Sample records for waf mdm2 p21

  1. Downregulation of LRRC8A protects human ovarian and alveolar carcinoma cells against Cisplatin-induced expression of p53, MDM2, p21Waf1/Cip1, and Caspase-9/-3 activation

    PubMed Central

    Sørensen, Belinda Halling; Nielsen, Dorthe; Thorsteinsdottir, Unnur Arna; Hoffmann, Else Kay

    2016-01-01

    The leucine-rich repeat containing 8A (LRRC8A) protein is an essential component of the volume-sensitive organic anion channel (VSOAC), and using pharmacological anion channel inhibitors (NS3728, DIDS) and LRRC8A siRNA we have investigated its role in development of Cisplatin resistance in human ovarian (A2780) and alveolar (A549) carcinoma cells. In Cisplatin-sensitive cells Cisplatin treatment increases p53-protein level as well as downstream signaling, e.g., expression of p21Waf1/Cip1, Bax, Noxa, MDM2, and activation of Caspase-9/-3. In contrast, Cisplatin-resistant cells do not enter apoptosis, i.e., their p53 and downstream signaling are reduced and caspase activity unaltered following Cisplatin exposure. Reduced LRRC8A expression and VSOAC activity are previously shown to correlate with Cisplatin resistance, and here we demonstrate that pharmacological inhibition and transient knockdown of LRRC8A reduce the protein level of p53, MDM2, and p21Waf1/Cip1 as well as Caspase-9/-3 activation in Cisplatin-sensitive cells. Cisplatin resistance is accompanied by reduction in total LRRC8A expression (A2780) or LRRC8A expression in the plasma membrane (A549). Activation of Caspase-3 dependent apoptosis by TNFα-exposure or hyperosmotic cell shrinkage is almost unaffected by pharmacological anion channel inhibition. Our data indicate 1) that expression/activity of LRRC8A is essential for Cisplatin-induced increase in p53 protein level and its downstream signaling, i.e., Caspase-9/-3 activation, expression of p21Waf1/Cip1 and MDM2; and 2) that downregulation of LRRC8A-dependent osmolyte transporters contributes to acquirement of Cisplatin resistance in ovarian and lung carcinoma cells. Activation of LRRC8A-containing channels is upstream to apoptotic volume decrease as hypertonic cell shrinkage induces apoptosis independent of the presence of LRRC8A. PMID:26984736

  2. Mdm-2 binding and TAF(II)31 recruitment is regulated by hydrogen bond disruption between the p53 residues Thr18 and Asp21.

    PubMed

    Jabbur, James R; Tabor, Amy D; Cheng, Xiaodong; Wang, Hua; Uesugi, Motonari; Lozano, Guillermina; Zhang, Wei

    2002-10-10

    Analyses of five wild-type p53 containing cell lines revealed lineage specific differences in phosphorylation of Thr18 after treatment with ionizing (IR) or ultraviolet (UV) radiation. Importantly, Thr18 phosphorylation correlated with induction of the p53 downstream targets p21(Waf1/Cip1) (p21) and Mdm-2, suggesting a transactivation enhancing role. Thr18 phosphorylation has been shown to abolish side-chain hydrogen bonding between Thr18 and Asp21, an interaction necessary for stabilizing alpha-helical conformation within the transactivation domain. Mutagenesis-derived hydrogen bond disruption attenuated the interaction of p53 with the transactivation repressor Mdm-2 but had no direct effect on the interaction of p53 with the basal transcription factor TAF(II)31. However, prior incubation of p53 mutants with Mdm-2 modulated TAF(II)31 interaction with p53, suggesting Mdm-2 blocks the accessibility of p53 to TAF(II)31. Consistently, p53-null cells transfected with hydrogen bond disrupting p53 mutants demonstrated enhanced endogenous p21 expression, whereas p53/Mdm-2-double null cells exhibited no discernible differences in p21 expression. We conclude disruption of intramolecular hydrogen bonding between Thr18 and Asp21 enhances p53 transactivation by modulating Mdm-2 binding, facilitating TAF(II)31 recruitment.

  3. The KIP/CIP family members p21^{Waf1/Cip1} and p57^{Kip2} as diagnostic markers for breast cancer.

    PubMed

    Zohny, Samir F; Baothman, Othman A; El-Shinawi, Mohamed; Al-Malki, Abdulrahman L; Zamzami, Mazin A; Choudhry, Hani

    2017-01-01

    We examined the expression status of p21^{Waf1/Cip1} and p57^{Kip2} in breast cancer as well as their relationship with clinicopathological factors. Moreover, the diagnostic value of gene promoter methylation of p21^Waf1/Cip1 and p57^Kip2 was assessed in breast cancer patients. This study involved 85 patients diagnosed with breast cancer and 36 patients with benign breast lesions. The expression of p21^{Waf1/Cip1} and p57^{Kip2} in cell lysates was analyzed by ELISA and Western blot, respectively. The gene promoter methylation of p21^Waf1/Cip1 and p57^Kip2 was examined in cell lysates by methylation specific PCR. p21^{Waf1/Cip1} expression was higher while p57^{Kip2} level was lower in breast cancer patients compared to patients with benign breast lesions. The combined use of p21^{Waf1/Cip1} and p57^{Kip2} provided sensitivity and specificity of 82.35% and 86.11%, respectively. None of the malignant and benign breast tumors were found to be hypermethylated at p21^Waf1/Cip1 gene promoter. However, aberrant methylation of p57^Kip2 gene promoter was detected in 49 of 85 (57.65%) of breast cancer tumors. High p21^{Waf1/Cip1} level was associated with high grade, late stages and lymph node involvement, whereas low p57^{Kip2} level was correlated with high grade and HER2 overexpressing breast cancer. Moreover, hypermethylated p57^Kip2 gene promoter was associated with high grade. Our findings show that the overexpression of p21^{Waf1/Cip1}, down-expression of p57^{Kip2} and gene promoter methylation of p57^Kip2 could be considered as promising diagnostic markers for breast cancer.

  4. Effects of histone acetylation and DNA methylation on p21( WAF1) regulation.

    PubMed

    Fang, Jing-Yuan; Lu, You-Yong

    2002-06-01

    Cell cycle progression is regulated by interactions between cyclins and cyclin-dependent kinases (CDKs). p21(WAF1) is one of the CIP/KIP family which inhibits CDKs activity. Increased expression of p21(WAF1) may play an important role in the growth arrest induced in transformed cells. Although the stability of the p21( WAF1) mRNA could be altered by different signals, cell differentiation and numerous influencing factors. However, recent studies suggest that two known mechanisms of epigenesis, i.e.gene inactivation by methylation in promoter region and changes to an inactive chromatin by histone deacetylation, seem to be the best candidate mechanisms for inactivation of p21( WAF1). To date, almost no coding region p21(WAF1) mutations have been found in tumor cells, despite extensive screening of hundreds of various tumors. Hypermethylation of the p21(WAF1) promoter region may represent an alternative mechanism by which the p21(WAF1/CIP1) gene can be inactivated. The reduction of cellular DNMT protein levels also induces a corresponding rapid increase in the cell cycle regulator p21(WAF1) protein demonstrating a regulatory link between DNMT and p21(WAF1) which is independent of methylation of DNA. Both histone hyperacetylation and hypoacetylation appear to be important in the carcinoma process, and induction of the p21(WAF1) gene by histone hyperacetylation may be a mechanism by which dietary fiber prevents carcinogenesis. Here, we review the influence of histone acetylation and DNA methylation on p21(WAF1) transcription, and affection of pathways or factors associated such as p 53, E2A, Sp1 as well as several histone deacetylation inhibitors.

  5. Bimodal regulation of p21waf1 protein as function of DNA damage levels

    PubMed Central

    Buscemi, G; Ricci, C; Zannini, L; Fontanella, E; Plevani, P; Delia, D

    2014-01-01

    Human p21Waf1 protein is well known for being transcriptionally induced by p53 and activating the cell cycle checkpoint arrest in response to DNA breaks. Here we report that p21Waf1 protein undergoes a bimodal regulation, being upregulated in response to low doses of DNA damage but rapidly and transiently degraded in response to high doses of DNA lesions. Responsible for this degradation is the checkpoint kinase Chk1, which phosphorylates p21Waf1 on T145 and S146 residues and induces its proteasome-dependent proteolysis. The initial p21Waf1 degradation is then counteracted by the ATM-Chk2 pathway, which promotes the p53-dependent accumulation of p21Waf1 at any dose of damage. We also found that p21Waf1 ablation favors the activation of an apoptotic program to eliminate otherwise irreparable cells. These findings support a model in which in human cells a balance between ATM-Chk2-p53 and the ATR-Chk1 pathways modulates p21Waf1 protein levels in relation to cytostatic and cytotoxic doses of DNA damage. PMID:25486478

  6. Human papillomavirus type 16 E6 inhibits p21{sup WAF1} transcription independently of p53 by inactivating p150{sup Sal2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parroche, Peggy; Institut Federatif de Recherche 128 BioSciences Gerland-Lyon Sud; Touka, Majid

    2011-09-01

    HPV16 E6 deregulates G1/S cell cycle progression through p53 degradation preventing transcription of the CDK inhibitor p21{sup WAF1}. However, additional mechanisms independent of p53 inactivation appear to exist. Here, we report that HPV16 E6 targets the cellular factor p150{sup Sal2}, which positively regulates p21{sup WAF1} transcription. HPV16 E6 associates with p150{sup Sal2}, inducing its functional inhibition by preventing its binding to cis elements on the p21{sup WAF1} promoter. A HPV16 E6 mutant, L110Q, which was unable to bind p150{sup Sal2}, did not affect the ability of the cellular protein to bind p21{sup WAF1} promoter, underlining the linkage between these events.more » These data describe a novel mechanism by which HPV16 E6 induces cell cycle deregulation with a p53-independent pathway. The viral oncoprotein targets p150{sup Sal2}, a positive transcription regulator of p21{sup WAF1} gene, preventing G1/S arrest and allowing cellular proliferation and efficient viral DNA replication.« less

  7. [The mechanisms of p21WAF1/Cip-1 expression in MOLT-4 cell line induced by TSA].

    PubMed

    Song, Yi; Liu, Mei-Ju; Zhao, Guo-Wei; Qian, Jun-Jie; Dong, Yan; Liu, Hua; Sun, Guo-Jing; Mei, Zhu-Zhong; Liu, Bin; Tian, Bao-Lei; Sun, Zhi-Xian

    2005-04-01

    To investigate the function and molecular mechanism of p21(WAF1/Cip-1) expression in MOLT-4 cells induced by HDAC inhibitor TSA, the expression pattern of p21(WAF1/Cip-1) and the distribution of cell cycle in TSA treated cells were analyzed. The results showed that TSA could effectively induce G(2)/M arrest and apoptosis of MOLT-4 cells. Kinetic experiments demonstrated that p21(WAF1/Cip-1) were upregulated quickly before cell arrested in G(2)/M and began decreasing at the early stage of apoptosis. Meanwhile, the proteasome inhibitor MG-132 could inhibit the decrease of p21(WAF1/Cip-1) at the early stage of apoptosis, which showed that proteasome pathway involved in p21(WAF1/Cip-1) degradation during the TSA induced G(2)/M arrest and apoptosis responses. This study also identified that the protein level of p21(WAF1/Cip-1) was highly associated with the cell cycle change induced by TSA. Compared to cells treated by TSA only, exposure MOLT-4 cells to TSA meanwhile treatment with MG-132 increased the protein level of p21(WAF1/Cip-1) and increased the numbers of cell in G(2)/M-phase, whereas the cell apoptosis were delayed. It is concluded that p21(WAF1/Cip-1) plays a significant role in G(2)/M arrest and apoptosis signaling induced by TSA in MOLT-4 cells.

  8. Cytoplasmic p21(Cip1/WAF1) regulates neurite remodeling by inhibiting Rho-kinase activity.

    PubMed

    Tanaka, Hiroyuki; Yamashita, Toshihide; Asada, Minoru; Mizutani, Shuki; Yoshikawa, Hideki; Tohyama, Masaya

    2002-07-22

    p21(Cip1/WAF1) has cell cycle inhibitory activity by binding to and inhibiting both cyclin/Cdk kinases and proliferating cell nuclear antigen. Here we show that p21(Cip1/WAF1) is induced in the cytoplasm during the course of differentiation of chick retinal precursor cells and N1E-115 cells. Ectopic expression of p21(Cip1/WAF1) lacking the nuclear localization signal in N1E-115 cells and NIH3T3 cells affects the formation of actin structures, characteristic of inactivation of Rho. p21(Cip1/WAF1) forms a complex with Rho-kinase and inhibits its activity in vitro and in vivo. Neurite outgrowth and branching from the hippocampal neurons are promoted if p21(Cip1/WAF1) is expressed abundantly in the cytoplasm. These results suggest that cytoplasmic p21(Cip1/WAF1) may contribute to the developmental process of the newborn neurons that extend axons and dendrites into target regions.

  9. Cytoplasmic p21Cip1/WAF1 regulates neurite remodeling by inhibiting Rho-kinase activity

    PubMed Central

    Tanaka, Hiroyuki; Yamashita, Toshihide; Asada, Minoru; Mizutani, Shuki; Yoshikawa, Hideki; Tohyama, Masaya

    2002-01-01

    p21Cip1/WAF1 has cell cycle inhibitory activity by binding to and inhibiting both cyclin/Cdk kinases and proliferating cell nuclear antigen. Here we show that p21Cip1/WAF1 is induced in the cytoplasm during the course of differentiation of chick retinal precursor cells and N1E-115 cells. Ectopic expression of p21Cip1/WAF1 lacking the nuclear localization signal in N1E-115 cells and NIH3T3 cells affects the formation of actin structures, characteristic of inactivation of Rho. p21Cip1/WAF1 forms a complex with Rho-kinase and inhibits its activity in vitro and in vivo. Neurite outgrowth and branching from the hippocampal neurons are promoted if p21Cip1/WAF1 is expressed abundantly in the cytoplasm. These results suggest that cytoplasmic p21Cip1/WAF1 may contribute to the developmental process of the newborn neurons that extend axons and dendrites into target regions. PMID:12119358

  10. Cyclin-dependent kinase inhibitor p21(Waf1): contemporary view on its role in senescence and oncogenesis.

    PubMed

    Romanov, V S; Pospelov, V A; Pospelova, T V

    2012-06-01

    p21(Waf1) was identified as a protein suppressing cyclin E/A-CDK2 activity and was originally considered as a negative regulator of the cell cycle and a tumor suppressor. It is now considered that p21(Waf1) has alternative functions, and the view of its role in cellular processes has begun to change. At present, p21(Waf1) is known to be involved in regulation of fundamental cellular programs: cell proliferation, differentiation, migration, senescence, and apoptosis. In fact, it not only exhibits antioncogenic, but also oncogenic properties. This review provides a contemporary understanding of the functions of p21(Waf1) depending on its intracellular localization. On one hand, when in the nucleus, it serves as a negative cell cycle regulator and tumor suppressor, in particular by participating in the launch of a senescence program. On the other hand, when p21(Waf1) is localized in the cytoplasm, it acts as an oncogene by regulating migration, apoptosis, and proliferation.

  11. Differential effects of cell cycle regulatory protein p21(WAF1/Cip1) on apoptosis and sensitivity to cancer chemotherapy.

    PubMed

    Liu, Suxing; Bishop, W Robert; Liu, Ming

    2003-08-01

    p21(WAF1/Cip1) was initially identified as a cell cycle regulatory protein that can cause cell cycle arrest. It is induced by both p53-dependent and p53-independent mechanisms. This mini-review briefly discusses its currently known functions in apoptosis and drug sensitivity. As an inhibitor of cell proliferation, p21(WAF1/Cip1) plays an important role in drug-induced tumor suppression. Nevertheless, a number of recent studies have shown that p21(WAF1/Cip1) can assume both pro- or anti-apoptotic functions in response to anti-tumor agents depending on cell type and cellular context. This dual role of p21(WAF1/Cip1) in cancer cells complicates using p21(WAF1/Cip1) status to predict response to anti-tumor agents. However, it is possible to develop p21(WAF1/Cip1)-targeted reagents or p21(WAF1/Cip1) gene transfer techniques to have a beneficial effect within a well-defined therapeutic context. Better understanding of the roles of p21(WAF1/Cip1) in tumors should enable a more rational approach to anti-tumor drug design and therapy.

  12. Mitomycin C and decarbamoyl mitomycin C induce p53-independent p21WAF1/CIP1 activation

    PubMed Central

    Cheng, Shu-Yuan; Seo, Jiwon; Huang, Bik Tzu; Napolitano, Tanya; Champeil, Elise

    2016-01-01

    Mitomycin C (MC), a commonly used anticancer drug, induces DNA damage via DNA alkylation. Decarbamoyl mitomycin C (DMC), another mitomycin lacking the carbamate at C10, generates similar lesions as MC. Interstrand cross-links (ICLs) are believed to be the lesions primarily responsible for the cytotoxicity of MC and DMC. The major ICL generated by MC (α-ICL) has a trans stereochemistry at the guanine-drug linkage whereas the major ICL from DMC (β-ICL) has the opposite, cis, stereochemistry. In addition, DMC can provoke strong p53-independent cell death. Our hypothesis is that the stereochemistry of the major unique β-ICL generated by DMC is responsible for this p53-independent cell death signaling. p53 gene is inactively mutated in more than half of human cancers. p21WAF1/CIP1 known as a major effector of p53 is involved in p53-dependent and -independent control of cell proliferation and death. This study revealed the role of p21WAF1/CIP1 on MC and DMC triggered cell damage. MCF-7 (p53-proficient) and K562 (p53-deficient) cells were used. Cell cycle distributions were shifted to the G1/S phase in MCF-7 treated with MC and DMC, but were shifted to the S phase in K562. p21WAF1/CIP1 activation was observed in both cells treated with MC and DMC, and DMC triggered more significant activation. Knocking down p53 in MCF-7 did not attenuate MC and DMC induced p21WAF1/CIP1 activation. The α-ICL itself was enough to cause p21WAF1/CIP1 activation. PMID:27666201

  13. Antisense imaging of epidermal growth factor-induced p21(WAF-1/CIP-1) gene expression in MDA-MB-468 human breast cancer xenografts.

    PubMed

    Wang, Judy; Chen, Paul; Mrkobrada, Marko; Hu, Meiduo; Vallis, Katherine A; Reilly, Raymond M

    2003-09-01

    Molecular imaging of the expression of key genes which determine the response to DNA damage following cancer treatment may predict the effectiveness of a particular treatment strategy. A prominent early response gene for DNA damage is the gene encoding p21(WAF-1/CIP-1), a cyclin-dependent kinase inhibitor that regulates progression through the cell cycle. In this study, we explored the feasibility of imaging p21(WAF-1/CIP-1) gene expression at the mRNA level using an 18-mer phosphorothioated antisense oligodeoxynucleotide (ODN) labeled with (111)In. The known induction of the p21(WAF-1/CIP-1) gene in MDA-MB-468 human breast cancer cells following exposure to epidermal growth factor (EGF) was used as an experimental tool. Treatment of MDA-MB-468 cells in vitro with EGF (20 n M) increased the ratio of p21(WAF-1/CIP-1) mRNA/beta-actin mRNA threefold within 2 h as measured by the reverse transcription polymerase chain reaction (RT-PCR). A concentration-dependent inhibition of EGF-induced p21(WAF-1/CIP-1) protein expression was achieved in MDA-MB-468 cells by treatment with antisense ODNs with up to a tenfold decrease observed at 1 microM. There was a fourfold lower inhibition of p21(WAF-1/CIP-1) protein expression by control sense or random sequence ODNs. Intratumoral injections of EGF (15 microg/dayx3 days) were employed to induce p21(WAF-1/CIP-1) gene expression in MDA-MB-468 xenografts implanted subcutaneously into athymic mice. RT-PCR of explanted tumors showed a threefold increased level of p21(WAF-1/CIP-1) mRNA compared with normal saline-treated tumors. Successful imaging of EGF-induced p21(WAF-1/CIP-1) gene expression in MDA-MB-468 xenografts was achieved at 48 h post injection of (111)In-labeled antisense ODNs (3.7 MBq; 2 microg). Tumors displaying basal levels of p21(WAF-1/CIP-1) gene expression in the absence of EGF treatment could not be visualized. Biodistribution studies showed a significantly higher tumor accumulation of (111)In-labeled antisense ODNs in

  14. Strategies to re-express epigenetically silenced p15(INK4b) and p21(WAF1) genes in acute myeloid leukemia.

    PubMed

    Geyer, C Ronald

    2010-01-01

    p15(INK4B) and p21(WAF1) are TGF-β targets that are silenced in leukemia by epigenetic mechanisms involving DNA methylation and/or histone modifications. Mechanisms for establishing and maintaining epigenetic silencing of p15(INK4B) and p21(WAF1) are not well established. The reversible nature of epigenetic modifications has lead to the development of drugs that target DNA methyltransferases, histone deacetylases, and histone methyltransferases, which have been used to re-express aberrantly silenced genes in leukemia. Recently, non-coding RNA, referred to as natural antisense transcripts (NATs), have been implicated in the regulation of epigenetic modifications. Here, we review epigenetic mechanisms for silencing p15(INK4B) and p21(WAF1) and the role of NATs in this process. We also review epigenetic drugs and drug combinations used to re-express p15(INK4B) and p21(WAF1). Lastly, we discuss the potential use of NATs to target the activity of epigenetic drugs to specific genes and to permanently re-express epigenetically silenced genes.

  15. p21WAF1 expression induced by MEK/ERK pathway activation or inhibition correlates with growth arrest, myogenic differentiation and onco-phenotype reversal in rhabdomyosarcoma cells

    PubMed Central

    Ciccarelli, Carmela; Marampon, Francesco; Scoglio, Arianna; Mauro, Annunziata; Giacinti, Cristina; De Cesaris, Paola; Zani, Bianca M

    2005-01-01

    Background p21WAF1, implicated in the cell cycle control of both normal and malignant cells, can be induced by p53-dependent and independent mechanisms. In some cells, MEKs/ERKs regulate p21WAF1 transcriptionally, while in others they also affect the post-transcriptional processes. In myogenic differentiation, p21WAF1 expression is also controlled by the myogenic transcription factor MyoD. We have previously demonstrated that the embryonal rhabdomyosarcoma cell line undergoes growth arrest and myogenic differentiation following treatments with TPA and the MEK inhibitor U0126, which respectively activate and inhibit the ERK pathway. In this paper we attempt to clarify the mechanism of ERK-mediated and ERK-independent growth arrest and myogenic differentiation of embryonal and alveolar rhabdomyosarcoma cell lines, particularly as regards the expression of the cell cycle inhibitor p21WAF1. Results p21WAF1 expression and growth arrest are induced in both embryonal (RD) and alveolar (RH30) rhabdomyosarcoma cell lines following TPA or MEK/ERK inhibitor (U0126) treatments, whereas myogenic differentiation is induced in RD cells alone. Furthermore, the TPA-mediated post-transcriptional mechanism of p21WAF1-enhanced expression in RD cells is due to activation of the MEK/ERK pathway, as shown by transfections with constitutively active MEK1 or MEK2, which induces p21WAF1 expression, and with ERK1 and ERK2 siRNA, which prevents p21WAF1 expression. By contrast, U0126-mediated p21WAF1 expression is controlled transcriptionally by the p38 pathway. Similarly, myogenin and MyoD expression is induced both by U0126 and TPA and is prevented by p38 inhibition. Although MyoD and myogenin depletion by siRNA prevents U0126-mediated p21WAF1 expression, the over-expression of these two transcription factors is insufficient to induce p21WAF1. These data suggest that the transcriptional mechanism of p21WAF1 expression in RD cells is rescued when MEK/ERK inhibition relieves the functions of

  16. p21WAF1 expression induced by MEK/ERK pathway activation or inhibition correlates with growth arrest, myogenic differentiation and onco-phenotype reversal in rhabdomyosarcoma cells.

    PubMed

    Ciccarelli, Carmela; Marampon, Francesco; Scoglio, Arianna; Mauro, Annunziata; Giacinti, Cristina; De Cesaris, Paola; Zani, Bianca M

    2005-12-13

    p21WAF1, implicated in the cell cycle control of both normal and malignant cells, can be induced by p53-dependent and independent mechanisms. In some cells, MEKs/ERKs regulate p21WAF1 transcriptionally, while in others they also affect the post-transcriptional processes. In myogenic differentiation, p21WAF1 expression is also controlled by the myogenic transcription factor MyoD. We have previously demonstrated that the embryonal rhabdomyosarcoma cell line undergoes growth arrest and myogenic differentiation following treatments with TPA and the MEK inhibitor U0126, which respectively activate and inhibit the ERK pathway. In this paper we attempt to clarify the mechanism of ERK-mediated and ERK-independent growth arrest and myogenic differentiation of embryonal and alveolar rhabdomyosarcoma cell lines, particularly as regards the expression of the cell cycle inhibitor p21WAF1. p21WAF1 expression and growth arrest are induced in both embryonal (RD) and alveolar (RH30) rhabdomyosarcoma cell lines following TPA or MEK/ERK inhibitor (U0126) treatments, whereas myogenic differentiation is induced in RD cells alone. Furthermore, the TPA-mediated post-transcriptional mechanism of p21WAF1-enhanced expression in RD cells is due to activation of the MEK/ERK pathway, as shown by transfections with constitutively active MEK1 or MEK2, which induces p21WAF1 expression, and with ERK1 and ERK2 siRNA, which prevents p21WAF1 expression. By contrast, U0126-mediated p21WAF1 expression is controlled transcriptionally by the p38 pathway. Similarly, myogenin and MyoD expression is induced both by U0126 and TPA and is prevented by p38 inhibition. Although MyoD and myogenin depletion by siRNA prevents U0126-mediated p21WAF1 expression, the over-expression of these two transcription factors is insufficient to induce p21WAF1. These data suggest that the transcriptional mechanism of p21WAF1 expression in RD cells is rescued when MEK/ERK inhibition relieves the functions of myogenic

  17. Correlation Among Six Biologic Factors (p53, p21{sup WAF1}, MIB-1, EGFR, HER2, and Bcl-2) and Clinical Outcomes After Curative Chemoradiation Therapy in Squamous Cell Cervical Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamashita, Hideomi; Murakami, Naoya; Asari, Takao

    Purpose: The expressions of six cell-cycle-associated proteins were analyzed in cervical squamous cell carcinomas in correlation in a search for prognostic correlations in tumors treated with concurrent chemoradiation therapy (cCRT). Methods and Materials: The expressions of p53, p21/waf1/cip1, molecular immunology borstel-1 (MIB-1), epidermal growth factor receptor (EGFR), human epidermal growth factor receptor type 2 (HER2), and Bcl-2 were studied using an immunohistochemical method in 57 cases of cervical squamous cell carcinoma treated with cCRT. Patients received cCRT between 1998 and 2005. The mean patient age was 61 years (range, 27-82 years). The number of patients with Stage II, III, andmore » IVA disease was 18, 29, and 10, respectively. Results: The number of patients with tumors positive for p53, p21/waf1/cip1, MIB-1, EGFR, HER2, and Bcl-2 was 26, 24, 49, 26, 13, and 11, respectively; no significant correlation was noted. The 5-year overall survival rates of HER2-positive and -negative patients was 76% vs. 44%, which was of borderline significance (p = 0.0675). No significant correlation was noted between overall survival and expressions of p53, p21/waf1/cip1, MIB-1, EGFR, and Bcl-2. No correlation was observed between local control and expression of any of the proteins. Conclusion: Expression of HER2 protein had a weak impact of borderline significance on overall survival in squamous cell carcinoma of the uterine cervix treated with cCRT. However, no clinical associations could be established for p53, p21/waf1/cip1, MIB-1, EGFR, and Bcl-2 protein expressions.« less

  18. The p53/p21(WAF/CIP) pathway mediates oxidative stress and senescence in dyskeratosis congenita cells with telomerase insufficiency.

    PubMed

    Westin, Erik R; Aykin-Burns, Nukhet; Buckingham, Erin M; Spitz, Douglas R; Goldman, Frederick D; Klingelhutz, Aloysius J

    2011-03-15

    Telomere attrition is a natural process that occurs due to inadequate telomere maintenance. Once at a critically short threshold, telomeres signal growth arrest, leading to senescence. Telomeres can be elongated by the enzyme telomerase, which adds de novo telomere repeats to the ends of chromosomes. Mutations in genes for telomere binding proteins or components of telomerase give rise to the premature aging disorder dyskeratosis congenita (DC), which is characterized by extremely short telomeres and an aging phenotype. The current study demonstrates that DC cells signal a DNA damage response through p53 and its downstream mediator, p21(WAF/CIP), which is accompanied by an elevation in steady-state levels of superoxide and percent glutathione disulfide, both indicators of oxidative stress. Poor proliferation of DC cells can be partially overcome by reducing O(2) tension from 21% to 4%. Further, restoring telomerase activity or inhibiting p53 or p21(WAF/CIP) significantly mitigated growth inhibition as well as caused a significant decrease in steady-state levels of superoxide. Our results support a model in which telomerase insufficiency in DC leads to p21(WAF/CIP) signaling, via p53, to cause increased steady-state levels of superoxide, metabolic oxidative stress, and senescence.

  19. Expression of p21Waf1/Cip1 and cyclin D1 is increased in butyrate-resistant HeLa cells.

    PubMed

    Derjuga, A; Richard, C; Crosato, M; Wright, P S; Chalifour, L; Valdez, J; Barraso, A; Crissman, H A; Nishioka, W; Bradbury, E M; Th'ng, J P

    2001-10-12

    Sodium butyrate induced cell cycle arrest in mammalian cells through an increase in p21Waf1/Cip1, although another study showed that this arrest is related to pRB signaling. We isolated variants of HeLa cells adapted to growth in 5 mm butyrate. One of these variants, clone 5.1, constitutively expressed elevated levels of p21Waf1/Cip1 when incubated in regular growth medium and in the presence of butyrate. Despite this elevated level of p21Waf1/Cip1, the cells continue to proliferate, albeit at a slower rate than parental HeLa cells. Western blot analyses showed that other cell cycle regulatory proteins were not up-regulated to compensate for the elevated expression of p21Waf1/Cip1. However, cyclin D1 was down-regulated by butyrate in HeLa cells but not in clone 5.1. We conclude that continued expression of cyclin D1 allowed clone 5.1 to grow in the presence of butyrate and elevated levels of p21Waf1/Cip1.

  20. The p53-p21WAF1 checkpoint pathway plays a protective role in preventing DNA rereplication induced by abrogation of FOXF1 function

    PubMed Central

    Lo, Pang-Kuo; Lee, Ji Shin; Sukumar, Saraswati

    2011-01-01

    We previously identified FOXF1 as a potential tumor suppressor gene with an essential role in preventing DNA rereplication to maintain genomic stability, which is frequently inactivated in breast cancer through the epigenetic mechanism. Here we further addressed the role of the p53-p21WAF1 checkpoint pathway in DNA rereplication induced by silencing of FOXF1. Knockdown of FOXF1 by small interference RNA (siRNA) rendered colorectal p53-null and p21WAF1-null HCT116 cancer cells more susceptible to rereplication and apoptosis than the wild-type parental cells. In parental HCT116 cells with a functional p53 checkpoint, the p53-p21WAF1 checkpoint pathway was activated upon FOXF1 knockdown, which was concurrent with suppression of the CDK2-Rb cascade and induction of G1 arrest. In contrast, these events were not observed in FOXF1-depleted HCT116-p53−/− and HCT116-p21−/− cells, indicating the p53-dependent checkpoint function is vital for inhibiting CDK2 to induce G1 arrest and protect cells from rereplication. The pharmacologic inhibitor (caffeine) of Ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3 related (ATR) protein kinases abolished activation of the p53-p21WAF1 pathway upon FOXF1 knockdown, suggesting that suppression of FOXF1 function triggered the ATM/ATR-mediated DNA damage response. Cosilencing of p53 by siRNA synergistically enhanced the effect of FOXF1 depletion on stimulation of DNA rereplication and apoptosis in wild-type HCT116. Finally, we show that FOXF1 expression is predominantly silenced in breast and colorectal cancer cell lines with inactive p53. Our study demonstrated that the p53-p21WAF1 checkpoint pathway is an intrinsically protective mechanism to prevent DNA rereplication induced by silencing of FOXF1. PMID:21964066

  1. p53 functional impairment and high p21waf1/cip1 expression in human T-cell lymphotropic/leukemia virus type I-transformed T cells.

    PubMed

    Cereseto, A; Diella, F; Mulloy, J C; Cara, A; Michieli, P; Grassmann, R; Franchini, G; Klotman, M E

    1996-09-01

    Human T-cell lymphotropic/leukemia virus type I (HTLV-I) is associated with T-cell transformation both in vivo and in vitro. Although some of the mechanisms responsible for transformation remain unknown, increasing evidence supports a direct role of viral as well as dysregulated cellular proteins in transformation. We investigated the potential role of the tumor suppressor gene p53 and of the p53-regulated gene, p21waf1/cip1 (wild-type p53 activated fragment 1/cycling dependent kinases [cdks] interacting protein 1), in HTLV-I-infected T cells. We have found that the majority of HTLV-I-infected T cells have the wild-type p53 gene. However, its function in HTLV-I-transformed cells appears to be impaired, as shown by the lack of appropriate p53-mediated responses to ionizing radiation (IR). Interestingly, the expression of the p53 inducible gene, p21waf1/cip1, is elevated at the messenger ribonucleic acid and protein levels in all HTLV-I-infected T-cell lines examined as well as in Taxl-1, a human T-cell line stably expressing Tax. Additionally, Tax induces upregulation of a p21waf1/cip1 promoter-driven luciferase gene in p53 null cells, and increases p21waf1/cip1 expression in Jurkat T cells. These findings suggest that the Tax protein is at least partially responsible for the p53-independent expression of p21waf1/cip1 in HTLV-I-infected cells. Dysregulation of p53 and p21waf1/cip1 proteins regulating cell-cycle progression, may represent an important step in HTLV-I-induced T-cell transformation.

  2. p21(WAF1/CIP1) and cancer: a shifting paradigm?

    PubMed

    Gartel, Andrei L

    2009-01-01

    The cyclin-dependent kinase inhibitor p21(WAF1/CIP1) is a key mediator of p53-dependent cell cycle arrest and may play the role of a tumor suppressor in cancer. However, it has been shown that p21 may also act as an oncogene, because it inhibits apoptosis and may promote cell proliferation in some tumors. These data point out to "antagonistic duality" of p21, because it possesses anticancer and procancer properties at the same time. New data suggest that more and more proteins also may play contradictory roles in cancer thus challenging current paradigm of established oncogenes and tumor suppressors. (c) 2009 International Union of Biochemistry and Molecular Biology, Inc.

  3. Effects of sodium phenylbutyrate on differentiation and induction of the P21WAF1/CIP1 anti-oncogene in human liver carcinoma cell lines.

    PubMed

    Meng, Mei; Jiang, Jun Mei; Liu, Hui; In, Cheng Yong; Zhu, Ju Ren

    2005-01-01

    To explore the effects of sodium phenylbutyrate on the proliferation, differentiation, cell cycle arrest and induction of the P(21WAF1/CIP1) anti-oncogene in human liver carcinoma cell lines Bel-7402 and HepG2. Bel-7402 and HepG2 human liver carcinoma cells were treated with sodium phenylbutyrate at different concentrations. Light microscopy was used to observe morphological changes in the carcinoma cells. Effects on the cell cycle were detected by using flow cytometry. P(21WAF1/CIP1) expression was determined by both reverse transcription-polymerase chain reaction and western blotting. Statistical analysis was performed by using one-way anova and Student's t-test. Sodium phenylbutyrate treatment caused time- and dose-dependent growth inhibition of Bel-7402 and HepG2 cells. This treatment also caused a decline in the proportion of S-phase cells and an increase in the proportion of G(0)/G(1) cells. Sodium phenylbutyrate increased the expression of P(21WAF1/CIP1). Sodium phenylbutyrate inhibits the proliferation of human liver carcinoma cells Bel-7402 and HepG2, induces partial differentiation, and increases the expression of P(21WAF1/CIP1).

  4. Oncogenic c-Myc-induced lymphomagenesis is inhibited non-redundantly by the p19Arf–Mdm2p53 and RP–Mdm2p53 pathways

    PubMed Central

    Meng, X; Carlson, NR; Dong, J; Zhang, Y

    2016-01-01

    The multifaceted oncogene c-Myc plays important roles in the development and progression of human cancer. Recent in vitro and in vivo studies have shown that the p19Arf–Mdm2p53 and the ribosomal protein (RP)–Mdm2p53 pathways are both essential in preventing oncogenic c-Myc-induced tumorigenesis. Disruption of each pathway individually by p19Arf deletion or by Mdm2C305F mutation, which disrupts RP-Mdm2 binding, accelerates Eμ-myc transgene-induced pre-B/B-cell lymphoma in mice at seemingly similar paces with median survival around 10 and 11 weeks, respectively, compared to 20 weeks for Eμ-myc transgenic mice. Because p19Arf can inhibit ribosomal biogenesis through its interaction with nucleophosmin (NPM/B23), RNA helicase DDX5 and RNA polymerase I transcription termination factor (TTF-I), it has been speculated that the p19Arf–Mdm2p53 and the RP–Mdm2p53 pathways might be a single p19Arf–RP–Mdm2p53 pathway, in which p19Arf activates p53 by inhibiting RP biosynthesis; thus, p19Arf deletion or Mdm2C305F mutation would result in similar consequences. Here, we generated mice with concurrent p19Arf deletion and Mdm2C305F mutation and investigated the compound mice for tumorigenesis in the absence and the presence of oncogenic c-Myc overexpression. In the absence of Eμ-myc transgene, the Mdm2C305F mutation did not elicit spontaneous tumors in mice, nor did it accelerate spontaneous tumors in mice with p19Arf deletion. In the presence of Eμ-myc transgene, however, Mdm2C305F mutation significantly accelerated p19Arf deletion-induced lymphomagenesis and promoted rapid metastasis. We found that when p19Arf–Mdm2p53 and RP–Mdm2p53 pathways are independently disrupted, oncogenic c-Myc-induced p53 stabilization and activation is only partially attenuated. When both pathways are concurrently disrupted, however, c-Myc-induced p53 stabilization and activation are essentially obliterated. Thus, the p19Arf–Mdm2p53 and the RP–Mdm2p53

  5. The role of p21Waf1/CIP1 as a Cip/Kip type cell-cycle regulator in oral squamous cell carcinoma (Review).

    PubMed

    Pérez-Sayáns, Mario; Suárez-Peñaranda, José-Manuel; Gayoso-Diz, Pilar; Barros-Angueira, Francisco; Gándara-Rey, José-Manuel; García-García, Abel

    2013-03-01

    Oral Squamous Cell Carcinoma (OSCC) is biologically characterized by the accumulation of multiple genetic and molecular alterations that end up clinically characterized as a malignant neoplasm through a phenomenon known as multistep. The members of the Cip/Kip family, specifically p21Waf1/CIP1, are responsible for cell cycle control, blocking the transition from phase G1 to phase S. We made a search of articles of peer-reviewed Journals in PubMed/ Medline, crossing the keywords. The goal of this paper is to determine the relationship between p21Waf1/CIP1 expression and several clinical and pathological aspects of OSCC, their relationship with p53 and HPV, as well as genetic alterations in their expression pattern, their use as a prognosis market in the evolution of precancerous lesions and their roles in anticancer treatments. The results of p21WAF1/CIP1 expression in OSCC showed mixed results in terms of positivity/negativity throughout different studies. It seems that, although p21Waf1/CIP1 expression is controlled in a p53-dependent manner, coexpression of both in OSCC is not intrinsically related. Although the presence of HPV viral oncoproteins increases p21Waf1/CIP1 levels, the small number of studies, have forced us to disregard the hypothesis that HPV infected lesions that present better prognosis are due to a p21Waf1/CIP1-dependent control. The role of p21WAF1/CIP1 as cell-cycle regulator has been well described; however, its relationship to OSCC, the clinical and pathological variables of tumors, HPV and different treatments are not entirely clear. Thus, it would be very interesting to pursue further study of this protein, which may have a significant value for the diagnosis, prognosis and therapy of this type of tumors.

  6. Preclinical efficacy of the MDM2 inhibitor RG7112 in MDM2 amplified and TP53 wild-type glioblastomas

    PubMed Central

    Verreault, Maite; Schmitt, Charlotte; Goldwirt, Lauriane; Pelton, Kristine; Haidar, Samer; Levasseur, Camille; Guehennec, Jeremy; Knoff, David; Labussiere, Marianne; Marie, Yannick; Ligon, Azra H.; Mokhtari, Karima; Hoang-Xuan, Khe; Sanson, Marc; Alexander, Brian M; Wen, Patrick Y.; Delattre, Jean-Yves; Ligon, Keith L.; Idbaih, Ahmed

    2016-01-01

    Rationale p53 pathway alterations are key molecular events in glioblastoma (GBM). MDM2 inhibitors increase expression and stability of p53 and are presumed to be most efficacious in patients with TP53 wild-type and MDM2-amplified cancers. However, this biomarker hypothesis has not been tested in patients or patient-derived models for GBM. Methods We performed a preclinical evaluation of RG7112 MDM2 inhibitor, across a panel of 36 patient-derived GBM cell lines (PDCLs), each genetically characterized according to their P53 pathway status. We then performed a pharmacokinetic (PK) profiling of RG7112 distribution in mice and evaluated the therapeutic activity of RG7112 in orthotopic and subcutaneous GBM models. Results MDM2-amplified PDCLs were 44 times more sensitive than TP53 mutated lines that showed complete resistance at therapeutically attainable concentrations (avg. IC50 of 0.52 μM vs 21.9 μM). MDM4 amplified PDCLs were highly sensitive but showed intermediate response (avg. IC50 of 1.2 μM), whereas response was heterogeneous in TP53 wild-type PDCLs with normal MDM2/4 levels (avg. IC50 of 7.7 μM). In MDM2-amplified lines, RG7112 restored p53 activity inducing robust p21 expression and apoptosis. PK profiling of RG7112-treated PDCL intracranial xenografts demonstrated that the compound significantly crosses the blood-brain and the blood-tumor barriers. Most importantly, treatment of MDM2-amplified/TP53 wild-type PDCL-derived model (subcutaneous and orthotopic) reduced tumor growth, was cytotoxic, and significantly increased survival. Conclusion These data strongly support development of MDM2 inhibitors for clinical testing in MDM2-amplified GBM patients. Moreover, significant efficacy in a subset of non-MDM2 amplified models suggests that additional markers of response to MDM2 inhibitors must be identified. PMID:26482041

  7. Phenylbutyric acid induces the cellular senescence through an Akt/p21{sup WAF1} signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hag Dong; Jang, Chang-Young; Choe, Jeong Min

    2012-06-01

    Highlights: Black-Right-Pointing-Pointer Phenylbutyric acid induces cellular senescence. Black-Right-Pointing-Pointer Phenylbutyric acid activates Akt kinase. Black-Right-Pointing-Pointer The knockdown of PERK also can induce cellular senescence. Black-Right-Pointing-Pointer Akt/p21{sup WAF1} pathway activates in PERK knockdown induced cellular senescence. -- Abstract: It has been well known that three sentinel proteins - PERK, ATF6 and IRE1 - initiate the unfolded protein response (UPR) in the presence of misfolded or unfolded proteins in the ER. Recent studies have demonstrated that upregulation of UPR in cancer cells is required to survive and proliferate. Here, we showed that long exposure to 4-phenylbutyric acid (PBA), a chemical chaperone that canmore » reduce retention of unfolded and misfolded proteins in ER, induced cellular senescence in cancer cells such as MCF7 and HT1080. In addition, we found that treatment with PBA activates Akt, which results in p21{sup WAF1} induction. Interestingly, the depletion of PERK but not ATF6 and IRE1 also induces cellular senescence, which was rescued by additional depletion of Akt. This suggests that Akt pathway is downstream of PERK in PBA induced cellular senescence. Taken together, these results show that PBA induces cellular senescence via activation of the Akt/p21{sup WAF1} pathway by PERK inhibition.« less

  8. p53-Mdm2 interaction inhibitors as novel nongenotoxic anticancer agents.

    PubMed

    Nayak, Surendra Kumar; Khatik, Gopal L; Narang, Rakesh; Monga, Vikramdeep; Chopra, Harish Kumar

    2017-06-23

    Cancer is a major global health problem with high mortality rate. Most of clinically used anticancer agents induce apoptosis through genotoxic stress at various stages of cell cycle and activation of p53. Acting as a tumor suppressor p53 plays a vital role in preventing tumor development. Tumor suppressor function of p53 is effectively antagonized by its direct interaction with murine double minute 2 (Mdm2) proteins via multiple mechanisms. Thus, p53-Mdm2 interaction has been found to be an important target for the development of novel anticancer agents. Currently, nutlin, spirooxindole, isoquilinone and piperidinone analogues inhibiting p53-Mdm2 interaction are found to be promising in the treatment of cancer. The current review focused to scrutinize the structural aspects of p53-Mdm2 interaction inhibitors. The present study provides a detailed collection of published information on different classes of inhibitors of p53-Mdm2 interaction as potential anticancer agents. The review highlighted the structural aspects of various reported p53-Mdm2 inhibitor for optimization. In the last few years, different classes of inhibitors of p53-Mdm2 have been designed and developed, and seven such compounds are being evaluated in clinical trials as new anticancer drugs. Further, to explore the role of p53 protein as a potential target for anticancer drug development, in this review, the mechanism of Mdm2 mediated inactivation of p53 and recent developments on p53-Mdm2 interactions inhibitors are discussed. Agents designed to block the p53-Mdm2 interaction may have a therapeutic potential for treatment of a subset of human cancers retaining wild-type p53. We review herein the recent advances in the design and development of potent small molecules as p53-Mdm2 inhibitors. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. The Forkhead Transcription Factor FOXP2 Is Required for Regulation of p21WAF1/CIP1 in 143B Osteosarcoma Cell Growth Arrest.

    PubMed

    Gascoyne, Duncan M; Spearman, Hayley; Lyne, Linden; Puliyadi, Rathi; Perez-Alcantara, Marta; Coulton, Les; Fisher, Simon E; Croucher, Peter I; Banham, Alison H

    2015-01-01

    Mutations of the forkhead transcription factor FOXP2 gene have been implicated in inherited speech-and-language disorders, and specific Foxp2 expression patterns in neuronal populations and neuronal phenotypes arising from Foxp2 disruption have been described. However, molecular functions of FOXP2 are not completely understood. Here we report a requirement for FOXP2 in growth arrest of the osteosarcoma cell line 143B. We observed endogenous expression of this transcription factor both transiently in normally developing murine osteoblasts and constitutively in human SAOS-2 osteosarcoma cells blocked in early osteoblast development. Critically, we demonstrate that in 143B osteosarcoma cells with minimal endogenous expression, FOXP2 induced by growth arrest is required for up-regulation of p21WAF1/CIP1. Upon growth factor withdrawal, FOXP2 induction occurs rapidly and precedes p21WAF1/CIP1 activation. Additionally, FOXP2 expression could be induced by MAPK pathway inhibition in growth-arrested 143B cells, but not in traditional cell line models of osteoblast differentiation (MG-63, C2C12, MC3T3-E1). Our data are consistent with a model in which transient upregulation of Foxp2 in pre-osteoblast mesenchymal cells regulates a p21-dependent growth arrest checkpoint, which may have implications for normal mesenchymal and osteosarcoma biology.

  10. The Forkhead Transcription Factor FOXP2 Is Required for Regulation of p21WAF1/CIP1 in 143B Osteosarcoma Cell Growth Arrest

    PubMed Central

    Gascoyne, Duncan M.; Spearman, Hayley; Lyne, Linden; Puliyadi, Rathi; Perez-Alcantara, Marta; Coulton, Les; Fisher, Simon E.; Croucher, Peter I.; Banham, Alison H.

    2015-01-01

    Mutations of the forkhead transcription factor FOXP2 gene have been implicated in inherited speech-and-language disorders, and specific Foxp2 expression patterns in neuronal populations and neuronal phenotypes arising from Foxp2 disruption have been described. However, molecular functions of FOXP2 are not completely understood. Here we report a requirement for FOXP2 in growth arrest of the osteosarcoma cell line 143B. We observed endogenous expression of this transcription factor both transiently in normally developing murine osteoblasts and constitutively in human SAOS-2 osteosarcoma cells blocked in early osteoblast development. Critically, we demonstrate that in 143B osteosarcoma cells with minimal endogenous expression, FOXP2 induced by growth arrest is required for up-regulation of p21WAF1/CIP1. Upon growth factor withdrawal, FOXP2 induction occurs rapidly and precedes p21WAF1/CIP1 activation. Additionally, FOXP2 expression could be induced by MAPK pathway inhibition in growth-arrested 143B cells, but not in traditional cell line models of osteoblast differentiation (MG-63, C2C12, MC3T3-E1). Our data are consistent with a model in which transient upregulation of Foxp2 in pre-osteoblast mesenchymal cells regulates a p21-dependent growth arrest checkpoint, which may have implications for normal mesenchymal and osteosarcoma biology. PMID:26034982

  11. Pre-clinical efficacy and synergistic potential of the MDM2-p53 antagonists, Nutlin-3 and RG7388, as single agents and in combined treatment with cisplatin in ovarian cancer

    PubMed Central

    Zanjirband, Maryam; Edmondson, Richard J.; Lunec, John

    2016-01-01

    Ovarian cancer is the fifth leading cause of cancer-related female deaths. Due to serious side effects, relapse and resistance to standard chemotherapy, better and more targeted approaches are required. Mutation of the TP53 gene accounts for 50% of all human cancers. In the remaining malignancies, non-genotoxic activation of wild-type p53 by small molecule inhibition of the MDM2-p53 binding interaction is a promising therapeutic strategy. Proof of concept was established with the cis-imidazoline Nutlin-3, leading to the development of RG7388 and other compounds currently in early phase clinical trials. This preclinical study evaluated the effect of Nutlin-3 and RG7388 as single agents and in combination with cisplatin in a panel of ovarian cancer cell lines. Median-drug-effect analysis showed Nutlin-3 or RG7388 combination with cisplatin was additive to, or synergistic in a p53-dependent manner, resulting in increased p53 activation, cell cycle arrest and apoptosis, associated with increased p21WAF1 protein and/or caspase-3/7 activity compared to cisplatin alone. Although MDM2 inhibition activated the expression of p53-dependent DNA repair genes, the growth inhibitory and pro-apoptotic effects of p53 dominated the response. These data indicate that combination treatment with MDM2 inhibitors and cisplatin has synergistic potential for the treatment of ovarian cancer, dependent on cell genotype. PMID:27223080

  12. Isoindolinone inhibitors of the murine double minute 2 (MDM2)-p53 protein-protein interaction: structure-activity studies leading to improved potency.

    PubMed

    Hardcastle, Ian R; Liu, Junfeng; Valeur, Eric; Watson, Anna; Ahmed, Shafiq U; Blackburn, Timothy J; Bennaceur, Karim; Clegg, William; Drummond, Catherine; Endicott, Jane A; Golding, Bernard T; Griffin, Roger J; Gruber, Jan; Haggerty, Karen; Harrington, Ross W; Hutton, Claire; Kemp, Stuart; Lu, Xiaohong; McDonnell, James M; Newell, David R; Noble, Martin E M; Payne, Sara L; Revill, Charlotte H; Riedinger, Christiane; Xu, Qing; Lunec, John

    2011-03-10

    Inhibition of the MDM2-p53 interaction has been shown to produce an antitumor effect, especially in MDM2 amplified tumors. The isoindolinone scaffold has proved to be versatile for the discovery of MDM2-p53 antagonists. Optimization of previously reported inhibitors, for example, NU8231 (7) and NU8165 (49), was guided by MDM2 NMR titrations, which indicated key areas of the binding interaction to be explored. Variation of the 2-N-benzyl and 3-alkoxy substituents resulted in the identification of 3-(4-chlorophenyl)-3-((1-(hydroxymethyl)cyclopropyl)methoxy)-2-(4-nitrobenzyl)isoindolin-1-one (74) as a potent MDM2-p53 inhibitor (IC(50) = 0.23 ± 0.01 μM). Resolution of the enantiomers of 74 showed that potent MDM2-p53 activity primarily resided with the (+)-R-enantiomer (74a; IC(50) = 0.17 ± 0.02 μM). The cellular activity of key compounds has been examined in cell lines with defined p53 and MDM2 status. Compound 74a activates p53, MDM2, and p21 transcription in MDM2 amplified cells and shows moderate selectivity for wild-type p53 cell lines in growth inhibition assays.

  13. Mutation at p53 serine 389 does not rescue the embryonic lethality in mdm2 or mdm4 null mice.

    PubMed

    Iwakuma, Tomoo; Parant, John M; Fasulo, Mark; Zwart, Edwin; Jacks, Tyler; de Vries, Annemieke; Lozano, Guillermina

    2004-10-07

    Mdm2 and its homolog Mdm4 inhibit the function of the tumor suppressor p53. Targeted disruption of either mdm2 or mdm4 genes in mice results in embryonic lethality that is completely rescued by concomitant deletion of p53, suggesting that deletion of negative regulators of p53 results in a constitutively active p53. Thus, these mouse models offer a unique in vivo system to assay the functional significance of different p53 modifications. Phosphorylation of serine 389 in murine p53 occurs specifically after ultraviolet-light-induced DNA damage, and phosphorylation of this site enhances p53 activity both in vitro and in vivo. Recently, mice with a serine to alanine substitution at serine 389 (p53S389A) in the endogenous p53 locus were generated. To examine the in vivo significance of serine 389 phosphorylation during embryogenesis, we crossed these mutant mice to mice lacking mdm2 or mdm4. The p53S389A allele did not alter the embryonic lethality of mdm2 or mdm4. Additional crosses to assay the effect of one p53S389A allele with a p53 null allele also did not rescue the lethal phenotypes. In conclusion, the phenotypes due to loss of mdm2 or mdm4 were not even partially rescued by p53S389A, suggesting that p53S389A is functionally wild type during embryogenesis.

  14. Lack of a p21waf1/cip -dependent G1/S checkpoint in neural stem and progenitor cells after DNA damage in vivo.

    PubMed

    Roque, Telma; Haton, Céline; Etienne, Olivier; Chicheportiche, Alexandra; Rousseau, Laure; Martin, Ludovic; Mouthon, Marc-André; Boussin, François D

    2012-03-01

    The cyclin-dependent kinase inhibitor p21(waf1/cip) mediates the p53-dependent G1/S checkpoint, which is generally considered to be a critical requirement to maintain genomic stability after DNA damage. We used staggered 5-ethynyl-2'deoxyuridine/5-bromo-2'-deoxyuridine double-labeling in vivo to investigate the cell cycle progression and the role of p21(waf1/cip) in the DNA damage response of neural stem and progenitor cells (NSPCs) after exposure of the developing mouse cortex to ionizing radiation. We observed a radiation-induced p21-dependent apoptotic response in migrating postmitotic cortical cells. However, neural stem and progenitor cells (NSPCs) did not initiate a p21(waf1/cip1) -dependent G1/S block and continued to enter S-phase at a similar rate to the non-irradiated controls. The G1/S checkpoint is not involved in the mechanisms underlying the faithful transmission of the NSPC genome and/or the elimination of critically damaged cells. These processes typically involve intra-S and G2/M checkpoints that are rapidly activated after irradiation. p21 is normally repressed in neural cells during brain development except at the G1 to G0 transition. Lack of activation of a G1/S checkpoint and apoptosis of postmitotic migrating cells after DNA damage appear to depend on the expression of p21 in neural cells, since substantial cell-to-cell variations are found in the irradiated cortex. This suggests that repression of p21 during brain development prevents the induction of the G1/S checkpoint after DNA damage. Copyright © 2011 AlphaMed Press.

  15. Transcriptional inhibition of p21{sup WAF1/CIP1} gene (CDKN1) expression by survivin is at least partially p53-dependent: Evidence for survivin acting as a transcription factor or co-factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Lei; Pre-Doctoral Chinese Fellowship Student, Second West China Hospital, Sichuan University, Sichuan; Ling, Xiang

    2012-05-04

    Highlights: Black-Right-Pointing-Pointer Survivin inhibits the expression of p21 protein, mRNA and promoter activity. Black-Right-Pointing-Pointer Survivin neutralizes p53-induced p21 expression and promoter activity. Black-Right-Pointing-Pointer Survivin physically interacts with p53 in cancer cells. Black-Right-Pointing-Pointer Genetic silencing of endogenous survivin upregulates p21 in p53 wild type cancer cells. Black-Right-Pointing-Pointer Both p53 and survivin interacts on the two p53-binding sites in the p21 promoter. -- Abstract: Growing evidence suggests a role for the antiapoptotic protein survivin in promotion of cancer cell G1/S transition and proliferation. However, the underlying mechanism is unclear. Further, although upregulation of p21{sup WAF1/CIP1} by p53 plays an important role inmore » p53-mediated cell G1 arrests in response to various distresses, it is unknown whether survivin plays a role in the regulation of p21{sup WAF1/CIP1} expression. Here, we report that exogenous expression of survivin in p53-wild type MCF-7 breast cancer cells inhibits the expression of p21{sup WAF1/CIP1} protein, mRNA and promoter activity, while the survivin C84A mutant and antisense failed to do so. Cotransfection experiments in the p53 mutant H1650 lung cancer cell line showed that survivin neutralizes p53-induced p21{sup WAF1/CIP1} expression and promoter activity. Importantly, genetically silencing of endogenous survivin using lentiviral survivin shRNA also enhances endogenous p21 in p53 wild type cancer cells, suggesting the physiological relevance of the fining. We further demonstrated that both p53 and survivin interacts on the two p53-binding sites in the p21{sup WAF1/CIP1} promoter (-2313 to -2212; -1452 to -1310), and survivin physically interacts with p53 in cancer cells. Together, we propose that survivin may act as a transcription factor or cofactor to interact with p53 on the p21{sup WAF1/CIP1} promoter leading to the inhibition of p21{sup WAF1/CIP1

  16. Differential targeting of the cyclin-dependent kinase inhibitor, p21CIP1/WAF1, by chelators with anti-proliferative activity in a range of tumor cell-types

    PubMed Central

    Moussa, Rayan S.; Kovacevic, Zaklina; Richardson, Des R.

    2015-01-01

    Chelators such as 2-hydroxy-1-napthylaldehyde isonicotinoyl hydrazone (311) and di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT) target tumor cell iron pools and inhibit proliferation. These agents also modulate multiple targets, one of which is the cyclin-dependent kinase inhibitor, p21. Hence, this investigation examined the mechanism of action of these compounds in targeting p21. All the chelators up-regulated p21 mRNA in the five tumor cell-types assessed. In contrast, examining their effect on total p21 protein levels, these agents induced either: (1) down-regulation in MCF-7 cells; (2) up-regulation in SK-MEL-28 and CFPAC-1 cells; or (3) had no effect in LNCaP and SK-N-MC cells. The nuclear localization of p21 was also differentially affected by the ligands depending upon the cell-type, with it being decreased in MCF-7 cells, but increased in SK-MEL-28 and CFPAC-1 cells. Further studies assessing the mechanisms responsible for these effects demonstrated that p21 expression was not correlated with p53 status, suggesting a p53-independent mechanism. Considering this, we examined proteins that modulate p21 independently of p53, namely NDRG1, MDM2 and ΔNp63. These studies demonstrated that a dominant negative MDM2 isoform (p75MDM2) closely resembled p21 expression in response to chelation in three cell lines. These data suggest MDM2 may be involved in the regulation of p21 by chelators. PMID:26335183

  17. Inhibition of MDA-MB-231 breast cancer cell proliferation and tumor growth by apigenin through induction of G2/M arrest and histone H3 acetylation-mediated p21WAF1/CIP1 expression.

    PubMed

    Tseng, Tsui-Hwa; Chien, Ming-Hsien; Lin, Wea-Lung; Wen, Yu-Ching; Chow, Jyh-Ming; Chen, Chi-Kuan; Kuo, Tsang-Chih; Lee, Wei-Jiunn

    2017-02-01

    Apigenin (4',5,7-trihydroxyflavone), a flavonoid commonly found in fruits and vegetables, has anticancer properties in various malignant cancer cells. However, the molecular basis of the anticancer effect remains to be elucidated. In this study, we investigated the cellular mechanisms underlying the induction of cell cycle arrest by apigenin. Our results showed that apigenin at the nonapoptotic induction concentration inhibited cell proliferation and induced cell cycle arrest at the G2/M phase in the MDA-MB-231 breast cancer cell line. Immunoblot analysis indicated that apigenin suppressed the expression of cyclin A, cyclin B, and cyclin-dependent kinase-1 (CDK1), which control the G2-to-M phase transition in the cell cycle. In addition, apigenin upregulated p21 WAF1/CIP1 and increased the interaction of p21 WAF1/CIP1 with proliferating cell nuclear antigen (PCNA), which inhibits cell cycle progression. Furthermore, apigenin significantly inhibited histone deacetylase (HDAC) activity and induced histone H3 acetylation. The subsequent chromatin immunoprecipitation (ChIP) assay indicated that apigenin increased acetylation of histone H3 in the p21 WAF1/CIP1 promoter region, resulting in the increase of p21 WAF1/CIP1 transcription. In a tumor xenograft model, apigenin effectively delayed tumor growth. In these apigenin-treated tumors, we also observed reductions in the levels of cyclin A and cyclin B and increases in the levels of p21 WAF1/CIP1 and acetylated histone H3. These findings demonstrate for the first time that apigenin can be used in breast cancer prevention and treatment through epigenetic regulation. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 434-444, 2017. © 2016 Wiley Periodicals, Inc.

  18. p21(WAF1) Mediates Cell-Cycle Inhibition, Relevant to Cancer Suppression and Therapy.

    PubMed

    El-Deiry, Wafik S

    2016-09-15

    p21 (WAF1/CIP1; CDKN1a) is a universal cell-cycle inhibitor directly controlled by p53 and p53-independent pathways. Knowledge of the regulation and function of p21 in normal and cancer cells has opened up several areas of investigation and has led to novel therapeutic strategies. The discovery in 1993 and subsequent work on p21 has illuminated basic cellular growth control, stem cell phenotypes, the physiology of differentiation, as well as how cells respond to stress. There remain open questions in the signaling networks, the ultimate role of p21 in the p53-deficiency phenotype in the context of other p53 target defects, and therapeutic strategies continue to be a work in progress. Cancer Res; 76(18); 5189-91. ©2016 AACRSee related article by El-Deiry et al., Cancer Res 1994;54:1169-74Visit the Cancer Research 75(th) Anniversary timeline. ©2016 American Association for Cancer Research.

  19. BTK blocks the inhibitory effects of MDM2 on p53 activity

    PubMed Central

    Rada, Miran; Althubiti, Mohammad; Ekpenyong-Akiba, Akang E.; Lee, Koon-Guan; Lam, Kong Peng; Fedorova, Olga; Barlev, Nickolai A.; Macip, Salvador

    2017-01-01

    p53 is a tumour suppressor that is activated in response to various types of stress. It is regulated by a complex pattern of over 50 different post-translational modifications, including ubiquitination by the E3 ligase MDM2, which leads to its proteasomal degradation. We have previously reported that expression of Bruton’s Tyrosine Kinase (BTK) induces phosphorylation of p53 at the N-terminus, including Serine 15, and increases its protein levels and activity. The mechanisms involved in this process are not completely understood. Here, we show that BTK also increases MDM2 and is necessary for MDM2 upregulation after DNA damage, consistent with what we have shown for other p53 target genes. Moreover, we found that BTK binds to MDM2 on its PH domain and induces its phosphorylation. This suggested a negative regulation of MDM2 functions by BTK, supported by the fact BTK expression rescued the inhibitory effects of MDM2 on p53 transcriptional activity. Indeed, we observed that BTK mediated the loss of the ubiquitination activity of MDM2, a process that was dependent on the phosphorylation functions of BTK. Our data together shows that the kinase activity of BTK plays an important role in disrupting the MDM2-p53 negative feedback loop by acting at different levels, including binding to and inactivation of MDM2. This study provides a potential mechanism to explain how BTK modulates p53 functions. PMID:29290977

  20. [Interaction between p53 and MDM2 in human lung cancer cells].

    PubMed

    Rybárová, S; Hodorová, I; Vecanová, J; Muri, J; Mihalik, J

    2014-01-01

    The oncoprotein p53 protein induces cell growth arrest (apoptosis) in response to endo  or exogenous stimuli. Mutation of TP53 (gene encoding the p53 protein) is common in human malignancies and alters the conformation of p53. The result is a more stable protein which accumulates in nuclei of tumor cells with loss of function. Mutant p53 is stabilized, and it is possible to detect this form very clearly by immunohistochemistry (IHC). Expression of the MDM2 protein is used as a potential marker of p53 function. P53 levels in normal cells are highly determined by the MDM2 protein (murine double minute 2) -  mediated degradation of p53. MDM2 overexpression represents at least one mechanism by which p53 function can be abrogated during tumorigenesis. Lung carcinoma samples were obtained from patients, who underwent radical resection (lobectomy or pulmonectomy and lymphadectomy). Pathological dia-gnosis was based on the WHO criteria. In our study, we investigated the expression of p53 and MDM2 protein that might improve IHC as a marker for p53 status. Proteins were IHC detected in 136 samples of primary lung carcinoma. Immunostaining results of p53 positive samples were compared to IHC expression of MDM2 positive and MDM2 negative samples. Strong brown nuclear staining was visible in p53 and MDM2 positive cells. The most p53 positive cases were samples of squamocellular carcinoma (55%), then samples of large cell carcinoma (53%) and 26% adenocarcinoma samples showed the p53 immunoreactivity. No one sample of different types was p53 positive. When we compared the p53 expression and grade of tumor, we found that the p53 expression increased with the grade of tumor. For statistical evaluation, the chi square test was used. The relationship between p53 expression and type of tumor, also the p53 expression and grade of tumor was statistically significant (p = 0.000425; p = 0.00157). Regarding p53 and MDM2 expression, only nine samples (7%) were simultaneously p53 and

  1. Expression of the p12 subunit of human DNA polymerase δ (Pol δ), CDK inhibitor p21(WAF1), Cdt1, cyclin A, PCNA and Ki-67 in relation to DNA replication in individual cells.

    PubMed

    Zhao, Hong; Zhang, Sufang; Xu, Dazhong; Lee, Marietta Ywt; Zhang, Zhongtao; Lee, Ernest Yc; Darzynkiewicz, Zbigniew

    2014-01-01

    We recently reported that the p12 subunit of human DNA polymerase δ (Pol δ4) is degraded by CRL4(Cdt2) which regulates the licensing factor Cdt1 and p21(WAF1) during the G1 to S transition. Presently, we performed multiparameter laser scanning cytometric analyses of changes in levels of p12, Cdt1 and p21(WAF1), detected immunocytochemically in individual cells, vis-à-vis the initiation and completion of DNA replication. The latter was assessed by pulse-labeling A549 cells with the DNA precursor ethynyl-2'-deoxyribose (EdU). The loss of p12 preceded the initiation of DNA replication and essentially all cells incorporating EdU were p12 negative. Completion of DNA replication and transition to G2 phase coincided with the re-appearance and rapid rise of p12 levels. Similar to p12 a decline of p21(WAF1) and Cdt1 was seen at the end of G1 phase and all DNA replicating cells were p21(WAF1) and Cdt1 negative. The loss of p21(WAF1) preceded that of Cdt1 and p12 and the disappearance of the latter coincided with the onset of DNA replication. Loss of p12 leads to conversion of Pol δ4 to its trimeric form, Pol δ3, so that the results provide strong support to the notion that Pol δ3 is engaged in DNA replication during unperturbed progression through the S phase of cell cycle. Also assessed was a correlation between EdU incorporation, likely reflecting the rate of DNA replication in individual cells, and the level of expression of positive biomarkers of replication cyclin A, PCNA and Ki-67 in these cells. Of interest was the observation of stronger correlation between EdU incorporation and expression of PCNA (r = 0.73) than expression of cyclin A (r = 0.47) or Ki-67 (r = 0.47).

  2. 123I-labeled HIV-1 tat peptide radioimmunoconjugates are imported into the nucleus of human breast cancer cells and functionally interact in vitro and in vivo with the cyclin-dependent kinase inhibitor, p21(WAF-1/Cip-1).

    PubMed

    Hu, Meiduo; Chen, Paul; Wang, Judy; Scollard, Deborah A; Vallis, Katherine A; Reilly, Raymond M

    2007-03-01

    To evaluate the internalization and nuclear translocation of (123)I-tat-peptide radioimmunoconjugates in MDA-MB-468 breast cancer cells and their ability to interact with the cyclin-dependent kinase inhibitor, p21(WAF-1/Cip-1). Peptides [GRKKRRQRRRPPQGYGC] harboring the nuclear-localizing sequence from HIV tat domain were conjugated to anti-p21(WAF-1/Cip-1) antibodies. Immunoreactivity was assessed by Western blot using lysate from MDA-MB-468 cells exposed to EGF to induce p21(WAF-1/Cip-1). Internalization and nuclear translocation were measured. The ability of tat-anti-p21(WAF-1/Cip-1) to block G(1)-S phase arrest in MDA-MB-468 cells caused by EGF-induced p21(WAF-1/Cip-1) was evaluated. Tumor and normal tissue uptake were determined at 48 h p.i. in athymic mice implanted s.c. with MDA-MB-468 xenografts injected intratumorally with EGF. There was 13.4+/-0.2% of radioactivity internalized by MDA-MB-468 cells incubated with (123)I-tat-anti-p21(WAF-1/Cip-1) and 34.6+/-3.1% imported into the nucleus. Tat-anti-p21(WAF-1/Cip-1)(8 muM) decreased the proportion of EGF-treated cells in G(1) phase from 81.9+/-0.7% to 46.1+/-0.7% (p<0.001), almost restoring the G(1) phase fraction to that of unexposed cells (25.8+/-0.2%). Non-specific tat-mouse IgG did not block EGF-induced G(1)-S phase arrest. Tumor uptake of radioactivity was higher in mice injected with EGF to induce p21(WAF-1/Cip-1) than in mice not receiving EGF (3.1+/-0.4% versus 1.8+/-0.2% ID/g; p=0.04). Western blot analysis of tumors revealed a threefold increase in the p21(WAF-1/Cip-1)/beta-actin ratio. We conclude that intracellular and nuclear epitopes in cancer cells can be functionally targeted with tat-radioimmunoconjugates to exploit many more epitopes for imaging and radiotherapeutic applications than have previously been accessible.

  3. Anatomy of Mdm2 and Mdm4 in evolution.

    PubMed

    Tan, Ban Xiong; Liew, Hoe Peng; Chua, Joy S; Ghadessy, Farid J; Tan, Yaw Sing; Lane, David P; Coffill, Cynthia R

    2017-02-01

    Mouse double minute (Mdm) genes span an evolutionary timeframe from the ancient eukaryotic placozoa Trichoplax adhaerens to Homo sapiens, implying a significant and possibly conserved cellular role throughout history. Maintenance of DNA integrity and response to DNA damage involve many key regulatory pathways, including precise control over the tumour suppressor protein p53. In most vertebrates, degradation of p53 through proteasomal targeting is primarily mediated by heterodimers of Mdm2 and the Mdm2-related protein Mdm4 (also known as MdmX). Both Mdm2 and Mdm4 have p53-binding regions, acidic domains, zinc fingers, and C-terminal RING domains that are conserved throughout evolution. Vertebrates typically have both Mdm2 and Mdm4 genes, while analyses of sequenced genomes of invertebrate species have identified single Mdm genes, suggesting that a duplication event occurred prior to emergence of jawless vertebrates about 550-440 million years ago. The functional relationship between Mdm and p53 in T. adhaerens, an organism that has existed for 1 billion years, implies that these two proteins have evolved together to maintain a conserved and regulated function. © The Author (2017). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS.

  4. p53 AND MDM2 PROTEIN EXPRESSION IN ACTINIC CHEILITIS

    PubMed Central

    de Freitas, Maria da Conceição Andrade; Ramalho, Luciana Maria Pedreira; Xavier, Flávia Caló Aquino; Moreira, André Luis Gomes; Reis, Sílvia Regina Almeida

    2008-01-01

    Actinic cheilitis is a potentially malignant lip lesion caused by excessive and prolonged exposure to ultraviolet radiation, which can lead to histomorphological alterations indicative of abnormal cell differentiation. In this pathology, varying degrees of epithelial dysplasia may be found. There are few published studies regarding the p53 and MDM2 proteins in actinic cheilitis. Fifty-eight cases diagnosed with actinic cheilitis were histologically evaluated using Banóczy and Csiba (1976) parameters, and were subjected to immunohistochemical analysis using the streptavidin-biotin method in order to assess p53 and MDM2 protein expression. All studied cases expressed p53 proteins in basal and suprabasal layers. In the basal layer, the nuclei testing positive for p53 were stained intensely, while in the suprabasal layer, cells with slightly stained nuclei were predominant. All cases also tested positive for the MDM2 protein, but with varying degrees of nuclear expression and a predominance of slightly stained cells. A statistically significant correlation between the percentage of p53 and MDM2-positive cells was established, regardless of the degree of epithelial dysplasia. The expression of p53 and MDM2 proteins in actinic cheilitis can be an important indicator in lip carcinogenesis, regardless of the degree of epithelial dysplasia. PMID:19082401

  5. p53 and MDM2 protein expression in actinic cheilitis.

    PubMed

    de Freitas, Maria da Conceição Andrade; Ramalho, Luciana Maria Pedreira; Xavier, Flávia Caló Aquino; Moreira, André Luis Gomes; Reis, Sílvia Regina Almeida

    2008-01-01

    Actinic cheilitis is a potentially malignant lip lesion caused by excessive and prolonged exposure to ultraviolet radiation, which can lead to histomorphological alterations indicative of abnormal cell differentiation. In this pathology, varying degrees of epithelial dysplasia may be found. There are few published studies regarding the p53 and MDM2 proteins in actinic cheilitis. Fifty-eight cases diagnosed with actinic cheilitis were histologically evaluated using Banóczy and Csiba (1976) parameters, and were subjected to immunohistochemical analysis using the streptavidin-biotin method in order to assess p53 and MDM2 protein expression. All studied cases expressed p53 proteins in basal and suprabasal layers. In the basal layer, the nuclei testing positive for p53 were stained intensely, while in the suprabasal layer, cells with slightly stained nuclei were predominant. All cases also tested positive for the MDM2 protein, but with varying degrees of nuclear expression and a predominance of slightly stained cells. A statistically significant correlation between the percentage of p53 and MDM2-positive cells was established, regardless of the degree of epithelial dysplasia. The expression of p53 and MDM2 proteins in actinic cheilitis can be an important indicator in lip carcinogenesis, regardless of the degree of epithelial dysplasia.

  6. Caspase-2-mediated cleavage of Mdm2 creates p53-induced positive feedback loop

    PubMed Central

    Oliver, Trudy G.; Meylan, Etienne; Chang, Gregory P.; Xue, Wen; Burke, James R.; Humpton, Timothy J.; Hubbard, Diana; Bhutkar, Arjun; Jacks, Tyler

    2011-01-01

    SUMMARY Caspase-2 is an evolutionarily conserved caspase, yet its biological function and cleavage targets are poorly understood. Caspase-2 is activated by the p53 target gene product PIDD (also known as LRDD) in a complex called the Caspase-2-PIDDosome. We show that PIDD expression promotes growth arrest and chemotherapy resistance by a mechanism that depends on Caspase-2 and wild-type p53. PIDD-induced Caspase-2 directly cleaves the E3 ubiquitin ligase Mdm2 at Asp 367, leading to loss of the C-terminal RING domain responsible for p53 ubiquitination. As a consequence, N-terminally truncated Mdm2 binds p53 and promotes its stability. Upon DNA damage, p53 induction of the Caspase-2-PIDDosome creates a positive feedback loop that inhibits Mdm2 and reinforces p53 stability and activity, contributing to cell survival and drug resistance. These data establish Mdm2 as a cleavage target of Caspase-2 and provide insight into a mechanism of Mdm2 inhibition that impacts p53 dynamics upon genotoxic stress. PMID:21726810

  7. Effect of the MDM2 antagonist RG7112 on the P53 pathway in patients with MDM2-amplified, well-differentiated or dedifferentiated liposarcoma: an exploratory proof-of-mechanism study.

    PubMed

    Ray-Coquard, Isabelle; Blay, Jean-Yves; Italiano, Antoine; Le Cesne, Axel; Penel, Nicolas; Zhi, Jianguo; Heil, Florian; Rueger, Ruediger; Graves, Bradford; Ding, Meichun; Geho, David; Middleton, Steven A; Vassilev, Lyubomir T; Nichols, Gwen L; Bui, Binh Nguyen

    2012-11-01

    We report a proof-of-mechanism study of RG7112, a small-molecule MDM2 antagonist, in patients with chemotherapy-naive primary or relapsed well-differentiated or dedifferentiated MDM2-amplified liposarcoma who were eligible for resection. Patients with well-differentiated or dedifferentiated liposarcoma were enrolled at four centres in France. Patients received up to three 28-day neoadjuvant treatment cycles of RG7112 1440 mg/m(2) per day for 10 days. If a patient progressed at any point after the first cycle, the lesion was resected or, if unresectable, an end-of-study biopsy was done. The primary endpoint was to assess markers of RG7112-dependent MDM2 inhibition and P53 pathway activation (P53, P21, MDM2, Ki-67, macrophage inhibitory cytokine-1 [MIC-1], and apoptosis). All analyses were per protocol. This trial is registered with EudraCT, number 2009-015522-10. Between June 3, and Dec 14, 2010, 20 patients were enrolled and completed pretreatment and day 8 biopsies. 18 of 20 patients had TP53 wild-type tumours and two carried missense TP53 mutations. 14 of 17 assessed patients had MDM2 gene amplification. Compared with baseline, P53 and P21 concentrations, assessed by immunohistochemistry, had increased by a median of 4·86 times (IQR 4·38-7·97; p=0·0001) and 3·48 times (2·05-4·09; p=0·0001), respectively, at day 8 (give or take 2 days). At the same timepoint, relative MDM2 mRNA expression had increased by a median of 3·03 times (1·23-4·93; p=0·003) that at baseline. The median change from baseline for Ki-67-positive tumour cells was -5·05% (IQR -12·55 to 0·05; p=0·01). Drug exposure correlated with blood concentrations of MIC-1 (p<0·0001) and haematological toxicity. One patient had a confirmed partial response and 14 had stable disease. All patients experienced at least one adverse event, mostly nausea (14 patients), vomiting (11 patients), asthenia (nine patients), diarrhoea (nine patients), and thrombocytopenia (eight patients). There were 12

  8. Synergistic Inhibition of Her2/neu and p53-MDM2 Pathways. Addendum

    DTIC Science & Technology

    2007-09-01

    Therefore, combination of drugs targeting HER2/neu and MDM2 pathways will allow for a two-pronged attack on breast cancer. The overall objective of our...proposal is to determine if small molecule drugs designed to inhibit HER2/neu can be applied in combination with drugs designed to inhibit p53-MDM2...able to inhibit either the HER2/neu pathway or the p53-MDM2 pathway. Subsequently, designed small molecule drugs able to strongly induce apoptosis

  9. The MDM2 RING Domain and Central Acidic Domain Play Distinct Roles in MDM2 Protein Homodimerization and MDM2-MDMX Protein Heterodimerization*

    PubMed Central

    Leslie, Patrick L.; Ke, Hengming; Zhang, Yanping

    2015-01-01

    The oncoprotein murine double minute 2 (MDM2) is an E3 ligase that plays a prominent role in p53 suppression by promoting its polyubiquitination and proteasomal degradation. In its active form, MDM2 forms homodimers as well as heterodimers with the homologous protein murine double minute 4 (MDMX), both of which are thought to occur through their respective C-terminal RING (really interesting new gene) domains. In this study, using multiple MDM2 mutants, we show evidence suggesting that MDM2 homo- and heterodimerization occur through distinct mechanisms because MDM2 RING domain mutations that inhibit MDM2 interaction with MDMX do not affect MDM2 interaction with WT MDM2. Intriguingly, deletion of a portion of the MDM2 central acidic domain selectively inhibits interaction with MDM2 while leaving intact the ability of MDM2 to interact with MDMX and to ubiquitinate p53. Further analysis of an MDM2 C-terminal deletion mutant reveals that the C-terminal residues of MDM2 are required for both MDM2 and MDMX interaction. Collectively, our results suggest a model in which MDM2-MDMX heterodimerization requires the extreme C terminus and proper RING domain structure of MDM2, whereas MDM2 homodimerization requires the extreme C terminus and the central acidic domain of MDM2, suggesting that MDM2 homo- and heterodimers utilize distinct MDM2 domains. Our study is the first to report mutations capable of separating MDM2 homo- and heterodimerization. PMID:25809483

  10. The MDM2 RING domain and central acidic domain play distinct roles in MDM2 protein homodimerization and MDM2-MDMX protein heterodimerization.

    PubMed

    Leslie, Patrick L; Ke, Hengming; Zhang, Yanping

    2015-05-15

    The oncoprotein murine double minute 2 (MDM2) is an E3 ligase that plays a prominent role in p53 suppression by promoting its polyubiquitination and proteasomal degradation. In its active form, MDM2 forms homodimers as well as heterodimers with the homologous protein murine double minute 4 (MDMX), both of which are thought to occur through their respective C-terminal RING (really interesting new gene) domains. In this study, using multiple MDM2 mutants, we show evidence suggesting that MDM2 homo- and heterodimerization occur through distinct mechanisms because MDM2 RING domain mutations that inhibit MDM2 interaction with MDMX do not affect MDM2 interaction with WT MDM2. Intriguingly, deletion of a portion of the MDM2 central acidic domain selectively inhibits interaction with MDM2 while leaving intact the ability of MDM2 to interact with MDMX and to ubiquitinate p53. Further analysis of an MDM2 C-terminal deletion mutant reveals that the C-terminal residues of MDM2 are required for both MDM2 and MDMX interaction. Collectively, our results suggest a model in which MDM2-MDMX heterodimerization requires the extreme C terminus and proper RING domain structure of MDM2, whereas MDM2 homodimerization requires the extreme C terminus and the central acidic domain of MDM2, suggesting that MDM2 homo- and heterodimers utilize distinct MDM2 domains. Our study is the first to report mutations capable of separating MDM2 homo- and heterodimerization. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Lithocholic acid is an endogenous inhibitor of MDM4 and MDM2

    PubMed Central

    Vogel, Simon M.; Bauer, Matthias R.; Joerger, Andreas C.; Wilcken, Rainer; Brandt, Tobias; Veprintsev, Dmitry B.; Rutherford, Trevor J.; Fersht, Alan R.; Boeckler, Frank M.

    2012-01-01

    The proteins MDM2 and MDM4 are key negative regulators of the tumor suppressor protein p53, which are frequently upregulated in cancer cells. They inhibit the transactivation activity of p53 by binding separately or in concert to its transactivation domain. MDM2 is also a ubiquitin ligase that leads to the degradation of p53. Accordingly, MDM2 and MDM4 are important targets for drugs to inhibit their binding to p53. We found from in silico screening and confirmed by experiment that lithocholic acid (LCA) binds to the p53 binding sites of both MDM2 and MDM4 with a fivefold preference for MDM4. LCA is an endogenous steroidal bile acid, variously reported to have both carcinogenic and apoptotic activities. The comparison of LCA effects on apoptosis in HCT116 p53+/+ vs. p53-/- cells shows a predominantly p53-mediated induction of caspase-3/7. The dissociation constants are in the μM region, but only modest inhibition of binding of MDM2 and MDM4 is required to negate their upregulation because they have to compete with transcriptional coactivator p300 for binding to p53. Binding was weakened by structural changes in LCA, and so it may be a natural ligand of MDM2 and MDM4, raising the possibility that MDM proteins may be sensors for specific steroids. PMID:23035244

  12. Screening of medicinal plant phytochemicals as natural antagonists of p53-MDM2 interaction to reactivate p53 functioning.

    PubMed

    Riaz, Muhammad; Ashfaq, Usman A; Qasim, Muhammad; Yasmeen, Erum; Ul Qamar, Muhammad T; Anwar, Farooq

    2017-10-01

    In most types of cancer, overexpression of murine double minute 2 (MDM2) often leads to inactivation of p53. The crystal structure of MDM2, with a 109-residue amino-terminal domain, reveals that MDM2 has a core hydrophobic region to which p53 binds as an amphipathic α helix. The interface depends on the steric complementarity between MDM2 and the hydrophobic region of p53. Especially, on p53's triad, amino acids Phe19, Trp23 and Leu26 bind to the MDM2 core. Results from studies suggest that the structural motif of both p53 and MDM2 can be attributed to similarities in the amphipathic α helix. Thus, in the current investigation it is hypothesized that the similarity in the structural motif might be the cause of p53 inactivation by MDM2. Hence, molecular docking and phytochemical screening approaches are appraised to inhibit the hydrophobic cleft of MDM2 and to stop p53-MDM2 interaction, resulting in reactivation of p53 activity. For this purpose, a library of 2295 phytochemicals were screened against p53-MDM2 to find potential candidates. Of these, four phytochemicals including epigallocatechin gallate, alvaradoin M, alvaradoin E and nordihydroguaiaretic acid were found to be potential inhibitors of p53-MDM2 interaction. The screened phytochemicals, derived from natural extracts, may have negligible side effects and can be explored as potent antagonists of p53-MDM2 interactions, resulting in reactivation of the normal transcription of p53.

  13. Rapid and efficient hydrophilicity tuning of p53/mdm2 antagonists*

    PubMed Central

    Srivastava, Stuti; Beck, Barbara; Wang, Wei; Czarna, Anna; Holak, Tad A.; Dömling, Alexander

    2009-01-01

    The protein-protein interaction of p53 and mdm2 is an important anticancer target. The interface, however, is very hydrophobic and naturally results in very hydrophobic antagonists. We used the Orru three component reaction (O-3CR) along with a rapid and efficient, recently discovered amidation reaction to dramatically improve the water solubility of our recently discovered low molecular weight p53/mdm2 antagonists. Arrays of amides were synthesized with improved hydrophilicity and retainment and/or improvement of p53/mdm2 inhibitory activity. PMID:19548636

  14. Induction of MDM2-P2 Transcripts Correlates with Stabilized Wild-Type p53 in Betel- and Tobacco-Related Human Oral Cancer

    PubMed Central

    Ralhan, Ranju; Sandhya, Agarwal; Meera, Mathur; Bohdan, Wasylyk; Nootan, Shukla K.

    2000-01-01

    MDM2, a critical element of cellular homeostasis mechanisms, is involved in complex interactions with important cell-cycle and stress-response regulators including p53. The mdm2-P2 promoter is a transcriptional target of p53. The aim of this study was to determine the association between mdm2-P2 transcripts and the status of the p53 gene in betel- and tobacco-related oral squamous cell carcinomas (SCCs) to understand the mechanism of deregulation of MDM2 and p53 expression and their prognostic implications in oral tumorigenesis. Elevated levels of MDM2 proteins were observed in 11 of 25 (44%) oral hyperplastic lesions, nine of 15 (60%) dysplastic lesions, and 71 of 100 (71%) SCCs. The intriguing feature of the study was the identification and different subcellular localization of three isoforms of MDM2 (ie, 90 kd, 76 kd, and 57 kd) in oral SCCs and their correlation with p53 overexpression in each tumor. The hallmark of the study was the detection of mdm2-P2 transcripts in 12 of 20 oral SCCs overexpressing both MDM2 and p53 proteins while harboring wild-type p53 alleles. Furthermore, mdm2 amplification was an infrequent event in betel- and tobacco-associated oral tumorigenesis. The differential compartmentalization of the three isoforms of MDM2 suggests that each has a distinct function, potentially in the regulation of p53 and other gene products implicated in oral tumorigenesis. In conclusion, we report herein the first evidence suggesting that enhanced translation of mdm2-P2 transcripts (S-mdm2) may represent an important mechanism of overexpression and consequent stabilization and functional inactivation of wild-type p53 serving as an adverse prognosticator in betel- and tobacco-related oral cancer. The clinical significance of the functional inactivation of wild-type p53 by MDM2 is underscored by the significantly shorter median disease-free survival time (16 months) observed in p53/MDM2-positive cases as compared to those which did not show co-expression of

  15. Targeting p53-MDM2-MDMX Loop for Cancer Therapy

    PubMed Central

    Zhang, Qi; Zeng, Shelya X.

    2015-01-01

    The tumor suppressor p53 plays a central role in anti-tumorigenesis and cancer therapy. It has been described as “the guardian of the genome”, because it is essential for conserving genomic stability by preventing mutation, and its mutation and inactivation are highly related to all human cancers. Two important p53 regulators, MDM2 and MDMX, inactivate p53 by directly inhibiting its transcriptional activity and mediating its ubiquitination in a feedback fashion, as their genes are also the transcriptional targets of p53. On account of the importance of the p53-MDM2- MDMX loop in the initiation and development of wild type p53-containing tumors, intensive studies over the past decade have been aiming to identify small molecules or peptides that could specifically target individual protein molecules of this pathway for developing better anti-cancer therapeutics. In this chapter, we review the approaches for screening and discovering efficient and selective MDM2 inhibitors with emphasis on the most advanced synthetic small molecules that interfere with the p53-MDM2 interaction and are currently on Phase I clinical trials. Other therapeutically useful strategies targeting this loop, which potentially improve the prospects of cancer therapy and prevention, will also be discussed briefly. PMID:25201201

  16. Small-Molecule Inhibitors of the MDM2p53 Protein–Protein Interaction (MDM2 Inhibitors) in Clinical Trials for Cancer Treatment

    PubMed Central

    2015-01-01

    Design of small-molecule inhibitors (MDM2 inhibitors) to block the MDM2p53 protein–protein interaction has been pursued as a new cancer therapeutic strategy. In recent years, potent, selective, and efficacious MDM2 inhibitors have been successfully obtained and seven such compounds have been advanced into early phase clinical trials for the treatment of human cancers. Here, we review the design, synthesis, properties, preclinical, and clinical studies of these clinical-stage MDM2 inhibitors. PMID:25396320

  17. Plant HDAC inhibitor chrysin arrest cell growth and induce p21WAF1 by altering chromatin of STAT response element in A375 cells

    PubMed Central

    2012-01-01

    Background Chrysin and its analogues, belongs to flavonoid family and possess potential anti-tumour activity. The aim of this study is to determine the molecular mechanism by which chrysin controls cell growth and induce apoptosis in A375 cells. Methods Effect of chrysin and its analogues on cell viability and cell cycle analysis was determined by MTT assay and flowcytometry. A series of Western blots was performed to determine the effect of chrysin on important cell cycle regulatory proteins (Cdk2, cyclin D1, p53, p21, p27). The fluorimetry and calorimetry based assays was conducted for characterization of chrysin as HDAC inhibitor. The changes in histone tail modification such as acetylation and methylation was studied after chrysin treatment was estimated by immuno-fluorescence and western blot analysis. The expression of Bcl-xL, survivin and caspase-3 was estimated in chrysin treated cells. The effect of chrysin on p21 promoter activity was studied by luciferase and ChIP assays. Results Chrysin cause G1 cell cycle arrest and found to inhibit HDAC-2 and HDAC-8. Chrysin treated cells have shown increase in the levels of H3acK14, H4acK12, H4acK16 and decrease in H3me2K9 methylation. The p21 induction by chrysin treatment was found to be independent of p53 status. The chromatin remodelling at p21WAF1 promoter induces p21 activity, increased STAT-1 expression and epigenetic modifications that are responsible for ultimate cell cycle arrest and apoptosis. Conclusion Chrysin shows in vitro anti-cancer activity that is correlated with induction of histone hyperacetylation and possible recruitment of STAT-1, 3, 5 proteins at STAT (−692 to −684) region of p21 promoter. Our results also support an unexpected action of chrysin on the chromatin organization of p21WAF1 promoter through histone methylation and hyper-acetylation. It proposes previously unknown sequence specific chromatin modulations in the STAT responsive elements for regulating cell cycle progression

  18. FHL2 regulates cell cycle-dependent and doxorubicin-induced p21Cip1/Waf1 expression in breast cancer cells.

    PubMed

    Martin, Bernd T; Kleiber, Kai; Wixler, Viktor; Raab, Monika; Zimmer, Brigitte; Kaufmann, Manfred; Strebhardt, Klaus

    2007-07-15

    The transcriptional cofactor FHL2 interacts with a broad variety of transcription factors and its expression is often deregulated in various types of cancer. Here we analyzed for the first time the molecular function of FHL2 in breast cancer. FHL2 is overexpressed in almost all human mammary carcinoma samples tested but not in normal breast tissues and only low levels of FHL2 expression were present in four premalignant ductal carcinoma in situ (DCIS). Cell cycle analysis revealed an upregulation of endogenous FHL2 towards G2/M in MDA-MB 231 cells and an accelerated G2/M transition when FHL2 expression was suppressed in these cells. In search for G2/M specific target genes regulated by FHL2, we found that expression of the cell cycle inhibitor p21Cip1/Waf1 (hereafter p21) is dependent on FHL2 in MDA-MB 231 breast cancer cells. Downregulation of FHL2 by shRNA abrogated the cell cycle dependent upregulation of p21 as well as the induction of p21 in response to treatment with the DNA damaging agent doxorubicin. FHL2-dependent p21 expression occurs in a p53-independent manner and p21 expression can be downregulated by specific inhibition of mitogen-activated protein kinases (MAPKs), implicating an involvement of MAPK signaling in this regulation. Analysis of FHL2 contribution to the MAPK signaling identified FHL2 as an important downstream effector of MAPKs in breast cancer cells, capable of transactivating endogenous AP1 target genes as well as AP1 dependent reporter genes. Finally, downregulation of FHL2 reduces the ability of MDA-MB 231 cells to form colonies in soft agar, while FHL2 overexpression enhances colony formation of breast cancer cells. Thus, our findings indicate that overexpression of the transcriptional cofactor FHL2 contributes to breast cancer development by mediating transcriptional activation of MAPK target genes known to be involved in cancer progression, such as p21.

  19. Modulation of the cyclin-dependent kinase inhibitor p21(WAF1/Cip1) gene by Zac1 through the antagonistic regulators p53 and histone deacetylase 1 in HeLa Cells.

    PubMed

    Liu, Pei-Yao; Chan, James Yi-Hsin; Lin, Hsiu-Chen; Wang, Sung-Ling; Liu, Shu-Ting; Ho, Ching-Liang; Chang, Li-Chien; Huang, Shih-Ming

    2008-07-01

    Zac1 is a novel seven-zinc finger protein which possesses the ability to bind specifically to GC-rich DNA elements. Zac1 not only promotes apoptosis and cell cycle arrest but also acts as a transcriptional cofactor for p53 and a number of nuclear receptors. Our previous study indicated that the enhancement of p53 activity by Zac1 is much more pronounced in HeLa cells compared with other cell lines tested. This phenomenon might be due to the coactivator effect of Zac1 on p53 and the ability of Zac1 to reverse E6 inhibition of p53. In the present study, we showed that Zac1 acted synergistically with either p53 or a histone deacetylase inhibitor, trichostatin A, to enhance p21(WAF1/Cip1) promoter activity. We showed that Zac1 physically interacted with some nuclear receptor corepressors such as histone deacetylase 1 (HDAC1) and mSin3a, and the induction of p21(WAF1/Cip1) gene and protein by Zac1 was suppressed by either overexpressing HDAC1 or its deacetylase-dead mutant. In addition, our data suggest that trichostatin A-induced p21(WAF1/Cip1) protein expression might be mediated through a p53-independent and HDAC deacetylase-independent pathway. Taken together, our data suggest that Zac1 might be involved in regulating the p21(WAF1/Cip1) gene and protein expression through its protein-protein interaction with p53 and HDAC1 in HeLa cells.

  20. Unbalancing p53/Mdm2/IGF-1R axis by Mdm2 activation restrains the IGF-1-dependent invasive phenotype of skin melanoma

    PubMed Central

    Worrall, C; Suleymanova, N; Crudden, C; Trocoli Drakensjö, I; Candrea, E; Nedelcu, D; Takahashi, S-I; Girnita, L; Girnita, A

    2017-01-01

    Melanoma tumors usually retain wild-type p53; however, its tumor-suppressor activity is functionally disabled, most commonly through an inactivating interaction with mouse double-minute 2 homolog (Mdm2), indicating p53 release from this complex as a potential therapeutic approach. P53 and the tumor-promoter insulin-like growth factor type 1 receptor (IGF-1R) compete as substrates for the E3 ubiquitin ligase Mdm2, making their relative abundance intricately linked. Hence we investigated the effects of pharmacological Mdm2 release from the Mdm2/p53 complex on the expression and function of the IGF-1R. Nutlin-3 treatment increased IGF-1R/Mdm2 association with enhanced IGF-1R ubiquitination and a dual functional outcome: receptor downregulation and selective downstream signaling activation confined to the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway. This Nutlin-3 functional selectivity translated into IGF-1-mediated bioactivities with biphasic effects on the proliferative and metastatic phenotype: an early increase and late decrease in the number of proliferative and migratory cells, while the invasiveness was completely inhibited following Nutlin-3 treatment through an impaired IGF-1-mediated matrix metalloproteinases type 2 activation mechanism. Taken together, these experiments reveal the biased agonistic properties of Nutlin-3 for the mitogen-activated protein kinase pathway, mediated by Mdm2 through IGF-1R ubiquitination and provide fundamental insights into destabilizing p53/Mdm2/IGF-1R circuitry that could be developed for therapeutic gain. PMID:28092675

  1. Osteoblast differentiation and skeletal development are regulated by Mdm2p53 signaling

    PubMed Central

    Lengner, Christopher J.; Steinman, Heather A.; Gagnon, James; Smith, Thomas W.; Henderson, Janet E.; Kream, Barbara E.; Stein, Gary S.; Lian, Jane B.; Jones, Stephen N.

    2006-01-01

    Mdm2 is required to negatively regulate p53 activity at the peri-implantation stage of early mouse development. However, the absolute requirement for Mdm2 throughout embryogenesis and in organogenesis is unknown. To explore Mdm2p53 signaling in osteogenesis, Mdm2-conditional mice were bred with Col3.6-Cre–transgenic mice that express Cre recombinase in osteoblast lineage cells. Mdm2-conditional Col3.6-Cre mice die at birth and display multiple skeletal defects. Osteoblast progenitor cells deleted for Mdm2 have elevated p53 activity, reduced proliferation, reduced levels of the master osteoblast transcriptional regulator Runx2, and reduced differentiation. In contrast, p53-null osteoprogenitor cells have increased proliferation, increased expression of Runx2, increased osteoblast maturation, and increased tumorigenic potential, as mice specifically deleted for p53 in osteoblasts develop osteosarcomas. These results demonstrate that p53 plays a critical role in bone organogenesis and homeostasis by negatively regulating bone development and growth and by suppressing bone neoplasia and that Mdm2-mediated inhibition of p53 function is a prerequisite for Runx2 activation, osteoblast differentiation, and proper skeletal formation. PMID:16533949

  2. Arsenic trioxide phosphorylates c-Fos to transactivate p21{sup WAF1/CIP1} expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Zimiao; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Huang, H.-S.

    2008-12-01

    An infamous poison, arsenic also has been used as a drug for nearly 2400 years; in recently years, arsenic has been effective in the treatment of acute promyelocytic leukemia. Increasing evidence suggests that opposite effects of arsenic trioxide (ATO) on tumors depend on its concentrations. For this reason, the mechanisms of action of the drug should be elucidated, and it should be used therapeutically only with extreme caution. Previously, we demonstrated the opposing effects of ERK1/2 and JNK on p21{sup WAF1/CIP1} (p21) expression in response to ATO in A431 cells. In addition, JNK phosphorylates c-Jun (Ser{sup 63/73}) to recruit TGIF/HDAC1more » to suppress p21 gene expression. Presently, we demonstrated that a high concentration of ATO sustains ERK1/2 phosphorylation, and increases c-Fos biosynthesis and stability, which enhances p21 gene expression. Using site-directed mutagenesis, a DNA affinity precipitation assay, and functional assays, we demonstrated that phosphorylation of the C-terminus of c-Fos (Thr{sup 232}, Thr{sup 325}, Thr{sup 331}, and Ser{sup 374}) plays an important role in its binding to the p21 promoter, and in conjunction with N-terminus phosphorylation of c-Fos (Ser{sup 70}) to transactivate p21 promoter expression. In conclusion, a high concentration of ATO can sustain ERK1/2 activation to enhance c-Fos expression, then dimerize with dephosphorylated c-Jun (Ser{sup 63/73}) and recruit p300/CBP to the Sp1 sites (- 84/- 64) to activate p21 gene expression in A431 cells.« less

  3. The oncoprotein gankyrin binds to MDM2/HDM2, enhancing ubiquitylation and degradation of p53.

    PubMed

    Higashitsuji, Hiroaki; Higashitsuji, Hisako; Itoh, Katsuhiko; Sakurai, Toshiharu; Nagao, Toshikazu; Sumitomo, Yasuhiko; Sumitomo, Haruhiko; Masuda, Tomoko; Dawson, Simon; Shimada, Yutaka; Mayer, R John; Fujita, Jun

    2005-07-01

    Gankyrin is an ankyrin repeat oncoprotein commonly overexpressed in hepatocellular carcinomas. Gankyrin interacts with the S6 proteasomal ATPase and accelerates the degradation of the tumor suppressor Rb. We show here that gankyrin has an antiapoptotic activity in cells exposed to DNA damaging agents. Downregulation of gankyrin induces apoptosis in cells with wild-type p53. In vitro and in vivo experiments revealed that gankyrin binds to Mdm2, facilitating p53-Mdm2 binding, and increases ubiquitylation and degradation of p53. Gankyrin also enhances Mdm2 autoubiquitylation in the absence of p53. Downregulation of gankyrin reduced amounts of Mdm2 and p53 associated with the 26S proteasome. Thus, gankyrin is a cofactor that increases the activities of Mdm2 on p53 and probably targets polyubiquitylated p53 into the 26S proteasome.

  4. Comprehensive mutation analysis of PIK3CA, p14ARF, p16INK4a and p21Waf1/Cip1 genes is suggestive of a non- neoplastic nature of phenytoin induced gingival overgrowth.

    PubMed

    Swamikannu, Bhuminathan; Kumar, Kishore S; Jayesh, Raghavendra S; Rajendran, Senthilnathan; Muthupalani, Rajendran Shanmugam; Ramanathan, Arvind

    2013-01-01

    Dilantin sodium (phenytoin) is an antiepileptic drug, which is routinely used to control generalized tonic clonic seizure and partial seizure episodes. A few case reports of oral squamous cell carcinomas arising from regions of phenytoin induced gingival overgrowth (GO), and overexpression of mitogenic factors and p53 have presented this condition as a pathology with potential to transform into malignancy. We recently investigated the genetic status of p53 and H-ras, which are known to be frequently mutated in Indian oral carcinomas in GO tissues and found them to only contain wild type sequences, which suggested a non-neoplastic nature of phenytoin induced GO. However, besides p53 and H-ras, other oncogenes and tumor suppressors such as PIK3CA, p14ARF, p16INK4a and p21Waf1/Cip1, are frequently altered in oral squamous cell carcinoma, and hence are required to be analyzed in phenytoin induced GO tissues to be affirmative of its non-neoplastic nature. 100ng of chromosomal DNA isolated from twenty gingival overgrowth tissues were amplified with primers for exons 9 and 20 of PIK3CA, exons 1α, 1β and 2 of p16INK4a and p14ARF, and exon 2 of p21Waf1/Cip1, in independent reactions. PCR amplicons were subsequently gel purified and eluted products were sequenced. Sequencing analysis of the twenty samples of phenytoin induced gingival growth showed no mutations in the analyzed exons of PIK3CA, p14ARF, p16INK4a and p21Waf1/Cip1. The present data indicate that the mutational alterations of genes, PIK3CA, p14ARF, p16INK4a and p21Waf1/Cip1 that are frequently mutated in oral squamous cell carcinomas are rare in phenytoin induced gingival growth. Thus the findings provide further evidence that phenytoin induced gingival overgrowth as a non-neoplastic lesion, which may be considered as clinically significant given the fact that the epileptic patients are routinely administered with phenytoin for the rest of their lives to control seizure episodes.

  5. Chromosomal instability, telomere shortening, and inactivation of p21(WAF1/CIP1) in dysplastic nodules of hepatitis B virus-associated multistep hepatocarcinogenesis.

    PubMed

    Lee, Yoon Hee; Oh, Bong-Kyeong; Yoo, Jeong Eun; Yoon, So-Mi; Choi, Jinsub; Kim, Kyung Sik; Park, Young Nyun

    2009-08-01

    Systemic analysis for chromosomal instability and inactivation of cell cycle checkpoints are scarce during hepatocarcinogenesis. We studied 24 patients with chronic B viral cirrhosis including 30 cirrhotic regenerative nodules, 35 low-grade dysplastic nodules, 15 high-grade dysplastic nodules, 7 dysplastic nodules with hepatocellular carcinoma foci, and 18 hepatocellular carcinomas. Eight normal livers were studied as the control group. Telomere length and micronuclei were detected by Southern blot and Feulgen-fast green dyeing technique, respectively, and p21(WAF1/CIP1) expression was studied by immunohistochemistry. Micronuclei >1 per 3000 hepatocytes were found in 17% of low-grade dysplastic nodules, 87% of high-grade dysplastic nodules, and 100% of high-grade dysplastic nodules with hepatocellular carcinoma foci and hepatocellular carcinomas in contrast to those of all normal livers, and 90% of cirrhosis showed no micronuclei. The micronuclei index showed a gradual increase during hepatocarcinogenesis and there was a significant increase between cirrhosis and low-grade dysplastic nodules, low-grade dysplastic nodules and high-grade dysplastic nodules, and high-grade dysplastic nodules and hepatocellular carcinomas. Telomere length showed a gradual shortening during hepatocarcinogenesis and a significant reduction was found in high-grade dysplastic nodules (P=0.024) and hepatocellular carcinomas (P=0.031) compared with normal and cirrhotic livers. The micronuclei index was correlated with telomere shortening (P=0.016). The p21(WAF1/CIP1) labeling index was significantly higher in cirrhosis than in normal livers (P=0.024) and markedly decreased in low-grade dysplastic nodules, high-grade dysplastic nodules, and hepatocellular carcinomas compared with cirrhosis (P<0.05). The p21(WAF1/CIP1) labeling index was associated with telomere length (P<0.001) but not micronuclei index. This study shows that telomere shortening, chromosomal instability, and inactivation of p

  6. hERG1/Kv11.1 activation stimulates transcription of p21waf/cip in breast cancer cells via a calcineurin-dependent mechanism.

    PubMed

    Perez-Neut, Mathew; Rao, Vidhya R; Gentile, Saverio

    2016-09-13

    The function of Kv11.1 is emerging in breast cancer biology, as a growing body of evidence indicates that the hERG1/Kv11.1 potassium channel is aberrantly expressed in several cancer types including breast cancers.The biological effects of Kv11.1 channel blockers and their associated side effects are very well known but the potential use of Kv11.1 activators as an anticancer strategy are still unexplored. In our previous work, we have established that stimulation of the Kv11.1 potassium channel activates a senescent-like program that is characterized by a significant increase in tumor suppressor protein levels, such as p21waf/cip and p16INK4A. In this study we investigated the mechanism linking Kv11.1 stimulation to augmentation of p21waf/cip protein level. We have demonstrated that the Kv11.1 channel activator NS1643 activates a calcineurin-dependent transcription of p21waf/cip and that this event is fundamental for the inhibitory effect of NS1643 on cell proliferation. Our results reveal a novel mechanism by which stimulation of Kv11.1 channel leads to transcription of a potent tumor suppressor and suggest a potential therapeutic use for Kv11.1 channel activators.

  7. hERG1/Kv11.1 activation stimulates transcription of p21waf/cip in breast cancer cells via a calcineurin-dependent mechanism

    PubMed Central

    Perez-Neut, Mathew; Rao, Vidhya R.; Gentile, Saverio

    2016-01-01

    The function of Kv11.1 is emerging in breast cancer biology, as a growing body of evidence indicates that the hERG1/Kv11.1 potassium channel is aberrantly expressed in several cancer types including breast cancers. The biological effects of Kv11.1 channel blockers and their associated side effects are very well known but the potential use of Kv11.1 activators as an anticancer strategy are still unexplored. In our previous work, we have established that stimulation of the Kv11.1 potassium channel activates a senescent-like program that is characterized by a significant increase in tumor suppressor protein levels, such as p21waf/cip and p16INK4A. In this study we investigated the mechanism linking Kv11.1 stimulation to augmentation of p21waf/cip protein level. We have demonstrated that the Kv11.1 channel activator NS1643 activates a calcineurin-dependent transcription of p21waf/cip and that this event is fundamental for the inhibitory effect of NS1643 on cell proliferation. Our results reveal a novel mechanism by which stimulation of Kv11.1 channel leads to transcription of a potent tumor suppressor and suggest a potential therapeutic use for Kv11.1 channel activators. PMID:25945833

  8. Cytoplasmic p21(CIP1/WAF1), ERK1/2 activation, and cytoskeletal remodeling are associated with the senescence-like phenotype after airborne particulate matter (PM(10)) exposure in lung cells.

    PubMed

    Sánchez-Pérez, Yesennia; Chirino, Yolanda I; Osornio-Vargas, Álvaro Román; Herrera, Luis A; Morales-Bárcenas, Rocío; López-Saavedra, Alejandro; González-Ramírez, Imelda; Miranda, Javier; García-Cuellar, Claudia María

    2014-02-10

    The exposure to particulate matter with a mean aerodynamic diameter ≤10 μm (PM10) from urban zones is considered to be a risk factor in the development of cancer. The aim of this work was to determine if PM10 exposure induces factors related to the acquisition of a neoplastic phenotype, such as cytoskeletal remodeling, changes in the subcellular localization of p21(CIP1/WAF1), an increase in β-galactosidase activity and changes in cell cycle. To test our hypothesis, PM10 from an industrial zone (IZ) and a commercial zone (CZ) were collected, and human adenocarcinoma lung cell cultures (A549) were exposed to a sublethal PM10 concentration (10 μg/cm(2)) for 24 h and 48 h. The results showed that PM10 exposure induced an increase in F-actin stress fibers and caused the cytoplasmic stabilization of p21(CIP1/WAF1) via phosphorylation at Thr(145) and Ser(146) and the phosphorylation of ERK1/2 on Thr(202). Changes in the cell cycle or apoptosis were not observed, but an increase in β-galactosidase activity was detected. The PM10 from CZ caused more dramatic effects in lung cells. We conclude that PM10 exposure induced cytoplasmic p21(CIP1/WAF1) retention, ERK1/2 activation, cytoskeleton remodeling and the acquisition of a senescence-like phenotype in lung cells. These alterations could have mechanistic implications regarding the carcinogenic potential of PM10. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  9. Disruption of the RP-MDM2-p53 pathway accelerates APC loss-induced colorectal tumorigenesis.

    PubMed

    Liu, S; Tackmann, N R; Yang, J; Zhang, Y

    2017-03-01

    Inactivation of the adenomatous polyposis coli (APC) tumor suppressor is frequently found in colorectal cancer. Loss of APC function results in deregulation of the Wnt/β-catenin signaling pathway causing overexpression of the c-MYC oncogene. In lymphoma, both p19ARF and ribosomal proteins RPL11 and RPL5 respond to c-MYC activation to induce p53. Their role in c-MYC-driven colorectal carcinogenesis is unclear, as p19ARF deletion does not accelerate APC loss-triggered intestinal tumorigenesis. To determine the contribution of the ribosomal protein (RP)-murine double minute 2 (MDM2)-p53 pathway to APC loss-induced tumorigenesis, we crossed mice bearing MDM2 C305F mutation, which disrupts RPL11- and RPL5-MDM2 binding, with Apc min/+ mice, which are prone to intestinal tumor formation. Interestingly, loss of RP-MDM2 binding significantly accelerated colorectal tumor formation while having no discernable effect on small intestinal tumor formation. Mechanistically, APC loss leads to overexpression of c-MYC, RPL11 and RPL5 in mouse colonic tumor cells irrespective of MDM2 C305F mutation. However, notable p53 stabilization and activation were observed only in Apc min/+ ;Mdm2 +/+ but not Apc min/+ ;Mdm2 C305F/C305F colon tumors. These data establish that the RP-MDM2-p53 pathway, in contrast to the p19ARF-MDM2-p53 pathway, is a critical mediator of colorectal tumorigenesis following APC loss.

  10. RhoA influences the nuclear localization of extracellular signal-regulated kinases to modulate p21Waf/Cip1 expression.

    PubMed

    Zuckerbraun, Brian S; Shapiro, Richard A; Billiar, Timothy R; Tzeng, Edith

    2003-08-19

    The 42/44-kD mitogen-activated protein kinases (extracellular signal-regulated kinases, ERKs) regulate smooth muscle cell (SMC) cell-cycle progression and can either promote or inhibit proliferation depending on the activation status of the small GTPase RhoA. RhoA is involved in the regulation of the actin cytoskeleton and converges on multiple signaling pathways. However, the mechanism by which RhoA modulates ERK signaling is not well defined. The purpose of this investigation was to examine whether RhoA regulates ERK downstream signaling and cellular proliferation through its effects on the cytoskeleton and the nuclear localization of ERK. Treatment of SMCs with Clostridia botulinum C3 exoenzyme, which inhibits RhoA activation, decreased SMC proliferation to 24+/-7% of that of controls and increased p21Waf1/Cip1 transcription and protein levels. These effects of RhoA were reversed by inhibition of ERK phosphorylation. However, inactivation of RhoA did not alter levels of ERK phosphorylation but did increase nuclear localization of phosphorylated ERK. In addition, immunostaining demonstrated that phosphorylated ERK associated with the actin cytoskeleton, which was disrupted by C3 exoenzyme. Leptomycin B, an inhibitor of Crm1 that results in ERK nuclear accumulation, similarly increased p21Waf1/Cip1. RhoA inhibition increased levels of phosphorylated ERK in the cell nucleus. Inhibition of RhoA or pharmacological inhibition of nuclear export resulted in increased p21Waf1/Cip1 expression and decreased SMC proliferation, effects that were partially dependent on ERK. RhoA regulation of the actin cytoskeleton may determine ERK subcellular localization and its subsequent effects on SMC proliferation.

  11. MDM2-MDM4 molecular interaction investigated by atomic force spectroscopy and surface plasmon resonance.

    PubMed

    Moscetti, Ilaria; Teveroni, Emanuela; Moretti, Fabiola; Bizzarri, Anna Rita; Cannistraro, Salvatore

    Murine double minute 2 (MDM2) and 4 (MDM4) are known as the main negative regulators of p53, a tumor suppressor. They are able to form heterodimers that are much more effective in the downregulation of p53. Therefore, the MDM2-MDM4 complex could be a target for promising therapeutic restoration of p53 function. To this aim, a deeper understanding of the molecular mechanisms underlining the heterodimerization is needed. The kinetic and thermodynamic characterization of the MDM2-MDM4 complex was performed with two complementary approaches: atomic force spectroscopy and surface plasmon resonance. Both techniques revealed an equilibrium dissociation constant (KD ) in the micromolar range for the MDM2-MDM4 heterodimer, similar to related complexes involved in the p53 network. Furthermore, the MDM2-MDM4 complex is characterized by a relatively high free energy, through a single energy barrier, and by a lifetime in the order of tens of seconds. New insights into the MDM2-MDM4 interaction could be highly important for developing innovative anticancer drugs focused on p53 reactivation.

  12. Prospective virtual screening for novel p53-MDM2 inhibitors using ultrafast shape recognition

    NASA Astrophysics Data System (ADS)

    Patil, Sachin P.; Ballester, Pedro J.; Kerezsi, Cassidy R.

    2014-02-01

    The p53 protein, known as the guardian of genome, is mutated or deleted in approximately 50 % of human tumors. In the rest of the cancers, p53 is expressed in its wild-type form, but its function is inhibited by direct binding with the murine double minute 2 (MDM2) protein. Therefore, inhibition of the p53-MDM2 interaction, leading to the activation of tumor suppressor p53 protein presents a fundamentally novel therapeutic strategy against several types of cancers. The present study utilized ultrafast shape recognition (USR), a virtual screening technique based on ligand-receptor 3D shape complementarity, to screen DrugBank database for novel p53-MDM2 inhibitors. Specifically, using 3D shape of one of the most potent crystal ligands of MDM2, MI-63, as the query molecule, six compounds were identified as potential p53-MDM2 inhibitors. These six USR hits were then subjected to molecular modeling investigations through flexible receptor docking followed by comparative binding energy analysis. These studies suggested a potential role of the USR-selected molecules as p53-MDM2 inhibitors. This was further supported by experimental tests showing that the treatment of human colon tumor cells with the top USR hit, telmisartan, led to a dose-dependent cell growth inhibition in a p53-dependent manner. It is noteworthy that telmisartan has a long history of safe human use as an approved anti-hypertension drug and thus may present an immediate clinical potential as a cancer therapeutic. Furthermore, it could also serve as a structurally-novel lead molecule for the development of more potent, small-molecule p53-MDM2 inhibitors against variety of cancers. Importantly, the present study demonstrates that the adopted USR-based virtual screening protocol is a useful tool for hit identification in the domain of small molecule p53-MDM2 inhibitors.

  13. Increased expression of p53 and p21 (Waf1/Cip1) in the lesional skin of bleomycin-induced scleroderma.

    PubMed

    Yamamoto, Toshiyuki; Nishioka, Kiyoshi

    2005-05-01

    Systemic sclerosis (SSc) is a connective tissue disorder characterized by excessive deposition of extracellular matrix in the affected skin as well as various internal organs, vascular injury and immune abnormality; however, the etiology of SSc remains still unknown. We previously established an experimental mouse model for scleroderma by repeated local injections of bleomycin, a DNA damaging agent. In this study, we examined the induction of apoptosis and the expression of p53, p21 (Waf1/Cip1), and proliferating cell nuclear antigen (PCNA) in the lesional skin following bleomycin exposure in this model. Dermal sclerosis was induced by alternate day's injections of bleomycin for 4 weeks. TUNEL assay showed that apoptotic cells began to appear at 1 week after bleomycin exposure, and were prominently detected at 3-4 weeks. Immunohistochemical examination showed increased expression of p53 and p21 mainly in the infiltrating mononuclear cells at 2 weeks after bleomycin treatment. Bleomycin treatment markedly enhanced PCNA expression at 1-2 weeks, mainly in mesenchyme, as compared with control phosphate buffered saline treatment. Reverse transcriptase-polymerase chain reaction analysis showed that the expression of p53 and p21 mRNA was concurrently upregulated at 1-2 weeks after bleomycin treatment. Taken together, coordinate increased levels of p53 and p21 preceded the maximal induction of apoptosis and dermal sclerosis. Our findings suggest that apoptotic processes are involved in the pathophysiology of bleomycin-induced scleroderma, which may be mediated, in part, by the upregulation of p53 and p21.

  14. TRIM25 has a dual function in the p53/Mdm2 circuit.

    PubMed

    Zhang, P; Elabd, S; Hammer, S; Solozobova, V; Yan, H; Bartel, F; Inoue, S; Henrich, T; Wittbrodt, J; Loosli, F; Davidson, G; Blattner, C

    2015-11-12

    P53 is an important tumor suppressor that, upon activation, induces growth arrest and cell death. Control of p53 is thus of prime importance for proliferating cells, but also for cancer therapy, where p53 activity contributes to the eradication of tumors. Mdm2 functionally inhibits p53 and targets the tumor suppressor protein for degradation. In a genetic screen, we identified TRIM25 as a novel regulator of p53 and Mdm2. TRIM25 increased p53 and Mdm2 abundance by inhibiting their ubiquitination and degradation in 26 S proteasomes. TRIM25 co-precipitated with p53 and Mdm2 and interfered with the association of p300 and Mdm2, a critical step for p53 polyubiquitination. Despite the increase in p53 levels, p53 activity was inhibited in the presence of TRIM25. Downregulation of TRIM25 resulted in an increased acetylation of p53 and p53-dependent cell death in HCT116 cells. Upon genotoxic insults, TRIM25 dampened the p53-dependent DNA damage response. The downregulation of TRIM25 furthermore resulted in massive apoptosis during early embryogenesis of medaka, which was rescued by the concomitant downregulation of p53, demonstrating the functional relevance of the regulation of p53 by TRIM25 in an organismal context.

  15. Subcellular targeting of p33ING1b by phosphorylation-dependent 14-3-3 binding regulates p21WAF1 expression.

    PubMed

    Gong, Wei; Russell, Michael; Suzuki, Keiko; Riabowol, Karl

    2006-04-01

    ING1 is a type II tumor suppressor that affects cell growth, stress signaling, apoptosis, and DNA repair by altering chromatin structure and regulating transcription. Decreased ING1 expression is seen in several human cancers, and mislocalization has been noted in diverse types of cancer cells. Aberrant targeting may, therefore, functionally inactivate ING1. Bioinformatics analysis identified a sequence between the nuclear localization sequence and plant homeodomain domains of ING1 that closely matched the binding motif of 14-3-3 proteins that target cargo proteins to specific subcellular locales. We find that the widely expressed p33(ING1b) splicing isoform of ING1 interacts with members of the 14-3-3 family of proteins and that this interaction is regulated by the phosphorylation status of ING1. 14-3-3 binding resulted in significant amounts of p33(ING1b) protein being tethered in the cytoplasm. As shown previously, ectopic expression of p33(ING1b) increased levels of the p21(Waf1) cyclin-dependent kinase inhibitor upon UV-induced DNA damage. Overexpression of 14-3-3 inhibited the up-regulation of p21(Waf1) by p33(ING1b), consistent with the idea that mislocalization blocks at least one of ING1's biological activities. These data support the idea that the 14-3-3 proteins play a crucial role in regulating the activity of p33(ING1b) by directing its subcellular localization.

  16. MDM2 Associates with Polycomb Repressor Complex 2 and Enhances Stemness-Promoting Chromatin Modifications Independent of p53.

    PubMed

    Wienken, Magdalena; Dickmanns, Antje; Nemajerova, Alice; Kramer, Daniela; Najafova, Zeynab; Weiss, Miriam; Karpiuk, Oleksandra; Kassem, Moustapha; Zhang, Yanping; Lozano, Guillermina; Johnsen, Steven A; Moll, Ute M; Zhang, Xin; Dobbelstein, Matthias

    2016-01-07

    The MDM2 oncoprotein ubiquitinates and antagonizes p53 but may also carry out p53-independent functions. Here we report that MDM2 is required for the efficient generation of induced pluripotent stem cells (iPSCs) from murine embryonic fibroblasts, in the absence of p53. Similarly, MDM2 depletion in the context of p53 deficiency also promoted the differentiation of human mesenchymal stem cells and diminished clonogenic survival of cancer cells. Most of the MDM2-controlled genes also responded to the inactivation of the Polycomb Repressor Complex 2 (PRC2) and its catalytic component EZH2. MDM2 physically associated with EZH2 on chromatin, enhancing the trimethylation of histone 3 at lysine 27 and the ubiquitination of histone 2A at lysine 119 (H2AK119) at its target genes. Removing MDM2 simultaneously with the H2AK119 E3 ligase Ring1B/RNF2 further induced these genes and synthetically arrested cell proliferation. In conclusion, MDM2 supports the Polycomb-mediated repression of lineage-specific genes, independent of p53. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Molecular dynamics simulations studies and free energy analysis on inhibitors of MDM2-p53 interaction.

    PubMed

    Niu, Rui-Juan; Zheng, Qing-Chuan; Zhang, Ji-Long; Zhang, Hong-Xing

    2013-11-01

    The oncoprotein MDM2 (murine double minute 2) negatively regulates the activity and stability of tumor suppressor p53. Inactivation of the MDM2-p53 interaction by potent inhibitors offers new possibilities for anticancer therapy. Molecular dynamics (MD) simulations were performed on three inhibitors-MDM2 complexes to investigate the stability and structural transitions. Simulations show that the backbone of MDM2 maintains stable during the whole time. However, slightly structural changes of inhibitors and MDM2 are observed. Furthermore, the molecular mechanics generalized Born surface area (MM-GBSA) approach was introduced to analyze the interactions between inhibitors and MDM2. The results show that binding of inhibitor pDIQ to MDM2 is significantly stronger than that of pMI and pDI to MDM2. The side chains of residues have more contribution than backbone of residues in energy decomposition. The structure-affinity analyses show that L54, I61, M62, Y67, Q72, H73 and V93 produce important interaction energy with inhibitors. The residue W/Y22' is also very important to the interaction between the inhibitors and MDM2. The three-dimensional structures at different times indicate that the mobility of Y100 influences on the binding of inhibitors to MDM2, and its change has important role in conformations of inhibitors and MDM2. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Mucin1 shifts Smad3 signaling from the tumor-suppressive pSmad3C/p21(WAF1) pathway to the oncogenic pSmad3L/c-Myc pathway by activating JNK in human hepatocellular carcinoma cells.

    PubMed

    Li, Qiongshu; Liu, Guomu; Yuan, Hongyan; Wang, Juan; Guo, Yingying; Chen, Tanxiu; Zhai, Ruiping; Shao, Dan; Ni, Weihua; Tai, Guixiang

    2015-02-28

    Mucin1 (MUC1) is a transmembrane glycoprotein that acts as an oncogene in human hepatic tumorigenesis. Hepatocellular carcinoma (HCC) cells often gain advantage by reducing the tumor-suppressive activity of transforming growth factor beta (TGF-β) together with stimulation of its oncogenic activity as in MUC1 expressing HCC cells; however, molecular mechanisms remain largely unknown. Type I TGF-β receptor (TβRI) and c-Jun NH2-terminal kinase (JNK) differentially phosphorylate Smad3 mediator to create 2 phosphorylated forms: COOH-terminally phosphorylated Smad3 (pSmad3C) and linker-phosphorylated Smad3 (pSmad3L). Here, we report that MUC1 overexpression in HCC cell lines suppresses TβRI-mediated pSmad3C signaling which involves growth inhibition by up-regulating p21(WAF1). Instead, MUC1 directly activates JNK to stimulate oncogenic pSmad3L signaling, which fosters cell proliferation by up-regulating c-Myc. Conversely, MUC1 gene silencing in MUC1 expressing HCC cells results in preserved tumor-suppressive function via pSmad3C, while eliminating pSmad3L-mediated oncogenic activity both in vitro and in vivo. In addition, high correlation between MUC1 and pSmad3L/c-Myc but not pSmad3C/p21(WAF1) expression was observed in HCC tissues from patients. Collectively, these results indicate that MUC1 shifts Smad3 signaling from a tumor-suppressive pSmad3C/p21(WAF1) to an oncogenic pSmad3L/c-Myc pathway by directly activating JNK in HCC cells, suggesting that MUC1 is an important target for HCC therapy.

  19. A novel small molecule inhibitor of MDM2-p53 (APG-115) enhances radiosensitivity of gastric adenocarcinoma.

    PubMed

    Yi, Hanjie; Yan, Xianglei; Luo, Qiuyun; Yuan, Luping; Li, Baoxia; Pan, Wentao; Zhang, Lin; Chen, Haibo; Wang, Jing; Zhang, Yubin; Zhai, Yifan; Qiu, Miao-Zhen; Yang, Da-Jun

    2018-05-02

    Gastric cancer is the leading cause of cancer related death worldwide. Radiation alone or combined with chemotherapy plays important role in locally advanced and metastatic gastric adenocarcinoma. MDM2-p53 interaction and downstream signaling affect cellular response to DNA damage which leads to cell cycle arrest and apoptosis. Therefore, restoring p53 function by inhibiting its interaction with MDM2 is a promising therapeutic strategy for cancer. APG-115 is a novel small molecule inhibitor which blocks the interaction of MDM2 and p53. In this study, we investigated that the radiosensitivity of APG-115 in gastric adenocarcinoma in vitro and in vivo. The role of APG-115 in six gastric cancer cells viability in vitro was determined by CCK-8 assay. The expression level of MDM2, p21, PUMA and BAX in AGS and MKN45 cell lines was measured via real-time PCR (RT-PCR). The function of treatment groups on cell cycle and cell apoptosis were detected through Flow Cytometry assay. Clonogenic assays were used to measure the radiosensitivity of APG-115 in p53 wild type gastric cancer cell lines. Western blot was conducted to detect the protein expressions of mdm2-p53 signal pathway. Xenograft models in nude mice were established to explore the radiosensitivity role of APG-115 in gastric cancer cells in vivo. We found that radiosensitization by APG-115 occurred in p53 wild-type gastric cancer cells. Increasing apoptosis and cell cycle arrest was observed after administration of APG-115 and radiation. Radiosensitivity of APG-115 was mainly dependent on MDM2-p53 signal pathway. In vivo, APG-115 combined with radiation decreased xenograft tumor growth much more significantly than either single treatment. Moreover, the number of proliferating cells (Ki-67) significantly decreased in combination group compared with single treatment group. In summary, we found that combination of MDM2-p53 inhibitor (APG-115) and radiotherapy can enhance antitumor effect both in vitro and in vivo. This

  20. Therapeutic inhibition of the MDM2-p53 interaction prevents recurrence of adenoid cystic carcinomas

    PubMed Central

    Nör, Felipe; Warner, Kristy A.; Zhang, Zhaocheng; Acasigua, Gerson A.; Pearson, Alexander T.; Kerk, Samuel A.; Helman, Joseph; Filho, Manoel Sant’Ana; Wang, Shaomeng; Nör, Jacques E.

    2016-01-01

    Purpose Conventional chemotherapy has modest efficacy in advanced adenoid cystic carcinomas (ACC). Tumor recurrence is a major challenge in the management of ACC patients. Here, we evaluated the anti-tumor effect of a novel small molecule inhibitor of the MDM2-p53 interaction (MI-773) combined with Cisplatin in patient-derived xenograft (PDX) ACC tumors. Experimental design Therapeutic strategies with MI-773 and/or Cisplatin were evaluated in SCID mice harboring PDX ACC tumors (UM-PDX-HACC-5) and in low passage primary human ACC cells (UM-HACC-2A, -2B, -5, -6) in vitro. The effect of therapy on the fraction of cancer stem cells was determined by flow cytometry for ALDH activity and CD44 expression. Results Combined therapy with MI-773 with Cisplatin caused p53 activation, induction of apoptosis, and regression of ACC PDX tumors. Western blots revealed induction of MDM2, p53 and downstream p21 expression, and regulation of apoptosis-related proteins PUMA, BAX, Bcl-2, Bcl-xL and active Caspase-9 upon MI-773 treatment. Both, single-agent MI-773, and MI-773 combined with Cisplatin, decreased the fraction of cancer stem cells in PDX ACC tumors. Notably, neoadjuvant MI-773 and surgery eliminated tumor recurrences during a post-surgical follow-up of more than 300 days. In contrast, 62.5% of mice that received vehicle control presented with palpable tumor recurrences within this time period (p=0.0097). Conclusions Collectively, these data demonstrate that therapeutic inhibition of MDM2-p53 interaction by MI-773 decreased the cancer stem cell fraction, sensitized ACC xenograft tumors to Cisplatin, and eliminated tumor recurrence. These results suggest that patients with ACC might benefit from the therapeutic inhibition of the MDM2-p53 interaction. PMID:27550999

  1. MDM2MDM4 molecular interaction investigated by atomic force spectroscopy and surface plasmon resonance

    PubMed Central

    Moscetti, Ilaria; Teveroni, Emanuela; Moretti, Fabiola; Bizzarri, Anna Rita; Cannistraro, Salvatore

    2016-01-01

    Murine double minute 2 (MDM2) and 4 (MDM4) are known as the main negative regulators of p53, a tumor suppressor. They are able to form heterodimers that are much more effective in the downregulation of p53. Therefore, the MDM2MDM4 complex could be a target for promising therapeutic restoration of p53 function. To this aim, a deeper understanding of the molecular mechanisms underlining the heterodimerization is needed. The kinetic and thermodynamic characterization of the MDM2MDM4 complex was performed with two complementary approaches: atomic force spectroscopy and surface plasmon resonance. Both techniques revealed an equilibrium dissociation constant (KD) in the micromolar range for the MDM2MDM4 heterodimer, similar to related complexes involved in the p53 network. Furthermore, the MDM2MDM4 complex is characterized by a relatively high free energy, through a single energy barrier, and by a lifetime in the order of tens of seconds. New insights into the MDM2MDM4 interaction could be highly important for developing innovative anticancer drugs focused on p53 reactivation. PMID:27621617

  2. Small-molecule MDM2 antagonists reveal aberrant p53 signaling in cancer: Implications for therapy

    PubMed Central

    Tovar, Christian; Rosinski, James; Filipovic, Zoran; Higgins, Brian; Kolinsky, Kenneth; Hilton, Holly; Zhao, Xiaolan; Vu, Binh T.; Qing, Weiguo; Packman, Kathryn; Myklebost, Ola; Heimbrook, David C.; Vassilev, Lyubomir T.

    2006-01-01

    The p53 tumor suppressor retains its wild-type conformation and transcriptional activity in half of all human tumors, and its activation may offer a therapeutic benefit. However, p53 function could be compromised by defective signaling in the p53 pathway. Using a small-molecule MDM2 antagonist, nutlin-3, to probe downstream p53 signaling we find that the cell-cycle arrest function of the p53 pathway is preserved in multiple tumor-derived cell lines expressing wild-type p53, but many have a reduced ability to undergo p53-dependent apoptosis. Gene array analysis revealed attenuated expression of multiple apoptosis-related genes. Cancer cells with mdm2 gene amplification were most sensitive to nutlin-3 in vitro and in vivo, suggesting that MDM2 overexpression may be the only abnormality in the p53 pathway of these cells. Nutlin-3 also showed good efficacy against tumors with normal MDM2 expression, suggesting that many of the patients with wild-type p53 tumors may benefit from antagonists of the p53–MDM2 interaction. PMID:16443686

  3. Induction of differentiation in human promyelocytic HL-60 leukemia cells activates p21, WAF1/CIP1, expression in the absence of p53.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, H.; Lin, J.; Su, Z.-Z.

    The melanoma differentiation associated gene, mda-6, which is identical to the P53-inducible gene WAF1/CIP1, encodes an M(r) 21,000 protein (p21) that can directly inhibit cell growth by repressing cyclin dependent kinases. mda-6 was identified using subtraction hybridization by virtue of its enhanced expression in human melanoma cells induced to terminally differentiate by treatment with human fibroblast interferon and the anti-leukemic compound mezerein (Jiang and Fisher, 1993). In the present study, we demonstrate that mda-6 (WAF1/CIP1) is an immediate early response gene induced during differentiation of the promyelocytic HL-60 leukemia cell line along the granulocytic or macrophage/monocyte pathway. mda-6 gene expressionmore » in HL-60 cells is induced within 1 to 3 h during differentiation along the macrophage/monocyte pathway evoked by 12-0-tetradecanoyl phorbol-13-acetate (TPA) or 1,25-dihydroxyvitamin D3 (Vit D3) or the granulocytic pathway produced by retinoic acid (RA) or dimethylsulfoxide (DMSO). Immunoprecipitation analyses using an anti-p21 antibody indicate a temporal induction of p21 protein following treatment with TPA, DMSO or RA. A relationship between rapid induction of mda-6 gene expression and differentiation is indicated by a delay in this expression in an HL-60 cell variant resistant to TPA-induced growth arrest and differentiation. A similar delay in mda-6 gene expression is not observed in Vit D3 treated TPA-resistant variant cells that are also sensitive to induction of monocytic differentiation. Since HL-60 cells have a null-p53 phenotype, these results demonstrate that p21 induction occurs during initiation of terminal differentiation in a p53-independent manner. In this context, p21 may play a more global role in growth control and differentiation than originally envisioned.« less

  4. Smad Ubiquitylation Regulatory Factor 1/2 (Smurf1/2) Promotes p53 Degradation by Stabilizing the E3 Ligase MDM2*

    PubMed Central

    Nie, Jing; Xie, Ping; Liu, Lin; Xing, Guichun; Chang, Zhijie; Yin, Yuxin; Tian, Chunyan; He, Fuchu; Zhang, Lingqiang

    2010-01-01

    The tumor suppressor p53 protein is tightly regulated by a ubiquitin-proteasomal degradation mechanism. Several E3 ubiquitin ligases, including MDM2 (mouse double minute 2), have been reported to play an essential role in the regulation of p53 stability. However, it remains unclear how the activity of these E3 ligases is regulated. Here, we show that the HECT-type E3 ligase Smurf1/2 (Smad ubiquitylation regulatory factor 1/2) promotes p53 degradation by enhancing the activity of the E3 ligase MDM2. We provide evidence that the role of Smurf1/2 on the p53 stability is not dependent on the E3 activity of Smurf1/2 but rather is dependent on the activity of MDM2. We find that Smurf1/2 stabilizes MDM2 by enhancing the heterodimerization of MDM2 with MDMX, during which Smurf1/2 interacts with MDM2 and MDMX. We finally provide evidence that Smurf1/2 regulates apoptosis through p53. To our knowledge, this is the first report to demonstrate that Smurf1/2 functions as a factor to stabilize MDM2 protein rather than as a direct E3 ligase in regulation of p53 degradation. PMID:20484049

  5. MDM2 is an important prognostic and predictive factor for platin-pemetrexed therapy in malignant pleural mesotheliomas and deregulation of P14/ARF (encoded by CDKN2A) seems to contribute to an MDM2-driven inactivation of P53.

    PubMed

    Walter, R F H; Mairinger, F D; Ting, S; Vollbrecht, C; Mairinger, T; Theegarten, D; Christoph, D C; Schmid, K W; Wohlschlaeger, J

    2015-03-03

    Malignant pleural mesothelioma (MPM) is a highly aggressive tumour that is first-line treated with a combination of cisplatin and pemetrexed. Until now, predictive and prognostic biomarkers are lacking, making it a non-tailored therapy regimen with unknown outcome. P53 is frequently inactivated in MPM, but mutations are extremely rare. MDM2 and P14/ARF are upstream regulators of P53 that may contribute to P53 inactivation. A total of 72 MPM patients were investigated. MDM2 immunoexpression was assessed in 65 patients. MDM2 and P14/ARF mRNA expression was analysed in 48 patients of the overall collective. The expression results were correlated to overall survival (OS) and progression-free survival (PFS). OS and PFS correlated highly significantly with MDM2 mRNA and protein expression, showing a dismal prognosis for patients with elevated MDM2 expression (for OS: Score (logrank) test: P⩽0.002, and for PFS: Score (logrank) test; P<0.007). MDM2 was identified as robust prognostic and predictive biomarker for MPM on the mRNA and protein level. P14/ARF mRNA expression reached no statistical significance, but Kaplan-Meier curves distinguished patients with low P14/ARF expression and hence shorter survival from patients with higher expression and prolonged survival. MDM2 is a prognostic and predictive marker for a platin-pemetrexed therapy of patients with MPMs. Downregulation of P14/ARF expression seems to contribute to MDM2-overexpression-mediated P53 inactivation in MPM patients.

  6. IL-1-induced ERK1/2 activation up-regulates p21{sup Waf1/Cip1} protein by inhibition of degradation via ubiquitin-independent pathway in human melanoma cells A375

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arakawa, Tomohiro; Hayashi, Hidetoshi; Itoh, Saotomo

    2010-02-12

    IL-1 inhibits the proliferation of human melanoma cells A375 by arresting the cell cycle at G0/G1 phase, which accompanies the increase of p21{sup Waf1/Cip1} (p21) protein. Here, we demonstrate that IL-1 induces the stabilization of p21 protein via ERK1/2 pathway. The degradation of p21 was inhibited by IL-1, however the ubiquitination level of p21 was not affected. In addition, the degradation of non-ubiquitinated form of lysine less mutant p21-K6R was also inhibited by IL-1, suggesting that IL-1 stabilized p21 protein via ubiquitin-independent pathway. Furthermore, the inhibition of p21 protein degradation was prevented by a selective inhibitor of ERK1/2 pathway, PD98059.more » These results suggest that IL-1-induced ERK1/2 activation leads to the up-regulation of p21 by inhibiting degradation via ubiquitin-independent pathway in human melanoma cells A375.« less

  7. Experimental Therapy of Advanced Breast Cancer: Targeting NFAT1-MDM2-p53 Pathway.

    PubMed

    Qin, Jiang-Jiang; Wang, Wei; Zhang, Ruiwen

    2017-01-01

    Advanced breast cancer, especially advanced triple-negative breast cancer, is typically more aggressive and more difficult to treat than other breast cancer phenotypes. There is currently no curable option for breast cancer patients with advanced diseases, highlighting the urgent need for novel treatment strategies. We have recently discovered that the nuclear factor of activated T cells 1 (NFAT1) activates the murine double minute 2 (MDM2) oncogene. Both MDM2 and NFAT1 are overexpressed and constitutively activated in breast cancer, particularly in advanced breast cancer, and contribute to its initiation, progression, and metastasis. MDM2 regulates cancer cell proliferation, cell cycle progression, apoptosis, migration, and invasion through both p53-dependent and -independent mechanisms. We have proposed to target the NFAT1-MDM2-p53 pathway for the treatment of human cancers, especially breast cancer. We have recently identified NFAT1 and MDM2 dual inhibitors that have shown excellent in vitro and in vivo activities against breast cancer, including triple-negative breast cancer. Herein, we summarize recent advances made in the understanding of the oncogenic functions of MDM2 and NFAT1 in breast cancer, as well as current targeting strategies and representative inhibitors. We also propose several strategies for inhibiting the NFAT1-MDM2-p53 pathway, which could be useful for developing more specific and effective inhibitors for breast cancer therapy. Copyright © 2017. Published by Elsevier Inc.

  8. Human Oncoprotein MDM2 Up-regulates Expression of NF-κB2 Precursor p100 Conferring a Survival Advantage to Lung Cells

    PubMed Central

    Vaughan, Catherine; Mohanraj, Lathika; Singh, Shilpa; Dumur, Catherine I.; Ramamoorthy, Mahesh; Garrett, Carleton T.; Windle, Brad; Yeudall, W. Andrew; Deb, Sumitra

    2011-01-01

    The current model predicts that MDM2 is primarily overexpressed in cancers with wild-type (WT) p53 and contributes to oncogenesis by degrading p53. Following a correlated expression of MDM2 and NF-κB2 transcripts in human lung tumors, we have identified a novel transactivation function of MDM2. Here, we report that in human lung tumors, overexpression of MDM2 was found in approximately 30% of cases irrespective of their p53 status, and expression of MDM2 and NF-κB2 transcripts showed a highly significant statistical correlation in tumors with WT p53. We investigated the significance of this correlated expression in terms of mechanism and biological function. Increase in MDM2 expression from its own promoter in transgenic mice remarkably enhanced expression of NF-κB2 compared with its non-transgenic littermates. Knockdown or elimination of endogenous MDM2 expression in cultured non-transformed or lung tumor cells drastically reduced expression of NF-κB2 transcripts, suggesting a normal physiological role of MDM2 in regulating NF-κB2 transcription. MDM2 could up-regulate expression of NF-κB2 transcripts when its p53-interaction domain was blocked with Nutlin-3, indicating that the MDM2-p53 interaction is dispensable for up-regulation of NF-κB2 expression. Consistently, analysis of functional domains of MDM2 indicated that although the p53-interaction domain of MDM2 contributes to the up-regulation of the NFκB2 promoter, MDM2 does not require direct interactions with p53 for this function. Accordingly, MDM2 overexpression in non-transformed or lung cancer cells devoid of p53 also generated a significant increase in the expression of NF-κB2 transcript and its targets CXCL-1 and CXCL-10, whereas elimination of MDM2 expression had the opposite effects. MDM2-mediated increase in p100/NF-κB2 expression reduced cell death mediated by paclitaxel. Furthermore, knockdown of NF-κB2 expression retarded cell proliferation. Based on these data, we propose that MDM2

  9. Ensemble-based virtual screening reveals dual-inhibitors for the p53-MDM2/MDMX interactions.

    PubMed

    Barakat, Khaled; Mane, Jonathan; Friesen, Douglas; Tuszynski, Jack

    2010-02-26

    The p53 protein, a guardian of the genome, is inactivated by mutations or deletions in approximately half of human tumors. While in the rest of human tumors, p53 is expressed in wild-type form, yet it is inhibited by over-expression of its cellular regulators MDM2 and MDMX proteins. Although the p53-binding sites within the MDMX and MDM2 proteins are closely related, known MDM2 small-molecule inhibitors have been shown experimentally not to bind to its homolog, MDMX. As a result, the activity of these inhibitors including Nutlin3 is compromised in tumor cells over-expressing MDMX, preventing these compounds from fully activating the p53 protein. Here, we applied the relaxed complex scheme (RCS) to allow for the full receptor flexibility in screening for dual-inhibitors that can mutually antagonize the two p53-regulator proteins. First, we filtered the NCI diversity set, DrugBank compounds and a derivative library for MDM2-inhibitors against 28 dominant MDM2-conformations. Then, we screened the MDM2 top hits against the binding site of p53 within the MDMX target. Results described herein identify a set of compounds that have been computationally predicted to ultimately activate the p53 pathway in tumor cells retaining the wild-type protein. Crown Copyright 2009. Published by Elsevier Inc. All rights reserved.

  10. Sensitive and simultaneous surface plasmon resonance detection of free and p53-bound MDM2 proteins from human sarcomas.

    PubMed

    Wu, Ling; Tang, Hailin; Hu, Shengqiang; Xia, Yonghong; Lu, Zhixuan; Fan, Yujuan; Wang, Zixiao; Yi, Xinyao; Zhou, Feimeng; Wang, Jianxiu

    2018-04-30

    Murine double minute 2 (MDM2) is an oncoprotein mediating the degradation of the tumor suppressor p53 protein. The physiological levels of MDM2 protein are closely related to malignant transformation and tumor growth. In this work, the simultaneous and label-free determination of free and p53-bound MDM2 proteins from sarcoma tissue extracts was conducted using a dual-channel surface plasmon resonance (SPR) instrument. Free MDM2 protein was measured in one fluidic channel covered with the consensus double-stranded (ds)-DNA/p53 conjugate, while MDM2 bound to p53 was captured by the consensus ds-DNA immobilized onto the other channel. To achieve higher sensitivity and to confirm specificity, an MDM2-specific monoclonal antibody (2A10) was used to recognize both the free and p53-bound MDM2 proteins. The resultant method afforded a detection limit of 0.55 pM of MDM2. The amenability of the method to the analysis of free and p53-bound MDM2 proteins was demonstrated for normal and sarcoma tissue extracts from three patients. Our data reveal that both free and total MDM2 (free and bound forms combined) proteins from sarcoma tissue extracts are of much higher concentrations than those from normal tissue extracts and the p53-bound MDM2 protein only constitutes a small fraction of the total MDM2 concentration. In comparison with enzyme-linked immunosorbent assay (ELISA), the proposed method possesses higher sensitivity, is more cost-effective, and is capable of determining free and p53-bound MDM2 proteins in clinical samples.

  11. Mdm2 overexpression and p14(ARF) inactivation are two mutually exclusive events in primary human lung tumors.

    PubMed

    Eymin, Béatrice; Gazzeri, Sylvie; Brambilla, Christian; Brambilla, Elisabeth

    2002-04-18

    Pathways involving p53 and pRb tumor suppressor genes are frequently deregulated during lung carcinogenesis. Through its location at the interface of these pathways, Mdm2 can modulate the function of both p53 and pRb genes. We have examined here the pattern of expression of Mdm2 in a series of 192 human lung carcinomas of all histological types using both immunohistochemical and Western blot analyses and four distinct antibodies mapping different epitopes onto the Mdm2 protein. Using Immunohistochemistry (IHC), Mdm2 was overexpressed as compared to normal lung in 31% (60 out of 192) of all tumors analysed, whatever their histological types. Western blotting was performed on 28 out of the 192 tumoral samples. Overexpression of p85/90, p74/76 and p57 Mdm2 isoforms was detected in 18% (5 out of 28), 25% (7 out of 28) and 39% (11 out of 28) of the cases respectively. Overall, overexpression of at least one isoform was observed in 14 out of 28 (50%) lung tumors and concomittant overexpression of at least two isoforms in 7 out of 28 (25%) cases. A good concordance (82%) was observed between immunohistochemical and Western blot data. Interestingly, a highly significant inverse relationship was detected between p14(ARF) loss and Mdm2 overexpression either in NSCLC (P=0.0089) or in NE lung tumors (P<0.0001). Furthermore, a Mdm2/p14(ARF) >1 ratio was correlated with a high grade phenotype among NE tumors overexpressing Mdm2 (P=0.0021). Taken together, these data strongly suggest that p14(ARF)and Mdm2 act on common pathway(s) to regulate p53 and/or pRb-dependent or independent functions and that the Mdm2 : p14(ARF) ratio might act as a rheostat in modulating the activity of both proteins.

  12. Targeting MDM2 for Treatment of Adenoid Cystic Carcinoma

    PubMed Central

    Warner, Kristy A.; Nör, Felipe; Acasigua, Gerson A.; Martins, Manoela D.; Zhang, Zhaocheng; McLean, Scott A.; Spector, Matthew E.; Chepeha, Douglas B.; Helman, Joseph; Wick, Michael J.; Moskaluk, Christopher A.; Castilho, Rogerio M.; Pearson, Alexander T.; Wang, Shaomeng; Nör, Jacques E.

    2016-01-01

    Purpose There are no effective treatment options for patients with advanced adenoid cystic carcinoma (ACC). Here, we evaluated the effect of a new small molecule inhibitor of the MDM2-p53 interaction (MI-773) in preclinical models of ACC. Experimental Design To evaluate the anti-tumor effect of MI-773, we administered it to mice harboring 3 different patient-derived xenograft (PDX) models of ACC expressing functional p53. The effect of MI-773 on MDM2, p53, phospho-p53 and p21 was examined by Western blots in 5 low passage primary human ACC cell lines and in MI-773-treated PDX tumors. Results Single agent MI-773 caused tumor regression in the 3 PDX models of ACC studied here. For example, we observed a tumor growth inhibition (TGI) index of 127% in UM-PDX-HACC-5 tumors that was associated with an increase in the fraction of apoptotic cells (p=0.015). The number of p53-positive cells was increased in MI-773-treated PDX tumors (p<0.001), with a correspondent shift in p53 localization from the nucleus to the cytoplasm. Western blots demonstrated that MI-773 potently induced expression of p53 and its downstream targets p21, MDM2 and induced phosphorylation of p53 (serine 392) in low passage primary human ACC cells. Notably, MI-773 induced a dose-dependent increase in the fraction of apoptotic ACC cells and in the fraction of cells in the G1 phase of cell cycle (p<0.05). Conclusions Collectively, these data demonstrate that therapeutic inhibition of the MDM2-p53 interaction with MI-773 activates downstream effectors of apoptosis and causes robust tumor regression in preclinical models of adenoid cystic carcinoma. PMID:26936915

  13. The p53–Mdm2 feedback loop protects against DNA damage by inhibiting p53 activity but is dispensable for p53 stability, development, and longevity

    PubMed Central

    Pant, Vinod; Xiong, Shunbin; Jackson, James G.; Post, Sean M.; Abbas, Hussein A.; Quintás-Cardama, Alfonso; Hamir, Amirali N.; Lozano, Guillermina

    2013-01-01

    The p53–Mdm2 feedback loop is perceived to be critical for regulating stress-induced p53 activity and levels. However, this has never been tested in vivo. Using a genetically engineered mouse with mutated p53 response elements in the Mdm2 P2 promoter, we show that feedback loop-deficient Mdm2P2/P2 mice are viable and aphenotypic and age normally. p53 degradation kinetics after DNA damage in radiosensitive tissues remains similar to wild-type controls. Nonetheless, DNA damage response is elevated in Mdm2P2/P2 mice. Enhanced p53-dependent apoptosis sensitizes hematopoietic stem cells (HSCs), causing drastic myeloablation and lethality. These results suggest that while basal Mdm2 levels are sufficient to regulate p53 in most tissues under homeostatic conditions, the p53–Mdm2 feedback loop is critical for regulating p53 activity and sustaining HSC function after DNA damage. Therefore, transient disruption of p53–Mdm2 interaction could be explored as a potential adjuvant/therapeutic strategy for targeting stem cells in hematological malignancies. PMID:23973961

  14. Inhibition of Mdm2 Sensitizes Human Retinal Pigment Epithelial Cells to Apoptosis

    PubMed Central

    Ray, Ramesh M.; Chaum, Edward; Johnson, Dianna A.; Johnson, Leonard R.

    2011-01-01

    Purpose. Because recent studies indicate that blocking the interaction between p53 and Mdm2 results in the nongenotoxic activation of p53, the authors sought to investigate whether the inhibition of p53-Mdm2 binding activates p53 and sensitizes human retinal epithelial cells to apoptosis. Methods. Apoptosis was evaluated by the activation of caspases and DNA fragmentation assays. The Mdm2 antagonist Nutlin-3 was used to dissociate p53 from Mdm2 and, thus, to increase p53 activity. Knockdown of p53 expression was accomplished by using p53 siRNA. Results. ARPE-19 and primary RPE cells expressed high levels of the antiapoptotic proteins Bcl-2 and Bcl-xL. Exposure of these cells to camptothecin (CPT) or TNF-α/ cycloheximide (CHX) failed to induce apoptosis. In contrast, treatment with the Mdm2 antagonist Nutlin-3 in the absence of CPT or TNF-α/CHX increased apoptosis. Activation of p53 in response to Nutlin-3 also increased levels of Noxa, p53-upregulated modulator of apoptosis (PUMA), and Siva-1, decreased expression of Bcl-2 and Bcl-xL, and simultaneously increased caspases-9 and -3 activities and DNA fragmentation. Knockdown of p53 decreased the basal expression of p21Cip1 and Bcl-2, inhibited the Nutlin-3–induced upregulation of Siva-1 and PUMA expression, and consequently inhibited caspase-3 activation. Conclusions. These results indicate that the normally available pool of intracellular p53 is predominantly engaged in the regulation of cell cycle checkpoints by p21Cip1 and does not trigger apoptosis in response to DNA-damaging agents. However, the blockage of p53 binding to Mdm2 frees a pool of p53 that is sufficient, even in the absence of DNA-damaging agents, to increase the expression of proapoptotic targets and to override the resistance of RPE cells to apoptosis. PMID:21345989

  15. Generation of oscillations by the p53-Mdm2 feedback loop: A theoretical and experimental study

    PubMed Central

    Lev Bar-Or, Ruth; Maya, Ruth; Segel, Lee A.; Alon, Uri; Levine, Arnold J.; Oren, Moshe

    2000-01-01

    The intracellular activity of the p53 tumor suppressor protein is regulated through a feedback loop involving its transcriptional target, mdm2. We present a simple mathematical model suggesting that, under certain circumstances, oscillations in p53 and Mdm2 protein levels can emerge in response to a stress signal. A delay in p53-dependent induction of Mdm2 is predicted to be required, albeit not sufficient, for this oscillatory behavior. In line with the predictions of the model, oscillations of both p53 and Mdm2 indeed occur on exposure of various cell types to ionizing radiation. Such oscillations may allow cells to repair their DNA without risking the irreversible consequences of continuous excessive p53 activation. PMID:11016968

  16. CGK733-induced LC3 II formation is positively associated with the expression of cyclin-dependent kinase inhibitor p21Waf1/Cip1 through modulation of the AMPK and PERK/CHOP signaling pathways.

    PubMed

    Wang, Yufeng; Kuramitsu, Yasuhiro; Baron, Byron; Kitagawa, Takao; Tokuda, Kazuhiro; Akada, Junko; Nakamura, Kazuyuki

    2015-11-24

    Microtubule-associated protein 1A/1B-light chain 3 (LC3)-II is essential for autophagosome formation and is widely used to monitor autophagic activity. We show that CGK733 induces LC3 II and LC3-puncta accumulation, which are not involved in the activation of autophagy. The treatment of CGK733 did not alter the autophagic flux and was unrelated to p62 degradation. Treatment with CGK733 activated the AMP-activated protein kinase (AMPK) and protein kinase RNA-like endoplasmic reticulum kinase/CCAAT-enhancer-binding protein homologous protein (PERK/CHOP) pathways and elevated the expression of p21Waf1/Cip1. Inhibition of both AMPK and PERK/CHOP pathways by siRNA or chemical inhibitor could block CGK733-induced p21Waf1/Cip1 expression as well as caspase-3 cleavage. Knockdown of LC3 B (but not LC3 A) abolished CGK733-triggered LC3 II accumulation and consequently diminished AMPK and PERK/CHOP activity as well as p21Waf1/Cip1 expression. Our results demonstrate that CGK733-triggered LC3 II formation is an initial event upstream of the AMPK and PERK/CHOP pathways, both of which control p21Waf1/Cip1 expression.

  17. Tight regulation of p53 activity by Mdm2 is required for ureteric bud growth and branching

    PubMed Central

    Hilliard, Sylvia; Aboudehen, Karam; Yao, Xiao; El-Dahr, Samir S.

    2011-01-01

    Mdm2 (Murine Double Minute-2) is required to control cellular p53 activity and protein levels. Mdm2 null embryos die of p53-mediated growth arrest and apoptosis at the peri-implantation stage. Thus, the absolute requirement for Mdm2 in organogenesis is unknown. This study examined the role of Mdm2 in kidney development, an organ which develops via epithelial-mesenchymal interactions and branching morphogenesis. Mdm2 mRNA and protein are expressed in the ureteric bud (UB) epithelium and metanephric mesenchyme (MM) lineages. We report here the results of conditional deletion of Mdm2 from the UB epithelium. UBmdm2−/− mice die soon after birth and uniformly display severe renal hypodysplasia due to defective UB branching and underdeveloped nephrogenic zone. Ex vivo cultured UBmdm2−/− explants exhibit arrested development of the UB and its branches and consequently develop few nephron progenitors. UBmdm2−/− cells have reduced proliferation rate and enhanced apoptosis. Although markedly reduced in number, the UB tips of UBmdm2−/− metanephroi continue to express c-ret and Wnt11; however, there was a notable reduction in Wnt9b, Lhx-1 and Pax-2 expression levels. We further show that the UBmdm2−/− mutant phenotype is mediated by aberrant p53 activity because it is rescued by UB-specific deletion of the p53 gene. These results demonstrate a critical and cell autonomous role for Mdm2 in the UB lineage. Mdm2-mediated inhibition of p53 activity is a prerequisite for renal organogenesis. PMID:21420949

  18. Expression screening using a Medaka cDNA library identifies evolutionarily conserved regulators of the p53/Mdm2 pathway.

    PubMed

    Zhang, Ping; Kratz, Anne Sophie; Salama, Mohammed; Elabd, Seham; Heinrich, Thorsten; Wittbrodt, Joachim; Blattner, Christine; Davidson, Gary

    2015-10-08

    The p53 tumor suppressor protein is mainly regulated by alterations in the half-life of the protein, resulting in significant differences in p53 protein levels in cells. The major regulator of this process is Mdm2, which ubiquitinates p53 and targets it for proteasomal degradation. This process can be enhanced or reduced by proteins that associate with p53 or Mdm2 and several proteins have been identified with such an activity. Furthermore, additional ubiquitin ligases for p53 have been identified in recent years. Nevertheless, our understanding of how p53 abundance and Mdm2 activity are regulated remains incomplete. Here we describe a cell culture based overexpression screen to identify evolutionarily conserved regulators of the p53/Mdm2 circuit. The results from this large-scale screening method will contribute to a better understanding of the regulation of these important proteins. Expression screening was based on co-transfection of H1299 cells with pools of cDNA's from a Medaka library together with p53, Mdm2 and, as internal control, Ror2. After cell lysis, SDS-PAGE/WB analysis was used to detect alterations in these proteins. More than one hundred hits that altered the abundance of either p53, Mdm2, or both were identified in the primary screen. Subscreening of the library pools that were identified in the primary screen identified several potential novel regulators of p53 and/or Mdm2. We also tested whether the human orthologues of the Medaka genes regulate p53 and/or Mdm2 abundance. All human orthologues regulated p53 and/or Mdm2 abundance in the same manner as the proteins from Medaka, which underscores the suitability of this screening methodology for the identification of new modifiers of p53 and Mdm2. Despite enormous efforts in the last two decades, many unknown regulators for p53 and Mdm2 abundance are predicted to exist. This cross-species approach to identify evolutionarily conserved regulators demonstrates that our Medaka unigene cDNA library

  19. Mimicking a p53-MDM2 interaction based on a stable immunoglobulin-like domain scaffold.

    PubMed

    Jimenez-Sandoval, Pedro; Madrigal-Carrillo, Ezequiel A; Santamaría-Suárez, Hugo A; Maturana, Daniel; Rentería-González, Itzel; Benitez-Cardoza, Claudia G; Torres-Larios, Alfredo; Brieba, Luis G

    2018-04-26

    Antibodies recognize protein targets with great affinity and specificity. However, posttranslational modifications and the presence of intrinsic disulfide-bonds pose difficulties for their industrial use. The immunoglobulin fold is one of the most ubiquitous folds in nature and it is found in many proteins besides antibodies. An example of a protein family with an immunoglobulin-like fold is the Cysteine Protease Inhibitors (ICP) family I42 of the MEROPs database for protease and protease inhibitors. Members of this protein family are thermostable and do not present internal disulfide bonds. Crystal structures of several ICPs indicate that they resemble the Ig-like domain of the human T cell co-receptor CD8α As ICPs present 2 flexible recognition loops that vary accordingly to their targeted protease, we hypothesize that members of this protein family would be ideal to design peptide aptamers that mimic protein-protein interactions. Herein, we use an ICP variant from Entamoeba histolytica (EhICP1) to mimic the interaction between p53 and MDM2. We found that a 13 amino-acid peptide derived from p53 can be introduced in 2 variable loops (DE, FG) but not the third (BC). Chimeric EhICP1-p53 form a stable complex with MDM2 at a micromolar range. Crystal structure of the EhICP1-p53(FG)-loop variant in complex with MDM2 reveals a swapping subdomain between 2 chimeric molecules, however, the p53 peptide interacts with MDM2 as in previous crystal structures. The structural details of the EhICP1-p53(FG) interaction with MDM2 resemble the interaction between an antibody and MDM2. © 2018 Wiley Periodicals, Inc.

  20. Recombinant adenovirus-p21 attenuates proliferative responses associated with excessive scarring.

    PubMed

    Gu, Danling; Atencio, Isabella; Kang, David W; Looper, L David; Ahmed, C M I; Levy, Alina; Maneval, Dan; Zepeda, Monica L

    2005-01-01

    Excessive cutaneous scarring is an important clinical disorder resulting in adverse tissue growth and function as well as undesirable cosmetic appearance. p21WAF-1/Cip-1 is a cyclin-dependent kinase inhibitor that blocks cell cycle progression and inhibits cell proliferation. We used a recombinant adenovirus containing the human p21WAF-1/Cip-1 cDNA (rAd-p21) to evaluate proliferative responses in skin models. In vitro dose-response studies using primary human dermal fibroblasts resulted in a dose-dependent expression of p21WAF-1/Cip-1 protein and a 3- to 80-fold reduction in cell proliferation as measured by 5-bromodeoxyuridine incorporation. Further, rAd-p21 reduced type I procollagen production when compared to control virus. A rat polyvinyl alcohol sponge model was used to determine rAd-p21 effects on granulation tissue formation in vivo. Sponges pretreated with a granulation tissue stimulator, rAd-PDGF-B and subsequently rAd-p21 on a second injection, showed a p21WAF-1/Cip-1 specific dose-dependent decrease in percent granulation fill as the rAd-p21 dose increased (p < 0.001). Immunohistochemistry identified human p21WAF-1/Cip-1 expression in sponges treated with rAd-p21 5 days postinjection. Additionally, 5-bromodeoxyuridine and Ki67 staining in sponges treated with rAd-p21 showed a significant decrease in proliferation when compared to rAd-platelet-derived growth factor-B alone or vehicle control groups (p < 0.01). These data support the utility of p21WAF-1/Cip-1 in targeting hyperproliferative disorders of the skin.

  1. ATM-dependent phosphorylation of Mdm2 on serine 395: role in p53 activation by DNA damage

    PubMed Central

    Maya, Ruth; Balass, Moshe; Kim, Seong-Tae; Shkedy, Dganit; Leal, Juan-Fernando Martinez; Shifman, Ohad; Moas, Miri; Buschmann, Thomas; Ronai, Ze'ev; Shiloh, Yosef; Kastan, Michael B.; Katzir, Ephraim; Oren, Moshe

    2001-01-01

    The p53 tumor suppressor protein, a key regulator of cellular responses to genotoxic stress, is stabilized and activated after DNA damage. The rapid activation of p53 by ionizing radiation and radiomimetic agents is largely dependent on the ATM kinase. p53 is phosphorylated by ATM shortly after DNA damage, resulting in enhanced stability and activity of p53. The Mdm2 oncoprotein is a pivotal negative regulator of p53. In response to ionizing radiation and radiomimetic drugs, Mdm2 undergoes rapid ATM-dependent phosphorylation prior to p53 accumulation. This results in a decrease in its reactivity with the 2A10 monoclonal antibody. Phage display analysis identified a consensus 2A10 recognition sequence, possessing the core motif DYS. Unexpectedly, this motif appears twice within the human Mdm2 molecule, at positions corresponding to residues 258–260 and 393–395. Both putative 2A10 epitopes are highly conserved and encompass potential phosphorylation sites. Serine 395, residing within the carboxy-terminal 2A10 epitope, is the major target on Mdm2 for phosphorylation by ATM in vitro. Mutational analysis supports the conclusion that Mdm2 undergoes ATM-dependent phosphorylation on serine 395 in vivo in response to DNA damage. The data further suggests that phosphorylated Mdm2 may be less capable of promoting the nucleo-cytoplasmic shuttling of p53 and its subsequent degradation, thereby enabling p53 accumulation. Our findings imply that activation of p53 by DNA damage is achieved, in part, through attenuation of the p53-inhibitory potential of Mdm2. PMID:11331603

  2. Identification of antipsychotic drug fluspirilene as a potential p53-MDM2 inhibitor: a combined computational and experimental study

    NASA Astrophysics Data System (ADS)

    Patil, Sachin P.; Pacitti, Michael F.; Gilroy, Kevin S.; Ruggiero, John C.; Griffin, Jonathan D.; Butera, Joseph J.; Notarfrancesco, Joseph M.; Tran, Shawn; Stoddart, John W.

    2015-02-01

    The inhibition of tumor suppressor p53 protein due to its direct interaction with oncogenic murine double minute 2 (MDM2) protein, plays a central role in almost 50 % of all human tumor cells. Therefore, pharmacological inhibition of the p53-binding pocket on MDM2, leading to p53 activation, presents an important therapeutic target against these cancers expressing wild-type p53. In this context, the present study utilized an integrated virtual and experimental screening approach to screen a database of approved drugs for potential p53-MDM2 interaction inhibitors. Specifically, using an ensemble rigid-receptor docking approach with four MDM2 protein crystal structures, six drug molecules were identified as possible p53-MDM2 inhibitors. These drug molecules were then subjected to further molecular modeling investigation through flexible-receptor docking followed by Prime/MM-GBSA binding energy analysis. These studies identified fluspirilene, an approved antipsychotic drug, as a top hit with MDM2 binding mode and energy similar to that of a native MDM2 crystal ligand. The molecular dynamics simulations suggested stable binding of fluspirilene to the p53-binding pocket on MDM2 protein. The experimental testing of fluspirilene showed significant growth inhibition of human colon tumor cells in a p53-dependent manner. Fluspirilene also inhibited growth of several other human tumor cell lines in the NCI60 cell line panel. Taken together, these computational and experimental data suggest a potentially novel role of fluspirilene in inhibiting the p53-MDM2 interaction. It is noteworthy here that fluspirilene has a long history of safe human use, thus presenting immediate clinical potential as a cancer therapeutic. Furthermore, fluspirilene could also serve as a structurally-novel lead molecule for the development of more potent, small-molecule p53-MDM2 inhibitors against several types of cancer. Importantly, the combined computational and experimental screening protocol

  3. Influence of zinc deficiency on AKT-MDM2-P53 signaling axes in normal and malignant human prostate cells

    USDA-ARS?s Scientific Manuscript database

    With prostate being the highest zinc-accumulating tissue before the onset of cancer, the effects of physiologic levels of zinc on Akt-Mdm2-p53 and Akt-p21 signaling axes in human normal prostate epithelial cells (PrEC) and malignant prostate LNCaP cells were examined. Cells were cultured for 6 d in...

  4. Novel MDM2 inhibitor SAR405838 (MI-773) induces p53-mediated apoptosis in neuroblastoma

    PubMed Central

    Lu, Jiaxiong; Guan, Shan; Zhao, Yanling; Yu, Yang; Wang, Yongfeng; Shi, Yonghua; Mao, Xinfang; Yang, Kristine L.; Sun, Wenjing; Xu, Xin; Yi, Joanna S.; Yang, Tianshu; Yang, Jianhua; Nuchtern, Jed G.

    2016-01-01

    Neuroblastoma (NB), which accounts for about 15% of cancer-related mortality in children, is the most common childhood extracranial malignant tumor. In NB, somatic mutations of the tumor suppressor, p53, are exceedingly rare. Unlike in adult tumors, the majority of p53 downstream functions are still intact in NB cells with wild-type p53. Thus, restoring p53 function by blocking its interaction with p53 suppressors such as MDM2 is a viable therapeutic strategy for NB treatment. Herein, we show that MDM2 inhibitor SAR405838 is a potent therapeutic drug for NB. SAR405838 caused significantly decreased cell viability of p53 wild-type NB cells and induced p53-mediated apoptosis, as well as augmenting the cytotoxic effects of doxorubicin (Dox). In an in vivo orthotopic NB mouse model, SAR405838 induced apoptosis in NB tumor cells. In summary, our data strongly suggest that MDM2-specific inhibitors like SAR405838 may serve not only as a stand-alone therapy, but also as an effective adjunct to current chemotherapeutic regimens for treating NB with an intact MDM2-p53 axis. PMID:27764791

  5. MicroRNA-188-3p is involved in sevoflurane anesthesia-induced neuroapoptosis by targeting MDM2

    PubMed Central

    Wang, Lei; Zheng, Mengliang; Wu, Shuishui; Niu, Zhiqiang

    2018-01-01

    Sevoflurane is a commonly used inhalation anesthetic. Sevoflurane-induced neuroapoptosis and cognitive impairments in animals are widely reported, however, the underlying molecular mechanisms remain largely unknown. The results of the present study demonstrated that sevoflurane anesthesia induced spatial memory impairments in rats, as determined by the Morris water maze test. Mechanistically, the current study demonstrated that sevoflurane administration significantly enhanced the expression of microRNA (miR)-188-3p. Furthermore, inhibition of miR-188-3p using lentiviral miR-188-3p inhibitors attenuated sevoflurane-induced cognitive impairments in rats. The present study also demonstrated that miR-188-3p targeted MDM2 proto-oncogene (MDM2) and negatively regulated the expression of MDM2, as determined by luciferase assays, reverse transcription-quantitative polymerase chain reaction and western blot analysis. Furthermore, decreased abundance of MDM2 following transfection with miR-188-3p mimics was associated with increased stability of p53 protein. Suppression of p53 activity using the specific p53 inhibitor pifithrin-α alleviated sevoflurane-induced neuroapoptosis. These results indicate that the miR-188-3p-MDM2-p53 axis may have a critical role in sevoflurane-induced cognitive dysfunction. Therefore, miR-188-3p may be a potential target for the treatment of sevoflurane-induced cognitive impairment. PMID:29344658

  6. p21{sup WAF1/Cip1/Sdi1} knockout mice respond to doxorubicin with reduced cardiotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terrand, Jerome; Xu, Beibei; Morrissy, Steve

    2011-11-15

    Doxorubicin (Dox) is an antineoplastic agent that can cause cardiomyopathy in humans and experimental animals. As an inducer of reactive oxygen species and a DNA damaging agent, Dox causes elevated expression of p21{sup WAF1/Cip1/Sdi1} (p21) gene. Elevated levels of p21 mRNA and p21 protein have been detected in the myocardium of mice following Dox treatment. With chronic treatment of Dox, wild type (WT) animals develop cardiomyopathy evidenced by elongated nuclei, mitochondrial swelling, myofilamental disarray, reduced cardiac output, reduced ejection fraction, reduced left ventricular contractility, and elevated expression of ANF gene. In contrast, p21 knockout (p21KO) mice did not show significantmore » changes in the same parameters in response to Dox treatment. In an effort to understand the mechanism of the resistance against Dox induced cardiomyopathy, we measured levels of antioxidant enzymes and found that p21KO mice did not contain elevated basal or inducible levels of glutathione peroxidase and catalase. Measurements of 6 circulating cytokines indicated elevation of IL-6, IL-12, IFN{gamma} and TNF{alpha} in Dox treated WT mice but not p21KO mice. Dox induced elevation of IL-6 mRNA was detected in the myocardium of WT mice but not p21KO mice. While the mechanism of the resistance against Dox induced cardiomyopathy remains unclear, lack of inflammatory response may contribute to the observed cardiac protection in p21KO mice. -- Highlights: Black-Right-Pointing-Pointer Doxorubicin induces p21 elevation in the myocardium. Black-Right-Pointing-Pointer Doxorubicin causes dilated cardiomyopathy in wild type mice. Black-Right-Pointing-Pointer p21 Knockout mice are resistant against doxorubicin induced cardiomyopathy. Black-Right-Pointing-Pointer Lack of inflammatory response correlates with the resistance in p21 knockout mice.« less

  7. Mdm2 is required for survival of hematopoietic stem cells/progenitors via dampening of ROS-induced p53 activity

    USDA-ARS?s Scientific Manuscript database

    Mdm2 is an E3 ubiquitin ligase that targets p53 for degradation. p53(515C) (encoding p53R172P) is a hypomorphic allele of p53 that rescues the embryonic lethality of Mdm2(-/-) mice. Mdm2(-/-) p53(515C/515C) mice, however, die by postnatal day 13 resulting from hematopoietic failure. Hematopoietic st...

  8. Phosphorylation of the Mdm2 oncoprotein by the c-Abl tyrosine kinase regulates p53 tumor suppression and the radiosensitivity of mice.

    PubMed

    Carr, Michael I; Roderick, Justine E; Zhang, Hong; Woda, Bruce A; Kelliher, Michelle A; Jones, Stephen N

    2016-12-27

    The p53 tumor suppressor acts as a guardian of the genome by preventing the propagation of DNA damage-induced breaks and mutations to subsequent generations of cells. We have previously shown that phosphorylation of the Mdm2 oncoprotein at Ser394 by the ATM kinase is required for robust p53 stabilization and activation in cells treated with ionizing radiation, and that loss of Mdm2 Ser394 phosphorylation leads to spontaneous tumorigenesis and radioresistance in Mdm2 S394A mice. Previous in vitro data indicate that the c-Abl kinase phosphorylates Mdm2 at the neighboring residue (Tyr393) in response to DNA damage to regulate p53-dependent apoptosis. In this present study, we have generated an Mdm2 mutant mouse (Mdm2 Y393F ) to determine whether c-Abl phosphorylation of Mdm2 regulates the p53-mediated DNA damage response or p53 tumor suppression in vivo. The Mdm2 Y393F mice develop accelerated spontaneous and oncogene-induced tumors, yet display no defects in p53 stabilization and activity following acute genotoxic stress. Although apoptosis is unaltered in these mice, they recover more rapidly from radiation-induced bone marrow ablation and are more resistant to whole-body radiation-induced lethality. These data reveal an in vivo role for c-Abl phosphorylation of Mdm2 in regulation of p53 tumor suppression and bone marrow failure. However, c-Abl phosphorylation of Mdm2 Tyr393 appears to play a lesser role in governing Mdm2-p53 signaling than ATM phosphorylation of Mdm2 Ser394. Furthermore, the effects of these phosphorylation events on p53 regulation are not additive, as Mdm2 Y393F/S394A mice and Mdm2 S394A mice display similar phenotypes.

  9. Phosphorylation of the Mdm2 oncoprotein by the c-Abl tyrosine kinase regulates p53 tumor suppression and the radiosensitivity of mice

    PubMed Central

    Carr, Michael I.; Roderick, Justine E.; Zhang, Hong; Woda, Bruce A.; Kelliher, Michelle A.; Jones, Stephen N.

    2016-01-01

    The p53 tumor suppressor acts as a guardian of the genome by preventing the propagation of DNA damage-induced breaks and mutations to subsequent generations of cells. We have previously shown that phosphorylation of the Mdm2 oncoprotein at Ser394 by the ATM kinase is required for robust p53 stabilization and activation in cells treated with ionizing radiation, and that loss of Mdm2 Ser394 phosphorylation leads to spontaneous tumorigenesis and radioresistance in Mdm2S394A mice. Previous in vitro data indicate that the c-Abl kinase phosphorylates Mdm2 at the neighboring residue (Tyr393) in response to DNA damage to regulate p53-dependent apoptosis. In this present study, we have generated an Mdm2 mutant mouse (Mdm2Y393F) to determine whether c-Abl phosphorylation of Mdm2 regulates the p53-mediated DNA damage response or p53 tumor suppression in vivo. The Mdm2Y393F mice develop accelerated spontaneous and oncogene-induced tumors, yet display no defects in p53 stabilization and activity following acute genotoxic stress. Although apoptosis is unaltered in these mice, they recover more rapidly from radiation-induced bone marrow ablation and are more resistant to whole-body radiation-induced lethality. These data reveal an in vivo role for c-Abl phosphorylation of Mdm2 in regulation of p53 tumor suppression and bone marrow failure. However, c-Abl phosphorylation of Mdm2 Tyr393 appears to play a lesser role in governing Mdm2-p53 signaling than ATM phosphorylation of Mdm2 Ser394. Furthermore, the effects of these phosphorylation events on p53 regulation are not additive, as Mdm2Y393F/S394A mice and Mdm2S394A mice display similar phenotypes. PMID:27956626

  10. p21{sup WAF1/CIP1} deficiency induces mitochondrial dysfunction in HCT116 colon cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Ae Jeong; Jee, Hye Jin; Song, Naree

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer p21{sup -/-} HCT116 cells exhibited an increase in mitochondrial mass. Black-Right-Pointing-Pointer The expression levels of PGC-1{alpha} and AMPK were upregulated in p21{sup -/-} HCT116 cells. Black-Right-Pointing-Pointer The proliferation of p21{sup -/-} HCT116 cells in galactose medium was significantly impaired. Black-Right-Pointing-Pointer p21 may play a role in maintaining proper mitochondrial mass and respiratory function. -- Abstract: p21{sup WAF1/CIP1} is a critical regulator of cell cycle progression. However, the role of p21 in mitochondrial function remains poorly understood. In this study, we examined the effect of p21 deficiency on mitochondrial function in HCT116 human colon cancer cells. We found thatmore » there was a significant increase in the mitochondrial mass of p21{sup -/-} HCT116 cells, as measured by 10-N-nonyl-acridine orange staining, as well as an increase in the mitochondrial DNA content. In contrast, p53{sup -/-} cells had a mitochondrial mass comparable to that of wild-type HCT116 cells. In addition, the expression levels of the mitochondrial biogenesis regulators PGC-1{alpha} and TFAM and AMPK activity were also elevated in p21{sup -/-} cells, indicating that p21 deficiency induces the rate of mitochondrial biogenesis through the AMPK-PGC-1{alpha} axis. However, the increase in mitochondrial biogenesis in p21{sup -/-} cells did not accompany an increase in the cellular steady-state level of ATP. Furthermore, p21{sup -/-} cells exhibited significant proliferation impairment in galactose medium, suggesting that p21 deficiency induces a defect in the mitochondrial respiratory chain in HCT116 cells. Taken together, our results suggest that the loss of p21 results in an aberrant increase in the mitochondrial mass and in mitochondrial dysfunction in HCT116 cells, indicating that p21 is required to maintain proper mitochondrial mass and respiratory function.« less

  11. Immunohistochemical status of p53, MDM2, bcl2, bax, and ER in invasive ductal breast carcinoma in Tunisian patients.

    PubMed

    Baccouche, Sami; Daoud, Jamel; Frikha, Mounir; Mokdad-Gargouri, Raja; Gargouri, Ali; Jlidi, Rachid

    2003-12-01

    TP53 gene alterations have been associated with sporadic breast cancer. To assess the role of p53 in invasive ductal carcinoma (IDC) of the breast among Tunisian patients, p53 protein status was studied by immuno-histochemical analysis. The p53 protein was expressed in 41 of 70 (58%) tumors. Study of the status of its target gene expression showed that MDM2 was overexpressed in 43 tumors (61%), bcl2 in 29 (41%), and bax in only 9 (12%). Estrogen receptor (ER) was detected in 38 tumor tissues (54%). The accumulated p53 was significantly associated with MDM2-positive, bcl2-negative, and ER-negative tumors (P = 0.024, P = 0.000027, and P = 0.000008, respectively), whereas with bax the correlaton was not significant. Bcl2 immunostaining displayed a positive correlation with ER (P = 0.001). A significantly higher fraction of p53-positive cells was observed in ER-negative SBRII-SBRIII tumors than in ER-positive SBRI-SBRII tumors (P = 0.000066). bcl2-positive tumors were significantly correlated with ER-positive/SBRI-SBRII tumors (P = 0.007), but negatively correlated with p53/bax (P = 0000004). MDM2 immunostaining displayed the same phenotype as p53 in the correlation with bcl2 and ER (P = 0.003), strengthened by significant associations between MDM2-positive/p53-positive and bcl2-negative or ER-negative, respectively (P = 0.00005 and P = 0.000001, respectively). MDM2-positive cells were significantly correlated with the p53-positive/bax-negative phenotype (P = 0.04). These results suggest that p53 accumulated in these tumor tissues is associated with bad prognostic markers (ER-negative, SBRIII) of IDC. MDM2 overexpression might be responsible for the accumulated p53 value in IDC. Regulation of the apoptotic process is involved in IDC; bcl2 is associated with a good prognostic marker (ER-positive and SBRI-II), whereas the regulation of bax is complex and does not necessarily correlate with the overexpression of p53.

  12. Zac1, an Sp1-like protein, regulates human p21{sup WAF1/Cip1} gene expression in HeLa cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Pei-Yao; Hsieh, Tsai-Yuan; Liu, Shu-Ting

    2011-12-10

    Zac1 functions as both a transcription factor and a transcriptional cofactor for p53, nuclear receptors (NRs) and NR coactivators. Zac1 might also act as a transcriptional repressor via the recruitment of histone deacetylase 1 (HDAC1). The ability of Zac1 to interact directly with GC-specific elements indicates that Zac1 possibly binds to Sp1-responsive elements. In the present study, our data show that Zac1 is able to interact directly with the Sp1-responsive element in the p21{sup WAF1/Cip1} gene promoter and enhance the transactivation activity of Sp1 through direct physical interaction. Our data further demonstrate that Zac1 might enhance Sp1-specific promoter activity bymore » interacting with the Sp1-responsive element, affecting the transactivation activity of Sp1 via a protein-protein interaction, or competing the HDAC1 protein away from the pre-existing Sp1/HDAC1 complex. Finally, the synergistic regulation of p21{sup WAF1/Cip1} gene expression by Zac1 and Sp1 is mediated by endogenous p53 protein and p53-responsive elements in HeLa cells. Our work suggests that Zac1 might serve as an Sp1-like protein that directly interacts with the Sp1-responsive element to oligomerize with and/or to coactivate Sp1.« less

  13. Synergistic targeting of malignant pleural mesothelioma cells by MDM2 inhibitors and TRAIL agonists

    PubMed Central

    Urso, Loredana; Biasini, Lorena; Zago, Giulia; Calabrese, Fiorella; Conte, Pier Franco; Ciminale, Vincenzo; Pasello, Giulia

    2017-01-01

    Malignant Pleural Mesothelioma (MPM) is a chemoresistant tumor characterized by low rate of p53 mutation and upregulation of Murine Double Minute 2 (MDM2), suggesting that it may be effectively targeted using MDM2 inhibitors. In the present study, we investigated the anticancer activity of the MDM2 inhibitors Nutlin 3a (in vitro) and RG7112 (in vivo), as single agents or in combination with rhTRAIL. In vitro studies were performed using MPM cell lines derived from epithelioid (ZL55, M14K), biphasic (MSTO211H) and sarcomatoid (ZL34) MPMs. In vivo studies were conducted on a sarcomatoid MPM mouse model. In all the cell lines tested (with the exception of ZL55, which carries a biallelic loss-of-function mutation of p53), Nutlin 3a enhanced p21, MDM2 and DR5 expression, and decreased survivin expression. These changes were associated to cell cycle arrest but not to a significant induction of apoptosis. A synergistic pro-apoptotic effect was obtained through the association of rhTRAIL in all the cell lines harboring functional p53. This synergistic interaction of MDM2 inhibitor and TRAIL agonist was confirmed using a mouse preclinical model. Our results suggest that the combined targeting of MDM2 and TRAIL might provide a novel therapeutic option for treatment of MPM patients, particularly in the case of sarcomatoid MPM with MDM2 overexpression and functional inactivation of wild-type p53. PMID:28562336

  14. Simulating Molecular Mechanisms of the MDM2-Mediated Regulatory Interactions: A Conformational Selection Model of the MDM2 Lid Dynamics

    PubMed Central

    Verkhivker, Gennady M.

    2012-01-01

    Diversity and complexity of MDM2 mechanisms govern its principal function as the cellular antagonist of the p53 tumor suppressor. Structural and biophysical studies have demonstrated that MDM2 binding could be regulated by the dynamics of a pseudo-substrate lid motif. However, these experiments and subsequent computational studies have produced conflicting mechanistic models of MDM2 function and dynamics. We propose a unifying conformational selection model that can reconcile experimental findings and reveal a fundamental role of the lid as a dynamic regulator of MDM2-mediated binding. In this work, structure, dynamics and energetics of apo-MDM2 are studied as a function of posttranslational modifications and length of the lid. We found that the dynamic equilibrium between “closed” and “semi-closed” lid forms may be a fundamental characteristic of MDM2 regulatory interactions, which can be modulated by phosphorylation, phosphomimetic mutation as well as by the lid size. Our results revealed that these factors may regulate p53-MDM2 binding by fine-tuning the thermodynamic equilibrium between preexisting conformational states of apo-MDM2. In agreement with NMR studies, the effect of phosphorylation on MDM2 interactions was more pronounced with the truncated lid variant that favored the thermodynamically dominant closed form. The phosphomimetic mutation S17D may alter the lid dynamics by shifting the thermodynamic equilibrium towards the ensemble of “semi-closed” conformations. The dominant “semi-closed” lid form and weakened dependence on the phosphorylation seen in simulations with the complete lid can provide a rationale for binding of small p53-based mimetics and inhibitors without a direct competition with the lid dynamics. The results suggested that a conformational selection model of preexisting MDM2 states may provide a robust theoretical framework for understanding MDM2 dynamics. Probing biological functions and mechanisms of MDM2 regulation

  15. MDM2 beyond cancer: podoptosis, development, inflammation, and tissue regeneration.

    PubMed

    Ebrahim, Martrez; Mulay, Shrikant R; Anders, Hans-Joachim; Thomasova, Dana

    2015-11-01

    Murine double minute (MDM)-2 is an intracellular molecule with diverse biological functions. It was first described to limit p53-mediated cell cycle arrest and apoptosis, hence, gain of function mutations are associated with malignancies. This generated a rationale for MDM2 being a potential therapeutic target in cancer therapy. Meanwhile, several additional functions and pathogenic roles of MDM2 have been identified that either enforce therapeutic MDM2 blockade or raise caution about potential side effects. MDM2 is also required for organ development and tissue homeostasis because unopposed p53 activation leads to p53-overactivation-dependent cell death, referred to as podoptosis. Podoptosis is caspase-independent and, therefore, different from apoptosis. The mitogenic role of MDM2 is also needed for wound healing upon tissue injury, while MDM2 inhibition impairs re-epithelialization upon epithelial damage. In addition, MDM2 has p53-independent transcription factor-like effects in nuclear factor-kappa beta (NFκB) activation. Therefore, MDM2 promotes tissue inflammation and MDM2 inhibition has potent anti-inflammatory effects in tissue injury. Here we review the biology of MDM2 in the context of tissue development, homeostasis, and injury and discuss how the divergent roles of MDM2 could be used for certain therapeutic purposes. MDM2 blockade had mostly anti-inflammatory and anti-mitotic effects that can be of additive therapeutic efficacy in inflammatory and hyperproliferative disorders such as certain cancers or lymphoproliferative autoimmunity, such as systemic lupus erythematosus or crescentic glomerulonephritis.

  16. Co-expression of p53 and MDM2 in human atherosclerosis: implications for the regulation of cellularity of atherosclerotic lesions.

    PubMed

    Ihling, C; Haendeler, J; Menzel, G; Hess, R D; Fraedrich, G; Schaefer, H E; Zeiher, A M

    1998-07-01

    Atherosclerosis is a fibroproliferative disease of the arterial intima. It was recently found that wild-type p53 (wt p53) accumulates in human atherosclerotic tissue. Wt p53 is a cell cycle regulator involved in DNA repair, DNA synthesis, cell differentiation, and apoptosis and might therefore make an important contribution to the cellularity of atherosclerotic plaques. The product of the MDM2 gene is a nuclear protein which forms a complex with p53, thereby inhibiting the negative regulatory effects of wt p53 on cell cycle progression. In order to address a potential role of the interaction of p53 with MDM2 for the regulation of cellularity in atherosclerotic tissue, 22 carotid atheromatous plaques from patients undergoing endarterectomy were studied to determine the presence of p53 immunoreactivity (IR), MDM2 IR, cell proliferation as evidenced by MIB1/Ki-67 IR and DNA fragmentation by in situ terminal transferase-mediated dUTP 3' end labelling (TUNEL), as a marker for apoptosis. p53 IR localized to areas with evidence of chronic inflammation (22/22) and was observed in virtually all cell types in 68.79 +/- 7.51 per cent of the nuclei. p53 staining in the control tissue from human internal mammary arteries was present in 0.2 +/- 0.29 per cent of the cells (P < or = 0.002). MDM2 IR was present in all cases (22/22) in macrophages and smooth muscle cells (SMCs) in 60.53 +/- 8.32 per cent of the nuclei (controls: 0.8 +/- 0.65 per cent, P < or = 0.002) and co-localized with p53 IR as shown by examination of adjacent sections and by double immunofluorescence labelling. Importantly, co-immunoprecipitation and western blot analysis revealed that p53 and MDM2 were physically associated, indicating that MDM2-p53 complex formation takes place in vivo in human atherosclerotic tissue. Positive TUNEL staining and MIB1/Ki-67 IR present in 3.01 +/- 1.27 per cent of the nuclei (controls: 0 per cent, P < or = 0.002) localized to the same plaque compartments as p53 IR and MDM2 IR

  17. A Fusion Protein of the p53 Transaction Domain and the p53-Binding Domain of the Oncoprotein MdmX as an Efficient System for High-Throughput Screening of MdmX Inhibitors.

    PubMed

    Chen, Rong; Zhou, Jingjing; Qin, Lingyun; Chen, Yao; Huang, Yongqi; Liu, Huili; Su, Zhengding

    2017-06-27

    In nearly half of cancers, the anticancer activity of p53 protein is often impaired by the overexpressed oncoprotein Mdm2 and its homologue, MdmX, demanding efficient therapeutics to disrupt the aberrant p53-MdmX/Mdm2 interactions to restore the p53 activity. While many potent Mdm2-specific inhibitors have already undergone clinical investigations, searching for MdmX-specific inhibitors has become very attractive, requiring a more efficient screening strategy for evaluating potential scaffolds or leads. In this work, considering that the intrinsic fluorescence residue Trp23 in the p53 transaction domain (p53p) plays an important role in determining the p53-MdmX/Mdm2 interactions, we constructed a fusion protein to utilize this intrinsic fluorescence signal to monitor high-throughput screening of a compound library. The fusion protein was composed of the p53p followed by the N-terminal domain of MdmX (N-MdmX) through a flexible amino acid linker, while the whole fusion protein contained a sole intrinsic fluorescence probe. The fusion protein was then evaluated using fluorescence spectroscopy against model compounds. Our results revealed that the variation of the fluorescence signal was highly correlated with the concentration of the ligand within 65 μM. The fusion protein was further evaluated with respect to its feasibility for use in high-throughput screening using a model compound library, including controls. We found that the imidazo-indole scaffold was a bona fide scaffold for template-based design of MdmX inhibitors. Thus, the p53p-N-MdmX fusion protein we designed provides a convenient and efficient tool for high-throughput screening of new MdmX inhibitors. The strategy described in this work should be applicable for other protein targets to accelerate drug discovery.

  18. SAR405838: An optimized inhibitor of MDM2-p53 interaction that induces complete and durable tumor regression

    DOE PAGES

    Wang, Shaomeng; Sun, Wei; Zhao, Yujun; ...

    2014-08-21

    Blocking the MDM2-p53 protein-protein interaction has long been considered to offer a broad cancer therapeutic strategy, despite the potential risks of selecting tumors harboring p53 mutations that escape MDM2 control. In this study, we report a novel small molecule inhibitor of the MDM2-p53 interaction, SAR405838 (MI-77301) that has been advanced into Phase I clinical trials. SAR405838 binds to MDM2 with K i = 0.88 nM and has high specificity over other proteins. A co-crystal structure of the SAR405838:MDM2 complex shows that in addition to mimicking three key p53 amino acid residues, the inhibitor captures additional interactions not observed in themore » p53-MDM2 complex and induces refolding of the short, unstructured MDM2 N-terminal region to achieve its high affinity. SAR405838 effectively activates wild-type p53 in vitro and in xenograft tumor tissue of leukemia and solid tumors, leading to p53-dependent cell cycle arrest and/or apoptosis. At well-tolerated dose schedules, SAR405838 achieves either durable tumor regression or complete tumor growth inhibition in mouse xenograft models of SJSA-1 osteosarcoma, RS4;11 acute leukemia, LNCaP prostate cancer and HCT-116 colon cancer. Remarkably, a single oral dose of SAR405838 is sufficient to achieve complete tumor regression in the SJSA-1 model. Mechanistically, robust transcriptional up-regulation of PUMA induced by SAR405838 results in strong apoptosis in tumor tissue, leading to complete tumor regression. Lastly, our findings provide a preclinical basis upon which to evaluate SAR405838 as a therapeutic agent in patients whose tumors retain wild-type p53.« less

  19. Feedback modulation of neural network synchrony and seizure susceptibility by Mdm2-p53-Nedd4-2 signaling.

    PubMed

    Jewett, Kathryn A; Christian, Catherine A; Bacos, Jonathan T; Lee, Kwan Young; Zhu, Jiuhe; Tsai, Nien-Pei

    2016-03-22

    Neural network synchrony is a critical factor in regulating information transmission through the nervous system. Improperly regulated neural network synchrony is implicated in pathophysiological conditions such as epilepsy. Despite the awareness of its importance, the molecular signaling underlying the regulation of neural network synchrony, especially after stimulation, remains largely unknown. In this study, we show that elevation of neuronal activity by the GABA(A) receptor antagonist, Picrotoxin, increases neural network synchrony in primary mouse cortical neuron cultures. The elevation of neuronal activity triggers Mdm2-dependent degradation of the tumor suppressor p53. We show here that blocking the degradation of p53 further enhances Picrotoxin-induced neural network synchrony, while promoting the inhibition of p53 with a p53 inhibitor reduces Picrotoxin-induced neural network synchrony. These data suggest that Mdm2-p53 signaling mediates a feedback mechanism to fine-tune neural network synchrony after activity stimulation. Furthermore, genetically reducing the expression of a direct target gene of p53, Nedd4-2, elevates neural network synchrony basally and occludes the effect of Picrotoxin. Finally, using a kainic acid-induced seizure model in mice, we show that alterations of Mdm2-p53-Nedd4-2 signaling affect seizure susceptibility. Together, our findings elucidate a critical role of Mdm2-p53-Nedd4-2 signaling underlying the regulation of neural network synchrony and seizure susceptibility and reveal potential therapeutic targets for hyperexcitability-associated neurological disorders.

  20. Low-dose carcinogenicity of 2-amino-3-methylimidazo[4,5-f ]quinoline in rats: Evidence for the existence of no-effect levels and a mechanism involving p21(Cip / WAF1).

    PubMed

    Wei, Min; Wanibuchi, Hideki; Nakae, Dai; Tsuda, Hiroyuki; Takahashi, Satoru; Hirose, Masao; Totsuka, Yukari; Tatematsu, Masae; Fukushima, Shoji

    2011-01-01

    The carcinogenicity of the low amounts of genotoxic carcinogens present in food is of pressing concern. The purpose of the present study was to determine the carcinogenicity of low doses of the dietary genotoxic carcinogen 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) and to investigate mechanisms by which IQ exerts its carcinogenic effects. A total of 1595 male F344 rats were divided into seven groups and administered with IQ at doses of 0, 0.001, 0.01, 0.1, 1, 10 and 100 p.p.m. in the diet for 16 weeks. We found that IQ doses of 1 p.p.m. and below did not induce preneoplastic lesions in either the liver or the colon, while IQ doses of 10 and 100 p.p.m. induced preneoplastic lesions in both of these organs. These results demonstrate the presence of no-effect levels of IQ for both liver and colon carcinogenicity in rats. The finding that p21(Cip/WAF1) was significantly induced in the liver at doses well below those required for IQ mediated carcinogenic effects suggests that induction of p21(Cip/WAF1) is one of the mechanisms responsible for the observed no-effect of low doses of IQ. Furthermore, IQ administration caused significant induction of CYP1A2 at doses of 0.01-10 p.p.m., but administration of 100 p.p.m. IQ induced CYP1A1 rather than CYP1A2. This result indicates the importance of dosage when interpreting data on the carcinogenicity and metabolic activation of IQ. Overall, our results suggest the existence of no-effect levels for the carcinogenicity of this genotoxic compound. © 2010 Japanese Cancer Association.

  1. The electrostatic surface of MDM2 modulates the specificity of its interaction with phosphorylated and unphosphorylated p53 peptides.

    PubMed

    Brown, Christopher John; Srinivasan, Deepa; Jun, Lee Hui; Coomber, David; Verma, Chandra S; Lane, David P

    2008-03-01

    Florescence anisotropy measurements using FAM-labelled p53 peptides showed that the binding of the peptides to MDM2 was dependant upon the phosphorylation of p53 at Thr18 and that this binding was modulated by the electrostatic properties of MDM2. In agreement with computational predictions, the binding to phosphorylated p53 peptide, in comparison to the unphosphorylated p53 peptide, was enhanced upon mutation of 3 key residues on the MDM2 surface.

  2. How To Design a Successful p53-MDM2/X Interaction Inhibitor: A Thorough Overview Based on Crystal Structures.

    PubMed

    Estrada-Ortiz, Natalia; Neochoritis, Constantinos G; Dömling, Alexander

    2016-04-19

    A recent therapeutic strategy in oncology is based on blocking the protein-protein interaction between the murine double minute (MDM) homologues MDM2/X and the tumor-suppressor protein p53. Inhibiting the binding between wild-type (WT) p53 and its negative regulators MDM2 and/or MDMX has become an important target in oncology to restore the antitumor activity of p53, the so-called guardian of our genome. Interestingly, based on the multiple disclosed compound classes and structural analysis of small-molecule-MDM2 adducts, the p53-MDM2 complex is perhaps the best studied and most targeted protein-protein interaction. Several classes of small molecules have been identified as potent, selective, and efficient inhibitors of the p53-MDM2/X interaction, and many co-crystal structures with the protein are available. Herein we review the properties as well as preclinical and clinical studies of these small molecules and peptides, categorized by scaffold type. A particular emphasis is made on crystallographic structures and the observed binding modes of these compounds, including conserved water molecules present. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. The organization and expression of the mdm2 gene.

    PubMed

    de Oca Luna, R M; Tabor, A D; Eberspaecher, H; Hulboy, D L; Worth, L L; Colman, M S; Finlay, C A; Lozano, G

    1996-05-01

    The mdm2 gene encodes a zinc finger protein that negatively regulates p53 function by binding and masking the p53 transcriptional activation domain. Two different promoters control expression of mdm2, one of which is also transactivated by p53. We cloned and characterized the mdm2 gene from a murine 129 library. It contained at least 12 exons and spanned approximately 25 kb of DNA. Sequencing of the mdm2 gene revealed three nucleotide differences that resulted in amino acid substitutions in the previously published mdm2 sequence. Sequencing of normal BalbC/J DNA and the original cosmid clone isolated from the 3T3DM cell line revealed that they are identical, suggesting that the published sequence is in error at these three positions. In addition, we analyzed the expression pattern of mdm2 and found ubiquitous low-level expression throughout embryo development and in adult tissues. Analysis of mRNA from numerous tissues for several mdm2 spliced variants that had been identified in the transformed 3T3DM cell line revealed that these variants could not be detected in the developing embryo or in adult tissues.

  4. A proteomic screen reveals the mitochondrial outer membrane protein Mdm34p as an essential target of the F-box protein Mdm30p.

    PubMed

    Ota, Kazuhisa; Kito, Keiji; Okada, Satoshi; Ito, Takashi

    2008-10-01

    Ubiquitination plays various critical roles in eukaryotic cellular regulation and is mediated by a cascade of enzymes including ubiquitin protein ligase (E3). The Skp1-Cullin-F-box protein complex comprises the largest E3 family, in each member of which a unique F-box protein binds its targets to define substrate specificity. Although genome sequencing uncovers a growing number of F-box proteins, most of them have remained as "orphans" because of the difficulties in identification of their substrates. To address this issue, we tested a quantitative proteomic approach by combining the stable isotope labeling by amino acids in cell culture (SILAC), parallel affinity purification (PAP) that we had developed for efficient enrichment of ubiquitinated proteins, and mass spectrometry (MS). We applied this SILAC-PAP-MS approach to compare ubiquitinated proteins between yeast cells with and without over-expressed Mdm30p, an F-box protein implicated in mitochondrial morphology. Consequently, we identified the mitochondrial outer membrane protein Mdm34p as a target of Mdm30p. Furthermore, we found that mitochondrial defects induced by deletion of MDM30 are not only recapitulated by a mutant Mdm34p defective in interaction with Mdm30p but alleviated by ubiquitination-mimicking forms of Mdm34p. These results indicate that Mdm34p is a physiologically important target of Mdm30p.

  5. p53-Independent Roles of MDM2 in NF-κB Signaling: Implications for Cancer Therapy, Wound Healing, and Autoimmune Diseases1

    PubMed Central

    Thomasova, Dana; Mulay, Shrikant R; Bruns, Hauke; Anders, Hans-Joachim

    2012-01-01

    Murine double minute-2 (MDM2) is an intracellular molecule with multiple biologic functions. It serves as a negative regulator of p53 and thereby limits cell cycle arrest and apoptosis. Because MDM2 blockade suppresses tumor cell growth in vitro and in vivo, respective MDM2 inhibition is currently evaluated as anti-cancer therapy in clinical trials. However, the anti-proliferative effects of MDM2 inhibition also impair regenerative cell growth upon tissue injury. This was so far documented for tubular repair upon postischemic acute kidney injury and might apply to wound healing responses in general. Furthermore, MDM2 has numerous p53-independent effects. As a new entry, MDM2 was identified to act as a co-transcription factor for nuclear factor-kappa-light-enhancer of activated B cells (NF-κB) at cytokine promoters. This explains the potent anti-inflammatory effects of MDM2 inhibitors in vitro and in vivo. For example, the NF-κB-antagonistic and p53-agonistic activities of MDM2 inhibitors elicit potent therapeutic effects on experimental lymphoproliferative autoimmune disorders such as systemic lupus erythematosus. In this review, we discuss the classic p53-dependent, the recently discovered p53-independent, and the NF-κB-agonistic biologic functions of MDM2. We describe its complex regulatory role on p53 and NF-κB signaling and name areas of research that may help to foresee previously unexpected effects or potential alternative indications of therapeutic MDM2 blockade. PMID:23308042

  6. MDM2 controls NRF2 antioxidant activity in prevention of diabetic kidney disease.

    PubMed

    Guo, Weiying; Tian, Dan; Jia, Ye; Huang, Wenlin; Jiang, Mengnan; Wang, Junnan; Sun, Weixia; Wu, Hao

    2018-04-26

    Oxidative stress and P53 contribute to the pathogenesis of diabetic kidney disease (DKD). Nuclear factor erythroid 2-related factor 2 (NRF2) is a master regulator of cellular antioxidant defense system, is negatively regulated by P53 and prevents DKD. Recent findings revealed an important role of mouse double minute 2 (MDM2) in protection against DKD. However, the mechanism remained unclear. We hypothesized that MDM2 enhances NRF2 antioxidant signaling in DKD given that MDM2 is a key negative regulator of P53. The MDM2 inhibitor nutlin3a elevated renal P53, inhibited NRF2 signaling and induced oxidative stress, inflammation, fibrosis, DKD-like renal pathology and albuminuria in the wild-type (WT) non-diabetic mice. These effects exhibited more prominently in nutlin3a-treated WT diabetic mice. Interestingly, nutlin3a failed to induce greater renal injuries in the Nrf2 knockout (KO) mice under both the diabetic and non-diabetic conditions, indicating that NRF2 predominantly mediates MDM2's action. On the contrary, P53 inhibition by pifithrin-α activated renal NRF2 signaling and the expression of Mdm2, and attenuated DKD in the WT diabetic mice, but not in the Nrf2 KO diabetic mice. In high glucose-treated mouse mesangial cells, P53 gene silencing completely abolished nutlin3a's inhibitory effect on NRF2 signaling. The present study demonstrates for the first time that MDM2 controls renal NRF2 antioxidant activity in DKD via inhibition of P53, providing MDM2 activation and P53 inhibition as novel strategies in the management of DKD. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Cancer dormancy and cell signaling: Induction of p21waf1 initiated by membrane IgM engagement increases survival of B lymphoma cells

    PubMed Central

    Marches, Radu; Hsueh, Robert; Uhr, Jonathan W.

    1999-01-01

    The p21WAF1 (p21) cyclin-dependent kinase inhibitor plays a major role in regulating cell cycle arrest. It was recently reported that the p53-independent elevation of p21 protein levels is essential in mediating the G1 arrest resulting from signal transduction events initiated by the crosslinking of membrane IgM on Daudi Burkitt lymphoma cells. Although the role of p21 in cell cycle regulation is well documented, there is little information concerning its role in antibody-mediated apoptosis. In the present study, we examined the involvement of p21 in the regulation of apoptosis by suppressing its induction in anti-IgM-treated Daudi cells through a p21 antisense expression construct approach. Reduction in induced p21 protein levels resulted in diminished G1 arrest and increased apoptosis. The increased susceptibility to anti-IgM-mediated apoptosis was associated with increased caspase-3-like activity and poly-(ADP)ribose polymerase cleavage. These data suggest that p21 may directly interfere with the caspase cascade, thus playing a dual role in regulating both cell cycle progression and apoptosis. PMID:10411940

  8. Low dose arsenite confers resistance to UV induced apoptosis via p53-MDM2 pathway in ketatinocytes

    PubMed Central

    Zhou, Y; Zeng, W; Qi, M; Duan, Y; Su, J; Zhao, S; Zhong, W; Gao, M; Li, F; He, Y; Hu, X; Xu, X; Chen, X; Peng, C; Zhang, J

    2017-01-01

    Chronic arsenite and ultraviolet (UV) exposure are associated with skin tumor. To investigate the details by low concentrations of arsenite and UV induced carcinogenesis in skin, hTERT-immortalized human keratinocytes were used as a cellular model with exposure to low concentrations of sodium arsenite and UV. The effect of NaAsO2 on UV treatment-induced apoptosis was measured by flow cytometry and Hoechst staining. We found that the cell apoptosis induced by UV exposure was significantly attenuated after exposure to low-dose arsenite, and knockdown of p53 could block UV-induced apoptosis indicating that this phenomenon depended on p53. Interestingly, the expression of murine double minute 2 (MDM2), including its protein and transcriptional levels, was remarkably high after exposure to low-dose arsenite. Moreover, low-dose arsenite treatment dramatically decreased the MDM2 gene promoter activity, suggesting that this effect has been mediated through transcription. In addition, treatment of PD98059 reversed low-dose arsenite-induced MDM2 expression, and the inhibition of ERK2 expression could significantly block MDM2 expression as a consequence, and p53 expression automatically was increased. To validate the role of p53 in exposure to low-dose arsenite, the expression of p53 was examined by immunohistochemistry in the skin of Sprague−Dawley rats model by chronic arsenite exposure for 6 months and in patients with arsenic keratosis, and the results showed that the expression of p53 was decreased in those samples. Taken together, our results demonstrated that low-dose arsenite-induced resistance to apoptosis through p53 mediated by MDM2 in keratinocytes. PMID:28785074

  9. A role for p21 (WAF1) in the cAMP-dependent differentiation of F9 teratocarcinoma cells into parietal endoderm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drdova, Blanka; Vachtenheim, Jiri

    2005-03-10

    Combined treatment of teratocarcinoma F9 cells with retinoic acid and dibutyryl-cAMP induces the differentiation into cells with a phenotype resembling parietal endoderm. We show that the levels of cyclin-dependent kinase inhibitor p21/WAF1/Cip1 (p21) protein and mRNA are dramatically elevated at the end of this differentiation, concomitantly with the appearance of p21 in the immunoprecipitated CDK2-cyclin E complex. The induction of differentiation markers could not be achieved by expression of ectopic p21 alone and still required treatment with differentiation agents. Clones of F9 cells transfected with sense or antisense p21 cDNA constructs revealed, upon differentiation, upregulated levels of mRNA for thrombomodulin,more » a parietal endoderm-specific marker, or increased fraction of cells in sub-G1 phase of the cell cycle, respectively. Consistent with this observation, whereas p21 was strictly nuclear in undifferentiated cells, a large proportion of differentiated cells had p21 localized also in the cytoplasm, a site associated with the antiapoptotic function of p21. Furthermore, p21 activated the thrombomodulin promoter in transient reporter assays and the p21 mutant defective in binding to cyclin E was equally efficient in activation. The promoter activity in differentiated cells was reduced by cotransfection of p21-specific siRNA or antisense cDNA. Coexpression of p21 increased the activity of the GAL-p300(1-1303) fusion protein on the GAL sites-containing TM promoter. This implies that p21 might act through a derepression of the p300 N-terminal-residing repression domain, thereby enhancing the p300 coactivator function. As differentiation of F9 cells into parietal endoderm-like cells requires the cAMP signaling, the results together suggest that the cyclin-dependent kinase inhibitor p21 may promote specifically this pathway in F9 cells.« less

  10. The proto-oncoprotein FBI-1 interacts with MBD3 to recruit the Mi-2/NuRD-HDAC complex and BCoR and to silence p21WAF/CDKN1A by DNA methylation.

    PubMed

    Choi, Won-Il; Jeon, Bu-Nam; Yoon, Jae-Hyeon; Koh, Dong-In; Kim, Myung-Hwa; Yu, Mi-Young; Lee, Kyung-Mi; Kim, Youngsoo; Kim, Kyunggon; Hur, Sujin Susanne; Lee, Choong-Eun; Kim, Kyung-Sup; Hur, Man-Wook

    2013-07-01

    The tumour-suppressor gene CDKN1A (encoding p21Waf/Cip1) is thought to be epigenetically repressed in cancer cells. FBI-1 (ZBTB7A) is a proto-oncogenic transcription factor repressing the alternative reading frame and p21WAF/CDKN1A genes of the p53 pathway. FBI-1 interacts directly with MBD3 (methyl-CpG-binding domain protein 3) in the nucleus. We demonstrated that FBI-1 binds both non-methylated and methylated DNA and that MBD3 is recruited to the CDKN1A promoter through its interaction with FBI-1, where it enhances transcriptional repression by FBI-1. FBI-1 also interacts with the co-repressors nuclear receptor corepressor (NCoR), silencing mediator for retinoid and thyroid receptors (SMRT) and BCL-6 corepressor (BCoR) to repress transcription. MBD3 regulates a molecular interaction between the co-repressor and FBI-1. MBD3 decreases the interaction between FBI-1 and NCoR/SMRT but increases the interaction between FBI-1 and BCoR. Because MBD3 is a subunit of the Mi-2 autoantigen (Mi-2)/nucleosome remodelling and histone deacetylase (NuRD)-HDAC complex, FBI-1 recruits the Mi-2/NuRD-HDAC complex via MBD3. BCoR interacts with the Mi-2/NuRD-HDAC complex, DNMTs and HP1. MBD3 and BCoR play a significant role in the recruitment of the Mi-2/NuRD-HDAC complex- and the NuRD complex-associated proteins, DNMTs and HP. By recruiting DNMTs and HP1, Mi-2/NuRD-HDAC complex appears to play key roles in epigenetic repression of CDKN1A by DNA methylation.

  11. Concordant p53 and mdm-2 protein expression in vulvar squamous cell carcinoma and adjacent lichen sclerosus.

    PubMed

    Carlson, J A; Amin, S; Malfetano, J; Tien, A T; Selkin, B; Hou, J; Goncharuk, V; Wilson, V L; Rohwedder, A; Ambros, R; Ross, J S

    2001-06-01

    To determine if carcinogenic events in vulvar skin precede the onset of morphologic atypia, the authors investigated for derangements in DNA content, cell proliferation, and cell death in vulvar carcinomas and surrounding skin in 140 samples of tumor and surrounding skin collected from 35 consecutive vulvectomy specimen for squamous cell carcinoma (SCC) or vulvar intraepithelial neoplasia (VIN) 3. Vulvar non-cancer excisions were used as controls. Investigations consisted of histologic classification and measurement of 9 variables--epidermal thickness (acanthosis and rete ridge length), immunolabeling index (LI) for 3 proteins (p53 protein, Ki-67, and mdm-2), pattern of p53 expression (dispersed vs. compact), DNA content index, and presence of aneuploidy by image analysis and apoptotic rate by Apotag labeling. Significant positive correlations were found for all nine variables studied versus increasing histologic severity in two proposed histologic stepwise models of vulvar carcinogenesis (lichen sclerosus (LS) and VIN 3 undifferentiated associated SCC groups). High p53 LI (>25) and the compact pattern of p53 expression (suspected oncoprotein) significantly correlated with LS and its associated vulvar samples compared with samples not associated with LS (P < or = 0.001). Furthermore, p53 LI, mdm-2 LI, and pattern of p53 expression were concordant between patient matched samples of LS and SCC. In addition, mdm-2 LI significantly correlated with dispersed pattern p53 LI suggesting a response to wild-type p53 protein accumulation. These findings support the hypothesis that neoplastic transformation occurs in sequential steps and compromises proteins involved in the cell cycle control. Concordance of p53 and mdm-2 protein expression in LS and adjacent SCC provides evidence that LS can act as a precursor lesion in the absence of morphologic atypia. Overexpression of mdm-2 with stabilization and inactivation of p53 protein may provide an alternate pathway for vulvar

  12. p21WAF1/CIP1 Upregulation through the Stress Granule-Associated Protein CUGBP1 Confers Resistance to Bortezomib-Mediated Apoptosis

    PubMed Central

    Gareau, Cristina; Fournier, Marie-Josée; Filion, Christine; Coudert, Laetitia; Martel, David; Labelle, Yves; Mazroui, Rachid

    2011-01-01

    Background p21WAF1/CIP1 is a well known cyclin-dependent kinase inhibitor induced by various stress stimuli. Depending on the stress applied, p21 upregulation can either promote apoptosis or prevent against apoptotic injury. The stress-mediated induction of p21 involves not only its transcriptional activation but also its posttranscriptional regulation, mainly through stabilization of p21 mRNA levels. We have previously reported that the proteasome inhibitor MG132 induces the stabilization of p21 mRNA, which correlates with the formation of cytoplasmic RNA stress granules. The mechanism underlying p21 mRNA stabilization, however, remains unknown. Methodology/Principal Findings We identified the stress granules component CUGBP1 as a factor required for p21 mRNA stabilization following treatment with bortezomib ( =  PS-341/Velcade). This peptide boronate inhibitor of the 26S proteasome is very efficient for the treatment of myelomas and other hematological tumors. However, solid tumors are sometimes refractory to bortezomib treatment. We found that depleting CUGBP1 in cancer cells prevents bortezomib-mediated p21 upregulation. FISH experiments combined to mRNA stability assays show that this effect is largely due to a mistargeting of p21 mRNA in stress granules leading to its degradation. Altering the expression of p21 itself, either by depleting CUGBP1 or p21, promotes bortezomib-mediated apoptosis. Conclusions/Significance We propose that one key mechanism by which apoptosis is inhibited upon treatment with chemotherapeutic drugs might involve upregulation of the p21 protein through CUGBP1. PMID:21637851

  13. Ribosomal protein-Mdm2-p53 pathway coordinates nutrient stress with lipid metabolism by regulating MCD and promoting fatty acid oxidation.

    PubMed

    Liu, Yong; He, Yizhou; Jin, Aiwen; Tikunov, Andrey P; Zhou, Lishi; Tollini, Laura A; Leslie, Patrick; Kim, Tae-Hyung; Li, Lei O; Coleman, Rosalind A; Gu, Zhennan; Chen, Yong Q; Macdonald, Jeffrey M; Graves, Lee M; Zhang, Yanping

    2014-06-10

    The tumor suppressor p53 has recently been shown to regulate energy metabolism through multiple mechanisms. However, the in vivo signaling pathways related to p53-mediated metabolic regulation remain largely uncharacterized. By using mice bearing a single amino acid substitution at cysteine residue 305 of mouse double minute 2 (Mdm2(C305F)), which renders Mdm2 deficient in binding ribosomal proteins (RPs) RPL11 and RPL5, we show that the RP-Mdm2-p53 signaling pathway is critical for sensing nutrient deprivation and maintaining liver lipid homeostasis. Although the Mdm2(C305F) mutation does not significantly affect growth and development in mice, this mutation promotes fat accumulation under normal feeding conditions and hepatosteatosis under acute fasting conditions. We show that nutrient deprivation inhibits rRNA biosynthesis, increases RP-Mdm2 interaction, and induces p53-mediated transactivation of malonyl-CoA decarboxylase (MCD), which catalyzes the degradation of malonyl-CoA to acetyl-CoA, thus modulating lipid partitioning. Fasted Mdm2(C305F) mice demonstrate attenuated MCD induction and enhanced malonyl-CoA accumulation in addition to decreased oxidative respiration and increased fatty acid accumulation in the liver. Thus, the RP-Mdm2-p53 pathway appears to function as an endogenous sensor responsible for stimulating fatty acid oxidation in response to nutrient depletion.

  14. On the interaction mechanisms of a p53 peptide and nutlin with the MDM2 and MDMX proteins: a Brownian dynamics study.

    PubMed

    ElSawy, Karim M; Verma, Chandra S; Joseph, Thomas L; Lane, David P; Twarock, Reidun; Caves, Leo S D

    2013-02-01

    The interaction of p53 with its regulators MDM2 and MDMX plays a major role in regulating the cell cycle. Inhibition of this interaction has become an important therapeutic strategy in oncology. Although MDM2 and MDMX share a very high degree of sequence/structural similarity, the small-molecule inhibitor nutlin appears to be an efficient inhibitor only of the p53-MDM2 interaction. Here, we investigate the mechanism of interaction of nutlin with these two proteins and contrast it with that of p53 using Brownian dynamics simulations. In contrast to earlier attempts to examine the bound states of the partners, here we locate initial reaction events in these interactions by identifying the regions of space around MDM2/MDMX, where p53/nutlin experience associative encounters with prolonged residence times relative to that in bulk solution. We find that the initial interaction of p53 with MDM2 is long-lived relative to nutlin, but, unlike nutlin, it takes place at the N- and C termini of the MDM2 protein, away from the binding site, suggestive of an allosteric mechanism of action. In contrast, nutlin initially interacts with MDM2 directly at the clefts of the binding site. The interaction of nutlin with MDMX, however, is very short-lived compared with MDM2 and does not show such direct initial interactions with the binding site. Comparison of the topology of the electrostatic potentials of MDM2 and MDMX and the locations of the initial encounters with p53/nutlin in tandem with structure-based sequence alignment revealed that the origin of the diminished activity of nutlin toward MDMX relative to MDM2 may stem partly from the differing topologies of the electrostatic potentials of the two proteins. Glu25 and Lys51 residues underpin these topological differences and appear to collectively play a key role in channelling nutlin directly toward the binding site on the MDM2 surface and are absent in MDMX. The results, therefore, provide new insight into the mechanism of p53

  15. Glycogen synthase kinase 3β inhibitors protect hippocampal neurons from radiation-induced apoptosis by regulating MDM2-p53 pathway.

    PubMed

    Thotala, D K; Hallahan, D E; Yazlovitskaya, E M

    2012-03-01

    Exposure of the brain to ionizing radiation can cause neurocognitive deficiencies. The pathophysiology of these neurological changes is complex and includes radiation-induced apoptosis in the subgranular zone of the hippocampus. We have recently found that inhibition of glycogen synthase kinase 3β (GSK-3β) resulted in significant protection from radiation-induced apoptosis in hippocampal neurons. The molecular mechanisms of this cytoprotection include abrogation of radiation-induced accumulation of p53. Here we show that pretreatment of irradiated HT-22 hippocampal-derived neurons with small molecule inhibitors of GSK-3β SB216763 or SB415286, or with GSK-3β-specific shRNA resulted in accumulation of the p53-specific E3 ubiquitin ligase MDM2. Knockdown of MDM2 using specific shRNA or chemical inhibition of MDM2-p53 interaction prevented the protective changes triggered by GSK-3β inhibition in irradiated HT-22 neurons and restored radiation cytotoxicity. We found that this could be due to regulation of apoptosis by subcellular localization and interaction of GSK-3β, p53 and MDM2. These data suggest that the mechanisms of radioprotection by GSK-3β inhibitors in hippocampal neurons involve regulation of MDM2-dependent p53 accumulation and interactions between GSK-3β, MDM2 and p53.

  16. Analysis of the MDM2 antagonist nutlin-3 in human prostate cancer cells.

    PubMed

    Logan, Ian R; McNeill, Hesta V; Cook, Susan; Lu, Xiaohong; Lunec, John; Robson, Craig N

    2007-06-01

    Small molecule MDM2 antagonists including nutlin-3 have been shown to be effective against a range of cancer cell types and nutlin-3 can inhibit growth of LNCaP xenografts. We compared the efficacy of nutlin-3 in three prostate cancer cell types and provide an insight into the mechanism of nutlin-3. Nutlin-3 efficacy was measured using proliferation assays, cell cycle analysis, apoptosis assays, quantitative RT-PCR, and immunoblotting. Chromatin immunoprecipitation (ChIP) assays were also performed. Nutlin-3 can specifically inhibit proliferation of LNCaP cells through cell cycle arrest and apoptosis. This coincides with increased levels of the p53-responsive transcripts p21, PUMA, gadd45, and Mdm2 and recruitment of p53 to chromatin. Nutlin-3 also reduces androgen receptor levels, resulting in altered receptor recruitment to chromatin. Our study demonstrates that small molecule MDM2 antagonists might be useful in the treatment of human prostate cancers that retain functional p53 and androgen receptor signaling. Copyright 2007 Wiley-Liss, Inc.

  17. Auto-ubiquitination of Mdm2 Enhances Its Substrate Ubiquitin Ligase Activity*

    PubMed Central

    Ranaweera, Ruchira S.; Yang, Xiaolu

    2013-01-01

    The RING domain E3 ubiquitin ligase Mdm2 is the master regulator of the tumor suppressor p53. It targets p53 for proteasomal degradation, restraining the potent activity of p53 and enabling cell survival and proliferation. Like most E3 ligases, Mdm2 can also ubiquitinate itself. How Mdm2 auto-ubiquitination may influence its substrate ubiquitin ligase activity is undefined. Here we show that auto-ubiquitination of Mdm2 is an activating event. Mdm2 that has been conjugated to polyubiquitin chains, but not to single ubiquitins, exhibits substantially enhanced activity to polyubiquitinate p53. Mechanistically, auto-ubiquitination of Mdm2 facilitates the recruitment of the E2 ubiquitin-conjugating enzyme. This occurs through noncovalent interactions between the ubiquitin chains on Mdm2 and the ubiquitin binding domain on E2s. Mutations that diminish the noncovalent interactions render auto-ubiquitination unable to stimulate Mdm2 substrate E3 activity. These results suggest a model in which polyubiquitin chains on an E3 increase the local concentration of E2 enzymes and permit the processivity of substrate ubiquitination. They also support the notion that autocatalysis may be a prevalent mode for turning on the activity of latent enzymes. PMID:23671280

  18. Initiation and termination of DNA replication during S phase in relation to cyclins D1, E and A, p21WAF1, Cdt1 and the p12 subunit of DNA polymerase δ revealed in individual cells by cytometry

    PubMed Central

    Darzynkiewicz, Zbigniew; Zhao, Hong; Zhang, Sufang; Marietta, Y.W.T. Lee; Ernest, Y.C. Lee; Zhang, Zhongtao

    2015-01-01

    During our recent studies on mechanism of the regulation of human DNA polymerase δ in preparation for DNA replication or repair, multiparameter imaging cytometry as exemplified by laser scanning cytometry (LSC) has been used to assess changes in expression of the following nuclear proteins associated with initiation of DNA replication: cyclin A, PCNA, Ki-67, p21WAF1, DNA replication factor Cdt1 and the smallest subunit of DNA polymerase δ, p12. In the present review, rather than focusing on Pol δ, we emphasize the application of LSC in these studies and outline possibilities offered by the concurrent differential analysis of DNA replication in conjunction with expression of the nuclear proteins. A more extensive analysis of the data on a correlation between rates of EdU incorporation, likely reporting DNA replication, and expression of these proteins, is presently provided. New data, specifically on the expression of cyclin D1 and cyclin E with respect to EdU incorporation as well as on a relationship between expression of cyclin A vs. p21WAF1 and Ki-67 vs. Cdt1, are also reported. Of particular interest is the observation that this approach makes it possible to assess the temporal sequence of degradation of cyclin D1, p21WAF1, Cdt1 and p12, each with respect to initiation of DNA replication and with respect to each other. Also the sequence or reappearance of these proteins in G2 after termination of DNA replication is assessed. The reviewed data provide a more comprehensive presentation of potential markers, whose presence or absence marks the DNA replicating cells. Discussed is also usefulness of these markers as indicators of proliferative activity in cancer tissues that may bear information on tumor progression and have a prognostic value. PMID:26059433

  19. Initiation and termination of DNA replication during S phase in relation to cyclins D1, E and A, p21WAF1, Cdt1 and the p12 subunit of DNA polymerase δ revealed in individual cells by cytometry.

    PubMed

    Darzynkiewicz, Zbigniew; Zhao, Hong; Zhang, Sufang; Lee, Marietta Y W T; Lee, Ernest Y C; Zhang, Zhongtao

    2015-05-20

    During our recent studies on mechanism of the regulation of human DNA polymerase δ in preparation for DNA replication or repair, multiparameter imaging cytometry as exemplified by laser scanning cytometry (LSC) has been used to assess changes in expression of the following nuclear proteins associated with initiation of DNA replication: cyclin A, PCNA, Ki-67, p21(WAF1), DNA replication factor Cdt1 and the smallest subunit of DNA polymerase δ, p12. In the present review, rather than focusing on Pol δ, we emphasize the application of LSC in these studies and outline possibilities offered by the concurrent differential analysis of DNA replication in conjunction with expression of the nuclear proteins. A more extensive analysis of the data on a correlation between rates of EdU incorporation, likely reporting DNA replication, and expression of these proteins, is presently provided. New data, specifically on the expression of cyclin D1 and cyclin E with respect to EdU incorporation as well as on a relationship between expression of cyclin A vs. p21(WAF1) and Ki-67 vs. Cdt1, are also reported. Of particular interest is the observation that this approach makes it possible to assess the temporal sequence of degradation of cyclin D1, p21(WAF1), Cdt1 and p12, each with respect to initiation of DNA replication and with respect to each other. Also the sequence or reappearance of these proteins in G2 after termination of DNA replication is assessed. The reviewed data provide a more comprehensive presentation of potential markers, whose presence or absence marks the DNA replicating cells. Discussed is also usefulness of these markers as indicators of proliferative activity in cancer tissues that may bear information on tumor progression and have a prognostic value.

  20. MDM2 prevents spontaneous tubular epithelial cell death and acute kidney injury

    PubMed Central

    Thomasova, Dana; Ebrahim, Martrez; Fleckinger, Kristina; Li, Moying; Molnar, Jakob; Popper, Bastian; Liapis, Helen; Kotb, Ahmed M; Siegerist, Florian; Endlich, Nicole; Anders, Hans-Joachim

    2016-01-01

    Murine double minute-2 (MDM2) is an E3-ubiquitin ligase and the main negative regulator of tumor suppressor gene p53. MDM2 has also a non-redundant function as a modulator of NF-kB signaling. As such it promotes proliferation and inflammation. MDM2 is highly expressed in the unchallenged tubular epithelial cells and we hypothesized that MDM2 is necessary for their survival and homeostasis. MDM2 knockdown by siRNA or by genetic depletion resulted in demise of tubular cells in vitro. This phenotype was completely rescued by concomitant knockdown of p53, thus suggesting p53 dependency. In vivo experiments in the zebrafish model demonstrated that the tubulus cells of the larvae undergo cell death after the knockdown of mdm2. Doxycycline-induced deletion of MDM2 in tubular cell-specific MDM2-knockout mice Pax8rtTa-cre; MDM2f/f caused acute kidney injury with increased plasma creatinine and blood urea nitrogen and sharp decline of glomerular filtration rate. Histological analysis showed massive swelling of renal tubular cells and later their loss and extensive tubular dilation, markedly in proximal tubules. Ultrastructural changes of tubular epithelial cells included swelling of the cytoplasm and mitochondria with the loss of cristae and their transformation in the vacuoles. The pathological phenotype of the tubular cell-specific MDM2-knockout mouse model was completely rescued by co-deletion of p53. Tubular epithelium compensates only partially for the cell loss caused by MDM2 depletion by proliferation of surviving tubular cells, with incomplete MDM2 deletion, but rather mesenchymal healing occurs. We conclude that MDM2 is a non-redundant survival factor for proximal tubular cells by protecting them from spontaneous p53 overexpression-related cell death. PMID:27882940

  1. Overexpression of SKI Oncoprotein Leads to p53 Degradation through Regulation of MDM2 Protein Sumoylation*

    PubMed Central

    Ding, Boxiao; Sun, Yin; Huang, Jiaoti

    2012-01-01

    Protooncogene Ski was identified based on its ability to transform avian fibroblasts in vitro. In support of its oncogenic activity, SKI was found to be overexpressed in a variety of human cancers, although the exact molecular mechanism(s) responsible for its oncogenic activity is not fully understood. We found that SKI can negatively regulate p53 by decreasing its level through up-regulation of MDM2 activity, which is mediated by the ability of SKI to enhance sumoylation of MDM2. This stimulation of MDM2 sumoylation is accomplished through a direct interaction of SKI with SUMO-conjugating enzyme E2, Ubc9, resulting in enhanced thioester bond formation and mono-sumoylation of Ubc9. A mutant SKI defective in transformation fails to increase p53 ubiquitination and is unable to increase MDM2 levels and to increase mono-sumoylation of Ubc9, suggesting that the ability of SKI to enhance Ubc9 activity is essential for its transforming function. These results established a detailed molecular mechanism that underlies the ability of SKI to cause cellular transformation while unraveling a novel connection between sumoylation and tumorigenesis, providing potential new therapeutic targets for cancer. PMID:22411991

  2. p53 prevents progression of nevi to melanoma predominantly through cell cycle regulation

    PubMed Central

    Terzian, Tamara; Torchia, Enrique C.; Dai, Daisy; Robinson, Steven E.; Murao, Kazutoshi; Stiegmann, Regan A.; Gonzalez, Victoria; Boyle, Glen M.; Powell, Marianne B.; Pollock, Pamela M.; Lozano, Guillermina; Robinson, William A.; Roop, Dennis R.; Box, Neil F.

    2011-01-01

    p53 is the central member of a critical tumor suppressor pathway in virtually all tumor types, where it is silenced mainly by missense mutations. In melanoma, p53 predominantly remains wild type, thus its role has been neglected. To study the effect of p53 on melanocyte function and melanomagenesis, we crossed the ‘high-p53’ Mdm4+/− mouse to the well-established TP-ras0/+ murine melanoma progression model. After treatment with the carcinogen dimethylbenzanthracene (DMBA), TP-ras0/+ mice on the Mdm4+/− background developed fewer tumors with a delay in the age of onset of melanomas compared to TP-ras0/+ mice. Furthermore, we observed a dramatic decrease in tumor growth, lack of metastasis with increased survival of TP-ras0/+: Mdm4+/− mice. Thus, p53 effectively prevented the conversion of small benign tumors to malignant and metastatic melanoma. p53 activation in cultured primary melanocyte and melanoma cell lines using Nutlin-3, a specific Mdm2 antagonist, supported these findings. Moreover, global gene expression and network analysis of Nutlin-3-treated primary human melanocytes indicated that cell cycle regulation through the p21WAF1/CIP1 signaling network may be the key anti-melanomagenic activity of p53. PMID:20849464

  3. Regulation of p21/CIP1/WAF-1 mediated cell-cycle arrest by RNase L and tristetraprolin, and involvement of AU-rich elements

    PubMed Central

    Al-Haj, Latifa; Blackshear, Perry J.; Khabar, Khalid S.A.

    2012-01-01

    The p21Cip1/WAF1 plays an important role in cell-cycle arrest. Here, we find that RNase L regulates p21-mediated G1 growth arrest in AU-rich elements-dependent manner. We found a significant loss of p21 mRNA expression in RNASEL−/− MEFs and that the overexpression of RNase L in HeLa cells induces p21 mRNA expression. The p21 mRNA half-life significantly changes as a result of RNase L modulation, indicating a post-transcriptional effect. Indeed, we found that RNase L promotes tristetraprolin (TTP/ZFP36) mRNA decay. This activity was not seen with dimerization- and nuclease-deficient RNase L mutants. Deficiency in TTP led to increases in p21 mRNA and protein. With induced ablation of RNase L, TTP mRNA and protein expressions were higher, while p21 expression became reduced. We further establish that TTP, but not C124R TTP mutant, binds to, and accelerates the decay of p21 mRNA. The p21 mRNA half-life was prolonged in TTP−/− MEFs. The TTP regulation of p21 mRNA decay required functional AU-rich elements. Thus, we demonstrate a novel mechanism of regulating G1 growth arrest by an RNase L-TTP-p21 axis. PMID:22718976

  4. Oncogenic functions of tumour suppressor p21(Waf1/Cip1/Sdi1): association with cell senescence and tumour-promoting activities of stromal fibroblasts.

    PubMed

    Roninson, Igor B

    2002-05-08

    p21(Waf1/Cip1/Sdi1) is best known as a broad-specificity inhibitor of cyclin/cyclin-dependent kinase complexes, but p21 also interacts with many other regulators of transcription or signal transduction. p21 induction, which is mediated by p53 and by p53-independent mechanisms, is essential for the onset of cell cycle arrest in damage response and cell senescence. The effects of p21 knockout in mice and its expression patterns in human cancer are consistent with a role for p21 as both a tumour suppressor and an oncogene. Several functions of p21 are likely to promote carcinogenesis and tumour progression. These include endoreduplication and abnormal mitosis that develop in tumour cells after release from p21-induced growth arrest, the ability of p21 to inhibit apoptosis through several different mechanisms, and its ability to stimulate transcription of secreted factors with mitogenic and anti-apoptotic activities. The latter effects of p21 show close resemblance to paracrine activities of senescent cells and to tumour-promoting functions of stromal fibroblasts. Therapeutic strategies targeting the oncogenic consequences of p21 expression may provide a new approach to chemoprevention and treatment of cancer.

  5. Urinary Bladder Lesions after the Chernobyl Accident: Immunohistochemical Assessment of p53, Proliferating Cell Nuclear Antigen, Cyclin D1 and p21WAF1/Cip1

    PubMed Central

    Romanenko, Alina; Lee, Chyi Chia R.; Yamamoto, Shinji; Hori, Taka‐aki; Wanibuchi, Hideki; Zaparin, Wadim; Vinnichenko, Wladimir; Vozianov, Alexander

    1999-01-01

    During the 11‐year period subsequent to the Chernobyl accident, the incidence of urinary bladder cancer in Ukraine has increased from 26.2 to 36.1 per 100,000 population. Cesium‐137 (137Cs) accounts for 80–90% of the incorporated radioactivity in this population, which has been exposed to long‐term, low‐dose ionizing radiation, and 80% of the more labile pool of cesium is excreted via the urine. The present study was performed to evaluate the histopathological features and the immunohistochemical status of p53, p21WAF1/Cip1, cyclin D1 and PCNA (proliferating cell nuclear antigen) in urinary bladder mucos a of 55 males (49‐92 years old) with benign prostatic hyperplasia who underwent surgery in Kiev, Ukraine, in 1995 and 1996. Group I (28 patients) inhabiting radiocontaminated areas of the country, group II (17 patients) from Kiev city with less radiocontamination and a control group III (10 patients) living in so‐called “clean” areas of Ukraine were compared. In groups I and II, an increase in multiple areas of moderate or severe dysplasia or carcinoma in situ was seen in 42 (93%) of 45 cases. In addi tion, two small transitional cell carcinomas were found in one patient in each of groups I and II. Nuclear accumulation of p53, PCNA, cyclin D1, and to a lesser extent p21WAF1/Cip1, was significantly increased in both groups I and II as compared with the control group III, indicating possible transformation events or enhancement of repair activities, that may precede the defect in the regulatory pathway itself, at least in the G1 phase of the cell cycle. Our results suggest that early malignant transformation is taking place in the bladder urothelium of people in the radiocontaminated areas of Ukraine and that this could possibly lead sometime in the future to an increased incidence of urinary bladder cancer. PMID:10189884

  6. The proto-oncoprotein FBI-1 interacts with MBD3 to recruit the Mi-2/NuRD-HDAC complex and BCoR and to silence p21WAF/CDKN1A by DNA methylation

    PubMed Central

    Choi, Won-Il; Jeon, Bu-Nam; Yoon, Jae-Hyeon; Koh, Dong-In; Kim, Myung-Hwa; Yu, Mi-Young; Lee, Kyung-Mi; Kim, Youngsoo; Kim, Kyunggon; Hur, Sujin Susanne; Lee, Choong-Eun; Kim, Kyung-Sup; Hur, Man-Wook

    2013-01-01

    The tumour-suppressor gene CDKN1A (encoding p21Waf/Cip1) is thought to be epigenetically repressed in cancer cells. FBI-1 (ZBTB7A) is a proto-oncogenic transcription factor repressing the alternative reading frame and p21WAF/CDKN1A genes of the p53 pathway. FBI-1 interacts directly with MBD3 (methyl-CpG–binding domain protein 3) in the nucleus. We demonstrated that FBI-1 binds both non-methylated and methylated DNA and that MBD3 is recruited to the CDKN1A promoter through its interaction with FBI-1, where it enhances transcriptional repression by FBI-1. FBI-1 also interacts with the co-repressors nuclear receptor corepressor (NCoR), silencing mediator for retinoid and thyroid receptors (SMRT) and BCL-6 corepressor (BCoR) to repress transcription. MBD3 regulates a molecular interaction between the co-repressor and FBI-1. MBD3 decreases the interaction between FBI-1 and NCoR/SMRT but increases the interaction between FBI-1 and BCoR. Because MBD3 is a subunit of the Mi-2 autoantigen (Mi-2)/nucleosome remodelling and histone deacetylase (NuRD)-HDAC complex, FBI-1 recruits the Mi-2/NuRD-HDAC complex via MBD3. BCoR interacts with the Mi-2/NuRD-HDAC complex, DNMTs and HP1. MBD3 and BCoR play a significant role in the recruitment of the Mi-2/NuRD-HDAC complex– and the NuRD complex–associated proteins, DNMTs and HP. By recruiting DNMTs and HP1, Mi-2/NuRD-HDAC complex appears to play key roles in epigenetic repression of CDKN1A by DNA methylation. PMID:23658227

  7. Assessment of mdm2 Alterations on p53 Expression in Breast Cancer

    DTIC Science & Technology

    2000-10-01

    Figure 2. Schematic Comparison of mdm2 with PCR Products of Various Sizes. nuclear localization signal I p53 binding site X acidic domain zinc...susceptibility gene isolated by controlled homozygous functional knockout of allelic loci in mammalian cells. Cell. 85: 319-329, 1996. 36. Li, L., Li, X ...twelve years. Chinese Journal of Parasitology and Parasitic Diseases 10: 112-114, 1992. 7. Gao DQ, Cansesaa L, Mouradian MM, Jose P. Dopamine D2-long

  8. Designing dual inhibitors of Mdm2/MdmX: Unexpected coupling of water with gatekeeper Y100/99.

    PubMed

    Lee, Xiong An; Verma, Chandra; Sim, Adelene Y L

    2017-08-01

    Mdm2 and MdmX share high structural similarity in their N-terminal domains, yet dual inhibitors are challenging to design due to differences in the conformations of the binding pockets, and notably of the proposed gatekeeper residue, Y100/99. Analysis of crystal structures and molecular dynamics (MD) simulations of complexes of Mdm2 and MdmX resulted in the identification of a water molecule with a long residence time that appears to be modulated by the conformation of Y100/99. These observations lead us to speculate that dual inhibitors either (i) stabilize both Mdm2 and MdmX with Y100/99 in the open conformation typically seen in complexes of Mdm2 with p53, or (ii) the dual inhibitors are agnostic to the conformation of Y100/99. The recently developed potent dual inhibitory stapled peptide Atsp7041 appears to be agnostic to the conformation of the gatekeeper residue. Proteins 2017; 85:1493-1506. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. Monitoring p53 by MDM2 and MDMX is required for endocrine pancreas development and function in a spatio-temporal manner.

    PubMed

    Zhang, Yiwei; Zeng, Shelya X; Hao, Qian; Lu, Hua

    2017-03-01

    Although p53 is not essential for normal embryonic development, it plays a pivotal role in many biological and pathological processes, including cell fate determination-dependent and independent events and diseases. The expression and activity of p53 largely depend on its two biological inhibitors, MDM2 and MDMX, which have been shown to form a complex in order to tightly control p53 to an undetectable level during early stages of embryonic development. However, more delicate studies using conditional gene-modification mouse models show that MDM2 and MDMX may function separately or synergistically on p53 regulation during later stages of embryonic development and adulthood in a cell and tissue-specific manner. Here, we report the role of the MDM2/MDMX-p53 pathway in pancreatic islet morphogenesis and functional maintenance, using mouse lines with specific deletion of MDM2 or MDMX in pancreatic endocrine progenitor cells. Interestingly, deletion of MDM2 results in defects of embryonic endocrine pancreas development, followed by neonatal hyperglycemia and lethality, by inducing pancreatic progenitor cell apoptosis and inhibiting cell proliferation. However, unlike MDM2-knockout animals, mice lacking MDMX in endocrine progenitor cells develop normally. But, surprisingly, the survival rate of adult MDMX-knockout mice drastically declines compared to control mice, as blockage of neonatal development of endocrine pancreas by inhibition of cell proliferation and subsequent islet dysfunction and hyperglycemia eventually lead to type 1 diabetes-like disease with advanced diabetic nephropathy. As expected, both MDM2 and MDMX deletion-caused pancreatic defects are completely rescued by loss of p53, verifying the crucial role of the MDM2 and/or MDMX in regulating p53 in a spatio-temporal manner during the development, functional maintenance, and related disease progress of endocrine pancreas. Also, our study suggests a possible mouse model of advanced diabetic nephropathy

  10. Design and Testing of Bi-functional, P-loop Targeted MDM2 Inhibitors

    DTIC Science & Technology

    2008-03-01

    Nucleotide Binding Activity of the Mdm2 RING Domain Christina Priest, Masha Poyurovsky, Brent Stockwell and Carol Prives Department of Biological Sciences...Deconstructing nucleotide binding activity of the Mdm2 RING domain Christina Priest, Carol Prives* and Masha V. Poyurovsky Department of Biological Sciences

  11. Dedifferentiated liposarcoma with meningothelial-like whorls, metaplastic bone formation, and CDK4, MDM2, and p16 expression: a morphologic and immunohistochemical study.

    PubMed

    Thway, Khin; Robertson, David; Thway, Yi; Fisher, Cyril

    2011-03-01

    We studied 5 cases of dedifferentiated liposarcoma with meningothelial-like whorls and metaplastic bone formation, assessing morphology and immunohistochemical expression of a panel of antigens (CDK4, MDM2, and p16 proteins, desmin, smooth muscle actin, h-caldesmon, CD34, AE1/AE3, epithelial membrane antigen, claudin-1, S100 protein, CD21, CD35, CD117, β-catenin, vimentin, and MIB1). The specimens were from the retroperitoneum (3), pelvis (1) or paratesticular region (1), and all 5 specimens comprised exclusively or predominantly dedifferentiated liposarcoma. All 5 dedifferentiated liposarcomas showed prominent metaplastic bone, 3 produced cartilage, and 1 also had osteosarcomatous tissue. The whorls comprised concentric distributions of spindle or epithelioid cells. All cases expressed smooth muscle actin, 3 strongly, whereas 4 cases showed at least focal claudin-1 positivity. In all cases, the whorls expressed at least 2 of CDK4, MDM2, and p16. The presence of 2 morphologic subsets and the immunohistochemical findings suggest that the whorls in these dedifferentiated liposarcomas exhibit divergent myofibroblastic and possibly perineurial differentiation. The CDK4, MDM2, and p16 expression in the whorls suggests that they share a similar genetic background to well-differentiated and dedifferentiated liposarcoma, and that additional genetic events are causal to their distinct morphology.

  12. p53 and Mdm2 act synergistically to maintain cardiac homeostasis and mediate cardiomyocyte cell cycle arrest through a network of microRNAs.

    PubMed

    Stanley-Hasnain, Shanna; Hauck, Ludger; Grothe, Daniela; Aschar-Sobbi, Roozbeh; Beca, Sanja; Butany, Jagdish; Backx, Peter H; Mak, Tak W; Billia, Filio

    2017-01-01

    Defining the roadblocks responsible for cell cycle arrest in adult cardiomyocytes lies at the core of developing cardiac regenerative therapies. p53 and Mdm2 are crucial mediators of cell cycle arrest in proliferative cell types, however, little is known about their function in regulating homeostasis and proliferation in terminally differentiated cell types, like cardiomyocytes. To explore this, we generated a cardiac-specific conditional deletion of p53 and Mdm2 (DKO) in adult mice. Herein we describe the development of a dilated cardiomyopathy, in the absence of cardiac hypertrophy. In addition, DKO hearts exhibited a significant increase in cardiomyocyte proliferation. Further evaluation showed that proliferation was mediated by a significant increase in Cdk2 and cyclin E with downregulation of p21 Cip1 and p27 Kip1 . Comparison of miRNA expression profiles from DKO mouse hearts and controls revealed 11 miRNAs that were downregulated in the DKO hearts and enriched for mRNA targets involved in cell cycle regulation. Knockdown of these miRNAs in neonatal rat cardiomyocytes significantly increased cytokinesis with an upregulation in the expression of crucial cell cycle regulators. These results illustrate the importance of the cooperative activities of p53 and Mdm2 in a network of miRNAs that function to impose a barrier against aberrant cardiomyocyte cell cycle re-entry to maintain cardiac homeostasis.

  13. The role of MDM2 and MDM4 in breast cancer development and prevention.

    PubMed

    Haupt, Sue; Vijayakumaran, Reshma; Miranda, Panimaya Jeffreena; Burgess, Andrew; Lim, Elgene; Haupt, Ygal

    2017-02-01

    The major cause of death from breast cancer is not the primary tumour, but relapsing, drug-resistant, metastatic disease. Identifying factors that contribute to aggressive cancer offers important leads for therapy. Inherent defence against carcinogens depends on the individual molecular make-up of each person. Important molecular determinants of these responses are under the control of the mouse double minute (MDM) family: comprised of the proteins MDM2 and MDM4. In normal, healthy adult cells, the MDM family functions to critically regulate measured, cellular responses to stress and subsequent recovery. Proper function of the MDM family is vital for normal breast development, but also for preserving genomic fidelity. The MDM family members are best characterized for their negative regulation of the major tumour suppressor p53 to modulate stress responses. Their impact on other cellular regulators is emerging. Inappropriately elevated protein levels of the MDM family are highly associated with an increased risk of cancer incidence. Exploration of the MDM family members as cancer therapeutic targets is relevant for designing tailored anti-cancer treatments, but successful approaches must strategically consider the impact on both the target cancer and adjacent healthy cells and tissues. This review focuses on recent findings pertaining to the role of the MDM family in normal and malignant breast cells. © The Author (2017). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS.

  14. Synergistic cooperation of MDM2 and E2F1 contributes to TAp73 transcriptional activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasim, Vivi, E-mail: vivikasim78@gmail.com; Huang, Can; Zhang, Jing

    2014-07-04

    Highlights: • MDM2 is a novel positive regulator of TAp73 transcriptional activity. • MDM2 colocalizes together and physically interacts with E2F1. • Synergistic cooperation of MDM2 and E2F1 is crucial for TAp73 transcription. • MDM2 regulates TAp73 transcriptional activity in a p53-independent manner. - Abstract: TAp73, a structural homologue of p53, plays an important role in tumorigenesis. E2F1 had been reported as a transcriptional regulator of TAp73, however, the detailed mechanism remains to be elucidated. Here we reported that MDM2-silencing reduced the activities of the TAp73 promoters and the endogenous TAp73 expression level significantly; while MDM2 overexpression upregulated them. Wemore » further revealed that the regulation of TAp73 transcriptional activity occurs as a synergistic effect of MDM2 and E2F1, most probably through their physical interaction in the nuclei. Furthermore, we also suggested that MDM2 might be involved in DNA damage-induced TAp73 transcriptional activity. Finally, we elucidated that MDM2-silencing reduced the proliferation rate of colon carcinoma cells regardless of the p53 status. Our data show a synergistic effect of MDM2 and E2F1 on TAp73 transcriptional activity, suggesting a novel regulation pathway of TAp73.« less

  15. RT-PCR amplification of RNA extracted from formalin-fixed, paraffin-embedded oral cancer sections: analysis of p53 pathway.

    PubMed

    Tachibana, Masatsugu; Shinagawa, Yasuhiro; Kawamata, Hitoshi; Omotehara, Fumie; Horiuchi, Hideki; Ohkura, Yasuo; Kubota, Keiichi; Imai, Yutaka; Fujibayashi, Takashi; Fujimori, Takahiro

    2003-01-01

    We present a new approach towards the detection of the mRNAs in formalin-fixed, paraffin-embedded samples using a reverse transcriptase (RT)-polymerase chain reaction (PCR). The total RNAs were extracted from 10-micron-thick sections and were reverse-transcribed, then the RT-products were subjected to PCR amplification of GAPDH mRNA for screening the mRNA degradation. Next, nested PCR was performed for examining the expression of p53-related genes, p21WAF1, MDM2, p33ING1 and p14ARF. GAPDH mRNA expression was detectable in 12 out of 21 oral squamous cell carcinoma (SCC) samples. p21WAF1 mRNA expression was detectable in 5 out of 12 SCC samples, MDM2 mRNA expression was detectable in 5 our of 12 SCC samples and p33ING1 mRNA expression was detectable in 6 out of 12 SCC samples. However, the expression of p14ARF mRNA was not detectable in any of the samples. Seven out of 12 oral SCC samples showed abnormal nuclear accumulation of p53 protein by immunohistochemical staining, whereas 5 out of 12 oral SCCs showed negative staining for p53 protein. Of of p33ING1 mRNA. One of these was a verrucous carcinoma in which the p53 gene products might be inactivated by the oncoprotein E6 of human papilloma virus. Thus, the p53 tumor suppressor pathway was disrupted in most oral SCCs at the cellular levels, due to either an abnormality in p53 itself or loss of expression of p53 regulatory factors. This method would assist in making diagnosis, determining therapeutic strategy and predicting the prognosis of various cancers including oral SCCs.

  16. Nurr1 promotes intestinal regeneration after ischemia/reperfusion injury by inhibiting the expression of p21 (Waf1/Cip1).

    PubMed

    Zu, Guo; Yao, Jihong; Ji, Anlong; Ning, Shili; Luo, Fuwen; Li, Zhenlu; Feng, Dongcheng; Rui, Yiqi; Li, Yang; Wang, Guangzhi; Tian, Xiaofeng

    2017-01-01

    Intestinal ischemia/reperfusion (I/R) injury is a potentially life-threatening condition that can cause injuries to remote organs at the end stage. The damage caused by intestinal I/R insult induces changes in the barrier functions of the intestine, and the intrinsic mechanism of regeneration is often insufficient to restore barrier functions, as indicated by the high mortality rate of patients experiencing intestinal I/R injury. However, little is known about the mechanisms of intestinal regeneration after I/R injury. Here, we reported that nuclear receptor-related protein 1 (Nurr1), a nuclear orphan receptor, was induced during intestinal regeneration after I/R. Our findings showed that Nurr1 expression was consistent with the expression of Ki-67 and phosphorylated histone H3 (pH 3) in the intestine after I/R injury. Nurr1 knockdown led to G1-phase arrest mediated by p21 (Waf1/Cip1) activation, but Nurr1 overexpression reduced the proportion of IEC-6 cells in G1 phase as a result of p21 inhibition in a p53-independent manner. Using chromatin immunoprecipitation assays, luciferase assays, and mutational analysis, we demonstrated that Nurr1 directly inhibited the transcription of p21. These results define a novel Nurr1/p21 pathway that is involved in intestinal regeneration after I/R injury. These findings provide novel molecular insights into the pathogenesis of intestinal regeneration after I/R and possibly support the development of new potential therapies for intestinal I/R injury. Nurr1 was induced during intestinal regeneration after I/R injury. Nurr1 promoted proliferation of intestinal epithelial cells after H/R injury. Nurr1 inhibited p21 expression in a p53-independent manner. Nurr1 inhibited p21 gene transcription by binding to p21 promoter directly.

  17. Differential diagnosis of atypical lipomatous tumor/well-differentiated liposarcoma and dedifferentiated liposarcoma: utility of p16 in combination with MDM2 and CDK4 immunohistochemistry.

    PubMed

    Kammerer-Jacquet, Solène-Florence; Thierry, Sixte; Cabillic, Florian; Lannes, Morgane; Burtin, Florence; Henno, Sébastien; Dugay, Frédéric; Bouzillé, Guillaume; Rioux-Leclercq, Nathalie; Belaud-Rotureau, Marc-Antoine; Stock, Nathalie

    2017-01-01

    The differential diagnosis between atypical lipomatous tumor/well-differentiated liposarcoma (ALT/WDLPS) and dedifferentiated liposarcoma (DDLPS) from their morphologic counterparts is challenging. Currently, the diagnosis is guided by MDM2 and CDK4 immunohistochemistry (IHC) and is confirmed by the amplification of the corresponding genes. Recently, p16 IHC has been proposed as a useful diagnostic biomarker. The objective was to assess the utility of p16 IHC in the differential diagnosis of ALT/WDLPS and DDLPS. Our series included 101 tumors that were previously analyzed using fluorescence in situ hybridization for MDM2 and CDK4 amplification. We compared sensitivity and specificity of p16 IHC to MDM2 and CDK4 IHC in the differential diagnosis of ALT-WDLPS (n=19) versus benign adipocytic tumors (n=44) and DDLPS (n=18) versus mimicking sarcomas (n=20). In the differential diagnosis of ALT-WDLPS, p16 had a sensitivity of 89.5% but a specificity of 68.2%, which was impaired by false-positive lipomas with secondary changes, especially in biopsies. Likewise, in the differential diagnosis of DDLPS, p16 had a sensitivity of 94.4% and a specificity of 70%, which hampered its use as a single marker. However, adding p16 to MDM2 and/or CDK4 increased diagnostic specificity. Indeed, MDM2+/p16+ tumors were all ALT-WDLPS, and MDM2-/p16- tumors were all benign adipocytic tumors. Moreover, all MDM2+/CDK4+/p16+ tumors were DDLPS, and the MDM2-/CDK4-/p16- tumor was an undifferentiated sarcoma. Although the use of p16 as a single immunohistochemical marker is limited by its specificity, its combination with MDM2 and CDK4 IHC may help discriminate ALT-WDLPS/DDLPS. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Heterogeneous distribution of P53 immunoreactivity in human lung adenocarcinoma correlates with MDM2 protein expression, rather than with P53 gene mutation.

    PubMed

    Koga, T; Hashimoto, S; Sugio, K; Yoshino, I; Nakagawa, K; Yonemitsu, Y; Sugimachi, K; Sueishi, K

    2001-07-20

    Although the tumor suppressor p53 protein (P53) immunoreactivity and its gene (p53) mutation were reported to be significant prognostic indicators for human lung adenocarcinomas, little is known regarding the relationship between the heterogeneous distribution of P53 and its genetic status in each tumor focus and the clinicopathological significance. To determine how P53 is heterogeneously stabilized in patients, we compared P53 expression to both the p53 allelic mutation in exon 2 approximately 9 by polymerase chain reaction-single strand conformation polymorphism using microdissected DNA fractions, and the immunohistochemical MDM2 expression. Of the 48 positive to P53 in 118 lung adenocarcinomas examined, 10 with heterogeneous P53 expression were closely examined. The higher P53 expression foci in 7 of 10 cases were less differentiated, histologically in respective cases, and were frequently associated with fibrous stroma. Two had genetic mutations in exon 7 of the p53 gene in both the high and low P53 expression foci of cancer tissue indicating no apparent correlation between heterogeneous P53 expression and the occurrence of gene mutation. Immunohistochemical expression of MDM2 was significantly lower in high P53 expression areas (p < 0.05, the mean labeling indices of high and low P53 expression areas being 4.2 +/- 5.4% and 13.6 +/- 12.2%, respectively). In addition, among all the 118 cases examined, MDM2 expression was significantly suppressed in cases of p53 gene mutation, simultaneously with P53 overexpression, as compared with cases without both the p53 mutation and expression (p < 0.001). These findings suggest that the heterogeneous stabilization of P53 in human lung adenocarcinomas could be partly due to suppressed MDM2 expression. The overexpression of non-mutated P53 may afford a protective mechanism in human lung adenocarcinomas. Copyright 2001 Wiley-Liss, Inc.

  19. MDM2 restrains estrogen-mediated AKT activation by promoting TBK1-dependent HPIP degradation

    PubMed Central

    Shostak, K; Patrascu, F; Göktuna, S I; Close, P; Borgs, L; Nguyen, L; Olivier, F; Rammal, A; Brinkhaus, H; Bentires-Alj, M; Marine, J-C; Chariot, A

    2014-01-01

    Restoration of p53 tumor suppressor function through inhibition of its interaction and/or enzymatic activity of its E3 ligase, MDM2, is a promising therapeutic approach to treat cancer. However, because the MDM2 targetome extends beyond p53, MDM2 inhibition may also cause unwanted activation of oncogenic pathways. Accordingly, we identified the microtubule-associated HPIP, a positive regulator of oncogenic AKT signaling, as a novel MDM2 substrate. MDM2-dependent HPIP degradation occurs in breast cancer cells on its phosphorylation by the estrogen-activated kinase TBK1. Importantly, decreasing Mdm2 gene dosage in mouse mammary epithelial cells potentiates estrogen-dependent AKT activation owing to HPIP stabilization. In addition, we identified HPIP as a novel p53 transcriptional target, and pharmacological inhibition of MDM2 causes p53-dependent increase in HPIP transcription and also prevents HPIP degradation by turning off TBK1 activity. Our data indicate that p53 reactivation through MDM2 inhibition may result in ectopic AKT oncogenic activity by maintaining HPIP protein levels. PMID:24488098

  20. Design, Synthesis and Evaluation of 2,5-Diketopiperazines as Inhibitors of the MDM2-p53 Interaction.

    PubMed

    Pettersson, Mariell; Quant, Maria; Min, Jaeki; Iconaru, Luigi; Kriwacki, Richard W; Waddell, M Brett; Guy, R Kiplin; Luthman, Kristina; Grøtli, Morten

    2015-01-01

    The transcription factor p53 is the main tumour suppressor in cells and many cancer types have p53 mutations resulting in a loss of its function. In tumours that retain wild-type p53 function, p53 activity is down-regulated by MDM2 (human murine double minute 2) via a direct protein-protein interaction. We have designed and synthesised two series of 2,5-diketopiperazines as inhibitors of the MDM2-p53 interaction. The first set was designed to directly mimic the α-helical region of the p53 peptide, containing key residues in the i, i+4 and i+7 positions of a natural α-helix. Conformational analysis indicated that 1,3,6-trisubstituted 2,5-diketopiperazines were able to place substituents in the same spatial orientation as an α-helix template. The key step of the synthesis involved the cyclisation of substituted dipeptides. The other set of tetrasubstituted 2,5-diketopiperazines were designed based on structure-based docking studies and the Ugi multicomponent reaction was used for the synthesis. This latter set comprised the most potent inhibitors which displayed micromolar IC50-values in a biochemical fluorescence polarisation assay.

  1. Design, Synthesis and Evaluation of 2,5-Diketopiperazines as Inhibitors of the MDM2-p53 Interaction

    PubMed Central

    Pettersson, Mariell; Quant, Maria; Min, Jaeki; Iconaru, Luigi; Kriwacki, Richard W.; Waddell, M. Brett; Guy, R. Kiplin; Luthman, Kristina; Grøtli, Morten

    2015-01-01

    The transcription factor p53 is the main tumour suppressor in cells and many cancer types have p53 mutations resulting in a loss of its function. In tumours that retain wild-type p53 function, p53 activity is down-regulated by MDM2 (human murine double minute 2) via a direct protein—protein interaction. We have designed and synthesised two series of 2,5-diketopiperazines as inhibitors of the MDM2-p53 interaction. The first set was designed to directly mimic the α-helical region of the p53 peptide, containing key residues in the i, i+4 and i+7 positions of a natural α-helix. Conformational analysis indicated that 1,3,6-trisubstituted 2,5-diketopiperazines were able to place substituents in the same spatial orientation as an α-helix template. The key step of the synthesis involved the cyclisation of substituted dipeptides. The other set of tetrasubstituted 2,5-diketopiperazines were designed based on structure-based docking studies and the Ugi multicomponent reaction was used for the synthesis. This latter set comprised the most potent inhibitors which displayed micromolar IC50-values in a biochemical fluorescence polarisation assay. PMID:26427060

  2. Induction of apoptosis in Ehrlich ascites tumour cells via p53 activation by a novel small-molecule MDM2 inhibitor - LQFM030.

    PubMed

    da Mota, Mariana F; Cortez, Alane P; Benfica, Polyana L; Rodrigues, Bruna Dos S; Castro, Thalyta F; Macedo, Larissa M; Castro, Carlos H; Lião, Luciano M; de Carvalho, Flávio S; Romeiro, Luiz A S; Menegatti, Ricardo; Verli, Hugo; Villavicencio, Bianca; Valadares, Marize C

    2016-09-01

    The activation of the p53 pathway through the inhibition of MDM2 has been proposed as a novel therapeutic strategy against tumours. A series of cis-imidazoline analogues, termed nutlins, were reported to displace the recombinant p53 protein from its complex with MDM2 by binding to MDM2 in the p53 pocket, and exhibited an antitumour activity both in vitro and in vivo. Thus, the purpose of this study was to evaluate the antitumour properties of LQFM030 (2), a nutlin analogue created by employing the strategy of molecular simplification. LQFM030 (2) cytotoxicity was evaluated in Ehrlich ascites tumour (EAT) cells, p53 wild type, by the trypan blue exclusion test, and the mechanisms involved in EAT cell death were investigated by light and fluorescence microscopy, flow cytometry, real-time PCR and Western blotting. Our results demonstrate that LQFM030 has dose-dependent antiproliferative activity and cytotoxic activity on EAT cells, induces the accumulation of p53 protein and promotes cell cycle arrest and apoptosis. p53 gene transcription was unaffected by LQFM030 (2); however, MDM2 mRNA increased and MDM2 protein decreased. These results suggest that the small-molecule p53 activator LQFM030 (2) has the potential for further development as a novel cancer therapeutic agent. © 2016 Royal Pharmaceutical Society.

  3. Aciculatin Induces p53-Dependent Apoptosis via MDM2 Depletion in Human Cancer Cells In Vitro and In Vivo

    PubMed Central

    Lai, Chin-Yu; Tsai, An-Chi; Chen, Mei-Chuan; Chang, Li-Hsun; Sun, Hui-Lung; Chang, Ya-Ling; Chen, Chien-Chih

    2012-01-01

    Aciculatin, a natural compound extracted from the medicinal herb Chrysopogon aciculatus, shows potent anti-cancer potency. This study is the first to prove that aciculatin induces cell death in human cancer cells and HCT116 mouse xenografts due to G1 arrest and subsequent apoptosis. The primary reason for cell cycle arrest and cell death was p53 accumulation followed by increased p21 level, dephosphorylation of Rb protein, PUMA expression, and induction of apoptotic signals such as cleavage of caspase-9, caspase-3, and PARP. We demonstrated that p53 allele-null (−/−) (p53-KO) HCT116 cells were more resistant to aciculatin than cells with wild-type p53 (+/+). The same result was achieved by knocking down p53 with siRNA in p53 wild-type cells, indicating that p53 plays a crucial role in aciculatin-induced apoptosis. Although DNA damage is the most common event leading to p53 activation, we found only weak evidence of DNA damage after aciculatin treatment. Interestingly, the aciculatin-induced downregulation of MDM2, an important negative regulator of p53, contributed to p53 accumulation. The anti-cancer activity and importance of p53 after aciculatin treatment were also confirmed in the HCT116 xenograft models. Collectively, these results indicate that aciculatin treatment induces cell cycle arrest and apoptosis via inhibition of MDM2 expression, thereby inducing p53 accumulation without significant DNA damage and genome toxicity. PMID:22912688

  4. p21WAF1 and tumourigenesis: 20 years after.

    PubMed

    Warfel, Noel A; El-Deiry, Wafik S

    2013-01-01

    This review provides an overview of the structure, regulation and physiological functions of p21, the product of the cyclin-dependent kinase inhibitor 1A (CDKN1A) gene, with a focus on its dual role in promoting and repressing biological processes that are hallmarks of tumourigenesis. Recent work has provided a better understanding of the molecular mechanisms of how oncogenic signalling pathways influence p21 expression. In response to cellular stimuli, p21 expression is tightly regulated at transcriptional and post-translational levels through mechanisms involving RNA stabilization, phosphorylation and ubiquitination. As a result, growing evidence reveals that several important tumour suppressor and oncogenic signalling pathways alter p21 expression to elicit their effects on cell cycle progression and survival. Thus, p21 expression can both promote and inhibit tumourigenic processes, depending on the cellular context. Since its discovery, it has become increasingly clear that p21 can function as both a classical tumour suppressor and an oncogene. In order to effectively utilize p21 as a therapeutic target, it will be necessary to design therapeutic strategies that preferentially block the ability of p21 to promote senescence, stem cell renewal and cyclin/CDK activation, while leaving its tumour suppressive functions intact.

  5. LRRK2 interacts with ATM and regulates Mdm2-p53 cell proliferation axis in response to genotoxic stress.

    PubMed

    Chen, Zhongcan; Cao, Zhen; Zhang, Wei; Gu, Minxia; Zhou, Zhi Dong; Li, Baojie; Li, Jing; Tan, Eng King; Zeng, Li

    2017-11-15

    Pathogenic leucine-rich repeat kinase 2 (LRRK2) mutations are recognized as the most common cause of familial Parkinson's disease in certain populations. Recently, LRRK2 mutations were shown to be associated with a higher risk of hormone-related cancers. However, how LRRK2 itself contributes to cancer risk remains unknown. DNA damage causes cancer, and DNA damage responses are among the most important pathways in cancer biology. To understand the role of LRRK2 in DNA damage response pathway, we induced DNA damage by applying genotoxic stress to the cells with Adriamycin. We found that DNA damage enhances LRRK2 phosphorylation at Serine 910, Serine 935 and Serine 1292. We further showed that LRRK2 phosphorylation is abolished in the absence of ATM, suggesting that LRRK2 phosphorylation requires ATM. It should also be noted that LRRK2 interacts with ATM. In contrast, overexpression or knockdown of LRRK2 does not affect ATM phosphorylation, indicating that LRRK2 is the downstream target of ATM in response to DNA damage. Moreover, we demonstrated that LRRK2 increases the expression of p53 and p21 by increasing the Mdm2 phosphorylation in response to DNA damage. Loss-of-function in LRRK2 has the opposite effect to that of LRRK2. In addition, FACS analysis revealed that LRRK2 enhances cell cycle progression into S phase in response to DNA damage, a finding that was confirmed by 5-bromo-2'-deoxyuridine immunostaining. Taken together, our findings demonstrate that LRRK2 plays an important role in the ATM-Mdm2-p53 pathway that regulates cell proliferation in response to DNA damage. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. The nitric oxide-sensitive p21Ras-ERK pathway mediates S-nitrosoglutathione-induced apoptosis.

    PubMed

    Tsujita, Maristela; Batista, Wagner L; Ogata, Fernando T; Stern, Arnold; Monteiro, Hugo P; Arai, Roberto J

    2008-05-16

    p21Ras protein plays a critical role in cellular signaling that induces either cell cycle progression or apoptosis. Nitric oxide (NO) has been consistently reported to activate p21Ras through the redox sensitive cysteine residue (118). In this study, we demonstrated that the p21Ras-ERK pathway regulates THP-1 monocyte/macrophage apoptosis induced by S-nitrosoglutathione (SNOG). This was apparent from studies in THP-1 cells expressing NO-insensitive p21Ras (p21Ras(C118S)) where the pro-apoptotic action of SNOG was almost abrogated. Three major MAP kinase pathways (ERK, JNK, and p38) that are downstream to p21Ras were investigated. It was observed that only the activation of ERK1/2 MAP kinases by SNOG in THP-1 cells was attributable to p21Ras. The inhibition of the ERK pathway by PD98059 markedly attenuated apoptosis in SNOG-treated THP-1 cells, but had a marginal effect on SNOG-treated THP-1 cells expressing NO-insensitive p21Ras. The inhibition of the JNK and p38 pathways by selective inhibitors had no marked effects on the percentage of apoptosis. The induction of p21Waf1 expression by SNOG was observed in THP-1 cells harboring mutant and wild-type p21Ras, however in cells expressing mutant Ras, the expression of p21Waf1 was significantly attenuated. The treatment of THP-1 cells expressing wild-type p21Ras with PD98059 resulted in significant attenuation of p21Waf1 expression. These results indicate that the redox sensitive p21Ras-ERK pathway plays a critical role in sensing and delivering the pro-apoptotic signaling mediated by SNOG.

  7. The nitric oxide-sensitive p21Ras-ERK pathway mediates S-nitrosoglutathione-induced apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsujita, Maristela; Faculdade de Ciencias Farmaceuticas, Universidade de Sao Paulo, SP; Batista, Wagner L.

    2008-05-16

    p21Ras protein plays a critical role in cellular signaling that induces either cell cycle progression or apoptosis. Nitric oxide (NO) has been consistently reported to activate p21Ras through the redox sensitive cysteine residue (118). In this study, we demonstrated that the p21Ras-ERK pathway regulates THP-1 monocyte/macrophage apoptosis induced by S-nitrosoglutathione (SNOG). This was apparent from studies in THP-1 cells expressing NO-insensitive p21Ras (p21Ras{sup C118S}) where the pro-apoptotic action of SNOG was almost abrogated. Three major MAP kinase pathways (ERK, JNK, and p38) that are downstream to p21Ras were investigated. It was observed that only the activation of ERK1/2 MAP kinasesmore » by SNOG in THP-1 cells was attributable to p21Ras. The inhibition of the ERK pathway by PD98059 markedly attenuated apoptosis in SNOG-treated THP-1 cells, but had a marginal effect on SNOG-treated THP-1 cells expressing NO-insensitive p21Ras. The inhibition of the JNK and p38 pathways by selective inhibitors had no marked effects on the percentage of apoptosis. The induction of p21Waf1 expression by SNOG was observed in THP-1 cells harboring mutant and wild-type p21Ras, however in cells expressing mutant Ras, the expression of p21Waf1 was significantly attenuated. The treatment of THP-1 cells expressing wild-type p21Ras with PD98059 resulted in significant attenuation of p21Waf1 expression. These results indicate that the redox sensitive p21Ras-ERK pathway plays a critical role in sensing and delivering the pro-apoptotic signaling mediated by SNOG.« less

  8. The cis conformation of proline leads to weaker binding of a p53 peptide to MDM2 compared to trans.

    PubMed

    Zhan, Yingqian Ada; Ytreberg, F Marty

    2015-06-01

    The cis and trans conformations of the Xaa-Pro (Xaa: any amino acid) peptide bond are thermodynamically stable while other peptide bonds strongly prefer trans. The effect of proline cis-trans isomerization on protein binding has not been thoroughly investigated. In this study, computer simulations were used to calculate the absolute binding affinity for a p53 peptide (residues 17-29) to MDM2 for both cis and trans isomers of the p53 proline in position 27. Results show that the cis isomer of p53(17-29) binds more weakly to MDM2 than the trans isomer, and that this is primarily due to the difference in the free energy cost associated with the loss of conformational entropy of p53(17-29) when it binds to MDM2. The population of cis p53(17-29) was estimated to be 0.8% of the total population in the bound state. The stronger binding of trans p53(17-29) to MDM2 compared to cis may leave a minimal level of p53 available to respond to cellular stress. This study demonstrates that it is feasible to estimate the absolute binding affinity for an intrinsically disordered protein fragment binding to an ordered protein that are in good agreement with experimental results. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Probing the origin of structural stability of single and double stapled p53 peptide analogs bound to MDM2.

    PubMed

    Guo, Zuojun; Streu, Kristina; Krilov, Goran; Mohanty, Udayan

    2014-06-01

    The stabilization of secondary structure is believed to play an important role in the peptide-protein binding interaction. In this study, the α-helical conformation and structural stability of single and double stapled all-hydrocarbon cross-linked p53 peptides when bound and unbound to MDM2 are investigated. We determined the effects of the peptide sequence, the stereochemistry of the cross-linker, the conformation of the double bond in the alkene bridge, and the length of the bridge, to the relative stability of the α-helix structure. The binding affinity calculations by WaterMap provided over one hundred hydration sites in the MDM2 binding pocket where water density is greater than twice that of the bulk, and the relative value of free energy released by displacing these hydration sites. In agreement with the experimental data, potentials of mean force obtained by weighted histogram analysis methods indicated the order of peptides from lowest to highest binding affinity. Our study provides a comprehensive rationalization of the relationship between peptide stapling strategy, the secondary structural stability, and the binding affinity of p53/MDM2 complex. We hope our efforts can help to further the development of a new generation p53/MDM2 inhibitors that can reactivate the function of p53 as tumor suppressor gene. © 2014 John Wiley & Sons A/S.

  10. Domain analysis of Ras-association domain family member 6 upon interaction with MDM2.

    PubMed

    Sarkar, Aradhan; Iwasa, Hiroaki; Hossain, Shakhawoat; Xu, Xiaoyin; Sawada, Takeru; Shimizu, Takanobu; Maruyama, Junichi; Arimoto-Matsuzaki, Kyoko; Hata, Yutaka

    2017-01-01

    The tumor suppressor Ras-association domain family member 6 (RASSF6) has Ras-association domain (RA) and Salvador/RASSF/Hippo domain (SARAH). RASSF6 antagonizes MDM2, stabilizes p53, and induces apoptosis and cell cycle arrest. We previously demonstrated the interaction between RASSF6 and MDM2, but did not determine how both proteins interact with each other. We have shown here that N-terminal, RA, and SARAH domains of RASSF6 interact with MDM2 at distinct regions. RA binds to the RING-finger region of MDM2 and stabilizes p53. SARAH binds RA and blocks the interaction between RA and MDM2. RA overexpression induces p53-dependent apoptosis and senescence. In the presence of active KRas, the interaction between RA and MDM2 is recovered. In this way, RA and SARAH play an important role in Ras-mediated regulation of p53. © 2017 Federation of European Biochemical Societies.

  11. SAR405838: A novel and potent inhibitor of the MDM2:p53 axis for the treatment of dedifferentiated liposarcoma

    PubMed Central

    Bill, Kate Lynn J.; Garnett, Jeannine; Meaux, Isabelle; Ma, XiaoYen; Creighton, Chad J.; Bolshakov, Svetlana; Barriere, Cedric; Debussche, Laurent; Lazar, Alexander J.; Prudner, Bethany C.; Casadei, Lucia; Braggio, Danielle; Lopez, Gonzalo; Zewdu, Abbie; Bid, Hemant; Lev, Dina; Pollock, Raphael E.

    2016-01-01

    Purpose Dedifferentiated liposarcoma (DDLPS) is an aggressive malignancy that can recur locally or disseminate even after multidisciplinary care. Genetically amplified and expressed MDM2, often referred to as a “hallmark” of DDLPS, mostly sustains a wild-type p53 genotype, substantiating the p53-MDM2 axis as a potential therapeutic target for DDLPS. Here we report on the preclinical effects of SAR405838, a novel and highly selective MDM2 small-molecule inhibitor, in both in vitro and in vivo DDLPS models. Experimental Design The therapeutic effectiveness of SAR405838 was compared to the known MDM2 antagonists Nutlin-3a and MI-219. The effects of MDM2 inhibition were assessed in both in vitro and in vivo. In vitro and in vivo microarray analyses were performed to assess differentially expressed genes induced by SAR405838, as well as the pathways that these modulated genes enriched. Results SAR405838 effectively stabilized p53 and activated the p53 pathway, resulting in abrogated cellular proliferation, cell cycle arrest, and apoptosis. Similar results were observed with Nutlin-3a and MI-219; however, significantly higher concentrations were required. In vitro effectiveness of SAR405838 activity was recapitulated in DDLPS xenograft models where significant decreases in tumorigenicity were observed. Microarray analyses revealed genes enriching the p53 signaling pathway as well as genomic stability and DNA damage following SAR405838 treatment. Conclusion SAR405838 is currently in early phase clinical trials for a number of malignancies, including sarcoma, and our in vitro and in vivo results support its use as a potential therapeutic strategy for the treatment of DDLPS. PMID:26475335

  12. SAR405838: A Novel and Potent Inhibitor of the MDM2:p53 Axis for the Treatment of Dedifferentiated Liposarcoma.

    PubMed

    Bill, Kate Lynn J; Garnett, Jeannine; Meaux, Isabelle; Ma, XiaoYen; Creighton, Chad J; Bolshakov, Svetlana; Barriere, Cedric; Debussche, Laurent; Lazar, Alexander J; Prudner, Bethany C; Casadei, Lucia; Braggio, Danielle; Lopez, Gonzalo; Zewdu, Abbie; Bid, Hemant; Lev, Dina; Pollock, Raphael E

    2016-03-01

    Dedifferentiated liposarcoma (DDLPS) is an aggressive malignancy that can recur locally or disseminate even after multidisciplinary care. Genetically amplified and expressed MDM2, often referred to as a "hallmark" of DDLPS, mostly sustains a wild-type p53 genotype, substantiating the MDM2:p53 axis as a potential therapeutic target for DDLPS. Here, we report on the preclinical effects of SAR405838, a novel and highly selective MDM2 small-molecule inhibitor, in both in vitro and in vivo DDLPS models. The therapeutic effectiveness of SAR405838 was compared with the known MDM2 antagonists Nutlin-3a and MI-219. The effects of MDM2 inhibition were assessed in both in vitro and in vivo. In vitro and in vivo microarray analyses were performed to assess differentially expressed genes induced by SAR405838, as well as the pathways that these modulated genes enriched. SAR405838 effectively stabilized p53 and activated the p53 pathway, resulting in abrogated cellular proliferation, cell-cycle arrest, and apoptosis. Similar results were observed with Nutlin-3a and MI-219; however, significantly higher concentrations were required. In vitro effectiveness of SAR405838 activity was recapitulated in DDLPS xenograft models where significant decreases in tumorigenicity were observed. Microarray analyses revealed genes enriching the p53 signaling pathway as well as genomic stability and DNA damage following SAR405838 treatment. SAR405838 is currently in early-phase clinical trials for a number of malignancies, including sarcoma, and our in vitro and in vivo results support its use as a potential therapeutic strategy for the treatment of DDLPS. ©2015 American Association for Cancer Research.

  13. MDM4 overexpression contributes to synoviocyte proliferation in patients with rheumatoid arthritis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Nanwei; Wang, Yuji, E-mail: yujiwang@sohu.com; State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433

    Research highlights: {yields} Elevated MDM4 mRNA and protein levels in FLS from patients with RA and OA. {yields} Strong MDM4 staining in synovial cells of inflammatory synovium. {yields} MDM4 knockdown increased p53 and p21 levels, and inhibited the proliferation of RA FLS. {yields} MDM4 overexpression increased p53 while decreased p21 levels, and promoted the growth of RA FLS. -- Abstract: Rheumatoid arthritis (RA) is a chronic autoimmune disease with features of inflammatory cell infiltration, synovial cell invasive proliferation, and ultimately, irreversible joint destruction. It has been reported that the p53 pathway is involved in RA pathogenesis. MDM4/MDMX is a majormore » negative regulator of p53. To determine whether MDM4 contributes to RA pathogenesis, MDM4 mRNA and protein expression were assessed in fibroblast-like synoviocytes (FLS) by real-time PCR, western blotting, and in synovial tissues by immunohistochemistry. Furthermore, MDM4 was knocked down and overexpressed by lentivirus-mediated expression, and the proliferative capacity of FLS was determined by MTS assay. We found that cultured FLS from RA and osteoarthritis (OA) patients exhibited higher levels of MDM4 mRNA and protein expression than those from trauma controls. MDM4 protein was highly expressed in the synovial lining and sublining cells from both types of arthritis. Finally, MDM4 knockdown inhibited the proliferation of RA FLS by enhancing functional p53 levels while MDM4 overexpression promoted the growth of RA FLS by inhibiting p53 effects. Taken together, our results suggest that the abundant expression of MDM4 in FLS may contribute to the hyperplasia phenotype of RA synovial tissues.« less

  14. Mutational signatures reveal the role of RAD52 in p53-independent p21-driven genomic instability.

    PubMed

    Galanos, Panagiotis; Pappas, George; Polyzos, Alexander; Kotsinas, Athanassios; Svolaki, Ioanna; Giakoumakis, Nickolaos N; Glytsou, Christina; Pateras, Ioannis S; Swain, Umakanta; Souliotis, Vassilis L; Georgakilas, Alexandros G; Geacintov, Nicholas; Scorrano, Luca; Lukas, Claudia; Lukas, Jiri; Livneh, Zvi; Lygerou, Zoi; Chowdhury, Dipanjan; Sørensen, Claus Storgaard; Bartek, Jiri; Gorgoulis, Vassilis G

    2018-03-16

    Genomic instability promotes evolution and heterogeneity of tumors. Unraveling its mechanistic basis is essential for the design of appropriate therapeutic strategies. In a previous study, we reported an unexpected oncogenic property of p21 WAF1/Cip1 , showing that its chronic expression in a p53-deficient environment causes genomic instability by deregulation of the replication licensing machinery. We now demonstrate that p21 WAF1/Cip1 can further fuel genomic instability by suppressing the repair capacity of low- and high-fidelity pathways that deal with nucleotide abnormalities. Consequently, fewer single nucleotide substitutions (SNSs) occur, while formation of highly deleterious DNA double-strand breaks (DSBs) is enhanced, crafting a characteristic mutational signature landscape. Guided by the mutational signatures formed, we find that the DSBs are repaired by Rad52-dependent break-induced replication (BIR) and single-strand annealing (SSA) repair pathways. Conversely, the error-free synthesis-dependent strand annealing (SDSA) repair route is deficient. Surprisingly, Rad52 is activated transcriptionally in an E2F1-dependent manner, rather than post-translationally as is common for DNA repair factor activation. Our results signify the importance of mutational signatures as guides to disclose the repair history leading to genomic instability. We unveil how chronic p21 WAF1/Cip1 expression rewires the repair process and identifies Rad52 as a source of genomic instability and a candidate therapeutic target.

  15. Molecular Mechanism of Mutant p53 Stabilization: The Role of HSP70 and MDM2

    PubMed Central

    Wiech, Milena; Olszewski, Maciej B.; Tracz-Gaszewska, Zuzanna; Wawrzynow, Bartosz; Zylicz, Maciej; Zylicz, Alicja

    2012-01-01

    Numerous p53 missense mutations possess gain-of-function activities. Studies in mouse models have demonstrated that the stabilization of p53 R172H (R175H in human) mutant protein, by currently unknown factors, is a prerequisite for its oncogenic gain-of-function phenotype such as tumour progression and metastasis. Here we show that MDM2-dependent ubiquitination and degradation of p53 R175H mutant protein in mouse embryonic fibroblasts is partially inhibited by increasing concentration of heat shock protein 70 (HSP70/HSPA1-A). These phenomena correlate well with the appearance of HSP70-dependent folding intermediates in the form of dynamic cytoplasmic spots containing aggregate-prone p53 R175H and several molecular chaperones. We propose that a transient but recurrent interaction with HSP70 may lead to an increase in mutant p53 protein half-life. In the presence of MDM2 these pseudoaggregates can form stable amyloid-like structures, which occasionally merge into an aggresome. Interestingly, formation of folding intermediates is not observed in the presence of HSC70/HSPA8, the dominant-negative K71S variant of HSP70 or HSP70 inhibitor. In cancer cells, where endogenous HSP70 levels are already elevated, mutant p53 protein forms nuclear aggregates without the addition of exogenous HSP70. Aggregates containing p53 are also visible under conditions where p53 is partially unfolded: 37°C for temperature-sensitive variant p53 V143A and 42°C for wild-type p53. Refolding kinetics of p53 indicate that HSP70 causes transient exposure of p53 aggregate-prone domain(s). We propose that formation of HSP70- and MDM2-dependent protein coaggregates in tumours with high levels of these two proteins could be one of the mechanisms by which mutant p53 is stabilized. Moreover, sequestration of p73 tumour suppressor protein by these nuclear aggregates may lead to gain-of-function phenotypes. PMID:23251530

  16. Neisseria meningitidis causes cell cycle arrest of human brain microvascular endothelial cells at S phase via p21 and cyclin G2.

    PubMed

    Oosthuysen, Wilhelm F; Mueller, Tobias; Dittrich, Marcus T; Schubert-Unkmeir, Alexandra

    2016-01-01

    Microbial pathogens have developed several mechanisms to modulate and interfere with host cell cycle progression. In this study, we analysed the effect of the human pathogen Neisseria meningitidis on cell cycle in a brain endothelial cell line as well as in primary brain endothelial cells. We found that N.  Meningitidis causes an accumulation of cells in the S phase early at 3 and at 24 h post-infection that was paralleled by a decrease of cells in G2/M phase. Importantly, the outer membrane proteins of the colony opacity-associated (Opa) protein family as well as the Opc protein proved to trigger the accumulation of cells in the S phase. A focused cell cycle reverse transcription quantitative polymerase chain reaction-based array and integrated network analysis revealed changes in the abundance of several cell cycle regulatory mRNAs, including the cell cycle inhibitors p21(WAF1/CIP1) and cyclin G2. These alterations were reflected in changes in protein expression levels and/or relocalization in N. meningitidis-infected cells. Moreover, an increase in p21(WAF1/CIP1) expression was found to be p53 independent. Genetic ablation of p21(WAF1/CIP1) and cyclin G2 abrogated N. meningitidis-induced S phase accumulation. Finally, by measuring the levels of the biomarker 8-hydroxydeoxyguanosine and phosphorylation of the histone variant H2AX, we provide evidence that N. meningitidis induces oxidative DNA damage in infected cells. © 2015 John Wiley & Sons Ltd.

  17. Non-linear feedback control of the p53 protein-mdm2 inhibitor system using the derivative-free non-linear Kalman filter.

    PubMed

    Rigatos, Gerasimos G

    2016-06-01

    It is proven that the model of the p53-mdm2 protein synthesis loop is a differentially flat one and using a diffeomorphism (change of state variables) that is proposed by differential flatness theory it is shown that the protein synthesis model can be transformed into the canonical (Brunovsky) form. This enables the design of a feedback control law that maintains the concentration of the p53 protein at the desirable levels. To estimate the non-measurable elements of the state vector describing the p53-mdm2 system dynamics, the derivative-free non-linear Kalman filter is used. Moreover, to compensate for modelling uncertainties and external disturbances that affect the p53-mdm2 system, the derivative-free non-linear Kalman filter is re-designed as a disturbance observer. The derivative-free non-linear Kalman filter consists of the Kalman filter recursion applied on the linearised equivalent of the protein synthesis model together with an inverse transformation based on differential flatness theory that enables to retrieve estimates for the state variables of the initial non-linear model. The proposed non-linear feedback control and perturbations compensation method for the p53-mdm2 system can result in more efficient chemotherapy schemes where the infusion of medication will be better administered.

  18. Induction of the 5S RNP-Mdm2-p53 ribosomal stress pathway delays the initiation but fails to eradicate established murine acute myeloid leukemia.

    PubMed

    Jaako, P; Ugale, A; Wahlestedt, M; Velasco-Hernandez, T; Cammenga, J; Lindström, M S; Bryder, D

    2017-01-01

    Mutations resulting in constitutive activation of signaling pathways that regulate ribosome biogenesis are among the most common genetic events in acute myeloid leukemia (AML). However, whether ribosome biogenesis presents as a therapeutic target to treat AML remains unexplored. Perturbations in ribosome biogenesis trigger the 5S ribonucleoprotein particle (RNP)-Mdm2-p53 ribosomal stress pathway, and induction of this pathway has been shown to have therapeutic efficacy in Myc-driven lymphoma. In the current study we address the physiological and therapeutic role of the 5S RNP-Mdm2-p53 pathway in AML. By utilizing mice that have defective ribosome biogenesis due to downregulation of ribosomal protein S19 (Rps19), we demonstrate that induction of the 5S RNP-Mdm2-p53 pathway significantly delays the initiation of AML. However, even a severe Rps19 deficiency that normally results in acute bone marrow failure has no consistent efficacy on already established disease. Finally, by using mice that harbor a mutation in the Mdm2 gene disrupting its binding to 5S RNP, we show that loss of the 5S RNP-Mdm2-p53 pathway is dispensable for development of AML. Our study suggests that induction of the 5S RNP-Mdm2-p53 ribosomal stress pathway holds limited potential as a single-agent therapy in the treatment of AML.

  19. Disturbed P53-MDM2 Feedback Loop Contributes to Thoracic Aortic Dissection Formation and May be a Result of TRIM25 Overexpression.

    PubMed

    Gong, Bin; Wang, Zhiwei; Zhang, Min; Hu, Zhipeng; Ren, Zongli; Tang, Zheng; Jiang, Wanli; Cheng, Lianghao; Huang, Jun; Ren, Wei; Wang, Qingtao

    2017-04-01

    The development of thoracic aortic dissection (TAD) is attributed to a broad range of degenerative, genetic, structural, oxidative, apoptotic, and acquired disease states. In this study, we examined the role of the disturbed p53-MDM2 (murine double minute 2) feedback loop in the formation of TAD, and one of a potential feedback loop regulator, TRIM25 (tripartite motif protein-25). Surgical specimens of the aorta from TAD patients (n = 10) and controls (n = 10) were tested for α-smooth muscle actin (α-SMA), p53, MDM2, and TRIM25 by western blot, immunohistochemical staining, and quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR), respectively. When compared with controls, western blot shows that the protein levels of p53, MDM2, and TRIM25 were increased significantly in the aortic media of TAD patients. qRT-PCR further verified that the mRNA expression of MDM2 and TRIM25 was also increased 6- and 4-folds, respectively, in the TAD media of the aortic wall. Immunohistochemistry results showed significantly decreased staining of α-SMA, smooth muscle cells, and more collagen deposition in the media of the aortic wall from patients with TAD. This study provided a new insight into the disturbed p53-MDM2 feedback loop in the pathogenesis of TAD, and this may be because of the TRIM25 overexpression. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. MDM2 and CDK4 amplifications are rare events in salivary duct carcinomas

    PubMed Central

    Grünewald, Inga; Trautmann, Marcel; Busch, Alina; Bauer, Larissa; Huss, Sebastian; Schweinshaupt, Petra; Vollbrecht, Claudia; Odenthal, Margarete; Quaas, Alexander; Büttner, Reinhard; Meyer, Moritz F.; Beutner, Dirk; Hüttenbrink, Karl-Bernd; Wardelmann, Eva; Stenner, Markus; Hartmann, Wolfgang

    2016-01-01

    Salivary duct carcinoma (SDC) is an aggressive adenocarcinoma of the salivary glands associated with poor clinical outcome. SDCs are known to carry TP53 mutations in about 50%, however, only little is known about alternative pathogenic mechanisms within the p53 regulatory network. Particularly, data on alterations of the oncogenes MDM2 and CDK4 located in the chromosomal region 12q13-15 are limited in SDC, while genomic rearrangements of the adjacent HMGA2 gene locus are well documented in subsets of SDCs. We here analyzed the mutational status of the TP53 gene, genomic amplification of MDM2, CDK4 and HMGA2 rearrangement/amplification as well as protein expression of TP53 (p53), MDM2 and CDK4 in 51 de novo and ex pleomorphic adenoma SDCs. 25 of 51 cases were found to carry TP53 mutations, associated with extreme positive immunohistochemical p53 staining levels in 13 cases. Three out of 51 tumors had an MDM2 amplification, one of them coinciding with a CDK4 amplification and two with a HMGA2 rearrangement/amplification. Two of the MDM2 amplifications occurred in the setting of a TP53 mutation. Two out of 51 cases showed a CDK4 amplification, one synchronously being MDM2 amplified and the other one displaying concurrent low copy number increases of both, MDM2 and HMGA2. In summary, we here show that subgroups of SDCs display genomic amplifications of MDM2 and/or CDK4, partly in association with TP53 mutations and rearrangement/amplification of HMGA2. Further research is necessary to clarify the role of chromosomal region 12q13-15 alterations in SDC tumorigenesis and their potential prognostic and therapeutic relevance. PMID:27662657

  1. MDM2 and CDK4 amplifications are rare events in salivary duct carcinomas.

    PubMed

    Grünewald, Inga; Trautmann, Marcel; Busch, Alina; Bauer, Larissa; Huss, Sebastian; Schweinshaupt, Petra; Vollbrecht, Claudia; Odenthal, Margarete; Quaas, Alexander; Büttner, Reinhard; Meyer, Moritz F; Beutner, Dirk; Hüttenbrink, Karl-Bernd; Wardelmann, Eva; Stenner, Markus; Hartmann, Wolfgang

    2016-11-15

    Salivary duct carcinoma (SDC) is an aggressive adenocarcinoma of the salivary glands associated with poor clinical outcome. SDCs are known to carry TP53 mutations in about 50%, however, only little is known about alternative pathogenic mechanisms within the p53 regulatory network. Particularly, data on alterations of the oncogenes MDM2 and CDK4 located in the chromosomal region 12q13-15 are limited in SDC, while genomic rearrangements of the adjacent HMGA2 gene locus are well documented in subsets of SDCs. We here analyzed the mutational status of the TP53 gene, genomic amplification of MDM2, CDK4 and HMGA2 rearrangement/amplification as well as protein expression of TP53 (p53), MDM2 and CDK4 in 51 de novo and ex pleomorphic adenoma SDCs.25 of 51 cases were found to carry TP53 mutations, associated with extreme positive immunohistochemical p53 staining levels in 13 cases. Three out of 51 tumors had an MDM2 amplification, one of them coinciding with a CDK4 amplification and two with a HMGA2 rearrangement/amplification. Two of the MDM2 amplifications occurred in the setting of a TP53 mutation. Two out of 51 cases showed a CDK4 amplification, one synchronously being MDM2 amplified and the other one displaying concurrent low copy number increases of both, MDM2 and HMGA2.In summary, we here show that subgroups of SDCs display genomic amplifications of MDM2 and/or CDK4, partly in association with TP53 mutations and rearrangement/amplification of HMGA2. Further research is necessary to clarify the role of chromosomal region 12q13-15 alterations in SDC tumorigenesis and their potential prognostic and therapeutic relevance.

  2. MDM2 copy numbers in well-differentiated and dedifferentiated liposarcoma: characterizing progression to high-grade tumors.

    PubMed

    Ware, Patrick L; Snow, Anthony N; Gvalani, Maya; Pettenati, Mark J; Qasem, Shadi A

    2014-03-01

    MDM2 gene amplification is associated with well-differentiated (WDL) and dedifferentiated liposarcomas (DDL). Using fluorescent in situ hybridization (FISH), we sought to characterize various patterns of MDM2 amplification among the morphologic spectrum of liposarcoma. Forty-six cases of liposarcoma in various sites were examined and included 22 WDLs, 14 DLLs, and 10 negative control subjects. The MDM2 amplification ratio (MDM2/CEP12) was lower in WDL (10.2) compared with DDL (18.3) cases (P = .0000002). An amplification ratio of 16 showed optimal sensitivity (0.86) and specificity (0.96) as a cutoff point for progression to DDL. Borderline areas, defined as tumors with increased cellularity and atypia but with preserved lipomatous differentiation, showed a significantly higher MDM2 ratio (17.5; P = .0007) compared with WDL. Central (retroperitoneal and intra-abdominal) tumors also showed a significantly higher MDM2 ratio than peripheral ones (P = .02). Differences in MDM2 amplification profiles among liposarcomas could help further define and predict progression to high-grade neoplasia.

  3. Gene expression of the p16(INK4a)-Rb and p19(Arf)-p53-p21(Cip/Waf1) signaling pathways in the regulation of hematopoietic stem cell aging by ginsenoside Rg1.

    PubMed

    Yue, Z; Rong, J; Ping, W; Bing, Y; Xin, Y; Feng, L D; Yaping, W

    2014-12-04

    The elucidation of the molecular mechanisms underlying the effects of traditional Chinese medicines in clinical practice is a key step toward their worldwide application, and this topic is currently a subject of intense research interest. Rg1, a component of ginsenoside, has recently been shown to perform several pharmacological functions; however, the underlying mechanisms of these effects remain unclear. In the present study, we investigated whether Rg1 has an anti-senescence effect on hematopoietic stem cells (HSCs) and the possible molecular mechanisms driving any effects. The results showed that Rg1 could effectively delay tert-butyl hydroperoxide (t-BHP)-induced senescence and inhibit gene expression in the p16(INK4a)-Rb and p19(Arf)-p53-p21(Cip/Waf1) signaling pathways in HSCs. Our study suggested that these two signaling pathways might be potential targets for elucidating the molecular mechanisms of the Rg1 anti-senescence effect.

  4. Pokemon enhances proliferation, cell cycle progression and anti-apoptosis activity of colorectal cancer independently of p14ARF-MDM2-p53 pathway.

    PubMed

    Zhao, Yi; Yao, Yun-hong; Li, Li; An, Wei-fang; Chen, Hong-zen; Sun, Li-ping; Kang, Hai-xian; Wang, Sen; Hu, Xin-rong

    2014-12-01

    Pokemon has been showed to directly suppress p14(ARF) expression and also to overexpress in multiple cancers. However, p14(ARF)-MDM2-p53 pathway is usually aberrant in colorectal cancer (CRC). The aim is to confirm whether Pokemon plays a role in CRC and explore whether Pokemon works through p14(ARF)-MDM2-p53 pathway in CRC. Immunohistochemistry for Pokemon, p14(ARF) and Mtp53 protein was applied to 45 colorectal epitheliums (CREs), 42 colorectal adenomas (CRAs) and 66 CRCs. Pokemon was knocked down with RNAi technique in CRC cell line Lovo to detect mRNA expression of p14(ARF) with qRT-PCR, cell proliferation with CCK8 assay, and cell cycle and apoptosis with flowcytometry analysis. The protein expression rates were significantly higher in CRC (75.8%) than in CRE (22.2 %) or CRA (38.1%) for Pokemon and higher in CRC (53.0%) than in CRE (0) or CRA (4.8%) for Mtp53, but not significantly different in CRC (86.4 %) versus CRE (93.3%) or CRA (90.5 %) for p14(ARF). Higher expression rate of Pokemon was associated with lymph node metastasis and higher Duke's stage. After knockdown of Pokemon in Lovo cells, the mRNA level of p14(ARF) was not significantly changed, the cell proliferation ability was decreased by 20.6%, cell cycle was arrested by 55.7% in G0/G1 phase, and apoptosis rate was increased by 19.0%. Pokemon enhanced the oncogenesis of CRC by promoting proliferation, cell cycle progression and anti-apoptosis activity of CRC cells independently of p14(ARF)-MDM2-p53 pathway. This finding provided a novel idea for understanding and further studying the molecular mechanism of Pokemon on carcinogenesis of CRC.

  5. [The expression of p53, MDM2 and Ref1 gene in cultured retina neurons of SD rats treated with vitamin B1 and/or elevated pressure].

    PubMed

    Yang, Zhikuan; Ge, Jian; Yin, Wei; Shen, Huangxuan; Liu, Haiquan; Guo, Yan

    2004-12-01

    To investigate the expression of p53, MDM2 and Ref1 gene in cultured retina neurons of SD rats treated with Vitamin B1 and (or) elevated pressure. The retinal neuron of postnatal SD rats were cultured in vivo, the elevated pressure was produced after 7 days, and the total RNA was extracted after another 2 days, expression of p53, MDM2 and Ref1 gene were analyzed with RT-PCR. The expression level of p53 and MDM2 gene were increased in elevated pressure group, normal with Ref1 gene expression. But the expression of p53 and MDM2 gene were decreased significantly in elevated pressure group treated with vitamine B1 compare to the elevated group. Apoptosis seem to be a mechanism of cell death in retinal neurons of SD rats with elevated pressure.Vitamine B1 have protect effects against elevated pressure.

  6. A facile method to screen inhibitors of protein-protein interactions including MDM2-p53 displayed on T7 phage.

    PubMed

    Ishi, Kazutomo; Sugawara, Fumio

    2008-05-01

    Protein-protein interactions are essential in many biological processes including cell cycle and apoptosis. It is currently of great medical interest to inhibit specific protein-protein interactions in order to treat a variety of disease states. Here, we describe a facile multiwell plate assay method using T7 phage display to screen for candidate inhibitors of protein-protein interactions. Because T7 phage display is an effective method for detecting protein-protein interactions, we aimed to utilize this technique to screen for small-molecule inhibitors that disrupt these types of interaction. We used the well-characterized interaction between p53 and MDM2 and an inhibitor of this interaction, nutlin 3, as a model system to establish a new screening method. Phage particles displaying p53 interacted with GST-MDM2 immobilized on 96-well plates, and the interaction was inhibited by nutlin 3. Multiwell plate assay was then performed using a natural product library, which identified dehydroaltenusin as a candidate inhibitor of the p53-MDM2 interaction. We discuss the potential applications of this novel T7 phage display methodology, which we propose to call 'reverse phage display'.

  7. The Impact of a Common MDM2 SNP on the Sensitivity of Breast Cancer to Treatment

    DTIC Science & Technology

    2012-06-01

    1993; Kussie, 1996 ; Lin, 1994; Freedman, 1999). Apart from its p53 ubiquitination function, MDM2 has other functions including nuclear- cytoplasmic...MDM2; however, it can be degraded by MDM2 (Shvarts, 1997; Shvarts, 1996 ; Okamoto, 2005). Appropriate expression of p53 propels cells down apoptotic...prognostic value for various endpoints in multiple tumor types (Bueso-Ramos, 1996 ; Khor, 2005; Kim, 2011; Marchetti, 1995;Marchetti, 1995; McCann, 1995

  8. Small-molecule MDM2 antagonists attenuate the senescence-associated secretory phenotype.

    PubMed

    Wiley, Christopher D; Schaum, Nicholas; Alimirah, Fatouma; Lopez-Dominguez, Jose Alberto; Orjalo, Arturo V; Scott, Gary; Desprez, Pierre-Yves; Benz, Christopher; Davalos, Albert R; Campisi, Judith

    2018-02-05

    Processes that have been linked to aging and cancer include an inflammatory milieu driven by senescent cells. Senescent cells lose the ability to divide, essentially irreversibly, and secrete numerous proteases, cytokines and growth factors, termed the senescence-associated secretory phenotype (SASP). Senescent cells that lack p53 tumor suppressor function show an exaggerated SASP, suggesting the SASP is negatively controlled by p53. Here, we show that increased p53 activity caused by small molecule inhibitors of MDM2, which promotes p53 degradation, reduces inflammatory cytokine production by senescent cells. Upon treatment with the MDM2 inhibitors nutlin-3a or MI-63, human cells acquired a senescence-like growth arrest, but the arrest was reversible. Importantly, the inhibitors reduced expression of the signature SASP factors IL-6 and IL-1α by cells made senescent by genotoxic stimuli, and suppressed the ability of senescent fibroblasts to stimulate breast cancer cell aggressiveness. Our findings suggest that MDM2 inhibitors could reduce cancer progression in part by reducing the pro-inflammatory environment created by senescent cells.

  9. p21Waf1/Cip1/Sdi1 Prevents Apoptosis as Well as Stimulates Growth in Cells Transformed or Immortalized by Human T-Cell Leukemia Virus Type 1-Encoded Tax

    PubMed Central

    Kawata, Sanae; Ariumi, Yasuo; Shimotohno, Kunitada

    2003-01-01

    Human T-cell leukemia virus type 1 (HTLV-1) Tax regulates the expression of virally encoded genes, as well as various endogenous host genes in trans. Tax-mediated regulation of gene expression is important for the immortalization of normal human T lymphocytes and the transformation of fibroblast cells, such as Rat-1 cells. Tax has the ability to transactivate p21Waf1/Cip1/Sdi1, resulting in high expression levels in HTLV-1-immortalized cells. Since p21 expression is suppressed due to methylation of the promoter region in Rat-l cell line, p21 may not be critical for the transformation of this cell line by Tax. To further understand the role of p21 for the proliferation of Tax-transformed Rat-1 cells, we examined the effect of ectopic expression of p21 in these cells. Here, we observed that p21 expression enhanced the transformation of this cell line via at least two mechanisms: (i) the enhancement of NF-κB activation and/or CREB signaling and (ii) the excitation of antiapoptotic machinery. To analyze the role of p21 that is overexpressed in HTLV-1-immortalized lymphocytes, p21 expression was suppressed by using an antisense oligonucleotide specific for p21 mRNA; these cells then became sensitive to apoptotic induction. These results suggest that p21 plays an important role in the proliferation of Tax-expressing cells through the regulation of at least two independent mechanisms. PMID:12805427

  10. Pharmacologic ATM but not ATR kinase inhibition abrogates p21-dependent G1 arrest and promotes gastrointestinal syndrome after total body irradiation.

    PubMed

    Vendetti, Frank P; Leibowitz, Brian J; Barnes, Jennifer; Schamus, Sandy; Kiesel, Brian F; Abberbock, Shira; Conrads, Thomas; Clump, David Andy; Cadogan, Elaine; O'Connor, Mark J; Yu, Jian; Beumer, Jan H; Bakkenist, Christopher J

    2017-02-01

    We show that ATM kinase inhibition using AZ31 prior to 9 or 9.25 Gy total body irradiation (TBI) reduced median time to moribund in mice to 8 days. ATR kinase inhibition using AZD6738 prior to TBI did not reduce median time to moribund. The striking finding associated with ATM inhibition prior to TBI was increased crypt loss within the intestine epithelium. ATM inhibition reduced upregulation of p21, an inhibitor of cyclin-dependent kinases, and blocked G1 arrest after TBI thereby increasing the number of S phase cells in crypts in wild-type but not Cdkn1a(p21 CIP/WAF1 )-/- mice. In contrast, ATR inhibition increased upregulation of p21 after TBI. Thus, ATM activity is essential for p21-dependent arrest while ATR inhibition may potentiate arrest in crypt cells after TBI. Nevertheless, ATM inhibition reduced median time to moribund in Cdkn1a(p21 CIP/WAF1 )-/- mice after TBI. ATM inhibition also increased cell death in crypts at 4 h in Cdkn1a(p21 CIP/WAF1 )-/-, earlier than at 24 h in wild-type mice after TBI. In contrast, ATR inhibition decreased cell death in crypts in Cdkn1a(p21 CIP/WAF1 )-/- mice at 4 h after TBI. We conclude that ATM activity is essential for p21-dependent and p21-independent mechanisms that radioprotect intestinal crypts and that ATM inhibition promotes GI syndrome after TBI.

  11. Regulation of MDM2 Activity by Nucleolin

    DTIC Science & Technology

    2006-06-01

    UbcH5), p53 (1 ml produced in a wheat germ transcription-coupled in vitro translation system (Pro- mega)), GST-Mdm2 (400 ng) and 10 mg ubiquitin (Sigma... Acids Res. 28, 446 (2000). 22. V. Sirri, P. Roussel, M. C. Gendron, D. Hernandez-Verdun, Cytometry 28, 147 (1997). 23. J. Bartkova et al., Nature...DO-1). Immunoprecipitation and GST-pulldown Transfected cells were lysed in 20mM N-2-hydroxyethylpiper- azine-N0-2-ethanesulfonic acid , pH 7.4, 100mM

  12. Effective screening strategy using ensembled pharmacophore models combined with cascade docking: application to p53-MDM2 interaction inhibitors.

    PubMed

    Xue, Xin; Wei, Jin-Lian; Xu, Li-Li; Xi, Mei-Yang; Xu, Xiao-Li; Liu, Fang; Guo, Xiao-Ke; Wang, Lei; Zhang, Xiao-Jin; Zhang, Ming-Ye; Lu, Meng-Chen; Sun, Hao-Peng; You, Qi-Dong

    2013-10-28

    Protein-protein interactions (PPIs) play a crucial role in cellular function and form the backbone of almost all biochemical processes. In recent years, protein-protein interaction inhibitors (PPIIs) have represented a treasure trove of potential new drug targets. Unfortunately, there are few successful drugs of PPIIs on the market. Structure-based pharmacophore (SBP) combined with docking has been demonstrated as a useful Virtual Screening (VS) strategy in drug development projects. However, the combination of target complexity and poor binding affinity prediction has thwarted the application of this strategy in the discovery of PPIIs. Here we report an effective VS strategy on p53-MDM2 PPI. First, we built a SBP model based on p53-MDM2 complex cocrystal structures. The model was then simplified by using a Receptor-Ligand complex-based pharmacophore model considering the critical binding features between MDM2 and its small molecular inhibitors. Cascade docking was subsequently applied to improve the hit rate. Based on this strategy, we performed VS on NCI and SPECS databases and successfully discovered 6 novel compounds from 15 hits with the best, compound 1 (NSC 5359), K(i) = 180 ± 50 nM. These compounds can serve as lead compounds for further optimization.

  13. Prognostic Factors and Expression of MDM2 in Patients with Primary Extremity Liposarcoma

    PubMed Central

    Júnior, Rosalvo Zósimo Bispo; de Camargo, Olavo Pires; de Oliveira, Cláudia Regina G. C. M.; Filippi, Renée Zon; Baptista, André Mathias; Caiero, Marcelo Tadeu

    2008-01-01

    OBJECTIVE The objective of this study was to investigate MDM2 (murine double minute 2) protein expression and evaluate its relationship with some anatomical and pathological aspects, aiming also to identify prognostic factors concerning local recurrence-free survival, metastasis-free survival and overall survival in patients with primary liposarcomas of the extremities. MATERIALS AND METHODS Of 50 patients with primary liposarcomas of the extremities admitted to a Reference Service, between 1968 and 2004, 25 were enrolled in the study, following eligibility and exclusion criteria. RESULTS The adverse factors that influenced the risk for local recurrence in the univariant analysis included male sex (P = 0.023), pleomorphic histological subtype (P = 0.027), and high histological grade (P = 0.007). Concerning metastasis-free survival, age less than 50 years (P = 0.040), male sex (P = 0.040), pleomorphic subtype (P < 0.001), and high histological grade (P = 0.003) had a worse prognosis. Adverse factors for overall survival were age under 50 years (P = 0.040), male sex (P = 0.040), pleomorphic subtype (P < 0.001), and high histological grade (P = 0.003). CONCLUSIONS There was no correlation between immunohistochemically observed MDM2 protein expressions and the anatomical and pathological variables studied. The immunohistochemical expression of MDM2 protein was not considered to have a prognostic value for any of the surviving patients in this study (local recurrence-free survival, metastasis-free survival, or overall survival). The immunoexpression of MDM2 protein was a frequent event in the different subtypes of liposarcomas. PMID:18438568

  14. Characterizing the Free-Energy Landscape of MDM2 Protein-Ligand Interactions by Steered Molecular Dynamics Simulations.

    PubMed

    Hu, Guodong; Xu, Shicai; Wang, Jihua

    2015-12-01

    Inhibition of p53-MDM2 interaction by small molecules is considered to be a promising approach to re-activate wild-type p53 for tumor suppression. Several inhibitors of the MDM2-p53 interaction were designed and studied by the experimental methods and the molecular dynamics simulation. However, the unbinding mechanism was still unclear. The steered molecular dynamics simulations combined with Brownian dynamics fluctuation-dissipation theorem were employed to obtain the free-energy landscape of unbinding between MDM2 and their four ligands. It was shown that compounds 4 and 8 dissociate faster than compounds 5 and 7. The absolute binding free energies for these four ligands are in close agreement with experimental results. The open movement of helix II and helix IV in the MDM2 protein-binding pocket upon unbinding is also consistent with experimental MDM2-unbound conformation. We further found that different binding mechanisms among different ligands are associated with H-bond with Lys51 and Glu25. These mechanistic results may be useful for improving ligand design. © 2015 John Wiley & Sons A/S.

  15. The Clustered, Regularly Interspaced, Short Palindromic Repeats-associated Endonuclease 9 (CRISPR/Cas9)-created MDM2 T309G Mutation Enhances Vitreous-induced Expression of MDM2 and Proliferation and Survival of Cells.

    PubMed

    Duan, Yajian; Ma, Gaoen; Huang, Xionggao; D'Amore, Patricia A; Zhang, Feng; Lei, Hetian

    2016-07-29

    The G309 allele of SNPs in the mouse double minute (MDM2) promoter locus is associated with a higher risk of cancer and proliferative vitreoretinopathy (PVR), but whether SNP G309 contributes to the pathogenesis of PVR is to date unknown. The clustered regularly interspaced short palindromic repeats (CRISPR)-associated endonuclease (Cas) 9 from Streptococcus pyogenes (SpCas9) can be harnessed to manipulate a single or multiple nucleotides in mammalian cells. Here we delivered SpCas9 and guide RNAs using dual adeno-associated virus-derived vectors to target the MDM2 genomic locus together with a homologous repair template for creating the mutation of MDM2 T309G in human primary retinal pigment epithelial (hPRPE) cells whose genotype is MDM2 T309T. The next-generation sequencing results indicated that there was 42.51% MDM2 G309 in the edited hPRPE cells using adeno-associated viral CRISPR/Cas9. Our data showed that vitreous induced an increase in MDM2 and subsequent attenuation of p53 expression in MDM2 T309G hPRPE cells. Furthermore, our experimental results demonstrated that MDM2 T309G in hPRPE cells enhanced vitreous-induced cell proliferation and survival, suggesting that this SNP contributes to the pathogenesis of PVR. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. p21 in cancer: intricate networks and multiple activities.

    PubMed

    Abbas, Tarek; Dutta, Anindya

    2009-06-01

    One of the main engines that drives cellular transformation is the loss of proper control of the mammalian cell cycle. The cyclin-dependent kinase inhibitor p21 (also known as p21WAF1/Cip1) promotes cell cycle arrest in response to many stimuli. It is well positioned to function as both a sensor and an effector of multiple anti-proliferative signals. This Review focuses on recent advances in our understanding of the regulation of p21 and its biological functions with emphasis on its p53-independent tumour suppressor activities and paradoxical tumour-promoting activities, and their implications in cancer.

  17. MDM2 promoter polymorphism and p53 codon 72 polymorphism in chronic myeloid leukemia: the association between MDM2 promoter genotype and disease susceptibility, age of onset, and blast-free survival in chronic phase patients receiving imatinib.

    PubMed

    Liu, Yi-Chang; Hsiao, Hui-Hua; Yang, Wen-Chi; Liu, Ta-Chih; Chang, Chao-Sung; Yang, Ming-Yu; Lin, Pai-Mei; Hsu, Jui-Feng; Lee, Ching-Ping; Lin, Sheng-Fung

    2014-12-01

    The genetic or functional inactivation of the p53 pathway plays an important role with regards to disease progression from the chronic phase (CP) to blast phase (BP) and imatinib treatment response in chronic myeloid leukemia (CML). Two functional single nucleotide polymorphisms (SNPs), p53 R72P and MDM2 SNP309, are associated with alternation of p53 activity, however the association regarding CML susceptibility and BP transformation under imatinib treatment is unclear. The MDM2 SNP309 genotype was determined by polymerase chain reaction-restriction fragment length polymorphism and confirmed by direct sequencing from 116 CML patients, including 104 in the CP at diagnosis, and 162 healthy Taiwanese controls. The p53 R72P polymorphism was examined in all CML patients. The SNP309 G/G genotype was associated with an increased risk of CML susceptibility (OR: 1.82, 95% CI: 1.03-3.22, P = 0.037), and an earlier age of disease onset (log-rank P = 0.005) compared with the T/T + T/G genotypes. Higher MDM2 mRNA expression was found in G/G genotype compared with T/T (P = 0.034) and T/T + T/G (P = 0.056) genotypes. No associations were found between the p53 R72P genotypes and clinical parameters and survival outcomes. Among 62 CP patients receiving imatinib as first-line therapy, the G/G genotype was associated with a shorter blast-free survival (log-rank P = 0.048) and more clonal evolution compared with the T/T + T/G genotypes. In patients with advanced diseases at diagnosis, the G/G genotype was associated with a poor overall survival (log-rank P = 0.006). Closely monitoring CML patients harboring the G/G genotype and further large-scale studies are warranted. © 2013 Wiley Periodicals, Inc.

  18. Establishment of a dog model for the p53 family pathway and identification of a novel isoform of p21 cyclin-dependent kinase inhibitor

    PubMed Central

    Zhang, Jin; Chen, Xiangling; Kent, Michael S.; Rodriguez, Carlos O.; Chen, Xinbin

    2009-01-01

    Spontaneous tumors in the dog offer a unique opportunity as models to study human cancer etiology and therapy. p53, the most commonly mutated gene in human cancers, is found to be altered in dog cancers. However, little is known about the role of p53 in dog tumorigenesis. Here, we found that upon exposure to DNA damage agents or Mdm2 inhibitor nutlin-3, canine p53 is accumulated and capable of inducing its target genes, MDM2 and p21. We also found that upon DNA damage, canine p53 is accumulated in the nucleus, followed by MDM2 nuclear translocation and increased 53BP1 foci formation. In addition, we found that canine p63 and p73 are up-regulated by DNA damage agents. Furthermore, colony formation assay showed that canine tumor cells are sensitive to DNA damage agents and nutlin-3 in a p53-dependent manner. Surprisingly, canine p21 is expressed as two isoforms. Thus, we generated multiple canine p21 mutants and found that aa 129 to 142 is required, whereas aa 139 is one of the key determinants, for two p21 isoform expression. Finally, we showed that although the full-length human p21 cDNA expresses one polypeptide, aa 139 appears to play a similar role as that in canine p21 for various migration patterns. Taken together, our results indicate that canine p53 family proteins have biological activities similar to human counterparts. These similarities make the dog as an excellent out-bred spontaneous tumor model and the dog can serve as a translation model from bench-top to cage-side and then to bed-side. PMID:19147538

  19. A computational analysis of the binding model of MDM2 with inhibitors

    NASA Astrophysics Data System (ADS)

    Hu, Guodong; Wang, Dunyou; Liu, Xinguo; Zhang, Qinggang

    2010-08-01

    It is a new and promising strategy for anticancer drug design to block the MDM2-p53 interaction using a non-peptide small-molecule inhibitor. We carry out molecular dynamics simulations to study the binding of a set of six non-peptide small-molecule inhibitors with the MDM2. The relative binding free energies calculated using molecular mechanics Poisson-Boltzmann surface area method produce a good correlation with experimentally determined results. The study shows that the van der Waals energies are the largest component of the binding free energy for each complex, which indicates that the affinities of these inhibitors for MDM2 are dominated by shape complementarity. The A-ligands and the B-ligands are the same except for the conformation of 2,2-dimethylbutane group. The quantum mechanics and the binding free energies calculation also show the B-ligands are the more possible conformation of ligands. Detailed binding free energies between inhibitors and individual protein residues are calculated to provide insights into the inhibitor-protein binding model through interpretation of the structural and energetic results from the simulations. The study shows that G1, G2 and G3 group mimic the Phe19, Trp23 and Leu26 residues in p53 and their interactions with MDM2, but the binding model of G4 group differs from the original design strategy to mimic Leu22 residue in p53.

  20. Cyclophilin B induces chemoresistance by degrading wild type p53 via interaction with MDM2 in colorectal cancer.

    PubMed

    Choi, Tae Gyu; Nguyen, Minh Nam; Kim, Jieun; Jo, Yong Hwa; Jang, Miran; Nguyen, Ngoc Ngo Yen; Yun, Hyeong Rok; Choe, Wonchae; Kang, Insug; Ha, Joohun; Tang, Dean G; Kim, Sung Soo

    2018-06-06

    Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths worldwide. Chemoresistance is a major problem for effective therapy in CRC. Here, we investigated the mechanism by which peptidylprolyl isomerase B (PPIB; cyclophilin B, CypB) regulates chemoresistance in CRC. We found that CypB is a novel wild type p53 (p53WT)-inducible gene but a negative regulator of p53WT in response to oxaliplatin treatment. Overexpression of CypB shortens the half-life of p53WT and inhibits oxaliplatin-induced apoptosis in CRC cells, whereas knockdown of CypB lengthens the half-life of p53WT and stimulates p53WT dependent apoptosis. CypB interacts directly with MDM2, and enhances MDM2-dependent p53WT ubiquitination and degradation. Furthermore, we firmly validated using bioinformatics analyses that overexpression of CypB is associated with poor prognosis in CRC progression and chemoresistance. Hence, we suggest a novel mechanism of chemoresistance caused by overexpressed CypB, which may help to develop new anti-cancer drugs. We also propose that CypB may be utilized as a predictive biomarker in CRC patients. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. ATM phosphorylation of Mdm2 Ser394 regulates the amplitude and duration of the DNA damage response in mice

    PubMed Central

    Gannon, Hugh S.; Woda, Bruce A.; Jones, Stephen N.

    2012-01-01

    Summary DNA damage induced by ionizing radiation (IR) activates the ATM kinase, which subsequently stabilizes and activates the p53 tumor suppressor protein. Although phosphorylation of p53 by ATM was found previously to modulate p53 levels and transcriptional activities in vivo, it does not appear to be a major regulator of p53 stability. We have utilized mice bearing altered Mdm2 alleles to demonstrate that ATM phosphorylation of Mdm2 serine 394 is required for robust p53 stabilization and activation after DNA damage. In addition, we demonstrate that dephosphorylation of Mdm2 Ser394 regulates attenuation of the p53-mediated response to DNA damage. Therefore, the phosphorylation status of Mdm2 Ser394 governs p53 protein levels and functions in cells undergoing DNA damage. PMID:22624716

  2. Rare MDM4 gene amplification in colorectal cancer: The principle of a mutually exclusive relationship between MDM alteration and TP53 inactivation is not applicable.

    PubMed

    Suda, Tetsuji; Yoshihara, Mitsuyo; Nakamura, Yoshiyasu; Sekiguchi, Hironobu; Godai, Ten-I; Sugano, Nobuhiro; Tsuchida, Kazuhito; Shiozawa, Manabu; Sakuma, Yuji; Tsuchiya, Eiju; Kameda, Yoichi; Akaike, Makoto; Matsukuma, Shoichi; Miyagi, Yohei

    2011-07-01

    MDM4, a homolog of MDM2, is considered a key negative regulator of p53. Gene amplification of MDM4 has been identified in a variety of tumors. MDM2 or MDM4 gene amplification is only associated with the wild-type TP53 gene in retinoblastomas, thus the amplification of the two genes is mutually exclusive. Previously, we demonstrated that MDM2 amplification and TP53 alteration were not mutually exclusive in colorectal cancer, and we identified a subset of colorectal cancer patients without alterations in either the TP53 or the MDM2 gene. In this study, we investigated the gene amplification status of MDM4 in the same set of colorectal cancer cases. Unexpectedly, MDM4 amplification was rare, detected in only 1.4% (3 out of 211) of colorectal cancer cases. All the three gene-amplified tumors also harbored TP53-inactivating mutations. This contradicts the simple mutually exclusive relationship observed in retinoblastomas. Surprisingly, two of the three MDM4-amplified tumors also demonstrated MDM2 amplification. Paradoxically, the MDM4 protein levels were decreased in the tumor tissue of the gene-amplified cases compared with levels in the matched normal mucosa. We speculate that MDM4 might play a role in colorectal carcinogenesis that is not limited to negative regulation of p53 in combination with MDM2. The functional significance of MDM4 is still unclear and further studies are needed.

  3. Proteomic investigating the cooperative lethal effect of EGFR and MDM2 inhibitors on ovarian carcinoma.

    PubMed

    Chang, Shing-Jyh; Liao, En-Chi; Yeo, Hsin-Yueh; Kuo, Wen-Hung; Chen, Hsin-Yi; Tsai, Yi-Ting; Wei, Yu-Shan; Chen, Ying-Jen; Wang, Yi-Shiuan; Li, Ji-Min; Shih, Chuan-Chi; Chan, Chia-Hao; Lai, Zih-Yin; Chou, Hsiu-Chuan; Chuang, Yung-Jen; Chan, Hong-Lin

    2018-06-01

    With the concept of precision medicine, combining multiple molecular-targeting therapies has brought new approaches to current cancer treatments. Malfunction of the tumor suppressor protein, p53 is a universal hallmark in human cancers. Under normal conditions, p53 is degraded through an ubiquitin-proteosome pathway regulated by its negative regulator, MDM2. In contrast, cellular stress such as DNA damage will activate p53 to carry out DNA repair, cell cycle arrest, and apoptosis. In this study, we focused on ovarian carcinoma with high EGFR and MDM2 overexpression rate. We assessed the effects of combined inhibition by MDM2 (JNJ-26854165) and EGFR (gefitinib) inhibitors on various ovarian cell lines to determine the importance of these two molecular targets on cell proliferation. We then used a proteomic strategy to investigate the relationship between MDM2 and EGFR inhibition to explore the underlying mechanisms of how their combined signaling blockades work together to exert cooperative inhibition. Our results demonstrated that all four cell lines were sensitive to both individual and combined, MDM2 and EGFR inhibition. The proteomic analysis also showed that gefitinib/JNJ-treated CAOV3 cells exhibited downregulation of proteins involved in nucleotide biosynthesis such as nucleoside diphosphate kinase B (NME2). In conclusion, our study showed that the combined treatment with JNJ and gefitinib exerted synergistic inhibition on cell proliferation, thereby suggesting the potential application of combining MDM2 inhibitors with EGFR inhibitors for enhancing efficacy in ovarian cancer treatment. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Regulation of MDM2 Activity by Nucleolin

    DTIC Science & Technology

    2007-06-01

    protein also able to bind and inhibit ARF (Itahana et al., 2003; Bertwistle et al., 2004; Korgaonkar et al., 2005). A role for the nucleolus in the...found to sequester Mdm2 in the nucleolus (Weber et al., 1999), although this activity does not appear to be requisite for ARF-dependent p53 stabilization...from the nucleolus to the nucleoplasm in a reaction stimulated by physical interaction with p53, but independent of the ability of p53 to activate

  5. Dual targeting of MDM2 and BCL2 as a therapeutic strategy in neuroblastoma.

    PubMed

    Van Goethem, Alan; Yigit, Nurten; Moreno-Smith, Myrthala; Vasudevan, Sanjeev A; Barbieri, Eveline; Speleman, Frank; Shohet, Jason; Vandesompele, Jo; Van Maerken, Tom

    2017-08-22

    Wild-type p53 tumor suppressor activity in neuroblastoma tumors is hampered by increased MDM2 activity, making selective MDM2 antagonists an attractive therapeutic strategy for this childhood malignancy. Since monotherapy in cancer is generally not providing long-lasting clinical responses, we here aimed to identify small molecule drugs that synergize with idasanutlin (RG7388). To this purpose we evaluated 15 targeted drugs in combination with idasanutlin in three p53 wild type neuroblastoma cell lines and identified the BCL2 inhibitor venetoclax (ABT-199) as a promising interaction partner. The venetoclax/idasanutlin combination was consistently found to be highly synergistic in a diverse panel of neuroblastoma cell lines, including cells with high MCL1 expression levels. A more pronounced induction of apoptosis was found to underlie the synergistic interaction, as evidenced by caspase-3/7 and cleaved PARP measurements. Mice carrying orthotopic xenografts of neuroblastoma cells treated with both idasanutlin and venetoclax had drastically lower tumor weights than mice treated with either treatment alone. In conclusion, these data strongly support the further evaluation of dual BCL2/MDM2 targeting as a therapeutic strategy in neuroblastoma.

  6. Role of the Mdm2 SNIP 309 Polymorphism in Gastric Mucosal Morphologic Patterns of Patients with Helicobacter pylori Associated Gastritis.

    PubMed

    Tongtawee, Taweesak; Dechsukhum, Chavaboon; Leeanansaksiri, Wilairat; Kaewpitoon, Soraya; Kaewpitoon, Natthawut; Loyd, Ryan A; Matrakool, Likit; Panpimanmas, Sukij

    2016-01-01

    The tumor suppressor p53 is as a regulator of cell proliferation, apoptosis and many other biological processes as well as external and internal stress responses. Mdm2 SNIP309 is a negative regulator of 53. Therefore, this study aimed to determine the role of the Mdm2 SNIP 309 polymorphism in the gastric mucosal morphological patterns in patients with Helicobacter pylori associated gastritis. A prospective cross-sectional study was carried out from November 2014 through November 2015. Biopsy specimens were obtained from patients and infection was proven by positive histology. Gastric mucosa specimens were sent to the Molecular Genetics Unit, Institute of Medicine, Suranaree University of Technology where they were tested by molecular methods to detect the patterns of Mdm2 SNIP 309 polymorphism using the real-time PCR hybridization probe method. The results were analyzed and correlated with gastric mucosal morphological patterns by using C-NBI endoscopy. A total of 300 infected patients were enrolled and gastric mucosa specimens were collected. In this study the percentage of Mdm2 SNIP 309 T/T homozygous and Mdm2 SNIP309 G/T heterozygous was 78% and 19 % respectively whereas Mdm2 SNIP309 G/G homozygous was 3%. Mdm2 SNIP 309 T/T homozygous and Mdm2 SNIP309 G/T heterozygosity correlated with type 1 to type 3 gastric mucosal morphological patterns (P<0.01) whereas Mdm2 SNIP309 G/G homozygous correlated with type 4 and type 5 (P<0.01). Our study finds the frequency of Mdm2 SNIP309 G/G in a Thai population is very low, and suggests that this can explain ae Thailand enigma. Types 1 to type 3 are the most common gastric mucosal morphological patterns according to the unique genetic polymorphism of MDM2 SNIP 309 in the Thai population.

  7. Elucidation of Ligand-Dependent Modulation of Disorder-Order Transitions in the Oncoprotein MDM2.

    PubMed

    Bueren-Calabuig, Juan A; Michel, Julien

    2015-06-01

    Numerous biomolecular interactions involve unstructured protein regions, but how to exploit such interactions to enhance the affinity of a lead molecule in the context of rational drug design remains uncertain. Here clarification was sought for cases where interactions of different ligands with the same disordered protein region yield qualitatively different results. Specifically, conformational ensembles for the disordered lid region of the N-terminal domain of the oncoprotein MDM2 in the presence of different ligands were computed by means of a novel combination of accelerated molecular dynamics, umbrella sampling, and variational free energy profile methodologies. The resulting conformational ensembles for MDM2, free and bound to p53 TAD (17-29) peptide identify lid states compatible with previous NMR measurements. Remarkably, the MDM2 lid region is shown to adopt distinct conformational states in the presence of different small-molecule ligands. Detailed analyses of small-molecule bound ensembles reveal that the ca. 25-fold affinity improvement of the piperidinone family of inhibitors for MDM2 constructs that include the full lid correlates with interactions between ligand hydrophobic groups and the C-terminal lid region that is already partially ordered in apo MDM2. By contrast, Nutlin or benzodiazepinedione inhibitors, that bind with similar affinity to full lid and lid-truncated MDM2 constructs, interact additionally through their solubilizing groups with N-terminal lid residues that are more disordered in apo MDM2.

  8. Okadaic acid mediates p53 hyperphosphorylation and growth arrest in cells with wild-type p53 but increases aberrant mitoses in cells with non-functional p53.

    PubMed

    Milczarek, G J; Chen, W; Gupta, A; Martinez, J D; Bowden, G T

    1999-06-01

    The protein phosphatase inhibitor and tumor promoting agent okadaic acid (OA), has been shown previously to induce hyperphosphorylation of p53 protein, which in turn correlated with increased transactivation or apoptotic function. However, how the tumor promotion effects of OA relate to p53 tumor supressor function (or dysfunction) remain unclear. Rat embryonic fibroblasts harboring a temperature-sensitive mouse p53 transgene were treated with 50 nM doses of OA. At the wild-type permissive temperature this treatment resulted in: (i) the hyperphosphorylation of sites within tryptic peptides of the transactivation domain of p53; (ii) an increase in p53 affinity for a p21(waf1) promotor oligonucleotide; (iii) an increase in cellular steady state levels of p21(waf1) message; (iv) a G2/M cell cycle blockage in addition to the G1/S arrest previously associated with p53; and (v) no increased incidence of apoptosis. On the other hand, OA treatment at the mutated p53 permissive temperature resulted in a relatively high incidence of aberrant mitosis with no upregulation of p21(waf1) message. These results suggest that while wild-type p53 blocks the proliferative effects of OA through p21(waf1)-mediated growth arrest, cells with non-functional p53 cannot arrest and suffer relatively high levels of OA-mediated aberrant mitoses.

  9. Stapled α−helical peptide drug development: A potent dual inhibitor of MDM2 and MDMX for p53-dependent cancer therapy

    PubMed Central

    Chang, Yong S.; Graves, Bradford; Guerlavais, Vincent; Tovar, Christian; Packman, Kathryn; To, Kwong-Him; Olson, Karen A.; Kesavan, Kamala; Gangurde, Pranoti; Mukherjee, Aditi; Baker, Theresa; Darlak, Krzysztof; Elkin, Carl; Filipovic, Zoran; Qureshi, Farooq Z.; Cai, Hongliang; Berry, Pamela; Feyfant, Eric; Shi, Xiangguo E.; Horstick, James; Annis, D. Allen; Manning, Anthony M.; Fotouhi, Nader; Nash, Huw; Vassilev, Lyubomir T.; Sawyer, Tomi K.

    2013-01-01

    Stapled α−helical peptides have emerged as a promising new modality for a wide range of therapeutic targets. Here, we report a potent and selective dual inhibitor of MDM2 and MDMX, ATSP-7041, which effectively activates the p53 pathway in tumors in vitro and in vivo. Specifically, ATSP-7041 binds both MDM2 and MDMX with nanomolar affinities, shows submicromolar cellular activities in cancer cell lines in the presence of serum, and demonstrates highly specific, on-target mechanism of action. A high resolution (1.7-Å) X-ray crystal structure reveals its molecular interactions with the target protein MDMX, including multiple contacts with key amino acids as well as a role for the hydrocarbon staple itself in target engagement. Most importantly, ATSP-7041 demonstrates robust p53-dependent tumor growth suppression in MDM2/MDMX-overexpressing xenograft cancer models, with a high correlation to on-target pharmacodynamic activity, and possesses favorable pharmacokinetic and tissue distribution properties. Overall, ATSP-7041 demonstrates in vitro and in vivo proof-of-concept that stapled peptides can be developed as therapeutically relevant inhibitors of protein–protein interaction and may offer a viable modality for cancer therapy. PMID:23946421

  10. Co-operative intra-protein structural response due to protein-protein complexation revealed through thermodynamic quantification: study of MDM2-p53 binding

    NASA Astrophysics Data System (ADS)

    Samanta, Sudipta; Mukherjee, Sanchita

    2017-10-01

    The p53 protein activation protects the organism from propagation of cells with damaged DNA having oncogenic mutations. In normal cells, activity of p53 is controlled by interaction with MDM2. The well understood p53-MDM2 interaction facilitates design of ligands that could potentially disrupt or prevent the complexation owing to its emergence as an important objective for cancer therapy. However, thermodynamic quantification of the p53-peptide induced structural changes of the MDM2-protein remains an area to be explored. This study attempts to understand the conformational free energy and entropy costs due to this complex formation from the histograms of dihedral angles generated from molecular dynamics simulations. Residue-specific quantification illustrates that, hydrophobic residues of the protein contribute maximum to the conformational thermodynamic changes. Thermodynamic quantification of structural changes of the protein unfold the fact that, p53 binding provides a source of inter-element cooperativity among the protein secondary structural elements, where the highest affected structural elements (α2 and α4) found at the binding site of the protein affects faraway structural elements (β1 and Loop1) of the protein. The communication perhaps involves water mediated hydrogen bonded network formation. Further, we infer that in inhibitory F19A mutation of P53, though Phe19 is important in the recognition process, it has less prominent contribution in the stability of the complex. Collectively, this study provides vivid microscopic understanding of the interaction within the protein complex along with exploring mutation sites, which will contribute further to engineer the protein function and binding affinity.

  11. The silence of p66(Shc) in HCT8 cells inhibits the viability via PI3K/AKT/Mdm-2/p53 signaling pathway.

    PubMed

    Zhang, Ling; Zhu, Shengtao; Shi, Xuesen; Sha, Weihong

    2015-01-01

    Colon cancer is the second most common cause of cancer-related death, indicating that some of its cancer cells are not eradicated by current therapies. The previous studies demonstrated that p66(Shc) protein, a member of Shc family, is highly expressed in colon cancer cells, but the role of p66(Shc) in the progress of colon cancer still unknown. In this study, we found that p66(Shc) highly expressed in colon cancer tissue and colon cancer cell line SW620 cells, HCT8 cells, HCT116 cells and CaCO2 cells. The silence of p66(Shc) in HCT8 cells reduced the proliferation and accelerated the apoptosis, in addition, the expression of pro-apoptotic proteins caspase-3, caspase-9, Bax was enhanced and the expression of anti-apoptotic protein Bcl-2 was declined. Moreover, the cell cycle arrest in G0/G1 phase after HCT8 cells treated with p66(Shc) siRNA. Furthermore, after HCT8 cells treated with p66(Shc) siRNA, the phosphorylation of PI3K and AKT was significantly suppressed, and the expression of Mdm-2, a downstream of AKT, was obviously prohibited, while the expression of p53 was enhanced. These results indicate that the silence of p66(Shc) in HCT8 cells inhibits the viability via PI3K/AKT/Mdm-2/p53 signaling pathway, it may provide a promising approach to prevent the progress of colon cancer cell.

  12. Effects of Activin and TGFβ on p21 in Colon Cancer

    PubMed Central

    Cabral, Jennifer; Gomez, Jessica; Jung, Barbara

    2012-01-01

    Activin and TGFβ share SMAD signaling and colon cancers can inactivate either pathway alone or simultaneously. The differential effects of activin and TGFβ signaling in colon cancer have not been previously dissected. A key downstream target of TGFβ signaling is the cdk2 inhibitor p21 (p21cip1/waf1). Here, we evaluate activin-specific effects on p21 regulation and resulting functions. We find that TGFβ is a more potent inducer of growth suppression, while activin is a more potent inducer of apoptosis. Further, growth suppression and apoptosis by both ligands are dependent on SMAD4. However, activin downregulates p21 protein in a SMAD4-independent fashion in conjunction with increased ubiquitination and proteasomal degradation to enhance migration, while TGFβ upregulates p21 in a SMAD4-dependent fashion to affect growth arrest. Activin-induced growth suppression and cell death are dependent on p21, while activin-induced migration is counteracted by p21. Further, primary colon cancers show differential p21 expression consistent with their ACVR2/TGFBR2 receptor status. In summary, we report p21 as a differentially affected activin/TGFβ target and mediator of ligand-specific functions in colon cancer, which may be exploited for future risk stratification and therapeutic intervention. PMID:22761777

  13. Cardiac-specific ablation of the E3 ubiquitin ligase Mdm2 leads to oxidative stress, broad mitochondrial deficiency and early death

    PubMed Central

    Hauck, Ludger; Stanley-Hasnain, Shanna; Fung, Amelia; Grothe, Daniela; Rao, Vivek; Mak, Tak W.

    2017-01-01

    The maintenance of normal heart function requires proper control of protein turnover. The ubiquitin-proteasome system is a principal regulator of protein degradation. Mdm2 is the main E3 ubiquitin ligase for p53 in mitotic cells thereby regulating cellular growth, DNA repair, oxidative stress and apoptosis. However, which of these Mdm2-related activities are preserved in differentiated cardiomyocytes has yet to be determined. We sought to elucidate the role of Mdm2 in the control of normal heart function. We observed markedly reduced Mdm2 mRNA levels accompanied by highly elevated p53 protein expression in the hearts of wild type mice subjected to myocardial infarction or trans-aortic banding. Accordingly, we generated conditional cardiac-specific Mdm2 gene knockout (Mdm2f/f;mcm) mice. In adulthood, Mdm2f/f;mcm mice developed spontaneous cardiac hypertrophy, left ventricular dysfunction with early mortality post-tamoxifen. A decreased polyubiquitination of myocardial p53 was observed, leading to its stabilization and activation, in the absence of acute stress. In addition, transcriptomic analysis of Mdm2-deficient hearts revealed that there is an induction of E2f1 and c-Myc mRNA levels with reduced expression of the Pgc-1a/Ppara/Esrrb/g axis and Pink1. This was associated with a significant degree of cardiomyocyte apoptosis, and an inhibition of redox homeostasis and mitochondrial bioenergetics. All these processes are early, Mdm2-associated events and contribute to the development of pathological hypertrophy. Our genetic and biochemical data support a role for Mdm2 in cardiac growth control through the regulation of p53, the Pgc-1 family of transcriptional coactivators and the pivotal antioxidant Pink1. PMID:29267372

  14. Opposite regulation of MDM2 and MDMX expression in acquisition of mesenchymal phenotype in benign and cancer cells.

    PubMed

    Slabáková, Eva; Kharaishvili, Gvantsa; Smějová, Monika; Pernicová, Zuzana; Suchánková, Tereza; Remšík, Ján; Lerch, Stanislav; Straková, Nicol; Bouchal, Jan; Král, Milan; Culig, Zoran; Kozubík, Alois; Souček, Karel

    2015-11-03

    Plasticity of cancer cells, manifested by transitions between epithelial and mesenchymal phenotypes, represents a challenging issue in the treatment of neoplasias. Both epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) are implicated in the processes of metastasis formation and acquisition of stem cell-like properties. Mouse double minute (MDM) 2 and MDMX are important players in cancer progression, as they act as regulators of p53, but their function in EMT and metastasis may be contradictory. Here, we show that the EMT phenotype in multiple cellular models and in clinical prostate and breast cancer samples is associated with a decrease in MDM2 and increase in MDMX expression. Modulation of EMT-accompanying changes in MDM2 expression in benign and transformed prostate epithelial cells influences their migration capacity and sensitivity to docetaxel. Analysis of putative mechanisms of MDM2 expression control demonstrates that in the context of defective p53 function, MDM2 expression is regulated by EMT-inducing transcription factors Slug and Twist. These results provide an alternative context-specific role of MDM2 in EMT, cell migration, metastasis, and therapy resistance.

  15. Disruption of the 5S RNP-Mdm2 interaction significantly improves the erythroid defect in a mouse model for Diamond-Blackfan anemia.

    PubMed

    Jaako, P; Debnath, S; Olsson, K; Zhang, Y; Flygare, J; Lindström, M S; Bryder, D; Karlsson, S

    2015-11-01

    Diamond-Blackfan anemia (DBA) is a congenital erythroid hypoplasia caused by haploinsufficiency of genes encoding ribosomal proteins (RPs). Perturbed ribosome biogenesis in DBA has been shown to induce a p53-mediated ribosomal stress response. However, the mechanisms of p53 activation and its relevance for the erythroid defect remain elusive. Previous studies have indicated that activation of p53 is caused by the inhibition of mouse double minute 2 (Mdm2), the main negative regulator of p53, by the 5S ribonucleoprotein particle (RNP). Meanwhile, it is not clear whether this mechanism solely mediates the p53-dependent component found in DBA. To approach this question, we crossed our mouse model for RPS19-deficient DBA with Mdm2(C305F) knock-in mice that have a disrupted 5S RNP-Mdm2 interaction. Upon induction of the Rps19 deficiency, Mdm2(C305F) reversed the p53 response and improved expansion of hematopoietic progenitors in vitro, and ameliorated the anemia in vivo. Unexpectedly, disruption of the 5S RNP-Mdm2 interaction also led to selective defect in erythropoiesis. Our findings highlight the sensitivity of erythroid progenitor cells to aberrations in p53 homeostasis mediated by the 5S RNP-Mdm2 interaction. Finally, we provide evidence indicating that physiological activation of the 5S RNP-Mdm2-p53 pathway may contribute to functional decline of the hematopoietic system in a cell-autonomous manner over time.

  16. Double-edged swords as cancer therapeutics: novel, orally active, small molecules simultaneously inhibit p53-MDM2 interaction and the NF-κB pathway.

    PubMed

    Zhuang, Chunlin; Miao, Zhenyuan; Wu, Yuelin; Guo, Zizhao; Li, Jin; Yao, Jianzhong; Xing, Chengguo; Sheng, Chunquan; Zhang, Wannian

    2014-02-13

    Simultaneous inactivation of p53 and hyperactivation of nuclear factor-κB (NF-κB) is a common occurrence in human cancer. Currently, antitumor agents are being designed to selectively activate p53 or inhibit NF-κB. However, there is no concerted effort yet to deliberately design inhibitors that can simultaneously do both. This paper provided a proof-of-concept study that p53-MDM2 interaction and NF-κB pathway can be simultaneously targeted by a small-molecule inhibitor. A series of pyrrolo[3,4-c]pyrazole derivatives were rationally designed and synthesized as the first-in-class inhibitors of p53-MDM2 interaction and NF-κB pathway. Most of the compounds were identified to possess nanomolar p53-MDM2 inhibitory activity. Compounds 5q and 5s suppressed NF-κB activation through inhibition of IκBα phosphorylation and elevation of the cytoplasmic levels of p65 and phosphorylated IKKα/β. Biochemical assay for the kinases also supported the fact that pyrrolo[3,4-c]pyrazole compounds directly targeted the NF-κB pathway. In addition, four compounds (5j, 5q, 5s, and 5u) effectively inhibited tumor growth in the A549 xenograft model. Further pharmacokinetic study revealed that compound 5q exhibited excellent oral bioavailability (72.9%).

  17. WAFs lead molting retardation of naupliar stages with down-regulated expression profiles of chitin metabolic pathway and related genes in the copepod Tigriopus japonicus.

    PubMed

    Hwang, Dae-Sik; Lee, Min-Chul; Kyung, Do-Hyun; Kim, Hui-Su; Han, Jeonghoon; Kim, Il-Chan; Puthumana, Jayesh; Lee, Jae-Seong

    2017-03-01

    Oil pollution is considered being disastrous to marine organisms and ecosystems. As molting is critical in the developmental process of arthropods in general and copepods, in particular, the impact will be adverse if the target of spilled oil is on molting. Thus, we investigated the harmful effects of water accommodated fractions (WAFs) of crude oil with an emphasis on inhibition of chitin metabolic pathways related genes and developmental retardation in the copepod Tigriopus japonicus. Also, we analysed the ontology and domain of chitin metabolic pathway genes and mRNA expression patterns of developmental stage-specific genes. Further, the developmental retardation followed by transcriptional modulations in nuclear receptor genes (NR) and chitin metabolic pathway-related genes were observed in the WAFs-exposed T. japonicus. As a result, the developmental time was found significantly (P<0.05) delayed in response to 40% WAFs in comparison with that of control. Moreover, the NR gene, HR3 and chitinases (CHT9 and CHT10) were up-regulated in N4-5 stages, while chitin synthase genes (CHS-1, CHS-2-1, and CHS-2-2) down-regulated in response to WAFs. In brief, a high concentration of WAFs repressed nuclear receptor genes but elicited activation of some of the transcription factors at low concentration of WAFs, resulting in suppression of chitin synthesis. Thus, we suggest that WAF can lead molting retardation of naupliar stages in T. japonicus through down-regulations of chitin metabolism. These findings will provide a better understanding of the mode of action of chitin biosynthesis associated with molting mechanism in WAF-exposed T. japonicus. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Selective increase in the association of the β2 adrenergic receptor, β Arrestin-1 and p53 with Mdm2 in the ventral hippocampus one month after underwater trauma.

    PubMed

    Sood, Rapita; Ritov, Gilad; Richter-Levin, Gal; Barki-Harrington, Liza

    2013-03-01

    Chronic infusion of mice with a β2 adrenergic receptor (β2AR) analog was shown to cause long-term DNA damage in a pathway which involves β Arresin-1-mediated activation of Mdm2 and subsequent degradation of the tumor suppressor protein p53. The objective of the present study was to test whether a single acute stress, which manifests long lasting changes in behavior, affects the interaction of Mdm2 with p53, β2AR, and β Arrestin-1 in the dorsal and ventral hippocampal CA1. Adult rats were subject to underwater trauma, a brief forceful submersion under water and tested a month later for behavioral and biochemical changes. Elevated plus maze tests confirmed that animals that experienced the threat of drowning present heightened levels of anxiety one month after trauma. An examination of the CA1 hippocampal areas of the same rats showed that underwater trauma caused a significant increase in the association of Mdm2 with β2AR, β Arrestin-1, and p53 in the ventral but not dorsal CA1. Our results provide support for the idea that stress-related events may result in biochemical changes restricted to the ventral 'emotion-related' parts of the hippocampus. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Inhibitory Effect of Ginseng on Breast Cancer Cell Line Growth Via Up-Regulation of Cyclin Dependent Kinase Inhibitor, p21 and p53

    PubMed

    AL Shabanah, Othman A; Alotaibi, Moureq rashed; Al Rejaie, Salim S; Alhoshani, Ali R; Almutairi, Mashal M; Alshammari, Musaad A; Hafez, Mohamed M

    2016-11-01

    Objective: Breast cancer is global female health problem worldwide. Most of the currently used agents for breast cancer treatment have toxic side-effects. Ginseng root, an oriental medicine, has many health benefits and may exhibit direct anti-cancer properties. This study was performed to assess the effects of ginseng on breast cancer cell lines. Materials and Methods: Cytotoxicity of ginseng extract was measured by MTT assay after exposure of MDA-MB-231, MCF-10A and MCF-7 breast cancer cells to concentrations of 0.25, 0.5, 1, 1.5, 2 and 2.5 mg/well. Expression levels of p21WAF, p16INK4A, Bcl-2, Bax and P53 genes were analyzed by quantitative real time PCR. Results: The treatment resulted in inhibition of cell proliferation in a dose-and time-dependent manner. p53, p21WAF1and p16INK4A expression levels were up-regulated in ginseng treated MDA-MB-231 and MCF-7 cancer cells compared to untreated controls and in MCF-10A cells. The expression levels of Bcl2 in the MDA-MB-231 and MCF-7 cells were down-regulated. In contrast, that of Bax was significantly up-regulated. Conclusion: The results of this study revealed that ginseng may inhibit breast cancer cell growth by activation of the apoptotic pathway. Creative Commons Attribution License

  20. The silence of p66Shc in HCT8 cells inhibits the viability via PI3K/AKT/Mdm-2/p53 signaling pathway

    PubMed Central

    Zhang, Ling; Zhu, Shengtao; Shi, Xuesen; Sha, Weihong

    2015-01-01

    Colon cancer is the second most common cause of cancer-related death, indicating that some of its cancer cells are not eradicated by current therapies. The previous studies demonstrated that p66Shc protein, a member of Shc family, is highly expressed in colon cancer cells, but the role of p66Shc in the progress of colon cancer still unknown. In this study, we found that p66Shc highly expressed in colon cancer tissue and colon cancer cell line SW620 cells, HCT8 cells, HCT116 cells and CaCO2 cells. The silence of p66Shc in HCT8 cells reduced the proliferation and accelerated the apoptosis, in addition, the expression of pro-apoptotic proteins caspase-3, caspase-9, Bax was enhanced and the expression of anti-apoptotic protein Bcl-2 was declined. Moreover, the cell cycle arrest in G0/G1 phase after HCT8 cells treated with p66Shc siRNA. Furthermore, after HCT8 cells treated with p66Shc siRNA, the phosphorylation of PI3K and AKT was significantly suppressed, and the expression of Mdm-2, a downstream of AKT, was obviously prohibited, while the expression of p53 was enhanced. These results indicate that the silence of p66Shc in HCT8 cells inhibits the viability via PI3K/AKT/Mdm-2/p53 signaling pathway, it may provide a promising approach to prevent the progress of colon cancer cell. PMID:26464652

  1. Mouse double minute-2 homolog (MDM2)-rs2279744 polymorphism associated with lung cancer risk in a Northeastern Chinese population.

    PubMed

    Wang, Xu; Jin, Lina; Cui, Jiuwei; Ma, Kewei; Chen, Xiao; Li, Wei

    2015-01-01

    Altered expression or function of mouse double minute-2 (MDM2) protein could contribute to lung carcinogenesis; thus, this study investigated MDM2-rs2279744 polymorphism together with other epidemiologic factors for their association with lung cancer risk. A total of 500 lung cancer patients and 500 age and gender-matched healthy controls living in Northeastern China were recruited for genotyping of MDM2-rs2279744. Clinicopathological data was collected and subjected to univariate and multivariate analyses. In univariate analysis, the MDM2-rs2279744 G/G genotype versus T/T + T/G genotypes showed a tendency toward a higher incidence of lung cancer in the recessive model (P = 0.043). However, there were no significant differences when it was analyzed by the dominant, additive, or multiplicative models. A significantly increased lung cancer risk was observed associated with lower education level, lower body mass index, cancer family history, prior diagnosis of chronic obstructive pulmonary disease and pneumonia, exposure to pesticide or gasoline/diesel, tobacco smoking, and heavy cooking emissions when assessed by multivariate analyses. Moreover, MDM2-rs2279744 was still a significant risk factor even after incorporating environmental and lifestyle factors. However, there was no association between MDM2-rs2279744 and other factors. The MDM2-rs2279744 G/G genotype was associated with a higher lung cancer risk, even after incorporating other epidemiologic factors.

  2. Regulation of androgen receptor and histone deacetylase 1 by Mdm2-mediated ubiquitylation.

    PubMed

    Gaughan, Luke; Logan, Ian R; Neal, David E; Robson, Craig N

    2005-01-01

    The androgen receptor (AR) is a member of the nuclear hormone receptor family of transcription factors and plays a critical role in regulating the expression of genes involved in androgen-dependent and -independent tumour formation. Regulation of the AR is achieved by alternate binding of either histone acetyltransferase (HAT)-containing co-activator proteins, or histone deacetylase 1 (HDAC1). Factors that control AR stability may also constitute an important regulatory mechanism, a notion that has been confirmed with the finding that the AR is a direct target for Mdm2-mediated ubiquitylation and proteolysis. Using chromatin immunoprecipitation (ChIP) and re-ChIP analyses, we show that Mdm2 associates with AR and HDAC1 at the active androgen-responsive PSA promoter in LNCaP prostate cancer cells. Furthermore, we demonstrate that Mdm2-mediated modification of AR and HDAC1 catalyses protein destabilization and attenuates AR sactivity, suggesting that ubiquitylation of the AR and HDAC1 may constitute an additional mechanism for regulating AR function. We also show that HDAC1 and Mdm2 function co-operatively to reduce AR-mediated transcription that is attenuated by the HAT activity of the AR co-activator Tip60, suggesting interplay between acetylation status and receptor ubiquitylation in AR regulation. In all, our data indicates a novel role for Mdm2 in regulating components of the AR transcriptosome.

  3. Ubiquitin ligase parkin promotes Mdm2-arrestin interaction but inhibits arrestin ubiquitination

    PubMed Central

    Ahmed, M. Rafiuddin; Zhan, Xuanzhi; Song, Xiufeng; Kook, Seunghyi; Gurevich, Vsevolod V.; Gurevich, Eugenia V.

    2011-01-01

    Numerous mutations in E3 ubiquitin ligase parkin were shown to associate with familial Parkinson's disease. Here we show that parkin binds arrestins, versatile regulators of cell signaling. Arrestin-parkin interaction was demonstrated by coimmuno-precipitation of endogenous proteins from brain tissue, and shown to be direct using purified proteins. Parkin binding enhances arrestin interactions with another E3 ubiquitin ligase, Mdm2, apparently by shifting arrestin conformational equilibrium to the basal state preferred by Mdm2. Although Mdm2 was reported to ubiquitinate arrestins, parkin-dependent increase in Mdm2 binding dramatically reduces the ubiquitination of both non-visual arrestins, basal and stimulated by receptor activation, without affecting receptor internalization. Several disease-associated parkin mutations differentially affect the stimulation of Mdm2 binding. All parkin mutants tested effectively suppress arrestin ubiquitination, suggesting that bound parkin shields arrestin lysines targeted by Mdm2. Parkin binding to arrestins along with its effects on arrestin interaction with Mdm2 and ubiquitination is a novel function of this protein with implications for Parkinson's disease pathology. PMID:21466165

  4. Ubiquitin ligase parkin promotes Mdm2-arrestin interaction but inhibits arrestin ubiquitination.

    PubMed

    Ahmed, M Rafiuddin; Zhan, Xuanzhi; Song, Xiufeng; Kook, Seunghyi; Gurevich, Vsevolod V; Gurevich, Eugenia V

    2011-05-10

    Numerous mutations in E3 ubiquitin ligase parkin were shown to associate with familial Parkinson's disease. Here we show that parkin binds arrestins, versatile regulators of cell signaling. Arrestin-parkin interaction was demonstrated by coimmunoprecipitation of endogenous proteins from brain tissue and shown to be direct using purified proteins. Parkin binding enhances arrestin interactions with another E3 ubiquitin ligase, Mdm2, apparently by shifting arrestin conformational equilibrium to the basal state preferred by Mdm2. Although Mdm2 was reported to ubiquitinate arrestins, parkin-dependent increase in Mdm2 binding dramatically reduces the ubiquitination of both nonvisual arrestins, basal and stimulated by receptor activation, without affecting receptor internalization. Several disease-associated parkin mutations differentially affect the stimulation of Mdm2 binding. All parkin mutants tested effectively suppress arrestin ubiquitination, suggesting that bound parkin shields arrestin lysines targeted by Mdm2. Parkin binding to arrestins along with its effects on arrestin interaction with Mdm2 and ubiquitination is a novel function of this protein with implications for Parkinson's disease pathology.

  5. Np9, a cellular protein of retroviral ancestry restricted to human, chimpanzee and gorilla, binds and regulates ubiquitin ligase MDM2

    PubMed Central

    Heyne, Kristina; Kölsch, Kathrin; Bruand, Marine; Kremmer, Elisabeth; Grässer, Friedrich A; Mayer, Jens; Roemer, Klaus

    2015-01-01

    Humans and primates are long-lived animals with long reproductive phases. One factor that appears to contribute to longevity and fertility in humans, as well as to cancer-free survival, is the transcription factor and tumor suppressor p53, controlled by its main negative regulator MDM2. However, p53 and MDM2 homologs are found throughout the metazoan kingdom from Trichoplacidae to Hominidae. Therefore the question arises, if p53/MDM2 contributes to the shaping of primate features, then through which mechanisms. Previous findings have indicated that the appearances of novel p53-regulated genes and wild-type p53 variants during primate evolution are important in this context. Here, we report on another mechanism of potential relevance. Human endogenous retrovirus K subgroup HML-2 (HERV-K(HML-2)) type 1 proviral sequences were formed in the genomes of the predecessors of contemporary Hominoidea and can be identified in the genomes of Nomascus leucogenys (gibbon) up to Homo sapiens. We previously reported on an alternative splicing event in HERV-K(HML-2) type 1 proviruses that can give rise to nuclear protein of 9 kDa (Np9). We document here the evolution of Np9-coding capacity in human, chimpanzee and gorilla, and show that the C-terminal half of Np9 binds directly to MDM2, through a domain of MDM2 that is known to be contacted by various cellular proteins in response to stress. Np9 can inhibit the MDM2 ubiquitin ligase activity toward p53 in the cell nucleus, and can support the transactivation of genes by p53. Our findings point to the possibility that endogenous retrovirus protein Np9 contributes to the regulation of the p53-MDM2 pathway specifically in humans, chimpanzees and gorillas. PMID:26103464

  6. Discovery of novel dual inhibitors against Mdm2 and Mdmx proteins by in silico approaches and binding assay.

    PubMed

    Golestanian, Sahand; Sharifi, Amirhossein; Popowicz, Grzegorz M; Azizian, Homa; Foroumadi, Alireza; Szwagierczak, Aleksandra; Holak, Tad A; Amanlou, Massoud

    2016-01-15

    The p53 protein, also called guardian of the genome, has a key role in cell cycle regulation. It is activated under stressful circumstances, such as DNA damage which results in permanent arrest or cell death. The protein is disabled in several types of human cancer due to over-expression of the two regulators, Mdm2 and Mdmx. As a result, inhibiting Mdm subtypes could reactivate p53 and bring about a promising therapeutic strategy in cancers. Here a structure-based pharmacophore search and docking simulation are presented in order to filter our in-house library which contains 1035 compounds to find novel scaffolds that inhibit Mdm2 and Mdmx concomitantly. Afterwards, fluorescence polarization binding assay was used to obtain inhibition constant of final compounds. Thirty two ligands were introduced to bioassay as a result of in-silico methods. Twelve of them inhibit both proteins with almost balanced Ki value ranging from 18 to 162μM for Mdm2 and 18 to 233μM for Mdmx. It was observed that all compounds fill Phe19 and Trp23 pockets of Mdm2/x binding sites and form a hydrogen bond with Trp23 pocket's neighbor amino acids in a manner similar to p53 protein. Additionally, it was concluded that Trp23 pocket of Mdmx has a bigger hydrophobic volume comparing with the one of Mdm2. Three structure-activity relationship patterns are supposed which one of them presents usefulness features and can be used in future studies. This study presents first qualitative SAR for dual inhibitors against Mdm2/x. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Study of MDM2 and SUMO-1 expression in actinic cheilitis and lip cancer.

    PubMed

    Oliveira Alves, Mônica Ghislaine; da Mota Delgado, Adriana; Balducci, Ivan; Carvalho, Yasmin Rodarte; Cavalcante, Ana Sueli Rodrigues; Almeida, Janete Dias

    2014-11-01

    Actinic cheilitis exhibits a potential of malignant transformation in 10-20 % of cases. The objective of this study was to compare the expression of MDM2 and SUMO-1 proteins between actinic cheilitis (AC) and squamous cell carcinoma (SCC) of the lip. The sample consisted of lower lip mucosa specimens obtained from cases with a clinical and histopathological diagnosis of AC (n = 26) and SCC (n = 25) and specimens of labial semi-mucosa (n = 15) without clinical alterations or inflammation. The tissue samples were stained with hematoxylin-eosin and anti-MDM2 and anti-SUMO-1 antibodies. Data were analyzed by the Kruskal-Wallis and Dunn's tests (5 %). The median expression of MDM2 (kW = 36.8565; df = 3-1 = 2; p = 0.0001) and SUMO-1 (kW = 32.7080; df = 3-1 = 2; p = 0.0001) was similar in cases of AC and SCC of the lip, but differed significantly from that observed for normal labial semi-mucosa. Despite the limitations of the present study, immunohistochemistry demonstrated the overexpression of important proteins (MDM2 and SUMO-1) related to regulatory mechanisms of apoptosis in AC and SCC of the lip, but further studies are needed.

  8. Targeting MDM2 by the small molecule RITA: towards the development of new multi-target drugs against cancer

    PubMed Central

    Espinoza-Fonseca, L Michel

    2005-01-01

    Background The use of low-molecular-weight, non-peptidic molecules that disrupt the interaction between the p53 tumor suppressor and its negative regulator MDM2 has provided a promising alternative for the treatment of different types of cancer. Among these compounds, RITA (reactivation of p53 and induction of tumor cell apoptosis) has been shown to be effective in the selective induction of apoptosis, and this effect is due to its binding to the p53 tumor suppressor. Since biological systems are highly dynamic and MDM2 may bind to different regions of p53, new alternatives should be explored. On this basis, the computational "blind docking" approach was employed in this study to see whether RITA would bind to MDM2. Results It was observed that RITA binds to the MDM2 p53 transactivation domain-binding cleft. Thus, RITA can be used as a lead compound for designing improved "multi-target" drugs. This novel strategy could provide enormous benefits to enable effective anti-cancer strategies. Conclusion This study has demonstrated that a single molecule can target at least two different proteins related to the same disease. PMID:16174299

  9. Expression of Bcl-2, p53, and MDM2 in Localized Prostate Cancer With Respect to the Outcome of Radical Radiotherapy Dose Escalation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vergis, Roy; Corbishley, Catherine M.; Thomas, Karen

    Purpose: Established prognostic factors in localized prostate cancer explain only a moderate proportion of variation in outcome. We analyzed tumor expression of apoptotic markers with respect to outcome in men with localized prostate cancer in two randomized controlled trials of radiotherapy dose escalation. Methods and Materials: Between 1995 and 2001, 308 patients with localized prostate cancer received neoadjuvant androgen deprivation and radical radiotherapy at our institution in one of two dose-escalation trials. The biopsy specimens in 201 cases were used to make a biopsy tissue microarray. We evaluated tumor expression of Bcl-2, p53, and MDM2 by immunohistochemistry with respect tomore » outcome. Results: Median follow-up was 7 years, and 5-year freedom from biochemical failure (FFBF) was 70.4% (95% CI, 63.5-76.3%). On univariate analysis, expression of Bcl-2 (p < 0.001) and p53 (p = 0.017), but not MDM2 (p = 0.224), was significantly associated with FFBF. Expression of Bcl-2 remained significantly associated with FFBF (p = 0.001) on multivariate analysis, independently of T stage, Gleason score, initial prostate-specific antigen level, and radiotherapy dose. Seven-year biochemical control was 61% vs. 41% (p = 0.0122) for 74 Gy vs. 64 Gy, respectively, among patients with Bcl-2-positive tumors and 87% vs. 81% (p = 0.423) for 74 Gy vs. 64 Gy, respectively, among patients with Bcl-2-negative tumors. There was no statistically significant interaction between dose and Bcl-2 expression. Conclusions: Bcl-2 expression was a significant, independent determinant of biochemical control after neoadjuvant androgen deprivation and radical radiotherapy for prostate cancer. These data generate the hypothesis that Bcl-2 expression could be used to inform the choice of radiotherapy dose in individual patients.« less

  10. Anti-Colon Cancer Effects of 6-Shogaol Through G2/M Cell Cycle Arrest by p53/p21-cdc2/cdc25A Crosstalk.

    PubMed

    Qi, Lian-Wen; Zhang, Zhiyu; Zhang, Chun-Feng; Anderson, Samantha; Liu, Qun; Yuan, Chun-Su; Wang, Chong-Zhi

    2015-01-01

    Chemopreventive agents can be identified from botanicals. Recently, there has been strong support for the potential of 6-shogaol, a natural compound from dietary ginger (Zingiber officinale), in cancer chemoprevention. However, whether 6-shogaol inhibits the growth of colorectal tumors in vivo remains unknown, and the underlying anticancer mechanisms have not been well characterized. In this work, we observed that 6-shogaol (15 mg/kg) significantly inhibited colorectal tumor growth in a xenograft mouse model. We show that 6-shogaol inhibited HCT-116 and SW-480 cell proliferation with IC50 of 7.5 and 10 μM, respectively. Growth of HCT-116 cells was arrested at the G2/M phase of the cell cycle, primarily mediated by the up-regulation of p53, the CDK inhibitor p21(waf1/cip1) and GADD45α, and by the down-regulation of cdc2 and cdc25A. Using p53(-/-) and p53(+/+) HCT-116 cells, we confirmed that p53/p21 was the main pathway that contributed to the G2/M cell cycle arrest by 6-shogaol. 6-Shogaol induced apoptosis, mainly through the mitochondrial pathway, and the bcl-2 family might act as a key regulator. Our results demonstrated that 6-shogaol induces cancer cell death by inducing G2/M cell cycle arrest and apoptosis. 6-Shogaol could be an active natural product in colon cancer chemoprevention.

  11. Retroperitoneal dedifferentiated liposarcoma lacking MDM2 amplification in a patient with a germ line CHEK2 mutation.

    PubMed

    Sadri, Navid; Surrey, Lea F; Fraker, Douglas L; Zhang, Paul J

    2014-04-01

    Germ line mutations in genes that encode proteins involved in the DNA damage response predispose patients to a variety of tumors. Checkpoint kinase 2, encoded by the CHEK2 gene, is important in transducing the DNA damage response. Germ line CHEK2 mutations are seen in a subset of patients with a familial breast cancer and sarcoma phenotype. We report a case of retroperitoneal dedifferentiated liposarcoma in a 61-year-old female with germ line CHEK2 mutation. MDM2 gene amplification normally present and used to aid in the diagnosis of retroperitoneal dedifferentiated liposarcoma was absent in this case. Lack of MDM2 overexpression has similarly been reported in liposarcomas arising in patients with germ line TP53 mutations. We propose this case may highlight a nonamplified MDM2 phenotype in well- and dedifferentiated liposarcomas arising in patients with germ line mutations of genes involved in p53-associated DNA damage response pathways.

  12. PKCeta enhances cell cycle progression, the expression of G1 cyclins and p21 in MCF-7 cells.

    PubMed

    Fima, E; Shtutman, M; Libros, P; Missel, A; Shahaf, G; Kahana, G; Livneh, E

    2001-10-11

    Protein kinase C encodes a family of enzymes implicated in cellular differentiation, growth control and tumor promotion. However, not much is known with respect to the molecular mechanisms that link protein kinase C to cell cycle control. Here we report that the expression of PKCeta in MCF-7 cells, under the control of a tetracycline-responsive inducible promoter, enhanced cell growth and affected the cell cycle at several points. The induced expression of another PKC isoform, PKCdelta, in MCF-7 cells had opposite effects and inhibited their growth. PKCeta expression activated cellular pathways in these cells that resulted in the increased expression of the G1 phase cyclins, cyclin D and cyclin E. Expression of the cyclin-dependent kinase inhibitor p21(WAF1) was also specifically elevated in PKCeta expressing cells, but its overall effects were not inhibitory. Although, the protein levels of the cyclin-dependent kinase inhibitor p27(KIP1) were not altered by the induced expression of PKCeta, the cyclin E associated Cdk2 kinase activity was in correlation with the p27(KIP1) bound to the cyclin E complex and not by p21(WAF1) binding. PKCeta expression enhanced the removal of p27(KIP1) from this complex, and its re-association with the cyclin D/Cdk4 complex. Reduced binding of p27(KIP1) to the cyclin D/Cdk4 complex at early time points of the cell cycle also enhanced the activity of this complex, while at later time points the decrease in bound p21(WAF1) correlated with its increased activity in PKCeta-expressing cells. Thus, PKCeta induces altered expression of several cell cycle functions, which may contribute to its ability to affect cell growth.

  13. Patulin causes DNA damage leading to cell cycle arrest and apoptosis through modulation of Bax, p{sup 53} and p{sup 21/WAF1} proteins in skin of mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saxena, Neha; Ansari, Kausar M.; Kumar, Rahul

    2009-01-15

    Patulin (PAT), a mycotoxin found in apples, grapes, oranges, pear and peaches, is a potent genotoxic compound. WHO has highlighted the need for the study of cutaneous toxicity of PAT as manual labour is employed during pre and post harvest stages, thereby causing direct exposure to skin. In the present study cutaneous toxicity of PAT was evaluated following topical application to Swiss Albino mice. Dermal exposure of PAT, to mice for 4 h resulted in a dose (40-160 {mu}g/animal) and time (up to 6 h) dependent enhancement of ornithine decarboxylase (ODC), a marker enzyme of cell proliferation. The ODC activitymore » was found to be normal after 12 and 24 h treatment of patulin. Topical application of PAT (160 {mu}g/100 {mu}l acetone) for 24-72 h caused (a) DNA damage in skin cells showing significant increase (34-63%) in olive tail moment, a parameter of Comet assay (b) significant G 1 and S-phase arrest along with induction of apoptosis (2.8-10 folds) as shown by annexin V and PI staining assay through flow cytometer. Moreover PAT leads to over expression of p{sup 21/WAF1} (3.6-3.9 fold), pro apoptotic protein Bax (1.3-2.6) and tumor suppressor wild type p{sup 53} (2.8-3.9 fold) protein. It was also shown that PAT induced apoptosis was mediated through mitochondrial intrinsic pathway as revealed through the release of cytochrome C protein in cytosol leading to enhancement of caspase-3 activity in skin cells of mice. These results suggest that PAT has a potential to induce DNA damage leading to p{sup 53} mediated cell cycle arrest along with intrinsic pathway mediated apoptosis that may also be correlated with enhanced polyamine production as evident by induction of ODC activity, which may have dermal toxicological implications.« less

  14. Group-based QSAR and molecular dynamics mechanistic analysis revealing the mode of action of novel piperidinone derived protein-protein inhibitors of p53-MDM2.

    PubMed

    Goyal, Sukriti; Grover, Sonam; Dhanjal, Jaspreet Kaur; Tyagi, Chetna; Goyal, Manisha; Grover, Abhinav

    2014-06-01

    Tumour suppressor p53 is known to play a central role in prevention of tumour development, DNA repair, senescence and apoptosis which is in normal cells maintained by negative feedback regulator MDM2 (Murine Double Minute 2). In case of dysfunctioning of this regulatory loop, tumour development starts thus resulting in cancerous condition. Inhibition of p53-MDM2 binding would result in activation of the tumour suppressor. In this study, a novel robust fragment-based QSAR model has been developed for piperidinone derived compounds experimentally known to inhibit p53-MDM2 interaction. The QSAR model developed showed satisfactory statistical parameters for the experimentally reported dataset (r(2)=0.9415, q(2)=0.8958, pred_r(2)=0.8894 and F-test=112.7314), thus judging the robustness of the model. Low standard error values (r(2)_se=0.3003, q(2)_se=0.4009 and pred_r(2)_se=0.3315) confirmed the accuracy of the developed model. The regression equation obtained constituted three descriptors (R2-DeltaEpsilonA, R1-RotatableBondCount and R2-SssOCount), two of which had positive contribution while third showed negative correlation. Based on the developed QSAR model, a combinatorial library was generated and activities of the compounds were predicted. These compounds were docked with MDM2 and two top scoring compounds with binding affinities of -10.13 and -9.80kcal/mol were selected. The binding modes of actions of these complexes were analyzed using molecular dynamics simulations. Analysis of the developed fragment-based QSAR model revealed that addition of unsaturated electronegative groups at R2 site and groups with more rotatable bonds at R1 improved the inhibitory activity of these potent lead compounds. The detailed analysis carried out in this study provides a considerable basis for the design and development of novel piperidinone-based lead molecules against cancer and also provides mechanistic insights into their mode of actions. Copyright © 2014 Elsevier Inc. All

  15. A Small-molecule Inhibitor, 5′-O-Tritylthymidine, targets FAK and Mdm-2 Interaction, and Blocks Breast and Colon Tumorigenesis in vivo

    PubMed Central

    Golubovskaya, Vita; Palma, Nadia L.; Zheng, Min; Ho, Baotran; Magis, Andrew; Ostrov, David; Cance, William G.

    2013-01-01

    Focal Adhesion Kinase (FAK) is overexpressed in many types of tumors and plays an important role in survival. We developed a novel approach, targeting FAK-protein interactions by computer modeling and screening of NCI small molecule drug database. In this report we targeted FAK and Mdm-2 protein interaction to decrease tumor growth. By macromolecular modeling we found a model of FAK and Mdm-2 interaction and performed screening of >200,000 small molecule compounds from NCI database with drug-like characteristics, targeting the FAK-Mdm-2 interaction. We identified 5′-O-Tritylthymidine, called M13 compound that significantly decreased viability in different cancer cells. M13 was docked into the pocket of FAK and Mdm-2 interaction and was directly bound to the FAK-N terminal domain by ForteBio Octet assay. In addition, M13 compound affected FAK and Mdm-2 levels and decreased complex of FAK and Mdm-2 proteins in breast and colon cancer cells. M13 re-activated p53 activity inhibited by FAK with Mdm-2 promoter. M13 decreased viability, clonogenicity, increased detachment and apoptosis in a dose-dependent manner in BT474 breast and in HCT116 colon cancer cells in vitro. M13 decreased FAK, activated p53 and caspase-8 in both cell lines. In addition, M13 decreased breast and colon tumor growth in vivo. M13 activated p53 and decreased FAK in tumor samples consistent with decreased tumor growth. The data demonstrate a novel approach for targeting FAK and Mdm-2 protein interaction, provide a model of FAK and Mdm-2 interaction, identify M13 compound targeting this interaction and decreasing tumor growth that is critical for future targeted therapeutics. PMID:22292771

  16. P53-dependent antiproliferative and pro-apoptotic effects of trichostatin A (TSA) in glioblastoma cells.

    PubMed

    Bajbouj, K; Mawrin, C; Hartig, R; Schulze-Luehrmann, J; Wilisch-Neumann, A; Roessner, A; Schneider-Stock, R

    2012-05-01

    Glioblastomas are known to be highly chemoresistant, but HDAC inhibitors (HDACi) have been shown to be of therapeutic relevance for this aggressive tumor type. We treated U87 glioblastoma cells with trichostatin A (TSA) to define potential epigenetic targets for HDACi-mediated antitumor effects. Using a cDNA array analysis covering 96 cell cycle genes, cyclin-dependent kinase inhibitor p21(WAF1) was identified as the major player in TSA-induced cell cycle arrest. TSA slightly inhibited proliferation and viability of U87 cells, cumulating in a G1/S cell cycle arrest. This effect was accompanied by a significant up-regulation of p53 and its transcriptional target p21(WAF1) and by down-regulation of key G1/S regulators, such as cdk4, cdk6, and cyclin D1. Nevertheless, TSA did not induce apoptosis in U87 cells. As expected, TSA promoted the accumulation of total acetylated histones H3 and H4 and a decrease in endogenous HDAC activity. Characterizing the chromatin modulation around the p21(WAF1) promoter after TSA treatment using chromatin immunoprecipitation, we found (1) a release of HDAC1, (2) an increase of acetylated H4 binding, and (3) enhanced recruitment of p53. p53-depleted U87 cells showed an abrogation of the G1/S arrest and re-entered the cell cycle. Immunofluorescence staining revealed that TSA induced the nuclear translocation of p21(WAF1) verifying a cell cycle arrest. On the other hand, a significant portion of p21(WAF1) was present in the cytoplasmic compartment causing apoptosis resistance. Furthermore, TSA-treated p53-mutant cell line U138 failed to show an induction in p21(WAF1), showed a deficient G2/M checkpoint, and underwent mitotic catastrophe. We suggest that HDAC inhibition in combination with other clinically used drugs may be considered an effective strategy to overcome chemoresistance in glioblastoma cells.

  17. Flavonoids and Tannins from Smilax china L. Rhizome Induce Apoptosis Via Mitochondrial Pathway and MDM2-p53 Signaling in Human Lung Adenocarcinoma Cells.

    PubMed

    Fu, San; Yang, Yanfang; Liu, Dan; Luo, Yan; Ye, Xiaochuan; Liu, Yanwen; Chen, Xin; Wang, Song; Wu, Hezhen; Wang, Yuhang; Hu, Qiwei; You, Pengtao

    2017-01-01

    In vitro evidence indicates that Smilax china L. rhizome (SCR) can inhibit cell proliferation. Therefore, in the present study, we analyzed the effects in vitro of SCR extracts on human lung adenocarcinoma A549 cells. Our results showed that A549 cell growth was inhibited in a dose- and time-dependent manner after treatment with SCR extracts. Total flavonoids and total tannins from SCR induced A549 apoptosis in a dose-dependent manner, as shown by our flow cytometry analysis, which was consistent with the alterations in nuclear morphology we observed. In addition, the total apoptotic rate induced by total tannins was higher than the rate induced by total flavonoids at the same dose. Cleaved-caspase-3 protein levels in A549 cells after treatment with total flavonoids or total tannins were increased in a dose-dependent manner, followed by the activation of caspase-8 and caspase-9, finally triggering to PARP cleavage. Furthermore, total flavonoids and total tannins increased the expression of Bax, decreased the expression of Bcl-2, and promoted cytochrome [Formula: see text] release. Moreover, MDM2 and p-MDM2 proteins were decreased, while p53 and p-p53 proteins were increased, both in a dose-dependent manner, after A549 treatment with total flavonoids and total tannins. Finally, cleaved-caspase-3 protein levels in the total flavonoids or total tannins-treated H1299 (p53 null) and p53-knockdown A549 cells were increased. Our results indicated that total flavonoids and total tannins from SCR exerted a remarkable effect in reducing A549 growth through their action on mitochondrial pathway and disruption of MDM2-p53 balance. Hence, our findings demonstrated a potential application of total flavonoids and total tannins from SCR in the treatment of human lung adenocarcinoma.

  18. Estradiol shows anti-skin cancer activities through decreasing MDM2 expression.

    PubMed

    Li, Li; Feng, Jianguo; Chen, Ying; Li, Shun; Ou, Mengting; Sun, Weichao; Tang, Liling

    2017-01-31

    Estradiol plays important roles in many biological responses inducing tumor genesis and cancer treatment. However, the effects of estradiol on tumors were inconsistent among a lot of researches and the mechanism is not fully understood. Our previous study indicated that splicing factor hnRNPA1 could bind to the human homologue of mouse double minute (MDM2), an oncogene which has been observed to be over-expressed in numerous types of cancers. In this research, we investigated whether and how estradiol correlate to cancer cell behaviors through heterogeneous nuclear ribonucleoprotein (hnRNPA1) and MDM2. Results showed that 10×10-13Mestradiol elevated the expression of hnRNPA1 regardless ER expression in cells, and then down-regulated the expression of MDM2. At the same time, estradiol inhibited cell proliferation, migration and epithelial-mesenchymal transition progression of A375 and GLL19 cells. While, knocking down hnRNPA1 through the transfection of hnRNPA1 siRNA led to the increase of MDM2 at both protein level and gene level In vivo experiment, subcutaneous injection with estradiol every two days near the tumor at doses of 2.5mg/kg/d suppressed tumor growth and reduced MDM2 expression. In a word, via increasing hnRNPA1 level and then reducing the expression of MDM2, estradiol prevented carcinogenesis in melanomas. We confirmed therapeutic effect of estradiol, as well as a new way for estradiol to resist skin cancer.

  19. MDM2 phenotypic and genotypic profiling, respective to TP53 genetic status, in diffuse large B-cell lymphoma patients treated with rituximab-CHOP immunochemotherapy: a report from the International DLBCL Rituximab-CHOP Consortium Program

    PubMed Central

    Xu-Monette, Zijun Y.; Møller, Michael B.; Tzankov, Alexander; Montes-Moreno, Santiago; Hu, Wenwei; Manyam, Ganiraju C.; Kristensen, Louise; Fan, Lei; Visco, Carlo; Dybkær, Karen; Chiu, April; Tam, Wayne; Zu, Youli; Bhagat, Govind; Richards, Kristy L.; Hsi, Eric D.; Choi, William W. L.; van Krieken, J. Han; Huang, Qin; Huh, Jooryung; Ai, Weiyun; Ponzoni, Maurilio; Ferreri, Andrés J. M.; Wu, Lin; Zhao, Xiaoying; Bueso-Ramos, Carlos E.; Wang, Sa A.; Go, Ronald S.; Li, Yong; Winter, Jane N.; Medeiros, L. Jeffrey

    2013-01-01

    MDM2 is a key negative regulator of the tumor suppressor p53, however, the prognostic significance of MDM2 overexpression in diffuse large B-cell lymphoma (DLBCL) has not been defined convincingly. In a p53 genetically–defined large cohort of de novo DLBCL patients treated with rituximab, cyclophosphamide, hydroxydaunorubicin, vincristine, and prednisone (R-CHOP) chemotherapy, we assessed MDM2 and p53 expression by immunohistochemistry (n = 478), MDM2 gene amplification by fluorescence in situ hybridization (n = 364), and a single nucleotide polymorphism in the MDM2 promoter, SNP309, by SNP genotyping assay (n = 108). Our results show that MDM2 overexpression, unlike p53 overexpression, is not a significant prognostic factor in overall DLBCL. Both MDM2 and p53 overexpression do not predict for an adverse clinical outcome in patients with wild-type p53 but predicts for significantly poorer survival in patients with mutated p53. Variable p53 activities may ultimately determine the survival differences, as suggested by the gene expression profiling analysis. MDM2 amplification was observed in 3 of 364 (0.8%) patients with high MDM2 expression. The presence of SNP309 did not correlate with MDM2 expression and survival. This study indicates that evaluation of MDM2 and p53 expression correlating with TP53 genetic status is essential to assess their prognostic significance and is important for designing therapeutic strategies that target the MDM2-p53 interaction. PMID:23982177

  20. A stapled peptide antagonist of MDM2 carried by polymeric micelles sensitizes glioblastoma to temozolomide treatment through p53 activation

    PubMed Central

    Chen, Xishan; Tai, Lingyu; Gao, Jie; Qian, Jianchang; Zhang, Mingfei; Li, Beibei; Xie, Cao; Lu, Linwei; Lu, Wuyuan; Lu, Weiyue

    2017-01-01

    Antagonizing MDM2 and MDMX to activate the tumor suppressor protein p53 is an attractive therapeutic paradigm for the treatment of glioblastoma multiforme (GBM). However, challenges remain with respect to the poor ability of p53 activators to efficiently cross the blood–brain barrier and/or blood–brain tumor barrier and to specifically target tumor cells. To circumvent these problems, we developed a cyclic RGD peptide-conjugated poly(-ethylene glycol)-co-poly(lactic acid) polymeric micelle (RGD-M) that carried a stapled peptide antagonist of both MDM2 and MDMX (sPMI). The peptide-carrying micelle RGD-M/sPMI was prepared via film-hydration method with high encapsulation efficiency and loading capacity as well as ideal size distribution. Micelle encapsulation dramatically increased the solubility of sPMI, thus alleviating its serum sequestration. In vitro studies showed that RGD-M/sPMI efficiently inhibited the proliferation of glioma cells in the presence of serum by activating the p53 signaling pathway. Further, RGD-M/sPMI exerted potent tumor growth inhibitory activity against human glioblastoma in nude mouse xenograft models. Importantly, the combination of RGD-M/sPMI and temozolomide — a standard chemotherapy drug for GBM increased antitumor efficacy against glioblastoma in experimental animals. Our results validate a combination therapy using p53 activators with temozolomide as a more effective treatment for GBM. PMID:26428461

  1. Challenging dedifferentiated liposarcoma identified by MDM2-amplification, a report of two cases.

    PubMed

    Lokka, Suvi; Scheel, Andreas H; Dango, Sebastian; Schmitz, Katja; Hesterberg, Rudolf; Rüschoff, Josef; Schildhaus, Hans-Ulrich

    2014-01-01

    Liposarcoma is the most frequent soft tissue sarcoma. Well differentiated liposarcoma may progress into dedifferentiated liposarcoma with pleomorphic histology. A minority additionally features myogenic, osteo- or chondrosarcomatous heterologous differentiation. Genomic amplification of the Mouse double minute 2 homolog (MDM2) locus is characteristic for well differentiated and dedifferentiated liposarcomas. Detection of MDM2 amplification may supplement histopathology and aid to distinguish liposarcoma from other soft tissue neoplasia. Here we present two cases of dedifferentiated liposarcoma with challenging presentation. Case 1 features a myogenic component. As the tumour infiltrated the abdominal muscles and showed immunohistochemical expression of myogenic proteins, rhabdomyosarcoma had to be ruled out. Case 2 has an osteosarcomatous component resembling extraosseous osteosarcoma. The MDM2 status was determined in both cases and helped making the correct diagnosis. Overexpression of MDM2 and co-overexpression of Cyclin-dependent kinase 4 is demonstrated by immunohistochemistry. The underlying MDM2 amplification is shown by fluorescence in situ hybridisation. Since low grade osteosarcoma may also harbour MDM2 amplification it is emphasised that the amplification has to be present in the lipomatous parts of the tumour to distinguish liposarcoma from extraosseous osteosarcoma. The two cases exemplify challenges in the diagnoses of dedifferentiated liposarcoma. Liposarcoma often has pleomorphic histology and additionally may feature heterologous components that mimic other soft tissue neoplasms. Amplification of MDM2 is characteristic for well differentiated and dedifferentiated liposarcomas. Determination of the MDM2 status by in situ hybridisation may assist histopathology and help to rule out differential diagnoses.

  2. MicroRNA501-5p induces p53 proteasome degradation through the activation of the mTOR/MDM2 pathway in ADPKD cells.

    PubMed

    de Stephanis, Lucia; Mangolini, Alessandra; Servello, Miriam; Harris, Peter C; Dell'Atti, Lucio; Pinton, Paolo; Aguiari, Gianluca

    2018-09-01

    Cell proliferation and apoptosis are typical hallmarks of autosomal dominant polycystic kidney disease (ADPKD) and cause the development of kidney cysts that lead to end-stage renal disease (ESRD). Many factors, impaired by polycystin complex loss of function, may promote these biological processes, including cAMP, mTOR, and EGFR signaling pathways. In addition, microRNAs (miRs) may also regulate the ADPKD related signaling network and their dysregulation contributes to disease progression. However, the role of miRs in ADPKD pathogenesis has not been fully understood, but also the function of p53 is quite obscure, especially its regulatory contribution on cell proliferation and apoptosis. Here, we describe for the first time that miR501-5p, upregulated in ADPKD cells and tissues, induces the activation of mTOR kinase by PTEN and TSC1 gene repression. The increased activity of mTOR kinase enhances the expression of E3 ubiquitin ligase MDM2 that in turn promotes p53 ubiquitination, leading to its degradation by proteasome machinery in a network involving p70S6K. Moreover, the overexpression of miR501-5p stimulates cell proliferation in kidney cells by the inhibition of p53 function in a mechanism driven by mTOR signaling. In fact, the downregulation of this miR as well as the pharmacological treatment with proteasome and mTOR inhibitors in ADPKD cells reduces cell growth by the activation of apoptosis. Consequently, the stimulation of cell death in ADPKD cells may occur through the inhibition of mTOR/MDM2 signaling and the restoring of p53 function. The data presented here confirm that the impaired mTOR signaling plays an important role in ADPKD. © 2018 Wiley Periodicals, Inc.

  3. Significant Association of the MDM2 T309G Polymorphism with Breast Cancer Risk in a Turkish Population

    PubMed

    Yilmaz, Meral; Tas, Ayca; Donmez, Gonca; Kacan, Turgut; Silig, Yavuz

    2018-04-27

    Background: Breast cancer is a leading cause of death in women worldwide. Genetic polymorphisms have been reported to be important etiological factors. Murine double minute 2 (MDM2) T309G interacts with p53 and mutations in p53 are present in approximately 50% of all cancers. However, it has been reported that effect of the polymorphism on breast cancer risk may vary in different populations. Here, we therefore investigated whether there is an association between MDM2 T309G (rs2279744) polymorphism and breast cancer in a Turkish population. Materials and Methods: We analysed 110 patients with breast cancer and 138 matched? controls. For genotyping, polymerase chain reaction and restriction length fragment polymorphism methods were used. Results: A significant difference was observed between case and control groups with regard to the distribution of the MDM2 T309G polymorphism (p<0.05). There was a significantly higher frequency of the TT genotype in the control group (p=0.028; OR, 2.42; 95% CI, 1.09-5.37). However, we did not find any relationships among tumor grade and metastasis status and this polymorphism. Conclusion: This study indicates that the MDM2 T309G polymorphism GG genotype and the TG+GG combination may be risk factors for breast cancer in our Turkish population. Creative Commons Attribution License

  4. Lost in transcription: p21 repression, mechanisms, and consequences.

    PubMed

    Gartel, Andrei L; Radhakrishnan, Senthil K

    2005-05-15

    The cyclin-dependent kinase inhibitor p21WAF1/CIP1 is a major player in cell cycle control and it is mainly regulated at the transcriptional level. Whereas induction of p21 predominantly leads to cell cycle arrest, repression of p21 may have a variety of outcomes depending on the context. In this review, we concentrate on transcriptional repression of p21 by cellular and viral factors, and delve in detail into its possible biological implications and its role in cancer. It seems that the major mode of p21 transcriptional repression by negative regulators is the interference with positive transcription factors without direct binding to the p21 promoter. Specifically, the negative factors may either inhibit binding of positive regulators to the promoter or hinder their transcriptional activity. The ability of p21 to inhibit proliferation may contribute to its tumor suppressor function. Because of this, it is not surprising that a number of oncogenes repress p21 to promote cell growth and tumorigenesis. However, p21 is also an inhibitor of apoptosis and p21 repression may also have an anticancer effect. For example, c-Myc and chemical p21 inhibitors, which repress p21, sensitize tumor cells to apoptosis by anticancer drugs. Further identification of factors that repress p21 is likely to contribute to the better understanding of its role in cancer.

  5. Nandrolone, an anabolic steroid, stabilizes Numb protein through inhibition of mdm2 in C2C12 myoblasts.

    PubMed

    Liu, Xin-Hua; Yao, Shen; Levine, Alice C; Kirschenbaum, Alexander; Pan, Jiangping; Wu, Yong; Qin, Weiping; Collier, Lauren; Bauman, William A; Cardozo, Christopher P

    2012-01-01

    Nandrolone, an anabolic steroid, slows denervation atrophy of rat muscle, prevents denervation-induced nuclear accumulation of intracellular domain of the Notch receptor, and elevates expression of Numb. Numb acts as an inhibitor of Notch signaling and promotes myogenic differentiation of satellite cells. Turnover of Numb is regulated by mdm2, an E3 ubiquitin ligase. With these considerations in mind, we investigated the effects of nandrolone on the expression of Numb and mdm2 proteins and determined the effect of mdm2 on nandrolone-induced alterations in Numb protein in C2C12 myoblasts. When C2C12 cells were cultured in a medium favoring differentiation (Dulbecco modified Eagle medium containing 2% horse serum), nandrolone up-regulated Numb protein levels in a time-dependent manner and prolonged Numb protein half-life from 10 to 18 hours. In contrast, nandrolone reduced the expression of mdm2 protein. To determine whether the decreased mdm2 expression induced by nandrolone was responsible for the increased levels and prolonged half-life of Numb protein in this cell line, mdm2-small interfering RNA (siRNA) was employed to inhibit mdm2 expression. Compared to cells transfected with scrambled siRNA (negative control), transfection with mdm2-siRNA increased basal Numb protein expression but abolished the further increase in Numb protein levels by nandrolone. In addition, transfection of mdm2-siRNA mimicked the effect of nandrolone to prolong the half-life of Numb protein. Moreover, when C2C12 cells were forced to overexpress mdm2, there was a significant decline in the expression of both basal and inducible Numb protein. Our data suggest that nandrolone, by a novel mechanism for this agent in a muscle cell type, increases Numb protein levels in C2C12 myoblasts by stabilizing Numb protein against degradation, at least in part, via suppression of mdm2 expression.

  6. Examination of the expanding pathways for the regulation of p21 expression and activity.

    PubMed

    Jung, Yong-Sam; Qian, Yingjuan; Chen, Xinbin

    2010-07-01

    p21(Waf1/Cip1/Sdi1) was originally identified as an inhibitor of cyclin-dependent kinases, a mediator of p53 in growth suppression and a marker of cellular senescence. p21 is required for proper cell cycle progression and plays a role in cell death, DNA repair, senescence and aging, and induced pluripotent stem cell reprogramming. Although transcriptional regulation is considered to be the initial control point for p21 expression, there is growing evidence that post-transcriptional and post-translational regulations play a critical role in p21 expression and activity. This review will briefly discuss the activity of p21 and focus on current knowledge of the determinants that control p21 transcription, mRNA stability and translation, and protein stability and activity. (c) 2010 Elsevier Inc. All rights reserved.

  7. TP53 and MDM2 single nucleotide polymorphisms influence survival in non-del(5q) myelodysplastic syndromes

    PubMed Central

    Sallman, David A.; Basiorka, Ashley A.; Irvine, Brittany A.; Zhang, Ling; Epling-Burnette, P.K.; Rollison, Dana E.; Mallo, Mar; Sokol, Lubomir; Solé, Francesc; Maciejewski, Jaroslaw; List, Alan F.

    2015-01-01

    P53 is a key regulator of many cellular processes and is negatively regulated by the human homolog of murine double minute-2 (MDM2) E3 ubiquitin ligase. Single nucleotide polymorphisms (SNPs) of either gene alone, and in combination, are linked to cancer susceptibility, disease progression, and therapy response. We analyzed the interaction of TP53 R72P and MDM2 SNP309 SNPs in relationship to outcome in patients with myelodysplastic syndromes (MDS). Sanger sequencing was performed on DNA isolated from 208 MDS cases. Utilizing a novel functional SNP scoring system ranging from +2 to −2 based on predicted p53 activity, we found statistically significant differences in overall survival (OS) (p = 0.02) and progression-free survival (PFS) (p = 0.02) in non-del(5q) MDS patients with low functional scores. In univariate analysis, only IPSS and the functional SNP score predicted OS and PFS in non-del(5q) patients. In multivariate analysis, the functional SNP score was independent of IPSS for OS and PFS. These data underscore the importance of TP53 R72P and MDM2 SNP309 SNPs in MDS, and provide a novel scoring system independent of IPSS that is predictive for disease outcome. PMID:26416416

  8. Discovery of Dual Inhibitors of MDM2 and XIAP for Cancer Treatment | Office of Cancer Genomics

    Cancer.gov

    MDM2 and XIAP are mutually regulated. Binding of MDM2 RING protein to the IRES region on XIAP mRNA results in MDM2 protein stabilization and enhanced XIAP translation. In this study, we developed a protein-RNA fluorescence polarization (FP) assay for high-throughput screening (HTS) of chemical libraries. Our FP-HTS identified eight inhibitors that blocked the MDM2 protein-XIAP RNA interaction, leading to MDM2 degradation.

  9. Distinct downstream targets manifest p53-dependent pathologies in mice.

    PubMed

    Pant, V; Xiong, S; Chau, G; Tsai, K; Shetty, G; Lozano, G

    2016-11-03

    Mdm2, the principal negative regulator of p53, is critical for survival, a fact clearly demonstrated by the p53-dependent death of germline or conditional mice following deletion of Mdm2. On the other hand, Mdm2 hypomorphic (Mdm2 Puro/Δ7-12 ) or heterozygous (Mdm2 +/- ) mice that express either 30 or 50% of normal Mdm2 levels, respectively, are viable but present distinct phenotypes because of increased p53 activity. Mdm2 levels are also transcriptionally regulated by p53. We evaluated the significance of this reciprocal relationship in a new hypomorphic mouse model inheriting an aberrant Mdm2 allele with insertion of the neomycin cassette and deletion of 184-bp sequence in intron 3. These mice also carry mutations in the Mdm2 P2-promoter and thus express suboptimal levels of Mdm2 entirely encoded from the P1-promoter. Resulting mice exhibit abnormalities in skin pigmentation and reproductive tissue architecture, and are subfertile. Notably, all these phenotypes are rescued on a p53-null background. Furthermore, these phenotypes depend on distinct p53 downstream activities as genetic ablation of the pro-apoptotic gene Puma reverts the reproductive abnormalities but not skin hyperpigmentation, whereas deletion of cell cycle arrest gene p21 does not rescue either phenotype. Moreover, p53-mediated upregulation of Kitl influences skin pigmentation. Altogether, these data emphasize tissue-specific p53 activities that regulate cell fate.

  10. MDM2 antagonists synergize broadly and robustly with compounds targeting fundamental oncogenic signaling pathways

    PubMed Central

    Yu, Dongyin; Lofgren, Julie A.; Osgood, Tao; Robertson, Rebecca; Canon, Jude; Su, Cheng; Jones, Adrie; Zhao, Xiaoning; Deshpande, Chetan; Payton, Marc; Ledell, Jebediah; Hughes, Paul E.; Oliner, Jonathan D.

    2014-01-01

    While MDM2 inhibitors hold great promise as cancer therapeutics, drug resistance will likely limit their efficacy as single agents. To identify drug combinations that might circumvent resistance, we screened for agents that could synergize with MDM2 inhibition in the suppression of cell viability. We observed broad and robust synergy when combining MDM2 antagonists with either MEK or PI3K inhibitors. Synergy was not limited to cell lines harboring MAPK or PI3K pathway mutations, nor did it depend on which node of the PI3K axis was targeted. MDM2 inhibitors also synergized strongly with BH3 mimetics, BCR-ABL antagonists, and HDAC inhibitors. MDM2 inhibitor-mediated synergy with agents targeting these mechanisms was much more prevalent than previously appreciated, implying that clinical translation of these combinations could have far-reaching implications for public health. These findings highlight the importance of combinatorial drug targeting and provide a framework for the rational design of MDM2 inhibitor clinical trials. PMID:24810962

  11. Convergent solid-phase and solution approaches in the synthesis of the cysteine-rich Mdm2 RING finger domain.

    PubMed

    Vasileiou, Zoe; Barlos, Kostas; Gatos, Dimitrios

    2009-12-01

    The RING finger domain of the Mdm2, located at the C-terminus of the protein, is necessary for regulation of p53, a tumor suppressor protein. The 48-residues long Mdm2 peptide is an important target for studying its interaction with small anticancer drug candidates. For the chemical synthesis of the Mdm2 RING finger domain, the fragment condensation on solid-phase and the fragment condensation in solution were studied. The latter method was performed using either protected or free peptides at the C-terminus as the amino component. Best results were achieved using solution condensation where the N-component was applied with the C-terminal carboxyl group left unprotected. The developed method is well suited for large-scale synthesis of Mdm2 RING finger domain, combining the advantages of both solid-phase and solution synthesis. (c) 2009 European Peptide Society and John Wiley & Sons, Ltd.

  12. MDM4 is a key therapeutic target in cutaneous melanoma

    PubMed Central

    Gembarska, Agnieszka; Luciani, Flavie; Fedele, Clare; Russell, Elisabeth A; Dewaele, Michael; Villar, Stéphanie; Zwolinska, Aleksandra; Haupt, Sue; de Lange, Job; Yip, Dana; Goydos, James; Haigh, Jody J; Haupt, Ygal; Larue, Lionel; Jochemsen, Aart; Shi, Hubing; Moriceau, Gatien; Lo, Roger S; Ghanem, Ghanem; Shackleton, Mark; Bernal, Federico; Marine, Jean-Christophe

    2013-01-01

    The inactivation of the p53 tumor suppressor pathway, which often occurs through mutations in TP53 (encoding tumor protein 53) is a common step in human cancer. However, in melanoma—a highly chemotherapy-resistant disease—TP53 mutations are rare, raising the possibility that this cancer uses alternative ways to overcome p53-mediated tumor suppression. Here we show that Mdm4 p53 binding protein homolog (MDM4), a negative regulator of p53, is upregulated in a substantial proportion (∼65%) of stage I–IV human melanomas and that melanocyte-specific Mdm4 overexpression enhanced tumorigenesis in a mouse model of melanoma induced by the oncogene Nras. MDM4 promotes the survival of human metastatic melanoma by antagonizing p53 proapoptotic function. Notably, inhibition of the MDM4-p53 interaction restored p53 function in melanoma cells, resulting in increased sensitivity to cytotoxic chemotherapy and to inhibitors of the BRAF (V600E) oncogene. Our results identify MDM4 as a key determinant of impaired p53 function in human melanoma and designate MDM4 as a promising target for antimelanoma combination therapy. PMID:22820643

  13. Phosphatidylserine transport by Ups2-Mdm35 in respiration-active mitochondria.

    PubMed

    Miyata, Non; Watanabe, Yasunori; Tamura, Yasushi; Endo, Toshiya; Kuge, Osamu

    2016-07-04

    Phosphatidylethanolamine (PE) is an essential phospholipid for mitochondrial functions and is synthesized mainly by phosphatidylserine (PS) decarboxylase at the mitochondrial inner membrane. In Saccharomyces cerevisiae, PS is synthesized in the endoplasmic reticulum (ER), such that mitochondrial PE synthesis requires PS transport from the ER to the mitochondrial inner membrane. Here, we provide evidence that Ups2-Mdm35, a protein complex localized at the mitochondrial intermembrane space, mediates PS transport for PE synthesis in respiration-active mitochondria. UPS2- and MDM35-null mutations greatly attenuated conversion of PS to PE in yeast cells growing logarithmically under nonfermentable conditions, but not fermentable conditions. A recombinant Ups2-Mdm35 fusion protein exhibited phospholipid-transfer activity between liposomes in vitro. Furthermore, UPS2 expression was elevated under nonfermentable conditions and at the diauxic shift, the metabolic transition from glycolysis to oxidative phosphorylation. These results demonstrate that Ups2-Mdm35 functions as a PS transfer protein and enhances mitochondrial PE synthesis in response to the cellular metabolic state. © 2016 Miyata et al.

  14. The Regulatory Interactions of p21 and PCNA in Human Breast Cancer

    DTIC Science & Technology

    2002-07-01

    Proliferating cell nuclear antigen (PCNA) is a multifunctional enzyme involved in multiple cellular processes including DNA replication and repair...During DNA replication , PCNA function as an accessory factor- for the DNA polymerases E arid and are part of a multiprotein DNA replication complex...a cyclin-dependent kinase inhibitor, p21WAF1 ability to inhibit DNA replication in response to DNA damage has been wall characterized. Interestingly

  15. Diaryl- and triaryl-pyrrole derivatives: inhibitors of the MDM2-p53 and MDMX-p53 protein-protein interactions†Electronic supplementary information (ESI) available: Experimental details for compound synthesis, analytical data for all compounds and intermediates. Details for the biological evaluation. Further details for the modeling. Table of combustion analysis data. See DOI: 10.1039/c3md00161jClick here for additional data file.

    PubMed

    Blackburn, Tim J; Ahmed, Shafiq; Coxon, Christopher R; Liu, Junfeng; Lu, Xiaohong; Golding, Bernard T; Griffin, Roger J; Hutton, Claire; Newell, David R; Ojo, Stephen; Watson, Anna F; Zaytzev, Andrey; Zhao, Yan; Lunec, John; Hardcastle, Ian R

    2013-09-21

    Screening identified 2-(3-((4,6-dioxo-2-thioxotetrahydropyrimidin-5(2 H )-ylidene)methyl)-2,5-dimethyl-1 H -pyrrol-1-yl)-4,5,6,7-tetrahydrobenzo[ b ]thiophene-3-carbonitrile as an MDM2-p53 inhibitor (IC 50 = 12.3 μM). MDM2-p53 and MDMX-p53 activity was seen for 5-((1-(4-chlorophenyl)-2,5-diphenyl-1 H -pyrrol-3-yl)methylene)-2-thioxodihydropyrimidine-4,6(1 H ,5 H )-dione (MDM2 IC 50 = 0.11 μM; MDMX IC 50 = 4.2 μM) and 5-((1-(4-nitrophenyl)-2,5-diphenyl-1 H -pyrrol-3-yl)methylene)pyrimidine-2,4,6(1 H ,3 H ,5 H )-trione (MDM2 IC 50 = 0.15 μM; MDMX IC 50 = 4.2 μM), and cellular activity consistent with p53 activation in MDM2 amplified cells. Further SAR studies demonstrated the requirement for the triarylpyrrole moiety for MDMX-p53 activity but not for MDM2-p53 inhibition.

  16. Zinc Oxide Nanoparticles Demoted MDM2 Expression to Suppress TSLP-Induced Mast Cell Proliferation.

    PubMed

    Kim, Min-Ho; Jeong, Hyun-Ja

    2016-03-01

    Activation of murine double minute 2 (MDM2) through thymic stromal lymphopoietin (TSLP)-induced signal transducers and activators of transcription (STAT6) phosphorylation plays a critical role in proliferation and survival of mast cells. Previously, we reported that zinc oxide nanoparticles (ZnO-NP) effectively decrease the mast cell-mediated allergic inflammatory reactions. Here, we evaluated the effect of ZnO-NP on TSLP-induced proliferation of mast cells. ZnO-NP significantly reduced the number of BrdU-incorporating mast cells increased by TSLP. ZnO-NP decreased the expression of MDM2 through the blockade of STAT6 phosphorylation. TSLP increased the production and mRNA expression of interleukin-13 (a growth factor of mast cells), its increase was significantly decreased by ZnO-NP (10 μg/mL). ZnO-NP induced the down-regulation of Bcl2 (an anti-apoptotic factor) and up-regulation of Bax (an apoptotic factor) through the stabilization of p53 protein. However, ZnO-NP has no effect on caspase-3 activation, cytochrome c release into cytosol, and apoptosis-inducing factor translocation into nucleus in TSLP-stimulated cells. The results of the present study demonstrated that ZnO-NP inhibited the proliferation of mast cells through the regulation of MDM2 and p53 protein levels. These finding suggest that ZnO-NP could be improved mast cell-mediated various diseases.

  17. Combination therapy in a xenograft model of glioblastoma: enhancement of the antitumor activity of temozolomide by an MDM2 antagonist.

    PubMed

    Wang, Haiyan; Cai, Shanbao; Bailey, Barbara J; Reza Saadatzadeh, M; Ding, Jixin; Tonsing-Carter, Eva; Georgiadis, Taxiarchis M; Zachary Gunter, T; Long, Eric C; Minto, Robert E; Gordon, Kevin R; Sen, Stephanie E; Cai, Wenjing; Eitel, Jacob A; Waning, David L; Bringman, Lauren R; Wells, Clark D; Murray, Mary E; Sarkaria, Jann N; Gelbert, Lawrence M; Jones, David R; Cohen-Gadol, Aaron A; Mayo, Lindsey D; Shannon, Harlan E; Pollok, Karen E

    2017-02-01

    OBJECTIVE Improvement in treatment outcome for patients with glioblastoma multiforme (GBM) requires a multifaceted approach due to dysregulation of numerous signaling pathways. The murine double minute 2 (MDM2) protein may fulfill this requirement because it is involved in the regulation of growth, survival, and invasion. The objective of this study was to investigate the impact of modulating MDM2 function in combination with front-line temozolomide (TMZ) therapy in GBM. METHODS The combination of TMZ with the MDM2 protein-protein interaction inhibitor nutlin3a was evaluated for effects on cell growth, p53 pathway activation, expression of DNA repair proteins, and invasive properties. In vivo efficacy was assessed in xenograft models of human GBM. RESULTS In combination, TMZ/nutlin3a was additive to synergistic in decreasing growth of wild-type p53 GBM cells. Pharmacodynamic studies demonstrated that inhibition of cell growth following exposure to TMZ/nutlin3a correlated with: 1) activation of the p53 pathway, 2) downregulation of DNA repair proteins, 3) persistence of DNA damage, and 4) decreased invasion. Pharmacokinetic studies indicated that nutlin3a was detected in human intracranial tumor xenografts. To assess therapeutic potential, efficacy studies were conducted in a xenograft model of intracranial GBM by using GBM cells derived from a recurrent wild-type p53 GBM that is highly TMZ resistant (GBM10). Three 5-day cycles of TMZ/nutlin3a resulted in a significant increase in the survival of mice with GBM10 intracranial tumors compared with single-agent therapy. CONCLUSIONS Modulation of MDM2/p53-associated signaling pathways is a novel approach for decreasing TMZ resistance in GBM. To the authors' knowledge, this is the first study in a humanized intracranial patient-derived xenograft model to demonstrate the efficacy of combining front-line TMZ therapy and an inhibitor of MDM2 protein-protein interactions.

  18. Targeting MDM4 as a Novel Therapeutic Approach for Hematologic Malignancies.

    PubMed

    Cao, Lei; Fan, Lei; Xu, Wei; Li, Jian-Yong

    2015-01-01

    Mouse double minute 4 (MDM4) as a member of MDM family, is an oncogene emerging as an imperative negative regulator of p53. Tumor suppressor protein p53 plays a crucial role in cell cycle arrest, apoptosis and homeostasis. It has been reported that frequent inactivation of p53 was observed in numerous human cancers including hematologic malignancies. MDM4, the newly discovered modulator of p53 protein, is frequently amplified in various solid tumors such as cutaneous melanoma, retinoblastoma and hematological malignances such as chronic lymphocytic leukemia, acute myeloid leukemia and mantle cell lymphoma. Multiple evidences implicate that over-expression of MDM4 is associated with tumor progression and poor prognosis which can be reversed by knockdown of MDM4 expression or restoration of p53 function, and support the rationale for the design of future MDM4-specific therapeutics. This article discusses and focuses on using MDM4 as a novel biomarker as well as a therapeutic target for hematologic malignancies.

  19. Age-Related Susceptibility to Apoptosis in Human Retinal Pigment Epithelial Cells Is Triggered by Disruption of p53–Mdm2 Association

    PubMed Central

    Bhattacharya, Sujoy; Chaum, Edward; Johnson, Dianna A.; Johnson, Leonard R.

    2012-01-01

    Purpose. Relatively little is known about the contribution of p53/Mdm2 pathway in apoptosis of retinal pigment epithelial (RPE) cells or its possible link to dysfunction of aging RPE or to related blinding disorders such as age-related macular degeneration (AMD). Methods. Age-associated changes in p53 activation were evaluated in primary RPE cultures from human donor eyes of various ages. Apoptosis was evaluated by activation of caspases and DNA fragmentation. Gene-specific small interfering RNA was used to knock down expression of p53. Results. We observed that the basal rate of p53-dependent apoptosis increased in an age-dependent manner in human RPE. The age-dependent increase in apoptosis was linked to alterations in several aspects of the p53 pathway. p53 phosphorylation Ser15 was increased through the stimulation of ATM-Ser1981. p53 acetylation Lys379 was increased through the inhibition of SIRT1/2. These two posttranslational modifications of p53 blocked the sequestration of p53 by Mdm2, thus resulting in an increase in free p53 and of p53 stimulation of apoptosis through increased expression of PUMA (p53 upregulated modulator of apoptosis) and activation of caspase-3. Aged RPE also had reduced expression of antiapoptotic Bcl-2, which contributed to the increase in apoptosis. Of particular interest in these studies was that pharmacologic treatments to block p53 phosphorylation, acetylation, or expression were able to protect RPE cells from apoptosis. Conclusions. Our studies suggest that aging in the RPE leads to alterations of specific checkpoints in the apoptotic pathway, which may represent important molecular targets for the treatment of RPE-related aging disorders such as AMD. PMID:23139272

  20. Population distribution and ancestry of the cancer protective MDM2 SNP285 (rs117039649).

    PubMed

    Knappskog, Stian; Gansmo, Liv B; Dibirova, Khadizha; Metspalu, Andres; Cybulski, Cezary; Peterlongo, Paolo; Aaltonen, Lauri; Vatten, Lars; Romundstad, Pål; Hveem, Kristian; Devilee, Peter; Evans, Gareth D; Lin, Dongxin; Van Camp, Guy; Manolopoulos, Vangelis G; Osorio, Ana; Milani, Lili; Ozcelik, Tayfun; Zalloua, Pierre; Mouzaya, Francis; Bliznetz, Elena; Balanovska, Elena; Pocheshkova, Elvira; Kučinskas, Vaidutis; Atramentova, Lubov; Nymadawa, Pagbajabyn; Titov, Konstantin; Lavryashina, Maria; Yusupov, Yuldash; Bogdanova, Natalia; Koshel, Sergey; Zamora, Jorge; Wedge, David C; Charlesworth, Deborah; Dörk, Thilo; Balanovsky, Oleg; Lønning, Per E

    2014-09-30

    The MDM2 promoter SNP285C is located on the SNP309G allele. While SNP309G enhances Sp1 transcription factor binding and MDM2 transcription, SNP285C antagonizes Sp1 binding and reduces the risk of breast-, ovary- and endometrial cancer. Assessing SNP285 and 309 genotypes across 25 different ethnic populations (>10.000 individuals), the incidence of SNP285C was 6-8% across European populations except for Finns (1.2%) and Saami (0.3%). The incidence decreased towards the Middle-East and Eastern Russia, and SNP285C was absent among Han Chinese, Mongolians and African Americans. Interhaplotype variation analyses estimated SNP285C to have originated about 14,700 years ago (95% CI: 8,300 - 33,300). Both this estimate and the geographical distribution suggest SNP285C to have arisen after the separation between Caucasians and modern day East Asians (17,000 - 40,000 years ago). We observed a strong inverse correlation (r = -0.805; p < 0.001) between the percentage of SNP309G alleles harboring SNP285C and the MAF for SNP309G itself across different populations suggesting selection and environmental adaptation with respect to MDM2 expression in recent human evolution. In conclusion, we found SNP285C to be a pan-Caucasian variant. Ethnic variation regarding distribution of SNP285C needs to be taken into account when assessing the impact of MDM2 SNPs on cancer risk.

  1. Computational Studies of Difference in Binding Modes of Peptide and Non-Peptide Inhibitors to MDM2/MDMX Based on Molecular Dynamics Simulations

    PubMed Central

    Chen, Jianzhong; Zhang, Dinglin; Zhang, Yuxin; Li, Guohui

    2012-01-01

    Inhibition of p53-MDM2/MDMX interaction is considered to be a promising strategy for anticancer drug design to activate wild-type p53 in tumors. We carry out molecular dynamics (MD) simulations to study the binding mechanisms of peptide and non-peptide inhibitors to MDM2/MDMX. The rank of binding free energies calculated by molecular mechanics generalized Born surface area (MM-GBSA) method agrees with one of the experimental values. The results suggest that van der Waals energy drives two kinds of inhibitors to MDM2/MDMX. We also find that the peptide inhibitors can produce more interaction contacts with MDM2/MDMX than the non-peptide inhibitors. Binding mode predictions based on the inhibitor-residue interactions show that the π–π, CH–π and CH–CH interactions dominated by shape complimentarity, govern the binding of the inhibitors in the hydrophobic cleft of MDM2/MDMX. Our studies confirm the residue Tyr99 in MDMX can generate a steric clash with the inhibitors due to energy and structure. This finding may theoretically provide help to develop potent dual-specific or MDMX inhibitors. PMID:22408446

  2. SUMO regulates p21Cip1 intracellular distribution and with p21Cip1 facilitates multiprotein complex formation in the nucleolus upon DNA damage.

    PubMed

    Brun, Sonia; Abella, Neus; Berciano, Maria T; Tapia, Olga; Jaumot, Montserrat; Freire, Raimundo; Lafarga, Miguel; Agell, Neus

    2017-01-01

    We previously showed that p21Cip1 transits through the nucleolus on its way from the nucleus to the cytoplasm and that DNA damage inhibits this transit and induces the formation of p21Cip1-containing intranucleolar bodies (INoBs). Here, we demonstrate that these INoBs also contain SUMO-1 and UBC9, the E2 SUMO-conjugating enzyme. Furthermore, whereas wild type SUMO-1 localized in INoBs, a SUMO-1 mutant, which is unable to conjugate with proteins, does not, suggesting the presence of SUMOylated proteins at INoBs. Moreover, depletion of the SUMO-conjugating enzyme UBC9 or the sumo hydrolase SENP2 changed p21Cip1 intracellular distribution. In addition to SUMO-1 and p21Cip1, cell cycle regulators and DNA damage checkpoint proteins, including Cdk2, Cyclin E, PCNA, p53 and Mdm2, and PML were also detected in INoBs. Importantly, depletion of UBC9 or p21Cip1 impacted INoB biogenesis and the nucleolar accumulation of the cell cycle regulators and DNA damage checkpoint proteins following DNA damage. The impact of p21Cip1 and SUMO-1 on the accumulation of proteins in INoBs extends also to CRM1, a nuclear exportin that is also important for protein translocation from the cytoplasm to the nucleolus. Thus, SUMO and p21Cip1 regulate the transit of proteins through the nucleolus, and that disruption of nucleolar export by DNA damage induces SUMO and p21Cip1 to act as hub proteins to form a multiprotein complex in the nucleolus.

  3. SUMO regulates p21Cip1 intracellular distribution and with p21Cip1 facilitates multiprotein complex formation in the nucleolus upon DNA damage

    PubMed Central

    Brun, Sonia; Abella, Neus; Berciano, Maria T.; Tapia, Olga; Jaumot, Montserrat; Freire, Raimundo; Lafarga, Miguel

    2017-01-01

    We previously showed that p21Cip1 transits through the nucleolus on its way from the nucleus to the cytoplasm and that DNA damage inhibits this transit and induces the formation of p21Cip1-containing intranucleolar bodies (INoBs). Here, we demonstrate that these INoBs also contain SUMO-1 and UBC9, the E2 SUMO-conjugating enzyme. Furthermore, whereas wild type SUMO-1 localized in INoBs, a SUMO-1 mutant, which is unable to conjugate with proteins, does not, suggesting the presence of SUMOylated proteins at INoBs. Moreover, depletion of the SUMO-conjugating enzyme UBC9 or the sumo hydrolase SENP2 changed p21Cip1 intracellular distribution. In addition to SUMO-1 and p21Cip1, cell cycle regulators and DNA damage checkpoint proteins, including Cdk2, Cyclin E, PCNA, p53 and Mdm2, and PML were also detected in INoBs. Importantly, depletion of UBC9 or p21Cip1 impacted INoB biogenesis and the nucleolar accumulation of the cell cycle regulators and DNA damage checkpoint proteins following DNA damage. The impact of p21Cip1 and SUMO-1 on the accumulation of proteins in INoBs extends also to CRM1, a nuclear exportin that is also important for protein translocation from the cytoplasm to the nucleolus. Thus, SUMO and p21Cip1 regulate the transit of proteins through the nucleolus, and that disruption of nucleolar export by DNA damage induces SUMO and p21Cip1 to act as hub proteins to form a multiprotein complex in the nucleolus. PMID:28582471

  4. The ubiquitin ligase Mdm2 controls oligodendrocyte maturation by intertwining mTOR with G protein-coupled receptor kinase 2 in the regulation of GPR17 receptor desensitization.

    PubMed

    Fumagalli, Marta; Bonfanti, Elisabetta; Daniele, Simona; Zappelli, Elisa; Lecca, Davide; Martini, Claudia; Trincavelli, Maria L; Abbracchio, Maria P

    2015-12-01

    During oligodendrocyte precursor cell (OPC) differentiation, defective control of the membrane receptor GPR17 has been suggested to block cell maturation and impair remyelination under demyelinating conditions. After the immature oligodendrocyte stage, to enable cells to complete maturation, GPR17 is physiologically down-regulated via phosphorylation/desensitization by G protein-coupled receptor kinases (GRKs); conversely, GRKs are regulated by the "mammalian target of rapamycin" mTOR. However, how GRKs and mTOR are connected to each other in modulating GPR17 function and oligodendrogenesis has remained elusive. Here we show, for the first time, a role for Murine double minute 2 (Mdm2), a ligase previously involved in ubiquitination/degradation of the onco-suppressor p53 protein. In maturing OPCs, both rapamycin and Nutlin-3, a small molecule inhibitor of Mdm2-p53 interactions, increased GRK2 sequestration by Mdm2, leading to impaired GPR17 down-regulation and OPC maturation block. Thus, Mdm2 intertwines mTOR with GRK2 in regulating GPR17 and oligodendrogenesis and represents a novel actor in myelination. © 2015 Wiley Periodicals, Inc.

  5. Polymorphism of MDM2 promoter 309 (rs 2279744) and the risk of PCOS.

    PubMed

    Chan, Ying; Jiang, Hongguo; Yang, Xiaoling; Li, Dongya; Ma, Lan; Luo, Ying; Tang, Wenru

    2016-01-01

    This study aimed at evaluating possible association between MDM2 SNP309 polymorphism (rs 2279744) and polycystic ovary syndrome (PCOS). One hundred and twenty-five women with PCOS and two hundred and fifty women without PCOS were collected from the department of reproductive medicine of college hospital in this case-control study. Peripheral blood samples were collected from all participants and DNA was extracted, MDM2 SNP309 polymorphism (rs 2279744) was determined from the 125 cases and 250 controls. Women were grouped into PCOS (n = 125) group and control group (n = 250). Odds ratios (OR) and 95% confidence intervals (CI) were used to evaluate the association between MDM2 SNP309 polymorphism (rs 2279744) and PCOS. The distribution of T allele was significant higher in PCOS cases than controls. MDM2 SNP 309 T allele is associated with PCOS.

  6. mTOR inhibitors blunt the p53 response to nucleolar stress by regulating RPL11 and MDM2 levels

    PubMed Central

    Goudarzi, Kaveh M; Nistér, Monica; Lindström, Mikael S

    2014-01-01

    Mechanistic target of rapamycin (mTOR) is a master regulator of cell growth through its ability to stimulate ribosome biogenesis and mRNA translation. In contrast, the p53 tumor suppressor negatively controls cell growth and is activated by a wide range of insults to the cell. The mTOR and p53 signaling pathways are connected by a number of different mechanisms. Chemotherapeutics that inhibit ribosome biogenesis often induce nucleolar stress and activation of p53. Here we have investigated how the p53 response to nucleolar stress is affected by simultaneous mTOR inhibition in osteosarcoma and glioma cell lines. We found that inhibitors of the mTOR pathway including rapamycin, wortmannin, and caffeine blunted the p53 response to nucleolar stress induced by actinomycin D. Synthetic inhibitors of mTOR (temsirolimus, LY294.002 and PP242) also impaired actinomycin D triggered p53 stabilization and induction of p21. Ribosomal protein (RPL11) is known to be required for p53 protein stabilization following nucleolar stress. Treatment of cells with mTOR inhibitors may lead to reduced synthesis of RPL11 and thereby destabilize p53. We found that rapamycin mimicked the effect of RPL11 depletion in terms of blunting the p53 response to nucleolar stress. However, the extent to which the levels of p53 and RPL11 were reduced by rapamycin varied between cell lines. Additional mechanisms whereby rapamycin blunts the p53 response to nucleolar stress are likely to be involved. Indeed, rapamycin increased the levels of endogenous MDM2 despite inhibition of its phosphorylation at Ser-166. Our findings may have implications for the design of combinatorial cancer treatments with mTOR pathway inhibitors. PMID:25482947

  7. Multiple functions of p21 in cell cycle, apoptosis and transcriptional regulation after DNA damage.

    PubMed

    Karimian, Ansar; Ahmadi, Yasin; Yousefi, Bahman

    2016-06-01

    An appropriate control over cell cycle progression depends on many factors. Cyclin-dependent kinase (CDK) inhibitor p21 (also known as p21(WAF1/Cip1)) is one of these factors that promote cell cycle arrest in response to a variety of stimuli. The inhibitory effect of P21 on cell cycle progression correlates with its nuclear localization. P21 can be induced by both p53-dependent and p53-independent mechanisms. Some other important functions attributed to p21 include transcriptional regulation, modulation or inhibition of apoptosis. These functions are largely dependent on direct p21/protein interactions and also on p21 subcellular localizations. In addition, p21 can play a role in DNA repair by interacting with proliferating cell nuclear antigen (PCNA). In this review, we will focus on the multiple functions of p21 in cell cycle regulation, apoptosis and gene transcription after DNA damage and briefly discuss the pathways and factors that have critical roles in p21 expression and activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. MDM2 and Ki-67 predict for distant metastasis and mortality in men treated with radiotherapy and androgen deprivation for prostate cancer: RTOG 92-02.

    PubMed

    Khor, Li-Yan; Bae, Kyounghwa; Paulus, Rebecca; Al-Saleem, Tahseen; Hammond, M Elizabeth; Grignon, David J; Che, Mingxin; Venkatesan, Varagur; Byhardt, Roger W; Rotman, Marvin; Hanks, Gerald E; Sandler, Howard M; Pollack, Alan

    2009-07-01

    PURPOSE MDM2 regulates p53, which controls cell cycle arrest and apoptosis. Both proteins, along with Ki-67, which is an established strong determinant of metastasis, have shown promise in predicting the outcome of men treated with radiation therapy (RT) with or without short-term androgen deprivation (STAD). This report compares the utility of abnormal expression of these biomarkers in estimating progression in a cohort of men treated on RTOG 92-02. PATIENTS AND METHODS Adequate tissue for immunohistochemistry was available for p53, Ki-67, and MDM2 analyses in 478 patient cases. The percentage of tumor nuclei staining positive (PSP) was quantified manually or by image analysis, and the per-sample mean intensity score (MIS) was quantified by image analysis. Cox regression models were used to estimate overall mortality (OM), and Fine and Gray's regressions were applied to the end points of distant metastasis (DM) and cause-specific mortality (CSM). Results In multivariate analyses that adjusted for all markers and treatment covariates, MDM2 overexpression was significantly related to DM (P = .02) and OM (P = .003), and Ki-67 overexpression was significantly related to DM (P < .0001), CSM (P = .0007), and OM (P = .01). P53 overexpression was significantly related to OM (P = .02). When considered in combination, the overexpression of both Ki-67 and MDM2 at high levels was associated with significantly increased failure rates for all end points (P < .001 for DM, CSM, and OM). CONCLUSION Combined MDM2 and Ki-67 expression levels were independently related to distant metastasis and mortality and, if validated, could be considered for risk stratification of patients with prostate cancer in clinical trials.

  9. p21 induction plays a dual role in anti-cancer activity of ursolic acid

    PubMed Central

    Zhang, Xudong; Song, Xinhua; Yin, Shutao; Zhao, Chong; Fan, Lihong

    2015-01-01

    Previous studies have shown that induction of G1 arrest and apoptosis by ursolic acid is associated with up-regulation of cyclin-dependent kinase inhibitor (CDKI) protein p21 in multiple types of cancer cells. However, the functional role of p21 induction in G1 cell cycle arrest and apoptosis, and the mechanisms of p21 induction by ursolic acid have not been critically addressed. In the current study, we demonstrated that p21 played a mediator role in G1 cell cycle arrest by ursolic acid, whereas p21-mediated up-regulation of Mcl-1 compromised apoptotic effect of ursolic acid. These results suggest that p21 induction plays a dual role in the anti-cancer activity of ursolic acid in terms of cell cycle and apoptosis regulation. p21 induction by ursolic acid was attributed to p53 transcriptional activation. Moreover, we found that ursolic acid was able to inhibit murine double minute-2 protein (MDM2) and T-LAK cell-originated protein kinase (TOPK), the two negative regulator of p53, which in turn contributed to ursolic acid-induced p53 activation. Our findings provided novel insights into understanding of the mechanisms involved in cell cycle arrest and apoptosis induction in response to ursolic acid exposure. PMID:26582056

  10. The Yeast Gene, MDM20, Is Necessary for Mitochondrial Inheritance and Organization of the Actin Cytoskeleton

    PubMed Central

    Hermann, Greg J.; King, Edward J.; Shaw, Janet M.

    1997-01-01

    In Saccharomyces cerevisiae, the growing bud inherits a portion of the mitochondrial network from the mother cell soon after it emerges. Although this polarized transport of mitochondria is thought to require functions of the cytoskeleton, there are conflicting reports concerning the nature of the cytoskeletal element involved. Here we report the isolation of a yeast mutant, mdm20, in which both mitochondrial inheritance and actin cables (bundles of actin filaments) are disrupted. The MDM20 gene encodes a 93-kD polypeptide with no homology to other characterized proteins. Extra copies of TPM1, a gene encoding the actin filament–binding protein tropomyosin, suppress mitochondrial inheritance defects and partially restore actin cables in mdm20Δ cells. Synthetic lethality is also observed between mdm20 and tpm1 mutant strains. Overexpression of a second yeast tropomyosin, Tpm2p, rescues mutant phenotypes in the mdm20 strain to a lesser extent. Together, these results provide compelling evidence that mitochondrial inheritance in yeast is an actin-mediated process. MDM20 and TPM1 also exhibit the same pattern of genetic interactions; mutations in MDM20 are synthetically lethal with mutations in BEM2 and MYO2 but not SAC6. Although MDM20 and TPM1 are both required for the formation and/or stabilization of actin cables, mutations in these genes disrupt mitochondrial inheritance and nuclear segregation to different extents. Thus, Mdm20p and Tpm1p may act in vivo to establish molecular and functional heterogeneity of the actin cytoskeleton. PMID:9105043

  11. Preeclampsia is associated with alterations in the p53-pathway in villous trophoblast.

    PubMed

    Sharp, Andrew N; Heazell, Alexander E P; Baczyk, Dora; Dunk, Caroline E; Lacey, Helen A; Jones, Carolyn J P; Perkins, Jonathan E; Kingdom, John C P; Baker, Philip N; Crocker, Ian P

    2014-01-01

    Preeclampsia (PE) is characterized by exaggerated apoptosis of the villous trophoblast of placental villi. Since p53 is a critical regulator of apoptosis we hypothesized that excessive apoptosis in PE is mediated by abnormal expression of proteins participating in the p53 pathway and that modulation of the p53 pathway alters trophoblast apoptosis in vitro. Fresh placental villous tissue was collected from normal pregnancies and pregnancies complicated by PE; Western blotting and real-time PCR were performed on tissue lysate for protein and mRNA expression of p53 and downstream effector proteins, p21, Bax and caspases 3 and 8. To further assess the ability of p53 to modulate apoptosis within trophoblast, BeWo cells and placental villous tissue were exposed to the p53-activator, Nutlin-3, alone or in combination with the p53-inhibitor, Pifithrin-α (PFT-α). Equally, Mdm2 was knocked-down with siRNA. Protein expression of p53, p21 and Bax was significantly increased in pregnancies complicated by PE. Conversely, Mdm2 protein levels were significantly depleted in PE; immunohistochemistry showed these changes to be confined to trophoblast. Reduction in the negative feedback of p53 by Mdm2, using siRNA and Nutlin-3, caused an imbalance between p53 and Mdm2 that triggered apoptosis in term villous explants. In the case of Nutlin, this was attenuated by Pifithrin-α. These data illustrate the potential for an imbalance in p53 and Mdm2 expression to promote excessive apoptosis in villous trophoblast. The upstream regulation of p53 and Mdm2, with regard to exaggerated apoptosis and autophagy in PE, merits further investigation.

  12. Effects of corexit oil dispersants and the WAF of dispersed oil on DNA damage and repair in cultured human bronchial airway cells, BEAS-2B

    PubMed Central

    Major, Danielle; Derbes, Rebecca S.; Wang, He; Roy-Engel, Astrid M.

    2016-01-01

    Large quantities of dispersants were used as a method to disperse the roughly 210 million gallons of spilled crude oil that consumed the Gulf of Mexico. Little is known if the oil-dispersant and oil-dispersant mixtures on human airway BEAS-2B epithelial cells. Here we present the cytotoxic and genotoxic in vitro effects on the human lung cells BEAS-2B following exposure to and oil-dispersant mixtures on human airway BEAS-2B epithelial cells. Here we present the cytotoxic and genotoxic in vitro effects on the human lung cells BEAS-2B following exposure to Corexit dispersants EC9500 and EC9527, Water Accommodated Fraction (WAF) -crude, WAF-9500 + Oil, and WAF-9527 + Oil. Cellular cytotoxicity to WAF-dispersed oil samples was observed at concentrations greater than 1000 ppm with over 70% of observed cellular death. At low concentration exposures (100 and 300 ppm) DNA damage was evidenced by the detection of single strand breaks (SSBs) and double strand breaks (DSBs) as measured by alkaline and neutral comet assay analyses. Immunoblot analyses of the phosphorylated histone H2A.X (ɣ-H2A.X) and tumor suppressor p53 protein confirmed activation of the DNA damage response due to the exposure-induced DNA breaks. Although, many xenobiotics interfere with DNA repair pathways, in vitro evaluation of the nucleotide excision repair (NER) and DSB repair pathways appear to be unaffected by the oil-dispersant mixtures tested. Overall, this study supports that oil-dispersant mixtures induce genotoxic effects in culture. PMID:27563691

  13. Catalytic, Enantioselective Synthesis of Stilbene cis-Diamines: A Concise Preparation of (–)-Nutlin-3, a Potent p53/MDM2 Inhibitor

    PubMed Central

    Davis, Tyler A.

    2012-01-01

    The first highly diastereo- and enantioselective additions of aryl nitromethane pronucleophiles to aryl aldimines are described. Identification of an electron rich chiral Bis(Amidine) catalyst for this aza-Henry variant was key to this development, leading ultimately to differentially protected cis-stilbene diamines in two steps. This method then became the lynchpin for an enantioselective synthesis of (–)-Nutlin-3 (Hoffmann-LaRoche), a potent cis-imidazoline small molecule inhibitor of p53-MDM2 used extensively as a probe of cell biology and currently in drug development. PMID:22708054

  14. The expression of MDM2/CDK4 gene product in the differential diagnosis of well differentiated liposarcoma and large deep-seated lipoma

    PubMed Central

    Pilotti, S; Torre, G Della; Mezzelani, A; Tamborini, E; Azzarelli, A; Sozzi, G; Pierotti, M A

    2000-01-01

    Ordinary lipomas are cytogenetically characterized by a variety of balanced rearrangements involving chromosome segment 12q13–15, whereas well differentiated liposarcomas (WDL) show supernumerary ring and giant marker chromosomes, known to contain amplified 12q sequences. The tight correlation between the presence of ring chromosomes and both amplification and overexpression of MDM2 and CDK4 genes suggests the exploration of the possibility that immunocytochemistry (ICC) might assist in the differential diagnosis of lipoma-like well differentiated liposarcomas (LL-WDL) and large deep-seated lipomas (LDSL). For this purpose, 21 cases of the former and 19 cases of the latter tumours were analysed by ICC and, according to the availability of material, by molecular and cytogenetic approaches. All lipomas displayed a null MDM2/CDK4 phenotype, whereas all LL-WDL showed MDM2/CDK4 or CDK4 phenotypes. Southern blot analysis performed on 16 suitable cases, complemented by fluorescence in situ hybridization and classical cytogenetic analysis in 11 cases, was consistent with, and further supported the immunophenotyping data. In conclusion, MDM2/CDK4 product-based immunophenotyping appears to represent a valuable method for the categorization of arguable LDSL. © 2000 Cancer Research Campaign PMID:10755400

  15. Effects of the Kava Chalcone Flavokawain A Differ in Bladder Cancer Cells with Wild-type versus Mutant p53

    PubMed Central

    Tang, Yaxiong; Simoneau, Anne R.; Xie, Jun; Shahandeh, Babbak; Zi, Xiaolin

    2010-01-01

    Flavokawain A is the predominant chalcone from kava extract. We have assessed the mechanisms of flavokawain A's action on cell cycle regulation. In a p53 wild-type, low-grade, and papillary bladder cancer cell line (RT4), flavokawain A increased p21/WAF1 and p27/KIP1, which resulted in a decrease in cyclin-dependent kinase-2 (CDK2) kinase activity and subsequent G1 arrest. The increase of p21/WAF1 protein corresponded to an increased mRNA level, whereas p27/KIP1 accumulation was associated with the down-regulation of SKP2 and then increased the stability of the p27/KIP1 protein. The accumulation of p21/WAF1 and p27/KIP1 was independent of cell cycle position and thus not a result of the cell cycle arrest. In contrast, flavokawain A induced a G2-M arrest in six p53 mutant-type, high-grade bladder cancer cell lines (T24, UMUC3, TCCSUP, 5637, HT1376, and HT1197). Flavokawain A significantly reduced the expression of CDK1-inhibitory kinases, Myt1 and Wee1, and caused cyclin B1 protein accumulation leading to CDK1 activation in T24 cells. Suppression of p53 expression by small interfering RNA in RT4 cells restored Cdc25C expression and down-regulated p21/WAF1 expression, which allowed Cdc25C and CDK1 activation and then led to a G2-M arrest and an enhanced growth-inhibitory effect by flavokawain A. Consistently, flavokawain A also caused a pronounced CDK1 activation and G2-M arrest in p53 knockout but not in p53 wild-type HCT116 cells. This selectivity of flavokawain A for inducing a G2-M arrest in p53-defective cells deserves further investigation as a new mechanism for the prevention and treatment of bladder cancer. PMID:19138991

  16. Preeclampsia Is Associated with Alterations in the p53-Pathway in Villous Trophoblast

    PubMed Central

    Sharp, Andrew N.; Heazell, Alexander E. P.; Baczyk, Dora; Dunk, Caroline E.; Lacey, Helen A.; Jones, Carolyn J. P.; Perkins, Jonathan E.; Kingdom, John C. P.; Baker, Philip N.; Crocker, Ian P.

    2014-01-01

    Background Preeclampsia (PE) is characterized by exaggerated apoptosis of the villous trophoblast of placental villi. Since p53 is a critical regulator of apoptosis we hypothesized that excessive apoptosis in PE is mediated by abnormal expression of proteins participating in the p53 pathway and that modulation of the p53 pathway alters trophoblast apoptosis in vitro. Methods Fresh placental villous tissue was collected from normal pregnancies and pregnancies complicated by PE; Western blotting and real-time PCR were performed on tissue lysate for protein and mRNA expression of p53 and downstream effector proteins, p21, Bax and caspases 3 and 8. To further assess the ability of p53 to modulate apoptosis within trophoblast, BeWo cells and placental villous tissue were exposed to the p53-activator, Nutlin-3, alone or in combination with the p53-inhibitor, Pifithrin-α (PFT- α). Equally, Mdm2 was knocked-down with siRNA. Results Protein expression of p53, p21 and Bax was significantly increased in pregnancies complicated by PE. Conversely, Mdm2 protein levels were significantly depleted in PE; immunohistochemistry showed these changes to be confined to trophoblast. Reduction in the negative feedback of p53 by Mdm2, using siRNA and Nutlin-3, caused an imbalance between p53 and Mdm2 that triggered apoptosis in term villous explants. In the case of Nutlin, this was attenuated by Pifithrin-α. Conclusions These data illustrate the potential for an imbalance in p53 and Mdm2 expression to promote excessive apoptosis in villous trophoblast. The upstream regulation of p53 and Mdm2, with regard to exaggerated apoptosis and autophagy in PE, merits further investigation. PMID:24498154

  17. A systems wide mass spectrometric based linear motif screen to identify dominant in-vivo interacting proteins for the ubiquitin ligase MDM2.

    PubMed

    Nicholson, Judith; Scherl, Alex; Way, Luke; Blackburn, Elizabeth A; Walkinshaw, Malcolm D; Ball, Kathryn L; Hupp, Ted R

    2014-06-01

    Linear motifs mediate protein-protein interactions (PPI) that allow expansion of a target protein interactome at a systems level. This study uses a proteomics approach and linear motif sub-stratifications to expand on PPIs of MDM2. MDM2 is a multi-functional protein with over one hundred known binding partners not stratified by hierarchy or function. A new linear motif based on a MDM2 interaction consensus is used to select novel MDM2 interactors based on Nutlin-3 responsiveness in a cell-based proteomics screen. MDM2 binds a subset of peptide motifs corresponding to real proteins with a range of allosteric responses to MDM2 ligands. We validate cyclophilin B as a novel protein with a consensus MDM2 binding motif that is stabilised by Nutlin-3 in vivo, thus identifying one of the few known interactors of MDM2 that is stabilised by Nutlin-3. These data invoke two modes of peptide binding at the MDM2 N-terminus that rely on a consensus core motif to control the equilibrium between MDM2 binding proteins. This approach stratifies MDM2 interacting proteins based on the linear motif feature and provides a new biomarker assay to define clinically relevant Nutlin-3 responsive MDM2 interactors. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Increased p50/p50 NF-κB Activation in Human Papillomavirus Type 6- or Type 11-Induced Laryngeal Papilloma Tissue

    PubMed Central

    Vancurova, Ivana; Wu, Rong; Miskolci, Veronika; Sun, Shishinn

    2002-01-01

    We have observed elevated NF-κB DNA-binding activity in nuclear extracts from human papillomavirus type 6- and 11-infected laryngeal papilloma tissues. The predominant DNA-binding species is the p50/p50 homodimer. The elevated NF-κB activity could be correlated with a reduced level of cytoplasmic IκBβ and could be associated with the overexpression of p21CIP1/WAF1 in papilloma cells. Increased NF-κB activity and cytoplasmic accumulation of p21CIP1/WAF1 might counteract death-promoting effects elicited by overexpressed PTEN and reduced activation of Akt and STAT3 previously noted in these tissues. PMID:11773428

  19. Lack of association of the TP53 Arg72Pro SNP and the MDM2 SNP309 with systemic lupus erythematosus in Caucasian, African American, and Asian children and adults.

    PubMed

    Onel, K B; Huo, D; Hastings, D; Fryer-Biggs, J; Crow, M K; Onel, K

    2009-01-01

    The p53 tumour suppressor is the central regulator of apoptosis. Previously, the functional TP53 Arg72Pro polymorphism was found to be associated with systemic lupus erythematosus (SLE) in Koreans but not Spaniards. MDM2 is the major negative regulator of p53. An intronic polymorphism in MDM2, the SNP309, attenuates p53 activity and is associated with accelerated tumour development in premenopausal women. Polymorphic variation in MDM2 has never been studied in SLE. The aim of this study is to further assess the contribution of p53-pathway genetic variation to SLE by testing the association of the TP53 Arg72Pro polymorphism and the MDM2 SNP309 with SLE in a well-characterised and ethnically diverse cohort of patients with both childhood- and adult-onset SLE (n = 314). No association was found between the TP53 Arg72Pro polymorphism and SLE in patients of European descent, Asian descent or in African Americans, nor was an association found between the MDM2 SNP309 and SLE in patients of European descent or in African Americans. In addition, there was no correlation between either variant and early-onset disease or nephritis, an index of severe disease. It is concluded that neither the TP53 Arg72Pro polymorphism nor the MDM2 SNP309 contributes significantly to either susceptibility or disease severity in SLE.

  20. Lack of Association of the TP53 Arg72Pro SNP and the MDM2 SNP309 with systemic lupus erythematosus in Caucasian, African American, and Asian children and adults

    PubMed Central

    Onel, KB; Huo, D; Hastings, D; Fryer-Biggs, J; Crow, MK; Onel, K

    2009-01-01

    The p53 tumour suppressor is the central regulator of apoptosis. Previously, the functional TP53 Arg72Pro polymorphism was found to be associated with systemic lupus erythematosus (SLE) in Koreans but not Spaniards. MDM2 is the major negative regulator of p53. An intronic polymorphism in MDM2, the SNP309, attenuates p53 activity and is associated with accelerated tumour development in premenopausal women. Polymorphic variation in MDM2 has never been studied in SLE. The aim of this study is to further assess the contribution of p53-pathway genetic variation to SLE by testing the association of the TP53 Arg72Pro polymorphism and the MDM2 SNP309 with SLE in a well-characterised and ethnically diverse cohort of patients with both childhood- and adult-onset SLE (n = 314). No association was found between the TP53 Arg72Pro polymorphism and SLE in patients of European descent, Asian descent or in African Americans, nor was an association found between the MDM2 SNP309 and SLE in patients of European descent or in African Americans. In addition, there was no correlation between either variant and early-onset disease or nephritis, an index of severe disease. It is concluded that neither the TP53 Arg72Pro polymorphism nor the MDM2 SNP309 contributes significantly to either susceptibility or disease severity in SLE. PMID:19074170

  1. Mdm4 loss in the intestinal epithelium leads to compartmentalized cell death but no tissue abnormalities

    PubMed Central

    Valentin-Vega, Yasmine A.; Box, Neil; Terzian, Tamara; Lozano, Guillermina

    2014-01-01

    Mdm4 is a critical inhibitor of the p53 tumor suppressor. Mdm4 null mice die early during embryogenesis due to increased p53 activity. In this study, we explore the role that Mdm4 plays in the intestinal epithelium by crossing mice carrying the Mdm4 floxed allele to mice with the Villin Cre transgene. Our data show that loss of Mdm4 (Mdm4intΔ) in this tissue resulted in viable animals with no obvious morphological abnormalities. However, these mutants displayed increased p53 levels and apoptosis exclusively in the proliferative compartment of the intestinal epithelium. This phenotype was completely rescued in a p53 null background. Notably, the observed compartmentalized apoptosis in proliferative intestinal epithelial cells was not due to restricted Mdm4 expression in this region. Thus, in this specific cellular context, p53 is negatively regulated by Mdm4 exclusively in highly proliferative cells. PMID:19371999

  2. The Impact of a Common MDM2 SNP on the Sensitivity of Breast Cancer to Treatment

    DTIC Science & Technology

    2011-06-01

    Kirchhoff T, Alexe G, Bond EE, Robins H, Bartel F, Taubert H, Wuerl P, Hait W, Toppmeyer D, Offit K, and Levine A. MDM2 SNP309 accelerates tumor...the Western blot analysis corresponding to the quantification in the upper graphs . 29 Figure 5. Effect of

  3. p21 controls patterning but not homologous recombination in RPE development.

    PubMed

    Bishop, A J R; Kosaras, B; Hollander, M C; Fornace, A; Sidman, R L; Schiestl, R H

    2006-01-05

    p21/WAF1/CIP1/MDA6 is a key cell cycle regulator. Cell cycle regulation is an important part of development, differentiation, DNA repair and apoptosis. Following DNA damage, p53 dependent expression of p21 results in a rapid cell cycle arrest. p21 also appears to be important for the development of melanocytes, promoting their differentiation and melanogenesis. Here, we examine the effect of p21 deficiency on the development of another pigmented tissue, the retinal pigment epithelium. The murine mutation pink-eyed unstable (p(un)) spontaneously reverts to a wild-type allele by homologous recombination. In a retinal pigment epithelium cell this results in pigmentation, which can be observed in the adult eye. The clonal expansion of such cells during development has provided insight into the pattern of retinal pigment epithelium development. In contrast to previous results with Atm, p53 and Gadd45, p(un) reversion events in p21 deficient mice did not show any significant change. These results suggest that p21 does not play any role in maintaining overall genomic stability by regulating homologous recombination frequencies during development. However, the absence of p21 caused a distinct change in the positions of the reversion events within the retinal pigment epithelium. Those events that would normally arrest to produce single cell events continued to proliferate uncovering a cell cycle dysregulation phenotype. It is likely that p21 is involved in controlling the developmental pattern of the retinal pigment. We also found a C57BL/6J specific p21 dependent ocular defect in retinal folding, similar to those reported in the absence of p53.

  4. Autonomous berthing/unberthing of a Work Attachment Mechanism/Work Attachment Fixture (WAM/WAF)

    NASA Technical Reports Server (NTRS)

    Nguyen, Charles C.; Antrazi, Sami S.

    1992-01-01

    Discussed here is the autonomous berthing of a Work Attachment Mechanism/Work Attachment Fixture (WAM/WAF) developed by NASA for berthing and docking applications in space. The WAM/WAF system enables fast and reliable berthing (unberthing) of space hardware. A successful operation of the WAM/WAF requires that the WAM motor velocity be precisely controlled. The operating principle and the design of the WAM/WAF is described as well as the development of a control system used to regulate the WAM motor velocity. The results of an experiment in which the WAM/WAF is used to handle an orbital replacement unit are given.

  5. In vitro cytotoxic potential of friedelin in human MCF-7 breast cancer cell: Regulate early expression of Cdkn2a and pRb1, neutralize mdm2-p53 amalgamation and functional stabilization of p53.

    PubMed

    Subash-Babu, Pandurangan; Li, David K; Alshatwi, Ali A

    2017-10-02

    We aimed to explore the cytotoxic and apoptotic effect of friedelin on breast cancer MCF-7 cells. Cytotoxic effect of friedelin on MCF-7 cells was analyzed using MTT, cell and nuclear morphology. The apoptosis mechanism of friedelin on MCF-7 cells was analyzed using real-time PCR. Friedelin potentially inhibit 78% of MCF-7 cell's growth, the IC 50 value was 1.8μM in 24h and 1.2μM in 48h. Friedelin increased ROS significantly and DNA damage was confirmed by tunel assay. We found characteristically 52% apoptotic cells and 6% necrotic cells in PI, AO/ErBr staining after 48h treatment with 1.2μM of friedelin. Apoptosis was confirmed by significantly (p≤0.001) increased tumor suppressor gene Cdkn1a, pRb2, p53, Nrf2, caspase-3 and decreased Bcl-2, mdm2 & PCNA expression after 48h. In conclusion, friedelin effectively inhibit breast cancer MCF-7 cell growth, it was associated with early expression of Cdkn1a, pRb2 and activation of p53 and caspases. Copyright © 2017. Published by Elsevier GmbH.

  6. MEKK1 is a Novel Regulator of the Dmp1-Arf-p53 Pathway and Prognostic Indicator in Breast Cancer

    DTIC Science & Technology

    2012-12-01

    hDMP1, INK4a/ARF, p53 or Hdm2 amplification. Kaplan -Meier analyses have been conducted to study the impact for the impact of loss or gain of each locus on...Palma P, Pellegrini S, Fina P et al. Mdm2 gene alterations and mdm2 protein expression in breast carcinomas. J Pathol 1995; 175: 31–38. 21 Turbin DA

  7. Distinct MAPK signaling pathways, p21 up-regulation and caspase-mediated p21 cleavage establishes the fate of U937 cells exposed to 3-hydrogenkwadaphnin: Differentiation versus apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moosavi, Mohammad Amin; Yazdanparast, Razieh

    2008-07-01

    Despite the depth of knowledge concerning the pathogenesis of acute myeloblastic leukemia (AML), long-term survival remains unresolved. Therefore, new agents that act more selectively and more potently are required. In that line, we have recently characterized a novel diterpene ester, called 3-hydrogenkwadaphnin (3-HK), with capability to induce both differentiation and apoptosis in various leukemia cell lines. These effects of 3-HK were mediated through inhibition of inosine 5'-monophosphate dehydrogenase, a selective up-regulated enzyme in cancerous cells, especially leukemia. However, it remains elusive to understand how cells display different fates in response to 3-HK. Here, we report the distinct molecular signaling pathwaysmore » involved in forcing of 3-HK-treated U937 cells to undergo differentiation and apoptosis. After 3-HK (15 nM) treatment, a portion of U937 cells adhered to the culture plates and showed macrophage criteria while others remained in suspension and underwent apoptosis. The differentiated cells arrested in G{sub 0}/G{sub 1} phase of cell cycle and showed early activation of ERK1/2 pathway (3 h) along with ERK-dependent p21{sup Cip/WAF1} (p21) up-regulation and expression of p27{sup Kip1} and Bcl-2. In contrast, the suspension cells underwent apoptosis through Fas/FasL and mitochondrial pathways. The occurrence of apoptosis in these cells were accompanied with caspase-8-mediated p21 cleavage and delayed activation (24 h) of JNK1/2 and p38 MAPK. Taken together, these results suggest that distinct signaling pathways play a pivotal role in fates of drug-treated leukemia cells, thus this may pave some novel therapeutical utilities.« less

  8. PDK1-dependent activation of atypical PKC leads to degradation of the p21 tumour modifier protein

    PubMed Central

    Scott, Mary T.; Ingram, Angela; Ball, Kathryn L.

    2002-01-01

    p21WAF1/CIP1 contributes to positive and negative growth control on multiple levels. We previously mapped phosphorylation sites within the C-terminal domain of p21 that regulate proliferating cell nucear antigen binding. In the current study, a kinase has been fractionated from mammalian cells that stoichiometrically phosphorylates p21 at the Ser146 site, and the enzyme has been identified as an insulin-responsive atypical protein kinase C (aPKC). Expression of PKCζ or activation of the endogenous kinase by 3-phosphoinositide dependent protein kinase-1 (PDK1) decreased the half-life of p21. Conversely, dnPKCζ or dnPDK1 increased p21 protein half-life, and a PDK1-dependent increase in the rate of p21 degradation was mediated by aPKC. Insulin stimulation gave a biphasic response with a rapid transient decrease in p21 protein levels during the initial signalling phase that was dependent on phosphatidylinositol 3- kinase, PKC and proteasome activity. Thus, aPKC provides a physiological signal for the degradation of p21. The rapid degradation of p21 protein during the signalling phase of insulin stimulation identifies a novel link between energy metabolism and a key modulator of cell cycle progression. PMID:12485998

  9. Structural Exploration and Conformational Transitions in MDM2 upon DHFR Interaction from Homo sapiens: A Computational Outlook for Malignancy via Epigenetic Disruption.

    PubMed

    Banerjee, Arundhati; Ray, Sujay

    2016-01-01

    Structural basis for exploration into MDM2 and MDM2-DHFR interaction plays a vital role in analyzing the obstruction in folate metabolism, nonsynthesis of purines, and further epigenetic regulation in Homo sapiens. Therefore, it leads to suppression of normal cellular behavior and malignancy. This has been earlier documented via yeast two-hybrid assays. So, with a novel outlook, this study explores the molecular level demonstration of the best satisfactory MDM2 model selection after performing manifold modeling techniques. Z-scores and other stereochemical features were estimated for comparison. Further, protein-protein docking was executed with MDM2 and the experimentally validated X-ray crystallographic DHFR. Residual disclosure from the best suited simulated protein complex disclosed 18 side chain and 3 ionic interactions to strongly accommodate MDM2 protein into the pocket-like zone in DHFR due to the positive environment by charged residues. Lysine residues from MDM2 played a predominant role. Moreover, evaluation from varied energy calculations, folding rate, and net area for solvent accessibility implied the active participation of MDM2 with DHFR. Fascinatingly, conformational transitions from coils to helices and β-sheets after interaction with DHFR affirm the conformational strength and firmer interaction of human MDM2-DHFR. Therefore, this probe instigates near-future clinical research and interactive computational investigations with mutations.

  10. Structural Exploration and Conformational Transitions in MDM2 upon DHFR Interaction from Homo sapiens: A Computational Outlook for Malignancy via Epigenetic Disruption

    PubMed Central

    Banerjee, Arundhati; Ray, Sujay

    2016-01-01

    Structural basis for exploration into MDM2 and MDM2-DHFR interaction plays a vital role in analyzing the obstruction in folate metabolism, nonsynthesis of purines, and further epigenetic regulation in Homo sapiens. Therefore, it leads to suppression of normal cellular behavior and malignancy. This has been earlier documented via yeast two-hybrid assays. So, with a novel outlook, this study explores the molecular level demonstration of the best satisfactory MDM2 model selection after performing manifold modeling techniques. Z-scores and other stereochemical features were estimated for comparison. Further, protein-protein docking was executed with MDM2 and the experimentally validated X-ray crystallographic DHFR. Residual disclosure from the best suited simulated protein complex disclosed 18 side chain and 3 ionic interactions to strongly accommodate MDM2 protein into the pocket-like zone in DHFR due to the positive environment by charged residues. Lysine residues from MDM2 played a predominant role. Moreover, evaluation from varied energy calculations, folding rate, and net area for solvent accessibility implied the active participation of MDM2 with DHFR. Fascinatingly, conformational transitions from coils to helices and β-sheets after interaction with DHFR affirm the conformational strength and firmer interaction of human MDM2-DHFR. Therefore, this probe instigates near-future clinical research and interactive computational investigations with mutations. PMID:27213086

  11. Prognostic relevance of Fédération Nationale des Centres de Lutte Contre le Cancer grade and MDM2 amplification levels in dedifferentiated liposarcoma: a study of 50 cases.

    PubMed

    Jour, George; Gullet, Ashley; Liu, Mingdong; Hoch, Benjamin L

    2015-01-01

    Dedifferentiated liposarcoma represents a form of liposarcoma composed of a non-lipogenic sarcoma associated with well-differentiated liposarcoma. The prognostic significance of histological grading of the dedifferentiated component remains to be elucidated due to vague grading criteria employed in previous studies. Molecular markers of tumor behavior, including amplification levels of murine double minute-2 (MDM2) and cyclin-dependent kinase-4 (CDK4) genes, have been explored in a limited number of cases. Here we investigate whether 'Fédération Nationale des Centres de Lutte Contre le Cancer' (FNCLCC) grade and MDM2 gene amplification levels have prognostic value in dedifferentiated liposarcoma in terms of local recurrence and disease-specific survival. Fifty cases were retrieved, reviewed and FNCLCC grade was scored for the dedifferentiated component. Testing for MDM2 gene amplification was performed by fluorescence in situ hybridization. Amplification was categorized as high level (≥20 copies) and as low level (<20 copies). Follow-up data was obtained through chart review. Log-rank test and Cox proportional hazard models were used to determine the effect of grade and level of MDM2 amplification on outcomes. Our series includes 50 patients (male n=28, female n=22) with an average age of 63 years (range, 28-88) and a median follow-up of 28 months (range, 2-120). Tumors were graded as grade 1 (6%), grade 2 (58%), and grade 3 (36%). When adjusted for age, sex, site, tumor size, and margin status, grade 3 patients had a higher recurrence rate than grades 1 and 2 (HR=2.07, 95% CI: 1.24, 7.62; P=0.015). Patients with high-level MDM2 amplification had higher recurrence rate on univariate analysis (P=0.028), but not on multivariate analysis (HR=1.69, 95% CI: 0.73, 3.94; P=0.221). FNCLCC grade 3 dedifferentiation confers a worse prognosis in dedifferentiated liposarcoma in terms of local recurrence. MDM2 amplification level remains a useful diagnostic tool in

  12. IGF-1R/MDM2 relationship confers enhanced sensitivity to RITA in Ewing sarcoma cells.

    PubMed

    Di Conza, Giusy; Buttarelli, Marianna; Monti, Olimpia; Pellegrino, Marsha; Mancini, Francesca; Pontecorvi, Alfredo; Scotlandi, Katia; Moretti, Fabiola

    2012-06-01

    Ewing sarcoma is one of the most frequent bone cancers in adolescence. Although multidisciplinary therapy has improved the survival rate for localized tumors, a critical step is the development of new drugs to improve the long-term outcome of recurrent and metastatic disease and to reduce side effects of conventional therapy. Here, we show that the small molecule reactivation of p53 and induction of tumor cell apoptosis (RITA, NSC652287) is highly effective in reducing growth and tumorigenic potential of Ewing sarcoma cell lines. These effects occur both in the presence of wt-p53 as well as of mutant or truncated forms of p53, or in its absence, suggesting the presence of additional targets in this tumor histotype. Further experiments provided evidence that RITA modulates an important oncogenic mark of these cell lines, insulin-like growth factor receptor 1 (IGF-1R). Particularly, RITA causes downregulation of IGF-1R protein levels. MDM2 degradative activity is involved in this phenomenon. Indeed, inhibition of MDM2 function by genetic or pharmacologic approaches reduces RITA sensitivity of Ewing sarcoma cell lines. Overall, these data suggest that in the cell context of Ewing sarcoma, RITA may adopt additional mechanism of action besides targeting p53, expanding its field of application. Noteworthy, these results envisage the promising utilization of RITA or its derivative as a potential treatment for Ewing sarcomas. ©2012 AACR

  13. Antisense oligonucleotide–mediated MDM4 exon 6 skipping impairs tumor growth

    PubMed Central

    Dewaele, Michael; Tabaglio, Tommaso; Willekens, Karen; Bezzi, Marco; Teo, Shun Xie; Low, Diana H.P.; Koh, Cheryl M.; Rambow, Florian; Fiers, Mark; Rogiers, Aljosja; Radaelli, Enrico; Al-Haddawi, Muthafar; Tan, Soo Yong; Hermans, Els; Amant, Frederic; Yan, Hualong; Lakshmanan, Manikandan; Koumar, Ratnacaram Chandrahas; Lim, Soon Thye; Derheimer, Frederick A.; Campbell, Robert M.; Bonday, Zahid; Tergaonkar, Vinay; Shackleton, Mark; Blattner, Christine; Marine, Jean-Christophe; Guccione, Ernesto

    2015-01-01

    MDM4 is a promising target for cancer therapy, as it is undetectable in most normal adult tissues but often upregulated in cancer cells to dampen p53 tumor-suppressor function. The mechanisms that underlie MDM4 upregulation in cancer cells are largely unknown. Here, we have shown that this key oncogenic event mainly depends on a specific alternative splicing switch. We determined that while a nonsense-mediated, decay-targeted isoform of MDM4 (MDM4-S) is produced in normal adult tissues as a result of exon 6 skipping, enhanced exon 6 inclusion leads to expression of full-length MDM4 in a large number of human cancers. Although this alternative splicing event is likely regulated by multiple splicing factors, we identified the SRSF3 oncoprotein as a key enhancer of exon 6 inclusion. In multiple human melanoma cell lines and in melanoma patient–derived xenograft (PDX) mouse models, antisense oligonucleotide–mediated (ASO-mediated) skipping of exon 6 decreased MDM4 abundance, inhibited melanoma growth, and enhanced sensitivity to MAPK-targeting therapeutics. Additionally, ASO-based MDM4 targeting reduced diffuse large B cell lymphoma PDX growth. As full-length MDM4 is enhanced in multiple human tumors, our data indicate that this strategy is applicable to a wide range of tumor types. We conclude that enhanced MDM4 exon 6 inclusion is a common oncogenic event and has potential as a clinically compatible therapeutic target. PMID:26595814

  14. Sensitization of Prostate Cancer Cells to Androgen Deprivation and Radiation via Manipulation of the MDM2 Pathway

    DTIC Science & Technology

    2005-04-01

    cell number apoptosis, and clonogenic assays of LNCaP- MST. Months 1-6. c. Time course experiments of AS effects on AD, RT, and AD+RT in LNCaP and LNCaP...to AS- MDM2, and have not found much of an effect . More recently, we >" 0" have initiated the measurement of SmRNA expression using the Oligo Pollack...AL, Joon DL, Meistrich M, Hachem P, Pollack A. Effect of sequencing androgen deprivation and radiation on prostate cancer growth. Int J Radiat Oncol

  15. p21WAF1 immunohistochemical expression in breast carcinoma: correlations with clinicopathological data, oestrogen receptor status, MIB1 expression, p53 gene and protein alterations and relapse-free survival.

    PubMed Central

    Barbareschi, M.; Caffo, O.; Doglioni, C.; Fina, P.; Marchetti, A.; Buttitta, F.; Leek, R.; Morelli, L.; Leonardi, E.; Bevilacqua, G.; Dalla Palma, P.; Harris, A. L.

    1996-01-01

    p21 protein (p21) inhibitor of cyclin-dependent kinases is a critical downstream effector in the p53-specific pathway of growth control. p21 can also be induced by p53-independent pathways in relation to terminal differentiation. We investigated p21 immunoreactivity in normal breast and in 91 breast carcinomas [three in situ ductal carcinomas (DCIS) with microinfiltration and 88 infiltrating carcinomas, 17 of which with an associated DCIS; 57 node negative and 34 node positive] with long-term follow-up (median = 58 months). Seven additional breast carcinomas with known p53 gene mutations were investigated. In normal breast p21 expression was seen in the nuclei of rare luminal cells of acinar structures, and in occasional myoepithelial cells. Poorly differentiated DCIS showed high p21 expression, whereas well-differentiated DCIS tumours showed few p21-reactive cells. p21 was seen in 82 (90%) infiltrating tumours; staining was heterogeneous; the percentage of reactive nuclei ranged from 1% to 35%. High p21 expression (more than 10% of reactive cells) was seen in 24 (26%) cases, and was associated with high tumour grade (P = 0.032); no associations were seen with tumour size, metastases, oestrogen receptor status, MIB1 expression and p53 expression. p21 expression in cases with p53 gene mutations was low in six cases and high in one. High p21 expression was associated with short relapse-free survival (P = 0.003). Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:8688323

  16. Fast Optical Photometry of V404 Cyg at the MDM Observatory

    NASA Astrophysics Data System (ADS)

    Terndrup, D.; Wagner, R. M.; Starrfield, S.

    2015-06-01

    We obtained continuous fast differential optical photometry of V404 Cyg with the 1.3 m McGraw-Hill Telescope of the MDM Observatory on Kitt Peak on the nights of 2015 June 19.220-19.474, 20.194-20.472, 21.199-21.460, and 22.188-22.421 UT.

  17. Human Cytochrome P450 21A2, the Major Steroid 21-Hydroxylase

    PubMed Central

    Pallan, Pradeep S.; Wang, Chunxue; Lei, Li; Yoshimoto, Francis K.; Auchus, Richard J.; Waterman, Michael R.; Guengerich, F. Peter; Egli, Martin

    2015-01-01

    Cytochrome P450 (P450) 21A2 is the major steroid 21-hydroxylase, and deficiency of this enzyme is involved in ∼95% of cases of human congenital adrenal hyperplasia, a disorder of adrenal steroidogenesis. A structure of the bovine enzyme that we published previously (Zhao, B., Lei, L., Kagawa, N., Sundaramoorthy, M., Banerjee, S., Nagy, L. D., Guengerich, F. P., and Waterman, M. R. (2012) Three-dimensional structure of steroid 21-hydroxylase (cytochrome P450 21A2) with two substrates reveals locations of disease-associated variants. J. Biol. Chem. 287, 10613–10622), containing two molecules of the substrate 17α-hydroxyprogesterone, has been used as a template for understanding genetic deficiencies. We have now obtained a crystal structure of human P450 21A2 in complex with progesterone, a substrate in adrenal 21-hydroxylation. Substrate binding and release were fast for human P450 21A2 with both substrates, and pre-steady-state kinetics showed a partial burst but only with progesterone as substrate and not 17α-hydroxyprogesterone. High intermolecular non-competitive kinetic deuterium isotope effects on both kcat and kcat/Km, from 5 to 11, were observed with both substrates, indicative of rate-limiting C–H bond cleavage and suggesting that the juxtaposition of the C21 carbon in the active site is critical for efficient oxidation. The estimated rate of binding of the substrate progesterone (kon 2.4 × 107 m−1 s−1) is only ∼2-fold greater than the catalytic efficiency (kcat/Km = 1.3 × 107 m−1 s−1) with this substrate, suggesting that the rate of substrate binding may also be partially rate-limiting. The structure of the human P450 21A2-substrate complex provides direct insight into mechanistic effects of genetic variants. PMID:25855791

  18. MDM Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    MDM Observatory was founded by the University of Michigan, Dartmouth College and the Massachusetts Institute of Technology. Current operating partners include Michigan, Dartmouth, MIT, Ohio State University and Columbia University. The observatory is located on the southwest ridge of the KITT PEAK NATIONAL OBSERVATORY near Tucson, Arizona. It operates the 2.4 m Hiltner Telescope and the 1.3 m McG...

  19. Inhibition of Mdmx (Mdm4) in vivo induces anti-obesity effects.

    PubMed

    Kon, Ning; Wang, Donglai; Li, Tongyuan; Jiang, Le; Qiang, Li; Gu, Wei

    2018-01-26

    Although cell-cycle arrest, senescence and apoptosis remain as major canonical activities of p53 in tumor suppression, the emerging role of p53 in metabolism has been a topic of great interest. Nevertheless, it is not completely understood how p53-mediated metabolic activities are regulated in vivo and whether this part of the activities has an independent role beyond tumor suppression. Mdmx (also called Mdm4), like Mdm2, acts as a major suppressor of p53 but the embryonic lethality of mdmx-null mice creates difficulties to evaluate its physiological significance in metabolism. Here, we report that the embryonic lethality caused by the deficiency of mdmx , in contrast to the case for mdm2 , is fully rescued in the background of p53 3KR/3KR , an acetylation-defective mutant unable to induce cell-cycle arrest, senescence and apoptosis. p53 3KR/3KR /mdmx -/- mice are healthy but skinny without obvious developmental defects. p53 3KR/3KR /mdmx -/- mice are resistant to fat accumulation in adipose tissues upon high fat diet. Notably, the levels of p53 protein are only slightly increased and can be further induced upon DNA damage in p53 3KR/3KR /mdmx -/- mice, suggesting that Mdmx is only partially required for p53 degradation in vivo . Further analyses indicate that the anti-obesity phenotypes in p53 3KR/3KR /mdmx -/- mice are caused by activation of lipid oxidation and thermogenic programs in adipose tissues. These results demonstrate the specific effects of the p53/Mdmx axis in lipid metabolism and adipose tissue remodeling and reveal a surprising role of Mdmx inhibition in anti-obesity effects beyond, commonly expected, tumor suppression. Thus, our study has significant implications regarding Mdmx inhibitors in the treatment of obesity related diseases.

  20. MICOS and phospholipid transfer by Ups2-Mdm35 organize membrane lipid synthesis in mitochondria.

    PubMed

    Aaltonen, Mari J; Friedman, Jonathan R; Osman, Christof; Salin, Bénédicte; di Rago, Jean-Paul; Nunnari, Jodi; Langer, Thomas; Tatsuta, Takashi

    2016-06-06

    Mitochondria exert critical functions in cellular lipid metabolism and promote the synthesis of major constituents of cellular membranes, such as phosphatidylethanolamine (PE) and phosphatidylcholine. Here, we demonstrate that the phosphatidylserine decarboxylase Psd1, located in the inner mitochondrial membrane, promotes mitochondrial PE synthesis via two pathways. First, Ups2-Mdm35 complexes (SLMO2-TRIAP1 in humans) serve as phosphatidylserine (PS)-specific lipid transfer proteins in the mitochondrial intermembrane space, allowing formation of PE by Psd1 in the inner membrane. Second, Psd1 decarboxylates PS in the outer membrane in trans, independently of PS transfer by Ups2-Mdm35. This latter pathway requires close apposition between both mitochondrial membranes and the mitochondrial contact site and cristae organizing system (MICOS). In MICOS-deficient cells, limiting PS transfer by Ups2-Mdm35 and reducing mitochondrial PE accumulation preserves mitochondrial respiration and cristae formation. These results link mitochondrial PE metabolism to MICOS, combining functions in protein and lipid homeostasis to preserve mitochondrial structure and function. © 2016 Aaltonen et al.

  1. SM22{alpha}-induced activation of p16{sup INK4a}/retinoblastoma pathway promotes cellular senescence caused by a subclinical dose of {gamma}-radiation and doxorubicin in HepG2 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Tae Rim; Lee, Hee Min; Lee, So Yong

    Research highlights: {yields} SM22{alpha} overexpression in HepG2 cells leads cells to a growth arrest state, and the treatment of a subclinical dose of {gamma}-radiation or doxorubicin promotes cellular senescence. {yields} SM22{alpha} overexpression elevates p16{sup INK4a} followed by pRB activation, but there are no effects on p53/p21{sup WAF1/Cip1} pathway. {yields} SM22{alpha}-induced MT-1G activates p16{sup INK4a}/pRB pathway, which promotes cellular senescence by damaging agents. -- Abstract: Smooth muscle protein 22-alpha (SM22{alpha}) is known as a transformation- and shape change-sensitive actin cross-linking protein found in smooth muscle tissue and fibroblasts; however, its functional role remains uncertain. We reported previously that SM22{alpha} overexpression confersmore » resistance against anti-cancer drugs or radiation via induction of metallothionein (MT) isozymes in HepG2 cells. In this study, we demonstrate that SM22{alpha} overexpression leads cells to a growth arrest state and promotes cellular senescence caused by treatment with a subclinical dose of {gamma}-radiation (0.05 and 0.1 Gy) or doxorubicin (0.01 and 0.05 {mu}g/ml), compared to control cells. Senescence growth arrest is known to be controlled by p53 phosphorylation/p21{sup WAF1/Cip1} induction or p16{sup INK4a}/retinoblastoma protein (pRB) activation. SM22{alpha} overexpression in HepG2 cells elevated p16{sup INK4a} followed by pRB activation, but did not activate the p53/p21{sup WAF1/Cip1} pathway. Moreover, MT-1G, which is induced by SM22{alpha} overexpression, was involved in the activation of the p16{sup INK4a}/pRB pathway, which led to a growth arrest state and promoted cellular senescence caused by damaging agents. Our findings provide the first demonstration that SM22{alpha} modulates cellular senescence caused by damaging agents via regulation of the p16{sup INK4a}/pRB pathway in HepG2 cells and that these effects of SM22{alpha} are partially mediated by MT-1G.« less

  2. Cone arrestin binding to JNK3 and Mdm2: conformational preference and localization of interaction sites

    PubMed Central

    Song, Xiufeng; Gurevich, Eugenia V.; Gurevich, Vsevolod V.

    2008-01-01

    Arrestins are multi-functional regulators of G protein-coupled receptors. Receptor-bound arrestins interact with >30 remarkably diverse proteins and redirect the signaling to G protein-independent pathways. The functions of free arrestins are poorly understood, and the interaction sites of the non-receptor arrestin partners are largely unknown. In this study, we show that cone arrestin, the least studied member of the family, binds c-Jun N-terminal kinase (JNK3) and Mdm2 and regulates their subcellular distribution. Using arrestin mutants with increased or reduced structural flexibility, we demonstrate that arrestin in all conformations binds JNK3 comparably, whereas Mdm2 preferentially binds cone arrestin ‘frozen’ in the basal state. To localize the interaction sites, we expressed separate N- and C-domains of cone and rod arrestins and found that individual domains bind JNK3 and remove it from the nucleus as efficiently as full-length proteins. Thus, the arrestin binding site for JNK3 includes elements in both domains with the affinity of partial sites on individual domains sufficient for JNK3 relocalization. N-domain of rod arrestin binds Mdm2, which localizes its main interaction site to this region. Comparable binding of JNK3 and Mdm2 to four arrestin subtypes allowed us to identify conserved residues likely involved in these interactions. PMID:17680991

  3. AMP-18 Targets p21 to Maintain Epithelial Homeostasis.

    PubMed

    Chen, Peili; Li, Yan Chun; Toback, F Gary

    2015-01-01

    Dysregulated homeostasis of epithelial cells resulting in disruption of mucosal barrier function is an important pathogenic mechanism in inflammatory bowel diseases (IBD). We have characterized a novel gastric protein, Antrum Mucosal Protein (AMP)-18, that has pleiotropic properties; it is mitogenic, anti-apoptotic and can stimulate formation of tight junctions. A 21-mer synthetic peptide derived from AMP-18 exhibits the same biological functions as the full-length protein and is an effective therapeutic agent in mouse models of IBD. In this study we set out to characterize therapeutic mechanisms and identify molecular targets by which AMP-18 maintains and restores disrupted epithelial homeostasis in cultured intestinal epithelial cells and a mouse model of IBD. Tumor necrosis factor (TNF)-α, a pro-inflammatory cytokine known to mediate gastrointestinal (GI) mucosal injury in IBD, was used to induce intestinal epithelial cell injury, and study the effects of AMP-18 on apoptosis and the cell cycle. An apoptosis array used to search for targets of AMP-18 in cells exposed to TNF-α identified the cyclin-dependent kinase inhibitor p21 WAF1/CIP1. Treatment with AMP-18 blunted increases in p21 expression and apoptosis, while reversing disturbed cell cycle kinetics induced by TNF-α. AMP-18 appears to act through PI3K/AKT pathways to increase p21 phosphorylation, thereby reducing its nuclear accumulation to overcome the antiproliferative effects of TNF-α. In vitamin D receptor-deficient mice with TNBS-induced IBD, the observed increase in p21 expression in colonic epithelial cells was suppressed by treatment with AMP peptide. The results indicate that AMP-18 can maintain and/or restore the homeostatic balance between proliferation and apoptosis in intestinal epithelial cells to protect and repair mucosal barrier homeostasis and function, suggesting a therapeutic role in IBD.

  4. Depletion of ribosomal protein L37 occurs in response to DNA damage and activates p53 through the L11/MDM2 pathway.

    PubMed

    Llanos, Susana; Serrano, Manuel

    2010-10-01

    Perturbation of ribosomal biogenesis has recently emerged as a relevant p53-activating pathway. This pathway can be initiated by depletion of certain ribosomal proteins, which is followed by the binding and inhibition of MDM2 by a different subset of ribosomal proteins that includes L11. Here, we report that depletion of L37 leads to cell cycle arrest in a L11- and p53-dependent manner. DNA damage can initiate ribosomal stress, although little is known about the mechanisms involved. We have found that some genotoxic insults, namely, UV light and cisplatin, lead to proteasomal degradation of L37 in the nucleoplasm and to the ensuing L11-dependent stabilization of p53. Moreover, ectopic L37 overexpression can attenuate the DNA damage response mediated by p53. These results support the concept that DNA damage-induced proteasomal degradation of L37 constitutes a mechanistic link between DNA damage and the ribosomal stress pathway, and is a relevant contributing signaling pathway for the activation of p53 in response to DNA damage.

  5. Depletion of ribosomal protein L37 occurs in response to DNA damage and activates p53 through the L11/MDM2 pathway

    PubMed Central

    Llanos, Susana; Serrano, Manuel

    2013-01-01

    Perturbation of ribosomal biogenesis has recently emerged as a relevant p53-activating pathway. This pathway can be initiated by depletion of certain ribosomal proteins, which is followed by the binding and inhibition of MDM2 by a different subset of ribosomal proteins that includes L11. Here, we report that depletion of L37 leads to cell cycle arrest in a L11- and p53-dependent manner. DNA damage can initiate ribosomal stress, although little is known about the mechanisms involved. We have found that some genotoxic insults, namely UV light and cisplatin, lead to proteasomal degradation of L37 in the nucleoplasm and to the ensuing L11-dependent stabilization of p53. Moreover, ectopic L37 overexpression can attenuate the DNA damage response mediated by p53. These results support the concept that DNA damage-induced proteasomal degradation of L37 constitutes a mechanistic link between DNA damage and the ribosomal stress pathway, and is a relevant contributing signaling pathway for the activation of p53 in response to DNA damage. PMID:20935493

  6. Application of binding free energy calculations to prediction of binding modes and affinities of MDM2 and MDMX inhibitors.

    PubMed

    Lee, Hui Sun; Jo, Sunhwan; Lim, Hyun-Suk; Im, Wonpil

    2012-07-23

    Molecular docking is widely used to obtain binding modes and binding affinities of a molecule to a given target protein. Despite considerable efforts, however, prediction of both properties by docking remains challenging mainly due to protein's structural flexibility and inaccuracy of scoring functions. Here, an integrated approach has been developed to improve the accuracy of binding mode and affinity prediction and tested for small molecule MDM2 and MDMX antagonists. In this approach, initial candidate models selected from docking are subjected to equilibration MD simulations to further filter the models. Free energy perturbation molecular dynamics (FEP/MD) simulations are then applied to the filtered ligand models to enhance the ability in predicting the near-native ligand conformation. The calculated binding free energies for MDM2 complexes are overestimated compared to experimental measurements mainly due to the difficulties in sampling highly flexible apo-MDM2. Nonetheless, the FEP/MD binding free energy calculations are more promising for discriminating binders from nonbinders than docking scores. In particular, the comparison between the MDM2 and MDMX results suggests that apo-MDMX has lower flexibility than apo-MDM2. In addition, the FEP/MD calculations provide detailed information on the different energetic contributions to ligand binding, leading to a better understanding of the sensitivity and specificity of protein-ligand interactions.

  7. The NEDD8 inhibitor MLN4924 increases the size of the nucleolus and activates p53 through the ribosomal-Mdm2 pathway.

    PubMed

    Bailly, A; Perrin, A; Bou Malhab, L J; Pion, E; Larance, M; Nagala, M; Smith, P; O'Donohue, M-F; Gleizes, P-E; Zomerdijk, J; Lamond, A I; Xirodimas, D P

    2016-01-28

    The ubiquitin-like molecule NEDD8 is essential for viability, growth and development, and is a potential target for therapeutic intervention. We found that the small molecule inhibitor of NEDDylation, MLN4924, alters the morphology and increases the surface size of the nucleolus in human and germline cells of Caenorhabditis elegans in the absence of nucleolar fragmentation. SILAC proteomics and monitoring of rRNA production, processing and ribosome profiling shows that MLN4924 changes the composition of the nucleolar proteome but does not inhibit RNA Pol I transcription. Further analysis demonstrates that MLN4924 activates the p53 tumour suppressor through the RPL11/RPL5-Mdm2 pathway, with characteristics of nucleolar stress. The study identifies the nucleolus as a target of inhibitors of NEDDylation and provides a mechanism for p53 activation upon NEDD8 inhibition. It also indicates that targeting the nucleolar proteome without affecting nucleolar transcription initiates the required signalling events for the control of cell cycle regulators.

  8. Reactivating TP53 signaling by the novel MDM2 inhibitor DS-3032b as a therapeutic option for high-risk neuroblastoma

    PubMed Central

    Arnhold, Viktor; Schmelz, Karin; Proba, Jutta; Winkler, Annika; Wünschel, Jasmin; Toedling, Joern; Deubzer, Hedwig E.; Künkele, Annette; Eggert, Angelika; Schulte, Johannes H.; Hundsdoerfer, Patrick

    2018-01-01

    Fewer than 50% of patients with high-risk neuroblastoma survive five years after diagnosis with current treatment protocols. Molecular targeted therapies are expected to improve survival. Although MDM2 has been validated as a promising target in preclinical models, no MDM2 inhibitors have yet entered clinical trials for neuroblastoma patients. Toxic side effects, poor bioavailability and low efficacy of the available MDM2 inhibitors that have entered phase I/II trials drive the development of novel MDM2 inhibitors with an improved risk-benefit profile. We investigated the effect of the novel MDM2 small molecular inhibitor, DS-3032b, on viability, proliferation, senescence, migration, cell cycle arrest and apoptosis in a panel of six neuroblastoma cell lines with different TP53 and MYCN genetic backgrounds, and assessed efficacy in a murine subcutaneous model for high-risk neuroblastoma. Re-analysis of existing expression data from 476 primary neuroblastomas showed that high-level MDM2 expression correlated with poor patient survival. DS-3032b treatment enhanced TP53 target gene expression and induced G1 cell cycle arrest, senescence and apoptosis. CRISPR-mediated MDM2 knockout in neuroblastoma cells mimicked DS-3032b treatment. TP53 signaling was selectively activated by DS-3032b in neuroblastoma cells with wildtype TP53, regardless of the presence of MYCN amplification, but was significantly reduced by TP53 mutations or expression of a dominant-negative TP53 mutant. Oral DS-3032b administration inhibited xenograft tumor growth and prolonged mouse survival. Our in vitro and in vivo data demonstrate that DS-3032b reactivates TP53 signaling even in the presence of MYCN amplification in neuroblastoma cells, to reduce proliferative capacity and cause cytotoxicity. PMID:29416773

  9. Anti-cancer effect of novel PAK1 inhibitor via induction of PUMA-mediated cell death and p21-mediated cell cycle arrest.

    PubMed

    Woo, Tae-Gyun; Yoon, Min-Ho; Hong, Shin-Deok; Choi, Jiyun; Ha, Nam-Chul; Sun, Hokeun; Park, Bum-Joon

    2017-04-04

    Hyper-activation of PAK1 (p21-activated kinase 1) is frequently observed in human cancer and speculated as a target of novel anti-tumor drug. In previous, we also showed that PAK1 is highly activated in the Smad4-deficient condition and suppresses PUMA (p53 upregulated modulator of apoptosis) through direct binding and phosphorylation. On the basis of this result, we have tried to find novel PAK1-PUMA binding inhibitors. Through ELISA-based blind chemical library screening, we isolated single compound, IPP-14 (IPP; Inhibitor of PAK1-PUMA), which selectively blocks the PAK1-PUMA binding and also suppresses cell proliferation via PUMA-dependent manner. Indeed, in PUMA-deficient cells, this chemical did not show anti-proliferating effect. This chemical possessed very strong PAK1 inhibition activity that it suppressed BAD (Bcl-2-asoociated death promoter) phosphorylation and meta-phase arrest via Aurora kinase inactivation in lower concentration than that of previous PAK1 kinase, FRAX486 and AG879. Moreover, our chemical obviously induced p21/WAF1/CIP1 (Cyclin-dependent kinase inhibitor 1A) expression by releasing from Bcl-2 (B-cell lymphoma-2) and by inhibition of AKT-mediated p21 suppression. Considering our result, IPP-14 and its derivatives would be possible candidates for PAK1 and p21 induction targeted anti-cancer drug.

  10. Anti-cancer effect of novel PAK1 inhibitor via induction of PUMA-mediated cell death and p21-mediated cell cycle arrest

    PubMed Central

    Woo, Tae-Gyun; Yoon, Min-Ho; Hong, Shin-Deok; Choi, Jiyun; Ha, Nam-Chul; Sun, Hokeun; Park, Bum-Joon

    2017-01-01

    Hyper-activation of PAK1 (p21-activated kinase 1) is frequently observed in human cancer and speculated as a target of novel anti-tumor drug. In previous, we also showed that PAK1 is highly activated in the Smad4-deficient condition and suppresses PUMA (p53 upregulated modulator of apoptosis) through direct binding and phosphorylation. On the basis of this result, we have tried to find novel PAK1-PUMA binding inhibitors. Through ELISA-based blind chemical library screening, we isolated single compound, IPP-14 (IPP; Inhibitor of PAK1-PUMA), which selectively blocks the PAK1-PUMA binding and also suppresses cell proliferation via PUMA-dependent manner. Indeed, in PUMA-deficient cells, this chemical did not show anti-proliferating effect. This chemical possessed very strong PAK1 inhibition activity that it suppressed BAD (Bcl-2-asoociated death promoter) phosphorylation and meta-phase arrest via Aurora kinase inactivation in lower concentration than that of previous PAK1 kinase, FRAX486 and AG879. Moreover, our chemical obviously induced p21/WAF1/CIP1 (Cyclin-dependent kinase inhibitor 1A) expression by releasing from Bcl-2 (B-cell lymphoma-2) and by inhibition of AKT-mediated p21 suppression. Considering our result, IPP-14 and its derivatives would be possible candidates for PAK1 and p21 induction targeted anti-cancer drug. PMID:28423593

  11. Oral nano-delivery of anticancer ginsenoside 25-OCH3-PPD, a natural inhibitor of the MDM2 oncogene: Nanoparticle preparation, characterization, in vitro and in vivo anti-prostate cancer activity, and mechanisms of action.

    PubMed

    Voruganti, Sukesh; Qin, Jiang-Jiang; Sarkar, Sushanta; Nag, Subhasree; Walbi, Ismail A; Wang, Shu; Zhao, Yuqing; Wang, Wei; Zhang, Ruiwen

    2015-08-28

    The Mouse Double Minute 2 (MDM2) oncogene plays a critical role in cancer development and progression through p53-dependent and p53-independent mechanisms. Both natural and synthetic MDM2 inhibitors have been shown anticancer activity against several human cancers. We have recently identified a novel ginsenoside, 25-OCH3-PPD (GS25), one of the most active anticancer ginsenosides discovered thus far, and have demonstrated its MDM2 inhibition and anticancer activity in various human cancer models, including prostate cancer. However, the oral bioavailability of GS25 is limited, which hampers its further development as an oral anticancer agent. The present study was designed to develop a novel nanoparticle formulation for oral delivery of GS25. After GS25 was successfully encapsulated into PEG-PLGA nanoparticles (GS25NP) and its physicochemical properties were characterized, the efficiency of MDM2 targeting, anticancer efficacy, pharmacokinetics, and safety were evaluated in in vitro and in vivo models of human prostate cancer. Our results indicated that, compared with the unencapsulated GS25, GS25NP demonstrated better MDM2 inhibition, improved oral bioavailability and enhanced in vitro and in vivo activities. In conclusion, the validated nano-formulation for GS25 oral delivery improves its molecular targeting, oral bioavailability and anticancer efficacy, providing a basis for further development of GS25 as a novel agent for cancer therapy and prevention.

  12. 40 CFR 721.10135 - Phosphinic acid, P,P-diethyl-, zinc salt (2:1).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Phosphinic acid, P,P-diethyl-, zinc... Specific Chemical Substances § 721.10135 Phosphinic acid, P,P-diethyl-, zinc salt (2:1). (a) Chemical... acid, P,P-diethyl-, zinc salt (2:1) (PMN P-05-11; CAS No. 284685-45-6) is subject to reporting under...

  13. 40 CFR 721.10135 - Phosphinic acid, P,P-diethyl-, zinc salt (2:1).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Phosphinic acid, P,P-diethyl-, zinc... Specific Chemical Substances § 721.10135 Phosphinic acid, P,P-diethyl-, zinc salt (2:1). (a) Chemical... acid, P,P-diethyl-, zinc salt (2:1) (PMN P-05-11; CAS No. 284685-45-6) is subject to reporting under...

  14. HMGB1-mediated DNA bending: Distinct roles in increasing p53 binding to DNA and the transactivation of p53-responsive gene promoters.

    PubMed

    Štros, Michal; Kučírek, Martin; Sani, Soodabeh Abbasi; Polanská, Eva

    2018-03-01

    HMGB1 is a chromatin-associated protein that has been implicated in many important biological processes such as transcription, recombination, DNA repair, and genome stability. These functions include the enhancement of binding of a number of transcription factors, including the tumor suppressor protein p53, to their specific DNA-binding sites. HMGB1 is composed of two highly conserved HMG boxes, linked to an intrinsically disordered acidic C-terminal tail. Previous reports have suggested that the ability of HMGB1 to bend DNA may explain the in vitro HMGB1-mediated increase in sequence-specific DNA binding by p53. The aim of this study was to reinvestigate the importance of HMGB1-induced DNA bending in relationship to the ability of the protein to promote the specific binding of p53 to short DNA duplexes in vitro, and to transactivate two major p53-regulated human genes: Mdm2 and p21/WAF1. Using a number of HMGB1 mutants, we report that the HMGB1-mediated increase in sequence-specific p53 binding to DNA duplexes in vitro depends very little on HMGB1-mediated DNA bending. The presence of the acidic C-terminal tail of HMGB1 and/or the oxidation of the protein can reduce the HMGB1-mediated p53 binding. Interestingly, the induction of transactivation of p53-responsive gene promoters by HMGB1 requires both the ability of the protein to bend DNA and the acidic C-terminal tail, and is promoter-specific. We propose that the efficient transactivation of p53-responsive gene promoters by HMGB1 depends on complex events, rather than solely on the promotion of p53 binding to its DNA cognate sites. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Human rpL3 induces G₁/S arrest or apoptosis by modulating p21waf1/cip1 levels in a p53-independent manner

    PubMed Central

    Russo, Annapina; Esposito, Davide; Catillo, Morena; Pietropaolo, Concetta; Crescenzi, Elvira; Russo, Giulia

    2013-01-01

    It is now largely accepted that ribosomal proteins may be implicated in a variety of biological functions besides that of components of the translation machinery. Many evidences show that a subset of ribosomal proteins are involved in the regulation of the cell cycle and apoptosis through modulation of p53 activity. In addition, p53-independent mechanisms of cell cycle arrest in response to alterations of ribosomal proteins availability have been described. Here, we identify human rpL3 as a new regulator of cell cycle and apoptosis through positive regulation of p21 expression in a p53-independent system. We demonstrate that the rpL3-mediated p21 upregulation requires the specific interaction between rpL3 and Sp1. Furthermore, in our experimental system, p21 overexpression leads to a dual outcome, activating the G₁/S arrest of the cell cycle or the apoptotic pathway through mitochondria, depending on its intracellular levels. It is noteworthy that depletion of p21 abrogates both effects. Taken together, our findings unravel a novel extraribosomal function of rpL3 and reinforce the proapoptotic role of p21 in addition to its widely reported ability as an inhibitor of cell proliferation. PMID:23255119

  16. Development of a Fish Cell Biosensor System for Genotoxicity Detection Based on DNA Damage-Induced Trans-Activation of p21 Gene Expression

    PubMed Central

    Geng, Deyu; Zhang, Zhixia; Guo, Huarong

    2012-01-01

    p21CIP1/WAF1 is a p53-target gene in response to cellular DNA damage. Here we report the development of a fish cell biosensor system for high throughput genotoxicity detection of new drugs, by stably integrating two reporter plasmids of pGL3-p21-luc (human p21 promoter linked to firefly luciferase) and pRL-CMV-luc (CMV promoter linked to Renilla luciferase) into marine flatfish flounder gill (FG) cells, referred to as p21FGLuc. Initial validation of this genotoxicity biosensor system showed that p21FGLuc cells had a wild-type p53 signaling pathway and responded positively to the challenge of both directly acting genotoxic agents (bleomycin and mitomycin C) and indirectly acting genotoxic agents (cyclophosphamide with metabolic activation), but negatively to cyclophosphamide without metabolic activation and the non-genotoxic agents ethanol and D-mannitol, thus confirming a high specificity and sensitivity, fast and stable response to genotoxic agents for this easily maintained fish cell biosensor system. This system was especially useful in the genotoxicity detection of Di(2-ethylhexyl) phthalate (DEHP), a rodent carcinogen, but negatively reported in most non-mammalian in vitro mutation assays, by providing a strong indication of genotoxicity for DEHP. A limitation for this biosensor system was that it might give false positive results in response to sodium butyrate and any other agents, which can trans-activate the p21 gene in a p53-independent manner. PMID:25585933

  17. Novel histone deacetylase inhibitor CG200745 induces clonogenic cell death by modulating acetylation of p53 in cancer cells.

    PubMed

    Oh, Eun-Taex; Park, Moon-Taek; Choi, Bo-Hwa; Ro, Seonggu; Choi, Eun-Kyung; Jeong, Seong-Yun; Park, Heon Joo

    2012-04-01

    Histone deacetylase (HDAC) plays an important role in cancer onset and progression. Therefore, inhibition of HDAC offers potential as an effective cancer treatment regimen. CG200745, (E)-N(1)-(3-(dimethylamino)propyl)-N(8)-hydroxy-2-((naphthalene-1-loxy)methyl)oct-2-enediamide, is a novel HDAC inhibitor presently undergoing a phase I clinical trial. Enhancement of p53 acetylation by HDAC inhibitors induces cell cycle arrest, differentiation, and apoptosis in cancer cells. The purpose of the present study was to investigate the role of p53 acetylation in the cancer cell death caused by CG200745. CG200745-induced clonogenic cell death was 2-fold greater in RKO cells expressing wild-type p53 than in p53-deficient RC10.1 cells. CG200745 treatment was also cytotoxic to PC-3 human prostate cancer cells, which express wild-type p53. CG200745 increased acetylation of p53 lysine residues K320, K373, and K382. CG200745 induced the accumulation of p53, promoted p53-dependent transactivation, and enhanced the expression of MDM2 and p21(Waf1/Cip1) proteins, which are encoded by p53 target genes. An examination of CG200745 effects on p53 acetylation using cells transfected with various p53 mutants showed that cells expressing p53 K382R mutants were significantly resistant to CG200745-induced clonogenic cell death compared with wild-type p53 cells. Moreover, p53 transactivation in response to CG200745 was suppressed in all cells carrying mutant forms of p53, especially K382R. Taken together, these results suggest that acetylation of p53 at K382 plays an important role in CG200745-induced p53 transactivation and clonogenic cell death.

  18. Melatonin and vitamin D3 synergistically down-regulate Akt and MDM2 leading to TGFβ-1-dependent growth inhibition of breast cancer cells.

    PubMed

    Proietti, Sara; Cucina, Alessandra; D'Anselmi, Fabrizio; Dinicola, Simona; Pasqualato, Alessia; Lisi, Elisabetta; Bizzarri, Mariano

    2011-03-01

    Melatonin and vitamin D3 inhibit breast cancer cell growth and induce apoptosis, but they have never been combined as a breast cancer treatment. Therefore, we investigated whether their association could lead to an enhanced anticancer activity. In MCF-7 breast cancer cells, melatonin together with vitamin D3, induced a synergistic proliferative inhibition, with an almost complete cell growth arrest at 144 hr. Cell growth blockade is associated to an activation of the TGFβ-1 pathway, leading to increased TGFβ-1, Smad4 and phosphorylated-Smad3 levels. Concomitantly, melatonin and D3, alone or in combination, caused a significant reduction in Akt phosphorylation and MDM2 values, with a consequent increase of p53/MDM2 ratio. These effects were completely suppressed by adding a monoclonal anti-TGFβ-1 antibody to the culture medium. Taken together, these results indicate that cytostatic effects triggered by melatonin and D3 are likely related to a complex TGFβ-1-dependent mechanism, involving down-regulation of both MDM2 and Akt-phosphorylation. © 2010 The Authors. Journal of Pineal Research © 2010 John Wiley & Sons A/S.

  19. pOsNAR2.1:OsNAR2.1 expression enhances nitrogen uptake efficiency and grain yield in transgenic rice plants.

    PubMed

    Chen, Jingguang; Fan, Xiaoru; Qian, Kaiyun; Zhang, Yong; Song, Miaoquan; Liu, Yu; Xu, Guohua; Fan, Xiaorong

    2017-10-01

    The nitrate (NO3-) transporter has been selected as an important gene maker in the process of environmental adoption in rice cultivars. In this work, we transferred another native OsNAR2.1 promoter with driving OsNAR2.1 gene into rice plants. The transgenic lines with exogenous pOsNAR2.1:OsNAR2.1 constructs showed enhanced OsNAR2.1 expression level, compared with wild type (WT), and 15 N influx in roots increased 21%-32% in response to 0.2 mm and 2.5 mm 15NO3- and 1.25 mm 15 NH 4 15 NO 3 . Under these three N conditions, the biomass of the pOsNAR2.1:OsNAR2.1 transgenic lines increased 143%, 129% and 51%, and total N content increased 161%, 242% and 69%, respectively, compared to WT. Furthermore in field experiments we found the grain yield, agricultural nitrogen use efficiency (ANUE), and dry matter transfer of pOsNAR2.1:OsNAR2.1 plants increased by about 21%, 22% and 21%, compared to WT. We also compared the phenotypes of pOsNAR2.1:OsNAR2.1 and pOsNAR2.1:OsNRT2.1 transgenic lines in the field, found that postanthesis N uptake differed significantly between them, and in comparison with the WT. Postanthesis N uptake (PANU) increased approximately 39% and 85%, in the pOsNAR2.1:OsNAR2.1 and pOsNAR2.1:OsNRT2.1 transgenic lines, respectively, possibly because OsNRT2.1 expression was less in the pOsNAR2.1:OsNAR2.1 lines than in the pOsNAR2.1:OsNRT2.1 lines during the late growth stage. These results show that rice NO 3 - uptake, yield and NUE were improved by increased OsNAR2.1 expression via its native promoter. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  20. Network Modeling of MDM2 Inhibitor-Oxaliplatin Combination Reveals Biological Synergy in wt-p53 solid tumors

    PubMed Central

    Azmi, Asfar S.; Banerjee, Sanjeev; Ali, Shadan; Wang, Zhiwei; Bao, Bin; Beck, Frances W.J.; Maitah, Main; Choi, Minsig; Shields, Tony F.; Philip, Philip A.; Sarkar, Fazlul H.; Mohammad, Ramzi M.

    2011-01-01

    Earlier we had shown that the MDM2 inhibitor (MI-219) belonging to the spiro-oxindole family can synergistically enhance the efficacy of platinum chemotherapeutics leading to 50% tumor free survival in a genetically complex pancreatic ductal adenocarcinoma (PDAC) xenograft model. In this report, we have taken a systems and network modeling approach in order to understand central mechanisms behind MI219-oxaliplatin synergy with validation in PDAC, colon and breast cancer cell lines. Microarray profiling of drug treatments (MI-219, oxaliplatin or their combination) in capan-2 cells reveal a similar unique set of gene alterations that is duplicated in other solid tumor cells. As single agent, MI-219 or oxaliplatin induced alterations in 48 and 761 genes respectively. The combination treatment resulted in 767 gene alterations with emergence of 286 synergy unique genes. Ingenuity network modeling of combination and synergy unique genes showed the crucial role of five key local networks CREB, CARF, EGR1, NF-kB and E Cadherin. The network signatures were validated at the protein level in all three cell lines. Individually silencing central nodes in these five hubs resulted in abrogation of MI-219-oxaliplatin activity confirming their critical role in aiding p53 mediated apoptotic response. We anticipate that our MI219-oxaliplatin network blueprints can be clinically translated in the rationale design and application of this unique therapeutic combination in a genetically pre-defined subset of patients. PMID:21623005

  1. The inhibition of calcium carbonate crystal growth by the cysteine-rich Mdm2 peptide.

    PubMed

    Dalas, E; Chalias, A; Gatos, D; Barlos, K

    2006-08-15

    The crystal growth of calcite, the most stable calcium carbonate polymorph, in the presence of the cysteine-rich Mdm2 peptide (containing 48 amino acids in the ring finger configuration), has been investigated by the constant composition technique. Crystallization took place exclusively on well-characterized calcite crystals in solutions supersaturated only with respect to this calcium carbonate salt. The kinetic results indicated a surface diffusion spiral growth mechanism. The presence of the Mdm2 peptide inhibited the crystal growth of calcite by 22-58% in the concentration range tested, through adsorption onto the active growth sites of the calcite crystal surface. The kinetic results favored a Langmuir-type adsorption model, and the value of the calculated affinity constant was k(aff)=147x10(4) dm(3)mol(-1), a(ads)=0.29.

  2. Development and characterization of a cell line WAF from freshwater shark Wallago attu.

    PubMed

    Dubey, Akhilesh; Goswami, Mukunda; Yadav, Kamalendra; Sharma, Bhagwati S

    2014-02-01

    A new epithelial cell line, WAF was developed from caudal fin of freshwater shark, Wallago attu. The cell line was optimally maintained at 28 °C in Leibovitz-15 (L-15) medium supplemented with 20 % fetal bovine serum. The cell line was characterized by various cytogenetic and molecular markers. The cytogenetic analysis revealed a diploid count of 86 chromosomes at different passages. The origin of the cell lines was confirmed by the amplification of 547 and 654 bp sequences of 16S rRNA and cytochrome oxidase subunit I genes of mitochondrial DNA, respectively. WAF cells were characterized for their growth characteristics at different temperature and serum concentration. Epithelial morphology of the cell line was confirmed using immunocytochemistry. Further cell plating efficiency, transfection efficiency and viability of cryopreserved WAF cells was also determined. Cytotoxicity and genotoxicity assessment of cadmium salts on WAF cells by MTT, NR and comet assay illustrated the utility of this cell line as an in vitro model for aquatic toxicological studies. The cell line will be further useful for studying oxidative stress markers against aquatic pollutants.

  3. The expression of COX-2, hTERT, MDM2, LATS2 and S100A2 in different types of non-small cell lung cancer (NSCLC).

    PubMed

    Strazisar, Mojca; Mlakar, Vid; Glavac, Damjan

    2009-01-01

    Several studies have reported different expression levels of certain genes in NSCLC, mostly related to the stage and advancement of the tumours. We investigated 65 stage I-III NSCLC tumours: 32 adenocarcinomas (ADC), 26 squamous cell carcinomas (SCC) and 7 large cell carcinomas (LCC). Using the real-time reverse transcription polymerase chain reaction (RT-PCR), we analysed the expression of the COX-2, hTERT, MDM2, LATS2 and S100A2 genes and researched the relationships between the NSCLC types and the differences in expression levels. The differences in the expression levels of the LATS2, S100A2 and hTERT genes in different types of NSCLC are significant. hTERT and COX-2 were over-expressed and LATS2 under-expressed in all NSCLC. We also detected significant relative differences in the expression of LATS2 and MDM2, hTERT and MDM2 in different types of NSCLC. There was a significant difference in the average expression levels in S100A2 for ADC and SCC. Our study shows differences in the expression patterns within the NSCLC group, which may mimic the expression of the individual NSCLC type, and also new relationships in the expression levels for different NSCLC types.

  4. Functional activation of mutant p53V172F by platinum analogs in cisplatin-resistant human tumor cells is dependent on serine-20 phosphorylation

    PubMed Central

    Xie, Xiaolei; He, Guangan; Siddik, Zahid H.

    2017-01-01

    Dysfunctionality of the p53 tumor suppressor is a major cause of therapeutic drug resistance in cancer. Recently we reported that mutant, but otherwise functional, p53V172F was inactivated in cisplatin-resistant 2780CP/Cl-16 and 2780CP/Cl-24 human ovarian tumor cells by increased recruitment of the inhibitor MDM4. The current study demonstrates that, unlike cisplatin, platinum analogs oxaliplatin and DACH-diacetato-dichloro-Pt(IV) (DAP), strongly stabilize and activate p53V172F in resistant cells, as indicated by prolonged p53 half-life and transactivation of targets p21 (CDKN1A) and MDM2. This increase in MDM2 reduced MDM4 levels in cell lysates as well as the p53 immunocomplex and prevented reversion of p53 to the inactive p53-MDM2-MDM4 bound state. Phosphorylation of p53 at Ser15 was demonstrated by all three drugs in sensitive A2780 and corresponding resistant 2780CP/Cl-16 and 2780CP/Cl-24 cell lines. However, cisplatin induced Ser20 phosphorylation in A2780 cells only, but not in resistant cells; in contrast, both DAP and oxaliplatin induced this phosphorylation in all three cell lines. The inference that Ser20 phosphorylation is more important for p53 activation was confirmed by ectopic expression of a phosphomimetic (S20D) mutant p53 that displayed reduced binding, relative to wild-type p53, to both MDM2 and MDM4 in p53-knockout A2780 cells. In consonance, temporal studies demonstrated drug-induced Ser15 phosphorylation coincided with p53 stabilization, whereas Ser20 phosphorylation coincided with p53 transactivation. Implications Cisplatin fails to activate the pathway involved in phosphorylating mutant p53V172F at Ser20 in resistant cells, but this phosphorylation is restored by oxaliplatin and DAP that reactivates p53 function and circumvents cisplatin resistance. PMID:28031409

  5. A new regulatory pathway of mRNA export by an F-box protein, Mdm30.

    PubMed

    Durairaj, Geetha; Lahudkar, Shweta; Bhaumik, Sukesh R

    2014-02-01

    Mdm30, an F-box protein in yeast, has been recently shown to promote mRNA export. However, it remains unknown how Mdm30 facilitates mRNA export. Here, we show that Mdm30 targets the Sub2 component of the TREX (Transcription/Export) complex for ubiquitylation and subsequent proteasomal degradation. Such a targeted degradation of Sub2 enhances the recruitment of the mRNA export adaptor, Yra1, to the active genes to promote mRNA export. Together, these results elucidate that Mdm30 promotes mRNA export by lowering Sub2's stability and consequently enhancing Yra1 recruitment, thus illuminating new regulatory mechanisms of mRNA export by Mdm30.

  6. An unusual methylene aziridine refined in P2(1)/c and the nonstandard setting P2(1)/n.

    PubMed

    Feast, George C; Haestier, James; Page, Lee W; Robertson, Jeremy; Thompson, Amber L; Watkin, David J

    2009-12-01

    The unusual methylene aziridine 6-tert-butyl-3-oxa-2-thia-1-azabicyclo[5.1.0]oct-6-ene 2,2-dioxide, C(9)H(15)NO(3)S, was found to crystallize with two molecules in the asymmetric unit. The structure was solved in both the approximately orthogonal and the oblique settings of space group No. 14, viz. P2(1)/n and P2(1)/c, respectively. A comparison of these results clearly displayed an increase in the correlation between coordinates in the ac plane for the oblique cell. The increase in the corresponding covariances makes a significant contribution to the standard uncertainties of derived parameters, e.g. bond lengths. Since there is yet no CIF definition for the full variance-covariance matrix, there are clear advantages to reporting the structure in the nonstandard space-group setting.

  7. PLC-based mode multi/demultiplexer for MDM transmission

    NASA Astrophysics Data System (ADS)

    Hanzawa, N.; Saitoh, K.; Sakamoto, T.; Matsui, T.; Tsujikawa, K.; Koshiba, M.; Yamamoto, F.

    2013-12-01

    We propose a PLC-based multi/demultiplexer (MUX/DEMUX) with a mode conversion function for mode division multiplexing (MDM) transmission applications. The PLC-based mode MUX/DEMUX can realize a low insertion loss and a wide working wavelength bandwidth. We designed and demonstrated a two-mode (LP01 and LP11 modes) and a three-mode (LP01, LP11, and LP21 modes) MUX/DEMUX for use in the C-band.

  8. Nuclear translocation of p21{sup WAF1/CIP1} protein prior to its cytosolic degradation by UV enhances DNA repair and survival

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ji Young; Kim, Hee Suk; Kim, Joo Young

    2009-12-25

    We previously reported that UV induced rapid proteasomal degradation of p21 protein in an ubiquitination-independent manner. Here, UV-induced p21 proteolysis was found to occur in the cytosol. Before cytosolic degradation, however, p21 protein translocated to and transiently accumulated in the nucleus. Nuclear translocation of p21 was not required for its degradation, but rather promoted DNA repair and cell survival. Overexpression of the wild type p21, but not the one with defective nuclear localization signal (NLS), reduced UV-induced DNA damage and cell death. Some of p21 protein translocated to the nucleus were associated with chromatin-bound PCNA and saved from UV-induced proteolysis.more » These data together show that p21 translocates to the nucleus to participate in DNA repair, while the rest is rapidly degraded in the cytosol. We propose that our findings reflect a mechanism to facilitate removal of damaged cells, enhancing DNA repair at the same time.« less

  9. Physalis angulata induced G2/M phase arrest in human breast cancer cells.

    PubMed

    Hsieh, Wen-Tsong; Huang, Kuan-Yuh; Lin, Hui-Yi; Chung, Jing-Gung

    2006-07-01

    Physalis angulata (PA) is employed in herbal medicine around the world. It is used to treat diabetes, hepatitis, asthma and malaria in Taiwan. We have evaluated PA as a cancer chemopreventive agent in vitro by studying the role of PA in regulation of proliferation, cell cycle and apoptosis in human breast cancer cell lines. PA inhibited cell proliferation and induced G2/M arrest and apoptosis in human breast cancer MAD-MB 231 and MCF-7 cell lines. In this study, under treatment with various concentrations of PA in MDA-MB 231 cell line, we checked mRNA levels for cyclin A and cyclin B1 and the protein levels of cyclin A and cyclin B1, Cdc2 (cyclin-dependent kinases), p21(waf1/cip1) and P27(Kip1) (cyclin-dependent kinase inhibitors), Cdc25C, Chk2 and Wee1 kinase (cyclin-dependent kinase relative factors) in cell cycle G2/M phase. From those results, we determined that PA arrests MDA-MB 231 cells at the G2/M phase by (i) inhibiting synthesis or stability of mRNA and their downstream protein levels of cyclin A and cyclin B1, (ii) increasing p21(waf1/cip1) and P27(kip1) levels, (iii) increasing Chk2, thus causing an increase in Cdc25C phosphorylation/inactivation and inducing a decrease in Cdc2 levels and an increase in Wee1 level. According to the results obtained, PA appears to possess anticarcinogenic properties; these results suggest that the effect of PA on the levels of phosphorylated/inactivated Cdc25C are mediated by Chk2 activation, at least in part, via p21(waf1/cip1) and P27(kip1) cyclin-dependent kinase inhibitors pathway to arrest cells at G2/M phase in breast cancer carcinoma cells.

  10. Native PAGE to study the interaction between the oncosuppressor p53 and its protein ligands.

    PubMed

    Lamberti, Anna; Sgammato, Roberta; Desiderio, Doriana; Punzo, Chiara; Raimo, Gennaro; Novellino, Ettore; Carotenuto, Alfonso; Masullo, Mariorosario

    2015-02-01

    In the present study, we investigated a new approach for studying the interaction between p53 and MDM2/X (where MDM is murine double minute protein). The method is based on the different mobility between the interacting domains of the oncosuppressor p53 and its protein ligands MDM2/X on polyacrylamide gels under native conditions. While the two proteins MDM2/X alone were able to enter the gel, the formation of a binary complex between p53 and MDM2/X prevented the gel entry. The novel technique is reliable for determining the different affinity elicited by MDM2 or MDMX toward p53, and can be useful for analyzing the dissociation power exerted by other molecules on the p53-MDM2/X complex. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Nuclear accumulation and activation of p53 in embryonic stem cells after DNA damage.

    PubMed

    Solozobova, Valeriya; Rolletschek, Alexandra; Blattner, Christine

    2009-06-17

    P53 is a key tumor suppressor protein. In response to DNA damage, p53 accumulates to high levels in differentiated cells and activates target genes that initiate cell cycle arrest and apoptosis. Since stem cells provide the proliferative cell pool within organisms, an efficient DNA damage response is crucial. In proliferating embryonic stem cells, p53 is localized predominantly in the cytoplasm. DNA damage-induced nuclear accumulation of p53 in embryonic stem cells activates transcription of the target genes mdm2, p21, puma and noxa. We observed bi-phasic kinetics for nuclear accumulation of p53 after ionizing radiation. During the first wave of nuclear accumulation, p53 levels were increased and the p53 target genes mdm2, p21 and puma were transcribed. Transcription of noxa correlated with the second wave of nuclear accumulation. Transcriptional activation of p53 target genes resulted in an increased amount of proteins with the exception of p21. While p21 transcripts were efficiently translated in 3T3 cells, we failed to see an increase in p21 protein levels after IR in embryonal stem cells. In embryonic stem cells where (anti-proliferative) p53 activity is not necessary, or even unfavorable, p53 is retained in the cytoplasm and prevented from activating its target genes. However, if its activity is beneficial or required, p53 is allowed to accumulate in the nucleus and activates its target genes, even in embryonic stem cells.

  12. 99mTc-MDM Brain SPECT for the Detection of Recurrent/Remnant Glioma-Comparison With ceMRI and 18F-FLT PET Imaging: Initial Results.

    PubMed

    Singh, Baljinder; Kumar, Narendra; Sharma, Sarika; Watts, Ankit; Hazari, Puja P; Rani, Nisha; Vyas, Sameer; Anish, Bhattacharya; Mishra, Anil K

    2015-10-01

    To evaluate the diagnostic use of an indigenously developed single vial ready to label (with Tc) kit preparation of bis-methionine-DTPA (Tc-MDM) for the detection of recurrent/residual glioma. We prospectively studied 32 patients (21 male and 11 female subjects aged 43.0±16.0 years) with clinical suspicion of postoperative recurrent/residual glioma. After radical radiotherapy (54.0-60.0 Gy) with or without concurrent temozolomide as indicated, Tc-MDM SPECT and ceMRI of the brain was performed in all the patients and F-FLT-PET imaging in 16 of 32 patients. MDM SPECT and ceMRI findings were concordant in 28 patients (15 positive and 13 negative). The findings were discordant in the remaining 5 patients, with positive ceMRI and negative MDM-SPECT in 2 patients and negative ceMRI and positive MDM-SPECT in 3 patients. Tc-MDM-SPECT, F-FLT PET, and ceMRI scan findings were positive in 9 of 16 and negative in 5 of 16 patients. In the remaining 2 of 16 patients, both F-FLT-PET and Tc-MDM-SPECT were positive, but ceMRI was negative. Sensitivity, specificity, PPV, NPV, and DA of Tc-MDM-SPECT for diagnosing recurrent/residual glioma were 88.24%, 81.25%, 83.3%, 86.7%, and 84.8%, respectively. The diagnostic accuracy of Tc-bis-methionine (MDM)-SPECT imaging was comparable with that of ceMRI and F-FLT-PET and may be useful in the management of glioma patients in the postsurgical follow-up period. This imaging technique may be of special interest in peripheral hospitals/developing countries lacking access to expensive PET/cyclotron technology. However, comparison with the existing "gold standard" PET tracers, especially with C-11-methionine-PET imaging and histopathological correlation, is warranted in a large cohort of glioma patients through multicentric studies.

  13. Effective Targeting of the P53/MDM2 Axis in Preclinical Models of Infant MLL-Rearranged Acute Lymphoblastic Leukemia

    PubMed Central

    Richmond, Jennifer; Carol, Hernan; Evans, Kathryn; High, Laura; Mendomo, Agnes; Robbins, Alissa; Meyer, Claus; Venn, Nicola C.; Marschalek, Rolf; Henderson, Michelle; Sutton, Rosemary; Kurmasheva, Raushan T.; Kees, Ursula R.; Houghton, Peter J.; Smith, Malcolm A.; Lock, Richard B.

    2015-01-01

    Purpose While the overall cure rate for pediatric acute lymphoblastic leukemia (ALL) approaches 90%, infants with ALL harboring translocations in the mixed-lineage leukemia (MLL) oncogene (infant MLL-ALL) experience shorter remission duration and lower survival rates (∼50%). Mutations in the p53 tumor suppressor gene are uncommon in infant MLL-ALL, and drugs that release p53 from inhibitory mechanisms may be beneficial. The purpose of this study was to assess the efficacy of the orally available nutlin, RG7112, against patient-derived MLL-ALL xenografts. Experimental Design Eight MLL-ALL patient-derived xenografts were established in immune-deficient mice, and their molecular features compared with B-lineage ALL and T-ALL xenografts. The sensitivity of MLL-ALL xenografts to RG7112 was assessed in vitro and in vivo, and the ability of RG7112 to induce p53, cell cycle arrest and apoptosis in vivo was evaluated. Results Gene expression analysis revealed that MLL-ALL, B-lineage ALL and T-ALL xenografts clustered according to subtype. Moreover, genes previously reported to be over-expressed in MLL-ALL, including MEIS1, CCNA1, and members of the HOXA family, were significantly up-regulated in MLL-ALL xenografts, confirming their ability to recapitulate the clinical disease. Exposure of MLL-ALL xenografts to RG7112 in vivo caused p53 up-regulation, cell cycle arrest and apoptosis. RG7112 as a single agent induced significant regressions in infant MLL-ALL xenografts. Therapeutic enhancement was observed when RG7112 was assessed using combination treatment with an induction-type regimen (vincristine/dexamethasone/L-asparaginase) against an MLL-ALL xenograft. Conclusion The utility of targeting the p53-MDM2 axis in combination with established drugs for the management of infant MLL-ALL warrants further investigation. PMID:25573381

  14. LACTB, a novel epigenetic silenced tumor suppressor, inhibits colorectal cancer progression by attenuating MDM2-mediated p53 ubiquitination and degradation.

    PubMed

    Zeng, Kaixuan; Chen, Xiaoxiang; Hu, Xiuxiu; Liu, Xiangxiang; Xu, Tao; Sun, Huiling; Pan, Yuqin; He, Bangshun; Wang, Shukui

    2018-06-13

    Colorectal cancer (CRC) is one of the most common aggressive malignancies. Like other solid tumors, inactivation of tumor suppressor genes and activation of oncogenes occur during CRC development and progression. Recently, a novel tumor suppressor, LACTB, was proposed to inhibit tumor progression, but the functional and clinical significance of this tumor suppressor in CRC remains unexplored. Herein, we found LACTB was significantly downregulated in CRC due to promoter methylation and histone deacetylation, which was associated with metastasis and advanced clinical stage. CRC patients with low LACTB expression had poorer overall survival and LACTB also determined to be an independent prognostic factor for poorer outcome. Ectopic expression of LACTB suppressed CRC cells proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) in vitro and inhibited CRC growth and metastasis in vivo, while knockout of LACTB by CRISPR/Cas9 gene editing technique resulted in an opposite phenotype. Interestingly, LACTB could exert antitumorigenic effect only in HCT116 and HCT8 cells harboring wild-type TP53, but not in HT29 and SW480 cells harboring mutant TP53 or HCT116 p53 -/- cells. Mechanistic studies demonstrated that LACTB could directly bind to the C terminus of p53 to inhibit p53 degradation by preventing MDM2 from interacting with p53. Moreover, ablation of p53 attenuated the antitumorigenic effects of LACTB overexpression in CRC. Collectively, our findings successfully demonstrate for the first time that LACTB is a novel epigenetic silenced tumor suppressor through modulating the stability of p53, supporting the pursuit of LACTB as a potential therapeutic target for CRC.

  15. Deletion of p21/Cdkn1a confers protective effect against prostate tumorigenesis in transgenic adenocarcinoma of the mouse prostate model

    PubMed Central

    Jain, Anil K.; Raina, Komal; Agarwal, Rajesh

    2013-01-01

    Cyclin-dependent kinase inhibitors (CDKIs) p21Cip1/Waf1 (p21) and p27Kip1 (p27) play a determining role in cell cycle progression by regulating CDK activity; however, p21 role in prostate cancer (PCa) is controversial. Whereas p21 upregulation by anticancer agents causes cell cycle arrest in various PCa cell lines, elevated p21 levels have been associated with higher Gleason score, poor survival and increased PCa recurrence. These conflicting findings suggest that more studies are needed to examine p21 role in PCa. Herein, employing genetic approach, transgenic mice harboring p21/Cdkn1a homozygous deletion (p21−/−) were crossed with the transgenic adenocarcinoma of the mouse prostate (TRAMP) mice to characterize in vivo consequences of p21 deletion on prostate tumorigenesis. Lower urogenital tract weight of p21−/−/TRAMP mice was significantly lower than those of p21+/−/TRAMP and TRAMP mice. Histopathology further supported these observations, showing less aggressiveness in prostates of p21−/−/TRAMP. Furthermore, a significantly higher incidence of low-grade prostatic intraepithelial lesions (PIN) with a concomitant reduction in adenocarcinoma incidence was observed in p21−/−/TRAMP mice compared with TRAMP mice. In addition, whereas TRAMP mice showed the presence of poorly differentiated adenocarcinoma lesions, no such lesions were observed in p21/TRAMP transgenic mice. Specifically, there was a significant reduction in the severity of lesions in both p21−/−/TRAMP and p21+/−/TRAMP mice compared with TRAMP mice. Together, our data showed that p21 deletion reduces prostate tumorigenesis by slowing-down progression of PIN (pre-malignant) to adenocarcinoma (malignant), suggesting that intact p21 expression is associated with PCa aggressiveness, while its decreased levels may in fact confer protection against prostate tumorigenesis. PMID:23624841

  16. Functional characterization of p53 pathway components in the ancient metazoan Trichoplax adhaerens

    NASA Astrophysics Data System (ADS)

    Siau, Jia Wei; Coffill, Cynthia R.; Zhang, Weiyun Villien; Tan, Yaw Sing; Hundt, Juliane; Lane, David; Verma, Chandra; Ghadessy, Farid

    2016-09-01

    The identification of genes encoding a p53 family member and an Mdm2 ortholog in the ancient placozoan Trichoplax adhaerens advocates for the evolutionary conservation of a pivotal stress-response pathway observed in all higher eukaryotes. Here, we recapitulate several key functionalities ascribed to this known interacting protein pair by analysis of the placozoan proteins (Tap53 and TaMdm2) using both in vitro and cellular assays. In addition to interacting with each other, the Tap53 and TaMdm2 proteins are also able to respectively bind human Mdm2 and p53, providing strong evidence for functional conservation. The key p53-degrading function of Mdm2 is also conserved in TaMdm2. Tap53 retained DNA binding associated with p53 transcription activation function. However, it lacked transactivation function in reporter genes assays using a heterologous cell line, suggesting a cofactor incompatibility. Overall, the data supports functional roles for TaMdm2 and Tap53, and further defines the p53 pathway as an evolutionary conserved fulcrum mediating cellular response to stress.

  17. Real-time polymerase chain reaction analysis of MDM2 and CDK4 expression using total RNA from core-needle biopsies is useful for diagnosing adipocytic tumors

    PubMed Central

    2014-01-01

    Background Diagnosing adipocytic tumors can be challenging because it is often difficult to morphologically distinguish between benign, intermediate and malignant adipocytic tumors, and other sarcomas that are histologically similar. Recently, a number of tumor-specific chromosome translocations and associated fusion genes have been identified in adipocytic tumors and atypical lipomatous tumors/well-differentiated liposarcomas (ALT/WDL), which have a supernumerary ring and/or giant chromosome marker with amplified sequences of the MDM2 and CDK4 genes. The purpose of this study was to investigate whether quantitative real-time polymerase chain reaction (PCR) could be used to amplify MDM2 and CDK4 from total RNA samples obtained from core-needle biopsy sections for the diagnosis of ALT/WDL. Methods A series of lipoma (n = 124) and ALT/WDL (n = 44) cases were analyzed for cytogenetic analysis and lipoma fusion genes, as well as for MDM2 and CDK4 expression by real-time PCR. Moreover, the expression of MDM2 and CDK4 in whole tissue sections was compared with that in core-needle biopsy sections of the same tumor in order to determine whether real-time PCR could be used to distinguish ALT/WDL from lipoma at the preoperative stage. Results In whole tissue sections, the medians for MDM2 and CDK4 expression in ALT/WDL were higher than those in the lipomas (P < 0.05). Moreover, karyotype subdivisions with rings and/or giant chromosomes had higher MDM2 and CDK4 expression levels compared to karyotypes with 12q13-15 rearrangements, other abnormal karyotypes, and normal karyotypes (P < 0.05). On the other hand, MDM2 and CDK4 expression levels in core-needle biopsy sections were similar to those in whole-tissue sections (MDM2: P = 0.6, CDK4: P = 0.8, Wilcoxon signed-rank test). Conclusion Quantitative real-time PCR of total RNA can be used to evaluate the MDM2 and CDK4 expression levels in core-needle biopsies and may be useful for distinguishing ALT

  18. Delayed expression of hpS2 and prolonged expression of CIP1/WAF1/SDI1 in human tumour cells irradiated with X-rays, fission neutrons or 1 GeV/nucleon Fe ions

    NASA Technical Reports Server (NTRS)

    Balcer-Kubiczek, E. K.; Zhang, X. F.; Harrison, G. H.; Zhou, X. J.; Vigneulle, R. M.; Ove, R.; McCready, W. A.; Xu, J. F.

    1999-01-01

    PURPOSE: Differences in gene expression underlie the phenotypic differences between irradiated and unirradiated cells. The goal was to identify late-transcribed genes following irradiations differing in quality, and to determine the RBE of 1 GeV/n Fe ions. MATERIALS AND METHODS: Clonogenic assay was used to determine the RBE of Fe ions. Differential hybridization to cDNA target clones was used to detect differences in expression of corresponding genes in mRNA samples isolated from MCF7 cells irradiated with iso-survival doses of Fe ions (0 or 2.5 Gy) or fission neutrons (0 or 1.2 Gy) 7 days earlier. Northern analysis was used to confirm differential expression of cDNA-specific mRNA and to examine expression kinetics up to 2 weeks after irradiation. RESULTS: Fe ion RBE values were between 2.2 and 2.6 in the lines examined. Two of 17 differentially expressed cDNA clones were characterized. hpS2 mRNA was elevated from 1 to 14 days after irradiation, whereas CIP1/WAF1/SDI1 remained elevated from 3 h to 14 days after irradiation. Induction of hpS2 mRNA by irradiation was independent of p53, whereas induction of CIP1/WAF1/SDI1 was observed only in wild-type p53 lines. CONCLUSIONS: A set of coordinately regulated genes, some of which are independent of p53, is associated with change in gene expression during the first 2 weeks post-irradiation.

  19. A Novel Role for the RNA–Binding Protein FXR1P in Myoblasts Cell-Cycle Progression by Modulating p21/Cdkn1a/Cip1/Waf1 mRNA Stability

    PubMed Central

    Davidovic, Laetitia; Durand, Nelly; Khalfallah, Olfa; Tabet, Ricardo; Barbry, Pascal; Mari, Bernard; Sacconi, Sabrina; Moine, Hervé; Bardoni, Barbara

    2013-01-01

    The Fragile X-Related 1 gene (FXR1) is a paralog of the Fragile X Mental Retardation 1 gene (FMR1), whose absence causes the Fragile X syndrome, the most common form of inherited intellectual disability. FXR1P plays an important role in normal muscle development, and its absence causes muscular abnormalities in mice, frog, and zebrafish. Seven alternatively spliced FXR1 transcripts have been identified and two of them are skeletal muscle-specific. A reduction of these isoforms is found in myoblasts from Facio-Scapulo Humeral Dystrophy (FSHD) patients. FXR1P is an RNA–binding protein involved in translational control; however, so far, no mRNA target of FXR1P has been linked to the drastic muscular phenotypes caused by its absence. In this study, gene expression profiling of C2C12 myoblasts reveals that transcripts involved in cell cycle and muscular development pathways are modulated by Fxr1-depletion. We observed an increase of p21—a regulator of cell-cycle progression—in Fxr1-knocked-down mouse C2C12 and FSHD human myoblasts. Rescue of this molecular phenotype is possible by re-expressing human FXR1P in Fxr1-depleted C2C12 cells. FXR1P muscle-specific isoforms bind p21 mRNA via direct interaction with a conserved G-quadruplex located in its 3′ untranslated region. The FXR1P/G-quadruplex complex reduces the half-life of p21 mRNA. In the absence of FXR1P, the upregulation of p21 mRNA determines the elevated level of its protein product that affects cell-cycle progression inducing a premature cell-cycle exit and generating a pool of cells blocked at G0. Our study describes a novel role of FXR1P that has crucial implications for the understanding of its role during myogenesis and muscle development, since we show here that in its absence a reduced number of myoblasts will be available for muscle formation/regeneration, shedding new light into the pathophysiology of FSHD. PMID:23555284

  20. A High-Throughput Cell-Based Screen Identified a 2-[(E)-2-Phenylvinyl]-8-Quinolinol Core Structure That Activates p53

    PubMed Central

    Bechill, John; Zhong, Rong; Zhang, Chen; Solomaha, Elena

    2016-01-01

    p53 function is frequently inhibited in cancer either through mutations or by increased degradation via MDM2 and/or E6AP E3-ubiquitin ligases. Most agents that restore p53 expression act by binding MDM2 or E6AP to prevent p53 degradation. However, fewer compounds directly bind to and activate p53. Here, we identified compounds that shared a core structure that bound p53, caused nuclear localization of p53 and caused cell death. To identify these compounds, we developed a novel cell-based screen to redirect p53 degradation to the Skip-Cullin-F-box (SCF) ubiquitin ligase complex in cells expressing high levels of p53. In a multiplexed assay, we coupled p53 targeted degradation with Rb1 targeted degradation in order to identify compounds that prevented p53 degradation while not inhibiting degradation through the SCF complex or other proteolytic machinery. High-throughput screening identified several leads that shared a common 2-[(E)-2-phenylvinyl]-8-quinolinol core structure that stabilized p53. Surface plasmon resonance analysis indicated that these compounds bound p53 with a KD of 200 ± 52 nM. Furthermore, these compounds increased p53 nuclear localization and transcription of the p53 target genes PUMA, BAX, p21 and FAS in cancer cells. Although p53-null cells had a 2.5±0.5-fold greater viability compared to p53 wild type cells after treatment with core compounds, loss of p53 did not completely rescue cell viability suggesting that compounds may target both p53-dependent and p53-independent pathways to inhibit cell proliferation. Thus, we present a novel, cell-based high-throughput screen to identify a 2-[(E)-2-phenylvinyl]-8-quinolinol core structure that bound to p53 and increased p53 activity in cancer cells. These compounds may serve as anti-neoplastic agents in part by targeting p53 as well as other potential pathways. PMID:27124407

  1. Serum-Nutrient Starvation Induces Cell Death Mediated by Bax and Puma That Is Counteracted by p21 and Unmasked by Bcl-xL Inhibition

    PubMed Central

    Braun, Frédérique; Bertin-Ciftci, Joséphine; Gallouet, Anne-Sophie; Millour, Julie; Juin, Philippe

    2011-01-01

    The cyclin-dependent kinase inhibitor p21 (p21WAF1/Cip1) is a multifunctional protein known to promote cell cycle arrest and survival in response to p53-dependent and p53 independent stimuli. We herein investigated whether and how it might contribute to the survival of cancer cells that are in low-nutrient conditions during tumour growth, by culturing isogenic human colorectal cancer cell lines (HCT116) and breast cancer cell lines in a medium deprived in amino acids and serum. We show that such starvation enhances, independently from p53, the expression of p21 and that of the pro-apoptotic BH3-only protein Puma. Under these conditions, p21 prevents Puma and its downstream effector Bax from triggering the mitochondrial apoptotic pathway. This anti-apoptotic effect is exerted from the cytosol but it is unrelated to the ability of p21 to interfere with the effector caspase 3. The survival function of p21 is, however, overcome by RNA interference mediated Bcl-xL depletion, or by the pharmacological inhibitor ABT-737. Thus, an insufficient supply in nutrients may not have an overt effect on cancer cell viability due to p21 induction, but it primes these cells to die, and sensitizes them to the deleterious effects of Bcl-xL inhibitors regardless of their p53 status. PMID:21887277

  2. Acute and chronic toxicity study of the water accommodated fraction (WAF), chemically enhanced WAF (CEWAF) of crude oil and dispersant in the rock pool copepod Tigriopus japonicus.

    PubMed

    Lee, Kyun-Woo; Shim, Won Joon; Yim, Un Hyuk; Kang, Jung-Hoon

    2013-08-01

    We determined the toxicity of the water accommodated hydrocarbon fraction (WAF), two chemically enhanced WAFs (CEWAFs; CEWAF-C, Crude oil+Corexit 9500 and CEWAF-H, Crude oil+Hiclean) of crude oil and two dispersants (Corexit 9500 and Hiclean) to the rock pool copepod Tigriopus japonicus. In the acute toxicity test, Corexit 9500 was the most toxic of all the chemicals studied. The nauplius stage of T. japonicus was more susceptible to the toxic chemicals studied than the adult female. The toxicity data using the nauplius stage was then considered as baseline to determine the spiking concentration of chemicals for chronic toxicity tests on the copepod. As the endpoints in the chronic toxicity test, survival, sex ratio, developmental time and fecundity of the copepod were used. All chemicals used in this study resulted in increased toxicity in the F1 generation. The lowest-observed-adverse-effect (LOAE) concentrations of WAF, CEWAF-H, CEWAF-C, Hiclean and Corexit 9500 were observed to be 50%, 10%, 0.1%, 1% and 1%, respectively. The results in present study imply that copepods in marine may be negatively influenced by spilled oil and dispersant. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Inhibitor of p52 NF-κB subunit and androgen receptor (AR) interaction reduces growth of human prostate cancer cells by abrogating nuclear translocation of p52 and phosphorylated ARser81

    PubMed Central

    Mehraein-Ghomi, Farideh; Church, Dawn R.; Schreiber, Cynthia L.; Weichmann, Ashley M.; Basu, Hirak S.; Wilding, George

    2015-01-01

    Accumulating evidence shows that androgen receptor (AR) activation and signaling plays a key role in growth and progression in all stages of prostate cancer, even under low androgen levels or in the absence of androgen in the castration-resistant prostate cancer. Sustained activation of AR under androgen-deprived conditions may be due to its interaction with co-activators, such as p52 NF-κB subunit, and/or an increase in its stability by phosphorylation that delays its degradation. Here we identified a specific inhibitor of AR/p52 interaction, AR/p52-02, via a high throughput screen based on the reconstitution of Gaussia Luciferase. We found that AR/p52-02 markedly inhibited growth of both castration-resistant C4-2 (IC50 ∼6 μM) and parental androgen-dependent LNCaP (IC50 ∼4 μM) human prostate cancer cells under low androgen conditions. Growth inhibition was associated with significantly reduced nuclear p52 levels and DNA binding activity, as well as decreased phosphorylation of AR at serine 81, increased AR ubiquitination, and decreased AR transcriptional activity as indicated by decreased prostate-specific antigen (PSA) mRNA levels in both cell lines. AR/p52-02 also caused a reduction in levels of p21WAF/CIP1, which is a direct AR targeted gene in that its expression correlates with androgen stimulation and mitogenic proliferation in prostate cancer under physiologic levels of androgen, likely by disrupting the AR signaling axis. The reduced level of cyclinD1 reported previously for this compound may be due to the reduction in nuclear presence and activity of p52, which directly regulates cyclinD1 expression, as well as the reduction in p21WAF/CIP1, since p21WAF/CIP1 is reported to stabilize nuclear cyclinD1 in prostate cancer. Overall, the data suggest that specifically inhibiting the interaction of AR with p52 and blocking activity of p52 and pARser81 may be an effective means of reducing castration-resistant prostate cancer cell growth. PMID:26622945

  4. Long non-coding RNA ENST00462717 suppresses the proliferation, survival, and migration by inhibiting MDM2/MAPK pathway in glioma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Aiqin; Meng, Mingzhu; Zhao, Xiuhe

    Gliomas are the most common and aggressive primary malignant tumor in the central nervous system, and requires new biomarkers and therapeutic methods. Long noncoding RNAs (lncRNAs) are important factors in numerous human diseases, including cancer. But studies on lncRNAs and gliomas are limited. In this study, we investigated the expression patterns of lncRNAs in 3 pairs of glioma samples and adjacent non-tumor tissues via microarray and selected the most down-regulated lnc00462717 to further verify its roles in glioma. We observed that decreased lnc00462717 expression was associated with the malignant status in glioma. In vitro experiment demonstrated that lnc00462717 overexpression suppressed gliomamore » cell proliferation, survival and migration while knockdown of lnc00462717 had an opposite result. Moreover, we identified MDM2 as a direct target of lnc00462717 and lnc00462717 played a role by partially regulating the MDM2/MAPK pathway. In conclusion, lnc00462717 may function in suppressing glioma cell proliferation, survival, migration and may potentially serve as a novel biomarker and therapeutic target for glioma. - Highlights: • Using microarray to investigate the expression patterns of lncRNAs in glioma. • Selecting the most down-regulated lnc00462717 via microarray to verify its roles. • Identifying MDM2 as a direct target of lnc00462717. • The mechanism of lnc00462717 regulating the MDM2/MAPK pathway. • lnc00462717 serve as a novel biomarker and therapeutic target for treating glioma.« less

  5. Simulation-Based Validation of the p53 Transcriptional Activity with Hybrid Functional Petri Net.

    PubMed

    Doi, Atsushi; Nagasaki, Masao; Matsuno, Hiroshi; Miyano, Satoru

    2011-01-01

    MDM2 and p19ARF are essential proteins in cancer pathways forming a complex with protein p53 to control the transcriptional activity of protein p53. It is confirmed that protein p53 loses its transcriptional activity by forming the functional dimer with protein MDM2. However, it is still unclear that protein p53 keeps its transcriptional activity when it forms the trimer with proteins MDM2 and p19ARF. We have observed mutual behaviors among genes p53, MDM2, p19ARF and their products on a computational model with hybrid functional Petri net (HFPN) which is constructed based on information described in the literature. The simulation results suggested that protein p53 should have the transcriptional activity in the forms of the trimer of proteins p53, MDM2, and p19ARF. This paper also discusses the advantages of HFPN based modeling method in terms of pathway description for simulations.

  6. Ecdysone receptor (EcR) and ultraspiracle (USP) genes from the cyclopoid copepod Paracyclopina nana: Identification and expression in response to water accommodated fractions (WAFs).

    PubMed

    Puthumana, Jayesh; Lee, Min-Chul; Han, Jeonghoon; Kim, Hui-Su; Hwang, Dae-Sik; Lee, Jae-Seong

    2017-02-01

    Ecdysteroid hormones are pivotal in the development, growth, and molting of arthropods, and the hormone pathway is triggered by binding ecdysteroid to a heterodimer of the two nuclear receptors; ecdysone receptors (EcR) and ultraspiracle (USP). We have characterized EcR and USP genes, and their 5'-untranslated region (5'-UTR) from the copepod Paracyclopina nana, and studied mRNA transcription levels in post-embryonic stages and in response to water accommodated fractions (WAFs) of crude oil. The open reading frames (ORF) of EcR and USP were 1470 and 1287bp that encoded 490 and 429 amino acids with molecular weight of 121.18 and 105.03kDa, respectively. Also, a well conserved DNA-binding domain (DBD) and ligand-binding domain (LBD) were identified which confirmed by phylogenetic analysis. Messenger RNA transcriptional levels of EcR and USP were developmental stage-specific in early post-embryonic stages (N3-4). However, an evoked expression of USP was observed throughout copepodid stage and in adult females. WAFs (40 and 80%) were acted as an ecdysone agonist in P. nana, and elicited the mRNA transcription levels in adults. Developmental stage-specific transcriptional activation of EcR and USP in response to WAFs was observed. USP gene was down-regulated in the nauplius in response to WAF, whereas up-regulation of USP was observed in the adults. This study represents the first data of molecular elucidation of EcR and USP genes and their regulatory elements from P. nana and the developmental stage specific expression in response to WAFs, which can be used as potential biomarkers for environmental stressors with ecotoxicological evaluations in copepods. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Structural basis of intramitochondrial phosphatidic acid transport mediated by Ups1-Mdm35 complex.

    PubMed

    Yu, Fang; He, Fangyuan; Yao, Hongyan; Wang, Chengyuan; Wang, Jianchuan; Li, Jianxu; Qi, Xiaofeng; Xue, Hongwei; Ding, Jianping; Zhang, Peng

    2015-07-01

    Ups1 forms a complex with Mdm35 and is critical for the transport of phosphatidic acid (PA) from the mitochondrial outer membrane to the inner membrane. We report the crystal structure of the Ups1-Mdm35-PA complex and the functional characterization of Ups1-Mdm35 in PA binding and transfer. Ups1 features a barrel-like structure consisting of an antiparallel β-sheet and three α-helices. Mdm35 adopts a three-helical clamp-like structure to wrap around Ups1 to form a stable complex. The β-sheet and α-helices of Ups1 form a long tunnel-like pocket to accommodate the substrate PA, and a short helix α2 acts as a lid to cover the pocket. The hydrophobic residues lining the pocket and helix α2 are critical for PA binding and transfer. In addition, a hydrophilic patch on the surface of Ups1 near the PA phosphate-binding site also plays an important role in the function of Ups1-Mdm35. Our study reveals the molecular basis of the function of Ups1-Mdm35 and sheds new light on the mechanism of intramitochondrial phospholipid transport by the MSF1/PRELI family proteins. © 2015 The Authors.

  8. Rare Aggressive Behavior of MDM2-Amplified Retroperitoneal Dedifferentiated Liposarcoma, with Brain, Lung and Subcutaneous Metastases.

    PubMed

    Ben Salha, Imen; Zaidi, Shane; Noujaim, Jonathan; Miah, Aisha B; Fisher, Cyril; Jones, Robin L; Thway, Khin

    2016-09-05

    Dedifferentiated liposarcoma (DDL) is a histologically pleomorphic sarcoma, traditionally defined as well-differentiated liposarcoma with abrupt transition to high grade, non-lipogenic sarcoma. It can occur as part of recurrent well-differentiated liposarcoma, or may arise de novo . DDL most frequently occurs within the retroperitoneum, and while it is prone to local recurrence, it usually has a lower rate of metastasis than other pleomorphic sarcomas. We describe a case of retroperitoneal dedifferentiated liposarcoma in a 63-year-old male, who showed MDM2 amplification with fluorescence in situ hybridization, which displayed unusually aggressive behavior, with brain, lung and subcutaneous soft tissue metastases. As previous reports of metastatic liposarcoma have largely grouped DDL in with other (genetically and clinically distinct) liposarcoma subtypes, we highlight and discuss the rare occurrence of brain metastasis in MDM2 -amplified retroperitoneal liposarcoma.

  9. The role of p53 in cancer drug resistance and targeted chemotherapy.

    PubMed

    Hientz, Karin; Mohr, André; Bhakta-Guha, Dipita; Efferth, Thomas

    2017-01-31

    Cancer has long been a grievous disease complicated by innumerable players aggravating its cure. Many clinical studies demonstrated the prognostic relevance of the tumor suppressor protein p53 for many human tumor types. Overexpression of mutated p53 with reduced or abolished function is often connected to resistance to standard medications, including cisplatin, alkylating agents (temozolomide), anthracyclines, (doxorubicin), antimetabolites (gemcitabine), antiestrogenes (tamoxifen) and EGFR-inhibitors (cetuximab). Such mutations in the TP53 gene are often accompanied by changes in the conformation of the p53 protein. Small molecules that restore the wild-type conformation of p53 and, consequently, rebuild its proper function have been identified. These promising agents include PRIMA-1, MIRA-1, and several derivatives of the thiosemicarbazone family. In addition to mutations in p53 itself, p53 activity may be also be impaired due to alterations in p53's regulating proteins such as MDM2. MDM2 functions as primary cellular p53 inhibitor and deregulation of the MDM2/p53-balance has serious consequences. MDM2 alterations often result in its overexpression and therefore promote inhibition of p53 activity. To deal with this problem, a judicious approach is to employ MDM2 inhibitors. Several promising MDM2 inhibitors have been described such as nutlins, benzodiazepinediones or spiro-oxindoles as well as novel compound classes such as xanthone derivatives and trisubstituted aminothiophenes. Furthermore, even naturally derived inhibitor compounds such as α-mangostin, gambogic acid and siladenoserinols have been discovered. In this review, we discuss in detail such small molecules that play a pertinent role in affecting the p53-MDM2 signaling axis and analyze their potential as cancer chemotherapeutics.

  10. Suppression of p53 by Notch3 is mediated by Cyclin G1 and sustained by MDM2 and miR-221 axis in hepatocellular carcinoma

    PubMed Central

    Baglioni, Michele; Fornari, Francesca; Giannone, Ferdinando; Ravaioli, Matteo; Cescon, Matteo; Chieco, Pasquale; Bolondi, Luigi; Gramantieri, Laura

    2014-01-01

    To successfully target Notch receptors as part of a multidrug anticancer strategy, it will be essential to fully characterize the factors that are modulated by Notch signaling. We recently reported that Notch3 silencing in HCC results in p53 up-regulation in vitro and, therefore, we focused on the mechanisms that associate Notch3 to p53 protein expression. We explored the regulation of p53 by Notch3 signalling in three HCC cell lines HepG2, SNU398 and Hep3B.We found that Notch3 regulates p53 at post-transcriptional level controlling both Cyclin G1 expression and the feed-forward circuit involving p53, miR-221 and MDM2. Moreover, our results were validated in human HCCs and in a rat model of HCC treated with Notch3 siRNAs. Our findings are becoming an exciting area for further in-depth research toward targeted inactivation of Notch3 receptor as a novel therapeutic approach for increasing the drug-sensitivity, and thereby improving the treatment outcome of patients affected by HCC. Indeed, we proved that Notch3 silencing strongly increases the effects of Nutilin-3. With regard to therapeutic implications, Notch3-specific drugs could represent a valuable strategy to limit Notch signaling in the context of hepatocellular carcinoma over-expressing this receptor. PMID:25431954

  11. Dedifferentiated liposarcoma and pleomorphic liposarcoma: a comparative study of cytomorphology and MDM2/CDK4 expression on fine-needle aspiration.

    PubMed

    Mariño-Enríquez, Adrián; Hornick, Jason L; Dal Cin, Paola; Cibas, Edmund S; Qian, Xiaohua

    2014-02-01

    Dedifferentiated liposarcoma (DDLPS) and pleomorphic liposarcoma (PLPS) are distinct high-grade liposarcomas. DDLPS is a nonlipogenic sarcoma characterized by amplification of MDM2 and CDK4. PLPS is a high-grade sarcoma containing lipoblasts, characterized by a complex karyotype and a more aggressive clinical course. Rarely, DDLPS shows lipogenic differentiation, mimicking PLPS. The cytomorphologic features of DDLPS and PLPS and the utility of ancillary studies have not been systemically analyzed. Cytologic preparations of 25 DDLPS and 13 PLPS, all histologically confirmed, were retrospectively reviewed along with clinical and cytogenetic data. Sample cellularity, vascular architecture, background material, predominant cell morphology, quality of the cytoplasm, and nuclear pleomorphism were compared for both tumor types. Immunohistochemistry for MDM2 and CDK4 was performed on cell blocks and/or core needle biopsies. Fine-needle aspirate smears from both DDLPS and PLPS were variably cellular, composed of cellular clusters and noncohesive cells. Abundant myxoid stroma was present in ∼25% of DDLPS and PLPS cases, whereas branching curvilinear vessels were more common in DDLPS than in PLPS (7 of 25 versus 2 of 13). Tumors were composed of predominantly spindled (18 of 25 DDLPS versus 3 of 13 PLPS) or epithelioid cells (7 of 25 DDLPS versus 6 of 13 PLPS). Pleomorphic cells were predominant in 3 PLPS, and were frequent in both (13 of 25 DDLPS versus 10 of 13 PLPS). The cytoplasm was mostly fibrillary and often vacuolated in both entities. Other features included necrosis, mitoses, and a prominent inflammatory infiltrate. The main cytologic differences were the presence of marked pleomorphism, abundant lipoblasts, and cells with microvacuolated cytoplasm in most PLPS. A total of 24 (96%) and 20 (80%) cases of DDLPS expressed MDM2 and CDK4, respectively, whereas none of the PLPS expressed both markers. Six DDLPS tested showed ring or giant marker chromosomes and/or MDM2

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Xiaohong; Zhang Shuhui; Lin Jing

    The role of the hepatitis B virus X protein (HBx) in hepatocarcinogenesis remains controversial. To investigate the biological impact of hepatitis B virus x gene (HBx) mutation on hepatoma cells, plasmids expressing the full-length HBx or HBx deletion mutants were constructed. The biological activities in these transfectants were analyzed by a series of assays. Results showed that HBx3'-20 and HBx3'-40 amino acid deletion mutants exhibited an increase in cellular proliferation, focus formation, tumorigenicity, and invasive growth and metastasis through promotion of the cell cycle from G0/G1 to the S phase, when compared with the full-length HBx. In contrast, HBx3'-30 aminomore » acid deletion mutant repressed cell proliferation by blocking in G1 phase. The expression of P53, p21{sup WAF1}, p14{sup ARF}, and MDM2 proteins was regulated by expression of HBx mutants. In conclusions, HBx variants showed different effects and functions on cell proliferation and invasion by regulation of the cell cycle progression and its associated proteins expression.« less

  13. A tryptophanol-derived oxazolopiperidone lactam is cytotoxic against tumors via inhibition of p53 interaction with murine double minute proteins.

    PubMed

    Soares, Joana; Raimundo, Liliana; Pereira, Nuno A L; dos Santos, Daniel J V A; Pérez, Maria; Queiroz, Glória; Leão, Mariana; Santos, Maria M M; Saraiva, Lucília

    2015-01-01

    Inactivation of the p53 tumor suppressor protein by interaction with murine double minute (MDM) proteins, MDM2 and MDMX, is a common event in human tumors expressing wild-type p53. In these tumors, the simultaneous inhibition of these interactions with MDMs, for a full p53 reactivation, represents a promising anticancer strategy. Herein, we report the identification of a dual inhibitor of the p53 interaction with MDM2 and MDMX, the (S)-tryptophanol derivative OXAZ-1, from the screening of a small library of enantiopure tryptophanol-derived oxazolopiperidone lactams, using a yeast-based assay. With human colon adenocarcinoma HCT116 cell lines expressing wild-type p53 (HCT116 p53(+/+)) and its p53-null isogenic derivative (HCT116 p53(-/-)), it was shown that OXAZ-1 induced a p53-dependent tumor growth-inhibitory effect. In fact, OXAZ-1 induced p53 stabilization, up-regulated p53 transcription targets, such as MDM2, MDMX, p21, Puma and Bax, and led to PARP cleavage, in p53(+/+), but not in p53(-/-), HCT116 cells. In addition, similar tumor cytotoxic effects were observed for OXAZ-1 against MDMX-overexpressing breast adenocarcinoma MCF-7 tumor cells, commonly described as highly resistant to MDM2-only inhibitors. In HCT116 p53(+/+) cells, the disruption of the p53 interaction with MDMs by OXAZ-1 was further confirmed by co-immunoprecipitation. It was also shown that OXAZ-1 potently triggered a p53-dependent mitochondria-mediated apoptosis, characterized by reactive oxygen species generation, mitochondrial membrane potential dissipation, Bax translocation to mitochondria, and cytochrome c release, and exhibited a p53-dependent synergistic effect with conventional chemotherapeutic drugs. Collectively, in this work, a novel selective activator of the p53 pathway is reported with promising antitumor properties to be explored either alone or combined with conventional chemotherapeutic drugs. Moreover, OXAZ-1 may represent a promising starting scaffold to search for new dual

  14. Primary dermal pleomorphic liposarcoma: utility of adipophilin and MDM2/CDK4 immunostainings.

    PubMed

    Ramírez-Bellver, Jose L; López, Joaquín; Macías, Elena; Alegría-Landa, Victoria; Gimeno, Ignacio; Pérez-Plaza, Alejandra; Kutzner, Heinz; Requena, Luis

    2017-03-01

    Liposarcoma, usually arises in deep soft tissues and pleomorphic liposarcoma (PL), is the rarest histopathologic variant. However, 15 cases of entirely dermal PL have been reported. We describe a case of a 79-year-old man who developed a rapidly growing nodule on his thorax. Excisional biopsy was performed and immunohistochemical studies were carried. The lesion was a well-circumscribed dermal nodule composed of multivacuolated pleomorphic lipoblasts and atypical mitotic figures. Neoplastic cells expressed CD10 and resulted negative S100 protein, Melan-A, MITF-1, AE1/AE3, CD4, CD68 (PGM1), retinoblastoma gene family protein, pericentrine and lysozyme. Adipophilin stain showed the lipid contents in the cytoplasm of the neoplastic cells. MDM2 and CDK4 resulted both negative. A diagnosis of primary dermal PL was made. This case shows the utility of adipophilin immunostaining to prove the lipid contents in neoplastic cells, which has the advantage of using formalin-fixed paraffin-embedded tissue and making needless frozen sections and ultrastructural studies to show these findings. Negative MDM2/CDK4 staining in our case argues against the possibility of dedifferentiated liposarcoma and further supports the diagnosis of true PL. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Natural Product Ginsenoside 25-OCH3-PPD Inhibits Breast Cancer Growth and Metastasis through Down-Regulating MDM2

    PubMed Central

    Wang, Wei; Zhang, Xu; Qin, Jiang-Jiang; Voruganti, Sukesh; Nag, Subhasree Ashok; Wang, Ming-Hai; Wang, Hui; Zhang, Ruiwen

    2012-01-01

    Although ginseng and related herbs have a long history of utility for various health benefits, their application in cancer therapy and underlying mechanisms of action are not fully understood. Our recent work has shown that 20(S)-25-methoxyl-dammarane-3β, 12β, 20-triol (25-OCH3-PPD), a newly identified ginsenoside from Panax notoginseng, exerts activities against a variety of cancer cells in vitro and in vivo. This study was designed to investigate its anti-breast cancer activity and the underlying mechanisms of action. We observed that 25-OCH3-PPD decreased the survival of breast cancer cells by induction of apoptosis and G1 phase arrest and inhibited the growth of breast cancer xenografts in vivo. We further demonstrated that, in a dose- and time-dependent manner, 25-OCH3-PPD inhibited MDM2 expression at both transcriptional and post-translational levels in human breast cancer cells with various p53 statuses (wild type and mutant). Moreover, 25-OCH3-PPD inhibited in vitro cell migration, reduced the expression of epithelial-to-mesenchymal transition (EMT) markers, and prevented in vivo metastasis of breast cancer. In summary, 25-OCH3-PPD is a potential therapeutic and anti-metastatic agent for human breast cancer through down-regulating MDM2. Further preclinical and clinical development of this agent is warranted. PMID:22911819

  16. Natural product ginsenoside 25-OCH3-PPD inhibits breast cancer growth and metastasis through down-regulating MDM2.

    PubMed

    Wang, Wei; Zhang, Xu; Qin, Jiang-Jiang; Voruganti, Sukesh; Nag, Subhasree Ashok; Wang, Ming-Hai; Wang, Hui; Zhang, Ruiwen

    2012-01-01

    Although ginseng and related herbs have a long history of utility for various health benefits, their application in cancer therapy and underlying mechanisms of action are not fully understood. Our recent work has shown that 20(S)-25-methoxyl-dammarane-3β, 12β, 20-triol (25-OCH(3)-PPD), a newly identified ginsenoside from Panax notoginseng, exerts activities against a variety of cancer cells in vitro and in vivo. This study was designed to investigate its anti-breast cancer activity and the underlying mechanisms of action. We observed that 25-OCH(3)-PPD decreased the survival of breast cancer cells by induction of apoptosis and G1 phase arrest and inhibited the growth of breast cancer xenografts in vivo. We further demonstrated that, in a dose- and time-dependent manner, 25-OCH(3)-PPD inhibited MDM2 expression at both transcriptional and post-translational levels in human breast cancer cells with various p53 statuses (wild type and mutant). Moreover, 25-OCH(3)-PPD inhibited in vitro cell migration, reduced the expression of epithelial-to-mesenchymal transition (EMT) markers, and prevented in vivo metastasis of breast cancer. In summary, 25-OCH(3)-PPD is a potential therapeutic and anti-metastatic agent for human breast cancer through down-regulating MDM2. Further preclinical and clinical development of this agent is warranted.

  17. Inelastic scattering matrix elements for the nonadiabatic collision B(2P1/2)+H2(1Sigmag+,j)<-->B(2P3/2)+H2(1Sigmag+,j').

    PubMed

    Weeks, David E; Niday, Thomas A; Yang, Sang H

    2006-10-28

    Inelastic scattering matrix elements for the nonadiabatic collision B(2P1/2)+H2(1Sigmag+,j)<-->B(2P3/2)+H2(1Sigmag+,j') are calculated using the time dependent channel packet method (CPM). The calculation employs 1 2A', 2 2A', and 1 2A" adiabatic electronic potential energy surfaces determined by numerical computation at the multireference configuration-interaction level [M. H. Alexander, J. Chem. Phys. 99, 6041 (1993)]. The 1 2A' and 2 2A', adiabatic electronic potential energy surfaces are transformed to yield diabatic electronic potential energy surfaces that, when combined with the total B+H2 rotational kinetic energy, yield a set of effective potential energy surfaces [M. H. Alexander et al., J. Chem. Phys. 103, 7956 (1995)]. Within the framework of the CPM, the number of effective potential energy surfaces used for the scattering matrix calculation is then determined by the size of the angular momentum basis used as a representation. Twenty basis vectors are employed for these calculations, and the corresponding effective potential energy surfaces are identified in the asymptotic limit by the H2 rotor quantum numbers j=0, 2, 4, 6 and B electronic states 2Pja, ja=1/2, 3/2. Scattering matrix elements are obtained from the Fourier transform of the correlation function between channel packets evolving in time on these effective potential energy surfaces. For these calculations the H2 bond length is constrained to a constant value of req=1.402 a.u. and state to state scattering matrix elements corresponding to a total angular momentum of J=1/2 are discussed for j=0<-->j'=0,2,4 and 2P1/2<-->2P1/2, 2P3/2 over a range of total energy between 0.0 and 0.01 a.u.

  18. Detection of MDM2/CDK4 amplification in lipomatous soft tissue tumors from formalin-fixed, paraffin-embedded tissue: comparison of multiplex ligation-dependent probe amplification (MLPA) and fluorescence in situ hybridization (FISH).

    PubMed

    Creytens, David; van Gorp, Joost; Ferdinande, Liesbeth; Speel, Ernst-Jan; Libbrecht, Louis

    2015-02-01

    In this study, the detection of MDM2 and CDK4 amplification was evaluated in lipomatous soft tissue tumors using multiplex ligation-dependent probe amplification (MLPA), a PCR-based technique, in comparison with fluorescence in situ hybridization (FISH). These 2 techniques were evaluated in a series of 77 formalin-fixed, paraffin-embedded lipomatous tumors (27 benign adipose tumors, 28 atypical lipomatous tumors/well-differentiated liposarcomas, 18 dedifferentiated liposarcomas, and 4 pleomorphic liposarcomas). Using MLPA, with a cut-off ratio of >2, 36/71 samples (22 atypical lipomatous tumors/well-differentiated liposarcomas, and 14 dedifferentiated liposarcomas) showed MDM2 and CDK4 amplification. Using FISH as gold standard, MLPA showed a sensitivity of 90% (36/40) and a specificity of 100% (31/31) in detecting amplification of MDM2 and CDK4 in lipomatous soft tissue tumors. In case of high-level amplification (MDM2-CDK4/CEP12 ratio >5), concordance was 100%. Four cases of atypical lipomatous tumor/well-differentiated liposarcoma (4/26, 15%) with a low MDM2 and CDK4 amplification level (MDM2-CDK4/CEP12 ratio ranging between 2 and 2.5) detected by FISH showed no amplification by MLPA, although gain of MDM2 and CDK4 (ratios ranging between 1.6 and 1.9) was seen with MLPA. No amplification was detected in benign lipomatous tumors and pleomorphic liposarcomas. Furthermore, there was a very high concordance between the ratios obtained by FISH and MLPA. In conclusion, MLPA proves to be an appropriate and straightforward technique for screening MDM2/CDK4 amplification in lipomatous tumors, especially when a correct cut-off value and reference samples are chosen, and could be considered a good alternative to FISH to determine MDM2 and CDK4 amplification in liposarcomas. Moreover, because MLPA, as a multiplex technique, allows simultaneous detection of multiple chromosomal changes of interest, it could be in the future a very reliable and fast molecular analysis on

  19. Characterization of the Novel DNA-Binding Activity of p270, a hSWI/SNF Protein Frequently Downregulated in Breast Cancer

    DTIC Science & Technology

    2005-07-01

    M62324), MRF2 (M73837), RRPe (P24374), RBP1L1 (NP 057458), Jumonji (92833), SMoX (L25270), SMCY (Nok004644), RBP2 (S66431), and PLU-1 (CAB43532). Aoic...associated with specific aspects of cell cycle 2 regulation. Expression of the cell cycle inhibitor p21 CIP1/WAF1 has been repeatedly identified as 3 BRG1...Histone H1, Ascorbic acid, P-glycerol phosphate, and protease inhibitors were obtained from 6 Sigma Chemical Co. (St. Louis, MO), and G418 from Gibco

  20. Combined ALK and MDM2 inhibition increases antitumor activity and overcomes resistance in human ALK mutant neuroblastoma cell lines and xenograft models.

    PubMed

    Wang, Hui Qin; Halilovic, Ensar; Li, Xiaoyan; Liang, Jinsheng; Cao, Yichen; Rakiec, Daniel P; Ruddy, David A; Jeay, Sebastien; Wuerthner, Jens U; Timple, Noelito; Kasibhatla, Shailaja; Li, Nanxin; Williams, Juliet A; Sellers, William R; Huang, Alan; Li, Fang

    2017-04-20

    The efficacy of ALK inhibitors in patients with ALK -mutant neuroblastoma is limited, highlighting the need to improve their effectiveness in these patients. To this end, we sought to develop a combination strategy to enhance the antitumor activity of ALK inhibitor monotherapy in human neuroblastoma cell lines and xenograft models expressing activated ALK. Herein, we report that combined inhibition of ALK and MDM2 induced a complementary set of anti-proliferative and pro-apoptotic proteins. Consequently, this combination treatment synergistically inhibited proliferation of TP53 wild-type neuroblastoma cells harboring ALK amplification or mutations in vitro, and resulted in complete and durable responses in neuroblastoma xenografts derived from these cells. We further demonstrate that concurrent inhibition of MDM2 and ALK was able to overcome ceritinib resistance conferred by MYCN upregulation in vitro and in vivo. Together, combined inhibition of ALK and MDM2 may provide an effective treatment for TP53 wild-type neuroblastoma with ALK aberrations.

  1. Prognostic significance of p16INK4a/p53 in Tunisian patients with breast carcinoma.

    PubMed

    Karray-Chouayekh, Sondes; Baccouche, Sami; Khabir, Abdelmajid; Sellami-Boudawara, Tahia; Daoud, Jamel; Frikha, Mounir; Jlidi, Rachid; Gargouri, Ali; Mokdad-Gargouri, Raja

    2011-09-01

    Infiltrating ductal carcinoma (IDC) of the breast is a result of genetic alterations that affect the regulation of the cell cycle check-point and apoptosis. The aim of the present study was analysis using immunohistochemical localization of mouse double minute-2 (mdm2), p16INK4a, p53, bax and bcl-2 markers in Tunisian patients with breast IDC and to determine if there was correlation with the major clinico-pathological parameters and with survival of patients. We showed that the expression of p53, p16INK4a, mdm2, bcl-2, and bax was observed in 46.3%, 20.7%, 38%, 50% and 11.9% of cases, respectively. Statistical analysis revealed that positive expression of mdm2 was associated with larger tumors (P=0.013), whereas bax positivity was more prevalent in younger patients and in tumors of smaller size (P=0.008 and P=0.012 respectively). Furthermore, the expression of p16INK4a correlated with advanced grade (P<0.0001), triple negative tumors (ER-/PR-/HER2-, P=0.001) and mdm2 expression (P=0.017). The absence of nuclear p53 accumulation was predictive of good prognosis as well as when it was associated with negative expression of p16INK4a. Our findings suggest that among the biomarkers tested, p16INK4a might have a useful clinical and prognostic significance in infiltrating ductal carcinoma of the breast. Copyright © 2010 Elsevier GmbH. All rights reserved.

  2. Stress- and Rho-activated ZO-1–associated nucleic acid binding protein binding to p21 mRNA mediates stabilization, translation, and cell survival

    PubMed Central

    Nie, Mei; Balda, Maria S.; Matter, Karl

    2012-01-01

    A central component of the cellular stress response is p21WAF1/CIP1, which regulates cell proliferation, survival, and differentiation. Inflammation and cell stress often up-regulate p21 posttranscriptionally by regulatory mechanisms that are poorly understood. ZO-1–associated nucleic acid binding protein (ZONAB)/DbpA is a Y-box transcription factor that is regulated by components of intercellular junctions that are affected by cytokines and tissue damage. We therefore asked whether ZONAB activation is part of the cellular stress response. Here, we demonstrate that ZONAB promotes cell survival in response to proinflammatory, hyperosmotic, and cytotoxic stress and that stress-induced ZONAB activation involves the Rho regulator GEF-H1. Unexpectedly, stress-induced ZONAB activation does not stimulate ZONAB’s activity as a transcription factor but leads to the posttranscriptional up-regulation of p21 protein and mRNA. Up-regulation is mediated by ZONAB binding to specific sites in the 3′-untranslated region of the p21 mRNA, resulting in mRNA stabilization and enhanced translation. Binding of ZONAB to mRNA is activated by GEF-H1 via Rho stimulation and also mediates Ras-induced p21 expression. We thus identify a unique type of stress and Rho signaling activated pathway that drives mRNA stabilization and translation and links the cellular stress response to p21 expression and cell survival. PMID:22711822

  3. Down-regulation of p21 (CDKN1A/CIP1) is inversely associated with microsatellite instability and CpG island methylator phenotype (CIMP) in colorectal cancer.

    PubMed

    Ogino, S; Kawasaki, T; Kirkner, G J; Ogawa, A; Dorfman, I; Loda, M; Fuchs, C S

    2006-10-01

    p21 (CDKN1A/CIP1/WAF1), one of the cyclin-dependent kinase inhibitors, plays a key role in regulating the cell cycle and is transcriptionally regulated by p53. Down-regulation of p21 is caused by TP53 mutations in colorectal cancer. CpG island methylator phenotype (CIMP) appears to be a distinct subtype of colorectal cancer with concordant methylation of multiple gene promoters and is associated with a high degree of microsatellite instability (MSI-H) and BRAF mutations. However, no study to date has evaluated the relationship between p21 expression and CIMP in colorectal cancer. The purpose of this study was to examine the inter-relationships between p21, p53, CIMP, MSI and KRAS/BRAF status in colorectal cancer. We utilized 737 relatively unbiased samples of colorectal cancers from two large prospective cohort studies. Using quantitative real-time PCR (MethyLight), we measured DNA methylation in five CIMP-specific gene promoters [CACNA1G, CDKN2A (p16/INK4A), CRABP1, MLH1 and NEUROG1]. CIMP-high (>or=4/5 methylated promoters) was diagnosed in 118 (16%) of the 737 tumours. We also assessed expression of p21 and p53 by immunohistochemistry. Among the 737 tumours, 371 (50%) showed p21 loss. Both p21 loss and p53 positivity were inversely associated with CIMP-high, MSI-H and BRAF mutations. The associations of p21 with these molecular features were still present after tumours were stratified by p53 status. In contrast, the associations of p53 positivity with the molecular features were no longer present after tumours were stratified by p21 status. When CIMP-high and non-CIMP-high tumours were stratified by MSI or KRAS/BRAF status, CIMP-high and MSI-H (but not BRAF mutations) were still inversely associated with p21 loss. In conclusion, down-regulation of p21 is inversely correlated with CIMP-high and MSI-H in colorectal cancer, independent of TP53 and BRAF status.

  4. Discovery of 4-((3'R,4'S,5'R)-6″-Chloro-4'-(3-chloro-2-fluorophenyl)-1'-ethyl-2″-oxodispiro[cyclohexane-1,2'-pyrrolidine-3',3″-indoline]-5'-carboxamido)bicyclo[2.2.2]octane-1-carboxylic Acid (AA-115/APG-115): A Potent and Orally Active Murine Double Minute 2 (MDM2) Inhibitor in Clinical Development.

    PubMed

    Aguilar, Angelo; Lu, Jianfeng; Liu, Liu; Du, Ding; Bernard, Denzil; McEachern, Donna; Przybranowski, Sally; Li, Xiaoqin; Luo, Ruijuan; Wen, Bo; Sun, Duxin; Wang, Hengbang; Wen, Jianfeng; Wang, Guangfeng; Zhai, Yifan; Guo, Ming; Yang, Dajun; Wang, Shaomeng

    2017-04-13

    We previously reported the design of spirooxindoles with two identical substituents at the carbon-2 of the pyrrolidine core as potent MDM2 inhibitors. In this paper we describe an extensive structure-activity relationship study of this class of MDM2 inhibitors, which led to the discovery of 60 (AA-115/APG-115). Compound 60 has a very high affinity to MDM2 (K i < 1 nM), potent cellular activity, and an excellent oral pharmacokinetic profile. Compound 60 is capable of achieving complete and long-lasting tumor regression in vivo and is currently in phase I clinical trials for cancer treatment.

  5. Modulation of p53 cellular function and cell death by African swine fever virus.

    PubMed

    Granja, Aitor G; Nogal, María L; Hurtado, Carolina; Salas, José; Salas, María L; Carrascosa, Angel L; Revilla, Yolanda

    2004-07-01

    Modulation of the activity of tumor suppressor p53 is a key event in the replication of many viruses. We have studied the function of p53 in African swine fever virus (ASFV) infection by determining the expression and activity of this transcription factor in infected cells. p53 levels are increased at early times of infection and are maintained throughout the infectious cycle. The protein is transcriptionally active, stabilized by phosphorylation, and localized in the nucleus. p53 induces the expression of p21 and Mdm2. Strikingly, these two proteins are located at the cytoplasmic virus factories. The retention of Mdm2 at the factory may represent a viral mechanism to prevent p53 inactivation by the protein. The expression of apoptotic proteins, such as Bax or active caspase-3, is also increased following ASFV infection, although the increase in caspase-3 does not appear to be, at least exclusively, p53 dependent. Bax probably plays a role in the induction of apoptosis in the infected cells, as suggested by the release of cytochrome c from the mitochondria. The significance of p21 induction and localization is discussed in relation to the shutoff of cellular DNA synthesis that is observed in ASFV-infected cells.

  6. Modulation of p53 Cellular Function and Cell Death by African Swine Fever Virus

    PubMed Central

    Granja, Aitor G.; Nogal, María L.; Hurtado, Carolina; Salas, José; Salas, María L.; Carrascosa, Angel L.; Revilla, Yolanda

    2004-01-01

    Modulation of the activity of tumor suppressor p53 is a key event in the replication of many viruses. We have studied the function of p53 in African swine fever virus (ASFV) infection by determining the expression and activity of this transcription factor in infected cells. p53 levels are increased at early times of infection and are maintained throughout the infectious cycle. The protein is transcriptionally active, stabilized by phosphorylation, and localized in the nucleus. p53 induces the expression of p21 and Mdm2. Strikingly, these two proteins are located at the cytoplasmic virus factories. The retention of Mdm2 at the factory may represent a viral mechanism to prevent p53 inactivation by the protein. The expression of apoptotic proteins, such as Bax or active caspase-3, is also increased following ASFV infection, although the increase in caspase-3 does not appear to be, at least exclusively, p53 dependent. Bax probably plays a role in the induction of apoptosis in the infected cells, as suggested by the release of cytochrome c from the mitochondria. The significance of p21 induction and localization is discussed in relation to the shutoff of cellular DNA synthesis that is observed in ASFV-infected cells. PMID:15194793

  7. The ethanol extract from Artemisia princeps Pampanini induces p53-mediated G1 phase arrest in A172 human neuroblastoma cells.

    PubMed

    Park, Eun Young; Lee, Kyung-Won; Lee, Heon-Woo; Cho, Young-Wuk; Baek, Nam-In; Chung, Hae-Gon; Jeong, Tae-Sook; Choi, Myung-Sook; Lee, Kyung-Tae

    2008-06-01

    In the present study, the antiproliferative effects of the ethanol extract of Artemisia princeps Pampanini (EAPP) and the mechanism involved were investigated. Of the various cancer cells examined, human neuroblastoma A172 cells were most sensitive to EAPP, and their proliferation was dose- and time-dependently inhibited by EAPP. DNA flow cytometry analysis indicated that EAPP notably induced the G(1) phase arrest in A172 cells. Of the G(1) phase cycle-related proteins examined, the expressions of cyclin-dependent kinase (CDK) 2, CDK4, and CDK6 and of cyclin D(1), D(2), and D(3) were found to be markedly reduced by EAPP, whereas cyclin E was unaffected. Moreover, the protein and mRNA levels of the CDK inhibitors p16(INK4a), p21(CIP1/WAF1), and p27(KIP1) were increased, and the activities of CDK2, CDK4, and CDK6 were reduced. Furthermore, the expressions of E2F-1 and of phosphorylated pRb were also decreased, and the protein levels of p53 and pp53 (Ser15) were increased. Up-regulation of p21(CIP1/WAF1) was found to be mediated by a p53-dependent pathway in EAPP-induced G(1)-arrested A172 cells. When these data are taken together, the EAPP was found to potently inhibit the proliferation of human neuroblastoma A172 cells via G(1) phase cell cycle arrest.

  8. The roles of p53R2 in cancer progression based on the new function of mutant p53 and cytoplasmic p21.

    PubMed

    Yousefi, Bahman; Rahmati, Mohammad; Ahmadi, Yasin

    2014-03-18

    Although the deregulated expression of p53R2, a p53-inducible protein and homologue of the R2 subunit of ribonucleotide reductase, has been detected in several human cancers, p53R2 roles in cancer progression and malignancy still remains controversial. In this article, we present a viable hypothesis about the roles of p53R2 in cancer progression and therapy resistance based on the roles of cytoplasmic p21 and mutant p53. Since p53R2 can up-regulate p21 and p21, it in turn has a dual role in cell cycle. Hence, p53R2 can play a dual role in cell cycle progression. In addition, because p53 is the main regulator of p53R2, the mutant p53 may induce the expression of p53R2 in some cancer cells based on the "keep of function" phenomenon. Therefore, depending on the locations of p21 and the new abilities of mutant p53, p53R2 has dual role in cell cycle progression. Since the DNA damaging therapies induce p53R2 expression through the induction of p53, p53R2 can be the main therapy resistance mediator in cancers with cytoplasmic p21. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Long noncoding RNA MEG3 inhibits proliferation of chronic myeloid leukemia cells by sponging microRNA21.

    PubMed

    Li, Ziye; Yang, Lin; Liu, Xiaojun; Nie, Ziyuan; Luo, Jianmin

    2018-05-14

    The long noncoding RNA (lnc) maternally expressed 3 (MEG3) is downregulated in many types of cancers. However, the relationship between lncRNA MEG3, microRNA-21 (miR-21) and chronic myeloid leukemia (CML) blast crisis is unknown. This study examined bone marrow samples from 40 CML patients and 10 healthy donors. Proliferation and apoptosis assays, real-time polymerase chain reaction (PCR), bisulfite sequencing PCR, Western blotting, luciferase assay, RNA pull-down, RNA immunoprecipitation (RIP), co-immunoprecipitation (CoIP) and Chromatin immunoprecipitation (ChIP) were performed. We found that MEG3 and PTEN expression were down-regulated, whereas, MDM2, DNMT1 and miR-21 were up-regulated in the accelerated and blast phases of CML. Treated with 5-azacytidine decreased the level of MDM2, DNMT1 and miR21, but increased the level of MEG3 and PTEN. Overexpression of MEG3 and silencing the expression of miR-21 inhibited proliferation and induced apoptosis. MEG3 overexpression and silencing the expression of miR21 influence the levels of MMP-2, MMP-9, bcl-2 and Bax. MEG3 was able to interact with MDM2 and EZH2. MDM2 could interact with DNMT1 and PTEN. MYC and AKT can interact with EZH2. ChIP-seq showed that the promoter of KLF4 and SFRP2 interacts with DNMT1. In conclusion, lncRNA MEG3 and its target miR21 may serve as novel therapeutic targets for CML blast crisis; and demethylation drugs might also have potential clinical application in treating CML blast crisis. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  10. Patterns of Proteins that Associate with p53 or with p53 Binding Sites Present in the Ribosomal Gene Cluster and MDM2 (P2) Promoter

    DTIC Science & Technology

    2000-08-01

    Spodoptera frugiperda (Sf21) cells were infected with a recombinant baculovirus expressing the wild-type human p53. 3-4 and 10-1 cells were grown at 37 ’C in...for further use. Spodoptera fugiperda (Sf21) cells were grown at 27 0C in TC-100 medium (GIBCO), supplemented with 10% of heat inactivated Fetal

  11. MANF attenuates neuronal apoptosis and promotes behavioral recovery via Akt/MDM-2/p53 pathway after traumatic spinal cord injury in rats.

    PubMed

    Gao, Liansheng; Xu, Weilin; Fan, Shuangbo; Li, Tao; Zhao, Tengfei; Ying, Guangyu; Zheng, Jingwei; Li, Jianru; Zhang, Zhongyuan; Yan, Feng; Zhu, Yongjian; Chen, Gao

    2018-05-24

    The aim of this study was to investigate the potential effect and mechanism of action of MANF in attenuating neuronal apoptosis following t-SCI. A clip compressive model was used to induce a crush injury of the spinal cord in a total of 230 rats. The Basso, Beattie, and Bresnahan (BBB) score, spinal cord water content, and blood spinal cord barrier (BSCB) permeability were evaluated. The expression levels of MANF and its downstream proteins were examined by western blotting. Immunofluorescence staining of MANF, NeuN, GFAP, Iba-1, cleaved caspase-3, and TUNEL staining were also performed. Cells were counted in six randomly selected fields in the gray matter regions of the sections from two spinal cord sites (2 mm rostral and caudal to the epicenter of the injury) per sample. A cell-based mechanical injury model was also conducted using SH-SY5Y cells. Cell apoptosis and viability were assessed by flow cytometry, an MTT assay, and trypan blue staining. Subcellular structures were observed by transmission electron microscopy. MANF was mainly expressed in neurons. The expression levels of MANF, and its downstream target, p-Akt, were gradually increased and after t-SCI. Treatment with MANF increased Bcl-2 and decreased Bax and CC-3 levels; these effects were reversed on treatment with MK2206. The BBB score, spinal cord water content, and BSCB destruction were also ameliorated by MANF treatment. MANF decreases neuronal apoptosis and improves neurological function through Akt/MDM-2/p53 pathway after t-SCI. Therefore, MANF might be a potential treatment for patients with t-SCI.© 2018 BioFactors, 2018. © 2018 International Union of Biochemistry and Molecular Biology.

  12. On p53 revival using system oriented drug dosage design.

    PubMed

    Haseeb, Muhammad; Azam, Shumaila; Bhatti, A I; Azam, Rizwan; Ullah, Mukhtar; Fazal, Sahar

    2017-02-21

    We propose a new paradigm in the drug design for the revival of the p53 pathway in cancer cells. It is shown that the current strategy of using small molecule based Mdm2 inhibitors is not enough to adequately revive p53 in cancerous cells, especially when it comes to the extracting pulsating behavior of p53. This fact has come to notice when a novel method for the drug dosage design is introduced using system oriented concepts. As a test case, small molecule drug Mdm2 repressor Nutlin 3a is considered. The proposed method determines the dose of Nutlin to revive p53 pathway functionality. For this purpose, PBK dynamics of Nutlin have also been integrated with p53 pathway model. The p53 pathway is the focus of researchers for the last thirty years for its pivotal role as a frontline cancer suppressant protein due to its effect on cell cycle checkpoints and cell apoptosis in response to a DNA strand break. That is the reason for finding p53 being absent in more than 50% of tumor cancers. Various drugs have been proposed to revive p53 in cancer cells. Small molecule based drugs are at the foremost and are the subject of advanced clinical trials. The dosage design of these drugs is an important issue. We use control systems concepts to develop the drug dosage so that the cancer cells can be treated in appropriate time. We investigate by using a computational model how p53 protein responds to drug Nutlin 3a, an agent that interferes with the MDM2-mediated p53 regulation. The proposed integrated model describes in some detail the regulation network of p53 including the negative feedback loop mediated by MDM2 and the positive feedback loop mediated by Mdm2 mRNA as well as the reversible represses of MDM2 caused by Nutlin. The reported PBK dynamics of Nutlin 3a are also incorporated to see the full effect. It has been reported that p53 response to stresses in two ways. Either it has a sustained (constant) p53 response, or there are oscillations in p53 concentration. The

  13. Combined ALK and MDM2 inhibition increases antitumor activity and overcomes resistance in human ALK mutant neuroblastoma cell lines and xenograft models

    PubMed Central

    Wang, Hui Qin; Halilovic, Ensar; Li, Xiaoyan; Liang, Jinsheng; Cao, Yichen; Rakiec, Daniel P; Ruddy, David A; Jeay, Sebastien; Wuerthner, Jens U; Timple, Noelito; Kasibhatla, Shailaja; Li, Nanxin; Williams, Juliet A; Sellers, William R; Huang, Alan; Li, Fang

    2017-01-01

    The efficacy of ALK inhibitors in patients with ALK-mutant neuroblastoma is limited, highlighting the need to improve their effectiveness in these patients. To this end, we sought to develop a combination strategy to enhance the antitumor activity of ALK inhibitor monotherapy in human neuroblastoma cell lines and xenograft models expressing activated ALK. Herein, we report that combined inhibition of ALK and MDM2 induced a complementary set of anti-proliferative and pro-apoptotic proteins. Consequently, this combination treatment synergistically inhibited proliferation of TP53 wild-type neuroblastoma cells harboring ALK amplification or mutations in vitro, and resulted in complete and durable responses in neuroblastoma xenografts derived from these cells. We further demonstrate that concurrent inhibition of MDM2 and ALK was able to overcome ceritinib resistance conferred by MYCN upregulation in vitro and in vivo. Together, combined inhibition of ALK and MDM2 may provide an effective treatment for TP53 wild-type neuroblastoma with ALK aberrations. DOI: http://dx.doi.org/10.7554/eLife.17137.001 PMID:28425916

  14. Ubiquitylation and proteasomal degradation of the p21(Cip1), p27(Kip1) and p57(Kip2) CDK inhibitors.

    PubMed

    Lu, Zhimin; Hunter, Tony

    2010-06-15

    The expression levels of the p21(Cip1) family CDK inhibitors (CKIs), p21(Cip1), p27(Kip1) and p57(Kip2), play a pivotal role in the precise regulation of cyclin-dependent kinase (CDK) activity, which is instrumental to proper cell cycle progression. The stabilities of p21(Cip1), p27(Kip1) and p57(Kip2) are all tightly and differentially regulated by ubiquitylation and proteasome-mediated degradation during various stages of the cell cycle, either in steady state or in response to extracellular stimuli, which often elicit site-specific phosphorylation of CKIs triggering their degradation.

  15. p53 as Batman: using a movie plot to understand control of the cell cycle.

    PubMed

    Gadi, Nikhita; Foley, Sage E; Nowey, Mark; Plopper, George E

    2013-04-16

    This Teaching Resource provides and describes a two-part classroom exercise to help students understand control of the cell cycle, with a focus on the transcription factor p53, the E3 ubiquitin ligase Mdm2, the Mdm2 inhibitor ARF, the kinases ATM and ATR, the kinase Chk2, and the cell cycle inhibitor p21(Cip1). Students use characters and scenes from the movie The Dark Knight to represent elements of the cell cycle control machinery, then they apply these characters and scenes to translate a primary research article on p53 function into a new movie scene in the "Batman universe." This exercise is appropriate for college-level courses in cell biology and cancer biology and requires students to have a background in introductory cell biology. Explicit learning outcomes and associated assessment methods are provided, as well as slides, student assignments, the primary research article, and an instructor's guide for the exercise.

  16. A novel chalcone derivative, LQFM064, induces breast cancer cells death via p53, p21, KIT and PDGFRA.

    PubMed

    Cabral, Bruna Lannuce Silva; da Silva, Artur Christian Garcia; de Ávila, Renato Ivan; Cortez, Alane Pereira; Luzin, Rangel Magalhães; Lião, Luciano Morais; de Souza Gil, Eric; Sanz, Gérman; Vaz, Boniek G; Sabino, José R; Menegatti, Ricardo; Valadares, Marize Campos

    2017-09-30

    This study shows the design, synthesis and antitumoral potential evaluation of a novel chalcone-like compound, (E)-3- (3, 5-di-ter-butyl-4-hydroxyphenyl)-1- (4-hydroxy-3-methoxyphenyl) prop-2-en-1-one [LQFM064) (4)], against human breast adenocarcinoma MCF7 cells. Some toxicological parameters were also investigated. LQFM064) (4) exhibited cytotoxic activity against MCF7 cells (IC 50 =21μM), in a concentration dependent-manner, and triggered significant changes in cell morphology and biochemical/molecular parameters, which are suggestive of an apoptosis inductor. LQFM064) (4) (21μM) induced cell cycle arrest at G0/G1 phase with increased p53 and p21 expressions. It was also shown that the compound (4) did not interfere directly in p53/MDM2 complexation of MCF7 cells. In these cells, externalization of phosphatidylserine, cytochrome c release, increased expression of caspases-7, -8 and -9, reduced mitochondrial membrane potential and ROS overgeneration were also detected following LQFM064 (4) treatment. Further analysis revealed the activation of both apoptotic pathways via modulation of the proteins involved in the extrinsic and intrinsic pathways with an increase in TNF-R1, Fas-L and Bax levels and a reduction in Bcl-2 expression. Furthermore, KIT proto-oncogene receptor tyrosine kinase, insulin-like growth factor (IGF1) and platelet-derived growth factor receptor A (PDGFRA) were downregulated, while glutathione S-transferase P1 (GSTP1) and interferon regulatory factor 5 (IRF5) expressions were increased by LQFM064 (4)-triggered cytotoxic effects in MCF7 cells. Moreover, it can be inferred that compound (4) has a moderate acute oral systemic toxicity hazard, since its estimated LD 50 was 452.50mg/kg, which classifies it as UN GHS Category 4 (300mg/kg>LD 50 <2000mg/kg). Furthermore, LQFM064 (4) showed a reduced potential myelotoxicity (IC 50 =150μM for mouse bone marrow hematopoietic progenitors). In conclusion, LQFM064 (4) was capable of inducing breast cancer

  17. 3,3'-Diindolylmethane is a novel mitochondrial H(+)-ATP synthase inhibitor that can induce p21(Cip1/Waf1) expression by induction of oxidative stress in human breast cancer cells.

    PubMed

    Gong, Yixuan; Sohn, Heesook; Xue, Ling; Firestone, Gary L; Bjeldanes, Leonard F

    2006-05-01

    Epidemiologic evidence suggests that high dietary intake of Brassica vegetables, such as broccoli, cabbage, and Brussels sprouts, protects against tumorigenesis in multiple organs. 3,3'-Diindolylmethane, one of the active products derived from Brassica vegetables, is a promising antitumor agent. Previous studies in our laboratory showed that 3,3'-diindolylmethane induced a G(1) cell cycle arrest in human breast cancer MCF-7 cells by a mechanism that included increased expression of p21. In the present study, the upstream events leading to p21 overexpression were further investigated. We show for the first time that 3,3'-diindolylmethane is a strong mitochondrial H(+)-ATPase inhibitor (IC(50) approximately 20 micromol/L). 3,3'-Diindolylmethane treatment induced hyperpolarization of mitochondrial inner membrane, decreased cellular ATP level, and significantly stimulated mitochondrial reactive oxygen species (ROS) production. ROS production, in turn, led to the activation of stress-activated pathways involving p38 and c-Jun NH(2)-terminal kinase. Using specific kinase inhibitors (SB203580 and SP600125), we showed the central role of p38 and c-Jun NH(2)-terminal kinase (JNK) pathways in 3,3'-diindolylmethane-induced p21 mRNA transcription. In addition, antioxidants significantly attenuated 3,3'-diindolylmethane-induced activation of p38 and JNK and induction of p21, indicating that oxidative stress is the major trigger of these events. To further support the role of ROS in 3,3'-diindolylmethane-induced p21 overexpression, we showed that 3,3'-diindolylmethane failed to induce p21 overexpression in mitochondrial respiratory chain deficient rho(0) MCF-7 cells, in which 3,3'-diindolylmethane did not stimulate ROS production. Thus, we have established the critical role of enhanced mitochondrial ROS release in 3,3'-diindolylmethane-induced p21 up-regulation in human breast cancer cells.

  18. 40 CFR 721.10135 - Phosphinic acid, P,P-diethyl-, zinc salt (2:1).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Phosphinic acid, P,P-diethyl-, zinc salt (2:1). 721.10135 Section 721.10135 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10135...

  19. 40 CFR 721.10135 - Phosphinic acid, P,P-diethyl-, zinc salt (2:1).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Phosphinic acid, P,P-diethyl-, zinc salt (2:1). 721.10135 Section 721.10135 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10135...

  20. 40 CFR 721.10135 - Phosphinic acid, P,P-diethyl-, zinc salt (2:1).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Phosphinic acid, P,P-diethyl-, zinc salt (2:1). 721.10135 Section 721.10135 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10135...

  1. Simultaneous activation of p53 and inhibition of XIAP enhance the activation of apoptosis signaling pathways in AML

    PubMed Central

    Carter, Bing Z.; Mak, Duncan H.; Schober, Wendy D.; Koller, Erich; Pinilla, Clemencia; Vassilev, Lyubomir T.; Reed, John C.

    2010-01-01

    Activation of p53 by murine double minute (MDM2) antagonist nutlin-3a or inhibition of X-linked inhibitor of apoptosis (XIAP) induces apoptosis in acute myeloid leukemia (AML) cells. We demonstrate that concomitant inhibition of MDM2 by nutlin-3a and of XIAP by small molecule antagonists synergistically induced apoptosis in p53 wild-type OCI-AML3 and Molm13 cells. Knockdown of p53 by shRNA blunted the synergy, and down-regulation of XIAP by antisense oligonucleotide (ASO) enhanced nutlin-3a–induced apoptosis, suggesting that the synergy was mediated by p53 activation and XIAP inhibition. This is supported by data showing that inhibition of both MDM2 and XIAP by their respective ASOs induced significantly more cell death than either ASO alone. Importantly, p53 activation and XIAP inhibition enhanced apoptosis in blasts from patients with primary AML, even when the cells were protected by stromal cells. Mechanistic studies demonstrated that XIAP inhibition potentiates p53-induced apoptosis by decreasing p53-induced p21 and that p53 activation enhances XIAP inhibition-induced cell death by promoting mitochondrial release of second mitochondria-derived activator of caspases (SMAC) and by inducing the expression of caspase-6. Because both XIAP and p53 are presently being targeted in ongoing clinical trials in leukemia, the combination strategy holds promise for expedited translation into the clinic. PMID:19897582

  2. Exercise Activates p53 and Negatively Regulates IGF-1 Pathway in Epidermis within a Skin Cancer Model.

    PubMed

    Yu, Miao; King, Brenee; Ewert, Emily; Su, Xiaoyu; Mardiyati, Nur; Zhao, Zhihui; Wang, Weiqun

    2016-01-01

    Exercise has been previously reported to lower cancer risk through reducing circulating IGF-1 and IGF-1-dependent signaling in a mouse skin cancer model. This study aims to investigate the underlying mechanisms by which exercise may down-regulate the IGF-1 pathway via p53 and p53-related regulators in the skin epidermis. Female SENCAR mice were pair-fed an AIN-93 diet with or without 10-week treadmill exercise at 20 m/min, 60 min/day and 5 days/week. Animals were topically treated with TPA 2 hours before sacrifice and the target proteins in the epidermis were analyzed by both immunohistochemistry and Western blot. Under TPA or vehicle treatment, MDM2 expression was significantly reduced in exercised mice when compared with sedentary control. Meanwhile, p53 was significantly elevated. In addition, p53-transcriptioned proteins, i.e., p21, IGFBP-3, and PTEN, increased in response to exercise. There was a synergy effect between exercise and TPA on the decreased MDM2 and increased p53, but not p53-transcripted proteins. Taken together, exercise appeared to activate p53, resulting in enhanced expression of p21, IGFBP-3, and PTEN that might induce a negative regulation of IGF-1 pathway and thus contribute to the observed cancer prevention by exercise in this skin cancer model.

  3. Association of genetic polymorphisms in GADD45A, MDM2, and p14{sup ARF} with the risk of chronic benzene poisoning in a Chinese occupational population

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun Pin; Zhang Zhongbin; Wan Junxiang

    2009-10-01

    Benzene reactive metabolites can lead to DNA damage and trigger the p53-dependent defense responses to maintain genomic stability. We hypothesized that the p53-dependent genes may play a role in the development of chronic benzene poisoning (CBP). In a case-control study of 303 patients with benzene poisoning and 295 workers occupationally exposed to benzene in south China, we investigated associations between the risk of CBP and polymorphisms in three p53-dependent genes. Potential interactions of these polymorphisms with lifestyle factors were also explored. We found p14{sup ARF} rs3731245 polymorphism was associated with risk of CBP (P = 0.014). Compared with those carryingmore » the GG genotype, individuals carrying p14{sup ARF} rs3731245 GA+AA genotypes had a reduced risk of CBP ([adjusted odds ratio (OR{sub adj}) = 0.57, 95%CI = 0.36-0.89]. Further analysis showed p14{sup ARF} TGA/TAG diplotype was associated with an increased risk of CBP (P = 0.0006), whereas p14{sup ARF} TGG/TAA diplotype was associated with a decreased risk of CBP (P = 0.0000001). In addition, we found individuals carrying both MDM2 Del1518 WW genotype and p14{sup ARF} rs3731245 GA+AA genotypes had a lower risk of CBP (OR{sub adj} = 0.25; 95%CI = 0.10-0.62; P = 0.003). Although these results require confirmation and extension, our findings suggest that genetic polymorphisms in p14{sup ARF} may have an impact on the risk of CBP in the study population.« less

  4. Genome-wide Mechanosensitive MicroRNA (MechanomiR) Screen Uncovers Dysregulation of Their Regulatory Networks in the mdm Mouse Model of Muscular Dystrophy*

    PubMed Central

    Mohamed, Junaith S.; Hajira, Ameena; Lopez, Michael A.; Boriek, Aladin M.

    2015-01-01

    Muscular dystrophies (MDs) are a heterogeneous group of genetic and neuromuscular disorders, which result in severe loss of motor ability and skeletal muscle mass and function. Aberrant mechanotransduction and dysregulated-microRNA pathways are often associated with the progression of MD. Here, we hypothesized that dysregulation of mechanosensitive microRNAs (mechanomiRs) in dystrophic skeletal muscle plays a major role in the progression of MD. To test our hypothesis, we performed a genome-wide expression profile of anisotropically regulated mechanomiRs and bioinformatically analyzed their target gene networks. We assessed their functional roles in the advancement of MD using diaphragm muscles from mdm (MD with myositis) mice, an animal model of human tibial MD (titinopathy), and their wild-type littermates. We were able to show that ex vivo anisotropic mechanical stretch significantly alters the miRNA expression profile in diaphragm muscles from WT and mdm mice; as a result, some of the genes associated with MDs are dysregulated in mdm mice due to differential regulation of a distinct set of mechanomiRs. Interestingly, we found a contrasting expression pattern of the highly expressed let-7 family mechanomiRs, let-7e-5p and miR-98–5p, and their target genes associated with the extracellular matrix and TGF-β pathways, respectively, between WT and mdm mice. Gain- and loss-of-function analysis of let-7e-5p in myocytes isolated from the diaphragms of WT and mdm mice confirmed Col1a1, Col1a2, Col3a1, Col24a1, Col27a1, Itga1, Itga4, Scd1, and Thbs1 as target genes of let-7e-5p. Furthermore, we found that miR-98 negatively regulates myoblast differentiation. Our study therefore introduces additional biological players in the regulation of skeletal muscle structure and myogenesis that may contribute to unexplained disorders of MD. PMID:26272747

  5. Genome-wide Mechanosensitive MicroRNA (MechanomiR) Screen Uncovers Dysregulation of Their Regulatory Networks in the mdm Mouse Model of Muscular Dystrophy.

    PubMed

    Mohamed, Junaith S; Hajira, Ameena; Lopez, Michael A; Boriek, Aladin M

    2015-10-09

    Muscular dystrophies (MDs) are a heterogeneous group of genetic and neuromuscular disorders, which result in severe loss of motor ability and skeletal muscle mass and function. Aberrant mechanotransduction and dysregulated-microRNA pathways are often associated with the progression of MD. Here, we hypothesized that dysregulation of mechanosensitive microRNAs (mechanomiRs) in dystrophic skeletal muscle plays a major role in the progression of MD. To test our hypothesis, we performed a genome-wide expression profile of anisotropically regulated mechanomiRs and bioinformatically analyzed their target gene networks. We assessed their functional roles in the advancement of MD using diaphragm muscles from mdm (MD with myositis) mice, an animal model of human tibial MD (titinopathy), and their wild-type littermates. We were able to show that ex vivo anisotropic mechanical stretch significantly alters the miRNA expression profile in diaphragm muscles from WT and mdm mice; as a result, some of the genes associated with MDs are dysregulated in mdm mice due to differential regulation of a distinct set of mechanomiRs. Interestingly, we found a contrasting expression pattern of the highly expressed let-7 family mechanomiRs, let-7e-5p and miR-98-5p, and their target genes associated with the extracellular matrix and TGF-β pathways, respectively, between WT and mdm mice. Gain- and loss-of-function analysis of let-7e-5p in myocytes isolated from the diaphragms of WT and mdm mice confirmed Col1a1, Col1a2, Col3a1, Col24a1, Col27a1, Itga1, Itga4, Scd1, and Thbs1 as target genes of let-7e-5p. Furthermore, we found that miR-98 negatively regulates myoblast differentiation. Our study therefore introduces additional biological players in the regulation of skeletal muscle structure and myogenesis that may contribute to unexplained disorders of MD. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Spare EXT MDM Preparation

    NASA Image and Video Library

    2014-04-18

    ISS039-E-013244 (18 April 2014) --- NASA astronaut Rick Mastracchio, Expeditionn 39 flight engineer, replaces the Enhanced Input/Output Control Unit Circuit Card of the spare External Multiplexer/Demultiplexer (MDM), in preparation for an upcoming spacewalk. He will be joined by fellow NASA astronaut and Flight Engineer Steve Swanson on the spacewalk.

  7. Expression of Bcl-2 family proteins and spontaneous apoptosis in normal human testis.

    PubMed

    Oldereid, N B; Angelis, P D; Wiger, R; Clausen, O P

    2001-05-01

    We investigated the frequency of spontaneous apoptosis and expression of the Bcl-2 family of proteins during normal spermatogenesis in man. Testicular tissue with both normal morphology and DNA content was obtained from necro-donors and fixed in Bouin's solution. A TdT-mediated dUTP end-labelling method (TUNEL) was used for the detection of apoptotic cells. Expression of apoptosis regulatory Bcl-2 family proteins and of p53 and p21(Waf1) was assessed by immunohistochemistry. Germ cell apoptosis was detected in all testes and was mainly seen in primary spermatocytes and spermatids and in a few spermatogonia. Bcl-2 and Bak were preferentially expressed in the compartments of spermatocytes and differentiating spermatids, while Bcl-x was preferentially expressed in spermatogonia. Bax showed a preferential expression in nuclei of round spermatids, whereas Bad was only seen in the acrosome region of various stages of spermatids. Mcl-1 staining was weak without a particular pattern, whereas expression of Bcl-w, p53 and p21(Waf1) proteins was not detected by immunohistochemistry. The results show that spontaneous apoptosis occurs in all male germ cell compartments in humans. Bcl-2 family proteins are distributed preferentially within distinct germ cell compartments suggesting a specific role for these proteins in the processes of differentiation and maturation during human spermatogenesis.

  8. Ribosomal stress induces L11- and p53-dependent apoptosis in mouse pluripotent stem cells.

    PubMed

    Morgado-Palacin, Lucia; Llanos, Susana; Serrano, Manuel

    2012-02-01

    Ribosome biogenesis is the most demanding energetic process in proliferating cells and it is emerging as a critical sensor of cellular homeostasis. Upon disturbance of ribosome biogenesis, specific free ribosomal proteins, most notably L11, bind and inhibit Mdm2, resulting in activation of the tumor suppressor p53. This pathway has been characterized in somatic and cancer cells, but its function in embryonic pluripotent cells has remained unexplored. Here, we show that treatment with low doses of Actinomycin D or depletion of ribosomal protein L37, two well-established inducers of ribosomal stress, activate p53 in an L11-dependent manner in mouse embryonic stem cells (ESCs) and in induced pluripotent stem cells (iPSCs). Activation of p53 results in transcriptional induction of p53 targets, including p21, Mdm2, Pidd, Puma, Noxa and Bax. Finally, ribosomal stress elicits L11- and p53-dependent apoptosis in ESCs/iPSCs. These results extend to pluripotent cells the functionality of the ribosomal stress pathway and we speculate that this could be a relevant cellular checkpoint during early embryogenesis.

  9. CRISPR-Cas9-based target validation for p53-reactivating model compounds

    PubMed Central

    Wanzel, Michael; Vischedyk, Jonas B; Gittler, Miriam P; Gremke, Niklas; Seiz, Julia R; Hefter, Mirjam; Noack, Magdalena; Savai, Rajkumar; Mernberger, Marco; Charles, Joël P; Schneikert, Jean; Bretz, Anne Catherine; Nist, Andrea; Stiewe, Thorsten

    2015-01-01

    Inactivation of the p53 tumor suppressor by Mdm2 is one of the most frequent events in cancer, so compounds targeting the p53-Mdm2 interaction are promising for cancer therapy. Mechanisms conferring resistance to p53-reactivating compounds are largely unknown. Here we show using CRISPR-Cas9–based target validation in lung and colorectal cancer that the activity of nutlin, which blocks the p53-binding pocket of Mdm2, strictly depends on functional p53. In contrast, sensitivity to the drug RITA, which binds the Mdm2-interacting N terminus of p53, correlates with induction of DNA damage. Cells with primary or acquired RITA resistance display cross-resistance to DNA crosslinking compounds such as cisplatin and show increased DNA cross-link repair. Inhibition of FancD2 by RNA interference or pharmacological mTOR inhibitors restores RITA sensitivity. The therapeutic response to p53-reactivating compounds is therefore limited by compound-specific resistance mechanisms that can be resolved by CRISPR-Cas9-based target validation and should be considered when allocating patients to p53-reactivating treatments. PMID:26595461

  10. Discovery of 4-((3′R,4′S,5′R)-6″-Chloro-4′-(3-chloro-2-fluorophenyl)-1′-ethyl-2″-oxodispiro[cyclohexane-1,2′-pyrrolidine-3′,3″-indoline]-5′-carboxamido)bicyclo[2.2.2]octane-1-carboxylic Acid (AA-115/APG-115): A Potent and Orally Active Murine Double Minute 2 (MDM2) Inhibitor in Clinical Development

    PubMed Central

    2017-01-01

    We previously reported the design of spirooxindoles with two identical substituents at the carbon-2 of the pyrrolidine core as potent MDM2 inhibitors. In this paper we describe an extensive structure–activity relationship study of this class of MDM2 inhibitors, which led to the discovery of 60 (AA-115/APG-115). Compound 60 has a very high affinity to MDM2 (Ki < 1 nM), potent cellular activity, and an excellent oral pharmacokinetic profile. Compound 60 is capable of achieving complete and long-lasting tumor regression in vivo and is currently in phase I clinical trials for cancer treatment. PMID:28339198

  11. ERK inhibition enhances TSA-induced gastric cancer cell apoptosis via NF-κB-dependent and Notch-independent mechanism.

    PubMed

    Yao, Jun; Qian, Cui-Juan; Ye, Bei; Zhang, Xin; Liang, Yong

    2012-09-04

    To analyze the combined impact of the histone deacetylase inhibitor (HDACI) Trichostatin A (TSA) and the extracellular-signal-regulated kinase 1/2 (ERK1/2) inhibitor PD98059 on gastric cancer (GC) cell line SGC7901 growth. SGC7901 cells were treated with TSA, PD98059 or with a TSA-PD98059 combination. Effects of drug treatment on tumor cell proliferation, apoptosis, cell cycle progression, and cell signaling pathways were investigated by MTS assay, flow cytometry, Western blotting, chromatin immunoprecipitation (ChIP) assay, electrophoretic mobility shift assay (EMSA), and luciferase reporter assay, respectively. PD98059 enhanced TSA-induced cell growth arrest, apoptosis and activation of p21(WAF1/CIP1), but reversed TSA-induced activation of ERK1/2 and nuclear factor-κB (NF-κB). TSA alone up-regulated Notch1 and Hes1, and down-regulated Notch2, but PD98059 did not affect the trends of Notch1 and Notch2 induced by TSA. Particularly, PD98059 did potentiate the ability of TSA to down-regulate phospho-histone H3 protein, but increased levels of the acetylated forms of histone H3 bound to the p21(WAF1/CIP1) promoter, leading to enhanced expression of p21(WAF1/CIP1) in SGC7901 cells. PD98059 synergistically potentiates TSA-induced GC growth arrest and apoptosis by manipulating NF-κB and p21(WAF1/CIP1) independent of Notch. Therefore, concomitant administration of HDACIs and ERK1/2 inhibitors may be a promising treatment strategy for individuals with GC. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. DNA damage responsive miR-33b-3p promoted lung cancer cells survival and cisplatin resistance by targeting p21WAF1/CIP1.

    PubMed

    Xu, Shun; Huang, Haijiao; Chen, Yu-Ning; Deng, Yun-Ting; Zhang, Bing; Xiong, Xing-Dong; Yuan, Yuan; Zhu, Yanmei; Huang, Haiyong; Xie, Luoyijun; Liu, Xinguang

    2016-11-01

    Cisplatin is the most potent and widespread used chemotherapy drug for lung cancer treatment. However, the development of resistance to cisplatin is a major obstacle in clinical therapy. The principal mechanism of cisplatin is the induction of DNA damage, thus the capability of DNA damage response (DDR) is a key factor that influences the cisplatin sensitivity of cancer cells. Recent advances have demonstrated that miRNAs (microRNAs) exerted critical roles in DNA damage response; nonetheless, the association between DNA damage responsive miRNAs and cisplatin resistance and its underlying molecular mechanism still require further investigation. The present study has attempted to identify differentially expressed miRNAs in cisplatin induced DNA damage response in lung cancer cells, and probe into the effects of the misexpressed miRNAs on cisplatin sensitivity. Deep sequencing showed that miR-33b-3p was dramatically down-regulated in cisplatin-induced DNA damage response in A549 cells; and ectopic expression of miR-33b-3p endowed the lung cancer cells with enhanced survival and decreased γH2A.X expression level under cisplatin treatment. Consistently, silencing of miR-33b-3p in the cisplatin-resistant A549/DDP cells evidently sensitized the cells to cisplatin. Furthermore, we identified CDKN1A (p21) as a functional target of miR-33b-3p, a critical regulator of G1/S checkpoint, which potentially mediated the protection effects of miR-33b-3p against cisplatin. In aggregate, our results suggested that miR-33b-3p modulated the cisplatin sensitivity of cancer cells might probably through impairing the DNA damage response. And the knowledge of the drug resistance conferred by miR-33b-3p has great clinical implications for improving the efficacy of chemotherapies for treating lung cancers.

  13. Functional analysis of human cytochrome P450 21A2 variants involved in congenital adrenal hyperplasia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chunxue; Pallan, Pradeep S.; Zhang, Wei

    Cytochrome P450 (P450, CYP) 21A2 is the major steroid 21-hydroxylase, converting progesterone to 11-deoxycorticosterone and 17α-hydroxyprogesterone (17α-OH-progesterone) to 11-deoxycortisol. More than 100 CYP21A2 variants give rise to congenital adrenal hyperplasia (CAH). We previously reported a structure of WT human P450 21A2 with bound progesterone and now present a structure bound to the other substrate (17α-OH-progesterone). We found that the 17α-OH-progesterone- and progesterone-bound complex structures are highly similar, with only some minor differences in surface loop regions. Twelve P450 21A2 variants associated with either salt-wasting or nonclassical forms of CAH were expressed, purified, and analyzed. The catalytic activities of these 12more » variants ranged from 0.00009% to 30% of WT P450 21A2 and the extent of heme incorporation from 10% to 95% of the WT. Substrate dissociation constants (Ks) for four variants were 37–13,000-fold higher than for WT P450 21A2. Cytochrome b5, which augments several P450 activities, inhibited P450 21A2 activity. Similar to the WT enzyme, high noncompetitive intermolecular kinetic deuterium isotope effects (≥ 5.5) were observed for all six P450 21A2 variants examined for 21-hydroxylation of 21-d3-progesterone, indicating that C–H bond breaking is a rate-limiting step over a 104-fold range of catalytic efficiency. Using UV-visible and CD spectroscopy, we found that P450 21A2 thermal stability assessed in bacterial cells and with purified enzymes differed among salt-wasting- and nonclassical-associated variants, but these differences did not correlate with catalytic activity. Our in-depth investigation of CAH-associated P450 21A2 variants reveals critical insight into the effects of disease-causing mutations on this important enzyme.« less

  14. Human Krüppel-related 3 (HKR3) Is a Novel Transcription Activator of Alternate Reading Frame (ARF) Gene*

    PubMed Central

    Yoon, Jae-Hyeon; Choi, Won-Il; Jeon, Bu-Nam; Koh, Dong-In; Kim, Min-Kyeong; Kim, Myung-Hwa; Kim, Jungho; Hur, Sujin Susanne; Kim, Kyung-Sup; Hur, Man-Wook

    2014-01-01

    HKR3 (Human Krüppel-related 3) is a novel POK (POZ-domain Krüppel-like zinc-finger) family transcription factor. Recently, some of the POK (POZ-domain Krüppel-like zinc finger) family proteins have been shown to play roles in cell cycle arrest, apoptosis, cell proliferation, and oncogenesis. We investigated whether HKR3, an inhibitor of cell proliferation and an uncharacterized POK family protein, could regulate the cell cycle by controlling expression of genes within the p53 pathway (ARF-MDM2-TP53-p21WAF/CDKN1A). HKR3 potently activated the transcription of the tumor suppressor gene ARF by acting on the proximal promoter region (bp, −149∼+53), which contains Sp1 and FBI-1 binding elements (FREs). HKR3 interacted with the co-activator p300 to activate ARF transcription, which increased the acetylation of histones H3 and H4 within the proximal promoter. Oligonucleotide pull-down assays and ChIP assays revealed that HKR3 interferes with the binding of the proto-oncogenic transcription repressor FBI-1 to proximal FREs, thus derepressing ARF transcription. PMID:24382891

  15. Intraperitoneal dedifferentiated liposarcoma showing MDM2 amplification: case report.

    PubMed

    Grifasi, Carlo; Calogero, Armando; Carlomagno, Nicola; Campione, Severo; D'Armiento, Francesco Paolo; Renda, Andrea

    2013-11-26

    Liposarcoma is the most common type of soft tissue sarcoma (STS). It is divided into five groups according to histological pattern: well-differentiated, myxoid, round cell, pleomorphic, and dedifferentiated. Dedifferentiated liposarcoma most commonly occurs in the retroperitoneum, while an intraperitoneal location is extremely rare. Only seven cases have been reported in literature. Many pathologists recognize that a large number of intra-abdominal poorly differentiated sarcomas are dedifferentiated liposarcomas. We report a case initially diagnosed as undifferentiated sarcoma that was reclassified as intraperitoneal dedifferentiated liposarcoma showing an amplification of the MDM2 gene. A 59-year-old woman with abdominal pain and constipation was referred to the Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy, in November 2012. On physical examination, a very large firm mass was palpable in the meso-hypogastrium. Computed tomography (CT) scan showed a heterogeneous density mass (measuring 10 × 19 cm) that was contiguous with the mesentery and compressed the third part of the duodenum and jejunum.At laparotomy, a large mass occupying the entire abdomen was found, adhering to the first jejunal loop and involving the mesentery. Surgical removal of the tumor along with a jejunal resection was performed because the first jejunal loop was firmly attached to the tumor.Macroscopic examination showed a solid, whitish, cerebroid, and myxoid mass, with variable hemorrhage and cystic degeneration, measuring 26 × 19 × 5 cm. Microscopic examination revealed two main different morphologic patterns: areas with spindle cells in a myxoid matrix and areas with pleomorphic cells. The case was initially diagnosed as undifferentiated pleomorphic sarcoma. Histological review showed areas of well-differentiated liposarcoma. Fluorescence in situ hybridization (FISH) analysis was performed and demonstrated an amplification of the MDM2 gene

  16. Intraperitoneal dedifferentiated liposarcoma showing MDM2 amplification: case report

    PubMed Central

    2013-01-01

    Background Liposarcoma is the most common type of soft tissue sarcoma (STS). It is divided into five groups according to histological pattern: well-differentiated, myxoid, round cell, pleomorphic, and dedifferentiated. Dedifferentiated liposarcoma most commonly occurs in the retroperitoneum, while an intraperitoneal location is extremely rare. Only seven cases have been reported in literature. Many pathologists recognize that a large number of intra-abdominal poorly differentiated sarcomas are dedifferentiated liposarcomas. We report a case initially diagnosed as undifferentiated sarcoma that was reclassified as intraperitoneal dedifferentiated liposarcoma showing an amplification of the MDM2 gene. Case presentation A 59-year-old woman with abdominal pain and constipation was referred to the Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy, in November 2012. On physical examination, a very large firm mass was palpable in the meso-hypogastrium. Computed tomography (CT) scan showed a heterogeneous density mass (measuring 10 × 19 cm) that was contiguous with the mesentery and compressed the third part of the duodenum and jejunum. At laparotomy, a large mass occupying the entire abdomen was found, adhering to the first jejunal loop and involving the mesentery. Surgical removal of the tumor along with a jejunal resection was performed because the first jejunal loop was firmly attached to the tumor. Macroscopic examination showed a solid, whitish, cerebroid, and myxoid mass, with variable hemorrhage and cystic degeneration, measuring 26 × 19 × 5 cm. Microscopic examination revealed two main different morphologic patterns: areas with spindle cells in a myxoid matrix and areas with pleomorphic cells. The case was initially diagnosed as undifferentiated pleomorphic sarcoma. Histological review showed areas of well-differentiated liposarcoma. Fluorescence in situ hybridization (FISH) analysis was performed and

  17. The importance of ribosome production, and the 5S RNP-MDM2 pathway, in health and disease.

    PubMed

    Pelava, Andria; Schneider, Claudia; Watkins, Nicholas J

    2016-08-15

    Ribosomes are abundant, large RNA-protein complexes that are the source of all protein synthesis in the cell. The production of ribosomes is an extremely energetically expensive cellular process that has long been linked to human health and disease. More recently, it has been shown that ribosome biogenesis is intimately linked to multiple cellular signalling pathways and that defects in ribosome production can lead to a wide variety of human diseases. Furthermore, changes in ribosome production in response to nutrient levels in the diet lead to metabolic re-programming of the liver. Reduced or abnormal ribosome production in response to cellular stress or mutations in genes encoding factors critical for ribosome biogenesis causes the activation of the tumour suppressor p53, which leads to re-programming of cellular transcription. The ribosomal assembly intermediate 5S RNP (ribonucleoprotein particle), containing RPL5, RPL11 and the 5S rRNA, accumulates when ribosome biogenesis is blocked. The excess 5S RNP binds to murine double minute 2 (MDM2), the main p53-suppressor in the cell, inhibiting its function and leading to p53 activation. Here, we discuss the involvement of ribosome biogenesis in the homoeostasis of p53 in the cell and in human health and disease. © 2016 The Author(s).

  18. Cortactin modulates RhoA activation and expression of Cip/Kip cyclin-dependent kinase inhibitors to promote cell cycle progression in 11q13-amplified head and neck squamous cell carcinoma cells.

    PubMed

    Croucher, David R; Rickwood, Danny; Tactacan, Carole M; Musgrove, Elizabeth A; Daly, Roger J

    2010-11-01

    The cortactin oncoprotein is frequently overexpressed in head and neck squamous cell carcinoma (HNSCC), often due to amplification of the encoding gene (CTTN). While cortactin overexpression enhances invasive potential, recent research indicates that it also promotes cell proliferation, but how cortactin regulates the cell cycle machinery is unclear. In this article we report that stable short hairpin RNA-mediated cortactin knockdown in the 11q13-amplified cell line FaDu led to increased expression of the Cip/Kip cyclin-dependent kinase inhibitors (CDKIs) p21(WAF1/Cip1), p27(Kip1), and p57(Kip2) and inhibition of S-phase entry. These effects were associated with increased binding of p21(WAF1/Cip1) and p27(Kip1) to cyclin D1- and E1-containing complexes and decreased retinoblastoma protein phosphorylation. Cortactin regulated expression of p21(WAF1/Cip1) and p27(Kip1) at the transcriptional and posttranscriptional levels, respectively. The direct roles of p21(WAF1/Cip1), p27(Kip1), and p57(Kip2) downstream of cortactin were confirmed by the transient knockdown of each CDKI by specific small interfering RNAs, which led to partial rescue of cell cycle progression. Interestingly, FaDu cells with reduced cortactin levels also exhibited a significant diminution in RhoA expression and activity, together with decreased expression of Skp2, a critical component of the SCF ubiquitin ligase that targets p27(Kip1) and p57(Kip2) for degradation. Transient knockdown of RhoA in FaDu cells decreased expression of Skp2, enhanced the level of Cip/Kip CDKIs, and attenuated S-phase entry. These findings identify a novel mechanism for regulation of proliferation in 11q13-amplified HNSCC cells, in which overexpressed cortactin acts via RhoA to decrease expression of Cip/Kip CDKIs, and highlight Skp2 as a downstream effector for RhoA in this process.

  19. Ibrutinib synergizes with MDM-2 inhibitors in promoting cytotoxicity in B chronic lymphocytic leukemia.

    PubMed

    Voltan, Rebecca; Rimondi, Erika; Melloni, Elisabetta; Rigolin, Gian Matteo; Casciano, Fabio; Arcidiacono, Maria Vittoria; Celeghini, Claudio; Cuneo, Antonio; Zauli, Giorgio; Secchiero, Paola

    2016-10-25

    The aim of this study was to investigate the anti-leukemic activity of the Bruton tyrosine kinase inhibitor Ibrutinib in combination with the small molecule MDM-2 inhibitor Nutlin-3 in preclinical models. The potential efficacy of the Ibrutinib/Nutlin-3 combination was evaluated in vitro in a panel of B leukemic cell lines (EHEB, JVM-2, JVM-3, MEC-1, MEC-2) and in primary B-chronic lymphocytic leukemia (B-CLL) patient samples, by assessing cell viability, cell cycle profile, apoptosis and intracellular pathway modulations. Validation of the combination therapy was assessed in a B leukemic xenograft mouse model. Ibrutinib exhibited variable anti-leukemic activity in vitro and the combination with Nutlin-3 synergistically enhanced the induction of apoptosis independently from the p53 status. Indeed, the Ibrutinib/Nutlin-3 combination was effective in promoting cytotoxicity also in primary B-CLL samples carrying 17p13 deletion and/or TP53 mutations, already in therapy with Ibrutinib. Molecular analyses performed on both B-leukemic cell lines as well as on primary B-CLL samples, while confirming the switch-off of the MAPK and PI3K pro-survival pathways by Ibrutinib, indicated that the synergism of action with Nutlin-3 was independent by p53 pathway and was accompanied by the activation of the DNA damage cascade signaling through the phosphorylation of the histone protein H2A.X. This observation was confirmed also in the JVM-2 B leukemic xenograft mouse model. Taken together, our data emphasize that the Ibrutinib/Nutlin-3 combination merits to be further evaluated as a therapeutic option for B-CLL.

  20. Ibrutinib synergizes with MDM-2 inhibitors in promoting cytotoxicity in B chronic lymphocytic leukemia

    PubMed Central

    Melloni, Elisabetta; Rigolin, Gian Matteo; Casciano, Fabio; Arcidiacono, Maria Vittoria; Celeghini, Claudio; Cuneo, Antonio; Zauli, Giorgio; Secchiero, Paola

    2016-01-01

    Objective The aim of this study was to investigate the anti-leukemic activity of the Bruton tyrosine kinase inhibitor Ibrutinib in combination with the small molecule MDM-2 inhibitor Nutlin-3 in preclinical models. Methods The potential efficacy of the Ibrutinib/Nutlin-3 combination was evaluated in vitro in a panel of B leukemic cell lines (EHEB, JVM-2, JVM-3, MEC-1, MEC-2) and in primary B-chronic lymphocytic leukemia (B-CLL) patient samples, by assessing cell viability, cell cycle profile, apoptosis and intracellular pathway modulations. Validation of the combination therapy was assessed in a B leukemic xenograft mouse model. Results Ibrutinib exhibited variable anti-leukemic activity in vitro and the combination with Nutlin-3 synergistically enhanced the induction of apoptosis independently from the p53 status. Indeed, the Ibrutinib/Nutlin-3 combination was effective in promoting cytotoxicity also in primary B-CLL samples carrying 17p13 deletion and/or TP53 mutations, already in therapy with Ibrutinib. Molecular analyses performed on both B-leukemic cell lines as well as on primary B-CLL samples, while confirming the switch-off of the MAPK and PI3K pro-survival pathways by Ibrutinib, indicated that the synergism of action with Nutlin-3 was independent by p53 pathway and was accompanied by the activation of the DNA damage cascade signaling through the phosphorylation of the histone protein H2A.X. This observation was confirmed also in the JVM-2 B leukemic xenograft mouse model. Conclusions Taken together, our data emphasize that the Ibrutinib/Nutlin-3 combination merits to be further evaluated as a therapeutic option for B-CLL. PMID:27661115

  1. Barrier Function of the Repaired Skin Is Disrupted Following Arrest of Dicer in Keratinocytes

    PubMed Central

    Ghatak, Subhadip; Chan, Yuk Cheung; Khanna, Savita; Banerjee, Jaideep; Weist, Jessica; Roy, Sashwati; Sen, Chandan K

    2015-01-01

    Tissue injury transiently silences miRNA-dependent posttranscriptional gene silencing in its effort to unleash adult tissue repair. Once the wound is closed, miRNA biogenesis is induced averting neoplasia. In this work, we report that Dicer plays an important role in reestablishing the barrier function of the skin post-wounding via a miRNA-dependent mechanism. MicroRNA expression profiling of skin and wound-edge tissue revealed global upregulation of miRNAs following wound closure at day 14 post-wounding with significant induction of Dicer expression. Barrier function of the skin, as measured by trans-epidermal water loss, was compromised in keratinocyte-specific conditional (K14/Lox-Cre) Dicer-ablated mice because of malformed cornified epithelium lacking loricrin expression. Studies on human keratinocytes recognized that loricrin expression was inversely related to the expression of the cyclin-dependent kinase inhibitor p21Waf1/Cip1. Compared to healthy epidermis, wound-edge keratinocytes from Dicer-ablated skin epidermis revealed elevated p21Waf1/Cip1 expression. Adenoviral and pharmacological suppression of p21Waf1/Cip1 in keratinocyte-specific conditional Dicer-ablated mice improved wound healing indicating a role of Dicer in the suppression of p21Waf1/Cip1. This work upholds p21Waf1/Cip1 as a druggable target to restore barrier function of skin suffering from loss of Dicer function as would be expected in diabetes and other forms of oxidant insult. PMID:25896246

  2. Structure-function insights into direct lipid transfer between membranes by Mmm1-Mdm12 of ERMES.

    PubMed

    Kawano, Shin; Tamura, Yasushi; Kojima, Rieko; Bala, Siqin; Asai, Eri; Michel, Agnès H; Kornmann, Benoît; Riezman, Isabelle; Riezman, Howard; Sakae, Yoshitake; Okamoto, Yuko; Endo, Toshiya

    2018-03-05

    The endoplasmic reticulum (ER)-mitochondrial encounter structure (ERMES) physically links the membranes of the ER and mitochondria in yeast. Although the ER and mitochondria cooperate to synthesize glycerophospholipids, whether ERMES directly facilitates the lipid exchange between the two organelles remains controversial. Here, we compared the x-ray structures of an ERMES subunit Mdm12 from Kluyveromyces lactis with that of Mdm12 from Saccharomyces cerevisiae and found that both Mdm12 proteins possess a hydrophobic pocket for phospholipid binding. However in vitro lipid transfer assays showed that Mdm12 alone or an Mmm1 (another ERMES subunit) fusion protein exhibited only a weak lipid transfer activity between liposomes. In contrast, Mdm12 in a complex with Mmm1 mediated efficient lipid transfer between liposomes. Mutations in Mmm1 or Mdm12 impaired the lipid transfer activities of the Mdm12-Mmm1 complex and furthermore caused defective phosphatidylserine transport from the ER to mitochondrial membranes via ERMES in vitro. Therefore, the Mmm1-Mdm12 complex functions as a minimal unit that mediates lipid transfer between membranes. © 2018 Kawano et al.

  3. Mdm2 mediates FMRP- and Gp1 mGluR-dependent protein translation and neural network activity.

    PubMed

    Liu, Dai-Chi; Seimetz, Joseph; Lee, Kwan Young; Kalsotra, Auinash; Chung, Hee Jung; Lu, Hua; Tsai, Nien-Pei

    2017-10-15

    Activating Group 1 (Gp1) metabotropic glutamate receptors (mGluRs), including mGluR1 and mGluR5, elicits translation-dependent neural plasticity mechanisms that are crucial to animal behavior and circuit development. Dysregulated Gp1 mGluR signaling has been observed in numerous neurological and psychiatric disorders. However, the molecular pathways underlying Gp1 mGluR-dependent plasticity mechanisms are complex and have been elusive. In this study, we identified a novel mechanism through which Gp1 mGluR mediates protein translation and neural plasticity. Using a multi-electrode array (MEA) recording system, we showed that activating Gp1 mGluR elevates neural network activity, as demonstrated by increased spontaneous spike frequency and burst activity. Importantly, we validated that elevating neural network activity requires protein translation and is dependent on fragile X mental retardation protein (FMRP), the protein that is deficient in the most common inherited form of mental retardation and autism, fragile X syndrome (FXS). In an effort to determine the mechanism by which FMRP mediates protein translation and neural network activity, we demonstrated that a ubiquitin E3 ligase, murine double minute-2 (Mdm2), is required for Gp1 mGluR-induced translation and neural network activity. Our data showed that Mdm2 acts as a translation suppressor, and FMRP is required for its ubiquitination and down-regulation upon Gp1 mGluR activation. These data revealed a novel mechanism by which Gp1 mGluR and FMRP mediate protein translation and neural network activity, potentially through de-repressing Mdm2. Our results also introduce an alternative way for understanding altered protein translation and brain circuit excitability associated with Gp1 mGluR in neurological diseases such as FXS. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Crude oil exposure results in oxidative stress-mediated dysfunctional development and reproduction in the copepod Tigriopus japonicus and modulates expression of cytochrome P450 (CYP) genes.

    PubMed

    Han, Jeonghoon; Won, Eun-Ji; Hwang, Dae-Sik; Shin, Kyung-Hoon; Lee, Yong Sung; Leung, Kenneth Mei-Yee; Lee, Su-Jae; Lee, Jae-Seong

    2014-07-01

    In this study, we investigated the effects of the water-accommodated fraction (WAF) of crude oil on the development and reproduction of the intertidal copepod Tigriopus japonicus through life-cycle experiments. Furthermore, we investigated the mechanisms underlying the toxic effects of WAF on this benthic organism by studying expression patterns of cytochrome P450 (CYP) genes. Development of T. japonicus was delayed and molting was interrupted in response to WAF exposure. Hatching rate was also significantly reduced in response to WAF exposure. Activities of antioxidant enzymes such as glutathione S-transferase (GST), glutathione reductase (GR), and catalase (CAT) were increased by WAF exposure in a concentration-dependent manner. These results indicated that WAF exposure resulted in oxidative stress, which in turn was associated with dysfunctional development and reproduction. To evaluate the involvement of cytochrome P450 (CYP) genes, we cloned the entire repertoire of CYP genes in T. japonicus (n=52) and found that the CYP genes belonged to five different clans (i.e., Clans 2, 3, 4, mitochondrial, and 20). We then examined expression patterns of these 52 CYP genes in response to WAF exposure. Three TJ-CYP genes (CYP3024A2, CYP3024A3, and CYP3027C2) belonging to CYP clan 3 were significantly induced by WAF exposure in a time- and concentration-dependent manner. We identified aryl hydrocarbon responsive elements (AhRE), xenobiotic responsive elements (XREs), and metal response elements (MRE) in the promoter regions of these three CYP genes, suggesting that these genes are involved in detoxification of toxicants. Overall, our results indicate that WAF can trigger oxidative stress and thus induce dysfunctional development and reproduction in the copepod T. japonicus. Furthermore, we identified three TJ-CYP genes that represent potential biomarkers of oil pollution. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. p53 -Dependent and -Independent Nucleolar Stress Responses

    PubMed Central

    Olausson, Karl Holmberg; Nistér, Monica; Lindström, Mikael S.

    2012-01-01

    The nucleolus has emerged as a cellular stress sensor and key regulator of p53-dependent and -independent stress responses. A variety of abnormal metabolic conditions, cytotoxic compounds, and physical insults induce alterations in nucleolar structure and function, a situation known as nucleolar or ribosomal stress. Ribosomal proteins, including RPL11 and RPL5, become increasingly bound to the p53 regulatory protein MDM2 following nucleolar stress. Ribosomal protein binding to MDM2 blocks its E3 ligase function leading to stabilization and activation of p53. In this review we focus on a number of novel regulators of the RPL5/RPL11-MDM2-p53 complex including PICT1 (GLTSCR2), MYBBP1A, PML and NEDD8. p53-independent pathways mediating the nucleolar stress response are also emerging and in particular the negative control that RPL11 exerts on Myc oncoprotein is of importance, given the role of Myc as a master regulator of ribosome biogenesis. We also briefly discuss the potential of chemotherapeutic drugs that specifically target RNA polymerase I to induce nucleolar stress. PMID:24710530

  6. Methylation of eukaryotic elongation factor 2 induced by basic fibroblast growth factor via mitogen-activated protein kinase.

    PubMed

    Jung, Gyung Ah; Shin, Bong Shik; Jang, Yeon Sue; Sohn, Jae Bum; Woo, Seon Rang; Kim, Jung Eun; Choi, Go; Lee, Kyung Mi; Min, Bon Hong; Lee, Kee Ho; Park, Gil Hong

    2011-10-31

    Protein arginine methylation is important for a variety of cellular processes including transcriptional regulation, mRNA splicing, DNA repair, nuclear/cytoplasmic shuttling and various signal transduction pathways. However, the role of arginine methylation in protein biosynthesis and the extracellular signals that control arginine methylation are not fully understood. Basic fibroblast growth factor (bFGF) has been identified as a potent stimulator of myofibroblast dedifferentiation into fibroblasts. We demonstrated that symmetric arginine dimethylation of eukaryotic elongation factor 2 (eEF2) is induced by bFGF without the change in the expression level of eEF2 in mouse embryo fibroblast NIH3T3 cells. The eEF2 methylation is preceded by ras-raf-mitogen-activated protein kinase kinase (MEK)-extracellular signal-regulated kinase (ERK1/2)- p21Cip/WAF1 activation, and suppressed by the mitogenactivated protein kinase (MAPK) inhibitor PD98059 and p21Cip/WAF1 short interfering RNA (siRNA). We determined that protein arginine methyltransferase 7 (PRMT7) is responsible for the methylation, and that PRMT5 acts as a coordinator. Collectively, we demonstrated that eEF2, a key factor involved in protein translational elongation is symmetrically arginine-methylated in a reversible manner, being regulated by bFGF through MAPK signaling pathway.

  7. Methylation of eukaryotic elongation factor 2 induced by basic fibroblast growth factor via mitogen-activated protein kinase

    PubMed Central

    Jung, Gyung Ah; Shin, Bong Shik; Jang, Yeon Sue; Sohn, Jae Bum; Woo, Seon Rang; Kim, Jung Eun; Choi, Go; Lee, Kyung-Mi; Min, Bon Hong

    2011-01-01

    Protein arginine methylation is important for a variety of cellular processes including transcriptional regulation, mRNA splicing, DNA repair, nuclear/cytoplasmic shuttling and various signal transduction pathways. However, the role of arginine methylation in protein biosynthesis and the extracellular signals that control arginine methylation are not fully understood. Basic fibroblast growth factor (bFGF) has been identified as a potent stimulator of myofibroblast dedifferentiation into fibroblasts. We demonstrated that symmetric arginine dimethylation of eukaryotic elongation factor 2 (eEF2) is induced by bFGF without the change in the expression level of eEF2 in mouse embryo fibroblast NIH3T3 cells. The eEF2 methylation is preceded by ras-raf-mitogen-activated protein kinase kinase (MEK)-extracellular signal-regulated kinase (ERK1/2)-p21Cip/WAF1 activation, and suppressed by the mitogen-activated protein kinase (MAPK) inhibitor PD98059 and p21Cip/WAF1 short interfering RNA (siRNA). We determined that protein arginine methyltransferase 7 (PRMT7) is responsible for the methylation, and that PRMT5 acts as a coordinator. Collectively, we demonstrated that eEF2, a key factor involved in protein translational elongation is symmetrically arginine-methylated in a reversible manner, being regulated by bFGF through MAPK signaling pathway. PMID:21778808

  8. Reproductive toxicity of the water accommodated fraction (WAF) of crude oil in the polychaetes Arenicola marina (L.) and Nereis virens (Sars).

    PubMed

    Lewis, Ceri; Pook, Chris; Galloway, Tamara

    2008-10-20

    Accidental pollution incidents are common in the marine environment and are often caused by oil-related activities. Here the potential of such an incident to disrupt reproduction in two polychaete species is investigated, using an environmentally relevant preparation of weathered Forties crude oil, i.e. the water accommodated fraction (WAF). Oocytes were collected and exposed to three concentrations of WAF for 1h prior to the addition of sperm, so that fertilization took place under exposure conditions. Fertilization success was significantly reduced in both species by an exposure to WAF concentrations equivalent to 0.38 mgL(-1) PAHs, to just 26.8% in Arenicola marina compared to 76% in Nereis virens. The effects of WAF exposure on fertilization were greatly enhanced at lower sperm concentrations in N. virens, with a complete lack of fertilization reactions observed at sperm concentrations of 10(3)sperm per mL. We therefore suggest a mechanism of toxicity related to sperm swimming behaviour, resulting in reduced sperm:egg collision rates. WAF was found to reduce post-fertilization development rates and have teratogenic effects on early embryonic stages in both species, which exhibited abnormal cleavage patterns and high levels of fluctuating asymmetry. These results illustrate how the presence of crude oil in its soluble form in seawater at the time of a spawning event for either A. marina or N. virens could impact on fertilization success with implications for the fertilization ecology of these free spawning marine invertebrates.

  9. Ultrasound-guided fine-needle aspiration of a posterior neck dedifferentiated liposarcoma with MDM2 fluorescence in situ hybridization performed on a Pap-stained smear.

    PubMed

    Zreik, Riyam; Soyalp, Krystal; Ruiz, Steve; Ward, Russell; Dobin, Sheila; Chen, Xiangbai; Liu, Lina; Rao, Arundhati

    2015-04-01

    Head and neck liposarcomas, while rare, tend to be subcutaneous and well-differentiated. Dedifferentiated liposarcomas of the head and neck are exceedingly rare in the literature. We present a case of a dedifferentiated liposarcoma arising in the soft tissue of the posterior neck of an 86-year-old man and diagnosed by fine-needle aspiration. Aspirate smears showed a dual population of atypical lipomatous and spindled cells. MDM2 (murine double minute 2) amplification was demonstrated on a Pap-stained smear using fluorescence in situ hybridization (FISH). To the best of our knowledge, this is the first report of MDM2 FISH amplification in a liposarcoma performed on an aspirate smear. © 2014 Wiley Periodicals, Inc.

  10. MR Guided Pulsed High Intensity Focused Ultrasound Enhancement of Gene Therapy Combined with Androgen Deprivation and Radiotherapy for Prostate Cancer Treatment

    DTIC Science & Technology

    2012-09-01

    for the treatment of prostate tumor-bearing mice using a clinical MRgHIFU device. We performed animal studies for quantitative measurement of the...by measuring the protein expression level of MDM2, p53 and p21 using immunohistochemical staining and west blotting techniques. We also performed...therapy) in implanted prostate tumors in mice in vivo by measuring the protein expression level of MDM, p53 and p21 with time points after treatment

  11. Superior anti-tumor activity of the MDM2 antagonist idasanutlin and the Bcl-2 inhibitor venetoclax in p53 wild-type acute myeloid leukemia models.

    PubMed

    Lehmann, Christian; Friess, Thomas; Birzele, Fabian; Kiialainen, Anna; Dangl, Markus

    2016-06-28

    Venetoclax, a small molecule BH3 mimetic which inhibits the anti-apoptotic protein Bcl-2, and idasanutlin, a selective MDM2 antagonist, have both shown activity as single-agent treatments in pre-clinical and clinical studies in acute myeloid leukemia (AML). In this study, we deliver the rationale and molecular basis for the combination of idasanutlin and venetoclax for treatment of p53 wild-type AML. The effect of idasanutlin and venetoclax combination on cell viability, apoptosis, and cell cycle progression was investigated in vitro using established AML cell lines. In vivo efficacy was demonstrated in subcutaneous and orthotopic xenograft models generated in female nude or non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice. Mode-of-action analyses were performed by means of cell cycle kinetic studies, RNA sequencing as well as western blotting experiments. Combination treatment with venetoclax and idasanutlin results in synergistic anti-tumor activity compared with the respective single-agent treatments in vitro, in p53 wild-type AML cell lines, and leads to strongly superior efficacy in vivo, in subcutaneous and orthotopic AML models. The inhibitory effects of idasanutlin were cell-cycle dependent, with cells arresting in G1 in consecutive cycles and the induction of apoptosis only evident after cells had gone through at least two cell cycles. Combination treatment with venetoclax removed this dependency, resulting in an acceleration of cell death kinetics. As expected, gene expression studies using RNA sequencing showed significant alterations to pathways associated with p53 signaling and cell cycle arrest (CCND1 pathway) in response to idasanutlin treatment. Only few gene expression changes were observed for venetoclax treatment and combination treatment, indicating that their effects are mediated mainly at the post-transcriptional level. Protein expression studies demonstrated that inhibition of the anti-apoptotic protein Mcl-1 contributed to

  12. Magic wavelengths for the 6{s}^{2}{}^{1}{S}_{0}{--}6s6p{}^{3}{P}_{1}^{o} transition in ytterbium atom

    NASA Astrophysics Data System (ADS)

    Tang, Zhi-Ming; Yu, Yan-Mei; Jiang, Jun; Dong, Chen-Zhong

    2018-06-01

    The static and dynamic electric dipole polarizabilities of the 6{s}2{}1{S}0 and 6s6p{}3{P}1o states of Yb are calculated by using the relativistic ab initio method. Focusing on the red detuning region to the 6{s}2{}1{S}0{--}6s6p{}3{P}1o transition, we find two magic wavelengths at 1035.7(2) and 612.9(2) nm for the 6{s}2{}1{S}0{--}6s6p{}3{P}1o,{M}J=0 transition and three magic wavelengths at 1517.68(6), 1036.0(3) and 858(12) nm for the 6{s}2{}1{S}0{--}6s6p{}3{P}1o,{M}J=+/- 1 transitions. Such magic wavelengths are of particular interest for attaining the state-insensitive cooling, trapping, and quantum manipulation of neutral Yb atom.

  13. A new case of Beckwith-Wiedemann syndrome with an 11p15 duplication of paternal origin [46,XY,-21,+der(21), t(11;21)(p15.2;q22.3)pat].

    PubMed

    Krajewska-Walasek, M; Gutkowska, A; Mospinek-Krasnopolska, M; Chrzanowska, K

    1996-01-01

    We present a new case of 11p15 duplication (trisomy 11p15) in a boy (46,XY,-21,+der(21), t(11;21)(p15.2;q22.3)] suffering from Beckwith-Wiedemann syndrome (BWS), whose phenotypically normal father carries a balanced translocation between chromosomes 11 and 21[46,XY, t(11;21)(p15.2;q22.3)]. The paternal grandmother has the same balanced translocation and is also clinically normal. BWS was suspected when the boy was 6 months old because of gigantism, macroglossia, visceromegaly, ear lobe creases and abdominal distention. Apart from the characteristic BWS phenotype, the boy has other features which are almost exclusively observed in 11p trisomy (high forehead with frontal upsweep of hair, wide central nose bridge, slightly beaked nose, chubby cheeks and severe mental retardation). So far, at least eight cases of 11p15 duplication have been described as patients with BWS. In six of these, the duplication was due to inheritance of a translocated or rearranged paternal chromosome. This was also the case in our patient. In the two other previously published cases, the 11p15 duplications were de novo, but in one of these, DNA analysis has subsequently shown that the duplication was of paternal origin. We discuss our observations in relation to the above-mentioned previous cases of 11p15 duplication and the possible role of genomic imprinting in the etiology of BWS.

  14. High amplification levels of MDM2 and CDK4 correlate with poor outcome in patients with dedifferentiated liposarcoma: A cytogenomic microarray analysis of 47 cases.

    PubMed

    Ricciotti, Robert W; Baraff, Aaron J; Jour, George; Kyriss, McKenna; Wu, Yu; Liu, Yuhua; Li, Shao-Chun; Hoch, Benjamin; Liu, Yajuan J

    2017-12-01

    Dedifferentiated liposarcoma (DDLS) is characterized at the molecular level by amplification of genes within 12q13-15 including MDM2 and CDK4. However, other than FNCLCC grade, prognostic markers are limited. We aim to identify molecular prognostic markers for DDLS to help risk stratify patients. To this end, we studied 49 cases of DDLS in our institutional archives and performed cytogenomic microarray analysis on 47 cases. Gene copy numbers for 12 loci were evaluated and correlated with outcome data retrieved from our institutional electronic medical records. Using cut point analysis and comparison of Kaplan-Meier survival curves by log rank tests, high amplification levels of MDM2 (>38 copies) and CDK4 (>30 copies) correlated with decreased disease free survival (DFS) (P = .0168 and 0.0169 respectively) and disease specific survival (DSS) (P = .0082 and 0.0140 respectively). Additionally, MDM2 and CDK4 showed evidence of a synergistic effect so that each additional copy of one enhances the effect on prognosis of each additional copy of the other for decreased DFS (P = .0227, 0.1% hazard). High amplification of JUN (>16 copies) also correlated with decreased DFS (P = .0217), but not DSS. The presence of copy number alteration at 3q29 correlated with decreased DSS (P = .0192). The presence of >10 mitoses per 10 high power fields and FNCLCC grade 3 also correlated with decreased DFS (P = .0310 and 0.0254 respectively). MDM2 and CDK4 gene amplification levels, along with JUN amplification and copy alterations at 3q29, can be utilized for predicting outcome in patients with DDLS. Published by Elsevier Inc.

  15. Del(12)(p11.21p12.2) associated with an asphyxiating thoracic dystrophy or chondroectodermal dysplasia-like syndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagai, T.; Kato, R.; Hasegawa, T.

    1995-01-02

    We describe a 5-year-old Japanese boy who has some radiographic findings characteristic of asphyxiating thoracic dystrophy (ATD)-chondroectodermal dysplasia with a de novo chromosome abnormality. He also has mild mental retardation, short stature, hypoplastic hair and skin, oligodontia, small thoracic cage, hypoplastic pelvis and cone-shaped epiphyses of hands. On cytogenetic studies he was found to have a de novo del(12)(p11.21p12.2). These results suggest that the locus of the gene associated with ATD-chondroectodermal dysplasia may be situated at 12p11.21p12.2. 11 refs., 2 figs.

  16. Structural and mechanistic insights into phospholipid transfer by Ups1-Mdm35 in mitochondria

    NASA Astrophysics Data System (ADS)

    Watanabe, Yasunori; Tamura, Yasushi; Kawano, Shin; Endo, Toshiya

    2015-08-01

    Eukaryotic cells are compartmentalized into membrane-bounded organelles whose functions rely on lipid trafficking to achieve membrane-specific compositions of lipids. Here we focused on the Ups1-Mdm35 system, which mediates phosphatidic acid (PA) transfer between the outer and inner mitochondrial membranes, and determined the X-ray structures of Mdm35 and Ups1-Mdm35 with and without PA. The Ups1-Mdm35 complex constitutes a single domain that has a deep pocket and flexible Ω-loop lid. Structure-based mutational analyses revealed that a basic residue at the pocket bottom and the Ω-loop lid are important for PA extraction from the membrane following Ups1 binding. Ups1 binding to the membrane is enhanced by the dissociation of Mdm35. We also show that basic residues around the pocket entrance are important for Ups1 binding to the membrane and PA extraction. These results provide a structural basis for understanding the mechanism of PA transfer between mitochondrial membranes.

  17. A new CYP21A1P/CYP21A2 chimeric gene identified in an Italian woman suffering from classical congenital adrenal hyperplasia form

    PubMed Central

    Concolino, Paola; Mello, Enrica; Minucci, Angelo; Giardina, Emiliano; Zuppi, Cecilia; Toscano, Vincenzo; Capoluongo, Ettore

    2009-01-01

    Background More than 90% of Congenital Adrenal Hyperplasia (CAH) cases are associated with mutations in the 21-hydroxylase gene (CYP21A2) in the HLA class III area on the short arm of chromosome 6p21.3. In this region, a 30 kb deletion produces a non functional chimeric gene with its 5' and 3' ends corresponding to CYP21A1P pseudogene and CYP21A2, respectively. To date, five different CYP21A1P/CYP21A2 chimeric genes have been found and characterized in recent studies. In this paper, we describe a new CYP21A1P/CYP21A2 chimera (CH-6) found in an Italian CAH patient. Methods Southern blot analysis and CYP21A2 sequencing were performed on the patient. In addition, in order to isolate the new CH-6 chimeric gene, two different strategies were used. Results The CYP21A2 sequencing analysis showed that the patient was homozygote for the g.655C/A>G mutation and heterozygote for the p.P30L missense mutation. In addition, the promoter sequence revealed the presence, in heterozygosis, of 13 SNPs generally produced by microconversion events between gene and pseudogene. Southern blot analysis showed that the woman was heterozygote for the classic 30-kb deletion producing a new CYP21A1P/CYP21A2 chimeric gene (CH-6). The hybrid junction site was located between the end of intron 2 pseudogene, after the g.656C/A>G mutation, and the beginning of exon 3, before the 8 bp deletion. Consequently, CH-6 carries three mutations: the weak pseudogene promoter region, the p.P30L and the g.655C/A>G splice mutation. Conclusion We describe a new CYP21A1P/CYP21A2 chimera (CH-6), associated with the HLA-B15, DR13 haplotype, in a young Italian CAH patient. PMID:19624807

  18. 21 CFR 862.1120 - Blood gases (PCO2, PO2) and blood pH test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Blood gases (PCO2, PO2) and blood pH test system... Test Systems § 862.1120 Blood gases (PCO2, PO2) and blood pH test system. (a) Identification. A blood gases (PCO2, PO2) and blood pH test system is a device intended to measure certain gases in blood, serum...

  19. The pEst version 2.1 user's manual

    NASA Technical Reports Server (NTRS)

    Murray, James E.; Maine, Richard E.

    1987-01-01

    This report is a user's manual for version 2.1 of pEst, a FORTRAN 77 computer program for interactive parameter estimation in nonlinear dynamic systems. The pEst program allows the user complete generality in definig the nonlinear equations of motion used in the analysis. The equations of motion are specified by a set of FORTRAN subroutines; a set of routines for a general aircraft model is supplied with the program and is described in the report. The report also briefly discusses the scope of the parameter estimation problem the program addresses. The report gives detailed explanations of the purpose and usage of all available program commands and a description of the computational algorithms used in the program.

  20. Contiguous gene deletion of chromosome 2p16.3-p21 as a cause of Lynch syndrome.

    PubMed

    Salo-Mullen, Erin E; Lynn, Patricio B; Wang, Lu; Walsh, Michael; Gopalan, Anuradha; Shia, Jinru; Tran, Christina; Man, Fung Ying; McBride, Sean; Schattner, Mark; Zhang, Liying; Weiser, Martin R; Stadler, Zsofia K

    2018-01-01

    Lynch syndrome is an autosomal dominant condition caused by pathogenic mutations in the DNA mismatch repair (MMR) genes. Although commonly associated with clinical features such as intellectual disability and congenital anomalies, contiguous gene deletions may also result in cancer predisposition syndromes. We report on a 52-year-old male with Lynch syndrome caused by deletion of chromosome 2p16.3-p21. The patient had intellectual disability and presented with a prostatic adenocarcinoma with an incidentally identified synchronous sigmoid adenocarcinoma that exhibited deficient MMR with an absence of MSH2 and MSH6 protein expression. Family history was unrevealing. Physical exam revealed short stature, brachycephaly with a narrow forehead and short philtrum, brachydactyly of the hands, palmar transverse crease, broad and small feet with hyperpigmentation of the soles. The patient underwent total colectomy with ileorectal anastomosis for a pT3N1 sigmoid adenocarcinoma. Germline genetic testing of the MSH2, MSH6, and EPCAM genes revealed full gene deletions. SNP-array based DNA copy number analysis identified a deletion of 4.8 Mb at 2p16.3-p21. In addition to the three Lynch syndrome associated genes, the deleted chromosomal section encompassed genes including NRXN1, CRIPT, CALM2, FBXO11, LHCGR, MCFD2, TTC7A, EPAS1, PRKCE, and 15 others. Contiguous gene deletions have been described in other inherited cancer predisposition syndromes, such as Familial Adenomatous Polyposis. Our report and review of the literature suggests that contiguous gene deletion within the 2p16-p21 chromosomal region is a rare cause of Lynch syndrome, but presents with distinct phenotypic features, highlighting the need for recognition and awareness of this syndromic entity.

  1. Role of Rho/ROCK and p38 MAP kinase pathways in transforming growth factor-beta-mediated Smad-dependent growth inhibition of human breast carcinoma cells in vivo.

    PubMed

    Kamaraju, Anil K; Roberts, Anita B

    2005-01-14

    TGF-beta is a multifunctional cytokine known to exert its biological effects through a variety of signaling pathways of which Smad signaling is considered to be the main mediator. At present, the Smad-independent pathways, their interactions with each other, and their roles in TGF-beta-mediated growth inhibitory effects are not well understood. To address these questions, we have utilized a human breast cancer cell line MCF10CA1h and demonstrate that p38 MAP kinase and Rho/ROCK pathways together with Smad2 and Smad3 are necessary for TGF-beta-mediated growth inhibition of this cell line. We show that Smad2/3 are indispensable for TGF-beta-mediated growth inhibition, and that both p38 and Rho/ROCK pathways affect the linker region phosphorylation of Smad2/3. Further, by using Smad3 mutated at the putative phosphorylation sites in the linker region, we demonstrate that phosphorylation at Ser203 and Ser207 residues is required for the full transactivation potential of Smad3, and that these residues are targets of the p38 and Rho/ROCK pathways. We demonstrate that activation of the p38 MAP kinase pathway is necessary for the full transcriptional activation potential of Smad2/Smad3 by TGF-beta, whereas activity of Rho/ROCK is necessary for both down-regulation of c-Myc protein and up-regulation of p21waf1 protein, directly interfering with p21waf1 transcription. Our results not only implicate Rho/ROCK and p38 MAPK pathways as necessary for TGF-beta-mediated growth inhibition, but also demonstrate their individual contributions and the basis for their cooperation with each other.

  2. A methoxyflavanone derivative from the Asian medicinal herb (Perilla frutescens) induces p53-mediated G2/M cell cycle arrest and apoptosis in A549 human lung adenocarcinoma.

    PubMed

    Abd El-Hafeez, Amer Ali; Fujimura, Takashi; Kamei, Rikiya; Hirakawa, Noriko; Baba, Kenji; Ono, Kazuhisa; Kawamoto, Seiji

    2017-07-14

    Perilla frutescens is an Asian dietary herb consumed as an essential seasoning in Japanese cuisine as well as used for a Chinese medicine. Here, we report that a newly found methoxyflavanone derivative from P. frutescens (Perilla-derived methoxyflavanone, PDMF; 8-hydroxy-5,7-dimethoxyflavanone) shows carcinostatic activity on human lung adenocarcinoma, A549. We found that treatment with PDMF significantly inhibited cell proliferation and decreased viability through induction of G 2 /M cell cycle arrest and apoptosis. The PDMF stimulation induces phosphorylation of tumor suppressor p53 on Ser15, and increases its protein amount in conjunction with up-regulation of downstream cyclin-dependent kinase inhibitor p21 Cip1/Waf1 and proapoptotic caspases, caspase-9 and caspase-3. We also found that small interfering RNA knockdown of p53 completely abolished the PDMF-induced G 2 /M cell cycle arrest, and substantially abrogated its proapoptotic potency. These results suggest that PDMF represents a useful tumor-preventive phytochemical that triggers p53-driven G 2 /M cell cycle arrest and apoptosis.

  3. Tbx1 Regulates Progenitor Cell Proliferation in the Dental Epithelium by Modulating PITX2 Activation of p21

    PubMed Central

    Cao, Huojun; Florez, Sergio; Amen, Melanie; Huynh, Tuong; Skobe, Ziedonis; Baldini, Antonio; Amendt, Brad A.

    2012-01-01

    Tbx1−/− mice present with phenotypic effects observed in DiGeorge syndrome patients however, the molecular mechanisms of Tbx1 regulating craniofacial and tooth development are unclear. Analyses of the Tbx1 null mice reveal incisor microdontia, small cervical loops and BrdU labeling reveals a defect in epithelial cell proliferation. Furthermore, Tbx1 null mice molars are lacking normal cusp morphology. Interestingly, p21 (associated with cell cycle arrest) is up regulated in the dental epithelium of Tbx1−/− embryos. These data suggest that Tbx1 inhibits p21 expression to allow for cell proliferation in the dental epithelial cervical loop, however Tbx1 does not directly regulate p21 expression. A new molecular mechanism has been identified where Tbx1 inhibits Pitx2 transcriptional activity and decreases the expression of Pitx2 target genes, p21, Lef-1 and Pitx2c. p21 protein is increased in PITX2C transgenic mouse embryo fibroblasts (MEF) and chromatin immunoprecipitation assays demonstrate endogenous Pitx2 binding to the p21 promoter. Tbx1 attenuates PITX2 activation of endogenous p21 expression and Tbx1 null MEFs reveal increased Pitx2a and activation of Pitx2c isoform expression. Tbx1 physically interacts with the PITX2 C-terminus and represses PITX2 transcriptional activation of the p21, LEF-1, and Pitx2c promoters. Tbx1−/+/Pitx2−/+ double heterozygous mice present with an extra premolar-like tooth revealing a genetic interaction between these factors. The ability of Tbx1 to repress PITX2 activation of p21 may promote cell proliferation. In addition, PITX2 regulation of p21 reveals a new role for PITX2 in repressing cell proliferation. These data demonstrate new functional mechanisms for Tbx1 in tooth morphogenesis and provide a molecular basis for craniofacial defects in DiGeorge syndrome patients. PMID:20816801

  4. Tbx1 regulates progenitor cell proliferation in the dental epithelium by modulating Pitx2 activation of p21.

    PubMed

    Cao, Huojun; Florez, Sergio; Amen, Melanie; Huynh, Tuong; Skobe, Ziedonis; Baldini, Antonio; Amendt, Brad A

    2010-11-15

    Tbx1(-/-) mice present with phenotypic effects observed in DiGeorge syndrome patients however, the molecular mechanisms of Tbx1 regulating craniofacial and tooth development are unclear. Analyses of the Tbx1 null mice reveal incisor microdontia, small cervical loops and BrdU labeling reveals a defect in epithelial cell proliferation. Furthermore, Tbx1 null mice molars are lacking normal cusp morphology. Interestingly, p21 (associated with cell cycle arrest) is up regulated in the dental epithelium of Tbx1(-/-) embryos. These data suggest that Tbx1 inhibits p21 expression to allow for cell proliferation in the dental epithelial cervical loop, however Tbx1 does not directly regulate p21 expression. A new molecular mechanism has been identified where Tbx1 inhibits Pitx2 transcriptional activity and decreases the expression of Pitx2 target genes, p21, Lef-1 and Pitx2c. p21 protein is increased in PITX2C transgenic mouse embryo fibroblasts (MEF) and chromatin immunoprecipitation assays demonstrate endogenous Pitx2 binding to the p21 promoter. Tbx1 attenuates PITX2 activation of endogenous p21 expression and Tbx1 null MEFs reveal increased Pitx2a and activation of Pitx2c isoform expression. Tbx1 physically interacts with the PITX2 C-terminus and represses PITX2 transcriptional activation of the p21, LEF-1, and Pitx2c promoters. Tbx1(-/+)/Pitx2(-/+) double heterozygous mice present with an extra premolar-like tooth revealing a genetic interaction between these factors. The ability of Tbx1 to repress PITX2 activation of p21 may promote cell proliferation. In addition, PITX2 regulation of p21 reveals a new role for PITX2 in repressing cell proliferation. These data demonstrate new functional mechanisms for Tbx1 in tooth morphogenesis and provide a molecular basis for craniofacial defects in DiGeorge syndrome patients. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. In vivo studies of altered expression patterns of p53 and proliferative control genes in chronic vitamin A deficiency and hypervitaminosis.

    PubMed

    Borrás, Elisa; Zaragozá, Rosa; Morante, María; García, Concha; Gimeno, Amparo; López-Rodas, Gerardo; Barber, Teresa; Miralles, Vicente J; Viña, Juan R; Torres, Luis

    2003-04-01

    Several clinical trials have revealed that individuals who were given beta-carotene and vitamin A did not have a reduced risk of cancer compared to those given placebo; rather, vitamin A could actually have caused an adverse effect in the lungs of smokers [Omenn, G.S., Goodman, G.E., Thornquist, M.D., Balmes, J., Cullen, M.R., Glass, A., Keogh, J.P., Meyskens, F.L., Valanis, B., Williams, J.H., Barnhart, S. & Hammar, S. N. Engl. J. Med (1996) 334, 1150-1155; Hennekens, C.H., Buring, J.E., Manson, J.E., Stampfer, M., Rosner, B., Cook, N.R., Belanger, C., LaMotte, F., Gaziano, J.M., Ridker, P.M., Willet, W. & Peto, R. (1996) N. Engl. J. Med. 334, 1145-1149]. Using differential display techniques, an initial survey using rats showed that liver RNA expression of c-H-Ras was decreased and p53 increased in rats with chronic vitamin A deficiency. These findings prompted us to evaluate the expression of c-Jun, p53 and p21WAF1/CIF1 (by RT-PCR) in liver and lung of rats. This study showed that c-Jun levels were lower and that p53 and p21WAF1/CIF1 levels were higher in chronic vitamin A deficiency. Vitamin A supplementation increased expression of c-Jun, while decreasing the expression of p53 and p21WAF1/CIF1. Western-blot analysis demonstrated that c-Jun and p53 showed a similar pattern to that found in the RT-PCR analyses. Binding of retinoic acid receptors (RAR) to the c-Jun promoter was decreased in chronic vitamin A deficiency when compared to control hepatocytes, but contrasting results were found with acute vitamin A supplementated cells. DNA fragmentation and cytochrome c release from mitochondria were analyzed and no changes were found. In lung, an increase in the expression of c-Jun produced a significant increase in cyclin D1 expression. These results may explain, at least in part, the conflicting results found in patients supplemented with vitamin A and illustrate that the changes are not restricted to lung. Furthermore, these results suggest that pharmacological

  6. Altered expression of key cell cycle regulators in renal cell carcinoma associated with Xp11.2 translocation.

    PubMed

    Barroca, H; Castedo, S; Vieira, J; Teixeira, M; Müller-Höcker, J

    2009-01-01

    Renal cell carcinoma (RCC) is a rare tumor in the pediatric population. Recently, a phenotypically and genetically distinct kidney carcinoma, mainly prevalent in children and associated with an Xp11.2 translocation or TFE3 gene fusion, has been described. It has been advanced that in this subtype of RCC, there is an accumulation of cyclin D1, cyclin D3, and p21 ((wafl/cip1)). The aim of the present study was to figure out in two pediatric RCC recently diagnosed in our department (one clear cell-type RCC and one TFE3-positive RCC) whether those features are indeed specific of the latter tumor or occur in pediatric RCC irrespective of the tumor type. The following immunostains were performed in both cases: Ki67, p16(ink4a), p21 ((wafl/cip1)), p27(kip1), p53, p63, mdm2, cyclin D1, cyclin D3, TFE3, CD10, vimentin, E-cadherin, and RCC-antigen. We observed in the TFE3-positive carcinoma an intense immunoreaction for p21 ((wafl/cip1)), cyclin D1, and cyclin D3, without expression for p53, p16, p27(kip1), and mdm2, whereas the immunoexpression profile observed in the classic RCC was similar to that of clear cell, adult-type RCC. Our study confirms that TFE3-positive RCC exhibits a deregulation of the cell cycle apparently unrelated to the young age of the patients.

  7. Increased expression of stathmin and elongation factor 1α in precancerous nodules with telomere dysfunction in hepatitis B viral cirrhotic patients.

    PubMed

    Ahn, Ei Yong; Yoo, Jeong Eun; Rhee, Hyungjin; Kim, Myung Soo; Choi, Junjeong; Ko, Jung Eun; Lee, Jee San; Park, Young Nyun

    2014-05-31

    Telomere dysfunction is important in carcinogenesis, and recently, stathmin and elongation factor 1α (EF1α) were reported to be up-regulated in telomere dysfunctional mice. In the present study, the expression levels of stathmin and EF1α in relation to telomere length, telomere dysfunction-induced foci (TIF), γ-H2AX, and p21WAF1/CIP1 expression were assessed in specimens of hepatitis B virus (HBV)-related multistep hepatocarcinogenesis, including 13 liver cirrhosis specimens, 14 low-grade dysplastic nodules (DN), 17 high-grade DNs, and 14 hepatocellular carcinomas (HCC). Five normal liver specimens were used as controls. TIF were analyzed by telomere fluorescent in situ hybridization (FISH) combined with immunostaining, while the protein expressions of stathmin, EF1α, γ-H2AX, and p21WAF1/CIP1 were detected by immunohistochemistry. The expressions of stathmin and EF1α gradually increased as multistep hepatocarcinogenesis progressed, showing the highest levels in HCC. Stathmin mRNA levels were higher in high-grade DNs than normal liver and liver cirrhosis, whereas EF1α mRNA expression did not show such a difference. The protein expressions of stathmin and EF1α were found in DNs of precancerous lesions, whereas they were absent or present at very low levels in normal liver and liver cirrhosis. Stathmin histoscores were higher in high-grade DNs and low-grade DNs than in normal liver (all, P<0.05). EF1α histoscores were higher in high-grade DNs than in normal liver and liver cirrhosis (all, P<0.05). Stathmin mRNA levels and histoscores, as well as EF1α histoscores (but not mRNA levels), were positively correlated with telomere shortening and γ-H2AX labeling index (all, P<0.05). EF1α histoscores were also positively correlated with TIF (P<0.001). Significantly greater inactivation of p21WAF1/CIP1 was observed in low-grade DNs, high-grade DNs, and HCC, compared to liver cirrhosis (all, P<0.05). p21WAF1/CIP1 labeling index was inversely correlated with TIF

  8. Suppression of KRas-mutant cancer through the combined inhibition of KRAS with PLK1 and ROCK

    PubMed Central

    Wang, Jieqiong; Hu, Kewen; Guo, Jiawei; Cheng, Feixiong; Lv, Jing; Jiang, Wenhao; Lu, Weiqiang; Liu, Jinsong; Pang, Xiufeng; Liu, Mingyao

    2016-01-01

    No effective targeted therapies exist for cancers with somatic KRAS mutations. Here we develop a synthetic lethal chemical screen in isogenic KRAS-mutant and wild-type cells to identify clinical drug pairs. Our results show that dual inhibition of polo-like kinase 1 and RhoA/Rho kinase (ROCK) leads to the synergistic effects in KRAS-mutant cancers. Microarray analysis reveals that this combinatory inhibition significantly increases transcription and activity of cyclin-dependent kinase inhibitor p21WAF1/CIP1, leading to specific G2/M phase blockade in KRAS-mutant cells. Overexpression of p21WAF1/CIP1, either by cDNA transfection or clinical drugs, preferentially impairs the growth of KRAS-mutant cells, suggesting a druggable synthetic lethal interaction between KRAS and p21WAF1/CIP1. Co-administration of BI-2536 and fasudil either in the LSL-KRASG12D mouse model or in a patient tumour explant mouse model of KRAS-mutant lung cancer suppresses tumour growth and significantly prolongs mouse survival, suggesting a strong synergy in vivo and a potential avenue for therapeutic treatment of KRAS-mutant cancers. PMID:27193833

  9. Lupeol induces p53 and cyclin-B-mediated G2/M arrest and targets apoptosis through activation of caspase in mouse skin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nigam, Nidhi; Prasad, Sahdeo; George, Jasmine

    2009-04-03

    Lupeol, present in fruits and medicinal plants, is a biologically active compound that has been shown to have various pharmacological properties in experimental studies. In the present study, we demonstrated the modulatory effect of lupeol on 7,12-dimethylbenz[a]anthracene (DMBA)-induced alterations on cell proliferation in the skin of Swiss albino mice. Lupeol treatment showed significant (p < 0.05) preventive effects with marked inhibition at 48, 72, and 96 h against DMBA-mediated neoplastic events. Cell-cycle analysis showed that lupeol-induced G2/M-phase arrest (16-37%) until 72 h, and these inhibitory effects were mediated through inhibition of the cyclin-B-regulated signaling pathway involving p53, p21/WAF1, cdc25C, cdc2,more » and cyclin-B gene expression. Further lupeol-induced apoptosis was observed, as shown by an increased sub-G1 peak (28%) at 96 h, with upregulation of bax and caspase-3 genes and downregulation of anti-apoptotic bcl-2 and survivin genes. Thus, our results indicate that lupeol has novel anti-proliferative and apoptotic potential that may be helpful in designing strategies to fight skin cancer.« less

  10. Direct observations of conformational distributions of intrinsically disordered p53 peptides using UV Raman and explicit solvent simulations

    PubMed Central

    Xiong, Kan; Zwier, Matthew C.; Myshakina, Nataliya S.; Burger, Virginia M.; Asher, Sanford A.; Chong, Lillian T.

    2011-01-01

    We report the first experimental measurements of Ramachandran Ψ-angle distributions for intrinsically disordered peptides: the N-terminal peptide fragment of tumor suppressor p53 and its P27 mutant form. To provide atomically detailed views of the conformational distributions, we performed classical, explicit-solvent molecular dynamics simulations on the microsecond timescale. Upon binding its partner protein, MDM2, wild-type p53 peptide adopts an α-helical conformation. Mutation of Pro27 to serine results in the highest affinity yet observed for MDM2-binding of the p53 peptide. Both UV resonance Raman spectroscopy (UVRR) and simulations reveal that the P27S mutation decreases the extent of PPII helical content and increases the probability for conformations that are similar to the α-helical MDM2-bound conformation. In addition, UVRR measurements were performed on peptides that were isotopically labeled at the Leu26 residue preceding the Pro27 in order to determine the conformational distributions of Leu26 in the wild-type and mutant peptides. The UVRR and simulation results are in quantitative agreement in terms of the change in the population of non-PPII conformations involving Leu26 upon mutation of Pro27 to serine. Finally, our simulations reveal that the MDM2-bound conformation of the peptide is significantly populated in both the wild-type and mutant isolated peptide ensembles in their unbound states, suggesting that MDM2 binding of the p53 peptides may involve conformational selection. PMID:21528875

  11. Identification of the Full 46 Cytochrome P450 (CYP) Complement and Modulation of CYP Expression in Response to Water-Accommodated Fractions of Crude Oil in the Cyclopoid Copepod Paracyclopina nana.

    PubMed

    Han, Jeonghoon; Won, Eun-Ji; Kim, Hui-Su; Nelson, David R; Lee, Su-Jae; Park, Heum Gi; Lee, Jae-Seong

    2015-06-02

    The 46 cytochrome P450 (CYP) gene superfamily was identified in the marine copepod Paracyclopina nana after searching an RNA-seq database and comparing it with other copepod CYP gene families. To annotate the 46 Pn-CYP genes, a phylogenetic analysis of CYP genes was performed using a Bayesian method. Pn-CYP genes were separated into five different clans: CYP2, CYP3, CYP20, CYP26, and mitochondrial. Among these, the principal Pn-CYP genes involved in detoxification were identified by comparing them with those of the copepod Tigriopus japonicus and were examined with respect to their responses to exposure to a water-accommodated fraction (WAF) of crude oil and to the alkylated forms of two polycyclic aromatic hydrocarbons (PAHs; phenanthrene and fluorene). The expression of two Pn-CYP3027 genes (CYP3027F1 and CYP3027F2) was increased in response to WAF exposure and also was upregulated in response to the two alkylated PAHs. In particular, Pn-CYP3027F2 showed the most notable increase in response to 80% WAF exposure. These two responsive CYP genes (Pn-CYP3027F1 and CYP3027F2) were also phylogenetically clustered into the same clade of the WAF- and alkylated PAH-specific CYP genes of the copepod T. japonicus, suggesting that these CYP genes would be those chiefly involved in detoxification in response to WAF exposure in copepods. In this paper, we provide information on the copepod P. nana CYP gene superfamily and also speculate on its potential role in the detoxification of PAHs in marine copepods. Despite the nonlethality of WAF, Pn-CYP3027F2 was rapidly and significantly upregulated in response to WAF that may serve as a useful biomarker of 40% or higher concentration of WAF exposure. This paper will be helpful to better understand the molecular mechanistic events underlying the metabolism of environmental toxicants in copepods.

  12. Structural and mechanistic insights into phospholipid transfer by Ups1–Mdm35 in mitochondria

    PubMed Central

    Watanabe, Yasunori; Tamura, Yasushi; Kawano, Shin; Endo, Toshiya

    2015-01-01

    Eukaryotic cells are compartmentalized into membrane-bounded organelles whose functions rely on lipid trafficking to achieve membrane-specific compositions of lipids. Here we focused on the Ups1–Mdm35 system, which mediates phosphatidic acid (PA) transfer between the outer and inner mitochondrial membranes, and determined the X-ray structures of Mdm35 and Ups1–Mdm35 with and without PA. The Ups1–Mdm35 complex constitutes a single domain that has a deep pocket and flexible Ω-loop lid. Structure-based mutational analyses revealed that a basic residue at the pocket bottom and the Ω-loop lid are important for PA extraction from the membrane following Ups1 binding. Ups1 binding to the membrane is enhanced by the dissociation of Mdm35. We also show that basic residues around the pocket entrance are important for Ups1 binding to the membrane and PA extraction. These results provide a structural basis for understanding the mechanism of PA transfer between mitochondrial membranes. PMID:26235513

  13. Thrombomodulin regulates monocye differentiation via PKCδ and ERK1/2 pathway in vitro and in atherosclerotic artery

    PubMed Central

    Tsai, Chien-Sung; Lin, Yi-Wen; Huang, Chun-Yao; Shih, Chun-Min; Tsai, Yi-Ting; Tsao, Nai-Wen; Lin, Chin-Sheng; Shih, Chun-Che; Jeng, Hellen; Lin, Feng-Yen

    2016-01-01

    Thrombomodulin (TM) modulates the activation of protein C and coagulation. Additionally, TM regulates monocyte migration and inflammation. However, its role on monocyte differentiation is still unknown. We investigated the effects of TM on monocyte differentiation. First, we found that TM was increased when THP-1 cells were treated with phorbol-12-myristate-13-acetate (PMA). Overexpression of TM enhanced the macrophage markers, CD14 and CD68 expression in PMA-induced THP-1. TM siRNA depressed the PMA-induced increase of p21Cip1/WAF1 via ERK1/2-NF-kB p65 signaling. TM regulated cytoskeletal reorganization via its interaction with paxillin, cofilin, LIMK1, and PYK2. In addition, PMA-induced p21Cip1/WAF1 expression, CD14-positive cell labeling intensity and ERK1/2 phosphorylation were markedly inhibited when protein kinase C-δ (PKCδ) was knocked down. We identified that TM directly interacts with PKCδ. PKCδ was highly expressed in human atherosclerotic arteries and colocalized with TM in CD68-positive infiltrated macrophages of plaques, indicating that the coordination between TM and PKCδ in macrophages participated in atherogenesis. TM may act as a scaffold for PKCδ docking, which keeps PKCδ in the region close to the monocyte membrane to promote the activation of ERK1/2. Taken together, our findings suggest that TM-PKCδ interaction may contribute to cardiovascular disorders by affecting monocye differentiation, which may develop future therapeutic applications. PMID:27910925

  14. Crystal structures of Mmm1 and Mdm12–Mmm1 reveal mechanistic insight into phospholipid trafficking at ER-mitochondria contact sites

    PubMed Central

    Jeong, Hanbin; Park, Jumi; Jun, Youngsoo; Lee, Changwook

    2017-01-01

    The endoplasmic reticulum (ER)-mitochondria encounter structure (ERMES) comprises mitochondrial distribution and morphology 12 (Mdm12), maintenance of mitochondrial morphology 1 (Mmm1), Mdm34, and Mdm10 and mediates physical membrane contact sites and nonvesicular lipid trafficking between the ER and mitochondria in yeast. Herein, we report two crystal structures of the synaptotagmin-like mitochondrial lipid-binding protein (SMP) domain of Mmm1 and the Mdm12–Mmm1 complex at 2.8 Å and 3.8 Å resolution, respectively. Mmm1 adopts a dimeric SMP structure augmented with two extra structural elements at the N and C termini that are involved in tight self-association and phospholipid coordination. Mmm1 binds two phospholipids inside the hydrophobic cavity, and the phosphate ion of the distal phospholipid is specifically recognized through extensive H-bonds. A positively charged concave surface on the SMP domain not only mediates ER membrane docking but also results in preferential binding to glycerophospholipids such as phosphatidylcholine (PC), phosphatidic acid (PA), phosphatidylglycerol (PG), and phosphatidylserine (PS), some of which are substrates for lipid-modifying enzymes in mitochondria. The Mdm12–Mmm1 structure reveals two Mdm12s binding to the SMP domains of the Mmm1 dimer in a pairwise head-to-tail manner. Direct association of Mmm1 and Mdm12 generates a 210-Å-long continuous hydrophobic tunnel that facilitates phospholipid transport. The Mdm12–Mmm1 complex binds all glycerophospholipids except for phosphatidylethanolamine (PE) in vitro. PMID:29078410

  15. 40 CFR 721.10370 - Phosphonic acid, p-octyl-, lanthanum (3+) salt (2:1).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Phosphonic acid, p-octyl-, lanthanum... New Uses for Specific Chemical Substances § 721.10370 Phosphonic acid, p-octyl-, lanthanum (3+) salt... substance identified as phosphinic acid, p-octyl-, lanthanum (3+) salt (2:1) (PMN P-10-99; CAS No. 1186211...

  16. 40 CFR 721.10370 - Phosphonic acid, p-octyl-, lanthanum (3+) salt (2:1).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Phosphonic acid, p-octyl-, lanthanum... New Uses for Specific Chemical Substances § 721.10370 Phosphonic acid, p-octyl-, lanthanum (3+) salt... substance identified as phosphinic acid, p-octyl-, lanthanum (3+) salt (2:1) (PMN P-10-99; CAS No. 1186211...

  17. 40 CFR 721.10370 - Phosphonic acid, p-octyl-, lanthanum (3+) salt (2:1).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Phosphonic acid, p-octyl-, lanthanum... New Uses for Specific Chemical Substances § 721.10370 Phosphonic acid, p-octyl-, lanthanum (3+) salt... substance identified as phosphinic acid, p-octyl-, lanthanum (3+) salt (2:1) (PMN P-10-99; CAS No. 1186211...

  18. Exploring a Link Between NF-KB and G2/M Cell Cycle Arrest in Breast Cancer Cells

    DTIC Science & Technology

    2005-04-01

    studies with esophageal squamous cell carcinom a lines have shown that IR induced p21waf1/ ciP ’ and a G2 cell cycle arrest that could als o be...i AD Award Number : DAMD17-02-1-062 3 TITLE : Exploring a Link Between NF-KB and G 2 /M Cell Cycle Arres t in Breast Cancer Cell s PRINCIPAL...Mar 2005 ) 4 . TITLE AND SUBTITL E Exploring a Link Between NF-kB and G 2 /M Cell Cycle Arres t in Breast Cancer Cells 5. FUND/NG NUMBERS DAMD17-02-1

  19. EZH2 mediates lidamycin-induced cellular senescence through regulating p21 expression in human colon cancer cells

    PubMed Central

    Sha, Ming-Quan; Zhao, Xiao-Li; Li, Liang; Li, Li-Hui; Li, Yi; Dong, Tian-Geng; Niu, Wei-Xin; Jia, Li-Jun; Shao, Rong-Guang; Zhen, Yong-Su; Wang, Zhen

    2016-01-01

    Lidamycin (LDM) is a novel member of the enediyne antibiotics identified in China with potent antitumor activity. However, it remains unclear whether LDM has potential molecular targets that may affect its antitumor activity. Enhancer of zeste homolog 2 (EZH2) functions as a histone lysine methyltransferase and mediates trimethylation on histone 3 lysine 27 (H3K27me3). High EZH2 level is found to be positively correlated with the aggressiveness, metastasis and poor prognosis of cancer. Here, we aim to study the role of EZH2 in LDM-induced senescence, as well as in the cytotoxicity of LDM in human colon cancer cells. LDM is found to be relatively more potent in inhibiting the colon cancer cells harboring high EZH2 level and induces irreversible cellular senescence at IC50 dose range, as evidenced by senescence-associated β-galactosidase staining, cell cycle arrest and molecular changes of senescence regulators including p21 in HCT116 and SW620 cells. More importantly, LDM is found to markedly inhibit EZH2 expression at both protein and mRNA levels upon the induction of p21 and cellular senescence. LDM also selectively inhibits EZH2 expression as compared with other histone lysine methyltransferases. Knockdown of p21 with siRNAs abolishes LDM-induced senescence, whereas EZH2 knockdown markedly increases p21 expression and causes senescent phenotype. Enrichment of both EZH2 and H3K27me3 levels in the p21 promoter region is reduced by LDM. Moreover, EZH2 overexpression reduces cellular senescence, p21 expression and DNA damage response upon LDM exposure. LDM also demonstrates potent antitumor efficacy in xenografted animal models. Collectively, our work provides first demonstration that EZH2 may mediate, at least partially, the senescence-inducing effects of LDM by regulating p21 expression and DNA damage effect. Thus, EZH2 may serve as a potential target and biomarker to indicate the clinical efficacy of the potent enediyne antitumor drug. PMID:27882937

  20. EBNA3C Augments Pim-1 Mediated Phosphorylation and Degradation of p21 to Promote B-Cell Proliferation

    PubMed Central

    Banerjee, Shuvomoy; Lu, Jie; Cai, Qiliang; Sun, Zhiguo; Jha, Hem Chandra; Robertson, Erle S.

    2014-01-01

    Epstein–Barr virus (EBV), a ubiquitous human herpesvirus, can latently infect the human population. EBV is associated with several types of malignancies originating from lymphoid and epithelial cell types. EBV latent antigen 3C (EBNA3C) is essential for EBV-induced immortalization of B-cells. The Moloney murine leukemia provirus integration site (PIM-1), which encodes an oncogenic serine/threonine kinase, is linked to several cellular functions involving cell survival, proliferation, differentiation, and apoptosis. Notably, enhanced expression of Pim-1 kinase is associated with numerous hematological and non-hematological malignancies. A higher expression level of Pim-1 kinase is associated with EBV infection, suggesting a crucial role for Pim-1 in EBV-induced tumorigenesis. We now demonstrate a molecular mechanism which reveals a direct role for EBNA3C in enhancing Pim-1 expression in EBV-infected primary B-cells. We also showed that EBNA3C is physically associated with Pim-1 through its amino-terminal domain, and also forms a molecular complex in B-cells. EBNA3C can stabilize Pim-1 through abrogation of the proteasome/Ubiquitin pathway. Our results demonstrate that EBNA3C enhances Pim-1 mediated phosphorylation of p21 at the Thr145 residue. EBNA3C also facilitated the nuclear localization of Pim-1, and promoted EBV transformed cell proliferation by altering Pim-1 mediated regulation of the activity of the cell-cycle inhibitor p21/WAF1. Our study demonstrated that EBNA3C significantly induces Pim-1 mediated proteosomal degradation of p21. A significant reduction in cell proliferation of EBV-transformed LCLs was observed upon stable knockdown of Pim-1. This study describes a critical role for the oncoprotein Pim-1 in EBV-mediated oncogenesis, as well as provides novel insights into oncogenic kinase-targeted therapeutic intervention of EBV-associated cancers. PMID:25121590

  1. Inactivation of p16INK4a, with retention of pRB and p53/p21cip1 function, in human MRC5 fibroblasts that overcome a telomere-independent crisis during immortalization.

    PubMed

    Taylor, Lisa M; James, Alexander; Schuller, Christine E; Brce, Jesena; Lock, Richard B; Mackenzie, Karen L

    2004-10-15

    Recent investigations, including our own, have shown that specific strains of fibroblasts expressing telomerase reverse transcriptase (hTERT) have an extended lifespan, but are not immortal. We previously demonstrated that hTERT-transduced MRC5 fetal lung fibroblasts (MRC5hTERTs) bypassed senescence but eventually succumbed to a second mortality barrier (crisis). In the present study, 67 MRC5hTERT clones were established by limiting dilution of a mass culture. Whereas 39/67 clones had an extended lifespan, all 39 extended lifespan clones underwent crisis. 11 of 39 clones escaped crisis and were immortalized. There was no apparent relationship between the fate of clones at crisis and the level of telomerase activity. Telomeres were hyperextended in the majority of the clones analyzed. There was no difference in telomere length of pre-crisis compared with post-crisis and immortal clones, indicating that hyperextended telomeres were conducive for immortalization and confirming that crisis was independent of telomere length. Immortalization of MRC5hTERT cells was associated with repression of the cyclin-dependent kinase inhibitor p16INK4a and up-regulation of pRB. However, the regulation of pRB phosphorylation and the response of the p53/p21cip1/waf1 pathway were normal in immortal cells subject to genotoxic stress. Overexpression of oncogenic ras failed to de-repress p16INK4a in immortal cells. Furthermore, expression of ras enforced senescent-like growth arrest in p16INK4a-positive, but not p16INK4a-negative MRC5hTERT cells. Immortal cells expressing ras formed small, infrequent colonies in soft agarose, but were non-tumorigenic. Overall, these results implicate the inactivation of p16INK4a as a critical event for overcoming telomere-independent crisis, immortalizing MRC5 fibroblasts and overcoming ras-induced premature senescence.

  2. p21 mediates macrophage reprogramming through regulation of p50-p50 NF-κB and IFN-β

    PubMed Central

    Hernández-Jiménez, Enrique; Shokri, Rahman; Carmona-Rodríguez, Lorena; Mañes, Santos; Álvarez-Mon, Melchor; López-Collazo, Eduardo; Martínez-A, Carlos

    2016-01-01

    M1 and M2 macrophage phenotypes, which mediate proinflammatory and antiinflammatory functions, respectively, represent the extremes of immunoregulatory plasticity in the macrophage population. This plasticity can also result in intermediate macrophage states that support a balance between these opposing functions. In sepsis, M1 macrophages can compensate for hyperinflammation by acquiring an M2-like immunosuppressed status that increases the risk of secondary infection and death. The M1 to M2 macrophage reprogramming that develops during LPS tolerance resembles the pathological antiinflammatory response to sepsis. Here, we determined that p21 regulates macrophage reprogramming by shifting the balance between active p65-p50 and inhibitory p50-p50 NF-κB pathways. p21 deficiency reduced the DNA-binding affinity of the p50-p50 homodimer in LPS-primed and -rechallenged macrophages, impairing their ability to attenuate IFN-β production and acquire an M2-like hyporesponsive status. High p21 levels in sepsis patients correlated with low IFN-β expression, and p21 knockdown in human monocytes corroborated its role in IFN-β regulation. The data demonstrate that p21 adjusts the equilibrium between p65-p50 and p50-p50 NF-κB pathways to mediate macrophage plasticity in LPS tolerance. Identifying p21-related pathways involved in monocyte reprogramming may lead to potential targets for sepsis treatment. PMID:27427981

  3. Novel small molecule induces p53-dependent apoptosis in human colon cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Sang Eun; Min, Yong Ki; Ha, Jae Du

    2007-07-06

    Using high-throughput screening with small-molecule libraries, we identified a compound, KCG165 [(2-(3-(2-(pyrrolidin-1-yl)ethoxy)-1,10b-dihydro-[1,2,4]triazolo[1,5-c] quinazolin-5(6H)-one)], which strongly activated p53-mediated transcriptional activity. KCG165-induced phosphorylations of p53 at Ser{sup 6}, Ser{sup 15}, and Ser{sup 20}, which are all key residues involved in the activation and stabilization of p53. Consistent with these findings, KCG165 increased level of p53 protein and led to the accumulation of transcriptionally active p53 in the nucleus with the increased occupancy of p53 in the endogenous promoter region of its downstream target gene, p21{sup WAF1/CIP}. Notably, KCG165-induced p53-dependent apoptosis in cancer cells. Furthermore, we suggested topoisomerase II as the molecular targetmore » of KCG165. Together, these results indicate that KCG165 may have potential applications as an antitumor agent.« less

  4. Isolated p.H62L Mutation in the CYP21A2 Gene in a Simple Virilizing 21-Hydroxylase Deficient Patient.

    PubMed

    Taboas, Melisa; Fernández, Cecilia; Belli, Susana; Buzzalino, Noemi; Alba, Liliana; Dain, Liliana

    2013-01-01

    Congenital adrenal hyperplasia due to 21-hydroxylase deficiency accounts for 90%-95% of cases. This autosomal recessive disorder has a broad spectrum of clinical forms, ranging from severe or classical, which includes the salt-wasting and simple virilizing forms, to the mild late onset or nonclassical form. Most of the disease-causing mutations described are likely to be the consequence of nonhomologous recombination or gene conversion events between the active CYP21A2 gene and its homologous CYP21A1P pseudogene. Nevertheless, an increasing number of naturally occurring mutations have been found. The change p.H62L is one of the most frequent rare mutations of the CYP21A2 gene. It was suggested that the p.H62L represents a mild mutation that may be responsible for a more severe enzymatic impairment when presented with another mild mutation on the same allele. In this report, a 20-year-old woman carrying an isolated p.H62L mutation in compound heterozygosity with c.283-13A/C>G mutation is described. Although a mildly nonclassical phenotype was expected, clinical signs and hormonal profile of the patient are consistent with a more severe simple virilizing form of 21-hydroxylase deficiency. The study of genotype-phenotype correlation in additional patients would help in defining the role of p.H62L in disease manifestation.

  5. p21 Restricts HIV-1 in Monocyte-Derived Dendritic Cells through the Reduction of Deoxynucleoside Triphosphate Biosynthesis and Regulation of SAMHD1 Antiviral Activity.

    PubMed

    Valle-Casuso, Jose Carlos; Allouch, Awatef; David, Annie; Lenzi, Gina M; Studdard, Lydia; Barré-Sinoussi, Françoise; Müller-Trutwin, Michaela; Kim, Baek; Pancino, Gianfranco; Sáez-Cirión, Asier

    2017-12-01

    HIV-1 infection of noncycling cells, such as dendritic cells (DCs), is impaired due to limited availability of deoxynucleoside triphosphates (dNTPs), which are needed for HIV-1 reverse transcription. The levels of dNTPs are tightly regulated during the cell cycle and depend on the balance between dNTP biosynthesis and degradation. SAMHD1 potently blocks HIV-1 replication in DCs, although the underlying mechanism is still unclear. SAMHD1 has been reported to be able to degrade dNTPs and viral nucleic acids, which may both hamper HIV-1 reverse transcription. The relative contribution of these activities may differ in cycling and noncycling cells. Here, we show that inhibition of HIV-1 replication in monocyte-derived DCs (MDDCs) is associated with an increased expression of p21cip1/waf, a cell cycle regulator that is involved in the differentiation and maturation of DCs. Induction of p21 in MDDCs decreases the pool of dNTPs and increases the antiviral active isoform of SAMHD1. Although both processes are complementary in inhibiting HIV-1 replication, the antiviral activity of SAMHD1 in our primary cell model appears to be, at least partially, independent of its dNTPase activity. The reduction in the pool of dNTPs in MDDCs appears rather mostly due to a p21-mediated suppression of several enzymes involved in dNTP synthesis (i.e., RNR2, TYMS, and TK-1). These results are important to better understand the interplay between HIV-1 and DCs and may inform the design of new therapeutic approaches to decrease viral dissemination and improve immune responses against HIV-1. IMPORTANCE DCs play a key role in the induction of immune responses against HIV. However, HIV has evolved ways to exploit these cells, facilitating immune evasion and virus dissemination. We have found that the expression of p21, a cyclin-dependent kinase inhibitor involved in cell cycle regulation and monocyte differentiation and maturation, potentially can contribute to the inhibition of HIV-1 replication

  6. Efficient Parvovirus Replication Requires CRL4Cdt2-Targeted Depletion of p21 to Prevent Its Inhibitory Interaction with PCNA

    PubMed Central

    Pintel, David J.

    2014-01-01

    Infection by the autonomous parvovirus minute virus of mice (MVM) induces a vigorous DNA damage response in host cells which it utilizes for its efficient replication. Although p53 remains activated, p21 protein levels remain low throughout the course of infection. We show here that efficient MVM replication required the targeting for degradation of p21 during this time by the CRL4Cdt2 E3-ubiquitin ligase which became re-localized to MVM replication centers. PCNA provides a molecular platform for substrate recognition by the CRL4Cdt2 E3-ubiquitin ligase and p21 targeting during MVM infection required its interaction both with Cdt2 and PCNA. PCNA is also an important co-factor for MVM replication which can be antagonized by p21 in vitro. Expression of a stable p21 mutant that retained interaction with PCNA inhibited MVM replication, while a stable p21 mutant which lacked this interaction did not. Thus, while interaction with PCNA was important for targeting p21 to the CRL4Cdt2 ligase re-localized to MVM replication centers, efficient viral replication required subsequent depletion of p21 to abrogate its inhibition of PCNA. PMID:24699724

  7. Efficient parvovirus replication requires CRL4Cdt2-targeted depletion of p21 to prevent its inhibitory interaction with PCNA.

    PubMed

    Adeyemi, Richard O; Fuller, Matthew S; Pintel, David J

    2014-04-01

    Infection by the autonomous parvovirus minute virus of mice (MVM) induces a vigorous DNA damage response in host cells which it utilizes for its efficient replication. Although p53 remains activated, p21 protein levels remain low throughout the course of infection. We show here that efficient MVM replication required the targeting for degradation of p21 during this time by the CRL4Cdt2 E3-ubiquitin ligase which became re-localized to MVM replication centers. PCNA provides a molecular platform for substrate recognition by the CRL4Cdt2 E3-ubiquitin ligase and p21 targeting during MVM infection required its interaction both with Cdt2 and PCNA. PCNA is also an important co-factor for MVM replication which can be antagonized by p21 in vitro. Expression of a stable p21 mutant that retained interaction with PCNA inhibited MVM replication, while a stable p21 mutant which lacked this interaction did not. Thus, while interaction with PCNA was important for targeting p21 to the CRL4Cdt2 ligase re-localized to MVM replication centers, efficient viral replication required subsequent depletion of p21 to abrogate its inhibition of PCNA.

  8. Isolated p.H62L Mutation in the CYP21A2 Gene in a Simple Virilizing 21-Hydroxylase Deficient Patient

    PubMed Central

    Fernández, Cecilia; Belli, Susana; Buzzalino, Noemi; Dain, Liliana

    2013-01-01

    Congenital adrenal hyperplasia due to 21-hydroxylase deficiency accounts for 90%–95% of cases. This autosomal recessive disorder has a broad spectrum of clinical forms, ranging from severe or classical, which includes the salt-wasting and simple virilizing forms, to the mild late onset or nonclassical form. Most of the disease-causing mutations described are likely to be the consequence of nonhomologous recombination or gene conversion events between the active CYP21A2 gene and its homologous CYP21A1P pseudogene. Nevertheless, an increasing number of naturally occurring mutations have been found. The change p.H62L is one of the most frequent rare mutations of the CYP21A2 gene. It was suggested that the p.H62L represents a mild mutation that may be responsible for a more severe enzymatic impairment when presented with another mild mutation on the same allele. In this report, a 20-year-old woman carrying an isolated p.H62L mutation in compound heterozygosity with c.283-13A/C>G mutation is described. Although a mildly nonclassical phenotype was expected, clinical signs and hormonal profile of the patient are consistent with a more severe simple virilizing form of 21-hydroxylase deficiency. The study of genotype-phenotype correlation in additional patients would help in defining the role of p.H62L in disease manifestation. PMID:23936690

  9. Studying p53 family proteins in yeast: Induction of autophagic cell death and modulation by interactors and small molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leão, Mariana; Gomes, Sara; Bessa, Cláudia

    In this work, the yeast Saccharomyces cerevisiae was used to individually study human p53, p63 (full length and truncated forms) and p73. Using this cell system, the effect of these proteins on cell proliferation and death, and the influence of MDM2 and MDMX on their activities were analyzed. When expressed in yeast, wild-type p53, TAp63, ΔNp63 and TAp73 induced growth inhibition associated with S-phase cell cycle arrest. This growth inhibition was accompanied by reactive oxygen species production and autophagic cell death. Furthermore, they stimulated rapamycin-induced autophagy. On the contrary, none of the tested p53 family members induced apoptosis either permore » se or after apoptotic stimuli. As previously reported for p53, also TAp63, ΔNp63 and TAp73 increased actin expression levels and its depolarization, suggesting that ACT1 is also a p63 and p73 putative yeast target gene. Additionally, MDM2 and MDMX inhibited the activity of all tested p53 family members in yeast, although the effect was weaker on TAp63. Moreover, Nutlin-3a and SJ-172550 were identified as potential inhibitors of the p73 interaction with MDM2 and MDMX, respectively. Altogether, the yeast-based assays herein developed can be envisaged as a simplified cell system to study the involvement of p53 family members in autophagy, the modulation of their activities by specific interactors (MDM2 and MDMX), and the potential of new small molecules to modulate these interactions. - Highlights: • p53, p63 and p73 are individually studied in the yeast S. cerevisiae. • p53 family members induce ROS production, cell cycle arrest and autophagy in yeast. • p53 family members increase actin depolarization and expression levels in yeast. • MDM2 and MDMX inhibit the activity of p53 family members in yeast. • Yeast can be a useful tool to study the biology and drugability of p53, p63 and p73.« less

  10. Cytotoxicity of flavones and flavonols to a human esophageal squamous cell carcinoma cell line (KYSE-510) by induction of G2/M arrest and apoptosis.

    PubMed

    Zhang, Qiang; Zhao, Xin-Huai; Wang, Zhu-Jun

    2009-08-01

    In this study, cytotoxic effects of structurally related flavones and flavonols on a human esophageal squamous cell carcinoma cell line (KYSE-510) were determined, and the molecular mechanisms responsible for their cytotoxic effects were studied. The results of MTT assay showed that flavones (luteolin, apigenin, chrysin) and flavonols (quercetin, kaempferol, myricetin) were able to induce cytotoxicity in KYSE-510 cells in a dose- and time-dependent manner, and the cytotoxic potency of these compounds was in the order of: luteolin>quercetin>chrysin>kaempferol>apigenin>myricetin. Flow cytometry and DNA fragmentation analysis indicated that the cytotoxicity induced by flavones and flavonols was mediated by G(2)/M cell cycle arrest and apoptosis. Furthermore, the expression of genes related to cell cycle arrest and apoptosis was assessed by oligonucleotide microarray, real-time RT-PCR and Western blot. It was shown that the treatment of KYSE-510 cells with these compounds caused G(2)/M arrest through up-regulation of p21(waf1) and down-regulation of cyclin B1 at the mRNA and protein levels, and induced p53-independent mitochondrial-mediated apoptosis through up-regulation of PIG3 and cleavage of caspase-9 and caspase-3. The results of western blot analysis further showed that increases of p63 and p73 protein translation or stability might be contributed to the regulation of p21(waf1), cyclin B1 and PIG3.

  11. Radiosensitizing effect of PSMC5, a 19S proteasome ATPase, in H460 lung cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yim, Ji-Hye; Yun, Hong Shik; Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791

    2016-01-01

    The function of PSMC5 (proteasome 26S subunit, ATPase 5) in tumors, particularly with respect to cancer radioresistance, is not known. Here, we identified PSMC5 as a novel radiosensitivity biomarker, demonstrating that radiosensitive H460 cells were converted to a radioresistance phenotype by PSMC5 depletion. Exposure of H460 cells to radiation induced a marked accumulation of cell death-promoting reactive oxygen species, but this effect was blocked in radiation-treated H460 PSMC5-knockdown cells through downregulation of the p53-p21 pathway. Interestingly, PSMC5 depletion in H460 cells enhanced both AKT activation and MDM2 transcription, thereby promoting the degradation of p53 and p21 proteins. Furthermore, specific inhibitionmore » of AKT with triciribine or knockdown of MDM2 with small interfering RNA largely restored p21 expression in PSMC5-knockdown H460 cells. Our data suggest that PSMC5 facilitates the damaging effects of radiation in radiation-responsive H460 cancer cells and therefore may serve as a prognostic indicator for radiotherapy and molecular targeted therapy in lung cancer patients. - Highlights: • PSMC5 is a radiation-sensitive biomarker in H460 cells. • PSMC5 depletion inhibits radiation-induced apoptosis in H460 cells. • PSMC5 knockdown blocks ROS generation through inhibition of the p53-p21 pathway. • PSMC5 knockdown enhances p21 degradation via AKT-dependent MDM2 stabilization.« less

  12. Immunohistochemical study of p21 and Bcl-2 in leukoplakia, oral submucous fibrosis and oral squamous cell carcinoma.

    PubMed

    Sutariya, Rakesh V; Manjunatha, Bhari Sharanesha

    2016-11-01

    Oral Squamous cell carcinoma (OSCC) results from genetic damage, leading to uncontrolled cell proliferation of damaged cells and the cell death. In the course of its progression, visible changes are taking place at the cellular level (atypical) and the resultant at the tissue level (epithelial dysplasia). The Aim of the present study was to evaluate and compare the expressions of intensity of p21 and Bcl-2 in Leukoplakia, oralsubmucous fibrosis (OSMF) and oral squamous cell carcinoma. Total 60 cases, 30 cases of oral squamous cell carcinoma, 15 cases of oral submucous fibrosis and 15 cases of Leukoplakia were evaluated immunohistochemically for p21 and Bcl-2 expression. p21 showed positive expression in 13 (86.67%) cases out of 15 cases of OSMF, 12 (80%) cases of leukoplakia out of 15 cases and 24 (80%) cases out of 30 cases of OSCC. The Bcl-2 expression was positive in 13 (86.67%) cases of OSMF, all cases of Leukoplakia and 25 (83.33%) cases of OSCC. No statistical significance was noted in the expression of p21 and Bcl-2 positive expression between OSMF, Leukoplakia and OSCC. Statistical analysis for comparison of intensity of p21 expression in different grades of OSCC showed no significance. Statistical significance difference was found between the expressions of Bcl-2 in moderately and poorly differentiated SCC. The intensity of p21 and Bcl-2 expressions in different grades of OSCC indicates a key role in progression of oral neoplasia.

  13. p53 participates in the protective effects of ischemic post-conditioning against OGD-reperfusion injury in primary cultured spinal cord neurons.

    PubMed

    Li, Jinquan; Chen, Gong; Gao, Xinjie; Shen, Chao; Zhou, Ping; Wu, Xing; Che, Xiaoming; Xie, Rong

    2017-01-18

    Spinal cord ischemia-reperfusion (I/R) injury is a severe clinical condition, while the mechanism is still not clarified and the therapeutic approach is limited. Ischemia post-conditioning (PC) has been found to have the protective effects against I/R injury in brain. Recently p53 has been reported to take part in the regulation and protection of I/R injury. We hypothesize that PC has the protective effects in primary cultured spinal cord neurons against ischemia-reperfusion injury, and MDM2-p53 signaling pathway may involve in its protective mechanism. In this study, we used an OGD (oxygen and glucose deprivation)-reperfusion model in primary cultured spinal cord neurons to simulate the I/R injury of spinal cord in vitro, and PC was conducted by 3 cycles of 15min restoration of glucose and oxygen with 15min OGD, followed by 6h fully restoration as reperfusion. Lentiviral vectors were used to knock down MDM2 or over-express p53 genes in primary cultured spinal cord neurons. The results showed that 3 cycles of 15min PC generated the most significant protective effects in primary cultured spinal cord neurons against OGD-reperfusion injury. The levels of MDM2 were decreased while p53, Bax, and cleaved Caspase 3 were increased under OGD-reperfusion condition. PC could significantly reverse the down-regulation of MDM2 and up-regulation of p53, Bax, and cleaved Caspase 3 by OGD-reperfusion injury. Moreover, MDM2 knockdown or p53 over-expression could induce the cleaved Caspase 3 expression and blocked the protective effects of PC in primary cultured spinal cord neurons against OGD-reperfusion injury. In conclusion, our work demonstrated that MDM2-p53 pathway plays a pivotal role in the protective effect of PC against OGD-reperfusion injury and PC may be a feasible therapy strategy in the treatment for spinal cord I/R injury. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. t(1;3)(p36;p21): presentation of a patient with MDS/AML (M2) and review of the literature.

    PubMed

    Güven, Gülgün S; Tarkan Argüden, Yelda; Öngören, Şeniz; Deviren, Ayhan; Aydın, Yıldız; Hacıhanefioglu, Seniha

    2006-06-05

    t(1;3)(p36;p21) is a recurrent reciprocal translocation found in a subset of myelodysplastic syndrome (MDS)/acute myelogenous leukemia (AML) characterized by trilineage dysplasia, especially dysmegakaryopoiesis and poor prognosis. In the literature, some authors have suggested that this recurrent translocation is closely associated with prior chemotherapy including alkylating agents in various hematologic malignancies. We identified a recurring translocation, t(1;3)(p36;p21), in our patient with MDS/AML(M2), although she had not been given any kind of treatment previously.

  15. Overexpression and localization of heat shock proteins mRNA in pancreatic carcinoma.

    PubMed

    Ogata, M; Naito, Z; Tanaka, S; Moriyama, Y; Asano, G

    2000-06-01

    In the present study we examined the localization and overexpression of heat shock proteins (hsps), mainly hsp90, in pancreatic carcinoma tissue compared with control tissue (including chronic pancreatitis and normal pancreas tissue), with the aid of immunohistochemical staining, in situ hybridization and reverse transcriptase polymerase chain reaction. Hsp90 alpha mRNA was overexpressed more highly in pancreatic carcinoma than in the control tissue. The proliferating-cell-nuclear-antigen labeling index was also high in pancreatic carcinoma tissue compared with the other tissue. These findings suggest that the overexpression of hsp90 alpha mRNA in carcinomas may be correlated with cell proliferation. However, hsp90 beta was constitutively overexpressed almost equally in all groups of pancreatic tissue including pancreatic carcinoma, chronic pancreatitis and normal pancreas tissue. Immunohistochemical staining demonstrated a differentiation in the expression of hsp90 between histological types of pancreatic carcinoma. These findings suggest that hsp90 alpha is involved in carcinogenesis and that hsp90 beta is correlated to structural conformation. Hsp90 alpha and hsp90 beta seem to perform different functions in tissue containing malignant cells. P53, MDM2 and WAF1, that were cell-cycle-related oncogene product were more strongly expressed in the nuclei of the cancer cells of the cancer tissue. Especially, MDM2 was more strongly expressed in mucinous carcinoma and the mucin secreting tissues surrounding pancreatic carcinoma tissue. The expression of MDM2 protein might also be correlated to secretion systems during structural conformation and be correlated to hsp90 beta.

  16. Increased expression of stathmin and elongation factor 1α in precancerous nodules with telomere dysfunction in hepatitis B viral cirrhotic patients

    PubMed Central

    2014-01-01

    Background Telomere dysfunction is important in carcinogenesis, and recently, stathmin and elongation factor 1α (EF1α) were reported to be up-regulated in telomere dysfunctional mice. Methods In the present study, the expression levels of stathmin and EF1α in relation to telomere length, telomere dysfunction-induced foci (TIF), γ-H2AX, and p21WAF1/CIP1 expression were assessed in specimens of hepatitis B virus (HBV)-related multistep hepatocarcinogenesis, including 13 liver cirrhosis specimens, 14 low-grade dysplastic nodules (DN), 17 high-grade DNs, and 14 hepatocellular carcinomas (HCC). Five normal liver specimens were used as controls. TIF were analyzed by telomere fluorescent in situ hybridization (FISH) combined with immunostaining, while the protein expressions of stathmin, EF1α, γ-H2AX, and p21WAF1/CIP1 were detected by immunohistochemistry. Result The expressions of stathmin and EF1α gradually increased as multistep hepatocarcinogenesis progressed, showing the highest levels in HCC. Stathmin mRNA levels were higher in high-grade DNs than normal liver and liver cirrhosis, whereas EF1α mRNA expression did not show such a difference. The protein expressions of stathmin and EF1α were found in DNs of precancerous lesions, whereas they were absent or present at very low levels in normal liver and liver cirrhosis. Stathmin histoscores were higher in high-grade DNs and low-grade DNs than in normal liver (all, P < 0.05). EF1α histoscores were higher in high-grade DNs than in normal liver and liver cirrhosis (all, P < 0.05). Stathmin mRNA levels and histoscores, as well as EF1α histoscores (but not mRNA levels), were positively correlated with telomere shortening and γ-H2AX labeling index (all, P < 0.05). EF1α histoscores were also positively correlated with TIF (P < 0.001). Significantly greater inactivation of p21WAF1/CIP1 was observed in low-grade DNs, high-grade DNs, and HCC, compared to liver cirrhosis (all, P < 0.05). p21WAF1

  17. Functional studies of p.R132C, p.R149C, p.M283V, p.E431K, and a novel c.652-2A>G mutations of the CYP21A2 gene.

    PubMed

    Taboas, Melisa; Gómez Acuña, Luciana; Scaia, María Florencia; Bruque, Carlos D; Buzzalino, Noemí; Stivel, Mirta; Ceballos, Nora R; Dain, Liliana

    2014-01-01

    Congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency is the most frequent inborn error of metabolism and accounts for 90-95% of CAH cases. In the present work, we analyzed the functional consequence of four novel previously reported point CYP21A2 mutations -p.R132C, p.R149C, p.M283V, p.E431K- found in Argentinean 21-hydroxylase deficient patients. In addition, we report an acceptor splice site novel point mutation, c.652-2A>G, found in a classical patient in compound heterozygosity with the rare p.R483Q mutation. We performed bioinformatic and functional assays to evaluate the biological implication of the novel mutation. Our analyses revealed that the residual enzymatic activity of the isolated mutants coding for CYP21A2 aminoacidic substitutions was reduced to a lesser than 50% of the wild type with both progesterone and 17-OH progesterone as substrates. Accordingly, all the variants would predict mild non-classical alleles. In one non-classical patient, the p.E431K mutation was found in cis with the p.D322G one. The highest decrease in enzyme activity was obtained when both mutations were assayed in the same construction, with a residual activity most likely related to the simple virilizing form of the disease. For the c.652-2A>G mutation, bioinformatic tools predicted the putative use of two different cryptic splicing sites. Nevertheless, functional analyses revealed the use of only one cryptic splice acceptor site located within exon 6, leading to the appearance of an mRNA with a 16 nt deletion. A severe allele is strongly suggested due to the presence of a premature stop codon in the protein only 12 nt downstream.

  18. Functional Studies of p.R132C, p.R149C, p.M283V, p.E431K, and a Novel c.652-2A>G Mutations of the CYP21A2 Gene

    PubMed Central

    Taboas, Melisa; Gómez Acuña, Luciana; Scaia, María Florencia; Bruque, Carlos D.; Buzzalino, Noemí; Stivel, Mirta

    2014-01-01

    Congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency is the most frequent inborn error of metabolism and accounts for 90–95% of CAH cases. In the present work, we analyzed the functional consequence of four novel previously reported point CYP21A2 mutations -p.R132C, p.R149C, p.M283V, p.E431K- found in Argentinean 21-hydroxylase deficient patients. In addition, we report an acceptor splice site novel point mutation, c.652-2A>G, found in a classical patient in compound heterozygosity with the rare p.R483Q mutation. We performed bioinformatic and functional assays to evaluate the biological implication of the novel mutation. Our analyses revealed that the residual enzymatic activity of the isolated mutants coding for CYP21A2 aminoacidic substitutions was reduced to a lesser than 50% of the wild type with both progesterone and 17-OH progesterone as substrates. Accordingly, all the variants would predict mild non-classical alleles. In one non-classical patient, the p.E431K mutation was found in cis with the p.D322G one. The highest decrease in enzyme activity was obtained when both mutations were assayed in the same construction, with a residual activity most likely related to the simple virilizing form of the disease. For the c.652-2A>G mutation, bioinformatic tools predicted the putative use of two different cryptic splicing sites. Nevertheless, functional analyses revealed the use of only one cryptic splice acceptor site located within exon 6, leading to the appearance of an mRNA with a 16 nt deletion. A severe allele is strongly suggested due to the presence of a premature stop codon in the protein only 12 nt downstream. PMID:24667412

  19. CDKN2B expression and subcutaneous adipose tissue expandability: Possible influence of the 9p21 atherosclerosis locus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Svensson, Per-Arne; Wahlstrand, Björn; Olsson, Maja

    2014-04-18

    Highlights: • The tumor suppressor gene CDKN2B is highly expressed in human adipose tissue. • Risk alleles at the 9p21 locus modify CDKN2B expression in a BMI-dependent fashion. • There is an inverse relationship between expression of CDKN2B and adipogenic genes. • CDKN2B expression influences to postprandial triacylglycerol clearance. • CDKN2B expression in adipose tissue is linked to markers of hepatic steatosis. - Abstract: Risk alleles within a gene desert at the 9p21 locus constitute the most prevalent genetic determinant of cardiovascular disease. Previous research has demonstrated that 9p21 risk variants influence gene expression in vascular tissues, yet the biologicalmore » mechanisms by which this would mediate atherosclerosis merits further investigation. To investigate possible influences of this locus on other tissues, we explored expression patterns of 9p21-regulated genes in a panel of multiple human tissues and found that the tumor suppressor CDKN2B was highly expressed in subcutaneous adipose tissue (SAT). CDKN2B expression was regulated by obesity status, and this effect was stronger in carriers of 9p21 risk alleles. Covariation between expression of CDKN2B and genes implemented in adipogenesis was consistent with an inhibitory effect of CDKN2B on SAT proliferation. Moreover, studies of postprandial triacylglycerol clearance indicated that CDKN2B is involved in down-regulation of SAT fatty acid trafficking. CDKN2B expression in SAT correlated with indicators of ectopic fat accumulation, including markers of hepatic steatosis. Among genes regulated by 9p21 risk variants, CDKN2B appears to play a significant role in the regulation of SAT expandability, which is a strong determinant of lipotoxicity and therefore might contribute to the development of atherosclerosis.« less

  20. Risk assessment of the National Institute of Standards and Technology petroleum crude oil standard water accommodated fraction: further application of a copepod-based, full life-cycle bioassay.

    PubMed

    Bejarano, Adriana C; Chandler, G Thomas; He, Lijian; Cary, Tawnya L; Ferry, John L

    2006-07-01

    The U.S. National Institute of Standards and Technology (NIST) petroleum crude oil was used to generate NIST water-accommodated hydrocarbon fractions (WAFs) for standardized assessment of crude oil effects on the copepod Amphiascus tenuiremis. Effects were assessed using a 96-well microplate, full life-cycle test. Briefly, nauplii (age, 24 h) were reared individually to adults (n > or =120 nauplii/treatment) in microplate wells containing 200 microl of treatment solution (seawater control [0%] or 10, 30, 50, or 100% NIST-WAF). Nauplii were monitored through development to adulthood, and mature virgin male:female pairs mated in wells containing original treatments (<30 d). A second bioassay using 0, 10, 30, and 50% WAFs (n > or =60 nauplii/treatment) was conducted to assess the effects of ultraviolet (UV) light on naupliar endpoints (<16 d). In the first experiment, nauplius-to-copepodite survival in exposures to 100% WAF was 27% +/- 6% lower than in controls (92% +/- 1%), but copepodite-to-adult survival was greater than 90% across all treatments. Analysis of development curves showed that nauplii in the 10% WAF developed into copepodites 25% faster, whereas nauplii in the 50 and 100% WAFs developed 17% slower, than controls. Copepodite development into male and female copepods was significantly delayed (2 and 4 d, respectively) in the 100% WAF compared to controls. Although none of the WAF exposures had significant effects on fertilization success or total viable production (p > 0.05), embryo hatching in the 100% WAF was significantly less (70.0% +/- 21.2%) than that in controls (87.0% +/- 19.4%). Results from the UV bioassay showed that relatively short exposures (<14 d) to 30 and 50% WAFs in the presence of UV light caused negative effects on copepod survival and development. Naupliar-stage survival and developmental endpoints were the most sensitive indicators of exposure to the NIST crude oil WAF

  1. Anti-cancer peptides from ras-p21 and p53 proteins.

    PubMed

    Pincus, Matthew R; Fenelus, Maly; Sarafraz-Yazdi, Ehsan; Adler, Victor; Bowne, Wilbur; Michl, Josef

    2011-01-01

    We have employed computer-based molecular modeling approaches to design peptides from the ras-p21 and p53 proteins that either induce tumor cell reversion to the untransformed phenotype or induce tumor cell necrosis without affecting normal cells. For rasp21, we have computed and superimposed the average low energy structures for the wild-type protein and oncogenic forms of this protein and found that specific domains change conformation in the oncogenic proteins. We have synthesized peptides corresponding to these and found that ras peptides, 35-47 (PNC-7) and 96-110 (PNC-2), block oncogenic ras-p21-induced oocyte maturation but have no effect on insulin-induced oocyte maturation that requires activation of endogenous wild-type ras-p21. These results show signal transduction pathway differences between oncogenic and activated wild-type ras-p21. Both peptides, attached to a membrane-penetrating peptide (membrane residency peptide or MRP), either induce phenotypic reversion to the untransformed phenotype or tumor cell necrosis of several ras-transformed cell lines, but have no effect on the growth of normal cells. Using other computational methods, we have designed two peptides, PNC-27 and 28, containing HDM-2-protein-binding domain sequences from p53 linked on their C-termini to the MRP that induce pore formation in the membranes of a wide range of cancer cells but not any normal cells tested. This is due to the expression of HDM-2 in the cancer cell membrane that does not occur in normal cells. These peptides eradicate a highly malignant tumor in nude mice with no apparent side effects. Both ras and p53 peptides show promise as anti-tumor agents in humans.

  2. The 2p21 deletion syndrome: characterization of the transcription content.

    PubMed

    Parvari, Ruti; Gonen, Yael; Alshafee, Ismael; Buriakovsky, Sophia; Regev, Kfir; Hershkovitz, Eli

    2005-08-01

    The vast majority of small-deletion syndromes are caused by haploinsufficiency of one or several genes and are transmitted as dominant traits. We have previously identified a homozygous deletion of 179,311 bp on chromosome 2p21 as the cause of a unique syndrome, inherited in a recessive mode, consisting of cystinuria, neonatal seizures, hypotonia, severe somatic and developmental delay, facial dysmorphism, and reduced activity of all the respiratory chain enzymatic complexes that are encoded in the mitochondria. We now present the transcription content of this region: Multiple splicing variants of the genes protein phosphatase 1B (formerly 2C) magnesium-dependent, beta isoform (PPM1B), SLC3A1, and KIAA0436 (approved gene symbol PREPL) were identified and their patterns of expression analyzed. The spliced variants are predicted to have additional functions compared to the known variants and their patterns of expression fit the tissues affected by the syndrome. The first exon of an additional gene (C2orf34) is encoded in the deleted region and the gene is not expressed in the patients. In addition several transcripts with very short open reading frames are also encoded in the deletion. The identification of all transcripts encoded in the region deleted in the patients is the first step in the study of the genotype-phenotype correlation of the 2p21 patients.

  3. Differential effects on apoptosis induction in hepatocyte lines by stable expression of hepatitis B virus X protein

    PubMed Central

    Fiedler, Nicola; Quant, Ellen; Fink, Ludger; Sun, Jianguang; Schuster, Ralph; Gerlich, Wolfram H; Schaefer, Stephan

    2006-01-01

    AIM: Hepatitis B virus protein X (HBx) has been shown to be weakly oncogenic in vitro. The transforming activities of HBx have been linked with the inhibition of several functions of the tumor suppressor p53. We have studied whether HBx may have different effects on p53 depending on the cell type. METHODS: We used the human hepatoma cell line HepG2 and the immortalized murine hepatocyte line AML12 and analyzed stably transfected clones which expressed physiological amounts of HBx. P53 was induced by UV irradiation. RESULTS: The p53 induction by UV irradiation was unaffected by stable expression of HBx. However, the expression of the cyclin kinase inhibitor p21waf/cip/sdi which gets activated by p53 was affected in the HBx transformed cell line AML12-HBx9, but not in HepG2. In AML-HBx9 cells, p21waf/cip/sdi-protein expression and p21waf/cip/sdi transcription were deregulated. Furthermore, the process of apoptosis was affected in opposite ways in the two cell lines investigated. While stable expression of HBx enhanced apoptosis induced by UV irradiation in HepG2-cells, apoptosis was decreased in HBx transformed AML12-HBx9. P53 repressed transcription from the HBV enhancer I, when expressed from expression vectors or after induction of endogenous p53 by UV irradiation. Repression by endogenous p53 was partially reversible by stably expressed HBx in both cell lines. CONCLUSION: Stable expression of HBx leads to deregulation of apoptosis induced by UV irradiation depending on the cell line used. In an immortalized hepatocyte line HBx acted anti-apoptotic whereas expression in a carcinoma derived hepatocyte line HBx enhanced apoptosis. PMID:16937438

  4. 21 CFR 862.1120 - Blood gases (PCO2, PO2) and blood pH test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Blood gases (PCO2, PO2) and blood pH test system. 862.1120 Section 862.1120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  5. 21 CFR 862.1120 - Blood gases (PCO2, PO2) and blood pH test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Blood gases (PCO2, PO2) and blood pH test system. 862.1120 Section 862.1120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  6. 21 CFR 862.1120 - Blood gases (PCO2, PO2) and blood pH test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Blood gases (PCO2, PO2) and blood pH test system. 862.1120 Section 862.1120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  7. 21 CFR 862.1120 - Blood gases (PCO2, PO2) and blood pH test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Blood gases (PCO2, PO2) and blood pH test system. 862.1120 Section 862.1120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  8. Expressions of p53 and p21 in primary gastric lymphomas.

    PubMed Central

    Go, J. H.; Yang, W. I.

    2001-01-01

    The p21 overexpression is thought to be a consequence of the p53 induced activation of the p21 gene. The immunohistochemical evaluation of p53 and p21 can be a valuable means of assessing the functional status of the p53 gene product. We examined the overexpression of p21 and p53 proteins in primary gastric lymphomas and the correlation with prognosis. A total of 32 cases of gastric lymphomas was classified into low-grade lymphomas of mucosa-associated lymphoid tissue type (n=16) and high-grade B-cell lymphomas (n=16). In low-grade lymphomas, only one case showed p53 positivity and all cases were p21-negative. In high-grade lymphomas, seven cases were p53+/p21- (44%), one case was p53+/p21+ (6%), and eight cases were p53-/p21- (50%). The p53+/p21- cases had a much lower percentage of patients sustaining a continuous complete remission state (3/7, 43%) compared with other cases (6/7, 86%). From these results, we concluded that p21 expression is rare in primary gastric lymphomas. Therefore, p53-positive lymphomas can be assumed as having p53 mutation. And combined studies of p53 and p21 may be used as a prognostic indicator in primary gastric high-grade lymphomas. PMID:11748353

  9. Roles of HAUSP-mediated p53 regulation in central nervous system development.

    PubMed

    Kon, N; Zhong, J; Kobayashi, Y; Li, M; Szabolcs, M; Ludwig, T; Canoll, P D; Gu, W

    2011-08-01

    The deubiquitinase HAUSP (herpesvirus-associated ubiquitin-specific protease; also called USP7) has a critical role in regulating the p53-Mdm2 (murine double minute 2) pathway. By using the conventional knockout approach, we previously showed that hausp inactivation leads to early embryonic lethality. To fully understand the physiological functions of hausp, we have generated mice lacking hausp specifically in the brain and examined the impacts of this manipulation on brain development. We found that deletion of hausp in neural cells resulted in neonatal lethality. The brains from these mice displayed hypoplasia and deficiencies in development, which were mainly caused by p53-mediated apoptosis. Detailed analysis also showed an increase of both p53 levels and p53-dependent transcriptional activation in hausp knockout brains. Notably, neural cell survival and brain development of hausp-mutant mice can largely be restored in the p53-null background. Nevertheless, in contrast to the case of mdm2- and mdm4 (murine double minute 4)-mutant mice, inactivation of p53 failed to completely rescue the neonatal lethality of these hausp-mutant mice. These results indicate that HAUSP-mediated p53 regulation is crucial for brain development, and also suggest that both the p53-dependent and the p53-independent functions of HAUSP contribute to the neonatal lethality of hausp-mutant mice.

  10. Characterization of the Akt2 Domain Essential for Binding Nuclear p21cip1 to Promote Cell Cycle Arrest during Myogenic Differentiation

    PubMed Central

    Heron-Milhavet, Lisa; Franckhauser, Celine; Fernandez, Anne; Lamb, Ned J.

    2013-01-01

    The binding of the cdk inhibitor p21cip1 to Akt2 in the nucleus is an essential component in determining the specific role of Akt2 in the cell cycle arrest that precedes myogenic differentiation. Here, through a combination of biochemical and cell biology approaches, we have addressed the molecular basis of this binding. Using amino-terminal truncation of Akt2, we show that p21cip1 binds at the carboxy terminal of Akt2 since deletion of the first 400 amino acids did not affect the interaction between Akt2 and p21cip1. Pull down using carboxy terminal-truncated Akt2 protein revealed the importance of the region between amino acids 400 and 445 for the binding to p21cip1. Since Akt2_400–445 and Akt2_420–445 peptides could both bind p21cip1, this refines the binding domain on Akt2 between amino acids 420 and 445. In order to confirm these data in living cells, we developed a protocol to synchronize myoblasts at the cell cycle exit point when p21cip1 expression is induced by MyoD before myogenic differentiation. When a synthetic Akt2 peptide spanning the region (410–437) was microinjected in p21-expressing myoblasts, p21cip1 no longer localized exclusively in the nucleus, instead being redistributed throughout the cell, thus showing that injected peptide 410–437 acts to compete with the binding of endogenous Akt2 to p21cip1. Taken together, our data suggest that this 27 amino acid sequence on Akt2 is necessary and sufficient to bind p21cip1 both in vitro and in living cells. PMID:24194853

  11. Investigation of the thermonuclear 18Ne(α,p)21Na reaction rate via resonant elastic scattering of 21Na + p

    NASA Astrophysics Data System (ADS)

    Zhang, L. Y.; He, J. J.; Parikh, A.; Xu, S. W.; Yamaguchi, H.; Kahl, D.; Kubono, S.; Mohr, P.; Hu, J.; Ma, P.; Chen, S. Z.; Wakabayashi, Y.; Wang, H. W.; Tian, W. D.; Chen, R. F.; Guo, B.; Hashimoto, T.; Togano, Y.; Hayakawa, S.; Teranishi, T.; Iwasa, N.; Yamada, T.; Komatsubara, T.; Zhang, Y. H.; Zhou, X. H.

    2014-01-01

    The 18Ne(α,p)21Na reaction is thought to be one of the key breakout reactions from the hot CNO cycles to the rp process in type I x-ray bursts. In this work, the resonant properties of the compound nucleus 22Mg have been investigated by measuring the resonant elastic scattering of 21Na + p. An 89-MeV 21Na radioactive beam delivered from the CNS Radioactive Ion Beam Separator bombarded an 8.8 mg/cm2 thick polyethylene (CH2)n target. The 21Na beam intensity was about 2×105 pps, with a purity of about 70% on target. The recoiled protons were measured at the center-of-mass scattering angles of θc.m.≈175.2∘, 152.2∘, and 150.5∘ by three sets of ΔE-E telescopes, respectively. The excitation function was obtained with the thick-target method over energies Ex(22Mg)=5.5-9.2 MeV. In total, 23 states above the proton-threshold in 22Mg were observed, and their resonant parameters were determined via an R-matrix analysis of the excitation functions. We have made several new Jπ assignments and confirmed some tentative assignments made in previous work. The thermonuclear 18Ne(α,p)21Na rate has been recalculated based on our recommended spin-parity assignments. The astrophysical impact of our new rate has been investigated through one-zone postprocessing x-ray burst calculations. We find that the 18Ne(α,p)21Na rate significantly affects the peak nuclear energy generation rate, reaction fluxes, and onset temperature of this breakout reaction in these astrophysical phenomena.

  12. Cisplatin fails to induce puma mediated apoptosis in mucosal melanomas

    PubMed Central

    Fritsche, Marie Kristin; Metzler, Veronika; Becker, Karen; Plettenberg, Christian; Heiser, Clemens; Hofauer, Benedikt; Knopf, Andreas

    2015-01-01

    Objectives Mucosal melanomas (MM) are aggressive subtypes of common melanomas. It remains unclear whether limitations in their resectability or their distinctive molecular mechanisms are responsible for the aggressive phenotype. Methods In total, 112 patients with cutaneous melanomas (CM) and 27 patients with MM were included. Clinical parameters were analysed using Chi square, Fisher exact and student's t-test. Survival rates were calculated by Kaplan–Meier. Analysis of p53, p21, Mdm2, Hipk2, Gadd45, Puma, Bax, Casp9 and Cdk1 via quantitative PCR and immunohistochemistry (IHC) was performed. TP53 induction after cisplatin treatment was analysed in 10 cell lines (melanocytes, four MM and five CM) using western blot (WB) and qPCR. Results The overall/recurrence-free survival differed significantly between MM (40 months and 30 months) and CM (90 months and 107 months; p < 0.001). IHC and WB confirmed high p53 expression in all melanomas. Hipk2 and Gadd45 showed significantly higher expressions in CM (p < 0.005; p = 0.004). QPCR and WB of wild-type cell lines demonstrated no differences for p53, p21, Mdm2, Bax and Casp9. WB failed to detect Puma in MM, while Cdk1 regulation occurred exclusively in MM. Conclusions The aggressive phenotype of MM did not appear to be due to differential expressions of p53, p21, Mdm2, Bax or Casp9. A non-functional apoptosis in MM may have further clinical implications. PMID:25831048

  13. p53-independent p21 induction by MELK inhibition.

    PubMed

    Matsuda, Tatsuo; Kato, Taigo; Kiyotani, Kazuma; Tarhan, Yunus Emre; Saloura, Vassiliki; Chung, Suyoun; Ueda, Koji; Nakamura, Yusuke; Park, Jae-Hyun

    2017-08-29

    MELK play critical roles in human carcinogenesis through activation of cell proliferation, inhibition of apoptosis and maintenance of stemness. Therefore, MELK is a promising therapeutic target for a wide range of cancers. Although p21 is a well-known p53-downstream gene, we found that treatment with a potent MELK inhibitor, OTS167, could induce p21 protein expression in cancer cell lines harboring loss-of-function TP53 mutations. We also confirmed that MELK knockdown by siRNA induced the p21 expression in p53-deficient cancer cell lines and caused the cell cycle arrest at G1 phase. Further analysis indicated that FOXO1 and FOXO3, two known transcriptional regulators of p21, were phosphorylated by MELK and thus be involved in the induction of p21 after MELK inhibition. Collectively, our herein findings suggest that MELK inhibition may be effective for human cancers even if TP53 is mutated.

  14. p53-independent p21 induction by MELK inhibition

    PubMed Central

    Matsuda, Tatsuo; Kato, Taigo; Kiyotani, Kazuma; Tarhan, Yunus Emre; Saloura, Vassiliki; Chung, Suyoun; Ueda, Koji; Nakamura, Yusuke; Park, Jae-Hyun

    2017-01-01

    MELK play critical roles in human carcinogenesis through activation of cell proliferation, inhibition of apoptosis and maintenance of stemness. Therefore, MELK is a promising therapeutic target for a wide range of cancers. Although p21 is a well-known p53-downstream gene, we found that treatment with a potent MELK inhibitor, OTS167, could induce p21 protein expression in cancer cell lines harboring loss-of-function TP53 mutations. We also confirmed that MELK knockdown by siRNA induced the p21 expression in p53-deficient cancer cell lines and caused the cell cycle arrest at G1 phase. Further analysis indicated that FOXO1 and FOXO3, two known transcriptional regulators of p21, were phosphorylated by MELK and thus be involved in the induction of p21 after MELK inhibition. Collectively, our herein findings suggest that MELK inhibition may be effective for human cancers even if TP53 is mutated. PMID:28938528

  15. Grow-ING, Age-ING and Die-ING: ING proteins link cancer, senescence and apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, Michael; Berardi, Philip; Gong Wei

    The INhibitor of Growth (ING) family of plant homeodomain (PHD) proteins induce apoptosis and regulate gene expression through stress-inducible binding of phospholipids with subsequent nuclear and nucleolar localization. Relocalization occurs concomitantly with interaction with a subset of nuclear proteins, including PCNA, p53 and several regulators of acetylation such as the p300/CBP and PCAF histone acetyltransferases (HATs), as well as the histone deacetylases HDAC1 and hSir2. These interactions alter the localized state of chromatin compaction, subsequently affecting the expression of subsets of genes, including those associated with the stress response (Hsp70), apoptosis (Bax, MDM2) and cell cycle regulation (p21{sup WAF1}, cyclinmore » B) in a cell- and tissue-specific manner. The expression levels and subcellular localization of ING proteins are altered in a significant number of human cancer types, while the expression of ING isoforms changes during cellular aging, suggesting that ING proteins may play a role in linking cellular transformation and replicative senescence. The variety of functions attributed to ING proteins suggest that this tumor suppressor serves to link the disparate processes of cell cycle regulation, cell suicide and cellular aging through epigenetic regulation of gene expression. This review examines recent findings in the ING field with a focus on the functions of protein-protein interactions involving ING family members and the mechanisms by which these interactions facilitate the various roles that ING proteins play in tumorigenesis, apoptosis and senescence.« less

  16. Genomic aberrations in salivary duct carcinoma arising in Warthin tumor of parotid gland: DNA microarray and HER2 fluorescence in situ hybridization.

    PubMed

    Kim, Hyun-Jung; Yoo, Young Sam; Park, Kyeongmee; Kwon, Ji-Eun; Kim, Jung Yeon; Monzon, Federico A

    2011-09-01

    Carcinoma arising from Warthin tumor is extremely rare. A 79-year-old man was admitted for a firm, well-defined, 5-cm left infra-auricular mass. Aspiration cytology showed many lymphohistiocytes and oncocytes in a proteinaceous background, compatible with Warthin tumor. A left superficial parotidectomy showed a solid mass around the cyst wall. The tumor cells of the solid area were arranged as infiltrative ducts with a few foci of malignant transformation. Virtual karyotyping disclosed a complex pattern of genetic aberrations with a focal amplification in 12q14-q21.2. This chromosomal region contains the MDM2 (murine double minute) gene, which regulates p53 inactivation. HER2 fluorescence in situ hybridization showed a focal amplification. Subsequently, the patient underwent total parotidectomy and ipsilateral neck dissection for a recurrence. To our knowledge, this is the first case of salivary duct carcinoma arising from Warthin tumor. The essential molecular pathway has not been reported, we presume an important role of MDM2 amplification- P53 inactivation.

  17. [Inhibitory effect of exogenous insulin-like growth factor binding protein 7 on proliferation of human breast cancer cell line MDA-MB-453 and its mechanism].

    PubMed

    Yuan, Lei; Fan, Wen-Juan; Yang, Xu-Guang; Rao, Shu-Mei; Song, Jin-Ling; Song, Guo-Hua

    2013-10-25

    The present study was to investigate the effects of exogenous insulin-like growth factor binding protein 7 (IGFBP7) on the proliferation of human breast cancer cell line MDA-MB-453 and its possible mechanism. By means of MTT method in vitro, the results showed exogenous IGFBP7 inhibited the growth of MDA-MB-453 cells (IC50 of IGFBP7 = 8.49 μg/mL) in time- and concentration-dependent manner. SB203580, p38(MAPK) inhibitor, blocked the anti-proliferative effect of exogenous IGFBP7. The flow cytometry assay showed that exogenous IGFBP7 remarkably induced G0/G1 arrest in MDA-MB-453 cells. The Western blot showed that exogenous IGFBP7 promoted phosphorylation of p38(MAPK), up-regulated expression of p21(CIP1/WAF1), and inhibited phosphorylation of Rb. SB203580 restrained exogenous IGFBP7-induced regulation of p21(CIP1/WAF1) and p-Rb in MDA-MB-453 cells. In conclusion, the present study suggests that exogenous IGFBP7 could activate the p38(MAPK) signaling pathway, upregulate p21(CIP1/WAF1) expression, inhibit phosphorylation of Rb, and finally induce G0/G1 arrest in MDA-MB-453 cells.

  18. Using a preclinical mouse model of high-grade astrocytoma to optimize p53 restoration therapy.

    PubMed

    Shchors, Ksenya; Persson, Anders I; Rostker, Fanya; Tihan, Tarik; Lyubynska, Natalya; Li, Nan; Swigart, Lamorna Brown; Berger, Mitchel S; Hanahan, Douglas; Weiss, William A; Evan, Gerard I

    2013-04-16

    Based on clinical presentation, glioblastoma (GBM) is stratified into primary and secondary types. The protein 53 (p53) pathway is functionally incapacitated in most GBMs by distinctive type-specific mechanisms. To model human gliomagenesis, we used a GFAP-HRas(V12) mouse model crossed into the p53ER(TAM) background, such that either one or both copies of endogenous p53 is replaced by a conditional p53ER(TAM) allele. The p53ER(TAM) protein can be toggled reversibly in vivo between wild-type and inactive conformations by administration or withdrawal of 4-hydroxytamoxifen (4-OHT), respectively. Surprisingly, gliomas that develop in GFAP-HRas(V12);p53(+/KI) mice abrogate the p53 pathway by mutating p19(ARF)/MDM2 while retaining wild-type p53 allele. Consequently, such tumors are unaffected by restoration of their p53ER(TAM) allele. By contrast, gliomas arising in GFAP-HRas(V12);p53(KI/KI) mice develop in the absence of functional p53. Such tumors retain a functional p19(ARF)/MDM2-signaling pathway, and restoration of p53ER(TAM) allele triggers p53-tumor-suppressor activity. Congruently, growth inhibition upon normalization of mutant p53 by a small molecule, Prima-1, in human GBM cultures also requires p14(ARF)/MDM2 functionality. Notably, the antitumoral efficacy of p53 restoration in tumor-bearing GFAP-HRas(V12);p53(KI/KI) animals depends on the duration and frequency of p53 restoration. Thus, intermittent exposure to p53ER(TAM) activity mitigated the selective pressure to inactivate the p19(ARF)/MDM2/p53 pathway as a means of resistance, extending progression-free survival. Our results suggest that intermittent dosing regimes of drugs that restore wild-type tumor-suppressor function onto mutant, inactive p53 proteins will prove to be more efficacious than traditional chronic dosing by similarly reducing adaptive resistance.

  19. Using a preclinical mouse model of high-grade astrocytoma to optimize p53 restoration therapy

    PubMed Central

    Shchors, Ksenya; Persson, Anders I.; Rostker, Fanya; Tihan, Tarik; Lyubynska, Natalya; Li, Nan; Swigart, Lamorna Brown; Berger, Mitchel S.; Hanahan, Douglas; Weiss, William A.; Evan, Gerard I.

    2013-01-01

    Based on clinical presentation, glioblastoma (GBM) is stratified into primary and secondary types. The protein 53 (p53) pathway is functionally incapacitated in most GBMs by distinctive type-specific mechanisms. To model human gliomagenesis, we used a GFAP-HRasV12 mouse model crossed into the p53ERTAM background, such that either one or both copies of endogenous p53 is replaced by a conditional p53ERTAM allele. The p53ERTAM protein can be toggled reversibly in vivo between wild-type and inactive conformations by administration or withdrawal of 4-hydroxytamoxifen (4-OHT), respectively. Surprisingly, gliomas that develop in GFAP-HRasV12;p53+/KI mice abrogate the p53 pathway by mutating p19ARF/MDM2 while retaining wild-type p53 allele. Consequently, such tumors are unaffected by restoration of their p53ERTAM allele. By contrast, gliomas arising in GFAP-HRasV12;p53KI/KI mice develop in the absence of functional p53. Such tumors retain a functional p19ARF/MDM2-signaling pathway, and restoration of p53ERTAM allele triggers p53-tumor–suppressor activity. Congruently, growth inhibition upon normalization of mutant p53 by a small molecule, Prima-1, in human GBM cultures also requires p14ARF/MDM2 functionality. Notably, the antitumoral efficacy of p53 restoration in tumor-bearing GFAP-HRasV12;p53KI/KI animals depends on the duration and frequency of p53 restoration. Thus, intermittent exposure to p53ERTAM activity mitigated the selective pressure to inactivate the p19ARF/MDM2/p53 pathway as a means of resistance, extending progression-free survival. Our results suggest that intermittent dosing regimes of drugs that restore wild-type tumor-suppressor function onto mutant, inactive p53 proteins will prove to be more efficacious than traditional chronic dosing by similarly reducing adaptive resistance. PMID:23542378

  20. Matrix mechanics controls FHL2 movement to the nucleus to activate p21 expression

    PubMed Central

    Nakazawa, Naotaka; Sathe, Aneesh R.; Shivashankar, G. V.; Sheetz, Michael P.

    2016-01-01

    Substrate rigidity affects many physiological processes through mechanochemical signals from focal adhesion (FA) complexes that subsequently modulate gene expression. We find that shuttling of the LIM domain (domain discovered in the proteins, Lin11, Isl-1, and Mec-3) protein four-and-a-half LIM domains 2 (FHL2) between FAs and the nucleus depends on matrix mechanics. In particular, on soft surfaces or after the loss of force, FHL2 moves from FAs into the nucleus and concentrates at RNA polymerase (Pol) II sites, where it acts as a transcriptional cofactor, causing an increase in p21 gene expression that will inhibit growth on soft surfaces. At the molecular level, shuttling requires a specific tyrosine in FHL2, as well as phosphorylation by active FA kinase (FAK). Thus, we suggest that FHL2 phosphorylation by FAK is a critical, mechanically dependent step in signaling from soft matrices to the nucleus to inhibit cell proliferation by increasing p21 expression. PMID:27742790

  1. Tea polyphenols can restrict benzo[a]pyrene-induced lung carcinogenesis by altered expression of p53-associated genes and H-ras, c-myc and cyclin D1.

    PubMed

    Manna, Sugata; Mukherjee, Sudeshna; Roy, Anup; Das, Sukta; Panda, Chinmay Kr

    2009-05-01

    The modulatory influence of tea polyphenols (epigallocatechin gallate, epicatechin gallate and theaflavin) on benzo[a]pyrene (B[a]P)-induced lung carcinogenesis in mice was analyzed using histopathological and molecular parameters. Progression of lung lesions was restricted at the hyperplastic stage by tea polyphenols. A significant reduction in cellular proliferative index and an increase in apoptotic index were noted in the restricted lung lesions. High expression of H-ras, c-myc, cyclin D1 and p53 genes was seen at the inflammatory stage (9th week) and in subsequent premalignant lesions, but down-regulation of H-ras at the hyperplastic stage (17th week). Expression of bcl-2 was high in hyperplastic lesions, whereas the expression of mdm2 and bcl-xl increased only at the moderately dysplastic stage (36th week). The tea polyphenols inhibited inflammatory response in the lung lesions on the 9th week, when decreased expression of H-ras and c-myc and increased expression of bax were noted. Prolonged treatment (>9th week) with tea polyphenols resulted in changes in the expression of some additional genes, such as reduced expression of cyclin D1 (from the 17th week), bcl-2 (from the 26th week; mild dysplasia) and p21 (on the 36th week), and high expression of p53 (from the 17th week) and p27 (on the 36th week). These observations indicate that the tea polyphenols can restrict B[a]P-induced lung carcinogenesis by differential modulation of the expression of p53 and its associated genes such as bax, bcl-2, mdm2, p21 and p27, along with H-ras, c-myc and cyclin D1, at different time points.

  2. DNA binding of the p21 repressor ZBTB2 is inhibited by cytosine hydroxymethylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lafaye, Céline; Barbier, Ewa; Miscioscia, Audrey

    2014-03-28

    Highlights: • 5-hmC epigenetic modification is measurable in HeLa, SH-SY5Y and UT7-MPL cell lines. • ZBTB2 binds to DNA probes containing 5-mC but not to sequences containing 5-hmC. • This differential binding is verified with DNA sequences involved in p21 regulation. - Abstract: Recent studies have demonstrated that the modified base 5-hydroxymethylcytosine (5-hmC) is detectable at various rates in DNA extracted from human tissues. This oxidative product of 5-methylcytosine (5-mC) constitutes a new and important actor of epigenetic mechanisms. We designed a DNA pull down assay to trap and identify nuclear proteins bound to 5-hmC and/or 5-mC. We applied thismore » strategy to three cancerous cell lines (HeLa, SH-SY5Y and UT7-MPL) in which we also measured 5-mC and 5-hmC levels by HPLC-MS/MS. We found that the putative oncoprotein Zinc finger and BTB domain-containing protein 2 (ZBTB2) is associated with methylated DNA sequences and that this interaction is inhibited by the presence of 5-hmC replacing 5-mC. As published data mention ZBTB2 recognition of p21 regulating sequences, we verified that this sequence specific binding was also alleviated by 5-hmC. ZBTB2 being considered as a multifunctional cell proliferation activator, notably through p21 repression, this work points out new epigenetic processes potentially involved in carcinogenesis.« less

  3. Retrospective study reveals the circulation of norovirus genotype GII.P21-GII.2 in Romania

    PubMed

    Dinu, Sorin; Szmal, Camelia; Damian, Maria; Oprişan, Gabriela

    2016-01-01

    Noroviruses are the leading cause of acute gastroenteritis, causing significant economic burden globally. Infection is self-limiting, occurring as sporadic cases or producing outbreaks associated with consumption of contaminated water or food. All age groups are affected and person to person transmission is frequent. Except a recent outbreak in Romania caused by the emergent genotype GII.P17-GII.17, few data regarding the circulation of noroviruses in our country are available. We retrospectively analyzed stool samples from acute gastroenteritis patients hospitalized in Romania between 2005 and 2008. Noroviruses were detected by RT-PCR and phylogenetic analysis was inferred from partial sequences spanning ORF1 and ORF2. Recombinant GII.P21-GII.2 isolates were found in two adult patients from a cluster of acute gastroenteritis in 2006. Molecular analysis based on partial genomic sequences indicated high degree of similarity between the two isolates and grouped them with cosmopolitan strains circulating in the same period of time. Along with the high rate of mutation, recombination is an important driving force in norovirus evolution. GII.P21 isolates, formerly known as GII.b recombinants, have been detected in Europe since 2000 and associated with sporadic cases and outbreaks of gastroenteritis worldwide. This is the first work describing norovirus GII.P21-GII.2 identified in Romania.

  4. Misregulation effect of a novel allelic variant in the Z promoter region found in cis with the CYP21A2 p.P482S mutation: implications for 21-hydroxylase deficiency.

    PubMed

    Fernández, Cecilia S; Bruque, Carlos D; Taboas, Melisa; Buzzalino, Noemí D; Espeche, Lucia D; Pasqualini, Titania; Charreau, Eduardo H; Alba, Liliana G; Ghiringhelli, Pablo D; Dain, Liliana

    2015-09-01

    The aim of the current study was to search for the presence of genetic variants in the CYP21A2 Z promoter regulatory region in patients with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Screening of the 10 most frequent pseudogene-derived mutations was followed by direct sequencing of the entire coding sequence, the proximal promoter, and a distal regulatory region in DNA samples from patients with at least one non-determined allele. We report three non-classical patients that presented a novel genetic variant-g.15626A>G-within the Z promoter regulatory region. In all the patients, the novel variant was found in cis with the mild, less frequent, p.P482S mutation located in the exon 10 of the CYP21A2 gene. The putative pathogenic implication of the novel variant was assessed by in silico analyses and in vitro assays. Topological analyses showed differences in the curvature and bendability of the DNA region bearing the novel variant. By performing functional studies, a significantly decreased activity of a reporter gene placed downstream from the regulatory region was found by the G transition. Our results may suggest that the activity of an allele bearing the p.P482S mutation may be influenced by the misregulated CYP21A2 transcriptional activity exerted by the Z promoter A>G variation.

  5. A method for the production of large volumes of WAF and CEWAF for dosing mesocosms to understand marine oil snow formation.

    PubMed

    Wade, Terry L; Morales-McDevitt, Maya; Bera, Gopal; Shi, Dawai; Sweet, Stephen; Wang, Binbin; Gold-Bouchot, Gerado; Quigg, Antonietta; Knap, Anthony H

    2017-10-01

    Marine oil snow (MOS) formation is a mechanism to transport oil from the ocean surface to sediments. We describe here the use of 110L mesocosms designed to mimic oceanic parameters during an oil spill including the use of chemical dispersants in order to understand the processes controlling MOS formation. These experiments were not designed to be toxicity tests but rather to illustrate mechanisms. This paper focuses on the development of protocols needed to conduct experiments under environmentally relevant conditions to examine marine snow and MOS. The experiments required the production of over 500 liters of water accommodated fraction (WAF), chemically enhanced water accommodated fraction of oil (CEWAF) as well as diluted CEWAF (DCEWAF). A redesigned baffled (170 L) recirculating tank (BRT) system was used. Two mesocosm experiments (M1 and M2) were run for several days each. In both M1 and M2, marine snow and MOS was formed in controls and all treatments respectively. Estimated oil equivalent (EOE) concentrations of CEWAF were in the high range of concentrations reported during spills and field tests, while WAF and DCEWAF concentrations were within the range of concentrations reported during oil spills. EOE decreased rapidly within days in agreement with historic data and experiments.

  6. Ionizing Radiation Activates AMP-Activated Kinase (AMPK): A Target for Radiosensitization of Human Cancer Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanli, Toran; Rashid, Ayesha; Liu Caiqiong

    2010-09-01

    Purpose: Adenosine monophosphate (AMP)-activated kinase (AMPK) is a molecular energy sensor regulated by the tumor suppressor LKB1. Starvation and growth factors activate AMPK through the DNA damage sensor ataxia-telangiectasia mutated (ATM). We explored the regulation of AMPK by ionizing radiation (IR) and its role as a target for radiosensitization of human cancer cells. Methods and Materials: Lung, prostate, and breast cancer cells were treated with IR (2-8 Gy) after incubation with either ATM or AMPK inhibitors or the AMPK activator metformin. Then, cells were subjected to either lysis and immunoblotting, immunofluorescence microscopy, clonogenic survival assays, or cell cycle analysis. Results:more » IR induced a robust phosphorylation and activation of AMPK in all tumor cells, independent of LKB1. IR activated AMPK first in the nucleus, and this extended later into cytoplasm. The ATM inhibitor KU-55933 blocked IR activation of AMPK. AMPK inhibition with Compound C or anti-AMPK {alpha} subunit small interfering RNA (siRNA) blocked IR induction of the cell cycle regulators p53 and p21{sup waf/cip} as well as the IR-induced G2/M arrest. Compound C caused resistance to IR, increasing the surviving fraction after 2 Gy, but the anti-diabetic drug metformin enhanced IR activation of AMPK and lowered the surviving fraction after 2 Gy further. Conclusions: We provide evidence that IR activates AMPK in human cancer cells in an LKB1-independent manner, leading to induction of p21{sup waf/cip} and regulation of the cell cycle and survival. AMPK appears to (1) participate in an ATM-AMPK-p21{sup waf/cip} pathway, (2) be involved in regulation of the IR-induced G2/M checkpoint, and (3) may be targeted by metformin to enhance IR responses.« less

  7. Orbiter multiplexer-demultiplexer (MDM)/Space Lab Bus Interface Unit (SL/BIU) serial data interface evaluation, volume 2

    NASA Technical Reports Server (NTRS)

    Tobey, G. L.

    1978-01-01

    Tests were performed to evaluate the operating characteristics of the interface between the Space Lab Bus Interface Unit (SL/BIU) and the Orbiter Multiplexer-Demultiplexer (MDM) serial data input-output (SIO) module. This volume contains the test equipment preparation procedures and a detailed description of the Nova/Input Output Processor Simulator (IOPS) software used during the data transfer tests to determine word error rates (WER).

  8. Transgenic expression of BRCA1 disturbs hematopoietic stem and progenitor cells quiescence and function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Lin; Shi, Guiying; Zhang, Xu

    The balance between quiescence and proliferation of HSCs is an important regulator of hematopoiesis. Loss of quiescence frequently results in HSCs exhaustion, which underscores the importance of tight regulation of proliferation in these cells. Studies have indicated that cyclin-dependent kinases are involved in the regulation of quiescence in HSCs. BRCA1 plays an important role in the repair of DNA double-stranded breaks, cell cycle, apoptosis and transcription. BRCA1 is expressed in the bone marrow. However, the function of BRCA1 in HSCs is unknown. In our study, we generated BRCA1 transgenic mice to investigate the effects of BRCA1 on the mechanisms ofmore » quiescence and differentiation in HSCs. The results demonstrate that over-expression of BRCA1 in the bone marrow impairs the development of B lymphocytes. Furthermore, BRCA1 induced an increase in the number of LSKs, LT-HSCs, ST-HSCs and MPPs. A competitive transplantation assay found that BRCA1 transgenic mice failed to reconstitute hematopoiesis. Moreover, BRCA1 regulates the expression of p21{sup waf1}/cip1 and p57{sup kip2}, which results in a loss of quiescence in LSKs. Together, over-expression of BRCA1 in bone marrow disrupted the quiescent of LSKs, induced excessive accumulation of LSKs, and disrupted differentiation of the HSCs, which acts through the down-regulated of p21{sup waf1}/cip1 and p57{sup kip2}. - Highlights: • Over-expression of BRCA1 results in impaired B lymphocyte development. • BRCA1 transgenic mice disrupted the quiescent of LSKs, induced excessive accumulation of LSKs. • BRCA1 impairs the function of HSCs through the down-regulated of p21{sup waf1/cip1} and p57{sup kip2}.« less

  9. The pre-existing population of 5S rRNA effects p53 stabilization during ribosome biogenesis inhibition.

    PubMed

    Onofrillo, Carmine; Galbiati, Alice; Montanaro, Lorenzo; Derenzini, Massimo

    2017-01-17

    Pre-ribosomal complex RPL5/RPL11/5S rRNA (5S RNP) is considered the central MDM2 inhibitory complex that control p53 stabilization during ribosome biogenesis inhibition. Despite its role is well defined, the dynamic of 5S RNP assembly still requires further characterization. In the present work, we report that MDM2 inhibition is dependent by a pre-existing population of 5S rRNA.

  10. The nucleolus directly regulates p53 export and degradation.

    PubMed

    Boyd, Mark T; Vlatkovic, Nikolina; Rubbi, Carlos P

    2011-09-05

    The correlation between stress-induced nucleolar disruption and abrogation of p53 degradation is evident after a wide variety of cellular stresses. This link may be caused by steps in p53 regulation occurring in nucleoli, as suggested by some biochemical evidence. Alternatively, nucleolar disruption also causes redistribution of nucleolar proteins, potentially altering their interactions with p53 and/or MDM2. This raises the fundamental question of whether the nucleolus controls p53 directly, i.e., as a site where p53 regulatory processes occur, or indirectly, i.e., by determining the cellular localization of p53/MDM2-interacting factors. In this work, transport experiments based on heterokaryons, photobleaching, and micronucleation demonstrate that p53 regulatory events are directly regulated by nucleoli and are dependent on intact nucleolar structure and function. Subcellular fractionation and nucleolar isolation revealed a distribution of ubiquitylated p53 that supports these findings. In addition, our results indicate that p53 is exported by two pathways: one stress sensitive and one stress insensitive, the latter being regulated by activities present in the nucleolus.

  11. p21 is Responsible for Ionizing Radiation-induced Bypass of Mitosis.

    PubMed

    Zhang, Xu Rui; Liu, Yong Ai; Sun, Fang; Li, He; Lei, Su Wen; Wang, Ju Fang

    2016-07-01

    To explore the role of p21 in ionizing radiation-induced changes in protein levels during the G2/M transition and long-term G2 arrest. Protein expression levels were assessed by western blot in the human uveal melanoma 92-1 cells after treatment with ionizing radiation. Depletion of p21 was carried out by employing the siRNA technique. Cell cycle distribution was determined by flow cytometry combined with histone H3 phosphorylation at Ser28, an M-phase marker. Senescence was assessed by senescence- associated-β-galactosidase (SA-β-gal) staining combined with Ki67 staining, a cell proliferation marker. Accompanying increased p21, the protein levels of G2/M transition genes declined significantly in 92-1 cells irradiated with 5 Gy of X-rays. Furthermore, these irradiated cells were blocked at the G2 phase followed by cellular senescence. Depletion of p21 rescued radiation-induced G2 arrest as demonstrated by the upregulation of G2/M transition kinases, as well as the high expression of histone H3 phosphorylated at Ser28. Knockdown of p21 resulted in entry into mitosis of irradiated 92-1 cells. However, cells with serious DNA damage failed to undergo cytokinesis, leading to the accumulation of multinucleated cells. Our results indicated that p21 was responsible for the downregulation of G2/M transition regulatory proteins and the bypass of mitosis induced by irradiation. Downregulation of p21 by siRNA resulted in G2-arrested cells entering into mitosis with serious DNA damage. This is the first report on elucidating the role of p21 in the bypass of mitosis. Copyright © 2016 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  12. 40 CFR 721.10012 - Manganate (MnO21-), calcium (2:1).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Manganate (MnO21-), calcium (2:1). 721... Substances § 721.10012 Manganate (MnO21-), calcium (2:1). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as manganate (MnO2 1 -), calcium (2:1) (PMN P...

  13. 40 CFR 721.10012 - Manganate (MnO21-), calcium (2:1).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Manganate (MnO21-), calcium (2:1). 721... Substances § 721.10012 Manganate (MnO21-), calcium (2:1). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as manganate (MnO2 1 -), calcium (2:1) (PMN P...

  14. Activation of Stat1 by mutant fibroblast growth-factor receptor in thanatophoric dysplasia type II dwarfism.

    PubMed

    Su, W C; Kitagawa, M; Xue, N; Xie, B; Garofalo, S; Cho, J; Deng, C; Horton, W A; Fu, X Y

    1997-03-20

    The achondroplasia class of chondrodysplasias comprises the most common genetic forms of dwarfism in humans and includes achondroplasia, hypochondroplasia and thanatophoric dysplasia types I and II (TDI and TDII), which are caused by different mutations in a fibroblast growth-factor receptor FGFR3 (ref. 1). The molecular mechanism and the mediators of these FGFR3-related growth abnormalities are not known. Here we show that mutant TDII FGFR3 has a constitutive tyrosine kinase activity which can specifically activate the transcription factor Stat1 (for signal transducer and activator of transcription). Furthermore, expression of TDII FGFR3 induced nuclear translocation of Stat1, expression of the cell-cycle inhibitor p21(WAF1/CIP1), and growth arrest of the cell. Thus, TDII FGFR3 may use Stat1 as a mediator of growth retardation in bone development. Consistent with this, Stat1 activation and increased p21(WAF1/CIP1) expression was found in the cartilage cells from the TDII fetus, but not in those from the normal fetus. Thus, abnormal STAT activation and p21(WAF1/CIP1) expression by the TDII mutant receptor may be responsible for this FGFR3-related bone disease.

  15. 40Gbit/s MDM-WDM Laguerre-Gaussian Mode with Equalization for Multimode Fiber in Access Networks

    NASA Astrophysics Data System (ADS)

    Fazea, Yousef; Amphawan, Angela

    2018-04-01

    Modal dispersion is seen as the primary impairment for multimode fiber. Mode division multiplexing (MDM) is a promising technology that has been realized as a favorable technology for considerably upsurges the capacity and distance of multimode fiber in conjunction with Wavelength Division Multiplexing (WDM) for fiber-to-the-home. This paper reveals the importance of an equalization technique in conjunction with controlling the modes spacing of mode division multiplexing-wavelength division multiplexing of Laguerre-Gaussian modes to alleviate modal dispersion for multimode fiber. The effects of channel spacing of 20 channels MDM-WDM were examined through controlling the azimuthal mode number and the radial mode number of Laguerre-Gaussian modes. A data rate of 40Gbit/s was achieved for a distance of 1,500 m for MDM-WDM.

  16. Overexpression of microRNA‑125a‑3p effectively inhibits the cell growth and invasion of lung cancer cells by regulating the mouse double minute 2 homolog/p53 signaling pathway.

    PubMed

    Li, Shenglei; Li, Xin; Zhao, Huasi; Gao, Ming; Wang, Feng; Li, Wencai

    2015-10-01

    MicroRNAs (miRs) are a family of small non-coding RNAs that are 21‑24 nucleotides in length. Decreased expression of hsa‑miR‑125a‑3p is observed in a number of patients with non‑small cell lung cancer; however, it is not clear how this miRNA regulates the growth and invasion of lung tumor cells. The aim of the present study was to identify the function of hsa‑miR‑125a‑3p in the growth and invasion of lung cancer cells. The expression of hsa‑miR‑125a‑3p in the A549, NCI‑H460 and SPCA‑1 lung cancer cell lines was analyzed by reverse transcription‑quantitative polymerase chain reaction and the human bronchiolar epithelium cell line (HBE) was used as a control. The results demonstrated that the expression of hsa‑miR‑125a‑3p was significantly lower in NCI‑H460, A549 and SPCA‑1 cells, compared with that in HBE cells. Overexpression of sense miR‑125a‑3p in the A549 lung cancer cell line inhibited cell proliferation for 5‑7 days (P<0.01), and transfection of antisense miR‑125a‑3p did not suppress the cell growth of the lung cancer cells. In addition, overexpression of miR‑125a‑3p in the NCI‑H460 lung cancer cell line markedly induced cell apoptosis, which was detected by fluorescence‑activated cell sorting with annexin V‑fluorescein isothiocyanate/propidium iodide staining. The results of the Transwell migration assay also revealed that transfection of miR‑125a‑3p resulted in decreased migration of lung cancer tumor cells. The pro‑apoptotic gene p53 expression was detected by western blot analysis. The results revealed that the expression of mouse double minute (MDM)‑2 homolog, the principal cellular antagonist of p53, was decreased and p53 expression was upregulated in sense has‑miR‑125a‑3p transfected A549 cells. This was consistent with that observed in NCI‑H460 cells, suggesting that hsa‑miR‑125a‑3p may be involved in the regulation of the MDM2/p53 signaling pathway in lung cancer cells. In

  17. Methionine sulfoxide reductase A regulates cell growth through the p53-p21 pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Seung Hee; Kim, Hwa-Young, E-mail: hykim@ynu.ac.kr

    2011-12-09

    Highlights: Black-Right-Pointing-Pointer Down-regulation of MsrA inhibits normal cell proliferation. Black-Right-Pointing-Pointer MsrA deficiency leads to an increase in p21 by enhanced p53 acetylation. Black-Right-Pointing-Pointer Down-regulation of MsrA causes cell cycle arrest at the G{sub 2}/M stage. Black-Right-Pointing-Pointer MsrA is a regulator of cell growth that mediates the p53-p21 pathway. -- Abstract: MsrA is an oxidoreductase that catalyzes the stereospecific reduction of methionine-S-sulfoxide to methionine. Although MsrA is well-characterized as an antioxidant and has been implicated in the aging process and cellular senescence, its roles in cell proliferation are poorly understood. Here, we report a critical role of MsrA in normal cellmore » proliferation and describe the regulation mechanism of cell growth by this protein. Down-regulation of MsrA inhibited cell proliferation, but MsrA overexpression did not promote it. MsrA deficiency led to an increase in p21, a major cyclin-dependent kinase inhibitor, thereby causing cell cycle arrest at the G{sub 2}/M stage. While protein levels of p53 were not altered upon MsrA deficiency, its acetylation level was significantly elevated, which subsequently activated p21 transcription. The data suggest that MsrA is a regulator of cell growth that mediates the p53-p21 pathway.« less

  18. HDAC2 phosphorylation-dependent Klf5 deacetylation and RARα acetylation induced by RAR agonist switch the transcription regulatory programs of p21 in VSMCs

    PubMed Central

    Zheng, Bin; Han, Mei; Shu, Ya-nan; Li, Ying-jie; Miao, Sui-bing; Zhang, Xin-hua; Shi, Hui-jing; Zhang, Tian; Wen, Jin-kun

    2011-01-01

    Abnormal proliferation of vascular smooth muscle cells (VSMCs) occurs in hypertension, atherosclerosis and restenosis after angioplasty, leading to pathophysiological vascular remodeling. As an important growth arrest gene, p21 plays critical roles in vascular remodeling. Regulation of p21 expression by retinoic acid receptor (RAR) and its ligand has important implications for control of pathological vascular remodeling. Nevertheless, the mechanism of RAR-mediated p21 expression in VSMCs remains poorly understood. Here, we show that, under basal conditions, RARα forms a complex with histone deacetylase 2 (HDAC2) and Krüppel-like factor 5 (Klf5) at the p21 promoter to inhibit its expression. Upon RARα agonist stimulation, HDAC2 is phosphorylated by CK2α. Phosphorylation of HDAC2, on the one hand, promotes its dissociation from RARα, thus allowing the liganded-RARα to interact with co-activators; on the other hand, it increases its interaction with Klf5, thus leading to deacetylation of Klf5. Deacetylation of Klf5 facilitates its dissociation from the p21 promoter, relieving its repressive effect on the p21 promoter. Interference with HDAC2 phosphorylation by either CK2α knockdown or the use of phosphorylation-deficient mutant of HDAC2 prevents the dissociation of Klf5 from the p21 promoter and impairs RAR agonist-induced p21 activation. Our results reveal a novel mechanism involving a phosphorylation-deacetylation cascade that functions to remove the basal repression complex from the p21 promoter upon RAR agonist treatment, allowing for optimum agonist-induced p21 expression. PMID:21383775

  19. Modeling the Etiology of p53-mutated Cancer Cells*

    PubMed Central

    Perez, Ricardo E.; Shen, Hong; Duan, Lei; Kim, Reuben H.; Kim, Terresa; Park, No-Hee; Maki, Carl G.

    2016-01-01

    p53 gene mutations are among the most common alterations in cancer. In most cases, missense mutations in one TP53 allele are followed by loss-of-heterozygosity (LOH), so tumors express only mutant p53. TP53 mutations and LOH have been linked, in many cases, with poor therapy response and worse outcome. Despite this, remarkably little is known about how TP53 point mutations are acquired, how LOH occurs, or the cells involved. Nutlin-3a occupies the p53-binding site in MDM2 and blocks p53-MDM2 interaction, resulting in the stabilization and activation of p53 and subsequent growth arrest or apoptosis. We leveraged the powerful growth inhibitory activity of Nutlin-3a to select p53-mutated cells and examined how TP53 mutations arise and how the remaining wild-type allele is lost or inactivated. Mismatch repair (MMR)-deficient colorectal cancer cells formed heterozygote (p53 wild-type/mutant) colonies when cultured in low doses of Nutlin-3a, whereas MMR-corrected counterparts did not. Placing these heterozygotes in higher Nutlin-3a doses selected clones in which the remaining wild-type TP53 was silenced. Our data suggest silencing occurred through a novel mechanism that does not involve DNA methylation, histone methylation, or histone deacetylation. These data indicate MMR deficiency in colorectal cancer can give rise to initiating TP53 mutations and that TP53 silencing occurs via a copy-neutral mechanism. Moreover, the data highlight the use of MDM2 antagonists as tools to study mechanisms of TP53 mutation acquisition and wild-type allele loss or silencing in cells with defined genetic backgrounds. PMID:27022024

  20. The Prognostic Impact of p53 Expression on Sporadic Colorectal Cancer Is Dependent on p21 Status.

    PubMed

    Kruschewski, Martin; Mueller, Kathrin; Lipka, Sybille; Budczies, Jan; Noske, Aurelia; Buhr, Heinz Johannes; Elezkurtaj, Sefer

    2011-03-11

    The prognostic value of p53 and p21 expression in colorectal cancer is still under debate. We hypothesize that the prognostic impact of p53 expression is dependent on p21 status. The expression of p53 and p21 was immunohistochemically investigated in a prospective cohort of 116 patients with UICC stage II and III sporadic colorectal cancer. The results were correlated with overall and recurrence-free survival. The mean observation period was 51.8 ± 2.5 months. Expression of p53 was observed in 72 tumors (63%). Overall survival was significantly better in patients with p53-positive carcinomas than in those without p53 expression (p = 0.048). No differences were found in recurrence-free survival (p = 0.161). The p53+/p21- combination was seen in 68% (n = 49), the p53+/p21+ combination in 32% (n = 23). Patients with p53+/p21- carcinomas had significantly better overall and recurrence-free survival than those with p53+/p21+ (p < 0.0001 resp. p = 0.003). Our data suggest that the prognostic impact of p53 expression on sporadic colorectal cancer is dependent on p21 status.