction-liquid chromathography-tandem mass spectrometry (on-line SPE-LC-MS/MS). Sulfamethoxazole and sulfapyridine were the SAs most frequently detected in WWTPs (96-100%), showing also the highest concentrations, ranging from 27.2 ng L(-1) to 596 ng L(-1) for sulfamethoxazole and from 3.7 ng L(-1) to 227 ng L(-1) for sulfapyridine. Sulfamethoxazole was also the SA most frequently detected in surface waters (85% of the samples) at concentrations between 11 ng L(-1) and 112 ng L(-1). In order to assess the effectiveness of the wastewater treatment in degrading SAs, removal efficiencies in the seven WWTPs were calculated for each individual SA (ranging from 4% to 100%) and correlated to the corresponding hydraulic retention times or residence times of the SAs in the plants. SAs half-lives were also estimated, ranging from to 2.5 hours (sulfadimethoxine) to 128 h (sulfamethazine). The contribution of the WWTPs to the presence of SAs depends on both the load of SAs discharging on the surface water from the WWTP effluent but also on the flow of the receiving waters in the discharge sites and the dilution exerted; WWTP4 exerts the highest pressure on the receiving water course. Finally, the potential environmental risk posed by SAs was evaluated calculating the hazard quotients (HQ) to different non-target organisms in effluent and river water. The degree of susceptibility resulted in algae>daphnia>fish. Sulfamethoxazole was the only SA posing a risk to algae in

  12. Polychlorinated biphenyl concentrations in Hudson River water and treated drinking water at Waterford, New York

    USGS Publications Warehouse

    Schroeder, R.A.; Barnes, C.R.

    1983-01-01

    Past discharge of PCBs into the Hudson River has resulted in contaminant concentrations of a few tenths of a microgram per liter in the water. Waterford is one of two large municipal users of the Hudson River for drinking-water supply. The treatment scheme at the Waterford plant, which processes approximately 1 million gallons per day, is similar to that of most conventional treatment plants except for the addition of powdered activated carbon during flocculation. Comparison of PCB concentrations in river water and intake water at the plant to concentrations in treated drinking-water samples indicates that purification processes remove 80 to 90 percent of the PCBs and that final concentrations seldom exceed 0.1 microgram per liter. No significant difference was noted between the removal efficiencies during periods of high river discharge, when PCBs are associated with suspended sediment, and low discharge, when PCBs are generally dissolved. (USGS)

  13. Colonisation trends of the invasive plant, Impatiens glandulifera, along river corridors: some preliminary findings

    NASA Astrophysics Data System (ADS)

    Greenwood, Phil; Kuhn, Brigitte; Kuhn, Nikolaus

    2016-04-01

    Originating from the Himalayas, the highly invasive plant, Impatiens glandulifera (Himalayan Balsam), is now found on three separate continents, with a distribution that includes most temperate European countries, large areas of east and west North America and parts of New Zealand. As a ruderal species, it prefers damp, shady and fertile soils that are frequently disturbed. This means that it commonly occurs along the riparian zone of rivers and streams. Being highly sensitivity to cold weather, however, whole stands suddenly and often simultaneously die-off; leaving riparian areas bare or partially devoid of vegetation. These lifecycle traits have implicated it in promoting soil erosion in affected river systems in temperate regions. Recent work undertaken by members of the Physical Geography & Environmental Change Research Group, University of Basel, has documented erosion rates along a section of contaminated river systems in northwest Switzerland, and southwest UK. Collectively, these data now span a total of seven separate germination and die-off cycles. Results from both river systems over all monitoring campaigns indicate that soil loss from areas contaminated with I. glandulifera is significantly greater than comparable areas supporting perennial vegetation. Crucially, however, extremely high-magnitude erosion was recorded at approximately 30% of contaminated areas (n=41). Reasons for high disturbance levels focus on the possibility that I. glandulifera tends to colonise depositional areas within a flood-zone. As those areas act as foci for the accretion of flood-derived sediment, the ability of this material to resist subsequent mobilisation processes is low due to limited cohesion, poor compaction and undeveloped soil structure. We hypothesis, therefore, that the tendency of I. glanduilfera to grow in depositional sites will be reflected in a number of key physico-chemical traits associated with soils in such areas; namely lower in-situ bulk

  14. Statistical analysis of surface-water-quality data in and near the coal-mining region of southwestern Indiana, 1957-80

    USGS Publications Warehouse

    Martin, Jeffrey D.; Crawford, Charles G.

    1987-01-01

    The Surface Mining Control and Reclamation Act of 1977 requires that applications for coal-mining permits contain information about the water quality of streams at and near a proposed mine. To meet this need for information, streamflow, specific conductance, pH, and concentrations of total alkalinity, sulfate, dissolved solids, suspended solids, total iron, and total manganese at 37 stations were analyzed to determine the spatial and seasonal variations in water quality and to develop equations for predicting water quality. The season of lowest median streamflow was related to the size of the drainage area. Median streamflow was least during fall at 15 of 16 stations having drainage areas greater than 1,000 square miles but was least during summer at 17 of 21 stations having drainage areas less than 1,000 square miles. In general, the season of lowest median specific conductance occurred during the season of highest streamflow except at stations on the Wabash River. Median specific conductance was least during summer at 9 of 9 stations on the Wabash River, but was least during winter or spring (the seasons of highest streamflow) at 27 of the remaining 28 stations. Linear, inverse, semilog, log-log, and hyperbolic regression models were used to investigate the functional relations between water-quality characteristics and streamflow. Of 186 relations investigated, 143 were statistically significant. Specific conductance and concentrations of total alkalinity and sulfate were negatively related to streamflow at all stations except for a positive relation between total alkalinity concentration and streamflow at Patoka River near Princeton. Concentrations of total alkalinity and sulfate were positively related to specific conductance at all stations except for a negative relation at Patoka River near Princeton and for a positive and negative relation at Patoka River at Jasper. Most of these relations are good, have small confidence intervals, and will give reliable

  15. Field Investigation of Flow Structure and Channel Morphology at Confluent-Meander Bends

    NASA Astrophysics Data System (ADS)

    Riley, J. D.; Rhoads, B. L.

    2007-12-01

    The movement of water and sediment through drainage networks is inevitably influenced by the convergence of streams and rivers at channel confluences. These focal components of fluvial systems produce a complex hydrodynamic environment, where rapid changes in flow structure and sediment transport occur to accommodate the merging of separate channel flows. The inherent geometric and hydraulic change at confluences also initiates the development of distinct geomorphic features, reflected in the bedform and shape of the channel. An underlying assumption of previous experimental and theoretical models of confluence dynamics has been that converging streams have straight channels with angular configurations. This generalized conceptualization was necessary to establish confluence planform as symmetrical or asymmetrical and to describe subsequent flow structure and geomorphic features at confluences. However, natural channels, particularly those of meandering rivers, curve and bend. This property and observation of channel curvature at natural junctions have led to the hypothesis that natural stream and river confluences tend to occur on the concave outer bank of meander bends. The resulting confluence planform, referred to as a confluent-meander bend, was observed over a century ago but has received little scientific attention. This paper examines preliminary data on three-dimensional flow structure and channel morphology at two natural confluent-meander bends of varying size and with differing tributary entrance locations. The large river confluence of the Vermilion River and Wabash River in west central Indiana and the comparatively small junction of the Little Wabash River and Big Muddy Creek in southeastern Illinois are the location of study sites for field investigation. Measurements of time-averaged three-dimensional velocity components were obtained at these confluences with an acoustic Doppler current profiler for flow events with differing momentum ratios. Bed

  16. Flow Field Analysis of Fish Farm and Planting Area in Floodplain during Flood

    NASA Astrophysics Data System (ADS)

    Wu, M.; Tan, H. N.; Lo, W. C.; Tsai, C. T.

    2017-12-01

    Fish farms constructing and crops planting is common in floodplain in Taiwan. The physiographic soil erosion-deposition (PSED) model was applied to simulate the sediment yield, the runoff, and sediment transport rate of the river watershed corresponding to one-day rainstorms of the return periods of 25, 50, and 100 year. The variation of flow field in the river sections could be simulated by utilizing the alluvial river-movable bed two dimensional (ARMB-2D) model. The results reveal that the tendency of river discharge, sediment deposition and erosion obtained from these two models is agreeable by calibration and verification. The water flow affected by fish farms and planting areas in floodplain during flood was analyzed. Lastly, based on the simulation results obtained from the PESD and ARMB-2D models for one-day rainstorms of the return periods of 25, 50, and 100 year, the illegal fish farms and planting area with severe variations of river flow and affected he capability for flood conveyance will be referred to as the demolishing-to-be areas. We could also suggest the management strategy of application for fish farms constructing and crops planting in river areas by incorporating the ability of our model to provide information of river flow to enhance the flood conveyance.

  17. Study of the utilization of EREP data from the Wabash River Basin

    NASA Technical Reports Server (NTRS)

    Silva, L. F. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. The analysis of the Sl/4 S192 data over Ft. Wayne, Indiana, taken on January 25, 1974 indicates that the thermal resolution of the thermal band in the X-5 detector array is of sufficient quality to distinguish factories, school houses, commercial buildings, and groups of residential houses from the cooler background surroundings. It is speculated that the higher thermal energy being radiated from these manmade buildings is due to a combination of the heat loss of the buildings and to the high solar absorption by the black tar roofs.

  18. Biofilm composition in the Olt River (Romania) reservoirs impacted by a chlor-alkali production plant.

    PubMed

    Dranguet, P; Cosio, C; Le Faucheur, S; Hug Peter, D; Loizeau, J-L; Ungureanu, V-Gh; Slaveykova, V I

    2017-05-24

    Freshwater biofilms can be useful indicators of water quality and offer the possibility to assess contaminant effects at the community level. The present field study examines the effects of chlor-alkali plant effluents on the community composition of biofilms grown in the Olt River (Romania) reservoirs. The relationship between ambient water quality variables and community composition alterations was explored. Amplicon sequencing revealed a significant modification of the composition of microalgal, bacterial and fungal communities in the biofilms collected in the impacted reservoirs in comparison with those living in the uncontaminated control reservoir. The abundance corrected Simpson index showed lower richness and diversity in biofilms collected in the impacted reservoirs than in the control reservoir. The biofilm bacterial communities of the impacted reservoirs were characterized by the contaminant-tolerant Cyanobacteria and Bacteroidetes, whereas microalgal communities were predominantly composed of Bacillariophyta and fungal communities of Lecanoromycetes and Paraglomycetes. A principal component analysis revealed that major contaminants present in the waste water of the chlor-alkali production plant, i.e. Na + , Ca 2+ , Cl - and Hg, were correlated with the alteration of biofilm community composition in the impacted reservoirs. However, the biofilm composition was also influenced by water quality variables such as NO 3 - , SO 4 2- , DOC and Zn from unknown sources. The results of the present study imply that, even when below the environmental quality standards, typical contaminants of chlor-alkali plant releases may affect biofilm composition and that their impacts on the microbial biodiversity might be currently overlooked.

  19. The Paradox of Restoring Native River Landscapes and Restoring Native Ecosystems in the Colorado River System

    NASA Astrophysics Data System (ADS)

    Schmidt, J. C.

    2014-12-01

    Throughout the Colorado River basin (CRb), scientists and river managers collaborate to improve native ecosystems. Native ecosystems have deteriorated due to construction of dams and diversions that alter natural flow, sediment supply, and temperature regimes, trans-basin diversions that extract large amounts of water from some segments of the channel network, and invasion of non-native animals and plants. These scientist/manager collaborations occur in large, multi-stakeholder, adaptive management programs that include the Lower Colorado River Multi-Species Conservation Program, the Glen Canyon Dam Adaptive Management Program, and the Upper Colorado River Endangered Species Recovery Program. Although a fundamental premise of native species recovery is that restoration of predam flow regimes inevitably leads to native species recovery, such is not the case in many parts of the CRb. For example, populations of the endangered humpback chub (Gila cypha) are largest in the sediment deficit, thermally altered conditions of the Colorado River downstream from Glen Canyon Dam, but these species occur in much smaller numbers in the upper CRb even though the flow regime, sediment supply, and sediment mass balance are less perturbed. Similar contrasts in the physical and biological response of restoration of predam flow regimes occurs in floodplains dominated by nonnative tamarisk (Tamarix spp.) where reestablishment of floods has the potential to exacerbate vertical accretion processes that disconnect the floodplain from the modern flow regime. A significant challenge in restoring segments of the CRb is to describe this paradox of physical and biological response to reestablishment of pre-dam flow regimes, and to clearly identify objectives of environmentally oriented river management. In many cases, understanding the nature of the perturbation to sediment mass balance caused by dams and diversions and understanding the constraints imposed by societal commitments to provide

  20. 13. INTERIOR OF POWER PLANT LOOKING EASTNORTHEAST. 1925 GE GENERATOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. INTERIOR OF POWER PLANT LOOKING EAST-NORTHEAST. 1925 GE GENERATOR IN FOREGROUND, WITH C. 1910 GENERATOR COVER IN BACKGROUND. STEEL FRAME SUPPORTS HOISTING MECHANISM USED TO MOVE, REPAIR, OR REPLACE GENERATORS. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  1. 76 FR 5216 - Florida Power Corporation, Crystal River Unit 3 Nuclear Generating Plant; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-28

    ... for Crystal River from 24 to 26 months on a one-time only basis. The proposed exemption does not make... licensed operator requalification program period for Crystal River from 24 to 26 months on a one-time only....59, by allowing Crystal River a one-time extension in the allowed time for completing the current...

  2. Phytophthora Species in Rivers and Streams of the Southwestern United States

    PubMed Central

    Stamler, Rio A.; Sanogo, Soumalia; Goldberg, Natalie P.

    2016-01-01

    ABSTRACT Phytophthora species were isolated from rivers and streams in the southwestern United States by leaf baiting and identified by sequence analysis of internal transcribed spacer (ITS) ribosomal DNA (rDNA). The major waterways examined included the Rio Grande River, Gila River, Colorado River, and San Juan River. The most prevalent species identified in rivers and streams were Phytophthora lacustris and P. riparia, both members of Phytophthora ITS clade 6. P. gonapodyides, P. cinnamomi, and an uncharacterized Phytophthora species in clade 9 were also recovered. In addition, six isolates recovered from the Rio Grande River were shown to be hybrids of P. lacustris × P. riparia. Pathogenicity assays using P. riparia and P. lacustris failed to produce any disease symptoms on commonly grown crops in the southwestern United States. Inoculation of Capsicum annuum with P. riparia was shown to inhibit disease symptom development when subsequently challenged with P. capsici, a pathogenic Phytophthora species. IMPORTANCE Many Phytophthora species are significant plant pathogens causing disease on a large variety of crops worldwide. Closer examinations of streams, rivers, and forest soils have also identified numerous Phytophthora species that do not appear to be phytopathogens and likely act as early saprophytes in aquatic and saturated environments. To date, the Phytophthora species composition in rivers and streams of the southwestern United States has not been evaluated. This article details a study to determine the identity and prevalence of Phytophthora species in rivers and streams located in New Mexico, Arizona, Colorado, Utah, and Texas. Isolated species were evaluated for pathogenicity on crop plants and for their potential to act as biological control agents. PMID:27235435

  3. Long-term benthic monitoring studies in the freshwater portion of the Potomac River. Final report. Research report, 1983-1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaughnessy, A.T.; Ranasinghe, J.A.; Wilson, H.

    1992-11-01

    The goal of the long-term benthic study in the Potomac River was to define power plants effects in the context of overall ecological conditions in the river, so that the ecological impacts associated with power plant operations could be assessed.

  4. Rivers and streams: Physical setting and adapted biota

    USGS Publications Warehouse

    Wilzbach, Margaret A.; Cummins, K.W.

    2008-01-01

    Streams and rivers are enormously important, with their ecological, and economic value, greatly outweighing their significance on the landscape. Lotic ecology began in Europe with a focus on the distribution, abundance, and taxonomic composition of aquatic organisms and in North American with a focus on fishery biology. Since 1980, stream/river research has been highly interdisciplinary, involving fishery biologists, aquatic entomologists, algologists, hydrologists, geomorphologists, microbiologists, and terrestrial plant ecologists. Stream and river biota evolved in response to, and in concert with, the physical and chemical setting. Streams/rivers transport water and move sediments to the sea as part of the hydrologic cycle that involves evaporation, plant evapotranspiration, and precipitation. Ephemeral streams flow only in the wettest year, intermittent streams flow predictably every year during capture of surface runoff, and perennial streams flow continuously during wet and dry periods, receiving both stormflow and groundwater baseflow. The lotic biota, for example, algae, macrophytes, benthic invertebrates, and fishes, have evolved adaptations to their running-water setting. Dominant physical features of this setting are current, substrate, and temperature. Key chemical constituents are dissolved gases, dissolved inorganic ions and compounds, particulate inorganic material, particulate organic material, and dissolved organic ions (nitrogen and phosphorus) and compounds.

  5. Characterization, treatment and releases of PBDEs and PAHs in a typical municipal sewage treatment plant situated beside an urban river, East China.

    PubMed

    Wang, Xiaowei; Xi, Beidou; Huo, Shouliang; Sun, Wenjun; Pan, Hongwei; Zhang, Jingtian; Ren, Yuqing; Liu, Hongliang

    2013-07-01

    Characterization, treatment and releases of eight polybrominated diphenyl ethers (PBDEs) congeners and sixteen polycyclic aromatic hydrocarbons (PAHs) in wastewater were evaluated along the treatment processes of a typical secondary treatment municipal sewage treatment plant (STP) (in Hefei City) situated the beside Nanfei River, East China. The findings showed that the average concentrations of the total PBDEs in raw wastewater and treated effluent were 188.578 and 36.884 ng/L respectively. Brominated diphenyl ether (BDE) 209 congener, the predominant PBDE in the STP and Nanfei River, could be related to the discharge of car-industry-derived wastes. For PAHs, the average concentrations in raw wastewater and treated effluent were 5758.8 and 2240.4 ng/L respectively, with naphthalene, benzo[a]pyrene and indeno[1,2,3-c,d]pyrene being detected at the highest concentrations. PAHs mainly originate from the combustion of biomass/coal and petroleum. The STP reduced about 80% of the PBDEs and 61% of the PAHs, which were eliminated mainly by sedimentation processes. The removal rates of PBDEs/PAHs increased with the increase of their solid-water partitioning coefficients. Accordingly, the STP's effluent, containing some PBDE congeners (e.g., BDE 47, 99 and 209, etc.) and low-molecular-weight PAHs, could be an important contributor of these contaminants' input to Nanfei River. It resulted in a significant increase of PBDE/PAH concentrations and PAH toxicological risk in the river water downstream. About 4.040 kg/yr of PBDEs and 245.324 kg/yr of PAHs could be released into the Nanfei River. The current conventional wastewater treatment processes should be improved to remove the relatively low-molecular-weight PBDEs/PAHs more effectively.

  6. Effects of advanced treatment of municipal wastewater on the White River near Indianapolis, Indiana; trends in water quality, 1978-86

    USGS Publications Warehouse

    Crawford, Charles G.; Wangsness, David J.

    1993-01-01

    The City of Indianapolis has constructed state-of-the-art advanced municipal wastewater-treatment systems to enlarge and upgrade the existing secondary-treatment processes at its Belmont and Southport treatment plants. These new advanced-wastewater-treatment plants became operational in 1983. A nonparametric statistical procedure--a modified form of the Wilcoxon-Mann-Whitney rank-sum test--was used to test for trends in time-series water-quality data from four sites on the White River and from the Belmont and Southport wastewater-treatment plants. Time-series data representative of pre-advanced- (1978-1980) and post-advanced- (1983--86) wastewater-treatment conditions were tested for trends, and the results indicate substantial changes in water quality of treated effluent and of the White River downstream from Indianapolis after implementation of advanced wastewater treatment. Water quality from 1981 through 1982 was highly variable due to plant construction. Therefore, this time period was excluded from the analysis. Water quality at sample sites located upstream from the wastewater-treatment plants was relatively constant during the period of study (1978-86). Analysis of data from the two plants and downstream from the plants indicates statistically significant decreasing trends in effluent concentrations of total ammonia, 5-day biochemical-oxygen demand, fecal-coliform bacteria, total phosphate, and total solids at all sites where sufficient data were available for testing. Because of in-plant nitrification, increases in nitrate concentration were statistically significant in the two plants and in the White River. The decrease in ammonia concentrations and 5-day biochemical-oxygen demand in the White River resulted in a statistically significant increasing trend in dissolved-oxygen concentration in the river because of reduced oxygen demand for nitrification and biochemical oxidation processes. Following implementation of advanced wastewater treatment, the

  7. Transverse and longitudinal variation in woody riparian vegetation along a montane river

    USGS Publications Warehouse

    Friedman, J.M.; Auble, G.T.; Andrews, E.D.; Kittel, G.; Madole, R.F.; Griffin, E.R.; Allred, Tyler M.

    2006-01-01

    This study explores how the relationship between flow and riparian vegetation varies along a montane river. We mapped occurrence of woody riparian plant communities along 58 km of the San Miguel River in southwestern Colorado. We determined the recurrence interval of inundation for each plant community by combining step-backwater hydraulic modeling at 4 representative reaches with Log-Pearson analysis of 4 stream gaging stations. Finally, we mapped bottomland surficial geology and used a Geographic Information System to overlay the coverages of geology and vegetation. Plant communities were distinctly arrayed along the hydrologic gradient. The Salix exigua Nuttall (sand-bar willow) community occurred mostly on surfaces with a recurrence interval of inundation shorter than 2.2 years; the Betula occidentalis Hooker (river birch) community peaked on sites with recurrence intervals of inundation between 2.2 and 4.6 years. The hydrologic position occupied by communities dominated by Populus angustifolia James (narrowleaf cottonwood) was strongly related to age of trees and species composition of understory shrubs. The fraction of riparian vegetation on surfaces historically inundated by the river decreased in the upstream direction from almost 100% near Uravan to <50% along the South Fork of the San Miguel River. In upstream reaches much of the physical disturbance necessary to maintain riparian vegetation is provided by valley-side processes including debris flows, floods from minor tributaries, landslides, and beaver activity. Where valley-side processes are important, prediction of riparian vegetation change based on alterations of river flow will be incomplete.

  8. Environmental parameters of the Tennessee River in Alabama. 1: Thermal stratification

    NASA Technical Reports Server (NTRS)

    Rosing, L. M.

    1976-01-01

    Thermal stratification data of a transect across Wheeler Reservoir are correlated with the climatological data at the time of sampling. This portion of the Tennessee River is used as a heat sink for the effluent from the three reactor Browns Ferry Nuclear Power Plant. The transect sampling line is 1.3 miles below this point of effluence. Data are presented by weekly samplings for one year prior to plant operations. Post-operational data are presented with one reactor in operation and with two reactors in partial operation. Data gathering was terminated when the plant ceased operations. The results indicate that the effluent for partial plant operation were inconclusive. As a result, recommendations include continuing the sampling when the plant resumes operation at full capacity. Recommendations also include developing math models with the presented thermal and climatological data to be used for predicting the effluent impact in the river with varying climatological conditions and also to predict the effectiveness of the cooling towers.

  9. Effect of Hartha and Najibia power plants on water quality indices of Shatt Al-Arab River, south of Iraq

    NASA Astrophysics Data System (ADS)

    Al-Aboodi, Ali H.; Abbas, Sarmad A.; Ibrahim, Husham T.

    2018-05-01

    The main object of this research is to assess the water quality of Shatt Al-Arab River and its suitability for various purposes near power plants (Hartha and Najibia) through physical and chemical analysis [temperature, pH, EC, Cl-, Na+, K+, Ca+2, Mg+2, HCO3 -, NO3 -, SO 4 -2 , Fe+, total alkalinity, total hardness, biological oxygen demand (BOD5), NH4 +, and NO2 -] using water quality index (WQI), organic pollution index (OPI), sodium adsorption ratio (SAR), and percentage of sodium ion (Na%) during the dry season (August, 2016) and the wet season (January, 2017). WQI of Shatt Al-Arab falls under very poor quality during summer season, while it ranges from very poor quality to unsuitable for drinking purposes during winter season. There is a clear effect of power plants on water quality. Hartha and Najibia power plants contribute to the deterioration of water quality by increasing the percentage ratio of WQI near these plants by 13.22 and 9.69%, respectively, compared to the north sites of these plants during summer season. The percentage ratios of increased WQI near Hartha and Najibia power plants compared to the north sites of these plants are 17.93 and 15.92%, respectively, during winter season. Water quality of Shatt Al-Arab falls under a high level of organic pollution during the summer and winter seasons. There is a slight effect by the power plants on the OPI. Hartha and Najibia power plants contributed to the change of the OPI by 10% compared to the north site of Hartha power plant. According to the comparison between the SAR values which represent the suitability of water for serve irrigation purposes and SAR values of Shatt Al-Arab, all sites lie in the first class (excellent). According to Na+%, the type of surface water in the studied area lies in good class during winter season and permissible class during summer season.

  10. CHANGES IN TERRESTRIAL ECOLOGY RELATED TO A COAL-FIRED POWER PLANT: WISCONSIN POWER PLANT IMPACT STUDY

    EPA Science Inventory

    This report summarizes the effects of a coal-fired power plant on terrestrial plants and animals. Research was conducted from 1971 through 1977 at the Columbia Generating Station in the eastern flood-plain of the Wisconsin River in south-central Wisconsin. Initial studies were la...

  11. Stressor Identification (Si) at Contaminated Sites: Upper Arkansas River, Colorado (Final)

    EPA Science Inventory

    EPA announced the availability of the final report, Stressor Identification (SI) at Contaminated Sites: Upper Arkansas River, Colorado. This report describes a causal assessment for impairments of plant growth and plant species richness at a terrestrial contaminated site ...

  12. A floodplain continuum for Atlantic coast rivers of the Southeastern US: Predictable changes in floodplain biota along a river's length

    USGS Publications Warehouse

    Batzer, Darold P.; Noe, Gregory; Lee, Linda; Galatowitsch, Mark

    2018-01-01

    Floodplains are among the world’s economically-most-valuable, environmentally-most-threatened, and yet conceptually-least-understood ecosystems. Drawing on concepts from existing riverine and wetland models, and empirical data from floodplains of Atlantic Coast rivers in the Southeastern US (and elsewhere when possible), we introduce a conceptual model to explain a continuum of longitudinal variation in floodplain ecosystem functions with a particular focus on biotic change. Our hypothesis maintains that major controls on floodplain ecology are either external (ecotonal interactions with uplands or stream/river channels) or internal (wetland-specific functions), and the relative importance of these controls changes progressively from headwater to mid-river to lower-river floodplains. Inputs of water, sediments, nutrients, flora, and fauna from uplands-to-floodplains decrease, while the impacts of wetland biogeochemistry and obligate wetland plants and animals within-floodplains increase, along the length of a river floodplain. Inputs of water, sediment, nutrients, and fauna from river/stream channels to floodplains are greatest mid-river, and lower either up- or down-stream. While the floodplain continuum we develop is regional in scope, we review how aspects may apply more broadly. Management of coupled floodplain-river ecosystems would be improved by accounting for how factors controlling the floodplain ecosystem progressively change along longitudinal riverine gradients.

  13. Characteristics of dissolved organic matter in the Upper Klamath River, Lost River, and Klamath Straits Drain, Oregon and California

    USGS Publications Warehouse

    Goldman, Jami H.; Sullivan, Annett B.

    2017-12-11

    Concentrations of particulate organic carbon (POC) and dissolved organic carbon (DOC), which together comprise total organic carbon, were measured in this reconnaissance study at sampling sites in the Upper Klamath River, Lost River, and Klamath Straits Drain in 2013–16. Optical absorbance and fluorescence properties of dissolved organic matter (DOM), which contains DOC, also were analyzed. Parallel factor analysis was used to decompose the optical fluorescence data into five key components for all samples. Principal component analysis (PCA) was used to investigate differences in DOM source and processing among sites.At all sites in this study, average DOC concentrations were higher than average POC concentrations. The highest DOC concentrations were at sites in the Klamath Straits Drain and at Pump Plant D. Evaluation of optical properties indicated that Klamath Straits Drain DOM had a refractory, terrestrial source, likely extracted from the interaction of this water with wetland peats and irrigated soils. Pump Plant D DOM exhibited more labile characteristics, which could, for instance, indicate contributions from algal or microbial exudates. The samples from Klamath River also had more microbial or algal derived material, as indicated by PCA analysis of the optical properties. Most sites, except Pump Plant D, showed a linear relation between fluorescent dissolved organic matter (fDOM) and DOC concentration, indicating these measurements are highly correlated (R2=0.84), and thus a continuous fDOM probe could be used to estimate DOC loads from these sites.

  14. Profiles of digestive enzymes of two competing planktivores, silver carp and gizzard shad, differ

    USGS Publications Warehouse

    Amberg, Jon J.; Jensen, Nathan R.; Erickson, Richard A.; Sauey, Blake W.; Jackson, Craig

    2018-01-01

    Typically, studies in digestive physiology in fish focus on a few enzymes and provide insight into the specific processes of the enzyme in a targeted species. Comparative studies assessing a wide number of digestive enzymes on fishes that compete for food resources are lacking, especially in the context of an introduced species. It is generally thought that the invasive silver carp (SVC; Hypophthalmichthys molitrix) directly compete for food resources with the native gizzard shad (GZS; Dorosoma cepedianum) in waters where they coexist. We compared 19 digestive enzymes between SVC and GZS throughout a year and in two rivers in the Midwestern United States: Illinois River and Wabash River. All digestive enzymes analyzed were detected in both SVC and GZS in both rivers. However, the profiles of the digestive enzymes varied by species. Alkaline phosphatase, valine arylamidase, acid phosphatase, naphthol-AS-BI-phosphohydrolase and N-acetyl-β-glucosaminidase were all much higher in SVC than in GZS. Differences between digestive enzyme profiles were also observed between rivers and months. This study demonstrates the utility of using an ecological approach to compare physiological features in fishes.

  15. Revegetation of Riparian Trees and Shrubs on Alluvial Soils Along the Upper Sacramento River, 1987-1988

    Treesearch

    Steven P. Chainey; F. Jordan Lang; Skip Mills

    1989-01-01

    Two sites on the Sacramento River near Red Bluff and Colusa, California were planted with seven native tree species plus valley elderberry (a shrub) in an effort to mitigate for the loss of woody riparian vegetation from bank protection construction projects in the area. The stateowned environmental easements on terraces on the river side of the levees had been planted...

  16. An Annotated Bibliography for Cleanup of Hazardous Waste Disposal Sites

    DTIC Science & Technology

    1982-10-01

    H., and Zaidi, T. H. 1981. "The Adsorption Character- istics of Soils and Removal of Cadmium and Nickel from Waste- waters," Water, Air, and Soil Poll... Wabash Avenue, Chicago, IL. Subject: Neutralization. Description: This article describes treatment of acidic wastes such as those from coke plants...greater than 85 percent of the aluminum, barium, cadmium , mercury, nickel, and zinc and from 40 to 70 percent of the chro- mium, copper, lead, and

  17. Predicting spread of invasive exotic plants into de-watered reservoirs following dam removal on the Elwha River, Olympic National Park, Washington

    USGS Publications Warehouse

    Woodward, Andrea; Torgersen, Christian E.; Chenoweth, Joshua; Beirne, Katherine; Acker, Steve

    2011-01-01

    The National Park Service is planning to start the restoration of the Elwha River ecosystem in Olympic National Park by removing two high head dams beginning in 2011. The potential for dispersal of exotic plants into dewatered reservoirs following dam removal, which would inhibit restoration of native vegetation, is of great concern. We focused on predicting long-distance dispersal of invasive exotic plants rather than diffusive spread because local sources of invasive species have been surveyed. We included the long-distance dispersal vectors: wind, water, birds, beavers, ungulates, and users of roads and trails. Using information about the current distribution of invasive species from two surveys, various geographic information system techniques and models, and statistical methods, we identified high-priority areas for Park staff to treat prior to dam removal, and areas of the dewatered reservoirs at risk after dam removal.

  18. Wastewater treatment plants as a pathway for aquatic contamination by pharmaceuticals in the ebro river basin (northeast Spain).

    PubMed

    Gros, Meritxell; Petrović, Mira; Barceló, Damià

    2007-08-01

    The occurrence of 28 pharmaceuticals of major human consumption in Spain, including analgesics and anti-inflammatories, lipid regulators, psychiatric drugs, antibiotics, antihistamines, and beta-blockers, was assessed along the Ebro river basin, one of the biggest irrigated lands in that country. Target compounds were simultaneously analyzed by off-line solid-phase extraction, followed by liquid chromatography-tandem mass spectrometry. The loads of detected pharmaceuticals and their removal rates were studied in seven wastewater treatment plants (WWTPs) located in the main cities along the basin. Total loads ranged from 2 to 5 and from 0.5 to 1.5 g/d/1,000 inhabitants in influent and effluent wastewaters, respectively. High removal rates (60-90%) were achieved mainly for analgesics and anti-inflammatories. The other groups showed lower rates, ranging from 20 to 60%, and in most cases, the antiepileptic carbamazepine, macrolide antibiotics, and trimethoprim were not eliminated at all. Finally, the contribution of WWTP effluents to the presence of pharmaceuticals in receiving river waters was surveyed. In receiving surface water, the most ubiquitous compounds were the analgesics and anti-inflammatories ibuprofen, diclofenac, and naproxen; the lipid regulators bezafibrate and gemfibrozil; the antibiotics erythromycin, azithromycin, sulfamethoxazole, trimethoprim, and less frequently, ofloxacin; the antiepileptic carbamazepine; the antihistamine ranitidine; and the beta-blockers atenolol and sotalol. Although levels found in WWTP effluents ranged from low microg/L to high ng/L, pharmaceuticals in river waters occurred at levels at least one order of magnitude lower (low ng/L range) because of dilution effect. From the results obtained, it was proved that WWTP are hot spots of aquatic contamination concerning pharmaceuticals of human consumption.

  19. 40. Photocopy of a photographca. 1925 ISLAND PLANT: INTERIOR OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    40. Photocopy of a photograph--ca. 1925 ISLAND PLANT: INTERIOR OF GENERATING PLANT - American Falls Water, Power & Light Company, Island Power Plant, Snake River, below American Falls Dam, American Falls, Power County, ID

  20. Water contamination and environmental ecosystem in the Harlem River

    NASA Astrophysics Data System (ADS)

    Wang, J.

    2013-12-01

    Nutrients, bacteria, polychlorinated biphenyls (PCBs) and other contaminates have degraded water quality of the Harlem River. The Harlem River is a natural straight connected to the Hudson River and the East River, and it has been used for navigation and boating. Water samples have been collected and analyzed from 2011 to 2013. Phosphorus, ammonia, turbidity, fecal coliform, E.Coli., and enterococcus all exceed regulated levels for New York City waters. There is only one wastewater treatment plant (Wards Island WWTP) that serves this river. Combined sewer overflows (CSOs) discharge raw sewage into the river during storms in spring and summer. Commercial fishing is banned, .however, individuals still fish. While some fishermen catch and release, it is likely some fish are consumed, creating concern for the environmental health of the community along the river. Storm water runoff, CSOs, and wastewater effluents are major pollutant sources of PCB 11 (3,3' dichlorobiphenyl), nutrient and bacteria. Nutrients, bacteria levels and their spatial/temporal variations were analyzed, and PCB analysis is underway. This data is a critical first step towards improving the water quality and environmental ecosystem in the Harlem River.

  1. Detecting groundwater contamination of a river in Georgia, USA using baseflow sampling

    NASA Astrophysics Data System (ADS)

    Reichard, James S.; Brown, Chandra M.

    2009-05-01

    Algal blooms and fish kills were reported on a river in coastal Georgia (USA) downstream of a poultry-processing plant, prompting officials to conclude the problems resulted from overland flow associated with over-application of wastewater at the plant’s land application system (LAS). An investigation was undertaken to test the hypothesis that contaminated groundwater was also playing a significant role. Weekly samples were collected over a 12-month period along an 18 km reach of the river and key tributaries. Results showed elevated nitrogen concentrations in tributaries draining the plant and a tenfold increase in nitrate in the river between the tributary inputs. Because ammonia concentrations were low in this reach, it was concluded that nitrate was entering via groundwater discharge. Data from detailed river sampling and direct groundwater samples from springs and boreholes were used to isolate the entry point of the contaminant plume. Analysis showed two separate plumes, one associated with the plant’s unlined wastewater lagoon and another with its LAS spray fields. The continuous discharge of contaminated groundwater during summer low-flow conditions was found to have a more profound impact on river-water quality than periodic inputs by overland flow and tributary runoff.

  2. An Eco-tank system containing microbes and different aquatic plant species for the bioremediation of N,N-dimethylformamide polluted river waters.

    PubMed

    Xiao, Jibo; Chu, Shuyi; Tian, Guangming; Thring, Ronald W; Cui, Lingzhou

    2016-12-15

    An Eco-tank system of 10m was designed to simulate the natural river. It consisted of five tanks sequentially connected containing microbes, biofilm carriers and four species of floating aquatic plants. The purification performance of the system for N,N-dimethylformamide (DMF) polluted river water was evaluated by operating in continuous mode. DMF was completely removed in Tanks 1 and 2 at influent DMF concentrations between 75.42 and 161.05mg L -1 . The NH 4 + -N concentration increased in Tank 1, followed by a gradual decrease in Tanks 2-5. Removal of NH 4 + -N was enhanced by aeration. The average effluent NH 4 + -N concentration of Tank 5 decreased to a minimum of 0.89mg L -1 , corresponding to a decrease of 84.8% when compared with that before aeration. TN concentration did not decrease significantly as expected after inoculation with denitrifying bacteria. The average effluent TN concentration of the system was determined to be 4.58mg L -1 , still unable to satisfy the Class V standard for surface water environmental quality. The results of this study demonstrated that the Eco-tank system is an efficient process in removing DMF, TOC, and NH 4 + -N from DMF polluted river water. However, if possible, alternative technologies should be adopted for controlling the effluent TN concentration. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. 3. ORIGINAL THREE STEAM PLANT BOILERS ALONG WEST SIDE OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. ORIGINAL THREE STEAM PLANT BOILERS ALONG WEST SIDE OF STEAM PLANT BUILDING, FROM SOUTHWEST. November 13, 1990 - Crosscut Steam Plant, North side Salt River near Mill Avenue & Washington Street, Tempe, Maricopa County, AZ

  4. Prevalence of Antibiotic Resistance Genes and Bacterial Community Composition in a River Influenced by a Wastewater Treatment Plant

    PubMed Central

    Marti, Elisabet; Jofre, Juan; Balcazar, Jose Luis

    2013-01-01

    Antibiotic resistance represents a global health problem, requiring better understanding of the ecology of antibiotic resistance genes (ARGs), their selection and their spread in the environment. Antibiotics are constantly released to the environment through wastewater treatment plant (WWTP) effluents. We investigated, therefore, the effect of these discharges on the prevalence of ARGs and bacterial community composition in biofilm and sediment samples of a receiving river. We used culture-independent approaches such as quantitative PCR to determine the prevalence of eleven ARGs and 16S rRNA gene-based pyrosequencing to examine the composition of bacterial communities. Concentration of antibiotics in WWTP influent and effluent were also determined. ARGs such as qnrS, bla TEM, bla CTX-M, bla SHV, erm(B), sul(I), sul(II), tet(O) and tet(W) were detected in all biofilm and sediment samples analyzed. Moreover, we observed a significant increase in the relative abundance of ARGs in biofilm samples collected downstream of the WWTP discharge. We also found significant differences with respect to community structure and composition between upstream and downstream samples. Therefore, our results indicate that WWTP discharges may contribute to the spread of ARGs into the environment and may also impact on the bacterial communities of the receiving river. PMID:24205347

  5. Mutagenicity of drinking water sampled from the Yangtze River and Hanshui River (Wuhan section) and correlations with water quality parameters.

    PubMed

    Lv, Xuemin; Lu, Yi; Yang, Xiaoming; Dong, Xiaorong; Ma, Kunpeng; Xiao, Sanhua; Wang, Yazhou; Tang, Fei

    2015-03-31

    A total of 54 water samples were collected during three different hydrologic periods (level period, wet period, and dry period) from Plant A and Plant B (a source for Yangtze River and Hanshui River water, respectively), and several water parameters, such as chemical oxygen demand (COD), turbidity, and total organic carbon (TOC), were simultaneously analyzed. The mutagenicity of the water samples was evaluated using the Ames test with Salmonella typhimurium strains TA98 and TA100. According to the results, the organic compounds in the water were largely frame-shift mutagens, as positive results were found for most of the tests using TA98. All of the finished water samples exhibited stronger mutagenicity than the relative raw and distribution water samples, with water samples collected from Plant B presenting stronger mutagenic strength than those from Plant A. The finished water samples from Plant A displayed a seasonal-dependent variation. Water parameters including COD (r = 0.599, P = 0.009), TOC (r = 0.681, P = 0.02), UV254 (r = 0.711, P = 0.001), and total nitrogen (r = 0.570, P = 0.014) exhibited good correlations with mutagenicity (TA98), at 2.0 L/plate, which bolsters the argument of the importance of using mutagenicity as a new parameter to assess the quality of drinking water.

  6. Mutagenicity of drinking water sampled from the Yangtze River and Hanshui River (Wuhan section) and correlations with water quality parameters

    PubMed Central

    Lv, Xuemin; Lu, Yi; Yang, Xiaoming; Dong, Xiaorong; Ma, Kunpeng; Xiao, Sanhua; Wang, Yazhou; Tang, Fei

    2015-01-01

    A total of 54 water samples were collected during three different hydrologic periods (level period, wet period, and dry period) from Plant A and Plant B (a source for Yangtze River and Hanshui River water, respectively), and several water parameters, such as chemical oxygen demand (COD), turbidity, and total organic carbon (TOC), were simultaneously analyzed. The mutagenicity of the water samples was evaluated using the Ames test with Salmonella typhimurium strains TA98 and TA100. According to the results, the organic compounds in the water were largely frame-shift mutagens, as positive results were found for most of the tests using TA98. All of the finished water samples exhibited stronger mutagenicity than the relative raw and distribution water samples, with water samples collected from Plant B presenting stronger mutagenic strength than those from Plant A. The finished water samples from Plant A displayed a seasonal-dependent variation. Water parameters including COD (r = 0.599, P = 0.009), TOC (r = 0.681, P = 0.02), UV254 (r = 0.711, P = 0.001), and total nitrogen (r = 0.570, P = 0.014) exhibited good correlations with mutagenicity (TA98), at 2.0 L/plate, which bolsters the argument of the importance of using mutagenicity as a new parameter to assess the quality of drinking water. PMID:25825837

  7. Freshwater decapod crustaceans (Palaemonidae, Cambaridae) of the Savannah River Plant, South Carolina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hobbs, H.H. III; Thorp, J.H.; Anderson, G.E.

    Decapod crustaceans (specifically crayfishes and freshwater shrimps) are quite numerous in the drainages of the southeastern United States and occupy an extremely important niche in aquatic systems. As predators they act as disturbance components on benthic freshwater communities and may serve an integral position in the early stages of detrital decomposition. They constitute an important prey item in the diets of a wide variety of terrestrial and aquatic vertebrate predators, including game fishes, such as Micropterus salmoides (La Crepede) and other centrarchids. Researchers at the Savannah River Plant (SRP) employ these crustaceans in studies of the effects of thermal andmore » heavy metal pollution on survival and behavior, as well as in investigations of the fates of heavy metals and radioactive pollution in freshwater environments. A common problem to these studies is the uncertainty of species determinations, and it is our intent to present an illustrated dichotomous key to the decapod crustaceans found in the aquatic habitats of the SRP. In addition, each species is treated separately with reference to specific taxonomic characters, ecology, life history, color patterns, etc. A brief discussion of collecting techniques, preservation and preparation and equipment needed for identification also is presented.« less

  8. Evaluation of tracer tests completed in 1999 and 2000 on the upper Santa Clara River, Los Angeles and Ventura Counties, California

    USGS Publications Warehouse

    Cox, Marisa H.; Mendez, Gregory O.; Kratzer, Charles R.; Reichard, Eric G.

    2003-01-01

    The interaction of surface water and hyporheic water along the Santa Clara River in Los Angeles and Ventura Counties, California, was evaluated by conducting tracer tests and analyzing water-quality data under different flow conditions in October 1999 and May 2000. Tracer and water-quality samples were collected at multiple river and hyporheic sites as well as at the Los Angeles County Sanitation Districts Saugus and Valencia Water Reclamation Plants. These water reclamation plants provide the main source of base flow in the river. Rhodamine WT dye was injected into the river to determine river traveltimes and to indicate when Lagrangian water-quality sampling could be performed at each site. Sodium bromide was injected into the river at a constant rate at the water reclamation plants to evaluate the surface-water and shallow ground-water interactions in the hyporheic zone. In the upper reach of the study area, which extends 2.9 river miles downstream from the Saugus Water Reclamation Plant, traveltime was 3.2 hours during May 2000. In the lower reach, which extends 14.1 river miles downstream from the Valencia Water Reclamation Plant, traveltime was 9.6 hours during October 1999 and 7.1 hours during May 2000. The sodium bromide tracer was detected at both hyporheic locations sampled during October 1999, and at two of the three hyporheic locations sampled during May 2000. On the basis of Rhodamine dye tests, flow curves were constructed from the discharge measurements in the Valencia reach. Flow-curve results indicate net gains in flow throughout most, but not all, of the upper parts of the reach and net losses in flow at the lower part of the reach. Lagrangian water-quality sampling provides information on the changes in chemistry as the water flows downstream from the water reclamation plants. Along both reaches there is an increase in sulfate (40-60 mg/L in the Saugus reach and 160 mg/L in the Valencia reach) and a decrease in chloride (about 45 mg/L in the

  9. Assessing the impacts of water abstractions on river ecosystem services: an eco-hydraulic modelling approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carolli, Mauro, E-mail: mauro.carolli@unitn.it; Geneletti, Davide, E-mail: davide.geneletti@unitn.it; Zolezzi, Guido, E-mail: guido.zolezzi@unitn.it

    The provision of important river ecosystem services (ES) is dependent on the flow regime. This requires methods to assess the impacts on ES caused by interventions on rivers that affect flow regime, such as water abstractions. This study proposes a method to i) quantify the provision of a set of river ES, ii) simulate the effects of water abstraction alternatives that differ in location and abstracted flow, and iii) assess the impact of water abstraction alternatives on the selected ES. The method is based on river modelling science, and integrates spatially distributed hydrological, hydraulic and habitat models at different spatialmore » and temporal scales. The method is applied to the hydropeaked upper Noce River (Northern Italy), which is regulated by hydropower operations. We selected locally relevant river ES: habitat suitability for the adult marble trout, white-water rafting suitability, hydroelectricity production from run-of-river (RoR) plants. Our results quantify the seasonality of river ES response variables and their intrinsic non-linearity, which explains why the same abstracted flow can produce different effects on trout habitat and rafting suitability depending on the morphology of the abstracted reach. An economic valuation of the examined river ES suggests that incomes from RoR hydropower plants are of comparable magnitude to touristic revenue losses related to the decrease in rafting suitability.« less

  10. The Elizabeth River Story: A Case Study in Evolutionary Toxicology

    PubMed Central

    Di Giulio, Richard T.; Clark, Bryan W.

    2015-01-01

    The Elizabeth River system is an estuary in southeastern Virginia, surrounded by the towns of Chesapeake, Norfolk, Portsmouth, and Virginia Beach. The river has played important roles in U.S. history and has been the location of various military and industrial activities. These activities have been the source of chemical contamination in this aquatic system. Important industries, until the 1990s, included wood treatment plants that used creosote, an oil-derived product that is rich in polycyclic aromatic hydrocarbons (PAH). These plants left a legacy of PAH pollution in the river, and in particular Atlantic Wood Industries is a designated Superfund site now undergoing remediation. Numerous studies examined the distribution of PAH in the river and impacts on resident fauna. This review focuses on how a small estuarine fish with a limited home range, Fundulus heteroclitus (Atlantic killifish or mummichog), has responded to this pollution. While in certain areas of the river this species has clearly been impacted, as evidenced by elevated rates of liver cancer, some subpopulations, notably the one associated with the Atlantic Wood Industries site, displayed a remarkable ability to resist the marked effects PAH have on the embryonic development of fish. This review provides evidence of how pollutants have acted as evolutionary agents, causing changes in ecosystems potentially lasting longer than the pollutants themselves. Mechanisms underlying this evolved resistance, as well as mechanisms underlying the effects of PAH on embryonic development, are also described. The review concludes with a description of ongoing and promising efforts to restore this historic American river. PMID:26505693

  11. Ice Atlas 1985 - 1986. Monongahela River, Allegheny River, Ohio River, Illinois River and Kankakee River.

    DTIC Science & Technology

    1987-11-01

    Des P/o,,nes River Grant Cut -off V 1Kankrokee Cut- off Drsdn slndCountyI Line Bordwell Isi. V _ KankakeKRiver 2 */0 7r Prairle Cr 6 0 1 M1 Survey date...2 x 10 6t 81 279 River 279 13 February 1986 275 Kankak Des P/amnes RIver Gran7 Cree Cut-off DrsenIladCount y Line Bordwell Isr. 0 1 M1 ’kornkokee A...Gat Cut - off KankakeeFiver ’e Drsdn slndCounty Line Bordwell s 1 mi 2urve date FerarM1,i Kankakee River :2.4 oCr. 󈧢 X9Kankakcee River :14 ML 0- 5𔃿

  12. Riparian vegetation, Colorado River, and climate: five decades of spatiotemporal dynamics in the Grand Canyon with river regulation

    USGS Publications Warehouse

    Sankey, Joel B.; Ralston, Barbara E.; Grams, Paul E.; Schmidt, John C.; Cagney, Laura E.

    2015-01-01

    Documentation of the interacting effects of river regulation and climate on riparian vegetation has typically been limited to small segments of rivers or focused on individual plant species. We examine spatiotemporal variability in riparian vegetation for the Colorado River in Grand Canyon relative to river regulation and climate, over the five decades since completion of the upstream Glen Canyon Dam in 1963. Long-term changes along this highly modified, large segment of the river provide insights for management of similar riparian ecosystems around the world. We analyze vegetation extent based on maps and imagery from eight dates between 1965 and 2009, coupled with the instantaneous hydrograph for the entire period. Analysis confirms a net increase in vegetated area since completion of the dam. Magnitude and timing of such vegetation changes are river stage-dependent. Vegetation expansion is coincident with inundation frequency changes and is unlikely to occur for time periods when inundation frequency exceeds approximately 5%. Vegetation expansion at lower zones of the riparian area is greater during the periods with lower peak and higher base flows, while vegetation at higher zones couples with precipitation patterns and decreases during drought. Short pulses of high flow, such as the controlled floods of the Colorado River in 1996, 2004, and 2008, do not keep vegetation from expanding onto bare sand habitat. Management intended to promote resilience of riparian vegetation must contend with communities that are sensitive to the interacting effects of altered flood regimes and water availability from river and precipitation.

  13. Riparian vegetation, Colorado River, and climate: Five decades of spatiotemporal dynamics in the Grand Canyon with river regulation

    NASA Astrophysics Data System (ADS)

    Sankey, Joel B.; Ralston, Barbara E.; Grams, Paul E.; Schmidt, John C.; Cagney, Laura E.

    2015-08-01

    Documentation of the interacting effects of river regulation and climate on riparian vegetation has typically been limited to small segments of rivers or focused on individual plant species. We examine spatiotemporal variability in riparian vegetation for the Colorado River in Grand Canyon relative to river regulation and climate, over the five decades since completion of the upstream Glen Canyon Dam in 1963. Long-term changes along this highly modified, large segment of the river provide insights for management of similar riparian ecosystems around the world. We analyze vegetation extent based on maps and imagery from eight dates between 1965 and 2009, coupled with the instantaneous hydrograph for the entire period. Analysis confirms a net increase in vegetated area since completion of the dam. Magnitude and timing of such vegetation changes are river stage-dependent. Vegetation expansion is coincident with inundation frequency changes and is unlikely to occur for time periods when inundation frequency exceeds approximately 5%. Vegetation expansion at lower zones of the riparian area is greater during the periods with lower peak and higher base flows, while vegetation at higher zones couples with precipitation patterns and decreases during drought. Short pulses of high flow, such as the controlled floods of the Colorado River in 1996, 2004, and 2008, do not keep vegetation from expanding onto bare sand habitat. Management intended to promote resilience of riparian vegetation must contend with communities that are sensitive to the interacting effects of altered flood regimes and water availability from river and precipitation.

  14. Hydrologic data for the Obed River watershed, Tennessee

    USGS Publications Warehouse

    Knight, Rodney R.; Wolfe, William J.; Law, George S.

    2014-01-01

    The Obed River watershed drains a 520-square-mile area of the Cumberland Plateau physiographic region in the Tennessee River basin. The watershed is underlain by conglomerate, sandstone, and shale of Pennsylvanian age, which overlie Mississippian-age limestone. The larger creeks and rivers of the Obed River system have eroded gorges through the conglomerate and sandstone into the deeper shale. The largest gorges are up to 400 feet deep and are protected by the Wild and Scenic Rivers Act as part of the Obed Wild and Scenic River, which is managed by the National Park Service. The growing communities of Crossville and Crab Orchard, Tennessee, are located upstream of the gorge areas of the Obed River watershed. The cities used about 5.8 million gallons of water per day for drinking water in 2010 from Lake Holiday and Stone Lake in the Obed River watershed and Meadow Park Lake in the Caney Fork River watershed. The city of Crossville operates a wastewater treatment plant that releases an annual average of about 2.2 million gallons per day of treated effluent to the Obed River, representing as much as 10 to 40 percent of the monthly average streamflow of the Obed River near Lancing about 35 miles downstream, during summer and fall. During the past 50 years (1960–2010), several dozen tributary impoundments and more than 2,000 small farm ponds have been constructed in the Obed River watershed. Synoptic streamflow measurements indicate a tendency towards dampened high flows and slightly increased low flows as the percentage of basin area controlled by impoundments increases.

  15. Influences of micro-geomorphology on the stoichiometry of C, N and P in Chenier Island soils and plants in the Yellow River Delta, China

    PubMed Central

    Yu, Junbao; Liu, Jingtao; Sun, Jingkuan; Yang, Hongjun; Dong, Linshui

    2017-01-01

    Studies have indicated that consistent or well-constrained (relatively low variability) carbon:nitrogen:phosphorus (C:N:P) ratios exist in large-scale ecosystems, including both marine and terrestrial ecosystems. Little is known about the C, N and P stoichiometric ratios that exist in the soils and plants of Chenier Island in the Yellow River Delta (YRD). We examined the distribution patterns and relationships of C, N and P stoichiometry in the soils and plants of Chenier Island, as well as the potential influences of the island’s micro-geomorphology. Based on a study of four soil profile categories and Phragmites australis and Suaeda heteroptera plant tissues, our results showed that micro-geomorphology could leave a distinct imprint on the soil and plant elemental stoichiometry of Chenier Island; significant variation in the atomic C:N:P ratios (RCNP) existed in soils and plants, indicating that the RCNP values in both the soil and plants are not well constrained at the Chenier Island scale. RCN and RCP in Chenier Island soils were high, whereas the RNP values were comparatively low, indicating that the ecosystems of Chenier Island are nutrient-limited by N and P. However, the RNP values in P. australis and S. heteroptera plant tissues were high, suggesting that the plants of Chenier Island are nutrient-limited by P. Finally, we suggest that soil and plant N:P ratios may be good indicators of the soil and plant nutrient status during soil development and plant growth, which could be a useful reference for restoring the degraded soils of Chenier Island. PMID:29236766

  16. Influences of micro-geomorphology on the stoichiometry of C, N and P in Chenier Island soils and plants in the Yellow River Delta, China.

    PubMed

    Qu, Fanzhu; Meng, Ling; Yu, Junbao; Liu, Jingtao; Sun, Jingkuan; Yang, Hongjun; Dong, Linshui

    2017-01-01

    Studies have indicated that consistent or well-constrained (relatively low variability) carbon:nitrogen:phosphorus (C:N:P) ratios exist in large-scale ecosystems, including both marine and terrestrial ecosystems. Little is known about the C, N and P stoichiometric ratios that exist in the soils and plants of Chenier Island in the Yellow River Delta (YRD). We examined the distribution patterns and relationships of C, N and P stoichiometry in the soils and plants of Chenier Island, as well as the potential influences of the island's micro-geomorphology. Based on a study of four soil profile categories and Phragmites australis and Suaeda heteroptera plant tissues, our results showed that micro-geomorphology could leave a distinct imprint on the soil and plant elemental stoichiometry of Chenier Island; significant variation in the atomic C:N:P ratios (RCNP) existed in soils and plants, indicating that the RCNP values in both the soil and plants are not well constrained at the Chenier Island scale. RCN and RCP in Chenier Island soils were high, whereas the RNP values were comparatively low, indicating that the ecosystems of Chenier Island are nutrient-limited by N and P. However, the RNP values in P. australis and S. heteroptera plant tissues were high, suggesting that the plants of Chenier Island are nutrient-limited by P. Finally, we suggest that soil and plant N:P ratios may be good indicators of the soil and plant nutrient status during soil development and plant growth, which could be a useful reference for restoring the degraded soils of Chenier Island.

  17. Analysis of biological factors for determination of air pollution tolerance index of selected plants in Yamuna Nagar, India.

    PubMed

    Sharma, Manju; Panwar, Neeraj; Arora, Pooja; Luhach, Jyoti; Chaudhry, Smita

    2013-05-01

    Air pollution tolerance index (APTI) calculated for various plant species growing in vicinity of three different industrial areas (Paper mill, Sugar mill, Thermal Power Plant) and Yamuna River belt of Yamuna Nagar. Studies were carried out to determine the physiological response of ten plant species. The leaf samples collected from these plant species were used to determine their plant APTI by calculating the ascorbic acid, total chlorophyll, pH, and relative water content for all selected sites. Highest pH, relative water content, ascorbic acid and total chlorophyll was observed in Castor (9.86), Parthenium (96.99%), Ficus benghalensis (14.90 mg g(-1)) and Amaranthus (7.08 mg g(-1)) at Yamuna river, Thermal power plant, Yamuna river and paper mill respectively. It was concluded that out of ten species studied only one species (Ficus benghalensis) showed moderately tolerant response in all selected sites, while other species showed sensitive response. According to observed APTI values, Ficus benghalensis showed the highest value (21.65) at sugar mill followed by thermal power plant (19.38), Paper mill (17.65) and Yamuna River (17.61). The lowest APTI values were reported in Oxalis corniculata (6.42) at Yamuna River belt followed by Malvestrum at sugar mill (7.71).

  18. Seismicity of the Wabash Valley, Ste. Genevieve, and Rough Creek Graben Seismic Zones from the Earthscope Ozarks-Illinois-Indiana-Kentucky (OIINK) FlexArray Experiment

    NASA Astrophysics Data System (ADS)

    Shirley, Matthew Richard

    I analyzed seismic data from the Ozarks-Illinois-Indiana-Kentucky (OIINK) seismic experiment that operated in eastern Missouri, southern Illinois, southern Indiana, and Kentucky from July 2012 through March 2015. A product of this analysis is a new catalog of earthquake locations and magnitudes for small-magnitude local events during this study period. The analysis included a pilot study involving detailed manual analysis of all events in a ten-day test period and determination of the best parameters for a suite of automated detection and location programs. I eliminated events that were not earthquakes (mostly quarry and surface mine blasts) from the output of the automated programs, and reprocessed the locations for the earthquakes with manually picked P- and S-wave arrivals. This catalog consists of earthquake locations, depths, and local magnitudes. The new catalog consists of 147 earthquake locations, including 19 located within the bounds of the OIINK array. Of these events, 16 were newly reported events, too small to be reported in the Center for Earthquake Research and Information (CERI) regional seismic network catalog. I compared the magnitudes reported by CERI for corresponding earthquakes to establish a magnitude calibration factor for all earthquakes recorded by the OIINK array. With the calibrated earthquake magnitudes, I incorporate the previous OIINK results from Yang et al. (2014) to create magnitude-frequency distributions for the seismic zones in the region alongside the magnitude-frequency distributions made from CERI data. This shows that Saint Genevieve and Wabash Valley seismic zones experience seismic activity at an order magnitude lower rate than the New Madrid seismic zone, and the Rough Creek Graben experiences seismic activity two orders of magnitude less frequently than New Madrid.

  19. Mercury and other trace elements in Ohio River fish collected near coal-fired power plants: Interspecific patterns and consideration of consumption risks.

    PubMed

    Reash, Robin J; Brown, Lauren; Merritt, Karen

    2015-07-01

    Many coal-fired electric generating facilities in the United States are discharging higher loads of Hg, Se, and other chemicals to receiving streams due to the installation of flue gas desulfurization (FGD) air pollution control units. There are regulatory concerns about the potential increased uptake of these bioaccumulative trace elements into food webs. We evaluated the concentrations of As, total Hg (THg), methylmercury (MeHg), and Se in Ohio River fish collected proximal to coal-fired power plants, of which 75% operate FGD systems. Fillet samples (n = 50) from 6 fish species representing 3 trophic levels were analyzed. Geometric mean fillet concentrations of THg (wet wt), MeHg (wet wt), and Se (dry wt) in 3 species were 0.136, 0.1181, and 3.19 mg/kg (sauger); 0.123, 0.1013, and 1.56 mg/kg (channel catfish); and 0.127, 0.0914, and 3.30 mg/kg (hybrid striped bass). For all species analyzed, only 3 fillet samples (6% of total) had MeHg concentrations that exceeded the US Environmental Protection Agency (USEPA) human health criterion (0.3 mg/kg wet wt); all of these were freshwater drum aged ≥ 19 y. None of the samples analyzed exceeded the USEPA proposed muscle and whole body Se thresholds for protection against reproductive effects in freshwater fish. All but 8 fillet samples had a total As concentration less than 1.0 mg/kg dry wt. Mean Se health benefit values (HBVSe ) for all species were ≥ 4, indicating that potential Hg-related health risks associated with consumption of Ohio River fish are likely to be offset by adequate Se concentrations. Overall, we observed no measurable evidence of enhanced trace element bioaccumulation associated with proximity to power plant FGD facilities, however, some enhanced bioaccumulation could have occurred in the wastewater mixing zones. Furthermore, available evidence indicates that, due to hydraulic and physical factors, the main stem Ohio River appears to have low net Hg methylation potential. © 2015 SETAC.

  20. A comparison of the wild food plant use knowledge of ethnic minorities in Naban River Watershed National Nature Reserve, Yunnan, SW China.

    PubMed

    Ghorbani, Abdolbaset; Langenberger, Gerhard; Sauerborn, Joachim

    2012-05-05

    Wild food plants (WFPs) contribute to the nutrition, economy and even cultural identity of people in many parts of the world. Different factors determine the preference and use of WFPs such as abundance, availability, cultural preference, economic conditions, shortage periods or unsecure food production systems. Understanding these factors and knowing the patterns of selection, use and cultural significance and value of wild food plants for local communities is helpful in setting priorities for conservation and/or domestication of these plants. Thus in this study knowledge of wild food plant use among four groups namely Dai, Lahu, Hani and Mountain Han in Naban River Watershed National Nature Reserve ((NRWNNR), Xishuangbanna were documented and analyzed to find the similarity and difference among their plant use. Data on wild food plant use was collected through freelisting and semi-structured interviews and participatory field collection and direct observation. Botanical plant sample specimens were collected, prepared, dried and identified. A total of 173 species and subspecies from 64 families and one species of lichen (Ramalina sp.) are used as WFP. There were differences on the saliency of wild food plant species among four ethnic groups. Consensus analysis revealed that knowledge of wild food plant use for each ethnic group differs from others with some variation in each group. Among informant attributes only age was related with the knowledge of wild food plant use, whereas no significant relationship was found between gender and age*gender and informants knowledge of wild food plant use. Wild food plants are still used extensively by local people in the NRWNNR, some of them on a daily base. This diversity of wild food plants provide important source of nutrients for the local communities which much of their caloric intake comes from one or few crops. The results also show the role of ethnicity on the preference and use of wild food plants. There is a big

  1. A comparison of the wild food plant use knowledge of ethnic minorities in Naban River Watershed National Nature Reserve, Yunnan, SW China

    PubMed Central

    2012-01-01

    Background Wild food plants (WFPs) contribute to the nutrition, economy and even cultural identity of people in many parts of the world. Different factors determine the preference and use of WFPs such as abundance, availability, cultural preference, economic conditions, shortage periods or unsecure food production systems. Understanding these factors and knowing the patterns of selection, use and cultural significance and value of wild food plants for local communities is helpful in setting priorities for conservation and/or domestication of these plants. Thus in this study knowledge of wild food plant use among four groups namely Dai, Lahu, Hani and Mountain Han in Naban River Watershed National Nature Reserve ((NRWNNR), Xishuangbanna were documented and analyzed to find the similarity and difference among their plant use. Methods Data on wild food plant use was collected through freelisting and semi-structured interviews and participatory field collection and direct observation. Botanical plant sample specimens were collected, prepared, dried and identified. Results A total of 173 species and subspecies from 64 families and one species of lichen (Ramalina sp.) are used as WFP. There were differences on the saliency of wild food plant species among four ethnic groups. Consensus analysis revealed that knowledge of wild food plant use for each ethnic group differs from others with some variation in each group. Among informant attributes only age was related with the knowledge of wild food plant use, whereas no significant relationship was found between gender and age*gender and informants knowledge of wild food plant use. Conclusion Wild food plants are still used extensively by local people in the NRWNNR, some of them on a daily base. This diversity of wild food plants provide important source of nutrients for the local communities which much of their caloric intake comes from one or few crops. The results also show the role of ethnicity on the preference and use

  2. 1. GENERAL EXTERIOR VIEW OF THE ELECTRIC FURNACE STEELMAKING PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GENERAL EXTERIOR VIEW OF THE ELECTRIC FURNACE STEELMAKING PLANT LOOKING NORTHEAST. - U.S. Steel Duquesne Works, Electric Furnace Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  3. Restoration of hard mast species for wildlife in Missouri using precocious flowering oak in the Missouri River floodplain, USA

    Treesearch

    B. C. Grossman; M. A. Gold; Daniel C. Dey

    2003-01-01

    Increased planting of hard mast oak species in the Lower Missouri River floodplain is critical as natural regeneration of oak along the Upper Mississippi and Lower Missouri Rivers has been limited following major flood events in 1993 and 1995. Traditional planting methods have limited success due to frequent flood events, competition from faster growing vegetation and...

  4. Mechanical Harvesting of Aquatic Plants. Report 2. Evaluation of Selected Handling Functions of Mechanical Control.

    DTIC Science & Technology

    1980-06-01

    with the extracted plants. Pusher boats were used to feed the plants into the throat of the conveyor where they were then pulled onto the conveyor by...technique or variations of it that involve extracting from the river periodically on the Withlacoochee River or similar rivers, requires 48 that operations...way to readily estimate the land area required to stockpile the large volumes of material that must be extracted from the water in many operational

  5. Reciprocal interactions between fluvial processes and riparian plants at multiple scales: ecogeomorphic feedbacks drive coevolution of floodplain morphology and vegetation communities

    NASA Astrophysics Data System (ADS)

    Stella, J. C.; Kui, L.; Diehl, R. M.; Bywater-Reyes, S.; Wilcox, A. C.; Shafroth, P. B.; Lightbody, A.

    2017-12-01

    Fluvial forces interact with woody riparian plants in complex ways to influence the coevolution of river morphology and floodplain plant communities. Here, we report on an integrated suite of multi-disciplinary studies that contrast the responses of plants with different morphologies, tamarisk (Tamarix spp.) and cottonwood (Populus fremontii) in terms of (1) differences in vulnerability to scour and burial during floods; (2) interactions and feedbacks between plants and river morphodynamics; and (3) long-term coevolution of river floodplains and riparian communities following flow regulation from dams. The focus of these studies is sand-bed rivers in arid-land regions where invasion by tamarisk has strongly influenced riverine plant communities and geomorphic processes. We complemented a suite of field-scale flume experiments using live seedlings to quantify the initial stages of plant-river interactions with an analysis of long-term vegetation and geomorphic changes along the dammed Bill Williams River (AZ, USA) using time-series air photographs. Vegetation-fluvial interactions varied with plant characteristics, river hydraulics and sediment conditions, across the wide range of scales we investigated. In the flume studies, tamarisk's denser crowns and stiffer stems induced greater sedimentation compared to cottonwood. This resulted in tamarisk's greater mortality from burial as small seedlings under sediment equilibrium conditions but higher relative survival in larger floods under sediment deficit scenarios, in which more cottonwoods were lost to root scour. Sediment deficit conditions, as occurs downstream of dams, induced both greater scour and greater plant loss. With larger size and at higher densities, plants' vulnerability diminished due to greater root anchoring and canopy effects on hydraulics. At the corridor scale, we observed a pattern of plant encroachment during five decades of flow regulation, in which channel narrowing and simplification was more

  6. Relations of Tualatin River water temperatures to natural and human-caused factors

    USGS Publications Warehouse

    Risley, John C.

    1997-01-01

    Aquatic research has long shown that the survival of cold-water fish, such as salmon and trout, decreases markedly as water temperatures increase above a critical threshold, particularly during sensitive life stages of the fish. In an effort to improve the overall health of aquatic ecosystems, the State of Oregon in 1996 adopted a maximum water-temperature standard of 17.8 degrees Celsius (68 degrees Fahrenheit), based on a 7-day moving average of daily maximum temperatures, for most water bodies in the State. Anthropogenic activities are not permitted to raise the temperature of a water body above this level. In the Tualatin River, a tributary of the Willamette River located in northwestern Oregon, water temperatures periodically surpass this threshold during the low-flow summer and fall months.An investigation by the U.S. Geological Survey quantified existing seasonal, diel, and spatial patterns of water temperatures in the main stem of the river, assessed the relation of water temperatures to natural climatic conditions and anthropogenic factors (such as wastewater-treatment-plant effluent and modification of riparian shading), and assessed the impact of various flow management practices on stream temperatures. Half-hourly temperature measurements were recorded at 13 monitoring sites from river mile (RM) 63.9 to RM 3.4 from May to November of 1994. Four synoptic water- temperature surveys also were conducted in the upstream and downstream vicinities of two wastewater-treatment-plant outfalls. Temperature and streamflow time-series data were used to calibrate two dynamic-flow heat-transfer models, DAFLOW-BLTM (RM 63.9-38.4) and CE-QUAL-W2 (RM 38.4-3.4). Simulations from the models provided a basis for approximating 'natural' historical temperature patterns, performing effluent and riparian-shading sensitivity analyses, and evaluating mitigation management scenarios under 1994 climatic conditions. Findings from the investigation included (1) under 'natural

  7. The distribution of submersed aquatic vegetation and water lettuce in the fresh and oligohaline tidal Potomac River, 2007

    USGS Publications Warehouse

    Campbell, Sarah Hunter; Rybicki, Nancy B.; Schenk, Edward R.

    2015-01-01

    Surveys documenting the composition of species of submersed aquatic vegetation (SAV) have been conducted in the Potomac River for decades. These surveys can help managers assess the proportion of native and exotic plants in the river or can be used to determine relationships between native and exotic plants, environmental conditions, and wildlife. SAV coverage increased from 2005 to 2007 throughout the fresh and oligohaline study area. The 2007 survey documented here determined that eleven species of SAV were present. The abundance of the exotic species Hydrilla verticillata (hydrilla) was relatively low, and species diversity was relatively high compared to previous years. The survey also revealed a new population of the invasive, floating aquatic plant Pistia stratiotes (water lettuce). In 2007, water lettuce, the latest exotic aquatic plant to be found in the fresh to oligohaline portion of the Potomac River, was most abundant in Mattawoman Creek, Charles County, Maryland. However, it was not observed in the fresh to oligohaline portion of the Potomac River in the summer of 2008. An understanding of the distribution of SAV species and factors governing the abundance of native and invasive aquatic species is enhanced by long-term surveys.

  8. Landscape ecology of the Upper Mississippi River System: Lessons learned, challenges and opportunities

    USGS Publications Warehouse

    DeJager, Nathan R.

    2016-03-22

    The Upper Mississippi River System (UMRS) is a mosaic of river channels, backwater lakes, floodplain forests, and emergent marshes. This complex mosaic supports diverse aquatic and terrestrial plant communities, over 150 fish species; 40 freshwater mussel species; 50 amphibian and reptile species; and over 360 bird species, many of which use the UMRS as a critical migratory route. The river and floodplain are also hotspots for biogeochemical activity as the river-floodplain collects and processes nutrients derived from the UMR basin. These features qualify the UMRS as a Ramsar wetland of international significance.Two centuries of land-use change, including construction for navigation and conversion of large areas to agriculture, has altered the broad-scale structure of the river and changed local environmental conditions in many areas. Such changes have affected rates of nutrient processing and transport, as well as the abundance of various fish, mussel, plant, and bird species. However, the magnitude and spatial scale of these effects are not well quantified, especially in regards to the best methods and locations for restoring various aspects of the river ecosystem.The U.S. Congress declared the navigable portions of the Upper Mississippi River System (UMRS) a “nationally significant ecosystem and nationally significant commercial navigation system” in the Water Resources Development Act of 1986 (Public Law 99-662) and launched the Upper Mississippi River Restoration (UMRR) Program, the first comprehensive program for ecosystem restoration, monitoring, and research on a large river system. This fact sheet focuses on landscape ecological studies conducted by the U.S. Geological Survey to support decision making by the UMRR with respect to ecosystem restoration.

  9. Simulating the hydrologic impact of Arundo donax invasion on the headwaters of the Nueces River in Texas

    USDA-ARS?s Scientific Manuscript database

    Arundo donax (hereafter referred to as Arundo), which is a robust herbaceous plant, has invaded the riparian zones of the Rio Grande River and the rivers of the Texas Hill Country over the last two decades. Arundo was first observed along the Nueces River in central Texas in 1995 by the Nueces Rive...

  10. Using Longitudinal Assessment Data to Improve Retention and Student Experiences

    ERIC Educational Resources Information Center

    Trosset, Carol; Weisler, Steven

    2010-01-01

    The Wabash National Study of Liberal Arts Education presents a longitudinal analysis of how students change on a number of scales that purport to measure many of the outcomes of liberal learning over the span of a college education. The Wabash Study is designed to collect information longitudinally from students at the beginning and end of their…

  11. Regional assessment of the hydropower potential of rivers in West Africa

    NASA Astrophysics Data System (ADS)

    Kling, Harald; Stanzel, Philipp; Fuchs, Martin

    2016-04-01

    The 15 countries of the Economic Community of West African States (ECOWAS) face a constant shortage of energy supply, which limits sustained economic growth. Currently there are about 50 operational hydropower plants and about 40 more are under construction or refurbishment. The potential for future hydropower development - especially for small-scale plants in rural areas - is assumed to be large, but exact data are missing. This study supports the energy initiatives of the "ECOWAS Centre for Renewable Energy and Energy Efficiency" (ECREEE) by assessing the hydropower potential of all rivers in West Africa. For more than 500,000 river reaches the hydropower potential was computed from channel slope and mean annual discharge. In large areas there is a lack of discharge observations. Therefore, an annual water balance model was used to simulate discharge. The model domain covers 5 Mio km², including e.g. the Niger, Volta, and Senegal River basins. The model was calibrated with observed data of 410 gauges, using precipitation and potential evapotranspiration data as inputs. Historic variations of observed annual discharge between 1950 and 2010 are simulated well by the model. As hydropower plants are investments with a lifetime of several decades we also assessed possible changes in future discharge due to climate change. To this end the water balance model was driven with bias-corrected climate projections of 15 Regional Climate Models for two emission scenarios of the CORDEX-Africa ensemble. The simulation results for the river network were up-scaled to sub-areas and national summaries. This information gives a regional quantification of the hydropower potential, expected climate change impacts, as well as a regional classification for general suitability (or non-suitability) of hydropower plant size - from small-scale to large projects.

  12. A study of the utilization of EREP data from the Wabash River basin

    NASA Technical Reports Server (NTRS)

    Silva, L. F. (Principal Investigator)

    1976-01-01

    The author has identified the following significant results. The study of the multispectral data sets indicate that better land use delineation using machine processing techniques can be obtained with data from multispectral scanners than digitized S190A photographic sensor data. Results of the multiemulsion photographic data set were a little better than the multiband photographic data set. Comparison results of the interim and filtered S191 data indicate that the data were improved some for machine processing techniques. Results of the S191 X-5 detector array studied over a wintertime scene indicate that a good quality far infrared channel can be useful. The S191 spectroradiometer study results indicate that the data from the S191 was usable, and it was possible to estimate the path radiance.

  13. 17. Photocopy of a photograph1921 EASTSIDE PLANT LOOKING NORTHEAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. Photocopy of a photograph--1921 EASTSIDE PLANT LOOKING NORTHEAST - American Falls Water, Power & Light Company, Island Power Plant, Snake River, below American Falls Dam, American Falls, Power County, ID

  14. 29. ISLAND PLANT: INTERIOR VIEW LOOKING SOUTHWEST ON GROUND FLOOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. ISLAND PLANT: INTERIOR VIEW LOOKING SOUTHWEST ON GROUND FLOOR - American Falls Water, Power & Light Company, Island Power Plant, Snake River, below American Falls Dam, American Falls, Power County, ID

  15. 52. EASTSIDE PLANT: GENERAL VIEW OF GOVERNOR ADJACENT TO GENERATOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. EASTSIDE PLANT: GENERAL VIEW OF GOVERNOR ADJACENT TO GENERATOR - American Falls Water, Power & Light Company, Island Power Plant, Snake River, below American Falls Dam, American Falls, Power County, ID

  16. 9. GENERAL VIEW OF ISLAND PLANT LOOKING NORTH (negative reversed) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. GENERAL VIEW OF ISLAND PLANT LOOKING NORTH (negative reversed) - American Falls Water, Power & Light Company, Island Power Plant, Snake River, below American Falls Dam, American Falls, Power County, ID

  17. Thermal study of the Missouri River in North Dakota using infrared imagery

    NASA Technical Reports Server (NTRS)

    Crosby, O. A.

    1971-01-01

    Studies of infrared imagery obtained from aircraft at 305- to 1,524-meter altitudes indicate the feasibility of monitoring thermal changes attributable to the operation of thermal electric plants and storage reservoirs, as well as natural phenomena such as tributary inflow and ground water seeps in large rivers. No identifiable sources of ground water inflow below the surface of the river could be found in the imagery. The thermal patterns from the generating plants and the major tributary inflow are readily apparent in imagery obtained from an altitude of 305 meters. Portions of the tape-recorded imagery were processed in a color-coded quantization to enhance the displays and to attach quantitative significance to the data. The study indicates a marked decrease in water temperature in the Missouri River prior to early fall and a moderate increase in temperature in late fall because of the Lake Sakakawea impoundment.

  18. Occurrence of antibiotics and antibiotic resistance genes in a sewage treatment plant and its effluent-receiving river.

    PubMed

    Xu, Jian; Xu, Yan; Wang, Hongmei; Guo, Changsheng; Qiu, Huiyun; He, Yan; Zhang, Yuan; Li, Xiaochen; Meng, Wei

    2015-01-01

    The extensive use of antibiotics has caused the contamination of both antibiotics and antibiotic resistance genes (ARGs) in the environment. In this study, the abundance and distribution of antibiotics and ARGs from a sewage treatment plant (STP) and its effluent-receiving river in Beijing China were characterized. Three classes of antibiotics including tetracycline, sulfonamide and quinolone were quantified by LC-MS/MS. In the secondary effluent they were detected at 195, 2001 and 3866 ng L(-1), respectively, which were higher than in the receiving river water. A total of 13 ARGs (6 tet genes: tetA, tetB, tetE, tetW, tetM and tetZ, 3 sulfonamide genes: sul1, sul2 and sul3, and 4 quinolone genes: gryA, parC, qnrC and qnrD) were determined by quantitative PCR. For all ARGs, sulfonamide resistance genes were present at relatively high concentrations in all samples, with the highest ARG concentration above 10(-1). ARGs remained relatively stable along each sewage treatment process. The abundances of detected ARGs from the STP were also higher than its receiving river. Bivariate correlation analysis showed that relative tet gene copies (tetB/16S-rRNA and tetW/16S-rRNA) were strongly correlated with the concentrations of tetracycline residues (r(2)>0.8, p<0.05), while no significant correlations occurred between sulfonamides and sul genes. A negative correlation between the relative abundance of quinolone resistance gene (qnrC/16S-rRNA) and the concentrations of enrofloxacin (ENR) was also determined. The difference of ARGs levels in the raw influent and secondary effluent suggested that the STP treatment process may induce to increase the abundance of resistance genes. The results showed that the sewage was an important repository of the resistance genes, which need to be effectively treated before discharge into the natural water body. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. The long-term legacy of geomorphic and riparian vegetation feedbacks on the dammed Bill Williams River, Arizona, USA

    USGS Publications Warehouse

    Kui, Li; Stella, John C.; Shafroth, Patrick B.; House, P. Kyle; Wilcox, Andrew C.

    2017-01-01

    On alluvial rivers, fluvial landforms and riparian vegetation communities codevelop as a result of feedbacks between plants and abiotic processes. The influence of vegetation on river channel and floodplain geomorphology can be particularly strong on dammed rivers with altered hydrology and reduced flood disturbance. We used a 56-year series of aerial photos on the dammed Bill Williams River (Arizona, USA) to investigate how (a) different woody riparian vegetation types influence river channel planform and (b) how different fluvial landforms drive the composition of riparian plant communities over time. We mapped vegetation types and geomorphic surfaces and quantified how relations between fluvial and biotic processes covaried over time using linear mixed models. In the decades after the dam was built, woody plant cover within the river's bottomland nearly doubled, narrowing the active channel by 60% and transforming its planform from wide and braided to a single thread and more sinuous channel. Compared with native cottonwood–willow vegetation, nonnative tamarisk locally induced a twofold greater reduction in channel braiding. Vegetation expanded at different rates depending on the type of landform, with tamarisk cover on former high-flow channels increasing 17% faster than cottonwood–willow. Former low-flow channels with frequent inundation supported a greater increase in cottonwood–willow relative to tamarisk. These findings give insight into how feedbacks between abiotic and biotic processes in river channels accelerate and fortify changes triggered by dam construction, creating river systems increasingly distinct from predam ecological communities and landforms, and progressively more resistant to restoration of predam forms and processes.

  20. Soil-to-plant transfer of arsenic and phosphorus along a contamination gradient in the mining-impacted Ogosta River floodplain.

    PubMed

    Simmler, Michael; Suess, Elke; Christl, Iso; Kotsev, Tsvetan; Kretzschmar, Ruben

    2016-12-01

    Riverine floodplains downstream of active or former metal sulfide mines are in many cases contaminated with trace metals and metalloids, including arsenic (As). Since decontamination of such floodplains on a large scale is unfeasible, management of contaminated land must focus on providing land use guidelines or even restrictions. This should be based on knowledge about how contaminants enter the food chain. For As, uptake by plants may be an important pathway, but the As soil-to-plant transfer under field conditions is poorly understood. Here, we investigated the soil-to-shoot transfer of As and phosphorus (P) in wild populations of herbaceous species growing along an As contamination gradient across an extensive pasture in the mining-impacted Ogosta River floodplain. The As concentrations in the shoots of Trifolium repens and Holcus lanatus reflected the soil contamination gradient. However, the soil-to-shoot transfer factors (TF) were fairly low, with values mostly below 0.07 (TF=As shoot /As soil ). We found no evidence for interference of As with P uptake by plants, despite extremely high molar As:P ratios (up to 2.6) in Olsen soil extracts of the most contaminated topsoils (0-20cm). Considering the restricted soil-to-shoot transfer, we estimated that for grazing livestock As intake via soil ingestion is likely more important than intake via pasture herbage. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Cycling operation of fossil plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatnagar, U.S.; Weiss, M.D.; White, W.H.

    1991-05-01

    This report presents a methodology for examining the economic feasibility of converting fossil power plants from baseload to cycling service. It employs this approach to examine a proposed change of Pepco's Potomac River units 3, 4, and 5 from baseload operation of two-shift cycling. The project team first reviewed all components and listed potential cycling effects involved in the conversion of Potomac River units 3, 4, and 5. They developed general cycling plant screening criteria including the number of hot, warm, or cold restart per year and desired load ramp rates. In addition, they evaluated specific limitations on the boiler,more » turbine, and the balance of plant. They estimated the remaining life of the facility through component evaluation and boiler testing and also identified and prioritized potential component deficiencies by their impact on key operational factors: safety, heat rate, turn down, startup/shutdown time, and plant availability. They developed solutions to these problems; and, since many solutions mitigate more than one problem, they combined and reprioritized these synergistic solutions. Economic assessments were performed on all solutions. 13 figs., 20 tabs.« less

  2. Dissolved oxygen in the Tualatin River, Oregon, during winter flow conditions, 1991 and 1992

    USGS Publications Warehouse

    Kelly, V.J.

    1996-01-01

    Throughout the winter period, November through April, wastewater treatment plants in the Tualatin River Basin discharge from 10,000 to 15,000 pounds per day of biochemical oxygen demand to the river. These loads often increase substantially during storms when streamflow is high. During the early winter season, when streamflow is frequently less than the average winter flow, the treatment plants discharge about 2,000 pounds per day of ammonia. This study focused on the capacity of the Tualatin River to assimilat oxygen-demanding loads under winter streamflow conditions during the 1992 water year, with an emphasis on peak-flow conditions in the river, and winter-base-flow conditions during November 1992. Concentrations of dissolved oxygen throughout the main stem of the river during the winter remained generally high relative to the State standard for Oregon of 6 milligrams per liter. The most important factors controlling oxygen consumption during winter-low-flow conditions were carbonaceous biochemical oxygen demand and input of oxygen-depleted waters from tributaries. During peak-flow conditions, reduced travel time and increased dilution associated with the increased streamflow minimized the effect of increased oxygen-demanding loads. During the base-flow period in November 1992, concentrations of dissolved oxygen were consistently below 6 milligrams per liter. A hydrodynamic water-quality model was used to identify the processes depleting dissolved oxygen, including sediment oxygen demand, nitrification, and carbonaceous biochemical oxygen demand. Sediment oxygen demand was the most significant factor; nitrification was also important. Hypothetical scenarios were posed to evaluate the effect of different wastewater treatment plant loads during winter-base-flow conditions. Streamflow and temperature were significant factors governing concentrations of dissolved oxygen in the main-stem river.

  3. 33 CFR 165.510 - Delaware Bay and River, Salem River, Christina River and Schuylkill River-Regulated Navigation Area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Delaware Bay and River, Salem River, Christina River and Schuylkill River-Regulated Navigation Area. 165.510 Section 165.510... Limited Access Areas Fifth Coast Guard District § 165.510 Delaware Bay and River, Salem River, Christina...

  4. 33 CFR 165.510 - Delaware Bay and River, Salem River, Christina River and Schuylkill River-Regulated Navigation Area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Delaware Bay and River, Salem River, Christina River and Schuylkill River-Regulated Navigation Area. 165.510 Section 165.510... Limited Access Areas Fifth Coast Guard District § 165.510 Delaware Bay and River, Salem River, Christina...

  5. 50. EASTSIDE PLANT: GENERAL VIEW OF GENERATOR EXCITER AND CONTROL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    50. EASTSIDE PLANT: GENERAL VIEW OF GENERATOR EXCITER AND CONTROL MECHANISM - American Falls Water, Power & Light Company, Island Power Plant, Snake River, below American Falls Dam, American Falls, Power County, ID

  6. 7. ISLAND PLANT AND HORSESHOE DAM FROM WEST BANK (negative ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. ISLAND PLANT AND HORSESHOE DAM FROM WEST BANK (negative reversed) - American Falls Water, Power & Light Company, Island Power Plant, Snake River, below American Falls Dam, American Falls, Power County, ID

  7. Plant-associated bacterial populations on native and invasive plant species: comparisons between 2 freshwater environments.

    PubMed

    Olapade, Ola A; Pung, Kayleigh

    2012-06-01

    Plant-microbial interactions have been well studied because of the ecological importance of such relationships in aquatic systems. However, general knowledge regarding the composition of these biofilm communities is still evolving, partly as a result of several confounding factors that are attributable to plant host properties and to hydrodynamic conditions in aquatic environments. In this study, the occurrences of various bacterial phylogenetic taxa on 2 native plants, i.e., mayapple (Podophyllum peltatum L.) and cow parsnip (Heracleum maximum Bartram), and on an invasive species, i.e., garlic mustard (Alliaria petiolata (M. Bieb.) Cavara & Grande), were quantitatively examined using nucleic acid staining and fluorescence in situ hybridization. The plants were incubated in triplicates for about a week within the Kalamazoo River and Pierce Cedar Creek as well as in microcosms. The bacterial groups targeted for enumeration are known to globally occur in relatively high abundance and are also ubiquitously distributed in freshwater environments. Fluorescence in situ hybridization analyses of the bacterioplankton assemblages revealed that the majority of bacterial cells that hybridized with the different probes were similar between the 2 sites. In contrast, the plant-associated populations while similar on the 3 plants incubated in Kalamazoo River, their representations were highest on the 2 native plants relative to the invasive species in Pierce Cedar Creek. Overall, our results further suggested that epiphytic bacterial assemblages are probably under the influences of and probably subsequently respond to multiple variables and conditions in aquatic milieus.

  8. Industrial water supply for the Kursk TETs-1 heating and electric power plant with the ecological safety of the River Seim taken into account

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kyakk, V. A.

    2009-09-15

    The Kursk TETs-1 heating and electric power plant is discussed as an illustration of preventing thermal contamination of its water supply (River Seim) by circulating water. An effective water supply system is taken to be one for which the overheating of the water at a monitoring site (near the outlet location) does not exceed an approved level for the water use conditions. The required cooling capacity of a spray pond for circulating and flow-through water supplies is determined.

  9. Ground beetle communities in a mountain river subjected to restoration: The Raba River, Polish Carpathians.

    PubMed

    Bednarska, Agnieszka J; Wyżga, Bartłomiej; Mikuś, Paweł; Kędzior, Renata

    2018-01-01

    Effects of passive restoration of mountain rivers on the organisms inhabiting exposed riverine sediments are considerably less understood than those concerning aquatic biota. Thus, the effects of a recovery of the Raba River after abandonment of maintenance of its channelization scheme on ground beetle (Coleoptera: Carabidae) communities were investigated by comparing 6 unmanaged cross-sections and 6 cross-sections from adjacent channelized reaches. In each cross-section, ground beetles were collected from 12 sampling sites in spring, summer, and autumn, and 8 habitat parameters characterizing the cross-sections and sampling sites were determined. Within a few years after abandonment of the Raba River channelization scheme, the width of this gravel-bed river increased up to three times and its multi-thread pattern became re-established. Consequently, unmanaged river cross-sections had significantly larger channel width and more low-flow channels and eroding cutbanks than channelized cross-sections. Moreover, sampling sites in the unmanaged cross-sections were typified by significantly steeper average surface slope and larger average distance from low-flow channels than the sites in channelized cross-sections. In total, 3992 individuals from 78 taxa were collected during the study. The ground beetle assemblages were significantly more abundant and richer in species in the unmanaged than in the channelized cross-sections but no significant differences in carabid diversity indices between the two cross-section types were recorded. Redundancy Analysis indicated active river zone width as the only variable explaining differences in abundance and species richness among the cross-sections. Multiple regression analysis indicated species diversity to predominantly depend on the degree of plant cover and substrate grain size. The study showed that increased availability of exposed sediments in the widened river reaches allowed ground beetles to increase their abundance and

  10. Effect of treated effluent diversion on Yahara River flow, Wisconsin

    USGS Publications Warehouse

    Young, K.B.

    1966-01-01

    Before December 1958 the treated sewage effluent from the Madison, Wisconsin, metropolitan area was discharged into the Yahara River at the north end of Lake Waubesa, which is upstream from the USGS gaging station on the Yahara River near McFarland, Wis. Since December 1958 the effluent has been diverted southward from the sewage treatment plant into Badfish Creek and enters the lower reach of Yahara River, thus byrpassing the gaging station. The purpose of this report is to demonstrate the effect that this diversion seems to have on the flow of the Yahara River near McFarland. Indirectly, it also demonstrates the effect on streamflow of withdrawing ground water for use in the Madison metropolitan area since the treated effluent is primarily the major portion of the used ground water.

  11. Vegetation development following stream/river restoration: more natural fluvial dynamics and morphology, return of aquatic and riparian plant species?

    NASA Astrophysics Data System (ADS)

    Soons, M. B.

    2012-04-01

    After centuries of human interventions in stream/river dynamics and morphology aimed at optimizing landscapes for agricultural and industrial purposes, new insights have inspired water managers to try and combine stream and river ecosystem functions with the conservation of biodiversity. Around the world, aquatic and riparian species have declined strongly due to pollution, destruction and fragmentation of their habitat, so that biodiversity conservation initiatives primarily focus on habitat restoration. In the past decades many stream and river restoration projects have been carried out and often hydrological dynamics and morphology have been restored to a more natural state. However, the successful restoration of aquatic and riparian habitats very often failed to result in restoration of their biodiversity. This lack of success from a biodiversity conservation perspective is usually attributed to 'dispersal limitation', meaning that the habitat may be restored, but species fail to reach the site and re-colonize it. Especially re-colonization by aquatic and riparian plant species is important, as such species function as ecosystem engineers: their presence alters fluvial dynamics and morphology, generates additional habitat heterogeneity and provides habitat and food for animal species. Following minor disturbances, re-colonization is often possible through locally remaining populations, by seeds in the seed bank or by surviving plant fragments. However, following major disturbances, colonization and establishment from other source populations are necessary. This usually occurs through dispersal of seeds (and in more aquatic species also by dispersal of vegetative fragments) into the restored wetland area. As dispersal occurs predominantly over short distances and source populations of aquatic and riparian species may be lacking in the surroundings, dispersal may be a limiting factor in the development of aquatic and riparian vegetation at a restored site. But

  12. Attenuation of Selected Emerging Contaminants During River Transport

    NASA Astrophysics Data System (ADS)

    Reinhard, M.; Gross, B.; Hadeler, A.

    2002-12-01

    The ubiquitous occurrence of emerging (non-regulated) contaminants in the aquatic environment is of concern because some of these chemicals are biologically active at low concentrations and a potential threat to wildlife and human health.. Emerging contaminants include a diverse range of chemicals, including pharmaceuticals, natural and synthetic hormones and industrial surfactants, such as alkylphenol ethoxylates (APEO) and their metabolites. To address the ecotoxicological impact of these chemicals, it is necessary to know their sources, removal efficiencies during wastewater treatment, and their behavior in the environment. In this study, the fate of selected emerging contaminants in the Santa Ana River (SAR) in Southern California was investigated. The SAR originates in the San Bernardino Mountains and flows 80 miles into the Pacific Ocean. The SAR flow stems mainly from storm runoff, wastewater treatment effluents and several other minor sources. During the dry season, SAR flow is dominated by effluent from public wastewater treatment plants. Input into the SAR was studied by analyzing samples from four major treatment plants that employ different tertiary treatment processes. To assess the fate during river water transport and during wetland treatment, samples from six sites along the river were analyzed. Effluent samples were analyzed every two months, river water every four months. River samples were taken considering the flow velocity, which is approximately 1 mile per hour. The analytical method involves solid-phase extraction using C-18 cartridges and extraction of three fractions. Samples were analyzed with and without further derivatization using GC/MS and GC/MS/MS. Results indicate significant contaminant removal during river transport, presumably by photochemical oxidation. Within a distance of nine miles, pharmaceuticals, plasticizers, flame retardants, APEOs and metabolites were attenuated with removal rates ranging from 76% for a flame retardant

  13. Preliminary assessment of the aquatic impacts of a proposed defense waste processing facility at the Savannah River Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackey, H.E. Jr.

    1979-01-01

    A review of the literature indicates that a significant body of descriptive information exists concerning the aquatic ecology of Upper Three Runs Creek and Four Mile Creek of the Savannah River Plant south of Aiken, South Carolina. This information is adequate for preparation of an environmental document evaluating these streams. These streams will be impacted by construction and operation of a proposed Defense Waste Processing Facility for solidification of high level defense waste. Potential impacts include (1) construction runoff, erosion, and siltation, (2) effluents from a chemical and industrial waste treatment facility, and (3) radionuclide releases. In order to bettermore » evaluate potential impacts, recommend mitigation methods, and comply with NEPA requirements, additional quantitative biological information should be obtained through implementation of an aquatic baseline program.« less

  14. 53. EASTSIDE PLANT: GENERAL VIEW OF GENERATOR, EXCITER, GOVERNOR, AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    53. EASTSIDE PLANT: GENERAL VIEW OF GENERATOR, EXCITER, GOVERNOR, AND CONTROL MECHANISM - American Falls Water, Power & Light Company, Island Power Plant, Snake River, below American Falls Dam, American Falls, Power County, ID

  15. Fish embryo tests with Danio rerio as a tool to evaluate surface water and sediment quality in rivers influenced by wastewater treatment plants using different treatment technologies.

    PubMed

    Thellmann, Paul; Köhler, Heinz-R; Rößler, Annette; Scheurer, Marco; Schwarz, Simon; Vogel, Hans-Joachim; Triebskorn, Rita

    2015-11-01

    In order to evaluate surface water and the sediment quality of rivers connected to wastewater treatment plants (WWTPs) with different treatment technologies, fish embryo tests (FET) with Danio rerio were conducted using native water and sediment samples collected upstream and downstream of four WWTPs in Southern Germany. Two of these WWTPs are connected to the Schussen River, a tributary of Lake Constance, and use a sand filter with final water purification by flocculation. The two others are located on the rivers Schmiecha and Eyach in the area of the Swabian Alb and were equipped with a powdered activated carbon stage 20 years ago, which was originally aimed at reducing the release of stains from the textile industry. Several endpoints of embryo toxicity including mortality, malformations, reduced hatching rate, and heart rate were investigated at defined time points of embryonic development. Higher embryotoxic potentials were found in water and sediments collected downstream of the WWTPs equipped with sand filtration than in the sample obtained downstream of both WWTPs upgraded with a powdered activated carbon stage.

  16. Anthropogenic tritium in the Loire River estuary, France

    NASA Astrophysics Data System (ADS)

    Péron, O.; Gégout, C.; Reeves, B.; Rousseau, G.; Montavon, G.; Landesman, C.

    2016-12-01

    This work is carried out in the frame of a radioecological monitoring of anthropogenic tritium from upstream and downstream of several nuclear power plants along the Loire River to its estuary. This paper studies the variation of anthropogenic tritium species in the Loire River system from upstream to the mouth of the estuary. Tritiated water (HTO and HTO in sediment pore water) and organically bound tritium (OBT) forms were analysed after dedicated pre-treatments. The collected environmental samples consist in (i) surface-sediment and core samples from the river floor, (ii) surface and water column samples. A maximum 3H activity concentration of 26 ± 3 Bq·L- 1 in the Loire River estuary is obtained whereas an environmental background level around 1 Bq·L- 1 is determined for a non influenced continental area by anthropogenic activities. The European follow-up indicator used as a screening value is 100 Bq·L- 1. The conservative tritium behaviour was used in order to characterize the tidal regime and river flow influences in the mixing zone of the Loire River estuary. Furthermore, OBT levels and total organically carbon (TOC) content are explored. Finally, ratios of OBT relative to HTO in sediment pore water in surface-sediment and core samples are also discussed.

  17. Occurrence and sources of antibiotics and their metabolites in river water, WWTPs, and swine wastewater in Jiulongjiang River basin, south China.

    PubMed

    Jiang, Hongyou; Zhang, Dandan; Xiao, Shichang; Geng, Chunnv; Zhang, Xian

    2013-12-01

    In this study, the occurrence and sources of five cataloged antibiotics and metabolites were studied in Jiulongjiang River basin, south China. Nineteen antibiotics and 13 metabolites were detected in water samples from 16 river sampling sites, wastewater from 5 swine-raising facilities, and effluent from 5 wastewater treatment plants (WWTPs). The results showed that 12 antibiotics and 6 metabolites were detected in river water samples. Sulfonamides (SAs) and their metabolites were detected at high concentrations (8.59-158.94 ng/L). Tetracyclines (TCs) and their metabolites were frequently detected in swine wastewater, and the maximum concentration was up to the level in milligram per liter. Macrolides (MLs) and β-lactams (β-Ls) were found in all WWTP effluent samples and some river samples, while they were never found in any of the swine wastewater samples. SAs and quinolones (QNs) were detected in all samples. Hierarchical cluster analysis of 16 surface water samples was applied to achieve the spatial distribution characteristics of antibiotics in the Jiulongjiang River. As a result, two categories were obviously obtained. Principal component analysis and redundancy analysis showed that TCs and SAs as well as their metabolites were the major antibiotics in Jiulongjiang River, and they mainly originated from swine wastewater, while the QNs, MLs, and β-Ls in the Jiulongjiang River came from WWTP effluent.

  18. New challenges for the management of plant nutrients and pathogens in the Waikato River, New Zealand.

    PubMed

    Vant, W N

    2001-01-01

    The water quality of the Waikato River is currently much better than it was in the 1950s. Major improvements in the treatment of the sewage and industrial wastewaters which are discharged to the river mean that levels of indicator bacteria in the lower reaches of the river are now many times lower than in the past. Eve so, conditions are still not suitable for swimming, and blue-green algal blooms occur at times. Non-point or diffuse sources of contaminants now dominate the nutrient and pathogens budgets. Progressively-intensifying farming, particularly in lowland areas, is thought to contribute the majority of the contaminants found in the river. Future improvements in water quality will therefore depend more on activities like changes to farming practice--such as retiring the riparian margins of lowland tributaries of the river--than on further advances in wastewater treatment.

  19. Dissolved silica in the tidal Potomac River and Estuary, 1979-81 water years

    USGS Publications Warehouse

    Blanchard, Stephen F.

    1988-01-01

    The Potomac River at Chain Bridge is the major riverine source of dissolved silica (DSi) to the tidal Potomac River and Estuary. DSi concentrations at Chain Bridge are positively correlated with river discharge; river discharge is an important factor controlling rates of supply, dilution, and residence time. When river flow is high, the longitudinal DSi distribution is conservative. When river flow is low, other processes, such as phytoplankton uptake, benthic flux, resuspension, ground-water discharge, and water-column dissolution of diatoms, tend to be more influential than the river. Elevated concentrations of DSi in sewage-treatment-plant effluent in the Washington, D.C., area raise the DSi concentration of receiving Potomac River water. The tidal river zone serves as a net sink for DSi as a result of phytoplankton uptake. Ultimately, the biogenic silica from the tidal river is transported to the transition zone, where it is mineralized. As a result, the DSi concentration in the transition zone increases during summer. The DSi concentrations in the estuarine zone are largely controlled by dilution by Chesapeake Bay water and by phytoplankton uptake.

  20. Geology and ground water of the Savannah River Plant and vicinity, South Carolina

    USGS Publications Warehouse

    Siple, George E.

    1967-01-01

    The area described in this report covers approximately 2,600 square miles in west-central South Carolina and includes the site of the Savannah River Plant, a major production facility of the U.S. Atomic Energy Commission. The climate, surface drainage, and land forms of the study area are typical of the southern part of the Atlantic Coastal Plain. Precipitation is normally abundant and fairly evenly distributed throughout the year, and the mean annual temperature is moderately warm (64?F). The major streams that drain the area (the Savannah, Salkehatchie, and Edisto Rivers) have low gradients and flow in a southeasterly direction toward the Atlantic Ocean. Surface features of the area include narrow, flat-bottomed, steep-sided valleys and broad gently rolling interfluvial areas. Those parts of the Coastal Plain included within the report area can be subdivided into the Aiken Plateau, the Congaree Sandhills, and the Coastal Terraces. The area is underlain by a sequence of unconsolidated and partly consolidated sediments of Late Cretaceous, Tertiary, and Quaternary age. The unconsolidated sediments were deposited unconformably on a basement of igneous and metamorphic rocks of Precambrian and Paleozoic age and sedimentary rocks of Triassic age. The basement rocks are similar to the granite-diorite complex of the Charlotte Belt, the metamorphosed rocks of the Carolina Slate Belt, and the consolidated sediments of the Newark Group. The unconsolidated sediments strike about N. 60 ? E. and dip 6-20 feet per mile to the southeast. They form a wedge-shaped mass that increases in thickness toward the southeast to slightly more than 1,200 feet in the vicinity of Allendale, S.C., on the southeast or downdip side of the study area. The oldest or lowermost unconsolidated sedimentary unit, the Tuscaloosa Formation of Late Cretaceous age, is overlain in the subsurface by beds that are also probably Late Cretaceous in age and that herein are named the Ellenton Formation. The Upper

  1. An ethnobotanical study of anti-malarial plants among indigenous people on the upper Negro River in the Brazilian Amazon.

    PubMed

    Frausin, Gina; Hidalgo, Ari de Freitas; Lima, Renata Braga Souza; Kinupp, Valdely Ferreira; Ming, Lin Chau; Pohlit, Adrian Martin; Milliken, William

    2015-11-04

    In this article we present the plants used for the treatment of malaria and associated symptoms in Santa Isabel do Rio Negro in the Brazilian Amazon. The region has important biological and cultural diversities including more than twenty indigenous ethnic groups and a strong history in traditional medicine. The aims of this study are to survey information in the Baniwa, Baré, Desana, Piratapuia, Tariana, Tukano, Tuyuca and Yanomami ethnic communities and among caboclos (mixed-ethnicity) on (a) plant species used for the treatment of malaria and associated symptoms, (b) dosage forms and (c) distribution of these anti-malarial plants in the Amazon. Information was obtained through classical ethnobotanical and ethnopharmacological methods from interviews with 146 informants in Santa Isabel municipality on the upper Negro River, Brazil. Fifty-five mainly native neotropical plant species from 34 families were in use. The detailed uses of these plants were documented. The result was 187 records (64.5%) of plants for the specific treatment of malaria, 51 records (17.6%) of plants used in the treatment of liver problems and 29 records (10.0%) of plants used in the control of fevers associated with malaria. Other uses described were blood fortification ('dar sangue'), headache and prophylaxis. Most of the therapeutic preparations were decoctions and infusions based on stem bark, root bark and leaves. These were administered by mouth. In some cases, remedies were prepared with up to three different plant species. Also, plants were used together with other ingredients such as insects, mammals, gunpowder and milk. This is the first study on the anti-malarial plants from this region of the Amazon. Aspidosperma spp. and Ampelozizyphus amazonicus Ducke were the most cited species in the communities surveyed. These species have experimental proof supporting their anti-malarial efficacy. The dosage of the therapeutic preparations depends on the kind of plant, quantity of plant

  2. EXTERIOR VIEW SHOWING THE OILOSTATIC TERMINALS IN THE GENERATING PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EXTERIOR VIEW SHOWING THE OILOSTATIC TERMINALS IN THE GENERATING PLANT SWITCH YARD. - Wilson Dam & Hydroelectric Plant, Oilostatic Transmission System, Spanning Tennessee River at Wilson Dam Road (Route 133), Muscle Shoals, Colbert County, AL

  3. 36. ISLAND PLANT: Nos. 1 AND 2 TWENTYSIX INCH HORIZONTAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. ISLAND PLANT: Nos. 1 AND 2 TWENTY-SIX INCH HORIZONTAL SAMSON TURBINES - American Falls Water, Power & Light Company, Island Power Plant, Snake River, below American Falls Dam, American Falls, Power County, ID

  4. Looking southwest toward the basic oxygen steelmaking plant from a ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking southwest toward the basic oxygen steelmaking plant from a neighborhodd in Braddock by Eleventh Street. - U.S. Steel Edgar Thomson Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Braddock, Allegheny County, PA

  5. The role of large wood in retaining fine sediment, organic matter and plant propagules in a small, single-thread forest river

    NASA Astrophysics Data System (ADS)

    Osei, Nana A.; Gurnell, Angela M.; Harvey, Gemma L.

    2015-04-01

    This paper investigates associations among large wood accumulations, retained sediment, and organic matter and the establishment of a viable propagule bank within a forested reach of a lowland river, the Highland Water, UK. A wood survey within the 2-km study reach, illustrates that the quantity of wood retained within the channel is typical of relatively unmanaged river channels bordered by deciduous woodland and that the wood accumulations (jams) that are present are well developed, typically spanning the river channel and comprised of wood that is well decayed. Sediment samples were obtained in a stratified random design focusing on nine subreaches within which samples were aggregated from five different types of sampling location. Two of these locations were wood-associated (within and on bank faces immediately adjacent to wood jams), and the other three locations represented the broader river environment (gravel bars, bank faces, floodplain). The samples were analysed to establish their calibre, organic, and viable plant propagule content. The gravel bar sampling locations retained significantly coarser sediment containing a lower proportion of organic matter and viable propagules than the other four sampling locations. The two wood-related sampling locations retained sediment of intermediate calibre between the gravel bar and the bank-floodplain samples but they retained significantly more organic matter and viable propagules than were found in the other three sampling locations. In particular, the jam bank samples (areas of sediment accumulation against bank faces adjacent to wood jams) contained the highest number of propagules and the largest number of propagule species. These results suggest that retention of propagules, organic matter and relatively fine sediment in and around wood jams has the potential to support vegetation regeneration, further sediment retention, and as a consequence, landform development within woodland streams, although this

  6. Evaluating the effects of monthly river flow trends on Environmental Flow allocation

    NASA Astrophysics Data System (ADS)

    Torabi Haghighi, Ali; Klove, Bjorn

    2010-05-01

    The Natural river flow regime can be changed by the construction of hydraulic structures such as dams, hydropower plants, pump stations and so on. Due to the new river flow regime, some parts of water resources must be allocated to environmental flow (EF). There are more than 62 hydrological methods which have been proposed for calculating EF, although these methods don't have enough acceptability to be used in practical cases and The so other methods are preferred such as holistic,….. Most hydrological methods do not take basin physiography, climate, location of hydraulic structures, monthly river flow regime, historical trend of river (annually regime), purpose of hydraulic structures and so on, into consideration. In the present work, data from more than 180 rivers from Asia (71 rivers and 16 countries), Europe (79 Rivers and 23 countries), Americas (23 rivers and 10 countries) and Africa (12 rivers and 6 countries) were used to assess EF. The rivers were divided into 5 main groups of regular permanent rivers, semi regular permanent rivers, irregular permanent rivers, seasonal rivers and dry rivers, for each groups EF calculated by some hydrological methods and compared with the natural flow regime. The results showed that besides the amount of EF, the monthly distribution of flow is very important and should be considered in reservoir operation. In seasonal rivers and dry rivers, hydraulic structure construction can be useful for conserving aquatic ecosystems

  7. A two-dimensional contaminant fate and transport model for the lower Athabasca River

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brownlee, B.G.; Booty, W.G.; MacInnis, G.A.

    1995-12-31

    The lower Athabasca River flows through the Athabasca Oil Sands deposits in northeastern Alberta. Two oil sands mining/extraction/upgrading plants operate near the river downstream from Fort McMurray. Process water is stored in large tailings ponds. One of the plants (Suncor) has a licensed discharge (mostly cooling water) to the river. This effluent contains low concentrations ({<=} 1 {micro}g/L) of various polycyclic aromatic compounds (PACs). Several tributary streams which cut through oil sands deposits are potential sources of hydrocarbons to the Athabasca. The authors have found that river suspended sediments give positive responses in a number of toxicity tests, using bothmore » direct and indirect (organic-solvent extract) methods. Several environmental impact assessments are required as a result of industry expansion. To provide an assessment tool for PACs, the authors are developing a two-dimensional contaminant fate and transport model for a 120-km portion of the Athabasca River downstream from Fort McMurray. Hydraulic calibration of the model was done using sodium and chloride from a major tributary as tracers. Two groups of compounds are being modelled: (1) PACs from the Suncor effluent, and (2) PACs from natural/background sources. PAC concentrations in the river were typically < 1 ng/L, requiring large volume extractions and highly sensitive analysis. Processes such as sediment-water partitioning and biodegradation are being estimated from field experiments using river water and suspended sediment. Photodegradation is likely unimportant in this turbid river due to low penetration of 280--350 nm light. Initially, volatilization will be modelled using estimated or literature values for Henry`s constants, but may require more refined estimates from laboratory experiments.« less

  8. Determination of metal-based nanoparticles in the river Dommel in the Netherlands via ultrafiltration, HR-ICP-MS and SEM.

    PubMed

    Markus, A A; Krystek, P; Tromp, P C; Parsons, J R; Roex, E W M; Voogt, P de; Laane, R W P M

    2018-08-01

    We investigated the occurrence of metal-based nanoparticles in a natural system, the river Dommel in the Netherlands. The river itself is well-studied as far as hydrology and water quality is concerned, easily accessible and contains one major wastewater treatment plant discharging onto this river. We sampled water from various locations along the river and collected samples of influent, effluent and sewage sludge from the wastewater treatment plant. The sampling campaign was carried out in June 2015 and these samples were analysed for seven elements using high-resolution inductively coupled plasma mass spectrometry (HR-ICP-MS), ultrafiltration with a sequence of mesh sizes and scanning electron microscopy (SEM). From the results we conclude that there are indeed nanoparticles present in the treatment plant we studied, as we found titanium and gold particles in the influent and effluent. In the river water only 10 to 20% of the mass concentration of titanium, cerium and other elements we examined is made up of free, i.e. unattached, particles with a size smaller than 20 nm or of dissolved material. The rest is attached to natural colloids or is present as individual particles or clusters of smaller particles, as it could be filtered out with 450 nm ultrafilters. We found evidence that there is no appreciable anthropogenic emission of cerium into the river, based on the geochemical relationship between cerium and lanthanum. Besides, the effluent of the treatment plant has lower concentrations of some examined elements than the surface water upstream. The treatment plant discharges much less of these elements than estimated using previous publications. However, a potential diffuse source of titanium dioxide in the form of nanoparticles or of larger particles is their use in paints and coatings, as the concentration of titanium increased considerably in the urbanised area of the river Dommel. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. SOURCES AND TRANSFORMATIONS OF NITROGEN, CARBON, AND PHOSPHORUS IN THE POTOMAC RIVER ESTUARY

    NASA Astrophysics Data System (ADS)

    Pennino, M. J.; Kaushal, S.

    2009-12-01

    Global transport of nitrogen (N), carbon (C), and phosphorus (P) in river ecosystems has been dramatically altered due to urbanization. We examined the capacity of a major tributary of the Chesapeake Bay, the Potomac River, to transform carbon, nitrogen, and phosphorus inputs from the world’s largest advanced wastewater treatment facility (Washington D.C. Water and Sewer Authority). Surface water and effluent samples were collected along longitudinal transects of the Potomac River seasonally and compared to long-term interannual records of carbon, nitrogen, and phosphorus. Water samples from seasonal longitudinal transects were analyzed for dissolved organic and inorganic nitrogen and phosphorus, total organic carbon, and particulate carbon, nitrogen, and phosphorus. The source and quality of organic matter was characterized using fluorescence spectroscopy, excitation emission matrices (EEMs), and PARAFAC modeling. Sources of nitrate were tracked using stable isotopes of nitrogen and oxygen. Along the river network stoichiometric ratios of C, N, and P were determined across sites and related to changes in flow conditions. Land use data and historical water chemistry data were also compared to assess the relative importance of non-point sources from land-use change versus point-sources of carbon, nitrogen, and phosphorus. Preliminary data from EEMs suggested that more humic-like organic matter was important above the wastewater treatment plant, but more protein-like organic matter was present below the treatment plant. Levels of nitrate and ammonia showed increases within the vicinity of the wastewater treatment outfall, but decreased rapidly downstream, potentially indicating nutrient uptake and/or denitrification. Phosphate levels decreased gradually along the river with a small increase near the wastewater treatment plant and a larger increase and decrease further downstream near the high salinity zone. Total organic carbon levels show a small decrease

  10. The impact of commercially treated oil and gas produced water discharges on bromide concentrations and modeled brominated trihalomethane disinfection byproducts at two downstream municipal drinking water plants in the upper Allegheny River, Pennsylvania, USA.

    PubMed

    Landis, Matthew S; Kamal, Ali S; Kovalcik, Kasey D; Croghan, Carry; Norris, Gary A; Bergdale, Amy

    2016-01-15

    In 2010, a dramatic increase in the levels of total trihalomethane (THM) and the relative proportion of brominated species was observed in finished water at several Pennsylvania water utilities (PDW) using the Allegheny River as their raw water supply. An increase in bromide (Br(-)) concentrations in the Allegheny River was implicated to be the cause of the elevated water disinfection byproducts. This study focused on quantifying the contribution of Br(-) from a commercial wastewater treatment facility (CWTF) that solely treats wastes from oil and gas producers and discharges into the upper reaches of the Allegheny River, and impacts on two downstream PDWs. In 2012, automated daily integrated samples were collected on the Allegheny River at six sites during three seasonal two-week sampling campaigns to characterize Br(-) concentrations and river dispersion characteristics during periods of high and low river discharges. The CWTF discharges resulted in significant increases in Br(-) compared to upstream baseline values in PDW raw drinking water intakes during periods of low river discharge. During high river discharge, the assimilative dilution capacity of the river resulted in lower absolute halide concentrations, but significant elevations Br(-) concentrations were still observed at the nearest downstream PDW intake over baseline river levels. On days with active CWTF effluent discharge the magnitude of bromide impact increased by 39 ppb (53%) and 7 ppb (22%) for low and high river discharge campaigns, respectively. Despite a declining trend in Allegheny River Br(-) (2009-2014), significant impacts from CWTF and coal-fired power plant discharges to Br(-) concentrations during the low river discharge regime at downstream PDW intakes was observed, resulting in small modeled increases in total THM (3%), and estimated positive shifts (41-47%) to more toxic brominated THM analogs. The lack of available coincident measurements of THM, precursors, and physical parameters

  11. 8. TURBINE DECK (UPPER FLOOR) INSIDE STEAM PLANT, SHOWING STEAM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. TURBINE DECK (UPPER FLOOR) INSIDE STEAM PLANT, SHOWING STEAM TURBINES AND GENERATORS, LOOKING NORTH. November 13, 1990 - Crosscut Steam Plant, North side Salt River near Mill Avenue & Washington Street, Tempe, Maricopa County, AZ

  12. 2. INTERIOR VIEW OF CROSSCUT HYDRO PLANT, SHOWING 25 CYCLE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. INTERIOR VIEW OF CROSSCUT HYDRO PLANT, SHOWING 25 CYCLE GENERATING UNITS AND EXCITER UNITS FOREGROUND Photographer unknown, March 4, 1953 - Cross Cut Hydro Plant, North Side of Salt River, Tempe, Maricopa County, AZ

  13. Walla Walla River Basin Fish Habitat Enhancement Project, 2002-2003 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volkman, Jed

    2005-12-01

    In 2002 and 2003, the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) Fisheries Habitat Program implemented stream habitat restoration and protection efforts on private properties in the Walla Walla River Basin with funding from Bonneville Power Administration (BPA). The objective of this effort is to protect and restore habitat critical to the recovery of weak or reintroduced populations of salmonid fish. The CTUIR has currently enrolled nine properties into this program: two on Couse Creek, two adjacent properties on Blue Creek, one on Patit Creek, and four properties on the mainstem Walla Walla River. Major accomplishments during the reportingmore » period include the following: (1) Secured approximately $229,000 in project cost share; (2) Purchase of 46 acres on the mainstem Walla Walla River to be protected perpetually for native fish and wildlife; (3) Developed three new 15 year conservation easements with private landowners; (4) Installed 3000 feet of weed barrier tarp with new plantings within project area on the mainstem Walla Walla River; (5) Expanded easement area on Couse Creek to include an additional 0.5 miles of stream corridor and 32 acres of upland habitat; (6) Restored 12 acres on the mainstem Walla Walla River and 32 acres on Couse Creek to native perennial grasses; and (7) Installed 50,000+ new native plants/cuttings within project areas.« less

  14. Final Opportunity to Rehabilitate an Urban River as a Water Source for Mexico City

    PubMed Central

    Mazari-Hiriart, Marisa; Pérez-Ortiz, Gustavo; Orta-Ledesma, María Teresa; Armas-Vargas, Felipe; Tapia, Marco A.; Solano-Ortiz, Rosa; Silva, Miguel A.; Yañez-Noguez, Isaura; López-Vidal, Yolanda; Díaz-Ávalos, Carlos

    2014-01-01

    The aim of this study was to evaluate the amount and quality of water in the Magdalena-Eslava river system and to propose alternatives for sustainable water use. The system is the last urban river in the vicinity of Mexico City that supplies surface water to the urban area. Historical flow data were analyzed (1973–2010), along with the physicochemical and bacteriological attributes, documenting the evolution of these variables over the course of five years (2008–2012) in both dry and rainy seasons. The analyses show that the flow regime has been significantly altered. The physicochemical variables show significant differences between the natural area, where the river originates, and the urban area, where the river receives untreated wastewater. Nutrient and conductivity concentrations in the river were equivalent to domestic wastewater. Fecal pollution indicators and various pathogens were present in elevated densities, demonstrating a threat to the population living near the river. Estimates of the value of the water lost as a result of mixing clean and contaminated water are presented. This urban river should be rehabilitated as a sustainability practice, and if possible, these efforts should be replicated in other areas. Because of the public health issues and in view of the population exposure where the river flows through the city, the river should be improved aesthetically and should be treated to allow its ecosystem services to recover. This river represents an iconic case for Mexico City because it connects the natural and urban areas in a socio-ecological system that can potentially provide clean water for human consumption. Contaminated water could be treated and reused for irrigation in one of the green areas of the city. Wastewater treatment plants and the operation of the existing purification plants are urgent priorities that could lead to better, more sustainable water use practices in Mexico City. PMID:25054805

  15. Final opportunity to rehabilitate an urban river as a water source for Mexico City.

    PubMed

    Mazari-Hiriart, Marisa; Pérez-Ortiz, Gustavo; Orta-Ledesma, María Teresa; Armas-Vargas, Felipe; Tapia, Marco A; Solano-Ortiz, Rosa; Silva, Miguel A; Yañez-Noguez, Isaura; López-Vidal, Yolanda; Díaz-Ávalos, Carlos

    2014-01-01

    The aim of this study was to evaluate the amount and quality of water in the Magdalena-Eslava river system and to propose alternatives for sustainable water use. The system is the last urban river in the vicinity of Mexico City that supplies surface water to the urban area. Historical flow data were analyzed (1973-2010), along with the physicochemical and bacteriological attributes, documenting the evolution of these variables over the course of five years (2008-2012) in both dry and rainy seasons. The analyses show that the flow regime has been significantly altered. The physicochemical variables show significant differences between the natural area, where the river originates, and the urban area, where the river receives untreated wastewater. Nutrient and conductivity concentrations in the river were equivalent to domestic wastewater. Fecal pollution indicators and various pathogens were present in elevated densities, demonstrating a threat to the population living near the river. Estimates of the value of the water lost as a result of mixing clean and contaminated water are presented. This urban river should be rehabilitated as a sustainability practice, and if possible, these efforts should be replicated in other areas. Because of the public health issues and in view of the population exposure where the river flows through the city, the river should be improved aesthetically and should be treated to allow its ecosystem services to recover. This river represents an iconic case for Mexico City because it connects the natural and urban areas in a socio-ecological system that can potentially provide clean water for human consumption. Contaminated water could be treated and reused for irrigation in one of the green areas of the city. Wastewater treatment plants and the operation of the existing purification plants are urgent priorities that could lead to better, more sustainable water use practices in Mexico City.

  16. Cryptosporidium Source Tracking in the Potomac River Watershed

    EPA Science Inventory

    To better characterize the presence of Cryptosporidium in the Potomac River watershed, a PCR-based genotyping tool was used to analyze 64 base-flow and 28 storm-flow samples from five sites within the watershed. These sites included two water treatment plant intakes as well as t...

  17. Changes in phosphorus concentrations and loads in the Assabet River, Massachusetts, October 2008 through April 2014

    USGS Publications Warehouse

    Savoie, Jennifer G.; DeSimone, Leslie A.; Mullaney, John R.; Zimmerman, Marc J.; Waldron, Marcus C.

    2016-10-24

    Treated effluent discharged from municipal wastewater-treatment plants to the Assabet River in central Massachusetts includes phosphorus, which leads to increased growth of nuisance aquatic plants that decrease the river’s water quality and aesthetics in impounded reaches during the growing season. To improve the river’s water quality and aesthetics, the U.S. Environmental Protection Agency approved a total maximum daily load for phosphorus in 2004 that directed the wastewater-treatment plants to reduce the amount of total phosphorus discharged to the river by 2012. The permitted total phosphorus monthly average of 0.75 milligrams per liter during the aquatic plant growing season (April 1 through October 31) was reduced by the total maximum daily load to a target of 0.1 milligrams per liter by 2012, and the nongrowing-season limit was unchanged at 1.0 milligrams per liter.From October 2008 through April 2014, the U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, measured streamflow and collected weekly flow-proportional, composite samples of water from the Assabet River for analysis of concentrations of total phosphorus and orthophosphate. Streamflow and concentration data were used to estimate total phosphorus and orthophosphate loads in the river. The purpose of this monitoring effort was to evaluate phosphorus concentrations and loads in the river before, during, and after the wastewater-treatment-plant upgrades and to assess the effects of seasonal differences in permitted discharges. The locations of water-quality-monitoring stations, with respect to the Hudson and Ben Smith impoundments, enabled examination of effects of phosphorus entering and leaving the impoundments.Annual median concentrations of total phosphorus in wastewater-treatment plants were reduced by more than 80 percent with the plant upgrades. Measured instream annual median concentrations of total phosphorus in the Assabet River decreased

  18. Remote monitoring of the Gravelly Run thermal plume at Hopewell and the thermal plume at the Surry Nuclear Power Plant on the James River

    NASA Technical Reports Server (NTRS)

    Talay, T. A.; Sykes, K. W.; Kuo, C. Y.

    1979-01-01

    On May 17, 1977, a remote sensing experiment was conducted on the James River, Virginia, whereby thermal spectrometer and near-infrared photography data of thermal discharges at Hopewell and the Surry nuclear power plant were obtained by an aircraft for one tidal cycle. These data were used in subsequent investigations into the near field discharge trajectories. For the Gravelly Run thermal plume at Hopewell, several empirical expressions for the plume centerline were evaluated by comparisons of the computed trajectories and those observed in the remote sensing images.

  19. PCB concentrations in Pere Marquette River and Muskegon River watersheds, 2002

    USGS Publications Warehouse

    Fogarty, Lisa R.

    2005-01-01

    Polychlorinated biphenyl compounds (PCBs) are a class of209 individual compounds (known as congeners) for which there are no known natural sources. PCBs are carcinogenic and bioaccumulative compounds. For over 40 years, PCBs were manufactured in the United States. The flame resistant property of PCBs made them ideal chemicals for use as flame-retardants, and as coolants and lubricants in transformers and other electrical equipment. PCBs were also used in heating coils, carbonless paper, degreasers, varnishes, lacquers, waterproofing material, and cereal boxes. In addition, they were frequently used in the manufacturing of plastics, adhesives, and paints.During the manufacturing period of PCBs, these chemicals entered the environment though atmospheric release during manufacturing and burning of PCB products, leaks and spills, and improper disposal. Although PCB manufacturing was banned over 20 years ago, PCBs still enter the environment from hazardous waste sites, improper disposals of PCB-containing products, weathering of asphalt and other substances containing PCBs, burning of PCB containing products, leakage from old equipment, leaching from landfills, and release from contaminated sediments. PCBs do not readily break down in the environment, thus remain there for long periods of time. A small amount may remain dissolved in water but most adhere to organic particles and bottom sediments.In sufficient concentrations, PCBs affect human, wildlife, and aquatic health. PCBs accumulate in fatty tissues of animals and fish and are passed on to those that eat them. PCBs are animal teratogens and potentially carcinogenic. They can cause death of animals, fish, and birds; death or low growth rate of plants; shortened lifespan; reproductive problems; and lower fertility. Women who are exposed to high levels of PCBs may have babies with slightly lower birth weights and transfer the PCBs through the breast milk, which may affect the immune system and motor development of

  20. "Projeto Rios" (Rivers Project) a methodology of classroom of the future (northern Portugal)

    NASA Astrophysics Data System (ADS)

    Almeida, Ana

    2013-04-01

    The rivers and the surrounding land drained by them are very important wildlife habitats. The water itself provides the environment for plants and animals, while the banks and nearby land support creatures such as otters, water lizards, dragonflies and a variety of water-loving plants. Using a different teaching strategy, on the latest three years, students of the eighth grade of the EB 2.3 Agrela school have been implementing the project "Nós e o Leça" (We and the river Leça). This initiative is part of a nationwide project in Portugal, the "Projeto Rios", which is a tool that aims the adoption and monitoring of a 500 meter river section, promoting society's awareness for the problems and the need of protection and recovery of the riparian systems. These students adopted a section of the Leça River, which is the one that is passing nearby our school. Throughout the mentioned school years, the children made field trips for characterization, knowledge and observation of some happenings on the section adopted, with the aid of a complete kit of materials (galoshes, loupes, tweezers, trays, fishnets, tape measure, tape of pH...). Token fields for identifications of plants and animals and specific data sheets/questionnaires, were also used and fulfilled. While in the river, it is done the collection of macro invertebrates to conclude about the water quality of the section under study. Youth also detect disturbances in the balance of the riverine ecosystem, either naturally occurring or of human origin. Aiming the sustained development and the citizenship education, the students performed a final action for improvement, which consisted in the uprooting of an invasive plant, in this case "the herb-of-fortune" and also gathering the "trash" founded along the adopted stretch of the river. Back to the classroom, we selected photographs and the collected data is treated and discussed to produce information (summaries, reports, tables, charts,...) which will be published

  1. Riparian Vegetation Response to the March 2008 Short-Duration, High-Flow Experiment-Implications of Timing and Frequency of Flood Disturbance on Nonnative Plant Establishment Along the Colorado River Below Glen Canyon Dam

    USGS Publications Warehouse

    Ralston, Barbara E.

    2010-01-01

    Riparian plant communities exhibit various levels of diversity and richness. These communities are affected by flooding and are vulnerable to colonization by nonnative species. Since 1996, a series of three high-flow experiments (HFE), or water releases designed to mimic natural seasonal flooding, have been conducted at Glen Canyon Dam, Ariz., primarily to determine the effectiveness of using high flows to conserve sediment, a limited resource. These experiments also provide opportunities to examine the susceptibility of riparian plant communities to nonnative species invasions. The third and most recent HFE was conducted from March 5 to 9, 2008, and scientists with the U.S. Geological Survey's Grand Canyon Monitoring and Research Center examined the effects of high flows on riparian vegetation as part of the overall experiment. Total plant species richness, nonnative species richness, percent plant cover, percent organic matter, and total carbon measured from sediment samples were compared for Grand Canyon riparian vegetation zones immediately following the HFE and 6 months later. These comparisons were used to determine if susceptibility to nonnative species establishment varied among riparian vegetation zones and if the timing of the HFE affected nonnative plant establishment success. The 2008 HFE primarily buried vegetation rather than scouring it. Percent nonnative cover did not differ among riparian vegetation zones; however, in the river corridor affected by Glen Canyon Dam operations, nonnative species richness showed significant variation. For example, species richness was significantly greater immediately after and 6 months following the HFE in the hydrologic zone farthest away from the shoreline, the area that represents the oldest riparian zone within the post-dam riparian area. In areas closer to the river channel, tamarisk (Tamarix ramosissima X chinensis) seedling establishment occurred (<2 percent cover) in 2008 but not to the extent reported in

  2. Output improvement of Sg. Piah run-off river hydro-electric station with a new computed river flow-based control system

    NASA Astrophysics Data System (ADS)

    Jidin, Razali; Othman, Bahari

    2013-06-01

    The lower Sg. Piah hydro-electric station is a river run-off hydro scheme with generators capable of generating 55MW of electricity. It is located 30km away from Sg. Siput, a small town in the state of Perak, Malaysia. The station has two turbines (Pelton) to harness energy from water that flow through a 7km tunnel from a small intake dam. The trait of a run-off river hydro station is small-reservoir that cannot store water for a long duration; therefore potential energy carried by the spillage will be wasted if the dam level is not appropriately regulated. To improve the station annual energy output, a new controller based on the computed river flow has been installed. The controller regulates the dam level with an algorithm based on the river flow derived indirectly from the intake-dam water level and other plant parameters. The controller has been able to maintain the dam at optimum water level and regulate the turbines to maximize the total generation output.

  3. An Experimental Approach for Restoration of Salmon River Ecosystems

    NASA Astrophysics Data System (ADS)

    Stanford, J. A.

    2005-05-01

    River ecosystem theory predicts that dynamic, nonlinear physical and biological processes linking water, heat and materials (biota, sediment, plant-growth nutrients) flux and retention to fluvial landscape change in a habitat mosaic context drive salmon life histories and productivity in freshwater. Multidisciplinary studies and cross-site comparisons within a network of pristine salmon river observatories around the north Pacific Rim support these predictions. Billions of dollars have been spent on salmon-river restoration worldwide to little avail, mainly because salmon biology, rather than ecosystem process boundaries and bottlenecks, is driving restoration goals. I argue that entire river catchment restoration, in relation to these dynamic processes and bottlenecks and also coherent with the estuarine and marine implications of salmon life history parameters, is the only possibility for sustaining or restoring natural productivity and life history (genetic) diversity in salmon rivers. This can be done only in a few places owing to the continual press of human demands on river ecosystems, the morass of legal challenges to proactive salmon river restoration strategies and insufficient understanding of freshwater and marine linkages. The Elwha and Yakima Rivers in Washington, among a few others that I will name, offer real opportunities to restore entire watersheds for wild salmon. These restorations should be viewed as experimental manipulations in which outcomes may be evaluated against norms measured in the salmon river observatory network. Bias from hatcheries and harvest, among other anthropogenic interferences, must be eliminated for such experiments to be evaluated in light of contemporary river ecosystem theory. And, a much more synthetic understanding of freshwater and marine linkages must be forthcoming in concert with a much more robust general theory of river restoration.

  4. Vegetation of the Elwha River estuary: Chapter 8 in Coastal habitats of the Elwha River, Washington--biological and physical patterns and processes prior to dam removal

    USGS Publications Warehouse

    Shafroth, Patrick B.; Fuentes, Tracy L.; Pritekel, Cynthia; Beirne, Matthew M.; Beauchamp, Vanessa B.; Duda, Jeffrey J.; Warrick, Jonathan A.; Magirl, Christopher S.

    2011-01-01

    The Elwha River estuary supports one of the most diverse coastal wetland complexes yet described in the Salish Sea region, in terms of vegetation types and plant species richness. Using a combination of aerial imagery and vegetation plot sampling, we identified 6 primary vegetation types and 121 plant species in a 39.7 ha area. Most of the estuary is dominated by woody vegetation types, with mixed riparian forest being the most abundant (20 ha), followed by riparian shrub (6.3 ha) and willow-alder forest (3.9 ha). The shrub-emergent marsh transition vegetation type was fourth most abundant (2.2 ha), followed by minor amounts of dunegrass (1.75 ha) and emergent marsh (0.2 ha). This chapter documents the abundance, distribution, and floristics of these six vegetation types, including plant species richness, life form, species origin (native or introduced), and species wetland indicator status. These data will serve as a baseline to which future changes can be compared, following the impending removal of Glines Canyon and Elwha Dams upstream on the Elwha River. Dam removals may alter many of the processes, materials, and biotic interactions that influence the estuary plant communities, including hydrology, salinity, sediment and wood transport, nutrients, and plant-microbe interactions.

  5. Beaver herbivory of willow under two flow regimes: A comparative study on the Green and Yampa rivers

    USGS Publications Warehouse

    Breck, Stewart W.; Wilson, Kenneth R.; Andersen, Douglas C.

    2003-01-01

    The effect of flow regulation on plant-herbivore ecology has received very little attention, despite the fact that flow regulation can alter both plant and animal abundance and environmental factors that mediate interactions between them. To determine how regulated flows have impacted beaver (Castor canadensis) and sandbar willow (Salix exigua) ecology, we first quantified the abundance and mapped the spatial distribution of sandbar willow on alluvial sections of the flow-regulated Green River and free-flowing Yampa River in northwestern Colorado. We then established 16 and 15 plots (1 m × 2.7 m) in patches of willow on the Green and Yampa Rivers, respectively, to determine whether rates of beaver herbivory of willow differed between rivers (Green versus Yampa River), seasons (fall-winter versus spring-summer), and years (spring 1998-spring 1999 versus spring 1999-spring 2000). Areal extent of willow was similar on each river, but Green River willow patches were smaller and more numerous. Beavers cut more stems during fall and winter than spring and summer and cut over 6 times more stems (percentage basis) on the Green River than on the Yampa River. We attribute the between-river difference in herbivory to higher availability of willow, greater beaver density, and lower availability of young Fremont cottonwood (Populus deltoides subsp. wislizenii; an alternative food source) on the Green River. Flow regulation increased willow availability to beaver by promoting the formation of island patches that are continuously adjacent to water and feature a perimeter with a relatively high proportion of willow interfacing with water.

  6. Alaska Melilotus invasions: Distribution, origin, and susceptibility of plant communities

    USGS Publications Warehouse

    Conn, J.S.; Beattie, K.L.; Shephard, M.A.; Carlson, M.L.; Lapina, I.; Hebert, M.; Gronquist, R.; Densmore, R.; Rasy, M.

    2008-01-01

    Melilotus alba and M. officinalis were introduced to Alaska in 1913 as potential forage crops. These species have become naturalized and are now invading large, exotic plant-free regions of Alaska. We determined distributions of M. alba and M. officinalis in Alaska from surveys conducted each summer from 2002 to 2005. Melilotus alba and M. officinalis occurred at 721 and 205 sites, respectively (39,756 total sites surveyed). The northward limit for M. alba and M. officinalis was 67.15??N and 64.87??N, respectively. Both species were strictly associated with soil disturbance. Melilotus alba extended no farther than 15 m from road edges except where M. alba on roadsides met river floodplains and dispersed downriver (Matanuska and Nenana Rivers). Melilotus has now reached the Tanana River, a tributary of the Yukon River. Populations on floodplains were most extensive on braided sections. On the Nenana River, soil characteristics did not differ between where M. alba was growing versus similar areas where it had not yet reached. The pH of river soils (7.9-8.3) was higher than highway soils (7.3). Upland taiga plant communities grow on acid soils which may protect them from invasion by Melilotus, which prefer alkaline soils; however, early succession communities on river floodplains are susceptible because soils are alkaline. ?? 2008 Regents of the University of Colorado.

  7. Impact of a wastewater treatment plant on microbial community composition and function in a hyporheic zone of a eutrophic river

    NASA Astrophysics Data System (ADS)

    Atashgahi, Siavash; Aydin, Rozelin; Dimitrov, Mauricio R.; Sipkema, Detmer; Hamonts, Kelly; Lahti, Leo; Maphosa, Farai; Kruse, Thomas; Saccenti, Edoardo; Springael, Dirk; Dejonghe, Winnie; Smidt, Hauke

    2015-11-01

    The impact of the installation of a technologically advanced wastewater treatment plant (WWTP) on the benthic microbial community of a vinyl chloride (VC) impacted eutrophic river was examined two years before, and three and four years after installation of the WWTP. Reduced dissolved organic carbon and increased dissolved oxygen concentrations in surface water and reduced total organic carbon and total nitrogen content in the sediment were recorded in the post-WWTP samples. Pyrosequencing of bacterial 16S rRNA gene fragments in sediment cores showed reduced relative abundance of heterotrophs and fermenters such as Chloroflexi and Firmicutes in more oxic and nutrient poor post-WWTP sediments. Similarly, quantitative PCR analysis showed 1-3 orders of magnitude reduction in phylogenetic and functional genes of sulphate reducers, denitrifiers, ammonium oxidizers, methanogens and VC-respiring Dehalococcoides mccartyi. In contrast, members of Proteobacteria adapted to nutrient-poor conditions were enriched in post-WWTP samples. This transition in the trophic state of the hyporheic sediments reduced but did not abolish the VC respiration potential in the post-WWTP sediments as an important hyporheic sediment function. Our results highlight effective nutrient load reduction and parallel microbial ecological state restoration of a human-stressed urban river as a result of installation of a WWTP.

  8. Determination of a broad spectrum of pharmaceuticals and endocrine disruptors in biofilm from a waste water treatment plant-impacted river.

    PubMed

    Huerta, B; Rodriguez-Mozaz, S; Nannou, C; Nakis, L; Ruhí, A; Acuña, V; Sabater, S; Barcelo, D

    2016-01-01

    Wastewater treatment plants (WWTPs) are one of the main sources of pharmaceuticals and endocrine disrupting compounds in freshwater ecosystems, and several studies have reported bioaccumulation of these compounds in different organisms in those ecosystems. River biofilms are exceptional indicators of pollution, but very few studies have focused on the accumulation of these emerging contaminants. The objectives of this study were first to develop an efficient analytical methodology for the simultaneous analysis of 44 pharmaceuticals and 13 endocrine disrupting compounds in biofilm, and second, to assess persistence, distribution, and bioaccumulation of these contaminants in natural biofilms inhabiting a WWTP-impacted river. The method is based on pressurized liquid extraction, purification by solid-phase extraction, and analysis by ultra performance liquid chromatography coupled to a mass spectrometer (UPLC-MS/MS) in tandem. Recoveries for pharmaceuticals were 31-137%, and for endocrine disruptors 32-93%. Method detection limits for endocrine disruptors were in the range of 0.2-2.4 ng g(-1), and for pharmaceuticals, 0.07-6.7 ng g(-1). A total of five endocrine disruptors and seven pharmaceuticals were detected in field samples at concentrations up to 100 ng g(-1). Copyright © 2015. Published by Elsevier B.V.

  9. 16. Photocopy of a photograph1921 EASTSIDE POWER PLANT LOOKING NORTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Photocopy of a photograph--1921 EASTSIDE POWER PLANT LOOKING NORTH - American Falls Water, Power & Light Company, Island Power Plant, Snake River, below American Falls Dam, American Falls, Power County, ID

  10. 1. AERIAL VIEW OF WHITSETT (INTAKE) PUMP PLANT ON LAKE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. AERIAL VIEW OF WHITSETT (INTAKE) PUMP PLANT ON LAKE SHORE IN FOREGROUND; GENE IN BACKGROUND, LOOKING SOUTHWEST. - Whitsett Pump Plant, West side of Colorado River, north of Parker Dam, Parker Dam, San Bernardino County, CA

  11. 5. INTERIOR VIEW OF CROSSCUT HYDRO PLANT, SHOWING 25 CYCLE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. INTERIOR VIEW OF CROSSCUT HYDRO PLANT, SHOWING 25 CYCLE GENERATING UNITS FOREGROUND AND 60 CYCLE GENERATING UNIT REAR Photographer unknown, no date - Cross Cut Hydro Plant, North Side of Salt River, Tempe, Maricopa County, AZ

  12. 37. ISLAND PLANT: Nos. 1 AND 2 TWENTYSIX INCH SPECIAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. ISLAND PLANT: Nos. 1 AND 2 TWENTY-SIX INCH SPECIAL HORIZONTAL SAMSON TURBINE (RIVITED CASE) - American Falls Water, Power & Light Company, Island Power Plant, Snake River, below American Falls Dam, American Falls, Power County, ID

  13. Airborne lidar experiments at the Savannah River Plant

    NASA Technical Reports Server (NTRS)

    Krabill, William B.; Swift, Robert N.

    1985-01-01

    The results of remote sensing experiments at the Department of Energy (DOE) Savannah River Nuclear Facility utilizing the NASA Airborne Oceanographic Lidar (AOL) are presented. The flights were conducted in support of the numerous environmental monitoring requirements associated with the operation of the facility and for the purpose of furthering research and development of airborne lidar technology. Areas of application include airborne laser topographic mapping, hydrologic studies using fluorescent tracer dye, timber volume estimation, baseline characterization of wetlands, and aquatic chlorophyll and photopigment measurements. Conclusions relative to the usability of airborne lidar technology for the DOE for each of these remote sensing applications are discussed.

  14. Effect of low quality effluent from wastewater stabilization ponds to receiving bodies, case of Kilombero sugar ponds and Ruaha river, Tanzania.

    PubMed

    Machibya, Magayane; Mwanuzi, Fredrick

    2006-06-01

    A study was conducted in a sewage system at Kilombero Sugar Company to review its design, configuration, effectiveness and the quality of influent and effluent discharged into the Ruaha river (receiving body). The concern was that, the water in the river, after effluent has joined the river, is used as drinking water by villages located downstream of the river. Strategic sampling at the inlet of the oxidation pond, at the outlet and in the river before and after the effluent has joined the receiving body (river) was undertaken. Samples from each of these locations were taken three times, in the morning, noon and evening. The sample were then analysed in the laboratory using standard methods of water quality analysis. The results showed that the configuration and or the layout of the oxidation ponds (treatment plant) were not in accordance with the acceptable standards. Thus, the BOD5 of the effluent discharged into the receiving body (Ruaha River) was in the order of 41 mg/l and therefore not meeting several standards as set out both by Tanzanian and international water authorities. The Tanzanian water authorities, for example, requires that the BOD5 of the effluent discharged into receiving bodies be not more that 30 mg/l while the World Health Organization (WHO) requires that the effluent quality ranges between 10 - 30 mg/l. The paper concludes that proper design of treatment plants (oxidation ponds) is of outmost importance especially for factories, industries, camps etc located in rural developing countries where drinking water from receiving bodies like rivers and lakes is consumed without thorough treatment. The paper further pinpoint that both owners of treatment plants and water authorities should establish monitoring/management plan such that treatment plants (oxidation ponds) could be reviewed regarding the change on quantity of influent caused by population increase.

  15. Study on quality of effluent discharge by the Tiruppur textile dyeing units and its impact on river Noyyal, Tamil Nadu (India).

    PubMed

    Rajkumar, A Samuel; Nagan, S

    2010-10-01

    In Tiruppur, 729 textile dyeing units are under operation and these units generate 96.1 MLD of wastewater. The untreated effluent was discharged into the Noyyal River till 1997. After the issuance of directions by Tamil Nadu Pollution Control Board (TNPCB) in 1997, these units have installed 8 common effluent treatment plants (CETP) consisting of physical, chemical and biological treatment units. Some of the units have installed individual ETP (IETP). The treated effluent was finally discharged into the river. The dyeing units use sodium chloride in the dyeing process for efficient fixing of dye in the fabric efficiently. This contributes high total dissolved solids (TDS) and chlorides in the effluent. CETPs and IETPs failed to meet discharge standards of TDS and chlorides and thereby significantly affected the river water quality. TDS level in the river water was in the range of 900 - 6600 mg/L, and chloride was in the range of 230 - 2700 mg/L. Orathupalayam dam is located across Noyyal river at 32 km down stream of Tiruppur. The pollutants carried by the river were accumulated in the dam. TDS in the dam water was in the range of 4250 - 7900 mg/L and chloride was in the range of 1600 - 2700 mg/L. The dam sediments contain heavy metals of chromium, copper, zinc and lead. In 2006, the High Court has directed the dyeing units to install zero liquid discharge (ZLD) plant and to stop discharging of effluent into the river. Accordingly, the industries have installed and commissioned the ZLD plant consisting of RO plant and reject management system in 2010. The effluent after secondary treatment from the CETP is further treated in RO plant. The RO permeate is reused by the member units. The RO reject is concentrated in multiple effect evaporator (MEE)/ mechanical vacuum re-compressor (MVR). The concentrate is crystallized and centrifuged to recover salt. The salt recovered is reused. The liquid separated from the centrifuge is sent to solar evaporation pan. The salt

  16. River flooding and its impacts on large-scale biocontrol of Tamarix in the Colorado and Virgin River system: Moving targets and trajectories

    USDA-ARS?s Scientific Manuscript database

    Along riparian corridors throughout the arid and semiarid regions of the western United States, non-native shrubs and trees in the genus Tamarix have replaced native vegetation. Plant communities along rivers with altered flow regimes and flood control have become particularly vulnerable to widespre...

  17. Quantification of the impact of macrophytes on oxygen dynamics and nitrogen retention in a vegetated lowland river

    NASA Astrophysics Data System (ADS)

    Desmet, N. J. S.; Van Belleghem, S.; Seuntjens, P.; Bouma, T. J.; Buis, K.; Meire, P.

    When macrophytes are growing in the river, the vegetation induces substantial changes to the water quality. Some effects are the result of direct interactions, such as photosynthetic activity or nutrient uptake, whereas others may be attributed to indirect effects of the water plants on hydrodynamics and river processes. This research focused on the direct effect of macrophytes on oxygen dynamics and nutrient cycling. Discharge, macrophyte biomass density, basic water quality, dissolved oxygen and nutrient concentrations were in situ monitored throughout the year in a lowland river (Nete catchment, Belgium). In addition, various processes were investigated in more detail in multiple ex situ experiments. The field and aquaria measurement results clearly demonstrated that aquatic plants can exert considerable impact on dissolved oxygen dynamics in a lowland river. When the river was dominated by macrophytes, dissolved oxygen concentrations varied from 5 to 10 mg l -1. Considering nutrient retention, it was shown that the investigated in-stream macrophytes could take up dissolved inorganic nitrogen (DIN) from the water column at rates of 33-50 mg N kgdry matter-1 h. And DIN fluxes towards the vegetation were found to vary from 0.03 to 0.19 g N ha -1 h -1 in spring and summer. Compared to the measured changes in DIN load over the river stretch, it means that about 3-13% of the DIN retention could be attributed to direct nitrogen uptake from the water by macrophytes. Yet, the role of macrophytes in rivers should not be underrated as aquatic vegetation also exerts considerable indirect effects that may have a greater impact than the direct fixation of nutrients into the plant biomass.

  18. Sediment pollution of the Elbe River side structures - current research

    NASA Astrophysics Data System (ADS)

    Chalupova, Dagmar; Janský, Bohumír

    2016-04-01

    The contribution brings the summarized results of a long-term research on sediment pollution of side structures of the Elbe River over the last 14 years. The investigation has been focused on old anthropogenic pollution of sediment cores taken from fluvial lakes and floodplain, as the sampling of deeper sediments outside the riverbed is not a part of systematic monitoring of sediment pollution of the Elbe. The Elbe River floodplain has been influenced by human activities since the Middle Ages, but the main anthropogenic pollution have been produced in the 20th century. The studied localities were chosen with the respect to the distance from the source of industrial pollution, the intensity of hydrological communication with the river and the surrounding landuse to determine the extend and the level of anthropogenic contamination in the Elbe River floodplain ecosystem. Apart from bathymetric measurements, observation of the hydrological regime in several fluvial lakes or water quality sampling at some localities, the research was focused above all on determination of metal concentrations (Ag, Cd, Cr, Cu, Fe, Hg, Mn, Pb, Zn) in all taken sediment cores, specific organic compounds (PCBs, DDT, HCH, HCB, PAHs etc.), total organic carbon at some localities and grain structure analyses. The data were also compared with the results of systematic sediment monitoring from the nearest riverbed sampling stations on the Elbe River. The highest concentrations of metals and specific organic compounds were determined in the sediments taken from fluvial lakes and floodplain (Zimní přístav PARAMO, Rosice fuvial Lake, Libiš pool etc.) situated in the vicinity of the main Elbe River polluters - Synthesia chemical plant and PARAMO refinery in Pardubice or Spolana chemical plant near Neratovice. However, there was also determined a significant role of the hydrological communication with the river proved with lower sediment pollution in separated localities. The realization of the

  19. Trace Elements in Dominant Species of the Fenghe River, China: Their Relations to Environmental Factors.

    PubMed

    Yang, Yang; Zhou, Zhengchao; Bai, Yanying; Jiao, Wentao; Chen, Weiping

    2016-07-01

    The distribution of trace elements (TEs) in water, sediment, riparian soil and dominant plants was investigated in the Fenghe River, Northwestern China. The Fenghe River ecosystem was polluted with Cd, Cr, Hg and Pb. There was a high pollution risk in the midstream and downstream regions and the risk level for Cd was much higher than that of the other elements. The average values of bioconcentration coefficient for Cd and Zn were 2.21 and 1.75, respectively, indicating a large accumulation of Cd and Zn in the studied species. With broad ecological amplitudes, L. Levl. et Vant. Trin., and L. had the greatest TE concentrations in aboveground and belowground biomass of the studied species and were potential biomonitors or phytoremediators for the study area. Multivariate techniques including cluster analysis, correlation analysis, principal component analysis, and canonical correspondence analysis were used to analyze the relations between TE concentrations in plants and various environmental factors. The soil element concentration is the main factor determining the accumulation of TEs in plants. The co-release behavior of common pollutants and TEs drove the accumulation of Hg, Cd, and As in the studied plants. Significant enrichment of some elements in the Fenghe River has led to a decline in the biodiversity of plants. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  20. Advances in river ice hydrology 1999-2003

    NASA Astrophysics Data System (ADS)

    Morse, Brian; Hicks, Faye

    2005-01-01

    In the period 1999 to 2003, river ice has continued to have important socio-economic impacts in Canada and other Nordic countries. Concurrently, there have been many important advances in all areas of Canadian research into river ice engineering and hydrology. For example: (1) River ice processes were highlighted in two special journal issues (Canadian Journal of Civil Engineering in 2003 and Hydrological Processes in 2002) and at five conferences (Canadian Committee on River Ice Processes and the Environment in 1999, 2001 and 2003, and International Association of Hydraulic Research in 2000 and 2002). (2) A number of workers have clearly advanced our understanding of river ice processes by bringing together disparate information in comprehensive review articles. (3) There have been significant advances in river ice modelling. For example, both one-dimensional (e.g. RIVICE, RIVJAM, ICEJAM, HEC-RAS, etc.) and two-dimensional (2-D; www.river2d.ca) public-domain ice-jam models are now available. Work is ongoing to improve RIVER2D, and a commercial 2-D ice-process model is being developed. (4) The 1999-2003 period is notable for the number of distinctly hydrological and ecological studies. On the quantitative side, many are making efforts to determine streamflow during the winter period. On the ecological side, some new publications have addressed the link to water quality (temperature, dissolved oxygen, nutrients and pollutants), and others have dealt with sediment transport and geomorphology (particularly as it relates to break-up), stream ecology (plants, food cycle, etc.) and fish habitat.There is the growing recognition, that these types of study require collaborative efforts. In our view, the main areas requiring further work are: (1) to interface geomorphological and habitat models with quantitative river ice hydrodynamic models; (2) to develop a manager's toolbox (database management, remote sensing, forecasting, intervention methodologies, etc.) to enable

  1. Monitoring and assessment of treated river, rain, gully pot and grey waters for irrigation of Capsicum annuum.

    PubMed

    Al-Isawi, Rawaa H K; Almuktar, Suhad A A A N; Scholz, Miklas

    2016-05-01

    This study examines the benefits and risks associated with various types of wastewater recycled for vegetable garden irrigation and proposes the best water source in terms of its water quality impact on crop yields. The aim was to evaluate the usability of river, rain, gully pot, real grey and artificial grey waters to water crops. The objectives were to evaluate variables and boundary conditions influencing the growth of chillies (De Cayenne; Capsicum annuum (Linnaeus) Longum Group 'De Cayenne') both in the laboratory and in the greenhouse. A few irrigated chilli plants suffered from excess of some nutrients, which led to a relatively poor harvest. High levels of trace minerals and heavy metals were detected in river water, gully pot effluent and greywater. However, no significant differences in plant yields were observed, if compared with standards and other yields worldwide. The highest yields were associated with river water both in the laboratory and in the greenhouse. Plant productivity was unaffected by water quality due to the high manganese, potassium, cadmium and copper levels of the greywater. These results indicate the potential of river water and gully pot effluent as viable alternatives to potable water for irrigation in agriculture.

  2. Microplastics profile along the Rhine River

    PubMed Central

    Mani, Thomas; Hauk, Armin; Walter, Ulrich; Burkhardt-Holm, Patricia

    2015-01-01

    Microplastics result from fragmentation of plastic debris or are released to the environment as pre-production pellets or components of consumer and industrial products. In the oceans, they contribute to the ‘great garbage patches’. They are ingested by many organisms, from protozoa to baleen whales, and pose a threat to the aquatic fauna. Although as much as 80% of marine debris originates from land, little attention was given to the role of rivers as debris pathways to the sea. Worldwide, not a single great river has yet been studied for the surface microplastics load over its length. We report the abundance and composition of microplastics at the surface of the Rhine, one of the largest European rivers. Measurements were made at 11 locations over a stretch of 820 km. Microplastics were found in all samples, with 892,777 particles km −2 on average. In the Rhine-Ruhr metropolitan area, a peak concentration of 3.9 million particles km −2 was measured. Microplastics concentrations were diverse along and across the river, reflecting various sources and sinks such as waste water treatment plants, tributaries and weirs. Measures should be implemented to avoid and reduce the pollution with anthropogenic litter in aquatic ecosystems. PMID:26644346

  3. Microplastics profile along the Rhine River

    NASA Astrophysics Data System (ADS)

    Mani, Thomas; Hauk, Armin; Walter, Ulrich; Burkhardt-Holm, Patricia

    2015-12-01

    Microplastics result from fragmentation of plastic debris or are released to the environment as pre-production pellets or components of consumer and industrial products. In the oceans, they contribute to the ‘great garbage patches’. They are ingested by many organisms, from protozoa to baleen whales, and pose a threat to the aquatic fauna. Although as much as 80% of marine debris originates from land, little attention was given to the role of rivers as debris pathways to the sea. Worldwide, not a single great river has yet been studied for the surface microplastics load over its length. We report the abundance and composition of microplastics at the surface of the Rhine, one of the largest European rivers. Measurements were made at 11 locations over a stretch of 820 km. Microplastics were found in all samples, with 892,777 particles km -2 on average. In the Rhine-Ruhr metropolitan area, a peak concentration of 3.9 million particles km -2 was measured. Microplastics concentrations were diverse along and across the river, reflecting various sources and sinks such as waste water treatment plants, tributaries and weirs. Measures should be implemented to avoid and reduce the pollution with anthropogenic litter in aquatic ecosystems.

  4. Microplastics profile along the Rhine River.

    PubMed

    Mani, Thomas; Hauk, Armin; Walter, Ulrich; Burkhardt-Holm, Patricia

    2015-12-08

    Microplastics result from fragmentation of plastic debris or are released to the environment as pre-production pellets or components of consumer and industrial products. In the oceans, they contribute to the 'great garbage patches'. They are ingested by many organisms, from protozoa to baleen whales, and pose a threat to the aquatic fauna. Although as much as 80% of marine debris originates from land, little attention was given to the role of rivers as debris pathways to the sea. Worldwide, not a single great river has yet been studied for the surface microplastics load over its length. We report the abundance and composition of microplastics at the surface of the Rhine, one of the largest European rivers. Measurements were made at 11 locations over a stretch of 820 km. Microplastics were found in all samples, with 892,777 particles km (-2) on average. In the Rhine-Ruhr metropolitan area, a peak concentration of 3.9 million particles km (-2) was measured. Microplastics concentrations were diverse along and across the river, reflecting various sources and sinks such as waste water treatment plants, tributaries and weirs. Measures should be implemented to avoid and reduce the pollution with anthropogenic litter in aquatic ecosystems.

  5. 6. INTERIOR VIEW OF CROSSCUT HYDRO PLANT, SHOWING 25 CYCLE60 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. INTERIOR VIEW OF CROSSCUT HYDRO PLANT, SHOWING 25 CYCLE-60 CYCLE FREQUENCY CHANGER Photographer unknown, December 14, 1940 - Cross Cut Hydro Plant, North Side of Salt River, Tempe, Maricopa County, AZ

  6. Looking south at the open hearth steelmaking plant; open hearth ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking south at the open hearth steelmaking plant; open hearth stockhouse in foreground and open hearth furnace building in background - U.S. Steel Edgar Thomson Works, Open Hearth Steelmaking Plant, Along Monongahela River, Braddock, Allegheny County, PA

  7. 32. SOUTHEASTERN VIEW OF GAS CLEANING PLANT, WITH BOP SHOP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. SOUTHEASTERN VIEW OF GAS CLEANING PLANT, WITH BOP SHOP IN BACKGROUND AND OPEN HEARTH STEELMAKING OFFICE BUILDING TO THE RIGHT. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  8. The reactivity of plant-derived organic matter in the Amazon River and implications on aquatic carbon fluxes to the atmosphere and ocean

    NASA Astrophysics Data System (ADS)

    Ward, N. D.; Sawakuchi, H. O.; Keil, R. G.; da Silva, R.; Brito, D. C.; Cunha, A. C.; Gagne-Maynard, W.; de Matos, A.; Neu, V.; Bianchi, T. S.; Krusche, A. V.; Richey, J. E.

    2014-12-01

    The remineralization of terrestrially-derived organic carbon (OC), along with direct CO2 inputs from autochthonous plant respiration in floodplains, results in an evasive CO2 gas flux from inland waters that is an order of magnitude greater than the flux of OC to the ocean. This phenomenon is enhanced in tropical systems as a result of elevated temperatures and productivity relative to temperate and high-latitude counterparts. Likewise, this balance is suspected to be influenced by increasing global temperatures and alterations to hydrologic and land use regimes. Here, we assess the reactivity of terrestrial and aquatic plant-derived OM near the mouth of the Amazon River. The stable isotopic signature of CO2 (δ13CO2) was monitored in real-time during incubation experiments performed in a closed system gas phase equilibration chamber connected to a Picarro Cavity Ring-Down Spectrometer. Incubations were performed under natural conditions and with the injection of isotopically labeled terrestrial macromolecules (e.g. lignin) and algal fatty acids. Under natural conditions, δ13CO2 became more depleted, shifting from roughly -23‰ to -27‰ on average, suggesting that C3 terrestrial vegetation was the primary fuel for CO2 production. Upon separate injections of 13C-labeled lignin and algal fatty acids, δ13CO2 increased near instantaneously and peaked in under 12 hours. Roughly 75% of the labeled lignin was converted to CO2 at the peak in δ13CO2, whereas less than 20% of the algal fatty acids were converted to CO2 (preliminary data subject to change). The rate of labeled-OC remineralization was enhanced by the addition of a highly labile substrate (e.g. ethyl acetate). Likewise, constant measurements of O2/pCO2 along the lower river revealed anomalously high CO2 and low O2 levels near the confluence of the mainstem and large tributaries with high algal productivity. These collective results suggest that the remineralization of complex terrestrial macromolecules is

  9. Planting bottomland hardwoods

    Treesearch

    Karl Tennant

    1989-01-01

    Diverse problems confront the forest manager when planting bottomland hardwoods. Bottomland vegetation types and sites are complex and differ markedly from uplands. There are different and more numerous hardwood species that grow faster in denser stands. Sites are subject to varying intensities and duration of flooding and the action of overflow river currents that...

  10. Traveltime, reaeration, and water-quality characteristics during low-flow conditions in Wilsons Creek and the James River near Springfield, Missouri

    USGS Publications Warehouse

    Berkas, W.R.

    1987-01-01

    Before upgrading the Southwest Wastewater-Treatment Plant near Springfield, Missouri, to tertiary treatment, adverse water quality conditions resulting from discharge of wastewater effluent to Wilson Creek were documented in the creek and in the James River. About 7 years after the upgrading of the treatment plant, traveltime, reaeration, and water quality characteristics were determined in Wilsons Creek and the James River. Traveltime was measured once in Wilsons Creek and twice in the James River during low-flow conditions. Traveltimes in the James River were estimated for discharge between 55 and 200 cu ft/sec at a site near Boaz. Reaeration coefficients were calculated for five reaches in Wilsons Creek and the James River using the modified-tracer technique. Calculated reaeration coefficients were compared with coefficients predicted by twelve empirical equations and one equation was chosen that best fit the data. Water quality data were collected during two 44-hr periods, August 14 to 16, 1984, and July 23 to 25, 1985. Samples were collected at the outflow of the Southwest Wastewater Treatment Plant at seven sites along Wilsons Creek and the James River. Dissolved-oxygen concentrations in Wilsons Creek and the James River were all larger than Missouri 's water quality standard of 5.0 mg/l. Ammonia concentrations and 5-day carbonaceous biochemical oxygen demands were small, which indicated that the oxygen consumption by oxidizing ammonia and carbonaceous organic materials would be insignificant. Measured streambed oxygen demand in the James River was largest directly downstream from Wilsons Creek. (USGS)

  11. Alkane, terpene and polycyclic aromatic hydrocarbon geochemistry of the Mackenzie River and Mackenzie shelf: Riverine contributions to Beaufort Sea coastal sediment

    NASA Astrophysics Data System (ADS)

    Yunker, Mark B.; Macdonald, Robie W.; Cretney, Walter J.; Fowler, Brian R.; McLaughlin, Fiona A.

    1993-07-01

    To study the largest source of river sediment to the Arctic Ocean, we have collected suspended particulates from the Mackenzie River in all seasons and sediments from the Mackenzie shelf between the river mouth and the shelf edge. These samples have been analyzed for alkanes, triterpenes and polycyclic aromatic hydrocarbons (PAHs). We found that naturally occurring hydrocarbons predominate in the river and on the shelf. These hydrocarbons include biogenic alkanes and triterpenes with a higher plant/peat origin, diagenetic PAHs from peat and plant detritus, petrogenic alkanes, triterpenes and PAHs from oil seeps and/or bitumens and combustion PAHs that are likely relict in peat deposits. Because these components vary independently, the season is found to strongly influence the concentration and composition of hydrocarbons in the Mackenzie River. While essentially the same pattern of alkanes, diagenetic hopanes and alkyl PAHs is observed in all river and most shelf sediment samples, alkane and triterpene concentration variations are strongly linked to the relative amount of higher plant/peat material. Polycyclic aromatic hydrocarbon molecular-mass profiles also appear to be tied primarily to varying proportions of peat, with an additional petrogenic component which is most likely associated with lithic material mobilized by the Mackenzie River at freshet. Consistent with the general lack of alkyl PAHs in peat, the higher PAHs found in the river are probably derived from forest and tundra fires. A few anthropogenic/pyrogenic compounds are manifest only at the shelf edge, probably due to a weakening of the river influence. We take this observation of pyrogenic PAHs and the pronounced source differences between two sediment samples collected at the shelf edge as evidence of a transition from dominance by the Mackenzie River to the geochemistry prevalent in Arctic regions far removed from major rivers.

  12. Water quality and ground-water/surface-water interactions along the John River near Anaktuvuk Pass, Alaska, 2002-2003

    USGS Publications Warehouse

    Moran, Edward H.; Brabets, Timothy P.

    2005-01-01

    The headwaters of the John River are located near the village ofAnaktuvuk Pass in the central Brooks Range of interior Alaska. With the recent construction of a water-supply system and a wastewater-treatment plant, most homes in Anaktuvuk Pass now have modern water and wastewater systems. The effluent from the treatment plant discharges into a settling pond near a tributary of the John River. The headwaters of the John River are adjacent to Gates of the Arctic National Park and Preserve, and the John River is a designated Wild River. Due to the concern about possible water-quality effects from the wastewater effluent, the hydrology of the John River near Anaktuvuk Pass was studied from 2002 through 2003. Three streams form the John River atAnaktuvuk Pass: Contact Creek, Giant Creek, and the John RiverTributary. These streams drain areas of 90.3 km (super 2) , 120 km (super 2) , and 4.6 km (super 2) , respectively. Water-qualitydata collected from these streams from 2002-03 indicate that the waters are a calcium-bicarbonate type and that Giant Creek adds a sulfate component to the John River. The highest concentrations of bicarbonate, calcium, sodium, sulfate, and nitrate were found at the John River Tributary below the wastewater-treatment lagoon. These concentrations have little effect on the water quality of the John River because the flow of the John River Tributary is only about 2 percent of the John River flow. To better understand the ground-water/surface-water interactions of the upper John River, a numerical groundwater-flow model of the headwater area of the John River was constructed. Processes that occur during spring break-up, such as thawing of the active layer and the frost table and the resulting changes of storage capacity of the aquifer, were difficult to measure and simulate. Application and accuracy of the model is limited by the lack of specific hydrogeologic data both spatially and temporally. However

  13. Flood Control Root River Basin, Minnesota.

    DTIC Science & Technology

    1977-03-01

    occurs in drier sites principally due to the dense canopy of mature trees. Woody shrubs and some degree of tree reproduction occur more commonly among...plant species tolerant to alternate inundation and flood- water recession thrive while less tolerant species are absent. Woody species of vines ...animals of the Upper Mississippi River basin i) Comnon nwne Scientific name Status Present distribution Indiana bat Endangered, estimated Midwest and

  14. Pawcatuck River and Narragansett Bay Drainage Basins. Water and Related Land Resources Study. Blackstone River Watershed.

    DTIC Science & Technology

    1981-08-01

    stretch: The Berkeley Industrial Park at Martin Street with 80 acres in the flood plain, the Owens - Corning Fiberglas Company at Ashton, and the...River, Ashton, RI 8/2Z/55 Owens Corning Fiberglas Plant lower right. Lonsdale Area, Cumnberland, RI 8/22/55 Al4 * raw Old Slater Mill, Cumberland, RI...area, the Owens - Corning Fiberglas Corporation industrial concern may be subject to damages. The industry has implemented nonstructural floodproofing

  15. Use of watershed factors to predict consumer surfactant risk, water quality, and habitat quality in the upper Trinity River, Texas.

    PubMed

    Atkinson, S F; Johnson, D R; Venables, B J; Slye, J L; Kennedy, J R; Dyer, S D; Price, B B; Ciarlo, M; Stanton, K; Sanderson, H; Nielsen, A

    2009-06-15

    Surfactants are high production volume chemicals that are used in a wide assortment of "down-the-drain" consumer products. Wastewater treatment plants (WWTPs) generally remove 85 to more than 99% of all surfactants from influents, but residual concentrations are discharged into receiving waters via wastewater treatment plant effluents. The Trinity River that flows through the Dallas-Fort Worth metropolitan area, Texas, is an ideal study site for surfactants due to the high ratio of wastewater treatment plant effluent to river flow (>95%) during late summer months, providing an interesting scenario for surfactant loading into the environment. The objective of this project was to determine whether surfactant concentrations, expressed as toxic units, in-stream water quality, and aquatic habitat in the upper Trinity River could be predicted based on easily accessible watershed characteristics. Surface water and pore water samples were collected in late summer 2005 at 11 sites on the Trinity River in and around the Dallas-Fort Worth metropolitan area. Effluents of 4 major waste water treatment plants that discharge effluents into the Trinity River were also sampled. General chemistries and individual surfactant concentrations were determined, and total surfactant toxic units were calculated. GIS models of geospatial, anthropogenic factors (e.g., population density) and natural factors (e.g., soil organic matter) were collected and analyzed according to subwatersheds. Multiple regression analyses using the stepwise maximum R(2) improvement method were performed to develop prediction models of surfactant risk, water quality, and aquatic habitat (dependent variables) using the geospatial parameters (independent variables) that characterized the upper Trinity River watershed. We show that GIS modeling has the potential to be a reliable and inexpensive method of predicting water and habitat quality in the upper Trinity River watershed and perhaps other highly urbanized

  16. Radioiodine in the Savannah River Site environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kantelo, M.V.; Bauer, L.R.; Marter, W.L.

    1993-01-15

    Radioiodine, which is the collective term for all radioactive isotopes of the element iodine, is formed at the Savannah River Site (SRS) principally as a by-product of nuclear reactor operations. Part of the radioiodine is released to the environment during reactor and reprocessing operations at the site. The purpose of this report is to provide an introduction to radioiodine production and disposition, its status in the environment, and the radiation dose and health risks as a consequence of its release to the environment around the Savannah River Plant. A rigorous dose reconstruction study is to be completed by thee Centermore » for Disease Control during the 1990s.« less

  17. River water pollution condition in upper part of Brantas River and Bengawan Solo River

    NASA Astrophysics Data System (ADS)

    Roosmini, D.; Septiono, M. A.; Putri, N. E.; Shabrina, H. M.; Salami, I. R. S.; Ariesyady, H. D.

    2018-01-01

    Wastewater and solid waste from both domestic and industry have been known to give burden on river water quality. Most of river water quality problem in Indonesia has start in the upper part of river due to anthropogenic activities, due to inappropriate land use management including the poor wastewater infrastructure. Base on Upper Citarum River Water pollution problem, it is interesting to study the other main river in Java Island. Bengawan Solo River and Brantas River were chosen as the sample in this study. Parameters assessed in this study are as follows: TSS, TDS, pH, DO, and hexavalent chromium. The status of river water quality are assess using STORET method. Based on (five) parameters, STORET value showed that in Brantas River, Pagerluyung monitoring point had the worst quality relatively compared to other monitoring point in Brantas River with exceeding copper, lead and tin compared to the stream standard in East Java Provincial Regulation No. 2 in 2008. Brantas River was categorized as lightly polluted river based on monitoring period 2011-2015 in 5 monitoring points, namely Pendem, Sengguruh, Kademangan, Meritjan and Kertosono.

  18. 14. Photocopy of a photograph1921 SUSPENSION BRIDGE TO WESTSIDE PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Photocopy of a photograph--1921 SUSPENSION BRIDGE TO WESTSIDE PLANT AND WESTSIDE PENSTOCK - American Falls Water, Power & Light Company, Island Power Plant, Snake River, below American Falls Dam, American Falls, Power County, ID

  19. Evaluation of sediment and 137Cs redistribution in the Oginosawa River catchment near the Fukushima Dai-ichi Nuclear Power Plant using integrated watershed modeling.

    PubMed

    Sakuma, Kazuyuki; Malins, Alex; Funaki, Hironori; Kurikami, Hiroshi; Niizato, Tadafumi; Nakanishi, Takahiro; Mori, Koji; Tada, Kazuhiro; Kobayashi, Takamaru; Kitamura, Akihiro; Hosomi, Masaaki

    2018-02-01

    The Oginosawa River catchment lies 15 km south-west of the Fukushima Dai-ichi nuclear plant and covers 7.7 km 2 . Parts of the catchment were decontaminated between fall 2012 and March 2014 in preparation for the return of the evacuated population. The General-purpose Terrestrial Fluid-flow Simulator (GETFLOWS) code was used to study sediment and 137 Cs redistribution within the catchment, including the effect of decontamination on redistribution. Fine resolution grid cells were used to model local features of the catchment, such as paddy fields adjacent to the Oginosawa River. The simulation was verified using monitoring data for river water discharge rates (r = 0.92), suspended sediment concentrations, and particulate 137 Cs concentrations (r = 0.40). Cesium-137 input to watercourses came predominantly from land adjacent to river channels and forest gullies, e.g. the paddy fields in the Ogi and Kainosaka districts, as the ground in these areas saturates during heavy rain and is easily eroded. A discrepancy between the simulation and monitoring results on the sediment discharge rate following decontamination may be explained by fast erosion occurring after decontamination. Forested areas far from the channels only made a minor contribution to 137 Cs input to watercourses, total erosion of between 0.001 and 0.1 mm from May 2011 to December 2015, as ground saturation is infrequent in these areas. The 2.3-6.9% y -1 decrease in the amount of 137 Cs in forest topsoil over the study period can be explained by radioactive decay (approximately 2.3% y -1 ), along with a migration downwards into subsoil and a small amount of export. The amount of 137 Cs available for release from land adjacent to rivers is expected to be lower in future than compared to this study period, as the simulations indicate a high depletion of inventory from these areas by the end of 2015. However continued monitoring of 137 Cs concentrations in river water over future years is advised, as

  20. Cryptosporidium source tracking in the Potomac River watershed - MCEARD

    EPA Science Inventory

    To better characterize Cryptosporidium in the Potomac River watershed, a PCR-based genotyping tool was used to analyze 64 base-flow and 28 storm-flow samples from five sites within the watershed. These sites included two water treatment plant intakes as well as three upstream si...

  1. Distribution of heavy metals in vegetation surrounding the Blackstone River, USA: considerations regarding sediment contamination and long term metals transport in freshwater riverine ecosystems.

    PubMed

    Ozdilek, Hasan Goksel; Mathisen, Paul P; Pellegrino, Don

    2007-04-01

    The Blackstone River, a 74 km interstate stream located in South Central Massachusetts and Rhode Island (USA), has had a long history of problems due to high concentrations of metals such as copper and lead. The river has been subjected to metals load that include contributions from urban runoff, wastewater discharges, contaminated sediments, and also resuspension of contaminated sediments in the river-bed. All of these effects lead to elevated concentrations of metals such as lead, copper, zinc, chromium, cadmium and arsenic. Furthermore, the contaminated sediments located behind impoundments become especially important when higher flows cause resuspension of the previously deposited sediments and associated metals. While it is known that high metals concentrations in this river are found in the bottom sediments, the fate of the metals and impact on the ecosystem are not well known. This paper addresses the potential impacts that metals may have on vegetation and plant tissues in the vicinity of the river Plant tissues (primarily mosses), were collected from a number of sampling sites along a 14 km stretch of this river. At each site, samples were collected from multiple distances from the riverbank. Laboratory analyses made use of both wet digestion and dry ashing digestion methods, followed by analysis using an atomic absorption spectrophotometer. The wet and dry ashing digestion methods yielded similar results, although the results afforded by the dry ashing methods were slightly lower than the results obtained from the wet method. The results showed that the metals concentrations in vegetation (as determined from plant tissue analyses) were generally inversely related to the distance between the vegetation and the riverbank, with higher metals concentrations existing in plant tissues located close to the riverbank. In addition, it was found that the transport of metals concentrations to the terrestrial vegetation adjacent to this section of the Blackstone

  2. Hazardous Waste Cleanup: Naval Weapons Industrial Reserve Plant in Calverton, New York

    EPA Pesticide Factsheets

    The Naval Weapons Industrial Reserve Plant (NWIRP) is located on Grumman Boulevard in Calverton, New York. The facility is bordered by Middle County Road (route 25) to the north, agricultural land to the east, River Road to the south, and Wading River Road

  3. Evaluation of Savannah River Plant emergency response models using standard and nonstandard meteorological data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoel, D.D.

    1984-01-01

    Two computer codes have been developed for operational use in performing real time evaluations of atmospheric releases from the Savannah River Plant (SRP) in South Carolina. These codes, based on mathematical models, are part of the SRP WIND (Weather Information and Display) automated emergency response system. Accuracy of ground level concentrations from a Gaussian puff-plume model and a two-dimensional sequential puff model are being evaluated with data from a series of short range diffusion experiments using sulfur hexafluoride as a tracer. The models use meteorological data collected from 7 towers on SRP and at the 300 m WJBF-TV tower aboutmore » 15 km northwest of SRP. The winds and the stability, which is based on turbulence measurements, are measured at the 60 m stack heights. These results are compared to downwind concentrations using only standard meteorological data, i.e., adjusted 10 m winds and stability determined by the Pasquill-Turner stability classification method. Scattergrams and simple statistics were used for model evaluations. Results indicate predictions within accepted limits for the puff-plume code and a bias in the sequential puff model predictions using the meteorologist-adjusted nonstandard data. 5 references, 4 figures, 2 tables.« less

  4. Radioactivity levels in major French rivers: summary of monitoring chronicles acquired over the past thirty years and current status.

    PubMed

    Eyrolle, Frédérique; Claval, David; Gontier, Gilles; Antonelli, Christelle

    2008-07-01

    Since the beginning of the 1990 s, liquid releases of gamma-emitting radionuclides from French nuclear facilities have generally fallen by almost 85%. Almost 65% of gamma-emitting liquid effluents released into freshwater rivers concerned the River Rhône (Southeast France), with around 85% of this originating from the Marcoule spent fuel reprocessing plant. Upstream of French nuclear plants, artificial radionuclides still detected by gamma spectrometry in 2006, include (137)Cs, (131)I as well as (60)Co, (58)Co and (54)Mn in the case of the Rhine (Switzerland nuclear industries). In the wake of the fallout from the Chernobyl accident, (103)Ru, (106)Rh-Ru, (110 m)Ag, (141)Ce and (129)Te were detected in rivers in the east of France. Some of these radionuclides were found in aquatic plants until 1989. In eastern France, (137)Cs activity in river sediments and mosses is still today two to three times greater than that observed in similar environments in western France. No (134)Cs has been detected upstream of nuclear plants in French rivers since 2001. Downstream of nuclear plants, the gamma emitters still detected regularly in rivers in 2006 are (137)Cs, (134)Cs, (60)Co, (58)Co, (110 m)Ag, (54)Mn, (131)I, together with (241)Am downstream of the Marcoule spent fuel reprocessing plant. Alpha and beta emitters such as plutonium isotopes and (90)Sr first entered freshwaters at the early 1950s due to the leaching of soils contaminated by atmospheric fallout from nuclear testing. These elements were also introduced, in the case of the Rhône River, via effluent from the Marcoule reprocessing plant. Until the mid 1990 s, plutonium isotope levels observed in the lower reaches of the Rhône were 10 to 1000 times higher than those observed in other French freshwaters. Data gathered over a period of almost thirty years of radioecological studies reveal that the only radionuclides detected in fish muscles are (137)Cs, (90)Sr, plutonium isotopes and (241)Am. At the scale of the

  5. Plants as bio-monitors for Cs-137, Pu-238, Pu-239,240 and K-40 at the Savannah River Site.

    PubMed

    Caldwell, Eric Frank; Duff, Martine C; Ferguson, Caitlin E; Coughlin, Daniel P

    2011-05-01

    The Savannah River Site was constructed in South Carolina to produce plutonium (Pu) in the 1950s. Discharges associated with these now-ceased operations have contaminated large areas within the site, particularly streams associated with reactor cooling basins. Evaluating the exposure risk of contamination to an ecosystem requires methodologies that can assess the bioavailability of contaminants. Plants, as primary producers, represent an important mode of transfer of contaminants from soils and sediments into the food chain. The objective of this study was to identify local area plants for their ability to act as bio-monitors of radionuclides. The concentrations of cesium-137 ((137)Cs), potassium-40 ((40)K), (238)Pu and (239,240)Pu in plants and their associated soils were determined using γ and α spectrometry. The ratio of contamination concentration found in the plant relative to the soil was calculated to assess a concentration ratio (CR). The highest CR for (137)Cs was found in Pinus palustris needles (CR of 2.18). The correlation of soil and plant (137)Cs concentration was strong (0.76) and the R(2) (0.58) from the regression was significant (p = 0.006). This suggests the ability to predict the degree of (137)Cs contamination of a soil through analysis of the pine needles. The (238)Pu and (239,240)Pu concentrations were most elevated within the plant roots. Extremely high CR values were found in Sparganium americanum (bur-reed) roots with a value of 5.86 for (238)Pu and 5.66 for (239,240)Pu. The concentration of (40)K was measured as a known congener of (137)C. Comparing (40)K and (137)C concentrations in each plant revealed an inverse relationship for these radioisotopes. Correlating (40)K and (137)Cs was most effective in identifying plants that have a high affinity for (137)Cs uptake. The P. palustris and S. americanum proved to be particularly strong accumulators of all K congeners from the soil. Some species that were measured, warrant further

  6. Community and Ecosystem-Level Impacts of an Emergent Macrophyte on the Ventura River, California.

    NASA Astrophysics Data System (ADS)

    Simpson, J.; Leydecker, A.; Melack, J.

    2005-05-01

    Ludwigia hexapetala is a pervasive, emergent vascular plant on the lower Ventura River. Presence of this plant appears to facilitate growth of shade-tolerant diatoms, while indirectly inhibiting filamentous green macroalgae. Four sites on the river were monitored during 2003; three downstream of a wastewater treatment plant, where Ludwigia is present, and one upstream site where it is absent. Filamentous algae occurred at all four sites, but declined rapidly at the below-treatment plant sites as growth and cover of vascular plants increased. By late summer, percent cover at these sites was dominated by Ludwigia, while the upstream site was consistently dominated by green macroalgae. Submerged plant parts provided substrate for diatom colonization, roughly doubling benthic diatom biomass (measured as chlorophyll a) at the downstream sites. Presence of the Ludwigia population also had strong ecosystem-level effects. The wastewater effluent produced typical stream water nitrate concentrations of 100-200 uM. Nitrate uptake rates downstream of the treatment plant inputs averaged 5 kg N/km/day, and direct uptake by Ludwigia could account for 20-40% of this nitrate drawdown. Further nitrate removal from the water column may be indirectly facilitated by the presence of Ludwigia through facilitation of diatom population growth.

  7. Contaminants of emerging concern in the lower Stillaguamish River Basin, Washington, 2008-11

    USGS Publications Warehouse

    Wagner, Richard J.; Moran, Patrick W.; Zaugg, Steven D.; Sevigny, Jennifer M.; Pope, Judy M.

    2014-01-01

    A series of discrete water-quality samples were collected in the lower Stillaguamish River Basin near the city of Arlington, Washington, through a partnership with the Stillaguamish Tribe of Indians. These samples included surface waters of the Stillaguamish River, adjacent tributary streams, and paired inflow and outflow sampling at three wastewater treatment plants in the lower river basin. Chemical analysis of these samples focused on chemicals of emerging concern, including wastewater compounds, human-health pharmaceuticals, steroidal hormones, and halogenated organic compounds on solids and sediment. This report presents the methods used and data results from the chemical analysis of these samples

  8. River-corridor habitat dynamics, Lower Missouri River

    USGS Publications Warehouse

    Jacobson, Robert B.

    2010-01-01

    Intensive management of the Missouri River for navigation, flood control, and power generation has resulted in substantial physical changes to the river corridor. Historically, the Missouri River was characterized by a shifting, multithread channel and abundant unvegetated sandbars. The shifting channel provided a wide variety of hydraulic environments and large areas of connected and unconnected off-channel water bodies.Beginning in the early 1800s and continuing to the present, the channel of the Lower Missouri River (downstream from Sioux City, Iowa) has been trained into a fast, deep, single-thread channel to stabilize banks and maintain commercial navigation. Wing dikes now concentrate the flow, and revetments and levees keep the channel in place and disconnect it from the flood plain. In addition, reservoir regulation of the Missouri River upstream of Yankton, South Dakota, has substantially changed the annual hydrograph, sediment loads, temperature regime, and nutrient budgets.While changes to the Missouri River have resulted in broad social and economic benefits, they have also been associated with loss of river-corridor habitats and diminished populations of native fish and wildlife species. Today, Missouri River stakeholders are seeking ways to restore some natural ecosystem benefits of the Lower Missouri River without compromising traditional economic uses of the river and flood plain.

  9. Amazon river flow regime and flood recessional agriculture: Flood stage reversals and risk of annual crop loss

    NASA Astrophysics Data System (ADS)

    Coomes, Oliver T.; Lapointe, Michel; Templeton, Michael; List, Geneva

    2016-08-01

    The annual flood cycle is an important driver of ecosystem structure and function in large tropical rivers such as the Amazon. Riparian peasant communities rely on river fishing and annual floodplain agriculture, closely adapted to the recession phase of the flood pulse. This article reports on a poorly documented but important challenge facing farmers practicing flood recessional agriculture along the Amazon river: frequent, unpredictable stage reversals (repiquetes) which threaten to ruin crops growing on channel bars. We assess the severity of stage reversals for rice production on exposed river mud bars (barreales) near Iquitos, Peru. Crop loss risk is estimated based on a quantitative analysis of 45 years of daily Amazon stage data and field data from floodplain communities nearby in the Muyuy archipelago, upstream of Iquitos. Rice varieties selected, elevations of silt rich bars where rice is sown, as well as planting and harvest dates are analyzed in the light of the timing, frequencies and amplitudes of observed stage reversals that have the potential to destroy growing rice. We find that unpredictable stage reversals can produce substantial crop losses and shorten significantly the length of average growing seasons on lower elevation river bars. The data reveal that local famers extend planting down to lower bar elevations where the mean probabilities of re-submergence before rice maturity (due to reversals) approach 50%, below which they implicitly consider that the risk of crop loss outweighs the potential reward of planting.

  10. Shumard Oaks Successfully Planted on High pH Soils

    Treesearch

    Harvey E. Kennedy; Roger M. Krinard

    1985-01-01

    Shumard oak was successfully planted on high pH (7.8-8.0) Mississippi River alluvium soils where some other planted red oaks had failed. Survival and growth have been good through ages 10, 11, and 25 years in three separate plantings. Shumard oak on high pH soils, in addition to producing timber, would allow a consistent mast-producing tree on sites normally void of...

  11. A Reconnaissance for Emerging Contaminants in the South Branch Potomac River, Cacapon River, and Williams River Basins, West Virginia, April-October 2004

    USGS Publications Warehouse

    Chambers, Douglas B.; Leiker, Thomas J.

    2006-01-01

    In 2003 a team of scientists from West Virginia Division of Natural Resources and the U. S. Geological Survey found a high incidence of an intersex condition, oocytes in the testes, among smallmouth bass (Micropterus dolomieu) in the South Branch Potomac River and the Cacapon River of West Virginia, indicating the possible presence of endocrine-disrupting compounds (EDCs). Possible sources of EDCs include municipal and domestic wastewater, and agricultural and industrial activities. Several sampling strategies were used to identify emerging contaminants, including potential EDCs, and their possible sources in these river basins and at an out-of-basin reference site. Passive water-sampling devices, which accumulate in-stream organic chemical compounds, were deployed for 40-41 days at 8 sampling sites. Sampler extracts were analyzed for a broad range of polar and non-polar organic compounds including pesticides, flame retardants, pharmaceuticals, and personal-care products. Analysis of passive-sampler extracts found 4 compounds; hexachloro-benzene; pentachloroanisole; 2,2',4,4',5-penta-bromo-diphenyl ether (BDE 47); and 2,2',4,4',6-penta-bromo-diphenyl ether (BDE 99) to be present at every sampled site, including the reference site, and several sites had detectable quantities of other compounds. No detectable quantity of any antibiotics was found in any passive-sampler extract. Effluent samples were analyzed for 39 antibiotics as tracers of human and agricultural waste. Additionally, poultry-processing plant effluent was sampled for roxarsone, an organoarsenic compound used as a poultry-feed additive, and other arsenic species as tracers of poultry waste. Antibiotics were detected in municipal wastewater, aquaculture, and poultry-processing effluent, with the highest number of antibiotics and the greatest concentrations found in municipal effluent. Arsenate was the only arsenic species detected in the poultry-processing plant effluent, at a concentration of 1.0 ?g

  12. Mapping Water Level Dynamics over Central Congo River Using PALSAR Images, Envisat Altimetry, and Landsat NDVI Data

    NASA Astrophysics Data System (ADS)

    Kim, D.; Lee, H.; Jung, H. C.; Beighley, E.; Laraque, A.; Tshimanga, R.; Alsdorf, D. E.

    2016-12-01

    Rivers and wetlands are very important for ecological habitats, and it plays a key role in providing a source of greenhouse gases (CO2 and CH4). The floodplains ecosystems depend on the process between the vegetation and flood characteristics. The water level is a prerequisite to an understanding of terrestrial water storage and discharge. Despite the lack of in situ data over the Congo Basin, which is the world's third largest in size ( 3.7 million km2), and second only to the Amazon River in discharge ( 40,500 m3 s-1 annual average between 1902 and 2015 in the main Brazzaville-Kinshasa gauging station), the surface water level dynamics in the wetlands have been successfully estimated using satellite altimetry, backscattering coefficients (σ0) from Synthetic Aperture Radar (SAR) images and, interferometric SAR technique. However, the water level estimation of the Congo River remains poorly quantified due to the sparse orbital spacing of radar altimeters. Hence, we essentially have limited information only over the sparsely distributed the so-called "virtual stations". The backscattering coefficients from SAR images have been successfully used to distinguish different vegetation types, to monitor flood conditions, and to access soil moistures over the wetlands. However, σ0 has not been used to measure the water level changes over the open river because of very week return signal due to specular scattering. In this study, we have discovered that changes in σ0 over the Congo River occur mainly due to the water level changes in the river with the existence of the water plants (macrophytes, emergent plants, and submersed plant), depending on the rising and falling stage inside the depression of the "Cuvette Centrale". We expand the finding into generating the multi-temporal water level maps over the Congo River using PALSAR σ0, Envisat altimetry, and Landsat Normalized Difference Vegetation Index (NDVI) data. We also present preliminary estimates of the river

  13. Hydrology and ecology of the Apalachicola River, Florida : a summary of the river quality assessment

    USGS Publications Warehouse

    Elder, John F.; Flagg, Sherron D.; Mattraw, Harold C.

    1988-01-01

    During 1979-81, the U.S. Geological Survey conducted a large-scale study of the Apalachicola River in northwest Florida, the largest and one of the most economically important rivers in the State. Termed the Apalachicola River Quality Assessment, the study emphasized interrelations among hydrodynamics, the flood-plain forest, and the nutrient-detritus flow through the river system to the estuary. This report summarizes major findings of the study. Data on accumulation of toxic substances in sediments and benthic organisms in the river were also collected. Because of the multiple uses of the Apalachicola River system, there are many difficult management decisions. The river is a waterway for shipping; hence there is an economic incentive for modification to facilitate movement of barge traffic. Such modifications include the proposed construction of dams, levees, bend easings, and training dikes; ditching and draining in the flood plain; and dredging and snagging in the river channel. The river is also recognized as an important supplier of detritus, nutrients, and freshwater to the Apalachicola Bay, which maintains an economically important shellfish industry. The importance of this input to the bay creates an incentive to keep the river basin in a natural state. Other values, such as timber harvesting, recreation, sport hunting, nature appreciation, and wildlife habitat, add even more to the difficulty of selecting management strategies. Water and nutrient budgets based on data collected during the river assessment study indicate the relative importance of various inputs and outflows in the system. Waterflow is controlled primarily by rainfall in upstream watersheds and is not greatly affected by local precipitation, ground-water exchanges, or evapotranspiration in the basin. On an annual basis, the total nutrient inflow to the system is nearly equal in quantity to total outflow, but there is a difference between inflow and outflow in the chemical and physical

  14. Detecting the Benefits of Shade Management in the Thermal Regime of an Upland River Under Positive and Negative Phases of the NAO

    NASA Astrophysics Data System (ADS)

    Wilby, R.; Johnson, M. F.

    2017-12-01

    Water temperature is an important determinant of river ecosystem function and health. Hence, there is growing concern about rising surface water temperatures as a consequence of global warming and human modifications to river regimes. Some agencies are advocating riparian shade management as a means of `keeping rivers cool'. As appealing as this policy might seem, there are a host of practical considerations such as which species to plant, where to plant, and how much to plant? Moreover, there can be unintended consequences for groundwater recharge, flood risk and nutrient fluxes through the buffer zone. The thermal benefits of tree-planting may also be hard to detect amidst the integrated, downstream effects of landscape shade and flows from springs. Yet, to truly evaluate shade management as an adaptation to climate change, clear evidence is needed of the costs and benefits of this local intervention. What has this got to do with natural modes of climate variability? Continental scale, hydrological impacts of ENSO, the PDO and NAO have been widely reported - these periodic variations in ocean-atmosphere circulations are often blamed for floods, droughts, wildfire, crop failures, and the like. But there is emerging evidence that such phenomena also drive inter-annual variations in the heat flux of rivers. This matters because the underlying signal can confound field and model experiments intended to test adaptation options. Here, we present evidence of NAO signatures in the water temperature regime of the River Dove, UK. We compare the amplitude of these thermal variations with the expected benefit of tree planting. We demonstrate that the difference in maximum summer water temperature between strongly positive and strongly negative NAO phases can be about 2.5°C. This is equivalent to the thermal benefit of more than 2 km of riparian shade for the river studied. So, whilst modes of climate variability undoubtedly have a global footprint, let us not forget that

  15. Missouri River Flood 2011 Vulnerabilities Assessment Report. Volume 2 - Technical Report

    DTIC Science & Technology

    2012-10-01

    202 Figure 98. Dams damage/erosion: Gavins Point - Excess debris led to clogging of water intake at Hydropower Plant (under...and a description of the economic vulnerabilities related to Missouri River flooding, even beyond the impacts from 2011. 2.4.1.1 Geographic Extent...Database, 2011. Two nuclear power plants are located within the floodplain, which poses potential risks to health and safety of nearby populations as a

  16. Contribution from the Yenisei River to the total radioactive contamination of the Kara Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuznetsov, Yu.V.; Revenko, Yu.A.; Legin, V.K.

    1995-07-01

    An attempt is made to estimate the contribution from the Yenisei River and, therefore, the Krasnoyarsk Mining and Chemical Plant (MCP), which discharged wastewaters to the Yenisei, to the total contamination of the Kara Sea using results from a study of the radioactive contamination of the Yenisei River, Yenisei Bay, Yenisei Gulf, and the Kara Sea itself. Radionuclides generated from using river water in cooling circuits of production reactors make the largest contribution to the total activity. The radioactive contamination of the river decreased by more than 20 times after two of the three operating reactors were shut down. Onlymore » several wetlands are actually affected by MCP hundreds of kilometers from the discharge point.« less

  17. Hydrodynamics and Eutrophication Model Study of Indian River and Rehoboth Bay, Delaware

    DTIC Science & Technology

    1994-05-01

    Station, Vicksburg, MS. V Chapter I: Introduction The Study System Indian River and Rehoboth Bay (Figure 1-1) are two water bodies that form part of the...and mass trans- port throughout the system . Objectives The primary objective of this study is to provide a hydrodynamic/ water quality model packge of...portion opens out into Indian River Bay (Figure 3-1). The cooling water diversion was included in the hydrodynamic model. Flow through the power plant, at

  18. 22. STEAM PLANT TURBINE DECK FROM SOUTH END OF BUILDING, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. STEAM PLANT TURBINE DECK FROM SOUTH END OF BUILDING, SHOWING TOPS OF DIESEL ENGINES AT FAR NORTH END, PRIOR TO INSTALLATION OF STEAM UNIT NO. 4. Ca. 1948 - Crosscut Steam Plant, North side Salt River near Mill Avenue & Washington Street, Tempe, Maricopa County, AZ

  19. Detention storage volume for combined sewer overflow into a river.

    PubMed

    Temprano, J; Tejero, I

    2002-06-01

    This article discusses the storage volume needed in a combined sewer system tank in order to preserve the water quality. There are a lot of design criteria which do not take into account the conditions of the receiving water, and as a result are inappropriate. A model was used to simulate the performance of a theoretical combined sewer system where a tank was located downstream. Results were obtained from the overflows produced by the rain recorded in Santander (Spain) for 11 years, with several combinations of storage volume and treatment capacity in the wastewater treatment plant. Quality criteria were also proposed for faecal coliforms, BOD, and total nitrogen to evaluate the effects from the overflows in the river water quality. Equations have been obtained which relate the number of overflows, the storage volume and the treatment plant capacity. The bacteriological pollution, quantified by means of faecal coliforms, was the analytical parameter which produced the most adverse effects in the river, so that more storage volume is needed (45 to 180 m3 ha(-1) net) than with other simulated pollutants (5 to 50 m3 ha(-1) net for BOD, and less than 4 m3 ha(-1) net for the total nitrogen). The increase in the treatment plant's capacity, from two to three times the flow in dry weather, reduces the impact on the river water in a more effective way, allowing a reduction of up to 65% in the number of overflows rather than increasing the storage volume.

  20. Colloids in the River Inn

    NASA Astrophysics Data System (ADS)

    Ueckert, Martina; Niessner, Reinhard; Baumann, Thomas

    2015-04-01

    , additional samples of the River Inn before and after the influx of the Faggenbach stream, Faggenbach stream itself and at an aqueous pressure gallery that discharges to the River Inn were taken and analyzed. Here the effect of construction activities at the power plant were clearly visible.

  1. Northern Rivers Ecosystem Initiative: nutrients and dissolved oxygen - issues and impacts.

    PubMed

    Chambers, Patricia A; Culp, Joseph M; Glozier, Nancy E; Cash, Kevin J; Wrona, Fred J; Noton, Leigh

    2006-02-01

    Anthropogenic inputs of nitrogen (N), phosphorus (P) and oxygen-consuming material to aquatic ecosystems can change nutrient dynamics, deplete oxygen, and change abundance and diversity of aquatic plants and animals. The Northern Rivers Ecosystem Initiative required a research and assessment program to establish the contribution of pulp mill and sewage discharges to eutrophication and depressions in dissolved oxygen (DO) in the Athabasca and Wapiti rivers of northern Alberta, Canada and examine the adequacy of existing guidelines for protecting these systems. Analysis of long-term data showed that total N (TN) and total P (TP) concentrations in exposed river reaches exceeded concentrations in reference reaches by < or = 2 times for the Athabasca River, and by 9.6 (TP) and 2.6 (TN) times for the Wapiti River. Results from nutrient limitation experiments conducted in situ and in mesocosms showed that benthic algal production was nutrient sufficient downstream of pulp mill discharges but constrained in upper river reaches by insufficient P (Athabasca River) or N + P (Wapiti River). Dissolved oxygen (DO) concentrations in both rivers declined during winter such that median concentrations in the Athabasca River 945 km downstream of the headwaters were approximately 8 mg L(-1) in mid-February. Although water column DO rarely approached the guideline of 6.5 mg L(-1), DO studies undertaken in the Wapiti River showed that pore water DO often failed to meet this guideline and could not be predicted from water column DO. Results from this integrated program of monitoring and experimentation have improved understanding of the interactions between nutrients, DO and aquatic ecosystem productivity and resulted in recommendations for revisions to nutrient and DO guidelines for these northern rivers.

  2. Impacts of land use on phosphorus transport in a river system

    NASA Astrophysics Data System (ADS)

    Wang, J.; Pant, H. K.

    2010-12-01

    Phosphorus (P) is a primary limiting nutrient in freshwater systems, however, excessive P load in the systems cause eutriphication, resulting in algal blooms and oxygen depletion. This study estimated potential exchange of P between water column and sediments by P sorption, and identified P compounds in sediments by 31Phosphorus Nuclear Magnetic Resonance Spectroscopy in the samples collected from the Bronx River, New York City, NY. Similarly, mineralization, as well as enzymatic hydrolysis using native phosphoatases (NPase) and phosphodiesterase (PDEase) showed that land use changes and other anthropogenic factors had effects on the P availability in the river. Distinguished characteristics of P bioavailability appeared at major tributaries of Sprain Brook and Troublesome Brook, boundary between fresh and saline water at East Tremont Ave, and estuary close to Hunts Point Wastewater Treatment Plant. Incidental sewer overflows at Yonkers, oil spill at East Tremont Avenue Bridge, fertilizer application at Westchester’s lawns, and gardens, animal manure from the zoo, combined sewer overflows (CSOs), storm water runoff from Bronx River Parkway, and inputs from East River influenced spatial and temporal variations on P transport in the river. This study provides an overview of impacts of land use on nutrient transport in a river system, which may help to make effective policies to regulate P application in the river watersheds, in turn, improve water quality and ecological restoration of a river.

  3. Apcocynum Pictum and Sustainable Agriculture Along the Tarim River In Arid Northwest, China

    NASA Astrophysics Data System (ADS)

    Aihemaitijiang, R.

    2014-12-01

    Water scarcity and population increase have been a major limiting factor in oasis development along the Tarim River in Xinjiang, Northwest China which has very continental and dry climate, and all the agriculture and livelihoods depend on glacier melt water from Tarim River. Due to vast land reclamation along the Tarim River to grow cotton, native plant species are facing a severe competition for water, which is essential for their survival. Decreasing river runoff and inefficient water use practices by agriculture and industry has exacerbated already serious situation even worse. In addition, a large influx of migrant famers from Eastern China is being settled in this region to cultivate new agricultural lands that consumed even more water. Under those conditions, the natural riparian vegetation and the irrigation agriculture, especially along the lower reaches, suffers water shortage leading the degradation and economic losses, respectively. Along with the enlargement of irrigation area and periods of water shortage, soil salinization has become a major concern for farmers in the area. Alternative cash crops are much needed to reduce water use, so both native vegetation and human demand for water would be fulfilled. We hypothesized Apocynum Pictum, perennial herb species with multiple uses as potential substitute. Multidisciplinary approach is being used in this study to investigate three related issues to offer a basis for Apocynum's role in sustainable agriculture, such as Biomass production of Apocynum; Water budget of Apocynum; and Economic utilization of Apocynum. A.Pictum is perennial plant distributed in Central Asia and China, which its roots are perennial, while the stems die every year. Thus, A.pictum grow under the arid climate of Central Asia and provide utilization options without irrigation. We initially estimate water requirement for this plant is much less than cotton. In order to validate our hypothesis, we have measured water consumption of the

  4. A study of the utilization of ERTS-1 data from the Wabash River Basin

    NASA Technical Reports Server (NTRS)

    Landgrebe, D. A. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. The identification and area estimation of crops experiment tested the usefulness of ERTS data for crop survey and produced results indicating that crop statistics could be obtained from ERTS imagery. Soil association mapping results showed that strong relationships exist between ERTS data derived maps and conventional soil maps. Urban land use analysis experiment results indicate potential for accurate gross land use mapping. Water resources mapping demonstrated the feasibility of mapping water bodies using ERTS imagery.

  5. A study of the utilization of ERTS-1 data from the Wabash River Basin

    NASA Technical Reports Server (NTRS)

    Landgrebe, D. A. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Nine projects are defined, five ERTS data applications experiments and four supporting technology tasks. The most significant applications results were achieved in the soil association mapping, earth surface feature identification, and urban land use mapping efforts. Four soil association boundaries were accurately delineated from ERTS-1 imagery. A data bank has been developed to test surface feature classifications obtained from ERTS-1 data. Preliminary forest cover classifications indicated that the number of acres estimated tended to be greater than actually existed by 25%. Urban land use analysis of ERTS-1 data indicated highly accurate classification could be obtained for many urban catagories. The wooded residential category tended to be misclassified as woods or agricultural land. Further statistical analysis revealed that these classes could be separated using sample variance.

  6. The influence of the Amazonian floodplain ecosystems on the trace element dynamics of the Amazon River mainstem (Brazil).

    PubMed

    Viers, Jérôme; Barroux, Guénaël; Pinelli, Marcello; Seyler, Patrick; Oliva, Priscia; Dupré, Bernard; Boaventura, Geraldo Resende

    2005-03-01

    The purpose of this paper is to forecast the role of riverine wetlands in the transfer of trace elements. One of the largest riverine wetlands in the world is the floodplain (várzea) of the Amazon River and its tributaries (Junk and Piedade, 1997). The central Amazon wetlands are constituted by a complex network of lakes and floodplains, named várzeas, that extend over more than 300,000 km2 (Junk, W.J., The Amazon floodplain--a sink or source for organic carbon? In Transport of Carbon and Minerals in Major World Rivers, edited by E.T. Degens, S. Kempe, R. Herrera, SCOPE/UNEP; 267-283, 1985.) and are among the most productive ecosystems in the world due to the regular enrichment in nutrients by river waters In order to understand if the adjacent floodplain of Amazon River have a significant influence on the trace element concentrations and fluxes of the mainstem, the concentrations of selected elements (i.e., Al, Mn, Fe, Co, Cu, Mo, Rb, Sr, Ba, and U) have been measured in the Amazon River water (Manacapuru Station, Amazonas State, Brazil) and in lake waters and plants (leaves) from a várzea(Ilha de Marchantaria, Amazonas State, Brazil) during different periods of the hydrological cycle. Four plant species (two perennial species: Pseudobombax munguba and Salix humboldtiana, and two annual herbaceous plants: Echinochloa polystachya and Eichhornia crassipes) were selected to represent the ecological functioning of the site. Time series obtained for dissolved Mn and Cu (<0.20 microm) in Amazon River water could not be explained by tributary mixing or instream processes only. Therefore, the contribution of the waters transiting the floodplains should be considered. These results suggest that the chemical composition of the waters draining these floodplains is controlled by reactions occurring at sediment-water and plant-water interfaces. Trace elements concentrations in the plants (leaves) vary strongly with hydrological seasonality. Based on the concentration data

  7. 2. Environmental view looking northeast from an elevation. East forebay ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Environmental view looking northeast from an elevation. East forebay of lock is visible in left mid-ground. Residence can be seen across U.S. 24. View shows profile of Wabash and Erie canal prism (between U.S. 24 and line of electrical poles) as it continues in a northeasterly direction. - Wabash & Erie Canal, Lock No. 2, 8 miles east of Fort Wayne, adjacent to U.S. Route 24, New Haven, Allen County, IN

  8. Water Control Plan, Lake Red Rock, Iowa. Final Supplemental Environmental Impact Statement

    DTIC Science & Technology

    1988-05-01

    DACW2218504032 1 850301 900228 158.0 Above 744. Agriculture Wabash Railroad Co. DACW252710013 0 2 710205 Indef 168.6 Above 744. Railroad Warren...include Nevin, Bremer, Spillville, Colo, Wabash , Landes, riverwash, and alluvial lands. 3.3.3.3 The Ladoga-Clinton-Otley association is found on the north...in Lake Red Rock include pesticides (e.g., alacllor, atrazine, dieldrin, cynazine, 2,4-D) and heavy metals (lead, mercury, arsenic, cadmium , chromium

  9. 76 FR 76337 - Endangered and Threatened Wildlife and Plants; Designation of Critical Habitat for Lost River...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-07

    ... ecology, as well as the technological advancements made available since preparing the 1994 proposed rule..., advancement in our understanding of Lost River sucker's and shortnose sucker's ecology, and the technological... required for Lost River sucker and shortnose sucker from studies of this species' habitat, ecology, and...

  10. [Toxicity evaluation of sewage treatment plant effluent of chemical industrial park along the Yangtze River on rat testicular germ cells in vitro].

    PubMed

    Hu, Guan-Jiu; Wang, Xiao-Yi; Shi, Wei; Bai, Chou-Yong; Wu, Jiang; Liu, Hong-Ling; Yu, Hong-Xia

    2009-05-15

    By using rat testicular germ cells in vitro toxicity testing method based on original cells culture, the reproduction toxicity of sewage treatment plant effluent of Chemical Industrial Park along the Yangtze River was evaluated, through cells changes in morphologic, activity and viability parameters. The results showed that both of the effluents from new developed Chemical Industrial Park A and provincial Chemical Industrial Park B contain reproductive toxic substances. The toxicity of Park A has more significant undergone changes in cells activity of sertoli cells (p < 0.01), spermatogenic cells (p < 0.05) and leyding cells (p < 0.05), lactate dehydrogenase activity (p < 0.01) and testosterone secretion (p < 0.01) than that of Park B. Sepermatogenic cells are more sensitive in indicating reproduction toxicity for testicular, compared with leyding cells and sertoli cells. This study demonstrated that, as an indispensable and complementary tool for water quality assessment, rat testicular germ cells in vitro toxicity testing based on original cells culture can be used to comprehensively evaluate the reproduction toxicity of sewage treatment plant effluent, and provide prompt and useful discharge quality information.

  11. Recovery of benthic-invertebrate communities in the White River near Indianapolis, Indiana, USA, following implementation of advanced treatment of municipal wastewater

    USGS Publications Warehouse

    Crawford, Charles G.; Wangsness, David J.

    1992-01-01

    The City of Indianapolis, Indiana, USA, completed construction of advanced-wastewater-treatment systems to enlarge and upgrade existing secondary-treatment processes at the City’s two municipal wastewater-treatment plants in 1983. These plants discharge their effluent to the White River. A study was begun in 1981 to evaluate the effects of municipal wastewater on the quality of the White River near Indianapolis. As part of this study, benthic-invertebrate samples were collected from one riffle upstream and two riffles downstream from the treatment plants annually from 1981 through 1987 (2 times before and 5 times after the plant improvements became operational). Samples were collected during periods of late-summer or early-fall low streamflow with a Surber sampler. Upstream from the wastewater-treatment plants, mayflies and caddisflies were the predominant organisms in the benthic-invertebrate community (from 32 to 93 percent of all organisms; median value is 67 percent) with other insects and mollusks also present. Before implementation of advanced wastewater-treatment, the benthic-invertebrate community downstream from the wastewater treatment plants was predominantly chironomids and oligochaetes (more than 98 percent of all organisms)-organisms that generally are tolerant of organic wastes. Few intolerant species, such as mayflies or caddisflies were found. Following implementation of advanced wastewater treatment, mayflies and caddisflies became numerically dominant in samples collected downstream from the plants. By 1986, these organisms accounted for more than 90 percent of all organisms found at the two downstream sites. The diversity of benthic invertebrates found in these samples resembled that at the upstream site. The improvement in the quality of municipal wastewater effluent resulted in significant improvements in the water quality of the White River downstream from Indianapolis. These changes in river quality, in turn, have resulted in a shift from

  12. Spatio-temporal statistical models for river monitoring networks.

    PubMed

    Clement, L; Thas, O; Vanrolleghem, P A; Ottoy, J P

    2006-01-01

    When introducing new wastewater treatment plants (WWTP), investors and policy makers often want to know if there indeed is a beneficial effect of the installation of a WWTP on the river water quality. Such an effect can be established in time as well as in space. Since both temporal and spatial components affect the output of a monitoring network, their dependence structure has to be modelled. River water quality data typically come from a river monitoring network for which the spatial dependence structure is unidirectional. Thus the traditional spatio-temporal models are not appropriate, as they cannot take advantage of this directional information. In this paper, a state-space model is presented in which the spatial dependence of the state variable is represented by a directed acyclic graph, and the temporal dependence by a first-order autoregressive process. The state-space model is extended with a linear model for the mean to estimate the effect of the activation of a WWTP on the dissolved oxygen concentration downstream.

  13. Primary production, plant and detrital biomass, and particle transport in the Columbia River Estuary

    NASA Astrophysics Data System (ADS)

    Small, Lawrence F.; McIntire, C. David; MacDonald, Keith B.; Lara-Lara, J. Ruben; Frey, Bruce E.; Amspoker, Michael C.; Winfield, Ted

    The dynamics of primary production and particulate detritus cycling in the Columbia River Estuary are described, with particular reference to mechanisms that account for patterns within the water column, on the tidal flats, and in the adjacent wetlands. Analysis of patterns in phytoplankton flora and biomass and in distribution of detrital particulate organic matter (DPOC) in the water column indicated that salinities of 1-5 delineated an essentially freshwater flora from a marine or euryhaline flora, and that living phytoplankton was converted to DPOC at the freshwater-brackishwater interface. Similarly, the benthic diatom assemblages on tidal flats reflected either the fresh or the brackish nature of the water inundating the flats. Emergent vascular plants were grouped into six associations by cluster analysis, the associations being separated mainly on the bases of different relative abundances of freshwater, euryhaline or brackishwater species, and on whether samples occurred in high or low marsh areas. Annual rates of net areal 24-hr production averaged 55, 16, and 403gC m -2y -1 for phytoplankton, benthic algae, and emergent vascular vegetation, respectively. Total production over the whole estuary was 17,667 metric tons C y -1 for phytoplankton, 1,545mt C y -1 for benthic algae, and 11,325mt C y -1 for emergent vascular plants, for a grand total to 30,537mt C y -1. Phytoplankton biomass turned over approximately 39 times per year on average, while benthic algae turned over about twice and emergent plants once per year. Budgets for phytoplankton carbon (PPOC) and DPOC were developed based on PPOC and DPOC import and export, grazing loss, and in situ production and conversion of PPOC to DPOC. It is suggested that 36,205mt y -1 of PPOC is converted to DPOC in the estuary, principally at the freshwater-brackishwater interface. About 40,560mt y -1 of PPOC is exported to the ocean, and 159,185mt y -1 of DPOC is transported into the marine zone of the estuary (no

  14. Evaluation of Managed Aquifer Recharge Scenarios using Treated Wastewater: a Case study of the Zarqa River Basin, Jordan

    NASA Astrophysics Data System (ADS)

    El-Rawy, Mustafa; Zlotnik, Vitaly; Al-Maktoumi, Ali; Al-Raggad, Marwan; Kacimov, Anvar; Abdalla, Osman

    2016-04-01

    Jordan is an arid country, facing great challenges due to limited water resources. The shortage of water resources constrains economy, especially agriculture that consumes the largest amount of available water (about 53 % of the total demand). According to the Jordan Water Strategy 2008 - 2022, groundwater is twice greater than the recharge rate. Therefore, the government charged the planners to consider treated wastewater (TWW) as a choice in the water resources management and development strategies. In Jordan, there are 31 TWW plants. Among them, As Samra plant serving the two major cities, Amman and Zarqa, is the largest, with projected maximum capacity of 135 Million m3/year. This plant is located upstream of the Zarqa River basin that accepts all TWW discharges. The Zarqa River is considered the most important source of surface water in Jordan and more than 78 % of its current is composed of TWW. The main objectives were to develop a conceptual model for a selected part of the Zarqa River basin, including the As Samrapant, and to provide insights to water resources management in the area using TWW. The groundwater flow model was developed using MODFLOW 2005 and used to assess changes in the aquifer and the Zarqa River under a set of different increments in discharge rates from the As Samra plant and different groundwater pumping rates. The results show that the water table in the study area underwent an average water table decline of 29 m prior to the As Samra plant construction, comparing with the current situation (with annual TWW discharge of 110 Million m3). The analysis of the TWW rate increase to 135 million m3/year (maximum capacity of the As Samra plant) shows that the average groundwater level will rise 0.55 m, compared to the current conditions. We found that the best practices require conjunctive use management of surface- and groundwater. The simulated scenarios highlight the significant role of TWW in augmenting the aquifer storage, improving

  15. Use of naturally growing aquatic plants for wastewater purification.

    PubMed

    Zimmels, Y; Kirzhner, F; Roitman, S

    2004-01-01

    This paper examines potential uses of naturally growing aquatic plants for wastewater purification. These plants enhance the removal of pollutants by consuming part of them in the form of plant nutrients. This applies to urban and agricultural wastewater, in particular, where treatment units of different sizes can be applied at the pollution source. The effectiveness of wastewater purification by different plants was tested on laboratory and pilot scales. The growth rate of the plants was related to the wastewater content in the water. Batch and semicontinuous experiments verified that the plants are capable of decreasing all tested indicators for water quality to levels that permit the use of the purified water for irrigation. This applies to biochemical oxygen demand (BOD), chemical oxygen demand, total suspended solids. pH, and turbidity. In specific cases, the turbidity reached the level of drinking water. Comparison of BOD concentrations with typical levels in water treatment facilities across the country indicates the effectiveness of water purification with plants. A major effect of treatment with plants was elimination of the disturbing smell from the wastewater. It is shown that mixtures of wastewater and polluted water from the Kishon River are amenable in varying degrees to treatment by the plants. The higher the wastewater content in the mixture, the more effective the treatment by the plants. In this context, a scheme for rehabilitation and restoration of the Kishon River is presented and technical and economical aspects of the purification technology are considered.

  16. Late-summer food of red-winged blackbirds in a fresh tidal-river marsh

    USGS Publications Warehouse

    Meanley, B.

    1961-01-01

    During late summer in the Delaware Valley and Chesapeake Bay region, hundreds of thousands of Red-winged Blackbirds feed in wild rice beds of fresh tidal-river marshes. The period during which wild rice seed is available coincides with the ripening period of a part of the corn crop, and there is evidence to indicate that the availability of the wild rice reduces bird feeding pressure on corn in the area. The importance of wild rice and other marsh plants to the redwing during the period when wild rice seed is available was studied further by field observations and by analysis of stomach contents of 130 birds collected in wild rice beds of the Patuxent River in southern Maryland. Seeds of marsh plants formed the bulk of the food of redwings collected. Dotted smartweed, wild rice, and Walter?s millet were the most important food plants. Corn was the fourth most important item. It occurred in 35, approximately one-fourth, of the stomachs

  17. Effects of light-emitting diode supplementary lighting on the winter growth of greenhouse plants in the Yangtze River Delta of China.

    PubMed

    Li, Xue; Lu, Wei; Hu, Guyue; Wang, Xiao Chan; Zhang, Yu; Sun, Guo Xiang; Fang, Zhichao

    2016-12-01

    The winter in the Yangtze River Delta area of China involves more than 1 month of continuous low temperature and poor light (CLTL) weather conditions, which impacts horticultural production in an unheated greenhouse; however, few greenhouses in this area are currently equipped with a heating device. The low-cost and long-living light-emitting diode (LED) was used as an artificial light source to explore the effects of supplementary lighting during the dark period in CLTL winter on the vegetative characteristics, early yield, and physiology of flowering for pepper plants grown in a greenhouse without heating. Two LED lighting sets were employed with different light source to provide 65 μmol m -2  s -1 at night: (1) LED-A: red LEDs (R, peak wavelength 660 nm) and blue LEDs (B, peak wavelength 460 nm) with an R:B ratio of 6:3; and (2) LED-B: R and B LEDs at an R:B ratio of 8:1. Plants growth parameters and chlorophyll fluorescence characteristics were compared between lighting treatments and the control group. Plants' yield and photosynthesis ability were improved by LED-A. Pepper grown under the LED-A1 strategy showed a 303.3 % greater fresh weight of fruits and a 501.3 % greater dry mass compared with the control group. Plant leaves under LED-A1 showed maximum efficiency of the light quantum yield of PSII, electron transfer rate, and the proportion of the open fraction of PSII centers, with values 113.70, 114.34, and 211.65 % higher than those of the control group, respectively, and showed the lowest rate constant of thermal energy dissipation of all groups. LED-B was beneficial to the plant height and stems diameter of the pepper plants more than LED-A. These results can serve as a guide for environment control and for realizing low energy consumption for products grown in a greenhouse in the winter in Southern China.

  18. Dioxin in the river Elbe.

    PubMed

    Götz, Rainer; Bergemann, Michael; Stachel, Burkhard; Umlauf, Gunther

    2017-09-01

    This paper provides a macro-analysis of the dioxin contamination in the river Elbe from the 1940s to the present. Based on different data sets, the historic dioxin concentration in the Elbe has been reconstructed. For the section between the tributary Mulde and Hamburg, during the 1940s, we find a concentration of about 1500 pg WHO-TEQ g -1 . We argue that this dioxin contamination was caused mainly by emissions from a magnesium plant in Bitterfeld-Wolfen, whose effluents were discharged into a tributary of the river Mulde which flows into the Elbe. Dioxin pattern recognition with neural networks (Kohonen) confirms this. A model simulation shows that a hypothetical dioxin concentration of 10,000 pg WHO-TEQ g -1 in the tributary Mulde could have caused the reconstructed dioxin concentration of 1500 pg WHO-TEQ g -1 in the Elbe. The recent dioxin concentration (about 25-100 pg WHO-TEQ g -1 ) in the river Elbe, downstream the tributary Mulde, originates, according to our hypothesis, from emissions of the banks and the highly contaminated flood plains (transport of the particle bound dioxin). As other possible dioxin sources, the following could be excluded: the dioxin concentration in the Mulde, groynes, small ports, sport boat harbours, and extreme floods. Our hypothesis is supported by the results of pattern recognition techniques and a model simulation. According to these findings, we argue that remediation efforts to reduce the dioxin concentration in the river Elbe are unlikely to be successful. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. ARPA LOMBARDIA river gauging network: a great daily effort

    NASA Astrophysics Data System (ADS)

    Cislaghi, Matteo; Calabrese, Michele; Condemi, Leonardo; Di Priolo, Sara; Parravicini, Paola; Rondanini, Chiara; Russo, Michele; Cazzuli, Orietta; Mussin, Mauro; Serra, Roberto

    2017-04-01

    ARPA Lombardia is the Environmental Protection Agency of Lombardy, a wide region in northern Italy. ARPA is in charge of river monitoring either for Civil Protection or water balance purposes. Lombardy is characterized by a very complex territory; rivers start from the alpine areas and end in the Po river plain. Each mountain or plain area has specific hydrological features that has to be considered when planning a monitoring network. Moreover, human activities (such as lake regulation, agriculture diversions, hydropower plants with regulation structure etc) add anthropic interferences on the natural river system and can invalidate the collected data. In the last 10 years ARPA performed a major revision of the river gauging network. Each station was analysed using well defined criteria based on the required information (water balance or flood monitoring) and on the suitability of the gauging site (hydraulic characteristic or accessibility for spot measures). In the end more than 30% of the network was revised, many stations were closed and other installed. Particular attention was given to the discharge estimation. Many sites are characterized by backflow effect due to river confluences or to hydropower plants with water regulation structures. In these cases the classic rating curve approach can not be applied. Thus, for the first time in Italy, water velocity side looking doppler sensors were installed on natural rivers and the discharge is estimated with the index velocity method. The Italian Civil Protection Agency requires high transmission standards. No data can be lost for transmission failures and data has to be available every 30 minutes. For these reasons ARPA implemented a double transmission system: the first is based on the existing GPRS network managed by private operators, the second is based on a radio network directly installed by ARPA and totally dedicated to data transmission. This double approach ensures a very robust transmission and it allows

  20. AmeriFlux US-ORv Olentangy River Wetland Research Park

    DOE Data Explorer

    Bohrer, Gil [The Ohio State University

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-ORv Olentangy River Wetland Research Park. Site Description - The ORWRP site is a 21-ha large-scale, long-term wetland campus facility that is owned by Ohio State University. It is designed to provide teaching, research, and service related to wetland and river science and ecological engineering. The site has been developed in several phases: Phase 1 (1992 - 1994) - Construction of two 2.5-acre deepwater marshes and a river water delivery system began, with pumps installed on the floodplain to bring water from the Olentangy River. In May 1994, one wetland was planted with marsh vegetation, while the other remained as an unplanted control; Phase 2 (1994 - 1999) - Development of a research and teaching infrastructure took place with the construction of boardwalks, a pavilion, and a compound. The creation of the 7-acre naturally flooded oxbow was also included; Phase 3 (2000 - 2003) - As a research building was created, three additional wetlands were created in the vicinity of the building, including a stormwater wetland that receives runoff from the roof of the building; Phase 4 - The current phase involves research access to the Olentangy River.

  1. Numerical Demonstration of Massive Sediment Transport and Cs Recontamination by River Flooding in Fukushima Costal Area

    NASA Astrophysics Data System (ADS)

    Machida, Masahiko; Yamada, Susumu; Itakura, Mitsuhiro; Okumura, Masahiko; Kitamura, Akihiro

    2014-05-01

    Radioactive Cs recontamination brought about by deposition of silt and clay on river beds has been a central issue of environmental recovery problems in Fukushima prefecture after the Fukushima Dai-ichi nuclear power plant (FDNPP) accident. In fact, the river-side sediment monitored by using remote controlled helicopters and direct sampling measurements has been confirmed to be highly contaminated compared to the other areas, which just naturally decay. Such contamination transportation is especially remarkable in a few rivers in coastal areas of Fukushima prefecture, because their water and sediment are supplied from the highly contaminated area along the northwest direction from FDNPPs. Thus, we numerically study the sediment transportation in rivers by using 2D river simulation framework named iRIC developed by Shimizu et al. Consequently, we find that flood brought about by typhoon is mainly required for the massive transport and the sediment deposition in the flood plain is efficiently promoted by plants naturally grown on the plain. In this presentation, we reveal when and where the sediment deposition occurs in the event of floods through direct numerical simulations. We believe that the results are suggestive for the next planning issue related with decontamination in highly-contaminated evacuated districts.

  2. A River Runs through It: A School on the Edge of the Columbia River Estuary Combines Science and Stewardship Right in Its Own Backyard.

    ERIC Educational Resources Information Center

    Sherman, Lee

    2002-01-01

    The estuary at the mouth of the Columbia River in Wahkiakum County Washington) provides a natural laboratory for experiential learning. Wahkiakum High School students participate in interdisciplinary projects that have included habitat restoration, a salmon hatchery, stream restoration, tree planting, and recreating the final leg of the Lewis and…

  3. Will the river Irtysh survive the year 2030? Impact of long-term unsuitable land use and water management of the upper stretch of the river catchment (North Kazakhstan)

    NASA Astrophysics Data System (ADS)

    Hrkal, Zbyněk; Gadalia, Alain; Rigaudiere, Pierre

    2006-07-01

    The Irtysh river basin all the way from river spring in China across Kazakhstan as far as the Russian part of Siberia is among the most ecologically endangered and affected regions on our planet. The study provides a summary of the historical reasons for anthropological interventions in this area, which began with the construction of plants of the military—industrial complexes in the forties of the last century during World War II. These plants have a major share in extreme high concentrations of heavy metals in surface as well in groundwaters locally. The Semipalatinsk nuclear polygon plays a specific role as a source of contamination of local waters. The release of top secret data enabled us to gain knowledge about serious problems related to high radioactivity of groundwaters, which should spread uncontrollably through a system of secondary fissures activated by nuclear blasts. Another serious problem in this region is the quantitative aspect of contamination. Model simulations of water balance indicate that large industrial development in the spring area in China and continuously increasing water consumption in Kazakhstan may lead to desiccation of the lower stretch of this large river in Siberia during the summer months of 2030.

  4. Understory vegetation as an indicator for floodplain forest restoration in the Mississippi River Alluvial Valley, U.S.A

    Treesearch

    Diane De Steven; Stephen P. Faulkner; Bobby D. Keeland; Michael J. Baldwin; John W. McCoy; Steven C. Hughes

    2015-01-01

    In the Mississippi River Alluvial Valley (MAV), complete alteration of river-floodplain hydrology allowed for widespread conversion of forested bottomlands to intensive agriculture, resulting in nearly 80% forest loss. Governmental programs have attempted to restore forest habitat and functions within this altered landscape by the methods of tree planting (...

  5. Early stages of island development in a mountain river recovering from channelization and channel incision

    NASA Astrophysics Data System (ADS)

    Mikuś, Paweł; Walusiak, Edward; Wyżga, Bartłomiej; Liro, Maciej; Zawiejska, Joanna

    2017-04-01

    Development of islands in the Raba River, Polish Carpathians was investigated to document its early stages in a mountain river recovering from channelization and channel incision and verify whether islands can significantly contribute to the overall plant diversity of the river corridor. In the 20th century the heavily channelized Raba incised deeply in its mountain course, but a few years ago an erodible river corridor was established in its 3 km-long reach. Resignation from the maintenance of channelization structures in the reach about 10 years ago and the passage of two large floods in 2010 and 2014 resulted in up to a threefold increase in channel width, re-establishment of a multi-thread channel pattern and development of islands in the widened channel. Similar to other European mountain rivers, in the Raba islands originate as a result of deposition and sprouting of living driftwood of Salicaceae. Monitoring of islands in the study reach performed each year between 2011 and 2016 documented an increase in the number of islands from 28 to 42, in average island age from 2.8 to 5.0 years, in total island area from 0,39 ha to 1,75 ha and in average island area from 139 m2 to 418 m2. However, the increase in these parameters was not steady, but moderated by processes of island erosion by flood flows, island establishment shortly after major floods (increasing the number and reducing the average age and area of islands) and island coalescence in the years without major floods (with the opposite effects on the island parameters). The total number of vascular plant species fluctuated between 142 and 202 in particular years. An inventory of plant species on islands and plots of riparian forest performed in 2012 indicated that islands supported a greater total number of species than the adjacent riparian forest and that particular islands supported a significantly greater number of biennial and annual plants than riparian forest plots. An inventory performed in 2015

  6. Analysis of Waste Isolation Pilot Plant Samples: Integrated Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Britt, Phillip F

    2015-03-01

    Analysis of Waste Isolation Pilot Plant Samples: Integrated Summary Report. Summaries of conclusions, analytical processes, and analytical results. Analysis of samples taken from the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico in support of the WIPP Technical Assessment Team (TAT) activities to determine to the extent feasible the mechanisms and chemical reactions that may have resulted in the breach of at least one waste drum and release of waste material in WIPP Panel 7 Room 7 on February 14, 2014. This report integrates and summarizes the results contained in three separate reports, described below, and draws conclusions basedmore » on those results. Chemical and Radiochemical Analyses of WIPP Samples R-15 C5 SWB and R16 C-4 Lip; PNNL-24003, Pacific Northwest National Laboratory, December 2014 Analysis of Waste Isolation Pilot Plant (WIPP) Underground and MgO Samples by the Savannah River National Laboratory (SRNL); SRNL-STI-2014-00617; Savannah River National Laboratory, December 2014 Report for WIPP UG Sample #3, R15C5 (9/3/14); LLNL-TR-667015; Lawrence Livermore National Laboratory, January 2015 This report is also contained in the Waste Isolation Pilot Plant Technical Assessment Team Report; SRNL-RP-2015-01198; Savannah River National Laboratory, March 17, 2015, as Appendix C: Analysis Integrated Summary Report.« less

  7. Assessment of the quality of groundwater and the Little Wind River in the area of a former uranium processing facility on the Wind River Reservation, Wyoming, 1987 through 2010

    USGS Publications Warehouse

    Ranalli, Anthony J.; Naftz, David L.

    2014-01-01

    In 2010, the U.S Geological Survey (USGS), in cooperation with the Wind River Environmental Quality Commission (WREQC), began an assessment of the effectiveness of the existing monitoring network at the Riverton, Wyoming, Uranium Mill Tailings Remedial Action (UMTRA) site. The USGS used existing data supplied by the U.S. Department of Energy (DOE). The study was to determine (1) seasonal variations in the direction of groundwater flow in the area of the former uranium processing facility toward the Little Wind River, (2) the extent of contaminated groundwater among the aquifers and between the aquifers and the Little Wind River, (3) whether current monitoring is adequate to establish the effectiveness of natural attenuation for the contaminants of concern, and (4) the influence of groundwater discharged from the sulfuric-acid plant on water quality in the Little Wind River.

  8. The Crescent Bypass: A Riparian Restoration Project on the Kings River (Fresno County)

    Treesearch

    Jonathan A. Oldham; Bradley E. Valentine

    1989-01-01

    The Kings River Conservation District planted over 1200 plants of 19 riparian species in the first of two phases of a riparian revegetation project in the San Joaquin Valley. To date, tree survival rates vary from 17 to 96 percent among species, with an overall rate of 62 percent. Shrub survival averages 57 percent and ranges from 23 to 73 percent. Factors affecting...

  9. [Volatile organic compounds of the tap water in the Watarase, Tone and Edo River system].

    PubMed

    Ohmichi, Kimihide; Ohmichi, Masayoshi; Machida, Kazuhiko

    2004-01-01

    The chlorination of river water in purification plants is known to produce carcinogens such as trihalomethanes (THMs). We studied the river system of the Watarase, Tone, and Edo Rivers in regard to the formation of THMs. This river system starts from the base of the Ashio copper mine and ends at Tokyo Bay. Along the rivers, there are 14 local municipalities in Gunma, Saitama, Ibaragi and Chiba Prefectures, as well as Tokyo. This area is the center of the Kanto plain and includes the main sources of water pollution from human activities. We also analyzed various chemicals in river water and tap water to clarify the status of the water environment, and we outline the problems of the water environment in the research area (Fig. 1). Water samples were taken from 18 river sites and 42 water faucets at public facilities in 14 local municipalities. We analyzed samples for volatile organic compounds such as THMs, by gas chromatography mass spectrometry (GC-MS), and evaluations of chemical oxygen demand (COD) were made with reference to Japanese drinking water quality standards. Concentrations of THMs in the downstream tap water samples were higher than those in the samples from the upperstream. This tendency was similar to the COD of the river water samples, but no correlation between the concentration of THMs in tap water and the COD in tap water sources was found. In tap water of local government C, trichloroethylene was detected. The current findings suggest that the present water filtration plant procedures are not sufficient to remove some hazardous chemicals from the source water. Moreover, it was confirmed that the water filtration produced THMs. Also, trichloroethylene was detected from the water environment in the research area, suggesting that pollution of the water environment continues.

  10. Clustering and estimating fish fingerling abundance in a tidal river in close ploximity to a thermal power plant in Southern Thailand

    NASA Astrophysics Data System (ADS)

    Chesoh, S.; Lim, A.; Luangthuvapranit, C.

    2018-04-01

    This study aimed to cluster and to quantify the wild-caught fingerlings nearby thermal power plant. Samples were monthly collected by bongo nets from four upstream sites of the Na Thap tidal river in Thailand from 2008 to 2013. Each caught species was identified, counted and calculated density in term of individuals per 1,000 cubic meters. A total of 45 aquatic animal fingerlings was commonly trapped in the average density of 2,652 individuals per 1,000 cubic meters of water volume (1,235–4,570). The results of factor analysis revealed that factor 1 was represented by the largest group of freshwater fish species, factors 2 represented a medium-sized group of mesohaline species, factor 3 represented several brackish species and factor 4 was a few euryhaline species. All four factor reached maximum levels during May to October. Total average numbers of fish fingerling caught at the outflow showed greater than those of other sampling sites. The impact of heated pollution from power plant effluents did not clearly detected. Overall water quality according the Thailand Surface Water Quality Standards Coastal tidal periodic and seasonal runoff phenomena exhibit influentially factors. Continuous ecological monitoring is strongly recommended.

  11. Temporal and spatial distribution of isotopes in river water in Central Europe: 50 years experience with the Austrian network of isotopes in rivers.

    PubMed

    Rank, Dieter; Wyhlidal, Stefan; Schott, Katharina; Weigand, Silvia; Oblin, Armin

    2018-05-01

    The Austrian network of isotopes in rivers comprises about 15 sampling locations and has been operated since 1976. The Danube isotope time series goes back to 1963. The isotopic composition of river water in Central Europe is mainly governed by the isotopic composition of precipitation in the catchment area; evaporation effects play only a minor role. Short-term and long-term isotope signals in precipitation are thus transmitted through the whole catchment. The influence of climatic changes has become observable in the long-term stable isotope time series of precipitation and surface waters. Environmental 3 H values were around 8 TU in 2015, short-term 3 H pulses up to about 80 TU in the rivers Danube and March were a consequence of releases from nuclear power plants. The complete isotope data series of this network will be included in the Global Network of Isotopes in Rivers database of the International Atomic Energy Agency (IAEA) in 2017. This article comprises a review of 50 years isotope monitoring on rivers and is also intended to provide base information on the (isotope-)hydrological conditions in Central Europe specifically for the end-users of these data, e.g. for modelling hydrological processes. Furthermore, this paper includes the 2006-2015 supplement adding to the Danube isotope set published earlier.

  12. The potential influence of the invasive plant, Impatiens glandulifera (Himalayan Balsam), on the ecohydromorphic functioning of inland river systems

    NASA Astrophysics Data System (ADS)

    (Phil) Greenwood, Philip; Fister, Wolfgang; Kuhn, Nikolaus

    2014-05-01

    The invasive plant, Impatiens glandulifera (common English name: Himalayan Balsam), is now found in most temperate European countries, as well as across large parts of North America and on some Australasian islands. As a ruderal species, it favours damp, nutrient-rich soils that experience frequent natural disturbance, such as riparian zones. Its ability to out-compete native vegetation and tendency to suffer rapid dieback during cold weather has led to repeated speculation that it may promote soil erosion, particularly along riverbanks. Despite the strong implication, its ability to promote erosion has only recently been empirically proven during an investigation over one dieback and regrowth cycle along a small watercourse in northwest Switzerland. This presentation now benefits from additional results covering further dieback and regrowth cycles obtained from the same watercourse as above, and from a different river system in southwest UK. These additional results support the original conclusion that I. glandulifera promotes soil erosion along riverbanks and the riparian zone. Importantly, the equivalent ground surface retreat from each group of contaminated locations over the three dieback and regrowth cycles are comparable with erosion in regions where high magnitude events are often recorded. Given these very high erosion rates, albeit over three monitoring phases, it is hypothesised that I. glandulifera may act as a catalyst for repeat cycles of colonisation, dieback and extreme erosion. Aside from the deleterious effect of large quantities of nutrient-rich sediment entering into watercourses, high magnitude soil loss such as this could result in reach-scale sections of riverbank undergoing profound morphological changes and reduced structural stability. Dynamic modifications such as those could ultimately impede the ability of riverbanks to moderate stream flow and offer flood protection, as well as hamper the capacity of riparian zones to buffer and retain

  13. Diversions from Red River to Lake Dallas, Texas; and related channel losses, February and March 1954

    USGS Publications Warehouse

    Holland, Pat H.

    1954-01-01

    During the period Feb. 10 to Mar. 3, 19541 the City of Dallas pumped 1,363 acre-feet of water from its Red River plant into Pecan Creek (a tributary of Elm Fork Trinity River) 3.5 miles above Gainesville; 1,272 acre-feet of this diversion reached the head of Lake Dallas. Discharge records were obtained at four points along the channels. This water was transported down the channels of Pecan Creek and Elm Fork Trinity River to Lake Dallas, a distance of about 31 miles.

  14. Remote Sensing of Aquatic Vegetation Coverage in the Kafue River, Zambia and Comparison to Climatic Variables

    NASA Astrophysics Data System (ADS)

    Mischler, J. A.; Abdalati, W.; Hussein, K.; Townsend, A. R.

    2013-12-01

    The Kafue River is the longest river in Zambia and is a major tributary of the Zambezi River. It is a vital source of fish, transportation, drinking water, and hydropower for much of Zambia's population, over half of whom live in the Kafue River basin. Like many important water bodies in developing countries the Kafue and its ecosystems face pollution from industrial, mining, agricultural, and domestic/sewage discharge. The Kafue River forms a wide and shallow wetland (the Kafue Flats) during the rainy season (Nov. - Apr.) which serves as habitat for diverse groups of birds and mammals. In recent years the unprecedented emergence of invasive aquatic vegetation such as the water hyacinth (Eichhornia crassipes) and Salvinia molesta have choked the river, degrading its ability to provide adequate habitat to promote biodiversity, ecosystem services, and hydropower. In addition, these plants provide additional habitat for mosquitoes (vectors for malaria) and aquatic snails (vectors of schistosomiasis). Nutrient-rich effluents are widely believed to contribute to the proliferation and explosive growth of this floating aquatic vegetation. The general methods for managing these aquatic weeds have included mechanical and physical removal, herbicides, and bio-control agents which have had very little impact. However, as in neighboring Lake Victoria, total weed coverage has fluctuated dramatically from year to year making evaluation of the efficacy of management programs difficult. The objectives of this study were to (1) generate the first record of aquatic plant coverage for a section of the Kafue River which is immediately downstream of a sugar plantation (a major source of nitrogen and phosphorus to the river) and (2) determine if plant coverage is correlated with any major climatic (ENSO, temperature, rainfall) or management (introduction of bio-control agents) indices. We utilized remote sensing techniques in conjunction with Landsat 4-5 TM and Landsat 7 ETM imagery for

  15. Climate Change Impacts on Rivers and Implications for Electricity Generation in the United States

    NASA Astrophysics Data System (ADS)

    Miara, A.; Vorosmarty, C. J.; Macknick, J.; Corsi, F.; Cohen, S. M.; Tidwell, V. C.; Newmark, R. L.; Prousevitch, A.

    2015-12-01

    The contemporary power sector in the United States is heavily reliant on water resources to provide cooling water for thermoelectric generation. Efficient thermoelectric plant operations require large volumes of water at sufficiently cool temperatures for their cooling process. The total amount of water that is withdrawn or consumed for cooling and any potential declines in efficiencies are determined by the sector's fuel mix and cooling technologies. As such, the impact of climate change, and the extent of impact, on the power sector is shaped by the choice of electricity generation technologies that will be built over the coming decades. In this study, we model potential changes in river discharge and temperature in the contiguous US under a set of climate scenarios to year 2050 using the Water Balance Model-Thermoelectric Power and Thermal Pollution Model (WBM-TP2M). Together, these models quantify, in high-resolution (3-min), river temperatures, discharge and power plant efficiency losses associated with changes in available cooling water that incorporates climate, hydrology, river network dynamics and multi-plant impacts, on both single power plant and regional scales. Results are used to assess the aptness and vulnerability of contemporary and alternative electricity generation pathways to changes in climate and water availability for cooling purposes, and the concomitant impacts on power plant operating efficiencies. We assess the potential impacts by comparing six regions (Northeast, Southeast, Midwest, Great Plains, Southwest, Northwest as in the National Climate Assessment (2014)) across the US. These experiments allow us to assess tradeoffs among electricity-water-climate to provide useful insight for decision-makers managing regional power production and aquatic environments.

  16. Novel Control Strategy for Multiple Run-of-the-River Hydro Power Plants to Provide Grid Ancillary Services

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohanpurkar, Manish; Luo, Yusheng; Hovsapian, Rob

    Hydropower plant (HPP) generation comprises a considerable portion of bulk electricity generation and is delivered with a low-carbon footprint. In fact, HPP electricity generation provides the largest share from renewable energy resources, which include wind and solar. Increasing penetration levels of wind and solar lead to a lower inertia on the electric grid, which poses stability challenges. In recent years, breakthroughs in energy storage technologies have demonstrated the economic and technical feasibility of extensive deployments of renewable energy resources on electric grids. If integrated with scalable, multi-time-step energy storage so that the total output can be controlled, multiple run-of-the-river (ROR)more » HPPs can be deployed. Although the size of a single energy storage system is much smaller than that of a typical reservoir, the ratings of storages and multiple ROR HPPs approximately equal the rating of a large, conventional HPP. This paper proposes cohesively managing multiple sets of energy storage systems distributed in different locations. This paper also describes the challenges associated with ROR HPP system architecture and operation.« less

  17. 77 FR 30589 - SteelRiver Infrastructure Partners LP, SteelRiver Infrastructure Associates LLC, SteelRiver...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-23

    ... DEPARTMENT OF TRANSPORTATION Surface Transportation Board [Docket No. FD 35622] SteelRiver Infrastructure Partners LP, SteelRiver Infrastructure Associates LLC, SteelRiver Infrastructure Fund North America LP, and Patriot Funding LLC--Control Exemption--Patriot Rail Corp., et al. SteelRiver...

  18. Adaptation of Arabidopsis thaliana to the Yangtze River basin.

    PubMed

    Zou, Yu-Pan; Hou, Xing-Hui; Wu, Qiong; Chen, Jia-Fu; Li, Zi-Wen; Han, Ting-Shen; Niu, Xiao-Min; Yang, Li; Xu, Yong-Chao; Zhang, Jie; Zhang, Fu-Min; Tan, Dunyan; Tian, Zhixi; Gu, Hongya; Guo, Ya-Long

    2017-12-28

    Organisms need to adapt to keep pace with a changing environment. Examining recent range expansion aids our understanding of how organisms evolve to overcome environmental constraints. However, how organisms adapt to climate changes is a crucial biological question that is still largely unanswered. The plant Arabidopsis thaliana is an excellent system to study this fundamental question. Its origin is in the Iberian Peninsula and North Africa, but it has spread to the Far East, including the most south-eastern edge of its native habitats, the Yangtze River basin, where the climate is very different. We sequenced 118 A. thaliana strains from the region surrounding the Yangtze River basin. We found that the Yangtze River basin population is a unique population and diverged about 61,409 years ago, with gene flows occurring at two different time points, followed by a population dispersion into the Yangtze River basin in the last few thousands of years. Positive selection analyses revealed that biological regulation processes, such as flowering time, immune and defense response processes could be correlated with the adaptation event. In particular, we found that the flowering time gene SVP has contributed to A. thaliana adaptation to the Yangtze River basin based on genetic mapping. A. thaliana adapted to the Yangtze River basin habitat by promoting the onset of flowering, a finding that sheds light on how a species can adapt to locales with very different climates.

  19. Resource pulses in desert river habitats: productivity-biodiversity hotspots, or mirages?

    PubMed

    Free, Carissa L; Baxter, Greg S; Dickman, Christopher R; Leung, Luke K P

    2013-01-01

    Resource pulses in the world's hot deserts are driven largely by rainfall and are highly variable in both time and space. However, run-on areas and drainage lines in arid regions receive more water more often than adjacent habitats, and frequently sustain relatively high levels of primary productivity. These landscape features therefore may support higher biotic diversity than other habitats, and potentially act as refuges for desert vertebrates and other biota during droughts. We used the ephemeral Field River in the Simpson Desert, central Australia, as a case study to quantify how resources and habitat characteristics vary spatially and temporally along the riparian corridor. Levels of moisture and nutrients were greater in the clay-dominated soils of the riverine corridor than in the surrounding sand dunes, as were cover values of trees, annual grasses, other annual plants and litter; these resources and habitat features were also greater near the main catchment area than in the distal reaches where the river channel runs out into extensive dune fields. These observations confirm that the riverine corridor is more productive than the surrounding desert, and support the idea that it may act as a refuge or as a channel for the ingress of peri-desert species. However, the work also demonstrates that species diversity of invertebrates and plants is not higher within the river corridor; rather, it is driven by rainfall and the accompanying increase in annual plants following a rain event. Further research is required to identify the biota that depend upon these resource pulses.

  20. Resource Pulses in Desert River Habitats: Productivity-Biodiversity Hotspots, or Mirages?

    PubMed Central

    Free, Carissa L.; Baxter, Greg S.; Dickman, Christopher R.; Leung, Luke K. P.

    2013-01-01

    Resource pulses in the world's hot deserts are driven largely by rainfall and are highly variable in both time and space. However, run-on areas and drainage lines in arid regions receive more water more often than adjacent habitats, and frequently sustain relatively high levels of primary productivity. These landscape features therefore may support higher biotic diversity than other habitats, and potentially act as refuges for desert vertebrates and other biota during droughts. We used the ephemeral Field River in the Simpson Desert, central Australia, as a case study to quantify how resources and habitat characteristics vary spatially and temporally along the riparian corridor. Levels of moisture and nutrients were greater in the clay-dominated soils of the riverine corridor than in the surrounding sand dunes, as were cover values of trees, annual grasses, other annual plants and litter; these resources and habitat features were also greater near the main catchment area than in the distal reaches where the river channel runs out into extensive dune fields. These observations confirm that the riverine corridor is more productive than the surrounding desert, and support the idea that it may act as a refuge or as a channel for the ingress of peri-desert species. However, the work also demonstrates that species diversity of invertebrates and plants is not higher within the river corridor; rather, it is driven by rainfall and the accompanying increase in annual plants following a rain event. Further research is required to identify the biota that depend upon these resource pulses. PMID:24124446